[Ada] Spurious accessibility error on return aggregate in GNATprove mode
[gcc.git] / gcc / ada / sem_ch6.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch9; use Sem_Ch9;
64 with Sem_Ch10; use Sem_Ch10;
65 with Sem_Ch12; use Sem_Ch12;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elim; use Sem_Elim;
71 with Sem_Eval; use Sem_Eval;
72 with Sem_Mech; use Sem_Mech;
73 with Sem_Prag; use Sem_Prag;
74 with Sem_Res; use Sem_Res;
75 with Sem_Util; use Sem_Util;
76 with Sem_Type; use Sem_Type;
77 with Sem_Warn; use Sem_Warn;
78 with Sinput; use Sinput;
79 with Stand; use Stand;
80 with Sinfo; use Sinfo;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stringt; use Stringt;
84 with Style;
85 with Stylesw; use Stylesw;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
90
91 package body Sem_Ch6 is
92
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
101
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
105
106 procedure Analyze_Function_Return (N : Node_Id);
107 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
108 -- applies to a [generic] function.
109
110 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111 -- Analyze a generic subprogram body. N is the body to be analyzed, and
112 -- Gen_Id is the defining entity Id for the corresponding spec.
113
114 procedure Analyze_Null_Procedure
115 (N : Node_Id;
116 Is_Completion : out Boolean);
117 -- A null procedure can be a declaration or (Ada 2012) a completion
118
119 procedure Analyze_Return_Statement (N : Node_Id);
120 -- Common processing for simple and extended return statements
121
122 procedure Analyze_Return_Type (N : Node_Id);
123 -- Subsidiary to Process_Formals: analyze subtype mark in function
124 -- specification in a context where the formals are visible and hide
125 -- outer homographs.
126
127 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
129 -- that we can use RETURN but not skip the debug output at the end.
130
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
133
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
154
155 procedure Check_Limited_Return
156 (N : Node_Id;
157 Expr : Node_Id;
158 R_Type : Entity_Id);
159 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160 -- types. Used only for simple return statements. Expr is the expression
161 -- returned.
162
163 procedure Check_Subprogram_Order (N : Node_Id);
164 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
165 -- the alpha ordering rule for N if this ordering requirement applicable.
166
167 procedure Check_Returns
168 (HSS : Node_Id;
169 Mode : Character;
170 Err : out Boolean;
171 Proc : Entity_Id := Empty);
172 -- Called to check for missing return statements in a function body, or for
173 -- returns present in a procedure body which has No_Return set. HSS is the
174 -- handled statement sequence for the subprogram body. This procedure
175 -- checks all flow paths to make sure they either have return (Mode = 'F',
176 -- used for functions) or do not have a return (Mode = 'P', used for
177 -- No_Return procedures). The flag Err is set if there are any control
178 -- paths not explicitly terminated by a return in the function case, and is
179 -- True otherwise. Proc is the entity for the procedure case and is used
180 -- in posting the warning message.
181
182 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183 -- In Ada 2012, a primitive equality operator on an untagged record type
184 -- must appear before the type is frozen, and have the same visibility as
185 -- that of the type. This procedure checks that this rule is met, and
186 -- otherwise emits an error on the subprogram declaration and a warning
187 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190 -- is set, otherwise the call has no effect.
191
192 procedure Enter_Overloaded_Entity (S : Entity_Id);
193 -- This procedure makes S, a new overloaded entity, into the first visible
194 -- entity with that name.
195
196 function Is_Non_Overriding_Operation
197 (Prev_E : Entity_Id;
198 New_E : Entity_Id) return Boolean;
199 -- Enforce the rule given in 12.3(18): a private operation in an instance
200 -- overrides an inherited operation only if the corresponding operation
201 -- was overriding in the generic. This needs to be checked for primitive
202 -- operations of types derived (in the generic unit) from formal private
203 -- or formal derived types.
204
205 procedure Make_Inequality_Operator (S : Entity_Id);
206 -- Create the declaration for an inequality operator that is implicitly
207 -- created by a user-defined equality operator that yields a boolean.
208
209 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
210 -- Preanalysis of default expressions of subprogram formals. N is the
211 -- expression to be analyzed and T is the expected type.
212
213 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214 -- Formal_Id is an formal parameter entity. This procedure deals with
215 -- setting the proper validity status for this entity, which depends on
216 -- the kind of parameter and the validity checking mode.
217
218 ---------------------------------------------
219 -- Analyze_Abstract_Subprogram_Declaration --
220 ---------------------------------------------
221
222 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
223 Scop : constant Entity_Id := Current_Scope;
224 Subp_Id : constant Entity_Id :=
225 Analyze_Subprogram_Specification (Specification (N));
226
227 begin
228 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
229
230 Generate_Definition (Subp_Id);
231
232 -- Set the SPARK mode from the current context (may be overwritten later
233 -- with explicit pragma).
234
235 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
236 Set_SPARK_Pragma_Inherited (Subp_Id);
237
238 -- Preserve relevant elaboration-related attributes of the context which
239 -- are no longer available or very expensive to recompute once analysis,
240 -- resolution, and expansion are over.
241
242 Mark_Elaboration_Attributes
243 (N_Id => Subp_Id,
244 Checks => True,
245 Warnings => True);
246
247 Set_Is_Abstract_Subprogram (Subp_Id);
248 New_Overloaded_Entity (Subp_Id);
249 Check_Delayed_Subprogram (Subp_Id);
250
251 Set_Categorization_From_Scope (Subp_Id, Scop);
252
253 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
254 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
255
256 -- Issue a warning if the abstract subprogram is neither a dispatching
257 -- operation nor an operation that overrides an inherited subprogram or
258 -- predefined operator, since this most likely indicates a mistake.
259
260 elsif Warn_On_Redundant_Constructs
261 and then not Is_Dispatching_Operation (Subp_Id)
262 and then not Present (Overridden_Operation (Subp_Id))
263 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
264 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
265 then
266 Error_Msg_N
267 ("abstract subprogram is not dispatching or overriding?r?", N);
268 end if;
269
270 Generate_Reference_To_Formals (Subp_Id);
271 Check_Eliminated (Subp_Id);
272
273 if Has_Aspects (N) then
274 Analyze_Aspect_Specifications (N, Subp_Id);
275 end if;
276 end Analyze_Abstract_Subprogram_Declaration;
277
278 ---------------------------------
279 -- Analyze_Expression_Function --
280 ---------------------------------
281
282 procedure Analyze_Expression_Function (N : Node_Id) is
283 Expr : constant Node_Id := Expression (N);
284 Loc : constant Source_Ptr := Sloc (N);
285 LocX : constant Source_Ptr := Sloc (Expr);
286 Spec : constant Node_Id := Specification (N);
287
288 -- Local variables
289
290 Asp : Node_Id;
291 New_Body : Node_Id;
292 New_Spec : Node_Id;
293 Orig_N : Node_Id;
294 Ret : Node_Id;
295
296 Def_Id : Entity_Id := Empty;
297 Prev : Entity_Id;
298 -- If the expression is a completion, Prev is the entity whose
299 -- declaration is completed. Def_Id is needed to analyze the spec.
300
301 -- Start of processing for Analyze_Expression_Function
302
303 begin
304 -- This is one of the occasions on which we transform the tree during
305 -- semantic analysis. If this is a completion, transform the expression
306 -- function into an equivalent subprogram body, and analyze it.
307
308 -- Expression functions are inlined unconditionally. The back-end will
309 -- determine whether this is possible.
310
311 Inline_Processing_Required := True;
312
313 -- Create a specification for the generated body. This must be done
314 -- prior to the analysis of the initial declaration.
315
316 New_Spec := Copy_Subprogram_Spec (Spec);
317 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
318
319 -- If there are previous overloadable entities with the same name,
320 -- check whether any of them is completed by the expression function.
321 -- In a generic context a formal subprogram has no completion.
322
323 if Present (Prev)
324 and then Is_Overloadable (Prev)
325 and then not Is_Formal_Subprogram (Prev)
326 then
327 Def_Id := Analyze_Subprogram_Specification (Spec);
328 Prev := Find_Corresponding_Spec (N);
329
330 -- The previous entity may be an expression function as well, in
331 -- which case the redeclaration is illegal.
332
333 if Present (Prev)
334 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
335 N_Expression_Function
336 then
337 Error_Msg_Sloc := Sloc (Prev);
338 Error_Msg_N ("& conflicts with declaration#", Def_Id);
339 return;
340 end if;
341 end if;
342
343 Ret := Make_Simple_Return_Statement (LocX, Expr);
344
345 New_Body :=
346 Make_Subprogram_Body (Loc,
347 Specification => New_Spec,
348 Declarations => Empty_List,
349 Handled_Statement_Sequence =>
350 Make_Handled_Sequence_Of_Statements (LocX,
351 Statements => New_List (Ret)));
352 Set_Was_Expression_Function (New_Body);
353
354 -- If the expression completes a generic subprogram, we must create a
355 -- separate node for the body, because at instantiation the original
356 -- node of the generic copy must be a generic subprogram body, and
357 -- cannot be a expression function. Otherwise we just rewrite the
358 -- expression with the non-generic body.
359
360 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
361 Insert_After (N, New_Body);
362
363 -- Propagate any aspects or pragmas that apply to the expression
364 -- function to the proper body when the expression function acts
365 -- as a completion.
366
367 if Has_Aspects (N) then
368 Move_Aspects (N, To => New_Body);
369 end if;
370
371 Relocate_Pragmas_To_Body (New_Body);
372
373 Rewrite (N, Make_Null_Statement (Loc));
374 Set_Has_Completion (Prev, False);
375 Analyze (N);
376 Analyze (New_Body);
377 Set_Is_Inlined (Prev);
378
379 -- If the expression function is a completion, the previous declaration
380 -- must come from source. We know already that it appears in the current
381 -- scope. The entity itself may be internally created if within a body
382 -- to be inlined.
383
384 elsif Present (Prev)
385 and then Is_Overloadable (Prev)
386 and then not Is_Formal_Subprogram (Prev)
387 and then Comes_From_Source (Parent (Prev))
388 then
389 Set_Has_Completion (Prev, False);
390 Set_Is_Inlined (Prev);
391
392 -- AI12-0103: Expression functions that are a completion freeze their
393 -- expression but don't freeze anything else (unlike regular bodies).
394
395 -- Note that we cannot defer this freezing to the analysis of the
396 -- expression itself, because a freeze node might appear in a nested
397 -- scope, leading to an elaboration order issue in gigi.
398 -- As elsewhere, we do not emit freeze nodes within a generic unit.
399
400 if not Inside_A_Generic then
401 Freeze_Expr_Types
402 (Def_Id => Def_Id,
403 Typ => Etype (Def_Id),
404 Expr => Expr,
405 N => N);
406 end if;
407
408 -- For navigation purposes, indicate that the function is a body
409
410 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
411 Rewrite (N, New_Body);
412
413 -- Remove any existing aspects from the original node because the act
414 -- of rewriting causes the list to be shared between the two nodes.
415
416 Orig_N := Original_Node (N);
417 Remove_Aspects (Orig_N);
418
419 -- Propagate any pragmas that apply to expression function to the
420 -- proper body when the expression function acts as a completion.
421 -- Aspects are automatically transfered because of node rewriting.
422
423 Relocate_Pragmas_To_Body (N);
424 Analyze (N);
425
426 -- Once the aspects of the generated body have been analyzed, create
427 -- a copy for ASIS purposes and associate it with the original node.
428
429 if Has_Aspects (N) then
430 Set_Aspect_Specifications (Orig_N,
431 New_Copy_List_Tree (Aspect_Specifications (N)));
432 end if;
433
434 -- Prev is the previous entity with the same name, but it is can
435 -- be an unrelated spec that is not completed by the expression
436 -- function. In that case the relevant entity is the one in the body.
437 -- Not clear that the backend can inline it in this case ???
438
439 if Has_Completion (Prev) then
440
441 -- The formals of the expression function are body formals,
442 -- and do not appear in the ali file, which will only contain
443 -- references to the formals of the original subprogram spec.
444
445 declare
446 F1 : Entity_Id;
447 F2 : Entity_Id;
448
449 begin
450 F1 := First_Formal (Def_Id);
451 F2 := First_Formal (Prev);
452
453 while Present (F1) loop
454 Set_Spec_Entity (F1, F2);
455 Next_Formal (F1);
456 Next_Formal (F2);
457 end loop;
458 end;
459
460 else
461 Set_Is_Inlined (Defining_Entity (New_Body));
462 end if;
463
464 -- If this is not a completion, create both a declaration and a body, so
465 -- that the expression can be inlined whenever possible.
466
467 else
468 -- An expression function that is not a completion is not a
469 -- subprogram declaration, and thus cannot appear in a protected
470 -- definition.
471
472 if Nkind (Parent (N)) = N_Protected_Definition then
473 Error_Msg_N
474 ("an expression function is not a legal protected operation", N);
475 end if;
476
477 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
478
479 -- Remove any existing aspects from the original node because the act
480 -- of rewriting causes the list to be shared between the two nodes.
481
482 Orig_N := Original_Node (N);
483 Remove_Aspects (Orig_N);
484
485 Analyze (N);
486
487 -- Once the aspects of the generated spec have been analyzed, create
488 -- a copy for ASIS purposes and associate it with the original node.
489
490 if Has_Aspects (N) then
491 Set_Aspect_Specifications (Orig_N,
492 New_Copy_List_Tree (Aspect_Specifications (N)));
493 end if;
494
495 -- If aspect SPARK_Mode was specified on the body, it needs to be
496 -- repeated both on the generated spec and the body.
497
498 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
499
500 if Present (Asp) then
501 Asp := New_Copy_Tree (Asp);
502 Set_Analyzed (Asp, False);
503 Set_Aspect_Specifications (New_Body, New_List (Asp));
504 end if;
505
506 Def_Id := Defining_Entity (N);
507 Set_Is_Inlined (Def_Id);
508
509 -- Establish the linkages between the spec and the body. These are
510 -- used when the expression function acts as the prefix of attribute
511 -- 'Access in order to freeze the original expression which has been
512 -- moved to the generated body.
513
514 Set_Corresponding_Body (N, Defining_Entity (New_Body));
515 Set_Corresponding_Spec (New_Body, Def_Id);
516
517 -- Within a generic preanalyze the original expression for name
518 -- capture. The body is also generated but plays no role in
519 -- this because it is not part of the original source.
520
521 if Inside_A_Generic then
522 Set_Has_Completion (Def_Id);
523 Push_Scope (Def_Id);
524 Install_Formals (Def_Id);
525 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
526 End_Scope;
527 end if;
528
529 -- To prevent premature freeze action, insert the new body at the end
530 -- of the current declarations, or at the end of the package spec.
531 -- However, resolve usage names now, to prevent spurious visibility
532 -- on later entities. Note that the function can now be called in
533 -- the current declarative part, which will appear to be prior to
534 -- the presence of the body in the code. There are nevertheless no
535 -- order of elaboration issues because all name resolution has taken
536 -- place at the point of declaration.
537
538 declare
539 Decls : List_Id := List_Containing (N);
540 Expr : constant Node_Id := Expression (Ret);
541 Par : constant Node_Id := Parent (Decls);
542 Typ : constant Entity_Id := Etype (Def_Id);
543
544 begin
545 -- If this is a wrapper created for in an instance for a formal
546 -- subprogram, insert body after declaration, to be analyzed when
547 -- the enclosing instance is analyzed.
548
549 if GNATprove_Mode
550 and then Is_Generic_Actual_Subprogram (Def_Id)
551 then
552 Insert_After (N, New_Body);
553
554 else
555 if Nkind (Par) = N_Package_Specification
556 and then Decls = Visible_Declarations (Par)
557 and then Present (Private_Declarations (Par))
558 and then not Is_Empty_List (Private_Declarations (Par))
559 then
560 Decls := Private_Declarations (Par);
561 end if;
562
563 Insert_After (Last (Decls), New_Body);
564
565 -- Preanalyze the expression if not already done above
566
567 if not Inside_A_Generic then
568 Push_Scope (Def_Id);
569 Install_Formals (Def_Id);
570 Preanalyze_Formal_Expression (Expr, Typ);
571 Check_Limited_Return (Original_Node (N), Expr, Typ);
572 End_Scope;
573 end if;
574 end if;
575 end;
576 end if;
577
578 -- Check incorrect use of dynamically tagged expression. This doesn't
579 -- fall out automatically when analyzing the generated function body,
580 -- because Check_Dynamically_Tagged_Expression deliberately ignores
581 -- nodes that don't come from source.
582
583 if Present (Def_Id)
584 and then Nkind (Def_Id) in N_Has_Etype
585 and then Is_Tagged_Type (Etype (Def_Id))
586 then
587 Check_Dynamically_Tagged_Expression
588 (Expr => Expr,
589 Typ => Etype (Def_Id),
590 Related_Nod => Original_Node (N));
591 end if;
592
593 -- We must enforce checks for unreferenced formals in our newly
594 -- generated function, so we propagate the referenced flag from the
595 -- original spec to the new spec as well as setting Comes_From_Source.
596
597 if Present (Parameter_Specifications (New_Spec)) then
598 declare
599 Form_New_Def : Entity_Id;
600 Form_New_Spec : Entity_Id;
601 Form_Old_Def : Entity_Id;
602 Form_Old_Spec : Entity_Id;
603
604 begin
605 Form_New_Spec := First (Parameter_Specifications (New_Spec));
606 Form_Old_Spec := First (Parameter_Specifications (Spec));
607
608 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
609 Form_New_Def := Defining_Identifier (Form_New_Spec);
610 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
611
612 Set_Comes_From_Source (Form_New_Def, True);
613
614 -- Because of the usefulness of unreferenced controlling
615 -- formals we exempt them from unreferenced warnings by marking
616 -- them as always referenced.
617
618 Set_Referenced (Form_Old_Def,
619 (Is_Formal (Form_Old_Def)
620 and then Is_Controlling_Formal (Form_Old_Def))
621 or else Referenced (Form_Old_Def));
622
623 Next (Form_New_Spec);
624 Next (Form_Old_Spec);
625 end loop;
626 end;
627 end if;
628 end Analyze_Expression_Function;
629
630 ----------------------------------------
631 -- Analyze_Extended_Return_Statement --
632 ----------------------------------------
633
634 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
635 begin
636 Check_Compiler_Unit ("extended return statement", N);
637 Analyze_Return_Statement (N);
638 end Analyze_Extended_Return_Statement;
639
640 ----------------------------
641 -- Analyze_Function_Call --
642 ----------------------------
643
644 procedure Analyze_Function_Call (N : Node_Id) is
645 Actuals : constant List_Id := Parameter_Associations (N);
646 Func_Nam : constant Node_Id := Name (N);
647 Actual : Node_Id;
648
649 begin
650 Analyze (Func_Nam);
651
652 -- A call of the form A.B (X) may be an Ada 2005 call, which is
653 -- rewritten as B (A, X). If the rewriting is successful, the call
654 -- has been analyzed and we just return.
655
656 if Nkind (Func_Nam) = N_Selected_Component
657 and then Name (N) /= Func_Nam
658 and then Is_Rewrite_Substitution (N)
659 and then Present (Etype (N))
660 then
661 return;
662 end if;
663
664 -- If error analyzing name, then set Any_Type as result type and return
665
666 if Etype (Func_Nam) = Any_Type then
667 Set_Etype (N, Any_Type);
668 return;
669 end if;
670
671 -- Otherwise analyze the parameters
672
673 if Present (Actuals) then
674 Actual := First (Actuals);
675 while Present (Actual) loop
676 Analyze (Actual);
677 Check_Parameterless_Call (Actual);
678 Next (Actual);
679 end loop;
680 end if;
681
682 Analyze_Call (N);
683 end Analyze_Function_Call;
684
685 -----------------------------
686 -- Analyze_Function_Return --
687 -----------------------------
688
689 procedure Analyze_Function_Return (N : Node_Id) is
690 Loc : constant Source_Ptr := Sloc (N);
691 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
692 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
693
694 R_Type : constant Entity_Id := Etype (Scope_Id);
695 -- Function result subtype
696
697 procedure Check_Return_Obj_Accessibility (Return_Stmt : Node_Id);
698 -- Apply legality rule of 6.5 (5.9) to the access discriminants of an
699 -- aggregate in a return statement.
700
701 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
702 -- Check that the return_subtype_indication properly matches the result
703 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
704
705 ------------------------------------
706 -- Check_Return_Obj_Accessibility --
707 ------------------------------------
708
709 procedure Check_Return_Obj_Accessibility (Return_Stmt : Node_Id) is
710 Assoc : Node_Id;
711 Agg : Node_Id := Empty;
712 Discr : Entity_Id;
713 Expr : Node_Id;
714 Obj : Node_Id;
715 Process_Exprs : Boolean := False;
716 Return_Obj : Node_Id;
717
718 begin
719 -- Only perform checks on record types with access discriminants
720
721 if not Is_Record_Type (R_Type)
722 or else not Has_Discriminants (R_Type)
723 then
724 return;
725 end if;
726
727 -- We are only interested in return statements
728
729 if not Nkind_In (Return_Stmt, N_Extended_Return_Statement,
730 N_Simple_Return_Statement)
731 then
732 return;
733 end if;
734
735 -- Fetch the object from the return statement, in the case of a
736 -- simple return statement the expression is part of the node.
737
738 if Nkind (Return_Stmt) = N_Extended_Return_Statement then
739 Return_Obj := Last (Return_Object_Declarations (Return_Stmt));
740
741 -- We could be looking at something that's been expanded with
742 -- an initialzation procedure which we can safely ignore.
743
744 if Nkind (Return_Obj) /= N_Object_Declaration then
745 return;
746 end if;
747 else
748 Return_Obj := Return_Stmt;
749 end if;
750
751 -- We may need to check an aggregate or a subtype indication
752 -- depending on how the discriminants were specified and whether
753 -- we are looking at an extended return statement.
754
755 if Nkind (Return_Obj) = N_Object_Declaration
756 and then Nkind (Object_Definition (Return_Obj))
757 = N_Subtype_Indication
758 then
759 Assoc := First (Constraints
760 (Constraint (Object_Definition (Return_Obj))));
761 else
762 -- Qualified expressions may be nested
763
764 Agg := Original_Node (Expression (Return_Obj));
765 while Nkind (Agg) = N_Qualified_Expression loop
766 Agg := Original_Node (Expression (Agg));
767 end loop;
768
769 -- If we are looking at an aggregate instead of a function call we
770 -- can continue checking accessibility for the supplied
771 -- discriminant associations.
772
773 if Nkind (Agg) = N_Aggregate then
774 if Present (Expressions (Agg)) then
775 Assoc := First (Expressions (Agg));
776 Process_Exprs := True;
777 else
778 Assoc := First (Component_Associations (Agg));
779 end if;
780
781 -- Otherwise the expression is not of interest ???
782
783 else
784 return;
785 end if;
786 end if;
787
788 -- Move through the discriminants checking the accessibility level
789 -- of each co-extension's associated expression.
790
791 Discr := First_Discriminant (R_Type);
792 while Present (Discr) loop
793 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
794
795 if Nkind (Assoc) = N_Attribute_Reference then
796 Expr := Assoc;
797 elsif Nkind_In (Assoc, N_Component_Association,
798 N_Discriminant_Association)
799 then
800 Expr := Expression (Assoc);
801 else
802 Expr := Empty;
803 end if;
804
805 -- This anonymous access discriminant has an associated
806 -- expression which needs checking.
807
808 if Present (Expr)
809 and then Nkind (Expr) = N_Attribute_Reference
810 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
811 then
812 -- Obtain the object to perform static checks on by moving
813 -- up the prefixes in the expression taking into account
814 -- named access types.
815
816 Obj := Original_Node (Prefix (Expr));
817 while Nkind_In (Obj, N_Indexed_Component,
818 N_Selected_Component)
819 loop
820 Obj := Original_Node (Prefix (Obj));
821
822 -- When we encounter a named access type then we can
823 -- ignore accessibility checks on the dereference.
824
825 if Ekind (Etype (Obj))
826 in E_Access_Type ..
827 E_Access_Protected_Subprogram_Type
828 then
829 if Nkind (Parent (Obj)) = N_Selected_Component then
830 Obj := Selector_Name (Parent (Obj));
831 end if;
832 exit;
833 end if;
834
835 -- Skip over the explicit dereference
836
837 if Nkind (Obj) = N_Explicit_Dereference then
838 Obj := Original_Node (Prefix (Obj));
839 end if;
840 end loop;
841
842 -- Do not check aliased formals or function calls. A
843 -- run-time check may still be needed ???
844
845 if Is_Entity_Name (Obj)
846 and then Comes_From_Source (Obj)
847 then
848 -- Explicitly aliased formals are allowed
849
850 if Is_Formal (Entity (Obj))
851 and then Is_Aliased (Entity (Obj))
852 then
853 null;
854
855 elsif Object_Access_Level (Obj) >
856 Scope_Depth (Scope (Scope_Id))
857 then
858 Error_Msg_N
859 ("access discriminant in return aggregate would "
860 & "be a dangling reference", Obj);
861 end if;
862 end if;
863 end if;
864 end if;
865
866 Next_Discriminant (Discr);
867
868 if not Is_List_Member (Assoc) then
869 Assoc := Empty;
870 else
871 Nlists.Next (Assoc);
872 end if;
873
874 -- After aggregate expressions, examine component associations if
875 -- present.
876
877 if No (Assoc) then
878 if Present (Agg)
879 and then Process_Exprs
880 and then Present (Component_Associations (Agg))
881 then
882 Assoc := First (Component_Associations (Agg));
883 Process_Exprs := False;
884 else
885 exit;
886 end if;
887 end if;
888 end loop;
889 end Check_Return_Obj_Accessibility;
890
891 -------------------------------------
892 -- Check_Return_Subtype_Indication --
893 -------------------------------------
894
895 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
896 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
897
898 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
899 -- Subtype given in the extended return statement (must match R_Type)
900
901 Subtype_Ind : constant Node_Id :=
902 Object_Definition (Original_Node (Obj_Decl));
903
904 procedure Error_No_Match (N : Node_Id);
905 -- Output error messages for case where types do not statically
906 -- match. N is the location for the messages.
907
908 --------------------
909 -- Error_No_Match --
910 --------------------
911
912 procedure Error_No_Match (N : Node_Id) is
913 begin
914 Error_Msg_N
915 ("subtype must statically match function result subtype", N);
916
917 if not Predicates_Match (R_Stm_Type, R_Type) then
918 Error_Msg_Node_2 := R_Type;
919 Error_Msg_NE
920 ("\predicate of& does not match predicate of&",
921 N, R_Stm_Type);
922 end if;
923 end Error_No_Match;
924
925 -- Start of processing for Check_Return_Subtype_Indication
926
927 begin
928 -- First, avoid cascaded errors
929
930 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
931 return;
932 end if;
933
934 -- "return access T" case; check that the return statement also has
935 -- "access T", and that the subtypes statically match:
936 -- if this is an access to subprogram the signatures must match.
937
938 if Is_Anonymous_Access_Type (R_Type) then
939 if Is_Anonymous_Access_Type (R_Stm_Type) then
940 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
941 then
942 if Base_Type (Designated_Type (R_Stm_Type)) /=
943 Base_Type (Designated_Type (R_Type))
944 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
945 then
946 Error_No_Match (Subtype_Mark (Subtype_Ind));
947 end if;
948
949 else
950 -- For two anonymous access to subprogram types, the types
951 -- themselves must be type conformant.
952
953 if not Conforming_Types
954 (R_Stm_Type, R_Type, Fully_Conformant)
955 then
956 Error_No_Match (Subtype_Ind);
957 end if;
958 end if;
959
960 else
961 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
962 end if;
963
964 -- If the return object is of an anonymous access type, then report
965 -- an error if the function's result type is not also anonymous.
966
967 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
968 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
969 Error_Msg_N
970 ("anonymous access not allowed for function with named access "
971 & "result", Subtype_Ind);
972
973 -- Subtype indication case: check that the return object's type is
974 -- covered by the result type, and that the subtypes statically match
975 -- when the result subtype is constrained. Also handle record types
976 -- with unknown discriminants for which we have built the underlying
977 -- record view. Coverage is needed to allow specific-type return
978 -- objects when the result type is class-wide (see AI05-32).
979
980 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
981 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
982 and then
983 Covers
984 (Base_Type (R_Type),
985 Underlying_Record_View (Base_Type (R_Stm_Type))))
986 then
987 -- A null exclusion may be present on the return type, on the
988 -- function specification, on the object declaration or on the
989 -- subtype itself.
990
991 if Is_Access_Type (R_Type)
992 and then
993 (Can_Never_Be_Null (R_Type)
994 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
995 Can_Never_Be_Null (R_Stm_Type)
996 then
997 Error_No_Match (Subtype_Ind);
998 end if;
999
1000 -- AI05-103: for elementary types, subtypes must statically match
1001
1002 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1003 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1004 Error_No_Match (Subtype_Ind);
1005 end if;
1006 end if;
1007
1008 -- All remaining cases are illegal
1009
1010 -- Note: previous versions of this subprogram allowed the return
1011 -- value to be the ancestor of the return type if the return type
1012 -- was a null extension. This was plainly incorrect.
1013
1014 else
1015 Error_Msg_N
1016 ("wrong type for return_subtype_indication", Subtype_Ind);
1017 end if;
1018 end Check_Return_Subtype_Indication;
1019
1020 ---------------------
1021 -- Local Variables --
1022 ---------------------
1023
1024 Expr : Node_Id;
1025 Obj_Decl : Node_Id := Empty;
1026
1027 -- Start of processing for Analyze_Function_Return
1028
1029 begin
1030 Set_Return_Present (Scope_Id);
1031
1032 if Nkind (N) = N_Simple_Return_Statement then
1033 Expr := Expression (N);
1034
1035 -- Guard against a malformed expression. The parser may have tried to
1036 -- recover but the node is not analyzable.
1037
1038 if Nkind (Expr) = N_Error then
1039 Set_Etype (Expr, Any_Type);
1040 Expander_Mode_Save_And_Set (False);
1041 return;
1042
1043 else
1044 -- The resolution of a controlled [extension] aggregate associated
1045 -- with a return statement creates a temporary which needs to be
1046 -- finalized on function exit. Wrap the return statement inside a
1047 -- block so that the finalization machinery can detect this case.
1048 -- This early expansion is done only when the return statement is
1049 -- not part of a handled sequence of statements.
1050
1051 if Nkind_In (Expr, N_Aggregate,
1052 N_Extension_Aggregate)
1053 and then Needs_Finalization (R_Type)
1054 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1055 then
1056 Rewrite (N,
1057 Make_Block_Statement (Loc,
1058 Handled_Statement_Sequence =>
1059 Make_Handled_Sequence_Of_Statements (Loc,
1060 Statements => New_List (Relocate_Node (N)))));
1061
1062 Analyze (N);
1063 return;
1064 end if;
1065
1066 Analyze (Expr);
1067
1068 -- Ada 2005 (AI-251): If the type of the returned object is
1069 -- an access to an interface type then we add an implicit type
1070 -- conversion to force the displacement of the "this" pointer to
1071 -- reference the secondary dispatch table. We cannot delay the
1072 -- generation of this implicit conversion until the expansion
1073 -- because in this case the type resolution changes the decoration
1074 -- of the expression node to match R_Type; by contrast, if the
1075 -- returned object is a class-wide interface type then it is too
1076 -- early to generate here the implicit conversion since the return
1077 -- statement may be rewritten by the expander into an extended
1078 -- return statement whose expansion takes care of adding the
1079 -- implicit type conversion to displace the pointer to the object.
1080
1081 if Expander_Active
1082 and then Serious_Errors_Detected = 0
1083 and then Is_Access_Type (R_Type)
1084 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1085 and then Is_Interface (Designated_Type (R_Type))
1086 and then Is_Progenitor (Designated_Type (R_Type),
1087 Designated_Type (Etype (Expr)))
1088 then
1089 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1090 Analyze (Expr);
1091 end if;
1092
1093 Resolve (Expr, R_Type);
1094 Check_Limited_Return (N, Expr, R_Type);
1095
1096 Check_Return_Obj_Accessibility (N);
1097 end if;
1098
1099 -- RETURN only allowed in SPARK as the last statement in function
1100
1101 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1102 and then
1103 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1104 or else Present (Next (N)))
1105 then
1106 Check_SPARK_05_Restriction
1107 ("RETURN should be the last statement in function", N);
1108 end if;
1109
1110 else
1111 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1112 Obj_Decl := Last (Return_Object_Declarations (N));
1113
1114 -- Analyze parts specific to extended_return_statement:
1115
1116 declare
1117 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1118 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1119
1120 begin
1121 Expr := Expression (Obj_Decl);
1122
1123 -- Note: The check for OK_For_Limited_Init will happen in
1124 -- Analyze_Object_Declaration; we treat it as a normal
1125 -- object declaration.
1126
1127 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1128 Analyze (Obj_Decl);
1129
1130 Check_Return_Subtype_Indication (Obj_Decl);
1131
1132 if Present (HSS) then
1133 Analyze (HSS);
1134
1135 if Present (Exception_Handlers (HSS)) then
1136
1137 -- ???Has_Nested_Block_With_Handler needs to be set.
1138 -- Probably by creating an actual N_Block_Statement.
1139 -- Probably in Expand.
1140
1141 null;
1142 end if;
1143 end if;
1144
1145 -- Mark the return object as referenced, since the return is an
1146 -- implicit reference of the object.
1147
1148 Set_Referenced (Defining_Identifier (Obj_Decl));
1149
1150 Check_References (Stm_Entity);
1151
1152 Check_Return_Obj_Accessibility (N);
1153
1154 -- Check RM 6.5 (5.9/3)
1155
1156 if Has_Aliased then
1157 if Ada_Version < Ada_2012 then
1158
1159 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1160 -- Can it really happen (extended return???)
1161
1162 Error_Msg_N
1163 ("aliased only allowed for limited return objects "
1164 & "in Ada 2012??", N);
1165
1166 elsif not Is_Limited_View (R_Type) then
1167 Error_Msg_N
1168 ("aliased only allowed for limited return objects", N);
1169 end if;
1170 end if;
1171 end;
1172 end if;
1173
1174 -- Case of Expr present
1175
1176 if Present (Expr) then
1177
1178 -- Defend against previous errors
1179
1180 if Nkind (Expr) = N_Empty
1181 or else No (Etype (Expr))
1182 then
1183 return;
1184 end if;
1185
1186 -- Apply constraint check. Note that this is done before the implicit
1187 -- conversion of the expression done for anonymous access types to
1188 -- ensure correct generation of the null-excluding check associated
1189 -- with null-excluding expressions found in return statements. We
1190 -- don't need a check if the subtype of the return object is the
1191 -- same as the result subtype of the function.
1192
1193 if Nkind (N) /= N_Extended_Return_Statement
1194 or else Nkind (Obj_Decl) /= N_Object_Declaration
1195 or else Nkind (Object_Definition (Obj_Decl)) not in N_Has_Entity
1196 or else Entity (Object_Definition (Obj_Decl)) /= R_Type
1197 then
1198 Apply_Constraint_Check (Expr, R_Type);
1199 end if;
1200
1201 -- The return value is converted to the return type of the function,
1202 -- which implies a predicate check if the return type is predicated.
1203 -- We do not apply the check to a case expression because it will
1204 -- be expanded into a series of return statements, each of which
1205 -- will receive a predicate check.
1206
1207 if Nkind (Expr) /= N_Case_Expression then
1208 Apply_Predicate_Check (Expr, R_Type);
1209 end if;
1210
1211 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1212 -- type, apply an implicit conversion of the expression to that type
1213 -- to force appropriate static and run-time accessibility checks.
1214
1215 if Ada_Version >= Ada_2005
1216 and then Ekind (R_Type) = E_Anonymous_Access_Type
1217 then
1218 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1219 Analyze_And_Resolve (Expr, R_Type);
1220
1221 -- If this is a local anonymous access to subprogram, the
1222 -- accessibility check can be applied statically. The return is
1223 -- illegal if the access type of the return expression is declared
1224 -- inside of the subprogram (except if it is the subtype indication
1225 -- of an extended return statement).
1226
1227 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1228 if not Comes_From_Source (Current_Scope)
1229 or else Ekind (Current_Scope) = E_Return_Statement
1230 then
1231 null;
1232
1233 elsif
1234 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1235 then
1236 Error_Msg_N ("cannot return local access to subprogram", N);
1237 end if;
1238
1239 -- The expression cannot be of a formal incomplete type
1240
1241 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1242 and then Is_Generic_Type (Etype (Expr))
1243 then
1244 Error_Msg_N
1245 ("cannot return expression of a formal incomplete type", N);
1246 end if;
1247
1248 -- If the result type is class-wide, then check that the return
1249 -- expression's type is not declared at a deeper level than the
1250 -- function (RM05-6.5(5.6/2)).
1251
1252 if Ada_Version >= Ada_2005
1253 and then Is_Class_Wide_Type (R_Type)
1254 then
1255 if Type_Access_Level (Etype (Expr)) >
1256 Subprogram_Access_Level (Scope_Id)
1257 then
1258 Error_Msg_N
1259 ("level of return expression type is deeper than "
1260 & "class-wide function!", Expr);
1261 end if;
1262 end if;
1263
1264 -- Check incorrect use of dynamically tagged expression
1265
1266 if Is_Tagged_Type (R_Type) then
1267 Check_Dynamically_Tagged_Expression
1268 (Expr => Expr,
1269 Typ => R_Type,
1270 Related_Nod => N);
1271 end if;
1272
1273 -- ??? A real run-time accessibility check is needed in cases
1274 -- involving dereferences of access parameters. For now we just
1275 -- check the static cases.
1276
1277 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1278 and then Is_Limited_View (Etype (Scope_Id))
1279 and then Object_Access_Level (Expr) >
1280 Subprogram_Access_Level (Scope_Id)
1281 then
1282 -- Suppress the message in a generic, where the rewriting
1283 -- is irrelevant.
1284
1285 if Inside_A_Generic then
1286 null;
1287
1288 else
1289 Rewrite (N,
1290 Make_Raise_Program_Error (Loc,
1291 Reason => PE_Accessibility_Check_Failed));
1292 Analyze (N);
1293
1294 Error_Msg_Warn := SPARK_Mode /= On;
1295 Error_Msg_N ("cannot return a local value by reference<<", N);
1296 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1297 end if;
1298 end if;
1299
1300 if Known_Null (Expr)
1301 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1302 and then Null_Exclusion_Present (Parent (Scope_Id))
1303 then
1304 Apply_Compile_Time_Constraint_Error
1305 (N => Expr,
1306 Msg => "(Ada 2005) null not allowed for "
1307 & "null-excluding return??",
1308 Reason => CE_Null_Not_Allowed);
1309 end if;
1310
1311 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1312 -- has no initializing expression.
1313
1314 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1315 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1316 Subprogram_Access_Level (Scope_Id)
1317 then
1318 Error_Msg_N
1319 ("level of return expression type is deeper than "
1320 & "class-wide function!", Obj_Decl);
1321 end if;
1322 end if;
1323 end Analyze_Function_Return;
1324
1325 -------------------------------------
1326 -- Analyze_Generic_Subprogram_Body --
1327 -------------------------------------
1328
1329 procedure Analyze_Generic_Subprogram_Body
1330 (N : Node_Id;
1331 Gen_Id : Entity_Id)
1332 is
1333 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1334 Kind : constant Entity_Kind := Ekind (Gen_Id);
1335 Body_Id : Entity_Id;
1336 New_N : Node_Id;
1337 Spec : Node_Id;
1338
1339 begin
1340 -- Copy body and disable expansion while analyzing the generic For a
1341 -- stub, do not copy the stub (which would load the proper body), this
1342 -- will be done when the proper body is analyzed.
1343
1344 if Nkind (N) /= N_Subprogram_Body_Stub then
1345 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1346 Rewrite (N, New_N);
1347
1348 -- Once the contents of the generic copy and the template are
1349 -- swapped, do the same for their respective aspect specifications.
1350
1351 Exchange_Aspects (N, New_N);
1352
1353 -- Collect all contract-related source pragmas found within the
1354 -- template and attach them to the contract of the subprogram body.
1355 -- This contract is used in the capture of global references within
1356 -- annotations.
1357
1358 Create_Generic_Contract (N);
1359
1360 Start_Generic;
1361 end if;
1362
1363 Spec := Specification (N);
1364
1365 -- Within the body of the generic, the subprogram is callable, and
1366 -- behaves like the corresponding non-generic unit.
1367
1368 Body_Id := Defining_Entity (Spec);
1369
1370 if Kind = E_Generic_Procedure
1371 and then Nkind (Spec) /= N_Procedure_Specification
1372 then
1373 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1374 return;
1375
1376 elsif Kind = E_Generic_Function
1377 and then Nkind (Spec) /= N_Function_Specification
1378 then
1379 Error_Msg_N ("invalid body for generic function ", Body_Id);
1380 return;
1381 end if;
1382
1383 Set_Corresponding_Body (Gen_Decl, Body_Id);
1384
1385 if Has_Completion (Gen_Id)
1386 and then Nkind (Parent (N)) /= N_Subunit
1387 then
1388 Error_Msg_N ("duplicate generic body", N);
1389 return;
1390 else
1391 Set_Has_Completion (Gen_Id);
1392 end if;
1393
1394 if Nkind (N) = N_Subprogram_Body_Stub then
1395 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1396 else
1397 Set_Corresponding_Spec (N, Gen_Id);
1398 end if;
1399
1400 if Nkind (Parent (N)) = N_Compilation_Unit then
1401 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1402 end if;
1403
1404 -- Make generic parameters immediately visible in the body. They are
1405 -- needed to process the formals declarations. Then make the formals
1406 -- visible in a separate step.
1407
1408 Push_Scope (Gen_Id);
1409
1410 declare
1411 E : Entity_Id;
1412 First_Ent : Entity_Id;
1413
1414 begin
1415 First_Ent := First_Entity (Gen_Id);
1416
1417 E := First_Ent;
1418 while Present (E) and then not Is_Formal (E) loop
1419 Install_Entity (E);
1420 Next_Entity (E);
1421 end loop;
1422
1423 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1424
1425 -- Now generic formals are visible, and the specification can be
1426 -- analyzed, for subsequent conformance check.
1427
1428 Body_Id := Analyze_Subprogram_Specification (Spec);
1429
1430 -- Make formal parameters visible
1431
1432 if Present (E) then
1433
1434 -- E is the first formal parameter, we loop through the formals
1435 -- installing them so that they will be visible.
1436
1437 Set_First_Entity (Gen_Id, E);
1438 while Present (E) loop
1439 Install_Entity (E);
1440 Next_Formal (E);
1441 end loop;
1442 end if;
1443
1444 -- Visible generic entity is callable within its own body
1445
1446 Set_Ekind (Gen_Id, Ekind (Body_Id));
1447 Set_Ekind (Body_Id, E_Subprogram_Body);
1448 Set_Convention (Body_Id, Convention (Gen_Id));
1449 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1450 Set_Scope (Body_Id, Scope (Gen_Id));
1451
1452 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1453
1454 if Nkind (N) = N_Subprogram_Body_Stub then
1455
1456 -- No body to analyze, so restore state of generic unit
1457
1458 Set_Ekind (Gen_Id, Kind);
1459 Set_Ekind (Body_Id, Kind);
1460
1461 if Present (First_Ent) then
1462 Set_First_Entity (Gen_Id, First_Ent);
1463 end if;
1464
1465 End_Scope;
1466 return;
1467 end if;
1468
1469 -- If this is a compilation unit, it must be made visible explicitly,
1470 -- because the compilation of the declaration, unlike other library
1471 -- unit declarations, does not. If it is not a unit, the following
1472 -- is redundant but harmless.
1473
1474 Set_Is_Immediately_Visible (Gen_Id);
1475 Reference_Body_Formals (Gen_Id, Body_Id);
1476
1477 if Is_Child_Unit (Gen_Id) then
1478 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1479 end if;
1480
1481 Set_Actual_Subtypes (N, Current_Scope);
1482
1483 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1484 Set_SPARK_Pragma_Inherited (Body_Id);
1485
1486 -- Analyze any aspect specifications that appear on the generic
1487 -- subprogram body.
1488
1489 if Has_Aspects (N) then
1490 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1491 end if;
1492
1493 Analyze_Declarations (Declarations (N));
1494 Check_Completion;
1495
1496 -- Process the contract of the subprogram body after all declarations
1497 -- have been analyzed. This ensures that any contract-related pragmas
1498 -- are available through the N_Contract node of the body.
1499
1500 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1501
1502 Analyze (Handled_Statement_Sequence (N));
1503 Save_Global_References (Original_Node (N));
1504
1505 -- Prior to exiting the scope, include generic formals again (if any
1506 -- are present) in the set of local entities.
1507
1508 if Present (First_Ent) then
1509 Set_First_Entity (Gen_Id, First_Ent);
1510 end if;
1511
1512 Check_References (Gen_Id);
1513 end;
1514
1515 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1516 Update_Use_Clause_Chain;
1517 Validate_Categorization_Dependency (N, Gen_Id);
1518 End_Scope;
1519 Check_Subprogram_Order (N);
1520
1521 -- Outside of its body, unit is generic again
1522
1523 Set_Ekind (Gen_Id, Kind);
1524 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1525
1526 if Style_Check then
1527 Style.Check_Identifier (Body_Id, Gen_Id);
1528 end if;
1529
1530 End_Generic;
1531 end Analyze_Generic_Subprogram_Body;
1532
1533 ----------------------------
1534 -- Analyze_Null_Procedure --
1535 ----------------------------
1536
1537 -- WARNING: This routine manages Ghost regions. Return statements must be
1538 -- replaced by gotos that jump to the end of the routine and restore the
1539 -- Ghost mode.
1540
1541 procedure Analyze_Null_Procedure
1542 (N : Node_Id;
1543 Is_Completion : out Boolean)
1544 is
1545 Loc : constant Source_Ptr := Sloc (N);
1546 Spec : constant Node_Id := Specification (N);
1547
1548 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1549 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1550 Saved_ISMP : constant Boolean :=
1551 Ignore_SPARK_Mode_Pragmas_In_Instance;
1552 -- Save the Ghost and SPARK mode-related data to restore on exit
1553
1554 Designator : Entity_Id;
1555 Form : Node_Id;
1556 Null_Body : Node_Id := Empty;
1557 Null_Stmt : Node_Id := Null_Statement (Spec);
1558 Prev : Entity_Id;
1559
1560 begin
1561 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1562
1563 -- A null procedure is Ghost when it is stand-alone and is subject to
1564 -- pragma Ghost, or when the corresponding spec is Ghost. Set the mode
1565 -- now, to ensure that any nodes generated during analysis and expansion
1566 -- are properly marked as Ghost.
1567
1568 if Present (Prev) then
1569 Mark_And_Set_Ghost_Body (N, Prev);
1570 end if;
1571
1572 -- Capture the profile of the null procedure before analysis, for
1573 -- expansion at the freeze point and at each point of call. The body is
1574 -- used if the procedure has preconditions, or if it is a completion. In
1575 -- the first case the body is analyzed at the freeze point, in the other
1576 -- it replaces the null procedure declaration.
1577
1578 -- For a null procedure that comes from source, a NULL statement is
1579 -- provided by the parser, which carries the source location of the
1580 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1581 -- from expansion, create one now.
1582
1583 if No (Null_Stmt) then
1584 Null_Stmt := Make_Null_Statement (Loc);
1585 end if;
1586
1587 Null_Body :=
1588 Make_Subprogram_Body (Loc,
1589 Specification => New_Copy_Tree (Spec),
1590 Declarations => New_List,
1591 Handled_Statement_Sequence =>
1592 Make_Handled_Sequence_Of_Statements (Loc,
1593 Statements => New_List (Null_Stmt)));
1594
1595 -- Create new entities for body and formals
1596
1597 Set_Defining_Unit_Name (Specification (Null_Body),
1598 Make_Defining_Identifier
1599 (Sloc (Defining_Entity (N)),
1600 Chars (Defining_Entity (N))));
1601
1602 Form := First (Parameter_Specifications (Specification (Null_Body)));
1603 while Present (Form) loop
1604 Set_Defining_Identifier (Form,
1605 Make_Defining_Identifier
1606 (Sloc (Defining_Identifier (Form)),
1607 Chars (Defining_Identifier (Form))));
1608 Next (Form);
1609 end loop;
1610
1611 -- Determine whether the null procedure may be a completion of a generic
1612 -- suprogram, in which case we use the new null body as the completion
1613 -- and set minimal semantic information on the original declaration,
1614 -- which is rewritten as a null statement.
1615
1616 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1617 Insert_Before (N, Null_Body);
1618 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1619
1620 Rewrite (N, Make_Null_Statement (Loc));
1621 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1622 Is_Completion := True;
1623
1624 goto Leave;
1625
1626 else
1627 -- Resolve the types of the formals now, because the freeze point may
1628 -- appear in a different context, e.g. an instantiation.
1629
1630 Form := First (Parameter_Specifications (Specification (Null_Body)));
1631 while Present (Form) loop
1632 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1633 Find_Type (Parameter_Type (Form));
1634
1635 elsif No (Access_To_Subprogram_Definition
1636 (Parameter_Type (Form)))
1637 then
1638 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1639
1640 -- The case of a null procedure with a formal that is an
1641 -- access-to-subprogram type, and that is used as an actual
1642 -- in an instantiation is left to the enthusiastic reader.
1643
1644 else
1645 null;
1646 end if;
1647
1648 Next (Form);
1649 end loop;
1650 end if;
1651
1652 -- If there are previous overloadable entities with the same name, check
1653 -- whether any of them is completed by the null procedure.
1654
1655 if Present (Prev) and then Is_Overloadable (Prev) then
1656 Designator := Analyze_Subprogram_Specification (Spec);
1657 Prev := Find_Corresponding_Spec (N);
1658 end if;
1659
1660 if No (Prev) or else not Comes_From_Source (Prev) then
1661 Designator := Analyze_Subprogram_Specification (Spec);
1662 Set_Has_Completion (Designator);
1663
1664 -- Signal to caller that this is a procedure declaration
1665
1666 Is_Completion := False;
1667
1668 -- Null procedures are always inlined, but generic formal subprograms
1669 -- which appear as such in the internal instance of formal packages,
1670 -- need no completion and are not marked Inline.
1671
1672 if Expander_Active
1673 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1674 then
1675 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1676 Set_Body_To_Inline (N, Null_Body);
1677 Set_Is_Inlined (Designator);
1678 end if;
1679
1680 else
1681 -- The null procedure is a completion. We unconditionally rewrite
1682 -- this as a null body (even if expansion is not active), because
1683 -- there are various error checks that are applied on this body
1684 -- when it is analyzed (e.g. correct aspect placement).
1685
1686 if Has_Completion (Prev) then
1687 Error_Msg_Sloc := Sloc (Prev);
1688 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1689 end if;
1690
1691 Check_Previous_Null_Procedure (N, Prev);
1692
1693 Is_Completion := True;
1694 Rewrite (N, Null_Body);
1695 Analyze (N);
1696 end if;
1697
1698 <<Leave>>
1699 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
1700 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1701 end Analyze_Null_Procedure;
1702
1703 -----------------------------
1704 -- Analyze_Operator_Symbol --
1705 -----------------------------
1706
1707 -- An operator symbol such as "+" or "and" may appear in context where the
1708 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1709 -- is just a string, as in (conjunction = "or"). In these cases the parser
1710 -- generates this node, and the semantics does the disambiguation. Other
1711 -- such case are actuals in an instantiation, the generic unit in an
1712 -- instantiation, and pragma arguments.
1713
1714 procedure Analyze_Operator_Symbol (N : Node_Id) is
1715 Par : constant Node_Id := Parent (N);
1716
1717 begin
1718 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1719 or else Nkind (Par) = N_Function_Instantiation
1720 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1721 or else (Nkind (Par) = N_Pragma_Argument_Association
1722 and then not Is_Pragma_String_Literal (Par))
1723 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1724 or else (Nkind (Par) = N_Attribute_Reference
1725 and then Attribute_Name (Par) /= Name_Value)
1726 then
1727 Find_Direct_Name (N);
1728
1729 else
1730 Change_Operator_Symbol_To_String_Literal (N);
1731 Analyze (N);
1732 end if;
1733 end Analyze_Operator_Symbol;
1734
1735 -----------------------------------
1736 -- Analyze_Parameter_Association --
1737 -----------------------------------
1738
1739 procedure Analyze_Parameter_Association (N : Node_Id) is
1740 begin
1741 Analyze (Explicit_Actual_Parameter (N));
1742 end Analyze_Parameter_Association;
1743
1744 ----------------------------
1745 -- Analyze_Procedure_Call --
1746 ----------------------------
1747
1748 -- WARNING: This routine manages Ghost regions. Return statements must be
1749 -- replaced by gotos that jump to the end of the routine and restore the
1750 -- Ghost mode.
1751
1752 procedure Analyze_Procedure_Call (N : Node_Id) is
1753 procedure Analyze_Call_And_Resolve;
1754 -- Do Analyze and Resolve calls for procedure call. At the end, check
1755 -- for illegal order dependence.
1756 -- ??? where is the check for illegal order dependencies?
1757
1758 ------------------------------
1759 -- Analyze_Call_And_Resolve --
1760 ------------------------------
1761
1762 procedure Analyze_Call_And_Resolve is
1763 begin
1764 if Nkind (N) = N_Procedure_Call_Statement then
1765 Analyze_Call (N);
1766 Resolve (N, Standard_Void_Type);
1767 else
1768 Analyze (N);
1769 end if;
1770 end Analyze_Call_And_Resolve;
1771
1772 -- Local variables
1773
1774 Actuals : constant List_Id := Parameter_Associations (N);
1775 Loc : constant Source_Ptr := Sloc (N);
1776 P : constant Node_Id := Name (N);
1777
1778 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1779 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1780 -- Save the Ghost-related attributes to restore on exit
1781
1782 Actual : Node_Id;
1783 New_N : Node_Id;
1784
1785 -- Start of processing for Analyze_Procedure_Call
1786
1787 begin
1788 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1789 -- a procedure call or an entry call. The prefix may denote an access
1790 -- to subprogram type, in which case an implicit dereference applies.
1791 -- If the prefix is an indexed component (without implicit dereference)
1792 -- then the construct denotes a call to a member of an entire family.
1793 -- If the prefix is a simple name, it may still denote a call to a
1794 -- parameterless member of an entry family. Resolution of these various
1795 -- interpretations is delicate.
1796
1797 -- Do not analyze machine code statements to avoid rejecting them in
1798 -- CodePeer mode.
1799
1800 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1801 Set_Etype (P, Standard_Void_Type);
1802 else
1803 Analyze (P);
1804 end if;
1805
1806 -- If this is a call of the form Obj.Op, the call may have been analyzed
1807 -- and possibly rewritten into a block, in which case we are done.
1808
1809 if Analyzed (N) then
1810 return;
1811
1812 -- If there is an error analyzing the name (which may have been
1813 -- rewritten if the original call was in prefix notation) then error
1814 -- has been emitted already, mark node and return.
1815
1816 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1817 Set_Etype (N, Any_Type);
1818 return;
1819 end if;
1820
1821 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1822 -- Set the mode now to ensure that any nodes generated during analysis
1823 -- and expansion are properly marked as Ghost.
1824
1825 Mark_And_Set_Ghost_Procedure_Call (N);
1826
1827 -- Otherwise analyze the parameters
1828
1829 if Present (Actuals) then
1830 Actual := First (Actuals);
1831
1832 while Present (Actual) loop
1833 Analyze (Actual);
1834 Check_Parameterless_Call (Actual);
1835 Next (Actual);
1836 end loop;
1837 end if;
1838
1839 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1840
1841 if Nkind (P) = N_Attribute_Reference
1842 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1843 Name_Elab_Body,
1844 Name_Elab_Subp_Body)
1845 then
1846 if Present (Actuals) then
1847 Error_Msg_N
1848 ("no parameters allowed for this call", First (Actuals));
1849 goto Leave;
1850 end if;
1851
1852 Set_Etype (N, Standard_Void_Type);
1853 Set_Analyzed (N);
1854
1855 elsif Is_Entity_Name (P)
1856 and then Is_Record_Type (Etype (Entity (P)))
1857 and then Remote_AST_I_Dereference (P)
1858 then
1859 goto Leave;
1860
1861 elsif Is_Entity_Name (P)
1862 and then Ekind (Entity (P)) /= E_Entry_Family
1863 then
1864 if Is_Access_Type (Etype (P))
1865 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1866 and then No (Actuals)
1867 and then Comes_From_Source (N)
1868 then
1869 Error_Msg_N ("missing explicit dereference in call", N);
1870 end if;
1871
1872 Analyze_Call_And_Resolve;
1873
1874 -- If the prefix is the simple name of an entry family, this is a
1875 -- parameterless call from within the task body itself.
1876
1877 elsif Is_Entity_Name (P)
1878 and then Nkind (P) = N_Identifier
1879 and then Ekind (Entity (P)) = E_Entry_Family
1880 and then Present (Actuals)
1881 and then No (Next (First (Actuals)))
1882 then
1883 -- Can be call to parameterless entry family. What appears to be the
1884 -- sole argument is in fact the entry index. Rewrite prefix of node
1885 -- accordingly. Source representation is unchanged by this
1886 -- transformation.
1887
1888 New_N :=
1889 Make_Indexed_Component (Loc,
1890 Prefix =>
1891 Make_Selected_Component (Loc,
1892 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1893 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1894 Expressions => Actuals);
1895 Set_Name (N, New_N);
1896 Set_Etype (New_N, Standard_Void_Type);
1897 Set_Parameter_Associations (N, No_List);
1898 Analyze_Call_And_Resolve;
1899
1900 elsif Nkind (P) = N_Explicit_Dereference then
1901 if Ekind (Etype (P)) = E_Subprogram_Type then
1902 Analyze_Call_And_Resolve;
1903 else
1904 Error_Msg_N ("expect access to procedure in call", P);
1905 end if;
1906
1907 -- The name can be a selected component or an indexed component that
1908 -- yields an access to subprogram. Such a prefix is legal if the call
1909 -- has parameter associations.
1910
1911 elsif Is_Access_Type (Etype (P))
1912 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1913 then
1914 if Present (Actuals) then
1915 Analyze_Call_And_Resolve;
1916 else
1917 Error_Msg_N ("missing explicit dereference in call ", N);
1918 end if;
1919
1920 -- If not an access to subprogram, then the prefix must resolve to the
1921 -- name of an entry, entry family, or protected operation.
1922
1923 -- For the case of a simple entry call, P is a selected component where
1924 -- the prefix is the task and the selector name is the entry. A call to
1925 -- a protected procedure will have the same syntax. If the protected
1926 -- object contains overloaded operations, the entity may appear as a
1927 -- function, the context will select the operation whose type is Void.
1928
1929 elsif Nkind (P) = N_Selected_Component
1930 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1931 E_Function,
1932 E_Procedure)
1933 then
1934 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1935 -- in prefix notation may still be missing its controlling argument,
1936 -- so perform the transformation now.
1937
1938 if SPARK_Mode = On and then In_Inlined_Body then
1939 declare
1940 Subp : constant Entity_Id := Entity (Selector_Name (P));
1941 Typ : constant Entity_Id := Etype (Prefix (P));
1942
1943 begin
1944 if Is_Tagged_Type (Typ)
1945 and then Present (First_Formal (Subp))
1946 and then (Etype (First_Formal (Subp)) = Typ
1947 or else
1948 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1949 and then Try_Object_Operation (P)
1950 then
1951 return;
1952
1953 else
1954 Analyze_Call_And_Resolve;
1955 end if;
1956 end;
1957
1958 else
1959 Analyze_Call_And_Resolve;
1960 end if;
1961
1962 elsif Nkind (P) = N_Selected_Component
1963 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1964 and then Present (Actuals)
1965 and then No (Next (First (Actuals)))
1966 then
1967 -- Can be call to parameterless entry family. What appears to be the
1968 -- sole argument is in fact the entry index. Rewrite prefix of node
1969 -- accordingly. Source representation is unchanged by this
1970 -- transformation.
1971
1972 New_N :=
1973 Make_Indexed_Component (Loc,
1974 Prefix => New_Copy (P),
1975 Expressions => Actuals);
1976 Set_Name (N, New_N);
1977 Set_Etype (New_N, Standard_Void_Type);
1978 Set_Parameter_Associations (N, No_List);
1979 Analyze_Call_And_Resolve;
1980
1981 -- For the case of a reference to an element of an entry family, P is
1982 -- an indexed component whose prefix is a selected component (task and
1983 -- entry family), and whose index is the entry family index.
1984
1985 elsif Nkind (P) = N_Indexed_Component
1986 and then Nkind (Prefix (P)) = N_Selected_Component
1987 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1988 then
1989 Analyze_Call_And_Resolve;
1990
1991 -- If the prefix is the name of an entry family, it is a call from
1992 -- within the task body itself.
1993
1994 elsif Nkind (P) = N_Indexed_Component
1995 and then Nkind (Prefix (P)) = N_Identifier
1996 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1997 then
1998 New_N :=
1999 Make_Selected_Component (Loc,
2000 Prefix =>
2001 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
2002 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
2003 Rewrite (Prefix (P), New_N);
2004 Analyze (P);
2005 Analyze_Call_And_Resolve;
2006
2007 -- In Ada 2012. a qualified expression is a name, but it cannot be a
2008 -- procedure name, so the construct can only be a qualified expression.
2009
2010 elsif Nkind (P) = N_Qualified_Expression
2011 and then Ada_Version >= Ada_2012
2012 then
2013 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
2014 Analyze (N);
2015
2016 -- Anything else is an error
2017
2018 else
2019 Error_Msg_N ("invalid procedure or entry call", N);
2020 end if;
2021
2022 <<Leave>>
2023 Restore_Ghost_Region (Saved_GM, Saved_IGR);
2024 end Analyze_Procedure_Call;
2025
2026 ------------------------------
2027 -- Analyze_Return_Statement --
2028 ------------------------------
2029
2030 procedure Analyze_Return_Statement (N : Node_Id) is
2031 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
2032 N_Simple_Return_Statement));
2033
2034 Returns_Object : constant Boolean :=
2035 Nkind (N) = N_Extended_Return_Statement
2036 or else
2037 (Nkind (N) = N_Simple_Return_Statement
2038 and then Present (Expression (N)));
2039 -- True if we're returning something; that is, "return <expression>;"
2040 -- or "return Result : T [:= ...]". False for "return;". Used for error
2041 -- checking: If Returns_Object is True, N should apply to a function
2042 -- body; otherwise N should apply to a procedure body, entry body,
2043 -- accept statement, or extended return statement.
2044
2045 function Find_What_It_Applies_To return Entity_Id;
2046 -- Find the entity representing the innermost enclosing body, accept
2047 -- statement, or extended return statement. If the result is a callable
2048 -- construct or extended return statement, then this will be the value
2049 -- of the Return_Applies_To attribute. Otherwise, the program is
2050 -- illegal. See RM-6.5(4/2).
2051
2052 -----------------------------
2053 -- Find_What_It_Applies_To --
2054 -----------------------------
2055
2056 function Find_What_It_Applies_To return Entity_Id is
2057 Result : Entity_Id := Empty;
2058
2059 begin
2060 -- Loop outward through the Scope_Stack, skipping blocks, loops,
2061 -- and postconditions.
2062
2063 for J in reverse 0 .. Scope_Stack.Last loop
2064 Result := Scope_Stack.Table (J).Entity;
2065 exit when not Ekind_In (Result, E_Block, E_Loop)
2066 and then Chars (Result) /= Name_uPostconditions;
2067 end loop;
2068
2069 pragma Assert (Present (Result));
2070 return Result;
2071 end Find_What_It_Applies_To;
2072
2073 -- Local declarations
2074
2075 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2076 Kind : constant Entity_Kind := Ekind (Scope_Id);
2077 Loc : constant Source_Ptr := Sloc (N);
2078 Stm_Entity : constant Entity_Id :=
2079 New_Internal_Entity
2080 (E_Return_Statement, Current_Scope, Loc, 'R');
2081
2082 -- Start of processing for Analyze_Return_Statement
2083
2084 begin
2085 Set_Return_Statement_Entity (N, Stm_Entity);
2086
2087 Set_Etype (Stm_Entity, Standard_Void_Type);
2088 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2089
2090 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2091 -- (4/2): an inner return statement will apply to this extended return.
2092
2093 if Nkind (N) = N_Extended_Return_Statement then
2094 Push_Scope (Stm_Entity);
2095 end if;
2096
2097 -- Check that pragma No_Return is obeyed. Don't complain about the
2098 -- implicitly-generated return that is placed at the end.
2099
2100 if No_Return (Scope_Id) and then Comes_From_Source (N) then
2101 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2102 end if;
2103
2104 -- Warn on any unassigned OUT parameters if in procedure
2105
2106 if Ekind (Scope_Id) = E_Procedure then
2107 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2108 end if;
2109
2110 -- Check that functions return objects, and other things do not
2111
2112 if Kind = E_Function or else Kind = E_Generic_Function then
2113 if not Returns_Object then
2114 Error_Msg_N ("missing expression in return from function", N);
2115 end if;
2116
2117 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2118 if Returns_Object then
2119 Error_Msg_N ("procedure cannot return value (use function)", N);
2120 end if;
2121
2122 elsif Kind = E_Entry or else Kind = E_Entry_Family then
2123 if Returns_Object then
2124 if Is_Protected_Type (Scope (Scope_Id)) then
2125 Error_Msg_N ("entry body cannot return value", N);
2126 else
2127 Error_Msg_N ("accept statement cannot return value", N);
2128 end if;
2129 end if;
2130
2131 elsif Kind = E_Return_Statement then
2132
2133 -- We are nested within another return statement, which must be an
2134 -- extended_return_statement.
2135
2136 if Returns_Object then
2137 if Nkind (N) = N_Extended_Return_Statement then
2138 Error_Msg_N
2139 ("extended return statement cannot be nested (use `RETURN;`)",
2140 N);
2141
2142 -- Case of a simple return statement with a value inside extended
2143 -- return statement.
2144
2145 else
2146 Error_Msg_N
2147 ("return nested in extended return statement cannot return "
2148 & "value (use `RETURN;`)", N);
2149 end if;
2150 end if;
2151
2152 else
2153 Error_Msg_N ("illegal context for return statement", N);
2154 end if;
2155
2156 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2157 Analyze_Function_Return (N);
2158
2159 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2160 Set_Return_Present (Scope_Id);
2161 end if;
2162
2163 if Nkind (N) = N_Extended_Return_Statement then
2164 End_Scope;
2165 end if;
2166
2167 Kill_Current_Values (Last_Assignment_Only => True);
2168 Check_Unreachable_Code (N);
2169
2170 Analyze_Dimension (N);
2171 end Analyze_Return_Statement;
2172
2173 -------------------------------------
2174 -- Analyze_Simple_Return_Statement --
2175 -------------------------------------
2176
2177 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2178 begin
2179 if Present (Expression (N)) then
2180 Mark_Coextensions (N, Expression (N));
2181 end if;
2182
2183 Analyze_Return_Statement (N);
2184 end Analyze_Simple_Return_Statement;
2185
2186 -------------------------
2187 -- Analyze_Return_Type --
2188 -------------------------
2189
2190 procedure Analyze_Return_Type (N : Node_Id) is
2191 Designator : constant Entity_Id := Defining_Entity (N);
2192 Typ : Entity_Id := Empty;
2193
2194 begin
2195 -- Normal case where result definition does not indicate an error
2196
2197 if Result_Definition (N) /= Error then
2198 if Nkind (Result_Definition (N)) = N_Access_Definition then
2199 Check_SPARK_05_Restriction
2200 ("access result is not allowed", Result_Definition (N));
2201
2202 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2203
2204 declare
2205 AD : constant Node_Id :=
2206 Access_To_Subprogram_Definition (Result_Definition (N));
2207 begin
2208 if Present (AD) and then Protected_Present (AD) then
2209 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2210 else
2211 Typ := Access_Definition (N, Result_Definition (N));
2212 end if;
2213 end;
2214
2215 Set_Parent (Typ, Result_Definition (N));
2216 Set_Is_Local_Anonymous_Access (Typ);
2217 Set_Etype (Designator, Typ);
2218
2219 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2220
2221 Null_Exclusion_Static_Checks (N);
2222
2223 -- Subtype_Mark case
2224
2225 else
2226 Find_Type (Result_Definition (N));
2227 Typ := Entity (Result_Definition (N));
2228 Set_Etype (Designator, Typ);
2229
2230 -- Unconstrained array as result is not allowed in SPARK
2231
2232 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2233 Check_SPARK_05_Restriction
2234 ("returning an unconstrained array is not allowed",
2235 Result_Definition (N));
2236 end if;
2237
2238 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2239
2240 Null_Exclusion_Static_Checks (N);
2241
2242 -- If a null exclusion is imposed on the result type, then create
2243 -- a null-excluding itype (an access subtype) and use it as the
2244 -- function's Etype. Note that the null exclusion checks are done
2245 -- right before this, because they don't get applied to types that
2246 -- do not come from source.
2247
2248 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2249 Set_Etype (Designator,
2250 Create_Null_Excluding_Itype
2251 (T => Typ,
2252 Related_Nod => N,
2253 Scope_Id => Scope (Current_Scope)));
2254
2255 -- The new subtype must be elaborated before use because
2256 -- it is visible outside of the function. However its base
2257 -- type may not be frozen yet, so the reference that will
2258 -- force elaboration must be attached to the freezing of
2259 -- the base type.
2260
2261 -- If the return specification appears on a proper body,
2262 -- the subtype will have been created already on the spec.
2263
2264 if Is_Frozen (Typ) then
2265 if Nkind (Parent (N)) = N_Subprogram_Body
2266 and then Nkind (Parent (Parent (N))) = N_Subunit
2267 then
2268 null;
2269 else
2270 Build_Itype_Reference (Etype (Designator), Parent (N));
2271 end if;
2272
2273 else
2274 Ensure_Freeze_Node (Typ);
2275
2276 declare
2277 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2278 begin
2279 Set_Itype (IR, Etype (Designator));
2280 Append_Freeze_Actions (Typ, New_List (IR));
2281 end;
2282 end if;
2283
2284 else
2285 Set_Etype (Designator, Typ);
2286 end if;
2287
2288 if Ekind (Typ) = E_Incomplete_Type
2289 or else (Is_Class_Wide_Type (Typ)
2290 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2291 then
2292 -- AI05-0151: Tagged incomplete types are allowed in all formal
2293 -- parts. Untagged incomplete types are not allowed in bodies.
2294 -- As a consequence, limited views cannot appear in a basic
2295 -- declaration that is itself within a body, because there is
2296 -- no point at which the non-limited view will become visible.
2297
2298 if Ada_Version >= Ada_2012 then
2299 if From_Limited_With (Typ) and then In_Package_Body then
2300 Error_Msg_NE
2301 ("invalid use of incomplete type&",
2302 Result_Definition (N), Typ);
2303
2304 -- The return type of a subprogram body cannot be of a
2305 -- formal incomplete type.
2306
2307 elsif Is_Generic_Type (Typ)
2308 and then Nkind (Parent (N)) = N_Subprogram_Body
2309 then
2310 Error_Msg_N
2311 ("return type cannot be a formal incomplete type",
2312 Result_Definition (N));
2313
2314 elsif Is_Class_Wide_Type (Typ)
2315 and then Is_Generic_Type (Root_Type (Typ))
2316 and then Nkind (Parent (N)) = N_Subprogram_Body
2317 then
2318 Error_Msg_N
2319 ("return type cannot be a formal incomplete type",
2320 Result_Definition (N));
2321
2322 elsif Is_Tagged_Type (Typ) then
2323 null;
2324
2325 -- Use is legal in a thunk generated for an operation
2326 -- inherited from a progenitor.
2327
2328 elsif Is_Thunk (Designator)
2329 and then Present (Non_Limited_View (Typ))
2330 then
2331 null;
2332
2333 elsif Nkind (Parent (N)) = N_Subprogram_Body
2334 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2335 N_Entry_Body)
2336 then
2337 Error_Msg_NE
2338 ("invalid use of untagged incomplete type&",
2339 Designator, Typ);
2340 end if;
2341
2342 -- The type must be completed in the current package. This
2343 -- is checked at the end of the package declaration when
2344 -- Taft-amendment types are identified. If the return type
2345 -- is class-wide, there is no required check, the type can
2346 -- be a bona fide TAT.
2347
2348 if Ekind (Scope (Current_Scope)) = E_Package
2349 and then In_Private_Part (Scope (Current_Scope))
2350 and then not Is_Class_Wide_Type (Typ)
2351 then
2352 Append_Elmt (Designator, Private_Dependents (Typ));
2353 end if;
2354
2355 else
2356 Error_Msg_NE
2357 ("invalid use of incomplete type&", Designator, Typ);
2358 end if;
2359 end if;
2360 end if;
2361
2362 -- Case where result definition does indicate an error
2363
2364 else
2365 Set_Etype (Designator, Any_Type);
2366 end if;
2367 end Analyze_Return_Type;
2368
2369 -----------------------------
2370 -- Analyze_Subprogram_Body --
2371 -----------------------------
2372
2373 procedure Analyze_Subprogram_Body (N : Node_Id) is
2374 Loc : constant Source_Ptr := Sloc (N);
2375 Body_Spec : constant Node_Id := Specification (N);
2376 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2377
2378 begin
2379 if Debug_Flag_C then
2380 Write_Str ("==> subprogram body ");
2381 Write_Name (Chars (Body_Id));
2382 Write_Str (" from ");
2383 Write_Location (Loc);
2384 Write_Eol;
2385 Indent;
2386 end if;
2387
2388 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2389
2390 -- The real work is split out into the helper, so it can do "return;"
2391 -- without skipping the debug output:
2392
2393 Analyze_Subprogram_Body_Helper (N);
2394
2395 if Debug_Flag_C then
2396 Outdent;
2397 Write_Str ("<== subprogram body ");
2398 Write_Name (Chars (Body_Id));
2399 Write_Str (" from ");
2400 Write_Location (Loc);
2401 Write_Eol;
2402 end if;
2403 end Analyze_Subprogram_Body;
2404
2405 ------------------------------------
2406 -- Analyze_Subprogram_Body_Helper --
2407 ------------------------------------
2408
2409 -- This procedure is called for regular subprogram bodies, generic bodies,
2410 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2411 -- specification matters, and is used to create a proper declaration for
2412 -- the subprogram, or to perform conformance checks.
2413
2414 -- WARNING: This routine manages Ghost regions. Return statements must be
2415 -- replaced by gotos that jump to the end of the routine and restore the
2416 -- Ghost mode.
2417
2418 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2419 Body_Spec : Node_Id := Specification (N);
2420 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2421 Loc : constant Source_Ptr := Sloc (N);
2422 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2423
2424 Conformant : Boolean;
2425 Desig_View : Entity_Id := Empty;
2426 Exch_Views : Elist_Id := No_Elist;
2427 HSS : Node_Id;
2428 Mask_Types : Elist_Id := No_Elist;
2429 Prot_Typ : Entity_Id := Empty;
2430 Spec_Decl : Node_Id := Empty;
2431 Spec_Id : Entity_Id;
2432
2433 Last_Real_Spec_Entity : Entity_Id := Empty;
2434 -- When we analyze a separate spec, the entity chain ends up containing
2435 -- the formals, as well as any itypes generated during analysis of the
2436 -- default expressions for parameters, or the arguments of associated
2437 -- precondition/postcondition pragmas (which are analyzed in the context
2438 -- of the spec since they have visibility on formals).
2439 --
2440 -- These entities belong with the spec and not the body. However we do
2441 -- the analysis of the body in the context of the spec (again to obtain
2442 -- visibility to the formals), and all the entities generated during
2443 -- this analysis end up also chained to the entity chain of the spec.
2444 -- But they really belong to the body, and there is circuitry to move
2445 -- them from the spec to the body.
2446 --
2447 -- However, when we do this move, we don't want to move the real spec
2448 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2449 -- variable points to the last real spec entity, so we only move those
2450 -- chained beyond that point. It is initialized to Empty to deal with
2451 -- the case where there is no separate spec.
2452
2453 function Body_Has_Contract return Boolean;
2454 -- Check whether unanalyzed body has an aspect or pragma that may
2455 -- generate a SPARK contract.
2456
2457 function Body_Has_SPARK_Mode_On return Boolean;
2458 -- Check whether SPARK_Mode On applies to the subprogram body, either
2459 -- because it is specified directly on the body, or because it is
2460 -- inherited from the enclosing subprogram or package.
2461
2462 procedure Build_Subprogram_Declaration;
2463 -- Create a matching subprogram declaration for subprogram body N
2464
2465 procedure Check_Anonymous_Return;
2466 -- Ada 2005: if a function returns an access type that denotes a task,
2467 -- or a type that contains tasks, we must create a master entity for
2468 -- the anonymous type, which typically will be used in an allocator
2469 -- in the body of the function.
2470
2471 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2472 -- Look ahead to recognize a pragma that may appear after the body.
2473 -- If there is a previous spec, check that it appears in the same
2474 -- declarative part. If the pragma is Inline_Always, perform inlining
2475 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2476 -- If the body acts as a spec, and inlining is required, we create a
2477 -- subprogram declaration for it, in order to attach the body to inline.
2478 -- If pragma does not appear after the body, check whether there is
2479 -- an inline pragma before any local declarations.
2480
2481 procedure Check_Missing_Return;
2482 -- Checks for a function with a no return statements, and also performs
2483 -- the warning checks implemented by Check_Returns. In formal mode, also
2484 -- verify that a function ends with a RETURN and that a procedure does
2485 -- not contain any RETURN.
2486
2487 function Disambiguate_Spec return Entity_Id;
2488 -- When a primitive is declared between the private view and the full
2489 -- view of a concurrent type which implements an interface, a special
2490 -- mechanism is used to find the corresponding spec of the primitive
2491 -- body.
2492
2493 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2494 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2495 -- incomplete types coming from a limited context and replace their
2496 -- limited views with the non-limited ones. Return the list of changes
2497 -- to be used to undo the transformation.
2498
2499 function Is_Private_Concurrent_Primitive
2500 (Subp_Id : Entity_Id) return Boolean;
2501 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2502 -- type that implements an interface and has a private view.
2503
2504 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2505 -- N is the body generated for an expression function that is not a
2506 -- completion and Spec_Id the defining entity of its spec. Mark all
2507 -- the not-yet-frozen types referenced by the simple return statement
2508 -- of the function as formally frozen.
2509
2510 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2511 -- Undo the transformation done by Exchange_Limited_Views.
2512
2513 procedure Set_Trivial_Subprogram (N : Node_Id);
2514 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2515 -- subprogram whose body is being analyzed. N is the statement node
2516 -- causing the flag to be set, if the following statement is a return
2517 -- of an entity, we mark the entity as set in source to suppress any
2518 -- warning on the stylized use of function stubs with a dummy return.
2519
2520 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2521 -- Undo the transformation done by Mask_Unfrozen_Types
2522
2523 procedure Verify_Overriding_Indicator;
2524 -- If there was a previous spec, the entity has been entered in the
2525 -- current scope previously. If the body itself carries an overriding
2526 -- indicator, check that it is consistent with the known status of the
2527 -- entity.
2528
2529 -----------------------
2530 -- Body_Has_Contract --
2531 -----------------------
2532
2533 function Body_Has_Contract return Boolean is
2534 Decls : constant List_Id := Declarations (N);
2535 Item : Node_Id;
2536
2537 begin
2538 -- Check for aspects that may generate a contract
2539
2540 if Present (Aspect_Specifications (N)) then
2541 Item := First (Aspect_Specifications (N));
2542 while Present (Item) loop
2543 if Is_Subprogram_Contract_Annotation (Item) then
2544 return True;
2545 end if;
2546
2547 Next (Item);
2548 end loop;
2549 end if;
2550
2551 -- Check for pragmas that may generate a contract
2552
2553 if Present (Decls) then
2554 Item := First (Decls);
2555 while Present (Item) loop
2556 if Nkind (Item) = N_Pragma
2557 and then Is_Subprogram_Contract_Annotation (Item)
2558 then
2559 return True;
2560 end if;
2561
2562 Next (Item);
2563 end loop;
2564 end if;
2565
2566 return False;
2567 end Body_Has_Contract;
2568
2569 ----------------------------
2570 -- Body_Has_SPARK_Mode_On --
2571 ----------------------------
2572
2573 function Body_Has_SPARK_Mode_On return Boolean is
2574 Decls : constant List_Id := Declarations (N);
2575 Item : Node_Id;
2576
2577 begin
2578 -- Check for SPARK_Mode aspect
2579
2580 if Present (Aspect_Specifications (N)) then
2581 Item := First (Aspect_Specifications (N));
2582 while Present (Item) loop
2583 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2584 return Get_SPARK_Mode_From_Annotation (Item) = On;
2585 end if;
2586
2587 Next (Item);
2588 end loop;
2589 end if;
2590
2591 -- Check for SPARK_Mode pragma
2592
2593 if Present (Decls) then
2594 Item := First (Decls);
2595 while Present (Item) loop
2596
2597 -- Pragmas that apply to a subprogram body are usually grouped
2598 -- together. Look for a potential pragma SPARK_Mode among them.
2599
2600 if Nkind (Item) = N_Pragma then
2601 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2602 return Get_SPARK_Mode_From_Annotation (Item) = On;
2603 end if;
2604
2605 -- Otherwise the first non-pragma declarative item terminates
2606 -- the region where pragma SPARK_Mode may appear.
2607
2608 else
2609 exit;
2610 end if;
2611
2612 Next (Item);
2613 end loop;
2614 end if;
2615
2616 -- Otherwise, the applicable SPARK_Mode is inherited from the
2617 -- enclosing subprogram or package.
2618
2619 return SPARK_Mode = On;
2620 end Body_Has_SPARK_Mode_On;
2621
2622 ----------------------------------
2623 -- Build_Subprogram_Declaration --
2624 ----------------------------------
2625
2626 procedure Build_Subprogram_Declaration is
2627 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2628 -- Relocate certain categorization pragmas from the declarative list
2629 -- of subprogram body From and insert them after node To. The pragmas
2630 -- in question are:
2631 -- Ghost
2632 -- Volatile_Function
2633 -- Also copy pragma SPARK_Mode if present in the declarative list
2634 -- of subprogram body From and insert it after node To. This pragma
2635 -- should not be moved, as it applies to the body too.
2636
2637 ------------------
2638 -- Move_Pragmas --
2639 ------------------
2640
2641 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2642 Decl : Node_Id;
2643 Next_Decl : Node_Id;
2644
2645 begin
2646 pragma Assert (Nkind (From) = N_Subprogram_Body);
2647
2648 -- The destination node must be part of a list, as the pragmas are
2649 -- inserted after it.
2650
2651 pragma Assert (Is_List_Member (To));
2652
2653 -- Inspect the declarations of the subprogram body looking for
2654 -- specific pragmas.
2655
2656 Decl := First (Declarations (N));
2657 while Present (Decl) loop
2658 Next_Decl := Next (Decl);
2659
2660 if Nkind (Decl) = N_Pragma then
2661 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2662 Insert_After (To, New_Copy_Tree (Decl));
2663
2664 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2665 Name_Ghost,
2666 Name_Volatile_Function)
2667 then
2668 Remove (Decl);
2669 Insert_After (To, Decl);
2670 end if;
2671 end if;
2672
2673 Decl := Next_Decl;
2674 end loop;
2675 end Move_Pragmas;
2676
2677 -- Local variables
2678
2679 Decl : Node_Id;
2680 Subp_Decl : Node_Id;
2681
2682 -- Start of processing for Build_Subprogram_Declaration
2683
2684 begin
2685 -- Create a matching subprogram spec using the profile of the body.
2686 -- The structure of the tree is identical, but has new entities for
2687 -- the defining unit name and formal parameters.
2688
2689 Subp_Decl :=
2690 Make_Subprogram_Declaration (Loc,
2691 Specification => Copy_Subprogram_Spec (Body_Spec));
2692 Set_Comes_From_Source (Subp_Decl, True);
2693
2694 -- Also mark parameters as coming from source
2695
2696 if Present (Parameter_Specifications (Specification (Subp_Decl))) then
2697 declare
2698 Form : Entity_Id;
2699 begin
2700 Form :=
2701 First (Parameter_Specifications (Specification (Subp_Decl)));
2702
2703 while Present (Form) loop
2704 Set_Comes_From_Source (Defining_Identifier (Form), True);
2705 Next (Form);
2706 end loop;
2707 end;
2708 end if;
2709
2710 -- Relocate the aspects and relevant pragmas from the subprogram body
2711 -- to the generated spec because it acts as the initial declaration.
2712
2713 Insert_Before (N, Subp_Decl);
2714 Move_Aspects (N, To => Subp_Decl);
2715 Move_Pragmas (N, To => Subp_Decl);
2716
2717 -- Ensure that the generated corresponding spec and original body
2718 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2719 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2720 -- correctly set for local subprograms.
2721
2722 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2723
2724 Analyze (Subp_Decl);
2725
2726 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2727 -- the body since the expander may generate calls using that entity.
2728 -- Required to ensure that Expand_Call rewrites calls to this
2729 -- function by calls to the built procedure.
2730
2731 if Modify_Tree_For_C
2732 and then Nkind (Body_Spec) = N_Function_Specification
2733 and then
2734 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2735 then
2736 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2737 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2738 Corresponding_Procedure
2739 (Defining_Entity (Specification (Subp_Decl))));
2740 end if;
2741
2742 -- Analyze any relocated source pragmas or pragmas created for aspect
2743 -- specifications.
2744
2745 Decl := Next (Subp_Decl);
2746 while Present (Decl) loop
2747
2748 -- Stop the search for pragmas once the body has been reached as
2749 -- this terminates the region where pragmas may appear.
2750
2751 if Decl = N then
2752 exit;
2753
2754 elsif Nkind (Decl) = N_Pragma then
2755 Analyze (Decl);
2756 end if;
2757
2758 Next (Decl);
2759 end loop;
2760
2761 Spec_Id := Defining_Entity (Subp_Decl);
2762 Set_Corresponding_Spec (N, Spec_Id);
2763
2764 -- Mark the generated spec as a source construct to ensure that all
2765 -- calls to it are properly registered in ALI files for GNATprove.
2766
2767 Set_Comes_From_Source (Spec_Id, True);
2768
2769 -- Ensure that the specs of the subprogram declaration and its body
2770 -- are identical, otherwise they will appear non-conformant due to
2771 -- rewritings in the default values of formal parameters.
2772
2773 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2774 Set_Specification (N, Body_Spec);
2775 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2776 end Build_Subprogram_Declaration;
2777
2778 ----------------------------
2779 -- Check_Anonymous_Return --
2780 ----------------------------
2781
2782 procedure Check_Anonymous_Return is
2783 Decl : Node_Id;
2784 Par : Node_Id;
2785 Scop : Entity_Id;
2786
2787 begin
2788 if Present (Spec_Id) then
2789 Scop := Spec_Id;
2790 else
2791 Scop := Body_Id;
2792 end if;
2793
2794 if Ekind (Scop) = E_Function
2795 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2796 and then not Is_Thunk (Scop)
2797
2798 -- Skip internally built functions which handle the case of
2799 -- a null access (see Expand_Interface_Conversion)
2800
2801 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2802 and then not Comes_From_Source (Parent (Scop)))
2803
2804 and then (Has_Task (Designated_Type (Etype (Scop)))
2805 or else
2806 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2807 and then
2808 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2809 and then Expander_Active
2810
2811 -- Avoid cases with no tasking support
2812
2813 and then RTE_Available (RE_Current_Master)
2814 and then not Restriction_Active (No_Task_Hierarchy)
2815 then
2816 Decl :=
2817 Make_Object_Declaration (Loc,
2818 Defining_Identifier =>
2819 Make_Defining_Identifier (Loc, Name_uMaster),
2820 Constant_Present => True,
2821 Object_Definition =>
2822 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2823 Expression =>
2824 Make_Explicit_Dereference (Loc,
2825 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2826
2827 if Present (Declarations (N)) then
2828 Prepend (Decl, Declarations (N));
2829 else
2830 Set_Declarations (N, New_List (Decl));
2831 end if;
2832
2833 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2834 Set_Has_Master_Entity (Scop);
2835
2836 -- Now mark the containing scope as a task master
2837
2838 Par := N;
2839 while Nkind (Par) /= N_Compilation_Unit loop
2840 Par := Parent (Par);
2841 pragma Assert (Present (Par));
2842
2843 -- If we fall off the top, we are at the outer level, and
2844 -- the environment task is our effective master, so nothing
2845 -- to mark.
2846
2847 if Nkind_In
2848 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2849 then
2850 Set_Is_Task_Master (Par, True);
2851 exit;
2852 end if;
2853 end loop;
2854 end if;
2855 end Check_Anonymous_Return;
2856
2857 -------------------------
2858 -- Check_Inline_Pragma --
2859 -------------------------
2860
2861 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2862 Prag : Node_Id;
2863 Plist : List_Id;
2864
2865 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2866 -- True when N is a pragma Inline or Inline_Always that applies
2867 -- to this subprogram.
2868
2869 -----------------------
2870 -- Is_Inline_Pragma --
2871 -----------------------
2872
2873 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2874 begin
2875 if Nkind (N) = N_Pragma
2876 and then
2877 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2878 or else (Pragma_Name_Unmapped (N) = Name_Inline
2879 and then
2880 (Front_End_Inlining or else Optimization_Level > 0)))
2881 and then Present (Pragma_Argument_Associations (N))
2882 then
2883 declare
2884 Pragma_Arg : Node_Id :=
2885 Expression (First (Pragma_Argument_Associations (N)));
2886 begin
2887 if Nkind (Pragma_Arg) = N_Selected_Component then
2888 Pragma_Arg := Selector_Name (Pragma_Arg);
2889 end if;
2890
2891 return Chars (Pragma_Arg) = Chars (Body_Id);
2892 end;
2893
2894 else
2895 return False;
2896 end if;
2897 end Is_Inline_Pragma;
2898
2899 -- Start of processing for Check_Inline_Pragma
2900
2901 begin
2902 if not Expander_Active then
2903 return;
2904 end if;
2905
2906 if Is_List_Member (N)
2907 and then Present (Next (N))
2908 and then Is_Inline_Pragma (Next (N))
2909 then
2910 Prag := Next (N);
2911
2912 elsif Nkind (N) /= N_Subprogram_Body_Stub
2913 and then Present (Declarations (N))
2914 and then Is_Inline_Pragma (First (Declarations (N)))
2915 then
2916 Prag := First (Declarations (N));
2917
2918 else
2919 Prag := Empty;
2920 end if;
2921
2922 if Present (Prag) then
2923 if Present (Spec_Id) then
2924 if Is_List_Member (N)
2925 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2926 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2927 then
2928 Analyze (Prag);
2929 end if;
2930
2931 else
2932 -- Create a subprogram declaration, to make treatment uniform.
2933 -- Make the sloc of the subprogram name that of the entity in
2934 -- the body, so that style checks find identical strings.
2935
2936 declare
2937 Subp : constant Entity_Id :=
2938 Make_Defining_Identifier
2939 (Sloc (Body_Id), Chars (Body_Id));
2940 Decl : constant Node_Id :=
2941 Make_Subprogram_Declaration (Loc,
2942 Specification =>
2943 New_Copy_Tree (Specification (N)));
2944
2945 begin
2946 -- Link the body and the generated spec
2947
2948 Set_Corresponding_Body (Decl, Body_Id);
2949 Set_Corresponding_Spec (N, Subp);
2950
2951 Set_Defining_Unit_Name (Specification (Decl), Subp);
2952
2953 -- To ensure proper coverage when body is inlined, indicate
2954 -- whether the subprogram comes from source.
2955
2956 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2957
2958 if Present (First_Formal (Body_Id)) then
2959 Plist := Copy_Parameter_List (Body_Id);
2960 Set_Parameter_Specifications
2961 (Specification (Decl), Plist);
2962 end if;
2963
2964 -- Move aspects to the new spec
2965
2966 if Has_Aspects (N) then
2967 Move_Aspects (N, To => Decl);
2968 end if;
2969
2970 Insert_Before (N, Decl);
2971 Analyze (Decl);
2972 Analyze (Prag);
2973 Set_Has_Pragma_Inline (Subp);
2974
2975 if Pragma_Name (Prag) = Name_Inline_Always then
2976 Set_Is_Inlined (Subp);
2977 Set_Has_Pragma_Inline_Always (Subp);
2978 end if;
2979
2980 -- Prior to copying the subprogram body to create a template
2981 -- for it for subsequent inlining, remove the pragma from
2982 -- the current body so that the copy that will produce the
2983 -- new body will start from a completely unanalyzed tree.
2984
2985 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2986 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2987 end if;
2988
2989 Spec := Subp;
2990 end;
2991 end if;
2992 end if;
2993 end Check_Inline_Pragma;
2994
2995 --------------------------
2996 -- Check_Missing_Return --
2997 --------------------------
2998
2999 procedure Check_Missing_Return is
3000 Id : Entity_Id;
3001 Missing_Ret : Boolean;
3002
3003 begin
3004 if Nkind (Body_Spec) = N_Function_Specification then
3005 if Present (Spec_Id) then
3006 Id := Spec_Id;
3007 else
3008 Id := Body_Id;
3009 end if;
3010
3011 if Return_Present (Id) then
3012 Check_Returns (HSS, 'F', Missing_Ret);
3013
3014 if Missing_Ret then
3015 Set_Has_Missing_Return (Id);
3016 end if;
3017
3018 -- Within a premature instantiation of a package with no body, we
3019 -- build completions of the functions therein, with a Raise
3020 -- statement. No point in complaining about a missing return in
3021 -- this case.
3022
3023 elsif Ekind (Id) = E_Function
3024 and then In_Instance
3025 and then Present (Statements (HSS))
3026 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
3027 then
3028 null;
3029
3030 elsif Is_Generic_Subprogram (Id)
3031 or else not Is_Machine_Code_Subprogram (Id)
3032 then
3033 Error_Msg_N ("missing RETURN statement in function body", N);
3034 end if;
3035
3036 -- If procedure with No_Return, check returns
3037
3038 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3039 if Present (Spec_Id) then
3040 Id := Spec_Id;
3041 else
3042 Id := Body_Id;
3043 end if;
3044
3045 if No_Return (Id) then
3046 Check_Returns (HSS, 'P', Missing_Ret, Id);
3047 end if;
3048 end if;
3049
3050 -- Special checks in SPARK mode
3051
3052 if Nkind (Body_Spec) = N_Function_Specification then
3053
3054 -- In SPARK mode, last statement of a function should be a return
3055
3056 declare
3057 Stat : constant Node_Id := Last_Source_Statement (HSS);
3058 begin
3059 if Present (Stat)
3060 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3061 N_Extended_Return_Statement)
3062 then
3063 Check_SPARK_05_Restriction
3064 ("last statement in function should be RETURN", Stat);
3065 end if;
3066 end;
3067
3068 -- In SPARK mode, verify that a procedure has no return
3069
3070 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3071 if Present (Spec_Id) then
3072 Id := Spec_Id;
3073 else
3074 Id := Body_Id;
3075 end if;
3076
3077 -- Would be nice to point to return statement here, can we
3078 -- borrow the Check_Returns procedure here ???
3079
3080 if Return_Present (Id) then
3081 Check_SPARK_05_Restriction
3082 ("procedure should not have RETURN", N);
3083 end if;
3084 end if;
3085 end Check_Missing_Return;
3086
3087 -----------------------
3088 -- Disambiguate_Spec --
3089 -----------------------
3090
3091 function Disambiguate_Spec return Entity_Id is
3092 Priv_Spec : Entity_Id;
3093 Spec_N : Entity_Id;
3094
3095 procedure Replace_Types (To_Corresponding : Boolean);
3096 -- Depending on the flag, replace the type of formal parameters of
3097 -- Body_Id if it is a concurrent type implementing interfaces with
3098 -- the corresponding record type or the other way around.
3099
3100 procedure Replace_Types (To_Corresponding : Boolean) is
3101 Formal : Entity_Id;
3102 Formal_Typ : Entity_Id;
3103
3104 begin
3105 Formal := First_Formal (Body_Id);
3106 while Present (Formal) loop
3107 Formal_Typ := Etype (Formal);
3108
3109 if Is_Class_Wide_Type (Formal_Typ) then
3110 Formal_Typ := Root_Type (Formal_Typ);
3111 end if;
3112
3113 -- From concurrent type to corresponding record
3114
3115 if To_Corresponding then
3116 if Is_Concurrent_Type (Formal_Typ)
3117 and then Present (Corresponding_Record_Type (Formal_Typ))
3118 and then
3119 Present (Interfaces
3120 (Corresponding_Record_Type (Formal_Typ)))
3121 then
3122 Set_Etype (Formal,
3123 Corresponding_Record_Type (Formal_Typ));
3124 end if;
3125
3126 -- From corresponding record to concurrent type
3127
3128 else
3129 if Is_Concurrent_Record_Type (Formal_Typ)
3130 and then Present (Interfaces (Formal_Typ))
3131 then
3132 Set_Etype (Formal,
3133 Corresponding_Concurrent_Type (Formal_Typ));
3134 end if;
3135 end if;
3136
3137 Next_Formal (Formal);
3138 end loop;
3139 end Replace_Types;
3140
3141 -- Start of processing for Disambiguate_Spec
3142
3143 begin
3144 -- Try to retrieve the specification of the body as is. All error
3145 -- messages are suppressed because the body may not have a spec in
3146 -- its current state.
3147
3148 Spec_N := Find_Corresponding_Spec (N, False);
3149
3150 -- It is possible that this is the body of a primitive declared
3151 -- between a private and a full view of a concurrent type. The
3152 -- controlling parameter of the spec carries the concurrent type,
3153 -- not the corresponding record type as transformed by Analyze_
3154 -- Subprogram_Specification. In such cases, we undo the change
3155 -- made by the analysis of the specification and try to find the
3156 -- spec again.
3157
3158 -- Note that wrappers already have their corresponding specs and
3159 -- bodies set during their creation, so if the candidate spec is
3160 -- a wrapper, then we definitely need to swap all types to their
3161 -- original concurrent status.
3162
3163 if No (Spec_N)
3164 or else Is_Primitive_Wrapper (Spec_N)
3165 then
3166 -- Restore all references of corresponding record types to the
3167 -- original concurrent types.
3168
3169 Replace_Types (To_Corresponding => False);
3170 Priv_Spec := Find_Corresponding_Spec (N, False);
3171
3172 -- The current body truly belongs to a primitive declared between
3173 -- a private and a full view. We leave the modified body as is,
3174 -- and return the true spec.
3175
3176 if Present (Priv_Spec)
3177 and then Is_Private_Primitive (Priv_Spec)
3178 then
3179 return Priv_Spec;
3180 end if;
3181
3182 -- In case that this is some sort of error, restore the original
3183 -- state of the body.
3184
3185 Replace_Types (To_Corresponding => True);
3186 end if;
3187
3188 return Spec_N;
3189 end Disambiguate_Spec;
3190
3191 ----------------------------
3192 -- Exchange_Limited_Views --
3193 ----------------------------
3194
3195 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3196 Result : Elist_Id := No_Elist;
3197
3198 procedure Detect_And_Exchange (Id : Entity_Id);
3199 -- Determine whether Id's type denotes an incomplete type associated
3200 -- with a limited with clause and exchange the limited view with the
3201 -- non-limited one when available. Note that the non-limited view
3202 -- may exist because of a with_clause in another unit in the context,
3203 -- but cannot be used because the current view of the enclosing unit
3204 -- is still a limited view.
3205
3206 -------------------------
3207 -- Detect_And_Exchange --
3208 -------------------------
3209
3210 procedure Detect_And_Exchange (Id : Entity_Id) is
3211 Typ : constant Entity_Id := Etype (Id);
3212 begin
3213 if From_Limited_With (Typ)
3214 and then Has_Non_Limited_View (Typ)
3215 and then not From_Limited_With (Scope (Typ))
3216 then
3217 if No (Result) then
3218 Result := New_Elmt_List;
3219 end if;
3220
3221 Prepend_Elmt (Typ, Result);
3222 Prepend_Elmt (Id, Result);
3223 Set_Etype (Id, Non_Limited_View (Typ));
3224 end if;
3225 end Detect_And_Exchange;
3226
3227 -- Local variables
3228
3229 Formal : Entity_Id;
3230
3231 -- Start of processing for Exchange_Limited_Views
3232
3233 begin
3234 -- Do not process subprogram bodies as they already use the non-
3235 -- limited view of types.
3236
3237 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3238 return No_Elist;
3239 end if;
3240
3241 -- Examine all formals and swap views when applicable
3242
3243 Formal := First_Formal (Subp_Id);
3244 while Present (Formal) loop
3245 Detect_And_Exchange (Formal);
3246
3247 Next_Formal (Formal);
3248 end loop;
3249
3250 -- Process the return type of a function
3251
3252 if Ekind (Subp_Id) = E_Function then
3253 Detect_And_Exchange (Subp_Id);
3254 end if;
3255
3256 return Result;
3257 end Exchange_Limited_Views;
3258
3259 -------------------------------------
3260 -- Is_Private_Concurrent_Primitive --
3261 -------------------------------------
3262
3263 function Is_Private_Concurrent_Primitive
3264 (Subp_Id : Entity_Id) return Boolean
3265 is
3266 Formal_Typ : Entity_Id;
3267
3268 begin
3269 if Present (First_Formal (Subp_Id)) then
3270 Formal_Typ := Etype (First_Formal (Subp_Id));
3271
3272 if Is_Concurrent_Record_Type (Formal_Typ) then
3273 if Is_Class_Wide_Type (Formal_Typ) then
3274 Formal_Typ := Root_Type (Formal_Typ);
3275 end if;
3276
3277 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3278 end if;
3279
3280 -- The type of the first formal is a concurrent tagged type with
3281 -- a private view.
3282
3283 return
3284 Is_Concurrent_Type (Formal_Typ)
3285 and then Is_Tagged_Type (Formal_Typ)
3286 and then Has_Private_Declaration (Formal_Typ);
3287 end if;
3288
3289 return False;
3290 end Is_Private_Concurrent_Primitive;
3291
3292 -------------------------
3293 -- Mask_Unfrozen_Types --
3294 -------------------------
3295
3296 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3297 Result : Elist_Id := No_Elist;
3298
3299 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3300 -- Mask all types referenced in the subtree rooted at Node
3301
3302 --------------------
3303 -- Mask_Type_Refs --
3304 --------------------
3305
3306 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3307 procedure Mask_Type (Typ : Entity_Id);
3308 -- ??? what does this do?
3309
3310 ---------------
3311 -- Mask_Type --
3312 ---------------
3313
3314 procedure Mask_Type (Typ : Entity_Id) is
3315 begin
3316 -- Skip Itypes created by the preanalysis
3317
3318 if Is_Itype (Typ)
3319 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3320 then
3321 return;
3322 end if;
3323
3324 if not Is_Frozen (Typ) then
3325 if Scope (Typ) /= Current_Scope then
3326 Set_Is_Frozen (Typ);
3327 Append_New_Elmt (Typ, Result);
3328 else
3329 Freeze_Before (N, Typ);
3330 end if;
3331 end if;
3332 end Mask_Type;
3333
3334 -- Start of processing for Mask_Type_Refs
3335
3336 begin
3337 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3338 Mask_Type (Etype (Entity (Node)));
3339
3340 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3341 Mask_Type (Scope (Entity (Node)));
3342 end if;
3343
3344 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3345 and then Present (Etype (Node))
3346 then
3347 Mask_Type (Etype (Node));
3348 end if;
3349
3350 return OK;
3351 end Mask_Type_Refs;
3352
3353 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3354
3355 -- Local variables
3356
3357 Return_Stmt : constant Node_Id :=
3358 First (Statements (Handled_Statement_Sequence (N)));
3359
3360 -- Start of processing for Mask_Unfrozen_Types
3361
3362 begin
3363 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3364
3365 Mask_References (Expression (Return_Stmt));
3366
3367 return Result;
3368 end Mask_Unfrozen_Types;
3369
3370 ---------------------------
3371 -- Restore_Limited_Views --
3372 ---------------------------
3373
3374 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3375 Elmt : Elmt_Id := First_Elmt (Restore_List);
3376 Id : Entity_Id;
3377
3378 begin
3379 while Present (Elmt) loop
3380 Id := Node (Elmt);
3381 Next_Elmt (Elmt);
3382 Set_Etype (Id, Node (Elmt));
3383 Next_Elmt (Elmt);
3384 end loop;
3385 end Restore_Limited_Views;
3386
3387 ----------------------------
3388 -- Set_Trivial_Subprogram --
3389 ----------------------------
3390
3391 procedure Set_Trivial_Subprogram (N : Node_Id) is
3392 Nxt : constant Node_Id := Next (N);
3393
3394 begin
3395 Set_Is_Trivial_Subprogram (Body_Id);
3396
3397 if Present (Spec_Id) then
3398 Set_Is_Trivial_Subprogram (Spec_Id);
3399 end if;
3400
3401 if Present (Nxt)
3402 and then Nkind (Nxt) = N_Simple_Return_Statement
3403 and then No (Next (Nxt))
3404 and then Present (Expression (Nxt))
3405 and then Is_Entity_Name (Expression (Nxt))
3406 then
3407 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3408 end if;
3409 end Set_Trivial_Subprogram;
3410
3411 ---------------------------
3412 -- Unmask_Unfrozen_Types --
3413 ---------------------------
3414
3415 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3416 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3417
3418 begin
3419 while Present (Elmt) loop
3420 Set_Is_Frozen (Node (Elmt), False);
3421 Next_Elmt (Elmt);
3422 end loop;
3423 end Unmask_Unfrozen_Types;
3424
3425 ---------------------------------
3426 -- Verify_Overriding_Indicator --
3427 ---------------------------------
3428
3429 procedure Verify_Overriding_Indicator is
3430 begin
3431 if Must_Override (Body_Spec) then
3432 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3433 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3434 then
3435 null;
3436
3437 -- Overridden controlled primitives may have had their
3438 -- Overridden_Operation field cleared according to the setting of
3439 -- the Is_Hidden flag. An issue arises, however, when analyzing
3440 -- an instance that may have manipulated the flag during
3441 -- expansion. As a result, we add an exception for this case.
3442
3443 elsif not Present (Overridden_Operation (Spec_Id))
3444 and then not (Nam_In (Chars (Spec_Id), Name_Adjust,
3445 Name_Finalize,
3446 Name_Initialize)
3447 and then In_Instance)
3448 then
3449 Error_Msg_NE
3450 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3451
3452 -- Overriding indicators aren't allowed for protected subprogram
3453 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3454 -- this to a warning if -gnatd.E is enabled.
3455
3456 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3457 Error_Msg_Warn := Error_To_Warning;
3458 Error_Msg_N
3459 ("<<overriding indicator not allowed for protected "
3460 & "subprogram body", Body_Spec);
3461 end if;
3462
3463 elsif Must_Not_Override (Body_Spec) then
3464 if Present (Overridden_Operation (Spec_Id)) then
3465 Error_Msg_NE
3466 ("subprogram& overrides inherited operation",
3467 Body_Spec, Spec_Id);
3468
3469 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3470 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3471 then
3472 Error_Msg_NE
3473 ("subprogram& overrides predefined operator ",
3474 Body_Spec, Spec_Id);
3475
3476 -- Overriding indicators aren't allowed for protected subprogram
3477 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3478 -- this to a warning if -gnatd.E is enabled.
3479
3480 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3481 Error_Msg_Warn := Error_To_Warning;
3482
3483 Error_Msg_N
3484 ("<<overriding indicator not allowed "
3485 & "for protected subprogram body", Body_Spec);
3486
3487 -- If this is not a primitive operation, then the overriding
3488 -- indicator is altogether illegal.
3489
3490 elsif not Is_Primitive (Spec_Id) then
3491 Error_Msg_N
3492 ("overriding indicator only allowed "
3493 & "if subprogram is primitive", Body_Spec);
3494 end if;
3495
3496 -- If checking the style rule and the operation overrides, then
3497 -- issue a warning about a missing overriding_indicator. Protected
3498 -- subprogram bodies are excluded from this style checking, since
3499 -- they aren't primitives (even though their declarations can
3500 -- override) and aren't allowed to have an overriding_indicator.
3501
3502 elsif Style_Check
3503 and then Present (Overridden_Operation (Spec_Id))
3504 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3505 then
3506 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3507 Style.Missing_Overriding (N, Body_Id);
3508
3509 elsif Style_Check
3510 and then Can_Override_Operator (Spec_Id)
3511 and then not In_Predefined_Unit (Spec_Id)
3512 then
3513 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3514 Style.Missing_Overriding (N, Body_Id);
3515 end if;
3516 end Verify_Overriding_Indicator;
3517
3518 -- Local variables
3519
3520 Body_Nod : Node_Id := Empty;
3521 Minimum_Acc_Objs : List_Id := No_List;
3522
3523 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3524 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3525 Saved_EA : constant Boolean := Expander_Active;
3526 Saved_ISMP : constant Boolean :=
3527 Ignore_SPARK_Mode_Pragmas_In_Instance;
3528 -- Save the Ghost and SPARK mode-related data to restore on exit
3529
3530 -- Start of processing for Analyze_Subprogram_Body_Helper
3531
3532 begin
3533 -- A [generic] subprogram body freezes the contract of the nearest
3534 -- enclosing package body and all other contracts encountered in the
3535 -- same declarative part up to and excluding the subprogram body:
3536
3537 -- package body Nearest_Enclosing_Package
3538 -- with Refined_State => (State => Constit)
3539 -- is
3540 -- Constit : ...;
3541
3542 -- procedure Freezes_Enclosing_Package_Body
3543 -- with Refined_Depends => (Input => Constit) ...
3544
3545 -- This ensures that any annotations referenced by the contract of the
3546 -- [generic] subprogram body are available. This form of freezing is
3547 -- decoupled from the usual Freeze_xxx mechanism because it must also
3548 -- work in the context of generics where normal freezing is disabled.
3549
3550 -- Only bodies coming from source should cause this type of freezing.
3551 -- Expression functions that act as bodies and complete an initial
3552 -- declaration must be included in this category, hence the use of
3553 -- Original_Node.
3554
3555 if Comes_From_Source (Original_Node (N)) then
3556 Freeze_Previous_Contracts (N);
3557 end if;
3558
3559 -- Generic subprograms are handled separately. They always have a
3560 -- generic specification. Determine whether current scope has a
3561 -- previous declaration.
3562
3563 -- If the subprogram body is defined within an instance of the same
3564 -- name, the instance appears as a package renaming, and will be hidden
3565 -- within the subprogram.
3566
3567 if Present (Prev_Id)
3568 and then not Is_Overloadable (Prev_Id)
3569 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3570 or else Comes_From_Source (Prev_Id))
3571 then
3572 if Is_Generic_Subprogram (Prev_Id) then
3573 Spec_Id := Prev_Id;
3574
3575 -- A subprogram body is Ghost when it is stand-alone and subject
3576 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3577 -- the mode now to ensure that any nodes generated during analysis
3578 -- and expansion are properly marked as Ghost.
3579
3580 Mark_And_Set_Ghost_Body (N, Spec_Id);
3581
3582 -- If the body completes the initial declaration of a compilation
3583 -- unit which is subject to pragma Elaboration_Checks, set the
3584 -- model specified by the pragma because it applies to all parts
3585 -- of the unit.
3586
3587 Install_Elaboration_Model (Spec_Id);
3588
3589 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3590 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3591
3592 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3593
3594 if Nkind (N) = N_Subprogram_Body then
3595 HSS := Handled_Statement_Sequence (N);
3596 Check_Missing_Return;
3597 end if;
3598
3599 goto Leave;
3600
3601 -- Otherwise a previous entity conflicts with the subprogram name.
3602 -- Attempting to enter name will post error.
3603
3604 else
3605 Enter_Name (Body_Id);
3606 goto Leave;
3607 end if;
3608
3609 -- Non-generic case, find the subprogram declaration, if one was seen,
3610 -- or enter new overloaded entity in the current scope. If the
3611 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3612 -- part of the context of one of its subunits. No need to redo the
3613 -- analysis.
3614
3615 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3616 goto Leave;
3617
3618 else
3619 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3620
3621 if Nkind (N) = N_Subprogram_Body_Stub
3622 or else No (Corresponding_Spec (N))
3623 then
3624 if Is_Private_Concurrent_Primitive (Body_Id) then
3625 Spec_Id := Disambiguate_Spec;
3626
3627 -- A subprogram body is Ghost when it is stand-alone and
3628 -- subject to pragma Ghost or when the corresponding spec is
3629 -- Ghost. Set the mode now to ensure that any nodes generated
3630 -- during analysis and expansion are properly marked as Ghost.
3631
3632 Mark_And_Set_Ghost_Body (N, Spec_Id);
3633
3634 -- If the body completes a compilation unit which is subject
3635 -- to pragma Elaboration_Checks, set the model specified by
3636 -- the pragma because it applies to all parts of the unit.
3637
3638 Install_Elaboration_Model (Spec_Id);
3639
3640 else
3641 Spec_Id := Find_Corresponding_Spec (N);
3642
3643 -- A subprogram body is Ghost when it is stand-alone and
3644 -- subject to pragma Ghost or when the corresponding spec is
3645 -- Ghost. Set the mode now to ensure that any nodes generated
3646 -- during analysis and expansion are properly marked as Ghost.
3647
3648 Mark_And_Set_Ghost_Body (N, Spec_Id);
3649
3650 -- If the body completes a compilation unit which is subject
3651 -- to pragma Elaboration_Checks, set the model specified by
3652 -- the pragma because it applies to all parts of the unit.
3653
3654 Install_Elaboration_Model (Spec_Id);
3655
3656 -- In GNATprove mode, if the body has no previous spec, create
3657 -- one so that the inlining machinery can operate properly.
3658 -- Transfer aspects, if any, to the new spec, so that they
3659 -- are legal and can be processed ahead of the body.
3660 -- We make two copies of the given spec, one for the new
3661 -- declaration, and one for the body.
3662
3663 if No (Spec_Id) and then GNATprove_Mode
3664
3665 -- Inlining does not apply during preanalysis of code
3666
3667 and then Full_Analysis
3668
3669 -- Inlining only applies to full bodies, not stubs
3670
3671 and then Nkind (N) /= N_Subprogram_Body_Stub
3672
3673 -- Inlining only applies to bodies in the source code, not to
3674 -- those generated by the compiler. In particular, expression
3675 -- functions, whose body is generated by the compiler, are
3676 -- treated specially by GNATprove.
3677
3678 and then Comes_From_Source (Body_Id)
3679
3680 -- This cannot be done for a compilation unit, which is not
3681 -- in a context where we can insert a new spec.
3682
3683 and then Is_List_Member (N)
3684
3685 -- Inlining only applies to subprograms without contracts,
3686 -- as a contract is a sign that GNATprove should perform a
3687 -- modular analysis of the subprogram instead of a contextual
3688 -- analysis at each call site. The same test is performed in
3689 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3690 -- here in another form (because the contract has not been
3691 -- attached to the body) to avoid front-end errors in case
3692 -- pragmas are used instead of aspects, because the
3693 -- corresponding pragmas in the body would not be transferred
3694 -- to the spec, leading to legality errors.
3695
3696 and then not Body_Has_Contract
3697 and then not Inside_A_Generic
3698 then
3699 Build_Subprogram_Declaration;
3700
3701 -- If this is a function that returns a constrained array, and
3702 -- we are generating SPARK_For_C, create subprogram declaration
3703 -- to simplify subsequent C generation.
3704
3705 elsif No (Spec_Id)
3706 and then Modify_Tree_For_C
3707 and then Nkind (Body_Spec) = N_Function_Specification
3708 and then Is_Array_Type (Etype (Body_Id))
3709 and then Is_Constrained (Etype (Body_Id))
3710 then
3711 Build_Subprogram_Declaration;
3712 end if;
3713 end if;
3714
3715 -- If this is a duplicate body, no point in analyzing it
3716
3717 if Error_Posted (N) then
3718 goto Leave;
3719 end if;
3720
3721 -- A subprogram body should cause freezing of its own declaration,
3722 -- but if there was no previous explicit declaration, then the
3723 -- subprogram will get frozen too late (there may be code within
3724 -- the body that depends on the subprogram having been frozen,
3725 -- such as uses of extra formals), so we force it to be frozen
3726 -- here. Same holds if the body and spec are compilation units.
3727 -- Finally, if the return type is an anonymous access to protected
3728 -- subprogram, it must be frozen before the body because its
3729 -- expansion has generated an equivalent type that is used when
3730 -- elaborating the body.
3731
3732 -- An exception in the case of Ada 2012, AI05-177: The bodies
3733 -- created for expression functions do not freeze.
3734
3735 if No (Spec_Id)
3736 and then Nkind (Original_Node (N)) /= N_Expression_Function
3737 then
3738 Freeze_Before (N, Body_Id);
3739
3740 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3741 Freeze_Before (N, Spec_Id);
3742
3743 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3744 Freeze_Before (N, Etype (Body_Id));
3745 end if;
3746
3747 else
3748 Spec_Id := Corresponding_Spec (N);
3749
3750 -- A subprogram body is Ghost when it is stand-alone and subject
3751 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3752 -- the mode now to ensure that any nodes generated during analysis
3753 -- and expansion are properly marked as Ghost.
3754
3755 Mark_And_Set_Ghost_Body (N, Spec_Id);
3756
3757 -- If the body completes the initial declaration of a compilation
3758 -- unit which is subject to pragma Elaboration_Checks, set the
3759 -- model specified by the pragma because it applies to all parts
3760 -- of the unit.
3761
3762 Install_Elaboration_Model (Spec_Id);
3763 end if;
3764 end if;
3765
3766 -- Deactivate expansion inside the body of ignored Ghost entities,
3767 -- as this code will ultimately be ignored. This avoids requiring the
3768 -- presence of run-time units which are not needed. Only do this for
3769 -- user entities, as internally generated entitities might still need
3770 -- to be expanded (e.g. those generated for types).
3771
3772 if Present (Ignored_Ghost_Region)
3773 and then Comes_From_Source (Body_Id)
3774 then
3775 Expander_Active := False;
3776 end if;
3777
3778 -- Previously we scanned the body to look for nested subprograms, and
3779 -- rejected an inline directive if nested subprograms were present,
3780 -- because the back-end would generate conflicting symbols for the
3781 -- nested bodies. This is now unnecessary.
3782
3783 -- Look ahead to recognize a pragma Inline that appears after the body
3784
3785 Check_Inline_Pragma (Spec_Id);
3786
3787 -- Deal with special case of a fully private operation in the body of
3788 -- the protected type. We must create a declaration for the subprogram,
3789 -- in order to attach the protected subprogram that will be used in
3790 -- internal calls. We exclude compiler generated bodies from the
3791 -- expander since the issue does not arise for those cases.
3792
3793 if No (Spec_Id)
3794 and then Comes_From_Source (N)
3795 and then Is_Protected_Type (Current_Scope)
3796 then
3797 Spec_Id := Build_Private_Protected_Declaration (N);
3798 end if;
3799
3800 -- If we are generating C and this is a function returning a constrained
3801 -- array type for which we must create a procedure with an extra out
3802 -- parameter, build and analyze the body now. The procedure declaration
3803 -- has already been created. We reuse the source body of the function,
3804 -- because in an instance it may contain global references that cannot
3805 -- be reanalyzed. The source function itself is not used any further,
3806 -- so we mark it as having a completion. If the subprogram is a stub the
3807 -- transformation is done later, when the proper body is analyzed.
3808
3809 if Expander_Active
3810 and then Modify_Tree_For_C
3811 and then Present (Spec_Id)
3812 and then Ekind (Spec_Id) = E_Function
3813 and then Nkind (N) /= N_Subprogram_Body_Stub
3814 and then Rewritten_For_C (Spec_Id)
3815 then
3816 Set_Has_Completion (Spec_Id);
3817
3818 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3819 Analyze (N);
3820
3821 -- The entity for the created procedure must remain invisible, so it
3822 -- does not participate in resolution of subsequent references to the
3823 -- function.
3824
3825 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3826 goto Leave;
3827 end if;
3828
3829 -- If a separate spec is present, then deal with freezing issues
3830
3831 if Present (Spec_Id) then
3832 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3833 Verify_Overriding_Indicator;
3834
3835 -- In general, the spec will be frozen when we start analyzing the
3836 -- body. However, for internally generated operations, such as
3837 -- wrapper functions for inherited operations with controlling
3838 -- results, the spec may not have been frozen by the time we expand
3839 -- the freeze actions that include the bodies. In particular, extra
3840 -- formals for accessibility or for return-in-place may need to be
3841 -- generated. Freeze nodes, if any, are inserted before the current
3842 -- body. These freeze actions are also needed in ASIS mode and in
3843 -- Compile_Only mode to enable the proper back-end type annotations.
3844 -- They are necessary in any case to ensure proper elaboration order
3845 -- in gigi.
3846
3847 if Nkind (N) = N_Subprogram_Body
3848 and then Was_Expression_Function (N)
3849 and then not Has_Completion (Spec_Id)
3850 and then Serious_Errors_Detected = 0
3851 and then (Expander_Active
3852 or else ASIS_Mode
3853 or else Operating_Mode = Check_Semantics
3854 or else Is_Ignored_Ghost_Entity (Spec_Id))
3855 then
3856 -- The body generated for an expression function that is not a
3857 -- completion is a freeze point neither for the profile nor for
3858 -- anything else. That's why, in order to prevent any freezing
3859 -- during analysis, we need to mask types declared outside the
3860 -- expression (and in an outer scope) that are not yet frozen.
3861 -- This also needs to be done in the case of an ignored Ghost
3862 -- expression function, where the expander isn't active.
3863
3864 Set_Is_Frozen (Spec_Id);
3865 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3866
3867 elsif not Is_Frozen (Spec_Id)
3868 and then Serious_Errors_Detected = 0
3869 then
3870 Set_Has_Delayed_Freeze (Spec_Id);
3871 Freeze_Before (N, Spec_Id);
3872 end if;
3873 end if;
3874
3875 -- If the subprogram has a class-wide clone, build its body as a copy
3876 -- of the original body, and rewrite body of original subprogram as a
3877 -- wrapper that calls the clone. If N is a stub, this construction will
3878 -- take place when the proper body is analyzed. No action needed if this
3879 -- subprogram has been eliminated.
3880
3881 if Present (Spec_Id)
3882 and then Present (Class_Wide_Clone (Spec_Id))
3883 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3884 and then Nkind (N) /= N_Subprogram_Body_Stub
3885 and then not (Expander_Active and then Is_Eliminated (Spec_Id))
3886 then
3887 Build_Class_Wide_Clone_Body (Spec_Id, N);
3888
3889 -- This is the new body for the existing primitive operation
3890
3891 Rewrite (N, Build_Class_Wide_Clone_Call
3892 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3893 Set_Has_Completion (Spec_Id, False);
3894 Analyze (N);
3895 return;
3896 end if;
3897
3898 -- Place subprogram on scope stack, and make formals visible. If there
3899 -- is a spec, the visible entity remains that of the spec.
3900
3901 if Present (Spec_Id) then
3902 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3903
3904 if Is_Child_Unit (Spec_Id) then
3905 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3906 end if;
3907
3908 if Style_Check then
3909 Style.Check_Identifier (Body_Id, Spec_Id);
3910 end if;
3911
3912 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3913 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3914
3915 if Is_Abstract_Subprogram (Spec_Id) then
3916 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3917 goto Leave;
3918
3919 else
3920 Set_Convention (Body_Id, Convention (Spec_Id));
3921 Set_Has_Completion (Spec_Id);
3922
3923 if Is_Protected_Type (Scope (Spec_Id)) then
3924 Prot_Typ := Scope (Spec_Id);
3925 end if;
3926
3927 -- If this is a body generated for a renaming, do not check for
3928 -- full conformance. The check is redundant, because the spec of
3929 -- the body is a copy of the spec in the renaming declaration,
3930 -- and the test can lead to spurious errors on nested defaults.
3931
3932 if Present (Spec_Decl)
3933 and then not Comes_From_Source (N)
3934 and then
3935 (Nkind (Original_Node (Spec_Decl)) =
3936 N_Subprogram_Renaming_Declaration
3937 or else (Present (Corresponding_Body (Spec_Decl))
3938 and then
3939 Nkind (Unit_Declaration_Node
3940 (Corresponding_Body (Spec_Decl))) =
3941 N_Subprogram_Renaming_Declaration))
3942 then
3943 Conformant := True;
3944
3945 -- Conversely, the spec may have been generated for specless body
3946 -- with an inline pragma. The entity comes from source, which is
3947 -- both semantically correct and necessary for proper inlining.
3948 -- The subprogram declaration itself is not in the source.
3949
3950 elsif Comes_From_Source (N)
3951 and then Present (Spec_Decl)
3952 and then not Comes_From_Source (Spec_Decl)
3953 and then Has_Pragma_Inline (Spec_Id)
3954 then
3955 Conformant := True;
3956
3957 else
3958 Check_Conformance
3959 (Body_Id, Spec_Id,
3960 Fully_Conformant, True, Conformant, Body_Id);
3961 end if;
3962
3963 -- If the body is not fully conformant, we have to decide if we
3964 -- should analyze it or not. If it has a really messed up profile
3965 -- then we probably should not analyze it, since we will get too
3966 -- many bogus messages.
3967
3968 -- Our decision is to go ahead in the non-fully conformant case
3969 -- only if it is at least mode conformant with the spec. Note
3970 -- that the call to Check_Fully_Conformant has issued the proper
3971 -- error messages to complain about the lack of conformance.
3972
3973 if not Conformant
3974 and then not Mode_Conformant (Body_Id, Spec_Id)
3975 then
3976 goto Leave;
3977 end if;
3978 end if;
3979
3980 -- In the case we are dealing with an expression function we check
3981 -- the formals attached to the spec instead of the body - so we don't
3982 -- reference body formals.
3983
3984 if Spec_Id /= Body_Id
3985 and then not Is_Expression_Function (Spec_Id)
3986 then
3987 Reference_Body_Formals (Spec_Id, Body_Id);
3988 end if;
3989
3990 Set_Ekind (Body_Id, E_Subprogram_Body);
3991
3992 if Nkind (N) = N_Subprogram_Body_Stub then
3993 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3994
3995 -- Regular body
3996
3997 else
3998 Set_Corresponding_Spec (N, Spec_Id);
3999
4000 -- Ada 2005 (AI-345): If the operation is a primitive operation
4001 -- of a concurrent type, the type of the first parameter has been
4002 -- replaced with the corresponding record, which is the proper
4003 -- run-time structure to use. However, within the body there may
4004 -- be uses of the formals that depend on primitive operations
4005 -- of the type (in particular calls in prefixed form) for which
4006 -- we need the original concurrent type. The operation may have
4007 -- several controlling formals, so the replacement must be done
4008 -- for all of them.
4009
4010 if Comes_From_Source (Spec_Id)
4011 and then Present (First_Entity (Spec_Id))
4012 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
4013 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
4014 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
4015 and then Present (Corresponding_Concurrent_Type
4016 (Etype (First_Entity (Spec_Id))))
4017 then
4018 declare
4019 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
4020 Form : Entity_Id;
4021
4022 begin
4023 Form := First_Formal (Spec_Id);
4024 while Present (Form) loop
4025 if Etype (Form) = Typ then
4026 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
4027 end if;
4028
4029 Next_Formal (Form);
4030 end loop;
4031 end;
4032 end if;
4033
4034 -- Make the formals visible, and place subprogram on scope stack.
4035 -- This is also the point at which we set Last_Real_Spec_Entity
4036 -- to mark the entities which will not be moved to the body.
4037
4038 Install_Formals (Spec_Id);
4039 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
4040
4041 -- Within an instance, add local renaming declarations so that
4042 -- gdb can retrieve the values of actuals more easily. This is
4043 -- only relevant if generating code (and indeed we definitely
4044 -- do not want these definitions -gnatc mode, because that would
4045 -- confuse ASIS).
4046
4047 if Is_Generic_Instance (Spec_Id)
4048 and then Is_Wrapper_Package (Current_Scope)
4049 and then Expander_Active
4050 then
4051 Build_Subprogram_Instance_Renamings (N, Current_Scope);
4052 end if;
4053
4054 Push_Scope (Spec_Id);
4055
4056 -- Make sure that the subprogram is immediately visible. For
4057 -- child units that have no separate spec this is indispensable.
4058 -- Otherwise it is safe albeit redundant.
4059
4060 Set_Is_Immediately_Visible (Spec_Id);
4061 end if;
4062
4063 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
4064 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
4065 Set_Scope (Body_Id, Scope (Spec_Id));
4066
4067 -- Case of subprogram body with no previous spec
4068
4069 else
4070 -- Check for style warning required
4071
4072 if Style_Check
4073
4074 -- Only apply check for source level subprograms for which checks
4075 -- have not been suppressed.
4076
4077 and then Comes_From_Source (Body_Id)
4078 and then not Suppress_Style_Checks (Body_Id)
4079
4080 -- No warnings within an instance
4081
4082 and then not In_Instance
4083
4084 -- No warnings for expression functions
4085
4086 and then Nkind (Original_Node (N)) /= N_Expression_Function
4087 then
4088 Style.Body_With_No_Spec (N);
4089 end if;
4090
4091 New_Overloaded_Entity (Body_Id);
4092
4093 if Nkind (N) /= N_Subprogram_Body_Stub then
4094 Set_Acts_As_Spec (N);
4095 Generate_Definition (Body_Id);
4096 Generate_Reference
4097 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
4098
4099 -- If the body is an entry wrapper created for an entry with
4100 -- preconditions, it must be compiled in the context of the
4101 -- enclosing synchronized object, because it may mention other
4102 -- operations of the type.
4103
4104 if Is_Entry_Wrapper (Body_Id) then
4105 declare
4106 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
4107 begin
4108 Push_Scope (Prot);
4109 Install_Declarations (Prot);
4110 end;
4111 end if;
4112
4113 Install_Formals (Body_Id);
4114
4115 Push_Scope (Body_Id);
4116 end if;
4117
4118 -- For stubs and bodies with no previous spec, generate references to
4119 -- formals.
4120
4121 Generate_Reference_To_Formals (Body_Id);
4122 end if;
4123
4124 -- Entry barrier functions are generated outside the protected type and
4125 -- should not carry the SPARK_Mode of the enclosing context.
4126
4127 if Nkind (N) = N_Subprogram_Body
4128 and then Is_Entry_Barrier_Function (N)
4129 then
4130 null;
4131
4132 -- The body is generated as part of expression function expansion. When
4133 -- the expression function appears in the visible declarations of a
4134 -- package, the body is added to the private declarations. Since both
4135 -- declarative lists may be subject to a different SPARK_Mode, inherit
4136 -- the mode of the spec.
4137
4138 -- package P with SPARK_Mode is
4139 -- function Expr_Func ... is (...); -- original
4140 -- [function Expr_Func ...;] -- generated spec
4141 -- -- mode is ON
4142 -- private
4143 -- pragma SPARK_Mode (Off);
4144 -- [function Expr_Func ... is return ...;] -- generated body
4145 -- end P; -- mode is ON
4146
4147 elsif not Comes_From_Source (N)
4148 and then Present (Spec_Id)
4149 and then Is_Expression_Function (Spec_Id)
4150 then
4151 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4152 Set_SPARK_Pragma_Inherited
4153 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4154
4155 -- Set the SPARK_Mode from the current context (may be overwritten later
4156 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4157 -- initially on a stand-alone subprogram body, but is then relocated to
4158 -- a generated corresponding spec. In this scenario the mode is shared
4159 -- between the spec and body.
4160
4161 elsif No (SPARK_Pragma (Body_Id)) then
4162 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4163 Set_SPARK_Pragma_Inherited (Body_Id);
4164 end if;
4165
4166 -- A subprogram body may be instantiated or inlined at a later pass.
4167 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4168 -- applied to the initial declaration of the body.
4169
4170 if Present (Spec_Id) then
4171 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4172 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4173 end if;
4174
4175 else
4176 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4177 -- case the body is instantiated or inlined later and out of context.
4178 -- The body uses this attribute to restore the value of the global
4179 -- flag.
4180
4181 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4182 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4183
4184 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4185 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4186 end if;
4187 end if;
4188
4189 -- Preserve relevant elaboration-related attributes of the context which
4190 -- are no longer available or very expensive to recompute once analysis,
4191 -- resolution, and expansion are over.
4192
4193 if No (Spec_Id) then
4194 Mark_Elaboration_Attributes
4195 (N_Id => Body_Id,
4196 Checks => True,
4197 Warnings => True);
4198 end if;
4199
4200 -- If this is the proper body of a stub, we must verify that the stub
4201 -- conforms to the body, and to the previous spec if one was present.
4202 -- We know already that the body conforms to that spec. This test is
4203 -- only required for subprograms that come from source.
4204
4205 if Nkind (Parent (N)) = N_Subunit
4206 and then Comes_From_Source (N)
4207 and then not Error_Posted (Body_Id)
4208 and then Nkind (Corresponding_Stub (Parent (N))) =
4209 N_Subprogram_Body_Stub
4210 then
4211 declare
4212 Old_Id : constant Entity_Id :=
4213 Defining_Entity
4214 (Specification (Corresponding_Stub (Parent (N))));
4215
4216 Conformant : Boolean := False;
4217
4218 begin
4219 if No (Spec_Id) then
4220 Check_Fully_Conformant (Body_Id, Old_Id);
4221
4222 else
4223 Check_Conformance
4224 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4225
4226 if not Conformant then
4227
4228 -- The stub was taken to be a new declaration. Indicate that
4229 -- it lacks a body.
4230
4231 Set_Has_Completion (Old_Id, False);
4232 end if;
4233 end if;
4234 end;
4235 end if;
4236
4237 Set_Has_Completion (Body_Id);
4238 Check_Eliminated (Body_Id);
4239
4240 -- Analyze any aspect specifications that appear on the subprogram body
4241 -- stub. Stop the analysis now as the stub does not have a declarative
4242 -- or a statement part, and it cannot be inlined.
4243
4244 if Nkind (N) = N_Subprogram_Body_Stub then
4245 if Has_Aspects (N) then
4246 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4247 end if;
4248
4249 goto Leave;
4250 end if;
4251
4252 -- Handle inlining
4253
4254 -- Note: Normally we don't do any inlining if expansion is off, since
4255 -- we won't generate code in any case. An exception arises in GNATprove
4256 -- mode where we want to expand some calls in place, even with expansion
4257 -- disabled, since the inlining eases formal verification.
4258
4259 if not GNATprove_Mode
4260 and then Expander_Active
4261 and then Serious_Errors_Detected = 0
4262 and then Present (Spec_Id)
4263 and then Has_Pragma_Inline (Spec_Id)
4264 then
4265 -- Legacy implementation (relying on front-end inlining)
4266
4267 if not Back_End_Inlining then
4268 if (Has_Pragma_Inline_Always (Spec_Id)
4269 and then not Opt.Disable_FE_Inline_Always)
4270 or else (Front_End_Inlining
4271 and then not Opt.Disable_FE_Inline)
4272 then
4273 Build_Body_To_Inline (N, Spec_Id);
4274 end if;
4275
4276 -- New implementation (relying on back-end inlining)
4277
4278 else
4279 if Has_Pragma_Inline_Always (Spec_Id)
4280 or else Optimization_Level > 0
4281 then
4282 -- Handle function returning an unconstrained type
4283
4284 if Comes_From_Source (Body_Id)
4285 and then Ekind (Spec_Id) = E_Function
4286 and then Returns_Unconstrained_Type (Spec_Id)
4287
4288 -- If function builds in place, i.e. returns a limited type,
4289 -- inlining cannot be done.
4290
4291 and then not Is_Limited_Type (Etype (Spec_Id))
4292 then
4293 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4294
4295 else
4296 declare
4297 Subp_Body : constant Node_Id :=
4298 Unit_Declaration_Node (Body_Id);
4299 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4300
4301 begin
4302 -- Do not pass inlining to the backend if the subprogram
4303 -- has declarations or statements which cannot be inlined
4304 -- by the backend. This check is done here to emit an
4305 -- error instead of the generic warning message reported
4306 -- by the GCC backend (ie. "function might not be
4307 -- inlinable").
4308
4309 if Present (Subp_Decl)
4310 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4311 then
4312 null;
4313
4314 elsif Has_Excluded_Statement
4315 (Spec_Id,
4316 Statements
4317 (Handled_Statement_Sequence (Subp_Body)))
4318 then
4319 null;
4320
4321 -- If the backend inlining is available then at this
4322 -- stage we only have to mark the subprogram as inlined.
4323 -- The expander will take care of registering it in the
4324 -- table of subprograms inlined by the backend a part of
4325 -- processing calls to it (cf. Expand_Call)
4326
4327 else
4328 Set_Is_Inlined (Spec_Id);
4329 end if;
4330 end;
4331 end if;
4332 end if;
4333 end if;
4334
4335 -- In GNATprove mode, inline only when there is a separate subprogram
4336 -- declaration for now, as inlining of subprogram bodies acting as
4337 -- declarations, or subprogram stubs, are not supported by front-end
4338 -- inlining. This inlining should occur after analysis of the body, so
4339 -- that it is known whether the value of SPARK_Mode, which can be
4340 -- defined by a pragma inside the body, is applicable to the body.
4341 -- Inlining can be disabled with switch -gnatdm
4342
4343 elsif GNATprove_Mode
4344 and then Full_Analysis
4345 and then not Inside_A_Generic
4346 and then Present (Spec_Id)
4347 and then
4348 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4349 and then Body_Has_SPARK_Mode_On
4350 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4351 and then not Body_Has_Contract
4352 and then not Debug_Flag_M
4353 then
4354 Build_Body_To_Inline (N, Spec_Id);
4355 end if;
4356
4357 -- When generating code, inherited pre/postconditions are handled when
4358 -- expanding the corresponding contract.
4359
4360 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4361 -- of the specification we have to install the private withed units.
4362 -- This holds for child units as well.
4363
4364 if Is_Compilation_Unit (Body_Id)
4365 or else Nkind (Parent (N)) = N_Compilation_Unit
4366 then
4367 Install_Private_With_Clauses (Body_Id);
4368 end if;
4369
4370 Check_Anonymous_Return;
4371
4372 -- Set the Protected_Formal field of each extra formal of the protected
4373 -- subprogram to reference the corresponding extra formal of the
4374 -- subprogram that implements it. For regular formals this occurs when
4375 -- the protected subprogram's declaration is expanded, but the extra
4376 -- formals don't get created until the subprogram is frozen. We need to
4377 -- do this before analyzing the protected subprogram's body so that any
4378 -- references to the original subprogram's extra formals will be changed
4379 -- refer to the implementing subprogram's formals (see Expand_Formal).
4380
4381 if Present (Spec_Id)
4382 and then Is_Protected_Type (Scope (Spec_Id))
4383 and then Present (Protected_Body_Subprogram (Spec_Id))
4384 then
4385 declare
4386 Impl_Subp : constant Entity_Id :=
4387 Protected_Body_Subprogram (Spec_Id);
4388 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4389 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4390
4391 begin
4392 while Present (Prot_Ext_Formal) loop
4393 pragma Assert (Present (Impl_Ext_Formal));
4394 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4395 Next_Formal_With_Extras (Prot_Ext_Formal);
4396 Next_Formal_With_Extras (Impl_Ext_Formal);
4397 end loop;
4398 end;
4399 end if;
4400
4401 -- Generate minimum accessibility local objects to correspond with
4402 -- any extra formal added for anonymous access types. This new local
4403 -- object can then be used instead of the formal in case it is used
4404 -- in an actual to a call to a nested subprogram.
4405
4406 -- This method is used to supplement our "small integer model" for
4407 -- accessibility-check generation (for more information see
4408 -- Dynamic_Accessibility_Level).
4409
4410 -- Because we allow accessibility values greater than our expected value
4411 -- passing along the same extra accessibility formal as an actual
4412 -- to a nested subprogram becomes a problem because high values mean
4413 -- different things to the callee even though they are the same to the
4414 -- caller. So, as described in the first section, we create a local
4415 -- object representing the minimum of the accessibility level value that
4416 -- is passed in and the accessibility level of the callee's parameter
4417 -- and locals and use it in the case of a call to a nested subprogram.
4418 -- This generated object is refered to as a "minimum accessiblity
4419 -- level."
4420
4421 if Present (Spec_Id) or else Present (Body_Id) then
4422 Body_Nod := Unit_Declaration_Node (Body_Id);
4423
4424 declare
4425 Form : Entity_Id;
4426 begin
4427 -- Grab the appropriate formal depending on whether there exists
4428 -- an actual spec for the subprogram or whether we are dealing
4429 -- with a protected subprogram.
4430
4431 if Present (Spec_Id) then
4432 if Present (Protected_Body_Subprogram (Spec_Id)) then
4433 Form := First_Formal (Protected_Body_Subprogram (Spec_Id));
4434 else
4435 Form := First_Formal (Spec_Id);
4436 end if;
4437 else
4438 Form := First_Formal (Body_Id);
4439 end if;
4440
4441 -- Loop through formals if the subprogram is capable of accepting
4442 -- a generated local object. If it is not then it is also not
4443 -- capable of having local subprograms meaning it would not need
4444 -- a minimum accessibility level object anyway.
4445
4446 if Present (Body_Nod)
4447 and then Has_Declarations (Body_Nod)
4448 and then Nkind (Body_Nod) /= N_Package_Specification
4449 then
4450 while Present (Form) loop
4451
4452 if Present (Extra_Accessibility (Form))
4453 and then No (Minimum_Accessibility (Form))
4454 then
4455 -- Generate the minimum accessibility level object
4456
4457 -- A60b : integer := integer'min(2, paramL);
4458
4459 declare
4460 Loc : constant Source_Ptr := Sloc (Body_Nod);
4461 Obj_Node : constant Node_Id :=
4462 Make_Object_Declaration (Loc,
4463 Defining_Identifier =>
4464 Make_Temporary
4465 (Loc, 'A', Extra_Accessibility (Form)),
4466 Object_Definition => New_Occurrence_Of
4467 (Standard_Integer, Loc),
4468 Expression =>
4469 Make_Attribute_Reference (Loc,
4470 Prefix => New_Occurrence_Of
4471 (Standard_Integer, Loc),
4472 Attribute_Name => Name_Min,
4473 Expressions => New_List (
4474 Make_Integer_Literal (Loc,
4475 Object_Access_Level (Form)),
4476 New_Occurrence_Of
4477 (Extra_Accessibility (Form), Loc))));
4478 begin
4479 -- Add the new local object to the Minimum_Acc_Obj to
4480 -- be later prepended to the subprogram's list of
4481 -- declarations after we are sure all expansion is
4482 -- done.
4483
4484 if Present (Minimum_Acc_Objs) then
4485 Prepend (Obj_Node, Minimum_Acc_Objs);
4486 else
4487 Minimum_Acc_Objs := New_List (Obj_Node);
4488 end if;
4489
4490 -- Register the object and analyze it
4491
4492 Set_Minimum_Accessibility
4493 (Form, Defining_Identifier (Obj_Node));
4494
4495 Analyze (Obj_Node);
4496 end;
4497 end if;
4498
4499 Next_Formal (Form);
4500 end loop;
4501 end if;
4502 end;
4503 end if;
4504
4505 -- Now we can go on to analyze the body
4506
4507 HSS := Handled_Statement_Sequence (N);
4508 Set_Actual_Subtypes (N, Current_Scope);
4509
4510 -- Add a declaration for the Protection object, renaming declarations
4511 -- for discriminals and privals and finally a declaration for the entry
4512 -- family index (if applicable). This form of early expansion is done
4513 -- when the Expander is active because Install_Private_Data_Declarations
4514 -- references entities which were created during regular expansion. The
4515 -- subprogram entity must come from source, and not be an internally
4516 -- generated subprogram.
4517
4518 if Expander_Active
4519 and then Present (Prot_Typ)
4520 and then Present (Spec_Id)
4521 and then Comes_From_Source (Spec_Id)
4522 and then not Is_Eliminated (Spec_Id)
4523 then
4524 Install_Private_Data_Declarations
4525 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4526 end if;
4527
4528 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4529 -- may now appear in parameter and result profiles. Since the analysis
4530 -- of a subprogram body may use the parameter and result profile of the
4531 -- spec, swap any limited views with their non-limited counterpart.
4532
4533 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4534 Exch_Views := Exchange_Limited_Views (Spec_Id);
4535 end if;
4536
4537 -- If the return type is an anonymous access type whose designated type
4538 -- is the limited view of a class-wide type and the non-limited view is
4539 -- available, update the return type accordingly.
4540
4541 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4542 declare
4543 Etyp : Entity_Id;
4544 Rtyp : Entity_Id;
4545
4546 begin
4547 Rtyp := Etype (Spec_Id);
4548
4549 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4550 Etyp := Directly_Designated_Type (Rtyp);
4551
4552 if Is_Class_Wide_Type (Etyp)
4553 and then From_Limited_With (Etyp)
4554 then
4555 Desig_View := Etyp;
4556 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4557 end if;
4558 end if;
4559 end;
4560 end if;
4561
4562 -- Analyze any aspect specifications that appear on the subprogram body
4563
4564 if Has_Aspects (N) then
4565 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4566 end if;
4567
4568 Analyze_Declarations (Declarations (N));
4569
4570 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4571
4572 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4573 if Present (SPARK_Pragma (Spec_Id)) then
4574 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4575 and then
4576 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4577 then
4578 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4579 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4580 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4581 Error_Msg_NE
4582 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4583 end if;
4584
4585 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4586 null;
4587
4588 else
4589 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4590 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4591 Error_Msg_Sloc := Sloc (Spec_Id);
4592 Error_Msg_NE
4593 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4594 end if;
4595 end if;
4596
4597 -- A subprogram body freezes its own contract. Analyze the contract
4598 -- after the declarations of the body have been processed as pragmas
4599 -- are now chained on the contract of the subprogram body.
4600
4601 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4602
4603 -- Check completion, and analyze the statements
4604
4605 Check_Completion;
4606 Inspect_Deferred_Constant_Completion (Declarations (N));
4607 Analyze (HSS);
4608
4609 -- Add the generated minimum accessibility objects to the subprogram
4610 -- body's list of declarations after analysis of the statements and
4611 -- contracts.
4612
4613 while Is_Non_Empty_List (Minimum_Acc_Objs) loop
4614 if Present (Declarations (Body_Nod)) then
4615 Prepend (Remove_Head (Minimum_Acc_Objs), Declarations (Body_Nod));
4616 else
4617 Set_Declarations
4618 (Body_Nod, New_List (Remove_Head (Minimum_Acc_Objs)));
4619 end if;
4620 end loop;
4621
4622 -- Deal with end of scope processing for the body
4623
4624 Process_End_Label (HSS, 't', Current_Scope);
4625 Update_Use_Clause_Chain;
4626 End_Scope;
4627
4628 -- If we are compiling an entry wrapper, remove the enclosing
4629 -- synchronized object from the stack.
4630
4631 if Is_Entry_Wrapper (Body_Id) then
4632 End_Scope;
4633 end if;
4634
4635 Check_Subprogram_Order (N);
4636 Set_Analyzed (Body_Id);
4637
4638 -- If we have a separate spec, then the analysis of the declarations
4639 -- caused the entities in the body to be chained to the spec id, but
4640 -- we want them chained to the body id. Only the formal parameters
4641 -- end up chained to the spec id in this case.
4642
4643 if Present (Spec_Id) then
4644
4645 -- We must conform to the categorization of our spec
4646
4647 Validate_Categorization_Dependency (N, Spec_Id);
4648
4649 -- And if this is a child unit, the parent units must conform
4650
4651 if Is_Child_Unit (Spec_Id) then
4652 Validate_Categorization_Dependency
4653 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4654 end if;
4655
4656 -- Here is where we move entities from the spec to the body
4657
4658 -- Case where there are entities that stay with the spec
4659
4660 if Present (Last_Real_Spec_Entity) then
4661
4662 -- No body entities (happens when the only real spec entities come
4663 -- from precondition and postcondition pragmas).
4664
4665 if No (Last_Entity (Body_Id)) then
4666 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4667
4668 -- Body entities present (formals), so chain stuff past them
4669
4670 else
4671 Link_Entities
4672 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4673 end if;
4674
4675 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4676 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4677 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4678
4679 -- Case where there are no spec entities, in this case there can be
4680 -- no body entities either, so just move everything.
4681
4682 -- If the body is generated for an expression function, it may have
4683 -- been preanalyzed already, if 'access was applied to it.
4684
4685 else
4686 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4687 N_Expression_Function
4688 then
4689 pragma Assert (No (Last_Entity (Body_Id)));
4690 null;
4691 end if;
4692
4693 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4694 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4695 Set_First_Entity (Spec_Id, Empty);
4696 Set_Last_Entity (Spec_Id, Empty);
4697 end if;
4698
4699 -- Otherwise the body does not complete a previous declaration. Check
4700 -- the categorization of the body against the units it withs.
4701
4702 else
4703 Validate_Categorization_Dependency (N, Body_Id);
4704 end if;
4705
4706 Check_Missing_Return;
4707
4708 -- Now we are going to check for variables that are never modified in
4709 -- the body of the procedure. But first we deal with a special case
4710 -- where we want to modify this check. If the body of the subprogram
4711 -- starts with a raise statement or its equivalent, or if the body
4712 -- consists entirely of a null statement, then it is pretty obvious that
4713 -- it is OK to not reference the parameters. For example, this might be
4714 -- the following common idiom for a stubbed function: statement of the
4715 -- procedure raises an exception. In particular this deals with the
4716 -- common idiom of a stubbed function, which appears something like:
4717
4718 -- function F (A : Integer) return Some_Type;
4719 -- X : Some_Type;
4720 -- begin
4721 -- raise Program_Error;
4722 -- return X;
4723 -- end F;
4724
4725 -- Here the purpose of X is simply to satisfy the annoying requirement
4726 -- in Ada that there be at least one return, and we certainly do not
4727 -- want to go posting warnings on X that it is not initialized. On
4728 -- the other hand, if X is entirely unreferenced that should still
4729 -- get a warning.
4730
4731 -- What we do is to detect these cases, and if we find them, flag the
4732 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4733 -- suppress unwanted warnings. For the case of the function stub above
4734 -- we have a special test to set X as apparently assigned to suppress
4735 -- the warning.
4736
4737 declare
4738 Stm : Node_Id;
4739
4740 begin
4741 -- Skip call markers installed by the ABE mechanism, labels, and
4742 -- Push_xxx_Error_Label to find the first real statement.
4743
4744 Stm := First (Statements (HSS));
4745 while Nkind_In (Stm, N_Call_Marker, N_Label)
4746 or else Nkind (Stm) in N_Push_xxx_Label
4747 loop
4748 Next (Stm);
4749 end loop;
4750
4751 -- Do the test on the original statement before expansion
4752
4753 declare
4754 Ostm : constant Node_Id := Original_Node (Stm);
4755
4756 begin
4757 -- If explicit raise statement, turn on flag
4758
4759 if Nkind (Ostm) = N_Raise_Statement then
4760 Set_Trivial_Subprogram (Stm);
4761
4762 -- If null statement, and no following statements, turn on flag
4763
4764 elsif Nkind (Stm) = N_Null_Statement
4765 and then Comes_From_Source (Stm)
4766 and then No (Next (Stm))
4767 then
4768 Set_Trivial_Subprogram (Stm);
4769
4770 -- Check for explicit call cases which likely raise an exception
4771
4772 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4773 if Is_Entity_Name (Name (Ostm)) then
4774 declare
4775 Ent : constant Entity_Id := Entity (Name (Ostm));
4776
4777 begin
4778 -- If the procedure is marked No_Return, then likely it
4779 -- raises an exception, but in any case it is not coming
4780 -- back here, so turn on the flag.
4781
4782 if Present (Ent)
4783 and then Ekind (Ent) = E_Procedure
4784 and then No_Return (Ent)
4785 then
4786 Set_Trivial_Subprogram (Stm);
4787 end if;
4788 end;
4789 end if;
4790 end if;
4791 end;
4792 end;
4793
4794 -- Check for variables that are never modified
4795
4796 declare
4797 E1 : Entity_Id;
4798 E2 : Entity_Id;
4799
4800 begin
4801 -- If there is a separate spec, then transfer Never_Set_In_Source
4802 -- flags from out parameters to the corresponding entities in the
4803 -- body. The reason we do that is we want to post error flags on
4804 -- the body entities, not the spec entities.
4805
4806 if Present (Spec_Id) then
4807 E1 := First_Entity (Spec_Id);
4808 while Present (E1) loop
4809 if Ekind (E1) = E_Out_Parameter then
4810 E2 := First_Entity (Body_Id);
4811 while Present (E2) loop
4812 exit when Chars (E1) = Chars (E2);
4813 Next_Entity (E2);
4814 end loop;
4815
4816 if Present (E2) then
4817 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4818 end if;
4819 end if;
4820
4821 Next_Entity (E1);
4822 end loop;
4823 end if;
4824
4825 -- Check references of the subprogram spec when we are dealing with
4826 -- an expression function due to it having a generated body.
4827 -- Otherwise, we simply check the formals of the subprogram body.
4828
4829 if Present (Spec_Id)
4830 and then Is_Expression_Function (Spec_Id)
4831 then
4832 Check_References (Spec_Id);
4833 else
4834 Check_References (Body_Id);
4835 end if;
4836 end;
4837
4838 -- Check for nested subprogram, and mark outer level subprogram if so
4839
4840 declare
4841 Ent : Entity_Id;
4842
4843 begin
4844 if Present (Spec_Id) then
4845 Ent := Spec_Id;
4846 else
4847 Ent := Body_Id;
4848 end if;
4849
4850 loop
4851 Ent := Enclosing_Subprogram (Ent);
4852 exit when No (Ent) or else Is_Subprogram (Ent);
4853 end loop;
4854
4855 if Present (Ent) then
4856 Set_Has_Nested_Subprogram (Ent);
4857 end if;
4858 end;
4859
4860 -- Restore the limited views in the spec, if any, to let the back end
4861 -- process it without running into circularities.
4862
4863 if Exch_Views /= No_Elist then
4864 Restore_Limited_Views (Exch_Views);
4865 end if;
4866
4867 if Mask_Types /= No_Elist then
4868 Unmask_Unfrozen_Types (Mask_Types);
4869 end if;
4870
4871 if Present (Desig_View) then
4872 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4873 end if;
4874
4875 <<Leave>>
4876 if Present (Ignored_Ghost_Region) then
4877 Expander_Active := Saved_EA;
4878 end if;
4879
4880 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4881 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4882 end Analyze_Subprogram_Body_Helper;
4883
4884 ------------------------------------
4885 -- Analyze_Subprogram_Declaration --
4886 ------------------------------------
4887
4888 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4889 Scop : constant Entity_Id := Current_Scope;
4890 Designator : Entity_Id;
4891
4892 Is_Completion : Boolean;
4893 -- Indicates whether a null procedure declaration is a completion
4894
4895 begin
4896 -- Null procedures are not allowed in SPARK
4897
4898 if Nkind (Specification (N)) = N_Procedure_Specification
4899 and then Null_Present (Specification (N))
4900 then
4901 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4902
4903 -- Null procedures are allowed in protected types, following the
4904 -- recent AI12-0147.
4905
4906 if Is_Protected_Type (Current_Scope)
4907 and then Ada_Version < Ada_2012
4908 then
4909 Error_Msg_N ("protected operation cannot be a null procedure", N);
4910 end if;
4911
4912 Analyze_Null_Procedure (N, Is_Completion);
4913
4914 -- The null procedure acts as a body, nothing further is needed
4915
4916 if Is_Completion then
4917 return;
4918 end if;
4919 end if;
4920
4921 Designator := Analyze_Subprogram_Specification (Specification (N));
4922
4923 -- A reference may already have been generated for the unit name, in
4924 -- which case the following call is redundant. However it is needed for
4925 -- declarations that are the rewriting of an expression function.
4926
4927 Generate_Definition (Designator);
4928
4929 -- Set the SPARK mode from the current context (may be overwritten later
4930 -- with explicit pragma). This is not done for entry barrier functions
4931 -- because they are generated outside the protected type and should not
4932 -- carry the mode of the enclosing context.
4933
4934 if Nkind (N) = N_Subprogram_Declaration
4935 and then Is_Entry_Barrier_Function (N)
4936 then
4937 null;
4938
4939 else
4940 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4941 Set_SPARK_Pragma_Inherited (Designator);
4942 end if;
4943
4944 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4945 -- the body of this subprogram is instantiated or inlined later and out
4946 -- of context. The body uses this attribute to restore the value of the
4947 -- global flag.
4948
4949 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4950 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4951 end if;
4952
4953 -- Preserve relevant elaboration-related attributes of the context which
4954 -- are no longer available or very expensive to recompute once analysis,
4955 -- resolution, and expansion are over.
4956
4957 Mark_Elaboration_Attributes
4958 (N_Id => Designator,
4959 Checks => True,
4960 Warnings => True);
4961
4962 if Debug_Flag_C then
4963 Write_Str ("==> subprogram spec ");
4964 Write_Name (Chars (Designator));
4965 Write_Str (" from ");
4966 Write_Location (Sloc (N));
4967 Write_Eol;
4968 Indent;
4969 end if;
4970
4971 Validate_RCI_Subprogram_Declaration (N);
4972 New_Overloaded_Entity (Designator);
4973 Check_Delayed_Subprogram (Designator);
4974
4975 -- If the type of the first formal of the current subprogram is a non-
4976 -- generic tagged private type, mark the subprogram as being a private
4977 -- primitive. Ditto if this is a function with controlling result, and
4978 -- the return type is currently private. In both cases, the type of the
4979 -- controlling argument or result must be in the current scope for the
4980 -- operation to be primitive.
4981
4982 if Has_Controlling_Result (Designator)
4983 and then Is_Private_Type (Etype (Designator))
4984 and then Scope (Etype (Designator)) = Current_Scope
4985 and then not Is_Generic_Actual_Type (Etype (Designator))
4986 then
4987 Set_Is_Private_Primitive (Designator);
4988
4989 elsif Present (First_Formal (Designator)) then
4990 declare
4991 Formal_Typ : constant Entity_Id :=
4992 Etype (First_Formal (Designator));
4993 begin
4994 Set_Is_Private_Primitive (Designator,
4995 Is_Tagged_Type (Formal_Typ)
4996 and then Scope (Formal_Typ) = Current_Scope
4997 and then Is_Private_Type (Formal_Typ)
4998 and then not Is_Generic_Actual_Type (Formal_Typ));
4999 end;
5000 end if;
5001
5002 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
5003 -- or null.
5004
5005 if Ada_Version >= Ada_2005
5006 and then Comes_From_Source (N)
5007 and then Is_Dispatching_Operation (Designator)
5008 then
5009 declare
5010 E : Entity_Id;
5011 Etyp : Entity_Id;
5012
5013 begin
5014 if Has_Controlling_Result (Designator) then
5015 Etyp := Etype (Designator);
5016
5017 else
5018 E := First_Entity (Designator);
5019 while Present (E)
5020 and then Is_Formal (E)
5021 and then not Is_Controlling_Formal (E)
5022 loop
5023 Next_Entity (E);
5024 end loop;
5025
5026 Etyp := Etype (E);
5027 end if;
5028
5029 if Is_Access_Type (Etyp) then
5030 Etyp := Directly_Designated_Type (Etyp);
5031 end if;
5032
5033 if Is_Interface (Etyp)
5034 and then not Is_Abstract_Subprogram (Designator)
5035 and then not (Ekind (Designator) = E_Procedure
5036 and then Null_Present (Specification (N)))
5037 then
5038 Error_Msg_Name_1 := Chars (Defining_Entity (N));
5039
5040 -- Specialize error message based on procedures vs. functions,
5041 -- since functions can't be null subprograms.
5042
5043 if Ekind (Designator) = E_Procedure then
5044 Error_Msg_N
5045 ("interface procedure % must be abstract or null", N);
5046 else
5047 Error_Msg_N
5048 ("interface function % must be abstract", N);
5049 end if;
5050 end if;
5051 end;
5052 end if;
5053
5054 -- What is the following code for, it used to be
5055
5056 -- ??? Set_Suppress_Elaboration_Checks
5057 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
5058
5059 -- The following seems equivalent, but a bit dubious
5060
5061 if Elaboration_Checks_Suppressed (Designator) then
5062 Set_Kill_Elaboration_Checks (Designator);
5063 end if;
5064
5065 -- For a compilation unit, set body required. This flag will only be
5066 -- reset if a valid Import or Interface pragma is processed later on.
5067
5068 if Nkind (Parent (N)) = N_Compilation_Unit then
5069 Set_Body_Required (Parent (N), True);
5070
5071 if Ada_Version >= Ada_2005
5072 and then Nkind (Specification (N)) = N_Procedure_Specification
5073 and then Null_Present (Specification (N))
5074 then
5075 Error_Msg_N
5076 ("null procedure cannot be declared at library level", N);
5077 end if;
5078 end if;
5079
5080 Generate_Reference_To_Formals (Designator);
5081 Check_Eliminated (Designator);
5082
5083 if Debug_Flag_C then
5084 Outdent;
5085 Write_Str ("<== subprogram spec ");
5086 Write_Name (Chars (Designator));
5087 Write_Str (" from ");
5088 Write_Location (Sloc (N));
5089 Write_Eol;
5090 end if;
5091
5092 -- Indicate that this is a protected operation, because it may be used
5093 -- in subsequent declarations within the protected type.
5094
5095 if Is_Protected_Type (Current_Scope) then
5096 Set_Convention (Designator, Convention_Protected);
5097 end if;
5098
5099 List_Inherited_Pre_Post_Aspects (Designator);
5100
5101 -- Process the aspects before establishing the proper categorization in
5102 -- case the subprogram is a compilation unit and one of its aspects is
5103 -- converted into a categorization pragma.
5104
5105 if Has_Aspects (N) then
5106 Analyze_Aspect_Specifications (N, Designator);
5107 end if;
5108
5109 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
5110 Set_Categorization_From_Scope (Designator, Scop);
5111
5112 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
5113 -- proper categorization of the unit based on its pragmas.
5114
5115 else
5116 Push_Scope (Designator);
5117 Set_Categorization_From_Pragmas (N);
5118 Validate_Categorization_Dependency (N, Designator);
5119 Pop_Scope;
5120 end if;
5121 end Analyze_Subprogram_Declaration;
5122
5123 --------------------------------------
5124 -- Analyze_Subprogram_Specification --
5125 --------------------------------------
5126
5127 -- Reminder: N here really is a subprogram specification (not a subprogram
5128 -- declaration). This procedure is called to analyze the specification in
5129 -- both subprogram bodies and subprogram declarations (specs).
5130
5131 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
5132 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
5133 -- Determine whether entity E denotes the spec or body of an invariant
5134 -- procedure.
5135
5136 ------------------------------------
5137 -- Is_Invariant_Procedure_Or_Body --
5138 ------------------------------------
5139
5140 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
5141 Decl : constant Node_Id := Unit_Declaration_Node (E);
5142 Spec : Entity_Id;
5143
5144 begin
5145 if Nkind (Decl) = N_Subprogram_Body then
5146 Spec := Corresponding_Spec (Decl);
5147 else
5148 Spec := E;
5149 end if;
5150
5151 return
5152 Present (Spec)
5153 and then Ekind (Spec) = E_Procedure
5154 and then (Is_Partial_Invariant_Procedure (Spec)
5155 or else Is_Invariant_Procedure (Spec));
5156 end Is_Invariant_Procedure_Or_Body;
5157
5158 -- Local variables
5159
5160 Designator : constant Entity_Id := Defining_Entity (N);
5161 Formals : constant List_Id := Parameter_Specifications (N);
5162
5163 -- Start of processing for Analyze_Subprogram_Specification
5164
5165 begin
5166 -- User-defined operator is not allowed in SPARK, except as a renaming
5167
5168 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
5169 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
5170 then
5171 Check_SPARK_05_Restriction
5172 ("user-defined operator is not allowed", N);
5173 end if;
5174
5175 -- Proceed with analysis. Do not emit a cross-reference entry if the
5176 -- specification comes from an expression function, because it may be
5177 -- the completion of a previous declaration. If it is not, the cross-
5178 -- reference entry will be emitted for the new subprogram declaration.
5179
5180 if Nkind (Parent (N)) /= N_Expression_Function then
5181 Generate_Definition (Designator);
5182 end if;
5183
5184 if Nkind (N) = N_Function_Specification then
5185 Set_Ekind (Designator, E_Function);
5186 Set_Mechanism (Designator, Default_Mechanism);
5187 else
5188 Set_Ekind (Designator, E_Procedure);
5189 Set_Etype (Designator, Standard_Void_Type);
5190 end if;
5191
5192 -- Flag Is_Inlined_Always is True by default, and reversed to False for
5193 -- those subprograms which could be inlined in GNATprove mode (because
5194 -- Body_To_Inline is non-Empty) but should not be inlined.
5195
5196 if GNATprove_Mode then
5197 Set_Is_Inlined_Always (Designator);
5198 end if;
5199
5200 -- Introduce new scope for analysis of the formals and the return type
5201
5202 Set_Scope (Designator, Current_Scope);
5203
5204 if Present (Formals) then
5205 Push_Scope (Designator);
5206 Process_Formals (Formals, N);
5207
5208 -- Check dimensions in N for formals with default expression
5209
5210 Analyze_Dimension_Formals (N, Formals);
5211
5212 -- Ada 2005 (AI-345): If this is an overriding operation of an
5213 -- inherited interface operation, and the controlling type is
5214 -- a synchronized type, replace the type with its corresponding
5215 -- record, to match the proper signature of an overriding operation.
5216 -- Same processing for an access parameter whose designated type is
5217 -- derived from a synchronized interface.
5218
5219 -- This modification is not done for invariant procedures because
5220 -- the corresponding record may not necessarely be visible when the
5221 -- concurrent type acts as the full view of a private type.
5222
5223 -- package Pack is
5224 -- type Prot is private with Type_Invariant => ...;
5225 -- procedure ConcInvariant (Obj : Prot);
5226 -- private
5227 -- protected type Prot is ...;
5228 -- type Concurrent_Record_Prot is record ...;
5229 -- procedure ConcInvariant (Obj : Prot) is
5230 -- ...
5231 -- end ConcInvariant;
5232 -- end Pack;
5233
5234 -- In the example above, both the spec and body of the invariant
5235 -- procedure must utilize the private type as the controlling type.
5236
5237 if Ada_Version >= Ada_2005
5238 and then not Is_Invariant_Procedure_Or_Body (Designator)
5239 then
5240 declare
5241 Formal : Entity_Id;
5242 Formal_Typ : Entity_Id;
5243 Rec_Typ : Entity_Id;
5244 Desig_Typ : Entity_Id;
5245
5246 begin
5247 Formal := First_Formal (Designator);
5248 while Present (Formal) loop
5249 Formal_Typ := Etype (Formal);
5250
5251 if Is_Concurrent_Type (Formal_Typ)
5252 and then Present (Corresponding_Record_Type (Formal_Typ))
5253 then
5254 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5255
5256 if Present (Interfaces (Rec_Typ)) then
5257 Set_Etype (Formal, Rec_Typ);
5258 end if;
5259
5260 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5261 Desig_Typ := Designated_Type (Formal_Typ);
5262
5263 if Is_Concurrent_Type (Desig_Typ)
5264 and then Present (Corresponding_Record_Type (Desig_Typ))
5265 then
5266 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5267
5268 if Present (Interfaces (Rec_Typ)) then
5269 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5270 end if;
5271 end if;
5272 end if;
5273
5274 Next_Formal (Formal);
5275 end loop;
5276 end;
5277 end if;
5278
5279 End_Scope;
5280
5281 -- The subprogram scope is pushed and popped around the processing of
5282 -- the return type for consistency with call above to Process_Formals
5283 -- (which itself can call Analyze_Return_Type), and to ensure that any
5284 -- itype created for the return type will be associated with the proper
5285 -- scope.
5286
5287 elsif Nkind (N) = N_Function_Specification then
5288 Push_Scope (Designator);
5289 Analyze_Return_Type (N);
5290 End_Scope;
5291 end if;
5292
5293 -- Function case
5294
5295 if Nkind (N) = N_Function_Specification then
5296
5297 -- Deal with operator symbol case
5298
5299 if Nkind (Designator) = N_Defining_Operator_Symbol then
5300 Valid_Operator_Definition (Designator);
5301 end if;
5302
5303 May_Need_Actuals (Designator);
5304
5305 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5306 -- the subprogram is abstract also. This does not apply to renaming
5307 -- declarations, where abstractness is inherited, and to subprogram
5308 -- bodies generated for stream operations, which become renamings as
5309 -- bodies.
5310
5311 -- In case of primitives associated with abstract interface types
5312 -- the check is applied later (see Analyze_Subprogram_Declaration).
5313
5314 if not Nkind_In (Original_Node (Parent (N)),
5315 N_Abstract_Subprogram_Declaration,
5316 N_Formal_Abstract_Subprogram_Declaration,
5317 N_Subprogram_Renaming_Declaration)
5318 then
5319 if Is_Abstract_Type (Etype (Designator))
5320 and then not Is_Interface (Etype (Designator))
5321 then
5322 Error_Msg_N
5323 ("function that returns abstract type must be abstract", N);
5324
5325 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5326 -- access result whose designated type is abstract.
5327
5328 elsif Ada_Version >= Ada_2012
5329 and then Nkind (Result_Definition (N)) = N_Access_Definition
5330 and then
5331 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5332 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5333 then
5334 Error_Msg_N
5335 ("function whose access result designates abstract type "
5336 & "must be abstract", N);
5337 end if;
5338 end if;
5339 end if;
5340
5341 return Designator;
5342 end Analyze_Subprogram_Specification;
5343
5344 -----------------------
5345 -- Check_Conformance --
5346 -----------------------
5347
5348 procedure Check_Conformance
5349 (New_Id : Entity_Id;
5350 Old_Id : Entity_Id;
5351 Ctype : Conformance_Type;
5352 Errmsg : Boolean;
5353 Conforms : out Boolean;
5354 Err_Loc : Node_Id := Empty;
5355 Get_Inst : Boolean := False;
5356 Skip_Controlling_Formals : Boolean := False)
5357 is
5358 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5359 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5360 -- If Errmsg is True, then processing continues to post an error message
5361 -- for conformance error on given node. Two messages are output. The
5362 -- first message points to the previous declaration with a general "no
5363 -- conformance" message. The second is the detailed reason, supplied as
5364 -- Msg. The parameter N provide information for a possible & insertion
5365 -- in the message, and also provides the location for posting the
5366 -- message in the absence of a specified Err_Loc location.
5367
5368 function Conventions_Match
5369 (Id1 : Entity_Id;
5370 Id2 : Entity_Id) return Boolean;
5371 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5372 -- match.
5373
5374 -----------------------
5375 -- Conformance_Error --
5376 -----------------------
5377
5378 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5379 Enode : Node_Id;
5380
5381 begin
5382 Conforms := False;
5383
5384 if Errmsg then
5385 if No (Err_Loc) then
5386 Enode := N;
5387 else
5388 Enode := Err_Loc;
5389 end if;
5390
5391 Error_Msg_Sloc := Sloc (Old_Id);
5392
5393 case Ctype is
5394 when Type_Conformant =>
5395 Error_Msg_N -- CODEFIX
5396 ("not type conformant with declaration#!", Enode);
5397
5398 when Mode_Conformant =>
5399 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5400 Error_Msg_N
5401 ("not mode conformant with operation inherited#!",
5402 Enode);
5403 else
5404 Error_Msg_N
5405 ("not mode conformant with declaration#!", Enode);
5406 end if;
5407
5408 when Subtype_Conformant =>
5409 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5410 Error_Msg_N
5411 ("not subtype conformant with operation inherited#!",
5412 Enode);
5413 else
5414 Error_Msg_N
5415 ("not subtype conformant with declaration#!", Enode);
5416 end if;
5417
5418 when Fully_Conformant =>
5419 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5420 Error_Msg_N -- CODEFIX
5421 ("not fully conformant with operation inherited#!",
5422 Enode);
5423 else
5424 Error_Msg_N -- CODEFIX
5425 ("not fully conformant with declaration#!", Enode);
5426 end if;
5427 end case;
5428
5429 Error_Msg_NE (Msg, Enode, N);
5430 end if;
5431 end Conformance_Error;
5432
5433 -----------------------
5434 -- Conventions_Match --
5435 -----------------------
5436
5437 function Conventions_Match
5438 (Id1 : Entity_Id;
5439 Id2 : Entity_Id) return Boolean
5440 is
5441 begin
5442 -- Ignore the conventions of anonymous access-to-subprogram types
5443 -- and subprogram types because these are internally generated and
5444 -- the only way these may receive a convention is if they inherit
5445 -- the convention of a related subprogram.
5446
5447 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5448 E_Subprogram_Type)
5449 or else
5450 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5451 E_Subprogram_Type)
5452 then
5453 return True;
5454
5455 -- Otherwise compare the conventions directly
5456
5457 else
5458 return Convention (Id1) = Convention (Id2);
5459 end if;
5460 end Conventions_Match;
5461
5462 -- Local Variables
5463
5464 Old_Type : constant Entity_Id := Etype (Old_Id);
5465 New_Type : constant Entity_Id := Etype (New_Id);
5466 Old_Formal : Entity_Id;
5467 New_Formal : Entity_Id;
5468 Access_Types_Match : Boolean;
5469 Old_Formal_Base : Entity_Id;
5470 New_Formal_Base : Entity_Id;
5471
5472 -- Start of processing for Check_Conformance
5473
5474 begin
5475 Conforms := True;
5476
5477 -- We need a special case for operators, since they don't appear
5478 -- explicitly.
5479
5480 if Ctype = Type_Conformant then
5481 if Ekind (New_Id) = E_Operator
5482 and then Operator_Matches_Spec (New_Id, Old_Id)
5483 then
5484 return;
5485 end if;
5486 end if;
5487
5488 -- If both are functions/operators, check return types conform
5489
5490 if Old_Type /= Standard_Void_Type
5491 and then
5492 New_Type /= Standard_Void_Type
5493 then
5494 -- If we are checking interface conformance we omit controlling
5495 -- arguments and result, because we are only checking the conformance
5496 -- of the remaining parameters.
5497
5498 if Has_Controlling_Result (Old_Id)
5499 and then Has_Controlling_Result (New_Id)
5500 and then Skip_Controlling_Formals
5501 then
5502 null;
5503
5504 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5505 if Ctype >= Subtype_Conformant
5506 and then not Predicates_Match (Old_Type, New_Type)
5507 then
5508 Conformance_Error
5509 ("\predicate of return type does not match!", New_Id);
5510 else
5511 Conformance_Error
5512 ("\return type does not match!", New_Id);
5513 end if;
5514
5515 return;
5516 end if;
5517
5518 -- Ada 2005 (AI-231): In case of anonymous access types check the
5519 -- null-exclusion and access-to-constant attributes match.
5520
5521 if Ada_Version >= Ada_2005
5522 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5523 and then
5524 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5525 or else Is_Access_Constant (Etype (Old_Type)) /=
5526 Is_Access_Constant (Etype (New_Type)))
5527 then
5528 Conformance_Error ("\return type does not match!", New_Id);
5529 return;
5530 end if;
5531
5532 -- If either is a function/operator and the other isn't, error
5533
5534 elsif Old_Type /= Standard_Void_Type
5535 or else New_Type /= Standard_Void_Type
5536 then
5537 Conformance_Error ("\functions can only match functions!", New_Id);
5538 return;
5539 end if;
5540
5541 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5542 -- If this is a renaming as body, refine error message to indicate that
5543 -- the conflict is with the original declaration. If the entity is not
5544 -- frozen, the conventions don't have to match, the one of the renamed
5545 -- entity is inherited.
5546
5547 if Ctype >= Subtype_Conformant then
5548 if not Conventions_Match (Old_Id, New_Id) then
5549 if not Is_Frozen (New_Id) then
5550 null;
5551
5552 elsif Present (Err_Loc)
5553 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5554 and then Present (Corresponding_Spec (Err_Loc))
5555 then
5556 Error_Msg_Name_1 := Chars (New_Id);
5557 Error_Msg_Name_2 :=
5558 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5559 Conformance_Error ("\prior declaration for% has convention %!");
5560
5561 else
5562 Conformance_Error ("\calling conventions do not match!");
5563 end if;
5564
5565 return;
5566
5567 elsif Is_Formal_Subprogram (Old_Id)
5568 or else Is_Formal_Subprogram (New_Id)
5569 or else (Is_Subprogram (New_Id)
5570 and then Present (Alias (New_Id))
5571 and then Is_Formal_Subprogram (Alias (New_Id)))
5572 then
5573 Conformance_Error
5574 ("\formal subprograms are not subtype conformant "
5575 & "(RM 6.3.1 (17/3))");
5576 end if;
5577 end if;
5578
5579 -- Deal with parameters
5580
5581 -- Note: we use the entity information, rather than going directly
5582 -- to the specification in the tree. This is not only simpler, but
5583 -- absolutely necessary for some cases of conformance tests between
5584 -- operators, where the declaration tree simply does not exist.
5585
5586 Old_Formal := First_Formal (Old_Id);
5587 New_Formal := First_Formal (New_Id);
5588 while Present (Old_Formal) and then Present (New_Formal) loop
5589 if Is_Controlling_Formal (Old_Formal)
5590 and then Is_Controlling_Formal (New_Formal)
5591 and then Skip_Controlling_Formals
5592 then
5593 -- The controlling formals will have different types when
5594 -- comparing an interface operation with its match, but both
5595 -- or neither must be access parameters.
5596
5597 if Is_Access_Type (Etype (Old_Formal))
5598 =
5599 Is_Access_Type (Etype (New_Formal))
5600 then
5601 goto Skip_Controlling_Formal;
5602 else
5603 Conformance_Error
5604 ("\access parameter does not match!", New_Formal);
5605 end if;
5606 end if;
5607
5608 -- Ada 2012: Mode conformance also requires that formal parameters
5609 -- be both aliased, or neither.
5610
5611 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5612 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5613 Conformance_Error
5614 ("\aliased parameter mismatch!", New_Formal);
5615 end if;
5616 end if;
5617
5618 if Ctype = Fully_Conformant then
5619
5620 -- Names must match. Error message is more accurate if we do
5621 -- this before checking that the types of the formals match.
5622
5623 if Chars (Old_Formal) /= Chars (New_Formal) then
5624 Conformance_Error ("\name& does not match!", New_Formal);
5625
5626 -- Set error posted flag on new formal as well to stop
5627 -- junk cascaded messages in some cases.
5628
5629 Set_Error_Posted (New_Formal);
5630 return;
5631 end if;
5632
5633 -- Null exclusion must match
5634
5635 if Null_Exclusion_Present (Parent (Old_Formal))
5636 /=
5637 Null_Exclusion_Present (Parent (New_Formal))
5638 then
5639 -- Only give error if both come from source. This should be
5640 -- investigated some time, since it should not be needed ???
5641
5642 if Comes_From_Source (Old_Formal)
5643 and then
5644 Comes_From_Source (New_Formal)
5645 then
5646 Conformance_Error
5647 ("\null exclusion for& does not match", New_Formal);
5648
5649 -- Mark error posted on the new formal to avoid duplicated
5650 -- complaint about types not matching.
5651
5652 Set_Error_Posted (New_Formal);
5653 end if;
5654 end if;
5655 end if;
5656
5657 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5658 -- case occurs whenever a subprogram is being renamed and one of its
5659 -- parameters imposes a null exclusion. For example:
5660
5661 -- type T is null record;
5662 -- type Acc_T is access T;
5663 -- subtype Acc_T_Sub is Acc_T;
5664
5665 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5666 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5667 -- renames P;
5668
5669 Old_Formal_Base := Etype (Old_Formal);
5670 New_Formal_Base := Etype (New_Formal);
5671
5672 if Get_Inst then
5673 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5674 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5675 end if;
5676
5677 Access_Types_Match := Ada_Version >= Ada_2005
5678
5679 -- Ensure that this rule is only applied when New_Id is a
5680 -- renaming of Old_Id.
5681
5682 and then Nkind (Parent (Parent (New_Id))) =
5683 N_Subprogram_Renaming_Declaration
5684 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5685 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5686 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5687
5688 -- Now handle the allowed access-type case
5689
5690 and then Is_Access_Type (Old_Formal_Base)
5691 and then Is_Access_Type (New_Formal_Base)
5692
5693 -- The type kinds must match. The only exception occurs with
5694 -- multiple generics of the form:
5695
5696 -- generic generic
5697 -- type F is private; type A is private;
5698 -- type F_Ptr is access F; type A_Ptr is access A;
5699 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5700 -- package F_Pack is ... package A_Pack is
5701 -- package F_Inst is
5702 -- new F_Pack (A, A_Ptr, A_P);
5703
5704 -- When checking for conformance between the parameters of A_P
5705 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5706 -- because the compiler has transformed A_Ptr into a subtype of
5707 -- F_Ptr. We catch this case in the code below.
5708
5709 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5710 or else
5711 (Is_Generic_Type (Old_Formal_Base)
5712 and then Is_Generic_Type (New_Formal_Base)
5713 and then Is_Internal (New_Formal_Base)
5714 and then Etype (Etype (New_Formal_Base)) =
5715 Old_Formal_Base))
5716 and then Directly_Designated_Type (Old_Formal_Base) =
5717 Directly_Designated_Type (New_Formal_Base)
5718 and then ((Is_Itype (Old_Formal_Base)
5719 and then (Can_Never_Be_Null (Old_Formal_Base)
5720 or else Is_Access_Constant
5721 (Old_Formal_Base)))
5722 or else
5723 (Is_Itype (New_Formal_Base)
5724 and then (Can_Never_Be_Null (New_Formal_Base)
5725 or else Is_Access_Constant
5726 (New_Formal_Base))));
5727
5728 -- Types must always match. In the visible part of an instance,
5729 -- usual overloading rules for dispatching operations apply, and
5730 -- we check base types (not the actual subtypes).
5731
5732 if In_Instance_Visible_Part
5733 and then Is_Dispatching_Operation (New_Id)
5734 then
5735 if not Conforming_Types
5736 (T1 => Base_Type (Etype (Old_Formal)),
5737 T2 => Base_Type (Etype (New_Formal)),
5738 Ctype => Ctype,
5739 Get_Inst => Get_Inst)
5740 and then not Access_Types_Match
5741 then
5742 Conformance_Error ("\type of & does not match!", New_Formal);
5743 return;
5744 end if;
5745
5746 elsif not Conforming_Types
5747 (T1 => Old_Formal_Base,
5748 T2 => New_Formal_Base,
5749 Ctype => Ctype,
5750 Get_Inst => Get_Inst)
5751 and then not Access_Types_Match
5752 then
5753 -- Don't give error message if old type is Any_Type. This test
5754 -- avoids some cascaded errors, e.g. in case of a bad spec.
5755
5756 if Errmsg and then Old_Formal_Base = Any_Type then
5757 Conforms := False;
5758 else
5759 if Ctype >= Subtype_Conformant
5760 and then
5761 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5762 then
5763 Conformance_Error
5764 ("\predicate of & does not match!", New_Formal);
5765 else
5766 Conformance_Error
5767 ("\type of & does not match!", New_Formal);
5768
5769 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5770 then
5771 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5772 end if;
5773 end if;
5774 end if;
5775
5776 return;
5777 end if;
5778
5779 -- For mode conformance, mode must match
5780
5781 if Ctype >= Mode_Conformant then
5782 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5783 if not Ekind_In (New_Id, E_Function, E_Procedure)
5784 or else not Is_Primitive_Wrapper (New_Id)
5785 then
5786 Conformance_Error ("\mode of & does not match!", New_Formal);
5787
5788 else
5789 declare
5790 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5791 begin
5792 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5793 then
5794 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5795 else
5796 Conformance_Error
5797 ("\mode of & does not match!", New_Formal);
5798 end if;
5799 end;
5800 end if;
5801
5802 return;
5803
5804 -- Part of mode conformance for access types is having the same
5805 -- constant modifier.
5806
5807 elsif Access_Types_Match
5808 and then Is_Access_Constant (Old_Formal_Base) /=
5809 Is_Access_Constant (New_Formal_Base)
5810 then
5811 Conformance_Error
5812 ("\constant modifier does not match!", New_Formal);
5813 return;
5814 end if;
5815 end if;
5816
5817 if Ctype >= Subtype_Conformant then
5818
5819 -- Ada 2005 (AI-231): In case of anonymous access types check
5820 -- the null-exclusion and access-to-constant attributes must
5821 -- match. For null exclusion, we test the types rather than the
5822 -- formals themselves, since the attribute is only set reliably
5823 -- on the formals in the Ada 95 case, and we exclude the case
5824 -- where Old_Formal is marked as controlling, to avoid errors
5825 -- when matching completing bodies with dispatching declarations
5826 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5827
5828 if Ada_Version >= Ada_2005
5829 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5830 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5831 and then
5832 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5833 Can_Never_Be_Null (Etype (New_Formal))
5834 and then
5835 not Is_Controlling_Formal (Old_Formal))
5836 or else
5837 Is_Access_Constant (Etype (Old_Formal)) /=
5838 Is_Access_Constant (Etype (New_Formal)))
5839
5840 -- Do not complain if error already posted on New_Formal. This
5841 -- avoids some redundant error messages.
5842
5843 and then not Error_Posted (New_Formal)
5844 then
5845 -- It is allowed to omit the null-exclusion in case of stream
5846 -- attribute subprograms. We recognize stream subprograms
5847 -- through their TSS-generated suffix.
5848
5849 declare
5850 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5851
5852 begin
5853 if TSS_Name /= TSS_Stream_Read
5854 and then TSS_Name /= TSS_Stream_Write
5855 and then TSS_Name /= TSS_Stream_Input
5856 and then TSS_Name /= TSS_Stream_Output
5857 then
5858 -- Here we have a definite conformance error. It is worth
5859 -- special casing the error message for the case of a
5860 -- controlling formal (which excludes null).
5861
5862 if Is_Controlling_Formal (New_Formal) then
5863 Error_Msg_Node_2 := Scope (New_Formal);
5864 Conformance_Error
5865 ("\controlling formal & of & excludes null, "
5866 & "declaration must exclude null as well",
5867 New_Formal);
5868
5869 -- Normal case (couldn't we give more detail here???)
5870
5871 else
5872 Conformance_Error
5873 ("\type of & does not match!", New_Formal);
5874 end if;
5875
5876 return;
5877 end if;
5878 end;
5879 end if;
5880 end if;
5881
5882 -- Full conformance checks
5883
5884 if Ctype = Fully_Conformant then
5885
5886 -- We have checked already that names match
5887
5888 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5889
5890 -- Check default expressions for in parameters
5891
5892 declare
5893 NewD : constant Boolean :=
5894 Present (Default_Value (New_Formal));
5895 OldD : constant Boolean :=
5896 Present (Default_Value (Old_Formal));
5897 begin
5898 if NewD or OldD then
5899
5900 -- The old default value has been analyzed because the
5901 -- current full declaration will have frozen everything
5902 -- before. The new default value has not been analyzed,
5903 -- so analyze it now before we check for conformance.
5904
5905 if NewD then
5906 Push_Scope (New_Id);
5907 Preanalyze_Spec_Expression
5908 (Default_Value (New_Formal), Etype (New_Formal));
5909 End_Scope;
5910 end if;
5911
5912 if not (NewD and OldD)
5913 or else not Fully_Conformant_Expressions
5914 (Default_Value (Old_Formal),
5915 Default_Value (New_Formal))
5916 then
5917 Conformance_Error
5918 ("\default expression for & does not match!",
5919 New_Formal);
5920 return;
5921 end if;
5922 end if;
5923 end;
5924 end if;
5925 end if;
5926
5927 -- A couple of special checks for Ada 83 mode. These checks are
5928 -- skipped if either entity is an operator in package Standard,
5929 -- or if either old or new instance is not from the source program.
5930
5931 if Ada_Version = Ada_83
5932 and then Sloc (Old_Id) > Standard_Location
5933 and then Sloc (New_Id) > Standard_Location
5934 and then Comes_From_Source (Old_Id)
5935 and then Comes_From_Source (New_Id)
5936 then
5937 declare
5938 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5939 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5940
5941 begin
5942 -- Explicit IN must be present or absent in both cases. This
5943 -- test is required only in the full conformance case.
5944
5945 if In_Present (Old_Param) /= In_Present (New_Param)
5946 and then Ctype = Fully_Conformant
5947 then
5948 Conformance_Error
5949 ("\(Ada 83) IN must appear in both declarations",
5950 New_Formal);
5951 return;
5952 end if;
5953
5954 -- Grouping (use of comma in param lists) must be the same
5955 -- This is where we catch a misconformance like:
5956
5957 -- A, B : Integer
5958 -- A : Integer; B : Integer
5959
5960 -- which are represented identically in the tree except
5961 -- for the setting of the flags More_Ids and Prev_Ids.
5962
5963 if More_Ids (Old_Param) /= More_Ids (New_Param)
5964 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5965 then
5966 Conformance_Error
5967 ("\grouping of & does not match!", New_Formal);
5968 return;
5969 end if;
5970 end;
5971 end if;
5972
5973 -- This label is required when skipping controlling formals
5974
5975 <<Skip_Controlling_Formal>>
5976
5977 Next_Formal (Old_Formal);
5978 Next_Formal (New_Formal);
5979 end loop;
5980
5981 if Present (Old_Formal) then
5982 Conformance_Error ("\too few parameters!");
5983 return;
5984
5985 elsif Present (New_Formal) then
5986 Conformance_Error ("\too many parameters!", New_Formal);
5987 return;
5988 end if;
5989 end Check_Conformance;
5990
5991 -----------------------
5992 -- Check_Conventions --
5993 -----------------------
5994
5995 procedure Check_Conventions (Typ : Entity_Id) is
5996 Ifaces_List : Elist_Id;
5997
5998 procedure Check_Convention (Op : Entity_Id);
5999 -- Verify that the convention of inherited dispatching operation Op is
6000 -- consistent among all subprograms it overrides. In order to minimize
6001 -- the search, Search_From is utilized to designate a specific point in
6002 -- the list rather than iterating over the whole list once more.
6003
6004 ----------------------
6005 -- Check_Convention --
6006 ----------------------
6007
6008 procedure Check_Convention (Op : Entity_Id) is
6009 Op_Conv : constant Convention_Id := Convention (Op);
6010 Iface_Conv : Convention_Id;
6011 Iface_Elmt : Elmt_Id;
6012 Iface_Prim_Elmt : Elmt_Id;
6013 Iface_Prim : Entity_Id;
6014
6015 begin
6016 Iface_Elmt := First_Elmt (Ifaces_List);
6017 while Present (Iface_Elmt) loop
6018 Iface_Prim_Elmt :=
6019 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
6020 while Present (Iface_Prim_Elmt) loop
6021 Iface_Prim := Node (Iface_Prim_Elmt);
6022 Iface_Conv := Convention (Iface_Prim);
6023
6024 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
6025 and then Iface_Conv /= Op_Conv
6026 then
6027 Error_Msg_N
6028 ("inconsistent conventions in primitive operations", Typ);
6029
6030 Error_Msg_Name_1 := Chars (Op);
6031 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
6032 Error_Msg_Sloc := Sloc (Op);
6033
6034 if Comes_From_Source (Op) or else No (Alias (Op)) then
6035 if not Present (Overridden_Operation (Op)) then
6036 Error_Msg_N ("\\primitive % defined #", Typ);
6037 else
6038 Error_Msg_N
6039 ("\\overriding operation % with "
6040 & "convention % defined #", Typ);
6041 end if;
6042
6043 else pragma Assert (Present (Alias (Op)));
6044 Error_Msg_Sloc := Sloc (Alias (Op));
6045 Error_Msg_N ("\\inherited operation % with "
6046 & "convention % defined #", Typ);
6047 end if;
6048
6049 Error_Msg_Name_1 := Chars (Op);
6050 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
6051 Error_Msg_Sloc := Sloc (Iface_Prim);
6052 Error_Msg_N ("\\overridden operation % with "
6053 & "convention % defined #", Typ);
6054
6055 -- Avoid cascading errors
6056
6057 return;
6058 end if;
6059
6060 Next_Elmt (Iface_Prim_Elmt);
6061 end loop;
6062
6063 Next_Elmt (Iface_Elmt);
6064 end loop;
6065 end Check_Convention;
6066
6067 -- Local variables
6068
6069 Prim_Op : Entity_Id;
6070 Prim_Op_Elmt : Elmt_Id;
6071
6072 -- Start of processing for Check_Conventions
6073
6074 begin
6075 if not Has_Interfaces (Typ) then
6076 return;
6077 end if;
6078
6079 Collect_Interfaces (Typ, Ifaces_List);
6080
6081 -- The algorithm checks every overriding dispatching operation against
6082 -- all the corresponding overridden dispatching operations, detecting
6083 -- differences in conventions.
6084
6085 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
6086 while Present (Prim_Op_Elmt) loop
6087 Prim_Op := Node (Prim_Op_Elmt);
6088
6089 -- A small optimization: skip the predefined dispatching operations
6090 -- since they always have the same convention.
6091
6092 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
6093 Check_Convention (Prim_Op);
6094 end if;
6095
6096 Next_Elmt (Prim_Op_Elmt);
6097 end loop;
6098 end Check_Conventions;
6099
6100 ------------------------------
6101 -- Check_Delayed_Subprogram --
6102 ------------------------------
6103
6104 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
6105 procedure Possible_Freeze (T : Entity_Id);
6106 -- T is the type of either a formal parameter or of the return type. If
6107 -- T is not yet frozen and needs a delayed freeze, then the subprogram
6108 -- itself must be delayed.
6109
6110 ---------------------
6111 -- Possible_Freeze --
6112 ---------------------
6113
6114 procedure Possible_Freeze (T : Entity_Id) is
6115 Scop : constant Entity_Id := Scope (Designator);
6116
6117 begin
6118 -- If the subprogram appears within a package instance (which may be
6119 -- the wrapper package of a subprogram instance) the freeze node for
6120 -- that package will freeze the subprogram at the proper place, so
6121 -- do not emit a freeze node for the subprogram, given that it may
6122 -- appear in the wrong scope.
6123
6124 if Ekind (Scop) = E_Package
6125 and then not Comes_From_Source (Scop)
6126 and then Is_Generic_Instance (Scop)
6127 then
6128 null;
6129
6130 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
6131 Set_Has_Delayed_Freeze (Designator);
6132
6133 elsif Is_Access_Type (T)
6134 and then Has_Delayed_Freeze (Designated_Type (T))
6135 and then not Is_Frozen (Designated_Type (T))
6136 then
6137 Set_Has_Delayed_Freeze (Designator);
6138 end if;
6139 end Possible_Freeze;
6140
6141 -- Local variables
6142
6143 F : Entity_Id;
6144
6145 -- Start of processing for Check_Delayed_Subprogram
6146
6147 begin
6148 -- All subprograms, including abstract subprograms, may need a freeze
6149 -- node if some formal type or the return type needs one.
6150
6151 Possible_Freeze (Etype (Designator));
6152 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6153
6154 -- Need delayed freeze if any of the formal types themselves need a
6155 -- delayed freeze and are not yet frozen.
6156
6157 F := First_Formal (Designator);
6158 while Present (F) loop
6159 Possible_Freeze (Etype (F));
6160 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6161 Next_Formal (F);
6162 end loop;
6163
6164 -- Mark functions that return by reference. Note that it cannot be done
6165 -- for delayed_freeze subprograms because the underlying returned type
6166 -- may not be known yet (for private types).
6167
6168 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6169 declare
6170 Typ : constant Entity_Id := Etype (Designator);
6171 Utyp : constant Entity_Id := Underlying_Type (Typ);
6172
6173 begin
6174 if Is_Limited_View (Typ) then
6175 Set_Returns_By_Ref (Designator);
6176
6177 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6178 Set_Returns_By_Ref (Designator);
6179 end if;
6180 end;
6181 end if;
6182 end Check_Delayed_Subprogram;
6183
6184 ------------------------------------
6185 -- Check_Discriminant_Conformance --
6186 ------------------------------------
6187
6188 procedure Check_Discriminant_Conformance
6189 (N : Node_Id;
6190 Prev : Entity_Id;
6191 Prev_Loc : Node_Id)
6192 is
6193 Old_Discr : Entity_Id := First_Discriminant (Prev);
6194 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6195 New_Discr_Id : Entity_Id;
6196 New_Discr_Type : Entity_Id;
6197
6198 procedure Conformance_Error (Msg : String; N : Node_Id);
6199 -- Post error message for conformance error on given node. Two messages
6200 -- are output. The first points to the previous declaration with a
6201 -- general "no conformance" message. The second is the detailed reason,
6202 -- supplied as Msg. The parameter N provide information for a possible
6203 -- & insertion in the message.
6204
6205 -----------------------
6206 -- Conformance_Error --
6207 -----------------------
6208
6209 procedure Conformance_Error (Msg : String; N : Node_Id) is
6210 begin
6211 Error_Msg_Sloc := Sloc (Prev_Loc);
6212 Error_Msg_N -- CODEFIX
6213 ("not fully conformant with declaration#!", N);
6214 Error_Msg_NE (Msg, N, N);
6215 end Conformance_Error;
6216
6217 -- Start of processing for Check_Discriminant_Conformance
6218
6219 begin
6220 while Present (Old_Discr) and then Present (New_Discr) loop
6221 New_Discr_Id := Defining_Identifier (New_Discr);
6222
6223 -- The subtype mark of the discriminant on the full type has not
6224 -- been analyzed so we do it here. For an access discriminant a new
6225 -- type is created.
6226
6227 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6228 New_Discr_Type :=
6229 Access_Definition (N, Discriminant_Type (New_Discr));
6230
6231 else
6232 Find_Type (Discriminant_Type (New_Discr));
6233 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6234
6235 -- Ada 2005: if the discriminant definition carries a null
6236 -- exclusion, create an itype to check properly for consistency
6237 -- with partial declaration.
6238
6239 if Is_Access_Type (New_Discr_Type)
6240 and then Null_Exclusion_Present (New_Discr)
6241 then
6242 New_Discr_Type :=
6243 Create_Null_Excluding_Itype
6244 (T => New_Discr_Type,
6245 Related_Nod => New_Discr,
6246 Scope_Id => Current_Scope);
6247 end if;
6248 end if;
6249
6250 if not Conforming_Types
6251 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6252 then
6253 Conformance_Error ("type of & does not match!", New_Discr_Id);
6254 return;
6255 else
6256 -- Treat the new discriminant as an occurrence of the old one,
6257 -- for navigation purposes, and fill in some semantic
6258 -- information, for completeness.
6259
6260 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6261 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6262 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6263 end if;
6264
6265 -- Names must match
6266
6267 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6268 Conformance_Error ("name & does not match!", New_Discr_Id);
6269 return;
6270 end if;
6271
6272 -- Default expressions must match
6273
6274 declare
6275 NewD : constant Boolean :=
6276 Present (Expression (New_Discr));
6277 OldD : constant Boolean :=
6278 Present (Expression (Parent (Old_Discr)));
6279
6280 begin
6281 if NewD or OldD then
6282
6283 -- The old default value has been analyzed and expanded,
6284 -- because the current full declaration will have frozen
6285 -- everything before. The new default values have not been
6286 -- expanded, so expand now to check conformance.
6287
6288 if NewD then
6289 Preanalyze_Spec_Expression
6290 (Expression (New_Discr), New_Discr_Type);
6291 end if;
6292
6293 if not (NewD and OldD)
6294 or else not Fully_Conformant_Expressions
6295 (Expression (Parent (Old_Discr)),
6296 Expression (New_Discr))
6297
6298 then
6299 Conformance_Error
6300 ("default expression for & does not match!",
6301 New_Discr_Id);
6302 return;
6303 end if;
6304 end if;
6305 end;
6306
6307 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6308
6309 if Ada_Version = Ada_83 then
6310 declare
6311 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6312
6313 begin
6314 -- Grouping (use of comma in param lists) must be the same
6315 -- This is where we catch a misconformance like:
6316
6317 -- A, B : Integer
6318 -- A : Integer; B : Integer
6319
6320 -- which are represented identically in the tree except
6321 -- for the setting of the flags More_Ids and Prev_Ids.
6322
6323 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6324 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6325 then
6326 Conformance_Error
6327 ("grouping of & does not match!", New_Discr_Id);
6328 return;
6329 end if;
6330 end;
6331 end if;
6332
6333 Next_Discriminant (Old_Discr);
6334 Next (New_Discr);
6335 end loop;
6336
6337 if Present (Old_Discr) then
6338 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6339 return;
6340
6341 elsif Present (New_Discr) then
6342 Conformance_Error
6343 ("too many discriminants!", Defining_Identifier (New_Discr));
6344 return;
6345 end if;
6346 end Check_Discriminant_Conformance;
6347
6348 ----------------------------
6349 -- Check_Fully_Conformant --
6350 ----------------------------
6351
6352 procedure Check_Fully_Conformant
6353 (New_Id : Entity_Id;
6354 Old_Id : Entity_Id;
6355 Err_Loc : Node_Id := Empty)
6356 is
6357 Result : Boolean;
6358 pragma Warnings (Off, Result);
6359 begin
6360 Check_Conformance
6361 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6362 end Check_Fully_Conformant;
6363
6364 --------------------------
6365 -- Check_Limited_Return --
6366 --------------------------
6367
6368 procedure Check_Limited_Return
6369 (N : Node_Id;
6370 Expr : Node_Id;
6371 R_Type : Entity_Id)
6372 is
6373 begin
6374 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6375 -- replaced by anonymous access results. This is an incompatibility with
6376 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6377 -- controllable with special switch. ???
6378
6379 -- A limited interface that is not immutably limited is OK
6380
6381 if Is_Limited_Interface (R_Type)
6382 and then
6383 not (Is_Task_Interface (R_Type)
6384 or else Is_Protected_Interface (R_Type)
6385 or else Is_Synchronized_Interface (R_Type))
6386 then
6387 null;
6388
6389 elsif Is_Limited_Type (R_Type)
6390 and then not Is_Interface (R_Type)
6391 and then Comes_From_Source (N)
6392 and then not In_Instance_Body
6393 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6394 then
6395 -- Error in Ada 2005
6396
6397 if Ada_Version >= Ada_2005
6398 and then not Debug_Flag_Dot_L
6399 and then not GNAT_Mode
6400 then
6401 Error_Msg_N
6402 ("(Ada 2005) cannot copy object of a limited type "
6403 & "(RM-2005 6.5(5.5/2))", Expr);
6404
6405 if Is_Limited_View (R_Type) then
6406 Error_Msg_N
6407 ("\return by reference not permitted in Ada 2005", Expr);
6408 end if;
6409
6410 -- Warn in Ada 95 mode, to give folks a heads up about this
6411 -- incompatibility.
6412
6413 -- In GNAT mode, this is just a warning, to allow it to be evilly
6414 -- turned off. Otherwise it is a real error.
6415
6416 -- In a generic context, simplify the warning because it makes no
6417 -- sense to discuss pass-by-reference or copy.
6418
6419 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6420 if Inside_A_Generic then
6421 Error_Msg_N
6422 ("return of limited object not permitted in Ada 2005 "
6423 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6424
6425 elsif Is_Limited_View (R_Type) then
6426 Error_Msg_N
6427 ("return by reference not permitted in Ada 2005 "
6428 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6429 else
6430 Error_Msg_N
6431 ("cannot copy object of a limited type in Ada 2005 "
6432 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6433 end if;
6434
6435 -- Ada 95 mode, and compatibility warnings disabled
6436
6437 else
6438 pragma Assert (Ada_Version <= Ada_95);
6439 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6440 return; -- skip continuation messages below
6441 end if;
6442
6443 if not Inside_A_Generic then
6444 Error_Msg_N
6445 ("\consider switching to return of access type", Expr);
6446 Explain_Limited_Type (R_Type, Expr);
6447 end if;
6448 end if;
6449 end Check_Limited_Return;
6450
6451 ---------------------------
6452 -- Check_Mode_Conformant --
6453 ---------------------------
6454
6455 procedure Check_Mode_Conformant
6456 (New_Id : Entity_Id;
6457 Old_Id : Entity_Id;
6458 Err_Loc : Node_Id := Empty;
6459 Get_Inst : Boolean := False)
6460 is
6461 Result : Boolean;
6462 pragma Warnings (Off, Result);
6463 begin
6464 Check_Conformance
6465 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6466 end Check_Mode_Conformant;
6467
6468 --------------------------------
6469 -- Check_Overriding_Indicator --
6470 --------------------------------
6471
6472 procedure Check_Overriding_Indicator
6473 (Subp : Entity_Id;
6474 Overridden_Subp : Entity_Id;
6475 Is_Primitive : Boolean)
6476 is
6477 Decl : Node_Id;
6478 Spec : Node_Id;
6479
6480 begin
6481 -- No overriding indicator for literals
6482
6483 if Ekind (Subp) = E_Enumeration_Literal then
6484 return;
6485
6486 elsif Ekind (Subp) = E_Entry then
6487 Decl := Parent (Subp);
6488
6489 -- No point in analyzing a malformed operator
6490
6491 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6492 and then Error_Posted (Subp)
6493 then
6494 return;
6495
6496 else
6497 Decl := Unit_Declaration_Node (Subp);
6498 end if;
6499
6500 if Nkind_In (Decl, N_Subprogram_Body,
6501 N_Subprogram_Body_Stub,
6502 N_Subprogram_Declaration,
6503 N_Abstract_Subprogram_Declaration,
6504 N_Subprogram_Renaming_Declaration)
6505 then
6506 Spec := Specification (Decl);
6507
6508 elsif Nkind (Decl) = N_Entry_Declaration then
6509 Spec := Decl;
6510
6511 else
6512 return;
6513 end if;
6514
6515 -- The overriding operation is type conformant with the overridden one,
6516 -- but the names of the formals are not required to match. If the names
6517 -- appear permuted in the overriding operation, this is a possible
6518 -- source of confusion that is worth diagnosing. Controlling formals
6519 -- often carry names that reflect the type, and it is not worthwhile
6520 -- requiring that their names match.
6521
6522 if Present (Overridden_Subp)
6523 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6524 then
6525 declare
6526 Form1 : Entity_Id;
6527 Form2 : Entity_Id;
6528
6529 begin
6530 Form1 := First_Formal (Subp);
6531 Form2 := First_Formal (Overridden_Subp);
6532
6533 -- If the overriding operation is a synchronized operation, skip
6534 -- the first parameter of the overridden operation, which is
6535 -- implicit in the new one. If the operation is declared in the
6536 -- body it is not primitive and all formals must match.
6537
6538 if Is_Concurrent_Type (Scope (Subp))
6539 and then Is_Tagged_Type (Scope (Subp))
6540 and then not Has_Completion (Scope (Subp))
6541 then
6542 Form2 := Next_Formal (Form2);
6543 end if;
6544
6545 if Present (Form1) then
6546 Form1 := Next_Formal (Form1);
6547 Form2 := Next_Formal (Form2);
6548 end if;
6549
6550 while Present (Form1) loop
6551 if not Is_Controlling_Formal (Form1)
6552 and then Present (Next_Formal (Form2))
6553 and then Chars (Form1) = Chars (Next_Formal (Form2))
6554 then
6555 Error_Msg_Node_2 := Alias (Overridden_Subp);
6556 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6557 Error_Msg_NE
6558 ("& does not match corresponding formal of&#",
6559 Form1, Form1);
6560 exit;
6561 end if;
6562
6563 Next_Formal (Form1);
6564 Next_Formal (Form2);
6565 end loop;
6566 end;
6567 end if;
6568
6569 -- If there is an overridden subprogram, then check that there is no
6570 -- "not overriding" indicator, and mark the subprogram as overriding.
6571
6572 -- This is not done if the overridden subprogram is marked as hidden,
6573 -- which can occur for the case of inherited controlled operations
6574 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6575 -- subprogram is not itself hidden or we are within a generic instance,
6576 -- in which case the hidden flag may have been modified for the
6577 -- expansion of the instance.
6578
6579 -- (Note: This condition could probably be simplified, leaving out the
6580 -- testing for the specific controlled cases, but it seems safer and
6581 -- clearer this way, and echoes similar special-case tests of this
6582 -- kind in other places.)
6583
6584 if Present (Overridden_Subp)
6585 and then (not Is_Hidden (Overridden_Subp)
6586 or else
6587 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6588 Name_Adjust,
6589 Name_Finalize)
6590 and then Present (Alias (Overridden_Subp))
6591 and then (not Is_Hidden (Alias (Overridden_Subp))
6592 or else In_Instance)))
6593 then
6594 if Must_Not_Override (Spec) then
6595 Error_Msg_Sloc := Sloc (Overridden_Subp);
6596
6597 if Ekind (Subp) = E_Entry then
6598 Error_Msg_NE
6599 ("entry & overrides inherited operation #", Spec, Subp);
6600 else
6601 Error_Msg_NE
6602 ("subprogram & overrides inherited operation #", Spec, Subp);
6603 end if;
6604
6605 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6606 -- as an extension of Root_Controlled, and thus has a useless Adjust
6607 -- operation. This operation should not be inherited by other limited
6608 -- controlled types. An explicit Adjust for them is not overriding.
6609
6610 elsif Must_Override (Spec)
6611 and then Chars (Overridden_Subp) = Name_Adjust
6612 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6613 and then Present (Alias (Overridden_Subp))
6614 and then In_Predefined_Unit (Alias (Overridden_Subp))
6615 then
6616 Get_Name_String
6617 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6618 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6619
6620 elsif Is_Subprogram (Subp) then
6621 if Is_Init_Proc (Subp) then
6622 null;
6623
6624 elsif No (Overridden_Operation (Subp)) then
6625
6626 -- For entities generated by Derive_Subprograms the overridden
6627 -- operation is the inherited primitive (which is available
6628 -- through the attribute alias)
6629
6630 if (Is_Dispatching_Operation (Subp)
6631 or else Is_Dispatching_Operation (Overridden_Subp))
6632 and then not Comes_From_Source (Overridden_Subp)
6633 and then Find_Dispatching_Type (Overridden_Subp) =
6634 Find_Dispatching_Type (Subp)
6635 and then Present (Alias (Overridden_Subp))
6636 and then Comes_From_Source (Alias (Overridden_Subp))
6637 then
6638 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6639 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6640
6641 else
6642 Set_Overridden_Operation (Subp, Overridden_Subp);
6643 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6644 end if;
6645 end if;
6646 end if;
6647
6648 -- If primitive flag is set or this is a protected operation, then
6649 -- the operation is overriding at the point of its declaration, so
6650 -- warn if necessary. Otherwise it may have been declared before the
6651 -- operation it overrides and no check is required.
6652
6653 if Style_Check
6654 and then not Must_Override (Spec)
6655 and then (Is_Primitive
6656 or else Ekind (Scope (Subp)) = E_Protected_Type)
6657 then
6658 Style.Missing_Overriding (Decl, Subp);
6659 end if;
6660
6661 -- If Subp is an operator, it may override a predefined operation, if
6662 -- it is defined in the same scope as the type to which it applies.
6663 -- In that case Overridden_Subp is empty because of our implicit
6664 -- representation for predefined operators. We have to check whether the
6665 -- signature of Subp matches that of a predefined operator. Note that
6666 -- first argument provides the name of the operator, and the second
6667 -- argument the signature that may match that of a standard operation.
6668 -- If the indicator is overriding, then the operator must match a
6669 -- predefined signature, because we know already that there is no
6670 -- explicit overridden operation.
6671
6672 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6673 if Must_Not_Override (Spec) then
6674
6675 -- If this is not a primitive or a protected subprogram, then
6676 -- "not overriding" is illegal.
6677
6678 if not Is_Primitive
6679 and then Ekind (Scope (Subp)) /= E_Protected_Type
6680 then
6681 Error_Msg_N ("overriding indicator only allowed "
6682 & "if subprogram is primitive", Subp);
6683
6684 elsif Can_Override_Operator (Subp) then
6685 Error_Msg_NE
6686 ("subprogram& overrides predefined operator ", Spec, Subp);
6687 end if;
6688
6689 elsif Must_Override (Spec) then
6690 if No (Overridden_Operation (Subp))
6691 and then not Can_Override_Operator (Subp)
6692 then
6693 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6694 end if;
6695
6696 elsif not Error_Posted (Subp)
6697 and then Style_Check
6698 and then Can_Override_Operator (Subp)
6699 and then not In_Predefined_Unit (Subp)
6700 then
6701 -- If style checks are enabled, indicate that the indicator is
6702 -- missing. However, at the point of declaration, the type of
6703 -- which this is a primitive operation may be private, in which
6704 -- case the indicator would be premature.
6705
6706 if Has_Private_Declaration (Etype (Subp))
6707 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6708 then
6709 null;
6710 else
6711 Style.Missing_Overriding (Decl, Subp);
6712 end if;
6713 end if;
6714
6715 elsif Must_Override (Spec) then
6716 if Ekind (Subp) = E_Entry then
6717 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6718 else
6719 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6720 end if;
6721
6722 -- If the operation is marked "not overriding" and it's not primitive
6723 -- then an error is issued, unless this is an operation of a task or
6724 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6725 -- has been specified have already been checked above.
6726
6727 elsif Must_Not_Override (Spec)
6728 and then not Is_Primitive
6729 and then Ekind (Subp) /= E_Entry
6730 and then Ekind (Scope (Subp)) /= E_Protected_Type
6731 then
6732 Error_Msg_N
6733 ("overriding indicator only allowed if subprogram is primitive",
6734 Subp);
6735 return;
6736 end if;
6737 end Check_Overriding_Indicator;
6738
6739 -------------------
6740 -- Check_Returns --
6741 -------------------
6742
6743 -- Note: this procedure needs to know far too much about how the expander
6744 -- messes with exceptions. The use of the flag Exception_Junk and the
6745 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6746 -- works, but is not very clean. It would be better if the expansion
6747 -- routines would leave Original_Node working nicely, and we could use
6748 -- Original_Node here to ignore all the peculiar expander messing ???
6749
6750 procedure Check_Returns
6751 (HSS : Node_Id;
6752 Mode : Character;
6753 Err : out Boolean;
6754 Proc : Entity_Id := Empty)
6755 is
6756 Handler : Node_Id;
6757
6758 procedure Check_Statement_Sequence (L : List_Id);
6759 -- Internal recursive procedure to check a list of statements for proper
6760 -- termination by a return statement (or a transfer of control or a
6761 -- compound statement that is itself internally properly terminated).
6762
6763 ------------------------------
6764 -- Check_Statement_Sequence --
6765 ------------------------------
6766
6767 procedure Check_Statement_Sequence (L : List_Id) is
6768 Last_Stm : Node_Id;
6769 Stm : Node_Id;
6770 Kind : Node_Kind;
6771
6772 function Assert_False return Boolean;
6773 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6774 -- rewritten as a null statement when assertions are off. The assert
6775 -- is not active, but it is still enough to kill the warning.
6776
6777 ------------------
6778 -- Assert_False --
6779 ------------------
6780
6781 function Assert_False return Boolean is
6782 Orig : constant Node_Id := Original_Node (Last_Stm);
6783
6784 begin
6785 if Nkind (Orig) = N_Pragma
6786 and then Pragma_Name (Orig) = Name_Assert
6787 and then not Error_Posted (Orig)
6788 then
6789 declare
6790 Arg : constant Node_Id :=
6791 First (Pragma_Argument_Associations (Orig));
6792 Exp : constant Node_Id := Expression (Arg);
6793 begin
6794 return Nkind (Exp) = N_Identifier
6795 and then Chars (Exp) = Name_False;
6796 end;
6797
6798 else
6799 return False;
6800 end if;
6801 end Assert_False;
6802
6803 -- Local variables
6804
6805 Raise_Exception_Call : Boolean;
6806 -- Set True if statement sequence terminated by Raise_Exception call
6807 -- or a Reraise_Occurrence call.
6808
6809 -- Start of processing for Check_Statement_Sequence
6810
6811 begin
6812 Raise_Exception_Call := False;
6813
6814 -- Get last real statement
6815
6816 Last_Stm := Last (L);
6817
6818 -- Deal with digging out exception handler statement sequences that
6819 -- have been transformed by the local raise to goto optimization.
6820 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6821 -- optimization has occurred, we are looking at something like:
6822
6823 -- begin
6824 -- original stmts in block
6825
6826 -- exception \
6827 -- when excep1 => |
6828 -- goto L1; | omitted if No_Exception_Propagation
6829 -- when excep2 => |
6830 -- goto L2; /
6831 -- end;
6832
6833 -- goto L3; -- skip handler when exception not raised
6834
6835 -- <<L1>> -- target label for local exception
6836 -- begin
6837 -- estmts1
6838 -- end;
6839
6840 -- goto L3;
6841
6842 -- <<L2>>
6843 -- begin
6844 -- estmts2
6845 -- end;
6846
6847 -- <<L3>>
6848
6849 -- and what we have to do is to dig out the estmts1 and estmts2
6850 -- sequences (which were the original sequences of statements in
6851 -- the exception handlers) and check them.
6852
6853 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6854 Stm := Last_Stm;
6855 loop
6856 Prev (Stm);
6857 exit when No (Stm);
6858 exit when Nkind (Stm) /= N_Block_Statement;
6859 exit when not Exception_Junk (Stm);
6860 Prev (Stm);
6861 exit when No (Stm);
6862 exit when Nkind (Stm) /= N_Label;
6863 exit when not Exception_Junk (Stm);
6864 Check_Statement_Sequence
6865 (Statements (Handled_Statement_Sequence (Next (Stm))));
6866
6867 Prev (Stm);
6868 Last_Stm := Stm;
6869 exit when No (Stm);
6870 exit when Nkind (Stm) /= N_Goto_Statement;
6871 exit when not Exception_Junk (Stm);
6872 end loop;
6873 end if;
6874
6875 -- Don't count pragmas
6876
6877 while Nkind (Last_Stm) = N_Pragma
6878
6879 -- Don't count call to SS_Release (can happen after Raise_Exception)
6880
6881 or else
6882 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6883 and then
6884 Nkind (Name (Last_Stm)) = N_Identifier
6885 and then
6886 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6887
6888 -- Don't count exception junk
6889
6890 or else
6891 (Nkind_In (Last_Stm, N_Goto_Statement,
6892 N_Label,
6893 N_Object_Declaration)
6894 and then Exception_Junk (Last_Stm))
6895 or else Nkind (Last_Stm) in N_Push_xxx_Label
6896 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6897
6898 -- Inserted code, such as finalization calls, is irrelevant: we only
6899 -- need to check original source.
6900
6901 or else Is_Rewrite_Insertion (Last_Stm)
6902 loop
6903 Prev (Last_Stm);
6904 end loop;
6905
6906 -- Here we have the "real" last statement
6907
6908 Kind := Nkind (Last_Stm);
6909
6910 -- Transfer of control, OK. Note that in the No_Return procedure
6911 -- case, we already diagnosed any explicit return statements, so
6912 -- we can treat them as OK in this context.
6913
6914 if Is_Transfer (Last_Stm) then
6915 return;
6916
6917 -- Check cases of explicit non-indirect procedure calls
6918
6919 elsif Kind = N_Procedure_Call_Statement
6920 and then Is_Entity_Name (Name (Last_Stm))
6921 then
6922 -- Check call to Raise_Exception procedure which is treated
6923 -- specially, as is a call to Reraise_Occurrence.
6924
6925 -- We suppress the warning in these cases since it is likely that
6926 -- the programmer really does not expect to deal with the case
6927 -- of Null_Occurrence, and thus would find a warning about a
6928 -- missing return curious, and raising Program_Error does not
6929 -- seem such a bad behavior if this does occur.
6930
6931 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6932 -- behavior will be to raise Constraint_Error (see AI-329).
6933
6934 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6935 or else
6936 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6937 then
6938 Raise_Exception_Call := True;
6939
6940 -- For Raise_Exception call, test first argument, if it is
6941 -- an attribute reference for a 'Identity call, then we know
6942 -- that the call cannot possibly return.
6943
6944 declare
6945 Arg : constant Node_Id :=
6946 Original_Node (First_Actual (Last_Stm));
6947 begin
6948 if Nkind (Arg) = N_Attribute_Reference
6949 and then Attribute_Name (Arg) = Name_Identity
6950 then
6951 return;
6952 end if;
6953 end;
6954 end if;
6955
6956 -- If statement, need to look inside if there is an else and check
6957 -- each constituent statement sequence for proper termination.
6958
6959 elsif Kind = N_If_Statement
6960 and then Present (Else_Statements (Last_Stm))
6961 then
6962 Check_Statement_Sequence (Then_Statements (Last_Stm));
6963 Check_Statement_Sequence (Else_Statements (Last_Stm));
6964
6965 if Present (Elsif_Parts (Last_Stm)) then
6966 declare
6967 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6968
6969 begin
6970 while Present (Elsif_Part) loop
6971 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6972 Next (Elsif_Part);
6973 end loop;
6974 end;
6975 end if;
6976
6977 return;
6978
6979 -- Case statement, check each case for proper termination
6980
6981 elsif Kind = N_Case_Statement then
6982 declare
6983 Case_Alt : Node_Id;
6984 begin
6985 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6986 while Present (Case_Alt) loop
6987 Check_Statement_Sequence (Statements (Case_Alt));
6988 Next_Non_Pragma (Case_Alt);
6989 end loop;
6990 end;
6991
6992 return;
6993
6994 -- Block statement, check its handled sequence of statements
6995
6996 elsif Kind = N_Block_Statement then
6997 declare
6998 Err1 : Boolean;
6999
7000 begin
7001 Check_Returns
7002 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
7003
7004 if Err1 then
7005 Err := True;
7006 end if;
7007
7008 return;
7009 end;
7010
7011 -- Loop statement. If there is an iteration scheme, we can definitely
7012 -- fall out of the loop. Similarly if there is an exit statement, we
7013 -- can fall out. In either case we need a following return.
7014
7015 elsif Kind = N_Loop_Statement then
7016 if Present (Iteration_Scheme (Last_Stm))
7017 or else Has_Exit (Entity (Identifier (Last_Stm)))
7018 then
7019 null;
7020
7021 -- A loop with no exit statement or iteration scheme is either
7022 -- an infinite loop, or it has some other exit (raise/return).
7023 -- In either case, no warning is required.
7024
7025 else
7026 return;
7027 end if;
7028
7029 -- Timed entry call, check entry call and delay alternatives
7030
7031 -- Note: in expanded code, the timed entry call has been converted
7032 -- to a set of expanded statements on which the check will work
7033 -- correctly in any case.
7034
7035 elsif Kind = N_Timed_Entry_Call then
7036 declare
7037 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7038 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
7039
7040 begin
7041 -- If statement sequence of entry call alternative is missing,
7042 -- then we can definitely fall through, and we post the error
7043 -- message on the entry call alternative itself.
7044
7045 if No (Statements (ECA)) then
7046 Last_Stm := ECA;
7047
7048 -- If statement sequence of delay alternative is missing, then
7049 -- we can definitely fall through, and we post the error
7050 -- message on the delay alternative itself.
7051
7052 -- Note: if both ECA and DCA are missing the return, then we
7053 -- post only one message, should be enough to fix the bugs.
7054 -- If not we will get a message next time on the DCA when the
7055 -- ECA is fixed.
7056
7057 elsif No (Statements (DCA)) then
7058 Last_Stm := DCA;
7059
7060 -- Else check both statement sequences
7061
7062 else
7063 Check_Statement_Sequence (Statements (ECA));
7064 Check_Statement_Sequence (Statements (DCA));
7065 return;
7066 end if;
7067 end;
7068
7069 -- Conditional entry call, check entry call and else part
7070
7071 -- Note: in expanded code, the conditional entry call has been
7072 -- converted to a set of expanded statements on which the check
7073 -- will work correctly in any case.
7074
7075 elsif Kind = N_Conditional_Entry_Call then
7076 declare
7077 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7078
7079 begin
7080 -- If statement sequence of entry call alternative is missing,
7081 -- then we can definitely fall through, and we post the error
7082 -- message on the entry call alternative itself.
7083
7084 if No (Statements (ECA)) then
7085 Last_Stm := ECA;
7086
7087 -- Else check statement sequence and else part
7088
7089 else
7090 Check_Statement_Sequence (Statements (ECA));
7091 Check_Statement_Sequence (Else_Statements (Last_Stm));
7092 return;
7093 end if;
7094 end;
7095 end if;
7096
7097 -- If we fall through, issue appropriate message
7098
7099 if Mode = 'F' then
7100
7101 -- Kill warning if last statement is a raise exception call,
7102 -- or a pragma Assert (False). Note that with assertions enabled,
7103 -- such a pragma has been converted into a raise exception call
7104 -- already, so the Assert_False is for the assertions off case.
7105
7106 if not Raise_Exception_Call and then not Assert_False then
7107
7108 -- In GNATprove mode, it is an error to have a missing return
7109
7110 Error_Msg_Warn := SPARK_Mode /= On;
7111
7112 -- Issue error message or warning
7113
7114 Error_Msg_N
7115 ("RETURN statement missing following this statement<<!",
7116 Last_Stm);
7117 Error_Msg_N
7118 ("\Program_Error ]<<!", Last_Stm);
7119 end if;
7120
7121 -- Note: we set Err even though we have not issued a warning
7122 -- because we still have a case of a missing return. This is
7123 -- an extremely marginal case, probably will never be noticed
7124 -- but we might as well get it right.
7125
7126 Err := True;
7127
7128 -- Otherwise we have the case of a procedure marked No_Return
7129
7130 else
7131 if not Raise_Exception_Call then
7132 if GNATprove_Mode then
7133 Error_Msg_N
7134 ("implied return after this statement would have raised "
7135 & "Program_Error", Last_Stm);
7136
7137 -- In normal compilation mode, do not warn on a generated call
7138 -- (e.g. in the body of a renaming as completion).
7139
7140 elsif Comes_From_Source (Last_Stm) then
7141 Error_Msg_N
7142 ("implied return after this statement will raise "
7143 & "Program_Error??", Last_Stm);
7144 end if;
7145
7146 Error_Msg_Warn := SPARK_Mode /= On;
7147 Error_Msg_NE
7148 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
7149 end if;
7150
7151 declare
7152 RE : constant Node_Id :=
7153 Make_Raise_Program_Error (Sloc (Last_Stm),
7154 Reason => PE_Implicit_Return);
7155 begin
7156 Insert_After (Last_Stm, RE);
7157 Analyze (RE);
7158 end;
7159 end if;
7160 end Check_Statement_Sequence;
7161
7162 -- Start of processing for Check_Returns
7163
7164 begin
7165 Err := False;
7166 Check_Statement_Sequence (Statements (HSS));
7167
7168 if Present (Exception_Handlers (HSS)) then
7169 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7170 while Present (Handler) loop
7171 Check_Statement_Sequence (Statements (Handler));
7172 Next_Non_Pragma (Handler);
7173 end loop;
7174 end if;
7175 end Check_Returns;
7176
7177 ----------------------------
7178 -- Check_Subprogram_Order --
7179 ----------------------------
7180
7181 procedure Check_Subprogram_Order (N : Node_Id) is
7182
7183 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7184 -- This is used to check if S1 > S2 in the sense required by this test,
7185 -- for example nameab < namec, but name2 < name10.
7186
7187 -----------------------------
7188 -- Subprogram_Name_Greater --
7189 -----------------------------
7190
7191 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7192 L1, L2 : Positive;
7193 N1, N2 : Natural;
7194
7195 begin
7196 -- Deal with special case where names are identical except for a
7197 -- numerical suffix. These are handled specially, taking the numeric
7198 -- ordering from the suffix into account.
7199
7200 L1 := S1'Last;
7201 while S1 (L1) in '0' .. '9' loop
7202 L1 := L1 - 1;
7203 end loop;
7204
7205 L2 := S2'Last;
7206 while S2 (L2) in '0' .. '9' loop
7207 L2 := L2 - 1;
7208 end loop;
7209
7210 -- If non-numeric parts non-equal, do straight compare
7211
7212 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7213 return S1 > S2;
7214
7215 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7216 -- that a missing suffix is treated as numeric zero in this test.
7217
7218 else
7219 N1 := 0;
7220 while L1 < S1'Last loop
7221 L1 := L1 + 1;
7222 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7223 end loop;
7224
7225 N2 := 0;
7226 while L2 < S2'Last loop
7227 L2 := L2 + 1;
7228 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7229 end loop;
7230
7231 return N1 > N2;
7232 end if;
7233 end Subprogram_Name_Greater;
7234
7235 -- Start of processing for Check_Subprogram_Order
7236
7237 begin
7238 -- Check body in alpha order if this is option
7239
7240 if Style_Check
7241 and then Style_Check_Order_Subprograms
7242 and then Nkind (N) = N_Subprogram_Body
7243 and then Comes_From_Source (N)
7244 and then In_Extended_Main_Source_Unit (N)
7245 then
7246 declare
7247 LSN : String_Ptr
7248 renames Scope_Stack.Table
7249 (Scope_Stack.Last).Last_Subprogram_Name;
7250
7251 Body_Id : constant Entity_Id :=
7252 Defining_Entity (Specification (N));
7253
7254 begin
7255 Get_Decoded_Name_String (Chars (Body_Id));
7256
7257 if LSN /= null then
7258 if Subprogram_Name_Greater
7259 (LSN.all, Name_Buffer (1 .. Name_Len))
7260 then
7261 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7262 end if;
7263
7264 Free (LSN);
7265 end if;
7266
7267 LSN := new String'(Name_Buffer (1 .. Name_Len));
7268 end;
7269 end if;
7270 end Check_Subprogram_Order;
7271
7272 ------------------------------
7273 -- Check_Subtype_Conformant --
7274 ------------------------------
7275
7276 procedure Check_Subtype_Conformant
7277 (New_Id : Entity_Id;
7278 Old_Id : Entity_Id;
7279 Err_Loc : Node_Id := Empty;
7280 Skip_Controlling_Formals : Boolean := False;
7281 Get_Inst : Boolean := False)
7282 is
7283 Result : Boolean;
7284 pragma Warnings (Off, Result);
7285 begin
7286 Check_Conformance
7287 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7288 Skip_Controlling_Formals => Skip_Controlling_Formals,
7289 Get_Inst => Get_Inst);
7290 end Check_Subtype_Conformant;
7291
7292 -----------------------------------
7293 -- Check_Synchronized_Overriding --
7294 -----------------------------------
7295
7296 procedure Check_Synchronized_Overriding
7297 (Def_Id : Entity_Id;
7298 Overridden_Subp : out Entity_Id)
7299 is
7300 Ifaces_List : Elist_Id;
7301 In_Scope : Boolean;
7302 Typ : Entity_Id;
7303
7304 function Is_Valid_Formal (F : Entity_Id) return Boolean;
7305 -- Predicate for legality rule in 9.4 (11.9/2): If an inherited
7306 -- subprogram is implemented by a protected procedure or entry,
7307 -- its first parameter must be out, in out, or access-to-variable.
7308
7309 function Matches_Prefixed_View_Profile
7310 (Prim_Params : List_Id;
7311 Iface_Params : List_Id) return Boolean;
7312 -- Determine whether a subprogram's parameter profile Prim_Params
7313 -- matches that of a potentially overridden interface subprogram
7314 -- Iface_Params. Also determine if the type of first parameter of
7315 -- Iface_Params is an implemented interface.
7316
7317 ----------------------
7318 -- Is_Valid_Formal --
7319 ----------------------
7320
7321 function Is_Valid_Formal (F : Entity_Id) return Boolean is
7322 begin
7323 return
7324 Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
7325 or else
7326 (Nkind (Parameter_Type (Parent (F))) = N_Access_Definition
7327 and then not Constant_Present (Parameter_Type (Parent (F))));
7328 end Is_Valid_Formal;
7329
7330 -----------------------------------
7331 -- Matches_Prefixed_View_Profile --
7332 -----------------------------------
7333
7334 function Matches_Prefixed_View_Profile
7335 (Prim_Params : List_Id;
7336 Iface_Params : List_Id) return Boolean
7337 is
7338 function Is_Implemented
7339 (Ifaces_List : Elist_Id;
7340 Iface : Entity_Id) return Boolean;
7341 -- Determine if Iface is implemented by the current task or
7342 -- protected type.
7343
7344 --------------------
7345 -- Is_Implemented --
7346 --------------------
7347
7348 function Is_Implemented
7349 (Ifaces_List : Elist_Id;
7350 Iface : Entity_Id) return Boolean
7351 is
7352 Iface_Elmt : Elmt_Id;
7353
7354 begin
7355 Iface_Elmt := First_Elmt (Ifaces_List);
7356 while Present (Iface_Elmt) loop
7357 if Node (Iface_Elmt) = Iface then
7358 return True;
7359 end if;
7360
7361 Next_Elmt (Iface_Elmt);
7362 end loop;
7363
7364 return False;
7365 end Is_Implemented;
7366
7367 -- Local variables
7368
7369 Iface_Id : Entity_Id;
7370 Iface_Param : Node_Id;
7371 Iface_Typ : Entity_Id;
7372 Prim_Id : Entity_Id;
7373 Prim_Param : Node_Id;
7374 Prim_Typ : Entity_Id;
7375
7376 -- Start of processing for Matches_Prefixed_View_Profile
7377
7378 begin
7379 Iface_Param := First (Iface_Params);
7380 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7381
7382 if Is_Access_Type (Iface_Typ) then
7383 Iface_Typ := Designated_Type (Iface_Typ);
7384 end if;
7385
7386 Prim_Param := First (Prim_Params);
7387
7388 -- The first parameter of the potentially overridden subprogram must
7389 -- be an interface implemented by Prim.
7390
7391 if not Is_Interface (Iface_Typ)
7392 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7393 then
7394 return False;
7395 end if;
7396
7397 -- The checks on the object parameters are done, so move on to the
7398 -- rest of the parameters.
7399
7400 if not In_Scope then
7401 Prim_Param := Next (Prim_Param);
7402 end if;
7403
7404 Iface_Param := Next (Iface_Param);
7405 while Present (Iface_Param) and then Present (Prim_Param) loop
7406 Iface_Id := Defining_Identifier (Iface_Param);
7407 Iface_Typ := Find_Parameter_Type (Iface_Param);
7408
7409 Prim_Id := Defining_Identifier (Prim_Param);
7410 Prim_Typ := Find_Parameter_Type (Prim_Param);
7411
7412 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7413 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7414 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7415 then
7416 Iface_Typ := Designated_Type (Iface_Typ);
7417 Prim_Typ := Designated_Type (Prim_Typ);
7418 end if;
7419
7420 -- Case of multiple interface types inside a parameter profile
7421
7422 -- (Obj_Param : in out Iface; ...; Param : Iface)
7423
7424 -- If the interface type is implemented, then the matching type in
7425 -- the primitive should be the implementing record type.
7426
7427 if Ekind (Iface_Typ) = E_Record_Type
7428 and then Is_Interface (Iface_Typ)
7429 and then Is_Implemented (Ifaces_List, Iface_Typ)
7430 then
7431 if Prim_Typ /= Typ then
7432 return False;
7433 end if;
7434
7435 -- The two parameters must be both mode and subtype conformant
7436
7437 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7438 or else not
7439 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7440 then
7441 return False;
7442 end if;
7443
7444 Next (Iface_Param);
7445 Next (Prim_Param);
7446 end loop;
7447
7448 -- One of the two lists contains more parameters than the other
7449
7450 if Present (Iface_Param) or else Present (Prim_Param) then
7451 return False;
7452 end if;
7453
7454 return True;
7455 end Matches_Prefixed_View_Profile;
7456
7457 -- Start of processing for Check_Synchronized_Overriding
7458
7459 begin
7460 Overridden_Subp := Empty;
7461
7462 -- Def_Id must be an entry or a subprogram. We should skip predefined
7463 -- primitives internally generated by the front end; however at this
7464 -- stage predefined primitives are still not fully decorated. As a
7465 -- minor optimization we skip here internally generated subprograms.
7466
7467 if (Ekind (Def_Id) /= E_Entry
7468 and then Ekind (Def_Id) /= E_Function
7469 and then Ekind (Def_Id) /= E_Procedure)
7470 or else not Comes_From_Source (Def_Id)
7471 then
7472 return;
7473 end if;
7474
7475 -- Search for the concurrent declaration since it contains the list of
7476 -- all implemented interfaces. In this case, the subprogram is declared
7477 -- within the scope of a protected or a task type.
7478
7479 if Present (Scope (Def_Id))
7480 and then Is_Concurrent_Type (Scope (Def_Id))
7481 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7482 then
7483 Typ := Scope (Def_Id);
7484 In_Scope := True;
7485
7486 -- The enclosing scope is not a synchronized type and the subprogram
7487 -- has no formals.
7488
7489 elsif No (First_Formal (Def_Id)) then
7490 return;
7491
7492 -- The subprogram has formals and hence it may be a primitive of a
7493 -- concurrent type.
7494
7495 else
7496 Typ := Etype (First_Formal (Def_Id));
7497
7498 if Is_Access_Type (Typ) then
7499 Typ := Directly_Designated_Type (Typ);
7500 end if;
7501
7502 if Is_Concurrent_Type (Typ)
7503 and then not Is_Generic_Actual_Type (Typ)
7504 then
7505 In_Scope := False;
7506
7507 -- This case occurs when the concurrent type is declared within a
7508 -- generic unit. As a result the corresponding record has been built
7509 -- and used as the type of the first formal, we just have to retrieve
7510 -- the corresponding concurrent type.
7511
7512 elsif Is_Concurrent_Record_Type (Typ)
7513 and then not Is_Class_Wide_Type (Typ)
7514 and then Present (Corresponding_Concurrent_Type (Typ))
7515 then
7516 Typ := Corresponding_Concurrent_Type (Typ);
7517 In_Scope := False;
7518
7519 else
7520 return;
7521 end if;
7522 end if;
7523
7524 -- There is no overriding to check if this is an inherited operation in
7525 -- a type derivation for a generic actual.
7526
7527 Collect_Interfaces (Typ, Ifaces_List);
7528
7529 if Is_Empty_Elmt_List (Ifaces_List) then
7530 return;
7531 end if;
7532
7533 -- Determine whether entry or subprogram Def_Id overrides a primitive
7534 -- operation that belongs to one of the interfaces in Ifaces_List.
7535
7536 declare
7537 Candidate : Entity_Id := Empty;
7538 Hom : Entity_Id := Empty;
7539 Subp : Entity_Id := Empty;
7540
7541 begin
7542 -- Traverse the homonym chain, looking for a potentially overridden
7543 -- subprogram that belongs to an implemented interface.
7544
7545 Hom := Current_Entity_In_Scope (Def_Id);
7546 while Present (Hom) loop
7547 Subp := Hom;
7548
7549 if Subp = Def_Id
7550 or else not Is_Overloadable (Subp)
7551 or else not Is_Primitive (Subp)
7552 or else not Is_Dispatching_Operation (Subp)
7553 or else not Present (Find_Dispatching_Type (Subp))
7554 or else not Is_Interface (Find_Dispatching_Type (Subp))
7555 then
7556 null;
7557
7558 -- Entries and procedures can override abstract or null interface
7559 -- procedures.
7560
7561 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7562 and then Ekind (Subp) = E_Procedure
7563 and then Matches_Prefixed_View_Profile
7564 (Parameter_Specifications (Parent (Def_Id)),
7565 Parameter_Specifications (Parent (Subp)))
7566 then
7567 Candidate := Subp;
7568
7569 -- For an overridden subprogram Subp, check whether the mode
7570 -- of its first parameter is correct depending on the kind of
7571 -- synchronized type.
7572
7573 declare
7574 Formal : constant Node_Id := First_Formal (Candidate);
7575
7576 begin
7577 -- In order for an entry or a protected procedure to
7578 -- override, the first parameter of the overridden routine
7579 -- must be of mode "out", "in out", or access-to-variable.
7580
7581 if Ekind_In (Candidate, E_Entry, E_Procedure)
7582 and then Is_Protected_Type (Typ)
7583 and then not Is_Valid_Formal (Formal)
7584 then
7585 null;
7586
7587 -- All other cases are OK since a task entry or routine does
7588 -- not have a restriction on the mode of the first parameter
7589 -- of the overridden interface routine.
7590
7591 else
7592 Overridden_Subp := Candidate;
7593 return;
7594 end if;
7595 end;
7596
7597 -- Functions can override abstract interface functions. Return
7598 -- types must be subtype conformant.
7599
7600 elsif Ekind (Def_Id) = E_Function
7601 and then Ekind (Subp) = E_Function
7602 and then Matches_Prefixed_View_Profile
7603 (Parameter_Specifications (Parent (Def_Id)),
7604 Parameter_Specifications (Parent (Subp)))
7605 and then Conforming_Types
7606 (Etype (Def_Id), Etype (Subp), Subtype_Conformant)
7607 then
7608 Candidate := Subp;
7609
7610 -- If an inherited subprogram is implemented by a protected
7611 -- function, then the first parameter of the inherited
7612 -- subprogram shall be of mode in, but not an access-to-
7613 -- variable parameter (RM 9.4(11/9)).
7614
7615 if Present (First_Formal (Subp))
7616 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7617 and then
7618 (not Is_Access_Type (Etype (First_Formal (Subp)))
7619 or else
7620 Is_Access_Constant (Etype (First_Formal (Subp))))
7621 then
7622 Overridden_Subp := Subp;
7623 return;
7624 end if;
7625 end if;
7626
7627 Hom := Homonym (Hom);
7628 end loop;
7629
7630 -- After examining all candidates for overriding, we are left with
7631 -- the best match, which is a mode-incompatible interface routine.
7632
7633 if In_Scope and then Present (Candidate) then
7634 Error_Msg_PT (Def_Id, Candidate);
7635 end if;
7636
7637 Overridden_Subp := Candidate;
7638 return;
7639 end;
7640 end Check_Synchronized_Overriding;
7641
7642 ---------------------------
7643 -- Check_Type_Conformant --
7644 ---------------------------
7645
7646 procedure Check_Type_Conformant
7647 (New_Id : Entity_Id;
7648 Old_Id : Entity_Id;
7649 Err_Loc : Node_Id := Empty)
7650 is
7651 Result : Boolean;
7652 pragma Warnings (Off, Result);
7653 begin
7654 Check_Conformance
7655 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7656 end Check_Type_Conformant;
7657
7658 ---------------------------
7659 -- Can_Override_Operator --
7660 ---------------------------
7661
7662 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7663 Typ : Entity_Id;
7664
7665 begin
7666 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7667 return False;
7668
7669 else
7670 Typ := Base_Type (Etype (First_Formal (Subp)));
7671
7672 -- Check explicitly that the operation is a primitive of the type
7673
7674 return Operator_Matches_Spec (Subp, Subp)
7675 and then not Is_Generic_Type (Typ)
7676 and then Scope (Subp) = Scope (Typ)
7677 and then not Is_Class_Wide_Type (Typ);
7678 end if;
7679 end Can_Override_Operator;
7680
7681 ----------------------
7682 -- Conforming_Types --
7683 ----------------------
7684
7685 function Conforming_Types
7686 (T1 : Entity_Id;
7687 T2 : Entity_Id;
7688 Ctype : Conformance_Type;
7689 Get_Inst : Boolean := False) return Boolean
7690 is
7691 function Base_Types_Match
7692 (Typ_1 : Entity_Id;
7693 Typ_2 : Entity_Id) return Boolean;
7694 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7695 -- in different scopes (e.g. parent and child instances), then verify
7696 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7697 -- the same subtype chain. The whole purpose of this procedure is to
7698 -- prevent spurious ambiguities in an instantiation that may arise if
7699 -- two distinct generic types are instantiated with the same actual.
7700
7701 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7702 -- An access parameter can designate an incomplete type. If the
7703 -- incomplete type is the limited view of a type from a limited_
7704 -- with_clause, check whether the non-limited view is available.
7705 -- If it is a (non-limited) incomplete type, get the full view.
7706
7707 function Matches_Limited_With_View
7708 (Typ_1 : Entity_Id;
7709 Typ_2 : Entity_Id) return Boolean;
7710 -- Returns True if and only if either Typ_1 denotes a limited view of
7711 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7712 -- the limited with view of a type is used in a subprogram declaration
7713 -- and the subprogram body is in the scope of a regular with clause for
7714 -- the same unit. In such a case, the two type entities are considered
7715 -- identical for purposes of conformance checking.
7716
7717 ----------------------
7718 -- Base_Types_Match --
7719 ----------------------
7720
7721 function Base_Types_Match
7722 (Typ_1 : Entity_Id;
7723 Typ_2 : Entity_Id) return Boolean
7724 is
7725 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7726 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7727
7728 begin
7729 if Typ_1 = Typ_2 then
7730 return True;
7731
7732 elsif Base_1 = Base_2 then
7733
7734 -- The following is too permissive. A more precise test should
7735 -- check that the generic actual is an ancestor subtype of the
7736 -- other ???.
7737
7738 -- See code in Find_Corresponding_Spec that applies an additional
7739 -- filter to handle accidental amiguities in instances.
7740
7741 return
7742 not Is_Generic_Actual_Type (Typ_1)
7743 or else not Is_Generic_Actual_Type (Typ_2)
7744 or else Scope (Typ_1) /= Scope (Typ_2);
7745
7746 -- If Typ_2 is a generic actual type it is declared as the subtype of
7747 -- the actual. If that actual is itself a subtype we need to use its
7748 -- own base type to check for compatibility.
7749
7750 elsif Ekind (Base_2) = Ekind (Typ_2)
7751 and then Base_1 = Base_Type (Base_2)
7752 then
7753 return True;
7754
7755 elsif Ekind (Base_1) = Ekind (Typ_1)
7756 and then Base_2 = Base_Type (Base_1)
7757 then
7758 return True;
7759
7760 else
7761 return False;
7762 end if;
7763 end Base_Types_Match;
7764
7765 --------------------------
7766 -- Find_Designated_Type --
7767 --------------------------
7768
7769 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7770 Desig : Entity_Id;
7771
7772 begin
7773 Desig := Directly_Designated_Type (Typ);
7774
7775 if Ekind (Desig) = E_Incomplete_Type then
7776
7777 -- If regular incomplete type, get full view if available
7778
7779 if Present (Full_View (Desig)) then
7780 Desig := Full_View (Desig);
7781
7782 -- If limited view of a type, get non-limited view if available,
7783 -- and check again for a regular incomplete type.
7784
7785 elsif Present (Non_Limited_View (Desig)) then
7786 Desig := Get_Full_View (Non_Limited_View (Desig));
7787 end if;
7788 end if;
7789
7790 return Desig;
7791 end Find_Designated_Type;
7792
7793 -------------------------------
7794 -- Matches_Limited_With_View --
7795 -------------------------------
7796
7797 function Matches_Limited_With_View
7798 (Typ_1 : Entity_Id;
7799 Typ_2 : Entity_Id) return Boolean
7800 is
7801 function Is_Matching_Limited_View
7802 (Typ : Entity_Id;
7803 View : Entity_Id) return Boolean;
7804 -- Determine whether non-limited view View denotes type Typ in some
7805 -- conformant fashion.
7806
7807 ------------------------------
7808 -- Is_Matching_Limited_View --
7809 ------------------------------
7810
7811 function Is_Matching_Limited_View
7812 (Typ : Entity_Id;
7813 View : Entity_Id) return Boolean
7814 is
7815 Root_Typ : Entity_Id;
7816 Root_View : Entity_Id;
7817
7818 begin
7819 -- The non-limited view directly denotes the type
7820
7821 if Typ = View then
7822 return True;
7823
7824 -- The type is a subtype of the non-limited view
7825
7826 elsif Is_Subtype_Of (Typ, View) then
7827 return True;
7828
7829 -- Both the non-limited view and the type denote class-wide types
7830
7831 elsif Is_Class_Wide_Type (Typ)
7832 and then Is_Class_Wide_Type (View)
7833 then
7834 Root_Typ := Root_Type (Typ);
7835 Root_View := Root_Type (View);
7836
7837 if Root_Typ = Root_View then
7838 return True;
7839
7840 -- An incomplete tagged type and its full view may receive two
7841 -- distinct class-wide types when the related package has not
7842 -- been analyzed yet.
7843
7844 -- package Pack is
7845 -- type T is tagged; -- CW_1
7846 -- type T is tagged null record; -- CW_2
7847 -- end Pack;
7848
7849 -- This is because the package lacks any semantic information
7850 -- that may eventually link both views of T. As a consequence,
7851 -- a client of the limited view of Pack will see CW_2 while a
7852 -- client of the non-limited view of Pack will see CW_1.
7853
7854 elsif Is_Incomplete_Type (Root_Typ)
7855 and then Present (Full_View (Root_Typ))
7856 and then Full_View (Root_Typ) = Root_View
7857 then
7858 return True;
7859
7860 elsif Is_Incomplete_Type (Root_View)
7861 and then Present (Full_View (Root_View))
7862 and then Full_View (Root_View) = Root_Typ
7863 then
7864 return True;
7865 end if;
7866 end if;
7867
7868 return False;
7869 end Is_Matching_Limited_View;
7870
7871 -- Start of processing for Matches_Limited_With_View
7872
7873 begin
7874 -- In some cases a type imported through a limited_with clause, and
7875 -- its non-limited view are both visible, for example in an anonymous
7876 -- access-to-class-wide type in a formal, or when building the body
7877 -- for a subprogram renaming after the subprogram has been frozen.
7878 -- In these cases both entities designate the same type. In addition,
7879 -- if one of them is an actual in an instance, it may be a subtype of
7880 -- the non-limited view of the other.
7881
7882 if From_Limited_With (Typ_1)
7883 and then From_Limited_With (Typ_2)
7884 and then Available_View (Typ_1) = Available_View (Typ_2)
7885 then
7886 return True;
7887
7888 elsif From_Limited_With (Typ_1) then
7889 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7890
7891 elsif From_Limited_With (Typ_2) then
7892 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7893
7894 else
7895 return False;
7896 end if;
7897 end Matches_Limited_With_View;
7898
7899 -- Local variables
7900
7901 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7902
7903 Type_1 : Entity_Id := T1;
7904 Type_2 : Entity_Id := T2;
7905
7906 -- Start of processing for Conforming_Types
7907
7908 begin
7909 -- The context is an instance association for a formal access-to-
7910 -- subprogram type; the formal parameter types require mapping because
7911 -- they may denote other formal parameters of the generic unit.
7912
7913 if Get_Inst then
7914 Type_1 := Get_Instance_Of (T1);
7915 Type_2 := Get_Instance_Of (T2);
7916 end if;
7917
7918 -- If one of the types is a view of the other introduced by a limited
7919 -- with clause, treat these as conforming for all purposes.
7920
7921 if Matches_Limited_With_View (T1, T2) then
7922 return True;
7923
7924 elsif Base_Types_Match (Type_1, Type_2) then
7925 if Ctype <= Mode_Conformant then
7926 return True;
7927
7928 else
7929 return
7930 Subtypes_Statically_Match (Type_1, Type_2)
7931 and then Dimensions_Match (Type_1, Type_2);
7932 end if;
7933
7934 elsif Is_Incomplete_Or_Private_Type (Type_1)
7935 and then Present (Full_View (Type_1))
7936 and then Base_Types_Match (Full_View (Type_1), Type_2)
7937 then
7938 return
7939 Ctype <= Mode_Conformant
7940 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7941
7942 elsif Ekind (Type_2) = E_Incomplete_Type
7943 and then Present (Full_View (Type_2))
7944 and then Base_Types_Match (Type_1, Full_View (Type_2))
7945 then
7946 return
7947 Ctype <= Mode_Conformant
7948 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7949
7950 elsif Is_Private_Type (Type_2)
7951 and then In_Instance
7952 and then Present (Full_View (Type_2))
7953 and then Base_Types_Match (Type_1, Full_View (Type_2))
7954 then
7955 return
7956 Ctype <= Mode_Conformant
7957 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7958
7959 -- Another confusion between views in a nested instance with an
7960 -- actual private type whose full view is not in scope.
7961
7962 elsif Ekind (Type_2) = E_Private_Subtype
7963 and then In_Instance
7964 and then Etype (Type_2) = Type_1
7965 then
7966 return True;
7967
7968 -- In Ada 2012, incomplete types (including limited views) can appear
7969 -- as actuals in instantiations, where they are conformant to the
7970 -- corresponding incomplete formal.
7971
7972 elsif Is_Incomplete_Type (Type_1)
7973 and then Is_Incomplete_Type (Type_2)
7974 and then In_Instance
7975 and then (Used_As_Generic_Actual (Type_1)
7976 or else Used_As_Generic_Actual (Type_2))
7977 then
7978 return True;
7979 end if;
7980
7981 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7982 -- treated recursively because they carry a signature. As far as
7983 -- conformance is concerned, convention plays no role, and either
7984 -- or both could be access to protected subprograms.
7985
7986 Are_Anonymous_Access_To_Subprogram_Types :=
7987 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7988 E_Anonymous_Access_Protected_Subprogram_Type)
7989 and then
7990 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7991 E_Anonymous_Access_Protected_Subprogram_Type);
7992
7993 -- Test anonymous access type case. For this case, static subtype
7994 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7995 -- the base types because we may have built internal subtype entities
7996 -- to handle null-excluding types (see Process_Formals).
7997
7998 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7999 and then
8000 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
8001
8002 -- Ada 2005 (AI-254)
8003
8004 or else Are_Anonymous_Access_To_Subprogram_Types
8005 then
8006 declare
8007 Desig_1 : Entity_Id;
8008 Desig_2 : Entity_Id;
8009
8010 begin
8011 -- In Ada 2005, access constant indicators must match for
8012 -- subtype conformance.
8013
8014 if Ada_Version >= Ada_2005
8015 and then Ctype >= Subtype_Conformant
8016 and then
8017 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
8018 then
8019 return False;
8020 end if;
8021
8022 Desig_1 := Find_Designated_Type (Type_1);
8023 Desig_2 := Find_Designated_Type (Type_2);
8024
8025 -- If the context is an instance association for a formal
8026 -- access-to-subprogram type; formal access parameter designated
8027 -- types require mapping because they may denote other formal
8028 -- parameters of the generic unit.
8029
8030 if Get_Inst then
8031 Desig_1 := Get_Instance_Of (Desig_1);
8032 Desig_2 := Get_Instance_Of (Desig_2);
8033 end if;
8034
8035 -- It is possible for a Class_Wide_Type to be introduced for an
8036 -- incomplete type, in which case there is a separate class_ wide
8037 -- type for the full view. The types conform if their Etypes
8038 -- conform, i.e. one may be the full view of the other. This can
8039 -- only happen in the context of an access parameter, other uses
8040 -- of an incomplete Class_Wide_Type are illegal.
8041
8042 if Is_Class_Wide_Type (Desig_1)
8043 and then
8044 Is_Class_Wide_Type (Desig_2)
8045 then
8046 return
8047 Conforming_Types
8048 (Etype (Base_Type (Desig_1)),
8049 Etype (Base_Type (Desig_2)), Ctype);
8050
8051 elsif Are_Anonymous_Access_To_Subprogram_Types then
8052 if Ada_Version < Ada_2005 then
8053 return
8054 Ctype = Type_Conformant
8055 or else Subtypes_Statically_Match (Desig_1, Desig_2);
8056
8057 -- We must check the conformance of the signatures themselves
8058
8059 else
8060 declare
8061 Conformant : Boolean;
8062 begin
8063 Check_Conformance
8064 (Desig_1, Desig_2, Ctype, False, Conformant);
8065 return Conformant;
8066 end;
8067 end if;
8068
8069 -- A limited view of an actual matches the corresponding
8070 -- incomplete formal.
8071
8072 elsif Ekind (Desig_2) = E_Incomplete_Subtype
8073 and then From_Limited_With (Desig_2)
8074 and then Used_As_Generic_Actual (Etype (Desig_2))
8075 then
8076 return True;
8077
8078 else
8079 return Base_Type (Desig_1) = Base_Type (Desig_2)
8080 and then (Ctype = Type_Conformant
8081 or else
8082 Subtypes_Statically_Match (Desig_1, Desig_2));
8083 end if;
8084 end;
8085
8086 -- Otherwise definitely no match
8087
8088 else
8089 if ((Ekind (Type_1) = E_Anonymous_Access_Type
8090 and then Is_Access_Type (Type_2))
8091 or else (Ekind (Type_2) = E_Anonymous_Access_Type
8092 and then Is_Access_Type (Type_1)))
8093 and then
8094 Conforming_Types
8095 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
8096 then
8097 May_Hide_Profile := True;
8098 end if;
8099
8100 return False;
8101 end if;
8102 end Conforming_Types;
8103
8104 --------------------------
8105 -- Create_Extra_Formals --
8106 --------------------------
8107
8108 procedure Create_Extra_Formals (E : Entity_Id) is
8109 First_Extra : Entity_Id := Empty;
8110 Formal : Entity_Id;
8111 Last_Extra : Entity_Id := Empty;
8112
8113 function Add_Extra_Formal
8114 (Assoc_Entity : Entity_Id;
8115 Typ : Entity_Id;
8116 Scope : Entity_Id;
8117 Suffix : String) return Entity_Id;
8118 -- Add an extra formal to the current list of formals and extra formals.
8119 -- The extra formal is added to the end of the list of extra formals,
8120 -- and also returned as the result. These formals are always of mode IN.
8121 -- The new formal has the type Typ, is declared in Scope, and its name
8122 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
8123 -- The following suffixes are currently used. They should not be changed
8124 -- without coordinating with CodePeer, which makes use of these to
8125 -- provide better messages.
8126
8127 -- O denotes the Constrained bit.
8128 -- L denotes the accessibility level.
8129 -- BIP_xxx denotes an extra formal for a build-in-place function. See
8130 -- the full list in exp_ch6.BIP_Formal_Kind.
8131
8132 ----------------------
8133 -- Add_Extra_Formal --
8134 ----------------------
8135
8136 function Add_Extra_Formal
8137 (Assoc_Entity : Entity_Id;
8138 Typ : Entity_Id;
8139 Scope : Entity_Id;
8140 Suffix : String) return Entity_Id
8141 is
8142 EF : constant Entity_Id :=
8143 Make_Defining_Identifier (Sloc (Assoc_Entity),
8144 Chars => New_External_Name (Chars (Assoc_Entity),
8145 Suffix => Suffix));
8146
8147 begin
8148 -- A little optimization. Never generate an extra formal for the
8149 -- _init operand of an initialization procedure, since it could
8150 -- never be used.
8151
8152 if Chars (Formal) = Name_uInit then
8153 return Empty;
8154 end if;
8155
8156 Set_Ekind (EF, E_In_Parameter);
8157 Set_Actual_Subtype (EF, Typ);
8158 Set_Etype (EF, Typ);
8159 Set_Scope (EF, Scope);
8160 Set_Mechanism (EF, Default_Mechanism);
8161 Set_Formal_Validity (EF);
8162
8163 if No (First_Extra) then
8164 First_Extra := EF;
8165 Set_Extra_Formals (Scope, EF);
8166 end if;
8167
8168 if Present (Last_Extra) then
8169 Set_Extra_Formal (Last_Extra, EF);
8170 end if;
8171
8172 Last_Extra := EF;
8173
8174 return EF;
8175 end Add_Extra_Formal;
8176
8177 -- Local variables
8178
8179 Formal_Type : Entity_Id;
8180 P_Formal : Entity_Id := Empty;
8181
8182 -- Start of processing for Create_Extra_Formals
8183
8184 begin
8185 -- We never generate extra formals if expansion is not active because we
8186 -- don't need them unless we are generating code.
8187
8188 if not Expander_Active then
8189 return;
8190 end if;
8191
8192 -- No need to generate extra formals in interface thunks whose target
8193 -- primitive has no extra formals.
8194
8195 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
8196 return;
8197 end if;
8198
8199 -- If this is a derived subprogram then the subtypes of the parent
8200 -- subprogram's formal parameters will be used to determine the need
8201 -- for extra formals.
8202
8203 if Is_Overloadable (E) and then Present (Alias (E)) then
8204 P_Formal := First_Formal (Alias (E));
8205 end if;
8206
8207 Formal := First_Formal (E);
8208 while Present (Formal) loop
8209 Last_Extra := Formal;
8210 Next_Formal (Formal);
8211 end loop;
8212
8213 -- If Extra_Formals were already created, don't do it again. This
8214 -- situation may arise for subprogram types created as part of
8215 -- dispatching calls (see Expand_Dispatching_Call).
8216
8217 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8218 return;
8219 end if;
8220
8221 -- If the subprogram is a predefined dispatching subprogram then don't
8222 -- generate any extra constrained or accessibility level formals. In
8223 -- general we suppress these for internal subprograms (by not calling
8224 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8225 -- generated stream attributes do get passed through because extra
8226 -- build-in-place formals are needed in some cases (limited 'Input).
8227
8228 if Is_Predefined_Internal_Operation (E) then
8229 goto Test_For_Func_Result_Extras;
8230 end if;
8231
8232 Formal := First_Formal (E);
8233 while Present (Formal) loop
8234
8235 -- Create extra formal for supporting the attribute 'Constrained.
8236 -- The case of a private type view without discriminants also
8237 -- requires the extra formal if the underlying type has defaulted
8238 -- discriminants.
8239
8240 if Ekind (Formal) /= E_In_Parameter then
8241 if Present (P_Formal) then
8242 Formal_Type := Etype (P_Formal);
8243 else
8244 Formal_Type := Etype (Formal);
8245 end if;
8246
8247 -- Do not produce extra formals for Unchecked_Union parameters.
8248 -- Jump directly to the end of the loop.
8249
8250 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
8251 goto Skip_Extra_Formal_Generation;
8252 end if;
8253
8254 if not Has_Discriminants (Formal_Type)
8255 and then Ekind (Formal_Type) in Private_Kind
8256 and then Present (Underlying_Type (Formal_Type))
8257 then
8258 Formal_Type := Underlying_Type (Formal_Type);
8259 end if;
8260
8261 -- Suppress the extra formal if formal's subtype is constrained or
8262 -- indefinite, or we're compiling for Ada 2012 and the underlying
8263 -- type is tagged and limited. In Ada 2012, a limited tagged type
8264 -- can have defaulted discriminants, but 'Constrained is required
8265 -- to return True, so the formal is never needed (see AI05-0214).
8266 -- Note that this ensures consistency of calling sequences for
8267 -- dispatching operations when some types in a class have defaults
8268 -- on discriminants and others do not (and requiring the extra
8269 -- formal would introduce distributed overhead).
8270
8271 -- If the type does not have a completion yet, treat as prior to
8272 -- Ada 2012 for consistency.
8273
8274 if Has_Discriminants (Formal_Type)
8275 and then not Is_Constrained (Formal_Type)
8276 and then Is_Definite_Subtype (Formal_Type)
8277 and then (Ada_Version < Ada_2012
8278 or else No (Underlying_Type (Formal_Type))
8279 or else not
8280 (Is_Limited_Type (Formal_Type)
8281 and then
8282 (Is_Tagged_Type
8283 (Underlying_Type (Formal_Type)))))
8284 then
8285 Set_Extra_Constrained
8286 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8287 end if;
8288 end if;
8289
8290 -- Create extra formal for supporting accessibility checking. This
8291 -- is done for both anonymous access formals and formals of named
8292 -- access types that are marked as controlling formals. The latter
8293 -- case can occur when Expand_Dispatching_Call creates a subprogram
8294 -- type and substitutes the types of access-to-class-wide actuals
8295 -- for the anonymous access-to-specific-type of controlling formals.
8296 -- Base_Type is applied because in cases where there is a null
8297 -- exclusion the formal may have an access subtype.
8298
8299 -- This is suppressed if we specifically suppress accessibility
8300 -- checks at the package level for either the subprogram, or the
8301 -- package in which it resides. However, we do not suppress it
8302 -- simply if the scope has accessibility checks suppressed, since
8303 -- this could cause trouble when clients are compiled with a
8304 -- different suppression setting. The explicit checks at the
8305 -- package level are safe from this point of view.
8306
8307 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8308 or else (Is_Controlling_Formal (Formal)
8309 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8310 and then not
8311 (Explicit_Suppress (E, Accessibility_Check)
8312 or else
8313 Explicit_Suppress (Scope (E), Accessibility_Check))
8314 and then
8315 (No (P_Formal)
8316 or else Present (Extra_Accessibility (P_Formal)))
8317 then
8318 Set_Extra_Accessibility
8319 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8320 end if;
8321
8322 -- This label is required when skipping extra formal generation for
8323 -- Unchecked_Union parameters.
8324
8325 <<Skip_Extra_Formal_Generation>>
8326
8327 if Present (P_Formal) then
8328 Next_Formal (P_Formal);
8329 end if;
8330
8331 Next_Formal (Formal);
8332 end loop;
8333
8334 <<Test_For_Func_Result_Extras>>
8335
8336 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8337 -- function call is ... determined by the point of call ...".
8338
8339 if Needs_Result_Accessibility_Level (E) then
8340 Set_Extra_Accessibility_Of_Result
8341 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8342 end if;
8343
8344 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8345 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8346
8347 if Is_Build_In_Place_Function (E) then
8348 declare
8349 Result_Subt : constant Entity_Id := Etype (E);
8350 Formal_Typ : Entity_Id;
8351 Subp_Decl : Node_Id;
8352 Discard : Entity_Id;
8353
8354 begin
8355 -- In the case of functions with unconstrained result subtypes,
8356 -- add a 4-state formal indicating whether the return object is
8357 -- allocated by the caller (1), or should be allocated by the
8358 -- callee on the secondary stack (2), in the global heap (3), or
8359 -- in a user-defined storage pool (4). For the moment we just use
8360 -- Natural for the type of this formal. Note that this formal
8361 -- isn't usually needed in the case where the result subtype is
8362 -- constrained, but it is needed when the function has a tagged
8363 -- result, because generally such functions can be called in a
8364 -- dispatching context and such calls must be handled like calls
8365 -- to a class-wide function.
8366
8367 if Needs_BIP_Alloc_Form (E) then
8368 Discard :=
8369 Add_Extra_Formal
8370 (E, Standard_Natural,
8371 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8372
8373 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8374 -- use a user-defined pool. This formal is not added on
8375 -- ZFP as those targets do not support pools.
8376
8377 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8378 Discard :=
8379 Add_Extra_Formal
8380 (E, RTE (RE_Root_Storage_Pool_Ptr),
8381 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8382 end if;
8383 end if;
8384
8385 -- In the case of functions whose result type needs finalization,
8386 -- add an extra formal which represents the finalization master.
8387
8388 if Needs_BIP_Finalization_Master (E) then
8389 Discard :=
8390 Add_Extra_Formal
8391 (E, RTE (RE_Finalization_Master_Ptr),
8392 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8393 end if;
8394
8395 -- When the result type contains tasks, add two extra formals: the
8396 -- master of the tasks to be created, and the caller's activation
8397 -- chain.
8398
8399 if Needs_BIP_Task_Actuals (E) then
8400 Discard :=
8401 Add_Extra_Formal
8402 (E, RTE (RE_Master_Id),
8403 E, BIP_Formal_Suffix (BIP_Task_Master));
8404 Discard :=
8405 Add_Extra_Formal
8406 (E, RTE (RE_Activation_Chain_Access),
8407 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8408 end if;
8409
8410 -- All build-in-place functions get an extra formal that will be
8411 -- passed the address of the return object within the caller.
8412
8413 Formal_Typ :=
8414 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8415
8416 -- Incomplete_View_From_Limited_With is needed here because
8417 -- gigi gets confused if the designated type is the full view
8418 -- coming from a limited-with'ed package. In the normal case,
8419 -- (no limited with) Incomplete_View_From_Limited_With
8420 -- returns Result_Subt.
8421
8422 Set_Directly_Designated_Type
8423 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8424 Set_Etype (Formal_Typ, Formal_Typ);
8425 Set_Depends_On_Private
8426 (Formal_Typ, Has_Private_Component (Formal_Typ));
8427 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8428 Set_Is_Access_Constant (Formal_Typ, False);
8429
8430 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8431 -- the designated type comes from the limited view (for back-end
8432 -- purposes).
8433
8434 Set_From_Limited_With
8435 (Formal_Typ, From_Limited_With (Result_Subt));
8436
8437 Layout_Type (Formal_Typ);
8438
8439 -- Force the definition of the Itype in case of internal function
8440 -- calls within the same or nested scope.
8441
8442 if Is_Subprogram_Or_Generic_Subprogram (E) then
8443 Subp_Decl := Parent (E);
8444
8445 -- The insertion point for an Itype reference should be after
8446 -- the unit declaration node of the subprogram. An exception
8447 -- to this are inherited operations from a parent type in which
8448 -- case the derived type acts as their parent.
8449
8450 if Nkind_In (Subp_Decl, N_Function_Specification,
8451 N_Procedure_Specification)
8452 then
8453 Subp_Decl := Parent (Subp_Decl);
8454 end if;
8455
8456 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8457 end if;
8458
8459 Discard :=
8460 Add_Extra_Formal
8461 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8462 end;
8463 end if;
8464
8465 -- If this is an instance of a generic, we need to have extra formals
8466 -- for the Alias.
8467
8468 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8469 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8470 end if;
8471 end Create_Extra_Formals;
8472
8473 -----------------------------
8474 -- Enter_Overloaded_Entity --
8475 -----------------------------
8476
8477 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8478 function Matches_Predefined_Op return Boolean;
8479 -- This returns an approximation of whether S matches a predefined
8480 -- operator, based on the operator symbol, and the parameter and result
8481 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8482
8483 ---------------------------
8484 -- Matches_Predefined_Op --
8485 ---------------------------
8486
8487 function Matches_Predefined_Op return Boolean is
8488 Formal_1 : constant Entity_Id := First_Formal (S);
8489 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8490 Op : constant Name_Id := Chars (S);
8491 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8492 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8493
8494 begin
8495 -- Binary operator
8496
8497 if Present (Formal_2) then
8498 declare
8499 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8500
8501 begin
8502 -- All but "&" and "**" have same-types parameters
8503
8504 case Op is
8505 when Name_Op_Concat
8506 | Name_Op_Expon
8507 =>
8508 null;
8509
8510 when others =>
8511 if Type_1 /= Type_2 then
8512 return False;
8513 end if;
8514 end case;
8515
8516 -- Check parameter and result types
8517
8518 case Op is
8519 when Name_Op_And
8520 | Name_Op_Or
8521 | Name_Op_Xor
8522 =>
8523 return
8524 Is_Boolean_Type (Result_Type)
8525 and then Result_Type = Type_1;
8526
8527 when Name_Op_Mod
8528 | Name_Op_Rem
8529 =>
8530 return
8531 Is_Integer_Type (Result_Type)
8532 and then Result_Type = Type_1;
8533
8534 when Name_Op_Add
8535 | Name_Op_Divide
8536 | Name_Op_Multiply
8537 | Name_Op_Subtract
8538 =>
8539 return
8540 Is_Numeric_Type (Result_Type)
8541 and then Result_Type = Type_1;
8542
8543 when Name_Op_Eq
8544 | Name_Op_Ne
8545 =>
8546 return
8547 Is_Boolean_Type (Result_Type)
8548 and then not Is_Limited_Type (Type_1);
8549
8550 when Name_Op_Ge
8551 | Name_Op_Gt
8552 | Name_Op_Le
8553 | Name_Op_Lt
8554 =>
8555 return
8556 Is_Boolean_Type (Result_Type)
8557 and then (Is_Array_Type (Type_1)
8558 or else Is_Scalar_Type (Type_1));
8559
8560 when Name_Op_Concat =>
8561 return Is_Array_Type (Result_Type);
8562
8563 when Name_Op_Expon =>
8564 return
8565 (Is_Integer_Type (Result_Type)
8566 or else Is_Floating_Point_Type (Result_Type))
8567 and then Result_Type = Type_1
8568 and then Type_2 = Standard_Integer;
8569
8570 when others =>
8571 raise Program_Error;
8572 end case;
8573 end;
8574
8575 -- Unary operator
8576
8577 else
8578 case Op is
8579 when Name_Op_Abs
8580 | Name_Op_Add
8581 | Name_Op_Subtract
8582 =>
8583 return
8584 Is_Numeric_Type (Result_Type)
8585 and then Result_Type = Type_1;
8586
8587 when Name_Op_Not =>
8588 return
8589 Is_Boolean_Type (Result_Type)
8590 and then Result_Type = Type_1;
8591
8592 when others =>
8593 raise Program_Error;
8594 end case;
8595 end if;
8596 end Matches_Predefined_Op;
8597
8598 -- Local variables
8599
8600 E : Entity_Id := Current_Entity_In_Scope (S);
8601 C_E : Entity_Id := Current_Entity (S);
8602
8603 -- Start of processing for Enter_Overloaded_Entity
8604
8605 begin
8606 if Present (E) then
8607 Set_Has_Homonym (E);
8608 Set_Has_Homonym (S);
8609 end if;
8610
8611 Set_Is_Immediately_Visible (S);
8612 Set_Scope (S, Current_Scope);
8613
8614 -- Chain new entity if front of homonym in current scope, so that
8615 -- homonyms are contiguous.
8616
8617 if Present (E) and then E /= C_E then
8618 while Homonym (C_E) /= E loop
8619 C_E := Homonym (C_E);
8620 end loop;
8621
8622 Set_Homonym (C_E, S);
8623
8624 else
8625 E := C_E;
8626 Set_Current_Entity (S);
8627 end if;
8628
8629 Set_Homonym (S, E);
8630
8631 if Is_Inherited_Operation (S) then
8632 Append_Inherited_Subprogram (S);
8633 else
8634 Append_Entity (S, Current_Scope);
8635 end if;
8636
8637 Set_Public_Status (S);
8638
8639 if Debug_Flag_E then
8640 Write_Str ("New overloaded entity chain: ");
8641 Write_Name (Chars (S));
8642
8643 E := S;
8644 while Present (E) loop
8645 Write_Str (" "); Write_Int (Int (E));
8646 E := Homonym (E);
8647 end loop;
8648
8649 Write_Eol;
8650 end if;
8651
8652 -- Generate warning for hiding
8653
8654 if Warn_On_Hiding
8655 and then Comes_From_Source (S)
8656 and then In_Extended_Main_Source_Unit (S)
8657 then
8658 E := S;
8659 loop
8660 E := Homonym (E);
8661 exit when No (E);
8662
8663 -- Warn unless genuine overloading. Do not emit warning on
8664 -- hiding predefined operators in Standard (these are either an
8665 -- (artifact of our implicit declarations, or simple noise) but
8666 -- keep warning on a operator defined on a local subtype, because
8667 -- of the real danger that different operators may be applied in
8668 -- various parts of the program.
8669
8670 -- Note that if E and S have the same scope, there is never any
8671 -- hiding. Either the two conflict, and the program is illegal,
8672 -- or S is overriding an implicit inherited subprogram.
8673
8674 if Scope (E) /= Scope (S)
8675 and then (not Is_Overloadable (E)
8676 or else Subtype_Conformant (E, S))
8677 and then (Is_Immediately_Visible (E)
8678 or else Is_Potentially_Use_Visible (S))
8679 then
8680 if Scope (E) = Standard_Standard then
8681 if Nkind (S) = N_Defining_Operator_Symbol
8682 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8683 Scope (S)
8684 and then Matches_Predefined_Op
8685 then
8686 Error_Msg_N
8687 ("declaration of & hides predefined operator?h?", S);
8688 end if;
8689
8690 -- E not immediately within Standard
8691
8692 else
8693 Error_Msg_Sloc := Sloc (E);
8694 Error_Msg_N ("declaration of & hides one #?h?", S);
8695 end if;
8696 end if;
8697 end loop;
8698 end if;
8699 end Enter_Overloaded_Entity;
8700
8701 -----------------------------
8702 -- Check_Untagged_Equality --
8703 -----------------------------
8704
8705 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8706 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8707 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8708 Obj_Decl : Node_Id;
8709
8710 begin
8711 -- This check applies only if we have a subprogram declaration with an
8712 -- untagged record type that is conformant to the predefined op.
8713
8714 if Nkind (Decl) /= N_Subprogram_Declaration
8715 or else not Is_Record_Type (Typ)
8716 or else Is_Tagged_Type (Typ)
8717 or else Etype (Next_Formal (First_Formal (Eq_Op))) /= Typ
8718 then
8719 return;
8720 end if;
8721
8722 -- In Ada 2012 case, we will output errors or warnings depending on
8723 -- the setting of debug flag -gnatd.E.
8724
8725 if Ada_Version >= Ada_2012 then
8726 Error_Msg_Warn := Debug_Flag_Dot_EE;
8727
8728 -- In earlier versions of Ada, nothing to do unless we are warning on
8729 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8730
8731 else
8732 if not Warn_On_Ada_2012_Compatibility then
8733 return;
8734 end if;
8735 end if;
8736
8737 -- Cases where the type has already been frozen
8738
8739 if Is_Frozen (Typ) then
8740
8741 -- The check applies to a primitive operation, so check that type
8742 -- and equality operation are in the same scope.
8743
8744 if Scope (Typ) /= Current_Scope then
8745 return;
8746
8747 -- If the type is a generic actual (sub)type, the operation is not
8748 -- primitive either because the base type is declared elsewhere.
8749
8750 elsif Is_Generic_Actual_Type (Typ) then
8751 return;
8752
8753 -- Here we have a definite error of declaration after freezing
8754
8755 else
8756 if Ada_Version >= Ada_2012 then
8757 Error_Msg_NE
8758 ("equality operator must be declared before type & is "
8759 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8760
8761 -- In Ada 2012 mode with error turned to warning, output one
8762 -- more warning to warn that the equality operation may not
8763 -- compose. This is the consequence of ignoring the error.
8764
8765 if Error_Msg_Warn then
8766 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8767 end if;
8768
8769 else
8770 Error_Msg_NE
8771 ("equality operator must be declared before type& is "
8772 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8773 end if;
8774
8775 -- If we are in the package body, we could just move the
8776 -- declaration to the package spec, so add a message saying that.
8777
8778 if In_Package_Body (Scope (Typ)) then
8779 if Ada_Version >= Ada_2012 then
8780 Error_Msg_N
8781 ("\move declaration to package spec<<", Eq_Op);
8782 else
8783 Error_Msg_N
8784 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8785 end if;
8786
8787 -- Otherwise try to find the freezing point for better message.
8788
8789 else
8790 Obj_Decl := Next (Parent (Typ));
8791 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8792 if Nkind (Obj_Decl) = N_Object_Declaration
8793 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8794 then
8795 -- Freezing point, output warnings
8796
8797 if Ada_Version >= Ada_2012 then
8798 Error_Msg_NE
8799 ("type& is frozen by declaration??", Obj_Decl, Typ);
8800 Error_Msg_N
8801 ("\an equality operator cannot be declared after "
8802 & "this point??",
8803 Obj_Decl);
8804 else
8805 Error_Msg_NE
8806 ("type& is frozen by declaration (Ada 2012)?y?",
8807 Obj_Decl, Typ);
8808 Error_Msg_N
8809 ("\an equality operator cannot be declared after "
8810 & "this point (Ada 2012)?y?",
8811 Obj_Decl);
8812 end if;
8813
8814 exit;
8815
8816 -- If we reach generated code for subprogram declaration
8817 -- or body, it is the body that froze the type and the
8818 -- declaration is legal.
8819
8820 elsif Sloc (Obj_Decl) = Sloc (Decl) then
8821 return;
8822 end if;
8823
8824 Next (Obj_Decl);
8825 end loop;
8826 end if;
8827 end if;
8828
8829 -- Here if type is not frozen yet. It is illegal to have a primitive
8830 -- equality declared in the private part if the type is visible.
8831
8832 elsif not In_Same_List (Parent (Typ), Decl)
8833 and then not Is_Limited_Type (Typ)
8834 then
8835 -- Shouldn't we give an RM reference here???
8836
8837 if Ada_Version >= Ada_2012 then
8838 Error_Msg_N
8839 ("equality operator appears too late<<", Eq_Op);
8840 else
8841 Error_Msg_N
8842 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8843 end if;
8844
8845 -- No error detected
8846
8847 else
8848 return;
8849 end if;
8850 end Check_Untagged_Equality;
8851
8852 -----------------------------
8853 -- Find_Corresponding_Spec --
8854 -----------------------------
8855
8856 function Find_Corresponding_Spec
8857 (N : Node_Id;
8858 Post_Error : Boolean := True) return Entity_Id
8859 is
8860 Spec : constant Node_Id := Specification (N);
8861 Designator : constant Entity_Id := Defining_Entity (Spec);
8862
8863 E : Entity_Id;
8864
8865 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8866 -- Even if fully conformant, a body may depend on a generic actual when
8867 -- the spec does not, or vice versa, in which case they were distinct
8868 -- entities in the generic.
8869
8870 -------------------------------
8871 -- Different_Generic_Profile --
8872 -------------------------------
8873
8874 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8875 F1, F2 : Entity_Id;
8876
8877 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8878 -- Check that the types of corresponding formals have the same
8879 -- generic actual if any. We have to account for subtypes of a
8880 -- generic formal, declared between a spec and a body, which may
8881 -- appear distinct in an instance but matched in the generic, and
8882 -- the subtype may be used either in the spec or the body of the
8883 -- subprogram being checked.
8884
8885 -------------------------
8886 -- Same_Generic_Actual --
8887 -------------------------
8888
8889 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8890
8891 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8892 -- Predicate to check whether S1 is a subtype of S2 in the source
8893 -- of the instance.
8894
8895 -------------------------
8896 -- Is_Declared_Subtype --
8897 -------------------------
8898
8899 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8900 begin
8901 return Comes_From_Source (Parent (S1))
8902 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8903 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8904 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8905 end Is_Declared_Subtype;
8906
8907 -- Start of processing for Same_Generic_Actual
8908
8909 begin
8910 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8911 or else Is_Declared_Subtype (T1, T2)
8912 or else Is_Declared_Subtype (T2, T1);
8913 end Same_Generic_Actual;
8914
8915 -- Start of processing for Different_Generic_Profile
8916
8917 begin
8918 if not In_Instance then
8919 return False;
8920
8921 elsif Ekind (E) = E_Function
8922 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8923 then
8924 return True;
8925 end if;
8926
8927 F1 := First_Formal (Designator);
8928 F2 := First_Formal (E);
8929 while Present (F1) loop
8930 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8931 return True;
8932 end if;
8933
8934 Next_Formal (F1);
8935 Next_Formal (F2);
8936 end loop;
8937
8938 return False;
8939 end Different_Generic_Profile;
8940
8941 -- Start of processing for Find_Corresponding_Spec
8942
8943 begin
8944 E := Current_Entity (Designator);
8945 while Present (E) loop
8946
8947 -- We are looking for a matching spec. It must have the same scope,
8948 -- and the same name, and either be type conformant, or be the case
8949 -- of a library procedure spec and its body (which belong to one
8950 -- another regardless of whether they are type conformant or not).
8951
8952 if Scope (E) = Current_Scope then
8953 if Current_Scope = Standard_Standard
8954 or else (Ekind (E) = Ekind (Designator)
8955 and then Type_Conformant (E, Designator))
8956 then
8957 -- Within an instantiation, we know that spec and body are
8958 -- subtype conformant, because they were subtype conformant in
8959 -- the generic. We choose the subtype-conformant entity here as
8960 -- well, to resolve spurious ambiguities in the instance that
8961 -- were not present in the generic (i.e. when two different
8962 -- types are given the same actual). If we are looking for a
8963 -- spec to match a body, full conformance is expected.
8964
8965 if In_Instance then
8966
8967 -- Inherit the convention and "ghostness" of the matching
8968 -- spec to ensure proper full and subtype conformance.
8969
8970 Set_Convention (Designator, Convention (E));
8971
8972 -- Skip past subprogram bodies and subprogram renamings that
8973 -- may appear to have a matching spec, but that aren't fully
8974 -- conformant with it. That can occur in cases where an
8975 -- actual type causes unrelated homographs in the instance.
8976
8977 if Nkind_In (N, N_Subprogram_Body,
8978 N_Subprogram_Renaming_Declaration)
8979 and then Present (Homonym (E))
8980 and then not Fully_Conformant (Designator, E)
8981 then
8982 goto Next_Entity;
8983
8984 elsif not Subtype_Conformant (Designator, E) then
8985 goto Next_Entity;
8986
8987 elsif Different_Generic_Profile (E) then
8988 goto Next_Entity;
8989 end if;
8990 end if;
8991
8992 -- Ada 2012 (AI05-0165): For internally generated bodies of
8993 -- null procedures locate the internally generated spec. We
8994 -- enforce mode conformance since a tagged type may inherit
8995 -- from interfaces several null primitives which differ only
8996 -- in the mode of the formals.
8997
8998 if not (Comes_From_Source (E))
8999 and then Is_Null_Procedure (E)
9000 and then not Mode_Conformant (Designator, E)
9001 then
9002 null;
9003
9004 -- For null procedures coming from source that are completions,
9005 -- analysis of the generated body will establish the link.
9006
9007 elsif Comes_From_Source (E)
9008 and then Nkind (Spec) = N_Procedure_Specification
9009 and then Null_Present (Spec)
9010 then
9011 return E;
9012
9013 -- Expression functions can be completions, but cannot be
9014 -- completed by an explicit body.
9015
9016 elsif Comes_From_Source (E)
9017 and then Comes_From_Source (N)
9018 and then Nkind (N) = N_Subprogram_Body
9019 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
9020 N_Expression_Function
9021 then
9022 Error_Msg_Sloc := Sloc (E);
9023 Error_Msg_N ("body conflicts with expression function#", N);
9024 return Empty;
9025
9026 elsif not Has_Completion (E) then
9027 if Nkind (N) /= N_Subprogram_Body_Stub then
9028 Set_Corresponding_Spec (N, E);
9029 end if;
9030
9031 Set_Has_Completion (E);
9032 return E;
9033
9034 elsif Nkind (Parent (N)) = N_Subunit then
9035
9036 -- If this is the proper body of a subunit, the completion
9037 -- flag is set when analyzing the stub.
9038
9039 return E;
9040
9041 -- If E is an internal function with a controlling result that
9042 -- was created for an operation inherited by a null extension,
9043 -- it may be overridden by a body without a previous spec (one
9044 -- more reason why these should be shunned). In that case we
9045 -- remove the generated body if present, because the current
9046 -- one is the explicit overriding.
9047
9048 elsif Ekind (E) = E_Function
9049 and then Ada_Version >= Ada_2005
9050 and then not Comes_From_Source (E)
9051 and then Has_Controlling_Result (E)
9052 and then Is_Null_Extension (Etype (E))
9053 and then Comes_From_Source (Spec)
9054 then
9055 Set_Has_Completion (E, False);
9056
9057 if Expander_Active
9058 and then Nkind (Parent (E)) = N_Function_Specification
9059 then
9060 Remove
9061 (Unit_Declaration_Node
9062 (Corresponding_Body (Unit_Declaration_Node (E))));
9063
9064 return E;
9065
9066 -- If expansion is disabled, or if the wrapper function has
9067 -- not been generated yet, this a late body overriding an
9068 -- inherited operation, or it is an overriding by some other
9069 -- declaration before the controlling result is frozen. In
9070 -- either case this is a declaration of a new entity.
9071
9072 else
9073 return Empty;
9074 end if;
9075
9076 -- If the body already exists, then this is an error unless
9077 -- the previous declaration is the implicit declaration of a
9078 -- derived subprogram. It is also legal for an instance to
9079 -- contain type conformant overloadable declarations (but the
9080 -- generic declaration may not), per 8.3(26/2).
9081
9082 elsif No (Alias (E))
9083 and then not Is_Intrinsic_Subprogram (E)
9084 and then not In_Instance
9085 and then Post_Error
9086 then
9087 Error_Msg_Sloc := Sloc (E);
9088
9089 if Is_Imported (E) then
9090 Error_Msg_NE
9091 ("body not allowed for imported subprogram & declared#",
9092 N, E);
9093 else
9094 Error_Msg_NE ("duplicate body for & declared#", N, E);
9095 end if;
9096 end if;
9097
9098 -- Child units cannot be overloaded, so a conformance mismatch
9099 -- between body and a previous spec is an error.
9100
9101 elsif Is_Child_Unit (E)
9102 and then
9103 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
9104 and then
9105 Nkind (Parent (Unit_Declaration_Node (Designator))) =
9106 N_Compilation_Unit
9107 and then Post_Error
9108 then
9109 Error_Msg_N
9110 ("body of child unit does not match previous declaration", N);
9111 end if;
9112 end if;
9113
9114 <<Next_Entity>>
9115 E := Homonym (E);
9116 end loop;
9117
9118 -- On exit, we know that no previous declaration of subprogram exists
9119
9120 return Empty;
9121 end Find_Corresponding_Spec;
9122
9123 ----------------------
9124 -- Fully_Conformant --
9125 ----------------------
9126
9127 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9128 Result : Boolean;
9129 begin
9130 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
9131 return Result;
9132 end Fully_Conformant;
9133
9134 ----------------------------------
9135 -- Fully_Conformant_Expressions --
9136 ----------------------------------
9137
9138 function Fully_Conformant_Expressions
9139 (Given_E1 : Node_Id;
9140 Given_E2 : Node_Id;
9141 Report : Boolean := False) return Boolean
9142 is
9143 E1 : constant Node_Id := Original_Node (Given_E1);
9144 E2 : constant Node_Id := Original_Node (Given_E2);
9145 -- We always test conformance on original nodes, since it is possible
9146 -- for analysis and/or expansion to make things look as though they
9147 -- conform when they do not, e.g. by converting 1+2 into 3.
9148
9149 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean;
9150 -- ???
9151
9152 function FCL (L1 : List_Id; L2 : List_Id) return Boolean;
9153 -- Compare elements of two lists for conformance. Elements have to be
9154 -- conformant, and actuals inserted as default parameters do not match
9155 -- explicit actuals with the same value.
9156
9157 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean;
9158 -- Compare an operator node with a function call
9159
9160 ---------
9161 -- FCE --
9162 ---------
9163
9164 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean is
9165 begin
9166 return Fully_Conformant_Expressions (Given_E1, Given_E2, Report);
9167 end FCE;
9168
9169 ---------
9170 -- FCL --
9171 ---------
9172
9173 function FCL (L1 : List_Id; L2 : List_Id) return Boolean is
9174 N1 : Node_Id;
9175 N2 : Node_Id;
9176
9177 begin
9178 if L1 = No_List then
9179 N1 := Empty;
9180 else
9181 N1 := First (L1);
9182 end if;
9183
9184 if L2 = No_List then
9185 N2 := Empty;
9186 else
9187 N2 := First (L2);
9188 end if;
9189
9190 -- Compare two lists, skipping rewrite insertions (we want to compare
9191 -- the original trees, not the expanded versions).
9192
9193 loop
9194 if Is_Rewrite_Insertion (N1) then
9195 Next (N1);
9196 elsif Is_Rewrite_Insertion (N2) then
9197 Next (N2);
9198 elsif No (N1) then
9199 return No (N2);
9200 elsif No (N2) then
9201 return False;
9202 elsif not FCE (N1, N2) then
9203 return False;
9204 else
9205 Next (N1);
9206 Next (N2);
9207 end if;
9208 end loop;
9209 end FCL;
9210
9211 ---------
9212 -- FCO --
9213 ---------
9214
9215 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean is
9216 Actuals : constant List_Id := Parameter_Associations (Call_Node);
9217 Act : Node_Id;
9218
9219 begin
9220 if No (Actuals)
9221 or else Entity (Op_Node) /= Entity (Name (Call_Node))
9222 then
9223 return False;
9224
9225 else
9226 Act := First (Actuals);
9227
9228 if Nkind (Op_Node) in N_Binary_Op then
9229 if not FCE (Left_Opnd (Op_Node), Act) then
9230 return False;
9231 end if;
9232
9233 Next (Act);
9234 end if;
9235
9236 return Present (Act)
9237 and then FCE (Right_Opnd (Op_Node), Act)
9238 and then No (Next (Act));
9239 end if;
9240 end FCO;
9241
9242 -- Local variables
9243
9244 Result : Boolean;
9245
9246 -- Start of processing for Fully_Conformant_Expressions
9247
9248 begin
9249 Result := True;
9250
9251 -- Nonconformant if paren count does not match. Note: if some idiot
9252 -- complains that we don't do this right for more than 3 levels of
9253 -- parentheses, they will be treated with the respect they deserve.
9254
9255 if Paren_Count (E1) /= Paren_Count (E2) then
9256 return False;
9257
9258 -- If same entities are referenced, then they are conformant even if
9259 -- they have different forms (RM 8.3.1(19-20)).
9260
9261 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
9262 if Present (Entity (E1)) then
9263 Result := Entity (E1) = Entity (E2)
9264
9265 -- One may be a discriminant that has been replaced by the
9266 -- corresponding discriminal.
9267
9268 or else
9269 (Chars (Entity (E1)) = Chars (Entity (E2))
9270 and then Ekind (Entity (E1)) = E_Discriminant
9271 and then Ekind (Entity (E2)) = E_In_Parameter)
9272
9273 -- The discriminant of a protected type is transformed into
9274 -- a local constant and then into a parameter of a protected
9275 -- operation.
9276
9277 or else
9278 (Ekind (Entity (E1)) = E_Constant
9279 and then Ekind (Entity (E2)) = E_In_Parameter
9280 and then Present (Discriminal_Link (Entity (E1)))
9281 and then Discriminal_Link (Entity (E1)) =
9282 Discriminal_Link (Entity (E2)))
9283
9284 -- AI12-050: The loop variables of quantified expressions match
9285 -- if they have the same identifier, even though they may have
9286 -- different entities.
9287
9288 or else
9289 (Chars (Entity (E1)) = Chars (Entity (E2))
9290 and then Ekind (Entity (E1)) = E_Loop_Parameter
9291 and then Ekind (Entity (E2)) = E_Loop_Parameter)
9292
9293 -- A call to an instantiation of Unchecked_Conversion is
9294 -- rewritten with the name of the generated function created for
9295 -- the instance, and this must be special-cased.
9296
9297 or else
9298 (Ekind (Entity (E1)) = E_Function
9299 and then Is_Intrinsic_Subprogram (Entity (E1))
9300 and then Is_Generic_Instance (Entity (E1))
9301 and then Entity (E2) = Alias (Entity (E1)));
9302 if Report and not Result then
9303 Error_Msg_Sloc :=
9304 Text_Ptr'Max (Sloc (Entity (E1)), Sloc (Entity (E2)));
9305 Error_Msg_NE
9306 ("Meaning of& differs because of declaration#", E1, E2);
9307 end if;
9308
9309 return Result;
9310
9311 elsif Nkind (E1) = N_Expanded_Name
9312 and then Nkind (E2) = N_Expanded_Name
9313 and then Nkind (Selector_Name (E1)) = N_Character_Literal
9314 and then Nkind (Selector_Name (E2)) = N_Character_Literal
9315 then
9316 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9317
9318 else
9319 -- Identifiers in component associations don't always have
9320 -- entities, but their names must conform.
9321
9322 return Nkind (E1) = N_Identifier
9323 and then Nkind (E2) = N_Identifier
9324 and then Chars (E1) = Chars (E2);
9325 end if;
9326
9327 elsif Nkind (E1) = N_Character_Literal
9328 and then Nkind (E2) = N_Expanded_Name
9329 then
9330 return Nkind (Selector_Name (E2)) = N_Character_Literal
9331 and then Chars (E1) = Chars (Selector_Name (E2));
9332
9333 elsif Nkind (E2) = N_Character_Literal
9334 and then Nkind (E1) = N_Expanded_Name
9335 then
9336 return Nkind (Selector_Name (E1)) = N_Character_Literal
9337 and then Chars (E2) = Chars (Selector_Name (E1));
9338
9339 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9340 return FCO (E1, E2);
9341
9342 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9343 return FCO (E2, E1);
9344
9345 -- Otherwise we must have the same syntactic entity
9346
9347 elsif Nkind (E1) /= Nkind (E2) then
9348 return False;
9349
9350 -- At this point, we specialize by node type
9351
9352 else
9353 case Nkind (E1) is
9354 when N_Aggregate =>
9355 return
9356 FCL (Expressions (E1), Expressions (E2))
9357 and then
9358 FCL (Component_Associations (E1),
9359 Component_Associations (E2));
9360
9361 when N_Allocator =>
9362 if Nkind (Expression (E1)) = N_Qualified_Expression
9363 or else
9364 Nkind (Expression (E2)) = N_Qualified_Expression
9365 then
9366 return FCE (Expression (E1), Expression (E2));
9367
9368 -- Check that the subtype marks and any constraints
9369 -- are conformant
9370
9371 else
9372 declare
9373 Indic1 : constant Node_Id := Expression (E1);
9374 Indic2 : constant Node_Id := Expression (E2);
9375 Elt1 : Node_Id;
9376 Elt2 : Node_Id;
9377
9378 begin
9379 if Nkind (Indic1) /= N_Subtype_Indication then
9380 return
9381 Nkind (Indic2) /= N_Subtype_Indication
9382 and then Entity (Indic1) = Entity (Indic2);
9383
9384 elsif Nkind (Indic2) /= N_Subtype_Indication then
9385 return
9386 Nkind (Indic1) /= N_Subtype_Indication
9387 and then Entity (Indic1) = Entity (Indic2);
9388
9389 else
9390 if Entity (Subtype_Mark (Indic1)) /=
9391 Entity (Subtype_Mark (Indic2))
9392 then
9393 return False;
9394 end if;
9395
9396 Elt1 := First (Constraints (Constraint (Indic1)));
9397 Elt2 := First (Constraints (Constraint (Indic2)));
9398 while Present (Elt1) and then Present (Elt2) loop
9399 if not FCE (Elt1, Elt2) then
9400 return False;
9401 end if;
9402
9403 Next (Elt1);
9404 Next (Elt2);
9405 end loop;
9406
9407 return True;
9408 end if;
9409 end;
9410 end if;
9411
9412 when N_Attribute_Reference =>
9413 return
9414 Attribute_Name (E1) = Attribute_Name (E2)
9415 and then FCL (Expressions (E1), Expressions (E2));
9416
9417 when N_Binary_Op =>
9418 return
9419 Entity (E1) = Entity (E2)
9420 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9421 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9422
9423 when N_Membership_Test
9424 | N_Short_Circuit
9425 =>
9426 return
9427 FCE (Left_Opnd (E1), Left_Opnd (E2))
9428 and then
9429 FCE (Right_Opnd (E1), Right_Opnd (E2));
9430
9431 when N_Case_Expression =>
9432 declare
9433 Alt1 : Node_Id;
9434 Alt2 : Node_Id;
9435
9436 begin
9437 if not FCE (Expression (E1), Expression (E2)) then
9438 return False;
9439
9440 else
9441 Alt1 := First (Alternatives (E1));
9442 Alt2 := First (Alternatives (E2));
9443 loop
9444 if Present (Alt1) /= Present (Alt2) then
9445 return False;
9446 elsif No (Alt1) then
9447 return True;
9448 end if;
9449
9450 if not FCE (Expression (Alt1), Expression (Alt2))
9451 or else not FCL (Discrete_Choices (Alt1),
9452 Discrete_Choices (Alt2))
9453 then
9454 return False;
9455 end if;
9456
9457 Next (Alt1);
9458 Next (Alt2);
9459 end loop;
9460 end if;
9461 end;
9462
9463 when N_Character_Literal =>
9464 return
9465 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9466
9467 when N_Component_Association =>
9468 return
9469 FCL (Choices (E1), Choices (E2))
9470 and then
9471 FCE (Expression (E1), Expression (E2));
9472
9473 when N_Explicit_Dereference =>
9474 return
9475 FCE (Prefix (E1), Prefix (E2));
9476
9477 when N_Extension_Aggregate =>
9478 return
9479 FCL (Expressions (E1), Expressions (E2))
9480 and then Null_Record_Present (E1) =
9481 Null_Record_Present (E2)
9482 and then FCL (Component_Associations (E1),
9483 Component_Associations (E2));
9484
9485 when N_Function_Call =>
9486 return
9487 FCE (Name (E1), Name (E2))
9488 and then
9489 FCL (Parameter_Associations (E1),
9490 Parameter_Associations (E2));
9491
9492 when N_If_Expression =>
9493 return
9494 FCL (Expressions (E1), Expressions (E2));
9495
9496 when N_Indexed_Component =>
9497 return
9498 FCE (Prefix (E1), Prefix (E2))
9499 and then
9500 FCL (Expressions (E1), Expressions (E2));
9501
9502 when N_Integer_Literal =>
9503 return (Intval (E1) = Intval (E2));
9504
9505 when N_Null =>
9506 return True;
9507
9508 when N_Operator_Symbol =>
9509 return
9510 Chars (E1) = Chars (E2);
9511
9512 when N_Others_Choice =>
9513 return True;
9514
9515 when N_Parameter_Association =>
9516 return
9517 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9518 and then FCE (Explicit_Actual_Parameter (E1),
9519 Explicit_Actual_Parameter (E2));
9520
9521 when N_Qualified_Expression
9522 | N_Type_Conversion
9523 | N_Unchecked_Type_Conversion
9524 =>
9525 return
9526 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9527 and then
9528 FCE (Expression (E1), Expression (E2));
9529
9530 when N_Quantified_Expression =>
9531 if not FCE (Condition (E1), Condition (E2)) then
9532 return False;
9533 end if;
9534
9535 if Present (Loop_Parameter_Specification (E1))
9536 and then Present (Loop_Parameter_Specification (E2))
9537 then
9538 declare
9539 L1 : constant Node_Id :=
9540 Loop_Parameter_Specification (E1);
9541 L2 : constant Node_Id :=
9542 Loop_Parameter_Specification (E2);
9543
9544 begin
9545 return
9546 Reverse_Present (L1) = Reverse_Present (L2)
9547 and then
9548 FCE (Defining_Identifier (L1),
9549 Defining_Identifier (L2))
9550 and then
9551 FCE (Discrete_Subtype_Definition (L1),
9552 Discrete_Subtype_Definition (L2));
9553 end;
9554
9555 elsif Present (Iterator_Specification (E1))
9556 and then Present (Iterator_Specification (E2))
9557 then
9558 declare
9559 I1 : constant Node_Id := Iterator_Specification (E1);
9560 I2 : constant Node_Id := Iterator_Specification (E2);
9561
9562 begin
9563 return
9564 FCE (Defining_Identifier (I1),
9565 Defining_Identifier (I2))
9566 and then
9567 Of_Present (I1) = Of_Present (I2)
9568 and then
9569 Reverse_Present (I1) = Reverse_Present (I2)
9570 and then FCE (Name (I1), Name (I2))
9571 and then FCE (Subtype_Indication (I1),
9572 Subtype_Indication (I2));
9573 end;
9574
9575 -- The quantified expressions used different specifications to
9576 -- walk their respective ranges.
9577
9578 else
9579 return False;
9580 end if;
9581
9582 when N_Range =>
9583 return
9584 FCE (Low_Bound (E1), Low_Bound (E2))
9585 and then
9586 FCE (High_Bound (E1), High_Bound (E2));
9587
9588 when N_Real_Literal =>
9589 return (Realval (E1) = Realval (E2));
9590
9591 when N_Selected_Component =>
9592 return
9593 FCE (Prefix (E1), Prefix (E2))
9594 and then
9595 FCE (Selector_Name (E1), Selector_Name (E2));
9596
9597 when N_Slice =>
9598 return
9599 FCE (Prefix (E1), Prefix (E2))
9600 and then
9601 FCE (Discrete_Range (E1), Discrete_Range (E2));
9602
9603 when N_String_Literal =>
9604 declare
9605 S1 : constant String_Id := Strval (E1);
9606 S2 : constant String_Id := Strval (E2);
9607 L1 : constant Nat := String_Length (S1);
9608 L2 : constant Nat := String_Length (S2);
9609
9610 begin
9611 if L1 /= L2 then
9612 return False;
9613
9614 else
9615 for J in 1 .. L1 loop
9616 if Get_String_Char (S1, J) /=
9617 Get_String_Char (S2, J)
9618 then
9619 return False;
9620 end if;
9621 end loop;
9622
9623 return True;
9624 end if;
9625 end;
9626
9627 when N_Unary_Op =>
9628 return
9629 Entity (E1) = Entity (E2)
9630 and then
9631 FCE (Right_Opnd (E1), Right_Opnd (E2));
9632
9633 -- All other node types cannot appear in this context. Strictly
9634 -- we should raise a fatal internal error. Instead we just ignore
9635 -- the nodes. This means that if anyone makes a mistake in the
9636 -- expander and mucks an expression tree irretrievably, the result
9637 -- will be a failure to detect a (probably very obscure) case
9638 -- of non-conformance, which is better than bombing on some
9639 -- case where two expressions do in fact conform.
9640
9641 when others =>
9642 return True;
9643 end case;
9644 end if;
9645 end Fully_Conformant_Expressions;
9646
9647 ----------------------------------------
9648 -- Fully_Conformant_Discrete_Subtypes --
9649 ----------------------------------------
9650
9651 function Fully_Conformant_Discrete_Subtypes
9652 (Given_S1 : Node_Id;
9653 Given_S2 : Node_Id) return Boolean
9654 is
9655 S1 : constant Node_Id := Original_Node (Given_S1);
9656 S2 : constant Node_Id := Original_Node (Given_S2);
9657
9658 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9659 -- Special-case for a bound given by a discriminant, which in the body
9660 -- is replaced with the discriminal of the enclosing type.
9661
9662 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9663 -- Check both bounds
9664
9665 -----------------------
9666 -- Conforming_Bounds --
9667 -----------------------
9668
9669 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9670 begin
9671 if Is_Entity_Name (B1)
9672 and then Is_Entity_Name (B2)
9673 and then Ekind (Entity (B1)) = E_Discriminant
9674 then
9675 return Chars (B1) = Chars (B2);
9676
9677 else
9678 return Fully_Conformant_Expressions (B1, B2);
9679 end if;
9680 end Conforming_Bounds;
9681
9682 -----------------------
9683 -- Conforming_Ranges --
9684 -----------------------
9685
9686 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9687 begin
9688 return
9689 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9690 and then
9691 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9692 end Conforming_Ranges;
9693
9694 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9695
9696 begin
9697 if Nkind (S1) /= Nkind (S2) then
9698 return False;
9699
9700 elsif Is_Entity_Name (S1) then
9701 return Entity (S1) = Entity (S2);
9702
9703 elsif Nkind (S1) = N_Range then
9704 return Conforming_Ranges (S1, S2);
9705
9706 elsif Nkind (S1) = N_Subtype_Indication then
9707 return
9708 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9709 and then
9710 Conforming_Ranges
9711 (Range_Expression (Constraint (S1)),
9712 Range_Expression (Constraint (S2)));
9713 else
9714 return True;
9715 end if;
9716 end Fully_Conformant_Discrete_Subtypes;
9717
9718 --------------------
9719 -- Install_Entity --
9720 --------------------
9721
9722 procedure Install_Entity (E : Entity_Id) is
9723 Prev : constant Entity_Id := Current_Entity (E);
9724 begin
9725 Set_Is_Immediately_Visible (E);
9726 Set_Current_Entity (E);
9727 Set_Homonym (E, Prev);
9728 end Install_Entity;
9729
9730 ---------------------
9731 -- Install_Formals --
9732 ---------------------
9733
9734 procedure Install_Formals (Id : Entity_Id) is
9735 F : Entity_Id;
9736 begin
9737 F := First_Formal (Id);
9738 while Present (F) loop
9739 Install_Entity (F);
9740 Next_Formal (F);
9741 end loop;
9742 end Install_Formals;
9743
9744 -----------------------------
9745 -- Is_Interface_Conformant --
9746 -----------------------------
9747
9748 function Is_Interface_Conformant
9749 (Tagged_Type : Entity_Id;
9750 Iface_Prim : Entity_Id;
9751 Prim : Entity_Id) return Boolean
9752 is
9753 -- The operation may in fact be an inherited (implicit) operation
9754 -- rather than the original interface primitive, so retrieve the
9755 -- ultimate ancestor.
9756
9757 Iface : constant Entity_Id :=
9758 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9759 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9760
9761 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9762 -- Return the controlling formal of Prim
9763
9764 ------------------------
9765 -- Controlling_Formal --
9766 ------------------------
9767
9768 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9769 E : Entity_Id;
9770
9771 begin
9772 E := First_Entity (Prim);
9773 while Present (E) loop
9774 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9775 return E;
9776 end if;
9777
9778 Next_Entity (E);
9779 end loop;
9780
9781 return Empty;
9782 end Controlling_Formal;
9783
9784 -- Local variables
9785
9786 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9787 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9788
9789 -- Start of processing for Is_Interface_Conformant
9790
9791 begin
9792 pragma Assert (Is_Subprogram (Iface_Prim)
9793 and then Is_Subprogram (Prim)
9794 and then Is_Dispatching_Operation (Iface_Prim)
9795 and then Is_Dispatching_Operation (Prim));
9796
9797 pragma Assert (Is_Interface (Iface)
9798 or else (Present (Alias (Iface_Prim))
9799 and then
9800 Is_Interface
9801 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9802
9803 if Prim = Iface_Prim
9804 or else not Is_Subprogram (Prim)
9805 or else Ekind (Prim) /= Ekind (Iface_Prim)
9806 or else not Is_Dispatching_Operation (Prim)
9807 or else Scope (Prim) /= Scope (Tagged_Type)
9808 or else No (Typ)
9809 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9810 or else not Primitive_Names_Match (Iface_Prim, Prim)
9811 then
9812 return False;
9813
9814 -- The mode of the controlling formals must match
9815
9816 elsif Present (Iface_Ctrl_F)
9817 and then Present (Prim_Ctrl_F)
9818 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9819 then
9820 return False;
9821
9822 -- Case of a procedure, or a function whose result type matches the
9823 -- result type of the interface primitive, or a function that has no
9824 -- controlling result (I or access I).
9825
9826 elsif Ekind (Iface_Prim) = E_Procedure
9827 or else Etype (Prim) = Etype (Iface_Prim)
9828 or else not Has_Controlling_Result (Prim)
9829 then
9830 return Type_Conformant
9831 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9832
9833 -- Case of a function returning an interface, or an access to one. Check
9834 -- that the return types correspond.
9835
9836 elsif Implements_Interface (Typ, Iface) then
9837 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9838 /=
9839 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9840 then
9841 return False;
9842 else
9843 return
9844 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9845 Skip_Controlling_Formals => True);
9846 end if;
9847
9848 else
9849 return False;
9850 end if;
9851 end Is_Interface_Conformant;
9852
9853 ---------------------------------
9854 -- Is_Non_Overriding_Operation --
9855 ---------------------------------
9856
9857 function Is_Non_Overriding_Operation
9858 (Prev_E : Entity_Id;
9859 New_E : Entity_Id) return Boolean
9860 is
9861 Formal : Entity_Id;
9862 F_Typ : Entity_Id;
9863 G_Typ : Entity_Id := Empty;
9864
9865 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9866 -- If F_Type is a derived type associated with a generic actual subtype,
9867 -- then return its Generic_Parent_Type attribute, else return Empty.
9868
9869 function Types_Correspond
9870 (P_Type : Entity_Id;
9871 N_Type : Entity_Id) return Boolean;
9872 -- Returns true if and only if the types (or designated types in the
9873 -- case of anonymous access types) are the same or N_Type is derived
9874 -- directly or indirectly from P_Type.
9875
9876 -----------------------------
9877 -- Get_Generic_Parent_Type --
9878 -----------------------------
9879
9880 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9881 G_Typ : Entity_Id;
9882 Defn : Node_Id;
9883 Indic : Node_Id;
9884
9885 begin
9886 if Is_Derived_Type (F_Typ)
9887 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9888 then
9889 -- The tree must be traversed to determine the parent subtype in
9890 -- the generic unit, which unfortunately isn't always available
9891 -- via semantic attributes. ??? (Note: The use of Original_Node
9892 -- is needed for cases where a full derived type has been
9893 -- rewritten.)
9894
9895 -- If the parent type is a scalar type, the derivation creates
9896 -- an anonymous base type for it, and the source type is its
9897 -- first subtype.
9898
9899 if Is_Scalar_Type (F_Typ)
9900 and then not Comes_From_Source (F_Typ)
9901 then
9902 Defn :=
9903 Type_Definition
9904 (Original_Node (Parent (First_Subtype (F_Typ))));
9905 else
9906 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9907 end if;
9908 if Nkind (Defn) = N_Derived_Type_Definition then
9909 Indic := Subtype_Indication (Defn);
9910
9911 if Nkind (Indic) = N_Subtype_Indication then
9912 G_Typ := Entity (Subtype_Mark (Indic));
9913 else
9914 G_Typ := Entity (Indic);
9915 end if;
9916
9917 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9918 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9919 then
9920 return Generic_Parent_Type (Parent (G_Typ));
9921 end if;
9922 end if;
9923 end if;
9924
9925 return Empty;
9926 end Get_Generic_Parent_Type;
9927
9928 ----------------------
9929 -- Types_Correspond --
9930 ----------------------
9931
9932 function Types_Correspond
9933 (P_Type : Entity_Id;
9934 N_Type : Entity_Id) return Boolean
9935 is
9936 Prev_Type : Entity_Id := Base_Type (P_Type);
9937 New_Type : Entity_Id := Base_Type (N_Type);
9938
9939 begin
9940 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9941 Prev_Type := Designated_Type (Prev_Type);
9942 end if;
9943
9944 if Ekind (New_Type) = E_Anonymous_Access_Type then
9945 New_Type := Designated_Type (New_Type);
9946 end if;
9947
9948 if Prev_Type = New_Type then
9949 return True;
9950
9951 elsif not Is_Class_Wide_Type (New_Type) then
9952 while Etype (New_Type) /= New_Type loop
9953 New_Type := Etype (New_Type);
9954
9955 if New_Type = Prev_Type then
9956 return True;
9957 end if;
9958 end loop;
9959 end if;
9960 return False;
9961 end Types_Correspond;
9962
9963 -- Start of processing for Is_Non_Overriding_Operation
9964
9965 begin
9966 -- In the case where both operations are implicit derived subprograms
9967 -- then neither overrides the other. This can only occur in certain
9968 -- obscure cases (e.g., derivation from homographs created in a generic
9969 -- instantiation).
9970
9971 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9972 return True;
9973
9974 elsif Ekind (Current_Scope) = E_Package
9975 and then Is_Generic_Instance (Current_Scope)
9976 and then In_Private_Part (Current_Scope)
9977 and then Comes_From_Source (New_E)
9978 then
9979 -- We examine the formals and result type of the inherited operation,
9980 -- to determine whether their type is derived from (the instance of)
9981 -- a generic type. The first such formal or result type is the one
9982 -- tested.
9983
9984 Formal := First_Formal (Prev_E);
9985 F_Typ := Empty;
9986 while Present (Formal) loop
9987 F_Typ := Base_Type (Etype (Formal));
9988
9989 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9990 F_Typ := Designated_Type (F_Typ);
9991 end if;
9992
9993 G_Typ := Get_Generic_Parent_Type (F_Typ);
9994 exit when Present (G_Typ);
9995
9996 Next_Formal (Formal);
9997 end loop;
9998
9999 -- If the function dispatches on result check the result type
10000
10001 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
10002 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
10003 end if;
10004
10005 if No (G_Typ) then
10006 return False;
10007 end if;
10008
10009 -- If the generic type is a private type, then the original operation
10010 -- was not overriding in the generic, because there was no primitive
10011 -- operation to override.
10012
10013 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
10014 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
10015 N_Formal_Private_Type_Definition
10016 then
10017 return True;
10018
10019 -- The generic parent type is the ancestor of a formal derived
10020 -- type declaration. We need to check whether it has a primitive
10021 -- operation that should be overridden by New_E in the generic.
10022
10023 else
10024 declare
10025 P_Formal : Entity_Id;
10026 N_Formal : Entity_Id;
10027 P_Typ : Entity_Id;
10028 N_Typ : Entity_Id;
10029 P_Prim : Entity_Id;
10030 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
10031
10032 begin
10033 while Present (Prim_Elt) loop
10034 P_Prim := Node (Prim_Elt);
10035
10036 if Chars (P_Prim) = Chars (New_E)
10037 and then Ekind (P_Prim) = Ekind (New_E)
10038 then
10039 P_Formal := First_Formal (P_Prim);
10040 N_Formal := First_Formal (New_E);
10041 while Present (P_Formal) and then Present (N_Formal) loop
10042 P_Typ := Etype (P_Formal);
10043 N_Typ := Etype (N_Formal);
10044
10045 if not Types_Correspond (P_Typ, N_Typ) then
10046 exit;
10047 end if;
10048
10049 Next_Entity (P_Formal);
10050 Next_Entity (N_Formal);
10051 end loop;
10052
10053 -- Found a matching primitive operation belonging to the
10054 -- formal ancestor type, so the new subprogram is
10055 -- overriding.
10056
10057 if No (P_Formal)
10058 and then No (N_Formal)
10059 and then (Ekind (New_E) /= E_Function
10060 or else
10061 Types_Correspond
10062 (Etype (P_Prim), Etype (New_E)))
10063 then
10064 return False;
10065 end if;
10066 end if;
10067
10068 Next_Elmt (Prim_Elt);
10069 end loop;
10070
10071 -- If no match found, then the new subprogram does not override
10072 -- in the generic (nor in the instance).
10073
10074 -- If the type in question is not abstract, and the subprogram
10075 -- is, this will be an error if the new operation is in the
10076 -- private part of the instance. Emit a warning now, which will
10077 -- make the subsequent error message easier to understand.
10078
10079 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
10080 and then Is_Abstract_Subprogram (Prev_E)
10081 and then In_Private_Part (Current_Scope)
10082 then
10083 Error_Msg_Node_2 := F_Typ;
10084 Error_Msg_NE
10085 ("private operation& in generic unit does not override "
10086 & "any primitive operation of& (RM 12.3 (18))??",
10087 New_E, New_E);
10088 end if;
10089
10090 return True;
10091 end;
10092 end if;
10093 else
10094 return False;
10095 end if;
10096 end Is_Non_Overriding_Operation;
10097
10098 -------------------------------------
10099 -- List_Inherited_Pre_Post_Aspects --
10100 -------------------------------------
10101
10102 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
10103 begin
10104 if Opt.List_Inherited_Aspects
10105 and then Is_Subprogram_Or_Generic_Subprogram (E)
10106 then
10107 declare
10108 Subps : constant Subprogram_List := Inherited_Subprograms (E);
10109 Items : Node_Id;
10110 Prag : Node_Id;
10111
10112 begin
10113 for Index in Subps'Range loop
10114 Items := Contract (Subps (Index));
10115
10116 if Present (Items) then
10117 Prag := Pre_Post_Conditions (Items);
10118 while Present (Prag) loop
10119 Error_Msg_Sloc := Sloc (Prag);
10120
10121 if Class_Present (Prag)
10122 and then not Split_PPC (Prag)
10123 then
10124 if Pragma_Name (Prag) = Name_Precondition then
10125 Error_Msg_N
10126 ("info: & inherits `Pre''Class` aspect from "
10127 & "#?L?", E);
10128 else
10129 Error_Msg_N
10130 ("info: & inherits `Post''Class` aspect from "
10131 & "#?L?", E);
10132 end if;
10133 end if;
10134
10135 Prag := Next_Pragma (Prag);
10136 end loop;
10137 end if;
10138 end loop;
10139 end;
10140 end if;
10141 end List_Inherited_Pre_Post_Aspects;
10142
10143 ------------------------------
10144 -- Make_Inequality_Operator --
10145 ------------------------------
10146
10147 -- S is the defining identifier of an equality operator. We build a
10148 -- subprogram declaration with the right signature. This operation is
10149 -- intrinsic, because it is always expanded as the negation of the
10150 -- call to the equality function.
10151
10152 procedure Make_Inequality_Operator (S : Entity_Id) is
10153 Loc : constant Source_Ptr := Sloc (S);
10154 Decl : Node_Id;
10155 Formals : List_Id;
10156 Op_Name : Entity_Id;
10157
10158 FF : constant Entity_Id := First_Formal (S);
10159 NF : constant Entity_Id := Next_Formal (FF);
10160
10161 begin
10162 -- Check that equality was properly defined, ignore call if not
10163
10164 if No (NF) then
10165 return;
10166 end if;
10167
10168 declare
10169 A : constant Entity_Id :=
10170 Make_Defining_Identifier (Sloc (FF),
10171 Chars => Chars (FF));
10172
10173 B : constant Entity_Id :=
10174 Make_Defining_Identifier (Sloc (NF),
10175 Chars => Chars (NF));
10176
10177 begin
10178 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
10179
10180 Formals := New_List (
10181 Make_Parameter_Specification (Loc,
10182 Defining_Identifier => A,
10183 Parameter_Type =>
10184 New_Occurrence_Of (Etype (First_Formal (S)),
10185 Sloc (Etype (First_Formal (S))))),
10186
10187 Make_Parameter_Specification (Loc,
10188 Defining_Identifier => B,
10189 Parameter_Type =>
10190 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
10191 Sloc (Etype (Next_Formal (First_Formal (S)))))));
10192
10193 Decl :=
10194 Make_Subprogram_Declaration (Loc,
10195 Specification =>
10196 Make_Function_Specification (Loc,
10197 Defining_Unit_Name => Op_Name,
10198 Parameter_Specifications => Formals,
10199 Result_Definition =>
10200 New_Occurrence_Of (Standard_Boolean, Loc)));
10201
10202 -- Insert inequality right after equality if it is explicit or after
10203 -- the derived type when implicit. These entities are created only
10204 -- for visibility purposes, and eventually replaced in the course
10205 -- of expansion, so they do not need to be attached to the tree and
10206 -- seen by the back-end. Keeping them internal also avoids spurious
10207 -- freezing problems. The declaration is inserted in the tree for
10208 -- analysis, and removed afterwards. If the equality operator comes
10209 -- from an explicit declaration, attach the inequality immediately
10210 -- after. Else the equality is inherited from a derived type
10211 -- declaration, so insert inequality after that declaration.
10212
10213 if No (Alias (S)) then
10214 Insert_After (Unit_Declaration_Node (S), Decl);
10215 elsif Is_List_Member (Parent (S)) then
10216 Insert_After (Parent (S), Decl);
10217 else
10218 Insert_After (Parent (Etype (First_Formal (S))), Decl);
10219 end if;
10220
10221 Mark_Rewrite_Insertion (Decl);
10222 Set_Is_Intrinsic_Subprogram (Op_Name);
10223 Analyze (Decl);
10224 Remove (Decl);
10225 Set_Has_Completion (Op_Name);
10226 Set_Corresponding_Equality (Op_Name, S);
10227 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
10228 end;
10229 end Make_Inequality_Operator;
10230
10231 ----------------------
10232 -- May_Need_Actuals --
10233 ----------------------
10234
10235 procedure May_Need_Actuals (Fun : Entity_Id) is
10236 F : Entity_Id;
10237 B : Boolean;
10238
10239 begin
10240 F := First_Formal (Fun);
10241 B := True;
10242 while Present (F) loop
10243 if No (Default_Value (F)) then
10244 B := False;
10245 exit;
10246 end if;
10247
10248 Next_Formal (F);
10249 end loop;
10250
10251 Set_Needs_No_Actuals (Fun, B);
10252 end May_Need_Actuals;
10253
10254 ---------------------
10255 -- Mode_Conformant --
10256 ---------------------
10257
10258 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
10259 Result : Boolean;
10260 begin
10261 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
10262 return Result;
10263 end Mode_Conformant;
10264
10265 ---------------------------
10266 -- New_Overloaded_Entity --
10267 ---------------------------
10268
10269 procedure New_Overloaded_Entity
10270 (S : Entity_Id;
10271 Derived_Type : Entity_Id := Empty)
10272 is
10273 Overridden_Subp : Entity_Id := Empty;
10274 -- Set if the current scope has an operation that is type-conformant
10275 -- with S, and becomes hidden by S.
10276
10277 Is_Primitive_Subp : Boolean;
10278 -- Set to True if the new subprogram is primitive
10279
10280 E : Entity_Id;
10281 -- Entity that S overrides
10282
10283 procedure Check_For_Primitive_Subprogram
10284 (Is_Primitive : out Boolean;
10285 Is_Overriding : Boolean := False);
10286 -- If the subprogram being analyzed is a primitive operation of the type
10287 -- of a formal or result, set the Has_Primitive_Operations flag on the
10288 -- type, and set Is_Primitive to True (otherwise set to False). Set the
10289 -- corresponding flag on the entity itself for later use.
10290
10291 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
10292 -- True if a) E is a subprogram whose first formal is a concurrent type
10293 -- defined in the scope of E that has some entry or subprogram whose
10294 -- profile matches E, or b) E is an internally built dispatching
10295 -- subprogram of a protected type and there is a matching subprogram
10296 -- defined in the enclosing scope of the protected type, or c) E is
10297 -- an entry of a synchronized type and a matching procedure has been
10298 -- previously defined in the enclosing scope of the synchronized type.
10299
10300 function Is_Private_Declaration (E : Entity_Id) return Boolean;
10301 -- Check that E is declared in the private part of the current package,
10302 -- or in the package body, where it may hide a previous declaration.
10303 -- We can't use In_Private_Part by itself because this flag is also
10304 -- set when freezing entities, so we must examine the place of the
10305 -- declaration in the tree, and recognize wrapper packages as well.
10306
10307 function Is_Overriding_Alias
10308 (Old_E : Entity_Id;
10309 New_E : Entity_Id) return Boolean;
10310 -- Check whether new subprogram and old subprogram are both inherited
10311 -- from subprograms that have distinct dispatch table entries. This can
10312 -- occur with derivations from instances with accidental homonyms. The
10313 -- function is conservative given that the converse is only true within
10314 -- instances that contain accidental overloadings.
10315
10316 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10317 -- Report conflict between entities S and E
10318
10319 ------------------------------------
10320 -- Check_For_Primitive_Subprogram --
10321 ------------------------------------
10322
10323 procedure Check_For_Primitive_Subprogram
10324 (Is_Primitive : out Boolean;
10325 Is_Overriding : Boolean := False)
10326 is
10327 Formal : Entity_Id;
10328 F_Typ : Entity_Id;
10329 B_Typ : Entity_Id;
10330
10331 function Visible_Part_Type (T : Entity_Id) return Boolean;
10332 -- Returns true if T is declared in the visible part of the current
10333 -- package scope; otherwise returns false. Assumes that T is declared
10334 -- in a package.
10335
10336 procedure Check_Private_Overriding (T : Entity_Id);
10337 -- Checks that if a primitive abstract subprogram of a visible
10338 -- abstract type is declared in a private part, then it must override
10339 -- an abstract subprogram declared in the visible part. Also checks
10340 -- that if a primitive function with a controlling result is declared
10341 -- in a private part, then it must override a function declared in
10342 -- the visible part.
10343
10344 ------------------------------
10345 -- Check_Private_Overriding --
10346 ------------------------------
10347
10348 procedure Check_Private_Overriding (T : Entity_Id) is
10349 function Overrides_Private_Part_Op return Boolean;
10350 -- This detects the special case where the overriding subprogram
10351 -- is overriding a subprogram that was declared in the same
10352 -- private part. That case is illegal by 3.9.3(10).
10353
10354 function Overrides_Visible_Function
10355 (Partial_View : Entity_Id) return Boolean;
10356 -- True if S overrides a function in the visible part. The
10357 -- overridden function could be explicitly or implicitly declared.
10358
10359 -------------------------------
10360 -- Overrides_Private_Part_Op --
10361 -------------------------------
10362
10363 function Overrides_Private_Part_Op return Boolean is
10364 Over_Decl : constant Node_Id :=
10365 Unit_Declaration_Node (Overridden_Operation (S));
10366 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10367
10368 begin
10369 pragma Assert (Is_Overriding);
10370 pragma Assert
10371 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10372 pragma Assert
10373 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10374
10375 return In_Same_List (Over_Decl, Subp_Decl);
10376 end Overrides_Private_Part_Op;
10377
10378 --------------------------------
10379 -- Overrides_Visible_Function --
10380 --------------------------------
10381
10382 function Overrides_Visible_Function
10383 (Partial_View : Entity_Id) return Boolean
10384 is
10385 begin
10386 if not Is_Overriding or else not Has_Homonym (S) then
10387 return False;
10388 end if;
10389
10390 if not Present (Partial_View) then
10391 return True;
10392 end if;
10393
10394 -- Search through all the homonyms H of S in the current
10395 -- package spec, and return True if we find one that matches.
10396 -- Note that Parent (H) will be the declaration of the
10397 -- partial view of T for a match.
10398
10399 declare
10400 H : Entity_Id := S;
10401 begin
10402 loop
10403 H := Homonym (H);
10404 exit when not Present (H) or else Scope (H) /= Scope (S);
10405
10406 if Nkind_In
10407 (Parent (H),
10408 N_Private_Extension_Declaration,
10409 N_Private_Type_Declaration)
10410 and then Defining_Identifier (Parent (H)) = Partial_View
10411 then
10412 return True;
10413 end if;
10414 end loop;
10415 end;
10416
10417 return False;
10418 end Overrides_Visible_Function;
10419
10420 -- Start of processing for Check_Private_Overriding
10421
10422 begin
10423 if Is_Package_Or_Generic_Package (Current_Scope)
10424 and then In_Private_Part (Current_Scope)
10425 and then Visible_Part_Type (T)
10426 and then not In_Instance
10427 then
10428 if Is_Abstract_Type (T)
10429 and then Is_Abstract_Subprogram (S)
10430 and then (not Is_Overriding
10431 or else not Is_Abstract_Subprogram (E)
10432 or else Overrides_Private_Part_Op)
10433 then
10434 Error_Msg_N
10435 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10436 S);
10437
10438 elsif Ekind (S) = E_Function then
10439 declare
10440 Partial_View : constant Entity_Id :=
10441 Incomplete_Or_Partial_View (T);
10442
10443 begin
10444 if not Overrides_Visible_Function (Partial_View) then
10445
10446 -- Here, S is "function ... return T;" declared in
10447 -- the private part, not overriding some visible
10448 -- operation. That's illegal in the tagged case
10449 -- (but not if the private type is untagged).
10450
10451 if ((Present (Partial_View)
10452 and then Is_Tagged_Type (Partial_View))
10453 or else (not Present (Partial_View)
10454 and then Is_Tagged_Type (T)))
10455 and then T = Base_Type (Etype (S))
10456 then
10457 Error_Msg_N
10458 ("private function with tagged result must"
10459 & " override visible-part function", S);
10460 Error_Msg_N
10461 ("\move subprogram to the visible part"
10462 & " (RM 3.9.3(10))", S);
10463
10464 -- AI05-0073: extend this test to the case of a
10465 -- function with a controlling access result.
10466
10467 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10468 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10469 and then
10470 not Is_Class_Wide_Type
10471 (Designated_Type (Etype (S)))
10472 and then Ada_Version >= Ada_2012
10473 then
10474 Error_Msg_N
10475 ("private function with controlling access "
10476 & "result must override visible-part function",
10477 S);
10478 Error_Msg_N
10479 ("\move subprogram to the visible part"
10480 & " (RM 3.9.3(10))", S);
10481 end if;
10482 end if;
10483 end;
10484 end if;
10485 end if;
10486 end Check_Private_Overriding;
10487
10488 -----------------------
10489 -- Visible_Part_Type --
10490 -----------------------
10491
10492 function Visible_Part_Type (T : Entity_Id) return Boolean is
10493 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10494
10495 begin
10496 -- If the entity is a private type, then it must be declared in a
10497 -- visible part.
10498
10499 if Ekind (T) in Private_Kind then
10500 return True;
10501
10502 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10503 return True;
10504
10505 elsif Is_List_Member (Declaration_Node (T))
10506 and then List_Containing (Declaration_Node (T)) =
10507 Visible_Declarations (Specification (P))
10508 then
10509 return True;
10510
10511 else
10512 return False;
10513 end if;
10514 end Visible_Part_Type;
10515
10516 -- Start of processing for Check_For_Primitive_Subprogram
10517
10518 begin
10519 Is_Primitive := False;
10520
10521 if not Comes_From_Source (S) then
10522 null;
10523
10524 -- If subprogram is at library level, it is not primitive operation
10525
10526 elsif Current_Scope = Standard_Standard then
10527 null;
10528
10529 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10530 and then not In_Package_Body (Current_Scope))
10531 or else Is_Overriding
10532 then
10533 -- For function, check return type
10534
10535 if Ekind (S) = E_Function then
10536 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10537 F_Typ := Designated_Type (Etype (S));
10538 else
10539 F_Typ := Etype (S);
10540 end if;
10541
10542 B_Typ := Base_Type (F_Typ);
10543
10544 if Scope (B_Typ) = Current_Scope
10545 and then not Is_Class_Wide_Type (B_Typ)
10546 and then not Is_Generic_Type (B_Typ)
10547 then
10548 Is_Primitive := True;
10549 Set_Has_Primitive_Operations (B_Typ);
10550 Set_Is_Primitive (S);
10551 Check_Private_Overriding (B_Typ);
10552
10553 -- The Ghost policy in effect at the point of declaration
10554 -- or a tagged type and a primitive operation must match
10555 -- (SPARK RM 6.9(16)).
10556
10557 Check_Ghost_Primitive (S, B_Typ);
10558 end if;
10559 end if;
10560
10561 -- For all subprograms, check formals
10562
10563 Formal := First_Formal (S);
10564 while Present (Formal) loop
10565 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10566 F_Typ := Designated_Type (Etype (Formal));
10567 else
10568 F_Typ := Etype (Formal);
10569 end if;
10570
10571 B_Typ := Base_Type (F_Typ);
10572
10573 if Ekind (B_Typ) = E_Access_Subtype then
10574 B_Typ := Base_Type (B_Typ);
10575 end if;
10576
10577 if Scope (B_Typ) = Current_Scope
10578 and then not Is_Class_Wide_Type (B_Typ)
10579 and then not Is_Generic_Type (B_Typ)
10580 then
10581 Is_Primitive := True;
10582 Set_Is_Primitive (S);
10583 Set_Has_Primitive_Operations (B_Typ);
10584 Check_Private_Overriding (B_Typ);
10585
10586 -- The Ghost policy in effect at the point of declaration
10587 -- of a tagged type and a primitive operation must match
10588 -- (SPARK RM 6.9(16)).
10589
10590 Check_Ghost_Primitive (S, B_Typ);
10591 end if;
10592
10593 Next_Formal (Formal);
10594 end loop;
10595
10596 -- Special case: An equality function can be redefined for a type
10597 -- occurring in a declarative part, and won't otherwise be treated as
10598 -- a primitive because it doesn't occur in a package spec and doesn't
10599 -- override an inherited subprogram. It's important that we mark it
10600 -- primitive so it can be returned by Collect_Primitive_Operations
10601 -- and be used in composing the equality operation of later types
10602 -- that have a component of the type.
10603
10604 elsif Chars (S) = Name_Op_Eq
10605 and then Etype (S) = Standard_Boolean
10606 then
10607 B_Typ := Base_Type (Etype (First_Formal (S)));
10608
10609 if Scope (B_Typ) = Current_Scope
10610 and then
10611 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10612 and then not Is_Limited_Type (B_Typ)
10613 then
10614 Is_Primitive := True;
10615 Set_Is_Primitive (S);
10616 Set_Has_Primitive_Operations (B_Typ);
10617 Check_Private_Overriding (B_Typ);
10618
10619 -- The Ghost policy in effect at the point of declaration of a
10620 -- tagged type and a primitive operation must match
10621 -- (SPARK RM 6.9(16)).
10622
10623 Check_Ghost_Primitive (S, B_Typ);
10624 end if;
10625 end if;
10626 end Check_For_Primitive_Subprogram;
10627
10628 --------------------------------------
10629 -- Has_Matching_Entry_Or_Subprogram --
10630 --------------------------------------
10631
10632 function Has_Matching_Entry_Or_Subprogram
10633 (E : Entity_Id) return Boolean
10634 is
10635 function Check_Conforming_Parameters
10636 (E1_Param : Node_Id;
10637 E2_Param : Node_Id;
10638 Ctype : Conformance_Type) return Boolean;
10639 -- Starting from the given parameters, check that all the parameters
10640 -- of two entries or subprograms are conformant. Used to skip
10641 -- the check on the controlling argument.
10642
10643 function Matching_Entry_Or_Subprogram
10644 (Conc_Typ : Entity_Id;
10645 Subp : Entity_Id) return Entity_Id;
10646 -- Return the first entry or subprogram of the given concurrent type
10647 -- whose name matches the name of Subp and has a profile conformant
10648 -- with Subp; return Empty if not found.
10649
10650 function Matching_Dispatching_Subprogram
10651 (Conc_Typ : Entity_Id;
10652 Ent : Entity_Id) return Entity_Id;
10653 -- Return the first dispatching primitive of Conc_Type defined in the
10654 -- enclosing scope of Conc_Type (i.e. before the full definition of
10655 -- this concurrent type) whose name matches the entry Ent and has a
10656 -- profile conformant with the profile of the corresponding (not yet
10657 -- built) dispatching primitive of Ent; return Empty if not found.
10658
10659 function Matching_Original_Protected_Subprogram
10660 (Prot_Typ : Entity_Id;
10661 Subp : Entity_Id) return Entity_Id;
10662 -- Return the first subprogram defined in the enclosing scope of
10663 -- Prot_Typ (before the full definition of this protected type)
10664 -- whose name matches the original name of Subp and has a profile
10665 -- conformant with the profile of Subp; return Empty if not found.
10666
10667 function Normalized_First_Parameter_Type
10668 (E : Entity_Id) return Entity_Id;
10669 -- Return the type of the first parameter unless that type
10670 -- is an anonymous access type, in which case return the
10671 -- designated type. Used to treat anonymous-access-to-synchronized
10672 -- the same as synchronized for purposes of checking for
10673 -- prefixed view profile conflicts.
10674
10675 ---------------------------------
10676 -- Check_Conforming_Parameters --
10677 ---------------------------------
10678
10679 function Check_Conforming_Parameters
10680 (E1_Param : Node_Id;
10681 E2_Param : Node_Id;
10682 Ctype : Conformance_Type) return Boolean
10683 is
10684 Param_E1 : Node_Id := E1_Param;
10685 Param_E2 : Node_Id := E2_Param;
10686
10687 begin
10688 while Present (Param_E1) and then Present (Param_E2) loop
10689 if (Ctype >= Mode_Conformant) and then
10690 Ekind (Defining_Identifier (Param_E1)) /=
10691 Ekind (Defining_Identifier (Param_E2))
10692 then
10693 return False;
10694 elsif not
10695 Conforming_Types
10696 (Find_Parameter_Type (Param_E1),
10697 Find_Parameter_Type (Param_E2),
10698 Ctype)
10699 then
10700 return False;
10701 end if;
10702
10703 Next (Param_E1);
10704 Next (Param_E2);
10705 end loop;
10706
10707 -- The candidate is not valid if one of the two lists contains
10708 -- more parameters than the other
10709
10710 return No (Param_E1) and then No (Param_E2);
10711 end Check_Conforming_Parameters;
10712
10713 ----------------------------------
10714 -- Matching_Entry_Or_Subprogram --
10715 ----------------------------------
10716
10717 function Matching_Entry_Or_Subprogram
10718 (Conc_Typ : Entity_Id;
10719 Subp : Entity_Id) return Entity_Id
10720 is
10721 E : Entity_Id;
10722
10723 begin
10724 E := First_Entity (Conc_Typ);
10725 while Present (E) loop
10726 if Chars (Subp) = Chars (E)
10727 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10728 and then
10729 Check_Conforming_Parameters
10730 (First (Parameter_Specifications (Parent (E))),
10731 Next (First (Parameter_Specifications (Parent (Subp)))),
10732 Type_Conformant)
10733 then
10734 return E;
10735 end if;
10736
10737 Next_Entity (E);
10738 end loop;
10739
10740 return Empty;
10741 end Matching_Entry_Or_Subprogram;
10742
10743 -------------------------------------
10744 -- Matching_Dispatching_Subprogram --
10745 -------------------------------------
10746
10747 function Matching_Dispatching_Subprogram
10748 (Conc_Typ : Entity_Id;
10749 Ent : Entity_Id) return Entity_Id
10750 is
10751 E : Entity_Id;
10752
10753 begin
10754 -- Search for entities in the enclosing scope of this synchonized
10755 -- type.
10756
10757 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10758 Push_Scope (Scope (Conc_Typ));
10759 E := Current_Entity_In_Scope (Ent);
10760 Pop_Scope;
10761
10762 while Present (E) loop
10763 if Scope (E) = Scope (Conc_Typ)
10764 and then Comes_From_Source (E)
10765 and then Ekind (E) = E_Procedure
10766 and then Present (First_Entity (E))
10767 and then Is_Controlling_Formal (First_Entity (E))
10768 and then Etype (First_Entity (E)) = Conc_Typ
10769 and then
10770 Check_Conforming_Parameters
10771 (First (Parameter_Specifications (Parent (Ent))),
10772 Next (First (Parameter_Specifications (Parent (E)))),
10773 Subtype_Conformant)
10774 then
10775 return E;
10776 end if;
10777
10778 E := Homonym (E);
10779 end loop;
10780
10781 return Empty;
10782 end Matching_Dispatching_Subprogram;
10783
10784 --------------------------------------------
10785 -- Matching_Original_Protected_Subprogram --
10786 --------------------------------------------
10787
10788 function Matching_Original_Protected_Subprogram
10789 (Prot_Typ : Entity_Id;
10790 Subp : Entity_Id) return Entity_Id
10791 is
10792 ICF : constant Boolean :=
10793 Is_Controlling_Formal (First_Entity (Subp));
10794 E : Entity_Id;
10795
10796 begin
10797 -- Temporarily decorate the first parameter of Subp as controlling
10798 -- formal, required to invoke Subtype_Conformant.
10799
10800 Set_Is_Controlling_Formal (First_Entity (Subp));
10801
10802 E :=
10803 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10804
10805 while Present (E) loop
10806 if Scope (E) = Scope (Prot_Typ)
10807 and then Comes_From_Source (E)
10808 and then Ekind (Subp) = Ekind (E)
10809 and then Present (First_Entity (E))
10810 and then Is_Controlling_Formal (First_Entity (E))
10811 and then Etype (First_Entity (E)) = Prot_Typ
10812 and then Subtype_Conformant (Subp, E,
10813 Skip_Controlling_Formals => True)
10814 then
10815 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10816 return E;
10817 end if;
10818
10819 E := Homonym (E);
10820 end loop;
10821
10822 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10823
10824 return Empty;
10825 end Matching_Original_Protected_Subprogram;
10826
10827 -------------------------------------
10828 -- Normalized_First_Parameter_Type --
10829 -------------------------------------
10830
10831 function Normalized_First_Parameter_Type
10832 (E : Entity_Id) return Entity_Id
10833 is
10834 Result : Entity_Id := Etype (First_Entity (E));
10835 begin
10836 if Ekind (Result) = E_Anonymous_Access_Type then
10837 Result := Designated_Type (Result);
10838 end if;
10839 return Result;
10840 end Normalized_First_Parameter_Type;
10841
10842 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10843
10844 begin
10845 -- Case 1: E is a subprogram whose first formal is a concurrent type
10846 -- defined in the scope of E that has an entry or subprogram whose
10847 -- profile matches E.
10848
10849 if Comes_From_Source (E)
10850 and then Is_Subprogram (E)
10851 and then Present (First_Entity (E))
10852 and then Is_Concurrent_Record_Type
10853 (Normalized_First_Parameter_Type (E))
10854 then
10855 if Scope (E) =
10856 Scope (Corresponding_Concurrent_Type
10857 (Normalized_First_Parameter_Type (E)))
10858 and then
10859 Present
10860 (Matching_Entry_Or_Subprogram
10861 (Corresponding_Concurrent_Type
10862 (Normalized_First_Parameter_Type (E)),
10863 Subp => E))
10864 then
10865 Report_Conflict (E,
10866 Matching_Entry_Or_Subprogram
10867 (Corresponding_Concurrent_Type
10868 (Normalized_First_Parameter_Type (E)),
10869 Subp => E));
10870 return True;
10871 end if;
10872
10873 -- Case 2: E is an internally built dispatching subprogram of a
10874 -- protected type and there is a subprogram defined in the enclosing
10875 -- scope of the protected type that has the original name of E and
10876 -- its profile is conformant with the profile of E. We check the
10877 -- name of the original protected subprogram associated with E since
10878 -- the expander builds dispatching primitives of protected functions
10879 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10880
10881 elsif not Comes_From_Source (E)
10882 and then Is_Subprogram (E)
10883 and then Present (First_Entity (E))
10884 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10885 and then Present (Original_Protected_Subprogram (E))
10886 and then
10887 Present
10888 (Matching_Original_Protected_Subprogram
10889 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10890 Subp => E))
10891 then
10892 Report_Conflict (E,
10893 Matching_Original_Protected_Subprogram
10894 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10895 Subp => E));
10896 return True;
10897
10898 -- Case 3: E is an entry of a synchronized type and a matching
10899 -- procedure has been previously defined in the enclosing scope
10900 -- of the synchronized type.
10901
10902 elsif Comes_From_Source (E)
10903 and then Ekind (E) = E_Entry
10904 and then
10905 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10906 then
10907 Report_Conflict (E,
10908 Matching_Dispatching_Subprogram (Current_Scope, E));
10909 return True;
10910 end if;
10911
10912 return False;
10913 end Has_Matching_Entry_Or_Subprogram;
10914
10915 ----------------------------
10916 -- Is_Private_Declaration --
10917 ----------------------------
10918
10919 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10920 Decl : constant Node_Id := Unit_Declaration_Node (E);
10921 Priv_Decls : List_Id;
10922
10923 begin
10924 if Is_Package_Or_Generic_Package (Current_Scope)
10925 and then In_Private_Part (Current_Scope)
10926 then
10927 Priv_Decls :=
10928 Private_Declarations (Package_Specification (Current_Scope));
10929
10930 return In_Package_Body (Current_Scope)
10931 or else
10932 (Is_List_Member (Decl)
10933 and then List_Containing (Decl) = Priv_Decls)
10934 or else (Nkind (Parent (Decl)) = N_Package_Specification
10935 and then not
10936 Is_Compilation_Unit
10937 (Defining_Entity (Parent (Decl)))
10938 and then List_Containing (Parent (Parent (Decl))) =
10939 Priv_Decls);
10940 else
10941 return False;
10942 end if;
10943 end Is_Private_Declaration;
10944
10945 --------------------------
10946 -- Is_Overriding_Alias --
10947 --------------------------
10948
10949 function Is_Overriding_Alias
10950 (Old_E : Entity_Id;
10951 New_E : Entity_Id) return Boolean
10952 is
10953 AO : constant Entity_Id := Alias (Old_E);
10954 AN : constant Entity_Id := Alias (New_E);
10955
10956 begin
10957 return Scope (AO) /= Scope (AN)
10958 or else No (DTC_Entity (AO))
10959 or else No (DTC_Entity (AN))
10960 or else DT_Position (AO) = DT_Position (AN);
10961 end Is_Overriding_Alias;
10962
10963 ---------------------
10964 -- Report_Conflict --
10965 ---------------------
10966
10967 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10968 begin
10969 Error_Msg_Sloc := Sloc (E);
10970
10971 -- Generate message, with useful additional warning if in generic
10972
10973 if Is_Generic_Unit (E) then
10974 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10975 Error_Msg_N ("\& conflicts with declaration#", S);
10976 else
10977 Error_Msg_N ("& conflicts with declaration#", S);
10978 end if;
10979 end Report_Conflict;
10980
10981 -- Start of processing for New_Overloaded_Entity
10982
10983 begin
10984 -- We need to look for an entity that S may override. This must be a
10985 -- homonym in the current scope, so we look for the first homonym of
10986 -- S in the current scope as the starting point for the search.
10987
10988 E := Current_Entity_In_Scope (S);
10989
10990 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10991 -- They are directly added to the list of primitive operations of
10992 -- Derived_Type, unless this is a rederivation in the private part
10993 -- of an operation that was already derived in the visible part of
10994 -- the current package.
10995
10996 if Ada_Version >= Ada_2005
10997 and then Present (Derived_Type)
10998 and then Present (Alias (S))
10999 and then Is_Dispatching_Operation (Alias (S))
11000 and then Present (Find_Dispatching_Type (Alias (S)))
11001 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
11002 then
11003 -- For private types, when the full-view is processed we propagate to
11004 -- the full view the non-overridden entities whose attribute "alias"
11005 -- references an interface primitive. These entities were added by
11006 -- Derive_Subprograms to ensure that interface primitives are
11007 -- covered.
11008
11009 -- Inside_Freeze_Actions is non zero when S corresponds with an
11010 -- internal entity that links an interface primitive with its
11011 -- covering primitive through attribute Interface_Alias (see
11012 -- Add_Internal_Interface_Entities).
11013
11014 if Inside_Freezing_Actions = 0
11015 and then Is_Package_Or_Generic_Package (Current_Scope)
11016 and then In_Private_Part (Current_Scope)
11017 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
11018 and then Nkind (Parent (S)) = N_Full_Type_Declaration
11019 and then Full_View (Defining_Identifier (Parent (E)))
11020 = Defining_Identifier (Parent (S))
11021 and then Alias (E) = Alias (S)
11022 then
11023 Check_Operation_From_Private_View (S, E);
11024 Set_Is_Dispatching_Operation (S);
11025
11026 -- Common case
11027
11028 else
11029 Enter_Overloaded_Entity (S);
11030 Check_Dispatching_Operation (S, Empty);
11031 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11032 end if;
11033
11034 return;
11035 end if;
11036
11037 -- For synchronized types check conflicts of this entity with previously
11038 -- defined entities.
11039
11040 if Ada_Version >= Ada_2005
11041 and then Has_Matching_Entry_Or_Subprogram (S)
11042 then
11043 return;
11044 end if;
11045
11046 -- If there is no homonym then this is definitely not overriding
11047
11048 if No (E) then
11049 Enter_Overloaded_Entity (S);
11050 Check_Dispatching_Operation (S, Empty);
11051 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11052
11053 -- If subprogram has an explicit declaration, check whether it has an
11054 -- overriding indicator.
11055
11056 if Comes_From_Source (S) then
11057 Check_Synchronized_Overriding (S, Overridden_Subp);
11058
11059 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
11060 -- it may have overridden some hidden inherited primitive. Update
11061 -- Overridden_Subp to avoid spurious errors when checking the
11062 -- overriding indicator.
11063
11064 if Ada_Version >= Ada_2012
11065 and then No (Overridden_Subp)
11066 and then Is_Dispatching_Operation (S)
11067 and then Present (Overridden_Operation (S))
11068 then
11069 Overridden_Subp := Overridden_Operation (S);
11070 end if;
11071
11072 Check_Overriding_Indicator
11073 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11074
11075 -- The Ghost policy in effect at the point of declaration of a
11076 -- parent subprogram and an overriding subprogram must match
11077 -- (SPARK RM 6.9(17)).
11078
11079 Check_Ghost_Overriding (S, Overridden_Subp);
11080 end if;
11081
11082 -- If there is a homonym that is not overloadable, then we have an
11083 -- error, except for the special cases checked explicitly below.
11084
11085 elsif not Is_Overloadable (E) then
11086
11087 -- Check for spurious conflict produced by a subprogram that has the
11088 -- same name as that of the enclosing generic package. The conflict
11089 -- occurs within an instance, between the subprogram and the renaming
11090 -- declaration for the package. After the subprogram, the package
11091 -- renaming declaration becomes hidden.
11092
11093 if Ekind (E) = E_Package
11094 and then Present (Renamed_Object (E))
11095 and then Renamed_Object (E) = Current_Scope
11096 and then Nkind (Parent (Renamed_Object (E))) =
11097 N_Package_Specification
11098 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
11099 then
11100 Set_Is_Hidden (E);
11101 Set_Is_Immediately_Visible (E, False);
11102 Enter_Overloaded_Entity (S);
11103 Set_Homonym (S, Homonym (E));
11104 Check_Dispatching_Operation (S, Empty);
11105 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
11106
11107 -- If the subprogram is implicit it is hidden by the previous
11108 -- declaration. However if it is dispatching, it must appear in the
11109 -- dispatch table anyway, because it can be dispatched to even if it
11110 -- cannot be called directly.
11111
11112 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
11113 Set_Scope (S, Current_Scope);
11114
11115 if Is_Dispatching_Operation (Alias (S)) then
11116 Check_Dispatching_Operation (S, Empty);
11117 end if;
11118
11119 return;
11120
11121 else
11122 Report_Conflict (S, E);
11123 return;
11124 end if;
11125
11126 -- E exists and is overloadable
11127
11128 else
11129 Check_Synchronized_Overriding (S, Overridden_Subp);
11130
11131 -- Loop through E and its homonyms to determine if any of them is
11132 -- the candidate for overriding by S.
11133
11134 while Present (E) loop
11135
11136 -- Definitely not interesting if not in the current scope
11137
11138 if Scope (E) /= Current_Scope then
11139 null;
11140
11141 -- A function can overload the name of an abstract state. The
11142 -- state can be viewed as a function with a profile that cannot
11143 -- be matched by anything.
11144
11145 elsif Ekind (S) = E_Function
11146 and then Ekind (E) = E_Abstract_State
11147 then
11148 Enter_Overloaded_Entity (S);
11149 return;
11150
11151 -- Ada 2012 (AI05-0165): For internally generated bodies of null
11152 -- procedures locate the internally generated spec. We enforce
11153 -- mode conformance since a tagged type may inherit from
11154 -- interfaces several null primitives which differ only in
11155 -- the mode of the formals.
11156
11157 elsif not Comes_From_Source (S)
11158 and then Is_Null_Procedure (S)
11159 and then not Mode_Conformant (E, S)
11160 then
11161 null;
11162
11163 -- Check if we have type conformance
11164
11165 elsif Type_Conformant (E, S) then
11166
11167 -- If the old and new entities have the same profile and one
11168 -- is not the body of the other, then this is an error, unless
11169 -- one of them is implicitly declared.
11170
11171 -- There are some cases when both can be implicit, for example
11172 -- when both a literal and a function that overrides it are
11173 -- inherited in a derivation, or when an inherited operation
11174 -- of a tagged full type overrides the inherited operation of
11175 -- a private extension. Ada 83 had a special rule for the
11176 -- literal case. In Ada 95, the later implicit operation hides
11177 -- the former, and the literal is always the former. In the
11178 -- odd case where both are derived operations declared at the
11179 -- same point, both operations should be declared, and in that
11180 -- case we bypass the following test and proceed to the next
11181 -- part. This can only occur for certain obscure cases in
11182 -- instances, when an operation on a type derived from a formal
11183 -- private type does not override a homograph inherited from
11184 -- the actual. In subsequent derivations of such a type, the
11185 -- DT positions of these operations remain distinct, if they
11186 -- have been set.
11187
11188 if Present (Alias (S))
11189 and then (No (Alias (E))
11190 or else Comes_From_Source (E)
11191 or else Is_Abstract_Subprogram (S)
11192 or else
11193 (Is_Dispatching_Operation (E)
11194 and then Is_Overriding_Alias (E, S)))
11195 and then Ekind (E) /= E_Enumeration_Literal
11196 then
11197 -- When an derived operation is overloaded it may be due to
11198 -- the fact that the full view of a private extension
11199 -- re-inherits. It has to be dealt with.
11200
11201 if Is_Package_Or_Generic_Package (Current_Scope)
11202 and then In_Private_Part (Current_Scope)
11203 then
11204 Check_Operation_From_Private_View (S, E);
11205 end if;
11206
11207 -- In any case the implicit operation remains hidden by the
11208 -- existing declaration, which is overriding. Indicate that
11209 -- E overrides the operation from which S is inherited.
11210
11211 if Present (Alias (S)) then
11212 Set_Overridden_Operation (E, Alias (S));
11213 Inherit_Subprogram_Contract (E, Alias (S));
11214
11215 else
11216 Set_Overridden_Operation (E, S);
11217 Inherit_Subprogram_Contract (E, S);
11218 end if;
11219
11220 if Comes_From_Source (E) then
11221 Check_Overriding_Indicator (E, S, Is_Primitive => False);
11222
11223 -- The Ghost policy in effect at the point of declaration
11224 -- of a parent subprogram and an overriding subprogram
11225 -- must match (SPARK RM 6.9(17)).
11226
11227 Check_Ghost_Overriding (E, S);
11228 end if;
11229
11230 return;
11231
11232 -- Within an instance, the renaming declarations for actual
11233 -- subprograms may become ambiguous, but they do not hide each
11234 -- other.
11235
11236 elsif Ekind (E) /= E_Entry
11237 and then not Comes_From_Source (E)
11238 and then not Is_Generic_Instance (E)
11239 and then (Present (Alias (E))
11240 or else Is_Intrinsic_Subprogram (E))
11241 and then (not In_Instance
11242 or else No (Parent (E))
11243 or else Nkind (Unit_Declaration_Node (E)) /=
11244 N_Subprogram_Renaming_Declaration)
11245 then
11246 -- A subprogram child unit is not allowed to override an
11247 -- inherited subprogram (10.1.1(20)).
11248
11249 if Is_Child_Unit (S) then
11250 Error_Msg_N
11251 ("child unit overrides inherited subprogram in parent",
11252 S);
11253 return;
11254 end if;
11255
11256 if Is_Non_Overriding_Operation (E, S) then
11257 Enter_Overloaded_Entity (S);
11258
11259 if No (Derived_Type)
11260 or else Is_Tagged_Type (Derived_Type)
11261 then
11262 Check_Dispatching_Operation (S, Empty);
11263 end if;
11264
11265 return;
11266 end if;
11267
11268 -- E is a derived operation or an internal operator which
11269 -- is being overridden. Remove E from further visibility.
11270 -- Furthermore, if E is a dispatching operation, it must be
11271 -- replaced in the list of primitive operations of its type
11272 -- (see Override_Dispatching_Operation).
11273
11274 Overridden_Subp := E;
11275
11276 -- It is possible for E to be in the current scope and
11277 -- yet not in the entity chain. This can only occur in a
11278 -- generic context where E is an implicit concatenation
11279 -- in the formal part, because in a generic body the
11280 -- entity chain starts with the formals.
11281
11282 -- In GNATprove mode, a wrapper for an operation with
11283 -- axiomatization may be a homonym of another declaration
11284 -- for an actual subprogram (needs refinement ???).
11285
11286 if No (Prev_Entity (E)) then
11287 if In_Instance
11288 and then GNATprove_Mode
11289 and then
11290 Nkind (Original_Node (Unit_Declaration_Node (S))) =
11291 N_Subprogram_Renaming_Declaration
11292 then
11293 return;
11294 else
11295 pragma Assert (Chars (E) = Name_Op_Concat);
11296 null;
11297 end if;
11298 end if;
11299
11300 -- E must be removed both from the entity_list of the
11301 -- current scope, and from the visibility chain.
11302
11303 if Debug_Flag_E then
11304 Write_Str ("Override implicit operation ");
11305 Write_Int (Int (E));
11306 Write_Eol;
11307 end if;
11308
11309 -- If E is a predefined concatenation, it stands for four
11310 -- different operations. As a result, a single explicit
11311 -- declaration does not hide it. In a possible ambiguous
11312 -- situation, Disambiguate chooses the user-defined op,
11313 -- so it is correct to retain the previous internal one.
11314
11315 if Chars (E) /= Name_Op_Concat
11316 or else Ekind (E) /= E_Operator
11317 then
11318 -- For nondispatching derived operations that are
11319 -- overridden by a subprogram declared in the private
11320 -- part of a package, we retain the derived subprogram
11321 -- but mark it as not immediately visible. If the
11322 -- derived operation was declared in the visible part
11323 -- then this ensures that it will still be visible
11324 -- outside the package with the proper signature
11325 -- (calls from outside must also be directed to this
11326 -- version rather than the overriding one, unlike the
11327 -- dispatching case). Calls from inside the package
11328 -- will still resolve to the overriding subprogram
11329 -- since the derived one is marked as not visible
11330 -- within the package.
11331
11332 -- If the private operation is dispatching, we achieve
11333 -- the overriding by keeping the implicit operation
11334 -- but setting its alias to be the overriding one. In
11335 -- this fashion the proper body is executed in all
11336 -- cases, but the original signature is used outside
11337 -- of the package.
11338
11339 -- If the overriding is not in the private part, we
11340 -- remove the implicit operation altogether.
11341
11342 if Is_Private_Declaration (S) then
11343 if not Is_Dispatching_Operation (E) then
11344 Set_Is_Immediately_Visible (E, False);
11345 else
11346 -- Work done in Override_Dispatching_Operation, so
11347 -- nothing else needs to be done here.
11348
11349 null;
11350 end if;
11351
11352 else
11353 Remove_Entity_And_Homonym (E);
11354 end if;
11355 end if;
11356
11357 Enter_Overloaded_Entity (S);
11358
11359 -- For entities generated by Derive_Subprograms the
11360 -- overridden operation is the inherited primitive
11361 -- (which is available through the attribute alias).
11362
11363 if not (Comes_From_Source (E))
11364 and then Is_Dispatching_Operation (E)
11365 and then Find_Dispatching_Type (E) =
11366 Find_Dispatching_Type (S)
11367 and then Present (Alias (E))
11368 and then Comes_From_Source (Alias (E))
11369 then
11370 Set_Overridden_Operation (S, Alias (E));
11371 Inherit_Subprogram_Contract (S, Alias (E));
11372
11373 -- Normal case of setting entity as overridden
11374
11375 -- Note: Static_Initialization and Overridden_Operation
11376 -- attributes use the same field in subprogram entities.
11377 -- Static_Initialization is only defined for internal
11378 -- initialization procedures, where Overridden_Operation
11379 -- is irrelevant. Therefore the setting of this attribute
11380 -- must check whether the target is an init_proc.
11381
11382 elsif not Is_Init_Proc (S) then
11383 Set_Overridden_Operation (S, E);
11384 Inherit_Subprogram_Contract (S, E);
11385 end if;
11386
11387 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11388
11389 -- The Ghost policy in effect at the point of declaration
11390 -- of a parent subprogram and an overriding subprogram
11391 -- must match (SPARK RM 6.9(17)).
11392
11393 Check_Ghost_Overriding (S, E);
11394
11395 -- If S is a user-defined subprogram or a null procedure
11396 -- expanded to override an inherited null procedure, or a
11397 -- predefined dispatching primitive then indicate that E
11398 -- overrides the operation from which S is inherited.
11399
11400 if Comes_From_Source (S)
11401 or else
11402 (Present (Parent (S))
11403 and then Nkind (Parent (S)) = N_Procedure_Specification
11404 and then Null_Present (Parent (S)))
11405 or else
11406 (Present (Alias (E))
11407 and then
11408 Is_Predefined_Dispatching_Operation (Alias (E)))
11409 then
11410 if Present (Alias (E)) then
11411 Set_Overridden_Operation (S, Alias (E));
11412 Inherit_Subprogram_Contract (S, Alias (E));
11413 end if;
11414 end if;
11415
11416 if Is_Dispatching_Operation (E) then
11417
11418 -- An overriding dispatching subprogram inherits the
11419 -- convention of the overridden subprogram (AI-117).
11420
11421 Set_Convention (S, Convention (E));
11422 Check_Dispatching_Operation (S, E);
11423
11424 else
11425 Check_Dispatching_Operation (S, Empty);
11426 end if;
11427
11428 Check_For_Primitive_Subprogram
11429 (Is_Primitive_Subp, Is_Overriding => True);
11430 goto Check_Inequality;
11431
11432 -- Apparent redeclarations in instances can occur when two
11433 -- formal types get the same actual type. The subprograms in
11434 -- in the instance are legal, even if not callable from the
11435 -- outside. Calls from within are disambiguated elsewhere.
11436 -- For dispatching operations in the visible part, the usual
11437 -- rules apply, and operations with the same profile are not
11438 -- legal (B830001).
11439
11440 elsif (In_Instance_Visible_Part
11441 and then not Is_Dispatching_Operation (E))
11442 or else In_Instance_Not_Visible
11443 then
11444 null;
11445
11446 -- Here we have a real error (identical profile)
11447
11448 else
11449 Error_Msg_Sloc := Sloc (E);
11450
11451 -- Avoid cascaded errors if the entity appears in
11452 -- subsequent calls.
11453
11454 Set_Scope (S, Current_Scope);
11455
11456 -- Generate error, with extra useful warning for the case
11457 -- of a generic instance with no completion.
11458
11459 if Is_Generic_Instance (S)
11460 and then not Has_Completion (E)
11461 then
11462 Error_Msg_N
11463 ("instantiation cannot provide body for&", S);
11464 Error_Msg_N ("\& conflicts with declaration#", S);
11465 else
11466 Error_Msg_N ("& conflicts with declaration#", S);
11467 end if;
11468
11469 return;
11470 end if;
11471
11472 else
11473 -- If one subprogram has an access parameter and the other
11474 -- a parameter of an access type, calls to either might be
11475 -- ambiguous. Verify that parameters match except for the
11476 -- access parameter.
11477
11478 if May_Hide_Profile then
11479 declare
11480 F1 : Entity_Id;
11481 F2 : Entity_Id;
11482
11483 begin
11484 F1 := First_Formal (S);
11485 F2 := First_Formal (E);
11486 while Present (F1) and then Present (F2) loop
11487 if Is_Access_Type (Etype (F1)) then
11488 if not Is_Access_Type (Etype (F2))
11489 or else not Conforming_Types
11490 (Designated_Type (Etype (F1)),
11491 Designated_Type (Etype (F2)),
11492 Type_Conformant)
11493 then
11494 May_Hide_Profile := False;
11495 end if;
11496
11497 elsif
11498 not Conforming_Types
11499 (Etype (F1), Etype (F2), Type_Conformant)
11500 then
11501 May_Hide_Profile := False;
11502 end if;
11503
11504 Next_Formal (F1);
11505 Next_Formal (F2);
11506 end loop;
11507
11508 if May_Hide_Profile
11509 and then No (F1)
11510 and then No (F2)
11511 then
11512 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11513 end if;
11514 end;
11515 end if;
11516 end if;
11517
11518 E := Homonym (E);
11519 end loop;
11520
11521 -- On exit, we know that S is a new entity
11522
11523 Enter_Overloaded_Entity (S);
11524 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11525 Check_Overriding_Indicator
11526 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11527
11528 -- The Ghost policy in effect at the point of declaration of a parent
11529 -- subprogram and an overriding subprogram must match
11530 -- (SPARK RM 6.9(17)).
11531
11532 Check_Ghost_Overriding (S, Overridden_Subp);
11533
11534 -- Overloading is not allowed in SPARK, except for operators
11535
11536 if Nkind (S) /= N_Defining_Operator_Symbol then
11537 Error_Msg_Sloc := Sloc (Homonym (S));
11538 Check_SPARK_05_Restriction
11539 ("overloading not allowed with entity#", S);
11540 end if;
11541
11542 -- If S is a derived operation for an untagged type then by
11543 -- definition it's not a dispatching operation (even if the parent
11544 -- operation was dispatching), so Check_Dispatching_Operation is not
11545 -- called in that case.
11546
11547 if No (Derived_Type)
11548 or else Is_Tagged_Type (Derived_Type)
11549 then
11550 Check_Dispatching_Operation (S, Empty);
11551 end if;
11552 end if;
11553
11554 -- If this is a user-defined equality operator that is not a derived
11555 -- subprogram, create the corresponding inequality. If the operation is
11556 -- dispatching, the expansion is done elsewhere, and we do not create
11557 -- an explicit inequality operation.
11558
11559 <<Check_Inequality>>
11560 if Chars (S) = Name_Op_Eq
11561 and then Etype (S) = Standard_Boolean
11562 and then Present (Parent (S))
11563 and then not Is_Dispatching_Operation (S)
11564 then
11565 Make_Inequality_Operator (S);
11566 Check_Untagged_Equality (S);
11567 end if;
11568 end New_Overloaded_Entity;
11569
11570 ----------------------------------
11571 -- Preanalyze_Formal_Expression --
11572 ----------------------------------
11573
11574 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
11575 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
11576 begin
11577 In_Spec_Expression := True;
11578 Preanalyze_With_Freezing_And_Resolve (N, T);
11579 In_Spec_Expression := Save_In_Spec_Expression;
11580 end Preanalyze_Formal_Expression;
11581
11582 ---------------------
11583 -- Process_Formals --
11584 ---------------------
11585
11586 procedure Process_Formals
11587 (T : List_Id;
11588 Related_Nod : Node_Id)
11589 is
11590 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11591 -- Determine whether an access type designates a type coming from a
11592 -- limited view.
11593
11594 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11595 -- Check whether the default has a class-wide type. After analysis the
11596 -- default has the type of the formal, so we must also check explicitly
11597 -- for an access attribute.
11598
11599 ----------------------------------
11600 -- Designates_From_Limited_With --
11601 ----------------------------------
11602
11603 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11604 Desig : Entity_Id := Typ;
11605
11606 begin
11607 if Is_Access_Type (Desig) then
11608 Desig := Directly_Designated_Type (Desig);
11609 end if;
11610
11611 if Is_Class_Wide_Type (Desig) then
11612 Desig := Root_Type (Desig);
11613 end if;
11614
11615 return
11616 Ekind (Desig) = E_Incomplete_Type
11617 and then From_Limited_With (Desig);
11618 end Designates_From_Limited_With;
11619
11620 ---------------------------
11621 -- Is_Class_Wide_Default --
11622 ---------------------------
11623
11624 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11625 begin
11626 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11627 or else (Nkind (D) = N_Attribute_Reference
11628 and then Attribute_Name (D) = Name_Access
11629 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11630 end Is_Class_Wide_Default;
11631
11632 -- Local variables
11633
11634 Context : constant Node_Id := Parent (Parent (T));
11635 Default : Node_Id;
11636 Formal : Entity_Id;
11637 Formal_Type : Entity_Id;
11638 Param_Spec : Node_Id;
11639 Ptype : Entity_Id;
11640
11641 Num_Out_Params : Nat := 0;
11642 First_Out_Param : Entity_Id := Empty;
11643 -- Used for setting Is_Only_Out_Parameter
11644
11645 -- Start of processing for Process_Formals
11646
11647 begin
11648 -- In order to prevent premature use of the formals in the same formal
11649 -- part, the Ekind is left undefined until all default expressions are
11650 -- analyzed. The Ekind is established in a separate loop at the end.
11651
11652 Param_Spec := First (T);
11653 while Present (Param_Spec) loop
11654 Formal := Defining_Identifier (Param_Spec);
11655 Set_Never_Set_In_Source (Formal, True);
11656 Enter_Name (Formal);
11657
11658 -- Case of ordinary parameters
11659
11660 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11661 Find_Type (Parameter_Type (Param_Spec));
11662 Ptype := Parameter_Type (Param_Spec);
11663
11664 if Ptype = Error then
11665 goto Continue;
11666 end if;
11667
11668 -- Protect against malformed parameter types
11669
11670 if Nkind (Ptype) not in N_Has_Entity then
11671 Formal_Type := Any_Type;
11672 else
11673 Formal_Type := Entity (Ptype);
11674 end if;
11675
11676 if Is_Incomplete_Type (Formal_Type)
11677 or else
11678 (Is_Class_Wide_Type (Formal_Type)
11679 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11680 then
11681 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11682 -- primitive operations, as long as their completion is
11683 -- in the same declarative part. If in the private part
11684 -- this means that the type cannot be a Taft-amendment type.
11685 -- Check is done on package exit. For access to subprograms,
11686 -- the use is legal for Taft-amendment types.
11687
11688 -- Ada 2012: tagged incomplete types are allowed as generic
11689 -- formal types. They do not introduce dependencies and the
11690 -- corresponding generic subprogram does not have a delayed
11691 -- freeze, because it does not need a freeze node. However,
11692 -- it is still the case that untagged incomplete types cannot
11693 -- be Taft-amendment types and must be completed in private
11694 -- part, so the subprogram must appear in the list of private
11695 -- dependents of the type.
11696
11697 if Is_Tagged_Type (Formal_Type)
11698 or else (Ada_Version >= Ada_2012
11699 and then not From_Limited_With (Formal_Type)
11700 and then not Is_Generic_Type (Formal_Type))
11701 then
11702 if Ekind (Scope (Current_Scope)) = E_Package
11703 and then not Is_Generic_Type (Formal_Type)
11704 and then not Is_Class_Wide_Type (Formal_Type)
11705 then
11706 if not Nkind_In
11707 (Parent (T), N_Access_Function_Definition,
11708 N_Access_Procedure_Definition)
11709 then
11710 Append_Elmt (Current_Scope,
11711 Private_Dependents (Base_Type (Formal_Type)));
11712
11713 -- Freezing is delayed to ensure that Register_Prim
11714 -- will get called for this operation, which is needed
11715 -- in cases where static dispatch tables aren't built.
11716 -- (Note that the same is done for controlling access
11717 -- parameter cases in function Access_Definition.)
11718
11719 if not Is_Thunk (Current_Scope) then
11720 Set_Has_Delayed_Freeze (Current_Scope);
11721 end if;
11722 end if;
11723 end if;
11724
11725 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11726 N_Access_Procedure_Definition)
11727 then
11728 -- AI05-0151: Tagged incomplete types are allowed in all
11729 -- formal parts. Untagged incomplete types are not allowed
11730 -- in bodies. Limited views of either kind are not allowed
11731 -- if there is no place at which the non-limited view can
11732 -- become available.
11733
11734 -- Incomplete formal untagged types are not allowed in
11735 -- subprogram bodies (but are legal in their declarations).
11736 -- This excludes bodies created for null procedures, which
11737 -- are basic declarations.
11738
11739 if Is_Generic_Type (Formal_Type)
11740 and then not Is_Tagged_Type (Formal_Type)
11741 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11742 then
11743 Error_Msg_N
11744 ("invalid use of formal incomplete type", Param_Spec);
11745
11746 elsif Ada_Version >= Ada_2012 then
11747 if Is_Tagged_Type (Formal_Type)
11748 and then (not From_Limited_With (Formal_Type)
11749 or else not In_Package_Body)
11750 then
11751 null;
11752
11753 elsif Nkind_In (Context, N_Accept_Statement,
11754 N_Accept_Alternative,
11755 N_Entry_Body)
11756 or else (Nkind (Context) = N_Subprogram_Body
11757 and then Comes_From_Source (Context))
11758 then
11759 Error_Msg_NE
11760 ("invalid use of untagged incomplete type &",
11761 Ptype, Formal_Type);
11762 end if;
11763
11764 else
11765 Error_Msg_NE
11766 ("invalid use of incomplete type&",
11767 Param_Spec, Formal_Type);
11768
11769 -- Further checks on the legality of incomplete types
11770 -- in formal parts are delayed until the freeze point
11771 -- of the enclosing subprogram or access to subprogram.
11772 end if;
11773 end if;
11774
11775 elsif Ekind (Formal_Type) = E_Void then
11776 Error_Msg_NE
11777 ("premature use of&",
11778 Parameter_Type (Param_Spec), Formal_Type);
11779 end if;
11780
11781 -- Ada 2012 (AI-142): Handle aliased parameters
11782
11783 if Ada_Version >= Ada_2012
11784 and then Aliased_Present (Param_Spec)
11785 then
11786 Set_Is_Aliased (Formal);
11787
11788 -- AI12-001: All aliased objects are considered to be specified
11789 -- as independently addressable (RM C.6(8.1/4)).
11790
11791 Set_Is_Independent (Formal);
11792 end if;
11793
11794 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11795 -- declaration corresponding to the null-excluding type of the
11796 -- formal in the enclosing scope. Finally, replace the parameter
11797 -- type of the formal with the internal subtype.
11798
11799 if Ada_Version >= Ada_2005
11800 and then Null_Exclusion_Present (Param_Spec)
11801 then
11802 if not Is_Access_Type (Formal_Type) then
11803 Error_Msg_N
11804 ("`NOT NULL` allowed only for an access type", Param_Spec);
11805
11806 else
11807 if Can_Never_Be_Null (Formal_Type)
11808 and then Comes_From_Source (Related_Nod)
11809 then
11810 Error_Msg_NE
11811 ("`NOT NULL` not allowed (& already excludes null)",
11812 Param_Spec, Formal_Type);
11813 end if;
11814
11815 Formal_Type :=
11816 Create_Null_Excluding_Itype
11817 (T => Formal_Type,
11818 Related_Nod => Related_Nod,
11819 Scope_Id => Scope (Current_Scope));
11820
11821 -- If the designated type of the itype is an itype that is
11822 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11823 -- on the access subtype, to prevent order-of-elaboration
11824 -- issues in the backend.
11825
11826 -- Example:
11827 -- type T is access procedure;
11828 -- procedure Op (O : not null T);
11829
11830 if Is_Itype (Directly_Designated_Type (Formal_Type))
11831 and then
11832 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11833 then
11834 Set_Has_Delayed_Freeze (Formal_Type);
11835 end if;
11836 end if;
11837 end if;
11838
11839 -- An access formal type
11840
11841 else
11842 Formal_Type :=
11843 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11844
11845 -- No need to continue if we already notified errors
11846
11847 if not Present (Formal_Type) then
11848 return;
11849 end if;
11850
11851 -- Ada 2005 (AI-254)
11852
11853 declare
11854 AD : constant Node_Id :=
11855 Access_To_Subprogram_Definition
11856 (Parameter_Type (Param_Spec));
11857 begin
11858 if Present (AD) and then Protected_Present (AD) then
11859 Formal_Type :=
11860 Replace_Anonymous_Access_To_Protected_Subprogram
11861 (Param_Spec);
11862 end if;
11863 end;
11864 end if;
11865
11866 Set_Etype (Formal, Formal_Type);
11867
11868 -- Deal with default expression if present
11869
11870 Default := Expression (Param_Spec);
11871
11872 if Present (Default) then
11873 Check_SPARK_05_Restriction
11874 ("default expression is not allowed", Default);
11875
11876 if Out_Present (Param_Spec) then
11877 Error_Msg_N
11878 ("default initialization only allowed for IN parameters",
11879 Param_Spec);
11880 end if;
11881
11882 -- Do the special preanalysis of the expression (see section on
11883 -- "Handling of Default Expressions" in the spec of package Sem).
11884
11885 Preanalyze_Formal_Expression (Default, Formal_Type);
11886
11887 -- An access to constant cannot be the default for
11888 -- an access parameter that is an access to variable.
11889
11890 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11891 and then not Is_Access_Constant (Formal_Type)
11892 and then Is_Access_Type (Etype (Default))
11893 and then Is_Access_Constant (Etype (Default))
11894 then
11895 Error_Msg_N
11896 ("formal that is access to variable cannot be initialized "
11897 & "with an access-to-constant expression", Default);
11898 end if;
11899
11900 -- Check that the designated type of an access parameter's default
11901 -- is not a class-wide type unless the parameter's designated type
11902 -- is also class-wide.
11903
11904 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11905 and then not Designates_From_Limited_With (Formal_Type)
11906 and then Is_Class_Wide_Default (Default)
11907 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11908 then
11909 Error_Msg_N
11910 ("access to class-wide expression not allowed here", Default);
11911 end if;
11912
11913 -- Check incorrect use of dynamically tagged expressions
11914
11915 if Is_Tagged_Type (Formal_Type) then
11916 Check_Dynamically_Tagged_Expression
11917 (Expr => Default,
11918 Typ => Formal_Type,
11919 Related_Nod => Default);
11920 end if;
11921 end if;
11922
11923 -- Ada 2005 (AI-231): Static checks
11924
11925 if Ada_Version >= Ada_2005
11926 and then Is_Access_Type (Etype (Formal))
11927 and then Can_Never_Be_Null (Etype (Formal))
11928 then
11929 Null_Exclusion_Static_Checks (Param_Spec);
11930 end if;
11931
11932 -- The following checks are relevant only when SPARK_Mode is on as
11933 -- these are not standard Ada legality rules.
11934
11935 if SPARK_Mode = On then
11936 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11937
11938 -- A function cannot have a parameter of mode IN OUT or OUT
11939 -- (SPARK RM 6.1).
11940
11941 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11942 Error_Msg_N
11943 ("function cannot have parameter of mode `OUT` or "
11944 & "`IN OUT`", Formal);
11945 end if;
11946
11947 -- A procedure cannot have an effectively volatile formal
11948 -- parameter of mode IN because it behaves as a constant
11949 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11950
11951 elsif Ekind (Scope (Formal)) = E_Procedure
11952 and then Ekind (Formal) = E_In_Parameter
11953 and then Is_Effectively_Volatile (Formal)
11954 then
11955 Error_Msg_N
11956 ("formal parameter of mode `IN` cannot be volatile", Formal);
11957 end if;
11958 end if;
11959
11960 <<Continue>>
11961 Next (Param_Spec);
11962 end loop;
11963
11964 -- If this is the formal part of a function specification, analyze the
11965 -- subtype mark in the context where the formals are visible but not
11966 -- yet usable, and may hide outer homographs.
11967
11968 if Nkind (Related_Nod) = N_Function_Specification then
11969 Analyze_Return_Type (Related_Nod);
11970 end if;
11971
11972 -- Now set the kind (mode) of each formal
11973
11974 Param_Spec := First (T);
11975 while Present (Param_Spec) loop
11976 Formal := Defining_Identifier (Param_Spec);
11977 Set_Formal_Mode (Formal);
11978
11979 if Ekind (Formal) = E_In_Parameter then
11980 Set_Default_Value (Formal, Expression (Param_Spec));
11981
11982 if Present (Expression (Param_Spec)) then
11983 Default := Expression (Param_Spec);
11984
11985 if Is_Scalar_Type (Etype (Default)) then
11986 if Nkind (Parameter_Type (Param_Spec)) /=
11987 N_Access_Definition
11988 then
11989 Formal_Type := Entity (Parameter_Type (Param_Spec));
11990 else
11991 Formal_Type :=
11992 Access_Definition
11993 (Related_Nod, Parameter_Type (Param_Spec));
11994 end if;
11995
11996 Apply_Scalar_Range_Check (Default, Formal_Type);
11997 end if;
11998 end if;
11999
12000 elsif Ekind (Formal) = E_Out_Parameter then
12001 Num_Out_Params := Num_Out_Params + 1;
12002
12003 if Num_Out_Params = 1 then
12004 First_Out_Param := Formal;
12005 end if;
12006
12007 elsif Ekind (Formal) = E_In_Out_Parameter then
12008 Num_Out_Params := Num_Out_Params + 1;
12009 end if;
12010
12011 -- Skip remaining processing if formal type was in error
12012
12013 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
12014 goto Next_Parameter;
12015 end if;
12016
12017 -- Force call by reference if aliased
12018
12019 declare
12020 Conv : constant Convention_Id := Convention (Etype (Formal));
12021 begin
12022 if Is_Aliased (Formal) then
12023 Set_Mechanism (Formal, By_Reference);
12024
12025 -- Warn if user asked this to be passed by copy
12026
12027 if Conv = Convention_Ada_Pass_By_Copy then
12028 Error_Msg_N
12029 ("cannot pass aliased parameter & by copy??", Formal);
12030 end if;
12031
12032 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
12033
12034 elsif Conv = Convention_Ada_Pass_By_Copy then
12035 Set_Mechanism (Formal, By_Copy);
12036
12037 elsif Conv = Convention_Ada_Pass_By_Reference then
12038 Set_Mechanism (Formal, By_Reference);
12039 end if;
12040 end;
12041
12042 <<Next_Parameter>>
12043 Next (Param_Spec);
12044 end loop;
12045
12046 if Present (First_Out_Param) and then Num_Out_Params = 1 then
12047 Set_Is_Only_Out_Parameter (First_Out_Param);
12048 end if;
12049 end Process_Formals;
12050
12051 ----------------------------
12052 -- Reference_Body_Formals --
12053 ----------------------------
12054
12055 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
12056 Fs : Entity_Id;
12057 Fb : Entity_Id;
12058
12059 begin
12060 if Error_Posted (Spec) then
12061 return;
12062 end if;
12063
12064 -- Iterate over both lists. They may be of different lengths if the two
12065 -- specs are not conformant.
12066
12067 Fs := First_Formal (Spec);
12068 Fb := First_Formal (Bod);
12069 while Present (Fs) and then Present (Fb) loop
12070 Generate_Reference (Fs, Fb, 'b');
12071
12072 if Style_Check then
12073 Style.Check_Identifier (Fb, Fs);
12074 end if;
12075
12076 Set_Spec_Entity (Fb, Fs);
12077 Set_Referenced (Fs, False);
12078 Next_Formal (Fs);
12079 Next_Formal (Fb);
12080 end loop;
12081 end Reference_Body_Formals;
12082
12083 -------------------------
12084 -- Set_Actual_Subtypes --
12085 -------------------------
12086
12087 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
12088 Decl : Node_Id;
12089 Formal : Entity_Id;
12090 T : Entity_Id;
12091 First_Stmt : Node_Id := Empty;
12092 AS_Needed : Boolean;
12093
12094 begin
12095 -- If this is an empty initialization procedure, no need to create
12096 -- actual subtypes (small optimization).
12097
12098 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
12099 return;
12100
12101 -- Within a predicate function we do not want to generate local
12102 -- subtypes that may generate nested predicate functions.
12103
12104 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
12105 return;
12106 end if;
12107
12108 -- The subtype declarations may freeze the formals. The body generated
12109 -- for an expression function is not a freeze point, so do not emit
12110 -- these declarations (small loss of efficiency in rare cases).
12111
12112 if Nkind (N) = N_Subprogram_Body
12113 and then Was_Expression_Function (N)
12114 then
12115 return;
12116 end if;
12117
12118 Formal := First_Formal (Subp);
12119 while Present (Formal) loop
12120 T := Etype (Formal);
12121
12122 -- We never need an actual subtype for a constrained formal
12123
12124 if Is_Constrained (T) then
12125 AS_Needed := False;
12126
12127 -- If we have unknown discriminants, then we do not need an actual
12128 -- subtype, or more accurately we cannot figure it out. Note that
12129 -- all class-wide types have unknown discriminants.
12130
12131 elsif Has_Unknown_Discriminants (T) then
12132 AS_Needed := False;
12133
12134 -- At this stage we have an unconstrained type that may need an
12135 -- actual subtype. For sure the actual subtype is needed if we have
12136 -- an unconstrained array type. However, in an instance, the type
12137 -- may appear as a subtype of the full view, while the actual is
12138 -- in fact private (in which case no actual subtype is needed) so
12139 -- check the kind of the base type.
12140
12141 elsif Is_Array_Type (Base_Type (T)) then
12142 AS_Needed := True;
12143
12144 -- The only other case needing an actual subtype is an unconstrained
12145 -- record type which is an IN parameter (we cannot generate actual
12146 -- subtypes for the OUT or IN OUT case, since an assignment can
12147 -- change the discriminant values. However we exclude the case of
12148 -- initialization procedures, since discriminants are handled very
12149 -- specially in this context, see the section entitled "Handling of
12150 -- Discriminants" in Einfo.
12151
12152 -- We also exclude the case of Discrim_SO_Functions (functions used
12153 -- in front-end layout mode for size/offset values), since in such
12154 -- functions only discriminants are referenced, and not only are such
12155 -- subtypes not needed, but they cannot always be generated, because
12156 -- of order of elaboration issues.
12157
12158 elsif Is_Record_Type (T)
12159 and then Ekind (Formal) = E_In_Parameter
12160 and then Chars (Formal) /= Name_uInit
12161 and then not Is_Unchecked_Union (T)
12162 and then not Is_Discrim_SO_Function (Subp)
12163 then
12164 AS_Needed := True;
12165
12166 -- All other cases do not need an actual subtype
12167
12168 else
12169 AS_Needed := False;
12170 end if;
12171
12172 -- Generate actual subtypes for unconstrained arrays and
12173 -- unconstrained discriminated records.
12174
12175 if AS_Needed then
12176 if Nkind (N) = N_Accept_Statement then
12177
12178 -- If expansion is active, the formal is replaced by a local
12179 -- variable that renames the corresponding entry of the
12180 -- parameter block, and it is this local variable that may
12181 -- require an actual subtype.
12182
12183 if Expander_Active then
12184 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
12185 else
12186 Decl := Build_Actual_Subtype (T, Formal);
12187 end if;
12188
12189 if Present (Handled_Statement_Sequence (N)) then
12190 First_Stmt :=
12191 First (Statements (Handled_Statement_Sequence (N)));
12192 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
12193 Mark_Rewrite_Insertion (Decl);
12194 else
12195 -- If the accept statement has no body, there will be no
12196 -- reference to the actuals, so no need to compute actual
12197 -- subtypes.
12198
12199 return;
12200 end if;
12201
12202 else
12203 Decl := Build_Actual_Subtype (T, Formal);
12204 Prepend (Decl, Declarations (N));
12205 Mark_Rewrite_Insertion (Decl);
12206 end if;
12207
12208 -- The declaration uses the bounds of an existing object, and
12209 -- therefore needs no constraint checks.
12210
12211 Analyze (Decl, Suppress => All_Checks);
12212 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
12213
12214 -- We need to freeze manually the generated type when it is
12215 -- inserted anywhere else than in a declarative part.
12216
12217 if Present (First_Stmt) then
12218 Insert_List_Before_And_Analyze (First_Stmt,
12219 Freeze_Entity (Defining_Identifier (Decl), N));
12220
12221 -- Ditto if the type has a dynamic predicate, because the
12222 -- generated function will mention the actual subtype. The
12223 -- predicate may come from an explicit aspect of be inherited.
12224
12225 elsif Has_Predicates (T) then
12226 Insert_List_After_And_Analyze (Decl,
12227 Freeze_Entity (Defining_Identifier (Decl), N));
12228 end if;
12229
12230 if Nkind (N) = N_Accept_Statement
12231 and then Expander_Active
12232 then
12233 Set_Actual_Subtype (Renamed_Object (Formal),
12234 Defining_Identifier (Decl));
12235 else
12236 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
12237 end if;
12238 end if;
12239
12240 Next_Formal (Formal);
12241 end loop;
12242 end Set_Actual_Subtypes;
12243
12244 ---------------------
12245 -- Set_Formal_Mode --
12246 ---------------------
12247
12248 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
12249 Spec : constant Node_Id := Parent (Formal_Id);
12250 Id : constant Entity_Id := Scope (Formal_Id);
12251
12252 begin
12253 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
12254 -- since we ensure that corresponding actuals are always valid at the
12255 -- point of the call.
12256
12257 if Out_Present (Spec) then
12258 if Ekind_In (Id, E_Entry, E_Entry_Family)
12259 or else Is_Subprogram_Or_Generic_Subprogram (Id)
12260 then
12261 Set_Has_Out_Or_In_Out_Parameter (Id, True);
12262 end if;
12263
12264 if Ekind_In (Id, E_Function, E_Generic_Function) then
12265
12266 -- [IN] OUT parameters allowed for functions in Ada 2012
12267
12268 if Ada_Version >= Ada_2012 then
12269
12270 -- Even in Ada 2012 operators can only have IN parameters
12271
12272 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
12273 Error_Msg_N ("operators can only have IN parameters", Spec);
12274 end if;
12275
12276 if In_Present (Spec) then
12277 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12278 else
12279 Set_Ekind (Formal_Id, E_Out_Parameter);
12280 end if;
12281
12282 -- But not in earlier versions of Ada
12283
12284 else
12285 Error_Msg_N ("functions can only have IN parameters", Spec);
12286 Set_Ekind (Formal_Id, E_In_Parameter);
12287 end if;
12288
12289 elsif In_Present (Spec) then
12290 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12291
12292 else
12293 Set_Ekind (Formal_Id, E_Out_Parameter);
12294 Set_Never_Set_In_Source (Formal_Id, True);
12295 Set_Is_True_Constant (Formal_Id, False);
12296 Set_Current_Value (Formal_Id, Empty);
12297 end if;
12298
12299 else
12300 Set_Ekind (Formal_Id, E_In_Parameter);
12301 end if;
12302
12303 -- Set Is_Known_Non_Null for access parameters since the language
12304 -- guarantees that access parameters are always non-null. We also set
12305 -- Can_Never_Be_Null, since there is no way to change the value.
12306
12307 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
12308
12309 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
12310 -- null; In Ada 2005, only if then null_exclusion is explicit.
12311
12312 if Ada_Version < Ada_2005
12313 or else Can_Never_Be_Null (Etype (Formal_Id))
12314 then
12315 Set_Is_Known_Non_Null (Formal_Id);
12316 Set_Can_Never_Be_Null (Formal_Id);
12317 end if;
12318
12319 -- Ada 2005 (AI-231): Null-exclusion access subtype
12320
12321 elsif Is_Access_Type (Etype (Formal_Id))
12322 and then Can_Never_Be_Null (Etype (Formal_Id))
12323 then
12324 Set_Is_Known_Non_Null (Formal_Id);
12325
12326 -- We can also set Can_Never_Be_Null (thus preventing some junk
12327 -- access checks) for the case of an IN parameter, which cannot
12328 -- be changed, or for an IN OUT parameter, which can be changed but
12329 -- not to a null value. But for an OUT parameter, the initial value
12330 -- passed in can be null, so we can't set this flag in that case.
12331
12332 if Ekind (Formal_Id) /= E_Out_Parameter then
12333 Set_Can_Never_Be_Null (Formal_Id);
12334 end if;
12335 end if;
12336
12337 Set_Mechanism (Formal_Id, Default_Mechanism);
12338 Set_Formal_Validity (Formal_Id);
12339 end Set_Formal_Mode;
12340
12341 -------------------------
12342 -- Set_Formal_Validity --
12343 -------------------------
12344
12345 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12346 begin
12347 -- If no validity checking, then we cannot assume anything about the
12348 -- validity of parameters, since we do not know there is any checking
12349 -- of the validity on the call side.
12350
12351 if not Validity_Checks_On then
12352 return;
12353
12354 -- If validity checking for parameters is enabled, this means we are
12355 -- not supposed to make any assumptions about argument values.
12356
12357 elsif Validity_Check_Parameters then
12358 return;
12359
12360 -- If we are checking in parameters, we will assume that the caller is
12361 -- also checking parameters, so we can assume the parameter is valid.
12362
12363 elsif Ekind (Formal_Id) = E_In_Parameter
12364 and then Validity_Check_In_Params
12365 then
12366 Set_Is_Known_Valid (Formal_Id, True);
12367
12368 -- Similar treatment for IN OUT parameters
12369
12370 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12371 and then Validity_Check_In_Out_Params
12372 then
12373 Set_Is_Known_Valid (Formal_Id, True);
12374 end if;
12375 end Set_Formal_Validity;
12376
12377 ------------------------
12378 -- Subtype_Conformant --
12379 ------------------------
12380
12381 function Subtype_Conformant
12382 (New_Id : Entity_Id;
12383 Old_Id : Entity_Id;
12384 Skip_Controlling_Formals : Boolean := False) return Boolean
12385 is
12386 Result : Boolean;
12387 begin
12388 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12389 Skip_Controlling_Formals => Skip_Controlling_Formals);
12390 return Result;
12391 end Subtype_Conformant;
12392
12393 ---------------------
12394 -- Type_Conformant --
12395 ---------------------
12396
12397 function Type_Conformant
12398 (New_Id : Entity_Id;
12399 Old_Id : Entity_Id;
12400 Skip_Controlling_Formals : Boolean := False) return Boolean
12401 is
12402 Result : Boolean;
12403 begin
12404 May_Hide_Profile := False;
12405 Check_Conformance
12406 (New_Id, Old_Id, Type_Conformant, False, Result,
12407 Skip_Controlling_Formals => Skip_Controlling_Formals);
12408 return Result;
12409 end Type_Conformant;
12410
12411 -------------------------------
12412 -- Valid_Operator_Definition --
12413 -------------------------------
12414
12415 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12416 N : Integer := 0;
12417 F : Entity_Id;
12418 Id : constant Name_Id := Chars (Designator);
12419 N_OK : Boolean;
12420
12421 begin
12422 F := First_Formal (Designator);
12423 while Present (F) loop
12424 N := N + 1;
12425
12426 if Present (Default_Value (F)) then
12427 Error_Msg_N
12428 ("default values not allowed for operator parameters",
12429 Parent (F));
12430
12431 -- For function instantiations that are operators, we must check
12432 -- separately that the corresponding generic only has in-parameters.
12433 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12434 -- an error could not arise in earlier versions of the language.
12435
12436 elsif Ekind (F) /= E_In_Parameter then
12437 Error_Msg_N ("operators can only have IN parameters", F);
12438 end if;
12439
12440 Next_Formal (F);
12441 end loop;
12442
12443 -- Verify that user-defined operators have proper number of arguments
12444 -- First case of operators which can only be unary
12445
12446 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12447 N_OK := (N = 1);
12448
12449 -- Case of operators which can be unary or binary
12450
12451 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12452 N_OK := (N in 1 .. 2);
12453
12454 -- All other operators can only be binary
12455
12456 else
12457 N_OK := (N = 2);
12458 end if;
12459
12460 if not N_OK then
12461 Error_Msg_N
12462 ("incorrect number of arguments for operator", Designator);
12463 end if;
12464
12465 if Id = Name_Op_Ne
12466 and then Base_Type (Etype (Designator)) = Standard_Boolean
12467 and then not Is_Intrinsic_Subprogram (Designator)
12468 then
12469 Error_Msg_N
12470 ("explicit definition of inequality not allowed", Designator);
12471 end if;
12472 end Valid_Operator_Definition;
12473
12474 end Sem_Ch6;