[Ada] Minor reformatting
[gcc.git] / gcc / ada / sem_ch6.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch9; use Sem_Ch9;
64 with Sem_Ch10; use Sem_Ch10;
65 with Sem_Ch12; use Sem_Ch12;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elim; use Sem_Elim;
71 with Sem_Eval; use Sem_Eval;
72 with Sem_Mech; use Sem_Mech;
73 with Sem_Prag; use Sem_Prag;
74 with Sem_Res; use Sem_Res;
75 with Sem_Util; use Sem_Util;
76 with Sem_Type; use Sem_Type;
77 with Sem_Warn; use Sem_Warn;
78 with Sinput; use Sinput;
79 with Stand; use Stand;
80 with Sinfo; use Sinfo;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stringt; use Stringt;
84 with Style;
85 with Stylesw; use Stylesw;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
90
91 package body Sem_Ch6 is
92
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
101
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
105
106 procedure Analyze_Function_Return (N : Node_Id);
107 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
108 -- applies to a [generic] function.
109
110 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111 -- Analyze a generic subprogram body. N is the body to be analyzed, and
112 -- Gen_Id is the defining entity Id for the corresponding spec.
113
114 procedure Analyze_Null_Procedure
115 (N : Node_Id;
116 Is_Completion : out Boolean);
117 -- A null procedure can be a declaration or (Ada 2012) a completion
118
119 procedure Analyze_Return_Statement (N : Node_Id);
120 -- Common processing for simple and extended return statements
121
122 procedure Analyze_Return_Type (N : Node_Id);
123 -- Subsidiary to Process_Formals: analyze subtype mark in function
124 -- specification in a context where the formals are visible and hide
125 -- outer homographs.
126
127 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
129 -- that we can use RETURN but not skip the debug output at the end.
130
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
133
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
154
155 procedure Check_Limited_Return
156 (N : Node_Id;
157 Expr : Node_Id;
158 R_Type : Entity_Id);
159 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160 -- types. Used only for simple return statements. Expr is the expression
161 -- returned.
162
163 procedure Check_Subprogram_Order (N : Node_Id);
164 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
165 -- the alpha ordering rule for N if this ordering requirement applicable.
166
167 procedure Check_Returns
168 (HSS : Node_Id;
169 Mode : Character;
170 Err : out Boolean;
171 Proc : Entity_Id := Empty);
172 -- Called to check for missing return statements in a function body, or for
173 -- returns present in a procedure body which has No_Return set. HSS is the
174 -- handled statement sequence for the subprogram body. This procedure
175 -- checks all flow paths to make sure they either have return (Mode = 'F',
176 -- used for functions) or do not have a return (Mode = 'P', used for
177 -- No_Return procedures). The flag Err is set if there are any control
178 -- paths not explicitly terminated by a return in the function case, and is
179 -- True otherwise. Proc is the entity for the procedure case and is used
180 -- in posting the warning message.
181
182 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183 -- In Ada 2012, a primitive equality operator on an untagged record type
184 -- must appear before the type is frozen, and have the same visibility as
185 -- that of the type. This procedure checks that this rule is met, and
186 -- otherwise emits an error on the subprogram declaration and a warning
187 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190 -- is set, otherwise the call has no effect.
191
192 procedure Enter_Overloaded_Entity (S : Entity_Id);
193 -- This procedure makes S, a new overloaded entity, into the first visible
194 -- entity with that name.
195
196 function Is_Non_Overriding_Operation
197 (Prev_E : Entity_Id;
198 New_E : Entity_Id) return Boolean;
199 -- Enforce the rule given in 12.3(18): a private operation in an instance
200 -- overrides an inherited operation only if the corresponding operation
201 -- was overriding in the generic. This needs to be checked for primitive
202 -- operations of types derived (in the generic unit) from formal private
203 -- or formal derived types.
204
205 procedure Make_Inequality_Operator (S : Entity_Id);
206 -- Create the declaration for an inequality operator that is implicitly
207 -- created by a user-defined equality operator that yields a boolean.
208
209 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
210 -- Preanalysis of default expressions of subprogram formals. N is the
211 -- expression to be analyzed and T is the expected type.
212
213 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214 -- Formal_Id is an formal parameter entity. This procedure deals with
215 -- setting the proper validity status for this entity, which depends on
216 -- the kind of parameter and the validity checking mode.
217
218 ---------------------------------------------
219 -- Analyze_Abstract_Subprogram_Declaration --
220 ---------------------------------------------
221
222 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
223 Scop : constant Entity_Id := Current_Scope;
224 Subp_Id : constant Entity_Id :=
225 Analyze_Subprogram_Specification (Specification (N));
226
227 begin
228 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
229
230 Generate_Definition (Subp_Id);
231
232 -- Set the SPARK mode from the current context (may be overwritten later
233 -- with explicit pragma).
234
235 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
236 Set_SPARK_Pragma_Inherited (Subp_Id);
237
238 -- Preserve relevant elaboration-related attributes of the context which
239 -- are no longer available or very expensive to recompute once analysis,
240 -- resolution, and expansion are over.
241
242 Mark_Elaboration_Attributes
243 (N_Id => Subp_Id,
244 Checks => True,
245 Warnings => True);
246
247 Set_Is_Abstract_Subprogram (Subp_Id);
248 New_Overloaded_Entity (Subp_Id);
249 Check_Delayed_Subprogram (Subp_Id);
250
251 Set_Categorization_From_Scope (Subp_Id, Scop);
252
253 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
254 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
255
256 -- Issue a warning if the abstract subprogram is neither a dispatching
257 -- operation nor an operation that overrides an inherited subprogram or
258 -- predefined operator, since this most likely indicates a mistake.
259
260 elsif Warn_On_Redundant_Constructs
261 and then not Is_Dispatching_Operation (Subp_Id)
262 and then not Present (Overridden_Operation (Subp_Id))
263 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
264 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
265 then
266 Error_Msg_N
267 ("abstract subprogram is not dispatching or overriding?r?", N);
268 end if;
269
270 Generate_Reference_To_Formals (Subp_Id);
271 Check_Eliminated (Subp_Id);
272
273 if Has_Aspects (N) then
274 Analyze_Aspect_Specifications (N, Subp_Id);
275 end if;
276 end Analyze_Abstract_Subprogram_Declaration;
277
278 ---------------------------------
279 -- Analyze_Expression_Function --
280 ---------------------------------
281
282 procedure Analyze_Expression_Function (N : Node_Id) is
283 Expr : constant Node_Id := Expression (N);
284 Loc : constant Source_Ptr := Sloc (N);
285 LocX : constant Source_Ptr := Sloc (Expr);
286 Spec : constant Node_Id := Specification (N);
287
288 -- Local variables
289
290 Asp : Node_Id;
291 New_Body : Node_Id;
292 New_Spec : Node_Id;
293 Orig_N : Node_Id;
294 Ret : Node_Id;
295
296 Def_Id : Entity_Id := Empty;
297 Prev : Entity_Id;
298 -- If the expression is a completion, Prev is the entity whose
299 -- declaration is completed. Def_Id is needed to analyze the spec.
300
301 -- Start of processing for Analyze_Expression_Function
302
303 begin
304 -- This is one of the occasions on which we transform the tree during
305 -- semantic analysis. If this is a completion, transform the expression
306 -- function into an equivalent subprogram body, and analyze it.
307
308 -- Expression functions are inlined unconditionally. The back-end will
309 -- determine whether this is possible.
310
311 Inline_Processing_Required := True;
312
313 -- Create a specification for the generated body. This must be done
314 -- prior to the analysis of the initial declaration.
315
316 New_Spec := Copy_Subprogram_Spec (Spec);
317 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
318
319 -- If there are previous overloadable entities with the same name,
320 -- check whether any of them is completed by the expression function.
321 -- In a generic context a formal subprogram has no completion.
322
323 if Present (Prev)
324 and then Is_Overloadable (Prev)
325 and then not Is_Formal_Subprogram (Prev)
326 then
327 Def_Id := Analyze_Subprogram_Specification (Spec);
328 Prev := Find_Corresponding_Spec (N);
329
330 -- The previous entity may be an expression function as well, in
331 -- which case the redeclaration is illegal.
332
333 if Present (Prev)
334 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
335 N_Expression_Function
336 then
337 Error_Msg_Sloc := Sloc (Prev);
338 Error_Msg_N ("& conflicts with declaration#", Def_Id);
339 return;
340 end if;
341 end if;
342
343 Ret := Make_Simple_Return_Statement (LocX, Expr);
344
345 New_Body :=
346 Make_Subprogram_Body (Loc,
347 Specification => New_Spec,
348 Declarations => Empty_List,
349 Handled_Statement_Sequence =>
350 Make_Handled_Sequence_Of_Statements (LocX,
351 Statements => New_List (Ret)));
352 Set_Was_Expression_Function (New_Body);
353
354 -- If the expression completes a generic subprogram, we must create a
355 -- separate node for the body, because at instantiation the original
356 -- node of the generic copy must be a generic subprogram body, and
357 -- cannot be a expression function. Otherwise we just rewrite the
358 -- expression with the non-generic body.
359
360 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
361 Insert_After (N, New_Body);
362
363 -- Propagate any aspects or pragmas that apply to the expression
364 -- function to the proper body when the expression function acts
365 -- as a completion.
366
367 if Has_Aspects (N) then
368 Move_Aspects (N, To => New_Body);
369 end if;
370
371 Relocate_Pragmas_To_Body (New_Body);
372
373 Rewrite (N, Make_Null_Statement (Loc));
374 Set_Has_Completion (Prev, False);
375 Analyze (N);
376 Analyze (New_Body);
377 Set_Is_Inlined (Prev);
378
379 -- If the expression function is a completion, the previous declaration
380 -- must come from source. We know already that it appears in the current
381 -- scope. The entity itself may be internally created if within a body
382 -- to be inlined.
383
384 elsif Present (Prev)
385 and then Is_Overloadable (Prev)
386 and then not Is_Formal_Subprogram (Prev)
387 and then Comes_From_Source (Parent (Prev))
388 then
389 Set_Has_Completion (Prev, False);
390 Set_Is_Inlined (Prev);
391
392 -- AI12-0103: Expression functions that are a completion freeze their
393 -- expression but don't freeze anything else (unlike regular bodies).
394
395 -- Note that we cannot defer this freezing to the analysis of the
396 -- expression itself, because a freeze node might appear in a nested
397 -- scope, leading to an elaboration order issue in gigi.
398 -- As elsewhere, we do not emit freeze nodes within a generic unit.
399
400 if not Inside_A_Generic then
401 Freeze_Expr_Types
402 (Def_Id => Def_Id,
403 Typ => Etype (Def_Id),
404 Expr => Expr,
405 N => N);
406 end if;
407
408 -- For navigation purposes, indicate that the function is a body
409
410 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
411 Rewrite (N, New_Body);
412
413 -- Remove any existing aspects from the original node because the act
414 -- of rewriting causes the list to be shared between the two nodes.
415
416 Orig_N := Original_Node (N);
417 Remove_Aspects (Orig_N);
418
419 -- Propagate any pragmas that apply to expression function to the
420 -- proper body when the expression function acts as a completion.
421 -- Aspects are automatically transfered because of node rewriting.
422
423 Relocate_Pragmas_To_Body (N);
424 Analyze (N);
425
426 -- Once the aspects of the generated body have been analyzed, create
427 -- a copy for ASIS purposes and associate it with the original node.
428
429 if Has_Aspects (N) then
430 Set_Aspect_Specifications (Orig_N,
431 New_Copy_List_Tree (Aspect_Specifications (N)));
432 end if;
433
434 -- Prev is the previous entity with the same name, but it is can
435 -- be an unrelated spec that is not completed by the expression
436 -- function. In that case the relevant entity is the one in the body.
437 -- Not clear that the backend can inline it in this case ???
438
439 if Has_Completion (Prev) then
440
441 -- The formals of the expression function are body formals,
442 -- and do not appear in the ali file, which will only contain
443 -- references to the formals of the original subprogram spec.
444
445 declare
446 F1 : Entity_Id;
447 F2 : Entity_Id;
448
449 begin
450 F1 := First_Formal (Def_Id);
451 F2 := First_Formal (Prev);
452
453 while Present (F1) loop
454 Set_Spec_Entity (F1, F2);
455 Next_Formal (F1);
456 Next_Formal (F2);
457 end loop;
458 end;
459
460 else
461 Set_Is_Inlined (Defining_Entity (New_Body));
462 end if;
463
464 -- If this is not a completion, create both a declaration and a body, so
465 -- that the expression can be inlined whenever possible.
466
467 else
468 -- An expression function that is not a completion is not a
469 -- subprogram declaration, and thus cannot appear in a protected
470 -- definition.
471
472 if Nkind (Parent (N)) = N_Protected_Definition then
473 Error_Msg_N
474 ("an expression function is not a legal protected operation", N);
475 end if;
476
477 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
478
479 -- Remove any existing aspects from the original node because the act
480 -- of rewriting causes the list to be shared between the two nodes.
481
482 Orig_N := Original_Node (N);
483 Remove_Aspects (Orig_N);
484
485 Analyze (N);
486
487 -- Once the aspects of the generated spec have been analyzed, create
488 -- a copy for ASIS purposes and associate it with the original node.
489
490 if Has_Aspects (N) then
491 Set_Aspect_Specifications (Orig_N,
492 New_Copy_List_Tree (Aspect_Specifications (N)));
493 end if;
494
495 -- If aspect SPARK_Mode was specified on the body, it needs to be
496 -- repeated both on the generated spec and the body.
497
498 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
499
500 if Present (Asp) then
501 Asp := New_Copy_Tree (Asp);
502 Set_Analyzed (Asp, False);
503 Set_Aspect_Specifications (New_Body, New_List (Asp));
504 end if;
505
506 Def_Id := Defining_Entity (N);
507 Set_Is_Inlined (Def_Id);
508
509 -- Establish the linkages between the spec and the body. These are
510 -- used when the expression function acts as the prefix of attribute
511 -- 'Access in order to freeze the original expression which has been
512 -- moved to the generated body.
513
514 Set_Corresponding_Body (N, Defining_Entity (New_Body));
515 Set_Corresponding_Spec (New_Body, Def_Id);
516
517 -- Within a generic preanalyze the original expression for name
518 -- capture. The body is also generated but plays no role in
519 -- this because it is not part of the original source.
520
521 if Inside_A_Generic then
522 Set_Has_Completion (Def_Id);
523 Push_Scope (Def_Id);
524 Install_Formals (Def_Id);
525 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
526 End_Scope;
527 end if;
528
529 -- To prevent premature freeze action, insert the new body at the end
530 -- of the current declarations, or at the end of the package spec.
531 -- However, resolve usage names now, to prevent spurious visibility
532 -- on later entities. Note that the function can now be called in
533 -- the current declarative part, which will appear to be prior to
534 -- the presence of the body in the code. There are nevertheless no
535 -- order of elaboration issues because all name resolution has taken
536 -- place at the point of declaration.
537
538 declare
539 Decls : List_Id := List_Containing (N);
540 Expr : constant Node_Id := Expression (Ret);
541 Par : constant Node_Id := Parent (Decls);
542 Typ : constant Entity_Id := Etype (Def_Id);
543
544 begin
545 -- If this is a wrapper created for in an instance for a formal
546 -- subprogram, insert body after declaration, to be analyzed when
547 -- the enclosing instance is analyzed.
548
549 if GNATprove_Mode
550 and then Is_Generic_Actual_Subprogram (Def_Id)
551 then
552 Insert_After (N, New_Body);
553
554 else
555 if Nkind (Par) = N_Package_Specification
556 and then Decls = Visible_Declarations (Par)
557 and then Present (Private_Declarations (Par))
558 and then not Is_Empty_List (Private_Declarations (Par))
559 then
560 Decls := Private_Declarations (Par);
561 end if;
562
563 Insert_After (Last (Decls), New_Body);
564
565 -- Preanalyze the expression if not already done above
566
567 if not Inside_A_Generic then
568 Push_Scope (Def_Id);
569 Install_Formals (Def_Id);
570 Preanalyze_Formal_Expression (Expr, Typ);
571 Check_Limited_Return (Original_Node (N), Expr, Typ);
572 End_Scope;
573 end if;
574 end if;
575 end;
576 end if;
577
578 -- Check incorrect use of dynamically tagged expression. This doesn't
579 -- fall out automatically when analyzing the generated function body,
580 -- because Check_Dynamically_Tagged_Expression deliberately ignores
581 -- nodes that don't come from source.
582
583 if Present (Def_Id)
584 and then Nkind (Def_Id) in N_Has_Etype
585 and then Is_Tagged_Type (Etype (Def_Id))
586 then
587 Check_Dynamically_Tagged_Expression
588 (Expr => Expr,
589 Typ => Etype (Def_Id),
590 Related_Nod => Original_Node (N));
591 end if;
592
593 -- We must enforce checks for unreferenced formals in our newly
594 -- generated function, so we propagate the referenced flag from the
595 -- original spec to the new spec as well as setting Comes_From_Source.
596
597 if Present (Parameter_Specifications (New_Spec)) then
598 declare
599 Form_New_Def : Entity_Id;
600 Form_New_Spec : Entity_Id;
601 Form_Old_Def : Entity_Id;
602 Form_Old_Spec : Entity_Id;
603
604 begin
605 Form_New_Spec := First (Parameter_Specifications (New_Spec));
606 Form_Old_Spec := First (Parameter_Specifications (Spec));
607
608 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
609 Form_New_Def := Defining_Identifier (Form_New_Spec);
610 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
611
612 Set_Comes_From_Source (Form_New_Def, True);
613
614 -- Because of the usefulness of unreferenced controlling
615 -- formals we exempt them from unreferenced warnings by marking
616 -- them as always referenced.
617
618 Set_Referenced (Form_Old_Def,
619 (Is_Formal (Form_Old_Def)
620 and then Is_Controlling_Formal (Form_Old_Def))
621 or else Referenced (Form_Old_Def));
622
623 Next (Form_New_Spec);
624 Next (Form_Old_Spec);
625 end loop;
626 end;
627 end if;
628 end Analyze_Expression_Function;
629
630 ----------------------------------------
631 -- Analyze_Extended_Return_Statement --
632 ----------------------------------------
633
634 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
635 begin
636 Check_Compiler_Unit ("extended return statement", N);
637 Analyze_Return_Statement (N);
638 end Analyze_Extended_Return_Statement;
639
640 ----------------------------
641 -- Analyze_Function_Call --
642 ----------------------------
643
644 procedure Analyze_Function_Call (N : Node_Id) is
645 Actuals : constant List_Id := Parameter_Associations (N);
646 Func_Nam : constant Node_Id := Name (N);
647 Actual : Node_Id;
648
649 begin
650 Analyze (Func_Nam);
651
652 -- A call of the form A.B (X) may be an Ada 2005 call, which is
653 -- rewritten as B (A, X). If the rewriting is successful, the call
654 -- has been analyzed and we just return.
655
656 if Nkind (Func_Nam) = N_Selected_Component
657 and then Name (N) /= Func_Nam
658 and then Is_Rewrite_Substitution (N)
659 and then Present (Etype (N))
660 then
661 return;
662 end if;
663
664 -- If error analyzing name, then set Any_Type as result type and return
665
666 if Etype (Func_Nam) = Any_Type then
667 Set_Etype (N, Any_Type);
668 return;
669 end if;
670
671 -- Otherwise analyze the parameters
672
673 if Present (Actuals) then
674 Actual := First (Actuals);
675 while Present (Actual) loop
676 Analyze (Actual);
677 Check_Parameterless_Call (Actual);
678 Next (Actual);
679 end loop;
680 end if;
681
682 Analyze_Call (N);
683 end Analyze_Function_Call;
684
685 -----------------------------
686 -- Analyze_Function_Return --
687 -----------------------------
688
689 procedure Analyze_Function_Return (N : Node_Id) is
690 Loc : constant Source_Ptr := Sloc (N);
691 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
692 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
693
694 R_Type : constant Entity_Id := Etype (Scope_Id);
695 -- Function result subtype
696
697 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
698 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
699 -- aggregate in a return statement.
700
701 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
702 -- Check that the return_subtype_indication properly matches the result
703 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
704
705 -----------------------------------
706 -- Check_Aggregate_Accessibility --
707 -----------------------------------
708
709 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
710 Typ : constant Entity_Id := Etype (Aggr);
711 Assoc : Node_Id;
712 Discr : Entity_Id;
713 Expr : Node_Id;
714 Obj : Node_Id;
715
716 begin
717 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
718 Discr := First_Discriminant (Typ);
719 Assoc := First (Component_Associations (Aggr));
720 while Present (Discr) loop
721 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
722 Expr := Expression (Assoc);
723
724 if Nkind (Expr) = N_Attribute_Reference
725 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
726 then
727 Obj := Prefix (Expr);
728 while Nkind_In (Obj, N_Indexed_Component,
729 N_Selected_Component)
730 loop
731 Obj := Prefix (Obj);
732 end loop;
733
734 -- Do not check aliased formals or function calls. A
735 -- run-time check may still be needed ???
736
737 if Is_Entity_Name (Obj)
738 and then Comes_From_Source (Obj)
739 then
740 if Is_Formal (Entity (Obj))
741 and then Is_Aliased (Entity (Obj))
742 then
743 null;
744
745 elsif Object_Access_Level (Obj) >
746 Scope_Depth (Scope (Scope_Id))
747 then
748 Error_Msg_N
749 ("access discriminant in return aggregate would "
750 & "be a dangling reference", Obj);
751 end if;
752 end if;
753 end if;
754 end if;
755
756 Next_Discriminant (Discr);
757 end loop;
758 end if;
759 end Check_Aggregate_Accessibility;
760
761 -------------------------------------
762 -- Check_Return_Subtype_Indication --
763 -------------------------------------
764
765 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
766 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
767
768 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
769 -- Subtype given in the extended return statement (must match R_Type)
770
771 Subtype_Ind : constant Node_Id :=
772 Object_Definition (Original_Node (Obj_Decl));
773
774 procedure Error_No_Match (N : Node_Id);
775 -- Output error messages for case where types do not statically
776 -- match. N is the location for the messages.
777
778 --------------------
779 -- Error_No_Match --
780 --------------------
781
782 procedure Error_No_Match (N : Node_Id) is
783 begin
784 Error_Msg_N
785 ("subtype must statically match function result subtype", N);
786
787 if not Predicates_Match (R_Stm_Type, R_Type) then
788 Error_Msg_Node_2 := R_Type;
789 Error_Msg_NE
790 ("\predicate of& does not match predicate of&",
791 N, R_Stm_Type);
792 end if;
793 end Error_No_Match;
794
795 -- Start of processing for Check_Return_Subtype_Indication
796
797 begin
798 -- First, avoid cascaded errors
799
800 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
801 return;
802 end if;
803
804 -- "return access T" case; check that the return statement also has
805 -- "access T", and that the subtypes statically match:
806 -- if this is an access to subprogram the signatures must match.
807
808 if Is_Anonymous_Access_Type (R_Type) then
809 if Is_Anonymous_Access_Type (R_Stm_Type) then
810 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
811 then
812 if Base_Type (Designated_Type (R_Stm_Type)) /=
813 Base_Type (Designated_Type (R_Type))
814 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
815 then
816 Error_No_Match (Subtype_Mark (Subtype_Ind));
817 end if;
818
819 else
820 -- For two anonymous access to subprogram types, the types
821 -- themselves must be type conformant.
822
823 if not Conforming_Types
824 (R_Stm_Type, R_Type, Fully_Conformant)
825 then
826 Error_No_Match (Subtype_Ind);
827 end if;
828 end if;
829
830 else
831 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
832 end if;
833
834 -- If the return object is of an anonymous access type, then report
835 -- an error if the function's result type is not also anonymous.
836
837 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
838 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
839 Error_Msg_N
840 ("anonymous access not allowed for function with named access "
841 & "result", Subtype_Ind);
842
843 -- Subtype indication case: check that the return object's type is
844 -- covered by the result type, and that the subtypes statically match
845 -- when the result subtype is constrained. Also handle record types
846 -- with unknown discriminants for which we have built the underlying
847 -- record view. Coverage is needed to allow specific-type return
848 -- objects when the result type is class-wide (see AI05-32).
849
850 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
851 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
852 and then
853 Covers
854 (Base_Type (R_Type),
855 Underlying_Record_View (Base_Type (R_Stm_Type))))
856 then
857 -- A null exclusion may be present on the return type, on the
858 -- function specification, on the object declaration or on the
859 -- subtype itself.
860
861 if Is_Access_Type (R_Type)
862 and then
863 (Can_Never_Be_Null (R_Type)
864 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
865 Can_Never_Be_Null (R_Stm_Type)
866 then
867 Error_No_Match (Subtype_Ind);
868 end if;
869
870 -- AI05-103: for elementary types, subtypes must statically match
871
872 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
873 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
874 Error_No_Match (Subtype_Ind);
875 end if;
876 end if;
877
878 -- All remaining cases are illegal
879
880 -- Note: previous versions of this subprogram allowed the return
881 -- value to be the ancestor of the return type if the return type
882 -- was a null extension. This was plainly incorrect.
883
884 else
885 Error_Msg_N
886 ("wrong type for return_subtype_indication", Subtype_Ind);
887 end if;
888 end Check_Return_Subtype_Indication;
889
890 ---------------------
891 -- Local Variables --
892 ---------------------
893
894 Expr : Node_Id;
895 Obj_Decl : Node_Id := Empty;
896
897 -- Start of processing for Analyze_Function_Return
898
899 begin
900 Set_Return_Present (Scope_Id);
901
902 if Nkind (N) = N_Simple_Return_Statement then
903 Expr := Expression (N);
904
905 -- Guard against a malformed expression. The parser may have tried to
906 -- recover but the node is not analyzable.
907
908 if Nkind (Expr) = N_Error then
909 Set_Etype (Expr, Any_Type);
910 Expander_Mode_Save_And_Set (False);
911 return;
912
913 else
914 -- The resolution of a controlled [extension] aggregate associated
915 -- with a return statement creates a temporary which needs to be
916 -- finalized on function exit. Wrap the return statement inside a
917 -- block so that the finalization machinery can detect this case.
918 -- This early expansion is done only when the return statement is
919 -- not part of a handled sequence of statements.
920
921 if Nkind_In (Expr, N_Aggregate,
922 N_Extension_Aggregate)
923 and then Needs_Finalization (R_Type)
924 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
925 then
926 Rewrite (N,
927 Make_Block_Statement (Loc,
928 Handled_Statement_Sequence =>
929 Make_Handled_Sequence_Of_Statements (Loc,
930 Statements => New_List (Relocate_Node (N)))));
931
932 Analyze (N);
933 return;
934 end if;
935
936 Analyze (Expr);
937
938 -- Ada 2005 (AI-251): If the type of the returned object is
939 -- an access to an interface type then we add an implicit type
940 -- conversion to force the displacement of the "this" pointer to
941 -- reference the secondary dispatch table. We cannot delay the
942 -- generation of this implicit conversion until the expansion
943 -- because in this case the type resolution changes the decoration
944 -- of the expression node to match R_Type; by contrast, if the
945 -- returned object is a class-wide interface type then it is too
946 -- early to generate here the implicit conversion since the return
947 -- statement may be rewritten by the expander into an extended
948 -- return statement whose expansion takes care of adding the
949 -- implicit type conversion to displace the pointer to the object.
950
951 if Expander_Active
952 and then Serious_Errors_Detected = 0
953 and then Is_Access_Type (R_Type)
954 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
955 and then Is_Interface (Designated_Type (R_Type))
956 and then Is_Progenitor (Designated_Type (R_Type),
957 Designated_Type (Etype (Expr)))
958 then
959 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
960 Analyze (Expr);
961 end if;
962
963 Resolve (Expr, R_Type);
964 Check_Limited_Return (N, Expr, R_Type);
965
966 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
967 Check_Aggregate_Accessibility (Expr);
968 end if;
969 end if;
970
971 -- RETURN only allowed in SPARK as the last statement in function
972
973 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
974 and then
975 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
976 or else Present (Next (N)))
977 then
978 Check_SPARK_05_Restriction
979 ("RETURN should be the last statement in function", N);
980 end if;
981
982 else
983 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
984 Obj_Decl := Last (Return_Object_Declarations (N));
985
986 -- Analyze parts specific to extended_return_statement:
987
988 declare
989 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
990 HSS : constant Node_Id := Handled_Statement_Sequence (N);
991
992 begin
993 Expr := Expression (Obj_Decl);
994
995 -- Note: The check for OK_For_Limited_Init will happen in
996 -- Analyze_Object_Declaration; we treat it as a normal
997 -- object declaration.
998
999 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1000 Analyze (Obj_Decl);
1001
1002 Check_Return_Subtype_Indication (Obj_Decl);
1003
1004 if Present (HSS) then
1005 Analyze (HSS);
1006
1007 if Present (Exception_Handlers (HSS)) then
1008
1009 -- ???Has_Nested_Block_With_Handler needs to be set.
1010 -- Probably by creating an actual N_Block_Statement.
1011 -- Probably in Expand.
1012
1013 null;
1014 end if;
1015 end if;
1016
1017 -- Mark the return object as referenced, since the return is an
1018 -- implicit reference of the object.
1019
1020 Set_Referenced (Defining_Identifier (Obj_Decl));
1021
1022 Check_References (Stm_Entity);
1023
1024 -- Check RM 6.5 (5.9/3)
1025
1026 if Has_Aliased then
1027 if Ada_Version < Ada_2012 then
1028
1029 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1030 -- Can it really happen (extended return???)
1031
1032 Error_Msg_N
1033 ("aliased only allowed for limited return objects "
1034 & "in Ada 2012??", N);
1035
1036 elsif not Is_Limited_View (R_Type) then
1037 Error_Msg_N
1038 ("aliased only allowed for limited return objects", N);
1039 end if;
1040 end if;
1041 end;
1042 end if;
1043
1044 -- Case of Expr present
1045
1046 if Present (Expr) then
1047
1048 -- Defend against previous errors
1049
1050 if Nkind (Expr) = N_Empty
1051 or else No (Etype (Expr))
1052 then
1053 return;
1054 end if;
1055
1056 -- Apply constraint check. Note that this is done before the implicit
1057 -- conversion of the expression done for anonymous access types to
1058 -- ensure correct generation of the null-excluding check associated
1059 -- with null-excluding expressions found in return statements.
1060
1061 Apply_Constraint_Check (Expr, R_Type);
1062
1063 -- The return value is converted to the return type of the function,
1064 -- which implies a predicate check if the return type is predicated.
1065 -- We do not apply the check to a case expression because it will
1066 -- be expanded into a series of return statements, each of which
1067 -- will receive a predicate check.
1068
1069 if Nkind (Expr) /= N_Case_Expression then
1070 Apply_Predicate_Check (Expr, R_Type);
1071 end if;
1072
1073 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1074 -- type, apply an implicit conversion of the expression to that type
1075 -- to force appropriate static and run-time accessibility checks.
1076
1077 if Ada_Version >= Ada_2005
1078 and then Ekind (R_Type) = E_Anonymous_Access_Type
1079 then
1080 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1081 Analyze_And_Resolve (Expr, R_Type);
1082
1083 -- If this is a local anonymous access to subprogram, the
1084 -- accessibility check can be applied statically. The return is
1085 -- illegal if the access type of the return expression is declared
1086 -- inside of the subprogram (except if it is the subtype indication
1087 -- of an extended return statement).
1088
1089 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1090 if not Comes_From_Source (Current_Scope)
1091 or else Ekind (Current_Scope) = E_Return_Statement
1092 then
1093 null;
1094
1095 elsif
1096 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1097 then
1098 Error_Msg_N ("cannot return local access to subprogram", N);
1099 end if;
1100
1101 -- The expression cannot be of a formal incomplete type
1102
1103 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1104 and then Is_Generic_Type (Etype (Expr))
1105 then
1106 Error_Msg_N
1107 ("cannot return expression of a formal incomplete type", N);
1108 end if;
1109
1110 -- If the result type is class-wide, then check that the return
1111 -- expression's type is not declared at a deeper level than the
1112 -- function (RM05-6.5(5.6/2)).
1113
1114 if Ada_Version >= Ada_2005
1115 and then Is_Class_Wide_Type (R_Type)
1116 then
1117 if Type_Access_Level (Etype (Expr)) >
1118 Subprogram_Access_Level (Scope_Id)
1119 then
1120 Error_Msg_N
1121 ("level of return expression type is deeper than "
1122 & "class-wide function!", Expr);
1123 end if;
1124 end if;
1125
1126 -- Check incorrect use of dynamically tagged expression
1127
1128 if Is_Tagged_Type (R_Type) then
1129 Check_Dynamically_Tagged_Expression
1130 (Expr => Expr,
1131 Typ => R_Type,
1132 Related_Nod => N);
1133 end if;
1134
1135 -- ??? A real run-time accessibility check is needed in cases
1136 -- involving dereferences of access parameters. For now we just
1137 -- check the static cases.
1138
1139 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1140 and then Is_Limited_View (Etype (Scope_Id))
1141 and then Object_Access_Level (Expr) >
1142 Subprogram_Access_Level (Scope_Id)
1143 then
1144 -- Suppress the message in a generic, where the rewriting
1145 -- is irrelevant.
1146
1147 if Inside_A_Generic then
1148 null;
1149
1150 else
1151 Rewrite (N,
1152 Make_Raise_Program_Error (Loc,
1153 Reason => PE_Accessibility_Check_Failed));
1154 Analyze (N);
1155
1156 Error_Msg_Warn := SPARK_Mode /= On;
1157 Error_Msg_N ("cannot return a local value by reference<<", N);
1158 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1159 end if;
1160 end if;
1161
1162 if Known_Null (Expr)
1163 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1164 and then Null_Exclusion_Present (Parent (Scope_Id))
1165 then
1166 Apply_Compile_Time_Constraint_Error
1167 (N => Expr,
1168 Msg => "(Ada 2005) null not allowed for "
1169 & "null-excluding return??",
1170 Reason => CE_Null_Not_Allowed);
1171 end if;
1172
1173 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1174 -- has no initializing expression.
1175
1176 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1177 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1178 Subprogram_Access_Level (Scope_Id)
1179 then
1180 Error_Msg_N
1181 ("level of return expression type is deeper than "
1182 & "class-wide function!", Obj_Decl);
1183 end if;
1184 end if;
1185 end Analyze_Function_Return;
1186
1187 -------------------------------------
1188 -- Analyze_Generic_Subprogram_Body --
1189 -------------------------------------
1190
1191 procedure Analyze_Generic_Subprogram_Body
1192 (N : Node_Id;
1193 Gen_Id : Entity_Id)
1194 is
1195 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1196 Kind : constant Entity_Kind := Ekind (Gen_Id);
1197 Body_Id : Entity_Id;
1198 New_N : Node_Id;
1199 Spec : Node_Id;
1200
1201 begin
1202 -- Copy body and disable expansion while analyzing the generic For a
1203 -- stub, do not copy the stub (which would load the proper body), this
1204 -- will be done when the proper body is analyzed.
1205
1206 if Nkind (N) /= N_Subprogram_Body_Stub then
1207 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1208 Rewrite (N, New_N);
1209
1210 -- Once the contents of the generic copy and the template are
1211 -- swapped, do the same for their respective aspect specifications.
1212
1213 Exchange_Aspects (N, New_N);
1214
1215 -- Collect all contract-related source pragmas found within the
1216 -- template and attach them to the contract of the subprogram body.
1217 -- This contract is used in the capture of global references within
1218 -- annotations.
1219
1220 Create_Generic_Contract (N);
1221
1222 Start_Generic;
1223 end if;
1224
1225 Spec := Specification (N);
1226
1227 -- Within the body of the generic, the subprogram is callable, and
1228 -- behaves like the corresponding non-generic unit.
1229
1230 Body_Id := Defining_Entity (Spec);
1231
1232 if Kind = E_Generic_Procedure
1233 and then Nkind (Spec) /= N_Procedure_Specification
1234 then
1235 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1236 return;
1237
1238 elsif Kind = E_Generic_Function
1239 and then Nkind (Spec) /= N_Function_Specification
1240 then
1241 Error_Msg_N ("invalid body for generic function ", Body_Id);
1242 return;
1243 end if;
1244
1245 Set_Corresponding_Body (Gen_Decl, Body_Id);
1246
1247 if Has_Completion (Gen_Id)
1248 and then Nkind (Parent (N)) /= N_Subunit
1249 then
1250 Error_Msg_N ("duplicate generic body", N);
1251 return;
1252 else
1253 Set_Has_Completion (Gen_Id);
1254 end if;
1255
1256 if Nkind (N) = N_Subprogram_Body_Stub then
1257 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1258 else
1259 Set_Corresponding_Spec (N, Gen_Id);
1260 end if;
1261
1262 if Nkind (Parent (N)) = N_Compilation_Unit then
1263 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1264 end if;
1265
1266 -- Make generic parameters immediately visible in the body. They are
1267 -- needed to process the formals declarations. Then make the formals
1268 -- visible in a separate step.
1269
1270 Push_Scope (Gen_Id);
1271
1272 declare
1273 E : Entity_Id;
1274 First_Ent : Entity_Id;
1275
1276 begin
1277 First_Ent := First_Entity (Gen_Id);
1278
1279 E := First_Ent;
1280 while Present (E) and then not Is_Formal (E) loop
1281 Install_Entity (E);
1282 Next_Entity (E);
1283 end loop;
1284
1285 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1286
1287 -- Now generic formals are visible, and the specification can be
1288 -- analyzed, for subsequent conformance check.
1289
1290 Body_Id := Analyze_Subprogram_Specification (Spec);
1291
1292 -- Make formal parameters visible
1293
1294 if Present (E) then
1295
1296 -- E is the first formal parameter, we loop through the formals
1297 -- installing them so that they will be visible.
1298
1299 Set_First_Entity (Gen_Id, E);
1300 while Present (E) loop
1301 Install_Entity (E);
1302 Next_Formal (E);
1303 end loop;
1304 end if;
1305
1306 -- Visible generic entity is callable within its own body
1307
1308 Set_Ekind (Gen_Id, Ekind (Body_Id));
1309 Set_Ekind (Body_Id, E_Subprogram_Body);
1310 Set_Convention (Body_Id, Convention (Gen_Id));
1311 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1312 Set_Scope (Body_Id, Scope (Gen_Id));
1313
1314 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1315
1316 if Nkind (N) = N_Subprogram_Body_Stub then
1317
1318 -- No body to analyze, so restore state of generic unit
1319
1320 Set_Ekind (Gen_Id, Kind);
1321 Set_Ekind (Body_Id, Kind);
1322
1323 if Present (First_Ent) then
1324 Set_First_Entity (Gen_Id, First_Ent);
1325 end if;
1326
1327 End_Scope;
1328 return;
1329 end if;
1330
1331 -- If this is a compilation unit, it must be made visible explicitly,
1332 -- because the compilation of the declaration, unlike other library
1333 -- unit declarations, does not. If it is not a unit, the following
1334 -- is redundant but harmless.
1335
1336 Set_Is_Immediately_Visible (Gen_Id);
1337 Reference_Body_Formals (Gen_Id, Body_Id);
1338
1339 if Is_Child_Unit (Gen_Id) then
1340 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1341 end if;
1342
1343 Set_Actual_Subtypes (N, Current_Scope);
1344
1345 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1346 Set_SPARK_Pragma_Inherited (Body_Id);
1347
1348 -- Analyze any aspect specifications that appear on the generic
1349 -- subprogram body.
1350
1351 if Has_Aspects (N) then
1352 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1353 end if;
1354
1355 Analyze_Declarations (Declarations (N));
1356 Check_Completion;
1357
1358 -- Process the contract of the subprogram body after all declarations
1359 -- have been analyzed. This ensures that any contract-related pragmas
1360 -- are available through the N_Contract node of the body.
1361
1362 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1363
1364 Analyze (Handled_Statement_Sequence (N));
1365 Save_Global_References (Original_Node (N));
1366
1367 -- Prior to exiting the scope, include generic formals again (if any
1368 -- are present) in the set of local entities.
1369
1370 if Present (First_Ent) then
1371 Set_First_Entity (Gen_Id, First_Ent);
1372 end if;
1373
1374 Check_References (Gen_Id);
1375 end;
1376
1377 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1378 Update_Use_Clause_Chain;
1379 Validate_Categorization_Dependency (N, Gen_Id);
1380 End_Scope;
1381 Check_Subprogram_Order (N);
1382
1383 -- Outside of its body, unit is generic again
1384
1385 Set_Ekind (Gen_Id, Kind);
1386 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1387
1388 if Style_Check then
1389 Style.Check_Identifier (Body_Id, Gen_Id);
1390 end if;
1391
1392 End_Generic;
1393 end Analyze_Generic_Subprogram_Body;
1394
1395 ----------------------------
1396 -- Analyze_Null_Procedure --
1397 ----------------------------
1398
1399 -- WARNING: This routine manages Ghost regions. Return statements must be
1400 -- replaced by gotos that jump to the end of the routine and restore the
1401 -- Ghost mode.
1402
1403 procedure Analyze_Null_Procedure
1404 (N : Node_Id;
1405 Is_Completion : out Boolean)
1406 is
1407 Loc : constant Source_Ptr := Sloc (N);
1408 Spec : constant Node_Id := Specification (N);
1409
1410 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1411 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1412 Saved_ISMP : constant Boolean :=
1413 Ignore_SPARK_Mode_Pragmas_In_Instance;
1414 -- Save the Ghost and SPARK mode-related data to restore on exit
1415
1416 Designator : Entity_Id;
1417 Form : Node_Id;
1418 Null_Body : Node_Id := Empty;
1419 Null_Stmt : Node_Id := Null_Statement (Spec);
1420 Prev : Entity_Id;
1421
1422 begin
1423 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1424
1425 -- A null procedure is Ghost when it is stand-alone and is subject to
1426 -- pragma Ghost, or when the corresponding spec is Ghost. Set the mode
1427 -- now, to ensure that any nodes generated during analysis and expansion
1428 -- are properly marked as Ghost.
1429
1430 if Present (Prev) then
1431 Mark_And_Set_Ghost_Body (N, Prev);
1432 end if;
1433
1434 -- Capture the profile of the null procedure before analysis, for
1435 -- expansion at the freeze point and at each point of call. The body is
1436 -- used if the procedure has preconditions, or if it is a completion. In
1437 -- the first case the body is analyzed at the freeze point, in the other
1438 -- it replaces the null procedure declaration.
1439
1440 -- For a null procedure that comes from source, a NULL statement is
1441 -- provided by the parser, which carries the source location of the
1442 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1443 -- from expansion, create one now.
1444
1445 if No (Null_Stmt) then
1446 Null_Stmt := Make_Null_Statement (Loc);
1447 end if;
1448
1449 Null_Body :=
1450 Make_Subprogram_Body (Loc,
1451 Specification => New_Copy_Tree (Spec),
1452 Declarations => New_List,
1453 Handled_Statement_Sequence =>
1454 Make_Handled_Sequence_Of_Statements (Loc,
1455 Statements => New_List (Null_Stmt)));
1456
1457 -- Create new entities for body and formals
1458
1459 Set_Defining_Unit_Name (Specification (Null_Body),
1460 Make_Defining_Identifier
1461 (Sloc (Defining_Entity (N)),
1462 Chars (Defining_Entity (N))));
1463
1464 Form := First (Parameter_Specifications (Specification (Null_Body)));
1465 while Present (Form) loop
1466 Set_Defining_Identifier (Form,
1467 Make_Defining_Identifier
1468 (Sloc (Defining_Identifier (Form)),
1469 Chars (Defining_Identifier (Form))));
1470 Next (Form);
1471 end loop;
1472
1473 -- Determine whether the null procedure may be a completion of a generic
1474 -- suprogram, in which case we use the new null body as the completion
1475 -- and set minimal semantic information on the original declaration,
1476 -- which is rewritten as a null statement.
1477
1478 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1479 Insert_Before (N, Null_Body);
1480 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1481
1482 Rewrite (N, Make_Null_Statement (Loc));
1483 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1484 Is_Completion := True;
1485
1486 goto Leave;
1487
1488 else
1489 -- Resolve the types of the formals now, because the freeze point may
1490 -- appear in a different context, e.g. an instantiation.
1491
1492 Form := First (Parameter_Specifications (Specification (Null_Body)));
1493 while Present (Form) loop
1494 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1495 Find_Type (Parameter_Type (Form));
1496
1497 elsif No (Access_To_Subprogram_Definition
1498 (Parameter_Type (Form)))
1499 then
1500 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1501
1502 -- The case of a null procedure with a formal that is an
1503 -- access-to-subprogram type, and that is used as an actual
1504 -- in an instantiation is left to the enthusiastic reader.
1505
1506 else
1507 null;
1508 end if;
1509
1510 Next (Form);
1511 end loop;
1512 end if;
1513
1514 -- If there are previous overloadable entities with the same name, check
1515 -- whether any of them is completed by the null procedure.
1516
1517 if Present (Prev) and then Is_Overloadable (Prev) then
1518 Designator := Analyze_Subprogram_Specification (Spec);
1519 Prev := Find_Corresponding_Spec (N);
1520 end if;
1521
1522 if No (Prev) or else not Comes_From_Source (Prev) then
1523 Designator := Analyze_Subprogram_Specification (Spec);
1524 Set_Has_Completion (Designator);
1525
1526 -- Signal to caller that this is a procedure declaration
1527
1528 Is_Completion := False;
1529
1530 -- Null procedures are always inlined, but generic formal subprograms
1531 -- which appear as such in the internal instance of formal packages,
1532 -- need no completion and are not marked Inline.
1533
1534 if Expander_Active
1535 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1536 then
1537 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1538 Set_Body_To_Inline (N, Null_Body);
1539 Set_Is_Inlined (Designator);
1540 end if;
1541
1542 else
1543 -- The null procedure is a completion. We unconditionally rewrite
1544 -- this as a null body (even if expansion is not active), because
1545 -- there are various error checks that are applied on this body
1546 -- when it is analyzed (e.g. correct aspect placement).
1547
1548 if Has_Completion (Prev) then
1549 Error_Msg_Sloc := Sloc (Prev);
1550 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1551 end if;
1552
1553 Check_Previous_Null_Procedure (N, Prev);
1554
1555 Is_Completion := True;
1556 Rewrite (N, Null_Body);
1557 Analyze (N);
1558 end if;
1559
1560 <<Leave>>
1561 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
1562 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1563 end Analyze_Null_Procedure;
1564
1565 -----------------------------
1566 -- Analyze_Operator_Symbol --
1567 -----------------------------
1568
1569 -- An operator symbol such as "+" or "and" may appear in context where the
1570 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1571 -- is just a string, as in (conjunction = "or"). In these cases the parser
1572 -- generates this node, and the semantics does the disambiguation. Other
1573 -- such case are actuals in an instantiation, the generic unit in an
1574 -- instantiation, and pragma arguments.
1575
1576 procedure Analyze_Operator_Symbol (N : Node_Id) is
1577 Par : constant Node_Id := Parent (N);
1578
1579 begin
1580 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1581 or else Nkind (Par) = N_Function_Instantiation
1582 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1583 or else (Nkind (Par) = N_Pragma_Argument_Association
1584 and then not Is_Pragma_String_Literal (Par))
1585 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1586 or else (Nkind (Par) = N_Attribute_Reference
1587 and then Attribute_Name (Par) /= Name_Value)
1588 then
1589 Find_Direct_Name (N);
1590
1591 else
1592 Change_Operator_Symbol_To_String_Literal (N);
1593 Analyze (N);
1594 end if;
1595 end Analyze_Operator_Symbol;
1596
1597 -----------------------------------
1598 -- Analyze_Parameter_Association --
1599 -----------------------------------
1600
1601 procedure Analyze_Parameter_Association (N : Node_Id) is
1602 begin
1603 Analyze (Explicit_Actual_Parameter (N));
1604 end Analyze_Parameter_Association;
1605
1606 ----------------------------
1607 -- Analyze_Procedure_Call --
1608 ----------------------------
1609
1610 -- WARNING: This routine manages Ghost regions. Return statements must be
1611 -- replaced by gotos that jump to the end of the routine and restore the
1612 -- Ghost mode.
1613
1614 procedure Analyze_Procedure_Call (N : Node_Id) is
1615 procedure Analyze_Call_And_Resolve;
1616 -- Do Analyze and Resolve calls for procedure call. At the end, check
1617 -- for illegal order dependence.
1618 -- ??? where is the check for illegal order dependencies?
1619
1620 ------------------------------
1621 -- Analyze_Call_And_Resolve --
1622 ------------------------------
1623
1624 procedure Analyze_Call_And_Resolve is
1625 begin
1626 if Nkind (N) = N_Procedure_Call_Statement then
1627 Analyze_Call (N);
1628 Resolve (N, Standard_Void_Type);
1629 else
1630 Analyze (N);
1631 end if;
1632 end Analyze_Call_And_Resolve;
1633
1634 -- Local variables
1635
1636 Actuals : constant List_Id := Parameter_Associations (N);
1637 Loc : constant Source_Ptr := Sloc (N);
1638 P : constant Node_Id := Name (N);
1639
1640 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1641 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1642 -- Save the Ghost-related attributes to restore on exit
1643
1644 Actual : Node_Id;
1645 New_N : Node_Id;
1646
1647 -- Start of processing for Analyze_Procedure_Call
1648
1649 begin
1650 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1651 -- a procedure call or an entry call. The prefix may denote an access
1652 -- to subprogram type, in which case an implicit dereference applies.
1653 -- If the prefix is an indexed component (without implicit dereference)
1654 -- then the construct denotes a call to a member of an entire family.
1655 -- If the prefix is a simple name, it may still denote a call to a
1656 -- parameterless member of an entry family. Resolution of these various
1657 -- interpretations is delicate.
1658
1659 -- Do not analyze machine code statements to avoid rejecting them in
1660 -- CodePeer mode.
1661
1662 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1663 Set_Etype (P, Standard_Void_Type);
1664 else
1665 Analyze (P);
1666 end if;
1667
1668 -- If this is a call of the form Obj.Op, the call may have been analyzed
1669 -- and possibly rewritten into a block, in which case we are done.
1670
1671 if Analyzed (N) then
1672 return;
1673
1674 -- If there is an error analyzing the name (which may have been
1675 -- rewritten if the original call was in prefix notation) then error
1676 -- has been emitted already, mark node and return.
1677
1678 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1679 Set_Etype (N, Any_Type);
1680 return;
1681 end if;
1682
1683 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1684 -- Set the mode now to ensure that any nodes generated during analysis
1685 -- and expansion are properly marked as Ghost.
1686
1687 Mark_And_Set_Ghost_Procedure_Call (N);
1688
1689 -- Otherwise analyze the parameters
1690
1691 if Present (Actuals) then
1692 Actual := First (Actuals);
1693
1694 while Present (Actual) loop
1695 Analyze (Actual);
1696 Check_Parameterless_Call (Actual);
1697 Next (Actual);
1698 end loop;
1699 end if;
1700
1701 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1702
1703 if Nkind (P) = N_Attribute_Reference
1704 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1705 Name_Elab_Body,
1706 Name_Elab_Subp_Body)
1707 then
1708 if Present (Actuals) then
1709 Error_Msg_N
1710 ("no parameters allowed for this call", First (Actuals));
1711 goto Leave;
1712 end if;
1713
1714 Set_Etype (N, Standard_Void_Type);
1715 Set_Analyzed (N);
1716
1717 elsif Is_Entity_Name (P)
1718 and then Is_Record_Type (Etype (Entity (P)))
1719 and then Remote_AST_I_Dereference (P)
1720 then
1721 goto Leave;
1722
1723 elsif Is_Entity_Name (P)
1724 and then Ekind (Entity (P)) /= E_Entry_Family
1725 then
1726 if Is_Access_Type (Etype (P))
1727 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1728 and then No (Actuals)
1729 and then Comes_From_Source (N)
1730 then
1731 Error_Msg_N ("missing explicit dereference in call", N);
1732 end if;
1733
1734 Analyze_Call_And_Resolve;
1735
1736 -- If the prefix is the simple name of an entry family, this is a
1737 -- parameterless call from within the task body itself.
1738
1739 elsif Is_Entity_Name (P)
1740 and then Nkind (P) = N_Identifier
1741 and then Ekind (Entity (P)) = E_Entry_Family
1742 and then Present (Actuals)
1743 and then No (Next (First (Actuals)))
1744 then
1745 -- Can be call to parameterless entry family. What appears to be the
1746 -- sole argument is in fact the entry index. Rewrite prefix of node
1747 -- accordingly. Source representation is unchanged by this
1748 -- transformation.
1749
1750 New_N :=
1751 Make_Indexed_Component (Loc,
1752 Prefix =>
1753 Make_Selected_Component (Loc,
1754 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1755 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1756 Expressions => Actuals);
1757 Set_Name (N, New_N);
1758 Set_Etype (New_N, Standard_Void_Type);
1759 Set_Parameter_Associations (N, No_List);
1760 Analyze_Call_And_Resolve;
1761
1762 elsif Nkind (P) = N_Explicit_Dereference then
1763 if Ekind (Etype (P)) = E_Subprogram_Type then
1764 Analyze_Call_And_Resolve;
1765 else
1766 Error_Msg_N ("expect access to procedure in call", P);
1767 end if;
1768
1769 -- The name can be a selected component or an indexed component that
1770 -- yields an access to subprogram. Such a prefix is legal if the call
1771 -- has parameter associations.
1772
1773 elsif Is_Access_Type (Etype (P))
1774 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1775 then
1776 if Present (Actuals) then
1777 Analyze_Call_And_Resolve;
1778 else
1779 Error_Msg_N ("missing explicit dereference in call ", N);
1780 end if;
1781
1782 -- If not an access to subprogram, then the prefix must resolve to the
1783 -- name of an entry, entry family, or protected operation.
1784
1785 -- For the case of a simple entry call, P is a selected component where
1786 -- the prefix is the task and the selector name is the entry. A call to
1787 -- a protected procedure will have the same syntax. If the protected
1788 -- object contains overloaded operations, the entity may appear as a
1789 -- function, the context will select the operation whose type is Void.
1790
1791 elsif Nkind (P) = N_Selected_Component
1792 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1793 E_Function,
1794 E_Procedure)
1795 then
1796 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1797 -- in prefix notation may still be missing its controlling argument,
1798 -- so perform the transformation now.
1799
1800 if SPARK_Mode = On and then In_Inlined_Body then
1801 declare
1802 Subp : constant Entity_Id := Entity (Selector_Name (P));
1803 Typ : constant Entity_Id := Etype (Prefix (P));
1804
1805 begin
1806 if Is_Tagged_Type (Typ)
1807 and then Present (First_Formal (Subp))
1808 and then (Etype (First_Formal (Subp)) = Typ
1809 or else
1810 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1811 and then Try_Object_Operation (P)
1812 then
1813 return;
1814
1815 else
1816 Analyze_Call_And_Resolve;
1817 end if;
1818 end;
1819
1820 else
1821 Analyze_Call_And_Resolve;
1822 end if;
1823
1824 elsif Nkind (P) = N_Selected_Component
1825 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1826 and then Present (Actuals)
1827 and then No (Next (First (Actuals)))
1828 then
1829 -- Can be call to parameterless entry family. What appears to be the
1830 -- sole argument is in fact the entry index. Rewrite prefix of node
1831 -- accordingly. Source representation is unchanged by this
1832 -- transformation.
1833
1834 New_N :=
1835 Make_Indexed_Component (Loc,
1836 Prefix => New_Copy (P),
1837 Expressions => Actuals);
1838 Set_Name (N, New_N);
1839 Set_Etype (New_N, Standard_Void_Type);
1840 Set_Parameter_Associations (N, No_List);
1841 Analyze_Call_And_Resolve;
1842
1843 -- For the case of a reference to an element of an entry family, P is
1844 -- an indexed component whose prefix is a selected component (task and
1845 -- entry family), and whose index is the entry family index.
1846
1847 elsif Nkind (P) = N_Indexed_Component
1848 and then Nkind (Prefix (P)) = N_Selected_Component
1849 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1850 then
1851 Analyze_Call_And_Resolve;
1852
1853 -- If the prefix is the name of an entry family, it is a call from
1854 -- within the task body itself.
1855
1856 elsif Nkind (P) = N_Indexed_Component
1857 and then Nkind (Prefix (P)) = N_Identifier
1858 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1859 then
1860 New_N :=
1861 Make_Selected_Component (Loc,
1862 Prefix =>
1863 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1864 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1865 Rewrite (Prefix (P), New_N);
1866 Analyze (P);
1867 Analyze_Call_And_Resolve;
1868
1869 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1870 -- procedure name, so the construct can only be a qualified expression.
1871
1872 elsif Nkind (P) = N_Qualified_Expression
1873 and then Ada_Version >= Ada_2012
1874 then
1875 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1876 Analyze (N);
1877
1878 -- Anything else is an error
1879
1880 else
1881 Error_Msg_N ("invalid procedure or entry call", N);
1882 end if;
1883
1884 <<Leave>>
1885 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1886 end Analyze_Procedure_Call;
1887
1888 ------------------------------
1889 -- Analyze_Return_Statement --
1890 ------------------------------
1891
1892 procedure Analyze_Return_Statement (N : Node_Id) is
1893 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
1894 N_Simple_Return_Statement));
1895
1896 Returns_Object : constant Boolean :=
1897 Nkind (N) = N_Extended_Return_Statement
1898 or else
1899 (Nkind (N) = N_Simple_Return_Statement
1900 and then Present (Expression (N)));
1901 -- True if we're returning something; that is, "return <expression>;"
1902 -- or "return Result : T [:= ...]". False for "return;". Used for error
1903 -- checking: If Returns_Object is True, N should apply to a function
1904 -- body; otherwise N should apply to a procedure body, entry body,
1905 -- accept statement, or extended return statement.
1906
1907 function Find_What_It_Applies_To return Entity_Id;
1908 -- Find the entity representing the innermost enclosing body, accept
1909 -- statement, or extended return statement. If the result is a callable
1910 -- construct or extended return statement, then this will be the value
1911 -- of the Return_Applies_To attribute. Otherwise, the program is
1912 -- illegal. See RM-6.5(4/2).
1913
1914 -----------------------------
1915 -- Find_What_It_Applies_To --
1916 -----------------------------
1917
1918 function Find_What_It_Applies_To return Entity_Id is
1919 Result : Entity_Id := Empty;
1920
1921 begin
1922 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1923 -- and postconditions.
1924
1925 for J in reverse 0 .. Scope_Stack.Last loop
1926 Result := Scope_Stack.Table (J).Entity;
1927 exit when not Ekind_In (Result, E_Block, E_Loop)
1928 and then Chars (Result) /= Name_uPostconditions;
1929 end loop;
1930
1931 pragma Assert (Present (Result));
1932 return Result;
1933 end Find_What_It_Applies_To;
1934
1935 -- Local declarations
1936
1937 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1938 Kind : constant Entity_Kind := Ekind (Scope_Id);
1939 Loc : constant Source_Ptr := Sloc (N);
1940 Stm_Entity : constant Entity_Id :=
1941 New_Internal_Entity
1942 (E_Return_Statement, Current_Scope, Loc, 'R');
1943
1944 -- Start of processing for Analyze_Return_Statement
1945
1946 begin
1947 Set_Return_Statement_Entity (N, Stm_Entity);
1948
1949 Set_Etype (Stm_Entity, Standard_Void_Type);
1950 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1951
1952 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1953 -- (4/2): an inner return statement will apply to this extended return.
1954
1955 if Nkind (N) = N_Extended_Return_Statement then
1956 Push_Scope (Stm_Entity);
1957 end if;
1958
1959 -- Check that pragma No_Return is obeyed. Don't complain about the
1960 -- implicitly-generated return that is placed at the end.
1961
1962 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1963 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1964 end if;
1965
1966 -- Warn on any unassigned OUT parameters if in procedure
1967
1968 if Ekind (Scope_Id) = E_Procedure then
1969 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1970 end if;
1971
1972 -- Check that functions return objects, and other things do not
1973
1974 if Kind = E_Function or else Kind = E_Generic_Function then
1975 if not Returns_Object then
1976 Error_Msg_N ("missing expression in return from function", N);
1977 end if;
1978
1979 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1980 if Returns_Object then
1981 Error_Msg_N ("procedure cannot return value (use function)", N);
1982 end if;
1983
1984 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1985 if Returns_Object then
1986 if Is_Protected_Type (Scope (Scope_Id)) then
1987 Error_Msg_N ("entry body cannot return value", N);
1988 else
1989 Error_Msg_N ("accept statement cannot return value", N);
1990 end if;
1991 end if;
1992
1993 elsif Kind = E_Return_Statement then
1994
1995 -- We are nested within another return statement, which must be an
1996 -- extended_return_statement.
1997
1998 if Returns_Object then
1999 if Nkind (N) = N_Extended_Return_Statement then
2000 Error_Msg_N
2001 ("extended return statement cannot be nested (use `RETURN;`)",
2002 N);
2003
2004 -- Case of a simple return statement with a value inside extended
2005 -- return statement.
2006
2007 else
2008 Error_Msg_N
2009 ("return nested in extended return statement cannot return "
2010 & "value (use `RETURN;`)", N);
2011 end if;
2012 end if;
2013
2014 else
2015 Error_Msg_N ("illegal context for return statement", N);
2016 end if;
2017
2018 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2019 Analyze_Function_Return (N);
2020
2021 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2022 Set_Return_Present (Scope_Id);
2023 end if;
2024
2025 if Nkind (N) = N_Extended_Return_Statement then
2026 End_Scope;
2027 end if;
2028
2029 Kill_Current_Values (Last_Assignment_Only => True);
2030 Check_Unreachable_Code (N);
2031
2032 Analyze_Dimension (N);
2033 end Analyze_Return_Statement;
2034
2035 -------------------------------------
2036 -- Analyze_Simple_Return_Statement --
2037 -------------------------------------
2038
2039 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2040 begin
2041 if Present (Expression (N)) then
2042 Mark_Coextensions (N, Expression (N));
2043 end if;
2044
2045 Analyze_Return_Statement (N);
2046 end Analyze_Simple_Return_Statement;
2047
2048 -------------------------
2049 -- Analyze_Return_Type --
2050 -------------------------
2051
2052 procedure Analyze_Return_Type (N : Node_Id) is
2053 Designator : constant Entity_Id := Defining_Entity (N);
2054 Typ : Entity_Id := Empty;
2055
2056 begin
2057 -- Normal case where result definition does not indicate an error
2058
2059 if Result_Definition (N) /= Error then
2060 if Nkind (Result_Definition (N)) = N_Access_Definition then
2061 Check_SPARK_05_Restriction
2062 ("access result is not allowed", Result_Definition (N));
2063
2064 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2065
2066 declare
2067 AD : constant Node_Id :=
2068 Access_To_Subprogram_Definition (Result_Definition (N));
2069 begin
2070 if Present (AD) and then Protected_Present (AD) then
2071 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2072 else
2073 Typ := Access_Definition (N, Result_Definition (N));
2074 end if;
2075 end;
2076
2077 Set_Parent (Typ, Result_Definition (N));
2078 Set_Is_Local_Anonymous_Access (Typ);
2079 Set_Etype (Designator, Typ);
2080
2081 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2082
2083 Null_Exclusion_Static_Checks (N);
2084
2085 -- Subtype_Mark case
2086
2087 else
2088 Find_Type (Result_Definition (N));
2089 Typ := Entity (Result_Definition (N));
2090 Set_Etype (Designator, Typ);
2091
2092 -- Unconstrained array as result is not allowed in SPARK
2093
2094 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2095 Check_SPARK_05_Restriction
2096 ("returning an unconstrained array is not allowed",
2097 Result_Definition (N));
2098 end if;
2099
2100 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2101
2102 Null_Exclusion_Static_Checks (N);
2103
2104 -- If a null exclusion is imposed on the result type, then create
2105 -- a null-excluding itype (an access subtype) and use it as the
2106 -- function's Etype. Note that the null exclusion checks are done
2107 -- right before this, because they don't get applied to types that
2108 -- do not come from source.
2109
2110 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2111 Set_Etype (Designator,
2112 Create_Null_Excluding_Itype
2113 (T => Typ,
2114 Related_Nod => N,
2115 Scope_Id => Scope (Current_Scope)));
2116
2117 -- The new subtype must be elaborated before use because
2118 -- it is visible outside of the function. However its base
2119 -- type may not be frozen yet, so the reference that will
2120 -- force elaboration must be attached to the freezing of
2121 -- the base type.
2122
2123 -- If the return specification appears on a proper body,
2124 -- the subtype will have been created already on the spec.
2125
2126 if Is_Frozen (Typ) then
2127 if Nkind (Parent (N)) = N_Subprogram_Body
2128 and then Nkind (Parent (Parent (N))) = N_Subunit
2129 then
2130 null;
2131 else
2132 Build_Itype_Reference (Etype (Designator), Parent (N));
2133 end if;
2134
2135 else
2136 Ensure_Freeze_Node (Typ);
2137
2138 declare
2139 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2140 begin
2141 Set_Itype (IR, Etype (Designator));
2142 Append_Freeze_Actions (Typ, New_List (IR));
2143 end;
2144 end if;
2145
2146 else
2147 Set_Etype (Designator, Typ);
2148 end if;
2149
2150 if Ekind (Typ) = E_Incomplete_Type
2151 or else (Is_Class_Wide_Type (Typ)
2152 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2153 then
2154 -- AI05-0151: Tagged incomplete types are allowed in all formal
2155 -- parts. Untagged incomplete types are not allowed in bodies.
2156 -- As a consequence, limited views cannot appear in a basic
2157 -- declaration that is itself within a body, because there is
2158 -- no point at which the non-limited view will become visible.
2159
2160 if Ada_Version >= Ada_2012 then
2161 if From_Limited_With (Typ) and then In_Package_Body then
2162 Error_Msg_NE
2163 ("invalid use of incomplete type&",
2164 Result_Definition (N), Typ);
2165
2166 -- The return type of a subprogram body cannot be of a
2167 -- formal incomplete type.
2168
2169 elsif Is_Generic_Type (Typ)
2170 and then Nkind (Parent (N)) = N_Subprogram_Body
2171 then
2172 Error_Msg_N
2173 ("return type cannot be a formal incomplete type",
2174 Result_Definition (N));
2175
2176 elsif Is_Class_Wide_Type (Typ)
2177 and then Is_Generic_Type (Root_Type (Typ))
2178 and then Nkind (Parent (N)) = N_Subprogram_Body
2179 then
2180 Error_Msg_N
2181 ("return type cannot be a formal incomplete type",
2182 Result_Definition (N));
2183
2184 elsif Is_Tagged_Type (Typ) then
2185 null;
2186
2187 -- Use is legal in a thunk generated for an operation
2188 -- inherited from a progenitor.
2189
2190 elsif Is_Thunk (Designator)
2191 and then Present (Non_Limited_View (Typ))
2192 then
2193 null;
2194
2195 elsif Nkind (Parent (N)) = N_Subprogram_Body
2196 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2197 N_Entry_Body)
2198 then
2199 Error_Msg_NE
2200 ("invalid use of untagged incomplete type&",
2201 Designator, Typ);
2202 end if;
2203
2204 -- The type must be completed in the current package. This
2205 -- is checked at the end of the package declaration when
2206 -- Taft-amendment types are identified. If the return type
2207 -- is class-wide, there is no required check, the type can
2208 -- be a bona fide TAT.
2209
2210 if Ekind (Scope (Current_Scope)) = E_Package
2211 and then In_Private_Part (Scope (Current_Scope))
2212 and then not Is_Class_Wide_Type (Typ)
2213 then
2214 Append_Elmt (Designator, Private_Dependents (Typ));
2215 end if;
2216
2217 else
2218 Error_Msg_NE
2219 ("invalid use of incomplete type&", Designator, Typ);
2220 end if;
2221 end if;
2222 end if;
2223
2224 -- Case where result definition does indicate an error
2225
2226 else
2227 Set_Etype (Designator, Any_Type);
2228 end if;
2229 end Analyze_Return_Type;
2230
2231 -----------------------------
2232 -- Analyze_Subprogram_Body --
2233 -----------------------------
2234
2235 procedure Analyze_Subprogram_Body (N : Node_Id) is
2236 Loc : constant Source_Ptr := Sloc (N);
2237 Body_Spec : constant Node_Id := Specification (N);
2238 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2239
2240 begin
2241 if Debug_Flag_C then
2242 Write_Str ("==> subprogram body ");
2243 Write_Name (Chars (Body_Id));
2244 Write_Str (" from ");
2245 Write_Location (Loc);
2246 Write_Eol;
2247 Indent;
2248 end if;
2249
2250 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2251
2252 -- The real work is split out into the helper, so it can do "return;"
2253 -- without skipping the debug output:
2254
2255 Analyze_Subprogram_Body_Helper (N);
2256
2257 if Debug_Flag_C then
2258 Outdent;
2259 Write_Str ("<== subprogram body ");
2260 Write_Name (Chars (Body_Id));
2261 Write_Str (" from ");
2262 Write_Location (Loc);
2263 Write_Eol;
2264 end if;
2265 end Analyze_Subprogram_Body;
2266
2267 ------------------------------------
2268 -- Analyze_Subprogram_Body_Helper --
2269 ------------------------------------
2270
2271 -- This procedure is called for regular subprogram bodies, generic bodies,
2272 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2273 -- specification matters, and is used to create a proper declaration for
2274 -- the subprogram, or to perform conformance checks.
2275
2276 -- WARNING: This routine manages Ghost regions. Return statements must be
2277 -- replaced by gotos that jump to the end of the routine and restore the
2278 -- Ghost mode.
2279
2280 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2281 Body_Spec : Node_Id := Specification (N);
2282 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2283 Loc : constant Source_Ptr := Sloc (N);
2284 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2285
2286 Conformant : Boolean;
2287 Desig_View : Entity_Id := Empty;
2288 Exch_Views : Elist_Id := No_Elist;
2289 HSS : Node_Id;
2290 Mask_Types : Elist_Id := No_Elist;
2291 Prot_Typ : Entity_Id := Empty;
2292 Spec_Decl : Node_Id := Empty;
2293 Spec_Id : Entity_Id;
2294
2295 Last_Real_Spec_Entity : Entity_Id := Empty;
2296 -- When we analyze a separate spec, the entity chain ends up containing
2297 -- the formals, as well as any itypes generated during analysis of the
2298 -- default expressions for parameters, or the arguments of associated
2299 -- precondition/postcondition pragmas (which are analyzed in the context
2300 -- of the spec since they have visibility on formals).
2301 --
2302 -- These entities belong with the spec and not the body. However we do
2303 -- the analysis of the body in the context of the spec (again to obtain
2304 -- visibility to the formals), and all the entities generated during
2305 -- this analysis end up also chained to the entity chain of the spec.
2306 -- But they really belong to the body, and there is circuitry to move
2307 -- them from the spec to the body.
2308 --
2309 -- However, when we do this move, we don't want to move the real spec
2310 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2311 -- variable points to the last real spec entity, so we only move those
2312 -- chained beyond that point. It is initialized to Empty to deal with
2313 -- the case where there is no separate spec.
2314
2315 function Body_Has_Contract return Boolean;
2316 -- Check whether unanalyzed body has an aspect or pragma that may
2317 -- generate a SPARK contract.
2318
2319 function Body_Has_SPARK_Mode_On return Boolean;
2320 -- Check whether SPARK_Mode On applies to the subprogram body, either
2321 -- because it is specified directly on the body, or because it is
2322 -- inherited from the enclosing subprogram or package.
2323
2324 procedure Build_Subprogram_Declaration;
2325 -- Create a matching subprogram declaration for subprogram body N
2326
2327 procedure Check_Anonymous_Return;
2328 -- Ada 2005: if a function returns an access type that denotes a task,
2329 -- or a type that contains tasks, we must create a master entity for
2330 -- the anonymous type, which typically will be used in an allocator
2331 -- in the body of the function.
2332
2333 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2334 -- Look ahead to recognize a pragma that may appear after the body.
2335 -- If there is a previous spec, check that it appears in the same
2336 -- declarative part. If the pragma is Inline_Always, perform inlining
2337 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2338 -- If the body acts as a spec, and inlining is required, we create a
2339 -- subprogram declaration for it, in order to attach the body to inline.
2340 -- If pragma does not appear after the body, check whether there is
2341 -- an inline pragma before any local declarations.
2342
2343 procedure Check_Missing_Return;
2344 -- Checks for a function with a no return statements, and also performs
2345 -- the warning checks implemented by Check_Returns. In formal mode, also
2346 -- verify that a function ends with a RETURN and that a procedure does
2347 -- not contain any RETURN.
2348
2349 function Disambiguate_Spec return Entity_Id;
2350 -- When a primitive is declared between the private view and the full
2351 -- view of a concurrent type which implements an interface, a special
2352 -- mechanism is used to find the corresponding spec of the primitive
2353 -- body.
2354
2355 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2356 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2357 -- incomplete types coming from a limited context and replace their
2358 -- limited views with the non-limited ones. Return the list of changes
2359 -- to be used to undo the transformation.
2360
2361 function Is_Private_Concurrent_Primitive
2362 (Subp_Id : Entity_Id) return Boolean;
2363 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2364 -- type that implements an interface and has a private view.
2365
2366 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2367 -- N is the body generated for an expression function that is not a
2368 -- completion and Spec_Id the defining entity of its spec. Mark all
2369 -- the not-yet-frozen types referenced by the simple return statement
2370 -- of the function as formally frozen.
2371
2372 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2373 -- Undo the transformation done by Exchange_Limited_Views.
2374
2375 procedure Set_Trivial_Subprogram (N : Node_Id);
2376 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2377 -- subprogram whose body is being analyzed. N is the statement node
2378 -- causing the flag to be set, if the following statement is a return
2379 -- of an entity, we mark the entity as set in source to suppress any
2380 -- warning on the stylized use of function stubs with a dummy return.
2381
2382 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2383 -- Undo the transformation done by Mask_Unfrozen_Types
2384
2385 procedure Verify_Overriding_Indicator;
2386 -- If there was a previous spec, the entity has been entered in the
2387 -- current scope previously. If the body itself carries an overriding
2388 -- indicator, check that it is consistent with the known status of the
2389 -- entity.
2390
2391 -----------------------
2392 -- Body_Has_Contract --
2393 -----------------------
2394
2395 function Body_Has_Contract return Boolean is
2396 Decls : constant List_Id := Declarations (N);
2397 Item : Node_Id;
2398
2399 begin
2400 -- Check for aspects that may generate a contract
2401
2402 if Present (Aspect_Specifications (N)) then
2403 Item := First (Aspect_Specifications (N));
2404 while Present (Item) loop
2405 if Is_Subprogram_Contract_Annotation (Item) then
2406 return True;
2407 end if;
2408
2409 Next (Item);
2410 end loop;
2411 end if;
2412
2413 -- Check for pragmas that may generate a contract
2414
2415 if Present (Decls) then
2416 Item := First (Decls);
2417 while Present (Item) loop
2418 if Nkind (Item) = N_Pragma
2419 and then Is_Subprogram_Contract_Annotation (Item)
2420 then
2421 return True;
2422 end if;
2423
2424 Next (Item);
2425 end loop;
2426 end if;
2427
2428 return False;
2429 end Body_Has_Contract;
2430
2431 ----------------------------
2432 -- Body_Has_SPARK_Mode_On --
2433 ----------------------------
2434
2435 function Body_Has_SPARK_Mode_On return Boolean is
2436 Decls : constant List_Id := Declarations (N);
2437 Item : Node_Id;
2438
2439 begin
2440 -- Check for SPARK_Mode aspect
2441
2442 if Present (Aspect_Specifications (N)) then
2443 Item := First (Aspect_Specifications (N));
2444 while Present (Item) loop
2445 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2446 return Get_SPARK_Mode_From_Annotation (Item) = On;
2447 end if;
2448
2449 Next (Item);
2450 end loop;
2451 end if;
2452
2453 -- Check for SPARK_Mode pragma
2454
2455 if Present (Decls) then
2456 Item := First (Decls);
2457 while Present (Item) loop
2458
2459 -- Pragmas that apply to a subprogram body are usually grouped
2460 -- together. Look for a potential pragma SPARK_Mode among them.
2461
2462 if Nkind (Item) = N_Pragma then
2463 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2464 return Get_SPARK_Mode_From_Annotation (Item) = On;
2465 end if;
2466
2467 -- Otherwise the first non-pragma declarative item terminates
2468 -- the region where pragma SPARK_Mode may appear.
2469
2470 else
2471 exit;
2472 end if;
2473
2474 Next (Item);
2475 end loop;
2476 end if;
2477
2478 -- Otherwise, the applicable SPARK_Mode is inherited from the
2479 -- enclosing subprogram or package.
2480
2481 return SPARK_Mode = On;
2482 end Body_Has_SPARK_Mode_On;
2483
2484 ----------------------------------
2485 -- Build_Subprogram_Declaration --
2486 ----------------------------------
2487
2488 procedure Build_Subprogram_Declaration is
2489 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2490 -- Relocate certain categorization pragmas from the declarative list
2491 -- of subprogram body From and insert them after node To. The pragmas
2492 -- in question are:
2493 -- Ghost
2494 -- Volatile_Function
2495 -- Also copy pragma SPARK_Mode if present in the declarative list
2496 -- of subprogram body From and insert it after node To. This pragma
2497 -- should not be moved, as it applies to the body too.
2498
2499 ------------------
2500 -- Move_Pragmas --
2501 ------------------
2502
2503 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2504 Decl : Node_Id;
2505 Next_Decl : Node_Id;
2506
2507 begin
2508 pragma Assert (Nkind (From) = N_Subprogram_Body);
2509
2510 -- The destination node must be part of a list, as the pragmas are
2511 -- inserted after it.
2512
2513 pragma Assert (Is_List_Member (To));
2514
2515 -- Inspect the declarations of the subprogram body looking for
2516 -- specific pragmas.
2517
2518 Decl := First (Declarations (N));
2519 while Present (Decl) loop
2520 Next_Decl := Next (Decl);
2521
2522 if Nkind (Decl) = N_Pragma then
2523 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2524 Insert_After (To, New_Copy_Tree (Decl));
2525
2526 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2527 Name_Ghost,
2528 Name_Volatile_Function)
2529 then
2530 Remove (Decl);
2531 Insert_After (To, Decl);
2532 end if;
2533 end if;
2534
2535 Decl := Next_Decl;
2536 end loop;
2537 end Move_Pragmas;
2538
2539 -- Local variables
2540
2541 Decl : Node_Id;
2542 Subp_Decl : Node_Id;
2543
2544 -- Start of processing for Build_Subprogram_Declaration
2545
2546 begin
2547 -- Create a matching subprogram spec using the profile of the body.
2548 -- The structure of the tree is identical, but has new entities for
2549 -- the defining unit name and formal parameters.
2550
2551 Subp_Decl :=
2552 Make_Subprogram_Declaration (Loc,
2553 Specification => Copy_Subprogram_Spec (Body_Spec));
2554 Set_Comes_From_Source (Subp_Decl, True);
2555
2556 -- Also mark parameters as coming from source
2557
2558 if Present (Parameter_Specifications (Specification (Subp_Decl))) then
2559 declare
2560 Form : Entity_Id;
2561 begin
2562 Form :=
2563 First (Parameter_Specifications (Specification (Subp_Decl)));
2564
2565 while Present (Form) loop
2566 Set_Comes_From_Source (Defining_Identifier (Form), True);
2567 Next (Form);
2568 end loop;
2569 end;
2570 end if;
2571
2572 -- Relocate the aspects and relevant pragmas from the subprogram body
2573 -- to the generated spec because it acts as the initial declaration.
2574
2575 Insert_Before (N, Subp_Decl);
2576 Move_Aspects (N, To => Subp_Decl);
2577 Move_Pragmas (N, To => Subp_Decl);
2578
2579 -- Ensure that the generated corresponding spec and original body
2580 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2581 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2582 -- correctly set for local subprograms.
2583
2584 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2585
2586 Analyze (Subp_Decl);
2587
2588 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2589 -- the body since the expander may generate calls using that entity.
2590 -- Required to ensure that Expand_Call rewrites calls to this
2591 -- function by calls to the built procedure.
2592
2593 if Modify_Tree_For_C
2594 and then Nkind (Body_Spec) = N_Function_Specification
2595 and then
2596 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2597 then
2598 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2599 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2600 Corresponding_Procedure
2601 (Defining_Entity (Specification (Subp_Decl))));
2602 end if;
2603
2604 -- Analyze any relocated source pragmas or pragmas created for aspect
2605 -- specifications.
2606
2607 Decl := Next (Subp_Decl);
2608 while Present (Decl) loop
2609
2610 -- Stop the search for pragmas once the body has been reached as
2611 -- this terminates the region where pragmas may appear.
2612
2613 if Decl = N then
2614 exit;
2615
2616 elsif Nkind (Decl) = N_Pragma then
2617 Analyze (Decl);
2618 end if;
2619
2620 Next (Decl);
2621 end loop;
2622
2623 Spec_Id := Defining_Entity (Subp_Decl);
2624 Set_Corresponding_Spec (N, Spec_Id);
2625
2626 -- Mark the generated spec as a source construct to ensure that all
2627 -- calls to it are properly registered in ALI files for GNATprove.
2628
2629 Set_Comes_From_Source (Spec_Id, True);
2630
2631 -- Ensure that the specs of the subprogram declaration and its body
2632 -- are identical, otherwise they will appear non-conformant due to
2633 -- rewritings in the default values of formal parameters.
2634
2635 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2636 Set_Specification (N, Body_Spec);
2637 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2638 end Build_Subprogram_Declaration;
2639
2640 ----------------------------
2641 -- Check_Anonymous_Return --
2642 ----------------------------
2643
2644 procedure Check_Anonymous_Return is
2645 Decl : Node_Id;
2646 Par : Node_Id;
2647 Scop : Entity_Id;
2648
2649 begin
2650 if Present (Spec_Id) then
2651 Scop := Spec_Id;
2652 else
2653 Scop := Body_Id;
2654 end if;
2655
2656 if Ekind (Scop) = E_Function
2657 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2658 and then not Is_Thunk (Scop)
2659
2660 -- Skip internally built functions which handle the case of
2661 -- a null access (see Expand_Interface_Conversion)
2662
2663 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2664 and then not Comes_From_Source (Parent (Scop)))
2665
2666 and then (Has_Task (Designated_Type (Etype (Scop)))
2667 or else
2668 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2669 and then
2670 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2671 and then Expander_Active
2672
2673 -- Avoid cases with no tasking support
2674
2675 and then RTE_Available (RE_Current_Master)
2676 and then not Restriction_Active (No_Task_Hierarchy)
2677 then
2678 Decl :=
2679 Make_Object_Declaration (Loc,
2680 Defining_Identifier =>
2681 Make_Defining_Identifier (Loc, Name_uMaster),
2682 Constant_Present => True,
2683 Object_Definition =>
2684 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2685 Expression =>
2686 Make_Explicit_Dereference (Loc,
2687 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2688
2689 if Present (Declarations (N)) then
2690 Prepend (Decl, Declarations (N));
2691 else
2692 Set_Declarations (N, New_List (Decl));
2693 end if;
2694
2695 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2696 Set_Has_Master_Entity (Scop);
2697
2698 -- Now mark the containing scope as a task master
2699
2700 Par := N;
2701 while Nkind (Par) /= N_Compilation_Unit loop
2702 Par := Parent (Par);
2703 pragma Assert (Present (Par));
2704
2705 -- If we fall off the top, we are at the outer level, and
2706 -- the environment task is our effective master, so nothing
2707 -- to mark.
2708
2709 if Nkind_In
2710 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2711 then
2712 Set_Is_Task_Master (Par, True);
2713 exit;
2714 end if;
2715 end loop;
2716 end if;
2717 end Check_Anonymous_Return;
2718
2719 -------------------------
2720 -- Check_Inline_Pragma --
2721 -------------------------
2722
2723 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2724 Prag : Node_Id;
2725 Plist : List_Id;
2726
2727 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2728 -- True when N is a pragma Inline or Inline_Always that applies
2729 -- to this subprogram.
2730
2731 -----------------------
2732 -- Is_Inline_Pragma --
2733 -----------------------
2734
2735 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2736 begin
2737 if Nkind (N) = N_Pragma
2738 and then
2739 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2740 or else (Pragma_Name_Unmapped (N) = Name_Inline
2741 and then
2742 (Front_End_Inlining or else Optimization_Level > 0)))
2743 and then Present (Pragma_Argument_Associations (N))
2744 then
2745 declare
2746 Pragma_Arg : Node_Id :=
2747 Expression (First (Pragma_Argument_Associations (N)));
2748 begin
2749 if Nkind (Pragma_Arg) = N_Selected_Component then
2750 Pragma_Arg := Selector_Name (Pragma_Arg);
2751 end if;
2752
2753 return Chars (Pragma_Arg) = Chars (Body_Id);
2754 end;
2755
2756 else
2757 return False;
2758 end if;
2759 end Is_Inline_Pragma;
2760
2761 -- Start of processing for Check_Inline_Pragma
2762
2763 begin
2764 if not Expander_Active then
2765 return;
2766 end if;
2767
2768 if Is_List_Member (N)
2769 and then Present (Next (N))
2770 and then Is_Inline_Pragma (Next (N))
2771 then
2772 Prag := Next (N);
2773
2774 elsif Nkind (N) /= N_Subprogram_Body_Stub
2775 and then Present (Declarations (N))
2776 and then Is_Inline_Pragma (First (Declarations (N)))
2777 then
2778 Prag := First (Declarations (N));
2779
2780 else
2781 Prag := Empty;
2782 end if;
2783
2784 if Present (Prag) then
2785 if Present (Spec_Id) then
2786 if Is_List_Member (N)
2787 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2788 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2789 then
2790 Analyze (Prag);
2791 end if;
2792
2793 else
2794 -- Create a subprogram declaration, to make treatment uniform.
2795 -- Make the sloc of the subprogram name that of the entity in
2796 -- the body, so that style checks find identical strings.
2797
2798 declare
2799 Subp : constant Entity_Id :=
2800 Make_Defining_Identifier
2801 (Sloc (Body_Id), Chars (Body_Id));
2802 Decl : constant Node_Id :=
2803 Make_Subprogram_Declaration (Loc,
2804 Specification =>
2805 New_Copy_Tree (Specification (N)));
2806
2807 begin
2808 -- Link the body and the generated spec
2809
2810 Set_Corresponding_Body (Decl, Body_Id);
2811 Set_Corresponding_Spec (N, Subp);
2812
2813 Set_Defining_Unit_Name (Specification (Decl), Subp);
2814
2815 -- To ensure proper coverage when body is inlined, indicate
2816 -- whether the subprogram comes from source.
2817
2818 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2819
2820 if Present (First_Formal (Body_Id)) then
2821 Plist := Copy_Parameter_List (Body_Id);
2822 Set_Parameter_Specifications
2823 (Specification (Decl), Plist);
2824 end if;
2825
2826 -- Move aspects to the new spec
2827
2828 if Has_Aspects (N) then
2829 Move_Aspects (N, To => Decl);
2830 end if;
2831
2832 Insert_Before (N, Decl);
2833 Analyze (Decl);
2834 Analyze (Prag);
2835 Set_Has_Pragma_Inline (Subp);
2836
2837 if Pragma_Name (Prag) = Name_Inline_Always then
2838 Set_Is_Inlined (Subp);
2839 Set_Has_Pragma_Inline_Always (Subp);
2840 end if;
2841
2842 -- Prior to copying the subprogram body to create a template
2843 -- for it for subsequent inlining, remove the pragma from
2844 -- the current body so that the copy that will produce the
2845 -- new body will start from a completely unanalyzed tree.
2846
2847 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2848 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2849 end if;
2850
2851 Spec := Subp;
2852 end;
2853 end if;
2854 end if;
2855 end Check_Inline_Pragma;
2856
2857 --------------------------
2858 -- Check_Missing_Return --
2859 --------------------------
2860
2861 procedure Check_Missing_Return is
2862 Id : Entity_Id;
2863 Missing_Ret : Boolean;
2864
2865 begin
2866 if Nkind (Body_Spec) = N_Function_Specification then
2867 if Present (Spec_Id) then
2868 Id := Spec_Id;
2869 else
2870 Id := Body_Id;
2871 end if;
2872
2873 if Return_Present (Id) then
2874 Check_Returns (HSS, 'F', Missing_Ret);
2875
2876 if Missing_Ret then
2877 Set_Has_Missing_Return (Id);
2878 end if;
2879
2880 -- Within a premature instantiation of a package with no body, we
2881 -- build completions of the functions therein, with a Raise
2882 -- statement. No point in complaining about a missing return in
2883 -- this case.
2884
2885 elsif Ekind (Id) = E_Function
2886 and then In_Instance
2887 and then Present (Statements (HSS))
2888 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2889 then
2890 null;
2891
2892 elsif Is_Generic_Subprogram (Id)
2893 or else not Is_Machine_Code_Subprogram (Id)
2894 then
2895 Error_Msg_N ("missing RETURN statement in function body", N);
2896 end if;
2897
2898 -- If procedure with No_Return, check returns
2899
2900 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2901 if Present (Spec_Id) then
2902 Id := Spec_Id;
2903 else
2904 Id := Body_Id;
2905 end if;
2906
2907 if No_Return (Id) then
2908 Check_Returns (HSS, 'P', Missing_Ret, Id);
2909 end if;
2910 end if;
2911
2912 -- Special checks in SPARK mode
2913
2914 if Nkind (Body_Spec) = N_Function_Specification then
2915
2916 -- In SPARK mode, last statement of a function should be a return
2917
2918 declare
2919 Stat : constant Node_Id := Last_Source_Statement (HSS);
2920 begin
2921 if Present (Stat)
2922 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2923 N_Extended_Return_Statement)
2924 then
2925 Check_SPARK_05_Restriction
2926 ("last statement in function should be RETURN", Stat);
2927 end if;
2928 end;
2929
2930 -- In SPARK mode, verify that a procedure has no return
2931
2932 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2933 if Present (Spec_Id) then
2934 Id := Spec_Id;
2935 else
2936 Id := Body_Id;
2937 end if;
2938
2939 -- Would be nice to point to return statement here, can we
2940 -- borrow the Check_Returns procedure here ???
2941
2942 if Return_Present (Id) then
2943 Check_SPARK_05_Restriction
2944 ("procedure should not have RETURN", N);
2945 end if;
2946 end if;
2947 end Check_Missing_Return;
2948
2949 -----------------------
2950 -- Disambiguate_Spec --
2951 -----------------------
2952
2953 function Disambiguate_Spec return Entity_Id is
2954 Priv_Spec : Entity_Id;
2955 Spec_N : Entity_Id;
2956
2957 procedure Replace_Types (To_Corresponding : Boolean);
2958 -- Depending on the flag, replace the type of formal parameters of
2959 -- Body_Id if it is a concurrent type implementing interfaces with
2960 -- the corresponding record type or the other way around.
2961
2962 procedure Replace_Types (To_Corresponding : Boolean) is
2963 Formal : Entity_Id;
2964 Formal_Typ : Entity_Id;
2965
2966 begin
2967 Formal := First_Formal (Body_Id);
2968 while Present (Formal) loop
2969 Formal_Typ := Etype (Formal);
2970
2971 if Is_Class_Wide_Type (Formal_Typ) then
2972 Formal_Typ := Root_Type (Formal_Typ);
2973 end if;
2974
2975 -- From concurrent type to corresponding record
2976
2977 if To_Corresponding then
2978 if Is_Concurrent_Type (Formal_Typ)
2979 and then Present (Corresponding_Record_Type (Formal_Typ))
2980 and then
2981 Present (Interfaces
2982 (Corresponding_Record_Type (Formal_Typ)))
2983 then
2984 Set_Etype (Formal,
2985 Corresponding_Record_Type (Formal_Typ));
2986 end if;
2987
2988 -- From corresponding record to concurrent type
2989
2990 else
2991 if Is_Concurrent_Record_Type (Formal_Typ)
2992 and then Present (Interfaces (Formal_Typ))
2993 then
2994 Set_Etype (Formal,
2995 Corresponding_Concurrent_Type (Formal_Typ));
2996 end if;
2997 end if;
2998
2999 Next_Formal (Formal);
3000 end loop;
3001 end Replace_Types;
3002
3003 -- Start of processing for Disambiguate_Spec
3004
3005 begin
3006 -- Try to retrieve the specification of the body as is. All error
3007 -- messages are suppressed because the body may not have a spec in
3008 -- its current state.
3009
3010 Spec_N := Find_Corresponding_Spec (N, False);
3011
3012 -- It is possible that this is the body of a primitive declared
3013 -- between a private and a full view of a concurrent type. The
3014 -- controlling parameter of the spec carries the concurrent type,
3015 -- not the corresponding record type as transformed by Analyze_
3016 -- Subprogram_Specification. In such cases, we undo the change
3017 -- made by the analysis of the specification and try to find the
3018 -- spec again.
3019
3020 -- Note that wrappers already have their corresponding specs and
3021 -- bodies set during their creation, so if the candidate spec is
3022 -- a wrapper, then we definitely need to swap all types to their
3023 -- original concurrent status.
3024
3025 if No (Spec_N)
3026 or else Is_Primitive_Wrapper (Spec_N)
3027 then
3028 -- Restore all references of corresponding record types to the
3029 -- original concurrent types.
3030
3031 Replace_Types (To_Corresponding => False);
3032 Priv_Spec := Find_Corresponding_Spec (N, False);
3033
3034 -- The current body truly belongs to a primitive declared between
3035 -- a private and a full view. We leave the modified body as is,
3036 -- and return the true spec.
3037
3038 if Present (Priv_Spec)
3039 and then Is_Private_Primitive (Priv_Spec)
3040 then
3041 return Priv_Spec;
3042 end if;
3043
3044 -- In case that this is some sort of error, restore the original
3045 -- state of the body.
3046
3047 Replace_Types (To_Corresponding => True);
3048 end if;
3049
3050 return Spec_N;
3051 end Disambiguate_Spec;
3052
3053 ----------------------------
3054 -- Exchange_Limited_Views --
3055 ----------------------------
3056
3057 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3058 Result : Elist_Id := No_Elist;
3059
3060 procedure Detect_And_Exchange (Id : Entity_Id);
3061 -- Determine whether Id's type denotes an incomplete type associated
3062 -- with a limited with clause and exchange the limited view with the
3063 -- non-limited one when available. Note that the non-limited view
3064 -- may exist because of a with_clause in another unit in the context,
3065 -- but cannot be used because the current view of the enclosing unit
3066 -- is still a limited view.
3067
3068 -------------------------
3069 -- Detect_And_Exchange --
3070 -------------------------
3071
3072 procedure Detect_And_Exchange (Id : Entity_Id) is
3073 Typ : constant Entity_Id := Etype (Id);
3074 begin
3075 if From_Limited_With (Typ)
3076 and then Has_Non_Limited_View (Typ)
3077 and then not From_Limited_With (Scope (Typ))
3078 then
3079 if No (Result) then
3080 Result := New_Elmt_List;
3081 end if;
3082
3083 Prepend_Elmt (Typ, Result);
3084 Prepend_Elmt (Id, Result);
3085 Set_Etype (Id, Non_Limited_View (Typ));
3086 end if;
3087 end Detect_And_Exchange;
3088
3089 -- Local variables
3090
3091 Formal : Entity_Id;
3092
3093 -- Start of processing for Exchange_Limited_Views
3094
3095 begin
3096 -- Do not process subprogram bodies as they already use the non-
3097 -- limited view of types.
3098
3099 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3100 return No_Elist;
3101 end if;
3102
3103 -- Examine all formals and swap views when applicable
3104
3105 Formal := First_Formal (Subp_Id);
3106 while Present (Formal) loop
3107 Detect_And_Exchange (Formal);
3108
3109 Next_Formal (Formal);
3110 end loop;
3111
3112 -- Process the return type of a function
3113
3114 if Ekind (Subp_Id) = E_Function then
3115 Detect_And_Exchange (Subp_Id);
3116 end if;
3117
3118 return Result;
3119 end Exchange_Limited_Views;
3120
3121 -------------------------------------
3122 -- Is_Private_Concurrent_Primitive --
3123 -------------------------------------
3124
3125 function Is_Private_Concurrent_Primitive
3126 (Subp_Id : Entity_Id) return Boolean
3127 is
3128 Formal_Typ : Entity_Id;
3129
3130 begin
3131 if Present (First_Formal (Subp_Id)) then
3132 Formal_Typ := Etype (First_Formal (Subp_Id));
3133
3134 if Is_Concurrent_Record_Type (Formal_Typ) then
3135 if Is_Class_Wide_Type (Formal_Typ) then
3136 Formal_Typ := Root_Type (Formal_Typ);
3137 end if;
3138
3139 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3140 end if;
3141
3142 -- The type of the first formal is a concurrent tagged type with
3143 -- a private view.
3144
3145 return
3146 Is_Concurrent_Type (Formal_Typ)
3147 and then Is_Tagged_Type (Formal_Typ)
3148 and then Has_Private_Declaration (Formal_Typ);
3149 end if;
3150
3151 return False;
3152 end Is_Private_Concurrent_Primitive;
3153
3154 -------------------------
3155 -- Mask_Unfrozen_Types --
3156 -------------------------
3157
3158 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3159 Result : Elist_Id := No_Elist;
3160
3161 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3162 -- Mask all types referenced in the subtree rooted at Node
3163
3164 --------------------
3165 -- Mask_Type_Refs --
3166 --------------------
3167
3168 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3169 procedure Mask_Type (Typ : Entity_Id);
3170 -- ??? what does this do?
3171
3172 ---------------
3173 -- Mask_Type --
3174 ---------------
3175
3176 procedure Mask_Type (Typ : Entity_Id) is
3177 begin
3178 -- Skip Itypes created by the preanalysis
3179
3180 if Is_Itype (Typ)
3181 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3182 then
3183 return;
3184 end if;
3185
3186 if not Is_Frozen (Typ) then
3187 if Scope (Typ) /= Current_Scope then
3188 Set_Is_Frozen (Typ);
3189 Append_New_Elmt (Typ, Result);
3190 else
3191 Freeze_Before (N, Typ);
3192 end if;
3193 end if;
3194 end Mask_Type;
3195
3196 -- Start of processing for Mask_Type_Refs
3197
3198 begin
3199 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3200 Mask_Type (Etype (Entity (Node)));
3201
3202 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3203 Mask_Type (Scope (Entity (Node)));
3204 end if;
3205
3206 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3207 and then Present (Etype (Node))
3208 then
3209 Mask_Type (Etype (Node));
3210 end if;
3211
3212 return OK;
3213 end Mask_Type_Refs;
3214
3215 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3216
3217 -- Local variables
3218
3219 Return_Stmt : constant Node_Id :=
3220 First (Statements (Handled_Statement_Sequence (N)));
3221
3222 -- Start of processing for Mask_Unfrozen_Types
3223
3224 begin
3225 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3226
3227 Mask_References (Expression (Return_Stmt));
3228
3229 return Result;
3230 end Mask_Unfrozen_Types;
3231
3232 ---------------------------
3233 -- Restore_Limited_Views --
3234 ---------------------------
3235
3236 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3237 Elmt : Elmt_Id := First_Elmt (Restore_List);
3238 Id : Entity_Id;
3239
3240 begin
3241 while Present (Elmt) loop
3242 Id := Node (Elmt);
3243 Next_Elmt (Elmt);
3244 Set_Etype (Id, Node (Elmt));
3245 Next_Elmt (Elmt);
3246 end loop;
3247 end Restore_Limited_Views;
3248
3249 ----------------------------
3250 -- Set_Trivial_Subprogram --
3251 ----------------------------
3252
3253 procedure Set_Trivial_Subprogram (N : Node_Id) is
3254 Nxt : constant Node_Id := Next (N);
3255
3256 begin
3257 Set_Is_Trivial_Subprogram (Body_Id);
3258
3259 if Present (Spec_Id) then
3260 Set_Is_Trivial_Subprogram (Spec_Id);
3261 end if;
3262
3263 if Present (Nxt)
3264 and then Nkind (Nxt) = N_Simple_Return_Statement
3265 and then No (Next (Nxt))
3266 and then Present (Expression (Nxt))
3267 and then Is_Entity_Name (Expression (Nxt))
3268 then
3269 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3270 end if;
3271 end Set_Trivial_Subprogram;
3272
3273 ---------------------------
3274 -- Unmask_Unfrozen_Types --
3275 ---------------------------
3276
3277 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3278 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3279
3280 begin
3281 while Present (Elmt) loop
3282 Set_Is_Frozen (Node (Elmt), False);
3283 Next_Elmt (Elmt);
3284 end loop;
3285 end Unmask_Unfrozen_Types;
3286
3287 ---------------------------------
3288 -- Verify_Overriding_Indicator --
3289 ---------------------------------
3290
3291 procedure Verify_Overriding_Indicator is
3292 begin
3293 if Must_Override (Body_Spec) then
3294 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3295 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3296 then
3297 null;
3298
3299 elsif not Present (Overridden_Operation (Spec_Id)) then
3300 Error_Msg_NE
3301 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3302
3303 -- Overriding indicators aren't allowed for protected subprogram
3304 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3305 -- this to a warning if -gnatd.E is enabled.
3306
3307 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3308 Error_Msg_Warn := Error_To_Warning;
3309 Error_Msg_N
3310 ("<<overriding indicator not allowed for protected "
3311 & "subprogram body", Body_Spec);
3312 end if;
3313
3314 elsif Must_Not_Override (Body_Spec) then
3315 if Present (Overridden_Operation (Spec_Id)) then
3316 Error_Msg_NE
3317 ("subprogram& overrides inherited operation",
3318 Body_Spec, Spec_Id);
3319
3320 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3321 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3322 then
3323 Error_Msg_NE
3324 ("subprogram& overrides predefined operator ",
3325 Body_Spec, Spec_Id);
3326
3327 -- Overriding indicators aren't allowed for protected subprogram
3328 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3329 -- this to a warning if -gnatd.E is enabled.
3330
3331 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3332 Error_Msg_Warn := Error_To_Warning;
3333
3334 Error_Msg_N
3335 ("<<overriding indicator not allowed "
3336 & "for protected subprogram body", Body_Spec);
3337
3338 -- If this is not a primitive operation, then the overriding
3339 -- indicator is altogether illegal.
3340
3341 elsif not Is_Primitive (Spec_Id) then
3342 Error_Msg_N
3343 ("overriding indicator only allowed "
3344 & "if subprogram is primitive", Body_Spec);
3345 end if;
3346
3347 -- If checking the style rule and the operation overrides, then
3348 -- issue a warning about a missing overriding_indicator. Protected
3349 -- subprogram bodies are excluded from this style checking, since
3350 -- they aren't primitives (even though their declarations can
3351 -- override) and aren't allowed to have an overriding_indicator.
3352
3353 elsif Style_Check
3354 and then Present (Overridden_Operation (Spec_Id))
3355 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3356 then
3357 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3358 Style.Missing_Overriding (N, Body_Id);
3359
3360 elsif Style_Check
3361 and then Can_Override_Operator (Spec_Id)
3362 and then not In_Predefined_Unit (Spec_Id)
3363 then
3364 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3365 Style.Missing_Overriding (N, Body_Id);
3366 end if;
3367 end Verify_Overriding_Indicator;
3368
3369 -- Local variables
3370
3371 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3372 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3373 Saved_EA : constant Boolean := Expander_Active;
3374 Saved_ISMP : constant Boolean :=
3375 Ignore_SPARK_Mode_Pragmas_In_Instance;
3376 -- Save the Ghost and SPARK mode-related data to restore on exit
3377
3378 -- Start of processing for Analyze_Subprogram_Body_Helper
3379
3380 begin
3381 -- A [generic] subprogram body freezes the contract of the nearest
3382 -- enclosing package body and all other contracts encountered in the
3383 -- same declarative part up to and excluding the subprogram body:
3384
3385 -- package body Nearest_Enclosing_Package
3386 -- with Refined_State => (State => Constit)
3387 -- is
3388 -- Constit : ...;
3389
3390 -- procedure Freezes_Enclosing_Package_Body
3391 -- with Refined_Depends => (Input => Constit) ...
3392
3393 -- This ensures that any annotations referenced by the contract of the
3394 -- [generic] subprogram body are available. This form of freezing is
3395 -- decoupled from the usual Freeze_xxx mechanism because it must also
3396 -- work in the context of generics where normal freezing is disabled.
3397
3398 -- Only bodies coming from source should cause this type of freezing.
3399 -- Expression functions that act as bodies and complete an initial
3400 -- declaration must be included in this category, hence the use of
3401 -- Original_Node.
3402
3403 if Comes_From_Source (Original_Node (N)) then
3404 Freeze_Previous_Contracts (N);
3405 end if;
3406
3407 -- Generic subprograms are handled separately. They always have a
3408 -- generic specification. Determine whether current scope has a
3409 -- previous declaration.
3410
3411 -- If the subprogram body is defined within an instance of the same
3412 -- name, the instance appears as a package renaming, and will be hidden
3413 -- within the subprogram.
3414
3415 if Present (Prev_Id)
3416 and then not Is_Overloadable (Prev_Id)
3417 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3418 or else Comes_From_Source (Prev_Id))
3419 then
3420 if Is_Generic_Subprogram (Prev_Id) then
3421 Spec_Id := Prev_Id;
3422
3423 -- A subprogram body is Ghost when it is stand-alone and subject
3424 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3425 -- the mode now to ensure that any nodes generated during analysis
3426 -- and expansion are properly marked as Ghost.
3427
3428 Mark_And_Set_Ghost_Body (N, Spec_Id);
3429
3430 -- If the body completes the initial declaration of a compilation
3431 -- unit which is subject to pragma Elaboration_Checks, set the
3432 -- model specified by the pragma because it applies to all parts
3433 -- of the unit.
3434
3435 Install_Elaboration_Model (Spec_Id);
3436
3437 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3438 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3439
3440 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3441
3442 if Nkind (N) = N_Subprogram_Body then
3443 HSS := Handled_Statement_Sequence (N);
3444 Check_Missing_Return;
3445 end if;
3446
3447 goto Leave;
3448
3449 -- Otherwise a previous entity conflicts with the subprogram name.
3450 -- Attempting to enter name will post error.
3451
3452 else
3453 Enter_Name (Body_Id);
3454 goto Leave;
3455 end if;
3456
3457 -- Non-generic case, find the subprogram declaration, if one was seen,
3458 -- or enter new overloaded entity in the current scope. If the
3459 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3460 -- part of the context of one of its subunits. No need to redo the
3461 -- analysis.
3462
3463 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3464 goto Leave;
3465
3466 else
3467 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3468
3469 if Nkind (N) = N_Subprogram_Body_Stub
3470 or else No (Corresponding_Spec (N))
3471 then
3472 if Is_Private_Concurrent_Primitive (Body_Id) then
3473 Spec_Id := Disambiguate_Spec;
3474
3475 -- A subprogram body is Ghost when it is stand-alone and
3476 -- subject to pragma Ghost or when the corresponding spec is
3477 -- Ghost. Set the mode now to ensure that any nodes generated
3478 -- during analysis and expansion are properly marked as Ghost.
3479
3480 Mark_And_Set_Ghost_Body (N, Spec_Id);
3481
3482 -- If the body completes a compilation unit which is subject
3483 -- to pragma Elaboration_Checks, set the model specified by
3484 -- the pragma because it applies to all parts of the unit.
3485
3486 Install_Elaboration_Model (Spec_Id);
3487
3488 else
3489 Spec_Id := Find_Corresponding_Spec (N);
3490
3491 -- A subprogram body is Ghost when it is stand-alone and
3492 -- subject to pragma Ghost or when the corresponding spec is
3493 -- Ghost. Set the mode now to ensure that any nodes generated
3494 -- during analysis and expansion are properly marked as Ghost.
3495
3496 Mark_And_Set_Ghost_Body (N, Spec_Id);
3497
3498 -- If the body completes a compilation unit which is subject
3499 -- to pragma Elaboration_Checks, set the model specified by
3500 -- the pragma because it applies to all parts of the unit.
3501
3502 Install_Elaboration_Model (Spec_Id);
3503
3504 -- In GNATprove mode, if the body has no previous spec, create
3505 -- one so that the inlining machinery can operate properly.
3506 -- Transfer aspects, if any, to the new spec, so that they
3507 -- are legal and can be processed ahead of the body.
3508 -- We make two copies of the given spec, one for the new
3509 -- declaration, and one for the body.
3510
3511 if No (Spec_Id) and then GNATprove_Mode
3512
3513 -- Inlining does not apply during preanalysis of code
3514
3515 and then Full_Analysis
3516
3517 -- Inlining only applies to full bodies, not stubs
3518
3519 and then Nkind (N) /= N_Subprogram_Body_Stub
3520
3521 -- Inlining only applies to bodies in the source code, not to
3522 -- those generated by the compiler. In particular, expression
3523 -- functions, whose body is generated by the compiler, are
3524 -- treated specially by GNATprove.
3525
3526 and then Comes_From_Source (Body_Id)
3527
3528 -- This cannot be done for a compilation unit, which is not
3529 -- in a context where we can insert a new spec.
3530
3531 and then Is_List_Member (N)
3532
3533 -- Inlining only applies to subprograms without contracts,
3534 -- as a contract is a sign that GNATprove should perform a
3535 -- modular analysis of the subprogram instead of a contextual
3536 -- analysis at each call site. The same test is performed in
3537 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3538 -- here in another form (because the contract has not been
3539 -- attached to the body) to avoid front-end errors in case
3540 -- pragmas are used instead of aspects, because the
3541 -- corresponding pragmas in the body would not be transferred
3542 -- to the spec, leading to legality errors.
3543
3544 and then not Body_Has_Contract
3545 and then not Inside_A_Generic
3546 then
3547 Build_Subprogram_Declaration;
3548
3549 -- If this is a function that returns a constrained array, and
3550 -- we are generating SPARK_For_C, create subprogram declaration
3551 -- to simplify subsequent C generation.
3552
3553 elsif No (Spec_Id)
3554 and then Modify_Tree_For_C
3555 and then Nkind (Body_Spec) = N_Function_Specification
3556 and then Is_Array_Type (Etype (Body_Id))
3557 and then Is_Constrained (Etype (Body_Id))
3558 then
3559 Build_Subprogram_Declaration;
3560 end if;
3561 end if;
3562
3563 -- If this is a duplicate body, no point in analyzing it
3564
3565 if Error_Posted (N) then
3566 goto Leave;
3567 end if;
3568
3569 -- A subprogram body should cause freezing of its own declaration,
3570 -- but if there was no previous explicit declaration, then the
3571 -- subprogram will get frozen too late (there may be code within
3572 -- the body that depends on the subprogram having been frozen,
3573 -- such as uses of extra formals), so we force it to be frozen
3574 -- here. Same holds if the body and spec are compilation units.
3575 -- Finally, if the return type is an anonymous access to protected
3576 -- subprogram, it must be frozen before the body because its
3577 -- expansion has generated an equivalent type that is used when
3578 -- elaborating the body.
3579
3580 -- An exception in the case of Ada 2012, AI05-177: The bodies
3581 -- created for expression functions do not freeze.
3582
3583 if No (Spec_Id)
3584 and then Nkind (Original_Node (N)) /= N_Expression_Function
3585 then
3586 Freeze_Before (N, Body_Id);
3587
3588 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3589 Freeze_Before (N, Spec_Id);
3590
3591 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3592 Freeze_Before (N, Etype (Body_Id));
3593 end if;
3594
3595 else
3596 Spec_Id := Corresponding_Spec (N);
3597
3598 -- A subprogram body is Ghost when it is stand-alone and subject
3599 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3600 -- the mode now to ensure that any nodes generated during analysis
3601 -- and expansion are properly marked as Ghost.
3602
3603 Mark_And_Set_Ghost_Body (N, Spec_Id);
3604
3605 -- If the body completes the initial declaration of a compilation
3606 -- unit which is subject to pragma Elaboration_Checks, set the
3607 -- model specified by the pragma because it applies to all parts
3608 -- of the unit.
3609
3610 Install_Elaboration_Model (Spec_Id);
3611 end if;
3612 end if;
3613
3614 -- Deactivate expansion inside the body of ignored Ghost entities,
3615 -- as this code will ultimately be ignored. This avoids requiring the
3616 -- presence of run-time units which are not needed. Only do this for
3617 -- user entities, as internally generated entitities might still need
3618 -- to be expanded (e.g. those generated for types).
3619
3620 if Present (Ignored_Ghost_Region)
3621 and then Comes_From_Source (Body_Id)
3622 then
3623 Expander_Active := False;
3624 end if;
3625
3626 -- Previously we scanned the body to look for nested subprograms, and
3627 -- rejected an inline directive if nested subprograms were present,
3628 -- because the back-end would generate conflicting symbols for the
3629 -- nested bodies. This is now unnecessary.
3630
3631 -- Look ahead to recognize a pragma Inline that appears after the body
3632
3633 Check_Inline_Pragma (Spec_Id);
3634
3635 -- Deal with special case of a fully private operation in the body of
3636 -- the protected type. We must create a declaration for the subprogram,
3637 -- in order to attach the protected subprogram that will be used in
3638 -- internal calls. We exclude compiler generated bodies from the
3639 -- expander since the issue does not arise for those cases.
3640
3641 if No (Spec_Id)
3642 and then Comes_From_Source (N)
3643 and then Is_Protected_Type (Current_Scope)
3644 then
3645 Spec_Id := Build_Private_Protected_Declaration (N);
3646 end if;
3647
3648 -- If we are generating C and this is a function returning a constrained
3649 -- array type for which we must create a procedure with an extra out
3650 -- parameter, build and analyze the body now. The procedure declaration
3651 -- has already been created. We reuse the source body of the function,
3652 -- because in an instance it may contain global references that cannot
3653 -- be reanalyzed. The source function itself is not used any further,
3654 -- so we mark it as having a completion. If the subprogram is a stub the
3655 -- transformation is done later, when the proper body is analyzed.
3656
3657 if Expander_Active
3658 and then Modify_Tree_For_C
3659 and then Present (Spec_Id)
3660 and then Ekind (Spec_Id) = E_Function
3661 and then Nkind (N) /= N_Subprogram_Body_Stub
3662 and then Rewritten_For_C (Spec_Id)
3663 then
3664 Set_Has_Completion (Spec_Id);
3665
3666 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3667 Analyze (N);
3668
3669 -- The entity for the created procedure must remain invisible, so it
3670 -- does not participate in resolution of subsequent references to the
3671 -- function.
3672
3673 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3674 goto Leave;
3675 end if;
3676
3677 -- If a separate spec is present, then deal with freezing issues
3678
3679 if Present (Spec_Id) then
3680 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3681 Verify_Overriding_Indicator;
3682
3683 -- In general, the spec will be frozen when we start analyzing the
3684 -- body. However, for internally generated operations, such as
3685 -- wrapper functions for inherited operations with controlling
3686 -- results, the spec may not have been frozen by the time we expand
3687 -- the freeze actions that include the bodies. In particular, extra
3688 -- formals for accessibility or for return-in-place may need to be
3689 -- generated. Freeze nodes, if any, are inserted before the current
3690 -- body. These freeze actions are also needed in ASIS mode and in
3691 -- Compile_Only mode to enable the proper back-end type annotations.
3692 -- They are necessary in any case to ensure proper elaboration order
3693 -- in gigi.
3694
3695 if Nkind (N) = N_Subprogram_Body
3696 and then Was_Expression_Function (N)
3697 and then not Has_Completion (Spec_Id)
3698 and then Serious_Errors_Detected = 0
3699 and then (Expander_Active
3700 or else ASIS_Mode
3701 or else Operating_Mode = Check_Semantics
3702 or else Is_Ignored_Ghost_Entity (Spec_Id))
3703 then
3704 -- The body generated for an expression function that is not a
3705 -- completion is a freeze point neither for the profile nor for
3706 -- anything else. That's why, in order to prevent any freezing
3707 -- during analysis, we need to mask types declared outside the
3708 -- expression (and in an outer scope) that are not yet frozen.
3709 -- This also needs to be done in the case of an ignored Ghost
3710 -- expression function, where the expander isn't active.
3711
3712 Set_Is_Frozen (Spec_Id);
3713 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3714
3715 elsif not Is_Frozen (Spec_Id)
3716 and then Serious_Errors_Detected = 0
3717 then
3718 Set_Has_Delayed_Freeze (Spec_Id);
3719 Freeze_Before (N, Spec_Id);
3720 end if;
3721 end if;
3722
3723 -- If the subprogram has a class-wide clone, build its body as a copy
3724 -- of the original body, and rewrite body of original subprogram as a
3725 -- wrapper that calls the clone. If N is a stub, this construction will
3726 -- take place when the proper body is analyzed. No action needed if this
3727 -- subprogram has been eliminated.
3728
3729 if Present (Spec_Id)
3730 and then Present (Class_Wide_Clone (Spec_Id))
3731 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3732 and then Nkind (N) /= N_Subprogram_Body_Stub
3733 and then not (Expander_Active and then Is_Eliminated (Spec_Id))
3734 then
3735 Build_Class_Wide_Clone_Body (Spec_Id, N);
3736
3737 -- This is the new body for the existing primitive operation
3738
3739 Rewrite (N, Build_Class_Wide_Clone_Call
3740 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3741 Set_Has_Completion (Spec_Id, False);
3742 Analyze (N);
3743 return;
3744 end if;
3745
3746 -- Place subprogram on scope stack, and make formals visible. If there
3747 -- is a spec, the visible entity remains that of the spec.
3748
3749 if Present (Spec_Id) then
3750 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3751
3752 if Is_Child_Unit (Spec_Id) then
3753 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3754 end if;
3755
3756 if Style_Check then
3757 Style.Check_Identifier (Body_Id, Spec_Id);
3758 end if;
3759
3760 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3761 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3762
3763 if Is_Abstract_Subprogram (Spec_Id) then
3764 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3765 goto Leave;
3766
3767 else
3768 Set_Convention (Body_Id, Convention (Spec_Id));
3769 Set_Has_Completion (Spec_Id);
3770
3771 if Is_Protected_Type (Scope (Spec_Id)) then
3772 Prot_Typ := Scope (Spec_Id);
3773 end if;
3774
3775 -- If this is a body generated for a renaming, do not check for
3776 -- full conformance. The check is redundant, because the spec of
3777 -- the body is a copy of the spec in the renaming declaration,
3778 -- and the test can lead to spurious errors on nested defaults.
3779
3780 if Present (Spec_Decl)
3781 and then not Comes_From_Source (N)
3782 and then
3783 (Nkind (Original_Node (Spec_Decl)) =
3784 N_Subprogram_Renaming_Declaration
3785 or else (Present (Corresponding_Body (Spec_Decl))
3786 and then
3787 Nkind (Unit_Declaration_Node
3788 (Corresponding_Body (Spec_Decl))) =
3789 N_Subprogram_Renaming_Declaration))
3790 then
3791 Conformant := True;
3792
3793 -- Conversely, the spec may have been generated for specless body
3794 -- with an inline pragma. The entity comes from source, which is
3795 -- both semantically correct and necessary for proper inlining.
3796 -- The subprogram declaration itself is not in the source.
3797
3798 elsif Comes_From_Source (N)
3799 and then Present (Spec_Decl)
3800 and then not Comes_From_Source (Spec_Decl)
3801 and then Has_Pragma_Inline (Spec_Id)
3802 then
3803 Conformant := True;
3804
3805 else
3806 Check_Conformance
3807 (Body_Id, Spec_Id,
3808 Fully_Conformant, True, Conformant, Body_Id);
3809 end if;
3810
3811 -- If the body is not fully conformant, we have to decide if we
3812 -- should analyze it or not. If it has a really messed up profile
3813 -- then we probably should not analyze it, since we will get too
3814 -- many bogus messages.
3815
3816 -- Our decision is to go ahead in the non-fully conformant case
3817 -- only if it is at least mode conformant with the spec. Note
3818 -- that the call to Check_Fully_Conformant has issued the proper
3819 -- error messages to complain about the lack of conformance.
3820
3821 if not Conformant
3822 and then not Mode_Conformant (Body_Id, Spec_Id)
3823 then
3824 goto Leave;
3825 end if;
3826 end if;
3827
3828 -- In the case we are dealing with an expression function we check
3829 -- the formals attached to the spec instead of the body - so we don't
3830 -- reference body formals.
3831
3832 if Spec_Id /= Body_Id
3833 and then not Is_Expression_Function (Spec_Id)
3834 then
3835 Reference_Body_Formals (Spec_Id, Body_Id);
3836 end if;
3837
3838 Set_Ekind (Body_Id, E_Subprogram_Body);
3839
3840 if Nkind (N) = N_Subprogram_Body_Stub then
3841 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3842
3843 -- Regular body
3844
3845 else
3846 Set_Corresponding_Spec (N, Spec_Id);
3847
3848 -- Ada 2005 (AI-345): If the operation is a primitive operation
3849 -- of a concurrent type, the type of the first parameter has been
3850 -- replaced with the corresponding record, which is the proper
3851 -- run-time structure to use. However, within the body there may
3852 -- be uses of the formals that depend on primitive operations
3853 -- of the type (in particular calls in prefixed form) for which
3854 -- we need the original concurrent type. The operation may have
3855 -- several controlling formals, so the replacement must be done
3856 -- for all of them.
3857
3858 if Comes_From_Source (Spec_Id)
3859 and then Present (First_Entity (Spec_Id))
3860 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3861 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3862 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3863 and then Present (Corresponding_Concurrent_Type
3864 (Etype (First_Entity (Spec_Id))))
3865 then
3866 declare
3867 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3868 Form : Entity_Id;
3869
3870 begin
3871 Form := First_Formal (Spec_Id);
3872 while Present (Form) loop
3873 if Etype (Form) = Typ then
3874 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3875 end if;
3876
3877 Next_Formal (Form);
3878 end loop;
3879 end;
3880 end if;
3881
3882 -- Make the formals visible, and place subprogram on scope stack.
3883 -- This is also the point at which we set Last_Real_Spec_Entity
3884 -- to mark the entities which will not be moved to the body.
3885
3886 Install_Formals (Spec_Id);
3887 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3888
3889 -- Within an instance, add local renaming declarations so that
3890 -- gdb can retrieve the values of actuals more easily. This is
3891 -- only relevant if generating code (and indeed we definitely
3892 -- do not want these definitions -gnatc mode, because that would
3893 -- confuse ASIS).
3894
3895 if Is_Generic_Instance (Spec_Id)
3896 and then Is_Wrapper_Package (Current_Scope)
3897 and then Expander_Active
3898 then
3899 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3900 end if;
3901
3902 Push_Scope (Spec_Id);
3903
3904 -- Make sure that the subprogram is immediately visible. For
3905 -- child units that have no separate spec this is indispensable.
3906 -- Otherwise it is safe albeit redundant.
3907
3908 Set_Is_Immediately_Visible (Spec_Id);
3909 end if;
3910
3911 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3912 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3913 Set_Scope (Body_Id, Scope (Spec_Id));
3914
3915 -- Case of subprogram body with no previous spec
3916
3917 else
3918 -- Check for style warning required
3919
3920 if Style_Check
3921
3922 -- Only apply check for source level subprograms for which checks
3923 -- have not been suppressed.
3924
3925 and then Comes_From_Source (Body_Id)
3926 and then not Suppress_Style_Checks (Body_Id)
3927
3928 -- No warnings within an instance
3929
3930 and then not In_Instance
3931
3932 -- No warnings for expression functions
3933
3934 and then Nkind (Original_Node (N)) /= N_Expression_Function
3935 then
3936 Style.Body_With_No_Spec (N);
3937 end if;
3938
3939 New_Overloaded_Entity (Body_Id);
3940
3941 if Nkind (N) /= N_Subprogram_Body_Stub then
3942 Set_Acts_As_Spec (N);
3943 Generate_Definition (Body_Id);
3944 Generate_Reference
3945 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3946
3947 -- If the body is an entry wrapper created for an entry with
3948 -- preconditions, it must be compiled in the context of the
3949 -- enclosing synchronized object, because it may mention other
3950 -- operations of the type.
3951
3952 if Is_Entry_Wrapper (Body_Id) then
3953 declare
3954 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3955 begin
3956 Push_Scope (Prot);
3957 Install_Declarations (Prot);
3958 end;
3959 end if;
3960
3961 Install_Formals (Body_Id);
3962
3963 Push_Scope (Body_Id);
3964 end if;
3965
3966 -- For stubs and bodies with no previous spec, generate references to
3967 -- formals.
3968
3969 Generate_Reference_To_Formals (Body_Id);
3970 end if;
3971
3972 -- Entry barrier functions are generated outside the protected type and
3973 -- should not carry the SPARK_Mode of the enclosing context.
3974
3975 if Nkind (N) = N_Subprogram_Body
3976 and then Is_Entry_Barrier_Function (N)
3977 then
3978 null;
3979
3980 -- The body is generated as part of expression function expansion. When
3981 -- the expression function appears in the visible declarations of a
3982 -- package, the body is added to the private declarations. Since both
3983 -- declarative lists may be subject to a different SPARK_Mode, inherit
3984 -- the mode of the spec.
3985
3986 -- package P with SPARK_Mode is
3987 -- function Expr_Func ... is (...); -- original
3988 -- [function Expr_Func ...;] -- generated spec
3989 -- -- mode is ON
3990 -- private
3991 -- pragma SPARK_Mode (Off);
3992 -- [function Expr_Func ... is return ...;] -- generated body
3993 -- end P; -- mode is ON
3994
3995 elsif not Comes_From_Source (N)
3996 and then Present (Spec_Id)
3997 and then Is_Expression_Function (Spec_Id)
3998 then
3999 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4000 Set_SPARK_Pragma_Inherited
4001 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4002
4003 -- Set the SPARK_Mode from the current context (may be overwritten later
4004 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4005 -- initially on a stand-alone subprogram body, but is then relocated to
4006 -- a generated corresponding spec. In this scenario the mode is shared
4007 -- between the spec and body.
4008
4009 elsif No (SPARK_Pragma (Body_Id)) then
4010 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4011 Set_SPARK_Pragma_Inherited (Body_Id);
4012 end if;
4013
4014 -- A subprogram body may be instantiated or inlined at a later pass.
4015 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4016 -- applied to the initial declaration of the body.
4017
4018 if Present (Spec_Id) then
4019 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4020 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4021 end if;
4022
4023 else
4024 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4025 -- case the body is instantiated or inlined later and out of context.
4026 -- The body uses this attribute to restore the value of the global
4027 -- flag.
4028
4029 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4030 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4031
4032 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4033 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4034 end if;
4035 end if;
4036
4037 -- Preserve relevant elaboration-related attributes of the context which
4038 -- are no longer available or very expensive to recompute once analysis,
4039 -- resolution, and expansion are over.
4040
4041 if No (Spec_Id) then
4042 Mark_Elaboration_Attributes
4043 (N_Id => Body_Id,
4044 Checks => True,
4045 Warnings => True);
4046 end if;
4047
4048 -- If this is the proper body of a stub, we must verify that the stub
4049 -- conforms to the body, and to the previous spec if one was present.
4050 -- We know already that the body conforms to that spec. This test is
4051 -- only required for subprograms that come from source.
4052
4053 if Nkind (Parent (N)) = N_Subunit
4054 and then Comes_From_Source (N)
4055 and then not Error_Posted (Body_Id)
4056 and then Nkind (Corresponding_Stub (Parent (N))) =
4057 N_Subprogram_Body_Stub
4058 then
4059 declare
4060 Old_Id : constant Entity_Id :=
4061 Defining_Entity
4062 (Specification (Corresponding_Stub (Parent (N))));
4063
4064 Conformant : Boolean := False;
4065
4066 begin
4067 if No (Spec_Id) then
4068 Check_Fully_Conformant (Body_Id, Old_Id);
4069
4070 else
4071 Check_Conformance
4072 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4073
4074 if not Conformant then
4075
4076 -- The stub was taken to be a new declaration. Indicate that
4077 -- it lacks a body.
4078
4079 Set_Has_Completion (Old_Id, False);
4080 end if;
4081 end if;
4082 end;
4083 end if;
4084
4085 Set_Has_Completion (Body_Id);
4086 Check_Eliminated (Body_Id);
4087
4088 -- Analyze any aspect specifications that appear on the subprogram body
4089 -- stub. Stop the analysis now as the stub does not have a declarative
4090 -- or a statement part, and it cannot be inlined.
4091
4092 if Nkind (N) = N_Subprogram_Body_Stub then
4093 if Has_Aspects (N) then
4094 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4095 end if;
4096
4097 goto Leave;
4098 end if;
4099
4100 -- Handle inlining
4101
4102 -- Note: Normally we don't do any inlining if expansion is off, since
4103 -- we won't generate code in any case. An exception arises in GNATprove
4104 -- mode where we want to expand some calls in place, even with expansion
4105 -- disabled, since the inlining eases formal verification.
4106
4107 if not GNATprove_Mode
4108 and then Expander_Active
4109 and then Serious_Errors_Detected = 0
4110 and then Present (Spec_Id)
4111 and then Has_Pragma_Inline (Spec_Id)
4112 then
4113 -- Legacy implementation (relying on front-end inlining)
4114
4115 if not Back_End_Inlining then
4116 if (Has_Pragma_Inline_Always (Spec_Id)
4117 and then not Opt.Disable_FE_Inline_Always)
4118 or else (Front_End_Inlining
4119 and then not Opt.Disable_FE_Inline)
4120 then
4121 Build_Body_To_Inline (N, Spec_Id);
4122 end if;
4123
4124 -- New implementation (relying on back-end inlining)
4125
4126 else
4127 if Has_Pragma_Inline_Always (Spec_Id)
4128 or else Optimization_Level > 0
4129 then
4130 -- Handle function returning an unconstrained type
4131
4132 if Comes_From_Source (Body_Id)
4133 and then Ekind (Spec_Id) = E_Function
4134 and then Returns_Unconstrained_Type (Spec_Id)
4135
4136 -- If function builds in place, i.e. returns a limited type,
4137 -- inlining cannot be done.
4138
4139 and then not Is_Limited_Type (Etype (Spec_Id))
4140 then
4141 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4142
4143 else
4144 declare
4145 Subp_Body : constant Node_Id :=
4146 Unit_Declaration_Node (Body_Id);
4147 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4148
4149 begin
4150 -- Do not pass inlining to the backend if the subprogram
4151 -- has declarations or statements which cannot be inlined
4152 -- by the backend. This check is done here to emit an
4153 -- error instead of the generic warning message reported
4154 -- by the GCC backend (ie. "function might not be
4155 -- inlinable").
4156
4157 if Present (Subp_Decl)
4158 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4159 then
4160 null;
4161
4162 elsif Has_Excluded_Statement
4163 (Spec_Id,
4164 Statements
4165 (Handled_Statement_Sequence (Subp_Body)))
4166 then
4167 null;
4168
4169 -- If the backend inlining is available then at this
4170 -- stage we only have to mark the subprogram as inlined.
4171 -- The expander will take care of registering it in the
4172 -- table of subprograms inlined by the backend a part of
4173 -- processing calls to it (cf. Expand_Call)
4174
4175 else
4176 Set_Is_Inlined (Spec_Id);
4177 end if;
4178 end;
4179 end if;
4180 end if;
4181 end if;
4182
4183 -- In GNATprove mode, inline only when there is a separate subprogram
4184 -- declaration for now, as inlining of subprogram bodies acting as
4185 -- declarations, or subprogram stubs, are not supported by front-end
4186 -- inlining. This inlining should occur after analysis of the body, so
4187 -- that it is known whether the value of SPARK_Mode, which can be
4188 -- defined by a pragma inside the body, is applicable to the body.
4189 -- Inlining can be disabled with switch -gnatdm
4190
4191 elsif GNATprove_Mode
4192 and then Full_Analysis
4193 and then not Inside_A_Generic
4194 and then Present (Spec_Id)
4195 and then
4196 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4197 and then Body_Has_SPARK_Mode_On
4198 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4199 and then not Body_Has_Contract
4200 and then not Debug_Flag_M
4201 then
4202 Build_Body_To_Inline (N, Spec_Id);
4203 end if;
4204
4205 -- When generating code, inherited pre/postconditions are handled when
4206 -- expanding the corresponding contract.
4207
4208 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4209 -- of the specification we have to install the private withed units.
4210 -- This holds for child units as well.
4211
4212 if Is_Compilation_Unit (Body_Id)
4213 or else Nkind (Parent (N)) = N_Compilation_Unit
4214 then
4215 Install_Private_With_Clauses (Body_Id);
4216 end if;
4217
4218 Check_Anonymous_Return;
4219
4220 -- Set the Protected_Formal field of each extra formal of the protected
4221 -- subprogram to reference the corresponding extra formal of the
4222 -- subprogram that implements it. For regular formals this occurs when
4223 -- the protected subprogram's declaration is expanded, but the extra
4224 -- formals don't get created until the subprogram is frozen. We need to
4225 -- do this before analyzing the protected subprogram's body so that any
4226 -- references to the original subprogram's extra formals will be changed
4227 -- refer to the implementing subprogram's formals (see Expand_Formal).
4228
4229 if Present (Spec_Id)
4230 and then Is_Protected_Type (Scope (Spec_Id))
4231 and then Present (Protected_Body_Subprogram (Spec_Id))
4232 then
4233 declare
4234 Impl_Subp : constant Entity_Id :=
4235 Protected_Body_Subprogram (Spec_Id);
4236 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4237 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4238
4239 begin
4240 while Present (Prot_Ext_Formal) loop
4241 pragma Assert (Present (Impl_Ext_Formal));
4242 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4243 Next_Formal_With_Extras (Prot_Ext_Formal);
4244 Next_Formal_With_Extras (Impl_Ext_Formal);
4245 end loop;
4246 end;
4247 end if;
4248
4249 -- Now we can go on to analyze the body
4250
4251 HSS := Handled_Statement_Sequence (N);
4252 Set_Actual_Subtypes (N, Current_Scope);
4253
4254 -- Add a declaration for the Protection object, renaming declarations
4255 -- for discriminals and privals and finally a declaration for the entry
4256 -- family index (if applicable). This form of early expansion is done
4257 -- when the Expander is active because Install_Private_Data_Declarations
4258 -- references entities which were created during regular expansion. The
4259 -- subprogram entity must come from source, and not be an internally
4260 -- generated subprogram.
4261
4262 if Expander_Active
4263 and then Present (Prot_Typ)
4264 and then Present (Spec_Id)
4265 and then Comes_From_Source (Spec_Id)
4266 and then not Is_Eliminated (Spec_Id)
4267 then
4268 Install_Private_Data_Declarations
4269 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4270 end if;
4271
4272 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4273 -- may now appear in parameter and result profiles. Since the analysis
4274 -- of a subprogram body may use the parameter and result profile of the
4275 -- spec, swap any limited views with their non-limited counterpart.
4276
4277 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4278 Exch_Views := Exchange_Limited_Views (Spec_Id);
4279 end if;
4280
4281 -- If the return type is an anonymous access type whose designated type
4282 -- is the limited view of a class-wide type and the non-limited view is
4283 -- available, update the return type accordingly.
4284
4285 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4286 declare
4287 Etyp : Entity_Id;
4288 Rtyp : Entity_Id;
4289
4290 begin
4291 Rtyp := Etype (Spec_Id);
4292
4293 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4294 Etyp := Directly_Designated_Type (Rtyp);
4295
4296 if Is_Class_Wide_Type (Etyp)
4297 and then From_Limited_With (Etyp)
4298 then
4299 Desig_View := Etyp;
4300 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4301 end if;
4302 end if;
4303 end;
4304 end if;
4305
4306 -- Analyze any aspect specifications that appear on the subprogram body
4307
4308 if Has_Aspects (N) then
4309 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4310 end if;
4311
4312 Analyze_Declarations (Declarations (N));
4313
4314 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4315
4316 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4317 if Present (SPARK_Pragma (Spec_Id)) then
4318 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4319 and then
4320 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4321 then
4322 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4323 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4324 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4325 Error_Msg_NE
4326 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4327 end if;
4328
4329 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4330 null;
4331
4332 else
4333 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4334 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4335 Error_Msg_Sloc := Sloc (Spec_Id);
4336 Error_Msg_NE
4337 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4338 end if;
4339 end if;
4340
4341 -- A subprogram body freezes its own contract. Analyze the contract
4342 -- after the declarations of the body have been processed as pragmas
4343 -- are now chained on the contract of the subprogram body.
4344
4345 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4346
4347 -- Check completion, and analyze the statements
4348
4349 Check_Completion;
4350 Inspect_Deferred_Constant_Completion (Declarations (N));
4351 Analyze (HSS);
4352
4353 -- Deal with end of scope processing for the body
4354
4355 Process_End_Label (HSS, 't', Current_Scope);
4356 Update_Use_Clause_Chain;
4357 End_Scope;
4358
4359 -- If we are compiling an entry wrapper, remove the enclosing
4360 -- synchronized object from the stack.
4361
4362 if Is_Entry_Wrapper (Body_Id) then
4363 End_Scope;
4364 end if;
4365
4366 Check_Subprogram_Order (N);
4367 Set_Analyzed (Body_Id);
4368
4369 -- If we have a separate spec, then the analysis of the declarations
4370 -- caused the entities in the body to be chained to the spec id, but
4371 -- we want them chained to the body id. Only the formal parameters
4372 -- end up chained to the spec id in this case.
4373
4374 if Present (Spec_Id) then
4375
4376 -- We must conform to the categorization of our spec
4377
4378 Validate_Categorization_Dependency (N, Spec_Id);
4379
4380 -- And if this is a child unit, the parent units must conform
4381
4382 if Is_Child_Unit (Spec_Id) then
4383 Validate_Categorization_Dependency
4384 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4385 end if;
4386
4387 -- Here is where we move entities from the spec to the body
4388
4389 -- Case where there are entities that stay with the spec
4390
4391 if Present (Last_Real_Spec_Entity) then
4392
4393 -- No body entities (happens when the only real spec entities come
4394 -- from precondition and postcondition pragmas).
4395
4396 if No (Last_Entity (Body_Id)) then
4397 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4398
4399 -- Body entities present (formals), so chain stuff past them
4400
4401 else
4402 Link_Entities
4403 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4404 end if;
4405
4406 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4407 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4408 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4409
4410 -- Case where there are no spec entities, in this case there can be
4411 -- no body entities either, so just move everything.
4412
4413 -- If the body is generated for an expression function, it may have
4414 -- been preanalyzed already, if 'access was applied to it.
4415
4416 else
4417 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4418 N_Expression_Function
4419 then
4420 pragma Assert (No (Last_Entity (Body_Id)));
4421 null;
4422 end if;
4423
4424 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4425 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4426 Set_First_Entity (Spec_Id, Empty);
4427 Set_Last_Entity (Spec_Id, Empty);
4428 end if;
4429
4430 -- Otherwise the body does not complete a previous declaration. Check
4431 -- the categorization of the body against the units it withs.
4432
4433 else
4434 Validate_Categorization_Dependency (N, Body_Id);
4435 end if;
4436
4437 Check_Missing_Return;
4438
4439 -- Now we are going to check for variables that are never modified in
4440 -- the body of the procedure. But first we deal with a special case
4441 -- where we want to modify this check. If the body of the subprogram
4442 -- starts with a raise statement or its equivalent, or if the body
4443 -- consists entirely of a null statement, then it is pretty obvious that
4444 -- it is OK to not reference the parameters. For example, this might be
4445 -- the following common idiom for a stubbed function: statement of the
4446 -- procedure raises an exception. In particular this deals with the
4447 -- common idiom of a stubbed function, which appears something like:
4448
4449 -- function F (A : Integer) return Some_Type;
4450 -- X : Some_Type;
4451 -- begin
4452 -- raise Program_Error;
4453 -- return X;
4454 -- end F;
4455
4456 -- Here the purpose of X is simply to satisfy the annoying requirement
4457 -- in Ada that there be at least one return, and we certainly do not
4458 -- want to go posting warnings on X that it is not initialized. On
4459 -- the other hand, if X is entirely unreferenced that should still
4460 -- get a warning.
4461
4462 -- What we do is to detect these cases, and if we find them, flag the
4463 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4464 -- suppress unwanted warnings. For the case of the function stub above
4465 -- we have a special test to set X as apparently assigned to suppress
4466 -- the warning.
4467
4468 declare
4469 Stm : Node_Id;
4470
4471 begin
4472 -- Skip call markers installed by the ABE mechanism, labels, and
4473 -- Push_xxx_Error_Label to find the first real statement.
4474
4475 Stm := First (Statements (HSS));
4476 while Nkind_In (Stm, N_Call_Marker, N_Label)
4477 or else Nkind (Stm) in N_Push_xxx_Label
4478 loop
4479 Next (Stm);
4480 end loop;
4481
4482 -- Do the test on the original statement before expansion
4483
4484 declare
4485 Ostm : constant Node_Id := Original_Node (Stm);
4486
4487 begin
4488 -- If explicit raise statement, turn on flag
4489
4490 if Nkind (Ostm) = N_Raise_Statement then
4491 Set_Trivial_Subprogram (Stm);
4492
4493 -- If null statement, and no following statements, turn on flag
4494
4495 elsif Nkind (Stm) = N_Null_Statement
4496 and then Comes_From_Source (Stm)
4497 and then No (Next (Stm))
4498 then
4499 Set_Trivial_Subprogram (Stm);
4500
4501 -- Check for explicit call cases which likely raise an exception
4502
4503 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4504 if Is_Entity_Name (Name (Ostm)) then
4505 declare
4506 Ent : constant Entity_Id := Entity (Name (Ostm));
4507
4508 begin
4509 -- If the procedure is marked No_Return, then likely it
4510 -- raises an exception, but in any case it is not coming
4511 -- back here, so turn on the flag.
4512
4513 if Present (Ent)
4514 and then Ekind (Ent) = E_Procedure
4515 and then No_Return (Ent)
4516 then
4517 Set_Trivial_Subprogram (Stm);
4518 end if;
4519 end;
4520 end if;
4521 end if;
4522 end;
4523 end;
4524
4525 -- Check for variables that are never modified
4526
4527 declare
4528 E1 : Entity_Id;
4529 E2 : Entity_Id;
4530
4531 begin
4532 -- If there is a separate spec, then transfer Never_Set_In_Source
4533 -- flags from out parameters to the corresponding entities in the
4534 -- body. The reason we do that is we want to post error flags on
4535 -- the body entities, not the spec entities.
4536
4537 if Present (Spec_Id) then
4538 E1 := First_Entity (Spec_Id);
4539 while Present (E1) loop
4540 if Ekind (E1) = E_Out_Parameter then
4541 E2 := First_Entity (Body_Id);
4542 while Present (E2) loop
4543 exit when Chars (E1) = Chars (E2);
4544 Next_Entity (E2);
4545 end loop;
4546
4547 if Present (E2) then
4548 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4549 end if;
4550 end if;
4551
4552 Next_Entity (E1);
4553 end loop;
4554 end if;
4555
4556 -- Check references of the subprogram spec when we are dealing with
4557 -- an expression function due to it having a generated body.
4558 -- Otherwise, we simply check the formals of the subprogram body.
4559
4560 if Present (Spec_Id)
4561 and then Is_Expression_Function (Spec_Id)
4562 then
4563 Check_References (Spec_Id);
4564 else
4565 Check_References (Body_Id);
4566 end if;
4567 end;
4568
4569 -- Check for nested subprogram, and mark outer level subprogram if so
4570
4571 declare
4572 Ent : Entity_Id;
4573
4574 begin
4575 if Present (Spec_Id) then
4576 Ent := Spec_Id;
4577 else
4578 Ent := Body_Id;
4579 end if;
4580
4581 loop
4582 Ent := Enclosing_Subprogram (Ent);
4583 exit when No (Ent) or else Is_Subprogram (Ent);
4584 end loop;
4585
4586 if Present (Ent) then
4587 Set_Has_Nested_Subprogram (Ent);
4588 end if;
4589 end;
4590
4591 -- Restore the limited views in the spec, if any, to let the back end
4592 -- process it without running into circularities.
4593
4594 if Exch_Views /= No_Elist then
4595 Restore_Limited_Views (Exch_Views);
4596 end if;
4597
4598 if Mask_Types /= No_Elist then
4599 Unmask_Unfrozen_Types (Mask_Types);
4600 end if;
4601
4602 if Present (Desig_View) then
4603 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4604 end if;
4605
4606 <<Leave>>
4607 if Present (Ignored_Ghost_Region) then
4608 Expander_Active := Saved_EA;
4609 end if;
4610
4611 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4612 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4613 end Analyze_Subprogram_Body_Helper;
4614
4615 ------------------------------------
4616 -- Analyze_Subprogram_Declaration --
4617 ------------------------------------
4618
4619 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4620 Scop : constant Entity_Id := Current_Scope;
4621 Designator : Entity_Id;
4622
4623 Is_Completion : Boolean;
4624 -- Indicates whether a null procedure declaration is a completion
4625
4626 begin
4627 -- Null procedures are not allowed in SPARK
4628
4629 if Nkind (Specification (N)) = N_Procedure_Specification
4630 and then Null_Present (Specification (N))
4631 then
4632 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4633
4634 -- Null procedures are allowed in protected types, following the
4635 -- recent AI12-0147.
4636
4637 if Is_Protected_Type (Current_Scope)
4638 and then Ada_Version < Ada_2012
4639 then
4640 Error_Msg_N ("protected operation cannot be a null procedure", N);
4641 end if;
4642
4643 Analyze_Null_Procedure (N, Is_Completion);
4644
4645 -- The null procedure acts as a body, nothing further is needed
4646
4647 if Is_Completion then
4648 return;
4649 end if;
4650 end if;
4651
4652 Designator := Analyze_Subprogram_Specification (Specification (N));
4653
4654 -- A reference may already have been generated for the unit name, in
4655 -- which case the following call is redundant. However it is needed for
4656 -- declarations that are the rewriting of an expression function.
4657
4658 Generate_Definition (Designator);
4659
4660 -- Set the SPARK mode from the current context (may be overwritten later
4661 -- with explicit pragma). This is not done for entry barrier functions
4662 -- because they are generated outside the protected type and should not
4663 -- carry the mode of the enclosing context.
4664
4665 if Nkind (N) = N_Subprogram_Declaration
4666 and then Is_Entry_Barrier_Function (N)
4667 then
4668 null;
4669
4670 else
4671 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4672 Set_SPARK_Pragma_Inherited (Designator);
4673 end if;
4674
4675 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4676 -- the body of this subprogram is instantiated or inlined later and out
4677 -- of context. The body uses this attribute to restore the value of the
4678 -- global flag.
4679
4680 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4681 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4682 end if;
4683
4684 -- Preserve relevant elaboration-related attributes of the context which
4685 -- are no longer available or very expensive to recompute once analysis,
4686 -- resolution, and expansion are over.
4687
4688 Mark_Elaboration_Attributes
4689 (N_Id => Designator,
4690 Checks => True,
4691 Warnings => True);
4692
4693 if Debug_Flag_C then
4694 Write_Str ("==> subprogram spec ");
4695 Write_Name (Chars (Designator));
4696 Write_Str (" from ");
4697 Write_Location (Sloc (N));
4698 Write_Eol;
4699 Indent;
4700 end if;
4701
4702 Validate_RCI_Subprogram_Declaration (N);
4703 New_Overloaded_Entity (Designator);
4704 Check_Delayed_Subprogram (Designator);
4705
4706 -- If the type of the first formal of the current subprogram is a non-
4707 -- generic tagged private type, mark the subprogram as being a private
4708 -- primitive. Ditto if this is a function with controlling result, and
4709 -- the return type is currently private. In both cases, the type of the
4710 -- controlling argument or result must be in the current scope for the
4711 -- operation to be primitive.
4712
4713 if Has_Controlling_Result (Designator)
4714 and then Is_Private_Type (Etype (Designator))
4715 and then Scope (Etype (Designator)) = Current_Scope
4716 and then not Is_Generic_Actual_Type (Etype (Designator))
4717 then
4718 Set_Is_Private_Primitive (Designator);
4719
4720 elsif Present (First_Formal (Designator)) then
4721 declare
4722 Formal_Typ : constant Entity_Id :=
4723 Etype (First_Formal (Designator));
4724 begin
4725 Set_Is_Private_Primitive (Designator,
4726 Is_Tagged_Type (Formal_Typ)
4727 and then Scope (Formal_Typ) = Current_Scope
4728 and then Is_Private_Type (Formal_Typ)
4729 and then not Is_Generic_Actual_Type (Formal_Typ));
4730 end;
4731 end if;
4732
4733 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4734 -- or null.
4735
4736 if Ada_Version >= Ada_2005
4737 and then Comes_From_Source (N)
4738 and then Is_Dispatching_Operation (Designator)
4739 then
4740 declare
4741 E : Entity_Id;
4742 Etyp : Entity_Id;
4743
4744 begin
4745 if Has_Controlling_Result (Designator) then
4746 Etyp := Etype (Designator);
4747
4748 else
4749 E := First_Entity (Designator);
4750 while Present (E)
4751 and then Is_Formal (E)
4752 and then not Is_Controlling_Formal (E)
4753 loop
4754 Next_Entity (E);
4755 end loop;
4756
4757 Etyp := Etype (E);
4758 end if;
4759
4760 if Is_Access_Type (Etyp) then
4761 Etyp := Directly_Designated_Type (Etyp);
4762 end if;
4763
4764 if Is_Interface (Etyp)
4765 and then not Is_Abstract_Subprogram (Designator)
4766 and then not (Ekind (Designator) = E_Procedure
4767 and then Null_Present (Specification (N)))
4768 then
4769 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4770
4771 -- Specialize error message based on procedures vs. functions,
4772 -- since functions can't be null subprograms.
4773
4774 if Ekind (Designator) = E_Procedure then
4775 Error_Msg_N
4776 ("interface procedure % must be abstract or null", N);
4777 else
4778 Error_Msg_N
4779 ("interface function % must be abstract", N);
4780 end if;
4781 end if;
4782 end;
4783 end if;
4784
4785 -- What is the following code for, it used to be
4786
4787 -- ??? Set_Suppress_Elaboration_Checks
4788 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4789
4790 -- The following seems equivalent, but a bit dubious
4791
4792 if Elaboration_Checks_Suppressed (Designator) then
4793 Set_Kill_Elaboration_Checks (Designator);
4794 end if;
4795
4796 -- For a compilation unit, set body required. This flag will only be
4797 -- reset if a valid Import or Interface pragma is processed later on.
4798
4799 if Nkind (Parent (N)) = N_Compilation_Unit then
4800 Set_Body_Required (Parent (N), True);
4801
4802 if Ada_Version >= Ada_2005
4803 and then Nkind (Specification (N)) = N_Procedure_Specification
4804 and then Null_Present (Specification (N))
4805 then
4806 Error_Msg_N
4807 ("null procedure cannot be declared at library level", N);
4808 end if;
4809 end if;
4810
4811 Generate_Reference_To_Formals (Designator);
4812 Check_Eliminated (Designator);
4813
4814 if Debug_Flag_C then
4815 Outdent;
4816 Write_Str ("<== subprogram spec ");
4817 Write_Name (Chars (Designator));
4818 Write_Str (" from ");
4819 Write_Location (Sloc (N));
4820 Write_Eol;
4821 end if;
4822
4823 -- Indicate that this is a protected operation, because it may be used
4824 -- in subsequent declarations within the protected type.
4825
4826 if Is_Protected_Type (Current_Scope) then
4827 Set_Convention (Designator, Convention_Protected);
4828 end if;
4829
4830 List_Inherited_Pre_Post_Aspects (Designator);
4831
4832 -- Process the aspects before establishing the proper categorization in
4833 -- case the subprogram is a compilation unit and one of its aspects is
4834 -- converted into a categorization pragma.
4835
4836 if Has_Aspects (N) then
4837 Analyze_Aspect_Specifications (N, Designator);
4838 end if;
4839
4840 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4841 Set_Categorization_From_Scope (Designator, Scop);
4842
4843 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
4844 -- proper categorization of the unit based on its pragmas.
4845
4846 else
4847 Push_Scope (Designator);
4848 Set_Categorization_From_Pragmas (N);
4849 Validate_Categorization_Dependency (N, Designator);
4850 Pop_Scope;
4851 end if;
4852 end Analyze_Subprogram_Declaration;
4853
4854 --------------------------------------
4855 -- Analyze_Subprogram_Specification --
4856 --------------------------------------
4857
4858 -- Reminder: N here really is a subprogram specification (not a subprogram
4859 -- declaration). This procedure is called to analyze the specification in
4860 -- both subprogram bodies and subprogram declarations (specs).
4861
4862 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4863 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4864 -- Determine whether entity E denotes the spec or body of an invariant
4865 -- procedure.
4866
4867 ------------------------------------
4868 -- Is_Invariant_Procedure_Or_Body --
4869 ------------------------------------
4870
4871 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4872 Decl : constant Node_Id := Unit_Declaration_Node (E);
4873 Spec : Entity_Id;
4874
4875 begin
4876 if Nkind (Decl) = N_Subprogram_Body then
4877 Spec := Corresponding_Spec (Decl);
4878 else
4879 Spec := E;
4880 end if;
4881
4882 return
4883 Present (Spec)
4884 and then Ekind (Spec) = E_Procedure
4885 and then (Is_Partial_Invariant_Procedure (Spec)
4886 or else Is_Invariant_Procedure (Spec));
4887 end Is_Invariant_Procedure_Or_Body;
4888
4889 -- Local variables
4890
4891 Designator : constant Entity_Id := Defining_Entity (N);
4892 Formals : constant List_Id := Parameter_Specifications (N);
4893
4894 -- Start of processing for Analyze_Subprogram_Specification
4895
4896 begin
4897 -- User-defined operator is not allowed in SPARK, except as a renaming
4898
4899 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4900 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4901 then
4902 Check_SPARK_05_Restriction
4903 ("user-defined operator is not allowed", N);
4904 end if;
4905
4906 -- Proceed with analysis. Do not emit a cross-reference entry if the
4907 -- specification comes from an expression function, because it may be
4908 -- the completion of a previous declaration. If it is not, the cross-
4909 -- reference entry will be emitted for the new subprogram declaration.
4910
4911 if Nkind (Parent (N)) /= N_Expression_Function then
4912 Generate_Definition (Designator);
4913 end if;
4914
4915 if Nkind (N) = N_Function_Specification then
4916 Set_Ekind (Designator, E_Function);
4917 Set_Mechanism (Designator, Default_Mechanism);
4918 else
4919 Set_Ekind (Designator, E_Procedure);
4920 Set_Etype (Designator, Standard_Void_Type);
4921 end if;
4922
4923 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4924 -- those subprograms which could be inlined in GNATprove mode (because
4925 -- Body_To_Inline is non-Empty) but should not be inlined.
4926
4927 if GNATprove_Mode then
4928 Set_Is_Inlined_Always (Designator);
4929 end if;
4930
4931 -- Introduce new scope for analysis of the formals and the return type
4932
4933 Set_Scope (Designator, Current_Scope);
4934
4935 if Present (Formals) then
4936 Push_Scope (Designator);
4937 Process_Formals (Formals, N);
4938
4939 -- Check dimensions in N for formals with default expression
4940
4941 Analyze_Dimension_Formals (N, Formals);
4942
4943 -- Ada 2005 (AI-345): If this is an overriding operation of an
4944 -- inherited interface operation, and the controlling type is
4945 -- a synchronized type, replace the type with its corresponding
4946 -- record, to match the proper signature of an overriding operation.
4947 -- Same processing for an access parameter whose designated type is
4948 -- derived from a synchronized interface.
4949
4950 -- This modification is not done for invariant procedures because
4951 -- the corresponding record may not necessarely be visible when the
4952 -- concurrent type acts as the full view of a private type.
4953
4954 -- package Pack is
4955 -- type Prot is private with Type_Invariant => ...;
4956 -- procedure ConcInvariant (Obj : Prot);
4957 -- private
4958 -- protected type Prot is ...;
4959 -- type Concurrent_Record_Prot is record ...;
4960 -- procedure ConcInvariant (Obj : Prot) is
4961 -- ...
4962 -- end ConcInvariant;
4963 -- end Pack;
4964
4965 -- In the example above, both the spec and body of the invariant
4966 -- procedure must utilize the private type as the controlling type.
4967
4968 if Ada_Version >= Ada_2005
4969 and then not Is_Invariant_Procedure_Or_Body (Designator)
4970 then
4971 declare
4972 Formal : Entity_Id;
4973 Formal_Typ : Entity_Id;
4974 Rec_Typ : Entity_Id;
4975 Desig_Typ : Entity_Id;
4976
4977 begin
4978 Formal := First_Formal (Designator);
4979 while Present (Formal) loop
4980 Formal_Typ := Etype (Formal);
4981
4982 if Is_Concurrent_Type (Formal_Typ)
4983 and then Present (Corresponding_Record_Type (Formal_Typ))
4984 then
4985 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4986
4987 if Present (Interfaces (Rec_Typ)) then
4988 Set_Etype (Formal, Rec_Typ);
4989 end if;
4990
4991 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4992 Desig_Typ := Designated_Type (Formal_Typ);
4993
4994 if Is_Concurrent_Type (Desig_Typ)
4995 and then Present (Corresponding_Record_Type (Desig_Typ))
4996 then
4997 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4998
4999 if Present (Interfaces (Rec_Typ)) then
5000 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5001 end if;
5002 end if;
5003 end if;
5004
5005 Next_Formal (Formal);
5006 end loop;
5007 end;
5008 end if;
5009
5010 End_Scope;
5011
5012 -- The subprogram scope is pushed and popped around the processing of
5013 -- the return type for consistency with call above to Process_Formals
5014 -- (which itself can call Analyze_Return_Type), and to ensure that any
5015 -- itype created for the return type will be associated with the proper
5016 -- scope.
5017
5018 elsif Nkind (N) = N_Function_Specification then
5019 Push_Scope (Designator);
5020 Analyze_Return_Type (N);
5021 End_Scope;
5022 end if;
5023
5024 -- Function case
5025
5026 if Nkind (N) = N_Function_Specification then
5027
5028 -- Deal with operator symbol case
5029
5030 if Nkind (Designator) = N_Defining_Operator_Symbol then
5031 Valid_Operator_Definition (Designator);
5032 end if;
5033
5034 May_Need_Actuals (Designator);
5035
5036 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5037 -- the subprogram is abstract also. This does not apply to renaming
5038 -- declarations, where abstractness is inherited, and to subprogram
5039 -- bodies generated for stream operations, which become renamings as
5040 -- bodies.
5041
5042 -- In case of primitives associated with abstract interface types
5043 -- the check is applied later (see Analyze_Subprogram_Declaration).
5044
5045 if not Nkind_In (Original_Node (Parent (N)),
5046 N_Abstract_Subprogram_Declaration,
5047 N_Formal_Abstract_Subprogram_Declaration,
5048 N_Subprogram_Renaming_Declaration)
5049 then
5050 if Is_Abstract_Type (Etype (Designator))
5051 and then not Is_Interface (Etype (Designator))
5052 then
5053 Error_Msg_N
5054 ("function that returns abstract type must be abstract", N);
5055
5056 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5057 -- access result whose designated type is abstract.
5058
5059 elsif Ada_Version >= Ada_2012
5060 and then Nkind (Result_Definition (N)) = N_Access_Definition
5061 and then
5062 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5063 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5064 then
5065 Error_Msg_N
5066 ("function whose access result designates abstract type "
5067 & "must be abstract", N);
5068 end if;
5069 end if;
5070 end if;
5071
5072 return Designator;
5073 end Analyze_Subprogram_Specification;
5074
5075 -----------------------
5076 -- Check_Conformance --
5077 -----------------------
5078
5079 procedure Check_Conformance
5080 (New_Id : Entity_Id;
5081 Old_Id : Entity_Id;
5082 Ctype : Conformance_Type;
5083 Errmsg : Boolean;
5084 Conforms : out Boolean;
5085 Err_Loc : Node_Id := Empty;
5086 Get_Inst : Boolean := False;
5087 Skip_Controlling_Formals : Boolean := False)
5088 is
5089 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5090 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5091 -- If Errmsg is True, then processing continues to post an error message
5092 -- for conformance error on given node. Two messages are output. The
5093 -- first message points to the previous declaration with a general "no
5094 -- conformance" message. The second is the detailed reason, supplied as
5095 -- Msg. The parameter N provide information for a possible & insertion
5096 -- in the message, and also provides the location for posting the
5097 -- message in the absence of a specified Err_Loc location.
5098
5099 function Conventions_Match
5100 (Id1 : Entity_Id;
5101 Id2 : Entity_Id) return Boolean;
5102 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5103 -- match.
5104
5105 -----------------------
5106 -- Conformance_Error --
5107 -----------------------
5108
5109 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5110 Enode : Node_Id;
5111
5112 begin
5113 Conforms := False;
5114
5115 if Errmsg then
5116 if No (Err_Loc) then
5117 Enode := N;
5118 else
5119 Enode := Err_Loc;
5120 end if;
5121
5122 Error_Msg_Sloc := Sloc (Old_Id);
5123
5124 case Ctype is
5125 when Type_Conformant =>
5126 Error_Msg_N -- CODEFIX
5127 ("not type conformant with declaration#!", Enode);
5128
5129 when Mode_Conformant =>
5130 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5131 Error_Msg_N
5132 ("not mode conformant with operation inherited#!",
5133 Enode);
5134 else
5135 Error_Msg_N
5136 ("not mode conformant with declaration#!", Enode);
5137 end if;
5138
5139 when Subtype_Conformant =>
5140 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5141 Error_Msg_N
5142 ("not subtype conformant with operation inherited#!",
5143 Enode);
5144 else
5145 Error_Msg_N
5146 ("not subtype conformant with declaration#!", Enode);
5147 end if;
5148
5149 when Fully_Conformant =>
5150 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5151 Error_Msg_N -- CODEFIX
5152 ("not fully conformant with operation inherited#!",
5153 Enode);
5154 else
5155 Error_Msg_N -- CODEFIX
5156 ("not fully conformant with declaration#!", Enode);
5157 end if;
5158 end case;
5159
5160 Error_Msg_NE (Msg, Enode, N);
5161 end if;
5162 end Conformance_Error;
5163
5164 -----------------------
5165 -- Conventions_Match --
5166 -----------------------
5167
5168 function Conventions_Match
5169 (Id1 : Entity_Id;
5170 Id2 : Entity_Id) return Boolean
5171 is
5172 begin
5173 -- Ignore the conventions of anonymous access-to-subprogram types
5174 -- and subprogram types because these are internally generated and
5175 -- the only way these may receive a convention is if they inherit
5176 -- the convention of a related subprogram.
5177
5178 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5179 E_Subprogram_Type)
5180 or else
5181 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5182 E_Subprogram_Type)
5183 then
5184 return True;
5185
5186 -- Otherwise compare the conventions directly
5187
5188 else
5189 return Convention (Id1) = Convention (Id2);
5190 end if;
5191 end Conventions_Match;
5192
5193 -- Local Variables
5194
5195 Old_Type : constant Entity_Id := Etype (Old_Id);
5196 New_Type : constant Entity_Id := Etype (New_Id);
5197 Old_Formal : Entity_Id;
5198 New_Formal : Entity_Id;
5199 Access_Types_Match : Boolean;
5200 Old_Formal_Base : Entity_Id;
5201 New_Formal_Base : Entity_Id;
5202
5203 -- Start of processing for Check_Conformance
5204
5205 begin
5206 Conforms := True;
5207
5208 -- We need a special case for operators, since they don't appear
5209 -- explicitly.
5210
5211 if Ctype = Type_Conformant then
5212 if Ekind (New_Id) = E_Operator
5213 and then Operator_Matches_Spec (New_Id, Old_Id)
5214 then
5215 return;
5216 end if;
5217 end if;
5218
5219 -- If both are functions/operators, check return types conform
5220
5221 if Old_Type /= Standard_Void_Type
5222 and then
5223 New_Type /= Standard_Void_Type
5224 then
5225 -- If we are checking interface conformance we omit controlling
5226 -- arguments and result, because we are only checking the conformance
5227 -- of the remaining parameters.
5228
5229 if Has_Controlling_Result (Old_Id)
5230 and then Has_Controlling_Result (New_Id)
5231 and then Skip_Controlling_Formals
5232 then
5233 null;
5234
5235 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5236 if Ctype >= Subtype_Conformant
5237 and then not Predicates_Match (Old_Type, New_Type)
5238 then
5239 Conformance_Error
5240 ("\predicate of return type does not match!", New_Id);
5241 else
5242 Conformance_Error
5243 ("\return type does not match!", New_Id);
5244 end if;
5245
5246 return;
5247 end if;
5248
5249 -- Ada 2005 (AI-231): In case of anonymous access types check the
5250 -- null-exclusion and access-to-constant attributes match.
5251
5252 if Ada_Version >= Ada_2005
5253 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5254 and then
5255 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5256 or else Is_Access_Constant (Etype (Old_Type)) /=
5257 Is_Access_Constant (Etype (New_Type)))
5258 then
5259 Conformance_Error ("\return type does not match!", New_Id);
5260 return;
5261 end if;
5262
5263 -- If either is a function/operator and the other isn't, error
5264
5265 elsif Old_Type /= Standard_Void_Type
5266 or else New_Type /= Standard_Void_Type
5267 then
5268 Conformance_Error ("\functions can only match functions!", New_Id);
5269 return;
5270 end if;
5271
5272 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5273 -- If this is a renaming as body, refine error message to indicate that
5274 -- the conflict is with the original declaration. If the entity is not
5275 -- frozen, the conventions don't have to match, the one of the renamed
5276 -- entity is inherited.
5277
5278 if Ctype >= Subtype_Conformant then
5279 if not Conventions_Match (Old_Id, New_Id) then
5280 if not Is_Frozen (New_Id) then
5281 null;
5282
5283 elsif Present (Err_Loc)
5284 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5285 and then Present (Corresponding_Spec (Err_Loc))
5286 then
5287 Error_Msg_Name_1 := Chars (New_Id);
5288 Error_Msg_Name_2 :=
5289 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5290 Conformance_Error ("\prior declaration for% has convention %!");
5291
5292 else
5293 Conformance_Error ("\calling conventions do not match!");
5294 end if;
5295
5296 return;
5297
5298 elsif Is_Formal_Subprogram (Old_Id)
5299 or else Is_Formal_Subprogram (New_Id)
5300 or else (Is_Subprogram (New_Id)
5301 and then Present (Alias (New_Id))
5302 and then Is_Formal_Subprogram (Alias (New_Id)))
5303 then
5304 Conformance_Error
5305 ("\formal subprograms are not subtype conformant "
5306 & "(RM 6.3.1 (17/3))");
5307 end if;
5308 end if;
5309
5310 -- Deal with parameters
5311
5312 -- Note: we use the entity information, rather than going directly
5313 -- to the specification in the tree. This is not only simpler, but
5314 -- absolutely necessary for some cases of conformance tests between
5315 -- operators, where the declaration tree simply does not exist.
5316
5317 Old_Formal := First_Formal (Old_Id);
5318 New_Formal := First_Formal (New_Id);
5319 while Present (Old_Formal) and then Present (New_Formal) loop
5320 if Is_Controlling_Formal (Old_Formal)
5321 and then Is_Controlling_Formal (New_Formal)
5322 and then Skip_Controlling_Formals
5323 then
5324 -- The controlling formals will have different types when
5325 -- comparing an interface operation with its match, but both
5326 -- or neither must be access parameters.
5327
5328 if Is_Access_Type (Etype (Old_Formal))
5329 =
5330 Is_Access_Type (Etype (New_Formal))
5331 then
5332 goto Skip_Controlling_Formal;
5333 else
5334 Conformance_Error
5335 ("\access parameter does not match!", New_Formal);
5336 end if;
5337 end if;
5338
5339 -- Ada 2012: Mode conformance also requires that formal parameters
5340 -- be both aliased, or neither.
5341
5342 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5343 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5344 Conformance_Error
5345 ("\aliased parameter mismatch!", New_Formal);
5346 end if;
5347 end if;
5348
5349 if Ctype = Fully_Conformant then
5350
5351 -- Names must match. Error message is more accurate if we do
5352 -- this before checking that the types of the formals match.
5353
5354 if Chars (Old_Formal) /= Chars (New_Formal) then
5355 Conformance_Error ("\name& does not match!", New_Formal);
5356
5357 -- Set error posted flag on new formal as well to stop
5358 -- junk cascaded messages in some cases.
5359
5360 Set_Error_Posted (New_Formal);
5361 return;
5362 end if;
5363
5364 -- Null exclusion must match
5365
5366 if Null_Exclusion_Present (Parent (Old_Formal))
5367 /=
5368 Null_Exclusion_Present (Parent (New_Formal))
5369 then
5370 -- Only give error if both come from source. This should be
5371 -- investigated some time, since it should not be needed ???
5372
5373 if Comes_From_Source (Old_Formal)
5374 and then
5375 Comes_From_Source (New_Formal)
5376 then
5377 Conformance_Error
5378 ("\null exclusion for& does not match", New_Formal);
5379
5380 -- Mark error posted on the new formal to avoid duplicated
5381 -- complaint about types not matching.
5382
5383 Set_Error_Posted (New_Formal);
5384 end if;
5385 end if;
5386 end if;
5387
5388 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5389 -- case occurs whenever a subprogram is being renamed and one of its
5390 -- parameters imposes a null exclusion. For example:
5391
5392 -- type T is null record;
5393 -- type Acc_T is access T;
5394 -- subtype Acc_T_Sub is Acc_T;
5395
5396 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5397 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5398 -- renames P;
5399
5400 Old_Formal_Base := Etype (Old_Formal);
5401 New_Formal_Base := Etype (New_Formal);
5402
5403 if Get_Inst then
5404 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5405 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5406 end if;
5407
5408 Access_Types_Match := Ada_Version >= Ada_2005
5409
5410 -- Ensure that this rule is only applied when New_Id is a
5411 -- renaming of Old_Id.
5412
5413 and then Nkind (Parent (Parent (New_Id))) =
5414 N_Subprogram_Renaming_Declaration
5415 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5416 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5417 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5418
5419 -- Now handle the allowed access-type case
5420
5421 and then Is_Access_Type (Old_Formal_Base)
5422 and then Is_Access_Type (New_Formal_Base)
5423
5424 -- The type kinds must match. The only exception occurs with
5425 -- multiple generics of the form:
5426
5427 -- generic generic
5428 -- type F is private; type A is private;
5429 -- type F_Ptr is access F; type A_Ptr is access A;
5430 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5431 -- package F_Pack is ... package A_Pack is
5432 -- package F_Inst is
5433 -- new F_Pack (A, A_Ptr, A_P);
5434
5435 -- When checking for conformance between the parameters of A_P
5436 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5437 -- because the compiler has transformed A_Ptr into a subtype of
5438 -- F_Ptr. We catch this case in the code below.
5439
5440 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5441 or else
5442 (Is_Generic_Type (Old_Formal_Base)
5443 and then Is_Generic_Type (New_Formal_Base)
5444 and then Is_Internal (New_Formal_Base)
5445 and then Etype (Etype (New_Formal_Base)) =
5446 Old_Formal_Base))
5447 and then Directly_Designated_Type (Old_Formal_Base) =
5448 Directly_Designated_Type (New_Formal_Base)
5449 and then ((Is_Itype (Old_Formal_Base)
5450 and then (Can_Never_Be_Null (Old_Formal_Base)
5451 or else Is_Access_Constant
5452 (Old_Formal_Base)))
5453 or else
5454 (Is_Itype (New_Formal_Base)
5455 and then (Can_Never_Be_Null (New_Formal_Base)
5456 or else Is_Access_Constant
5457 (New_Formal_Base))));
5458
5459 -- Types must always match. In the visible part of an instance,
5460 -- usual overloading rules for dispatching operations apply, and
5461 -- we check base types (not the actual subtypes).
5462
5463 if In_Instance_Visible_Part
5464 and then Is_Dispatching_Operation (New_Id)
5465 then
5466 if not Conforming_Types
5467 (T1 => Base_Type (Etype (Old_Formal)),
5468 T2 => Base_Type (Etype (New_Formal)),
5469 Ctype => Ctype,
5470 Get_Inst => Get_Inst)
5471 and then not Access_Types_Match
5472 then
5473 Conformance_Error ("\type of & does not match!", New_Formal);
5474 return;
5475 end if;
5476
5477 elsif not Conforming_Types
5478 (T1 => Old_Formal_Base,
5479 T2 => New_Formal_Base,
5480 Ctype => Ctype,
5481 Get_Inst => Get_Inst)
5482 and then not Access_Types_Match
5483 then
5484 -- Don't give error message if old type is Any_Type. This test
5485 -- avoids some cascaded errors, e.g. in case of a bad spec.
5486
5487 if Errmsg and then Old_Formal_Base = Any_Type then
5488 Conforms := False;
5489 else
5490 if Ctype >= Subtype_Conformant
5491 and then
5492 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5493 then
5494 Conformance_Error
5495 ("\predicate of & does not match!", New_Formal);
5496 else
5497 Conformance_Error
5498 ("\type of & does not match!", New_Formal);
5499
5500 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5501 then
5502 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5503 end if;
5504 end if;
5505 end if;
5506
5507 return;
5508 end if;
5509
5510 -- For mode conformance, mode must match
5511
5512 if Ctype >= Mode_Conformant then
5513 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5514 if not Ekind_In (New_Id, E_Function, E_Procedure)
5515 or else not Is_Primitive_Wrapper (New_Id)
5516 then
5517 Conformance_Error ("\mode of & does not match!", New_Formal);
5518
5519 else
5520 declare
5521 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5522 begin
5523 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5524 then
5525 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5526 else
5527 Conformance_Error
5528 ("\mode of & does not match!", New_Formal);
5529 end if;
5530 end;
5531 end if;
5532
5533 return;
5534
5535 -- Part of mode conformance for access types is having the same
5536 -- constant modifier.
5537
5538 elsif Access_Types_Match
5539 and then Is_Access_Constant (Old_Formal_Base) /=
5540 Is_Access_Constant (New_Formal_Base)
5541 then
5542 Conformance_Error
5543 ("\constant modifier does not match!", New_Formal);
5544 return;
5545 end if;
5546 end if;
5547
5548 if Ctype >= Subtype_Conformant then
5549
5550 -- Ada 2005 (AI-231): In case of anonymous access types check
5551 -- the null-exclusion and access-to-constant attributes must
5552 -- match. For null exclusion, we test the types rather than the
5553 -- formals themselves, since the attribute is only set reliably
5554 -- on the formals in the Ada 95 case, and we exclude the case
5555 -- where Old_Formal is marked as controlling, to avoid errors
5556 -- when matching completing bodies with dispatching declarations
5557 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5558
5559 if Ada_Version >= Ada_2005
5560 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5561 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5562 and then
5563 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5564 Can_Never_Be_Null (Etype (New_Formal))
5565 and then
5566 not Is_Controlling_Formal (Old_Formal))
5567 or else
5568 Is_Access_Constant (Etype (Old_Formal)) /=
5569 Is_Access_Constant (Etype (New_Formal)))
5570
5571 -- Do not complain if error already posted on New_Formal. This
5572 -- avoids some redundant error messages.
5573
5574 and then not Error_Posted (New_Formal)
5575 then
5576 -- It is allowed to omit the null-exclusion in case of stream
5577 -- attribute subprograms. We recognize stream subprograms
5578 -- through their TSS-generated suffix.
5579
5580 declare
5581 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5582
5583 begin
5584 if TSS_Name /= TSS_Stream_Read
5585 and then TSS_Name /= TSS_Stream_Write
5586 and then TSS_Name /= TSS_Stream_Input
5587 and then TSS_Name /= TSS_Stream_Output
5588 then
5589 -- Here we have a definite conformance error. It is worth
5590 -- special casing the error message for the case of a
5591 -- controlling formal (which excludes null).
5592
5593 if Is_Controlling_Formal (New_Formal) then
5594 Error_Msg_Node_2 := Scope (New_Formal);
5595 Conformance_Error
5596 ("\controlling formal & of & excludes null, "
5597 & "declaration must exclude null as well",
5598 New_Formal);
5599
5600 -- Normal case (couldn't we give more detail here???)
5601
5602 else
5603 Conformance_Error
5604 ("\type of & does not match!", New_Formal);
5605 end if;
5606
5607 return;
5608 end if;
5609 end;
5610 end if;
5611 end if;
5612
5613 -- Full conformance checks
5614
5615 if Ctype = Fully_Conformant then
5616
5617 -- We have checked already that names match
5618
5619 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5620
5621 -- Check default expressions for in parameters
5622
5623 declare
5624 NewD : constant Boolean :=
5625 Present (Default_Value (New_Formal));
5626 OldD : constant Boolean :=
5627 Present (Default_Value (Old_Formal));
5628 begin
5629 if NewD or OldD then
5630
5631 -- The old default value has been analyzed because the
5632 -- current full declaration will have frozen everything
5633 -- before. The new default value has not been analyzed,
5634 -- so analyze it now before we check for conformance.
5635
5636 if NewD then
5637 Push_Scope (New_Id);
5638 Preanalyze_Spec_Expression
5639 (Default_Value (New_Formal), Etype (New_Formal));
5640 End_Scope;
5641 end if;
5642
5643 if not (NewD and OldD)
5644 or else not Fully_Conformant_Expressions
5645 (Default_Value (Old_Formal),
5646 Default_Value (New_Formal))
5647 then
5648 Conformance_Error
5649 ("\default expression for & does not match!",
5650 New_Formal);
5651 return;
5652 end if;
5653 end if;
5654 end;
5655 end if;
5656 end if;
5657
5658 -- A couple of special checks for Ada 83 mode. These checks are
5659 -- skipped if either entity is an operator in package Standard,
5660 -- or if either old or new instance is not from the source program.
5661
5662 if Ada_Version = Ada_83
5663 and then Sloc (Old_Id) > Standard_Location
5664 and then Sloc (New_Id) > Standard_Location
5665 and then Comes_From_Source (Old_Id)
5666 and then Comes_From_Source (New_Id)
5667 then
5668 declare
5669 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5670 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5671
5672 begin
5673 -- Explicit IN must be present or absent in both cases. This
5674 -- test is required only in the full conformance case.
5675
5676 if In_Present (Old_Param) /= In_Present (New_Param)
5677 and then Ctype = Fully_Conformant
5678 then
5679 Conformance_Error
5680 ("\(Ada 83) IN must appear in both declarations",
5681 New_Formal);
5682 return;
5683 end if;
5684
5685 -- Grouping (use of comma in param lists) must be the same
5686 -- This is where we catch a misconformance like:
5687
5688 -- A, B : Integer
5689 -- A : Integer; B : Integer
5690
5691 -- which are represented identically in the tree except
5692 -- for the setting of the flags More_Ids and Prev_Ids.
5693
5694 if More_Ids (Old_Param) /= More_Ids (New_Param)
5695 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5696 then
5697 Conformance_Error
5698 ("\grouping of & does not match!", New_Formal);
5699 return;
5700 end if;
5701 end;
5702 end if;
5703
5704 -- This label is required when skipping controlling formals
5705
5706 <<Skip_Controlling_Formal>>
5707
5708 Next_Formal (Old_Formal);
5709 Next_Formal (New_Formal);
5710 end loop;
5711
5712 if Present (Old_Formal) then
5713 Conformance_Error ("\too few parameters!");
5714 return;
5715
5716 elsif Present (New_Formal) then
5717 Conformance_Error ("\too many parameters!", New_Formal);
5718 return;
5719 end if;
5720 end Check_Conformance;
5721
5722 -----------------------
5723 -- Check_Conventions --
5724 -----------------------
5725
5726 procedure Check_Conventions (Typ : Entity_Id) is
5727 Ifaces_List : Elist_Id;
5728
5729 procedure Check_Convention (Op : Entity_Id);
5730 -- Verify that the convention of inherited dispatching operation Op is
5731 -- consistent among all subprograms it overrides. In order to minimize
5732 -- the search, Search_From is utilized to designate a specific point in
5733 -- the list rather than iterating over the whole list once more.
5734
5735 ----------------------
5736 -- Check_Convention --
5737 ----------------------
5738
5739 procedure Check_Convention (Op : Entity_Id) is
5740 Op_Conv : constant Convention_Id := Convention (Op);
5741 Iface_Conv : Convention_Id;
5742 Iface_Elmt : Elmt_Id;
5743 Iface_Prim_Elmt : Elmt_Id;
5744 Iface_Prim : Entity_Id;
5745
5746 begin
5747 Iface_Elmt := First_Elmt (Ifaces_List);
5748 while Present (Iface_Elmt) loop
5749 Iface_Prim_Elmt :=
5750 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5751 while Present (Iface_Prim_Elmt) loop
5752 Iface_Prim := Node (Iface_Prim_Elmt);
5753 Iface_Conv := Convention (Iface_Prim);
5754
5755 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5756 and then Iface_Conv /= Op_Conv
5757 then
5758 Error_Msg_N
5759 ("inconsistent conventions in primitive operations", Typ);
5760
5761 Error_Msg_Name_1 := Chars (Op);
5762 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5763 Error_Msg_Sloc := Sloc (Op);
5764
5765 if Comes_From_Source (Op) or else No (Alias (Op)) then
5766 if not Present (Overridden_Operation (Op)) then
5767 Error_Msg_N ("\\primitive % defined #", Typ);
5768 else
5769 Error_Msg_N
5770 ("\\overriding operation % with "
5771 & "convention % defined #", Typ);
5772 end if;
5773
5774 else pragma Assert (Present (Alias (Op)));
5775 Error_Msg_Sloc := Sloc (Alias (Op));
5776 Error_Msg_N ("\\inherited operation % with "
5777 & "convention % defined #", Typ);
5778 end if;
5779
5780 Error_Msg_Name_1 := Chars (Op);
5781 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5782 Error_Msg_Sloc := Sloc (Iface_Prim);
5783 Error_Msg_N ("\\overridden operation % with "
5784 & "convention % defined #", Typ);
5785
5786 -- Avoid cascading errors
5787
5788 return;
5789 end if;
5790
5791 Next_Elmt (Iface_Prim_Elmt);
5792 end loop;
5793
5794 Next_Elmt (Iface_Elmt);
5795 end loop;
5796 end Check_Convention;
5797
5798 -- Local variables
5799
5800 Prim_Op : Entity_Id;
5801 Prim_Op_Elmt : Elmt_Id;
5802
5803 -- Start of processing for Check_Conventions
5804
5805 begin
5806 if not Has_Interfaces (Typ) then
5807 return;
5808 end if;
5809
5810 Collect_Interfaces (Typ, Ifaces_List);
5811
5812 -- The algorithm checks every overriding dispatching operation against
5813 -- all the corresponding overridden dispatching operations, detecting
5814 -- differences in conventions.
5815
5816 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5817 while Present (Prim_Op_Elmt) loop
5818 Prim_Op := Node (Prim_Op_Elmt);
5819
5820 -- A small optimization: skip the predefined dispatching operations
5821 -- since they always have the same convention.
5822
5823 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5824 Check_Convention (Prim_Op);
5825 end if;
5826
5827 Next_Elmt (Prim_Op_Elmt);
5828 end loop;
5829 end Check_Conventions;
5830
5831 ------------------------------
5832 -- Check_Delayed_Subprogram --
5833 ------------------------------
5834
5835 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5836 procedure Possible_Freeze (T : Entity_Id);
5837 -- T is the type of either a formal parameter or of the return type. If
5838 -- T is not yet frozen and needs a delayed freeze, then the subprogram
5839 -- itself must be delayed.
5840
5841 ---------------------
5842 -- Possible_Freeze --
5843 ---------------------
5844
5845 procedure Possible_Freeze (T : Entity_Id) is
5846 Scop : constant Entity_Id := Scope (Designator);
5847
5848 begin
5849 -- If the subprogram appears within a package instance (which may be
5850 -- the wrapper package of a subprogram instance) the freeze node for
5851 -- that package will freeze the subprogram at the proper place, so
5852 -- do not emit a freeze node for the subprogram, given that it may
5853 -- appear in the wrong scope.
5854
5855 if Ekind (Scop) = E_Package
5856 and then not Comes_From_Source (Scop)
5857 and then Is_Generic_Instance (Scop)
5858 then
5859 null;
5860
5861 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5862 Set_Has_Delayed_Freeze (Designator);
5863
5864 elsif Is_Access_Type (T)
5865 and then Has_Delayed_Freeze (Designated_Type (T))
5866 and then not Is_Frozen (Designated_Type (T))
5867 then
5868 Set_Has_Delayed_Freeze (Designator);
5869 end if;
5870 end Possible_Freeze;
5871
5872 -- Local variables
5873
5874 F : Entity_Id;
5875
5876 -- Start of processing for Check_Delayed_Subprogram
5877
5878 begin
5879 -- All subprograms, including abstract subprograms, may need a freeze
5880 -- node if some formal type or the return type needs one.
5881
5882 Possible_Freeze (Etype (Designator));
5883 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5884
5885 -- Need delayed freeze if any of the formal types themselves need a
5886 -- delayed freeze and are not yet frozen.
5887
5888 F := First_Formal (Designator);
5889 while Present (F) loop
5890 Possible_Freeze (Etype (F));
5891 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5892 Next_Formal (F);
5893 end loop;
5894
5895 -- Mark functions that return by reference. Note that it cannot be done
5896 -- for delayed_freeze subprograms because the underlying returned type
5897 -- may not be known yet (for private types).
5898
5899 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5900 declare
5901 Typ : constant Entity_Id := Etype (Designator);
5902 Utyp : constant Entity_Id := Underlying_Type (Typ);
5903
5904 begin
5905 if Is_Limited_View (Typ) then
5906 Set_Returns_By_Ref (Designator);
5907
5908 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5909 Set_Returns_By_Ref (Designator);
5910 end if;
5911 end;
5912 end if;
5913 end Check_Delayed_Subprogram;
5914
5915 ------------------------------------
5916 -- Check_Discriminant_Conformance --
5917 ------------------------------------
5918
5919 procedure Check_Discriminant_Conformance
5920 (N : Node_Id;
5921 Prev : Entity_Id;
5922 Prev_Loc : Node_Id)
5923 is
5924 Old_Discr : Entity_Id := First_Discriminant (Prev);
5925 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5926 New_Discr_Id : Entity_Id;
5927 New_Discr_Type : Entity_Id;
5928
5929 procedure Conformance_Error (Msg : String; N : Node_Id);
5930 -- Post error message for conformance error on given node. Two messages
5931 -- are output. The first points to the previous declaration with a
5932 -- general "no conformance" message. The second is the detailed reason,
5933 -- supplied as Msg. The parameter N provide information for a possible
5934 -- & insertion in the message.
5935
5936 -----------------------
5937 -- Conformance_Error --
5938 -----------------------
5939
5940 procedure Conformance_Error (Msg : String; N : Node_Id) is
5941 begin
5942 Error_Msg_Sloc := Sloc (Prev_Loc);
5943 Error_Msg_N -- CODEFIX
5944 ("not fully conformant with declaration#!", N);
5945 Error_Msg_NE (Msg, N, N);
5946 end Conformance_Error;
5947
5948 -- Start of processing for Check_Discriminant_Conformance
5949
5950 begin
5951 while Present (Old_Discr) and then Present (New_Discr) loop
5952 New_Discr_Id := Defining_Identifier (New_Discr);
5953
5954 -- The subtype mark of the discriminant on the full type has not
5955 -- been analyzed so we do it here. For an access discriminant a new
5956 -- type is created.
5957
5958 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5959 New_Discr_Type :=
5960 Access_Definition (N, Discriminant_Type (New_Discr));
5961
5962 else
5963 Analyze (Discriminant_Type (New_Discr));
5964 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5965
5966 -- Ada 2005: if the discriminant definition carries a null
5967 -- exclusion, create an itype to check properly for consistency
5968 -- with partial declaration.
5969
5970 if Is_Access_Type (New_Discr_Type)
5971 and then Null_Exclusion_Present (New_Discr)
5972 then
5973 New_Discr_Type :=
5974 Create_Null_Excluding_Itype
5975 (T => New_Discr_Type,
5976 Related_Nod => New_Discr,
5977 Scope_Id => Current_Scope);
5978 end if;
5979 end if;
5980
5981 if not Conforming_Types
5982 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5983 then
5984 Conformance_Error ("type of & does not match!", New_Discr_Id);
5985 return;
5986 else
5987 -- Treat the new discriminant as an occurrence of the old one,
5988 -- for navigation purposes, and fill in some semantic
5989 -- information, for completeness.
5990
5991 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5992 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5993 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5994 end if;
5995
5996 -- Names must match
5997
5998 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5999 Conformance_Error ("name & does not match!", New_Discr_Id);
6000 return;
6001 end if;
6002
6003 -- Default expressions must match
6004
6005 declare
6006 NewD : constant Boolean :=
6007 Present (Expression (New_Discr));
6008 OldD : constant Boolean :=
6009 Present (Expression (Parent (Old_Discr)));
6010
6011 begin
6012 if NewD or OldD then
6013
6014 -- The old default value has been analyzed and expanded,
6015 -- because the current full declaration will have frozen
6016 -- everything before. The new default values have not been
6017 -- expanded, so expand now to check conformance.
6018
6019 if NewD then
6020 Preanalyze_Spec_Expression
6021 (Expression (New_Discr), New_Discr_Type);
6022 end if;
6023
6024 if not (NewD and OldD)
6025 or else not Fully_Conformant_Expressions
6026 (Expression (Parent (Old_Discr)),
6027 Expression (New_Discr))
6028
6029 then
6030 Conformance_Error
6031 ("default expression for & does not match!",
6032 New_Discr_Id);
6033 return;
6034 end if;
6035 end if;
6036 end;
6037
6038 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6039
6040 if Ada_Version = Ada_83 then
6041 declare
6042 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6043
6044 begin
6045 -- Grouping (use of comma in param lists) must be the same
6046 -- This is where we catch a misconformance like:
6047
6048 -- A, B : Integer
6049 -- A : Integer; B : Integer
6050
6051 -- which are represented identically in the tree except
6052 -- for the setting of the flags More_Ids and Prev_Ids.
6053
6054 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6055 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6056 then
6057 Conformance_Error
6058 ("grouping of & does not match!", New_Discr_Id);
6059 return;
6060 end if;
6061 end;
6062 end if;
6063
6064 Next_Discriminant (Old_Discr);
6065 Next (New_Discr);
6066 end loop;
6067
6068 if Present (Old_Discr) then
6069 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6070 return;
6071
6072 elsif Present (New_Discr) then
6073 Conformance_Error
6074 ("too many discriminants!", Defining_Identifier (New_Discr));
6075 return;
6076 end if;
6077 end Check_Discriminant_Conformance;
6078
6079 ----------------------------
6080 -- Check_Fully_Conformant --
6081 ----------------------------
6082
6083 procedure Check_Fully_Conformant
6084 (New_Id : Entity_Id;
6085 Old_Id : Entity_Id;
6086 Err_Loc : Node_Id := Empty)
6087 is
6088 Result : Boolean;
6089 pragma Warnings (Off, Result);
6090 begin
6091 Check_Conformance
6092 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6093 end Check_Fully_Conformant;
6094
6095 --------------------------
6096 -- Check_Limited_Return --
6097 --------------------------
6098
6099 procedure Check_Limited_Return
6100 (N : Node_Id;
6101 Expr : Node_Id;
6102 R_Type : Entity_Id)
6103 is
6104 begin
6105 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6106 -- replaced by anonymous access results. This is an incompatibility with
6107 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6108 -- controllable with special switch. ???
6109
6110 -- A limited interface that is not immutably limited is OK
6111
6112 if Is_Limited_Interface (R_Type)
6113 and then
6114 not (Is_Task_Interface (R_Type)
6115 or else Is_Protected_Interface (R_Type)
6116 or else Is_Synchronized_Interface (R_Type))
6117 then
6118 null;
6119
6120 elsif Is_Limited_Type (R_Type)
6121 and then not Is_Interface (R_Type)
6122 and then Comes_From_Source (N)
6123 and then not In_Instance_Body
6124 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6125 then
6126 -- Error in Ada 2005
6127
6128 if Ada_Version >= Ada_2005
6129 and then not Debug_Flag_Dot_L
6130 and then not GNAT_Mode
6131 then
6132 Error_Msg_N
6133 ("(Ada 2005) cannot copy object of a limited type "
6134 & "(RM-2005 6.5(5.5/2))", Expr);
6135
6136 if Is_Limited_View (R_Type) then
6137 Error_Msg_N
6138 ("\return by reference not permitted in Ada 2005", Expr);
6139 end if;
6140
6141 -- Warn in Ada 95 mode, to give folks a heads up about this
6142 -- incompatibility.
6143
6144 -- In GNAT mode, this is just a warning, to allow it to be evilly
6145 -- turned off. Otherwise it is a real error.
6146
6147 -- In a generic context, simplify the warning because it makes no
6148 -- sense to discuss pass-by-reference or copy.
6149
6150 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6151 if Inside_A_Generic then
6152 Error_Msg_N
6153 ("return of limited object not permitted in Ada 2005 "
6154 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6155
6156 elsif Is_Limited_View (R_Type) then
6157 Error_Msg_N
6158 ("return by reference not permitted in Ada 2005 "
6159 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6160 else
6161 Error_Msg_N
6162 ("cannot copy object of a limited type in Ada 2005 "
6163 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6164 end if;
6165
6166 -- Ada 95 mode, and compatibility warnings disabled
6167
6168 else
6169 pragma Assert (Ada_Version <= Ada_95);
6170 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6171 return; -- skip continuation messages below
6172 end if;
6173
6174 if not Inside_A_Generic then
6175 Error_Msg_N
6176 ("\consider switching to return of access type", Expr);
6177 Explain_Limited_Type (R_Type, Expr);
6178 end if;
6179 end if;
6180 end Check_Limited_Return;
6181
6182 ---------------------------
6183 -- Check_Mode_Conformant --
6184 ---------------------------
6185
6186 procedure Check_Mode_Conformant
6187 (New_Id : Entity_Id;
6188 Old_Id : Entity_Id;
6189 Err_Loc : Node_Id := Empty;
6190 Get_Inst : Boolean := False)
6191 is
6192 Result : Boolean;
6193 pragma Warnings (Off, Result);
6194 begin
6195 Check_Conformance
6196 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6197 end Check_Mode_Conformant;
6198
6199 --------------------------------
6200 -- Check_Overriding_Indicator --
6201 --------------------------------
6202
6203 procedure Check_Overriding_Indicator
6204 (Subp : Entity_Id;
6205 Overridden_Subp : Entity_Id;
6206 Is_Primitive : Boolean)
6207 is
6208 Decl : Node_Id;
6209 Spec : Node_Id;
6210
6211 begin
6212 -- No overriding indicator for literals
6213
6214 if Ekind (Subp) = E_Enumeration_Literal then
6215 return;
6216
6217 elsif Ekind (Subp) = E_Entry then
6218 Decl := Parent (Subp);
6219
6220 -- No point in analyzing a malformed operator
6221
6222 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6223 and then Error_Posted (Subp)
6224 then
6225 return;
6226
6227 else
6228 Decl := Unit_Declaration_Node (Subp);
6229 end if;
6230
6231 if Nkind_In (Decl, N_Subprogram_Body,
6232 N_Subprogram_Body_Stub,
6233 N_Subprogram_Declaration,
6234 N_Abstract_Subprogram_Declaration,
6235 N_Subprogram_Renaming_Declaration)
6236 then
6237 Spec := Specification (Decl);
6238
6239 elsif Nkind (Decl) = N_Entry_Declaration then
6240 Spec := Decl;
6241
6242 else
6243 return;
6244 end if;
6245
6246 -- The overriding operation is type conformant with the overridden one,
6247 -- but the names of the formals are not required to match. If the names
6248 -- appear permuted in the overriding operation, this is a possible
6249 -- source of confusion that is worth diagnosing. Controlling formals
6250 -- often carry names that reflect the type, and it is not worthwhile
6251 -- requiring that their names match.
6252
6253 if Present (Overridden_Subp)
6254 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6255 then
6256 declare
6257 Form1 : Entity_Id;
6258 Form2 : Entity_Id;
6259
6260 begin
6261 Form1 := First_Formal (Subp);
6262 Form2 := First_Formal (Overridden_Subp);
6263
6264 -- If the overriding operation is a synchronized operation, skip
6265 -- the first parameter of the overridden operation, which is
6266 -- implicit in the new one. If the operation is declared in the
6267 -- body it is not primitive and all formals must match.
6268
6269 if Is_Concurrent_Type (Scope (Subp))
6270 and then Is_Tagged_Type (Scope (Subp))
6271 and then not Has_Completion (Scope (Subp))
6272 then
6273 Form2 := Next_Formal (Form2);
6274 end if;
6275
6276 if Present (Form1) then
6277 Form1 := Next_Formal (Form1);
6278 Form2 := Next_Formal (Form2);
6279 end if;
6280
6281 while Present (Form1) loop
6282 if not Is_Controlling_Formal (Form1)
6283 and then Present (Next_Formal (Form2))
6284 and then Chars (Form1) = Chars (Next_Formal (Form2))
6285 then
6286 Error_Msg_Node_2 := Alias (Overridden_Subp);
6287 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6288 Error_Msg_NE
6289 ("& does not match corresponding formal of&#",
6290 Form1, Form1);
6291 exit;
6292 end if;
6293
6294 Next_Formal (Form1);
6295 Next_Formal (Form2);
6296 end loop;
6297 end;
6298 end if;
6299
6300 -- If there is an overridden subprogram, then check that there is no
6301 -- "not overriding" indicator, and mark the subprogram as overriding.
6302 -- This is not done if the overridden subprogram is marked as hidden,
6303 -- which can occur for the case of inherited controlled operations
6304 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6305 -- subprogram is not itself hidden. (Note: This condition could probably
6306 -- be simplified, leaving out the testing for the specific controlled
6307 -- cases, but it seems safer and clearer this way, and echoes similar
6308 -- special-case tests of this kind in other places.)
6309
6310 if Present (Overridden_Subp)
6311 and then (not Is_Hidden (Overridden_Subp)
6312 or else
6313 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6314 Name_Adjust,
6315 Name_Finalize)
6316 and then Present (Alias (Overridden_Subp))
6317 and then not Is_Hidden (Alias (Overridden_Subp))))
6318 then
6319 if Must_Not_Override (Spec) then
6320 Error_Msg_Sloc := Sloc (Overridden_Subp);
6321
6322 if Ekind (Subp) = E_Entry then
6323 Error_Msg_NE
6324 ("entry & overrides inherited operation #", Spec, Subp);
6325 else
6326 Error_Msg_NE
6327 ("subprogram & overrides inherited operation #", Spec, Subp);
6328 end if;
6329
6330 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6331 -- as an extension of Root_Controlled, and thus has a useless Adjust
6332 -- operation. This operation should not be inherited by other limited
6333 -- controlled types. An explicit Adjust for them is not overriding.
6334
6335 elsif Must_Override (Spec)
6336 and then Chars (Overridden_Subp) = Name_Adjust
6337 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6338 and then Present (Alias (Overridden_Subp))
6339 and then In_Predefined_Unit (Alias (Overridden_Subp))
6340 then
6341 Get_Name_String
6342 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6343 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6344
6345 elsif Is_Subprogram (Subp) then
6346 if Is_Init_Proc (Subp) then
6347 null;
6348
6349 elsif No (Overridden_Operation (Subp)) then
6350
6351 -- For entities generated by Derive_Subprograms the overridden
6352 -- operation is the inherited primitive (which is available
6353 -- through the attribute alias)
6354
6355 if (Is_Dispatching_Operation (Subp)
6356 or else Is_Dispatching_Operation (Overridden_Subp))
6357 and then not Comes_From_Source (Overridden_Subp)
6358 and then Find_Dispatching_Type (Overridden_Subp) =
6359 Find_Dispatching_Type (Subp)
6360 and then Present (Alias (Overridden_Subp))
6361 and then Comes_From_Source (Alias (Overridden_Subp))
6362 then
6363 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6364 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6365
6366 else
6367 Set_Overridden_Operation (Subp, Overridden_Subp);
6368 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6369 end if;
6370 end if;
6371 end if;
6372
6373 -- If primitive flag is set or this is a protected operation, then
6374 -- the operation is overriding at the point of its declaration, so
6375 -- warn if necessary. Otherwise it may have been declared before the
6376 -- operation it overrides and no check is required.
6377
6378 if Style_Check
6379 and then not Must_Override (Spec)
6380 and then (Is_Primitive
6381 or else Ekind (Scope (Subp)) = E_Protected_Type)
6382 then
6383 Style.Missing_Overriding (Decl, Subp);
6384 end if;
6385
6386 -- If Subp is an operator, it may override a predefined operation, if
6387 -- it is defined in the same scope as the type to which it applies.
6388 -- In that case Overridden_Subp is empty because of our implicit
6389 -- representation for predefined operators. We have to check whether the
6390 -- signature of Subp matches that of a predefined operator. Note that
6391 -- first argument provides the name of the operator, and the second
6392 -- argument the signature that may match that of a standard operation.
6393 -- If the indicator is overriding, then the operator must match a
6394 -- predefined signature, because we know already that there is no
6395 -- explicit overridden operation.
6396
6397 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6398 if Must_Not_Override (Spec) then
6399
6400 -- If this is not a primitive or a protected subprogram, then
6401 -- "not overriding" is illegal.
6402
6403 if not Is_Primitive
6404 and then Ekind (Scope (Subp)) /= E_Protected_Type
6405 then
6406 Error_Msg_N ("overriding indicator only allowed "
6407 & "if subprogram is primitive", Subp);
6408
6409 elsif Can_Override_Operator (Subp) then
6410 Error_Msg_NE
6411 ("subprogram& overrides predefined operator ", Spec, Subp);
6412 end if;
6413
6414 elsif Must_Override (Spec) then
6415 if No (Overridden_Operation (Subp))
6416 and then not Can_Override_Operator (Subp)
6417 then
6418 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6419 end if;
6420
6421 elsif not Error_Posted (Subp)
6422 and then Style_Check
6423 and then Can_Override_Operator (Subp)
6424 and then not In_Predefined_Unit (Subp)
6425 then
6426 -- If style checks are enabled, indicate that the indicator is
6427 -- missing. However, at the point of declaration, the type of
6428 -- which this is a primitive operation may be private, in which
6429 -- case the indicator would be premature.
6430
6431 if Has_Private_Declaration (Etype (Subp))
6432 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6433 then
6434 null;
6435 else
6436 Style.Missing_Overriding (Decl, Subp);
6437 end if;
6438 end if;
6439
6440 elsif Must_Override (Spec) then
6441 if Ekind (Subp) = E_Entry then
6442 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6443 else
6444 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6445 end if;
6446
6447 -- If the operation is marked "not overriding" and it's not primitive
6448 -- then an error is issued, unless this is an operation of a task or
6449 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6450 -- has been specified have already been checked above.
6451
6452 elsif Must_Not_Override (Spec)
6453 and then not Is_Primitive
6454 and then Ekind (Subp) /= E_Entry
6455 and then Ekind (Scope (Subp)) /= E_Protected_Type
6456 then
6457 Error_Msg_N
6458 ("overriding indicator only allowed if subprogram is primitive",
6459 Subp);
6460 return;
6461 end if;
6462 end Check_Overriding_Indicator;
6463
6464 -------------------
6465 -- Check_Returns --
6466 -------------------
6467
6468 -- Note: this procedure needs to know far too much about how the expander
6469 -- messes with exceptions. The use of the flag Exception_Junk and the
6470 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6471 -- works, but is not very clean. It would be better if the expansion
6472 -- routines would leave Original_Node working nicely, and we could use
6473 -- Original_Node here to ignore all the peculiar expander messing ???
6474
6475 procedure Check_Returns
6476 (HSS : Node_Id;
6477 Mode : Character;
6478 Err : out Boolean;
6479 Proc : Entity_Id := Empty)
6480 is
6481 Handler : Node_Id;
6482
6483 procedure Check_Statement_Sequence (L : List_Id);
6484 -- Internal recursive procedure to check a list of statements for proper
6485 -- termination by a return statement (or a transfer of control or a
6486 -- compound statement that is itself internally properly terminated).
6487
6488 ------------------------------
6489 -- Check_Statement_Sequence --
6490 ------------------------------
6491
6492 procedure Check_Statement_Sequence (L : List_Id) is
6493 Last_Stm : Node_Id;
6494 Stm : Node_Id;
6495 Kind : Node_Kind;
6496
6497 function Assert_False return Boolean;
6498 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6499 -- rewritten as a null statement when assertions are off. The assert
6500 -- is not active, but it is still enough to kill the warning.
6501
6502 ------------------
6503 -- Assert_False --
6504 ------------------
6505
6506 function Assert_False return Boolean is
6507 Orig : constant Node_Id := Original_Node (Last_Stm);
6508
6509 begin
6510 if Nkind (Orig) = N_Pragma
6511 and then Pragma_Name (Orig) = Name_Assert
6512 and then not Error_Posted (Orig)
6513 then
6514 declare
6515 Arg : constant Node_Id :=
6516 First (Pragma_Argument_Associations (Orig));
6517 Exp : constant Node_Id := Expression (Arg);
6518 begin
6519 return Nkind (Exp) = N_Identifier
6520 and then Chars (Exp) = Name_False;
6521 end;
6522
6523 else
6524 return False;
6525 end if;
6526 end Assert_False;
6527
6528 -- Local variables
6529
6530 Raise_Exception_Call : Boolean;
6531 -- Set True if statement sequence terminated by Raise_Exception call
6532 -- or a Reraise_Occurrence call.
6533
6534 -- Start of processing for Check_Statement_Sequence
6535
6536 begin
6537 Raise_Exception_Call := False;
6538
6539 -- Get last real statement
6540
6541 Last_Stm := Last (L);
6542
6543 -- Deal with digging out exception handler statement sequences that
6544 -- have been transformed by the local raise to goto optimization.
6545 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6546 -- optimization has occurred, we are looking at something like:
6547
6548 -- begin
6549 -- original stmts in block
6550
6551 -- exception \
6552 -- when excep1 => |
6553 -- goto L1; | omitted if No_Exception_Propagation
6554 -- when excep2 => |
6555 -- goto L2; /
6556 -- end;
6557
6558 -- goto L3; -- skip handler when exception not raised
6559
6560 -- <<L1>> -- target label for local exception
6561 -- begin
6562 -- estmts1
6563 -- end;
6564
6565 -- goto L3;
6566
6567 -- <<L2>>
6568 -- begin
6569 -- estmts2
6570 -- end;
6571
6572 -- <<L3>>
6573
6574 -- and what we have to do is to dig out the estmts1 and estmts2
6575 -- sequences (which were the original sequences of statements in
6576 -- the exception handlers) and check them.
6577
6578 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6579 Stm := Last_Stm;
6580 loop
6581 Prev (Stm);
6582 exit when No (Stm);
6583 exit when Nkind (Stm) /= N_Block_Statement;
6584 exit when not Exception_Junk (Stm);
6585 Prev (Stm);
6586 exit when No (Stm);
6587 exit when Nkind (Stm) /= N_Label;
6588 exit when not Exception_Junk (Stm);
6589 Check_Statement_Sequence
6590 (Statements (Handled_Statement_Sequence (Next (Stm))));
6591
6592 Prev (Stm);
6593 Last_Stm := Stm;
6594 exit when No (Stm);
6595 exit when Nkind (Stm) /= N_Goto_Statement;
6596 exit when not Exception_Junk (Stm);
6597 end loop;
6598 end if;
6599
6600 -- Don't count pragmas
6601
6602 while Nkind (Last_Stm) = N_Pragma
6603
6604 -- Don't count call to SS_Release (can happen after Raise_Exception)
6605
6606 or else
6607 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6608 and then
6609 Nkind (Name (Last_Stm)) = N_Identifier
6610 and then
6611 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6612
6613 -- Don't count exception junk
6614
6615 or else
6616 (Nkind_In (Last_Stm, N_Goto_Statement,
6617 N_Label,
6618 N_Object_Declaration)
6619 and then Exception_Junk (Last_Stm))
6620 or else Nkind (Last_Stm) in N_Push_xxx_Label
6621 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6622
6623 -- Inserted code, such as finalization calls, is irrelevant: we only
6624 -- need to check original source.
6625
6626 or else Is_Rewrite_Insertion (Last_Stm)
6627 loop
6628 Prev (Last_Stm);
6629 end loop;
6630
6631 -- Here we have the "real" last statement
6632
6633 Kind := Nkind (Last_Stm);
6634
6635 -- Transfer of control, OK. Note that in the No_Return procedure
6636 -- case, we already diagnosed any explicit return statements, so
6637 -- we can treat them as OK in this context.
6638
6639 if Is_Transfer (Last_Stm) then
6640 return;
6641
6642 -- Check cases of explicit non-indirect procedure calls
6643
6644 elsif Kind = N_Procedure_Call_Statement
6645 and then Is_Entity_Name (Name (Last_Stm))
6646 then
6647 -- Check call to Raise_Exception procedure which is treated
6648 -- specially, as is a call to Reraise_Occurrence.
6649
6650 -- We suppress the warning in these cases since it is likely that
6651 -- the programmer really does not expect to deal with the case
6652 -- of Null_Occurrence, and thus would find a warning about a
6653 -- missing return curious, and raising Program_Error does not
6654 -- seem such a bad behavior if this does occur.
6655
6656 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6657 -- behavior will be to raise Constraint_Error (see AI-329).
6658
6659 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6660 or else
6661 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6662 then
6663 Raise_Exception_Call := True;
6664
6665 -- For Raise_Exception call, test first argument, if it is
6666 -- an attribute reference for a 'Identity call, then we know
6667 -- that the call cannot possibly return.
6668
6669 declare
6670 Arg : constant Node_Id :=
6671 Original_Node (First_Actual (Last_Stm));
6672 begin
6673 if Nkind (Arg) = N_Attribute_Reference
6674 and then Attribute_Name (Arg) = Name_Identity
6675 then
6676 return;
6677 end if;
6678 end;
6679 end if;
6680
6681 -- If statement, need to look inside if there is an else and check
6682 -- each constituent statement sequence for proper termination.
6683
6684 elsif Kind = N_If_Statement
6685 and then Present (Else_Statements (Last_Stm))
6686 then
6687 Check_Statement_Sequence (Then_Statements (Last_Stm));
6688 Check_Statement_Sequence (Else_Statements (Last_Stm));
6689
6690 if Present (Elsif_Parts (Last_Stm)) then
6691 declare
6692 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6693
6694 begin
6695 while Present (Elsif_Part) loop
6696 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6697 Next (Elsif_Part);
6698 end loop;
6699 end;
6700 end if;
6701
6702 return;
6703
6704 -- Case statement, check each case for proper termination
6705
6706 elsif Kind = N_Case_Statement then
6707 declare
6708 Case_Alt : Node_Id;
6709 begin
6710 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6711 while Present (Case_Alt) loop
6712 Check_Statement_Sequence (Statements (Case_Alt));
6713 Next_Non_Pragma (Case_Alt);
6714 end loop;
6715 end;
6716
6717 return;
6718
6719 -- Block statement, check its handled sequence of statements
6720
6721 elsif Kind = N_Block_Statement then
6722 declare
6723 Err1 : Boolean;
6724
6725 begin
6726 Check_Returns
6727 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6728
6729 if Err1 then
6730 Err := True;
6731 end if;
6732
6733 return;
6734 end;
6735
6736 -- Loop statement. If there is an iteration scheme, we can definitely
6737 -- fall out of the loop. Similarly if there is an exit statement, we
6738 -- can fall out. In either case we need a following return.
6739
6740 elsif Kind = N_Loop_Statement then
6741 if Present (Iteration_Scheme (Last_Stm))
6742 or else Has_Exit (Entity (Identifier (Last_Stm)))
6743 then
6744 null;
6745
6746 -- A loop with no exit statement or iteration scheme is either
6747 -- an infinite loop, or it has some other exit (raise/return).
6748 -- In either case, no warning is required.
6749
6750 else
6751 return;
6752 end if;
6753
6754 -- Timed entry call, check entry call and delay alternatives
6755
6756 -- Note: in expanded code, the timed entry call has been converted
6757 -- to a set of expanded statements on which the check will work
6758 -- correctly in any case.
6759
6760 elsif Kind = N_Timed_Entry_Call then
6761 declare
6762 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6763 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6764
6765 begin
6766 -- If statement sequence of entry call alternative is missing,
6767 -- then we can definitely fall through, and we post the error
6768 -- message on the entry call alternative itself.
6769
6770 if No (Statements (ECA)) then
6771 Last_Stm := ECA;
6772
6773 -- If statement sequence of delay alternative is missing, then
6774 -- we can definitely fall through, and we post the error
6775 -- message on the delay alternative itself.
6776
6777 -- Note: if both ECA and DCA are missing the return, then we
6778 -- post only one message, should be enough to fix the bugs.
6779 -- If not we will get a message next time on the DCA when the
6780 -- ECA is fixed.
6781
6782 elsif No (Statements (DCA)) then
6783 Last_Stm := DCA;
6784
6785 -- Else check both statement sequences
6786
6787 else
6788 Check_Statement_Sequence (Statements (ECA));
6789 Check_Statement_Sequence (Statements (DCA));
6790 return;
6791 end if;
6792 end;
6793
6794 -- Conditional entry call, check entry call and else part
6795
6796 -- Note: in expanded code, the conditional entry call has been
6797 -- converted to a set of expanded statements on which the check
6798 -- will work correctly in any case.
6799
6800 elsif Kind = N_Conditional_Entry_Call then
6801 declare
6802 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6803
6804 begin
6805 -- If statement sequence of entry call alternative is missing,
6806 -- then we can definitely fall through, and we post the error
6807 -- message on the entry call alternative itself.
6808
6809 if No (Statements (ECA)) then
6810 Last_Stm := ECA;
6811
6812 -- Else check statement sequence and else part
6813
6814 else
6815 Check_Statement_Sequence (Statements (ECA));
6816 Check_Statement_Sequence (Else_Statements (Last_Stm));
6817 return;
6818 end if;
6819 end;
6820 end if;
6821
6822 -- If we fall through, issue appropriate message
6823
6824 if Mode = 'F' then
6825
6826 -- Kill warning if last statement is a raise exception call,
6827 -- or a pragma Assert (False). Note that with assertions enabled,
6828 -- such a pragma has been converted into a raise exception call
6829 -- already, so the Assert_False is for the assertions off case.
6830
6831 if not Raise_Exception_Call and then not Assert_False then
6832
6833 -- In GNATprove mode, it is an error to have a missing return
6834
6835 Error_Msg_Warn := SPARK_Mode /= On;
6836
6837 -- Issue error message or warning
6838
6839 Error_Msg_N
6840 ("RETURN statement missing following this statement<<!",
6841 Last_Stm);
6842 Error_Msg_N
6843 ("\Program_Error ]<<!", Last_Stm);
6844 end if;
6845
6846 -- Note: we set Err even though we have not issued a warning
6847 -- because we still have a case of a missing return. This is
6848 -- an extremely marginal case, probably will never be noticed
6849 -- but we might as well get it right.
6850
6851 Err := True;
6852
6853 -- Otherwise we have the case of a procedure marked No_Return
6854
6855 else
6856 if not Raise_Exception_Call then
6857 if GNATprove_Mode then
6858 Error_Msg_N
6859 ("implied return after this statement would have raised "
6860 & "Program_Error", Last_Stm);
6861
6862 -- In normal compilation mode, do not warn on a generated call
6863 -- (e.g. in the body of a renaming as completion).
6864
6865 elsif Comes_From_Source (Last_Stm) then
6866 Error_Msg_N
6867 ("implied return after this statement will raise "
6868 & "Program_Error??", Last_Stm);
6869 end if;
6870
6871 Error_Msg_Warn := SPARK_Mode /= On;
6872 Error_Msg_NE
6873 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6874 end if;
6875
6876 declare
6877 RE : constant Node_Id :=
6878 Make_Raise_Program_Error (Sloc (Last_Stm),
6879 Reason => PE_Implicit_Return);
6880 begin
6881 Insert_After (Last_Stm, RE);
6882 Analyze (RE);
6883 end;
6884 end if;
6885 end Check_Statement_Sequence;
6886
6887 -- Start of processing for Check_Returns
6888
6889 begin
6890 Err := False;
6891 Check_Statement_Sequence (Statements (HSS));
6892
6893 if Present (Exception_Handlers (HSS)) then
6894 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6895 while Present (Handler) loop
6896 Check_Statement_Sequence (Statements (Handler));
6897 Next_Non_Pragma (Handler);
6898 end loop;
6899 end if;
6900 end Check_Returns;
6901
6902 ----------------------------
6903 -- Check_Subprogram_Order --
6904 ----------------------------
6905
6906 procedure Check_Subprogram_Order (N : Node_Id) is
6907
6908 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6909 -- This is used to check if S1 > S2 in the sense required by this test,
6910 -- for example nameab < namec, but name2 < name10.
6911
6912 -----------------------------
6913 -- Subprogram_Name_Greater --
6914 -----------------------------
6915
6916 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6917 L1, L2 : Positive;
6918 N1, N2 : Natural;
6919
6920 begin
6921 -- Deal with special case where names are identical except for a
6922 -- numerical suffix. These are handled specially, taking the numeric
6923 -- ordering from the suffix into account.
6924
6925 L1 := S1'Last;
6926 while S1 (L1) in '0' .. '9' loop
6927 L1 := L1 - 1;
6928 end loop;
6929
6930 L2 := S2'Last;
6931 while S2 (L2) in '0' .. '9' loop
6932 L2 := L2 - 1;
6933 end loop;
6934
6935 -- If non-numeric parts non-equal, do straight compare
6936
6937 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6938 return S1 > S2;
6939
6940 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6941 -- that a missing suffix is treated as numeric zero in this test.
6942
6943 else
6944 N1 := 0;
6945 while L1 < S1'Last loop
6946 L1 := L1 + 1;
6947 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6948 end loop;
6949
6950 N2 := 0;
6951 while L2 < S2'Last loop
6952 L2 := L2 + 1;
6953 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6954 end loop;
6955
6956 return N1 > N2;
6957 end if;
6958 end Subprogram_Name_Greater;
6959
6960 -- Start of processing for Check_Subprogram_Order
6961
6962 begin
6963 -- Check body in alpha order if this is option
6964
6965 if Style_Check
6966 and then Style_Check_Order_Subprograms
6967 and then Nkind (N) = N_Subprogram_Body
6968 and then Comes_From_Source (N)
6969 and then In_Extended_Main_Source_Unit (N)
6970 then
6971 declare
6972 LSN : String_Ptr
6973 renames Scope_Stack.Table
6974 (Scope_Stack.Last).Last_Subprogram_Name;
6975
6976 Body_Id : constant Entity_Id :=
6977 Defining_Entity (Specification (N));
6978
6979 begin
6980 Get_Decoded_Name_String (Chars (Body_Id));
6981
6982 if LSN /= null then
6983 if Subprogram_Name_Greater
6984 (LSN.all, Name_Buffer (1 .. Name_Len))
6985 then
6986 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6987 end if;
6988
6989 Free (LSN);
6990 end if;
6991
6992 LSN := new String'(Name_Buffer (1 .. Name_Len));
6993 end;
6994 end if;
6995 end Check_Subprogram_Order;
6996
6997 ------------------------------
6998 -- Check_Subtype_Conformant --
6999 ------------------------------
7000
7001 procedure Check_Subtype_Conformant
7002 (New_Id : Entity_Id;
7003 Old_Id : Entity_Id;
7004 Err_Loc : Node_Id := Empty;
7005 Skip_Controlling_Formals : Boolean := False;
7006 Get_Inst : Boolean := False)
7007 is
7008 Result : Boolean;
7009 pragma Warnings (Off, Result);
7010 begin
7011 Check_Conformance
7012 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7013 Skip_Controlling_Formals => Skip_Controlling_Formals,
7014 Get_Inst => Get_Inst);
7015 end Check_Subtype_Conformant;
7016
7017 -----------------------------------
7018 -- Check_Synchronized_Overriding --
7019 -----------------------------------
7020
7021 procedure Check_Synchronized_Overriding
7022 (Def_Id : Entity_Id;
7023 Overridden_Subp : out Entity_Id)
7024 is
7025 Ifaces_List : Elist_Id;
7026 In_Scope : Boolean;
7027 Typ : Entity_Id;
7028
7029 function Matches_Prefixed_View_Profile
7030 (Prim_Params : List_Id;
7031 Iface_Params : List_Id) return Boolean;
7032 -- Determine whether a subprogram's parameter profile Prim_Params
7033 -- matches that of a potentially overridden interface subprogram
7034 -- Iface_Params. Also determine if the type of first parameter of
7035 -- Iface_Params is an implemented interface.
7036
7037 -----------------------------------
7038 -- Matches_Prefixed_View_Profile --
7039 -----------------------------------
7040
7041 function Matches_Prefixed_View_Profile
7042 (Prim_Params : List_Id;
7043 Iface_Params : List_Id) return Boolean
7044 is
7045 function Is_Implemented
7046 (Ifaces_List : Elist_Id;
7047 Iface : Entity_Id) return Boolean;
7048 -- Determine if Iface is implemented by the current task or
7049 -- protected type.
7050
7051 --------------------
7052 -- Is_Implemented --
7053 --------------------
7054
7055 function Is_Implemented
7056 (Ifaces_List : Elist_Id;
7057 Iface : Entity_Id) return Boolean
7058 is
7059 Iface_Elmt : Elmt_Id;
7060
7061 begin
7062 Iface_Elmt := First_Elmt (Ifaces_List);
7063 while Present (Iface_Elmt) loop
7064 if Node (Iface_Elmt) = Iface then
7065 return True;
7066 end if;
7067
7068 Next_Elmt (Iface_Elmt);
7069 end loop;
7070
7071 return False;
7072 end Is_Implemented;
7073
7074 -- Local variables
7075
7076 Iface_Id : Entity_Id;
7077 Iface_Param : Node_Id;
7078 Iface_Typ : Entity_Id;
7079 Prim_Id : Entity_Id;
7080 Prim_Param : Node_Id;
7081 Prim_Typ : Entity_Id;
7082
7083 -- Start of processing for Matches_Prefixed_View_Profile
7084
7085 begin
7086 Iface_Param := First (Iface_Params);
7087 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7088
7089 if Is_Access_Type (Iface_Typ) then
7090 Iface_Typ := Designated_Type (Iface_Typ);
7091 end if;
7092
7093 Prim_Param := First (Prim_Params);
7094
7095 -- The first parameter of the potentially overridden subprogram must
7096 -- be an interface implemented by Prim.
7097
7098 if not Is_Interface (Iface_Typ)
7099 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7100 then
7101 return False;
7102 end if;
7103
7104 -- The checks on the object parameters are done, so move on to the
7105 -- rest of the parameters.
7106
7107 if not In_Scope then
7108 Prim_Param := Next (Prim_Param);
7109 end if;
7110
7111 Iface_Param := Next (Iface_Param);
7112 while Present (Iface_Param) and then Present (Prim_Param) loop
7113 Iface_Id := Defining_Identifier (Iface_Param);
7114 Iface_Typ := Find_Parameter_Type (Iface_Param);
7115
7116 Prim_Id := Defining_Identifier (Prim_Param);
7117 Prim_Typ := Find_Parameter_Type (Prim_Param);
7118
7119 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7120 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7121 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7122 then
7123 Iface_Typ := Designated_Type (Iface_Typ);
7124 Prim_Typ := Designated_Type (Prim_Typ);
7125 end if;
7126
7127 -- Case of multiple interface types inside a parameter profile
7128
7129 -- (Obj_Param : in out Iface; ...; Param : Iface)
7130
7131 -- If the interface type is implemented, then the matching type in
7132 -- the primitive should be the implementing record type.
7133
7134 if Ekind (Iface_Typ) = E_Record_Type
7135 and then Is_Interface (Iface_Typ)
7136 and then Is_Implemented (Ifaces_List, Iface_Typ)
7137 then
7138 if Prim_Typ /= Typ then
7139 return False;
7140 end if;
7141
7142 -- The two parameters must be both mode and subtype conformant
7143
7144 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7145 or else not
7146 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7147 then
7148 return False;
7149 end if;
7150
7151 Next (Iface_Param);
7152 Next (Prim_Param);
7153 end loop;
7154
7155 -- One of the two lists contains more parameters than the other
7156
7157 if Present (Iface_Param) or else Present (Prim_Param) then
7158 return False;
7159 end if;
7160
7161 return True;
7162 end Matches_Prefixed_View_Profile;
7163
7164 -- Start of processing for Check_Synchronized_Overriding
7165
7166 begin
7167 Overridden_Subp := Empty;
7168
7169 -- Def_Id must be an entry or a subprogram. We should skip predefined
7170 -- primitives internally generated by the front end; however at this
7171 -- stage predefined primitives are still not fully decorated. As a
7172 -- minor optimization we skip here internally generated subprograms.
7173
7174 if (Ekind (Def_Id) /= E_Entry
7175 and then Ekind (Def_Id) /= E_Function
7176 and then Ekind (Def_Id) /= E_Procedure)
7177 or else not Comes_From_Source (Def_Id)
7178 then
7179 return;
7180 end if;
7181
7182 -- Search for the concurrent declaration since it contains the list of
7183 -- all implemented interfaces. In this case, the subprogram is declared
7184 -- within the scope of a protected or a task type.
7185
7186 if Present (Scope (Def_Id))
7187 and then Is_Concurrent_Type (Scope (Def_Id))
7188 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7189 then
7190 Typ := Scope (Def_Id);
7191 In_Scope := True;
7192
7193 -- The enclosing scope is not a synchronized type and the subprogram
7194 -- has no formals.
7195
7196 elsif No (First_Formal (Def_Id)) then
7197 return;
7198
7199 -- The subprogram has formals and hence it may be a primitive of a
7200 -- concurrent type.
7201
7202 else
7203 Typ := Etype (First_Formal (Def_Id));
7204
7205 if Is_Access_Type (Typ) then
7206 Typ := Directly_Designated_Type (Typ);
7207 end if;
7208
7209 if Is_Concurrent_Type (Typ)
7210 and then not Is_Generic_Actual_Type (Typ)
7211 then
7212 In_Scope := False;
7213
7214 -- This case occurs when the concurrent type is declared within a
7215 -- generic unit. As a result the corresponding record has been built
7216 -- and used as the type of the first formal, we just have to retrieve
7217 -- the corresponding concurrent type.
7218
7219 elsif Is_Concurrent_Record_Type (Typ)
7220 and then not Is_Class_Wide_Type (Typ)
7221 and then Present (Corresponding_Concurrent_Type (Typ))
7222 then
7223 Typ := Corresponding_Concurrent_Type (Typ);
7224 In_Scope := False;
7225
7226 else
7227 return;
7228 end if;
7229 end if;
7230
7231 -- There is no overriding to check if this is an inherited operation in
7232 -- a type derivation for a generic actual.
7233
7234 Collect_Interfaces (Typ, Ifaces_List);
7235
7236 if Is_Empty_Elmt_List (Ifaces_List) then
7237 return;
7238 end if;
7239
7240 -- Determine whether entry or subprogram Def_Id overrides a primitive
7241 -- operation that belongs to one of the interfaces in Ifaces_List.
7242
7243 declare
7244 Candidate : Entity_Id := Empty;
7245 Hom : Entity_Id := Empty;
7246 Subp : Entity_Id := Empty;
7247
7248 begin
7249 -- Traverse the homonym chain, looking for a potentially overridden
7250 -- subprogram that belongs to an implemented interface.
7251
7252 Hom := Current_Entity_In_Scope (Def_Id);
7253 while Present (Hom) loop
7254 Subp := Hom;
7255
7256 if Subp = Def_Id
7257 or else not Is_Overloadable (Subp)
7258 or else not Is_Primitive (Subp)
7259 or else not Is_Dispatching_Operation (Subp)
7260 or else not Present (Find_Dispatching_Type (Subp))
7261 or else not Is_Interface (Find_Dispatching_Type (Subp))
7262 then
7263 null;
7264
7265 -- Entries and procedures can override abstract or null interface
7266 -- procedures.
7267
7268 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7269 and then Ekind (Subp) = E_Procedure
7270 and then Matches_Prefixed_View_Profile
7271 (Parameter_Specifications (Parent (Def_Id)),
7272 Parameter_Specifications (Parent (Subp)))
7273 then
7274 Candidate := Subp;
7275
7276 -- For an overridden subprogram Subp, check whether the mode
7277 -- of its first parameter is correct depending on the kind of
7278 -- synchronized type.
7279
7280 declare
7281 Formal : constant Node_Id := First_Formal (Candidate);
7282
7283 begin
7284 -- In order for an entry or a protected procedure to
7285 -- override, the first parameter of the overridden routine
7286 -- must be of mode "out", "in out", or access-to-variable.
7287
7288 if Ekind_In (Candidate, E_Entry, E_Procedure)
7289 and then Is_Protected_Type (Typ)
7290 and then Ekind (Formal) /= E_In_Out_Parameter
7291 and then Ekind (Formal) /= E_Out_Parameter
7292 and then Nkind (Parameter_Type (Parent (Formal))) /=
7293 N_Access_Definition
7294 then
7295 null;
7296
7297 -- All other cases are OK since a task entry or routine does
7298 -- not have a restriction on the mode of the first parameter
7299 -- of the overridden interface routine.
7300
7301 else
7302 Overridden_Subp := Candidate;
7303 return;
7304 end if;
7305 end;
7306
7307 -- Functions can override abstract interface functions. Return
7308 -- types must be subtype conformant.
7309
7310 elsif Ekind (Def_Id) = E_Function
7311 and then Ekind (Subp) = E_Function
7312 and then Matches_Prefixed_View_Profile
7313 (Parameter_Specifications (Parent (Def_Id)),
7314 Parameter_Specifications (Parent (Subp)))
7315 and then Conforming_Types
7316 (Etype (Def_Id), Etype (Subp), Subtype_Conformant)
7317 then
7318 Candidate := Subp;
7319
7320 -- If an inherited subprogram is implemented by a protected
7321 -- function, then the first parameter of the inherited
7322 -- subprogram shall be of mode in, but not an access-to-
7323 -- variable parameter (RM 9.4(11/9)).
7324
7325 if Present (First_Formal (Subp))
7326 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7327 and then
7328 (not Is_Access_Type (Etype (First_Formal (Subp)))
7329 or else
7330 Is_Access_Constant (Etype (First_Formal (Subp))))
7331 then
7332 Overridden_Subp := Subp;
7333 return;
7334 end if;
7335 end if;
7336
7337 Hom := Homonym (Hom);
7338 end loop;
7339
7340 -- After examining all candidates for overriding, we are left with
7341 -- the best match, which is a mode-incompatible interface routine.
7342
7343 if In_Scope and then Present (Candidate) then
7344 Error_Msg_PT (Def_Id, Candidate);
7345 end if;
7346
7347 Overridden_Subp := Candidate;
7348 return;
7349 end;
7350 end Check_Synchronized_Overriding;
7351
7352 ---------------------------
7353 -- Check_Type_Conformant --
7354 ---------------------------
7355
7356 procedure Check_Type_Conformant
7357 (New_Id : Entity_Id;
7358 Old_Id : Entity_Id;
7359 Err_Loc : Node_Id := Empty)
7360 is
7361 Result : Boolean;
7362 pragma Warnings (Off, Result);
7363 begin
7364 Check_Conformance
7365 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7366 end Check_Type_Conformant;
7367
7368 ---------------------------
7369 -- Can_Override_Operator --
7370 ---------------------------
7371
7372 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7373 Typ : Entity_Id;
7374
7375 begin
7376 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7377 return False;
7378
7379 else
7380 Typ := Base_Type (Etype (First_Formal (Subp)));
7381
7382 -- Check explicitly that the operation is a primitive of the type
7383
7384 return Operator_Matches_Spec (Subp, Subp)
7385 and then not Is_Generic_Type (Typ)
7386 and then Scope (Subp) = Scope (Typ)
7387 and then not Is_Class_Wide_Type (Typ);
7388 end if;
7389 end Can_Override_Operator;
7390
7391 ----------------------
7392 -- Conforming_Types --
7393 ----------------------
7394
7395 function Conforming_Types
7396 (T1 : Entity_Id;
7397 T2 : Entity_Id;
7398 Ctype : Conformance_Type;
7399 Get_Inst : Boolean := False) return Boolean
7400 is
7401 function Base_Types_Match
7402 (Typ_1 : Entity_Id;
7403 Typ_2 : Entity_Id) return Boolean;
7404 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7405 -- in different scopes (e.g. parent and child instances), then verify
7406 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7407 -- the same subtype chain. The whole purpose of this procedure is to
7408 -- prevent spurious ambiguities in an instantiation that may arise if
7409 -- two distinct generic types are instantiated with the same actual.
7410
7411 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7412 -- An access parameter can designate an incomplete type. If the
7413 -- incomplete type is the limited view of a type from a limited_
7414 -- with_clause, check whether the non-limited view is available.
7415 -- If it is a (non-limited) incomplete type, get the full view.
7416
7417 function Matches_Limited_With_View
7418 (Typ_1 : Entity_Id;
7419 Typ_2 : Entity_Id) return Boolean;
7420 -- Returns True if and only if either Typ_1 denotes a limited view of
7421 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7422 -- the limited with view of a type is used in a subprogram declaration
7423 -- and the subprogram body is in the scope of a regular with clause for
7424 -- the same unit. In such a case, the two type entities are considered
7425 -- identical for purposes of conformance checking.
7426
7427 ----------------------
7428 -- Base_Types_Match --
7429 ----------------------
7430
7431 function Base_Types_Match
7432 (Typ_1 : Entity_Id;
7433 Typ_2 : Entity_Id) return Boolean
7434 is
7435 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7436 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7437
7438 begin
7439 if Typ_1 = Typ_2 then
7440 return True;
7441
7442 elsif Base_1 = Base_2 then
7443
7444 -- The following is too permissive. A more precise test should
7445 -- check that the generic actual is an ancestor subtype of the
7446 -- other ???.
7447
7448 -- See code in Find_Corresponding_Spec that applies an additional
7449 -- filter to handle accidental amiguities in instances.
7450
7451 return
7452 not Is_Generic_Actual_Type (Typ_1)
7453 or else not Is_Generic_Actual_Type (Typ_2)
7454 or else Scope (Typ_1) /= Scope (Typ_2);
7455
7456 -- If Typ_2 is a generic actual type it is declared as the subtype of
7457 -- the actual. If that actual is itself a subtype we need to use its
7458 -- own base type to check for compatibility.
7459
7460 elsif Ekind (Base_2) = Ekind (Typ_2)
7461 and then Base_1 = Base_Type (Base_2)
7462 then
7463 return True;
7464
7465 elsif Ekind (Base_1) = Ekind (Typ_1)
7466 and then Base_2 = Base_Type (Base_1)
7467 then
7468 return True;
7469
7470 else
7471 return False;
7472 end if;
7473 end Base_Types_Match;
7474
7475 --------------------------
7476 -- Find_Designated_Type --
7477 --------------------------
7478
7479 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7480 Desig : Entity_Id;
7481
7482 begin
7483 Desig := Directly_Designated_Type (Typ);
7484
7485 if Ekind (Desig) = E_Incomplete_Type then
7486
7487 -- If regular incomplete type, get full view if available
7488
7489 if Present (Full_View (Desig)) then
7490 Desig := Full_View (Desig);
7491
7492 -- If limited view of a type, get non-limited view if available,
7493 -- and check again for a regular incomplete type.
7494
7495 elsif Present (Non_Limited_View (Desig)) then
7496 Desig := Get_Full_View (Non_Limited_View (Desig));
7497 end if;
7498 end if;
7499
7500 return Desig;
7501 end Find_Designated_Type;
7502
7503 -------------------------------
7504 -- Matches_Limited_With_View --
7505 -------------------------------
7506
7507 function Matches_Limited_With_View
7508 (Typ_1 : Entity_Id;
7509 Typ_2 : Entity_Id) return Boolean
7510 is
7511 function Is_Matching_Limited_View
7512 (Typ : Entity_Id;
7513 View : Entity_Id) return Boolean;
7514 -- Determine whether non-limited view View denotes type Typ in some
7515 -- conformant fashion.
7516
7517 ------------------------------
7518 -- Is_Matching_Limited_View --
7519 ------------------------------
7520
7521 function Is_Matching_Limited_View
7522 (Typ : Entity_Id;
7523 View : Entity_Id) return Boolean
7524 is
7525 Root_Typ : Entity_Id;
7526 Root_View : Entity_Id;
7527
7528 begin
7529 -- The non-limited view directly denotes the type
7530
7531 if Typ = View then
7532 return True;
7533
7534 -- The type is a subtype of the non-limited view
7535
7536 elsif Is_Subtype_Of (Typ, View) then
7537 return True;
7538
7539 -- Both the non-limited view and the type denote class-wide types
7540
7541 elsif Is_Class_Wide_Type (Typ)
7542 and then Is_Class_Wide_Type (View)
7543 then
7544 Root_Typ := Root_Type (Typ);
7545 Root_View := Root_Type (View);
7546
7547 if Root_Typ = Root_View then
7548 return True;
7549
7550 -- An incomplete tagged type and its full view may receive two
7551 -- distinct class-wide types when the related package has not
7552 -- been analyzed yet.
7553
7554 -- package Pack is
7555 -- type T is tagged; -- CW_1
7556 -- type T is tagged null record; -- CW_2
7557 -- end Pack;
7558
7559 -- This is because the package lacks any semantic information
7560 -- that may eventually link both views of T. As a consequence,
7561 -- a client of the limited view of Pack will see CW_2 while a
7562 -- client of the non-limited view of Pack will see CW_1.
7563
7564 elsif Is_Incomplete_Type (Root_Typ)
7565 and then Present (Full_View (Root_Typ))
7566 and then Full_View (Root_Typ) = Root_View
7567 then
7568 return True;
7569
7570 elsif Is_Incomplete_Type (Root_View)
7571 and then Present (Full_View (Root_View))
7572 and then Full_View (Root_View) = Root_Typ
7573 then
7574 return True;
7575 end if;
7576 end if;
7577
7578 return False;
7579 end Is_Matching_Limited_View;
7580
7581 -- Start of processing for Matches_Limited_With_View
7582
7583 begin
7584 -- In some cases a type imported through a limited_with clause, and
7585 -- its non-limited view are both visible, for example in an anonymous
7586 -- access-to-class-wide type in a formal, or when building the body
7587 -- for a subprogram renaming after the subprogram has been frozen.
7588 -- In these cases both entities designate the same type. In addition,
7589 -- if one of them is an actual in an instance, it may be a subtype of
7590 -- the non-limited view of the other.
7591
7592 if From_Limited_With (Typ_1)
7593 and then From_Limited_With (Typ_2)
7594 and then Available_View (Typ_1) = Available_View (Typ_2)
7595 then
7596 return True;
7597
7598 elsif From_Limited_With (Typ_1) then
7599 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7600
7601 elsif From_Limited_With (Typ_2) then
7602 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7603
7604 else
7605 return False;
7606 end if;
7607 end Matches_Limited_With_View;
7608
7609 -- Local variables
7610
7611 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7612
7613 Type_1 : Entity_Id := T1;
7614 Type_2 : Entity_Id := T2;
7615
7616 -- Start of processing for Conforming_Types
7617
7618 begin
7619 -- The context is an instance association for a formal access-to-
7620 -- subprogram type; the formal parameter types require mapping because
7621 -- they may denote other formal parameters of the generic unit.
7622
7623 if Get_Inst then
7624 Type_1 := Get_Instance_Of (T1);
7625 Type_2 := Get_Instance_Of (T2);
7626 end if;
7627
7628 -- If one of the types is a view of the other introduced by a limited
7629 -- with clause, treat these as conforming for all purposes.
7630
7631 if Matches_Limited_With_View (T1, T2) then
7632 return True;
7633
7634 elsif Base_Types_Match (Type_1, Type_2) then
7635 if Ctype <= Mode_Conformant then
7636 return True;
7637
7638 else
7639 return
7640 Subtypes_Statically_Match (Type_1, Type_2)
7641 and then Dimensions_Match (Type_1, Type_2);
7642 end if;
7643
7644 elsif Is_Incomplete_Or_Private_Type (Type_1)
7645 and then Present (Full_View (Type_1))
7646 and then Base_Types_Match (Full_View (Type_1), Type_2)
7647 then
7648 return
7649 Ctype <= Mode_Conformant
7650 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7651
7652 elsif Ekind (Type_2) = E_Incomplete_Type
7653 and then Present (Full_View (Type_2))
7654 and then Base_Types_Match (Type_1, Full_View (Type_2))
7655 then
7656 return
7657 Ctype <= Mode_Conformant
7658 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7659
7660 elsif Is_Private_Type (Type_2)
7661 and then In_Instance
7662 and then Present (Full_View (Type_2))
7663 and then Base_Types_Match (Type_1, Full_View (Type_2))
7664 then
7665 return
7666 Ctype <= Mode_Conformant
7667 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7668
7669 -- Another confusion between views in a nested instance with an
7670 -- actual private type whose full view is not in scope.
7671
7672 elsif Ekind (Type_2) = E_Private_Subtype
7673 and then In_Instance
7674 and then Etype (Type_2) = Type_1
7675 then
7676 return True;
7677
7678 -- In Ada 2012, incomplete types (including limited views) can appear
7679 -- as actuals in instantiations, where they are conformant to the
7680 -- corresponding incomplete formal.
7681
7682 elsif Is_Incomplete_Type (Type_1)
7683 and then Is_Incomplete_Type (Type_2)
7684 and then In_Instance
7685 and then (Used_As_Generic_Actual (Type_1)
7686 or else Used_As_Generic_Actual (Type_2))
7687 then
7688 return True;
7689 end if;
7690
7691 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7692 -- treated recursively because they carry a signature. As far as
7693 -- conformance is concerned, convention plays no role, and either
7694 -- or both could be access to protected subprograms.
7695
7696 Are_Anonymous_Access_To_Subprogram_Types :=
7697 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7698 E_Anonymous_Access_Protected_Subprogram_Type)
7699 and then
7700 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7701 E_Anonymous_Access_Protected_Subprogram_Type);
7702
7703 -- Test anonymous access type case. For this case, static subtype
7704 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7705 -- the base types because we may have built internal subtype entities
7706 -- to handle null-excluding types (see Process_Formals).
7707
7708 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7709 and then
7710 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7711
7712 -- Ada 2005 (AI-254)
7713
7714 or else Are_Anonymous_Access_To_Subprogram_Types
7715 then
7716 declare
7717 Desig_1 : Entity_Id;
7718 Desig_2 : Entity_Id;
7719
7720 begin
7721 -- In Ada 2005, access constant indicators must match for
7722 -- subtype conformance.
7723
7724 if Ada_Version >= Ada_2005
7725 and then Ctype >= Subtype_Conformant
7726 and then
7727 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7728 then
7729 return False;
7730 end if;
7731
7732 Desig_1 := Find_Designated_Type (Type_1);
7733 Desig_2 := Find_Designated_Type (Type_2);
7734
7735 -- If the context is an instance association for a formal
7736 -- access-to-subprogram type; formal access parameter designated
7737 -- types require mapping because they may denote other formal
7738 -- parameters of the generic unit.
7739
7740 if Get_Inst then
7741 Desig_1 := Get_Instance_Of (Desig_1);
7742 Desig_2 := Get_Instance_Of (Desig_2);
7743 end if;
7744
7745 -- It is possible for a Class_Wide_Type to be introduced for an
7746 -- incomplete type, in which case there is a separate class_ wide
7747 -- type for the full view. The types conform if their Etypes
7748 -- conform, i.e. one may be the full view of the other. This can
7749 -- only happen in the context of an access parameter, other uses
7750 -- of an incomplete Class_Wide_Type are illegal.
7751
7752 if Is_Class_Wide_Type (Desig_1)
7753 and then
7754 Is_Class_Wide_Type (Desig_2)
7755 then
7756 return
7757 Conforming_Types
7758 (Etype (Base_Type (Desig_1)),
7759 Etype (Base_Type (Desig_2)), Ctype);
7760
7761 elsif Are_Anonymous_Access_To_Subprogram_Types then
7762 if Ada_Version < Ada_2005 then
7763 return
7764 Ctype = Type_Conformant
7765 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7766
7767 -- We must check the conformance of the signatures themselves
7768
7769 else
7770 declare
7771 Conformant : Boolean;
7772 begin
7773 Check_Conformance
7774 (Desig_1, Desig_2, Ctype, False, Conformant);
7775 return Conformant;
7776 end;
7777 end if;
7778
7779 -- A limited view of an actual matches the corresponding
7780 -- incomplete formal.
7781
7782 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7783 and then From_Limited_With (Desig_2)
7784 and then Used_As_Generic_Actual (Etype (Desig_2))
7785 then
7786 return True;
7787
7788 else
7789 return Base_Type (Desig_1) = Base_Type (Desig_2)
7790 and then (Ctype = Type_Conformant
7791 or else
7792 Subtypes_Statically_Match (Desig_1, Desig_2));
7793 end if;
7794 end;
7795
7796 -- Otherwise definitely no match
7797
7798 else
7799 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7800 and then Is_Access_Type (Type_2))
7801 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7802 and then Is_Access_Type (Type_1)))
7803 and then
7804 Conforming_Types
7805 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7806 then
7807 May_Hide_Profile := True;
7808 end if;
7809
7810 return False;
7811 end if;
7812 end Conforming_Types;
7813
7814 --------------------------
7815 -- Create_Extra_Formals --
7816 --------------------------
7817
7818 procedure Create_Extra_Formals (E : Entity_Id) is
7819 First_Extra : Entity_Id := Empty;
7820 Formal : Entity_Id;
7821 Last_Extra : Entity_Id := Empty;
7822
7823 function Add_Extra_Formal
7824 (Assoc_Entity : Entity_Id;
7825 Typ : Entity_Id;
7826 Scope : Entity_Id;
7827 Suffix : String) return Entity_Id;
7828 -- Add an extra formal to the current list of formals and extra formals.
7829 -- The extra formal is added to the end of the list of extra formals,
7830 -- and also returned as the result. These formals are always of mode IN.
7831 -- The new formal has the type Typ, is declared in Scope, and its name
7832 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7833 -- The following suffixes are currently used. They should not be changed
7834 -- without coordinating with CodePeer, which makes use of these to
7835 -- provide better messages.
7836
7837 -- O denotes the Constrained bit.
7838 -- L denotes the accessibility level.
7839 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7840 -- the full list in exp_ch6.BIP_Formal_Kind.
7841
7842 ----------------------
7843 -- Add_Extra_Formal --
7844 ----------------------
7845
7846 function Add_Extra_Formal
7847 (Assoc_Entity : Entity_Id;
7848 Typ : Entity_Id;
7849 Scope : Entity_Id;
7850 Suffix : String) return Entity_Id
7851 is
7852 EF : constant Entity_Id :=
7853 Make_Defining_Identifier (Sloc (Assoc_Entity),
7854 Chars => New_External_Name (Chars (Assoc_Entity),
7855 Suffix => Suffix));
7856
7857 begin
7858 -- A little optimization. Never generate an extra formal for the
7859 -- _init operand of an initialization procedure, since it could
7860 -- never be used.
7861
7862 if Chars (Formal) = Name_uInit then
7863 return Empty;
7864 end if;
7865
7866 Set_Ekind (EF, E_In_Parameter);
7867 Set_Actual_Subtype (EF, Typ);
7868 Set_Etype (EF, Typ);
7869 Set_Scope (EF, Scope);
7870 Set_Mechanism (EF, Default_Mechanism);
7871 Set_Formal_Validity (EF);
7872
7873 if No (First_Extra) then
7874 First_Extra := EF;
7875 Set_Extra_Formals (Scope, EF);
7876 end if;
7877
7878 if Present (Last_Extra) then
7879 Set_Extra_Formal (Last_Extra, EF);
7880 end if;
7881
7882 Last_Extra := EF;
7883
7884 return EF;
7885 end Add_Extra_Formal;
7886
7887 -- Local variables
7888
7889 Formal_Type : Entity_Id;
7890 P_Formal : Entity_Id := Empty;
7891
7892 -- Start of processing for Create_Extra_Formals
7893
7894 begin
7895 -- We never generate extra formals if expansion is not active because we
7896 -- don't need them unless we are generating code.
7897
7898 if not Expander_Active then
7899 return;
7900 end if;
7901
7902 -- No need to generate extra formals in interface thunks whose target
7903 -- primitive has no extra formals.
7904
7905 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7906 return;
7907 end if;
7908
7909 -- If this is a derived subprogram then the subtypes of the parent
7910 -- subprogram's formal parameters will be used to determine the need
7911 -- for extra formals.
7912
7913 if Is_Overloadable (E) and then Present (Alias (E)) then
7914 P_Formal := First_Formal (Alias (E));
7915 end if;
7916
7917 Formal := First_Formal (E);
7918 while Present (Formal) loop
7919 Last_Extra := Formal;
7920 Next_Formal (Formal);
7921 end loop;
7922
7923 -- If Extra_Formals were already created, don't do it again. This
7924 -- situation may arise for subprogram types created as part of
7925 -- dispatching calls (see Expand_Dispatching_Call).
7926
7927 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7928 return;
7929 end if;
7930
7931 -- If the subprogram is a predefined dispatching subprogram then don't
7932 -- generate any extra constrained or accessibility level formals. In
7933 -- general we suppress these for internal subprograms (by not calling
7934 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7935 -- generated stream attributes do get passed through because extra
7936 -- build-in-place formals are needed in some cases (limited 'Input).
7937
7938 if Is_Predefined_Internal_Operation (E) then
7939 goto Test_For_Func_Result_Extras;
7940 end if;
7941
7942 Formal := First_Formal (E);
7943 while Present (Formal) loop
7944
7945 -- Create extra formal for supporting the attribute 'Constrained.
7946 -- The case of a private type view without discriminants also
7947 -- requires the extra formal if the underlying type has defaulted
7948 -- discriminants.
7949
7950 if Ekind (Formal) /= E_In_Parameter then
7951 if Present (P_Formal) then
7952 Formal_Type := Etype (P_Formal);
7953 else
7954 Formal_Type := Etype (Formal);
7955 end if;
7956
7957 -- Do not produce extra formals for Unchecked_Union parameters.
7958 -- Jump directly to the end of the loop.
7959
7960 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7961 goto Skip_Extra_Formal_Generation;
7962 end if;
7963
7964 if not Has_Discriminants (Formal_Type)
7965 and then Ekind (Formal_Type) in Private_Kind
7966 and then Present (Underlying_Type (Formal_Type))
7967 then
7968 Formal_Type := Underlying_Type (Formal_Type);
7969 end if;
7970
7971 -- Suppress the extra formal if formal's subtype is constrained or
7972 -- indefinite, or we're compiling for Ada 2012 and the underlying
7973 -- type is tagged and limited. In Ada 2012, a limited tagged type
7974 -- can have defaulted discriminants, but 'Constrained is required
7975 -- to return True, so the formal is never needed (see AI05-0214).
7976 -- Note that this ensures consistency of calling sequences for
7977 -- dispatching operations when some types in a class have defaults
7978 -- on discriminants and others do not (and requiring the extra
7979 -- formal would introduce distributed overhead).
7980
7981 -- If the type does not have a completion yet, treat as prior to
7982 -- Ada 2012 for consistency.
7983
7984 if Has_Discriminants (Formal_Type)
7985 and then not Is_Constrained (Formal_Type)
7986 and then Is_Definite_Subtype (Formal_Type)
7987 and then (Ada_Version < Ada_2012
7988 or else No (Underlying_Type (Formal_Type))
7989 or else not
7990 (Is_Limited_Type (Formal_Type)
7991 and then
7992 (Is_Tagged_Type
7993 (Underlying_Type (Formal_Type)))))
7994 then
7995 Set_Extra_Constrained
7996 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
7997 end if;
7998 end if;
7999
8000 -- Create extra formal for supporting accessibility checking. This
8001 -- is done for both anonymous access formals and formals of named
8002 -- access types that are marked as controlling formals. The latter
8003 -- case can occur when Expand_Dispatching_Call creates a subprogram
8004 -- type and substitutes the types of access-to-class-wide actuals
8005 -- for the anonymous access-to-specific-type of controlling formals.
8006 -- Base_Type is applied because in cases where there is a null
8007 -- exclusion the formal may have an access subtype.
8008
8009 -- This is suppressed if we specifically suppress accessibility
8010 -- checks at the package level for either the subprogram, or the
8011 -- package in which it resides. However, we do not suppress it
8012 -- simply if the scope has accessibility checks suppressed, since
8013 -- this could cause trouble when clients are compiled with a
8014 -- different suppression setting. The explicit checks at the
8015 -- package level are safe from this point of view.
8016
8017 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8018 or else (Is_Controlling_Formal (Formal)
8019 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8020 and then not
8021 (Explicit_Suppress (E, Accessibility_Check)
8022 or else
8023 Explicit_Suppress (Scope (E), Accessibility_Check))
8024 and then
8025 (No (P_Formal)
8026 or else Present (Extra_Accessibility (P_Formal)))
8027 then
8028 Set_Extra_Accessibility
8029 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8030 end if;
8031
8032 -- This label is required when skipping extra formal generation for
8033 -- Unchecked_Union parameters.
8034
8035 <<Skip_Extra_Formal_Generation>>
8036
8037 if Present (P_Formal) then
8038 Next_Formal (P_Formal);
8039 end if;
8040
8041 Next_Formal (Formal);
8042 end loop;
8043
8044 <<Test_For_Func_Result_Extras>>
8045
8046 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8047 -- function call is ... determined by the point of call ...".
8048
8049 if Needs_Result_Accessibility_Level (E) then
8050 Set_Extra_Accessibility_Of_Result
8051 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8052 end if;
8053
8054 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8055 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8056
8057 if Is_Build_In_Place_Function (E) then
8058 declare
8059 Result_Subt : constant Entity_Id := Etype (E);
8060 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8061 Formal_Typ : Entity_Id;
8062 Subp_Decl : Node_Id;
8063 Discard : Entity_Id;
8064
8065 begin
8066 -- In the case of functions with unconstrained result subtypes,
8067 -- add a 4-state formal indicating whether the return object is
8068 -- allocated by the caller (1), or should be allocated by the
8069 -- callee on the secondary stack (2), in the global heap (3), or
8070 -- in a user-defined storage pool (4). For the moment we just use
8071 -- Natural for the type of this formal. Note that this formal
8072 -- isn't usually needed in the case where the result subtype is
8073 -- constrained, but it is needed when the function has a tagged
8074 -- result, because generally such functions can be called in a
8075 -- dispatching context and such calls must be handled like calls
8076 -- to a class-wide function.
8077
8078 if Needs_BIP_Alloc_Form (E) then
8079 Discard :=
8080 Add_Extra_Formal
8081 (E, Standard_Natural,
8082 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8083
8084 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8085 -- use a user-defined pool. This formal is not added on
8086 -- ZFP as those targets do not support pools.
8087
8088 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8089 Discard :=
8090 Add_Extra_Formal
8091 (E, RTE (RE_Root_Storage_Pool_Ptr),
8092 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8093 end if;
8094 end if;
8095
8096 -- In the case of functions whose result type needs finalization,
8097 -- add an extra formal which represents the finalization master.
8098
8099 if Needs_BIP_Finalization_Master (E) then
8100 Discard :=
8101 Add_Extra_Formal
8102 (E, RTE (RE_Finalization_Master_Ptr),
8103 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8104 end if;
8105
8106 -- When the result type contains tasks, add two extra formals: the
8107 -- master of the tasks to be created, and the caller's activation
8108 -- chain.
8109
8110 if Has_Task (Full_Subt) then
8111 Discard :=
8112 Add_Extra_Formal
8113 (E, RTE (RE_Master_Id),
8114 E, BIP_Formal_Suffix (BIP_Task_Master));
8115 Discard :=
8116 Add_Extra_Formal
8117 (E, RTE (RE_Activation_Chain_Access),
8118 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8119 end if;
8120
8121 -- All build-in-place functions get an extra formal that will be
8122 -- passed the address of the return object within the caller.
8123
8124 Formal_Typ :=
8125 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8126
8127 -- Incomplete_View_From_Limited_With is needed here because
8128 -- gigi gets confused if the designated type is the full view
8129 -- coming from a limited-with'ed package. In the normal case,
8130 -- (no limited with) Incomplete_View_From_Limited_With
8131 -- returns Result_Subt.
8132
8133 Set_Directly_Designated_Type
8134 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8135 Set_Etype (Formal_Typ, Formal_Typ);
8136 Set_Depends_On_Private
8137 (Formal_Typ, Has_Private_Component (Formal_Typ));
8138 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8139 Set_Is_Access_Constant (Formal_Typ, False);
8140
8141 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8142 -- the designated type comes from the limited view (for back-end
8143 -- purposes).
8144
8145 Set_From_Limited_With
8146 (Formal_Typ, From_Limited_With (Result_Subt));
8147
8148 Layout_Type (Formal_Typ);
8149
8150 -- Force the definition of the Itype in case of internal function
8151 -- calls within the same or nested scope.
8152
8153 if Is_Subprogram_Or_Generic_Subprogram (E) then
8154 Subp_Decl := Parent (E);
8155
8156 -- The insertion point for an Itype reference should be after
8157 -- the unit declaration node of the subprogram. An exception
8158 -- to this are inherited operations from a parent type in which
8159 -- case the derived type acts as their parent.
8160
8161 if Nkind_In (Subp_Decl, N_Function_Specification,
8162 N_Procedure_Specification)
8163 then
8164 Subp_Decl := Parent (Subp_Decl);
8165 end if;
8166
8167 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8168 end if;
8169
8170 Discard :=
8171 Add_Extra_Formal
8172 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8173 end;
8174 end if;
8175
8176 -- If this is an instance of a generic, we need to have extra formals
8177 -- for the Alias.
8178
8179 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8180 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8181 end if;
8182 end Create_Extra_Formals;
8183
8184 -----------------------------
8185 -- Enter_Overloaded_Entity --
8186 -----------------------------
8187
8188 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8189 function Matches_Predefined_Op return Boolean;
8190 -- This returns an approximation of whether S matches a predefined
8191 -- operator, based on the operator symbol, and the parameter and result
8192 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8193
8194 ---------------------------
8195 -- Matches_Predefined_Op --
8196 ---------------------------
8197
8198 function Matches_Predefined_Op return Boolean is
8199 Formal_1 : constant Entity_Id := First_Formal (S);
8200 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8201 Op : constant Name_Id := Chars (S);
8202 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8203 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8204
8205 begin
8206 -- Binary operator
8207
8208 if Present (Formal_2) then
8209 declare
8210 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8211
8212 begin
8213 -- All but "&" and "**" have same-types parameters
8214
8215 case Op is
8216 when Name_Op_Concat
8217 | Name_Op_Expon
8218 =>
8219 null;
8220
8221 when others =>
8222 if Type_1 /= Type_2 then
8223 return False;
8224 end if;
8225 end case;
8226
8227 -- Check parameter and result types
8228
8229 case Op is
8230 when Name_Op_And
8231 | Name_Op_Or
8232 | Name_Op_Xor
8233 =>
8234 return
8235 Is_Boolean_Type (Result_Type)
8236 and then Result_Type = Type_1;
8237
8238 when Name_Op_Mod
8239 | Name_Op_Rem
8240 =>
8241 return
8242 Is_Integer_Type (Result_Type)
8243 and then Result_Type = Type_1;
8244
8245 when Name_Op_Add
8246 | Name_Op_Divide
8247 | Name_Op_Multiply
8248 | Name_Op_Subtract
8249 =>
8250 return
8251 Is_Numeric_Type (Result_Type)
8252 and then Result_Type = Type_1;
8253
8254 when Name_Op_Eq
8255 | Name_Op_Ne
8256 =>
8257 return
8258 Is_Boolean_Type (Result_Type)
8259 and then not Is_Limited_Type (Type_1);
8260
8261 when Name_Op_Ge
8262 | Name_Op_Gt
8263 | Name_Op_Le
8264 | Name_Op_Lt
8265 =>
8266 return
8267 Is_Boolean_Type (Result_Type)
8268 and then (Is_Array_Type (Type_1)
8269 or else Is_Scalar_Type (Type_1));
8270
8271 when Name_Op_Concat =>
8272 return Is_Array_Type (Result_Type);
8273
8274 when Name_Op_Expon =>
8275 return
8276 (Is_Integer_Type (Result_Type)
8277 or else Is_Floating_Point_Type (Result_Type))
8278 and then Result_Type = Type_1
8279 and then Type_2 = Standard_Integer;
8280
8281 when others =>
8282 raise Program_Error;
8283 end case;
8284 end;
8285
8286 -- Unary operator
8287
8288 else
8289 case Op is
8290 when Name_Op_Abs
8291 | Name_Op_Add
8292 | Name_Op_Subtract
8293 =>
8294 return
8295 Is_Numeric_Type (Result_Type)
8296 and then Result_Type = Type_1;
8297
8298 when Name_Op_Not =>
8299 return
8300 Is_Boolean_Type (Result_Type)
8301 and then Result_Type = Type_1;
8302
8303 when others =>
8304 raise Program_Error;
8305 end case;
8306 end if;
8307 end Matches_Predefined_Op;
8308
8309 -- Local variables
8310
8311 E : Entity_Id := Current_Entity_In_Scope (S);
8312 C_E : Entity_Id := Current_Entity (S);
8313
8314 -- Start of processing for Enter_Overloaded_Entity
8315
8316 begin
8317 if Present (E) then
8318 Set_Has_Homonym (E);
8319 Set_Has_Homonym (S);
8320 end if;
8321
8322 Set_Is_Immediately_Visible (S);
8323 Set_Scope (S, Current_Scope);
8324
8325 -- Chain new entity if front of homonym in current scope, so that
8326 -- homonyms are contiguous.
8327
8328 if Present (E) and then E /= C_E then
8329 while Homonym (C_E) /= E loop
8330 C_E := Homonym (C_E);
8331 end loop;
8332
8333 Set_Homonym (C_E, S);
8334
8335 else
8336 E := C_E;
8337 Set_Current_Entity (S);
8338 end if;
8339
8340 Set_Homonym (S, E);
8341
8342 if Is_Inherited_Operation (S) then
8343 Append_Inherited_Subprogram (S);
8344 else
8345 Append_Entity (S, Current_Scope);
8346 end if;
8347
8348 Set_Public_Status (S);
8349
8350 if Debug_Flag_E then
8351 Write_Str ("New overloaded entity chain: ");
8352 Write_Name (Chars (S));
8353
8354 E := S;
8355 while Present (E) loop
8356 Write_Str (" "); Write_Int (Int (E));
8357 E := Homonym (E);
8358 end loop;
8359
8360 Write_Eol;
8361 end if;
8362
8363 -- Generate warning for hiding
8364
8365 if Warn_On_Hiding
8366 and then Comes_From_Source (S)
8367 and then In_Extended_Main_Source_Unit (S)
8368 then
8369 E := S;
8370 loop
8371 E := Homonym (E);
8372 exit when No (E);
8373
8374 -- Warn unless genuine overloading. Do not emit warning on
8375 -- hiding predefined operators in Standard (these are either an
8376 -- (artifact of our implicit declarations, or simple noise) but
8377 -- keep warning on a operator defined on a local subtype, because
8378 -- of the real danger that different operators may be applied in
8379 -- various parts of the program.
8380
8381 -- Note that if E and S have the same scope, there is never any
8382 -- hiding. Either the two conflict, and the program is illegal,
8383 -- or S is overriding an implicit inherited subprogram.
8384
8385 if Scope (E) /= Scope (S)
8386 and then (not Is_Overloadable (E)
8387 or else Subtype_Conformant (E, S))
8388 and then (Is_Immediately_Visible (E)
8389 or else Is_Potentially_Use_Visible (S))
8390 then
8391 if Scope (E) = Standard_Standard then
8392 if Nkind (S) = N_Defining_Operator_Symbol
8393 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8394 Scope (S)
8395 and then Matches_Predefined_Op
8396 then
8397 Error_Msg_N
8398 ("declaration of & hides predefined operator?h?", S);
8399 end if;
8400
8401 -- E not immediately within Standard
8402
8403 else
8404 Error_Msg_Sloc := Sloc (E);
8405 Error_Msg_N ("declaration of & hides one #?h?", S);
8406 end if;
8407 end if;
8408 end loop;
8409 end if;
8410 end Enter_Overloaded_Entity;
8411
8412 -----------------------------
8413 -- Check_Untagged_Equality --
8414 -----------------------------
8415
8416 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8417 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8418 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8419 Obj_Decl : Node_Id;
8420
8421 begin
8422 -- This check applies only if we have a subprogram declaration with an
8423 -- untagged record type.
8424
8425 if Nkind (Decl) /= N_Subprogram_Declaration
8426 or else not Is_Record_Type (Typ)
8427 or else Is_Tagged_Type (Typ)
8428 then
8429 return;
8430 end if;
8431
8432 -- In Ada 2012 case, we will output errors or warnings depending on
8433 -- the setting of debug flag -gnatd.E.
8434
8435 if Ada_Version >= Ada_2012 then
8436 Error_Msg_Warn := Debug_Flag_Dot_EE;
8437
8438 -- In earlier versions of Ada, nothing to do unless we are warning on
8439 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8440
8441 else
8442 if not Warn_On_Ada_2012_Compatibility then
8443 return;
8444 end if;
8445 end if;
8446
8447 -- Cases where the type has already been frozen
8448
8449 if Is_Frozen (Typ) then
8450
8451 -- The check applies to a primitive operation, so check that type
8452 -- and equality operation are in the same scope.
8453
8454 if Scope (Typ) /= Current_Scope then
8455 return;
8456
8457 -- If the type is a generic actual (sub)type, the operation is not
8458 -- primitive either because the base type is declared elsewhere.
8459
8460 elsif Is_Generic_Actual_Type (Typ) then
8461 return;
8462
8463 -- Here we have a definite error of declaration after freezing
8464
8465 else
8466 if Ada_Version >= Ada_2012 then
8467 Error_Msg_NE
8468 ("equality operator must be declared before type & is "
8469 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8470
8471 -- In Ada 2012 mode with error turned to warning, output one
8472 -- more warning to warn that the equality operation may not
8473 -- compose. This is the consequence of ignoring the error.
8474
8475 if Error_Msg_Warn then
8476 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8477 end if;
8478
8479 else
8480 Error_Msg_NE
8481 ("equality operator must be declared before type& is "
8482 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8483 end if;
8484
8485 -- If we are in the package body, we could just move the
8486 -- declaration to the package spec, so add a message saying that.
8487
8488 if In_Package_Body (Scope (Typ)) then
8489 if Ada_Version >= Ada_2012 then
8490 Error_Msg_N
8491 ("\move declaration to package spec<<", Eq_Op);
8492 else
8493 Error_Msg_N
8494 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8495 end if;
8496
8497 -- Otherwise try to find the freezing point for better message.
8498
8499 else
8500 Obj_Decl := Next (Parent (Typ));
8501 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8502 if Nkind (Obj_Decl) = N_Object_Declaration
8503 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8504 then
8505 -- Freezing point, output warnings
8506
8507 if Ada_Version >= Ada_2012 then
8508 Error_Msg_NE
8509 ("type& is frozen by declaration??", Obj_Decl, Typ);
8510 Error_Msg_N
8511 ("\an equality operator cannot be declared after "
8512 & "this point??",
8513 Obj_Decl);
8514 else
8515 Error_Msg_NE
8516 ("type& is frozen by declaration (Ada 2012)?y?",
8517 Obj_Decl, Typ);
8518 Error_Msg_N
8519 ("\an equality operator cannot be declared after "
8520 & "this point (Ada 2012)?y?",
8521 Obj_Decl);
8522 end if;
8523
8524 exit;
8525
8526 -- If we reach generated code for subprogram declaration
8527 -- or body, it is the body that froze the type and the
8528 -- declaration is legal.
8529
8530 elsif Sloc (Obj_Decl) = Sloc (Decl) then
8531 return;
8532 end if;
8533
8534 Next (Obj_Decl);
8535 end loop;
8536 end if;
8537 end if;
8538
8539 -- Here if type is not frozen yet. It is illegal to have a primitive
8540 -- equality declared in the private part if the type is visible.
8541
8542 elsif not In_Same_List (Parent (Typ), Decl)
8543 and then not Is_Limited_Type (Typ)
8544 then
8545 -- Shouldn't we give an RM reference here???
8546
8547 if Ada_Version >= Ada_2012 then
8548 Error_Msg_N
8549 ("equality operator appears too late<<", Eq_Op);
8550 else
8551 Error_Msg_N
8552 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8553 end if;
8554
8555 -- No error detected
8556
8557 else
8558 return;
8559 end if;
8560 end Check_Untagged_Equality;
8561
8562 -----------------------------
8563 -- Find_Corresponding_Spec --
8564 -----------------------------
8565
8566 function Find_Corresponding_Spec
8567 (N : Node_Id;
8568 Post_Error : Boolean := True) return Entity_Id
8569 is
8570 Spec : constant Node_Id := Specification (N);
8571 Designator : constant Entity_Id := Defining_Entity (Spec);
8572
8573 E : Entity_Id;
8574
8575 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8576 -- Even if fully conformant, a body may depend on a generic actual when
8577 -- the spec does not, or vice versa, in which case they were distinct
8578 -- entities in the generic.
8579
8580 -------------------------------
8581 -- Different_Generic_Profile --
8582 -------------------------------
8583
8584 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8585 F1, F2 : Entity_Id;
8586
8587 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8588 -- Check that the types of corresponding formals have the same
8589 -- generic actual if any. We have to account for subtypes of a
8590 -- generic formal, declared between a spec and a body, which may
8591 -- appear distinct in an instance but matched in the generic, and
8592 -- the subtype may be used either in the spec or the body of the
8593 -- subprogram being checked.
8594
8595 -------------------------
8596 -- Same_Generic_Actual --
8597 -------------------------
8598
8599 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8600
8601 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8602 -- Predicate to check whether S1 is a subtype of S2 in the source
8603 -- of the instance.
8604
8605 -------------------------
8606 -- Is_Declared_Subtype --
8607 -------------------------
8608
8609 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8610 begin
8611 return Comes_From_Source (Parent (S1))
8612 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8613 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8614 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8615 end Is_Declared_Subtype;
8616
8617 -- Start of processing for Same_Generic_Actual
8618
8619 begin
8620 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8621 or else Is_Declared_Subtype (T1, T2)
8622 or else Is_Declared_Subtype (T2, T1);
8623 end Same_Generic_Actual;
8624
8625 -- Start of processing for Different_Generic_Profile
8626
8627 begin
8628 if not In_Instance then
8629 return False;
8630
8631 elsif Ekind (E) = E_Function
8632 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8633 then
8634 return True;
8635 end if;
8636
8637 F1 := First_Formal (Designator);
8638 F2 := First_Formal (E);
8639 while Present (F1) loop
8640 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8641 return True;
8642 end if;
8643
8644 Next_Formal (F1);
8645 Next_Formal (F2);
8646 end loop;
8647
8648 return False;
8649 end Different_Generic_Profile;
8650
8651 -- Start of processing for Find_Corresponding_Spec
8652
8653 begin
8654 E := Current_Entity (Designator);
8655 while Present (E) loop
8656
8657 -- We are looking for a matching spec. It must have the same scope,
8658 -- and the same name, and either be type conformant, or be the case
8659 -- of a library procedure spec and its body (which belong to one
8660 -- another regardless of whether they are type conformant or not).
8661
8662 if Scope (E) = Current_Scope then
8663 if Current_Scope = Standard_Standard
8664 or else (Ekind (E) = Ekind (Designator)
8665 and then Type_Conformant (E, Designator))
8666 then
8667 -- Within an instantiation, we know that spec and body are
8668 -- subtype conformant, because they were subtype conformant in
8669 -- the generic. We choose the subtype-conformant entity here as
8670 -- well, to resolve spurious ambiguities in the instance that
8671 -- were not present in the generic (i.e. when two different
8672 -- types are given the same actual). If we are looking for a
8673 -- spec to match a body, full conformance is expected.
8674
8675 if In_Instance then
8676
8677 -- Inherit the convention and "ghostness" of the matching
8678 -- spec to ensure proper full and subtype conformance.
8679
8680 Set_Convention (Designator, Convention (E));
8681
8682 -- Skip past subprogram bodies and subprogram renamings that
8683 -- may appear to have a matching spec, but that aren't fully
8684 -- conformant with it. That can occur in cases where an
8685 -- actual type causes unrelated homographs in the instance.
8686
8687 if Nkind_In (N, N_Subprogram_Body,
8688 N_Subprogram_Renaming_Declaration)
8689 and then Present (Homonym (E))
8690 and then not Fully_Conformant (Designator, E)
8691 then
8692 goto Next_Entity;
8693
8694 elsif not Subtype_Conformant (Designator, E) then
8695 goto Next_Entity;
8696
8697 elsif Different_Generic_Profile (E) then
8698 goto Next_Entity;
8699 end if;
8700 end if;
8701
8702 -- Ada 2012 (AI05-0165): For internally generated bodies of
8703 -- null procedures locate the internally generated spec. We
8704 -- enforce mode conformance since a tagged type may inherit
8705 -- from interfaces several null primitives which differ only
8706 -- in the mode of the formals.
8707
8708 if not (Comes_From_Source (E))
8709 and then Is_Null_Procedure (E)
8710 and then not Mode_Conformant (Designator, E)
8711 then
8712 null;
8713
8714 -- For null procedures coming from source that are completions,
8715 -- analysis of the generated body will establish the link.
8716
8717 elsif Comes_From_Source (E)
8718 and then Nkind (Spec) = N_Procedure_Specification
8719 and then Null_Present (Spec)
8720 then
8721 return E;
8722
8723 -- Expression functions can be completions, but cannot be
8724 -- completed by an explicit body.
8725
8726 elsif Comes_From_Source (E)
8727 and then Comes_From_Source (N)
8728 and then Nkind (N) = N_Subprogram_Body
8729 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8730 N_Expression_Function
8731 then
8732 Error_Msg_Sloc := Sloc (E);
8733 Error_Msg_N ("body conflicts with expression function#", N);
8734 return Empty;
8735
8736 elsif not Has_Completion (E) then
8737 if Nkind (N) /= N_Subprogram_Body_Stub then
8738 Set_Corresponding_Spec (N, E);
8739 end if;
8740
8741 Set_Has_Completion (E);
8742 return E;
8743
8744 elsif Nkind (Parent (N)) = N_Subunit then
8745
8746 -- If this is the proper body of a subunit, the completion
8747 -- flag is set when analyzing the stub.
8748
8749 return E;
8750
8751 -- If E is an internal function with a controlling result that
8752 -- was created for an operation inherited by a null extension,
8753 -- it may be overridden by a body without a previous spec (one
8754 -- more reason why these should be shunned). In that case we
8755 -- remove the generated body if present, because the current
8756 -- one is the explicit overriding.
8757
8758 elsif Ekind (E) = E_Function
8759 and then Ada_Version >= Ada_2005
8760 and then not Comes_From_Source (E)
8761 and then Has_Controlling_Result (E)
8762 and then Is_Null_Extension (Etype (E))
8763 and then Comes_From_Source (Spec)
8764 then
8765 Set_Has_Completion (E, False);
8766
8767 if Expander_Active
8768 and then Nkind (Parent (E)) = N_Function_Specification
8769 then
8770 Remove
8771 (Unit_Declaration_Node
8772 (Corresponding_Body (Unit_Declaration_Node (E))));
8773
8774 return E;
8775
8776 -- If expansion is disabled, or if the wrapper function has
8777 -- not been generated yet, this a late body overriding an
8778 -- inherited operation, or it is an overriding by some other
8779 -- declaration before the controlling result is frozen. In
8780 -- either case this is a declaration of a new entity.
8781
8782 else
8783 return Empty;
8784 end if;
8785
8786 -- If the body already exists, then this is an error unless
8787 -- the previous declaration is the implicit declaration of a
8788 -- derived subprogram. It is also legal for an instance to
8789 -- contain type conformant overloadable declarations (but the
8790 -- generic declaration may not), per 8.3(26/2).
8791
8792 elsif No (Alias (E))
8793 and then not Is_Intrinsic_Subprogram (E)
8794 and then not In_Instance
8795 and then Post_Error
8796 then
8797 Error_Msg_Sloc := Sloc (E);
8798
8799 if Is_Imported (E) then
8800 Error_Msg_NE
8801 ("body not allowed for imported subprogram & declared#",
8802 N, E);
8803 else
8804 Error_Msg_NE ("duplicate body for & declared#", N, E);
8805 end if;
8806 end if;
8807
8808 -- Child units cannot be overloaded, so a conformance mismatch
8809 -- between body and a previous spec is an error.
8810
8811 elsif Is_Child_Unit (E)
8812 and then
8813 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8814 and then
8815 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8816 N_Compilation_Unit
8817 and then Post_Error
8818 then
8819 Error_Msg_N
8820 ("body of child unit does not match previous declaration", N);
8821 end if;
8822 end if;
8823
8824 <<Next_Entity>>
8825 E := Homonym (E);
8826 end loop;
8827
8828 -- On exit, we know that no previous declaration of subprogram exists
8829
8830 return Empty;
8831 end Find_Corresponding_Spec;
8832
8833 ----------------------
8834 -- Fully_Conformant --
8835 ----------------------
8836
8837 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8838 Result : Boolean;
8839 begin
8840 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8841 return Result;
8842 end Fully_Conformant;
8843
8844 ----------------------------------
8845 -- Fully_Conformant_Expressions --
8846 ----------------------------------
8847
8848 function Fully_Conformant_Expressions
8849 (Given_E1 : Node_Id;
8850 Given_E2 : Node_Id;
8851 Report : Boolean := False) return Boolean
8852 is
8853 E1 : constant Node_Id := Original_Node (Given_E1);
8854 E2 : constant Node_Id := Original_Node (Given_E2);
8855 -- We always test conformance on original nodes, since it is possible
8856 -- for analysis and/or expansion to make things look as though they
8857 -- conform when they do not, e.g. by converting 1+2 into 3.
8858
8859 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean;
8860 -- ???
8861
8862 function FCL (L1 : List_Id; L2 : List_Id) return Boolean;
8863 -- Compare elements of two lists for conformance. Elements have to be
8864 -- conformant, and actuals inserted as default parameters do not match
8865 -- explicit actuals with the same value.
8866
8867 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean;
8868 -- Compare an operator node with a function call
8869
8870 ---------
8871 -- FCE --
8872 ---------
8873
8874 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean is
8875 begin
8876 return Fully_Conformant_Expressions (Given_E1, Given_E2, Report);
8877 end FCE;
8878
8879 ---------
8880 -- FCL --
8881 ---------
8882
8883 function FCL (L1 : List_Id; L2 : List_Id) return Boolean is
8884 N1 : Node_Id;
8885 N2 : Node_Id;
8886
8887 begin
8888 if L1 = No_List then
8889 N1 := Empty;
8890 else
8891 N1 := First (L1);
8892 end if;
8893
8894 if L2 = No_List then
8895 N2 := Empty;
8896 else
8897 N2 := First (L2);
8898 end if;
8899
8900 -- Compare two lists, skipping rewrite insertions (we want to compare
8901 -- the original trees, not the expanded versions).
8902
8903 loop
8904 if Is_Rewrite_Insertion (N1) then
8905 Next (N1);
8906 elsif Is_Rewrite_Insertion (N2) then
8907 Next (N2);
8908 elsif No (N1) then
8909 return No (N2);
8910 elsif No (N2) then
8911 return False;
8912 elsif not FCE (N1, N2) then
8913 return False;
8914 else
8915 Next (N1);
8916 Next (N2);
8917 end if;
8918 end loop;
8919 end FCL;
8920
8921 ---------
8922 -- FCO --
8923 ---------
8924
8925 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean is
8926 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8927 Act : Node_Id;
8928
8929 begin
8930 if No (Actuals)
8931 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8932 then
8933 return False;
8934
8935 else
8936 Act := First (Actuals);
8937
8938 if Nkind (Op_Node) in N_Binary_Op then
8939 if not FCE (Left_Opnd (Op_Node), Act) then
8940 return False;
8941 end if;
8942
8943 Next (Act);
8944 end if;
8945
8946 return Present (Act)
8947 and then FCE (Right_Opnd (Op_Node), Act)
8948 and then No (Next (Act));
8949 end if;
8950 end FCO;
8951
8952 -- Local variables
8953
8954 Result : Boolean;
8955
8956 -- Start of processing for Fully_Conformant_Expressions
8957
8958 begin
8959 Result := True;
8960
8961 -- Nonconformant if paren count does not match. Note: if some idiot
8962 -- complains that we don't do this right for more than 3 levels of
8963 -- parentheses, they will be treated with the respect they deserve.
8964
8965 if Paren_Count (E1) /= Paren_Count (E2) then
8966 return False;
8967
8968 -- If same entities are referenced, then they are conformant even if
8969 -- they have different forms (RM 8.3.1(19-20)).
8970
8971 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8972 if Present (Entity (E1)) then
8973 Result := Entity (E1) = Entity (E2)
8974
8975 -- One may be a discriminant that has been replaced by the
8976 -- corresponding discriminal.
8977
8978 or else
8979 (Chars (Entity (E1)) = Chars (Entity (E2))
8980 and then Ekind (Entity (E1)) = E_Discriminant
8981 and then Ekind (Entity (E2)) = E_In_Parameter)
8982
8983 -- The discriminant of a protected type is transformed into
8984 -- a local constant and then into a parameter of a protected
8985 -- operation.
8986
8987 or else
8988 (Ekind (Entity (E1)) = E_Constant
8989 and then Ekind (Entity (E2)) = E_In_Parameter
8990 and then Present (Discriminal_Link (Entity (E1)))
8991 and then Discriminal_Link (Entity (E1)) =
8992 Discriminal_Link (Entity (E2)))
8993
8994 -- AI12-050: The loop variables of quantified expressions match
8995 -- if they have the same identifier, even though they may have
8996 -- different entities.
8997
8998 or else
8999 (Chars (Entity (E1)) = Chars (Entity (E2))
9000 and then Ekind (Entity (E1)) = E_Loop_Parameter
9001 and then Ekind (Entity (E2)) = E_Loop_Parameter)
9002
9003 -- A call to an instantiation of Unchecked_Conversion is
9004 -- rewritten with the name of the generated function created for
9005 -- the instance, and this must be special-cased.
9006
9007 or else
9008 (Ekind (Entity (E1)) = E_Function
9009 and then Is_Intrinsic_Subprogram (Entity (E1))
9010 and then Is_Generic_Instance (Entity (E1))
9011 and then Entity (E2) = Alias (Entity (E1)));
9012 if Report and not Result then
9013 Error_Msg_Sloc :=
9014 Text_Ptr'Max (Sloc (Entity (E1)), Sloc (Entity (E2)));
9015 Error_Msg_NE
9016 ("Meaning of& differs because of declaration#", E1, E2);
9017 end if;
9018
9019 return Result;
9020
9021 elsif Nkind (E1) = N_Expanded_Name
9022 and then Nkind (E2) = N_Expanded_Name
9023 and then Nkind (Selector_Name (E1)) = N_Character_Literal
9024 and then Nkind (Selector_Name (E2)) = N_Character_Literal
9025 then
9026 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9027
9028 else
9029 -- Identifiers in component associations don't always have
9030 -- entities, but their names must conform.
9031
9032 return Nkind (E1) = N_Identifier
9033 and then Nkind (E2) = N_Identifier
9034 and then Chars (E1) = Chars (E2);
9035 end if;
9036
9037 elsif Nkind (E1) = N_Character_Literal
9038 and then Nkind (E2) = N_Expanded_Name
9039 then
9040 return Nkind (Selector_Name (E2)) = N_Character_Literal
9041 and then Chars (E1) = Chars (Selector_Name (E2));
9042
9043 elsif Nkind (E2) = N_Character_Literal
9044 and then Nkind (E1) = N_Expanded_Name
9045 then
9046 return Nkind (Selector_Name (E1)) = N_Character_Literal
9047 and then Chars (E2) = Chars (Selector_Name (E1));
9048
9049 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9050 return FCO (E1, E2);
9051
9052 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9053 return FCO (E2, E1);
9054
9055 -- Otherwise we must have the same syntactic entity
9056
9057 elsif Nkind (E1) /= Nkind (E2) then
9058 return False;
9059
9060 -- At this point, we specialize by node type
9061
9062 else
9063 case Nkind (E1) is
9064 when N_Aggregate =>
9065 return
9066 FCL (Expressions (E1), Expressions (E2))
9067 and then
9068 FCL (Component_Associations (E1),
9069 Component_Associations (E2));
9070
9071 when N_Allocator =>
9072 if Nkind (Expression (E1)) = N_Qualified_Expression
9073 or else
9074 Nkind (Expression (E2)) = N_Qualified_Expression
9075 then
9076 return FCE (Expression (E1), Expression (E2));
9077
9078 -- Check that the subtype marks and any constraints
9079 -- are conformant
9080
9081 else
9082 declare
9083 Indic1 : constant Node_Id := Expression (E1);
9084 Indic2 : constant Node_Id := Expression (E2);
9085 Elt1 : Node_Id;
9086 Elt2 : Node_Id;
9087
9088 begin
9089 if Nkind (Indic1) /= N_Subtype_Indication then
9090 return
9091 Nkind (Indic2) /= N_Subtype_Indication
9092 and then Entity (Indic1) = Entity (Indic2);
9093
9094 elsif Nkind (Indic2) /= N_Subtype_Indication then
9095 return
9096 Nkind (Indic1) /= N_Subtype_Indication
9097 and then Entity (Indic1) = Entity (Indic2);
9098
9099 else
9100 if Entity (Subtype_Mark (Indic1)) /=
9101 Entity (Subtype_Mark (Indic2))
9102 then
9103 return False;
9104 end if;
9105
9106 Elt1 := First (Constraints (Constraint (Indic1)));
9107 Elt2 := First (Constraints (Constraint (Indic2)));
9108 while Present (Elt1) and then Present (Elt2) loop
9109 if not FCE (Elt1, Elt2) then
9110 return False;
9111 end if;
9112
9113 Next (Elt1);
9114 Next (Elt2);
9115 end loop;
9116
9117 return True;
9118 end if;
9119 end;
9120 end if;
9121
9122 when N_Attribute_Reference =>
9123 return
9124 Attribute_Name (E1) = Attribute_Name (E2)
9125 and then FCL (Expressions (E1), Expressions (E2));
9126
9127 when N_Binary_Op =>
9128 return
9129 Entity (E1) = Entity (E2)
9130 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9131 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9132
9133 when N_Membership_Test
9134 | N_Short_Circuit
9135 =>
9136 return
9137 FCE (Left_Opnd (E1), Left_Opnd (E2))
9138 and then
9139 FCE (Right_Opnd (E1), Right_Opnd (E2));
9140
9141 when N_Case_Expression =>
9142 declare
9143 Alt1 : Node_Id;
9144 Alt2 : Node_Id;
9145
9146 begin
9147 if not FCE (Expression (E1), Expression (E2)) then
9148 return False;
9149
9150 else
9151 Alt1 := First (Alternatives (E1));
9152 Alt2 := First (Alternatives (E2));
9153 loop
9154 if Present (Alt1) /= Present (Alt2) then
9155 return False;
9156 elsif No (Alt1) then
9157 return True;
9158 end if;
9159
9160 if not FCE (Expression (Alt1), Expression (Alt2))
9161 or else not FCL (Discrete_Choices (Alt1),
9162 Discrete_Choices (Alt2))
9163 then
9164 return False;
9165 end if;
9166
9167 Next (Alt1);
9168 Next (Alt2);
9169 end loop;
9170 end if;
9171 end;
9172
9173 when N_Character_Literal =>
9174 return
9175 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9176
9177 when N_Component_Association =>
9178 return
9179 FCL (Choices (E1), Choices (E2))
9180 and then
9181 FCE (Expression (E1), Expression (E2));
9182
9183 when N_Explicit_Dereference =>
9184 return
9185 FCE (Prefix (E1), Prefix (E2));
9186
9187 when N_Extension_Aggregate =>
9188 return
9189 FCL (Expressions (E1), Expressions (E2))
9190 and then Null_Record_Present (E1) =
9191 Null_Record_Present (E2)
9192 and then FCL (Component_Associations (E1),
9193 Component_Associations (E2));
9194
9195 when N_Function_Call =>
9196 return
9197 FCE (Name (E1), Name (E2))
9198 and then
9199 FCL (Parameter_Associations (E1),
9200 Parameter_Associations (E2));
9201
9202 when N_If_Expression =>
9203 return
9204 FCL (Expressions (E1), Expressions (E2));
9205
9206 when N_Indexed_Component =>
9207 return
9208 FCE (Prefix (E1), Prefix (E2))
9209 and then
9210 FCL (Expressions (E1), Expressions (E2));
9211
9212 when N_Integer_Literal =>
9213 return (Intval (E1) = Intval (E2));
9214
9215 when N_Null =>
9216 return True;
9217
9218 when N_Operator_Symbol =>
9219 return
9220 Chars (E1) = Chars (E2);
9221
9222 when N_Others_Choice =>
9223 return True;
9224
9225 when N_Parameter_Association =>
9226 return
9227 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9228 and then FCE (Explicit_Actual_Parameter (E1),
9229 Explicit_Actual_Parameter (E2));
9230
9231 when N_Qualified_Expression
9232 | N_Type_Conversion
9233 | N_Unchecked_Type_Conversion
9234 =>
9235 return
9236 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9237 and then
9238 FCE (Expression (E1), Expression (E2));
9239
9240 when N_Quantified_Expression =>
9241 if not FCE (Condition (E1), Condition (E2)) then
9242 return False;
9243 end if;
9244
9245 if Present (Loop_Parameter_Specification (E1))
9246 and then Present (Loop_Parameter_Specification (E2))
9247 then
9248 declare
9249 L1 : constant Node_Id :=
9250 Loop_Parameter_Specification (E1);
9251 L2 : constant Node_Id :=
9252 Loop_Parameter_Specification (E2);
9253
9254 begin
9255 return
9256 Reverse_Present (L1) = Reverse_Present (L2)
9257 and then
9258 FCE (Defining_Identifier (L1),
9259 Defining_Identifier (L2))
9260 and then
9261 FCE (Discrete_Subtype_Definition (L1),
9262 Discrete_Subtype_Definition (L2));
9263 end;
9264
9265 elsif Present (Iterator_Specification (E1))
9266 and then Present (Iterator_Specification (E2))
9267 then
9268 declare
9269 I1 : constant Node_Id := Iterator_Specification (E1);
9270 I2 : constant Node_Id := Iterator_Specification (E2);
9271
9272 begin
9273 return
9274 FCE (Defining_Identifier (I1),
9275 Defining_Identifier (I2))
9276 and then
9277 Of_Present (I1) = Of_Present (I2)
9278 and then
9279 Reverse_Present (I1) = Reverse_Present (I2)
9280 and then FCE (Name (I1), Name (I2))
9281 and then FCE (Subtype_Indication (I1),
9282 Subtype_Indication (I2));
9283 end;
9284
9285 -- The quantified expressions used different specifications to
9286 -- walk their respective ranges.
9287
9288 else
9289 return False;
9290 end if;
9291
9292 when N_Range =>
9293 return
9294 FCE (Low_Bound (E1), Low_Bound (E2))
9295 and then
9296 FCE (High_Bound (E1), High_Bound (E2));
9297
9298 when N_Real_Literal =>
9299 return (Realval (E1) = Realval (E2));
9300
9301 when N_Selected_Component =>
9302 return
9303 FCE (Prefix (E1), Prefix (E2))
9304 and then
9305 FCE (Selector_Name (E1), Selector_Name (E2));
9306
9307 when N_Slice =>
9308 return
9309 FCE (Prefix (E1), Prefix (E2))
9310 and then
9311 FCE (Discrete_Range (E1), Discrete_Range (E2));
9312
9313 when N_String_Literal =>
9314 declare
9315 S1 : constant String_Id := Strval (E1);
9316 S2 : constant String_Id := Strval (E2);
9317 L1 : constant Nat := String_Length (S1);
9318 L2 : constant Nat := String_Length (S2);
9319
9320 begin
9321 if L1 /= L2 then
9322 return False;
9323
9324 else
9325 for J in 1 .. L1 loop
9326 if Get_String_Char (S1, J) /=
9327 Get_String_Char (S2, J)
9328 then
9329 return False;
9330 end if;
9331 end loop;
9332
9333 return True;
9334 end if;
9335 end;
9336
9337 when N_Unary_Op =>
9338 return
9339 Entity (E1) = Entity (E2)
9340 and then
9341 FCE (Right_Opnd (E1), Right_Opnd (E2));
9342
9343 -- All other node types cannot appear in this context. Strictly
9344 -- we should raise a fatal internal error. Instead we just ignore
9345 -- the nodes. This means that if anyone makes a mistake in the
9346 -- expander and mucks an expression tree irretrievably, the result
9347 -- will be a failure to detect a (probably very obscure) case
9348 -- of non-conformance, which is better than bombing on some
9349 -- case where two expressions do in fact conform.
9350
9351 when others =>
9352 return True;
9353 end case;
9354 end if;
9355 end Fully_Conformant_Expressions;
9356
9357 ----------------------------------------
9358 -- Fully_Conformant_Discrete_Subtypes --
9359 ----------------------------------------
9360
9361 function Fully_Conformant_Discrete_Subtypes
9362 (Given_S1 : Node_Id;
9363 Given_S2 : Node_Id) return Boolean
9364 is
9365 S1 : constant Node_Id := Original_Node (Given_S1);
9366 S2 : constant Node_Id := Original_Node (Given_S2);
9367
9368 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9369 -- Special-case for a bound given by a discriminant, which in the body
9370 -- is replaced with the discriminal of the enclosing type.
9371
9372 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9373 -- Check both bounds
9374
9375 -----------------------
9376 -- Conforming_Bounds --
9377 -----------------------
9378
9379 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9380 begin
9381 if Is_Entity_Name (B1)
9382 and then Is_Entity_Name (B2)
9383 and then Ekind (Entity (B1)) = E_Discriminant
9384 then
9385 return Chars (B1) = Chars (B2);
9386
9387 else
9388 return Fully_Conformant_Expressions (B1, B2);
9389 end if;
9390 end Conforming_Bounds;
9391
9392 -----------------------
9393 -- Conforming_Ranges --
9394 -----------------------
9395
9396 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9397 begin
9398 return
9399 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9400 and then
9401 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9402 end Conforming_Ranges;
9403
9404 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9405
9406 begin
9407 if Nkind (S1) /= Nkind (S2) then
9408 return False;
9409
9410 elsif Is_Entity_Name (S1) then
9411 return Entity (S1) = Entity (S2);
9412
9413 elsif Nkind (S1) = N_Range then
9414 return Conforming_Ranges (S1, S2);
9415
9416 elsif Nkind (S1) = N_Subtype_Indication then
9417 return
9418 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9419 and then
9420 Conforming_Ranges
9421 (Range_Expression (Constraint (S1)),
9422 Range_Expression (Constraint (S2)));
9423 else
9424 return True;
9425 end if;
9426 end Fully_Conformant_Discrete_Subtypes;
9427
9428 --------------------
9429 -- Install_Entity --
9430 --------------------
9431
9432 procedure Install_Entity (E : Entity_Id) is
9433 Prev : constant Entity_Id := Current_Entity (E);
9434 begin
9435 Set_Is_Immediately_Visible (E);
9436 Set_Current_Entity (E);
9437 Set_Homonym (E, Prev);
9438 end Install_Entity;
9439
9440 ---------------------
9441 -- Install_Formals --
9442 ---------------------
9443
9444 procedure Install_Formals (Id : Entity_Id) is
9445 F : Entity_Id;
9446 begin
9447 F := First_Formal (Id);
9448 while Present (F) loop
9449 Install_Entity (F);
9450 Next_Formal (F);
9451 end loop;
9452 end Install_Formals;
9453
9454 -----------------------------
9455 -- Is_Interface_Conformant --
9456 -----------------------------
9457
9458 function Is_Interface_Conformant
9459 (Tagged_Type : Entity_Id;
9460 Iface_Prim : Entity_Id;
9461 Prim : Entity_Id) return Boolean
9462 is
9463 -- The operation may in fact be an inherited (implicit) operation
9464 -- rather than the original interface primitive, so retrieve the
9465 -- ultimate ancestor.
9466
9467 Iface : constant Entity_Id :=
9468 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9469 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9470
9471 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9472 -- Return the controlling formal of Prim
9473
9474 ------------------------
9475 -- Controlling_Formal --
9476 ------------------------
9477
9478 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9479 E : Entity_Id;
9480
9481 begin
9482 E := First_Entity (Prim);
9483 while Present (E) loop
9484 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9485 return E;
9486 end if;
9487
9488 Next_Entity (E);
9489 end loop;
9490
9491 return Empty;
9492 end Controlling_Formal;
9493
9494 -- Local variables
9495
9496 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9497 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9498
9499 -- Start of processing for Is_Interface_Conformant
9500
9501 begin
9502 pragma Assert (Is_Subprogram (Iface_Prim)
9503 and then Is_Subprogram (Prim)
9504 and then Is_Dispatching_Operation (Iface_Prim)
9505 and then Is_Dispatching_Operation (Prim));
9506
9507 pragma Assert (Is_Interface (Iface)
9508 or else (Present (Alias (Iface_Prim))
9509 and then
9510 Is_Interface
9511 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9512
9513 if Prim = Iface_Prim
9514 or else not Is_Subprogram (Prim)
9515 or else Ekind (Prim) /= Ekind (Iface_Prim)
9516 or else not Is_Dispatching_Operation (Prim)
9517 or else Scope (Prim) /= Scope (Tagged_Type)
9518 or else No (Typ)
9519 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9520 or else not Primitive_Names_Match (Iface_Prim, Prim)
9521 then
9522 return False;
9523
9524 -- The mode of the controlling formals must match
9525
9526 elsif Present (Iface_Ctrl_F)
9527 and then Present (Prim_Ctrl_F)
9528 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9529 then
9530 return False;
9531
9532 -- Case of a procedure, or a function whose result type matches the
9533 -- result type of the interface primitive, or a function that has no
9534 -- controlling result (I or access I).
9535
9536 elsif Ekind (Iface_Prim) = E_Procedure
9537 or else Etype (Prim) = Etype (Iface_Prim)
9538 or else not Has_Controlling_Result (Prim)
9539 then
9540 return Type_Conformant
9541 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9542
9543 -- Case of a function returning an interface, or an access to one. Check
9544 -- that the return types correspond.
9545
9546 elsif Implements_Interface (Typ, Iface) then
9547 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9548 /=
9549 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9550 then
9551 return False;
9552 else
9553 return
9554 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9555 Skip_Controlling_Formals => True);
9556 end if;
9557
9558 else
9559 return False;
9560 end if;
9561 end Is_Interface_Conformant;
9562
9563 ---------------------------------
9564 -- Is_Non_Overriding_Operation --
9565 ---------------------------------
9566
9567 function Is_Non_Overriding_Operation
9568 (Prev_E : Entity_Id;
9569 New_E : Entity_Id) return Boolean
9570 is
9571 Formal : Entity_Id;
9572 F_Typ : Entity_Id;
9573 G_Typ : Entity_Id := Empty;
9574
9575 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9576 -- If F_Type is a derived type associated with a generic actual subtype,
9577 -- then return its Generic_Parent_Type attribute, else return Empty.
9578
9579 function Types_Correspond
9580 (P_Type : Entity_Id;
9581 N_Type : Entity_Id) return Boolean;
9582 -- Returns true if and only if the types (or designated types in the
9583 -- case of anonymous access types) are the same or N_Type is derived
9584 -- directly or indirectly from P_Type.
9585
9586 -----------------------------
9587 -- Get_Generic_Parent_Type --
9588 -----------------------------
9589
9590 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9591 G_Typ : Entity_Id;
9592 Defn : Node_Id;
9593 Indic : Node_Id;
9594
9595 begin
9596 if Is_Derived_Type (F_Typ)
9597 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9598 then
9599 -- The tree must be traversed to determine the parent subtype in
9600 -- the generic unit, which unfortunately isn't always available
9601 -- via semantic attributes. ??? (Note: The use of Original_Node
9602 -- is needed for cases where a full derived type has been
9603 -- rewritten.)
9604
9605 -- If the parent type is a scalar type, the derivation creates
9606 -- an anonymous base type for it, and the source type is its
9607 -- first subtype.
9608
9609 if Is_Scalar_Type (F_Typ)
9610 and then not Comes_From_Source (F_Typ)
9611 then
9612 Defn :=
9613 Type_Definition
9614 (Original_Node (Parent (First_Subtype (F_Typ))));
9615 else
9616 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9617 end if;
9618 if Nkind (Defn) = N_Derived_Type_Definition then
9619 Indic := Subtype_Indication (Defn);
9620
9621 if Nkind (Indic) = N_Subtype_Indication then
9622 G_Typ := Entity (Subtype_Mark (Indic));
9623 else
9624 G_Typ := Entity (Indic);
9625 end if;
9626
9627 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9628 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9629 then
9630 return Generic_Parent_Type (Parent (G_Typ));
9631 end if;
9632 end if;
9633 end if;
9634
9635 return Empty;
9636 end Get_Generic_Parent_Type;
9637
9638 ----------------------
9639 -- Types_Correspond --
9640 ----------------------
9641
9642 function Types_Correspond
9643 (P_Type : Entity_Id;
9644 N_Type : Entity_Id) return Boolean
9645 is
9646 Prev_Type : Entity_Id := Base_Type (P_Type);
9647 New_Type : Entity_Id := Base_Type (N_Type);
9648
9649 begin
9650 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9651 Prev_Type := Designated_Type (Prev_Type);
9652 end if;
9653
9654 if Ekind (New_Type) = E_Anonymous_Access_Type then
9655 New_Type := Designated_Type (New_Type);
9656 end if;
9657
9658 if Prev_Type = New_Type then
9659 return True;
9660
9661 elsif not Is_Class_Wide_Type (New_Type) then
9662 while Etype (New_Type) /= New_Type loop
9663 New_Type := Etype (New_Type);
9664
9665 if New_Type = Prev_Type then
9666 return True;
9667 end if;
9668 end loop;
9669 end if;
9670 return False;
9671 end Types_Correspond;
9672
9673 -- Start of processing for Is_Non_Overriding_Operation
9674
9675 begin
9676 -- In the case where both operations are implicit derived subprograms
9677 -- then neither overrides the other. This can only occur in certain
9678 -- obscure cases (e.g., derivation from homographs created in a generic
9679 -- instantiation).
9680
9681 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9682 return True;
9683
9684 elsif Ekind (Current_Scope) = E_Package
9685 and then Is_Generic_Instance (Current_Scope)
9686 and then In_Private_Part (Current_Scope)
9687 and then Comes_From_Source (New_E)
9688 then
9689 -- We examine the formals and result type of the inherited operation,
9690 -- to determine whether their type is derived from (the instance of)
9691 -- a generic type. The first such formal or result type is the one
9692 -- tested.
9693
9694 Formal := First_Formal (Prev_E);
9695 F_Typ := Empty;
9696 while Present (Formal) loop
9697 F_Typ := Base_Type (Etype (Formal));
9698
9699 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9700 F_Typ := Designated_Type (F_Typ);
9701 end if;
9702
9703 G_Typ := Get_Generic_Parent_Type (F_Typ);
9704 exit when Present (G_Typ);
9705
9706 Next_Formal (Formal);
9707 end loop;
9708
9709 -- If the function dispatches on result check the result type
9710
9711 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9712 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9713 end if;
9714
9715 if No (G_Typ) then
9716 return False;
9717 end if;
9718
9719 -- If the generic type is a private type, then the original operation
9720 -- was not overriding in the generic, because there was no primitive
9721 -- operation to override.
9722
9723 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9724 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9725 N_Formal_Private_Type_Definition
9726 then
9727 return True;
9728
9729 -- The generic parent type is the ancestor of a formal derived
9730 -- type declaration. We need to check whether it has a primitive
9731 -- operation that should be overridden by New_E in the generic.
9732
9733 else
9734 declare
9735 P_Formal : Entity_Id;
9736 N_Formal : Entity_Id;
9737 P_Typ : Entity_Id;
9738 N_Typ : Entity_Id;
9739 P_Prim : Entity_Id;
9740 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9741
9742 begin
9743 while Present (Prim_Elt) loop
9744 P_Prim := Node (Prim_Elt);
9745
9746 if Chars (P_Prim) = Chars (New_E)
9747 and then Ekind (P_Prim) = Ekind (New_E)
9748 then
9749 P_Formal := First_Formal (P_Prim);
9750 N_Formal := First_Formal (New_E);
9751 while Present (P_Formal) and then Present (N_Formal) loop
9752 P_Typ := Etype (P_Formal);
9753 N_Typ := Etype (N_Formal);
9754
9755 if not Types_Correspond (P_Typ, N_Typ) then
9756 exit;
9757 end if;
9758
9759 Next_Entity (P_Formal);
9760 Next_Entity (N_Formal);
9761 end loop;
9762
9763 -- Found a matching primitive operation belonging to the
9764 -- formal ancestor type, so the new subprogram is
9765 -- overriding.
9766
9767 if No (P_Formal)
9768 and then No (N_Formal)
9769 and then (Ekind (New_E) /= E_Function
9770 or else
9771 Types_Correspond
9772 (Etype (P_Prim), Etype (New_E)))
9773 then
9774 return False;
9775 end if;
9776 end if;
9777
9778 Next_Elmt (Prim_Elt);
9779 end loop;
9780
9781 -- If no match found, then the new subprogram does not override
9782 -- in the generic (nor in the instance).
9783
9784 -- If the type in question is not abstract, and the subprogram
9785 -- is, this will be an error if the new operation is in the
9786 -- private part of the instance. Emit a warning now, which will
9787 -- make the subsequent error message easier to understand.
9788
9789 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9790 and then Is_Abstract_Subprogram (Prev_E)
9791 and then In_Private_Part (Current_Scope)
9792 then
9793 Error_Msg_Node_2 := F_Typ;
9794 Error_Msg_NE
9795 ("private operation& in generic unit does not override "
9796 & "any primitive operation of& (RM 12.3 (18))??",
9797 New_E, New_E);
9798 end if;
9799
9800 return True;
9801 end;
9802 end if;
9803 else
9804 return False;
9805 end if;
9806 end Is_Non_Overriding_Operation;
9807
9808 -------------------------------------
9809 -- List_Inherited_Pre_Post_Aspects --
9810 -------------------------------------
9811
9812 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9813 begin
9814 if Opt.List_Inherited_Aspects
9815 and then Is_Subprogram_Or_Generic_Subprogram (E)
9816 then
9817 declare
9818 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9819 Items : Node_Id;
9820 Prag : Node_Id;
9821
9822 begin
9823 for Index in Subps'Range loop
9824 Items := Contract (Subps (Index));
9825
9826 if Present (Items) then
9827 Prag := Pre_Post_Conditions (Items);
9828 while Present (Prag) loop
9829 Error_Msg_Sloc := Sloc (Prag);
9830
9831 if Class_Present (Prag)
9832 and then not Split_PPC (Prag)
9833 then
9834 if Pragma_Name (Prag) = Name_Precondition then
9835 Error_Msg_N
9836 ("info: & inherits `Pre''Class` aspect from "
9837 & "#?L?", E);
9838 else
9839 Error_Msg_N
9840 ("info: & inherits `Post''Class` aspect from "
9841 & "#?L?", E);
9842 end if;
9843 end if;
9844
9845 Prag := Next_Pragma (Prag);
9846 end loop;
9847 end if;
9848 end loop;
9849 end;
9850 end if;
9851 end List_Inherited_Pre_Post_Aspects;
9852
9853 ------------------------------
9854 -- Make_Inequality_Operator --
9855 ------------------------------
9856
9857 -- S is the defining identifier of an equality operator. We build a
9858 -- subprogram declaration with the right signature. This operation is
9859 -- intrinsic, because it is always expanded as the negation of the
9860 -- call to the equality function.
9861
9862 procedure Make_Inequality_Operator (S : Entity_Id) is
9863 Loc : constant Source_Ptr := Sloc (S);
9864 Decl : Node_Id;
9865 Formals : List_Id;
9866 Op_Name : Entity_Id;
9867
9868 FF : constant Entity_Id := First_Formal (S);
9869 NF : constant Entity_Id := Next_Formal (FF);
9870
9871 begin
9872 -- Check that equality was properly defined, ignore call if not
9873
9874 if No (NF) then
9875 return;
9876 end if;
9877
9878 declare
9879 A : constant Entity_Id :=
9880 Make_Defining_Identifier (Sloc (FF),
9881 Chars => Chars (FF));
9882
9883 B : constant Entity_Id :=
9884 Make_Defining_Identifier (Sloc (NF),
9885 Chars => Chars (NF));
9886
9887 begin
9888 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9889
9890 Formals := New_List (
9891 Make_Parameter_Specification (Loc,
9892 Defining_Identifier => A,
9893 Parameter_Type =>
9894 New_Occurrence_Of (Etype (First_Formal (S)),
9895 Sloc (Etype (First_Formal (S))))),
9896
9897 Make_Parameter_Specification (Loc,
9898 Defining_Identifier => B,
9899 Parameter_Type =>
9900 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9901 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9902
9903 Decl :=
9904 Make_Subprogram_Declaration (Loc,
9905 Specification =>
9906 Make_Function_Specification (Loc,
9907 Defining_Unit_Name => Op_Name,
9908 Parameter_Specifications => Formals,
9909 Result_Definition =>
9910 New_Occurrence_Of (Standard_Boolean, Loc)));
9911
9912 -- Insert inequality right after equality if it is explicit or after
9913 -- the derived type when implicit. These entities are created only
9914 -- for visibility purposes, and eventually replaced in the course
9915 -- of expansion, so they do not need to be attached to the tree and
9916 -- seen by the back-end. Keeping them internal also avoids spurious
9917 -- freezing problems. The declaration is inserted in the tree for
9918 -- analysis, and removed afterwards. If the equality operator comes
9919 -- from an explicit declaration, attach the inequality immediately
9920 -- after. Else the equality is inherited from a derived type
9921 -- declaration, so insert inequality after that declaration.
9922
9923 if No (Alias (S)) then
9924 Insert_After (Unit_Declaration_Node (S), Decl);
9925 elsif Is_List_Member (Parent (S)) then
9926 Insert_After (Parent (S), Decl);
9927 else
9928 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9929 end if;
9930
9931 Mark_Rewrite_Insertion (Decl);
9932 Set_Is_Intrinsic_Subprogram (Op_Name);
9933 Analyze (Decl);
9934 Remove (Decl);
9935 Set_Has_Completion (Op_Name);
9936 Set_Corresponding_Equality (Op_Name, S);
9937 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9938 end;
9939 end Make_Inequality_Operator;
9940
9941 ----------------------
9942 -- May_Need_Actuals --
9943 ----------------------
9944
9945 procedure May_Need_Actuals (Fun : Entity_Id) is
9946 F : Entity_Id;
9947 B : Boolean;
9948
9949 begin
9950 F := First_Formal (Fun);
9951 B := True;
9952 while Present (F) loop
9953 if No (Default_Value (F)) then
9954 B := False;
9955 exit;
9956 end if;
9957
9958 Next_Formal (F);
9959 end loop;
9960
9961 Set_Needs_No_Actuals (Fun, B);
9962 end May_Need_Actuals;
9963
9964 ---------------------
9965 -- Mode_Conformant --
9966 ---------------------
9967
9968 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9969 Result : Boolean;
9970 begin
9971 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9972 return Result;
9973 end Mode_Conformant;
9974
9975 ---------------------------
9976 -- New_Overloaded_Entity --
9977 ---------------------------
9978
9979 procedure New_Overloaded_Entity
9980 (S : Entity_Id;
9981 Derived_Type : Entity_Id := Empty)
9982 is
9983 Overridden_Subp : Entity_Id := Empty;
9984 -- Set if the current scope has an operation that is type-conformant
9985 -- with S, and becomes hidden by S.
9986
9987 Is_Primitive_Subp : Boolean;
9988 -- Set to True if the new subprogram is primitive
9989
9990 E : Entity_Id;
9991 -- Entity that S overrides
9992
9993 procedure Check_For_Primitive_Subprogram
9994 (Is_Primitive : out Boolean;
9995 Is_Overriding : Boolean := False);
9996 -- If the subprogram being analyzed is a primitive operation of the type
9997 -- of a formal or result, set the Has_Primitive_Operations flag on the
9998 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9999 -- corresponding flag on the entity itself for later use.
10000
10001 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
10002 -- True if a) E is a subprogram whose first formal is a concurrent type
10003 -- defined in the scope of E that has some entry or subprogram whose
10004 -- profile matches E, or b) E is an internally built dispatching
10005 -- subprogram of a protected type and there is a matching subprogram
10006 -- defined in the enclosing scope of the protected type, or c) E is
10007 -- an entry of a synchronized type and a matching procedure has been
10008 -- previously defined in the enclosing scope of the synchronized type.
10009
10010 function Is_Private_Declaration (E : Entity_Id) return Boolean;
10011 -- Check that E is declared in the private part of the current package,
10012 -- or in the package body, where it may hide a previous declaration.
10013 -- We can't use In_Private_Part by itself because this flag is also
10014 -- set when freezing entities, so we must examine the place of the
10015 -- declaration in the tree, and recognize wrapper packages as well.
10016
10017 function Is_Overriding_Alias
10018 (Old_E : Entity_Id;
10019 New_E : Entity_Id) return Boolean;
10020 -- Check whether new subprogram and old subprogram are both inherited
10021 -- from subprograms that have distinct dispatch table entries. This can
10022 -- occur with derivations from instances with accidental homonyms. The
10023 -- function is conservative given that the converse is only true within
10024 -- instances that contain accidental overloadings.
10025
10026 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10027 -- Report conflict between entities S and E
10028
10029 ------------------------------------
10030 -- Check_For_Primitive_Subprogram --
10031 ------------------------------------
10032
10033 procedure Check_For_Primitive_Subprogram
10034 (Is_Primitive : out Boolean;
10035 Is_Overriding : Boolean := False)
10036 is
10037 Formal : Entity_Id;
10038 F_Typ : Entity_Id;
10039 B_Typ : Entity_Id;
10040
10041 function Visible_Part_Type (T : Entity_Id) return Boolean;
10042 -- Returns true if T is declared in the visible part of the current
10043 -- package scope; otherwise returns false. Assumes that T is declared
10044 -- in a package.
10045
10046 procedure Check_Private_Overriding (T : Entity_Id);
10047 -- Checks that if a primitive abstract subprogram of a visible
10048 -- abstract type is declared in a private part, then it must override
10049 -- an abstract subprogram declared in the visible part. Also checks
10050 -- that if a primitive function with a controlling result is declared
10051 -- in a private part, then it must override a function declared in
10052 -- the visible part.
10053
10054 ------------------------------
10055 -- Check_Private_Overriding --
10056 ------------------------------
10057
10058 procedure Check_Private_Overriding (T : Entity_Id) is
10059 function Overrides_Private_Part_Op return Boolean;
10060 -- This detects the special case where the overriding subprogram
10061 -- is overriding a subprogram that was declared in the same
10062 -- private part. That case is illegal by 3.9.3(10).
10063
10064 function Overrides_Visible_Function
10065 (Partial_View : Entity_Id) return Boolean;
10066 -- True if S overrides a function in the visible part. The
10067 -- overridden function could be explicitly or implicitly declared.
10068
10069 -------------------------------
10070 -- Overrides_Private_Part_Op --
10071 -------------------------------
10072
10073 function Overrides_Private_Part_Op return Boolean is
10074 Over_Decl : constant Node_Id :=
10075 Unit_Declaration_Node (Overridden_Operation (S));
10076 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10077
10078 begin
10079 pragma Assert (Is_Overriding);
10080 pragma Assert
10081 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10082 pragma Assert
10083 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10084
10085 return In_Same_List (Over_Decl, Subp_Decl);
10086 end Overrides_Private_Part_Op;
10087
10088 --------------------------------
10089 -- Overrides_Visible_Function --
10090 --------------------------------
10091
10092 function Overrides_Visible_Function
10093 (Partial_View : Entity_Id) return Boolean
10094 is
10095 begin
10096 if not Is_Overriding or else not Has_Homonym (S) then
10097 return False;
10098 end if;
10099
10100 if not Present (Partial_View) then
10101 return True;
10102 end if;
10103
10104 -- Search through all the homonyms H of S in the current
10105 -- package spec, and return True if we find one that matches.
10106 -- Note that Parent (H) will be the declaration of the
10107 -- partial view of T for a match.
10108
10109 declare
10110 H : Entity_Id := S;
10111 begin
10112 loop
10113 H := Homonym (H);
10114 exit when not Present (H) or else Scope (H) /= Scope (S);
10115
10116 if Nkind_In
10117 (Parent (H),
10118 N_Private_Extension_Declaration,
10119 N_Private_Type_Declaration)
10120 and then Defining_Identifier (Parent (H)) = Partial_View
10121 then
10122 return True;
10123 end if;
10124 end loop;
10125 end;
10126
10127 return False;
10128 end Overrides_Visible_Function;
10129
10130 -- Start of processing for Check_Private_Overriding
10131
10132 begin
10133 if Is_Package_Or_Generic_Package (Current_Scope)
10134 and then In_Private_Part (Current_Scope)
10135 and then Visible_Part_Type (T)
10136 and then not In_Instance
10137 then
10138 if Is_Abstract_Type (T)
10139 and then Is_Abstract_Subprogram (S)
10140 and then (not Is_Overriding
10141 or else not Is_Abstract_Subprogram (E)
10142 or else Overrides_Private_Part_Op)
10143 then
10144 Error_Msg_N
10145 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10146 S);
10147
10148 elsif Ekind (S) = E_Function then
10149 declare
10150 Partial_View : constant Entity_Id :=
10151 Incomplete_Or_Partial_View (T);
10152
10153 begin
10154 if not Overrides_Visible_Function (Partial_View) then
10155
10156 -- Here, S is "function ... return T;" declared in
10157 -- the private part, not overriding some visible
10158 -- operation. That's illegal in the tagged case
10159 -- (but not if the private type is untagged).
10160
10161 if ((Present (Partial_View)
10162 and then Is_Tagged_Type (Partial_View))
10163 or else (not Present (Partial_View)
10164 and then Is_Tagged_Type (T)))
10165 and then T = Base_Type (Etype (S))
10166 then
10167 Error_Msg_N
10168 ("private function with tagged result must"
10169 & " override visible-part function", S);
10170 Error_Msg_N
10171 ("\move subprogram to the visible part"
10172 & " (RM 3.9.3(10))", S);
10173
10174 -- AI05-0073: extend this test to the case of a
10175 -- function with a controlling access result.
10176
10177 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10178 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10179 and then
10180 not Is_Class_Wide_Type
10181 (Designated_Type (Etype (S)))
10182 and then Ada_Version >= Ada_2012
10183 then
10184 Error_Msg_N
10185 ("private function with controlling access "
10186 & "result must override visible-part function",
10187 S);
10188 Error_Msg_N
10189 ("\move subprogram to the visible part"
10190 & " (RM 3.9.3(10))", S);
10191 end if;
10192 end if;
10193 end;
10194 end if;
10195 end if;
10196 end Check_Private_Overriding;
10197
10198 -----------------------
10199 -- Visible_Part_Type --
10200 -----------------------
10201
10202 function Visible_Part_Type (T : Entity_Id) return Boolean is
10203 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10204
10205 begin
10206 -- If the entity is a private type, then it must be declared in a
10207 -- visible part.
10208
10209 if Ekind (T) in Private_Kind then
10210 return True;
10211
10212 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10213 return True;
10214
10215 elsif Is_List_Member (Declaration_Node (T))
10216 and then List_Containing (Declaration_Node (T)) =
10217 Visible_Declarations (Specification (P))
10218 then
10219 return True;
10220
10221 else
10222 return False;
10223 end if;
10224 end Visible_Part_Type;
10225
10226 -- Start of processing for Check_For_Primitive_Subprogram
10227
10228 begin
10229 Is_Primitive := False;
10230
10231 if not Comes_From_Source (S) then
10232 null;
10233
10234 -- If subprogram is at library level, it is not primitive operation
10235
10236 elsif Current_Scope = Standard_Standard then
10237 null;
10238
10239 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10240 and then not In_Package_Body (Current_Scope))
10241 or else Is_Overriding
10242 then
10243 -- For function, check return type
10244
10245 if Ekind (S) = E_Function then
10246 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10247 F_Typ := Designated_Type (Etype (S));
10248 else
10249 F_Typ := Etype (S);
10250 end if;
10251
10252 B_Typ := Base_Type (F_Typ);
10253
10254 if Scope (B_Typ) = Current_Scope
10255 and then not Is_Class_Wide_Type (B_Typ)
10256 and then not Is_Generic_Type (B_Typ)
10257 then
10258 Is_Primitive := True;
10259 Set_Has_Primitive_Operations (B_Typ);
10260 Set_Is_Primitive (S);
10261 Check_Private_Overriding (B_Typ);
10262
10263 -- The Ghost policy in effect at the point of declaration
10264 -- or a tagged type and a primitive operation must match
10265 -- (SPARK RM 6.9(16)).
10266
10267 Check_Ghost_Primitive (S, B_Typ);
10268 end if;
10269 end if;
10270
10271 -- For all subprograms, check formals
10272
10273 Formal := First_Formal (S);
10274 while Present (Formal) loop
10275 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10276 F_Typ := Designated_Type (Etype (Formal));
10277 else
10278 F_Typ := Etype (Formal);
10279 end if;
10280
10281 B_Typ := Base_Type (F_Typ);
10282
10283 if Ekind (B_Typ) = E_Access_Subtype then
10284 B_Typ := Base_Type (B_Typ);
10285 end if;
10286
10287 if Scope (B_Typ) = Current_Scope
10288 and then not Is_Class_Wide_Type (B_Typ)
10289 and then not Is_Generic_Type (B_Typ)
10290 then
10291 Is_Primitive := True;
10292 Set_Is_Primitive (S);
10293 Set_Has_Primitive_Operations (B_Typ);
10294 Check_Private_Overriding (B_Typ);
10295
10296 -- The Ghost policy in effect at the point of declaration
10297 -- of a tagged type and a primitive operation must match
10298 -- (SPARK RM 6.9(16)).
10299
10300 Check_Ghost_Primitive (S, B_Typ);
10301 end if;
10302
10303 Next_Formal (Formal);
10304 end loop;
10305
10306 -- Special case: An equality function can be redefined for a type
10307 -- occurring in a declarative part, and won't otherwise be treated as
10308 -- a primitive because it doesn't occur in a package spec and doesn't
10309 -- override an inherited subprogram. It's important that we mark it
10310 -- primitive so it can be returned by Collect_Primitive_Operations
10311 -- and be used in composing the equality operation of later types
10312 -- that have a component of the type.
10313
10314 elsif Chars (S) = Name_Op_Eq
10315 and then Etype (S) = Standard_Boolean
10316 then
10317 B_Typ := Base_Type (Etype (First_Formal (S)));
10318
10319 if Scope (B_Typ) = Current_Scope
10320 and then
10321 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10322 and then not Is_Limited_Type (B_Typ)
10323 then
10324 Is_Primitive := True;
10325 Set_Is_Primitive (S);
10326 Set_Has_Primitive_Operations (B_Typ);
10327 Check_Private_Overriding (B_Typ);
10328
10329 -- The Ghost policy in effect at the point of declaration of a
10330 -- tagged type and a primitive operation must match
10331 -- (SPARK RM 6.9(16)).
10332
10333 Check_Ghost_Primitive (S, B_Typ);
10334 end if;
10335 end if;
10336 end Check_For_Primitive_Subprogram;
10337
10338 --------------------------------------
10339 -- Has_Matching_Entry_Or_Subprogram --
10340 --------------------------------------
10341
10342 function Has_Matching_Entry_Or_Subprogram
10343 (E : Entity_Id) return Boolean
10344 is
10345 function Check_Conforming_Parameters
10346 (E1_Param : Node_Id;
10347 E2_Param : Node_Id) return Boolean;
10348 -- Starting from the given parameters, check that all the parameters
10349 -- of two entries or subprograms are subtype conformant. Used to skip
10350 -- the check on the controlling argument.
10351
10352 function Matching_Entry_Or_Subprogram
10353 (Conc_Typ : Entity_Id;
10354 Subp : Entity_Id) return Entity_Id;
10355 -- Return the first entry or subprogram of the given concurrent type
10356 -- whose name matches the name of Subp and has a profile conformant
10357 -- with Subp; return Empty if not found.
10358
10359 function Matching_Dispatching_Subprogram
10360 (Conc_Typ : Entity_Id;
10361 Ent : Entity_Id) return Entity_Id;
10362 -- Return the first dispatching primitive of Conc_Type defined in the
10363 -- enclosing scope of Conc_Type (i.e. before the full definition of
10364 -- this concurrent type) whose name matches the entry Ent and has a
10365 -- profile conformant with the profile of the corresponding (not yet
10366 -- built) dispatching primitive of Ent; return Empty if not found.
10367
10368 function Matching_Original_Protected_Subprogram
10369 (Prot_Typ : Entity_Id;
10370 Subp : Entity_Id) return Entity_Id;
10371 -- Return the first subprogram defined in the enclosing scope of
10372 -- Prot_Typ (before the full definition of this protected type)
10373 -- whose name matches the original name of Subp and has a profile
10374 -- conformant with the profile of Subp; return Empty if not found.
10375
10376 ---------------------------------
10377 -- Check_Conforming_Parameters --
10378 ---------------------------------
10379
10380 function Check_Conforming_Parameters
10381 (E1_Param : Node_Id;
10382 E2_Param : Node_Id) return Boolean
10383 is
10384 Param_E1 : Node_Id := E1_Param;
10385 Param_E2 : Node_Id := E2_Param;
10386
10387 begin
10388 while Present (Param_E1) and then Present (Param_E2) loop
10389 if Ekind (Defining_Identifier (Param_E1)) /=
10390 Ekind (Defining_Identifier (Param_E2))
10391 or else not
10392 Conforming_Types
10393 (Find_Parameter_Type (Param_E1),
10394 Find_Parameter_Type (Param_E2),
10395 Subtype_Conformant)
10396 then
10397 return False;
10398 end if;
10399
10400 Next (Param_E1);
10401 Next (Param_E2);
10402 end loop;
10403
10404 -- The candidate is not valid if one of the two lists contains
10405 -- more parameters than the other
10406
10407 return No (Param_E1) and then No (Param_E2);
10408 end Check_Conforming_Parameters;
10409
10410 ----------------------------------
10411 -- Matching_Entry_Or_Subprogram --
10412 ----------------------------------
10413
10414 function Matching_Entry_Or_Subprogram
10415 (Conc_Typ : Entity_Id;
10416 Subp : Entity_Id) return Entity_Id
10417 is
10418 E : Entity_Id;
10419
10420 begin
10421 E := First_Entity (Conc_Typ);
10422 while Present (E) loop
10423 if Chars (Subp) = Chars (E)
10424 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10425 and then
10426 Check_Conforming_Parameters
10427 (First (Parameter_Specifications (Parent (E))),
10428 Next (First (Parameter_Specifications (Parent (Subp)))))
10429 then
10430 return E;
10431 end if;
10432
10433 Next_Entity (E);
10434 end loop;
10435
10436 return Empty;
10437 end Matching_Entry_Or_Subprogram;
10438
10439 -------------------------------------
10440 -- Matching_Dispatching_Subprogram --
10441 -------------------------------------
10442
10443 function Matching_Dispatching_Subprogram
10444 (Conc_Typ : Entity_Id;
10445 Ent : Entity_Id) return Entity_Id
10446 is
10447 E : Entity_Id;
10448
10449 begin
10450 -- Search for entities in the enclosing scope of this synchonized
10451 -- type.
10452
10453 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10454 Push_Scope (Scope (Conc_Typ));
10455 E := Current_Entity_In_Scope (Ent);
10456 Pop_Scope;
10457
10458 while Present (E) loop
10459 if Scope (E) = Scope (Conc_Typ)
10460 and then Comes_From_Source (E)
10461 and then Ekind (E) = E_Procedure
10462 and then Present (First_Entity (E))
10463 and then Is_Controlling_Formal (First_Entity (E))
10464 and then Etype (First_Entity (E)) = Conc_Typ
10465 and then
10466 Check_Conforming_Parameters
10467 (First (Parameter_Specifications (Parent (Ent))),
10468 Next (First (Parameter_Specifications (Parent (E)))))
10469 then
10470 return E;
10471 end if;
10472
10473 E := Homonym (E);
10474 end loop;
10475
10476 return Empty;
10477 end Matching_Dispatching_Subprogram;
10478
10479 --------------------------------------------
10480 -- Matching_Original_Protected_Subprogram --
10481 --------------------------------------------
10482
10483 function Matching_Original_Protected_Subprogram
10484 (Prot_Typ : Entity_Id;
10485 Subp : Entity_Id) return Entity_Id
10486 is
10487 ICF : constant Boolean :=
10488 Is_Controlling_Formal (First_Entity (Subp));
10489 E : Entity_Id;
10490
10491 begin
10492 -- Temporarily decorate the first parameter of Subp as controlling
10493 -- formal, required to invoke Subtype_Conformant.
10494
10495 Set_Is_Controlling_Formal (First_Entity (Subp));
10496
10497 E :=
10498 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10499
10500 while Present (E) loop
10501 if Scope (E) = Scope (Prot_Typ)
10502 and then Comes_From_Source (E)
10503 and then Ekind (Subp) = Ekind (E)
10504 and then Present (First_Entity (E))
10505 and then Is_Controlling_Formal (First_Entity (E))
10506 and then Etype (First_Entity (E)) = Prot_Typ
10507 and then Subtype_Conformant (Subp, E,
10508 Skip_Controlling_Formals => True)
10509 then
10510 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10511 return E;
10512 end if;
10513
10514 E := Homonym (E);
10515 end loop;
10516
10517 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10518
10519 return Empty;
10520 end Matching_Original_Protected_Subprogram;
10521
10522 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10523
10524 begin
10525 -- Case 1: E is a subprogram whose first formal is a concurrent type
10526 -- defined in the scope of E that has an entry or subprogram whose
10527 -- profile matches E.
10528
10529 if Comes_From_Source (E)
10530 and then Is_Subprogram (E)
10531 and then Present (First_Entity (E))
10532 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10533 then
10534 if Scope (E) =
10535 Scope (Corresponding_Concurrent_Type
10536 (Etype (First_Entity (E))))
10537 and then
10538 Present
10539 (Matching_Entry_Or_Subprogram
10540 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10541 Subp => E))
10542 then
10543 Report_Conflict (E,
10544 Matching_Entry_Or_Subprogram
10545 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10546 Subp => E));
10547 return True;
10548 end if;
10549
10550 -- Case 2: E is an internally built dispatching subprogram of a
10551 -- protected type and there is a subprogram defined in the enclosing
10552 -- scope of the protected type that has the original name of E and
10553 -- its profile is conformant with the profile of E. We check the
10554 -- name of the original protected subprogram associated with E since
10555 -- the expander builds dispatching primitives of protected functions
10556 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10557
10558 elsif not Comes_From_Source (E)
10559 and then Is_Subprogram (E)
10560 and then Present (First_Entity (E))
10561 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10562 and then Present (Original_Protected_Subprogram (E))
10563 and then
10564 Present
10565 (Matching_Original_Protected_Subprogram
10566 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10567 Subp => E))
10568 then
10569 Report_Conflict (E,
10570 Matching_Original_Protected_Subprogram
10571 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10572 Subp => E));
10573 return True;
10574
10575 -- Case 3: E is an entry of a synchronized type and a matching
10576 -- procedure has been previously defined in the enclosing scope
10577 -- of the synchronized type.
10578
10579 elsif Comes_From_Source (E)
10580 and then Ekind (E) = E_Entry
10581 and then
10582 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10583 then
10584 Report_Conflict (E,
10585 Matching_Dispatching_Subprogram (Current_Scope, E));
10586 return True;
10587 end if;
10588
10589 return False;
10590 end Has_Matching_Entry_Or_Subprogram;
10591
10592 ----------------------------
10593 -- Is_Private_Declaration --
10594 ----------------------------
10595
10596 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10597 Decl : constant Node_Id := Unit_Declaration_Node (E);
10598 Priv_Decls : List_Id;
10599
10600 begin
10601 if Is_Package_Or_Generic_Package (Current_Scope)
10602 and then In_Private_Part (Current_Scope)
10603 then
10604 Priv_Decls :=
10605 Private_Declarations (Package_Specification (Current_Scope));
10606
10607 return In_Package_Body (Current_Scope)
10608 or else
10609 (Is_List_Member (Decl)
10610 and then List_Containing (Decl) = Priv_Decls)
10611 or else (Nkind (Parent (Decl)) = N_Package_Specification
10612 and then not
10613 Is_Compilation_Unit
10614 (Defining_Entity (Parent (Decl)))
10615 and then List_Containing (Parent (Parent (Decl))) =
10616 Priv_Decls);
10617 else
10618 return False;
10619 end if;
10620 end Is_Private_Declaration;
10621
10622 --------------------------
10623 -- Is_Overriding_Alias --
10624 --------------------------
10625
10626 function Is_Overriding_Alias
10627 (Old_E : Entity_Id;
10628 New_E : Entity_Id) return Boolean
10629 is
10630 AO : constant Entity_Id := Alias (Old_E);
10631 AN : constant Entity_Id := Alias (New_E);
10632
10633 begin
10634 return Scope (AO) /= Scope (AN)
10635 or else No (DTC_Entity (AO))
10636 or else No (DTC_Entity (AN))
10637 or else DT_Position (AO) = DT_Position (AN);
10638 end Is_Overriding_Alias;
10639
10640 ---------------------
10641 -- Report_Conflict --
10642 ---------------------
10643
10644 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10645 begin
10646 Error_Msg_Sloc := Sloc (E);
10647
10648 -- Generate message, with useful additional warning if in generic
10649
10650 if Is_Generic_Unit (E) then
10651 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10652 Error_Msg_N ("\& conflicts with declaration#", S);
10653 else
10654 Error_Msg_N ("& conflicts with declaration#", S);
10655 end if;
10656 end Report_Conflict;
10657
10658 -- Start of processing for New_Overloaded_Entity
10659
10660 begin
10661 -- We need to look for an entity that S may override. This must be a
10662 -- homonym in the current scope, so we look for the first homonym of
10663 -- S in the current scope as the starting point for the search.
10664
10665 E := Current_Entity_In_Scope (S);
10666
10667 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10668 -- They are directly added to the list of primitive operations of
10669 -- Derived_Type, unless this is a rederivation in the private part
10670 -- of an operation that was already derived in the visible part of
10671 -- the current package.
10672
10673 if Ada_Version >= Ada_2005
10674 and then Present (Derived_Type)
10675 and then Present (Alias (S))
10676 and then Is_Dispatching_Operation (Alias (S))
10677 and then Present (Find_Dispatching_Type (Alias (S)))
10678 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10679 then
10680 -- For private types, when the full-view is processed we propagate to
10681 -- the full view the non-overridden entities whose attribute "alias"
10682 -- references an interface primitive. These entities were added by
10683 -- Derive_Subprograms to ensure that interface primitives are
10684 -- covered.
10685
10686 -- Inside_Freeze_Actions is non zero when S corresponds with an
10687 -- internal entity that links an interface primitive with its
10688 -- covering primitive through attribute Interface_Alias (see
10689 -- Add_Internal_Interface_Entities).
10690
10691 if Inside_Freezing_Actions = 0
10692 and then Is_Package_Or_Generic_Package (Current_Scope)
10693 and then In_Private_Part (Current_Scope)
10694 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10695 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10696 and then Full_View (Defining_Identifier (Parent (E)))
10697 = Defining_Identifier (Parent (S))
10698 and then Alias (E) = Alias (S)
10699 then
10700 Check_Operation_From_Private_View (S, E);
10701 Set_Is_Dispatching_Operation (S);
10702
10703 -- Common case
10704
10705 else
10706 Enter_Overloaded_Entity (S);
10707 Check_Dispatching_Operation (S, Empty);
10708 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10709 end if;
10710
10711 return;
10712 end if;
10713
10714 -- For synchronized types check conflicts of this entity with previously
10715 -- defined entities.
10716
10717 if Ada_Version >= Ada_2005
10718 and then Has_Matching_Entry_Or_Subprogram (S)
10719 then
10720 return;
10721 end if;
10722
10723 -- If there is no homonym then this is definitely not overriding
10724
10725 if No (E) then
10726 Enter_Overloaded_Entity (S);
10727 Check_Dispatching_Operation (S, Empty);
10728 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10729
10730 -- If subprogram has an explicit declaration, check whether it has an
10731 -- overriding indicator.
10732
10733 if Comes_From_Source (S) then
10734 Check_Synchronized_Overriding (S, Overridden_Subp);
10735
10736 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10737 -- it may have overridden some hidden inherited primitive. Update
10738 -- Overridden_Subp to avoid spurious errors when checking the
10739 -- overriding indicator.
10740
10741 if Ada_Version >= Ada_2012
10742 and then No (Overridden_Subp)
10743 and then Is_Dispatching_Operation (S)
10744 and then Present (Overridden_Operation (S))
10745 then
10746 Overridden_Subp := Overridden_Operation (S);
10747 end if;
10748
10749 Check_Overriding_Indicator
10750 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10751
10752 -- The Ghost policy in effect at the point of declaration of a
10753 -- parent subprogram and an overriding subprogram must match
10754 -- (SPARK RM 6.9(17)).
10755
10756 Check_Ghost_Overriding (S, Overridden_Subp);
10757 end if;
10758
10759 -- If there is a homonym that is not overloadable, then we have an
10760 -- error, except for the special cases checked explicitly below.
10761
10762 elsif not Is_Overloadable (E) then
10763
10764 -- Check for spurious conflict produced by a subprogram that has the
10765 -- same name as that of the enclosing generic package. The conflict
10766 -- occurs within an instance, between the subprogram and the renaming
10767 -- declaration for the package. After the subprogram, the package
10768 -- renaming declaration becomes hidden.
10769
10770 if Ekind (E) = E_Package
10771 and then Present (Renamed_Object (E))
10772 and then Renamed_Object (E) = Current_Scope
10773 and then Nkind (Parent (Renamed_Object (E))) =
10774 N_Package_Specification
10775 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10776 then
10777 Set_Is_Hidden (E);
10778 Set_Is_Immediately_Visible (E, False);
10779 Enter_Overloaded_Entity (S);
10780 Set_Homonym (S, Homonym (E));
10781 Check_Dispatching_Operation (S, Empty);
10782 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10783
10784 -- If the subprogram is implicit it is hidden by the previous
10785 -- declaration. However if it is dispatching, it must appear in the
10786 -- dispatch table anyway, because it can be dispatched to even if it
10787 -- cannot be called directly.
10788
10789 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10790 Set_Scope (S, Current_Scope);
10791
10792 if Is_Dispatching_Operation (Alias (S)) then
10793 Check_Dispatching_Operation (S, Empty);
10794 end if;
10795
10796 return;
10797
10798 else
10799 Report_Conflict (S, E);
10800 return;
10801 end if;
10802
10803 -- E exists and is overloadable
10804
10805 else
10806 Check_Synchronized_Overriding (S, Overridden_Subp);
10807
10808 -- Loop through E and its homonyms to determine if any of them is
10809 -- the candidate for overriding by S.
10810
10811 while Present (E) loop
10812
10813 -- Definitely not interesting if not in the current scope
10814
10815 if Scope (E) /= Current_Scope then
10816 null;
10817
10818 -- A function can overload the name of an abstract state. The
10819 -- state can be viewed as a function with a profile that cannot
10820 -- be matched by anything.
10821
10822 elsif Ekind (S) = E_Function
10823 and then Ekind (E) = E_Abstract_State
10824 then
10825 Enter_Overloaded_Entity (S);
10826 return;
10827
10828 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10829 -- procedures locate the internally generated spec. We enforce
10830 -- mode conformance since a tagged type may inherit from
10831 -- interfaces several null primitives which differ only in
10832 -- the mode of the formals.
10833
10834 elsif not Comes_From_Source (S)
10835 and then Is_Null_Procedure (S)
10836 and then not Mode_Conformant (E, S)
10837 then
10838 null;
10839
10840 -- Check if we have type conformance
10841
10842 elsif Type_Conformant (E, S) then
10843
10844 -- If the old and new entities have the same profile and one
10845 -- is not the body of the other, then this is an error, unless
10846 -- one of them is implicitly declared.
10847
10848 -- There are some cases when both can be implicit, for example
10849 -- when both a literal and a function that overrides it are
10850 -- inherited in a derivation, or when an inherited operation
10851 -- of a tagged full type overrides the inherited operation of
10852 -- a private extension. Ada 83 had a special rule for the
10853 -- literal case. In Ada 95, the later implicit operation hides
10854 -- the former, and the literal is always the former. In the
10855 -- odd case where both are derived operations declared at the
10856 -- same point, both operations should be declared, and in that
10857 -- case we bypass the following test and proceed to the next
10858 -- part. This can only occur for certain obscure cases in
10859 -- instances, when an operation on a type derived from a formal
10860 -- private type does not override a homograph inherited from
10861 -- the actual. In subsequent derivations of such a type, the
10862 -- DT positions of these operations remain distinct, if they
10863 -- have been set.
10864
10865 if Present (Alias (S))
10866 and then (No (Alias (E))
10867 or else Comes_From_Source (E)
10868 or else Is_Abstract_Subprogram (S)
10869 or else
10870 (Is_Dispatching_Operation (E)
10871 and then Is_Overriding_Alias (E, S)))
10872 and then Ekind (E) /= E_Enumeration_Literal
10873 then
10874 -- When an derived operation is overloaded it may be due to
10875 -- the fact that the full view of a private extension
10876 -- re-inherits. It has to be dealt with.
10877
10878 if Is_Package_Or_Generic_Package (Current_Scope)
10879 and then In_Private_Part (Current_Scope)
10880 then
10881 Check_Operation_From_Private_View (S, E);
10882 end if;
10883
10884 -- In any case the implicit operation remains hidden by the
10885 -- existing declaration, which is overriding. Indicate that
10886 -- E overrides the operation from which S is inherited.
10887
10888 if Present (Alias (S)) then
10889 Set_Overridden_Operation (E, Alias (S));
10890 Inherit_Subprogram_Contract (E, Alias (S));
10891
10892 else
10893 Set_Overridden_Operation (E, S);
10894 Inherit_Subprogram_Contract (E, S);
10895 end if;
10896
10897 if Comes_From_Source (E) then
10898 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10899
10900 -- The Ghost policy in effect at the point of declaration
10901 -- of a parent subprogram and an overriding subprogram
10902 -- must match (SPARK RM 6.9(17)).
10903
10904 Check_Ghost_Overriding (E, S);
10905 end if;
10906
10907 return;
10908
10909 -- Within an instance, the renaming declarations for actual
10910 -- subprograms may become ambiguous, but they do not hide each
10911 -- other.
10912
10913 elsif Ekind (E) /= E_Entry
10914 and then not Comes_From_Source (E)
10915 and then not Is_Generic_Instance (E)
10916 and then (Present (Alias (E))
10917 or else Is_Intrinsic_Subprogram (E))
10918 and then (not In_Instance
10919 or else No (Parent (E))
10920 or else Nkind (Unit_Declaration_Node (E)) /=
10921 N_Subprogram_Renaming_Declaration)
10922 then
10923 -- A subprogram child unit is not allowed to override an
10924 -- inherited subprogram (10.1.1(20)).
10925
10926 if Is_Child_Unit (S) then
10927 Error_Msg_N
10928 ("child unit overrides inherited subprogram in parent",
10929 S);
10930 return;
10931 end if;
10932
10933 if Is_Non_Overriding_Operation (E, S) then
10934 Enter_Overloaded_Entity (S);
10935
10936 if No (Derived_Type)
10937 or else Is_Tagged_Type (Derived_Type)
10938 then
10939 Check_Dispatching_Operation (S, Empty);
10940 end if;
10941
10942 return;
10943 end if;
10944
10945 -- E is a derived operation or an internal operator which
10946 -- is being overridden. Remove E from further visibility.
10947 -- Furthermore, if E is a dispatching operation, it must be
10948 -- replaced in the list of primitive operations of its type
10949 -- (see Override_Dispatching_Operation).
10950
10951 Overridden_Subp := E;
10952
10953 -- It is possible for E to be in the current scope and
10954 -- yet not in the entity chain. This can only occur in a
10955 -- generic context where E is an implicit concatenation
10956 -- in the formal part, because in a generic body the
10957 -- entity chain starts with the formals.
10958
10959 -- In GNATprove mode, a wrapper for an operation with
10960 -- axiomatization may be a homonym of another declaration
10961 -- for an actual subprogram (needs refinement ???).
10962
10963 if No (Prev_Entity (E)) then
10964 if In_Instance
10965 and then GNATprove_Mode
10966 and then
10967 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10968 N_Subprogram_Renaming_Declaration
10969 then
10970 return;
10971 else
10972 pragma Assert (Chars (E) = Name_Op_Concat);
10973 null;
10974 end if;
10975 end if;
10976
10977 -- E must be removed both from the entity_list of the
10978 -- current scope, and from the visibility chain.
10979
10980 if Debug_Flag_E then
10981 Write_Str ("Override implicit operation ");
10982 Write_Int (Int (E));
10983 Write_Eol;
10984 end if;
10985
10986 -- If E is a predefined concatenation, it stands for four
10987 -- different operations. As a result, a single explicit
10988 -- declaration does not hide it. In a possible ambiguous
10989 -- situation, Disambiguate chooses the user-defined op,
10990 -- so it is correct to retain the previous internal one.
10991
10992 if Chars (E) /= Name_Op_Concat
10993 or else Ekind (E) /= E_Operator
10994 then
10995 -- For nondispatching derived operations that are
10996 -- overridden by a subprogram declared in the private
10997 -- part of a package, we retain the derived subprogram
10998 -- but mark it as not immediately visible. If the
10999 -- derived operation was declared in the visible part
11000 -- then this ensures that it will still be visible
11001 -- outside the package with the proper signature
11002 -- (calls from outside must also be directed to this
11003 -- version rather than the overriding one, unlike the
11004 -- dispatching case). Calls from inside the package
11005 -- will still resolve to the overriding subprogram
11006 -- since the derived one is marked as not visible
11007 -- within the package.
11008
11009 -- If the private operation is dispatching, we achieve
11010 -- the overriding by keeping the implicit operation
11011 -- but setting its alias to be the overriding one. In
11012 -- this fashion the proper body is executed in all
11013 -- cases, but the original signature is used outside
11014 -- of the package.
11015
11016 -- If the overriding is not in the private part, we
11017 -- remove the implicit operation altogether.
11018
11019 if Is_Private_Declaration (S) then
11020 if not Is_Dispatching_Operation (E) then
11021 Set_Is_Immediately_Visible (E, False);
11022 else
11023 -- Work done in Override_Dispatching_Operation, so
11024 -- nothing else needs to be done here.
11025
11026 null;
11027 end if;
11028
11029 else
11030 Remove_Entity_And_Homonym (E);
11031 end if;
11032 end if;
11033
11034 Enter_Overloaded_Entity (S);
11035
11036 -- For entities generated by Derive_Subprograms the
11037 -- overridden operation is the inherited primitive
11038 -- (which is available through the attribute alias).
11039
11040 if not (Comes_From_Source (E))
11041 and then Is_Dispatching_Operation (E)
11042 and then Find_Dispatching_Type (E) =
11043 Find_Dispatching_Type (S)
11044 and then Present (Alias (E))
11045 and then Comes_From_Source (Alias (E))
11046 then
11047 Set_Overridden_Operation (S, Alias (E));
11048 Inherit_Subprogram_Contract (S, Alias (E));
11049
11050 -- Normal case of setting entity as overridden
11051
11052 -- Note: Static_Initialization and Overridden_Operation
11053 -- attributes use the same field in subprogram entities.
11054 -- Static_Initialization is only defined for internal
11055 -- initialization procedures, where Overridden_Operation
11056 -- is irrelevant. Therefore the setting of this attribute
11057 -- must check whether the target is an init_proc.
11058
11059 elsif not Is_Init_Proc (S) then
11060 Set_Overridden_Operation (S, E);
11061 Inherit_Subprogram_Contract (S, E);
11062 end if;
11063
11064 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11065
11066 -- The Ghost policy in effect at the point of declaration
11067 -- of a parent subprogram and an overriding subprogram
11068 -- must match (SPARK RM 6.9(17)).
11069
11070 Check_Ghost_Overriding (S, E);
11071
11072 -- If S is a user-defined subprogram or a null procedure
11073 -- expanded to override an inherited null procedure, or a
11074 -- predefined dispatching primitive then indicate that E
11075 -- overrides the operation from which S is inherited.
11076
11077 if Comes_From_Source (S)
11078 or else
11079 (Present (Parent (S))
11080 and then Nkind (Parent (S)) = N_Procedure_Specification
11081 and then Null_Present (Parent (S)))
11082 or else
11083 (Present (Alias (E))
11084 and then
11085 Is_Predefined_Dispatching_Operation (Alias (E)))
11086 then
11087 if Present (Alias (E)) then
11088 Set_Overridden_Operation (S, Alias (E));
11089 Inherit_Subprogram_Contract (S, Alias (E));
11090 end if;
11091 end if;
11092
11093 if Is_Dispatching_Operation (E) then
11094
11095 -- An overriding dispatching subprogram inherits the
11096 -- convention of the overridden subprogram (AI-117).
11097
11098 Set_Convention (S, Convention (E));
11099 Check_Dispatching_Operation (S, E);
11100
11101 else
11102 Check_Dispatching_Operation (S, Empty);
11103 end if;
11104
11105 Check_For_Primitive_Subprogram
11106 (Is_Primitive_Subp, Is_Overriding => True);
11107 goto Check_Inequality;
11108
11109 -- Apparent redeclarations in instances can occur when two
11110 -- formal types get the same actual type. The subprograms in
11111 -- in the instance are legal, even if not callable from the
11112 -- outside. Calls from within are disambiguated elsewhere.
11113 -- For dispatching operations in the visible part, the usual
11114 -- rules apply, and operations with the same profile are not
11115 -- legal (B830001).
11116
11117 elsif (In_Instance_Visible_Part
11118 and then not Is_Dispatching_Operation (E))
11119 or else In_Instance_Not_Visible
11120 then
11121 null;
11122
11123 -- Here we have a real error (identical profile)
11124
11125 else
11126 Error_Msg_Sloc := Sloc (E);
11127
11128 -- Avoid cascaded errors if the entity appears in
11129 -- subsequent calls.
11130
11131 Set_Scope (S, Current_Scope);
11132
11133 -- Generate error, with extra useful warning for the case
11134 -- of a generic instance with no completion.
11135
11136 if Is_Generic_Instance (S)
11137 and then not Has_Completion (E)
11138 then
11139 Error_Msg_N
11140 ("instantiation cannot provide body for&", S);
11141 Error_Msg_N ("\& conflicts with declaration#", S);
11142 else
11143 Error_Msg_N ("& conflicts with declaration#", S);
11144 end if;
11145
11146 return;
11147 end if;
11148
11149 else
11150 -- If one subprogram has an access parameter and the other
11151 -- a parameter of an access type, calls to either might be
11152 -- ambiguous. Verify that parameters match except for the
11153 -- access parameter.
11154
11155 if May_Hide_Profile then
11156 declare
11157 F1 : Entity_Id;
11158 F2 : Entity_Id;
11159
11160 begin
11161 F1 := First_Formal (S);
11162 F2 := First_Formal (E);
11163 while Present (F1) and then Present (F2) loop
11164 if Is_Access_Type (Etype (F1)) then
11165 if not Is_Access_Type (Etype (F2))
11166 or else not Conforming_Types
11167 (Designated_Type (Etype (F1)),
11168 Designated_Type (Etype (F2)),
11169 Type_Conformant)
11170 then
11171 May_Hide_Profile := False;
11172 end if;
11173
11174 elsif
11175 not Conforming_Types
11176 (Etype (F1), Etype (F2), Type_Conformant)
11177 then
11178 May_Hide_Profile := False;
11179 end if;
11180
11181 Next_Formal (F1);
11182 Next_Formal (F2);
11183 end loop;
11184
11185 if May_Hide_Profile
11186 and then No (F1)
11187 and then No (F2)
11188 then
11189 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11190 end if;
11191 end;
11192 end if;
11193 end if;
11194
11195 E := Homonym (E);
11196 end loop;
11197
11198 -- On exit, we know that S is a new entity
11199
11200 Enter_Overloaded_Entity (S);
11201 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11202 Check_Overriding_Indicator
11203 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11204
11205 -- The Ghost policy in effect at the point of declaration of a parent
11206 -- subprogram and an overriding subprogram must match
11207 -- (SPARK RM 6.9(17)).
11208
11209 Check_Ghost_Overriding (S, Overridden_Subp);
11210
11211 -- Overloading is not allowed in SPARK, except for operators
11212
11213 if Nkind (S) /= N_Defining_Operator_Symbol then
11214 Error_Msg_Sloc := Sloc (Homonym (S));
11215 Check_SPARK_05_Restriction
11216 ("overloading not allowed with entity#", S);
11217 end if;
11218
11219 -- If S is a derived operation for an untagged type then by
11220 -- definition it's not a dispatching operation (even if the parent
11221 -- operation was dispatching), so Check_Dispatching_Operation is not
11222 -- called in that case.
11223
11224 if No (Derived_Type)
11225 or else Is_Tagged_Type (Derived_Type)
11226 then
11227 Check_Dispatching_Operation (S, Empty);
11228 end if;
11229 end if;
11230
11231 -- If this is a user-defined equality operator that is not a derived
11232 -- subprogram, create the corresponding inequality. If the operation is
11233 -- dispatching, the expansion is done elsewhere, and we do not create
11234 -- an explicit inequality operation.
11235
11236 <<Check_Inequality>>
11237 if Chars (S) = Name_Op_Eq
11238 and then Etype (S) = Standard_Boolean
11239 and then Present (Parent (S))
11240 and then not Is_Dispatching_Operation (S)
11241 then
11242 Make_Inequality_Operator (S);
11243 Check_Untagged_Equality (S);
11244 end if;
11245 end New_Overloaded_Entity;
11246
11247 ----------------------------------
11248 -- Preanalyze_Formal_Expression --
11249 ----------------------------------
11250
11251 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
11252 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
11253 begin
11254 In_Spec_Expression := True;
11255 Preanalyze_With_Freezing_And_Resolve (N, T);
11256 In_Spec_Expression := Save_In_Spec_Expression;
11257 end Preanalyze_Formal_Expression;
11258
11259 ---------------------
11260 -- Process_Formals --
11261 ---------------------
11262
11263 procedure Process_Formals
11264 (T : List_Id;
11265 Related_Nod : Node_Id)
11266 is
11267 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11268 -- Determine whether an access type designates a type coming from a
11269 -- limited view.
11270
11271 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11272 -- Check whether the default has a class-wide type. After analysis the
11273 -- default has the type of the formal, so we must also check explicitly
11274 -- for an access attribute.
11275
11276 ----------------------------------
11277 -- Designates_From_Limited_With --
11278 ----------------------------------
11279
11280 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11281 Desig : Entity_Id := Typ;
11282
11283 begin
11284 if Is_Access_Type (Desig) then
11285 Desig := Directly_Designated_Type (Desig);
11286 end if;
11287
11288 if Is_Class_Wide_Type (Desig) then
11289 Desig := Root_Type (Desig);
11290 end if;
11291
11292 return
11293 Ekind (Desig) = E_Incomplete_Type
11294 and then From_Limited_With (Desig);
11295 end Designates_From_Limited_With;
11296
11297 ---------------------------
11298 -- Is_Class_Wide_Default --
11299 ---------------------------
11300
11301 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11302 begin
11303 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11304 or else (Nkind (D) = N_Attribute_Reference
11305 and then Attribute_Name (D) = Name_Access
11306 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11307 end Is_Class_Wide_Default;
11308
11309 -- Local variables
11310
11311 Context : constant Node_Id := Parent (Parent (T));
11312 Default : Node_Id;
11313 Formal : Entity_Id;
11314 Formal_Type : Entity_Id;
11315 Param_Spec : Node_Id;
11316 Ptype : Entity_Id;
11317
11318 Num_Out_Params : Nat := 0;
11319 First_Out_Param : Entity_Id := Empty;
11320 -- Used for setting Is_Only_Out_Parameter
11321
11322 -- Start of processing for Process_Formals
11323
11324 begin
11325 -- In order to prevent premature use of the formals in the same formal
11326 -- part, the Ekind is left undefined until all default expressions are
11327 -- analyzed. The Ekind is established in a separate loop at the end.
11328
11329 Param_Spec := First (T);
11330 while Present (Param_Spec) loop
11331 Formal := Defining_Identifier (Param_Spec);
11332 Set_Never_Set_In_Source (Formal, True);
11333 Enter_Name (Formal);
11334
11335 -- Case of ordinary parameters
11336
11337 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11338 Find_Type (Parameter_Type (Param_Spec));
11339 Ptype := Parameter_Type (Param_Spec);
11340
11341 if Ptype = Error then
11342 goto Continue;
11343 end if;
11344
11345 -- Protect against malformed parameter types
11346
11347 if Nkind (Ptype) not in N_Has_Entity then
11348 Formal_Type := Any_Type;
11349 else
11350 Formal_Type := Entity (Ptype);
11351 end if;
11352
11353 if Is_Incomplete_Type (Formal_Type)
11354 or else
11355 (Is_Class_Wide_Type (Formal_Type)
11356 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11357 then
11358 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11359 -- primitive operations, as long as their completion is
11360 -- in the same declarative part. If in the private part
11361 -- this means that the type cannot be a Taft-amendment type.
11362 -- Check is done on package exit. For access to subprograms,
11363 -- the use is legal for Taft-amendment types.
11364
11365 -- Ada 2012: tagged incomplete types are allowed as generic
11366 -- formal types. They do not introduce dependencies and the
11367 -- corresponding generic subprogram does not have a delayed
11368 -- freeze, because it does not need a freeze node. However,
11369 -- it is still the case that untagged incomplete types cannot
11370 -- be Taft-amendment types and must be completed in private
11371 -- part, so the subprogram must appear in the list of private
11372 -- dependents of the type.
11373
11374 if Is_Tagged_Type (Formal_Type)
11375 or else (Ada_Version >= Ada_2012
11376 and then not From_Limited_With (Formal_Type)
11377 and then not Is_Generic_Type (Formal_Type))
11378 then
11379 if Ekind (Scope (Current_Scope)) = E_Package
11380 and then not Is_Generic_Type (Formal_Type)
11381 and then not Is_Class_Wide_Type (Formal_Type)
11382 then
11383 if not Nkind_In
11384 (Parent (T), N_Access_Function_Definition,
11385 N_Access_Procedure_Definition)
11386 then
11387 Append_Elmt (Current_Scope,
11388 Private_Dependents (Base_Type (Formal_Type)));
11389
11390 -- Freezing is delayed to ensure that Register_Prim
11391 -- will get called for this operation, which is needed
11392 -- in cases where static dispatch tables aren't built.
11393 -- (Note that the same is done for controlling access
11394 -- parameter cases in function Access_Definition.)
11395
11396 if not Is_Thunk (Current_Scope) then
11397 Set_Has_Delayed_Freeze (Current_Scope);
11398 end if;
11399 end if;
11400 end if;
11401
11402 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11403 N_Access_Procedure_Definition)
11404 then
11405 -- AI05-0151: Tagged incomplete types are allowed in all
11406 -- formal parts. Untagged incomplete types are not allowed
11407 -- in bodies. Limited views of either kind are not allowed
11408 -- if there is no place at which the non-limited view can
11409 -- become available.
11410
11411 -- Incomplete formal untagged types are not allowed in
11412 -- subprogram bodies (but are legal in their declarations).
11413 -- This excludes bodies created for null procedures, which
11414 -- are basic declarations.
11415
11416 if Is_Generic_Type (Formal_Type)
11417 and then not Is_Tagged_Type (Formal_Type)
11418 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11419 then
11420 Error_Msg_N
11421 ("invalid use of formal incomplete type", Param_Spec);
11422
11423 elsif Ada_Version >= Ada_2012 then
11424 if Is_Tagged_Type (Formal_Type)
11425 and then (not From_Limited_With (Formal_Type)
11426 or else not In_Package_Body)
11427 then
11428 null;
11429
11430 elsif Nkind_In (Context, N_Accept_Statement,
11431 N_Accept_Alternative,
11432 N_Entry_Body)
11433 or else (Nkind (Context) = N_Subprogram_Body
11434 and then Comes_From_Source (Context))
11435 then
11436 Error_Msg_NE
11437 ("invalid use of untagged incomplete type &",
11438 Ptype, Formal_Type);
11439 end if;
11440
11441 else
11442 Error_Msg_NE
11443 ("invalid use of incomplete type&",
11444 Param_Spec, Formal_Type);
11445
11446 -- Further checks on the legality of incomplete types
11447 -- in formal parts are delayed until the freeze point
11448 -- of the enclosing subprogram or access to subprogram.
11449 end if;
11450 end if;
11451
11452 elsif Ekind (Formal_Type) = E_Void then
11453 Error_Msg_NE
11454 ("premature use of&",
11455 Parameter_Type (Param_Spec), Formal_Type);
11456 end if;
11457
11458 -- Ada 2012 (AI-142): Handle aliased parameters
11459
11460 if Ada_Version >= Ada_2012
11461 and then Aliased_Present (Param_Spec)
11462 then
11463 Set_Is_Aliased (Formal);
11464 end if;
11465
11466 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11467 -- declaration corresponding to the null-excluding type of the
11468 -- formal in the enclosing scope. Finally, replace the parameter
11469 -- type of the formal with the internal subtype.
11470
11471 if Ada_Version >= Ada_2005
11472 and then Null_Exclusion_Present (Param_Spec)
11473 then
11474 if not Is_Access_Type (Formal_Type) then
11475 Error_Msg_N
11476 ("`NOT NULL` allowed only for an access type", Param_Spec);
11477
11478 else
11479 if Can_Never_Be_Null (Formal_Type)
11480 and then Comes_From_Source (Related_Nod)
11481 then
11482 Error_Msg_NE
11483 ("`NOT NULL` not allowed (& already excludes null)",
11484 Param_Spec, Formal_Type);
11485 end if;
11486
11487 Formal_Type :=
11488 Create_Null_Excluding_Itype
11489 (T => Formal_Type,
11490 Related_Nod => Related_Nod,
11491 Scope_Id => Scope (Current_Scope));
11492
11493 -- If the designated type of the itype is an itype that is
11494 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11495 -- on the access subtype, to prevent order-of-elaboration
11496 -- issues in the backend.
11497
11498 -- Example:
11499 -- type T is access procedure;
11500 -- procedure Op (O : not null T);
11501
11502 if Is_Itype (Directly_Designated_Type (Formal_Type))
11503 and then
11504 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11505 then
11506 Set_Has_Delayed_Freeze (Formal_Type);
11507 end if;
11508 end if;
11509 end if;
11510
11511 -- An access formal type
11512
11513 else
11514 Formal_Type :=
11515 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11516
11517 -- No need to continue if we already notified errors
11518
11519 if not Present (Formal_Type) then
11520 return;
11521 end if;
11522
11523 -- Ada 2005 (AI-254)
11524
11525 declare
11526 AD : constant Node_Id :=
11527 Access_To_Subprogram_Definition
11528 (Parameter_Type (Param_Spec));
11529 begin
11530 if Present (AD) and then Protected_Present (AD) then
11531 Formal_Type :=
11532 Replace_Anonymous_Access_To_Protected_Subprogram
11533 (Param_Spec);
11534 end if;
11535 end;
11536 end if;
11537
11538 Set_Etype (Formal, Formal_Type);
11539
11540 -- Deal with default expression if present
11541
11542 Default := Expression (Param_Spec);
11543
11544 if Present (Default) then
11545 Check_SPARK_05_Restriction
11546 ("default expression is not allowed", Default);
11547
11548 if Out_Present (Param_Spec) then
11549 Error_Msg_N
11550 ("default initialization only allowed for IN parameters",
11551 Param_Spec);
11552 end if;
11553
11554 -- Do the special preanalysis of the expression (see section on
11555 -- "Handling of Default Expressions" in the spec of package Sem).
11556
11557 Preanalyze_Formal_Expression (Default, Formal_Type);
11558
11559 -- An access to constant cannot be the default for
11560 -- an access parameter that is an access to variable.
11561
11562 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11563 and then not Is_Access_Constant (Formal_Type)
11564 and then Is_Access_Type (Etype (Default))
11565 and then Is_Access_Constant (Etype (Default))
11566 then
11567 Error_Msg_N
11568 ("formal that is access to variable cannot be initialized "
11569 & "with an access-to-constant expression", Default);
11570 end if;
11571
11572 -- Check that the designated type of an access parameter's default
11573 -- is not a class-wide type unless the parameter's designated type
11574 -- is also class-wide.
11575
11576 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11577 and then not Designates_From_Limited_With (Formal_Type)
11578 and then Is_Class_Wide_Default (Default)
11579 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11580 then
11581 Error_Msg_N
11582 ("access to class-wide expression not allowed here", Default);
11583 end if;
11584
11585 -- Check incorrect use of dynamically tagged expressions
11586
11587 if Is_Tagged_Type (Formal_Type) then
11588 Check_Dynamically_Tagged_Expression
11589 (Expr => Default,
11590 Typ => Formal_Type,
11591 Related_Nod => Default);
11592 end if;
11593 end if;
11594
11595 -- Ada 2005 (AI-231): Static checks
11596
11597 if Ada_Version >= Ada_2005
11598 and then Is_Access_Type (Etype (Formal))
11599 and then Can_Never_Be_Null (Etype (Formal))
11600 then
11601 Null_Exclusion_Static_Checks (Param_Spec);
11602 end if;
11603
11604 -- The following checks are relevant only when SPARK_Mode is on as
11605 -- these are not standard Ada legality rules.
11606
11607 if SPARK_Mode = On then
11608 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11609
11610 -- A function cannot have a parameter of mode IN OUT or OUT
11611 -- (SPARK RM 6.1).
11612
11613 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11614 Error_Msg_N
11615 ("function cannot have parameter of mode `OUT` or "
11616 & "`IN OUT`", Formal);
11617 end if;
11618
11619 -- A procedure cannot have an effectively volatile formal
11620 -- parameter of mode IN because it behaves as a constant
11621 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11622
11623 elsif Ekind (Scope (Formal)) = E_Procedure
11624 and then Ekind (Formal) = E_In_Parameter
11625 and then Is_Effectively_Volatile (Formal)
11626 then
11627 Error_Msg_N
11628 ("formal parameter of mode `IN` cannot be volatile", Formal);
11629 end if;
11630 end if;
11631
11632 <<Continue>>
11633 Next (Param_Spec);
11634 end loop;
11635
11636 -- If this is the formal part of a function specification, analyze the
11637 -- subtype mark in the context where the formals are visible but not
11638 -- yet usable, and may hide outer homographs.
11639
11640 if Nkind (Related_Nod) = N_Function_Specification then
11641 Analyze_Return_Type (Related_Nod);
11642 end if;
11643
11644 -- Now set the kind (mode) of each formal
11645
11646 Param_Spec := First (T);
11647 while Present (Param_Spec) loop
11648 Formal := Defining_Identifier (Param_Spec);
11649 Set_Formal_Mode (Formal);
11650
11651 if Ekind (Formal) = E_In_Parameter then
11652 Set_Default_Value (Formal, Expression (Param_Spec));
11653
11654 if Present (Expression (Param_Spec)) then
11655 Default := Expression (Param_Spec);
11656
11657 if Is_Scalar_Type (Etype (Default)) then
11658 if Nkind (Parameter_Type (Param_Spec)) /=
11659 N_Access_Definition
11660 then
11661 Formal_Type := Entity (Parameter_Type (Param_Spec));
11662 else
11663 Formal_Type :=
11664 Access_Definition
11665 (Related_Nod, Parameter_Type (Param_Spec));
11666 end if;
11667
11668 Apply_Scalar_Range_Check (Default, Formal_Type);
11669 end if;
11670 end if;
11671
11672 elsif Ekind (Formal) = E_Out_Parameter then
11673 Num_Out_Params := Num_Out_Params + 1;
11674
11675 if Num_Out_Params = 1 then
11676 First_Out_Param := Formal;
11677 end if;
11678
11679 elsif Ekind (Formal) = E_In_Out_Parameter then
11680 Num_Out_Params := Num_Out_Params + 1;
11681 end if;
11682
11683 -- Skip remaining processing if formal type was in error
11684
11685 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11686 goto Next_Parameter;
11687 end if;
11688
11689 -- Force call by reference if aliased
11690
11691 declare
11692 Conv : constant Convention_Id := Convention (Etype (Formal));
11693 begin
11694 if Is_Aliased (Formal) then
11695 Set_Mechanism (Formal, By_Reference);
11696
11697 -- Warn if user asked this to be passed by copy
11698
11699 if Conv = Convention_Ada_Pass_By_Copy then
11700 Error_Msg_N
11701 ("cannot pass aliased parameter & by copy??", Formal);
11702 end if;
11703
11704 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11705
11706 elsif Conv = Convention_Ada_Pass_By_Copy then
11707 Set_Mechanism (Formal, By_Copy);
11708
11709 elsif Conv = Convention_Ada_Pass_By_Reference then
11710 Set_Mechanism (Formal, By_Reference);
11711 end if;
11712 end;
11713
11714 <<Next_Parameter>>
11715 Next (Param_Spec);
11716 end loop;
11717
11718 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11719 Set_Is_Only_Out_Parameter (First_Out_Param);
11720 end if;
11721 end Process_Formals;
11722
11723 ----------------------------
11724 -- Reference_Body_Formals --
11725 ----------------------------
11726
11727 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11728 Fs : Entity_Id;
11729 Fb : Entity_Id;
11730
11731 begin
11732 if Error_Posted (Spec) then
11733 return;
11734 end if;
11735
11736 -- Iterate over both lists. They may be of different lengths if the two
11737 -- specs are not conformant.
11738
11739 Fs := First_Formal (Spec);
11740 Fb := First_Formal (Bod);
11741 while Present (Fs) and then Present (Fb) loop
11742 Generate_Reference (Fs, Fb, 'b');
11743
11744 if Style_Check then
11745 Style.Check_Identifier (Fb, Fs);
11746 end if;
11747
11748 Set_Spec_Entity (Fb, Fs);
11749 Set_Referenced (Fs, False);
11750 Next_Formal (Fs);
11751 Next_Formal (Fb);
11752 end loop;
11753 end Reference_Body_Formals;
11754
11755 -------------------------
11756 -- Set_Actual_Subtypes --
11757 -------------------------
11758
11759 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11760 Decl : Node_Id;
11761 Formal : Entity_Id;
11762 T : Entity_Id;
11763 First_Stmt : Node_Id := Empty;
11764 AS_Needed : Boolean;
11765
11766 begin
11767 -- If this is an empty initialization procedure, no need to create
11768 -- actual subtypes (small optimization).
11769
11770 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11771 return;
11772
11773 -- Within a predicate function we do not want to generate local
11774 -- subtypes that may generate nested predicate functions.
11775
11776 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11777 return;
11778 end if;
11779
11780 -- The subtype declarations may freeze the formals. The body generated
11781 -- for an expression function is not a freeze point, so do not emit
11782 -- these declarations (small loss of efficiency in rare cases).
11783
11784 if Nkind (N) = N_Subprogram_Body
11785 and then Was_Expression_Function (N)
11786 then
11787 return;
11788 end if;
11789
11790 Formal := First_Formal (Subp);
11791 while Present (Formal) loop
11792 T := Etype (Formal);
11793
11794 -- We never need an actual subtype for a constrained formal
11795
11796 if Is_Constrained (T) then
11797 AS_Needed := False;
11798
11799 -- If we have unknown discriminants, then we do not need an actual
11800 -- subtype, or more accurately we cannot figure it out. Note that
11801 -- all class-wide types have unknown discriminants.
11802
11803 elsif Has_Unknown_Discriminants (T) then
11804 AS_Needed := False;
11805
11806 -- At this stage we have an unconstrained type that may need an
11807 -- actual subtype. For sure the actual subtype is needed if we have
11808 -- an unconstrained array type. However, in an instance, the type
11809 -- may appear as a subtype of the full view, while the actual is
11810 -- in fact private (in which case no actual subtype is needed) so
11811 -- check the kind of the base type.
11812
11813 elsif Is_Array_Type (Base_Type (T)) then
11814 AS_Needed := True;
11815
11816 -- The only other case needing an actual subtype is an unconstrained
11817 -- record type which is an IN parameter (we cannot generate actual
11818 -- subtypes for the OUT or IN OUT case, since an assignment can
11819 -- change the discriminant values. However we exclude the case of
11820 -- initialization procedures, since discriminants are handled very
11821 -- specially in this context, see the section entitled "Handling of
11822 -- Discriminants" in Einfo.
11823
11824 -- We also exclude the case of Discrim_SO_Functions (functions used
11825 -- in front-end layout mode for size/offset values), since in such
11826 -- functions only discriminants are referenced, and not only are such
11827 -- subtypes not needed, but they cannot always be generated, because
11828 -- of order of elaboration issues.
11829
11830 elsif Is_Record_Type (T)
11831 and then Ekind (Formal) = E_In_Parameter
11832 and then Chars (Formal) /= Name_uInit
11833 and then not Is_Unchecked_Union (T)
11834 and then not Is_Discrim_SO_Function (Subp)
11835 then
11836 AS_Needed := True;
11837
11838 -- All other cases do not need an actual subtype
11839
11840 else
11841 AS_Needed := False;
11842 end if;
11843
11844 -- Generate actual subtypes for unconstrained arrays and
11845 -- unconstrained discriminated records.
11846
11847 if AS_Needed then
11848 if Nkind (N) = N_Accept_Statement then
11849
11850 -- If expansion is active, the formal is replaced by a local
11851 -- variable that renames the corresponding entry of the
11852 -- parameter block, and it is this local variable that may
11853 -- require an actual subtype.
11854
11855 if Expander_Active then
11856 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11857 else
11858 Decl := Build_Actual_Subtype (T, Formal);
11859 end if;
11860
11861 if Present (Handled_Statement_Sequence (N)) then
11862 First_Stmt :=
11863 First (Statements (Handled_Statement_Sequence (N)));
11864 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11865 Mark_Rewrite_Insertion (Decl);
11866 else
11867 -- If the accept statement has no body, there will be no
11868 -- reference to the actuals, so no need to compute actual
11869 -- subtypes.
11870
11871 return;
11872 end if;
11873
11874 else
11875 Decl := Build_Actual_Subtype (T, Formal);
11876 Prepend (Decl, Declarations (N));
11877 Mark_Rewrite_Insertion (Decl);
11878 end if;
11879
11880 -- The declaration uses the bounds of an existing object, and
11881 -- therefore needs no constraint checks.
11882
11883 Analyze (Decl, Suppress => All_Checks);
11884 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11885
11886 -- We need to freeze manually the generated type when it is
11887 -- inserted anywhere else than in a declarative part.
11888
11889 if Present (First_Stmt) then
11890 Insert_List_Before_And_Analyze (First_Stmt,
11891 Freeze_Entity (Defining_Identifier (Decl), N));
11892
11893 -- Ditto if the type has a dynamic predicate, because the
11894 -- generated function will mention the actual subtype. The
11895 -- predicate may come from an explicit aspect of be inherited.
11896
11897 elsif Has_Predicates (T) then
11898 Insert_List_Before_And_Analyze (Decl,
11899 Freeze_Entity (Defining_Identifier (Decl), N));
11900 end if;
11901
11902 if Nkind (N) = N_Accept_Statement
11903 and then Expander_Active
11904 then
11905 Set_Actual_Subtype (Renamed_Object (Formal),
11906 Defining_Identifier (Decl));
11907 else
11908 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11909 end if;
11910 end if;
11911
11912 Next_Formal (Formal);
11913 end loop;
11914 end Set_Actual_Subtypes;
11915
11916 ---------------------
11917 -- Set_Formal_Mode --
11918 ---------------------
11919
11920 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11921 Spec : constant Node_Id := Parent (Formal_Id);
11922 Id : constant Entity_Id := Scope (Formal_Id);
11923
11924 begin
11925 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11926 -- since we ensure that corresponding actuals are always valid at the
11927 -- point of the call.
11928
11929 if Out_Present (Spec) then
11930 if Ekind_In (Id, E_Entry, E_Entry_Family)
11931 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11932 then
11933 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11934 end if;
11935
11936 if Ekind_In (Id, E_Function, E_Generic_Function) then
11937
11938 -- [IN] OUT parameters allowed for functions in Ada 2012
11939
11940 if Ada_Version >= Ada_2012 then
11941
11942 -- Even in Ada 2012 operators can only have IN parameters
11943
11944 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11945 Error_Msg_N ("operators can only have IN parameters", Spec);
11946 end if;
11947
11948 if In_Present (Spec) then
11949 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11950 else
11951 Set_Ekind (Formal_Id, E_Out_Parameter);
11952 end if;
11953
11954 -- But not in earlier versions of Ada
11955
11956 else
11957 Error_Msg_N ("functions can only have IN parameters", Spec);
11958 Set_Ekind (Formal_Id, E_In_Parameter);
11959 end if;
11960
11961 elsif In_Present (Spec) then
11962 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11963
11964 else
11965 Set_Ekind (Formal_Id, E_Out_Parameter);
11966 Set_Never_Set_In_Source (Formal_Id, True);
11967 Set_Is_True_Constant (Formal_Id, False);
11968 Set_Current_Value (Formal_Id, Empty);
11969 end if;
11970
11971 else
11972 Set_Ekind (Formal_Id, E_In_Parameter);
11973 end if;
11974
11975 -- Set Is_Known_Non_Null for access parameters since the language
11976 -- guarantees that access parameters are always non-null. We also set
11977 -- Can_Never_Be_Null, since there is no way to change the value.
11978
11979 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11980
11981 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11982 -- null; In Ada 2005, only if then null_exclusion is explicit.
11983
11984 if Ada_Version < Ada_2005
11985 or else Can_Never_Be_Null (Etype (Formal_Id))
11986 then
11987 Set_Is_Known_Non_Null (Formal_Id);
11988 Set_Can_Never_Be_Null (Formal_Id);
11989 end if;
11990
11991 -- Ada 2005 (AI-231): Null-exclusion access subtype
11992
11993 elsif Is_Access_Type (Etype (Formal_Id))
11994 and then Can_Never_Be_Null (Etype (Formal_Id))
11995 then
11996 Set_Is_Known_Non_Null (Formal_Id);
11997
11998 -- We can also set Can_Never_Be_Null (thus preventing some junk
11999 -- access checks) for the case of an IN parameter, which cannot
12000 -- be changed, or for an IN OUT parameter, which can be changed but
12001 -- not to a null value. But for an OUT parameter, the initial value
12002 -- passed in can be null, so we can't set this flag in that case.
12003
12004 if Ekind (Formal_Id) /= E_Out_Parameter then
12005 Set_Can_Never_Be_Null (Formal_Id);
12006 end if;
12007 end if;
12008
12009 Set_Mechanism (Formal_Id, Default_Mechanism);
12010 Set_Formal_Validity (Formal_Id);
12011 end Set_Formal_Mode;
12012
12013 -------------------------
12014 -- Set_Formal_Validity --
12015 -------------------------
12016
12017 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12018 begin
12019 -- If no validity checking, then we cannot assume anything about the
12020 -- validity of parameters, since we do not know there is any checking
12021 -- of the validity on the call side.
12022
12023 if not Validity_Checks_On then
12024 return;
12025
12026 -- If validity checking for parameters is enabled, this means we are
12027 -- not supposed to make any assumptions about argument values.
12028
12029 elsif Validity_Check_Parameters then
12030 return;
12031
12032 -- If we are checking in parameters, we will assume that the caller is
12033 -- also checking parameters, so we can assume the parameter is valid.
12034
12035 elsif Ekind (Formal_Id) = E_In_Parameter
12036 and then Validity_Check_In_Params
12037 then
12038 Set_Is_Known_Valid (Formal_Id, True);
12039
12040 -- Similar treatment for IN OUT parameters
12041
12042 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12043 and then Validity_Check_In_Out_Params
12044 then
12045 Set_Is_Known_Valid (Formal_Id, True);
12046 end if;
12047 end Set_Formal_Validity;
12048
12049 ------------------------
12050 -- Subtype_Conformant --
12051 ------------------------
12052
12053 function Subtype_Conformant
12054 (New_Id : Entity_Id;
12055 Old_Id : Entity_Id;
12056 Skip_Controlling_Formals : Boolean := False) return Boolean
12057 is
12058 Result : Boolean;
12059 begin
12060 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12061 Skip_Controlling_Formals => Skip_Controlling_Formals);
12062 return Result;
12063 end Subtype_Conformant;
12064
12065 ---------------------
12066 -- Type_Conformant --
12067 ---------------------
12068
12069 function Type_Conformant
12070 (New_Id : Entity_Id;
12071 Old_Id : Entity_Id;
12072 Skip_Controlling_Formals : Boolean := False) return Boolean
12073 is
12074 Result : Boolean;
12075 begin
12076 May_Hide_Profile := False;
12077 Check_Conformance
12078 (New_Id, Old_Id, Type_Conformant, False, Result,
12079 Skip_Controlling_Formals => Skip_Controlling_Formals);
12080 return Result;
12081 end Type_Conformant;
12082
12083 -------------------------------
12084 -- Valid_Operator_Definition --
12085 -------------------------------
12086
12087 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12088 N : Integer := 0;
12089 F : Entity_Id;
12090 Id : constant Name_Id := Chars (Designator);
12091 N_OK : Boolean;
12092
12093 begin
12094 F := First_Formal (Designator);
12095 while Present (F) loop
12096 N := N + 1;
12097
12098 if Present (Default_Value (F)) then
12099 Error_Msg_N
12100 ("default values not allowed for operator parameters",
12101 Parent (F));
12102
12103 -- For function instantiations that are operators, we must check
12104 -- separately that the corresponding generic only has in-parameters.
12105 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12106 -- an error could not arise in earlier versions of the language.
12107
12108 elsif Ekind (F) /= E_In_Parameter then
12109 Error_Msg_N ("operators can only have IN parameters", F);
12110 end if;
12111
12112 Next_Formal (F);
12113 end loop;
12114
12115 -- Verify that user-defined operators have proper number of arguments
12116 -- First case of operators which can only be unary
12117
12118 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12119 N_OK := (N = 1);
12120
12121 -- Case of operators which can be unary or binary
12122
12123 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12124 N_OK := (N in 1 .. 2);
12125
12126 -- All other operators can only be binary
12127
12128 else
12129 N_OK := (N = 2);
12130 end if;
12131
12132 if not N_OK then
12133 Error_Msg_N
12134 ("incorrect number of arguments for operator", Designator);
12135 end if;
12136
12137 if Id = Name_Op_Ne
12138 and then Base_Type (Etype (Designator)) = Standard_Boolean
12139 and then not Is_Intrinsic_Subprogram (Designator)
12140 then
12141 Error_Msg_N
12142 ("explicit definition of inequality not allowed", Designator);
12143 end if;
12144 end Valid_Operator_Definition;
12145
12146 end Sem_Ch6;