[Ada] Fix crash on formal containers
[gcc.git] / gcc / ada / sem_ch6.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch9; use Sem_Ch9;
64 with Sem_Ch10; use Sem_Ch10;
65 with Sem_Ch12; use Sem_Ch12;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elim; use Sem_Elim;
71 with Sem_Eval; use Sem_Eval;
72 with Sem_Mech; use Sem_Mech;
73 with Sem_Prag; use Sem_Prag;
74 with Sem_Res; use Sem_Res;
75 with Sem_Util; use Sem_Util;
76 with Sem_Type; use Sem_Type;
77 with Sem_Warn; use Sem_Warn;
78 with Sinput; use Sinput;
79 with Stand; use Stand;
80 with Sinfo; use Sinfo;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stringt; use Stringt;
84 with Style;
85 with Stylesw; use Stylesw;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
90
91 package body Sem_Ch6 is
92
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
101
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
105
106 procedure Analyze_Function_Return (N : Node_Id);
107 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
108 -- applies to a [generic] function.
109
110 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111 -- Analyze a generic subprogram body. N is the body to be analyzed, and
112 -- Gen_Id is the defining entity Id for the corresponding spec.
113
114 procedure Analyze_Null_Procedure
115 (N : Node_Id;
116 Is_Completion : out Boolean);
117 -- A null procedure can be a declaration or (Ada 2012) a completion
118
119 procedure Analyze_Return_Statement (N : Node_Id);
120 -- Common processing for simple and extended return statements
121
122 procedure Analyze_Return_Type (N : Node_Id);
123 -- Subsidiary to Process_Formals: analyze subtype mark in function
124 -- specification in a context where the formals are visible and hide
125 -- outer homographs.
126
127 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
129 -- that we can use RETURN but not skip the debug output at the end.
130
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
133
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
154
155 procedure Check_Limited_Return
156 (N : Node_Id;
157 Expr : Node_Id;
158 R_Type : Entity_Id);
159 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160 -- types. Used only for simple return statements. Expr is the expression
161 -- returned.
162
163 procedure Check_Subprogram_Order (N : Node_Id);
164 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
165 -- the alpha ordering rule for N if this ordering requirement applicable.
166
167 procedure Check_Returns
168 (HSS : Node_Id;
169 Mode : Character;
170 Err : out Boolean;
171 Proc : Entity_Id := Empty);
172 -- Called to check for missing return statements in a function body, or for
173 -- returns present in a procedure body which has No_Return set. HSS is the
174 -- handled statement sequence for the subprogram body. This procedure
175 -- checks all flow paths to make sure they either have return (Mode = 'F',
176 -- used for functions) or do not have a return (Mode = 'P', used for
177 -- No_Return procedures). The flag Err is set if there are any control
178 -- paths not explicitly terminated by a return in the function case, and is
179 -- True otherwise. Proc is the entity for the procedure case and is used
180 -- in posting the warning message.
181
182 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183 -- In Ada 2012, a primitive equality operator on an untagged record type
184 -- must appear before the type is frozen, and have the same visibility as
185 -- that of the type. This procedure checks that this rule is met, and
186 -- otherwise emits an error on the subprogram declaration and a warning
187 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190 -- is set, otherwise the call has no effect.
191
192 procedure Enter_Overloaded_Entity (S : Entity_Id);
193 -- This procedure makes S, a new overloaded entity, into the first visible
194 -- entity with that name.
195
196 function Is_Non_Overriding_Operation
197 (Prev_E : Entity_Id;
198 New_E : Entity_Id) return Boolean;
199 -- Enforce the rule given in 12.3(18): a private operation in an instance
200 -- overrides an inherited operation only if the corresponding operation
201 -- was overriding in the generic. This needs to be checked for primitive
202 -- operations of types derived (in the generic unit) from formal private
203 -- or formal derived types.
204
205 procedure Make_Inequality_Operator (S : Entity_Id);
206 -- Create the declaration for an inequality operator that is implicitly
207 -- created by a user-defined equality operator that yields a boolean.
208
209 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
210 -- Formal_Id is an formal parameter entity. This procedure deals with
211 -- setting the proper validity status for this entity, which depends on
212 -- the kind of parameter and the validity checking mode.
213
214 ---------------------------------------------
215 -- Analyze_Abstract_Subprogram_Declaration --
216 ---------------------------------------------
217
218 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
219 Scop : constant Entity_Id := Current_Scope;
220 Subp_Id : constant Entity_Id :=
221 Analyze_Subprogram_Specification (Specification (N));
222
223 begin
224 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
225
226 Generate_Definition (Subp_Id);
227
228 -- Set the SPARK mode from the current context (may be overwritten later
229 -- with explicit pragma).
230
231 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
232 Set_SPARK_Pragma_Inherited (Subp_Id);
233
234 -- Preserve relevant elaboration-related attributes of the context which
235 -- are no longer available or very expensive to recompute once analysis,
236 -- resolution, and expansion are over.
237
238 Mark_Elaboration_Attributes
239 (N_Id => Subp_Id,
240 Checks => True,
241 Warnings => True);
242
243 Set_Is_Abstract_Subprogram (Subp_Id);
244 New_Overloaded_Entity (Subp_Id);
245 Check_Delayed_Subprogram (Subp_Id);
246
247 Set_Categorization_From_Scope (Subp_Id, Scop);
248
249 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
250 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
251
252 -- Issue a warning if the abstract subprogram is neither a dispatching
253 -- operation nor an operation that overrides an inherited subprogram or
254 -- predefined operator, since this most likely indicates a mistake.
255
256 elsif Warn_On_Redundant_Constructs
257 and then not Is_Dispatching_Operation (Subp_Id)
258 and then not Present (Overridden_Operation (Subp_Id))
259 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
260 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
261 then
262 Error_Msg_N
263 ("abstract subprogram is not dispatching or overriding?r?", N);
264 end if;
265
266 Generate_Reference_To_Formals (Subp_Id);
267 Check_Eliminated (Subp_Id);
268
269 if Has_Aspects (N) then
270 Analyze_Aspect_Specifications (N, Subp_Id);
271 end if;
272 end Analyze_Abstract_Subprogram_Declaration;
273
274 ---------------------------------
275 -- Analyze_Expression_Function --
276 ---------------------------------
277
278 procedure Analyze_Expression_Function (N : Node_Id) is
279 Expr : constant Node_Id := Expression (N);
280 Loc : constant Source_Ptr := Sloc (N);
281 LocX : constant Source_Ptr := Sloc (Expr);
282 Spec : constant Node_Id := Specification (N);
283
284 procedure Freeze_Expr_Types (Def_Id : Entity_Id);
285 -- N is an expression function that is a completion and Def_Id its
286 -- defining entity. Freeze before N all the types referenced by the
287 -- expression of the function.
288
289 -----------------------
290 -- Freeze_Expr_Types --
291 -----------------------
292
293 procedure Freeze_Expr_Types (Def_Id : Entity_Id) is
294 function Cloned_Expression return Node_Id;
295 -- Build a duplicate of the expression of the return statement that
296 -- has no defining entities shared with the original expression.
297
298 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
299 -- Freeze all types referenced in the subtree rooted at Node
300
301 -----------------------
302 -- Cloned_Expression --
303 -----------------------
304
305 function Cloned_Expression return Node_Id is
306 function Clone_Id (Node : Node_Id) return Traverse_Result;
307 -- Tree traversal routine that clones the defining identifier of
308 -- iterator and loop parameter specification nodes.
309
310 --------------
311 -- Clone_Id --
312 --------------
313
314 function Clone_Id (Node : Node_Id) return Traverse_Result is
315 begin
316 if Nkind_In (Node, N_Iterator_Specification,
317 N_Loop_Parameter_Specification)
318 then
319 Set_Defining_Identifier (Node,
320 New_Copy (Defining_Identifier (Node)));
321 end if;
322
323 return OK;
324 end Clone_Id;
325
326 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
327
328 -- Local variable
329
330 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
331
332 -- Start of processing for Cloned_Expression
333
334 begin
335 -- We must duplicate the expression with semantic information to
336 -- inherit the decoration of global entities in generic instances.
337 -- Set the parent of the new node to be the parent of the original
338 -- to get the proper context, which is needed for complete error
339 -- reporting and for semantic analysis.
340
341 Set_Parent (Dup_Expr, Parent (Expr));
342
343 -- Replace the defining identifier of iterators and loop param
344 -- specifications by a clone to ensure that the cloned expression
345 -- and the original expression don't have shared identifiers;
346 -- otherwise, as part of the preanalysis of the expression, these
347 -- shared identifiers may be left decorated with itypes which
348 -- will not be available in the tree passed to the backend.
349
350 Clone_Def_Ids (Dup_Expr);
351
352 return Dup_Expr;
353 end Cloned_Expression;
354
355 ----------------------
356 -- Freeze_Type_Refs --
357 ----------------------
358
359 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
360 procedure Check_And_Freeze_Type (Typ : Entity_Id);
361 -- Check that Typ is fully declared and freeze it if so
362
363 ---------------------------
364 -- Check_And_Freeze_Type --
365 ---------------------------
366
367 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
368 begin
369 -- Skip Itypes created by the preanalysis, and itypes whose
370 -- scope is another type (i.e. component subtypes that depend
371 -- on a discriminant),
372
373 if Is_Itype (Typ)
374 and then (Scope_Within_Or_Same (Scope (Typ), Def_Id)
375 or else Is_Type (Scope (Typ)))
376 then
377 return;
378 end if;
379
380 -- This provides a better error message than generating
381 -- primitives whose compilation fails much later. Refine
382 -- the error message if possible.
383
384 Check_Fully_Declared (Typ, Node);
385
386 if Error_Posted (Node) then
387 if Has_Private_Component (Typ)
388 and then not Is_Private_Type (Typ)
389 then
390 Error_Msg_NE ("\type& has private component", Node, Typ);
391 end if;
392
393 else
394 Freeze_Before (N, Typ);
395 end if;
396 end Check_And_Freeze_Type;
397
398 -- Start of processing for Freeze_Type_Refs
399
400 begin
401 -- Check that a type referenced by an entity can be frozen
402
403 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
404 Check_And_Freeze_Type (Etype (Entity (Node)));
405
406 -- Check that the enclosing record type can be frozen
407
408 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
409 Check_And_Freeze_Type (Scope (Entity (Node)));
410 end if;
411
412 -- Freezing an access type does not freeze the designated type,
413 -- but freezing conversions between access to interfaces requires
414 -- that the interface types themselves be frozen, so that dispatch
415 -- table entities are properly created.
416
417 -- Unclear whether a more general rule is needed ???
418
419 elsif Nkind (Node) = N_Type_Conversion
420 and then Is_Access_Type (Etype (Node))
421 and then Is_Interface (Designated_Type (Etype (Node)))
422 then
423 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
424 end if;
425
426 -- An implicit dereference freezes the designated type. In the
427 -- case of a dispatching call whose controlling argument is an
428 -- access type, the dereference is not made explicit, so we must
429 -- check for such a call and freeze the designated type.
430
431 if Nkind (Node) in N_Has_Etype
432 and then Present (Etype (Node))
433 and then Is_Access_Type (Etype (Node))
434 and then Nkind (Parent (Node)) = N_Function_Call
435 and then Node = Controlling_Argument (Parent (Node))
436 then
437 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
438 end if;
439
440 -- No point in posting several errors on the same expression
441
442 if Serious_Errors_Detected > 0 then
443 return Abandon;
444 else
445 return OK;
446 end if;
447 end Freeze_Type_Refs;
448
449 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
450
451 -- Local variables
452
453 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
454 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
455 Dup_Expr : constant Node_Id := Cloned_Expression;
456
457 -- Start of processing for Freeze_Expr_Types
458
459 begin
460 -- Preanalyze a duplicate of the expression to have available the
461 -- minimum decoration needed to locate referenced unfrozen types
462 -- without adding any decoration to the function expression.
463
464 Push_Scope (Def_Id);
465 Install_Formals (Def_Id);
466
467 Preanalyze_Spec_Expression (Dup_Expr, Etype (Def_Id));
468 End_Scope;
469
470 -- Restore certain attributes of Def_Id since the preanalysis may
471 -- have introduced itypes to this scope, thus modifying attributes
472 -- First_Entity and Last_Entity.
473
474 Set_First_Entity (Def_Id, Saved_First_Entity);
475 Set_Last_Entity (Def_Id, Saved_Last_Entity);
476
477 if Present (Last_Entity (Def_Id)) then
478 Set_Next_Entity (Last_Entity (Def_Id), Empty);
479 end if;
480
481 -- Freeze all types referenced in the expression
482
483 Freeze_References (Dup_Expr);
484 end Freeze_Expr_Types;
485
486 -- Local variables
487
488 Asp : Node_Id;
489 New_Body : Node_Id;
490 New_Spec : Node_Id;
491 Orig_N : Node_Id;
492 Ret : Node_Id;
493
494 Def_Id : Entity_Id := Empty;
495 Prev : Entity_Id;
496 -- If the expression is a completion, Prev is the entity whose
497 -- declaration is completed. Def_Id is needed to analyze the spec.
498
499 -- Start of processing for Analyze_Expression_Function
500
501 begin
502 -- This is one of the occasions on which we transform the tree during
503 -- semantic analysis. If this is a completion, transform the expression
504 -- function into an equivalent subprogram body, and analyze it.
505
506 -- Expression functions are inlined unconditionally. The back-end will
507 -- determine whether this is possible.
508
509 Inline_Processing_Required := True;
510
511 -- Create a specification for the generated body. This must be done
512 -- prior to the analysis of the initial declaration.
513
514 New_Spec := Copy_Subprogram_Spec (Spec);
515 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
516
517 -- If there are previous overloadable entities with the same name,
518 -- check whether any of them is completed by the expression function.
519 -- In a generic context a formal subprogram has no completion.
520
521 if Present (Prev)
522 and then Is_Overloadable (Prev)
523 and then not Is_Formal_Subprogram (Prev)
524 then
525 Def_Id := Analyze_Subprogram_Specification (Spec);
526 Prev := Find_Corresponding_Spec (N);
527
528 -- The previous entity may be an expression function as well, in
529 -- which case the redeclaration is illegal.
530
531 if Present (Prev)
532 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
533 N_Expression_Function
534 then
535 Error_Msg_Sloc := Sloc (Prev);
536 Error_Msg_N ("& conflicts with declaration#", Def_Id);
537 return;
538 end if;
539 end if;
540
541 Ret := Make_Simple_Return_Statement (LocX, Expr);
542
543 New_Body :=
544 Make_Subprogram_Body (Loc,
545 Specification => New_Spec,
546 Declarations => Empty_List,
547 Handled_Statement_Sequence =>
548 Make_Handled_Sequence_Of_Statements (LocX,
549 Statements => New_List (Ret)));
550 Set_Was_Expression_Function (New_Body);
551
552 -- If the expression completes a generic subprogram, we must create a
553 -- separate node for the body, because at instantiation the original
554 -- node of the generic copy must be a generic subprogram body, and
555 -- cannot be a expression function. Otherwise we just rewrite the
556 -- expression with the non-generic body.
557
558 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
559 Insert_After (N, New_Body);
560
561 -- Propagate any aspects or pragmas that apply to the expression
562 -- function to the proper body when the expression function acts
563 -- as a completion.
564
565 if Has_Aspects (N) then
566 Move_Aspects (N, To => New_Body);
567 end if;
568
569 Relocate_Pragmas_To_Body (New_Body);
570
571 Rewrite (N, Make_Null_Statement (Loc));
572 Set_Has_Completion (Prev, False);
573 Analyze (N);
574 Analyze (New_Body);
575 Set_Is_Inlined (Prev);
576
577 -- If the expression function is a completion, the previous declaration
578 -- must come from source. We know already that it appears in the current
579 -- scope. The entity itself may be internally created if within a body
580 -- to be inlined.
581
582 elsif Present (Prev)
583 and then Is_Overloadable (Prev)
584 and then not Is_Formal_Subprogram (Prev)
585 and then Comes_From_Source (Parent (Prev))
586 then
587 Set_Has_Completion (Prev, False);
588 Set_Is_Inlined (Prev);
589
590 -- AI12-0103: Expression functions that are a completion freeze their
591 -- expression but don't freeze anything else (unlike regular bodies).
592
593 -- Note that we cannot defer this freezing to the analysis of the
594 -- expression itself, because a freeze node might appear in a nested
595 -- scope, leading to an elaboration order issue in gigi.
596 -- As elsewhere, we do not emit freeze nodes within a generic unit.
597
598 if not Inside_A_Generic then
599 Freeze_Expr_Types (Def_Id);
600 end if;
601
602 -- For navigation purposes, indicate that the function is a body
603
604 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
605 Rewrite (N, New_Body);
606
607 -- Remove any existing aspects from the original node because the act
608 -- of rewriting causes the list to be shared between the two nodes.
609
610 Orig_N := Original_Node (N);
611 Remove_Aspects (Orig_N);
612
613 -- Propagate any pragmas that apply to expression function to the
614 -- proper body when the expression function acts as a completion.
615 -- Aspects are automatically transfered because of node rewriting.
616
617 Relocate_Pragmas_To_Body (N);
618 Analyze (N);
619
620 -- Once the aspects of the generated body have been analyzed, create
621 -- a copy for ASIS purposes and associate it with the original node.
622
623 if Has_Aspects (N) then
624 Set_Aspect_Specifications (Orig_N,
625 New_Copy_List_Tree (Aspect_Specifications (N)));
626 end if;
627
628 -- Prev is the previous entity with the same name, but it is can
629 -- be an unrelated spec that is not completed by the expression
630 -- function. In that case the relevant entity is the one in the body.
631 -- Not clear that the backend can inline it in this case ???
632
633 if Has_Completion (Prev) then
634
635 -- The formals of the expression function are body formals,
636 -- and do not appear in the ali file, which will only contain
637 -- references to the formals of the original subprogram spec.
638
639 declare
640 F1 : Entity_Id;
641 F2 : Entity_Id;
642
643 begin
644 F1 := First_Formal (Def_Id);
645 F2 := First_Formal (Prev);
646
647 while Present (F1) loop
648 Set_Spec_Entity (F1, F2);
649 Next_Formal (F1);
650 Next_Formal (F2);
651 end loop;
652 end;
653
654 else
655 Set_Is_Inlined (Defining_Entity (New_Body));
656 end if;
657
658 -- If this is not a completion, create both a declaration and a body, so
659 -- that the expression can be inlined whenever possible.
660
661 else
662 -- An expression function that is not a completion is not a
663 -- subprogram declaration, and thus cannot appear in a protected
664 -- definition.
665
666 if Nkind (Parent (N)) = N_Protected_Definition then
667 Error_Msg_N
668 ("an expression function is not a legal protected operation", N);
669 end if;
670
671 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
672
673 -- Remove any existing aspects from the original node because the act
674 -- of rewriting causes the list to be shared between the two nodes.
675
676 Orig_N := Original_Node (N);
677 Remove_Aspects (Orig_N);
678
679 Analyze (N);
680
681 -- Once the aspects of the generated spec have been analyzed, create
682 -- a copy for ASIS purposes and associate it with the original node.
683
684 if Has_Aspects (N) then
685 Set_Aspect_Specifications (Orig_N,
686 New_Copy_List_Tree (Aspect_Specifications (N)));
687 end if;
688
689 -- If aspect SPARK_Mode was specified on the body, it needs to be
690 -- repeated both on the generated spec and the body.
691
692 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
693
694 if Present (Asp) then
695 Asp := New_Copy_Tree (Asp);
696 Set_Analyzed (Asp, False);
697 Set_Aspect_Specifications (New_Body, New_List (Asp));
698 end if;
699
700 Def_Id := Defining_Entity (N);
701 Set_Is_Inlined (Def_Id);
702
703 -- Establish the linkages between the spec and the body. These are
704 -- used when the expression function acts as the prefix of attribute
705 -- 'Access in order to freeze the original expression which has been
706 -- moved to the generated body.
707
708 Set_Corresponding_Body (N, Defining_Entity (New_Body));
709 Set_Corresponding_Spec (New_Body, Def_Id);
710
711 -- Within a generic pre-analyze the original expression for name
712 -- capture. The body is also generated but plays no role in
713 -- this because it is not part of the original source.
714
715 if Inside_A_Generic then
716 Set_Has_Completion (Def_Id);
717 Push_Scope (Def_Id);
718 Install_Formals (Def_Id);
719 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
720 End_Scope;
721 end if;
722
723 -- To prevent premature freeze action, insert the new body at the end
724 -- of the current declarations, or at the end of the package spec.
725 -- However, resolve usage names now, to prevent spurious visibility
726 -- on later entities. Note that the function can now be called in
727 -- the current declarative part, which will appear to be prior to
728 -- the presence of the body in the code. There are nevertheless no
729 -- order of elaboration issues because all name resolution has taken
730 -- place at the point of declaration.
731
732 declare
733 Decls : List_Id := List_Containing (N);
734 Expr : constant Node_Id := Expression (Ret);
735 Par : constant Node_Id := Parent (Decls);
736 Typ : constant Entity_Id := Etype (Def_Id);
737
738 begin
739 -- If this is a wrapper created for in an instance for a formal
740 -- subprogram, insert body after declaration, to be analyzed when
741 -- the enclosing instance is analyzed.
742
743 if GNATprove_Mode
744 and then Is_Generic_Actual_Subprogram (Def_Id)
745 then
746 Insert_After (N, New_Body);
747
748 else
749 if Nkind (Par) = N_Package_Specification
750 and then Decls = Visible_Declarations (Par)
751 and then Present (Private_Declarations (Par))
752 and then not Is_Empty_List (Private_Declarations (Par))
753 then
754 Decls := Private_Declarations (Par);
755 end if;
756
757 Insert_After (Last (Decls), New_Body);
758
759 -- Preanalyze the expression if not already done above
760
761 if not Inside_A_Generic then
762 Push_Scope (Def_Id);
763 Install_Formals (Def_Id);
764 Preanalyze_Spec_Expression (Expr, Typ);
765 Check_Limited_Return (Original_Node (N), Expr, Typ);
766 End_Scope;
767 end if;
768 end if;
769 end;
770 end if;
771
772 -- Check incorrect use of dynamically tagged expression. This doesn't
773 -- fall out automatically when analyzing the generated function body,
774 -- because Check_Dynamically_Tagged_Expression deliberately ignores
775 -- nodes that don't come from source.
776
777 if Present (Def_Id)
778 and then Nkind (Def_Id) in N_Has_Etype
779 and then Is_Tagged_Type (Etype (Def_Id))
780 then
781 Check_Dynamically_Tagged_Expression
782 (Expr => Expr,
783 Typ => Etype (Def_Id),
784 Related_Nod => Original_Node (N));
785 end if;
786
787 -- We must enforce checks for unreferenced formals in our newly
788 -- generated function, so we propagate the referenced flag from the
789 -- original spec to the new spec as well as setting Comes_From_Source.
790
791 if Present (Parameter_Specifications (New_Spec)) then
792 declare
793 Form_New_Def : Entity_Id;
794 Form_New_Spec : Entity_Id;
795 Form_Old_Def : Entity_Id;
796 Form_Old_Spec : Entity_Id;
797 begin
798
799 Form_New_Spec := First (Parameter_Specifications (New_Spec));
800 Form_Old_Spec := First (Parameter_Specifications (Spec));
801
802 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
803 Form_New_Def := Defining_Identifier (Form_New_Spec);
804 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
805
806 Set_Comes_From_Source (Form_New_Def, True);
807
808 -- Because of the usefulness of unreferenced controlling
809 -- formals we exempt them from unreferenced warnings by marking
810 -- them as always referenced.
811
812 Set_Referenced
813 (Form_Old_Def,
814 (Is_Formal (Form_Old_Def)
815 and then Is_Controlling_Formal (Form_Old_Def))
816 or else Referenced (Form_Old_Def));
817 -- or else Is_Dispatching_Operation
818 -- (Corresponding_Spec (New_Body)));
819
820 Next (Form_New_Spec);
821 Next (Form_Old_Spec);
822 end loop;
823 end;
824 end if;
825 end Analyze_Expression_Function;
826
827 ----------------------------------------
828 -- Analyze_Extended_Return_Statement --
829 ----------------------------------------
830
831 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
832 begin
833 Check_Compiler_Unit ("extended return statement", N);
834 Analyze_Return_Statement (N);
835 end Analyze_Extended_Return_Statement;
836
837 ----------------------------
838 -- Analyze_Function_Call --
839 ----------------------------
840
841 procedure Analyze_Function_Call (N : Node_Id) is
842 Actuals : constant List_Id := Parameter_Associations (N);
843 Func_Nam : constant Node_Id := Name (N);
844 Actual : Node_Id;
845
846 begin
847 Analyze (Func_Nam);
848
849 -- A call of the form A.B (X) may be an Ada 2005 call, which is
850 -- rewritten as B (A, X). If the rewriting is successful, the call
851 -- has been analyzed and we just return.
852
853 if Nkind (Func_Nam) = N_Selected_Component
854 and then Name (N) /= Func_Nam
855 and then Is_Rewrite_Substitution (N)
856 and then Present (Etype (N))
857 then
858 return;
859 end if;
860
861 -- If error analyzing name, then set Any_Type as result type and return
862
863 if Etype (Func_Nam) = Any_Type then
864 Set_Etype (N, Any_Type);
865 return;
866 end if;
867
868 -- Otherwise analyze the parameters
869
870 if Present (Actuals) then
871 Actual := First (Actuals);
872 while Present (Actual) loop
873 Analyze (Actual);
874 Check_Parameterless_Call (Actual);
875 Next (Actual);
876 end loop;
877 end if;
878
879 Analyze_Call (N);
880 end Analyze_Function_Call;
881
882 -----------------------------
883 -- Analyze_Function_Return --
884 -----------------------------
885
886 procedure Analyze_Function_Return (N : Node_Id) is
887 Loc : constant Source_Ptr := Sloc (N);
888 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
889 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
890
891 R_Type : constant Entity_Id := Etype (Scope_Id);
892 -- Function result subtype
893
894 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
895 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
896 -- aggregate in a return statement.
897
898 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
899 -- Check that the return_subtype_indication properly matches the result
900 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
901
902 -----------------------------------
903 -- Check_Aggregate_Accessibility --
904 -----------------------------------
905
906 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
907 Typ : constant Entity_Id := Etype (Aggr);
908 Assoc : Node_Id;
909 Discr : Entity_Id;
910 Expr : Node_Id;
911 Obj : Node_Id;
912
913 begin
914 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
915 Discr := First_Discriminant (Typ);
916 Assoc := First (Component_Associations (Aggr));
917 while Present (Discr) loop
918 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
919 Expr := Expression (Assoc);
920
921 if Nkind (Expr) = N_Attribute_Reference
922 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
923 then
924 Obj := Prefix (Expr);
925 while Nkind_In (Obj, N_Indexed_Component,
926 N_Selected_Component)
927 loop
928 Obj := Prefix (Obj);
929 end loop;
930
931 -- Do not check aliased formals or function calls. A
932 -- run-time check may still be needed ???
933
934 if Is_Entity_Name (Obj)
935 and then Comes_From_Source (Obj)
936 then
937 if Is_Formal (Entity (Obj))
938 and then Is_Aliased (Entity (Obj))
939 then
940 null;
941
942 elsif Object_Access_Level (Obj) >
943 Scope_Depth (Scope (Scope_Id))
944 then
945 Error_Msg_N
946 ("access discriminant in return aggregate would "
947 & "be a dangling reference", Obj);
948 end if;
949 end if;
950 end if;
951 end if;
952
953 Next_Discriminant (Discr);
954 end loop;
955 end if;
956 end Check_Aggregate_Accessibility;
957
958 -------------------------------------
959 -- Check_Return_Subtype_Indication --
960 -------------------------------------
961
962 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
963 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
964
965 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
966 -- Subtype given in the extended return statement (must match R_Type)
967
968 Subtype_Ind : constant Node_Id :=
969 Object_Definition (Original_Node (Obj_Decl));
970
971 procedure Error_No_Match (N : Node_Id);
972 -- Output error messages for case where types do not statically
973 -- match. N is the location for the messages.
974
975 --------------------
976 -- Error_No_Match --
977 --------------------
978
979 procedure Error_No_Match (N : Node_Id) is
980 begin
981 Error_Msg_N
982 ("subtype must statically match function result subtype", N);
983
984 if not Predicates_Match (R_Stm_Type, R_Type) then
985 Error_Msg_Node_2 := R_Type;
986 Error_Msg_NE
987 ("\predicate of& does not match predicate of&",
988 N, R_Stm_Type);
989 end if;
990 end Error_No_Match;
991
992 -- Start of processing for Check_Return_Subtype_Indication
993
994 begin
995 -- First, avoid cascaded errors
996
997 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
998 return;
999 end if;
1000
1001 -- "return access T" case; check that the return statement also has
1002 -- "access T", and that the subtypes statically match:
1003 -- if this is an access to subprogram the signatures must match.
1004
1005 if Is_Anonymous_Access_Type (R_Type) then
1006 if Is_Anonymous_Access_Type (R_Stm_Type) then
1007 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
1008 then
1009 if Base_Type (Designated_Type (R_Stm_Type)) /=
1010 Base_Type (Designated_Type (R_Type))
1011 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
1012 then
1013 Error_No_Match (Subtype_Mark (Subtype_Ind));
1014 end if;
1015
1016 else
1017 -- For two anonymous access to subprogram types, the types
1018 -- themselves must be type conformant.
1019
1020 if not Conforming_Types
1021 (R_Stm_Type, R_Type, Fully_Conformant)
1022 then
1023 Error_No_Match (Subtype_Ind);
1024 end if;
1025 end if;
1026
1027 else
1028 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
1029 end if;
1030
1031 -- If the return object is of an anonymous access type, then report
1032 -- an error if the function's result type is not also anonymous.
1033
1034 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
1035 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
1036 Error_Msg_N
1037 ("anonymous access not allowed for function with named access "
1038 & "result", Subtype_Ind);
1039
1040 -- Subtype indication case: check that the return object's type is
1041 -- covered by the result type, and that the subtypes statically match
1042 -- when the result subtype is constrained. Also handle record types
1043 -- with unknown discriminants for which we have built the underlying
1044 -- record view. Coverage is needed to allow specific-type return
1045 -- objects when the result type is class-wide (see AI05-32).
1046
1047 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
1048 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
1049 and then
1050 Covers
1051 (Base_Type (R_Type),
1052 Underlying_Record_View (Base_Type (R_Stm_Type))))
1053 then
1054 -- A null exclusion may be present on the return type, on the
1055 -- function specification, on the object declaration or on the
1056 -- subtype itself.
1057
1058 if Is_Access_Type (R_Type)
1059 and then
1060 (Can_Never_Be_Null (R_Type)
1061 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
1062 Can_Never_Be_Null (R_Stm_Type)
1063 then
1064 Error_No_Match (Subtype_Ind);
1065 end if;
1066
1067 -- AI05-103: for elementary types, subtypes must statically match
1068
1069 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1070 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1071 Error_No_Match (Subtype_Ind);
1072 end if;
1073 end if;
1074
1075 -- All remaining cases are illegal
1076
1077 -- Note: previous versions of this subprogram allowed the return
1078 -- value to be the ancestor of the return type if the return type
1079 -- was a null extension. This was plainly incorrect.
1080
1081 else
1082 Error_Msg_N
1083 ("wrong type for return_subtype_indication", Subtype_Ind);
1084 end if;
1085 end Check_Return_Subtype_Indication;
1086
1087 ---------------------
1088 -- Local Variables --
1089 ---------------------
1090
1091 Expr : Node_Id;
1092 Obj_Decl : Node_Id := Empty;
1093
1094 -- Start of processing for Analyze_Function_Return
1095
1096 begin
1097 Set_Return_Present (Scope_Id);
1098
1099 if Nkind (N) = N_Simple_Return_Statement then
1100 Expr := Expression (N);
1101
1102 -- Guard against a malformed expression. The parser may have tried to
1103 -- recover but the node is not analyzable.
1104
1105 if Nkind (Expr) = N_Error then
1106 Set_Etype (Expr, Any_Type);
1107 Expander_Mode_Save_And_Set (False);
1108 return;
1109
1110 else
1111 -- The resolution of a controlled [extension] aggregate associated
1112 -- with a return statement creates a temporary which needs to be
1113 -- finalized on function exit. Wrap the return statement inside a
1114 -- block so that the finalization machinery can detect this case.
1115 -- This early expansion is done only when the return statement is
1116 -- not part of a handled sequence of statements.
1117
1118 if Nkind_In (Expr, N_Aggregate,
1119 N_Extension_Aggregate)
1120 and then Needs_Finalization (R_Type)
1121 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1122 then
1123 Rewrite (N,
1124 Make_Block_Statement (Loc,
1125 Handled_Statement_Sequence =>
1126 Make_Handled_Sequence_Of_Statements (Loc,
1127 Statements => New_List (Relocate_Node (N)))));
1128
1129 Analyze (N);
1130 return;
1131 end if;
1132
1133 Analyze (Expr);
1134
1135 -- Ada 2005 (AI-251): If the type of the returned object is
1136 -- an access to an interface type then we add an implicit type
1137 -- conversion to force the displacement of the "this" pointer to
1138 -- reference the secondary dispatch table. We cannot delay the
1139 -- generation of this implicit conversion until the expansion
1140 -- because in this case the type resolution changes the decoration
1141 -- of the expression node to match R_Type; by contrast, if the
1142 -- returned object is a class-wide interface type then it is too
1143 -- early to generate here the implicit conversion since the return
1144 -- statement may be rewritten by the expander into an extended
1145 -- return statement whose expansion takes care of adding the
1146 -- implicit type conversion to displace the pointer to the object.
1147
1148 if Expander_Active
1149 and then Serious_Errors_Detected = 0
1150 and then Is_Access_Type (R_Type)
1151 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1152 and then Is_Interface (Designated_Type (R_Type))
1153 and then Is_Progenitor (Designated_Type (R_Type),
1154 Designated_Type (Etype (Expr)))
1155 then
1156 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1157 Analyze (Expr);
1158 end if;
1159
1160 Resolve (Expr, R_Type);
1161 Check_Limited_Return (N, Expr, R_Type);
1162
1163 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
1164 Check_Aggregate_Accessibility (Expr);
1165 end if;
1166 end if;
1167
1168 -- RETURN only allowed in SPARK as the last statement in function
1169
1170 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1171 and then
1172 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1173 or else Present (Next (N)))
1174 then
1175 Check_SPARK_05_Restriction
1176 ("RETURN should be the last statement in function", N);
1177 end if;
1178
1179 else
1180 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1181 Obj_Decl := Last (Return_Object_Declarations (N));
1182
1183 -- Analyze parts specific to extended_return_statement:
1184
1185 declare
1186 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1187 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1188
1189 begin
1190 Expr := Expression (Obj_Decl);
1191
1192 -- Note: The check for OK_For_Limited_Init will happen in
1193 -- Analyze_Object_Declaration; we treat it as a normal
1194 -- object declaration.
1195
1196 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1197 Analyze (Obj_Decl);
1198
1199 Check_Return_Subtype_Indication (Obj_Decl);
1200
1201 if Present (HSS) then
1202 Analyze (HSS);
1203
1204 if Present (Exception_Handlers (HSS)) then
1205
1206 -- ???Has_Nested_Block_With_Handler needs to be set.
1207 -- Probably by creating an actual N_Block_Statement.
1208 -- Probably in Expand.
1209
1210 null;
1211 end if;
1212 end if;
1213
1214 -- Mark the return object as referenced, since the return is an
1215 -- implicit reference of the object.
1216
1217 Set_Referenced (Defining_Identifier (Obj_Decl));
1218
1219 Check_References (Stm_Entity);
1220
1221 -- Check RM 6.5 (5.9/3)
1222
1223 if Has_Aliased then
1224 if Ada_Version < Ada_2012 then
1225
1226 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1227 -- Can it really happen (extended return???)
1228
1229 Error_Msg_N
1230 ("aliased only allowed for limited return objects "
1231 & "in Ada 2012??", N);
1232
1233 elsif not Is_Limited_View (R_Type) then
1234 Error_Msg_N
1235 ("aliased only allowed for limited return objects", N);
1236 end if;
1237 end if;
1238 end;
1239 end if;
1240
1241 -- Case of Expr present
1242
1243 if Present (Expr) then
1244
1245 -- Defend against previous errors
1246
1247 if Nkind (Expr) = N_Empty
1248 or else No (Etype (Expr))
1249 then
1250 return;
1251 end if;
1252
1253 -- Apply constraint check. Note that this is done before the implicit
1254 -- conversion of the expression done for anonymous access types to
1255 -- ensure correct generation of the null-excluding check associated
1256 -- with null-excluding expressions found in return statements.
1257
1258 Apply_Constraint_Check (Expr, R_Type);
1259
1260 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1261 -- type, apply an implicit conversion of the expression to that type
1262 -- to force appropriate static and run-time accessibility checks.
1263
1264 if Ada_Version >= Ada_2005
1265 and then Ekind (R_Type) = E_Anonymous_Access_Type
1266 then
1267 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1268 Analyze_And_Resolve (Expr, R_Type);
1269
1270 -- If this is a local anonymous access to subprogram, the
1271 -- accessibility check can be applied statically. The return is
1272 -- illegal if the access type of the return expression is declared
1273 -- inside of the subprogram (except if it is the subtype indication
1274 -- of an extended return statement).
1275
1276 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1277 if not Comes_From_Source (Current_Scope)
1278 or else Ekind (Current_Scope) = E_Return_Statement
1279 then
1280 null;
1281
1282 elsif
1283 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1284 then
1285 Error_Msg_N ("cannot return local access to subprogram", N);
1286 end if;
1287
1288 -- The expression cannot be of a formal incomplete type
1289
1290 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1291 and then Is_Generic_Type (Etype (Expr))
1292 then
1293 Error_Msg_N
1294 ("cannot return expression of a formal incomplete type", N);
1295 end if;
1296
1297 -- If the result type is class-wide, then check that the return
1298 -- expression's type is not declared at a deeper level than the
1299 -- function (RM05-6.5(5.6/2)).
1300
1301 if Ada_Version >= Ada_2005
1302 and then Is_Class_Wide_Type (R_Type)
1303 then
1304 if Type_Access_Level (Etype (Expr)) >
1305 Subprogram_Access_Level (Scope_Id)
1306 then
1307 Error_Msg_N
1308 ("level of return expression type is deeper than "
1309 & "class-wide function!", Expr);
1310 end if;
1311 end if;
1312
1313 -- Check incorrect use of dynamically tagged expression
1314
1315 if Is_Tagged_Type (R_Type) then
1316 Check_Dynamically_Tagged_Expression
1317 (Expr => Expr,
1318 Typ => R_Type,
1319 Related_Nod => N);
1320 end if;
1321
1322 -- ??? A real run-time accessibility check is needed in cases
1323 -- involving dereferences of access parameters. For now we just
1324 -- check the static cases.
1325
1326 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1327 and then Is_Limited_View (Etype (Scope_Id))
1328 and then Object_Access_Level (Expr) >
1329 Subprogram_Access_Level (Scope_Id)
1330 then
1331 -- Suppress the message in a generic, where the rewriting
1332 -- is irrelevant.
1333
1334 if Inside_A_Generic then
1335 null;
1336
1337 else
1338 Rewrite (N,
1339 Make_Raise_Program_Error (Loc,
1340 Reason => PE_Accessibility_Check_Failed));
1341 Analyze (N);
1342
1343 Error_Msg_Warn := SPARK_Mode /= On;
1344 Error_Msg_N ("cannot return a local value by reference<<", N);
1345 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1346 end if;
1347 end if;
1348
1349 if Known_Null (Expr)
1350 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1351 and then Null_Exclusion_Present (Parent (Scope_Id))
1352 then
1353 Apply_Compile_Time_Constraint_Error
1354 (N => Expr,
1355 Msg => "(Ada 2005) null not allowed for "
1356 & "null-excluding return??",
1357 Reason => CE_Null_Not_Allowed);
1358 end if;
1359
1360 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1361 -- has no initializing expression.
1362
1363 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1364 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1365 Subprogram_Access_Level (Scope_Id)
1366 then
1367 Error_Msg_N
1368 ("level of return expression type is deeper than "
1369 & "class-wide function!", Obj_Decl);
1370 end if;
1371 end if;
1372 end Analyze_Function_Return;
1373
1374 -------------------------------------
1375 -- Analyze_Generic_Subprogram_Body --
1376 -------------------------------------
1377
1378 procedure Analyze_Generic_Subprogram_Body
1379 (N : Node_Id;
1380 Gen_Id : Entity_Id)
1381 is
1382 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1383 Kind : constant Entity_Kind := Ekind (Gen_Id);
1384 Body_Id : Entity_Id;
1385 New_N : Node_Id;
1386 Spec : Node_Id;
1387
1388 begin
1389 -- Copy body and disable expansion while analyzing the generic For a
1390 -- stub, do not copy the stub (which would load the proper body), this
1391 -- will be done when the proper body is analyzed.
1392
1393 if Nkind (N) /= N_Subprogram_Body_Stub then
1394 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1395 Rewrite (N, New_N);
1396
1397 -- Once the contents of the generic copy and the template are
1398 -- swapped, do the same for their respective aspect specifications.
1399
1400 Exchange_Aspects (N, New_N);
1401
1402 -- Collect all contract-related source pragmas found within the
1403 -- template and attach them to the contract of the subprogram body.
1404 -- This contract is used in the capture of global references within
1405 -- annotations.
1406
1407 Create_Generic_Contract (N);
1408
1409 Start_Generic;
1410 end if;
1411
1412 Spec := Specification (N);
1413
1414 -- Within the body of the generic, the subprogram is callable, and
1415 -- behaves like the corresponding non-generic unit.
1416
1417 Body_Id := Defining_Entity (Spec);
1418
1419 if Kind = E_Generic_Procedure
1420 and then Nkind (Spec) /= N_Procedure_Specification
1421 then
1422 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1423 return;
1424
1425 elsif Kind = E_Generic_Function
1426 and then Nkind (Spec) /= N_Function_Specification
1427 then
1428 Error_Msg_N ("invalid body for generic function ", Body_Id);
1429 return;
1430 end if;
1431
1432 Set_Corresponding_Body (Gen_Decl, Body_Id);
1433
1434 if Has_Completion (Gen_Id)
1435 and then Nkind (Parent (N)) /= N_Subunit
1436 then
1437 Error_Msg_N ("duplicate generic body", N);
1438 return;
1439 else
1440 Set_Has_Completion (Gen_Id);
1441 end if;
1442
1443 if Nkind (N) = N_Subprogram_Body_Stub then
1444 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1445 else
1446 Set_Corresponding_Spec (N, Gen_Id);
1447 end if;
1448
1449 if Nkind (Parent (N)) = N_Compilation_Unit then
1450 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1451 end if;
1452
1453 -- Make generic parameters immediately visible in the body. They are
1454 -- needed to process the formals declarations. Then make the formals
1455 -- visible in a separate step.
1456
1457 Push_Scope (Gen_Id);
1458
1459 declare
1460 E : Entity_Id;
1461 First_Ent : Entity_Id;
1462
1463 begin
1464 First_Ent := First_Entity (Gen_Id);
1465
1466 E := First_Ent;
1467 while Present (E) and then not Is_Formal (E) loop
1468 Install_Entity (E);
1469 Next_Entity (E);
1470 end loop;
1471
1472 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1473
1474 -- Now generic formals are visible, and the specification can be
1475 -- analyzed, for subsequent conformance check.
1476
1477 Body_Id := Analyze_Subprogram_Specification (Spec);
1478
1479 -- Make formal parameters visible
1480
1481 if Present (E) then
1482
1483 -- E is the first formal parameter, we loop through the formals
1484 -- installing them so that they will be visible.
1485
1486 Set_First_Entity (Gen_Id, E);
1487 while Present (E) loop
1488 Install_Entity (E);
1489 Next_Formal (E);
1490 end loop;
1491 end if;
1492
1493 -- Visible generic entity is callable within its own body
1494
1495 Set_Ekind (Gen_Id, Ekind (Body_Id));
1496 Set_Ekind (Body_Id, E_Subprogram_Body);
1497 Set_Convention (Body_Id, Convention (Gen_Id));
1498 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1499 Set_Scope (Body_Id, Scope (Gen_Id));
1500
1501 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1502
1503 if Nkind (N) = N_Subprogram_Body_Stub then
1504
1505 -- No body to analyze, so restore state of generic unit
1506
1507 Set_Ekind (Gen_Id, Kind);
1508 Set_Ekind (Body_Id, Kind);
1509
1510 if Present (First_Ent) then
1511 Set_First_Entity (Gen_Id, First_Ent);
1512 end if;
1513
1514 End_Scope;
1515 return;
1516 end if;
1517
1518 -- If this is a compilation unit, it must be made visible explicitly,
1519 -- because the compilation of the declaration, unlike other library
1520 -- unit declarations, does not. If it is not a unit, the following
1521 -- is redundant but harmless.
1522
1523 Set_Is_Immediately_Visible (Gen_Id);
1524 Reference_Body_Formals (Gen_Id, Body_Id);
1525
1526 if Is_Child_Unit (Gen_Id) then
1527 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1528 end if;
1529
1530 Set_Actual_Subtypes (N, Current_Scope);
1531
1532 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1533 Set_SPARK_Pragma_Inherited (Body_Id);
1534
1535 -- Analyze any aspect specifications that appear on the generic
1536 -- subprogram body.
1537
1538 if Has_Aspects (N) then
1539 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1540 end if;
1541
1542 Analyze_Declarations (Declarations (N));
1543 Check_Completion;
1544
1545 -- Process the contract of the subprogram body after all declarations
1546 -- have been analyzed. This ensures that any contract-related pragmas
1547 -- are available through the N_Contract node of the body.
1548
1549 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1550
1551 Analyze (Handled_Statement_Sequence (N));
1552 Save_Global_References (Original_Node (N));
1553
1554 -- Prior to exiting the scope, include generic formals again (if any
1555 -- are present) in the set of local entities.
1556
1557 if Present (First_Ent) then
1558 Set_First_Entity (Gen_Id, First_Ent);
1559 end if;
1560
1561 Check_References (Gen_Id);
1562 end;
1563
1564 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1565 Update_Use_Clause_Chain;
1566 Validate_Categorization_Dependency (N, Gen_Id);
1567 End_Scope;
1568 Check_Subprogram_Order (N);
1569
1570 -- Outside of its body, unit is generic again
1571
1572 Set_Ekind (Gen_Id, Kind);
1573 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1574
1575 if Style_Check then
1576 Style.Check_Identifier (Body_Id, Gen_Id);
1577 end if;
1578
1579 End_Generic;
1580 end Analyze_Generic_Subprogram_Body;
1581
1582 ----------------------------
1583 -- Analyze_Null_Procedure --
1584 ----------------------------
1585
1586 procedure Analyze_Null_Procedure
1587 (N : Node_Id;
1588 Is_Completion : out Boolean)
1589 is
1590 Loc : constant Source_Ptr := Sloc (N);
1591 Spec : constant Node_Id := Specification (N);
1592 Designator : Entity_Id;
1593 Form : Node_Id;
1594 Null_Body : Node_Id := Empty;
1595 Null_Stmt : Node_Id := Null_Statement (Spec);
1596 Prev : Entity_Id;
1597
1598 begin
1599 -- Capture the profile of the null procedure before analysis, for
1600 -- expansion at the freeze point and at each point of call. The body is
1601 -- used if the procedure has preconditions, or if it is a completion. In
1602 -- the first case the body is analyzed at the freeze point, in the other
1603 -- it replaces the null procedure declaration.
1604
1605 -- For a null procedure that comes from source, a NULL statement is
1606 -- provided by the parser, which carries the source location of the
1607 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1608 -- from expansion, create one now.
1609
1610 if No (Null_Stmt) then
1611 Null_Stmt := Make_Null_Statement (Loc);
1612 end if;
1613
1614 Null_Body :=
1615 Make_Subprogram_Body (Loc,
1616 Specification => New_Copy_Tree (Spec),
1617 Declarations => New_List,
1618 Handled_Statement_Sequence =>
1619 Make_Handled_Sequence_Of_Statements (Loc,
1620 Statements => New_List (Null_Stmt)));
1621
1622 -- Create new entities for body and formals
1623
1624 Set_Defining_Unit_Name (Specification (Null_Body),
1625 Make_Defining_Identifier
1626 (Sloc (Defining_Entity (N)),
1627 Chars (Defining_Entity (N))));
1628
1629 Form := First (Parameter_Specifications (Specification (Null_Body)));
1630 while Present (Form) loop
1631 Set_Defining_Identifier (Form,
1632 Make_Defining_Identifier
1633 (Sloc (Defining_Identifier (Form)),
1634 Chars (Defining_Identifier (Form))));
1635 Next (Form);
1636 end loop;
1637
1638 -- Determine whether the null procedure may be a completion of a generic
1639 -- suprogram, in which case we use the new null body as the completion
1640 -- and set minimal semantic information on the original declaration,
1641 -- which is rewritten as a null statement.
1642
1643 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1644
1645 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1646 Insert_Before (N, Null_Body);
1647 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1648
1649 Rewrite (N, Make_Null_Statement (Loc));
1650 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1651 Is_Completion := True;
1652 return;
1653
1654 else
1655 -- Resolve the types of the formals now, because the freeze point may
1656 -- appear in a different context, e.g. an instantiation.
1657
1658 Form := First (Parameter_Specifications (Specification (Null_Body)));
1659 while Present (Form) loop
1660 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1661 Find_Type (Parameter_Type (Form));
1662
1663 elsif No (Access_To_Subprogram_Definition
1664 (Parameter_Type (Form)))
1665 then
1666 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1667
1668 -- The case of a null procedure with a formal that is an
1669 -- access-to-subprogram type, and that is used as an actual
1670 -- in an instantiation is left to the enthusiastic reader.
1671
1672 else
1673 null;
1674 end if;
1675
1676 Next (Form);
1677 end loop;
1678 end if;
1679
1680 -- If there are previous overloadable entities with the same name, check
1681 -- whether any of them is completed by the null procedure.
1682
1683 if Present (Prev) and then Is_Overloadable (Prev) then
1684 Designator := Analyze_Subprogram_Specification (Spec);
1685 Prev := Find_Corresponding_Spec (N);
1686 end if;
1687
1688 if No (Prev) or else not Comes_From_Source (Prev) then
1689 Designator := Analyze_Subprogram_Specification (Spec);
1690 Set_Has_Completion (Designator);
1691
1692 -- Signal to caller that this is a procedure declaration
1693
1694 Is_Completion := False;
1695
1696 -- Null procedures are always inlined, but generic formal subprograms
1697 -- which appear as such in the internal instance of formal packages,
1698 -- need no completion and are not marked Inline.
1699
1700 if Expander_Active
1701 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1702 then
1703 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1704 Set_Body_To_Inline (N, Null_Body);
1705 Set_Is_Inlined (Designator);
1706 end if;
1707
1708 else
1709 -- The null procedure is a completion. We unconditionally rewrite
1710 -- this as a null body (even if expansion is not active), because
1711 -- there are various error checks that are applied on this body
1712 -- when it is analyzed (e.g. correct aspect placement).
1713
1714 if Has_Completion (Prev) then
1715 Error_Msg_Sloc := Sloc (Prev);
1716 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1717 end if;
1718
1719 Check_Previous_Null_Procedure (N, Prev);
1720
1721 Is_Completion := True;
1722 Rewrite (N, Null_Body);
1723 Analyze (N);
1724 end if;
1725 end Analyze_Null_Procedure;
1726
1727 -----------------------------
1728 -- Analyze_Operator_Symbol --
1729 -----------------------------
1730
1731 -- An operator symbol such as "+" or "and" may appear in context where the
1732 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1733 -- is just a string, as in (conjunction = "or"). In these cases the parser
1734 -- generates this node, and the semantics does the disambiguation. Other
1735 -- such case are actuals in an instantiation, the generic unit in an
1736 -- instantiation, and pragma arguments.
1737
1738 procedure Analyze_Operator_Symbol (N : Node_Id) is
1739 Par : constant Node_Id := Parent (N);
1740
1741 begin
1742 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1743 or else Nkind (Par) = N_Function_Instantiation
1744 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1745 or else (Nkind (Par) = N_Pragma_Argument_Association
1746 and then not Is_Pragma_String_Literal (Par))
1747 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1748 or else (Nkind (Par) = N_Attribute_Reference
1749 and then Attribute_Name (Par) /= Name_Value)
1750 then
1751 Find_Direct_Name (N);
1752
1753 else
1754 Change_Operator_Symbol_To_String_Literal (N);
1755 Analyze (N);
1756 end if;
1757 end Analyze_Operator_Symbol;
1758
1759 -----------------------------------
1760 -- Analyze_Parameter_Association --
1761 -----------------------------------
1762
1763 procedure Analyze_Parameter_Association (N : Node_Id) is
1764 begin
1765 Analyze (Explicit_Actual_Parameter (N));
1766 end Analyze_Parameter_Association;
1767
1768 ----------------------------
1769 -- Analyze_Procedure_Call --
1770 ----------------------------
1771
1772 -- WARNING: This routine manages Ghost regions. Return statements must be
1773 -- replaced by gotos which jump to the end of the routine and restore the
1774 -- Ghost mode.
1775
1776 procedure Analyze_Procedure_Call (N : Node_Id) is
1777 procedure Analyze_Call_And_Resolve;
1778 -- Do Analyze and Resolve calls for procedure call. At the end, check
1779 -- for illegal order dependence.
1780 -- ??? where is the check for illegal order dependencies?
1781
1782 ------------------------------
1783 -- Analyze_Call_And_Resolve --
1784 ------------------------------
1785
1786 procedure Analyze_Call_And_Resolve is
1787 begin
1788 if Nkind (N) = N_Procedure_Call_Statement then
1789 Analyze_Call (N);
1790 Resolve (N, Standard_Void_Type);
1791 else
1792 Analyze (N);
1793 end if;
1794 end Analyze_Call_And_Resolve;
1795
1796 -- Local variables
1797
1798 Actuals : constant List_Id := Parameter_Associations (N);
1799 Loc : constant Source_Ptr := Sloc (N);
1800 P : constant Node_Id := Name (N);
1801
1802 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1803 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1804 -- Save the Ghost-related attributes to restore on exit
1805
1806 Actual : Node_Id;
1807 New_N : Node_Id;
1808
1809 -- Start of processing for Analyze_Procedure_Call
1810
1811 begin
1812 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1813 -- a procedure call or an entry call. The prefix may denote an access
1814 -- to subprogram type, in which case an implicit dereference applies.
1815 -- If the prefix is an indexed component (without implicit dereference)
1816 -- then the construct denotes a call to a member of an entire family.
1817 -- If the prefix is a simple name, it may still denote a call to a
1818 -- parameterless member of an entry family. Resolution of these various
1819 -- interpretations is delicate.
1820
1821 -- Do not analyze machine code statements to avoid rejecting them in
1822 -- CodePeer mode.
1823
1824 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1825 Set_Etype (P, Standard_Void_Type);
1826 else
1827 Analyze (P);
1828 end if;
1829
1830 -- If this is a call of the form Obj.Op, the call may have been analyzed
1831 -- and possibly rewritten into a block, in which case we are done.
1832
1833 if Analyzed (N) then
1834 return;
1835
1836 -- If there is an error analyzing the name (which may have been
1837 -- rewritten if the original call was in prefix notation) then error
1838 -- has been emitted already, mark node and return.
1839
1840 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1841 Set_Etype (N, Any_Type);
1842 return;
1843 end if;
1844
1845 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1846 -- Set the mode now to ensure that any nodes generated during analysis
1847 -- and expansion are properly marked as Ghost.
1848
1849 Mark_And_Set_Ghost_Procedure_Call (N);
1850
1851 -- Otherwise analyze the parameters
1852
1853 if Present (Actuals) then
1854 Actual := First (Actuals);
1855
1856 while Present (Actual) loop
1857 Analyze (Actual);
1858 Check_Parameterless_Call (Actual);
1859 Next (Actual);
1860 end loop;
1861 end if;
1862
1863 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1864
1865 if Nkind (P) = N_Attribute_Reference
1866 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1867 Name_Elab_Body,
1868 Name_Elab_Subp_Body)
1869 then
1870 if Present (Actuals) then
1871 Error_Msg_N
1872 ("no parameters allowed for this call", First (Actuals));
1873 goto Leave;
1874 end if;
1875
1876 Set_Etype (N, Standard_Void_Type);
1877 Set_Analyzed (N);
1878
1879 elsif Is_Entity_Name (P)
1880 and then Is_Record_Type (Etype (Entity (P)))
1881 and then Remote_AST_I_Dereference (P)
1882 then
1883 goto Leave;
1884
1885 elsif Is_Entity_Name (P)
1886 and then Ekind (Entity (P)) /= E_Entry_Family
1887 then
1888 if Is_Access_Type (Etype (P))
1889 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1890 and then No (Actuals)
1891 and then Comes_From_Source (N)
1892 then
1893 Error_Msg_N ("missing explicit dereference in call", N);
1894 end if;
1895
1896 Analyze_Call_And_Resolve;
1897
1898 -- If the prefix is the simple name of an entry family, this is a
1899 -- parameterless call from within the task body itself.
1900
1901 elsif Is_Entity_Name (P)
1902 and then Nkind (P) = N_Identifier
1903 and then Ekind (Entity (P)) = E_Entry_Family
1904 and then Present (Actuals)
1905 and then No (Next (First (Actuals)))
1906 then
1907 -- Can be call to parameterless entry family. What appears to be the
1908 -- sole argument is in fact the entry index. Rewrite prefix of node
1909 -- accordingly. Source representation is unchanged by this
1910 -- transformation.
1911
1912 New_N :=
1913 Make_Indexed_Component (Loc,
1914 Prefix =>
1915 Make_Selected_Component (Loc,
1916 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1917 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1918 Expressions => Actuals);
1919 Set_Name (N, New_N);
1920 Set_Etype (New_N, Standard_Void_Type);
1921 Set_Parameter_Associations (N, No_List);
1922 Analyze_Call_And_Resolve;
1923
1924 elsif Nkind (P) = N_Explicit_Dereference then
1925 if Ekind (Etype (P)) = E_Subprogram_Type then
1926 Analyze_Call_And_Resolve;
1927 else
1928 Error_Msg_N ("expect access to procedure in call", P);
1929 end if;
1930
1931 -- The name can be a selected component or an indexed component that
1932 -- yields an access to subprogram. Such a prefix is legal if the call
1933 -- has parameter associations.
1934
1935 elsif Is_Access_Type (Etype (P))
1936 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1937 then
1938 if Present (Actuals) then
1939 Analyze_Call_And_Resolve;
1940 else
1941 Error_Msg_N ("missing explicit dereference in call ", N);
1942 end if;
1943
1944 -- If not an access to subprogram, then the prefix must resolve to the
1945 -- name of an entry, entry family, or protected operation.
1946
1947 -- For the case of a simple entry call, P is a selected component where
1948 -- the prefix is the task and the selector name is the entry. A call to
1949 -- a protected procedure will have the same syntax. If the protected
1950 -- object contains overloaded operations, the entity may appear as a
1951 -- function, the context will select the operation whose type is Void.
1952
1953 elsif Nkind (P) = N_Selected_Component
1954 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1955 E_Function,
1956 E_Procedure)
1957 then
1958 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1959 -- in prefix notation may still be missing its controlling argument,
1960 -- so perform the transformation now.
1961
1962 if SPARK_Mode = On and then In_Inlined_Body then
1963 declare
1964 Subp : constant Entity_Id := Entity (Selector_Name (P));
1965 Typ : constant Entity_Id := Etype (Prefix (P));
1966
1967 begin
1968 if Is_Tagged_Type (Typ)
1969 and then Present (First_Formal (Subp))
1970 and then (Etype (First_Formal (Subp)) = Typ
1971 or else
1972 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1973 and then Try_Object_Operation (P)
1974 then
1975 return;
1976
1977 else
1978 Analyze_Call_And_Resolve;
1979 end if;
1980 end;
1981
1982 else
1983 Analyze_Call_And_Resolve;
1984 end if;
1985
1986 elsif Nkind (P) = N_Selected_Component
1987 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1988 and then Present (Actuals)
1989 and then No (Next (First (Actuals)))
1990 then
1991 -- Can be call to parameterless entry family. What appears to be the
1992 -- sole argument is in fact the entry index. Rewrite prefix of node
1993 -- accordingly. Source representation is unchanged by this
1994 -- transformation.
1995
1996 New_N :=
1997 Make_Indexed_Component (Loc,
1998 Prefix => New_Copy (P),
1999 Expressions => Actuals);
2000 Set_Name (N, New_N);
2001 Set_Etype (New_N, Standard_Void_Type);
2002 Set_Parameter_Associations (N, No_List);
2003 Analyze_Call_And_Resolve;
2004
2005 -- For the case of a reference to an element of an entry family, P is
2006 -- an indexed component whose prefix is a selected component (task and
2007 -- entry family), and whose index is the entry family index.
2008
2009 elsif Nkind (P) = N_Indexed_Component
2010 and then Nkind (Prefix (P)) = N_Selected_Component
2011 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
2012 then
2013 Analyze_Call_And_Resolve;
2014
2015 -- If the prefix is the name of an entry family, it is a call from
2016 -- within the task body itself.
2017
2018 elsif Nkind (P) = N_Indexed_Component
2019 and then Nkind (Prefix (P)) = N_Identifier
2020 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
2021 then
2022 New_N :=
2023 Make_Selected_Component (Loc,
2024 Prefix =>
2025 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
2026 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
2027 Rewrite (Prefix (P), New_N);
2028 Analyze (P);
2029 Analyze_Call_And_Resolve;
2030
2031 -- In Ada 2012. a qualified expression is a name, but it cannot be a
2032 -- procedure name, so the construct can only be a qualified expression.
2033
2034 elsif Nkind (P) = N_Qualified_Expression
2035 and then Ada_Version >= Ada_2012
2036 then
2037 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
2038 Analyze (N);
2039
2040 -- Anything else is an error
2041
2042 else
2043 Error_Msg_N ("invalid procedure or entry call", N);
2044 end if;
2045
2046 <<Leave>>
2047 Restore_Ghost_Region (Saved_GM, Saved_IGR);
2048 end Analyze_Procedure_Call;
2049
2050 ------------------------------
2051 -- Analyze_Return_Statement --
2052 ------------------------------
2053
2054 procedure Analyze_Return_Statement (N : Node_Id) is
2055 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
2056 N_Simple_Return_Statement));
2057
2058 Returns_Object : constant Boolean :=
2059 Nkind (N) = N_Extended_Return_Statement
2060 or else
2061 (Nkind (N) = N_Simple_Return_Statement
2062 and then Present (Expression (N)));
2063 -- True if we're returning something; that is, "return <expression>;"
2064 -- or "return Result : T [:= ...]". False for "return;". Used for error
2065 -- checking: If Returns_Object is True, N should apply to a function
2066 -- body; otherwise N should apply to a procedure body, entry body,
2067 -- accept statement, or extended return statement.
2068
2069 function Find_What_It_Applies_To return Entity_Id;
2070 -- Find the entity representing the innermost enclosing body, accept
2071 -- statement, or extended return statement. If the result is a callable
2072 -- construct or extended return statement, then this will be the value
2073 -- of the Return_Applies_To attribute. Otherwise, the program is
2074 -- illegal. See RM-6.5(4/2).
2075
2076 -----------------------------
2077 -- Find_What_It_Applies_To --
2078 -----------------------------
2079
2080 function Find_What_It_Applies_To return Entity_Id is
2081 Result : Entity_Id := Empty;
2082
2083 begin
2084 -- Loop outward through the Scope_Stack, skipping blocks, loops,
2085 -- and postconditions.
2086
2087 for J in reverse 0 .. Scope_Stack.Last loop
2088 Result := Scope_Stack.Table (J).Entity;
2089 exit when not Ekind_In (Result, E_Block, E_Loop)
2090 and then Chars (Result) /= Name_uPostconditions;
2091 end loop;
2092
2093 pragma Assert (Present (Result));
2094 return Result;
2095 end Find_What_It_Applies_To;
2096
2097 -- Local declarations
2098
2099 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2100 Kind : constant Entity_Kind := Ekind (Scope_Id);
2101 Loc : constant Source_Ptr := Sloc (N);
2102 Stm_Entity : constant Entity_Id :=
2103 New_Internal_Entity
2104 (E_Return_Statement, Current_Scope, Loc, 'R');
2105
2106 -- Start of processing for Analyze_Return_Statement
2107
2108 begin
2109 Set_Return_Statement_Entity (N, Stm_Entity);
2110
2111 Set_Etype (Stm_Entity, Standard_Void_Type);
2112 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2113
2114 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2115 -- (4/2): an inner return statement will apply to this extended return.
2116
2117 if Nkind (N) = N_Extended_Return_Statement then
2118 Push_Scope (Stm_Entity);
2119 end if;
2120
2121 -- Check that pragma No_Return is obeyed. Don't complain about the
2122 -- implicitly-generated return that is placed at the end.
2123
2124 if No_Return (Scope_Id) and then Comes_From_Source (N) then
2125 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2126 end if;
2127
2128 -- Warn on any unassigned OUT parameters if in procedure
2129
2130 if Ekind (Scope_Id) = E_Procedure then
2131 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2132 end if;
2133
2134 -- Check that functions return objects, and other things do not
2135
2136 if Kind = E_Function or else Kind = E_Generic_Function then
2137 if not Returns_Object then
2138 Error_Msg_N ("missing expression in return from function", N);
2139 end if;
2140
2141 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2142 if Returns_Object then
2143 Error_Msg_N ("procedure cannot return value (use function)", N);
2144 end if;
2145
2146 elsif Kind = E_Entry or else Kind = E_Entry_Family then
2147 if Returns_Object then
2148 if Is_Protected_Type (Scope (Scope_Id)) then
2149 Error_Msg_N ("entry body cannot return value", N);
2150 else
2151 Error_Msg_N ("accept statement cannot return value", N);
2152 end if;
2153 end if;
2154
2155 elsif Kind = E_Return_Statement then
2156
2157 -- We are nested within another return statement, which must be an
2158 -- extended_return_statement.
2159
2160 if Returns_Object then
2161 if Nkind (N) = N_Extended_Return_Statement then
2162 Error_Msg_N
2163 ("extended return statement cannot be nested (use `RETURN;`)",
2164 N);
2165
2166 -- Case of a simple return statement with a value inside extended
2167 -- return statement.
2168
2169 else
2170 Error_Msg_N
2171 ("return nested in extended return statement cannot return "
2172 & "value (use `RETURN;`)", N);
2173 end if;
2174 end if;
2175
2176 else
2177 Error_Msg_N ("illegal context for return statement", N);
2178 end if;
2179
2180 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2181 Analyze_Function_Return (N);
2182
2183 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2184 Set_Return_Present (Scope_Id);
2185 end if;
2186
2187 if Nkind (N) = N_Extended_Return_Statement then
2188 End_Scope;
2189 end if;
2190
2191 Kill_Current_Values (Last_Assignment_Only => True);
2192 Check_Unreachable_Code (N);
2193
2194 Analyze_Dimension (N);
2195 end Analyze_Return_Statement;
2196
2197 -------------------------------------
2198 -- Analyze_Simple_Return_Statement --
2199 -------------------------------------
2200
2201 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2202 begin
2203 if Present (Expression (N)) then
2204 Mark_Coextensions (N, Expression (N));
2205 end if;
2206
2207 Analyze_Return_Statement (N);
2208 end Analyze_Simple_Return_Statement;
2209
2210 -------------------------
2211 -- Analyze_Return_Type --
2212 -------------------------
2213
2214 procedure Analyze_Return_Type (N : Node_Id) is
2215 Designator : constant Entity_Id := Defining_Entity (N);
2216 Typ : Entity_Id := Empty;
2217
2218 begin
2219 -- Normal case where result definition does not indicate an error
2220
2221 if Result_Definition (N) /= Error then
2222 if Nkind (Result_Definition (N)) = N_Access_Definition then
2223 Check_SPARK_05_Restriction
2224 ("access result is not allowed", Result_Definition (N));
2225
2226 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2227
2228 declare
2229 AD : constant Node_Id :=
2230 Access_To_Subprogram_Definition (Result_Definition (N));
2231 begin
2232 if Present (AD) and then Protected_Present (AD) then
2233 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2234 else
2235 Typ := Access_Definition (N, Result_Definition (N));
2236 end if;
2237 end;
2238
2239 Set_Parent (Typ, Result_Definition (N));
2240 Set_Is_Local_Anonymous_Access (Typ);
2241 Set_Etype (Designator, Typ);
2242
2243 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2244
2245 Null_Exclusion_Static_Checks (N);
2246
2247 -- Subtype_Mark case
2248
2249 else
2250 Find_Type (Result_Definition (N));
2251 Typ := Entity (Result_Definition (N));
2252 Set_Etype (Designator, Typ);
2253
2254 -- Unconstrained array as result is not allowed in SPARK
2255
2256 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2257 Check_SPARK_05_Restriction
2258 ("returning an unconstrained array is not allowed",
2259 Result_Definition (N));
2260 end if;
2261
2262 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2263
2264 Null_Exclusion_Static_Checks (N);
2265
2266 -- If a null exclusion is imposed on the result type, then create
2267 -- a null-excluding itype (an access subtype) and use it as the
2268 -- function's Etype. Note that the null exclusion checks are done
2269 -- right before this, because they don't get applied to types that
2270 -- do not come from source.
2271
2272 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2273 Set_Etype (Designator,
2274 Create_Null_Excluding_Itype
2275 (T => Typ,
2276 Related_Nod => N,
2277 Scope_Id => Scope (Current_Scope)));
2278
2279 -- The new subtype must be elaborated before use because
2280 -- it is visible outside of the function. However its base
2281 -- type may not be frozen yet, so the reference that will
2282 -- force elaboration must be attached to the freezing of
2283 -- the base type.
2284
2285 -- If the return specification appears on a proper body,
2286 -- the subtype will have been created already on the spec.
2287
2288 if Is_Frozen (Typ) then
2289 if Nkind (Parent (N)) = N_Subprogram_Body
2290 and then Nkind (Parent (Parent (N))) = N_Subunit
2291 then
2292 null;
2293 else
2294 Build_Itype_Reference (Etype (Designator), Parent (N));
2295 end if;
2296
2297 else
2298 Ensure_Freeze_Node (Typ);
2299
2300 declare
2301 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2302 begin
2303 Set_Itype (IR, Etype (Designator));
2304 Append_Freeze_Actions (Typ, New_List (IR));
2305 end;
2306 end if;
2307
2308 else
2309 Set_Etype (Designator, Typ);
2310 end if;
2311
2312 if Ekind (Typ) = E_Incomplete_Type
2313 or else (Is_Class_Wide_Type (Typ)
2314 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2315 then
2316 -- AI05-0151: Tagged incomplete types are allowed in all formal
2317 -- parts. Untagged incomplete types are not allowed in bodies.
2318 -- As a consequence, limited views cannot appear in a basic
2319 -- declaration that is itself within a body, because there is
2320 -- no point at which the non-limited view will become visible.
2321
2322 if Ada_Version >= Ada_2012 then
2323 if From_Limited_With (Typ) and then In_Package_Body then
2324 Error_Msg_NE
2325 ("invalid use of incomplete type&",
2326 Result_Definition (N), Typ);
2327
2328 -- The return type of a subprogram body cannot be of a
2329 -- formal incomplete type.
2330
2331 elsif Is_Generic_Type (Typ)
2332 and then Nkind (Parent (N)) = N_Subprogram_Body
2333 then
2334 Error_Msg_N
2335 ("return type cannot be a formal incomplete type",
2336 Result_Definition (N));
2337
2338 elsif Is_Class_Wide_Type (Typ)
2339 and then Is_Generic_Type (Root_Type (Typ))
2340 and then Nkind (Parent (N)) = N_Subprogram_Body
2341 then
2342 Error_Msg_N
2343 ("return type cannot be a formal incomplete type",
2344 Result_Definition (N));
2345
2346 elsif Is_Tagged_Type (Typ) then
2347 null;
2348
2349 -- Use is legal in a thunk generated for an operation
2350 -- inherited from a progenitor.
2351
2352 elsif Is_Thunk (Designator)
2353 and then Present (Non_Limited_View (Typ))
2354 then
2355 null;
2356
2357 elsif Nkind (Parent (N)) = N_Subprogram_Body
2358 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2359 N_Entry_Body)
2360 then
2361 Error_Msg_NE
2362 ("invalid use of untagged incomplete type&",
2363 Designator, Typ);
2364 end if;
2365
2366 -- The type must be completed in the current package. This
2367 -- is checked at the end of the package declaration when
2368 -- Taft-amendment types are identified. If the return type
2369 -- is class-wide, there is no required check, the type can
2370 -- be a bona fide TAT.
2371
2372 if Ekind (Scope (Current_Scope)) = E_Package
2373 and then In_Private_Part (Scope (Current_Scope))
2374 and then not Is_Class_Wide_Type (Typ)
2375 then
2376 Append_Elmt (Designator, Private_Dependents (Typ));
2377 end if;
2378
2379 else
2380 Error_Msg_NE
2381 ("invalid use of incomplete type&", Designator, Typ);
2382 end if;
2383 end if;
2384 end if;
2385
2386 -- Case where result definition does indicate an error
2387
2388 else
2389 Set_Etype (Designator, Any_Type);
2390 end if;
2391 end Analyze_Return_Type;
2392
2393 -----------------------------
2394 -- Analyze_Subprogram_Body --
2395 -----------------------------
2396
2397 procedure Analyze_Subprogram_Body (N : Node_Id) is
2398 Loc : constant Source_Ptr := Sloc (N);
2399 Body_Spec : constant Node_Id := Specification (N);
2400 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2401
2402 begin
2403 if Debug_Flag_C then
2404 Write_Str ("==> subprogram body ");
2405 Write_Name (Chars (Body_Id));
2406 Write_Str (" from ");
2407 Write_Location (Loc);
2408 Write_Eol;
2409 Indent;
2410 end if;
2411
2412 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2413
2414 -- The real work is split out into the helper, so it can do "return;"
2415 -- without skipping the debug output:
2416
2417 Analyze_Subprogram_Body_Helper (N);
2418
2419 if Debug_Flag_C then
2420 Outdent;
2421 Write_Str ("<== subprogram body ");
2422 Write_Name (Chars (Body_Id));
2423 Write_Str (" from ");
2424 Write_Location (Loc);
2425 Write_Eol;
2426 end if;
2427 end Analyze_Subprogram_Body;
2428
2429 ------------------------------------
2430 -- Analyze_Subprogram_Body_Helper --
2431 ------------------------------------
2432
2433 -- This procedure is called for regular subprogram bodies, generic bodies,
2434 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2435 -- specification matters, and is used to create a proper declaration for
2436 -- the subprogram, or to perform conformance checks.
2437
2438 -- WARNING: This routine manages Ghost regions. Return statements must be
2439 -- replaced by gotos which jump to the end of the routine and restore the
2440 -- Ghost mode.
2441
2442 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2443 Body_Spec : Node_Id := Specification (N);
2444 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2445 Loc : constant Source_Ptr := Sloc (N);
2446 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2447
2448 Conformant : Boolean;
2449 Desig_View : Entity_Id := Empty;
2450 Exch_Views : Elist_Id := No_Elist;
2451 HSS : Node_Id;
2452 Mask_Types : Elist_Id := No_Elist;
2453 Prot_Typ : Entity_Id := Empty;
2454 Spec_Decl : Node_Id := Empty;
2455 Spec_Id : Entity_Id;
2456
2457 Last_Real_Spec_Entity : Entity_Id := Empty;
2458 -- When we analyze a separate spec, the entity chain ends up containing
2459 -- the formals, as well as any itypes generated during analysis of the
2460 -- default expressions for parameters, or the arguments of associated
2461 -- precondition/postcondition pragmas (which are analyzed in the context
2462 -- of the spec since they have visibility on formals).
2463 --
2464 -- These entities belong with the spec and not the body. However we do
2465 -- the analysis of the body in the context of the spec (again to obtain
2466 -- visibility to the formals), and all the entities generated during
2467 -- this analysis end up also chained to the entity chain of the spec.
2468 -- But they really belong to the body, and there is circuitry to move
2469 -- them from the spec to the body.
2470 --
2471 -- However, when we do this move, we don't want to move the real spec
2472 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2473 -- variable points to the last real spec entity, so we only move those
2474 -- chained beyond that point. It is initialized to Empty to deal with
2475 -- the case where there is no separate spec.
2476
2477 function Body_Has_Contract return Boolean;
2478 -- Check whether unanalyzed body has an aspect or pragma that may
2479 -- generate a SPARK contract.
2480
2481 function Body_Has_SPARK_Mode_On return Boolean;
2482 -- Check whether SPARK_Mode On applies to the subprogram body, either
2483 -- because it is specified directly on the body, or because it is
2484 -- inherited from the enclosing subprogram or package.
2485
2486 procedure Build_Subprogram_Declaration;
2487 -- Create a matching subprogram declaration for subprogram body N
2488
2489 procedure Check_Anonymous_Return;
2490 -- Ada 2005: if a function returns an access type that denotes a task,
2491 -- or a type that contains tasks, we must create a master entity for
2492 -- the anonymous type, which typically will be used in an allocator
2493 -- in the body of the function.
2494
2495 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2496 -- Look ahead to recognize a pragma that may appear after the body.
2497 -- If there is a previous spec, check that it appears in the same
2498 -- declarative part. If the pragma is Inline_Always, perform inlining
2499 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2500 -- If the body acts as a spec, and inlining is required, we create a
2501 -- subprogram declaration for it, in order to attach the body to inline.
2502 -- If pragma does not appear after the body, check whether there is
2503 -- an inline pragma before any local declarations.
2504
2505 procedure Check_Missing_Return;
2506 -- Checks for a function with a no return statements, and also performs
2507 -- the warning checks implemented by Check_Returns. In formal mode, also
2508 -- verify that a function ends with a RETURN and that a procedure does
2509 -- not contain any RETURN.
2510
2511 function Disambiguate_Spec return Entity_Id;
2512 -- When a primitive is declared between the private view and the full
2513 -- view of a concurrent type which implements an interface, a special
2514 -- mechanism is used to find the corresponding spec of the primitive
2515 -- body.
2516
2517 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2518 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2519 -- incomplete types coming from a limited context and replace their
2520 -- limited views with the non-limited ones. Return the list of changes
2521 -- to be used to undo the transformation.
2522
2523 function Is_Private_Concurrent_Primitive
2524 (Subp_Id : Entity_Id) return Boolean;
2525 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2526 -- type that implements an interface and has a private view.
2527
2528 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2529 -- N is the body generated for an expression function that is not a
2530 -- completion and Spec_Id the defining entity of its spec. Mark all
2531 -- the not-yet-frozen types referenced by the simple return statement
2532 -- of the function as formally frozen.
2533
2534 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2535 -- Undo the transformation done by Exchange_Limited_Views.
2536
2537 procedure Set_Trivial_Subprogram (N : Node_Id);
2538 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2539 -- subprogram whose body is being analyzed. N is the statement node
2540 -- causing the flag to be set, if the following statement is a return
2541 -- of an entity, we mark the entity as set in source to suppress any
2542 -- warning on the stylized use of function stubs with a dummy return.
2543
2544 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2545 -- Undo the transformation done by Mask_Unfrozen_Types
2546
2547 procedure Verify_Overriding_Indicator;
2548 -- If there was a previous spec, the entity has been entered in the
2549 -- current scope previously. If the body itself carries an overriding
2550 -- indicator, check that it is consistent with the known status of the
2551 -- entity.
2552
2553 -----------------------
2554 -- Body_Has_Contract --
2555 -----------------------
2556
2557 function Body_Has_Contract return Boolean is
2558 Decls : constant List_Id := Declarations (N);
2559 Item : Node_Id;
2560
2561 begin
2562 -- Check for aspects that may generate a contract
2563
2564 if Present (Aspect_Specifications (N)) then
2565 Item := First (Aspect_Specifications (N));
2566 while Present (Item) loop
2567 if Is_Subprogram_Contract_Annotation (Item) then
2568 return True;
2569 end if;
2570
2571 Next (Item);
2572 end loop;
2573 end if;
2574
2575 -- Check for pragmas that may generate a contract
2576
2577 if Present (Decls) then
2578 Item := First (Decls);
2579 while Present (Item) loop
2580 if Nkind (Item) = N_Pragma
2581 and then Is_Subprogram_Contract_Annotation (Item)
2582 then
2583 return True;
2584 end if;
2585
2586 Next (Item);
2587 end loop;
2588 end if;
2589
2590 return False;
2591 end Body_Has_Contract;
2592
2593 ----------------------------
2594 -- Body_Has_SPARK_Mode_On --
2595 ----------------------------
2596
2597 function Body_Has_SPARK_Mode_On return Boolean is
2598 Decls : constant List_Id := Declarations (N);
2599 Item : Node_Id;
2600
2601 begin
2602 -- Check for SPARK_Mode aspect
2603
2604 if Present (Aspect_Specifications (N)) then
2605 Item := First (Aspect_Specifications (N));
2606 while Present (Item) loop
2607 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2608 return Get_SPARK_Mode_From_Annotation (Item) = On;
2609 end if;
2610
2611 Next (Item);
2612 end loop;
2613 end if;
2614
2615 -- Check for SPARK_Mode pragma
2616
2617 if Present (Decls) then
2618 Item := First (Decls);
2619 while Present (Item) loop
2620
2621 -- Pragmas that apply to a subprogram body are usually grouped
2622 -- together. Look for a potential pragma SPARK_Mode among them.
2623
2624 if Nkind (Item) = N_Pragma then
2625 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2626 return Get_SPARK_Mode_From_Annotation (Item) = On;
2627 end if;
2628
2629 -- Otherwise the first non-pragma declarative item terminates
2630 -- the region where pragma SPARK_Mode may appear.
2631
2632 else
2633 exit;
2634 end if;
2635
2636 Next (Item);
2637 end loop;
2638 end if;
2639
2640 -- Otherwise, the applicable SPARK_Mode is inherited from the
2641 -- enclosing subprogram or package.
2642
2643 return SPARK_Mode = On;
2644 end Body_Has_SPARK_Mode_On;
2645
2646 ----------------------------------
2647 -- Build_Subprogram_Declaration --
2648 ----------------------------------
2649
2650 procedure Build_Subprogram_Declaration is
2651 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2652 -- Relocate certain categorization pragmas from the declarative list
2653 -- of subprogram body From and insert them after node To. The pragmas
2654 -- in question are:
2655 -- Ghost
2656 -- Volatile_Function
2657 -- Also copy pragma SPARK_Mode if present in the declarative list
2658 -- of subprogram body From and insert it after node To. This pragma
2659 -- should not be moved, as it applies to the body too.
2660
2661 ------------------
2662 -- Move_Pragmas --
2663 ------------------
2664
2665 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2666 Decl : Node_Id;
2667 Next_Decl : Node_Id;
2668
2669 begin
2670 pragma Assert (Nkind (From) = N_Subprogram_Body);
2671
2672 -- The destination node must be part of a list, as the pragmas are
2673 -- inserted after it.
2674
2675 pragma Assert (Is_List_Member (To));
2676
2677 -- Inspect the declarations of the subprogram body looking for
2678 -- specific pragmas.
2679
2680 Decl := First (Declarations (N));
2681 while Present (Decl) loop
2682 Next_Decl := Next (Decl);
2683
2684 if Nkind (Decl) = N_Pragma then
2685 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2686 Insert_After (To, New_Copy_Tree (Decl));
2687
2688 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2689 Name_Ghost,
2690 Name_Volatile_Function)
2691 then
2692 Remove (Decl);
2693 Insert_After (To, Decl);
2694 end if;
2695 end if;
2696
2697 Decl := Next_Decl;
2698 end loop;
2699 end Move_Pragmas;
2700
2701 -- Local variables
2702
2703 Decl : Node_Id;
2704 Subp_Decl : Node_Id;
2705
2706 -- Start of processing for Build_Subprogram_Declaration
2707
2708 begin
2709 -- Create a matching subprogram spec using the profile of the body.
2710 -- The structure of the tree is identical, but has new entities for
2711 -- the defining unit name and formal parameters.
2712
2713 Subp_Decl :=
2714 Make_Subprogram_Declaration (Loc,
2715 Specification => Copy_Subprogram_Spec (Body_Spec));
2716 Set_Comes_From_Source (Subp_Decl, True);
2717
2718 -- Relocate the aspects and relevant pragmas from the subprogram body
2719 -- to the generated spec because it acts as the initial declaration.
2720
2721 Insert_Before (N, Subp_Decl);
2722 Move_Aspects (N, To => Subp_Decl);
2723 Move_Pragmas (N, To => Subp_Decl);
2724
2725 -- Ensure that the generated corresponding spec and original body
2726 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2727 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2728 -- correctly set for local subprograms.
2729
2730 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2731
2732 Analyze (Subp_Decl);
2733
2734 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2735 -- the body since the expander may generate calls using that entity.
2736 -- Required to ensure that Expand_Call rewrites calls to this
2737 -- function by calls to the built procedure.
2738
2739 if Modify_Tree_For_C
2740 and then Nkind (Body_Spec) = N_Function_Specification
2741 and then
2742 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2743 then
2744 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2745 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2746 Corresponding_Procedure
2747 (Defining_Entity (Specification (Subp_Decl))));
2748 end if;
2749
2750 -- Analyze any relocated source pragmas or pragmas created for aspect
2751 -- specifications.
2752
2753 Decl := Next (Subp_Decl);
2754 while Present (Decl) loop
2755
2756 -- Stop the search for pragmas once the body has been reached as
2757 -- this terminates the region where pragmas may appear.
2758
2759 if Decl = N then
2760 exit;
2761
2762 elsif Nkind (Decl) = N_Pragma then
2763 Analyze (Decl);
2764 end if;
2765
2766 Next (Decl);
2767 end loop;
2768
2769 Spec_Id := Defining_Entity (Subp_Decl);
2770 Set_Corresponding_Spec (N, Spec_Id);
2771
2772 -- Mark the generated spec as a source construct to ensure that all
2773 -- calls to it are properly registered in ALI files for GNATprove.
2774
2775 Set_Comes_From_Source (Spec_Id, True);
2776
2777 -- Ensure that the specs of the subprogram declaration and its body
2778 -- are identical, otherwise they will appear non-conformant due to
2779 -- rewritings in the default values of formal parameters.
2780
2781 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2782 Set_Specification (N, Body_Spec);
2783 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2784 end Build_Subprogram_Declaration;
2785
2786 ----------------------------
2787 -- Check_Anonymous_Return --
2788 ----------------------------
2789
2790 procedure Check_Anonymous_Return is
2791 Decl : Node_Id;
2792 Par : Node_Id;
2793 Scop : Entity_Id;
2794
2795 begin
2796 if Present (Spec_Id) then
2797 Scop := Spec_Id;
2798 else
2799 Scop := Body_Id;
2800 end if;
2801
2802 if Ekind (Scop) = E_Function
2803 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2804 and then not Is_Thunk (Scop)
2805
2806 -- Skip internally built functions which handle the case of
2807 -- a null access (see Expand_Interface_Conversion)
2808
2809 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2810 and then not Comes_From_Source (Parent (Scop)))
2811
2812 and then (Has_Task (Designated_Type (Etype (Scop)))
2813 or else
2814 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2815 and then
2816 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2817 and then Expander_Active
2818
2819 -- Avoid cases with no tasking support
2820
2821 and then RTE_Available (RE_Current_Master)
2822 and then not Restriction_Active (No_Task_Hierarchy)
2823 then
2824 Decl :=
2825 Make_Object_Declaration (Loc,
2826 Defining_Identifier =>
2827 Make_Defining_Identifier (Loc, Name_uMaster),
2828 Constant_Present => True,
2829 Object_Definition =>
2830 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2831 Expression =>
2832 Make_Explicit_Dereference (Loc,
2833 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2834
2835 if Present (Declarations (N)) then
2836 Prepend (Decl, Declarations (N));
2837 else
2838 Set_Declarations (N, New_List (Decl));
2839 end if;
2840
2841 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2842 Set_Has_Master_Entity (Scop);
2843
2844 -- Now mark the containing scope as a task master
2845
2846 Par := N;
2847 while Nkind (Par) /= N_Compilation_Unit loop
2848 Par := Parent (Par);
2849 pragma Assert (Present (Par));
2850
2851 -- If we fall off the top, we are at the outer level, and
2852 -- the environment task is our effective master, so nothing
2853 -- to mark.
2854
2855 if Nkind_In
2856 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2857 then
2858 Set_Is_Task_Master (Par, True);
2859 exit;
2860 end if;
2861 end loop;
2862 end if;
2863 end Check_Anonymous_Return;
2864
2865 -------------------------
2866 -- Check_Inline_Pragma --
2867 -------------------------
2868
2869 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2870 Prag : Node_Id;
2871 Plist : List_Id;
2872
2873 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2874 -- True when N is a pragma Inline or Inline_Always that applies
2875 -- to this subprogram.
2876
2877 -----------------------
2878 -- Is_Inline_Pragma --
2879 -----------------------
2880
2881 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2882 begin
2883 if Nkind (N) = N_Pragma
2884 and then
2885 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2886 or else (Pragma_Name_Unmapped (N) = Name_Inline
2887 and then
2888 (Front_End_Inlining or else Optimization_Level > 0)))
2889 and then Present (Pragma_Argument_Associations (N))
2890 then
2891 declare
2892 Pragma_Arg : Node_Id :=
2893 Expression (First (Pragma_Argument_Associations (N)));
2894 begin
2895 if Nkind (Pragma_Arg) = N_Selected_Component then
2896 Pragma_Arg := Selector_Name (Pragma_Arg);
2897 end if;
2898
2899 return Chars (Pragma_Arg) = Chars (Body_Id);
2900 end;
2901
2902 else
2903 return False;
2904 end if;
2905 end Is_Inline_Pragma;
2906
2907 -- Start of processing for Check_Inline_Pragma
2908
2909 begin
2910 if not Expander_Active then
2911 return;
2912 end if;
2913
2914 if Is_List_Member (N)
2915 and then Present (Next (N))
2916 and then Is_Inline_Pragma (Next (N))
2917 then
2918 Prag := Next (N);
2919
2920 elsif Nkind (N) /= N_Subprogram_Body_Stub
2921 and then Present (Declarations (N))
2922 and then Is_Inline_Pragma (First (Declarations (N)))
2923 then
2924 Prag := First (Declarations (N));
2925
2926 else
2927 Prag := Empty;
2928 end if;
2929
2930 if Present (Prag) then
2931 if Present (Spec_Id) then
2932 if Is_List_Member (N)
2933 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2934 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2935 then
2936 Analyze (Prag);
2937 end if;
2938
2939 else
2940 -- Create a subprogram declaration, to make treatment uniform.
2941 -- Make the sloc of the subprogram name that of the entity in
2942 -- the body, so that style checks find identical strings.
2943
2944 declare
2945 Subp : constant Entity_Id :=
2946 Make_Defining_Identifier
2947 (Sloc (Body_Id), Chars (Body_Id));
2948 Decl : constant Node_Id :=
2949 Make_Subprogram_Declaration (Loc,
2950 Specification =>
2951 New_Copy_Tree (Specification (N)));
2952
2953 begin
2954 -- Link the body and the generated spec
2955
2956 Set_Corresponding_Body (Decl, Body_Id);
2957 Set_Corresponding_Spec (N, Subp);
2958
2959 Set_Defining_Unit_Name (Specification (Decl), Subp);
2960
2961 -- To ensure proper coverage when body is inlined, indicate
2962 -- whether the subprogram comes from source.
2963
2964 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2965
2966 if Present (First_Formal (Body_Id)) then
2967 Plist := Copy_Parameter_List (Body_Id);
2968 Set_Parameter_Specifications
2969 (Specification (Decl), Plist);
2970 end if;
2971
2972 -- Move aspects to the new spec
2973
2974 if Has_Aspects (N) then
2975 Move_Aspects (N, To => Decl);
2976 end if;
2977
2978 Insert_Before (N, Decl);
2979 Analyze (Decl);
2980 Analyze (Prag);
2981 Set_Has_Pragma_Inline (Subp);
2982
2983 if Pragma_Name (Prag) = Name_Inline_Always then
2984 Set_Is_Inlined (Subp);
2985 Set_Has_Pragma_Inline_Always (Subp);
2986 end if;
2987
2988 -- Prior to copying the subprogram body to create a template
2989 -- for it for subsequent inlining, remove the pragma from
2990 -- the current body so that the copy that will produce the
2991 -- new body will start from a completely unanalyzed tree.
2992
2993 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2994 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2995 end if;
2996
2997 Spec := Subp;
2998 end;
2999 end if;
3000 end if;
3001 end Check_Inline_Pragma;
3002
3003 --------------------------
3004 -- Check_Missing_Return --
3005 --------------------------
3006
3007 procedure Check_Missing_Return is
3008 Id : Entity_Id;
3009 Missing_Ret : Boolean;
3010
3011 begin
3012 if Nkind (Body_Spec) = N_Function_Specification then
3013 if Present (Spec_Id) then
3014 Id := Spec_Id;
3015 else
3016 Id := Body_Id;
3017 end if;
3018
3019 if Return_Present (Id) then
3020 Check_Returns (HSS, 'F', Missing_Ret);
3021
3022 if Missing_Ret then
3023 Set_Has_Missing_Return (Id);
3024 end if;
3025
3026 -- Within a premature instantiation of a package with no body, we
3027 -- build completions of the functions therein, with a Raise
3028 -- statement. No point in complaining about a missing return in
3029 -- this case.
3030
3031 elsif Ekind (Id) = E_Function
3032 and then In_Instance
3033 and then Present (Statements (HSS))
3034 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
3035 then
3036 null;
3037
3038 elsif Is_Generic_Subprogram (Id)
3039 or else not Is_Machine_Code_Subprogram (Id)
3040 then
3041 Error_Msg_N ("missing RETURN statement in function body", N);
3042 end if;
3043
3044 -- If procedure with No_Return, check returns
3045
3046 elsif Nkind (Body_Spec) = N_Procedure_Specification
3047 and then Present (Spec_Id)
3048 and then No_Return (Spec_Id)
3049 then
3050 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
3051 end if;
3052
3053 -- Special checks in SPARK mode
3054
3055 if Nkind (Body_Spec) = N_Function_Specification then
3056
3057 -- In SPARK mode, last statement of a function should be a return
3058
3059 declare
3060 Stat : constant Node_Id := Last_Source_Statement (HSS);
3061 begin
3062 if Present (Stat)
3063 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3064 N_Extended_Return_Statement)
3065 then
3066 Check_SPARK_05_Restriction
3067 ("last statement in function should be RETURN", Stat);
3068 end if;
3069 end;
3070
3071 -- In SPARK mode, verify that a procedure has no return
3072
3073 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3074 if Present (Spec_Id) then
3075 Id := Spec_Id;
3076 else
3077 Id := Body_Id;
3078 end if;
3079
3080 -- Would be nice to point to return statement here, can we
3081 -- borrow the Check_Returns procedure here ???
3082
3083 if Return_Present (Id) then
3084 Check_SPARK_05_Restriction
3085 ("procedure should not have RETURN", N);
3086 end if;
3087 end if;
3088 end Check_Missing_Return;
3089
3090 -----------------------
3091 -- Disambiguate_Spec --
3092 -----------------------
3093
3094 function Disambiguate_Spec return Entity_Id is
3095 Priv_Spec : Entity_Id;
3096 Spec_N : Entity_Id;
3097
3098 procedure Replace_Types (To_Corresponding : Boolean);
3099 -- Depending on the flag, replace the type of formal parameters of
3100 -- Body_Id if it is a concurrent type implementing interfaces with
3101 -- the corresponding record type or the other way around.
3102
3103 procedure Replace_Types (To_Corresponding : Boolean) is
3104 Formal : Entity_Id;
3105 Formal_Typ : Entity_Id;
3106
3107 begin
3108 Formal := First_Formal (Body_Id);
3109 while Present (Formal) loop
3110 Formal_Typ := Etype (Formal);
3111
3112 if Is_Class_Wide_Type (Formal_Typ) then
3113 Formal_Typ := Root_Type (Formal_Typ);
3114 end if;
3115
3116 -- From concurrent type to corresponding record
3117
3118 if To_Corresponding then
3119 if Is_Concurrent_Type (Formal_Typ)
3120 and then Present (Corresponding_Record_Type (Formal_Typ))
3121 and then
3122 Present (Interfaces
3123 (Corresponding_Record_Type (Formal_Typ)))
3124 then
3125 Set_Etype (Formal,
3126 Corresponding_Record_Type (Formal_Typ));
3127 end if;
3128
3129 -- From corresponding record to concurrent type
3130
3131 else
3132 if Is_Concurrent_Record_Type (Formal_Typ)
3133 and then Present (Interfaces (Formal_Typ))
3134 then
3135 Set_Etype (Formal,
3136 Corresponding_Concurrent_Type (Formal_Typ));
3137 end if;
3138 end if;
3139
3140 Next_Formal (Formal);
3141 end loop;
3142 end Replace_Types;
3143
3144 -- Start of processing for Disambiguate_Spec
3145
3146 begin
3147 -- Try to retrieve the specification of the body as is. All error
3148 -- messages are suppressed because the body may not have a spec in
3149 -- its current state.
3150
3151 Spec_N := Find_Corresponding_Spec (N, False);
3152
3153 -- It is possible that this is the body of a primitive declared
3154 -- between a private and a full view of a concurrent type. The
3155 -- controlling parameter of the spec carries the concurrent type,
3156 -- not the corresponding record type as transformed by Analyze_
3157 -- Subprogram_Specification. In such cases, we undo the change
3158 -- made by the analysis of the specification and try to find the
3159 -- spec again.
3160
3161 -- Note that wrappers already have their corresponding specs and
3162 -- bodies set during their creation, so if the candidate spec is
3163 -- a wrapper, then we definitely need to swap all types to their
3164 -- original concurrent status.
3165
3166 if No (Spec_N)
3167 or else Is_Primitive_Wrapper (Spec_N)
3168 then
3169 -- Restore all references of corresponding record types to the
3170 -- original concurrent types.
3171
3172 Replace_Types (To_Corresponding => False);
3173 Priv_Spec := Find_Corresponding_Spec (N, False);
3174
3175 -- The current body truly belongs to a primitive declared between
3176 -- a private and a full view. We leave the modified body as is,
3177 -- and return the true spec.
3178
3179 if Present (Priv_Spec)
3180 and then Is_Private_Primitive (Priv_Spec)
3181 then
3182 return Priv_Spec;
3183 end if;
3184
3185 -- In case that this is some sort of error, restore the original
3186 -- state of the body.
3187
3188 Replace_Types (To_Corresponding => True);
3189 end if;
3190
3191 return Spec_N;
3192 end Disambiguate_Spec;
3193
3194 ----------------------------
3195 -- Exchange_Limited_Views --
3196 ----------------------------
3197
3198 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3199 Result : Elist_Id := No_Elist;
3200
3201 procedure Detect_And_Exchange (Id : Entity_Id);
3202 -- Determine whether Id's type denotes an incomplete type associated
3203 -- with a limited with clause and exchange the limited view with the
3204 -- non-limited one when available. Note that the non-limited view
3205 -- may exist because of a with_clause in another unit in the context,
3206 -- but cannot be used because the current view of the enclosing unit
3207 -- is still a limited view.
3208
3209 -------------------------
3210 -- Detect_And_Exchange --
3211 -------------------------
3212
3213 procedure Detect_And_Exchange (Id : Entity_Id) is
3214 Typ : constant Entity_Id := Etype (Id);
3215 begin
3216 if From_Limited_With (Typ)
3217 and then Has_Non_Limited_View (Typ)
3218 and then not From_Limited_With (Scope (Typ))
3219 then
3220 if No (Result) then
3221 Result := New_Elmt_List;
3222 end if;
3223
3224 Prepend_Elmt (Typ, Result);
3225 Prepend_Elmt (Id, Result);
3226 Set_Etype (Id, Non_Limited_View (Typ));
3227 end if;
3228 end Detect_And_Exchange;
3229
3230 -- Local variables
3231
3232 Formal : Entity_Id;
3233
3234 -- Start of processing for Exchange_Limited_Views
3235
3236 begin
3237 -- Do not process subprogram bodies as they already use the non-
3238 -- limited view of types.
3239
3240 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3241 return No_Elist;
3242 end if;
3243
3244 -- Examine all formals and swap views when applicable
3245
3246 Formal := First_Formal (Subp_Id);
3247 while Present (Formal) loop
3248 Detect_And_Exchange (Formal);
3249
3250 Next_Formal (Formal);
3251 end loop;
3252
3253 -- Process the return type of a function
3254
3255 if Ekind (Subp_Id) = E_Function then
3256 Detect_And_Exchange (Subp_Id);
3257 end if;
3258
3259 return Result;
3260 end Exchange_Limited_Views;
3261
3262 -------------------------------------
3263 -- Is_Private_Concurrent_Primitive --
3264 -------------------------------------
3265
3266 function Is_Private_Concurrent_Primitive
3267 (Subp_Id : Entity_Id) return Boolean
3268 is
3269 Formal_Typ : Entity_Id;
3270
3271 begin
3272 if Present (First_Formal (Subp_Id)) then
3273 Formal_Typ := Etype (First_Formal (Subp_Id));
3274
3275 if Is_Concurrent_Record_Type (Formal_Typ) then
3276 if Is_Class_Wide_Type (Formal_Typ) then
3277 Formal_Typ := Root_Type (Formal_Typ);
3278 end if;
3279
3280 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3281 end if;
3282
3283 -- The type of the first formal is a concurrent tagged type with
3284 -- a private view.
3285
3286 return
3287 Is_Concurrent_Type (Formal_Typ)
3288 and then Is_Tagged_Type (Formal_Typ)
3289 and then Has_Private_Declaration (Formal_Typ);
3290 end if;
3291
3292 return False;
3293 end Is_Private_Concurrent_Primitive;
3294
3295 -------------------------
3296 -- Mask_Unfrozen_Types --
3297 -------------------------
3298
3299 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3300 Result : Elist_Id := No_Elist;
3301
3302 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3303 -- Mask all types referenced in the subtree rooted at Node
3304
3305 --------------------
3306 -- Mask_Type_Refs --
3307 --------------------
3308
3309 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3310 procedure Mask_Type (Typ : Entity_Id);
3311 -- ??? what does this do?
3312
3313 ---------------
3314 -- Mask_Type --
3315 ---------------
3316
3317 procedure Mask_Type (Typ : Entity_Id) is
3318 begin
3319 -- Skip Itypes created by the preanalysis
3320
3321 if Is_Itype (Typ)
3322 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3323 then
3324 return;
3325 end if;
3326
3327 if not Is_Frozen (Typ) then
3328 Set_Is_Frozen (Typ);
3329 Append_New_Elmt (Typ, Result);
3330 end if;
3331 end Mask_Type;
3332
3333 -- Start of processing for Mask_Type_Refs
3334
3335 begin
3336 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3337 Mask_Type (Etype (Entity (Node)));
3338
3339 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3340 Mask_Type (Scope (Entity (Node)));
3341 end if;
3342
3343 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3344 and then Present (Etype (Node))
3345 then
3346 Mask_Type (Etype (Node));
3347 end if;
3348
3349 return OK;
3350 end Mask_Type_Refs;
3351
3352 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3353
3354 -- Local variables
3355
3356 Return_Stmt : constant Node_Id :=
3357 First (Statements (Handled_Statement_Sequence (N)));
3358
3359 -- Start of processing for Mask_Unfrozen_Types
3360
3361 begin
3362 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3363
3364 Mask_References (Expression (Return_Stmt));
3365
3366 return Result;
3367 end Mask_Unfrozen_Types;
3368
3369 ---------------------------
3370 -- Restore_Limited_Views --
3371 ---------------------------
3372
3373 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3374 Elmt : Elmt_Id := First_Elmt (Restore_List);
3375 Id : Entity_Id;
3376
3377 begin
3378 while Present (Elmt) loop
3379 Id := Node (Elmt);
3380 Next_Elmt (Elmt);
3381 Set_Etype (Id, Node (Elmt));
3382 Next_Elmt (Elmt);
3383 end loop;
3384 end Restore_Limited_Views;
3385
3386 ----------------------------
3387 -- Set_Trivial_Subprogram --
3388 ----------------------------
3389
3390 procedure Set_Trivial_Subprogram (N : Node_Id) is
3391 Nxt : constant Node_Id := Next (N);
3392
3393 begin
3394 Set_Is_Trivial_Subprogram (Body_Id);
3395
3396 if Present (Spec_Id) then
3397 Set_Is_Trivial_Subprogram (Spec_Id);
3398 end if;
3399
3400 if Present (Nxt)
3401 and then Nkind (Nxt) = N_Simple_Return_Statement
3402 and then No (Next (Nxt))
3403 and then Present (Expression (Nxt))
3404 and then Is_Entity_Name (Expression (Nxt))
3405 then
3406 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3407 end if;
3408 end Set_Trivial_Subprogram;
3409
3410 ---------------------------
3411 -- Unmask_Unfrozen_Types --
3412 ---------------------------
3413
3414 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3415 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3416
3417 begin
3418 while Present (Elmt) loop
3419 Set_Is_Frozen (Node (Elmt), False);
3420 Next_Elmt (Elmt);
3421 end loop;
3422 end Unmask_Unfrozen_Types;
3423
3424 ---------------------------------
3425 -- Verify_Overriding_Indicator --
3426 ---------------------------------
3427
3428 procedure Verify_Overriding_Indicator is
3429 begin
3430 if Must_Override (Body_Spec) then
3431 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3432 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3433 then
3434 null;
3435
3436 elsif not Present (Overridden_Operation (Spec_Id)) then
3437 Error_Msg_NE
3438 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3439
3440 -- Overriding indicators aren't allowed for protected subprogram
3441 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3442 -- this to a warning if -gnatd.E is enabled.
3443
3444 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3445 Error_Msg_Warn := Error_To_Warning;
3446 Error_Msg_N
3447 ("<<overriding indicator not allowed for protected "
3448 & "subprogram body", Body_Spec);
3449 end if;
3450
3451 elsif Must_Not_Override (Body_Spec) then
3452 if Present (Overridden_Operation (Spec_Id)) then
3453 Error_Msg_NE
3454 ("subprogram& overrides inherited operation",
3455 Body_Spec, Spec_Id);
3456
3457 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3458 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3459 then
3460 Error_Msg_NE
3461 ("subprogram& overrides predefined operator ",
3462 Body_Spec, Spec_Id);
3463
3464 -- Overriding indicators aren't allowed for protected subprogram
3465 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3466 -- this to a warning if -gnatd.E is enabled.
3467
3468 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3469 Error_Msg_Warn := Error_To_Warning;
3470
3471 Error_Msg_N
3472 ("<<overriding indicator not allowed "
3473 & "for protected subprogram body", Body_Spec);
3474
3475 -- If this is not a primitive operation, then the overriding
3476 -- indicator is altogether illegal.
3477
3478 elsif not Is_Primitive (Spec_Id) then
3479 Error_Msg_N
3480 ("overriding indicator only allowed "
3481 & "if subprogram is primitive", Body_Spec);
3482 end if;
3483
3484 -- If checking the style rule and the operation overrides, then
3485 -- issue a warning about a missing overriding_indicator. Protected
3486 -- subprogram bodies are excluded from this style checking, since
3487 -- they aren't primitives (even though their declarations can
3488 -- override) and aren't allowed to have an overriding_indicator.
3489
3490 elsif Style_Check
3491 and then Present (Overridden_Operation (Spec_Id))
3492 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3493 then
3494 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3495 Style.Missing_Overriding (N, Body_Id);
3496
3497 elsif Style_Check
3498 and then Can_Override_Operator (Spec_Id)
3499 and then not In_Predefined_Unit (Spec_Id)
3500 then
3501 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3502 Style.Missing_Overriding (N, Body_Id);
3503 end if;
3504 end Verify_Overriding_Indicator;
3505
3506 -- Local variables
3507
3508 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3509 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3510 Saved_ISMP : constant Boolean :=
3511 Ignore_SPARK_Mode_Pragmas_In_Instance;
3512 -- Save the Ghost and SPARK mode-related data to restore on exit
3513
3514 -- Start of processing for Analyze_Subprogram_Body_Helper
3515
3516 begin
3517 -- A [generic] subprogram body freezes the contract of the nearest
3518 -- enclosing package body and all other contracts encountered in the
3519 -- same declarative part up to and excluding the subprogram body:
3520
3521 -- package body Nearest_Enclosing_Package
3522 -- with Refined_State => (State => Constit)
3523 -- is
3524 -- Constit : ...;
3525
3526 -- procedure Freezes_Enclosing_Package_Body
3527 -- with Refined_Depends => (Input => Constit) ...
3528
3529 -- This ensures that any annotations referenced by the contract of the
3530 -- [generic] subprogram body are available. This form of freezing is
3531 -- decoupled from the usual Freeze_xxx mechanism because it must also
3532 -- work in the context of generics where normal freezing is disabled.
3533
3534 -- Only bodies coming from source should cause this type of freezing.
3535 -- Expression functions that act as bodies and complete an initial
3536 -- declaration must be included in this category, hence the use of
3537 -- Original_Node.
3538
3539 if Comes_From_Source (Original_Node (N)) then
3540 Freeze_Previous_Contracts (N);
3541 end if;
3542
3543 -- Generic subprograms are handled separately. They always have a
3544 -- generic specification. Determine whether current scope has a
3545 -- previous declaration.
3546
3547 -- If the subprogram body is defined within an instance of the same
3548 -- name, the instance appears as a package renaming, and will be hidden
3549 -- within the subprogram.
3550
3551 if Present (Prev_Id)
3552 and then not Is_Overloadable (Prev_Id)
3553 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3554 or else Comes_From_Source (Prev_Id))
3555 then
3556 if Is_Generic_Subprogram (Prev_Id) then
3557 Spec_Id := Prev_Id;
3558
3559 -- A subprogram body is Ghost when it is stand alone and subject
3560 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3561 -- the mode now to ensure that any nodes generated during analysis
3562 -- and expansion are properly marked as Ghost.
3563
3564 Mark_And_Set_Ghost_Body (N, Spec_Id);
3565
3566 -- If the body completes the initial declaration of a compilation
3567 -- unit which is subject to pragma Elaboration_Checks, set the
3568 -- model specified by the pragma because it applies to all parts
3569 -- of the unit.
3570
3571 Install_Elaboration_Model (Spec_Id);
3572
3573 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3574 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3575
3576 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3577
3578 if Nkind (N) = N_Subprogram_Body then
3579 HSS := Handled_Statement_Sequence (N);
3580 Check_Missing_Return;
3581 end if;
3582
3583 goto Leave;
3584
3585 -- Otherwise a previous entity conflicts with the subprogram name.
3586 -- Attempting to enter name will post error.
3587
3588 else
3589 Enter_Name (Body_Id);
3590 goto Leave;
3591 end if;
3592
3593 -- Non-generic case, find the subprogram declaration, if one was seen,
3594 -- or enter new overloaded entity in the current scope. If the
3595 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3596 -- part of the context of one of its subunits. No need to redo the
3597 -- analysis.
3598
3599 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3600 goto Leave;
3601
3602 else
3603 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3604
3605 if Nkind (N) = N_Subprogram_Body_Stub
3606 or else No (Corresponding_Spec (N))
3607 then
3608 if Is_Private_Concurrent_Primitive (Body_Id) then
3609 Spec_Id := Disambiguate_Spec;
3610
3611 -- A subprogram body is Ghost when it is stand alone and
3612 -- subject to pragma Ghost or when the corresponding spec is
3613 -- Ghost. Set the mode now to ensure that any nodes generated
3614 -- during analysis and expansion are properly marked as Ghost.
3615
3616 Mark_And_Set_Ghost_Body (N, Spec_Id);
3617
3618 -- If the body completes a compilation unit which is subject
3619 -- to pragma Elaboration_Checks, set the model specified by
3620 -- the pragma because it applies to all parts of the unit.
3621
3622 Install_Elaboration_Model (Spec_Id);
3623
3624 else
3625 Spec_Id := Find_Corresponding_Spec (N);
3626
3627 -- A subprogram body is Ghost when it is stand alone and
3628 -- subject to pragma Ghost or when the corresponding spec is
3629 -- Ghost. Set the mode now to ensure that any nodes generated
3630 -- during analysis and expansion are properly marked as Ghost.
3631
3632 Mark_And_Set_Ghost_Body (N, Spec_Id);
3633
3634 -- If the body completes a compilation unit which is subject
3635 -- to pragma Elaboration_Checks, set the model specified by
3636 -- the pragma because it applies to all parts of the unit.
3637
3638 Install_Elaboration_Model (Spec_Id);
3639
3640 -- In GNATprove mode, if the body has no previous spec, create
3641 -- one so that the inlining machinery can operate properly.
3642 -- Transfer aspects, if any, to the new spec, so that they
3643 -- are legal and can be processed ahead of the body.
3644 -- We make two copies of the given spec, one for the new
3645 -- declaration, and one for the body.
3646
3647 if No (Spec_Id) and then GNATprove_Mode
3648
3649 -- Inlining does not apply during pre-analysis of code
3650
3651 and then Full_Analysis
3652
3653 -- Inlining only applies to full bodies, not stubs
3654
3655 and then Nkind (N) /= N_Subprogram_Body_Stub
3656
3657 -- Inlining only applies to bodies in the source code, not to
3658 -- those generated by the compiler. In particular, expression
3659 -- functions, whose body is generated by the compiler, are
3660 -- treated specially by GNATprove.
3661
3662 and then Comes_From_Source (Body_Id)
3663
3664 -- This cannot be done for a compilation unit, which is not
3665 -- in a context where we can insert a new spec.
3666
3667 and then Is_List_Member (N)
3668
3669 -- Inlining only applies to subprograms without contracts,
3670 -- as a contract is a sign that GNATprove should perform a
3671 -- modular analysis of the subprogram instead of a contextual
3672 -- analysis at each call site. The same test is performed in
3673 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3674 -- here in another form (because the contract has not been
3675 -- attached to the body) to avoid front-end errors in case
3676 -- pragmas are used instead of aspects, because the
3677 -- corresponding pragmas in the body would not be transferred
3678 -- to the spec, leading to legality errors.
3679
3680 and then not Body_Has_Contract
3681 and then not Inside_A_Generic
3682 then
3683 Build_Subprogram_Declaration;
3684
3685 -- If this is a function that returns a constrained array, and
3686 -- we are generating SPARK_For_C, create subprogram declaration
3687 -- to simplify subsequent C generation.
3688
3689 elsif No (Spec_Id)
3690 and then Modify_Tree_For_C
3691 and then Nkind (Body_Spec) = N_Function_Specification
3692 and then Is_Array_Type (Etype (Body_Id))
3693 and then Is_Constrained (Etype (Body_Id))
3694 then
3695 Build_Subprogram_Declaration;
3696 end if;
3697 end if;
3698
3699 -- If this is a duplicate body, no point in analyzing it
3700
3701 if Error_Posted (N) then
3702 goto Leave;
3703 end if;
3704
3705 -- A subprogram body should cause freezing of its own declaration,
3706 -- but if there was no previous explicit declaration, then the
3707 -- subprogram will get frozen too late (there may be code within
3708 -- the body that depends on the subprogram having been frozen,
3709 -- such as uses of extra formals), so we force it to be frozen
3710 -- here. Same holds if the body and spec are compilation units.
3711 -- Finally, if the return type is an anonymous access to protected
3712 -- subprogram, it must be frozen before the body because its
3713 -- expansion has generated an equivalent type that is used when
3714 -- elaborating the body.
3715
3716 -- An exception in the case of Ada 2012, AI05-177: The bodies
3717 -- created for expression functions do not freeze.
3718
3719 if No (Spec_Id)
3720 and then Nkind (Original_Node (N)) /= N_Expression_Function
3721 then
3722 Freeze_Before (N, Body_Id);
3723
3724 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3725 Freeze_Before (N, Spec_Id);
3726
3727 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3728 Freeze_Before (N, Etype (Body_Id));
3729 end if;
3730
3731 else
3732 Spec_Id := Corresponding_Spec (N);
3733
3734 -- A subprogram body is Ghost when it is stand alone and subject
3735 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3736 -- the mode now to ensure that any nodes generated during analysis
3737 -- and expansion are properly marked as Ghost.
3738
3739 Mark_And_Set_Ghost_Body (N, Spec_Id);
3740
3741 -- If the body completes the initial declaration of a compilation
3742 -- unit which is subject to pragma Elaboration_Checks, set the
3743 -- model specified by the pragma because it applies to all parts
3744 -- of the unit.
3745
3746 Install_Elaboration_Model (Spec_Id);
3747 end if;
3748 end if;
3749
3750 -- Previously we scanned the body to look for nested subprograms, and
3751 -- rejected an inline directive if nested subprograms were present,
3752 -- because the back-end would generate conflicting symbols for the
3753 -- nested bodies. This is now unnecessary.
3754
3755 -- Look ahead to recognize a pragma Inline that appears after the body
3756
3757 Check_Inline_Pragma (Spec_Id);
3758
3759 -- Deal with special case of a fully private operation in the body of
3760 -- the protected type. We must create a declaration for the subprogram,
3761 -- in order to attach the protected subprogram that will be used in
3762 -- internal calls. We exclude compiler generated bodies from the
3763 -- expander since the issue does not arise for those cases.
3764
3765 if No (Spec_Id)
3766 and then Comes_From_Source (N)
3767 and then Is_Protected_Type (Current_Scope)
3768 then
3769 Spec_Id := Build_Private_Protected_Declaration (N);
3770 end if;
3771
3772 -- If we are generating C and this is a function returning a constrained
3773 -- array type for which we must create a procedure with an extra out
3774 -- parameter, build and analyze the body now. The procedure declaration
3775 -- has already been created. We reuse the source body of the function,
3776 -- because in an instance it may contain global references that cannot
3777 -- be reanalyzed. The source function itself is not used any further,
3778 -- so we mark it as having a completion. If the subprogram is a stub the
3779 -- transformation is done later, when the proper body is analyzed.
3780
3781 if Expander_Active
3782 and then Modify_Tree_For_C
3783 and then Present (Spec_Id)
3784 and then Ekind (Spec_Id) = E_Function
3785 and then Nkind (N) /= N_Subprogram_Body_Stub
3786 and then Rewritten_For_C (Spec_Id)
3787 then
3788 Set_Has_Completion (Spec_Id);
3789
3790 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3791 Analyze (N);
3792
3793 -- The entity for the created procedure must remain invisible, so it
3794 -- does not participate in resolution of subsequent references to the
3795 -- function.
3796
3797 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3798 goto Leave;
3799 end if;
3800
3801 -- If a separate spec is present, then deal with freezing issues
3802
3803 if Present (Spec_Id) then
3804 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3805 Verify_Overriding_Indicator;
3806
3807 -- In general, the spec will be frozen when we start analyzing the
3808 -- body. However, for internally generated operations, such as
3809 -- wrapper functions for inherited operations with controlling
3810 -- results, the spec may not have been frozen by the time we expand
3811 -- the freeze actions that include the bodies. In particular, extra
3812 -- formals for accessibility or for return-in-place may need to be
3813 -- generated. Freeze nodes, if any, are inserted before the current
3814 -- body. These freeze actions are also needed in ASIS mode and in
3815 -- Compile_Only mode to enable the proper back-end type annotations.
3816 -- They are necessary in any case to insure order of elaboration
3817 -- in gigi.
3818
3819 if not Is_Frozen (Spec_Id)
3820 and then (Expander_Active
3821 or else ASIS_Mode
3822 or else (Operating_Mode = Check_Semantics
3823 and then Serious_Errors_Detected = 0))
3824 then
3825 -- The body generated for an expression function that is not a
3826 -- completion is a freeze point neither for the profile nor for
3827 -- anything else. That's why, in order to prevent any freezing
3828 -- during analysis, we need to mask types declared outside the
3829 -- expression that are not yet frozen.
3830
3831 if Nkind (N) = N_Subprogram_Body
3832 and then Was_Expression_Function (N)
3833 and then not Has_Completion (Spec_Id)
3834 then
3835 Set_Is_Frozen (Spec_Id);
3836 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3837 else
3838 Set_Has_Delayed_Freeze (Spec_Id);
3839 Freeze_Before (N, Spec_Id);
3840 end if;
3841 end if;
3842 end if;
3843
3844 -- If the subprogram has a class-wide clone, build its body as a copy
3845 -- of the original body, and rewrite body of original subprogram as a
3846 -- wrapper that calls the clone.
3847
3848 if Present (Spec_Id)
3849 and then Present (Class_Wide_Clone (Spec_Id))
3850 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3851 then
3852 Build_Class_Wide_Clone_Body (Spec_Id, N);
3853
3854 -- This is the new body for the existing primitive operation
3855
3856 Rewrite (N, Build_Class_Wide_Clone_Call
3857 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3858 Set_Has_Completion (Spec_Id, False);
3859 Analyze (N);
3860 return;
3861 end if;
3862
3863 -- Place subprogram on scope stack, and make formals visible. If there
3864 -- is a spec, the visible entity remains that of the spec.
3865
3866 if Present (Spec_Id) then
3867 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3868
3869 if Is_Child_Unit (Spec_Id) then
3870 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3871 end if;
3872
3873 if Style_Check then
3874 Style.Check_Identifier (Body_Id, Spec_Id);
3875 end if;
3876
3877 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3878 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3879
3880 if Is_Abstract_Subprogram (Spec_Id) then
3881 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3882 goto Leave;
3883
3884 else
3885 Set_Convention (Body_Id, Convention (Spec_Id));
3886 Set_Has_Completion (Spec_Id);
3887
3888 if Is_Protected_Type (Scope (Spec_Id)) then
3889 Prot_Typ := Scope (Spec_Id);
3890 end if;
3891
3892 -- If this is a body generated for a renaming, do not check for
3893 -- full conformance. The check is redundant, because the spec of
3894 -- the body is a copy of the spec in the renaming declaration,
3895 -- and the test can lead to spurious errors on nested defaults.
3896
3897 if Present (Spec_Decl)
3898 and then not Comes_From_Source (N)
3899 and then
3900 (Nkind (Original_Node (Spec_Decl)) =
3901 N_Subprogram_Renaming_Declaration
3902 or else (Present (Corresponding_Body (Spec_Decl))
3903 and then
3904 Nkind (Unit_Declaration_Node
3905 (Corresponding_Body (Spec_Decl))) =
3906 N_Subprogram_Renaming_Declaration))
3907 then
3908 Conformant := True;
3909
3910 -- Conversely, the spec may have been generated for specless body
3911 -- with an inline pragma. The entity comes from source, which is
3912 -- both semantically correct and necessary for proper inlining.
3913 -- The subprogram declaration itself is not in the source.
3914
3915 elsif Comes_From_Source (N)
3916 and then Present (Spec_Decl)
3917 and then not Comes_From_Source (Spec_Decl)
3918 and then Has_Pragma_Inline (Spec_Id)
3919 then
3920 Conformant := True;
3921
3922 else
3923 Check_Conformance
3924 (Body_Id, Spec_Id,
3925 Fully_Conformant, True, Conformant, Body_Id);
3926 end if;
3927
3928 -- If the body is not fully conformant, we have to decide if we
3929 -- should analyze it or not. If it has a really messed up profile
3930 -- then we probably should not analyze it, since we will get too
3931 -- many bogus messages.
3932
3933 -- Our decision is to go ahead in the non-fully conformant case
3934 -- only if it is at least mode conformant with the spec. Note
3935 -- that the call to Check_Fully_Conformant has issued the proper
3936 -- error messages to complain about the lack of conformance.
3937
3938 if not Conformant
3939 and then not Mode_Conformant (Body_Id, Spec_Id)
3940 then
3941 goto Leave;
3942 end if;
3943 end if;
3944
3945 -- In the case we are dealing with an expression function we check
3946 -- the formals attached to the spec instead of the body - so we don't
3947 -- reference body formals.
3948
3949 if Spec_Id /= Body_Id
3950 and then not Is_Expression_Function (Spec_Id)
3951 then
3952 Reference_Body_Formals (Spec_Id, Body_Id);
3953 end if;
3954
3955 Set_Ekind (Body_Id, E_Subprogram_Body);
3956
3957 if Nkind (N) = N_Subprogram_Body_Stub then
3958 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3959
3960 -- Regular body
3961
3962 else
3963 Set_Corresponding_Spec (N, Spec_Id);
3964
3965 -- Ada 2005 (AI-345): If the operation is a primitive operation
3966 -- of a concurrent type, the type of the first parameter has been
3967 -- replaced with the corresponding record, which is the proper
3968 -- run-time structure to use. However, within the body there may
3969 -- be uses of the formals that depend on primitive operations
3970 -- of the type (in particular calls in prefixed form) for which
3971 -- we need the original concurrent type. The operation may have
3972 -- several controlling formals, so the replacement must be done
3973 -- for all of them.
3974
3975 if Comes_From_Source (Spec_Id)
3976 and then Present (First_Entity (Spec_Id))
3977 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3978 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3979 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3980 and then Present (Corresponding_Concurrent_Type
3981 (Etype (First_Entity (Spec_Id))))
3982 then
3983 declare
3984 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3985 Form : Entity_Id;
3986
3987 begin
3988 Form := First_Formal (Spec_Id);
3989 while Present (Form) loop
3990 if Etype (Form) = Typ then
3991 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3992 end if;
3993
3994 Next_Formal (Form);
3995 end loop;
3996 end;
3997 end if;
3998
3999 -- Make the formals visible, and place subprogram on scope stack.
4000 -- This is also the point at which we set Last_Real_Spec_Entity
4001 -- to mark the entities which will not be moved to the body.
4002
4003 Install_Formals (Spec_Id);
4004 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
4005
4006 -- Within an instance, add local renaming declarations so that
4007 -- gdb can retrieve the values of actuals more easily. This is
4008 -- only relevant if generating code (and indeed we definitely
4009 -- do not want these definitions -gnatc mode, because that would
4010 -- confuse ASIS).
4011
4012 if Is_Generic_Instance (Spec_Id)
4013 and then Is_Wrapper_Package (Current_Scope)
4014 and then Expander_Active
4015 then
4016 Build_Subprogram_Instance_Renamings (N, Current_Scope);
4017 end if;
4018
4019 Push_Scope (Spec_Id);
4020
4021 -- Make sure that the subprogram is immediately visible. For
4022 -- child units that have no separate spec this is indispensable.
4023 -- Otherwise it is safe albeit redundant.
4024
4025 Set_Is_Immediately_Visible (Spec_Id);
4026 end if;
4027
4028 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
4029 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
4030 Set_Scope (Body_Id, Scope (Spec_Id));
4031
4032 -- Case of subprogram body with no previous spec
4033
4034 else
4035 -- Check for style warning required
4036
4037 if Style_Check
4038
4039 -- Only apply check for source level subprograms for which checks
4040 -- have not been suppressed.
4041
4042 and then Comes_From_Source (Body_Id)
4043 and then not Suppress_Style_Checks (Body_Id)
4044
4045 -- No warnings within an instance
4046
4047 and then not In_Instance
4048
4049 -- No warnings for expression functions
4050
4051 and then Nkind (Original_Node (N)) /= N_Expression_Function
4052 then
4053 Style.Body_With_No_Spec (N);
4054 end if;
4055
4056 New_Overloaded_Entity (Body_Id);
4057
4058 if Nkind (N) /= N_Subprogram_Body_Stub then
4059 Set_Acts_As_Spec (N);
4060 Generate_Definition (Body_Id);
4061 Generate_Reference
4062 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
4063
4064 -- If the body is an entry wrapper created for an entry with
4065 -- preconditions, it must be compiled in the context of the
4066 -- enclosing synchronized object, because it may mention other
4067 -- operations of the type.
4068
4069 if Is_Entry_Wrapper (Body_Id) then
4070 declare
4071 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
4072 begin
4073 Push_Scope (Prot);
4074 Install_Declarations (Prot);
4075 end;
4076 end if;
4077
4078 Install_Formals (Body_Id);
4079
4080 Push_Scope (Body_Id);
4081 end if;
4082
4083 -- For stubs and bodies with no previous spec, generate references to
4084 -- formals.
4085
4086 Generate_Reference_To_Formals (Body_Id);
4087 end if;
4088
4089 -- Entry barrier functions are generated outside the protected type and
4090 -- should not carry the SPARK_Mode of the enclosing context.
4091
4092 if Nkind (N) = N_Subprogram_Body
4093 and then Is_Entry_Barrier_Function (N)
4094 then
4095 null;
4096
4097 -- The body is generated as part of expression function expansion. When
4098 -- the expression function appears in the visible declarations of a
4099 -- package, the body is added to the private declarations. Since both
4100 -- declarative lists may be subject to a different SPARK_Mode, inherit
4101 -- the mode of the spec.
4102
4103 -- package P with SPARK_Mode is
4104 -- function Expr_Func ... is (...); -- original
4105 -- [function Expr_Func ...;] -- generated spec
4106 -- -- mode is ON
4107 -- private
4108 -- pragma SPARK_Mode (Off);
4109 -- [function Expr_Func ... is return ...;] -- generated body
4110 -- end P; -- mode is ON
4111
4112 elsif not Comes_From_Source (N)
4113 and then Present (Spec_Id)
4114 and then Is_Expression_Function (Spec_Id)
4115 then
4116 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4117 Set_SPARK_Pragma_Inherited
4118 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4119
4120 -- Set the SPARK_Mode from the current context (may be overwritten later
4121 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4122 -- initially on a stand-alone subprogram body, but is then relocated to
4123 -- a generated corresponding spec. In this scenario the mode is shared
4124 -- between the spec and body.
4125
4126 elsif No (SPARK_Pragma (Body_Id)) then
4127 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4128 Set_SPARK_Pragma_Inherited (Body_Id);
4129 end if;
4130
4131 -- A subprogram body may be instantiated or inlined at a later pass.
4132 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4133 -- applied to the initial declaration of the body.
4134
4135 if Present (Spec_Id) then
4136 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4137 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4138 end if;
4139
4140 else
4141 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4142 -- case the body is instantiated or inlined later and out of context.
4143 -- The body uses this attribute to restore the value of the global
4144 -- flag.
4145
4146 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4147 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4148
4149 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4150 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4151 end if;
4152 end if;
4153
4154 -- Preserve relevant elaboration-related attributes of the context which
4155 -- are no longer available or very expensive to recompute once analysis,
4156 -- resolution, and expansion are over.
4157
4158 if No (Spec_Id) then
4159 Mark_Elaboration_Attributes
4160 (N_Id => Body_Id,
4161 Checks => True,
4162 Warnings => True);
4163 end if;
4164
4165 -- If this is the proper body of a stub, we must verify that the stub
4166 -- conforms to the body, and to the previous spec if one was present.
4167 -- We know already that the body conforms to that spec. This test is
4168 -- only required for subprograms that come from source.
4169
4170 if Nkind (Parent (N)) = N_Subunit
4171 and then Comes_From_Source (N)
4172 and then not Error_Posted (Body_Id)
4173 and then Nkind (Corresponding_Stub (Parent (N))) =
4174 N_Subprogram_Body_Stub
4175 then
4176 declare
4177 Old_Id : constant Entity_Id :=
4178 Defining_Entity
4179 (Specification (Corresponding_Stub (Parent (N))));
4180
4181 Conformant : Boolean := False;
4182
4183 begin
4184 if No (Spec_Id) then
4185 Check_Fully_Conformant (Body_Id, Old_Id);
4186
4187 else
4188 Check_Conformance
4189 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4190
4191 if not Conformant then
4192
4193 -- The stub was taken to be a new declaration. Indicate that
4194 -- it lacks a body.
4195
4196 Set_Has_Completion (Old_Id, False);
4197 end if;
4198 end if;
4199 end;
4200 end if;
4201
4202 Set_Has_Completion (Body_Id);
4203 Check_Eliminated (Body_Id);
4204
4205 -- Analyze any aspect specifications that appear on the subprogram body
4206 -- stub. Stop the analysis now as the stub does not have a declarative
4207 -- or a statement part, and it cannot be inlined.
4208
4209 if Nkind (N) = N_Subprogram_Body_Stub then
4210 if Has_Aspects (N) then
4211 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4212 end if;
4213
4214 goto Leave;
4215 end if;
4216
4217 -- Handle inlining
4218
4219 -- Note: Normally we don't do any inlining if expansion is off, since
4220 -- we won't generate code in any case. An exception arises in GNATprove
4221 -- mode where we want to expand some calls in place, even with expansion
4222 -- disabled, since the inlining eases formal verification.
4223
4224 if not GNATprove_Mode
4225 and then Expander_Active
4226 and then Serious_Errors_Detected = 0
4227 and then Present (Spec_Id)
4228 and then Has_Pragma_Inline (Spec_Id)
4229 then
4230 -- Legacy implementation (relying on front-end inlining)
4231
4232 if not Back_End_Inlining then
4233 if (Has_Pragma_Inline_Always (Spec_Id)
4234 and then not Opt.Disable_FE_Inline_Always)
4235 or else (Front_End_Inlining
4236 and then not Opt.Disable_FE_Inline)
4237 then
4238 Build_Body_To_Inline (N, Spec_Id);
4239 end if;
4240
4241 -- New implementation (relying on back-end inlining)
4242
4243 else
4244 if Has_Pragma_Inline_Always (Spec_Id)
4245 or else Optimization_Level > 0
4246 then
4247 -- Handle function returning an unconstrained type
4248
4249 if Comes_From_Source (Body_Id)
4250 and then Ekind (Spec_Id) = E_Function
4251 and then Returns_Unconstrained_Type (Spec_Id)
4252
4253 -- If function builds in place, i.e. returns a limited type,
4254 -- inlining cannot be done.
4255
4256 and then not Is_Limited_Type (Etype (Spec_Id))
4257 then
4258 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4259
4260 else
4261 declare
4262 Subp_Body : constant Node_Id :=
4263 Unit_Declaration_Node (Body_Id);
4264 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4265
4266 begin
4267 -- Do not pass inlining to the backend if the subprogram
4268 -- has declarations or statements which cannot be inlined
4269 -- by the backend. This check is done here to emit an
4270 -- error instead of the generic warning message reported
4271 -- by the GCC backend (ie. "function might not be
4272 -- inlinable").
4273
4274 if Present (Subp_Decl)
4275 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4276 then
4277 null;
4278
4279 elsif Has_Excluded_Statement
4280 (Spec_Id,
4281 Statements
4282 (Handled_Statement_Sequence (Subp_Body)))
4283 then
4284 null;
4285
4286 -- If the backend inlining is available then at this
4287 -- stage we only have to mark the subprogram as inlined.
4288 -- The expander will take care of registering it in the
4289 -- table of subprograms inlined by the backend a part of
4290 -- processing calls to it (cf. Expand_Call)
4291
4292 else
4293 Set_Is_Inlined (Spec_Id);
4294 end if;
4295 end;
4296 end if;
4297 end if;
4298 end if;
4299
4300 -- In GNATprove mode, inline only when there is a separate subprogram
4301 -- declaration for now, as inlining of subprogram bodies acting as
4302 -- declarations, or subprogram stubs, are not supported by front-end
4303 -- inlining. This inlining should occur after analysis of the body, so
4304 -- that it is known whether the value of SPARK_Mode, which can be
4305 -- defined by a pragma inside the body, is applicable to the body.
4306 -- Inlining can be disabled with switch -gnatdm
4307
4308 elsif GNATprove_Mode
4309 and then Full_Analysis
4310 and then not Inside_A_Generic
4311 and then Present (Spec_Id)
4312 and then
4313 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4314 and then Body_Has_SPARK_Mode_On
4315 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4316 and then not Body_Has_Contract
4317 and then not Debug_Flag_M
4318 then
4319 Build_Body_To_Inline (N, Spec_Id);
4320 end if;
4321
4322 -- When generating code, inherited pre/postconditions are handled when
4323 -- expanding the corresponding contract.
4324
4325 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4326 -- of the specification we have to install the private withed units.
4327 -- This holds for child units as well.
4328
4329 if Is_Compilation_Unit (Body_Id)
4330 or else Nkind (Parent (N)) = N_Compilation_Unit
4331 then
4332 Install_Private_With_Clauses (Body_Id);
4333 end if;
4334
4335 Check_Anonymous_Return;
4336
4337 -- Set the Protected_Formal field of each extra formal of the protected
4338 -- subprogram to reference the corresponding extra formal of the
4339 -- subprogram that implements it. For regular formals this occurs when
4340 -- the protected subprogram's declaration is expanded, but the extra
4341 -- formals don't get created until the subprogram is frozen. We need to
4342 -- do this before analyzing the protected subprogram's body so that any
4343 -- references to the original subprogram's extra formals will be changed
4344 -- refer to the implementing subprogram's formals (see Expand_Formal).
4345
4346 if Present (Spec_Id)
4347 and then Is_Protected_Type (Scope (Spec_Id))
4348 and then Present (Protected_Body_Subprogram (Spec_Id))
4349 then
4350 declare
4351 Impl_Subp : constant Entity_Id :=
4352 Protected_Body_Subprogram (Spec_Id);
4353 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4354 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4355
4356 begin
4357 while Present (Prot_Ext_Formal) loop
4358 pragma Assert (Present (Impl_Ext_Formal));
4359 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4360 Next_Formal_With_Extras (Prot_Ext_Formal);
4361 Next_Formal_With_Extras (Impl_Ext_Formal);
4362 end loop;
4363 end;
4364 end if;
4365
4366 -- Now we can go on to analyze the body
4367
4368 HSS := Handled_Statement_Sequence (N);
4369 Set_Actual_Subtypes (N, Current_Scope);
4370
4371 -- Add a declaration for the Protection object, renaming declarations
4372 -- for discriminals and privals and finally a declaration for the entry
4373 -- family index (if applicable). This form of early expansion is done
4374 -- when the Expander is active because Install_Private_Data_Declarations
4375 -- references entities which were created during regular expansion. The
4376 -- subprogram entity must come from source, and not be an internally
4377 -- generated subprogram.
4378
4379 if Expander_Active
4380 and then Present (Prot_Typ)
4381 and then Present (Spec_Id)
4382 and then Comes_From_Source (Spec_Id)
4383 and then not Is_Eliminated (Spec_Id)
4384 then
4385 Install_Private_Data_Declarations
4386 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4387 end if;
4388
4389 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4390 -- may now appear in parameter and result profiles. Since the analysis
4391 -- of a subprogram body may use the parameter and result profile of the
4392 -- spec, swap any limited views with their non-limited counterpart.
4393
4394 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4395 Exch_Views := Exchange_Limited_Views (Spec_Id);
4396 end if;
4397
4398 -- If the return type is an anonymous access type whose designated type
4399 -- is the limited view of a class-wide type and the non-limited view is
4400 -- available, update the return type accordingly.
4401
4402 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4403 declare
4404 Etyp : Entity_Id;
4405 Rtyp : Entity_Id;
4406
4407 begin
4408 Rtyp := Etype (Spec_Id);
4409
4410 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4411 Etyp := Directly_Designated_Type (Rtyp);
4412
4413 if Is_Class_Wide_Type (Etyp)
4414 and then From_Limited_With (Etyp)
4415 then
4416 Desig_View := Etyp;
4417 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4418 end if;
4419 end if;
4420 end;
4421 end if;
4422
4423 -- Analyze any aspect specifications that appear on the subprogram body
4424
4425 if Has_Aspects (N) then
4426 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4427 end if;
4428
4429 Analyze_Declarations (Declarations (N));
4430
4431 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4432
4433 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4434 if Present (SPARK_Pragma (Spec_Id)) then
4435 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4436 and then
4437 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4438 then
4439 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4440 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4441 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4442 Error_Msg_NE
4443 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4444 end if;
4445
4446 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4447 null;
4448
4449 else
4450 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4451 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4452 Error_Msg_Sloc := Sloc (Spec_Id);
4453 Error_Msg_NE
4454 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4455 end if;
4456 end if;
4457
4458 -- A subprogram body freezes its own contract. Analyze the contract
4459 -- after the declarations of the body have been processed as pragmas
4460 -- are now chained on the contract of the subprogram body.
4461
4462 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4463
4464 -- Check completion, and analyze the statements
4465
4466 Check_Completion;
4467 Inspect_Deferred_Constant_Completion (Declarations (N));
4468 Analyze (HSS);
4469
4470 -- Deal with end of scope processing for the body
4471
4472 Process_End_Label (HSS, 't', Current_Scope);
4473 Update_Use_Clause_Chain;
4474 End_Scope;
4475
4476 -- If we are compiling an entry wrapper, remove the enclosing
4477 -- synchronized object from the stack.
4478
4479 if Is_Entry_Wrapper (Body_Id) then
4480 End_Scope;
4481 end if;
4482
4483 Check_Subprogram_Order (N);
4484 Set_Analyzed (Body_Id);
4485
4486 -- If we have a separate spec, then the analysis of the declarations
4487 -- caused the entities in the body to be chained to the spec id, but
4488 -- we want them chained to the body id. Only the formal parameters
4489 -- end up chained to the spec id in this case.
4490
4491 if Present (Spec_Id) then
4492
4493 -- We must conform to the categorization of our spec
4494
4495 Validate_Categorization_Dependency (N, Spec_Id);
4496
4497 -- And if this is a child unit, the parent units must conform
4498
4499 if Is_Child_Unit (Spec_Id) then
4500 Validate_Categorization_Dependency
4501 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4502 end if;
4503
4504 -- Here is where we move entities from the spec to the body
4505
4506 -- Case where there are entities that stay with the spec
4507
4508 if Present (Last_Real_Spec_Entity) then
4509
4510 -- No body entities (happens when the only real spec entities come
4511 -- from precondition and postcondition pragmas).
4512
4513 if No (Last_Entity (Body_Id)) then
4514 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4515
4516 -- Body entities present (formals), so chain stuff past them
4517
4518 else
4519 Set_Next_Entity
4520 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4521 end if;
4522
4523 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4524 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4525 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4526
4527 -- Case where there are no spec entities, in this case there can be
4528 -- no body entities either, so just move everything.
4529
4530 -- If the body is generated for an expression function, it may have
4531 -- been preanalyzed already, if 'access was applied to it.
4532
4533 else
4534 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4535 N_Expression_Function
4536 then
4537 pragma Assert (No (Last_Entity (Body_Id)));
4538 null;
4539 end if;
4540
4541 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4542 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4543 Set_First_Entity (Spec_Id, Empty);
4544 Set_Last_Entity (Spec_Id, Empty);
4545 end if;
4546
4547 -- Otherwise the body does not complete a previous declaration. Check
4548 -- the categorization of the body against the units it withs.
4549
4550 else
4551 Validate_Categorization_Dependency (N, Body_Id);
4552 end if;
4553
4554 Check_Missing_Return;
4555
4556 -- Now we are going to check for variables that are never modified in
4557 -- the body of the procedure. But first we deal with a special case
4558 -- where we want to modify this check. If the body of the subprogram
4559 -- starts with a raise statement or its equivalent, or if the body
4560 -- consists entirely of a null statement, then it is pretty obvious that
4561 -- it is OK to not reference the parameters. For example, this might be
4562 -- the following common idiom for a stubbed function: statement of the
4563 -- procedure raises an exception. In particular this deals with the
4564 -- common idiom of a stubbed function, which appears something like:
4565
4566 -- function F (A : Integer) return Some_Type;
4567 -- X : Some_Type;
4568 -- begin
4569 -- raise Program_Error;
4570 -- return X;
4571 -- end F;
4572
4573 -- Here the purpose of X is simply to satisfy the annoying requirement
4574 -- in Ada that there be at least one return, and we certainly do not
4575 -- want to go posting warnings on X that it is not initialized. On
4576 -- the other hand, if X is entirely unreferenced that should still
4577 -- get a warning.
4578
4579 -- What we do is to detect these cases, and if we find them, flag the
4580 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4581 -- suppress unwanted warnings. For the case of the function stub above
4582 -- we have a special test to set X as apparently assigned to suppress
4583 -- the warning.
4584
4585 declare
4586 Stm : Node_Id;
4587
4588 begin
4589 -- Skip call markers installed by the ABE mechanism, labels, and
4590 -- Push_xxx_Error_Label to find the first real statement.
4591
4592 Stm := First (Statements (HSS));
4593 while Nkind_In (Stm, N_Call_Marker, N_Label)
4594 or else Nkind (Stm) in N_Push_xxx_Label
4595 loop
4596 Next (Stm);
4597 end loop;
4598
4599 -- Do the test on the original statement before expansion
4600
4601 declare
4602 Ostm : constant Node_Id := Original_Node (Stm);
4603
4604 begin
4605 -- If explicit raise statement, turn on flag
4606
4607 if Nkind (Ostm) = N_Raise_Statement then
4608 Set_Trivial_Subprogram (Stm);
4609
4610 -- If null statement, and no following statements, turn on flag
4611
4612 elsif Nkind (Stm) = N_Null_Statement
4613 and then Comes_From_Source (Stm)
4614 and then No (Next (Stm))
4615 then
4616 Set_Trivial_Subprogram (Stm);
4617
4618 -- Check for explicit call cases which likely raise an exception
4619
4620 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4621 if Is_Entity_Name (Name (Ostm)) then
4622 declare
4623 Ent : constant Entity_Id := Entity (Name (Ostm));
4624
4625 begin
4626 -- If the procedure is marked No_Return, then likely it
4627 -- raises an exception, but in any case it is not coming
4628 -- back here, so turn on the flag.
4629
4630 if Present (Ent)
4631 and then Ekind (Ent) = E_Procedure
4632 and then No_Return (Ent)
4633 then
4634 Set_Trivial_Subprogram (Stm);
4635 end if;
4636 end;
4637 end if;
4638 end if;
4639 end;
4640 end;
4641
4642 -- Check for variables that are never modified
4643
4644 declare
4645 E1 : Entity_Id;
4646 E2 : Entity_Id;
4647
4648 begin
4649 -- If there is a separate spec, then transfer Never_Set_In_Source
4650 -- flags from out parameters to the corresponding entities in the
4651 -- body. The reason we do that is we want to post error flags on
4652 -- the body entities, not the spec entities.
4653
4654 if Present (Spec_Id) then
4655 E1 := First_Entity (Spec_Id);
4656 while Present (E1) loop
4657 if Ekind (E1) = E_Out_Parameter then
4658 E2 := First_Entity (Body_Id);
4659 while Present (E2) loop
4660 exit when Chars (E1) = Chars (E2);
4661 Next_Entity (E2);
4662 end loop;
4663
4664 if Present (E2) then
4665 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4666 end if;
4667 end if;
4668
4669 Next_Entity (E1);
4670 end loop;
4671 end if;
4672
4673 -- Check references of the subprogram spec when we are dealing with
4674 -- an expression function due to it having a generated body.
4675 -- Otherwise, we simply check the formals of the subprogram body.
4676
4677 if Present (Spec_Id)
4678 and then Is_Expression_Function (Spec_Id)
4679 then
4680 Check_References (Spec_Id);
4681 else
4682 Check_References (Body_Id);
4683 end if;
4684 end;
4685
4686 -- Check for nested subprogram, and mark outer level subprogram if so
4687
4688 declare
4689 Ent : Entity_Id;
4690
4691 begin
4692 if Present (Spec_Id) then
4693 Ent := Spec_Id;
4694 else
4695 Ent := Body_Id;
4696 end if;
4697
4698 loop
4699 Ent := Enclosing_Subprogram (Ent);
4700 exit when No (Ent) or else Is_Subprogram (Ent);
4701 end loop;
4702
4703 if Present (Ent) then
4704 Set_Has_Nested_Subprogram (Ent);
4705 end if;
4706 end;
4707
4708 -- Restore the limited views in the spec, if any, to let the back end
4709 -- process it without running into circularities.
4710
4711 if Exch_Views /= No_Elist then
4712 Restore_Limited_Views (Exch_Views);
4713 end if;
4714
4715 if Mask_Types /= No_Elist then
4716 Unmask_Unfrozen_Types (Mask_Types);
4717 end if;
4718
4719 if Present (Desig_View) then
4720 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4721 end if;
4722
4723 <<Leave>>
4724 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4725 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4726 end Analyze_Subprogram_Body_Helper;
4727
4728 ------------------------------------
4729 -- Analyze_Subprogram_Declaration --
4730 ------------------------------------
4731
4732 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4733 Scop : constant Entity_Id := Current_Scope;
4734 Designator : Entity_Id;
4735
4736 Is_Completion : Boolean;
4737 -- Indicates whether a null procedure declaration is a completion
4738
4739 begin
4740 -- Null procedures are not allowed in SPARK
4741
4742 if Nkind (Specification (N)) = N_Procedure_Specification
4743 and then Null_Present (Specification (N))
4744 then
4745 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4746
4747 -- Null procedures are allowed in protected types, following the
4748 -- recent AI12-0147.
4749
4750 if Is_Protected_Type (Current_Scope)
4751 and then Ada_Version < Ada_2012
4752 then
4753 Error_Msg_N ("protected operation cannot be a null procedure", N);
4754 end if;
4755
4756 Analyze_Null_Procedure (N, Is_Completion);
4757
4758 -- The null procedure acts as a body, nothing further is needed
4759
4760 if Is_Completion then
4761 return;
4762 end if;
4763 end if;
4764
4765 Designator := Analyze_Subprogram_Specification (Specification (N));
4766
4767 -- A reference may already have been generated for the unit name, in
4768 -- which case the following call is redundant. However it is needed for
4769 -- declarations that are the rewriting of an expression function.
4770
4771 Generate_Definition (Designator);
4772
4773 -- Set the SPARK mode from the current context (may be overwritten later
4774 -- with explicit pragma). This is not done for entry barrier functions
4775 -- because they are generated outside the protected type and should not
4776 -- carry the mode of the enclosing context.
4777
4778 if Nkind (N) = N_Subprogram_Declaration
4779 and then Is_Entry_Barrier_Function (N)
4780 then
4781 null;
4782
4783 else
4784 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4785 Set_SPARK_Pragma_Inherited (Designator);
4786 end if;
4787
4788 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4789 -- the body of this subprogram is instantiated or inlined later and out
4790 -- of context. The body uses this attribute to restore the value of the
4791 -- global flag.
4792
4793 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4794 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4795 end if;
4796
4797 -- Preserve relevant elaboration-related attributes of the context which
4798 -- are no longer available or very expensive to recompute once analysis,
4799 -- resolution, and expansion are over.
4800
4801 Mark_Elaboration_Attributes
4802 (N_Id => Designator,
4803 Checks => True,
4804 Warnings => True);
4805
4806 if Debug_Flag_C then
4807 Write_Str ("==> subprogram spec ");
4808 Write_Name (Chars (Designator));
4809 Write_Str (" from ");
4810 Write_Location (Sloc (N));
4811 Write_Eol;
4812 Indent;
4813 end if;
4814
4815 Validate_RCI_Subprogram_Declaration (N);
4816 New_Overloaded_Entity (Designator);
4817 Check_Delayed_Subprogram (Designator);
4818
4819 -- If the type of the first formal of the current subprogram is a non-
4820 -- generic tagged private type, mark the subprogram as being a private
4821 -- primitive. Ditto if this is a function with controlling result, and
4822 -- the return type is currently private. In both cases, the type of the
4823 -- controlling argument or result must be in the current scope for the
4824 -- operation to be primitive.
4825
4826 if Has_Controlling_Result (Designator)
4827 and then Is_Private_Type (Etype (Designator))
4828 and then Scope (Etype (Designator)) = Current_Scope
4829 and then not Is_Generic_Actual_Type (Etype (Designator))
4830 then
4831 Set_Is_Private_Primitive (Designator);
4832
4833 elsif Present (First_Formal (Designator)) then
4834 declare
4835 Formal_Typ : constant Entity_Id :=
4836 Etype (First_Formal (Designator));
4837 begin
4838 Set_Is_Private_Primitive (Designator,
4839 Is_Tagged_Type (Formal_Typ)
4840 and then Scope (Formal_Typ) = Current_Scope
4841 and then Is_Private_Type (Formal_Typ)
4842 and then not Is_Generic_Actual_Type (Formal_Typ));
4843 end;
4844 end if;
4845
4846 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4847 -- or null.
4848
4849 if Ada_Version >= Ada_2005
4850 and then Comes_From_Source (N)
4851 and then Is_Dispatching_Operation (Designator)
4852 then
4853 declare
4854 E : Entity_Id;
4855 Etyp : Entity_Id;
4856
4857 begin
4858 if Has_Controlling_Result (Designator) then
4859 Etyp := Etype (Designator);
4860
4861 else
4862 E := First_Entity (Designator);
4863 while Present (E)
4864 and then Is_Formal (E)
4865 and then not Is_Controlling_Formal (E)
4866 loop
4867 Next_Entity (E);
4868 end loop;
4869
4870 Etyp := Etype (E);
4871 end if;
4872
4873 if Is_Access_Type (Etyp) then
4874 Etyp := Directly_Designated_Type (Etyp);
4875 end if;
4876
4877 if Is_Interface (Etyp)
4878 and then not Is_Abstract_Subprogram (Designator)
4879 and then not (Ekind (Designator) = E_Procedure
4880 and then Null_Present (Specification (N)))
4881 then
4882 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4883
4884 -- Specialize error message based on procedures vs. functions,
4885 -- since functions can't be null subprograms.
4886
4887 if Ekind (Designator) = E_Procedure then
4888 Error_Msg_N
4889 ("interface procedure % must be abstract or null", N);
4890 else
4891 Error_Msg_N
4892 ("interface function % must be abstract", N);
4893 end if;
4894 end if;
4895 end;
4896 end if;
4897
4898 -- What is the following code for, it used to be
4899
4900 -- ??? Set_Suppress_Elaboration_Checks
4901 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4902
4903 -- The following seems equivalent, but a bit dubious
4904
4905 if Elaboration_Checks_Suppressed (Designator) then
4906 Set_Kill_Elaboration_Checks (Designator);
4907 end if;
4908
4909 -- For a compilation unit, set body required. This flag will only be
4910 -- reset if a valid Import or Interface pragma is processed later on.
4911
4912 if Nkind (Parent (N)) = N_Compilation_Unit then
4913 Set_Body_Required (Parent (N), True);
4914
4915 if Ada_Version >= Ada_2005
4916 and then Nkind (Specification (N)) = N_Procedure_Specification
4917 and then Null_Present (Specification (N))
4918 then
4919 Error_Msg_N
4920 ("null procedure cannot be declared at library level", N);
4921 end if;
4922 end if;
4923
4924 Generate_Reference_To_Formals (Designator);
4925 Check_Eliminated (Designator);
4926
4927 if Debug_Flag_C then
4928 Outdent;
4929 Write_Str ("<== subprogram spec ");
4930 Write_Name (Chars (Designator));
4931 Write_Str (" from ");
4932 Write_Location (Sloc (N));
4933 Write_Eol;
4934 end if;
4935
4936 -- Indicate that this is a protected operation, because it may be used
4937 -- in subsequent declarations within the protected type.
4938
4939 if Is_Protected_Type (Current_Scope) then
4940 Set_Convention (Designator, Convention_Protected);
4941 end if;
4942
4943 List_Inherited_Pre_Post_Aspects (Designator);
4944
4945 -- Process the aspects before establishing the proper categorization in
4946 -- case the subprogram is a compilation unit and one of its aspects is
4947 -- converted into a categorization pragma.
4948
4949 if Has_Aspects (N) then
4950 Analyze_Aspect_Specifications (N, Designator);
4951 end if;
4952
4953 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4954 Set_Categorization_From_Scope (Designator, Scop);
4955
4956 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
4957 -- proper categorization of the unit based on its pragmas.
4958
4959 else
4960 Push_Scope (Designator);
4961 Set_Categorization_From_Pragmas (N);
4962 Validate_Categorization_Dependency (N, Designator);
4963 Pop_Scope;
4964 end if;
4965 end Analyze_Subprogram_Declaration;
4966
4967 --------------------------------------
4968 -- Analyze_Subprogram_Specification --
4969 --------------------------------------
4970
4971 -- Reminder: N here really is a subprogram specification (not a subprogram
4972 -- declaration). This procedure is called to analyze the specification in
4973 -- both subprogram bodies and subprogram declarations (specs).
4974
4975 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4976 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4977 -- Determine whether entity E denotes the spec or body of an invariant
4978 -- procedure.
4979
4980 ------------------------------------
4981 -- Is_Invariant_Procedure_Or_Body --
4982 ------------------------------------
4983
4984 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4985 Decl : constant Node_Id := Unit_Declaration_Node (E);
4986 Spec : Entity_Id;
4987
4988 begin
4989 if Nkind (Decl) = N_Subprogram_Body then
4990 Spec := Corresponding_Spec (Decl);
4991 else
4992 Spec := E;
4993 end if;
4994
4995 return
4996 Present (Spec)
4997 and then Ekind (Spec) = E_Procedure
4998 and then (Is_Partial_Invariant_Procedure (Spec)
4999 or else Is_Invariant_Procedure (Spec));
5000 end Is_Invariant_Procedure_Or_Body;
5001
5002 -- Local variables
5003
5004 Designator : constant Entity_Id := Defining_Entity (N);
5005 Formals : constant List_Id := Parameter_Specifications (N);
5006
5007 -- Start of processing for Analyze_Subprogram_Specification
5008
5009 begin
5010 -- User-defined operator is not allowed in SPARK, except as a renaming
5011
5012 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
5013 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
5014 then
5015 Check_SPARK_05_Restriction
5016 ("user-defined operator is not allowed", N);
5017 end if;
5018
5019 -- Proceed with analysis. Do not emit a cross-reference entry if the
5020 -- specification comes from an expression function, because it may be
5021 -- the completion of a previous declaration. If it is not, the cross-
5022 -- reference entry will be emitted for the new subprogram declaration.
5023
5024 if Nkind (Parent (N)) /= N_Expression_Function then
5025 Generate_Definition (Designator);
5026 end if;
5027
5028 if Nkind (N) = N_Function_Specification then
5029 Set_Ekind (Designator, E_Function);
5030 Set_Mechanism (Designator, Default_Mechanism);
5031 else
5032 Set_Ekind (Designator, E_Procedure);
5033 Set_Etype (Designator, Standard_Void_Type);
5034 end if;
5035
5036 -- Flag Is_Inlined_Always is True by default, and reversed to False for
5037 -- those subprograms which could be inlined in GNATprove mode (because
5038 -- Body_To_Inline is non-Empty) but should not be inlined.
5039
5040 if GNATprove_Mode then
5041 Set_Is_Inlined_Always (Designator);
5042 end if;
5043
5044 -- Introduce new scope for analysis of the formals and the return type
5045
5046 Set_Scope (Designator, Current_Scope);
5047
5048 if Present (Formals) then
5049 Push_Scope (Designator);
5050 Process_Formals (Formals, N);
5051
5052 -- Check dimensions in N for formals with default expression
5053
5054 Analyze_Dimension_Formals (N, Formals);
5055
5056 -- Ada 2005 (AI-345): If this is an overriding operation of an
5057 -- inherited interface operation, and the controlling type is
5058 -- a synchronized type, replace the type with its corresponding
5059 -- record, to match the proper signature of an overriding operation.
5060 -- Same processing for an access parameter whose designated type is
5061 -- derived from a synchronized interface.
5062
5063 -- This modification is not done for invariant procedures because
5064 -- the corresponding record may not necessarely be visible when the
5065 -- concurrent type acts as the full view of a private type.
5066
5067 -- package Pack is
5068 -- type Prot is private with Type_Invariant => ...;
5069 -- procedure ConcInvariant (Obj : Prot);
5070 -- private
5071 -- protected type Prot is ...;
5072 -- type Concurrent_Record_Prot is record ...;
5073 -- procedure ConcInvariant (Obj : Prot) is
5074 -- ...
5075 -- end ConcInvariant;
5076 -- end Pack;
5077
5078 -- In the example above, both the spec and body of the invariant
5079 -- procedure must utilize the private type as the controlling type.
5080
5081 if Ada_Version >= Ada_2005
5082 and then not Is_Invariant_Procedure_Or_Body (Designator)
5083 then
5084 declare
5085 Formal : Entity_Id;
5086 Formal_Typ : Entity_Id;
5087 Rec_Typ : Entity_Id;
5088 Desig_Typ : Entity_Id;
5089
5090 begin
5091 Formal := First_Formal (Designator);
5092 while Present (Formal) loop
5093 Formal_Typ := Etype (Formal);
5094
5095 if Is_Concurrent_Type (Formal_Typ)
5096 and then Present (Corresponding_Record_Type (Formal_Typ))
5097 then
5098 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5099
5100 if Present (Interfaces (Rec_Typ)) then
5101 Set_Etype (Formal, Rec_Typ);
5102 end if;
5103
5104 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5105 Desig_Typ := Designated_Type (Formal_Typ);
5106
5107 if Is_Concurrent_Type (Desig_Typ)
5108 and then Present (Corresponding_Record_Type (Desig_Typ))
5109 then
5110 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5111
5112 if Present (Interfaces (Rec_Typ)) then
5113 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5114 end if;
5115 end if;
5116 end if;
5117
5118 Next_Formal (Formal);
5119 end loop;
5120 end;
5121 end if;
5122
5123 End_Scope;
5124
5125 -- The subprogram scope is pushed and popped around the processing of
5126 -- the return type for consistency with call above to Process_Formals
5127 -- (which itself can call Analyze_Return_Type), and to ensure that any
5128 -- itype created for the return type will be associated with the proper
5129 -- scope.
5130
5131 elsif Nkind (N) = N_Function_Specification then
5132 Push_Scope (Designator);
5133 Analyze_Return_Type (N);
5134 End_Scope;
5135 end if;
5136
5137 -- Function case
5138
5139 if Nkind (N) = N_Function_Specification then
5140
5141 -- Deal with operator symbol case
5142
5143 if Nkind (Designator) = N_Defining_Operator_Symbol then
5144 Valid_Operator_Definition (Designator);
5145 end if;
5146
5147 May_Need_Actuals (Designator);
5148
5149 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5150 -- the subprogram is abstract also. This does not apply to renaming
5151 -- declarations, where abstractness is inherited, and to subprogram
5152 -- bodies generated for stream operations, which become renamings as
5153 -- bodies.
5154
5155 -- In case of primitives associated with abstract interface types
5156 -- the check is applied later (see Analyze_Subprogram_Declaration).
5157
5158 if not Nkind_In (Original_Node (Parent (N)),
5159 N_Abstract_Subprogram_Declaration,
5160 N_Formal_Abstract_Subprogram_Declaration,
5161 N_Subprogram_Renaming_Declaration)
5162 then
5163 if Is_Abstract_Type (Etype (Designator))
5164 and then not Is_Interface (Etype (Designator))
5165 then
5166 Error_Msg_N
5167 ("function that returns abstract type must be abstract", N);
5168
5169 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5170 -- access result whose designated type is abstract.
5171
5172 elsif Ada_Version >= Ada_2012
5173 and then Nkind (Result_Definition (N)) = N_Access_Definition
5174 and then
5175 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5176 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5177 then
5178 Error_Msg_N
5179 ("function whose access result designates abstract type "
5180 & "must be abstract", N);
5181 end if;
5182 end if;
5183 end if;
5184
5185 return Designator;
5186 end Analyze_Subprogram_Specification;
5187
5188 -----------------------
5189 -- Check_Conformance --
5190 -----------------------
5191
5192 procedure Check_Conformance
5193 (New_Id : Entity_Id;
5194 Old_Id : Entity_Id;
5195 Ctype : Conformance_Type;
5196 Errmsg : Boolean;
5197 Conforms : out Boolean;
5198 Err_Loc : Node_Id := Empty;
5199 Get_Inst : Boolean := False;
5200 Skip_Controlling_Formals : Boolean := False)
5201 is
5202 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5203 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5204 -- If Errmsg is True, then processing continues to post an error message
5205 -- for conformance error on given node. Two messages are output. The
5206 -- first message points to the previous declaration with a general "no
5207 -- conformance" message. The second is the detailed reason, supplied as
5208 -- Msg. The parameter N provide information for a possible & insertion
5209 -- in the message, and also provides the location for posting the
5210 -- message in the absence of a specified Err_Loc location.
5211
5212 function Conventions_Match
5213 (Id1 : Entity_Id;
5214 Id2 : Entity_Id) return Boolean;
5215 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5216 -- match.
5217
5218 -----------------------
5219 -- Conformance_Error --
5220 -----------------------
5221
5222 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5223 Enode : Node_Id;
5224
5225 begin
5226 Conforms := False;
5227
5228 if Errmsg then
5229 if No (Err_Loc) then
5230 Enode := N;
5231 else
5232 Enode := Err_Loc;
5233 end if;
5234
5235 Error_Msg_Sloc := Sloc (Old_Id);
5236
5237 case Ctype is
5238 when Type_Conformant =>
5239 Error_Msg_N -- CODEFIX
5240 ("not type conformant with declaration#!", Enode);
5241
5242 when Mode_Conformant =>
5243 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5244 Error_Msg_N
5245 ("not mode conformant with operation inherited#!",
5246 Enode);
5247 else
5248 Error_Msg_N
5249 ("not mode conformant with declaration#!", Enode);
5250 end if;
5251
5252 when Subtype_Conformant =>
5253 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5254 Error_Msg_N
5255 ("not subtype conformant with operation inherited#!",
5256 Enode);
5257 else
5258 Error_Msg_N
5259 ("not subtype conformant with declaration#!", Enode);
5260 end if;
5261
5262 when Fully_Conformant =>
5263 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5264 Error_Msg_N -- CODEFIX
5265 ("not fully conformant with operation inherited#!",
5266 Enode);
5267 else
5268 Error_Msg_N -- CODEFIX
5269 ("not fully conformant with declaration#!", Enode);
5270 end if;
5271 end case;
5272
5273 Error_Msg_NE (Msg, Enode, N);
5274 end if;
5275 end Conformance_Error;
5276
5277 -----------------------
5278 -- Conventions_Match --
5279 -----------------------
5280
5281 function Conventions_Match
5282 (Id1 : Entity_Id;
5283 Id2 : Entity_Id) return Boolean
5284 is
5285 begin
5286 -- Ignore the conventions of anonymous access-to-subprogram types
5287 -- and subprogram types because these are internally generated and
5288 -- the only way these may receive a convention is if they inherit
5289 -- the convention of a related subprogram.
5290
5291 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5292 E_Subprogram_Type)
5293 or else
5294 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5295 E_Subprogram_Type)
5296 then
5297 return True;
5298
5299 -- Otherwise compare the conventions directly
5300
5301 else
5302 return Convention (Id1) = Convention (Id2);
5303 end if;
5304 end Conventions_Match;
5305
5306 -- Local Variables
5307
5308 Old_Type : constant Entity_Id := Etype (Old_Id);
5309 New_Type : constant Entity_Id := Etype (New_Id);
5310 Old_Formal : Entity_Id;
5311 New_Formal : Entity_Id;
5312 Access_Types_Match : Boolean;
5313 Old_Formal_Base : Entity_Id;
5314 New_Formal_Base : Entity_Id;
5315
5316 -- Start of processing for Check_Conformance
5317
5318 begin
5319 Conforms := True;
5320
5321 -- We need a special case for operators, since they don't appear
5322 -- explicitly.
5323
5324 if Ctype = Type_Conformant then
5325 if Ekind (New_Id) = E_Operator
5326 and then Operator_Matches_Spec (New_Id, Old_Id)
5327 then
5328 return;
5329 end if;
5330 end if;
5331
5332 -- If both are functions/operators, check return types conform
5333
5334 if Old_Type /= Standard_Void_Type
5335 and then
5336 New_Type /= Standard_Void_Type
5337 then
5338 -- If we are checking interface conformance we omit controlling
5339 -- arguments and result, because we are only checking the conformance
5340 -- of the remaining parameters.
5341
5342 if Has_Controlling_Result (Old_Id)
5343 and then Has_Controlling_Result (New_Id)
5344 and then Skip_Controlling_Formals
5345 then
5346 null;
5347
5348 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5349 if Ctype >= Subtype_Conformant
5350 and then not Predicates_Match (Old_Type, New_Type)
5351 then
5352 Conformance_Error
5353 ("\predicate of return type does not match!", New_Id);
5354 else
5355 Conformance_Error
5356 ("\return type does not match!", New_Id);
5357 end if;
5358
5359 return;
5360 end if;
5361
5362 -- Ada 2005 (AI-231): In case of anonymous access types check the
5363 -- null-exclusion and access-to-constant attributes match.
5364
5365 if Ada_Version >= Ada_2005
5366 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5367 and then
5368 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5369 or else Is_Access_Constant (Etype (Old_Type)) /=
5370 Is_Access_Constant (Etype (New_Type)))
5371 then
5372 Conformance_Error ("\return type does not match!", New_Id);
5373 return;
5374 end if;
5375
5376 -- If either is a function/operator and the other isn't, error
5377
5378 elsif Old_Type /= Standard_Void_Type
5379 or else New_Type /= Standard_Void_Type
5380 then
5381 Conformance_Error ("\functions can only match functions!", New_Id);
5382 return;
5383 end if;
5384
5385 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5386 -- If this is a renaming as body, refine error message to indicate that
5387 -- the conflict is with the original declaration. If the entity is not
5388 -- frozen, the conventions don't have to match, the one of the renamed
5389 -- entity is inherited.
5390
5391 if Ctype >= Subtype_Conformant then
5392 if not Conventions_Match (Old_Id, New_Id) then
5393 if not Is_Frozen (New_Id) then
5394 null;
5395
5396 elsif Present (Err_Loc)
5397 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5398 and then Present (Corresponding_Spec (Err_Loc))
5399 then
5400 Error_Msg_Name_1 := Chars (New_Id);
5401 Error_Msg_Name_2 :=
5402 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5403 Conformance_Error ("\prior declaration for% has convention %!");
5404
5405 else
5406 Conformance_Error ("\calling conventions do not match!");
5407 end if;
5408
5409 return;
5410
5411 elsif Is_Formal_Subprogram (Old_Id)
5412 or else Is_Formal_Subprogram (New_Id)
5413 or else (Is_Subprogram (New_Id)
5414 and then Present (Alias (New_Id))
5415 and then Is_Formal_Subprogram (Alias (New_Id)))
5416 then
5417 Conformance_Error
5418 ("\formal subprograms are not subtype conformant "
5419 & "(RM 6.3.1 (17/3))");
5420 end if;
5421 end if;
5422
5423 -- Deal with parameters
5424
5425 -- Note: we use the entity information, rather than going directly
5426 -- to the specification in the tree. This is not only simpler, but
5427 -- absolutely necessary for some cases of conformance tests between
5428 -- operators, where the declaration tree simply does not exist.
5429
5430 Old_Formal := First_Formal (Old_Id);
5431 New_Formal := First_Formal (New_Id);
5432 while Present (Old_Formal) and then Present (New_Formal) loop
5433 if Is_Controlling_Formal (Old_Formal)
5434 and then Is_Controlling_Formal (New_Formal)
5435 and then Skip_Controlling_Formals
5436 then
5437 -- The controlling formals will have different types when
5438 -- comparing an interface operation with its match, but both
5439 -- or neither must be access parameters.
5440
5441 if Is_Access_Type (Etype (Old_Formal))
5442 =
5443 Is_Access_Type (Etype (New_Formal))
5444 then
5445 goto Skip_Controlling_Formal;
5446 else
5447 Conformance_Error
5448 ("\access parameter does not match!", New_Formal);
5449 end if;
5450 end if;
5451
5452 -- Ada 2012: Mode conformance also requires that formal parameters
5453 -- be both aliased, or neither.
5454
5455 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5456 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5457 Conformance_Error
5458 ("\aliased parameter mismatch!", New_Formal);
5459 end if;
5460 end if;
5461
5462 if Ctype = Fully_Conformant then
5463
5464 -- Names must match. Error message is more accurate if we do
5465 -- this before checking that the types of the formals match.
5466
5467 if Chars (Old_Formal) /= Chars (New_Formal) then
5468 Conformance_Error ("\name& does not match!", New_Formal);
5469
5470 -- Set error posted flag on new formal as well to stop
5471 -- junk cascaded messages in some cases.
5472
5473 Set_Error_Posted (New_Formal);
5474 return;
5475 end if;
5476
5477 -- Null exclusion must match
5478
5479 if Null_Exclusion_Present (Parent (Old_Formal))
5480 /=
5481 Null_Exclusion_Present (Parent (New_Formal))
5482 then
5483 -- Only give error if both come from source. This should be
5484 -- investigated some time, since it should not be needed ???
5485
5486 if Comes_From_Source (Old_Formal)
5487 and then
5488 Comes_From_Source (New_Formal)
5489 then
5490 Conformance_Error
5491 ("\null exclusion for& does not match", New_Formal);
5492
5493 -- Mark error posted on the new formal to avoid duplicated
5494 -- complaint about types not matching.
5495
5496 Set_Error_Posted (New_Formal);
5497 end if;
5498 end if;
5499 end if;
5500
5501 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5502 -- case occurs whenever a subprogram is being renamed and one of its
5503 -- parameters imposes a null exclusion. For example:
5504
5505 -- type T is null record;
5506 -- type Acc_T is access T;
5507 -- subtype Acc_T_Sub is Acc_T;
5508
5509 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5510 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5511 -- renames P;
5512
5513 Old_Formal_Base := Etype (Old_Formal);
5514 New_Formal_Base := Etype (New_Formal);
5515
5516 if Get_Inst then
5517 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5518 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5519 end if;
5520
5521 Access_Types_Match := Ada_Version >= Ada_2005
5522
5523 -- Ensure that this rule is only applied when New_Id is a
5524 -- renaming of Old_Id.
5525
5526 and then Nkind (Parent (Parent (New_Id))) =
5527 N_Subprogram_Renaming_Declaration
5528 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5529 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5530 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5531
5532 -- Now handle the allowed access-type case
5533
5534 and then Is_Access_Type (Old_Formal_Base)
5535 and then Is_Access_Type (New_Formal_Base)
5536
5537 -- The type kinds must match. The only exception occurs with
5538 -- multiple generics of the form:
5539
5540 -- generic generic
5541 -- type F is private; type A is private;
5542 -- type F_Ptr is access F; type A_Ptr is access A;
5543 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5544 -- package F_Pack is ... package A_Pack is
5545 -- package F_Inst is
5546 -- new F_Pack (A, A_Ptr, A_P);
5547
5548 -- When checking for conformance between the parameters of A_P
5549 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5550 -- because the compiler has transformed A_Ptr into a subtype of
5551 -- F_Ptr. We catch this case in the code below.
5552
5553 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5554 or else
5555 (Is_Generic_Type (Old_Formal_Base)
5556 and then Is_Generic_Type (New_Formal_Base)
5557 and then Is_Internal (New_Formal_Base)
5558 and then Etype (Etype (New_Formal_Base)) =
5559 Old_Formal_Base))
5560 and then Directly_Designated_Type (Old_Formal_Base) =
5561 Directly_Designated_Type (New_Formal_Base)
5562 and then ((Is_Itype (Old_Formal_Base)
5563 and then Can_Never_Be_Null (Old_Formal_Base))
5564 or else
5565 (Is_Itype (New_Formal_Base)
5566 and then Can_Never_Be_Null (New_Formal_Base)));
5567
5568 -- Types must always match. In the visible part of an instance,
5569 -- usual overloading rules for dispatching operations apply, and
5570 -- we check base types (not the actual subtypes).
5571
5572 if In_Instance_Visible_Part
5573 and then Is_Dispatching_Operation (New_Id)
5574 then
5575 if not Conforming_Types
5576 (T1 => Base_Type (Etype (Old_Formal)),
5577 T2 => Base_Type (Etype (New_Formal)),
5578 Ctype => Ctype,
5579 Get_Inst => Get_Inst)
5580 and then not Access_Types_Match
5581 then
5582 Conformance_Error ("\type of & does not match!", New_Formal);
5583 return;
5584 end if;
5585
5586 elsif not Conforming_Types
5587 (T1 => Old_Formal_Base,
5588 T2 => New_Formal_Base,
5589 Ctype => Ctype,
5590 Get_Inst => Get_Inst)
5591 and then not Access_Types_Match
5592 then
5593 -- Don't give error message if old type is Any_Type. This test
5594 -- avoids some cascaded errors, e.g. in case of a bad spec.
5595
5596 if Errmsg and then Old_Formal_Base = Any_Type then
5597 Conforms := False;
5598 else
5599 if Ctype >= Subtype_Conformant
5600 and then
5601 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5602 then
5603 Conformance_Error
5604 ("\predicate of & does not match!", New_Formal);
5605 else
5606 Conformance_Error
5607 ("\type of & does not match!", New_Formal);
5608
5609 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5610 then
5611 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5612 end if;
5613 end if;
5614 end if;
5615
5616 return;
5617 end if;
5618
5619 -- For mode conformance, mode must match
5620
5621 if Ctype >= Mode_Conformant then
5622 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5623 if not Ekind_In (New_Id, E_Function, E_Procedure)
5624 or else not Is_Primitive_Wrapper (New_Id)
5625 then
5626 Conformance_Error ("\mode of & does not match!", New_Formal);
5627
5628 else
5629 declare
5630 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5631 begin
5632 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5633 then
5634 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5635 else
5636 Conformance_Error
5637 ("\mode of & does not match!", New_Formal);
5638 end if;
5639 end;
5640 end if;
5641
5642 return;
5643
5644 -- Part of mode conformance for access types is having the same
5645 -- constant modifier.
5646
5647 elsif Access_Types_Match
5648 and then Is_Access_Constant (Old_Formal_Base) /=
5649 Is_Access_Constant (New_Formal_Base)
5650 then
5651 Conformance_Error
5652 ("\constant modifier does not match!", New_Formal);
5653 return;
5654 end if;
5655 end if;
5656
5657 if Ctype >= Subtype_Conformant then
5658
5659 -- Ada 2005 (AI-231): In case of anonymous access types check
5660 -- the null-exclusion and access-to-constant attributes must
5661 -- match. For null exclusion, we test the types rather than the
5662 -- formals themselves, since the attribute is only set reliably
5663 -- on the formals in the Ada 95 case, and we exclude the case
5664 -- where Old_Formal is marked as controlling, to avoid errors
5665 -- when matching completing bodies with dispatching declarations
5666 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5667
5668 if Ada_Version >= Ada_2005
5669 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5670 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5671 and then
5672 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5673 Can_Never_Be_Null (Etype (New_Formal))
5674 and then
5675 not Is_Controlling_Formal (Old_Formal))
5676 or else
5677 Is_Access_Constant (Etype (Old_Formal)) /=
5678 Is_Access_Constant (Etype (New_Formal)))
5679
5680 -- Do not complain if error already posted on New_Formal. This
5681 -- avoids some redundant error messages.
5682
5683 and then not Error_Posted (New_Formal)
5684 then
5685 -- It is allowed to omit the null-exclusion in case of stream
5686 -- attribute subprograms. We recognize stream subprograms
5687 -- through their TSS-generated suffix.
5688
5689 declare
5690 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5691
5692 begin
5693 if TSS_Name /= TSS_Stream_Read
5694 and then TSS_Name /= TSS_Stream_Write
5695 and then TSS_Name /= TSS_Stream_Input
5696 and then TSS_Name /= TSS_Stream_Output
5697 then
5698 -- Here we have a definite conformance error. It is worth
5699 -- special casing the error message for the case of a
5700 -- controlling formal (which excludes null).
5701
5702 if Is_Controlling_Formal (New_Formal) then
5703 Error_Msg_Node_2 := Scope (New_Formal);
5704 Conformance_Error
5705 ("\controlling formal & of & excludes null, "
5706 & "declaration must exclude null as well",
5707 New_Formal);
5708
5709 -- Normal case (couldn't we give more detail here???)
5710
5711 else
5712 Conformance_Error
5713 ("\type of & does not match!", New_Formal);
5714 end if;
5715
5716 return;
5717 end if;
5718 end;
5719 end if;
5720 end if;
5721
5722 -- Full conformance checks
5723
5724 if Ctype = Fully_Conformant then
5725
5726 -- We have checked already that names match
5727
5728 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5729
5730 -- Check default expressions for in parameters
5731
5732 declare
5733 NewD : constant Boolean :=
5734 Present (Default_Value (New_Formal));
5735 OldD : constant Boolean :=
5736 Present (Default_Value (Old_Formal));
5737 begin
5738 if NewD or OldD then
5739
5740 -- The old default value has been analyzed because the
5741 -- current full declaration will have frozen everything
5742 -- before. The new default value has not been analyzed,
5743 -- so analyze it now before we check for conformance.
5744
5745 if NewD then
5746 Push_Scope (New_Id);
5747 Preanalyze_Spec_Expression
5748 (Default_Value (New_Formal), Etype (New_Formal));
5749 End_Scope;
5750 end if;
5751
5752 if not (NewD and OldD)
5753 or else not Fully_Conformant_Expressions
5754 (Default_Value (Old_Formal),
5755 Default_Value (New_Formal))
5756 then
5757 Conformance_Error
5758 ("\default expression for & does not match!",
5759 New_Formal);
5760 return;
5761 end if;
5762 end if;
5763 end;
5764 end if;
5765 end if;
5766
5767 -- A couple of special checks for Ada 83 mode. These checks are
5768 -- skipped if either entity is an operator in package Standard,
5769 -- or if either old or new instance is not from the source program.
5770
5771 if Ada_Version = Ada_83
5772 and then Sloc (Old_Id) > Standard_Location
5773 and then Sloc (New_Id) > Standard_Location
5774 and then Comes_From_Source (Old_Id)
5775 and then Comes_From_Source (New_Id)
5776 then
5777 declare
5778 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5779 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5780
5781 begin
5782 -- Explicit IN must be present or absent in both cases. This
5783 -- test is required only in the full conformance case.
5784
5785 if In_Present (Old_Param) /= In_Present (New_Param)
5786 and then Ctype = Fully_Conformant
5787 then
5788 Conformance_Error
5789 ("\(Ada 83) IN must appear in both declarations",
5790 New_Formal);
5791 return;
5792 end if;
5793
5794 -- Grouping (use of comma in param lists) must be the same
5795 -- This is where we catch a misconformance like:
5796
5797 -- A, B : Integer
5798 -- A : Integer; B : Integer
5799
5800 -- which are represented identically in the tree except
5801 -- for the setting of the flags More_Ids and Prev_Ids.
5802
5803 if More_Ids (Old_Param) /= More_Ids (New_Param)
5804 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5805 then
5806 Conformance_Error
5807 ("\grouping of & does not match!", New_Formal);
5808 return;
5809 end if;
5810 end;
5811 end if;
5812
5813 -- This label is required when skipping controlling formals
5814
5815 <<Skip_Controlling_Formal>>
5816
5817 Next_Formal (Old_Formal);
5818 Next_Formal (New_Formal);
5819 end loop;
5820
5821 if Present (Old_Formal) then
5822 Conformance_Error ("\too few parameters!");
5823 return;
5824
5825 elsif Present (New_Formal) then
5826 Conformance_Error ("\too many parameters!", New_Formal);
5827 return;
5828 end if;
5829 end Check_Conformance;
5830
5831 -----------------------
5832 -- Check_Conventions --
5833 -----------------------
5834
5835 procedure Check_Conventions (Typ : Entity_Id) is
5836 Ifaces_List : Elist_Id;
5837
5838 procedure Check_Convention (Op : Entity_Id);
5839 -- Verify that the convention of inherited dispatching operation Op is
5840 -- consistent among all subprograms it overrides. In order to minimize
5841 -- the search, Search_From is utilized to designate a specific point in
5842 -- the list rather than iterating over the whole list once more.
5843
5844 ----------------------
5845 -- Check_Convention --
5846 ----------------------
5847
5848 procedure Check_Convention (Op : Entity_Id) is
5849 Op_Conv : constant Convention_Id := Convention (Op);
5850 Iface_Conv : Convention_Id;
5851 Iface_Elmt : Elmt_Id;
5852 Iface_Prim_Elmt : Elmt_Id;
5853 Iface_Prim : Entity_Id;
5854
5855 begin
5856 Iface_Elmt := First_Elmt (Ifaces_List);
5857 while Present (Iface_Elmt) loop
5858 Iface_Prim_Elmt :=
5859 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5860 while Present (Iface_Prim_Elmt) loop
5861 Iface_Prim := Node (Iface_Prim_Elmt);
5862 Iface_Conv := Convention (Iface_Prim);
5863
5864 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5865 and then Iface_Conv /= Op_Conv
5866 then
5867 Error_Msg_N
5868 ("inconsistent conventions in primitive operations", Typ);
5869
5870 Error_Msg_Name_1 := Chars (Op);
5871 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5872 Error_Msg_Sloc := Sloc (Op);
5873
5874 if Comes_From_Source (Op) or else No (Alias (Op)) then
5875 if not Present (Overridden_Operation (Op)) then
5876 Error_Msg_N ("\\primitive % defined #", Typ);
5877 else
5878 Error_Msg_N
5879 ("\\overriding operation % with "
5880 & "convention % defined #", Typ);
5881 end if;
5882
5883 else pragma Assert (Present (Alias (Op)));
5884 Error_Msg_Sloc := Sloc (Alias (Op));
5885 Error_Msg_N ("\\inherited operation % with "
5886 & "convention % defined #", Typ);
5887 end if;
5888
5889 Error_Msg_Name_1 := Chars (Op);
5890 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5891 Error_Msg_Sloc := Sloc (Iface_Prim);
5892 Error_Msg_N ("\\overridden operation % with "
5893 & "convention % defined #", Typ);
5894
5895 -- Avoid cascading errors
5896
5897 return;
5898 end if;
5899
5900 Next_Elmt (Iface_Prim_Elmt);
5901 end loop;
5902
5903 Next_Elmt (Iface_Elmt);
5904 end loop;
5905 end Check_Convention;
5906
5907 -- Local variables
5908
5909 Prim_Op : Entity_Id;
5910 Prim_Op_Elmt : Elmt_Id;
5911
5912 -- Start of processing for Check_Conventions
5913
5914 begin
5915 if not Has_Interfaces (Typ) then
5916 return;
5917 end if;
5918
5919 Collect_Interfaces (Typ, Ifaces_List);
5920
5921 -- The algorithm checks every overriding dispatching operation against
5922 -- all the corresponding overridden dispatching operations, detecting
5923 -- differences in conventions.
5924
5925 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5926 while Present (Prim_Op_Elmt) loop
5927 Prim_Op := Node (Prim_Op_Elmt);
5928
5929 -- A small optimization: skip the predefined dispatching operations
5930 -- since they always have the same convention.
5931
5932 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5933 Check_Convention (Prim_Op);
5934 end if;
5935
5936 Next_Elmt (Prim_Op_Elmt);
5937 end loop;
5938 end Check_Conventions;
5939
5940 ------------------------------
5941 -- Check_Delayed_Subprogram --
5942 ------------------------------
5943
5944 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5945 procedure Possible_Freeze (T : Entity_Id);
5946 -- T is the type of either a formal parameter or of the return type. If
5947 -- T is not yet frozen and needs a delayed freeze, then the subprogram
5948 -- itself must be delayed.
5949
5950 ---------------------
5951 -- Possible_Freeze --
5952 ---------------------
5953
5954 procedure Possible_Freeze (T : Entity_Id) is
5955 Scop : constant Entity_Id := Scope (Designator);
5956
5957 begin
5958 -- If the subprogram appears within a package instance (which may be
5959 -- the wrapper package of a subprogram instance) the freeze node for
5960 -- that package will freeze the subprogram at the proper place, so
5961 -- do not emit a freeze node for the subprogram, given that it may
5962 -- appear in the wrong scope.
5963
5964 if Ekind (Scop) = E_Package
5965 and then not Comes_From_Source (Scop)
5966 and then Is_Generic_Instance (Scop)
5967 then
5968 null;
5969
5970 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5971 Set_Has_Delayed_Freeze (Designator);
5972
5973 elsif Is_Access_Type (T)
5974 and then Has_Delayed_Freeze (Designated_Type (T))
5975 and then not Is_Frozen (Designated_Type (T))
5976 then
5977 Set_Has_Delayed_Freeze (Designator);
5978 end if;
5979 end Possible_Freeze;
5980
5981 -- Local variables
5982
5983 F : Entity_Id;
5984
5985 -- Start of processing for Check_Delayed_Subprogram
5986
5987 begin
5988 -- All subprograms, including abstract subprograms, may need a freeze
5989 -- node if some formal type or the return type needs one.
5990
5991 Possible_Freeze (Etype (Designator));
5992 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5993
5994 -- Need delayed freeze if any of the formal types themselves need a
5995 -- delayed freeze and are not yet frozen.
5996
5997 F := First_Formal (Designator);
5998 while Present (F) loop
5999 Possible_Freeze (Etype (F));
6000 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6001 Next_Formal (F);
6002 end loop;
6003
6004 -- Mark functions that return by reference. Note that it cannot be done
6005 -- for delayed_freeze subprograms because the underlying returned type
6006 -- may not be known yet (for private types).
6007
6008 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6009 declare
6010 Typ : constant Entity_Id := Etype (Designator);
6011 Utyp : constant Entity_Id := Underlying_Type (Typ);
6012
6013 begin
6014 if Is_Limited_View (Typ) then
6015 Set_Returns_By_Ref (Designator);
6016
6017 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6018 Set_Returns_By_Ref (Designator);
6019 end if;
6020 end;
6021 end if;
6022 end Check_Delayed_Subprogram;
6023
6024 ------------------------------------
6025 -- Check_Discriminant_Conformance --
6026 ------------------------------------
6027
6028 procedure Check_Discriminant_Conformance
6029 (N : Node_Id;
6030 Prev : Entity_Id;
6031 Prev_Loc : Node_Id)
6032 is
6033 Old_Discr : Entity_Id := First_Discriminant (Prev);
6034 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6035 New_Discr_Id : Entity_Id;
6036 New_Discr_Type : Entity_Id;
6037
6038 procedure Conformance_Error (Msg : String; N : Node_Id);
6039 -- Post error message for conformance error on given node. Two messages
6040 -- are output. The first points to the previous declaration with a
6041 -- general "no conformance" message. The second is the detailed reason,
6042 -- supplied as Msg. The parameter N provide information for a possible
6043 -- & insertion in the message.
6044
6045 -----------------------
6046 -- Conformance_Error --
6047 -----------------------
6048
6049 procedure Conformance_Error (Msg : String; N : Node_Id) is
6050 begin
6051 Error_Msg_Sloc := Sloc (Prev_Loc);
6052 Error_Msg_N -- CODEFIX
6053 ("not fully conformant with declaration#!", N);
6054 Error_Msg_NE (Msg, N, N);
6055 end Conformance_Error;
6056
6057 -- Start of processing for Check_Discriminant_Conformance
6058
6059 begin
6060 while Present (Old_Discr) and then Present (New_Discr) loop
6061 New_Discr_Id := Defining_Identifier (New_Discr);
6062
6063 -- The subtype mark of the discriminant on the full type has not
6064 -- been analyzed so we do it here. For an access discriminant a new
6065 -- type is created.
6066
6067 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6068 New_Discr_Type :=
6069 Access_Definition (N, Discriminant_Type (New_Discr));
6070
6071 else
6072 Analyze (Discriminant_Type (New_Discr));
6073 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6074
6075 -- Ada 2005: if the discriminant definition carries a null
6076 -- exclusion, create an itype to check properly for consistency
6077 -- with partial declaration.
6078
6079 if Is_Access_Type (New_Discr_Type)
6080 and then Null_Exclusion_Present (New_Discr)
6081 then
6082 New_Discr_Type :=
6083 Create_Null_Excluding_Itype
6084 (T => New_Discr_Type,
6085 Related_Nod => New_Discr,
6086 Scope_Id => Current_Scope);
6087 end if;
6088 end if;
6089
6090 if not Conforming_Types
6091 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6092 then
6093 Conformance_Error ("type of & does not match!", New_Discr_Id);
6094 return;
6095 else
6096 -- Treat the new discriminant as an occurrence of the old one,
6097 -- for navigation purposes, and fill in some semantic
6098 -- information, for completeness.
6099
6100 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6101 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6102 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6103 end if;
6104
6105 -- Names must match
6106
6107 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6108 Conformance_Error ("name & does not match!", New_Discr_Id);
6109 return;
6110 end if;
6111
6112 -- Default expressions must match
6113
6114 declare
6115 NewD : constant Boolean :=
6116 Present (Expression (New_Discr));
6117 OldD : constant Boolean :=
6118 Present (Expression (Parent (Old_Discr)));
6119
6120 begin
6121 if NewD or OldD then
6122
6123 -- The old default value has been analyzed and expanded,
6124 -- because the current full declaration will have frozen
6125 -- everything before. The new default values have not been
6126 -- expanded, so expand now to check conformance.
6127
6128 if NewD then
6129 Preanalyze_Spec_Expression
6130 (Expression (New_Discr), New_Discr_Type);
6131 end if;
6132
6133 if not (NewD and OldD)
6134 or else not Fully_Conformant_Expressions
6135 (Expression (Parent (Old_Discr)),
6136 Expression (New_Discr))
6137
6138 then
6139 Conformance_Error
6140 ("default expression for & does not match!",
6141 New_Discr_Id);
6142 return;
6143 end if;
6144 end if;
6145 end;
6146
6147 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6148
6149 if Ada_Version = Ada_83 then
6150 declare
6151 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6152
6153 begin
6154 -- Grouping (use of comma in param lists) must be the same
6155 -- This is where we catch a misconformance like:
6156
6157 -- A, B : Integer
6158 -- A : Integer; B : Integer
6159
6160 -- which are represented identically in the tree except
6161 -- for the setting of the flags More_Ids and Prev_Ids.
6162
6163 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6164 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6165 then
6166 Conformance_Error
6167 ("grouping of & does not match!", New_Discr_Id);
6168 return;
6169 end if;
6170 end;
6171 end if;
6172
6173 Next_Discriminant (Old_Discr);
6174 Next (New_Discr);
6175 end loop;
6176
6177 if Present (Old_Discr) then
6178 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6179 return;
6180
6181 elsif Present (New_Discr) then
6182 Conformance_Error
6183 ("too many discriminants!", Defining_Identifier (New_Discr));
6184 return;
6185 end if;
6186 end Check_Discriminant_Conformance;
6187
6188 ----------------------------
6189 -- Check_Fully_Conformant --
6190 ----------------------------
6191
6192 procedure Check_Fully_Conformant
6193 (New_Id : Entity_Id;
6194 Old_Id : Entity_Id;
6195 Err_Loc : Node_Id := Empty)
6196 is
6197 Result : Boolean;
6198 pragma Warnings (Off, Result);
6199 begin
6200 Check_Conformance
6201 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6202 end Check_Fully_Conformant;
6203
6204 --------------------------
6205 -- Check_Limited_Return --
6206 --------------------------
6207
6208 procedure Check_Limited_Return
6209 (N : Node_Id;
6210 Expr : Node_Id;
6211 R_Type : Entity_Id)
6212 is
6213 begin
6214 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6215 -- replaced by anonymous access results. This is an incompatibility with
6216 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6217 -- controllable with special switch. ???
6218
6219 -- A limited interface that is not immutably limited is OK
6220
6221 if Is_Limited_Interface (R_Type)
6222 and then
6223 not (Is_Task_Interface (R_Type)
6224 or else Is_Protected_Interface (R_Type)
6225 or else Is_Synchronized_Interface (R_Type))
6226 then
6227 null;
6228
6229 elsif Is_Limited_Type (R_Type)
6230 and then not Is_Interface (R_Type)
6231 and then Comes_From_Source (N)
6232 and then not In_Instance_Body
6233 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6234 then
6235 -- Error in Ada 2005
6236
6237 if Ada_Version >= Ada_2005
6238 and then not Debug_Flag_Dot_L
6239 and then not GNAT_Mode
6240 then
6241 Error_Msg_N
6242 ("(Ada 2005) cannot copy object of a limited type "
6243 & "(RM-2005 6.5(5.5/2))", Expr);
6244
6245 if Is_Limited_View (R_Type) then
6246 Error_Msg_N
6247 ("\return by reference not permitted in Ada 2005", Expr);
6248 end if;
6249
6250 -- Warn in Ada 95 mode, to give folks a heads up about this
6251 -- incompatibility.
6252
6253 -- In GNAT mode, this is just a warning, to allow it to be evilly
6254 -- turned off. Otherwise it is a real error.
6255
6256 -- In a generic context, simplify the warning because it makes no
6257 -- sense to discuss pass-by-reference or copy.
6258
6259 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6260 if Inside_A_Generic then
6261 Error_Msg_N
6262 ("return of limited object not permitted in Ada 2005 "
6263 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6264
6265 elsif Is_Limited_View (R_Type) then
6266 Error_Msg_N
6267 ("return by reference not permitted in Ada 2005 "
6268 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6269 else
6270 Error_Msg_N
6271 ("cannot copy object of a limited type in Ada 2005 "
6272 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6273 end if;
6274
6275 -- Ada 95 mode, and compatibility warnings disabled
6276
6277 else
6278 pragma Assert (Ada_Version <= Ada_95);
6279 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6280 return; -- skip continuation messages below
6281 end if;
6282
6283 if not Inside_A_Generic then
6284 Error_Msg_N
6285 ("\consider switching to return of access type", Expr);
6286 Explain_Limited_Type (R_Type, Expr);
6287 end if;
6288 end if;
6289 end Check_Limited_Return;
6290
6291 ---------------------------
6292 -- Check_Mode_Conformant --
6293 ---------------------------
6294
6295 procedure Check_Mode_Conformant
6296 (New_Id : Entity_Id;
6297 Old_Id : Entity_Id;
6298 Err_Loc : Node_Id := Empty;
6299 Get_Inst : Boolean := False)
6300 is
6301 Result : Boolean;
6302 pragma Warnings (Off, Result);
6303 begin
6304 Check_Conformance
6305 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6306 end Check_Mode_Conformant;
6307
6308 --------------------------------
6309 -- Check_Overriding_Indicator --
6310 --------------------------------
6311
6312 procedure Check_Overriding_Indicator
6313 (Subp : Entity_Id;
6314 Overridden_Subp : Entity_Id;
6315 Is_Primitive : Boolean)
6316 is
6317 Decl : Node_Id;
6318 Spec : Node_Id;
6319
6320 begin
6321 -- No overriding indicator for literals
6322
6323 if Ekind (Subp) = E_Enumeration_Literal then
6324 return;
6325
6326 elsif Ekind (Subp) = E_Entry then
6327 Decl := Parent (Subp);
6328
6329 -- No point in analyzing a malformed operator
6330
6331 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6332 and then Error_Posted (Subp)
6333 then
6334 return;
6335
6336 else
6337 Decl := Unit_Declaration_Node (Subp);
6338 end if;
6339
6340 if Nkind_In (Decl, N_Subprogram_Body,
6341 N_Subprogram_Body_Stub,
6342 N_Subprogram_Declaration,
6343 N_Abstract_Subprogram_Declaration,
6344 N_Subprogram_Renaming_Declaration)
6345 then
6346 Spec := Specification (Decl);
6347
6348 elsif Nkind (Decl) = N_Entry_Declaration then
6349 Spec := Decl;
6350
6351 else
6352 return;
6353 end if;
6354
6355 -- The overriding operation is type conformant with the overridden one,
6356 -- but the names of the formals are not required to match. If the names
6357 -- appear permuted in the overriding operation, this is a possible
6358 -- source of confusion that is worth diagnosing. Controlling formals
6359 -- often carry names that reflect the type, and it is not worthwhile
6360 -- requiring that their names match.
6361
6362 if Present (Overridden_Subp)
6363 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6364 then
6365 declare
6366 Form1 : Entity_Id;
6367 Form2 : Entity_Id;
6368
6369 begin
6370 Form1 := First_Formal (Subp);
6371 Form2 := First_Formal (Overridden_Subp);
6372
6373 -- If the overriding operation is a synchronized operation, skip
6374 -- the first parameter of the overridden operation, which is
6375 -- implicit in the new one. If the operation is declared in the
6376 -- body it is not primitive and all formals must match.
6377
6378 if Is_Concurrent_Type (Scope (Subp))
6379 and then Is_Tagged_Type (Scope (Subp))
6380 and then not Has_Completion (Scope (Subp))
6381 then
6382 Form2 := Next_Formal (Form2);
6383 end if;
6384
6385 if Present (Form1) then
6386 Form1 := Next_Formal (Form1);
6387 Form2 := Next_Formal (Form2);
6388 end if;
6389
6390 while Present (Form1) loop
6391 if not Is_Controlling_Formal (Form1)
6392 and then Present (Next_Formal (Form2))
6393 and then Chars (Form1) = Chars (Next_Formal (Form2))
6394 then
6395 Error_Msg_Node_2 := Alias (Overridden_Subp);
6396 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6397 Error_Msg_NE
6398 ("& does not match corresponding formal of&#",
6399 Form1, Form1);
6400 exit;
6401 end if;
6402
6403 Next_Formal (Form1);
6404 Next_Formal (Form2);
6405 end loop;
6406 end;
6407 end if;
6408
6409 -- If there is an overridden subprogram, then check that there is no
6410 -- "not overriding" indicator, and mark the subprogram as overriding.
6411 -- This is not done if the overridden subprogram is marked as hidden,
6412 -- which can occur for the case of inherited controlled operations
6413 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6414 -- subprogram is not itself hidden. (Note: This condition could probably
6415 -- be simplified, leaving out the testing for the specific controlled
6416 -- cases, but it seems safer and clearer this way, and echoes similar
6417 -- special-case tests of this kind in other places.)
6418
6419 if Present (Overridden_Subp)
6420 and then (not Is_Hidden (Overridden_Subp)
6421 or else
6422 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6423 Name_Adjust,
6424 Name_Finalize)
6425 and then Present (Alias (Overridden_Subp))
6426 and then not Is_Hidden (Alias (Overridden_Subp))))
6427 then
6428 if Must_Not_Override (Spec) then
6429 Error_Msg_Sloc := Sloc (Overridden_Subp);
6430
6431 if Ekind (Subp) = E_Entry then
6432 Error_Msg_NE
6433 ("entry & overrides inherited operation #", Spec, Subp);
6434 else
6435 Error_Msg_NE
6436 ("subprogram & overrides inherited operation #", Spec, Subp);
6437 end if;
6438
6439 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6440 -- as an extension of Root_Controlled, and thus has a useless Adjust
6441 -- operation. This operation should not be inherited by other limited
6442 -- controlled types. An explicit Adjust for them is not overriding.
6443
6444 elsif Must_Override (Spec)
6445 and then Chars (Overridden_Subp) = Name_Adjust
6446 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6447 and then Present (Alias (Overridden_Subp))
6448 and then In_Predefined_Unit (Alias (Overridden_Subp))
6449 then
6450 Get_Name_String
6451 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6452 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6453
6454 elsif Is_Subprogram (Subp) then
6455 if Is_Init_Proc (Subp) then
6456 null;
6457
6458 elsif No (Overridden_Operation (Subp)) then
6459
6460 -- For entities generated by Derive_Subprograms the overridden
6461 -- operation is the inherited primitive (which is available
6462 -- through the attribute alias)
6463
6464 if (Is_Dispatching_Operation (Subp)
6465 or else Is_Dispatching_Operation (Overridden_Subp))
6466 and then not Comes_From_Source (Overridden_Subp)
6467 and then Find_Dispatching_Type (Overridden_Subp) =
6468 Find_Dispatching_Type (Subp)
6469 and then Present (Alias (Overridden_Subp))
6470 and then Comes_From_Source (Alias (Overridden_Subp))
6471 then
6472 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6473 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6474
6475 else
6476 Set_Overridden_Operation (Subp, Overridden_Subp);
6477 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6478 end if;
6479 end if;
6480 end if;
6481
6482 -- If primitive flag is set or this is a protected operation, then
6483 -- the operation is overriding at the point of its declaration, so
6484 -- warn if necessary. Otherwise it may have been declared before the
6485 -- operation it overrides and no check is required.
6486
6487 if Style_Check
6488 and then not Must_Override (Spec)
6489 and then (Is_Primitive
6490 or else Ekind (Scope (Subp)) = E_Protected_Type)
6491 then
6492 Style.Missing_Overriding (Decl, Subp);
6493 end if;
6494
6495 -- If Subp is an operator, it may override a predefined operation, if
6496 -- it is defined in the same scope as the type to which it applies.
6497 -- In that case Overridden_Subp is empty because of our implicit
6498 -- representation for predefined operators. We have to check whether the
6499 -- signature of Subp matches that of a predefined operator. Note that
6500 -- first argument provides the name of the operator, and the second
6501 -- argument the signature that may match that of a standard operation.
6502 -- If the indicator is overriding, then the operator must match a
6503 -- predefined signature, because we know already that there is no
6504 -- explicit overridden operation.
6505
6506 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6507 if Must_Not_Override (Spec) then
6508
6509 -- If this is not a primitive or a protected subprogram, then
6510 -- "not overriding" is illegal.
6511
6512 if not Is_Primitive
6513 and then Ekind (Scope (Subp)) /= E_Protected_Type
6514 then
6515 Error_Msg_N ("overriding indicator only allowed "
6516 & "if subprogram is primitive", Subp);
6517
6518 elsif Can_Override_Operator (Subp) then
6519 Error_Msg_NE
6520 ("subprogram& overrides predefined operator ", Spec, Subp);
6521 end if;
6522
6523 elsif Must_Override (Spec) then
6524 if No (Overridden_Operation (Subp))
6525 and then not Can_Override_Operator (Subp)
6526 then
6527 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6528 end if;
6529
6530 elsif not Error_Posted (Subp)
6531 and then Style_Check
6532 and then Can_Override_Operator (Subp)
6533 and then not In_Predefined_Unit (Subp)
6534 then
6535 -- If style checks are enabled, indicate that the indicator is
6536 -- missing. However, at the point of declaration, the type of
6537 -- which this is a primitive operation may be private, in which
6538 -- case the indicator would be premature.
6539
6540 if Has_Private_Declaration (Etype (Subp))
6541 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6542 then
6543 null;
6544 else
6545 Style.Missing_Overriding (Decl, Subp);
6546 end if;
6547 end if;
6548
6549 elsif Must_Override (Spec) then
6550 if Ekind (Subp) = E_Entry then
6551 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6552 else
6553 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6554 end if;
6555
6556 -- If the operation is marked "not overriding" and it's not primitive
6557 -- then an error is issued, unless this is an operation of a task or
6558 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6559 -- has been specified have already been checked above.
6560
6561 elsif Must_Not_Override (Spec)
6562 and then not Is_Primitive
6563 and then Ekind (Subp) /= E_Entry
6564 and then Ekind (Scope (Subp)) /= E_Protected_Type
6565 then
6566 Error_Msg_N
6567 ("overriding indicator only allowed if subprogram is primitive",
6568 Subp);
6569 return;
6570 end if;
6571 end Check_Overriding_Indicator;
6572
6573 -------------------
6574 -- Check_Returns --
6575 -------------------
6576
6577 -- Note: this procedure needs to know far too much about how the expander
6578 -- messes with exceptions. The use of the flag Exception_Junk and the
6579 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6580 -- works, but is not very clean. It would be better if the expansion
6581 -- routines would leave Original_Node working nicely, and we could use
6582 -- Original_Node here to ignore all the peculiar expander messing ???
6583
6584 procedure Check_Returns
6585 (HSS : Node_Id;
6586 Mode : Character;
6587 Err : out Boolean;
6588 Proc : Entity_Id := Empty)
6589 is
6590 Handler : Node_Id;
6591
6592 procedure Check_Statement_Sequence (L : List_Id);
6593 -- Internal recursive procedure to check a list of statements for proper
6594 -- termination by a return statement (or a transfer of control or a
6595 -- compound statement that is itself internally properly terminated).
6596
6597 ------------------------------
6598 -- Check_Statement_Sequence --
6599 ------------------------------
6600
6601 procedure Check_Statement_Sequence (L : List_Id) is
6602 Last_Stm : Node_Id;
6603 Stm : Node_Id;
6604 Kind : Node_Kind;
6605
6606 function Assert_False return Boolean;
6607 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6608 -- rewritten as a null statement when assertions are off. The assert
6609 -- is not active, but it is still enough to kill the warning.
6610
6611 ------------------
6612 -- Assert_False --
6613 ------------------
6614
6615 function Assert_False return Boolean is
6616 Orig : constant Node_Id := Original_Node (Last_Stm);
6617
6618 begin
6619 if Nkind (Orig) = N_Pragma
6620 and then Pragma_Name (Orig) = Name_Assert
6621 and then not Error_Posted (Orig)
6622 then
6623 declare
6624 Arg : constant Node_Id :=
6625 First (Pragma_Argument_Associations (Orig));
6626 Exp : constant Node_Id := Expression (Arg);
6627 begin
6628 return Nkind (Exp) = N_Identifier
6629 and then Chars (Exp) = Name_False;
6630 end;
6631
6632 else
6633 return False;
6634 end if;
6635 end Assert_False;
6636
6637 -- Local variables
6638
6639 Raise_Exception_Call : Boolean;
6640 -- Set True if statement sequence terminated by Raise_Exception call
6641 -- or a Reraise_Occurrence call.
6642
6643 -- Start of processing for Check_Statement_Sequence
6644
6645 begin
6646 Raise_Exception_Call := False;
6647
6648 -- Get last real statement
6649
6650 Last_Stm := Last (L);
6651
6652 -- Deal with digging out exception handler statement sequences that
6653 -- have been transformed by the local raise to goto optimization.
6654 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6655 -- optimization has occurred, we are looking at something like:
6656
6657 -- begin
6658 -- original stmts in block
6659
6660 -- exception \
6661 -- when excep1 => |
6662 -- goto L1; | omitted if No_Exception_Propagation
6663 -- when excep2 => |
6664 -- goto L2; /
6665 -- end;
6666
6667 -- goto L3; -- skip handler when exception not raised
6668
6669 -- <<L1>> -- target label for local exception
6670 -- begin
6671 -- estmts1
6672 -- end;
6673
6674 -- goto L3;
6675
6676 -- <<L2>>
6677 -- begin
6678 -- estmts2
6679 -- end;
6680
6681 -- <<L3>>
6682
6683 -- and what we have to do is to dig out the estmts1 and estmts2
6684 -- sequences (which were the original sequences of statements in
6685 -- the exception handlers) and check them.
6686
6687 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6688 Stm := Last_Stm;
6689 loop
6690 Prev (Stm);
6691 exit when No (Stm);
6692 exit when Nkind (Stm) /= N_Block_Statement;
6693 exit when not Exception_Junk (Stm);
6694 Prev (Stm);
6695 exit when No (Stm);
6696 exit when Nkind (Stm) /= N_Label;
6697 exit when not Exception_Junk (Stm);
6698 Check_Statement_Sequence
6699 (Statements (Handled_Statement_Sequence (Next (Stm))));
6700
6701 Prev (Stm);
6702 Last_Stm := Stm;
6703 exit when No (Stm);
6704 exit when Nkind (Stm) /= N_Goto_Statement;
6705 exit when not Exception_Junk (Stm);
6706 end loop;
6707 end if;
6708
6709 -- Don't count pragmas
6710
6711 while Nkind (Last_Stm) = N_Pragma
6712
6713 -- Don't count call to SS_Release (can happen after Raise_Exception)
6714
6715 or else
6716 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6717 and then
6718 Nkind (Name (Last_Stm)) = N_Identifier
6719 and then
6720 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6721
6722 -- Don't count exception junk
6723
6724 or else
6725 (Nkind_In (Last_Stm, N_Goto_Statement,
6726 N_Label,
6727 N_Object_Declaration)
6728 and then Exception_Junk (Last_Stm))
6729 or else Nkind (Last_Stm) in N_Push_xxx_Label
6730 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6731
6732 -- Inserted code, such as finalization calls, is irrelevant: we only
6733 -- need to check original source.
6734
6735 or else Is_Rewrite_Insertion (Last_Stm)
6736 loop
6737 Prev (Last_Stm);
6738 end loop;
6739
6740 -- Here we have the "real" last statement
6741
6742 Kind := Nkind (Last_Stm);
6743
6744 -- Transfer of control, OK. Note that in the No_Return procedure
6745 -- case, we already diagnosed any explicit return statements, so
6746 -- we can treat them as OK in this context.
6747
6748 if Is_Transfer (Last_Stm) then
6749 return;
6750
6751 -- Check cases of explicit non-indirect procedure calls
6752
6753 elsif Kind = N_Procedure_Call_Statement
6754 and then Is_Entity_Name (Name (Last_Stm))
6755 then
6756 -- Check call to Raise_Exception procedure which is treated
6757 -- specially, as is a call to Reraise_Occurrence.
6758
6759 -- We suppress the warning in these cases since it is likely that
6760 -- the programmer really does not expect to deal with the case
6761 -- of Null_Occurrence, and thus would find a warning about a
6762 -- missing return curious, and raising Program_Error does not
6763 -- seem such a bad behavior if this does occur.
6764
6765 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6766 -- behavior will be to raise Constraint_Error (see AI-329).
6767
6768 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6769 or else
6770 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6771 then
6772 Raise_Exception_Call := True;
6773
6774 -- For Raise_Exception call, test first argument, if it is
6775 -- an attribute reference for a 'Identity call, then we know
6776 -- that the call cannot possibly return.
6777
6778 declare
6779 Arg : constant Node_Id :=
6780 Original_Node (First_Actual (Last_Stm));
6781 begin
6782 if Nkind (Arg) = N_Attribute_Reference
6783 and then Attribute_Name (Arg) = Name_Identity
6784 then
6785 return;
6786 end if;
6787 end;
6788 end if;
6789
6790 -- If statement, need to look inside if there is an else and check
6791 -- each constituent statement sequence for proper termination.
6792
6793 elsif Kind = N_If_Statement
6794 and then Present (Else_Statements (Last_Stm))
6795 then
6796 Check_Statement_Sequence (Then_Statements (Last_Stm));
6797 Check_Statement_Sequence (Else_Statements (Last_Stm));
6798
6799 if Present (Elsif_Parts (Last_Stm)) then
6800 declare
6801 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6802
6803 begin
6804 while Present (Elsif_Part) loop
6805 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6806 Next (Elsif_Part);
6807 end loop;
6808 end;
6809 end if;
6810
6811 return;
6812
6813 -- Case statement, check each case for proper termination
6814
6815 elsif Kind = N_Case_Statement then
6816 declare
6817 Case_Alt : Node_Id;
6818 begin
6819 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6820 while Present (Case_Alt) loop
6821 Check_Statement_Sequence (Statements (Case_Alt));
6822 Next_Non_Pragma (Case_Alt);
6823 end loop;
6824 end;
6825
6826 return;
6827
6828 -- Block statement, check its handled sequence of statements
6829
6830 elsif Kind = N_Block_Statement then
6831 declare
6832 Err1 : Boolean;
6833
6834 begin
6835 Check_Returns
6836 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6837
6838 if Err1 then
6839 Err := True;
6840 end if;
6841
6842 return;
6843 end;
6844
6845 -- Loop statement. If there is an iteration scheme, we can definitely
6846 -- fall out of the loop. Similarly if there is an exit statement, we
6847 -- can fall out. In either case we need a following return.
6848
6849 elsif Kind = N_Loop_Statement then
6850 if Present (Iteration_Scheme (Last_Stm))
6851 or else Has_Exit (Entity (Identifier (Last_Stm)))
6852 then
6853 null;
6854
6855 -- A loop with no exit statement or iteration scheme is either
6856 -- an infinite loop, or it has some other exit (raise/return).
6857 -- In either case, no warning is required.
6858
6859 else
6860 return;
6861 end if;
6862
6863 -- Timed entry call, check entry call and delay alternatives
6864
6865 -- Note: in expanded code, the timed entry call has been converted
6866 -- to a set of expanded statements on which the check will work
6867 -- correctly in any case.
6868
6869 elsif Kind = N_Timed_Entry_Call then
6870 declare
6871 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6872 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6873
6874 begin
6875 -- If statement sequence of entry call alternative is missing,
6876 -- then we can definitely fall through, and we post the error
6877 -- message on the entry call alternative itself.
6878
6879 if No (Statements (ECA)) then
6880 Last_Stm := ECA;
6881
6882 -- If statement sequence of delay alternative is missing, then
6883 -- we can definitely fall through, and we post the error
6884 -- message on the delay alternative itself.
6885
6886 -- Note: if both ECA and DCA are missing the return, then we
6887 -- post only one message, should be enough to fix the bugs.
6888 -- If not we will get a message next time on the DCA when the
6889 -- ECA is fixed.
6890
6891 elsif No (Statements (DCA)) then
6892 Last_Stm := DCA;
6893
6894 -- Else check both statement sequences
6895
6896 else
6897 Check_Statement_Sequence (Statements (ECA));
6898 Check_Statement_Sequence (Statements (DCA));
6899 return;
6900 end if;
6901 end;
6902
6903 -- Conditional entry call, check entry call and else part
6904
6905 -- Note: in expanded code, the conditional entry call has been
6906 -- converted to a set of expanded statements on which the check
6907 -- will work correctly in any case.
6908
6909 elsif Kind = N_Conditional_Entry_Call then
6910 declare
6911 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6912
6913 begin
6914 -- If statement sequence of entry call alternative is missing,
6915 -- then we can definitely fall through, and we post the error
6916 -- message on the entry call alternative itself.
6917
6918 if No (Statements (ECA)) then
6919 Last_Stm := ECA;
6920
6921 -- Else check statement sequence and else part
6922
6923 else
6924 Check_Statement_Sequence (Statements (ECA));
6925 Check_Statement_Sequence (Else_Statements (Last_Stm));
6926 return;
6927 end if;
6928 end;
6929 end if;
6930
6931 -- If we fall through, issue appropriate message
6932
6933 if Mode = 'F' then
6934
6935 -- Kill warning if last statement is a raise exception call,
6936 -- or a pragma Assert (False). Note that with assertions enabled,
6937 -- such a pragma has been converted into a raise exception call
6938 -- already, so the Assert_False is for the assertions off case.
6939
6940 if not Raise_Exception_Call and then not Assert_False then
6941
6942 -- In GNATprove mode, it is an error to have a missing return
6943
6944 Error_Msg_Warn := SPARK_Mode /= On;
6945
6946 -- Issue error message or warning
6947
6948 Error_Msg_N
6949 ("RETURN statement missing following this statement<<!",
6950 Last_Stm);
6951 Error_Msg_N
6952 ("\Program_Error ]<<!", Last_Stm);
6953 end if;
6954
6955 -- Note: we set Err even though we have not issued a warning
6956 -- because we still have a case of a missing return. This is
6957 -- an extremely marginal case, probably will never be noticed
6958 -- but we might as well get it right.
6959
6960 Err := True;
6961
6962 -- Otherwise we have the case of a procedure marked No_Return
6963
6964 else
6965 if not Raise_Exception_Call then
6966 if GNATprove_Mode then
6967 Error_Msg_N
6968 ("implied return after this statement would have raised "
6969 & "Program_Error", Last_Stm);
6970
6971 -- In normal compilation mode, do not warn on a generated call
6972 -- (e.g. in the body of a renaming as completion).
6973
6974 elsif Comes_From_Source (Last_Stm) then
6975 Error_Msg_N
6976 ("implied return after this statement will raise "
6977 & "Program_Error??", Last_Stm);
6978 end if;
6979
6980 Error_Msg_Warn := SPARK_Mode /= On;
6981 Error_Msg_NE
6982 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6983 end if;
6984
6985 declare
6986 RE : constant Node_Id :=
6987 Make_Raise_Program_Error (Sloc (Last_Stm),
6988 Reason => PE_Implicit_Return);
6989 begin
6990 Insert_After (Last_Stm, RE);
6991 Analyze (RE);
6992 end;
6993 end if;
6994 end Check_Statement_Sequence;
6995
6996 -- Start of processing for Check_Returns
6997
6998 begin
6999 Err := False;
7000 Check_Statement_Sequence (Statements (HSS));
7001
7002 if Present (Exception_Handlers (HSS)) then
7003 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7004 while Present (Handler) loop
7005 Check_Statement_Sequence (Statements (Handler));
7006 Next_Non_Pragma (Handler);
7007 end loop;
7008 end if;
7009 end Check_Returns;
7010
7011 ----------------------------
7012 -- Check_Subprogram_Order --
7013 ----------------------------
7014
7015 procedure Check_Subprogram_Order (N : Node_Id) is
7016
7017 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7018 -- This is used to check if S1 > S2 in the sense required by this test,
7019 -- for example nameab < namec, but name2 < name10.
7020
7021 -----------------------------
7022 -- Subprogram_Name_Greater --
7023 -----------------------------
7024
7025 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7026 L1, L2 : Positive;
7027 N1, N2 : Natural;
7028
7029 begin
7030 -- Deal with special case where names are identical except for a
7031 -- numerical suffix. These are handled specially, taking the numeric
7032 -- ordering from the suffix into account.
7033
7034 L1 := S1'Last;
7035 while S1 (L1) in '0' .. '9' loop
7036 L1 := L1 - 1;
7037 end loop;
7038
7039 L2 := S2'Last;
7040 while S2 (L2) in '0' .. '9' loop
7041 L2 := L2 - 1;
7042 end loop;
7043
7044 -- If non-numeric parts non-equal, do straight compare
7045
7046 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7047 return S1 > S2;
7048
7049 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7050 -- that a missing suffix is treated as numeric zero in this test.
7051
7052 else
7053 N1 := 0;
7054 while L1 < S1'Last loop
7055 L1 := L1 + 1;
7056 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7057 end loop;
7058
7059 N2 := 0;
7060 while L2 < S2'Last loop
7061 L2 := L2 + 1;
7062 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7063 end loop;
7064
7065 return N1 > N2;
7066 end if;
7067 end Subprogram_Name_Greater;
7068
7069 -- Start of processing for Check_Subprogram_Order
7070
7071 begin
7072 -- Check body in alpha order if this is option
7073
7074 if Style_Check
7075 and then Style_Check_Order_Subprograms
7076 and then Nkind (N) = N_Subprogram_Body
7077 and then Comes_From_Source (N)
7078 and then In_Extended_Main_Source_Unit (N)
7079 then
7080 declare
7081 LSN : String_Ptr
7082 renames Scope_Stack.Table
7083 (Scope_Stack.Last).Last_Subprogram_Name;
7084
7085 Body_Id : constant Entity_Id :=
7086 Defining_Entity (Specification (N));
7087
7088 begin
7089 Get_Decoded_Name_String (Chars (Body_Id));
7090
7091 if LSN /= null then
7092 if Subprogram_Name_Greater
7093 (LSN.all, Name_Buffer (1 .. Name_Len))
7094 then
7095 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7096 end if;
7097
7098 Free (LSN);
7099 end if;
7100
7101 LSN := new String'(Name_Buffer (1 .. Name_Len));
7102 end;
7103 end if;
7104 end Check_Subprogram_Order;
7105
7106 ------------------------------
7107 -- Check_Subtype_Conformant --
7108 ------------------------------
7109
7110 procedure Check_Subtype_Conformant
7111 (New_Id : Entity_Id;
7112 Old_Id : Entity_Id;
7113 Err_Loc : Node_Id := Empty;
7114 Skip_Controlling_Formals : Boolean := False;
7115 Get_Inst : Boolean := False)
7116 is
7117 Result : Boolean;
7118 pragma Warnings (Off, Result);
7119 begin
7120 Check_Conformance
7121 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7122 Skip_Controlling_Formals => Skip_Controlling_Formals,
7123 Get_Inst => Get_Inst);
7124 end Check_Subtype_Conformant;
7125
7126 -----------------------------------
7127 -- Check_Synchronized_Overriding --
7128 -----------------------------------
7129
7130 procedure Check_Synchronized_Overriding
7131 (Def_Id : Entity_Id;
7132 Overridden_Subp : out Entity_Id)
7133 is
7134 Ifaces_List : Elist_Id;
7135 In_Scope : Boolean;
7136 Typ : Entity_Id;
7137
7138 function Matches_Prefixed_View_Profile
7139 (Prim_Params : List_Id;
7140 Iface_Params : List_Id) return Boolean;
7141 -- Determine whether a subprogram's parameter profile Prim_Params
7142 -- matches that of a potentially overridden interface subprogram
7143 -- Iface_Params. Also determine if the type of first parameter of
7144 -- Iface_Params is an implemented interface.
7145
7146 -----------------------------------
7147 -- Matches_Prefixed_View_Profile --
7148 -----------------------------------
7149
7150 function Matches_Prefixed_View_Profile
7151 (Prim_Params : List_Id;
7152 Iface_Params : List_Id) return Boolean
7153 is
7154 function Is_Implemented
7155 (Ifaces_List : Elist_Id;
7156 Iface : Entity_Id) return Boolean;
7157 -- Determine if Iface is implemented by the current task or
7158 -- protected type.
7159
7160 --------------------
7161 -- Is_Implemented --
7162 --------------------
7163
7164 function Is_Implemented
7165 (Ifaces_List : Elist_Id;
7166 Iface : Entity_Id) return Boolean
7167 is
7168 Iface_Elmt : Elmt_Id;
7169
7170 begin
7171 Iface_Elmt := First_Elmt (Ifaces_List);
7172 while Present (Iface_Elmt) loop
7173 if Node (Iface_Elmt) = Iface then
7174 return True;
7175 end if;
7176
7177 Next_Elmt (Iface_Elmt);
7178 end loop;
7179
7180 return False;
7181 end Is_Implemented;
7182
7183 -- Local variables
7184
7185 Iface_Id : Entity_Id;
7186 Iface_Param : Node_Id;
7187 Iface_Typ : Entity_Id;
7188 Prim_Id : Entity_Id;
7189 Prim_Param : Node_Id;
7190 Prim_Typ : Entity_Id;
7191
7192 -- Start of processing for Matches_Prefixed_View_Profile
7193
7194 begin
7195 Iface_Param := First (Iface_Params);
7196 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7197
7198 if Is_Access_Type (Iface_Typ) then
7199 Iface_Typ := Designated_Type (Iface_Typ);
7200 end if;
7201
7202 Prim_Param := First (Prim_Params);
7203
7204 -- The first parameter of the potentially overridden subprogram must
7205 -- be an interface implemented by Prim.
7206
7207 if not Is_Interface (Iface_Typ)
7208 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7209 then
7210 return False;
7211 end if;
7212
7213 -- The checks on the object parameters are done, so move on to the
7214 -- rest of the parameters.
7215
7216 if not In_Scope then
7217 Prim_Param := Next (Prim_Param);
7218 end if;
7219
7220 Iface_Param := Next (Iface_Param);
7221 while Present (Iface_Param) and then Present (Prim_Param) loop
7222 Iface_Id := Defining_Identifier (Iface_Param);
7223 Iface_Typ := Find_Parameter_Type (Iface_Param);
7224
7225 Prim_Id := Defining_Identifier (Prim_Param);
7226 Prim_Typ := Find_Parameter_Type (Prim_Param);
7227
7228 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7229 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7230 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7231 then
7232 Iface_Typ := Designated_Type (Iface_Typ);
7233 Prim_Typ := Designated_Type (Prim_Typ);
7234 end if;
7235
7236 -- Case of multiple interface types inside a parameter profile
7237
7238 -- (Obj_Param : in out Iface; ...; Param : Iface)
7239
7240 -- If the interface type is implemented, then the matching type in
7241 -- the primitive should be the implementing record type.
7242
7243 if Ekind (Iface_Typ) = E_Record_Type
7244 and then Is_Interface (Iface_Typ)
7245 and then Is_Implemented (Ifaces_List, Iface_Typ)
7246 then
7247 if Prim_Typ /= Typ then
7248 return False;
7249 end if;
7250
7251 -- The two parameters must be both mode and subtype conformant
7252
7253 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7254 or else not
7255 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7256 then
7257 return False;
7258 end if;
7259
7260 Next (Iface_Param);
7261 Next (Prim_Param);
7262 end loop;
7263
7264 -- One of the two lists contains more parameters than the other
7265
7266 if Present (Iface_Param) or else Present (Prim_Param) then
7267 return False;
7268 end if;
7269
7270 return True;
7271 end Matches_Prefixed_View_Profile;
7272
7273 -- Start of processing for Check_Synchronized_Overriding
7274
7275 begin
7276 Overridden_Subp := Empty;
7277
7278 -- Def_Id must be an entry or a subprogram. We should skip predefined
7279 -- primitives internally generated by the front end; however at this
7280 -- stage predefined primitives are still not fully decorated. As a
7281 -- minor optimization we skip here internally generated subprograms.
7282
7283 if (Ekind (Def_Id) /= E_Entry
7284 and then Ekind (Def_Id) /= E_Function
7285 and then Ekind (Def_Id) /= E_Procedure)
7286 or else not Comes_From_Source (Def_Id)
7287 then
7288 return;
7289 end if;
7290
7291 -- Search for the concurrent declaration since it contains the list of
7292 -- all implemented interfaces. In this case, the subprogram is declared
7293 -- within the scope of a protected or a task type.
7294
7295 if Present (Scope (Def_Id))
7296 and then Is_Concurrent_Type (Scope (Def_Id))
7297 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7298 then
7299 Typ := Scope (Def_Id);
7300 In_Scope := True;
7301
7302 -- The enclosing scope is not a synchronized type and the subprogram
7303 -- has no formals.
7304
7305 elsif No (First_Formal (Def_Id)) then
7306 return;
7307
7308 -- The subprogram has formals and hence it may be a primitive of a
7309 -- concurrent type.
7310
7311 else
7312 Typ := Etype (First_Formal (Def_Id));
7313
7314 if Is_Access_Type (Typ) then
7315 Typ := Directly_Designated_Type (Typ);
7316 end if;
7317
7318 if Is_Concurrent_Type (Typ)
7319 and then not Is_Generic_Actual_Type (Typ)
7320 then
7321 In_Scope := False;
7322
7323 -- This case occurs when the concurrent type is declared within a
7324 -- generic unit. As a result the corresponding record has been built
7325 -- and used as the type of the first formal, we just have to retrieve
7326 -- the corresponding concurrent type.
7327
7328 elsif Is_Concurrent_Record_Type (Typ)
7329 and then not Is_Class_Wide_Type (Typ)
7330 and then Present (Corresponding_Concurrent_Type (Typ))
7331 then
7332 Typ := Corresponding_Concurrent_Type (Typ);
7333 In_Scope := False;
7334
7335 else
7336 return;
7337 end if;
7338 end if;
7339
7340 -- There is no overriding to check if this is an inherited operation in
7341 -- a type derivation for a generic actual.
7342
7343 Collect_Interfaces (Typ, Ifaces_List);
7344
7345 if Is_Empty_Elmt_List (Ifaces_List) then
7346 return;
7347 end if;
7348
7349 -- Determine whether entry or subprogram Def_Id overrides a primitive
7350 -- operation that belongs to one of the interfaces in Ifaces_List.
7351
7352 declare
7353 Candidate : Entity_Id := Empty;
7354 Hom : Entity_Id := Empty;
7355 Subp : Entity_Id := Empty;
7356
7357 begin
7358 -- Traverse the homonym chain, looking for a potentially overridden
7359 -- subprogram that belongs to an implemented interface.
7360
7361 Hom := Current_Entity_In_Scope (Def_Id);
7362 while Present (Hom) loop
7363 Subp := Hom;
7364
7365 if Subp = Def_Id
7366 or else not Is_Overloadable (Subp)
7367 or else not Is_Primitive (Subp)
7368 or else not Is_Dispatching_Operation (Subp)
7369 or else not Present (Find_Dispatching_Type (Subp))
7370 or else not Is_Interface (Find_Dispatching_Type (Subp))
7371 then
7372 null;
7373
7374 -- Entries and procedures can override abstract or null interface
7375 -- procedures.
7376
7377 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7378 and then Ekind (Subp) = E_Procedure
7379 and then Matches_Prefixed_View_Profile
7380 (Parameter_Specifications (Parent (Def_Id)),
7381 Parameter_Specifications (Parent (Subp)))
7382 then
7383 Candidate := Subp;
7384
7385 -- For an overridden subprogram Subp, check whether the mode
7386 -- of its first parameter is correct depending on the kind of
7387 -- synchronized type.
7388
7389 declare
7390 Formal : constant Node_Id := First_Formal (Candidate);
7391
7392 begin
7393 -- In order for an entry or a protected procedure to
7394 -- override, the first parameter of the overridden routine
7395 -- must be of mode "out", "in out", or access-to-variable.
7396
7397 if Ekind_In (Candidate, E_Entry, E_Procedure)
7398 and then Is_Protected_Type (Typ)
7399 and then Ekind (Formal) /= E_In_Out_Parameter
7400 and then Ekind (Formal) /= E_Out_Parameter
7401 and then Nkind (Parameter_Type (Parent (Formal))) /=
7402 N_Access_Definition
7403 then
7404 null;
7405
7406 -- All other cases are OK since a task entry or routine does
7407 -- not have a restriction on the mode of the first parameter
7408 -- of the overridden interface routine.
7409
7410 else
7411 Overridden_Subp := Candidate;
7412 return;
7413 end if;
7414 end;
7415
7416 -- Functions can override abstract interface functions
7417
7418 elsif Ekind (Def_Id) = E_Function
7419 and then Ekind (Subp) = E_Function
7420 and then Matches_Prefixed_View_Profile
7421 (Parameter_Specifications (Parent (Def_Id)),
7422 Parameter_Specifications (Parent (Subp)))
7423 and then Etype (Def_Id) = Etype (Subp)
7424 then
7425 Candidate := Subp;
7426
7427 -- If an inherited subprogram is implemented by a protected
7428 -- function, then the first parameter of the inherited
7429 -- subprogram shall be of mode in, but not an access-to-
7430 -- variable parameter (RM 9.4(11/9)).
7431
7432 if Present (First_Formal (Subp))
7433 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7434 and then
7435 (not Is_Access_Type (Etype (First_Formal (Subp)))
7436 or else
7437 Is_Access_Constant (Etype (First_Formal (Subp))))
7438 then
7439 Overridden_Subp := Subp;
7440 return;
7441 end if;
7442 end if;
7443
7444 Hom := Homonym (Hom);
7445 end loop;
7446
7447 -- After examining all candidates for overriding, we are left with
7448 -- the best match, which is a mode-incompatible interface routine.
7449
7450 if In_Scope and then Present (Candidate) then
7451 Error_Msg_PT (Def_Id, Candidate);
7452 end if;
7453
7454 Overridden_Subp := Candidate;
7455 return;
7456 end;
7457 end Check_Synchronized_Overriding;
7458
7459 ---------------------------
7460 -- Check_Type_Conformant --
7461 ---------------------------
7462
7463 procedure Check_Type_Conformant
7464 (New_Id : Entity_Id;
7465 Old_Id : Entity_Id;
7466 Err_Loc : Node_Id := Empty)
7467 is
7468 Result : Boolean;
7469 pragma Warnings (Off, Result);
7470 begin
7471 Check_Conformance
7472 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7473 end Check_Type_Conformant;
7474
7475 ---------------------------
7476 -- Can_Override_Operator --
7477 ---------------------------
7478
7479 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7480 Typ : Entity_Id;
7481
7482 begin
7483 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7484 return False;
7485
7486 else
7487 Typ := Base_Type (Etype (First_Formal (Subp)));
7488
7489 -- Check explicitly that the operation is a primitive of the type
7490
7491 return Operator_Matches_Spec (Subp, Subp)
7492 and then not Is_Generic_Type (Typ)
7493 and then Scope (Subp) = Scope (Typ)
7494 and then not Is_Class_Wide_Type (Typ);
7495 end if;
7496 end Can_Override_Operator;
7497
7498 ----------------------
7499 -- Conforming_Types --
7500 ----------------------
7501
7502 function Conforming_Types
7503 (T1 : Entity_Id;
7504 T2 : Entity_Id;
7505 Ctype : Conformance_Type;
7506 Get_Inst : Boolean := False) return Boolean
7507 is
7508 function Base_Types_Match
7509 (Typ_1 : Entity_Id;
7510 Typ_2 : Entity_Id) return Boolean;
7511 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7512 -- in different scopes (e.g. parent and child instances), then verify
7513 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7514 -- the same subtype chain. The whole purpose of this procedure is to
7515 -- prevent spurious ambiguities in an instantiation that may arise if
7516 -- two distinct generic types are instantiated with the same actual.
7517
7518 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7519 -- An access parameter can designate an incomplete type. If the
7520 -- incomplete type is the limited view of a type from a limited_
7521 -- with_clause, check whether the non-limited view is available.
7522 -- If it is a (non-limited) incomplete type, get the full view.
7523
7524 function Matches_Limited_With_View
7525 (Typ_1 : Entity_Id;
7526 Typ_2 : Entity_Id) return Boolean;
7527 -- Returns True if and only if either Typ_1 denotes a limited view of
7528 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7529 -- the limited with view of a type is used in a subprogram declaration
7530 -- and the subprogram body is in the scope of a regular with clause for
7531 -- the same unit. In such a case, the two type entities are considered
7532 -- identical for purposes of conformance checking.
7533
7534 ----------------------
7535 -- Base_Types_Match --
7536 ----------------------
7537
7538 function Base_Types_Match
7539 (Typ_1 : Entity_Id;
7540 Typ_2 : Entity_Id) return Boolean
7541 is
7542 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7543 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7544
7545 begin
7546 if Typ_1 = Typ_2 then
7547 return True;
7548
7549 elsif Base_1 = Base_2 then
7550
7551 -- The following is too permissive. A more precise test should
7552 -- check that the generic actual is an ancestor subtype of the
7553 -- other ???.
7554
7555 -- See code in Find_Corresponding_Spec that applies an additional
7556 -- filter to handle accidental amiguities in instances.
7557
7558 return
7559 not Is_Generic_Actual_Type (Typ_1)
7560 or else not Is_Generic_Actual_Type (Typ_2)
7561 or else Scope (Typ_1) /= Scope (Typ_2);
7562
7563 -- If Typ_2 is a generic actual type it is declared as the subtype of
7564 -- the actual. If that actual is itself a subtype we need to use its
7565 -- own base type to check for compatibility.
7566
7567 elsif Ekind (Base_2) = Ekind (Typ_2)
7568 and then Base_1 = Base_Type (Base_2)
7569 then
7570 return True;
7571
7572 elsif Ekind (Base_1) = Ekind (Typ_1)
7573 and then Base_2 = Base_Type (Base_1)
7574 then
7575 return True;
7576
7577 else
7578 return False;
7579 end if;
7580 end Base_Types_Match;
7581
7582 --------------------------
7583 -- Find_Designated_Type --
7584 --------------------------
7585
7586 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7587 Desig : Entity_Id;
7588
7589 begin
7590 Desig := Directly_Designated_Type (Typ);
7591
7592 if Ekind (Desig) = E_Incomplete_Type then
7593
7594 -- If regular incomplete type, get full view if available
7595
7596 if Present (Full_View (Desig)) then
7597 Desig := Full_View (Desig);
7598
7599 -- If limited view of a type, get non-limited view if available,
7600 -- and check again for a regular incomplete type.
7601
7602 elsif Present (Non_Limited_View (Desig)) then
7603 Desig := Get_Full_View (Non_Limited_View (Desig));
7604 end if;
7605 end if;
7606
7607 return Desig;
7608 end Find_Designated_Type;
7609
7610 -------------------------------
7611 -- Matches_Limited_With_View --
7612 -------------------------------
7613
7614 function Matches_Limited_With_View
7615 (Typ_1 : Entity_Id;
7616 Typ_2 : Entity_Id) return Boolean
7617 is
7618 function Is_Matching_Limited_View
7619 (Typ : Entity_Id;
7620 View : Entity_Id) return Boolean;
7621 -- Determine whether non-limited view View denotes type Typ in some
7622 -- conformant fashion.
7623
7624 ------------------------------
7625 -- Is_Matching_Limited_View --
7626 ------------------------------
7627
7628 function Is_Matching_Limited_View
7629 (Typ : Entity_Id;
7630 View : Entity_Id) return Boolean
7631 is
7632 Root_Typ : Entity_Id;
7633 Root_View : Entity_Id;
7634
7635 begin
7636 -- The non-limited view directly denotes the type
7637
7638 if Typ = View then
7639 return True;
7640
7641 -- The type is a subtype of the non-limited view
7642
7643 elsif Is_Subtype_Of (Typ, View) then
7644 return True;
7645
7646 -- Both the non-limited view and the type denote class-wide types
7647
7648 elsif Is_Class_Wide_Type (Typ)
7649 and then Is_Class_Wide_Type (View)
7650 then
7651 Root_Typ := Root_Type (Typ);
7652 Root_View := Root_Type (View);
7653
7654 if Root_Typ = Root_View then
7655 return True;
7656
7657 -- An incomplete tagged type and its full view may receive two
7658 -- distinct class-wide types when the related package has not
7659 -- been analyzed yet.
7660
7661 -- package Pack is
7662 -- type T is tagged; -- CW_1
7663 -- type T is tagged null record; -- CW_2
7664 -- end Pack;
7665
7666 -- This is because the package lacks any semantic information
7667 -- that may eventually link both views of T. As a consequence,
7668 -- a client of the limited view of Pack will see CW_2 while a
7669 -- client of the non-limited view of Pack will see CW_1.
7670
7671 elsif Is_Incomplete_Type (Root_Typ)
7672 and then Present (Full_View (Root_Typ))
7673 and then Full_View (Root_Typ) = Root_View
7674 then
7675 return True;
7676
7677 elsif Is_Incomplete_Type (Root_View)
7678 and then Present (Full_View (Root_View))
7679 and then Full_View (Root_View) = Root_Typ
7680 then
7681 return True;
7682 end if;
7683 end if;
7684
7685 return False;
7686 end Is_Matching_Limited_View;
7687
7688 -- Start of processing for Matches_Limited_With_View
7689
7690 begin
7691 -- In some cases a type imported through a limited_with clause, and
7692 -- its non-limited view are both visible, for example in an anonymous
7693 -- access-to-class-wide type in a formal, or when building the body
7694 -- for a subprogram renaming after the subprogram has been frozen.
7695 -- In these cases both entities designate the same type. In addition,
7696 -- if one of them is an actual in an instance, it may be a subtype of
7697 -- the non-limited view of the other.
7698
7699 if From_Limited_With (Typ_1)
7700 and then From_Limited_With (Typ_2)
7701 and then Available_View (Typ_1) = Available_View (Typ_2)
7702 then
7703 return True;
7704
7705 elsif From_Limited_With (Typ_1) then
7706 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7707
7708 elsif From_Limited_With (Typ_2) then
7709 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7710
7711 else
7712 return False;
7713 end if;
7714 end Matches_Limited_With_View;
7715
7716 -- Local variables
7717
7718 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7719
7720 Type_1 : Entity_Id := T1;
7721 Type_2 : Entity_Id := T2;
7722
7723 -- Start of processing for Conforming_Types
7724
7725 begin
7726 -- The context is an instance association for a formal access-to-
7727 -- subprogram type; the formal parameter types require mapping because
7728 -- they may denote other formal parameters of the generic unit.
7729
7730 if Get_Inst then
7731 Type_1 := Get_Instance_Of (T1);
7732 Type_2 := Get_Instance_Of (T2);
7733 end if;
7734
7735 -- If one of the types is a view of the other introduced by a limited
7736 -- with clause, treat these as conforming for all purposes.
7737
7738 if Matches_Limited_With_View (T1, T2) then
7739 return True;
7740
7741 elsif Base_Types_Match (Type_1, Type_2) then
7742 if Ctype <= Mode_Conformant then
7743 return True;
7744
7745 else
7746 return
7747 Subtypes_Statically_Match (Type_1, Type_2)
7748 and then Dimensions_Match (Type_1, Type_2);
7749 end if;
7750
7751 elsif Is_Incomplete_Or_Private_Type (Type_1)
7752 and then Present (Full_View (Type_1))
7753 and then Base_Types_Match (Full_View (Type_1), Type_2)
7754 then
7755 return
7756 Ctype <= Mode_Conformant
7757 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7758
7759 elsif Ekind (Type_2) = E_Incomplete_Type
7760 and then Present (Full_View (Type_2))
7761 and then Base_Types_Match (Type_1, Full_View (Type_2))
7762 then
7763 return
7764 Ctype <= Mode_Conformant
7765 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7766
7767 elsif Is_Private_Type (Type_2)
7768 and then In_Instance
7769 and then Present (Full_View (Type_2))
7770 and then Base_Types_Match (Type_1, Full_View (Type_2))
7771 then
7772 return
7773 Ctype <= Mode_Conformant
7774 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7775
7776 -- Another confusion between views in a nested instance with an
7777 -- actual private type whose full view is not in scope.
7778
7779 elsif Ekind (Type_2) = E_Private_Subtype
7780 and then In_Instance
7781 and then Etype (Type_2) = Type_1
7782 then
7783 return True;
7784
7785 -- In Ada 2012, incomplete types (including limited views) can appear
7786 -- as actuals in instantiations, where they are conformant to the
7787 -- corresponding incomplete formal.
7788
7789 elsif Is_Incomplete_Type (Type_1)
7790 and then Is_Incomplete_Type (Type_2)
7791 and then In_Instance
7792 and then (Used_As_Generic_Actual (Type_1)
7793 or else Used_As_Generic_Actual (Type_2))
7794 then
7795 return True;
7796 end if;
7797
7798 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7799 -- treated recursively because they carry a signature. As far as
7800 -- conformance is concerned, convention plays no role, and either
7801 -- or both could be access to protected subprograms.
7802
7803 Are_Anonymous_Access_To_Subprogram_Types :=
7804 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7805 E_Anonymous_Access_Protected_Subprogram_Type)
7806 and then
7807 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7808 E_Anonymous_Access_Protected_Subprogram_Type);
7809
7810 -- Test anonymous access type case. For this case, static subtype
7811 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7812 -- the base types because we may have built internal subtype entities
7813 -- to handle null-excluding types (see Process_Formals).
7814
7815 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7816 and then
7817 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7818
7819 -- Ada 2005 (AI-254)
7820
7821 or else Are_Anonymous_Access_To_Subprogram_Types
7822 then
7823 declare
7824 Desig_1 : Entity_Id;
7825 Desig_2 : Entity_Id;
7826
7827 begin
7828 -- In Ada 2005, access constant indicators must match for
7829 -- subtype conformance.
7830
7831 if Ada_Version >= Ada_2005
7832 and then Ctype >= Subtype_Conformant
7833 and then
7834 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7835 then
7836 return False;
7837 end if;
7838
7839 Desig_1 := Find_Designated_Type (Type_1);
7840 Desig_2 := Find_Designated_Type (Type_2);
7841
7842 -- If the context is an instance association for a formal
7843 -- access-to-subprogram type; formal access parameter designated
7844 -- types require mapping because they may denote other formal
7845 -- parameters of the generic unit.
7846
7847 if Get_Inst then
7848 Desig_1 := Get_Instance_Of (Desig_1);
7849 Desig_2 := Get_Instance_Of (Desig_2);
7850 end if;
7851
7852 -- It is possible for a Class_Wide_Type to be introduced for an
7853 -- incomplete type, in which case there is a separate class_ wide
7854 -- type for the full view. The types conform if their Etypes
7855 -- conform, i.e. one may be the full view of the other. This can
7856 -- only happen in the context of an access parameter, other uses
7857 -- of an incomplete Class_Wide_Type are illegal.
7858
7859 if Is_Class_Wide_Type (Desig_1)
7860 and then
7861 Is_Class_Wide_Type (Desig_2)
7862 then
7863 return
7864 Conforming_Types
7865 (Etype (Base_Type (Desig_1)),
7866 Etype (Base_Type (Desig_2)), Ctype);
7867
7868 elsif Are_Anonymous_Access_To_Subprogram_Types then
7869 if Ada_Version < Ada_2005 then
7870 return
7871 Ctype = Type_Conformant
7872 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7873
7874 -- We must check the conformance of the signatures themselves
7875
7876 else
7877 declare
7878 Conformant : Boolean;
7879 begin
7880 Check_Conformance
7881 (Desig_1, Desig_2, Ctype, False, Conformant);
7882 return Conformant;
7883 end;
7884 end if;
7885
7886 -- A limited view of an actual matches the corresponding
7887 -- incomplete formal.
7888
7889 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7890 and then From_Limited_With (Desig_2)
7891 and then Used_As_Generic_Actual (Etype (Desig_2))
7892 then
7893 return True;
7894
7895 else
7896 return Base_Type (Desig_1) = Base_Type (Desig_2)
7897 and then (Ctype = Type_Conformant
7898 or else
7899 Subtypes_Statically_Match (Desig_1, Desig_2));
7900 end if;
7901 end;
7902
7903 -- Otherwise definitely no match
7904
7905 else
7906 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7907 and then Is_Access_Type (Type_2))
7908 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7909 and then Is_Access_Type (Type_1)))
7910 and then
7911 Conforming_Types
7912 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7913 then
7914 May_Hide_Profile := True;
7915 end if;
7916
7917 return False;
7918 end if;
7919 end Conforming_Types;
7920
7921 --------------------------
7922 -- Create_Extra_Formals --
7923 --------------------------
7924
7925 procedure Create_Extra_Formals (E : Entity_Id) is
7926 First_Extra : Entity_Id := Empty;
7927 Formal : Entity_Id;
7928 Last_Extra : Entity_Id := Empty;
7929
7930 function Add_Extra_Formal
7931 (Assoc_Entity : Entity_Id;
7932 Typ : Entity_Id;
7933 Scope : Entity_Id;
7934 Suffix : String) return Entity_Id;
7935 -- Add an extra formal to the current list of formals and extra formals.
7936 -- The extra formal is added to the end of the list of extra formals,
7937 -- and also returned as the result. These formals are always of mode IN.
7938 -- The new formal has the type Typ, is declared in Scope, and its name
7939 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7940 -- The following suffixes are currently used. They should not be changed
7941 -- without coordinating with CodePeer, which makes use of these to
7942 -- provide better messages.
7943
7944 -- O denotes the Constrained bit.
7945 -- L denotes the accessibility level.
7946 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7947 -- the full list in exp_ch6.BIP_Formal_Kind.
7948
7949 ----------------------
7950 -- Add_Extra_Formal --
7951 ----------------------
7952
7953 function Add_Extra_Formal
7954 (Assoc_Entity : Entity_Id;
7955 Typ : Entity_Id;
7956 Scope : Entity_Id;
7957 Suffix : String) return Entity_Id
7958 is
7959 EF : constant Entity_Id :=
7960 Make_Defining_Identifier (Sloc (Assoc_Entity),
7961 Chars => New_External_Name (Chars (Assoc_Entity),
7962 Suffix => Suffix));
7963
7964 begin
7965 -- A little optimization. Never generate an extra formal for the
7966 -- _init operand of an initialization procedure, since it could
7967 -- never be used.
7968
7969 if Chars (Formal) = Name_uInit then
7970 return Empty;
7971 end if;
7972
7973 Set_Ekind (EF, E_In_Parameter);
7974 Set_Actual_Subtype (EF, Typ);
7975 Set_Etype (EF, Typ);
7976 Set_Scope (EF, Scope);
7977 Set_Mechanism (EF, Default_Mechanism);
7978 Set_Formal_Validity (EF);
7979
7980 if No (First_Extra) then
7981 First_Extra := EF;
7982 Set_Extra_Formals (Scope, EF);
7983 end if;
7984
7985 if Present (Last_Extra) then
7986 Set_Extra_Formal (Last_Extra, EF);
7987 end if;
7988
7989 Last_Extra := EF;
7990
7991 return EF;
7992 end Add_Extra_Formal;
7993
7994 -- Local variables
7995
7996 Formal_Type : Entity_Id;
7997 P_Formal : Entity_Id := Empty;
7998
7999 -- Start of processing for Create_Extra_Formals
8000
8001 begin
8002 -- We never generate extra formals if expansion is not active because we
8003 -- don't need them unless we are generating code.
8004
8005 if not Expander_Active then
8006 return;
8007 end if;
8008
8009 -- No need to generate extra formals in interface thunks whose target
8010 -- primitive has no extra formals.
8011
8012 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
8013 return;
8014 end if;
8015
8016 -- If this is a derived subprogram then the subtypes of the parent
8017 -- subprogram's formal parameters will be used to determine the need
8018 -- for extra formals.
8019
8020 if Is_Overloadable (E) and then Present (Alias (E)) then
8021 P_Formal := First_Formal (Alias (E));
8022 end if;
8023
8024 Formal := First_Formal (E);
8025 while Present (Formal) loop
8026 Last_Extra := Formal;
8027 Next_Formal (Formal);
8028 end loop;
8029
8030 -- If Extra_Formals were already created, don't do it again. This
8031 -- situation may arise for subprogram types created as part of
8032 -- dispatching calls (see Expand_Dispatching_Call).
8033
8034 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8035 return;
8036 end if;
8037
8038 -- If the subprogram is a predefined dispatching subprogram then don't
8039 -- generate any extra constrained or accessibility level formals. In
8040 -- general we suppress these for internal subprograms (by not calling
8041 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8042 -- generated stream attributes do get passed through because extra
8043 -- build-in-place formals are needed in some cases (limited 'Input).
8044
8045 if Is_Predefined_Internal_Operation (E) then
8046 goto Test_For_Func_Result_Extras;
8047 end if;
8048
8049 Formal := First_Formal (E);
8050 while Present (Formal) loop
8051
8052 -- Create extra formal for supporting the attribute 'Constrained.
8053 -- The case of a private type view without discriminants also
8054 -- requires the extra formal if the underlying type has defaulted
8055 -- discriminants.
8056
8057 if Ekind (Formal) /= E_In_Parameter then
8058 if Present (P_Formal) then
8059 Formal_Type := Etype (P_Formal);
8060 else
8061 Formal_Type := Etype (Formal);
8062 end if;
8063
8064 -- Do not produce extra formals for Unchecked_Union parameters.
8065 -- Jump directly to the end of the loop.
8066
8067 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
8068 goto Skip_Extra_Formal_Generation;
8069 end if;
8070
8071 if not Has_Discriminants (Formal_Type)
8072 and then Ekind (Formal_Type) in Private_Kind
8073 and then Present (Underlying_Type (Formal_Type))
8074 then
8075 Formal_Type := Underlying_Type (Formal_Type);
8076 end if;
8077
8078 -- Suppress the extra formal if formal's subtype is constrained or
8079 -- indefinite, or we're compiling for Ada 2012 and the underlying
8080 -- type is tagged and limited. In Ada 2012, a limited tagged type
8081 -- can have defaulted discriminants, but 'Constrained is required
8082 -- to return True, so the formal is never needed (see AI05-0214).
8083 -- Note that this ensures consistency of calling sequences for
8084 -- dispatching operations when some types in a class have defaults
8085 -- on discriminants and others do not (and requiring the extra
8086 -- formal would introduce distributed overhead).
8087
8088 -- If the type does not have a completion yet, treat as prior to
8089 -- Ada 2012 for consistency.
8090
8091 if Has_Discriminants (Formal_Type)
8092 and then not Is_Constrained (Formal_Type)
8093 and then Is_Definite_Subtype (Formal_Type)
8094 and then (Ada_Version < Ada_2012
8095 or else No (Underlying_Type (Formal_Type))
8096 or else not
8097 (Is_Limited_Type (Formal_Type)
8098 and then
8099 (Is_Tagged_Type
8100 (Underlying_Type (Formal_Type)))))
8101 then
8102 Set_Extra_Constrained
8103 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8104 end if;
8105 end if;
8106
8107 -- Create extra formal for supporting accessibility checking. This
8108 -- is done for both anonymous access formals and formals of named
8109 -- access types that are marked as controlling formals. The latter
8110 -- case can occur when Expand_Dispatching_Call creates a subprogram
8111 -- type and substitutes the types of access-to-class-wide actuals
8112 -- for the anonymous access-to-specific-type of controlling formals.
8113 -- Base_Type is applied because in cases where there is a null
8114 -- exclusion the formal may have an access subtype.
8115
8116 -- This is suppressed if we specifically suppress accessibility
8117 -- checks at the package level for either the subprogram, or the
8118 -- package in which it resides. However, we do not suppress it
8119 -- simply if the scope has accessibility checks suppressed, since
8120 -- this could cause trouble when clients are compiled with a
8121 -- different suppression setting. The explicit checks at the
8122 -- package level are safe from this point of view.
8123
8124 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8125 or else (Is_Controlling_Formal (Formal)
8126 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8127 and then not
8128 (Explicit_Suppress (E, Accessibility_Check)
8129 or else
8130 Explicit_Suppress (Scope (E), Accessibility_Check))
8131 and then
8132 (No (P_Formal)
8133 or else Present (Extra_Accessibility (P_Formal)))
8134 then
8135 Set_Extra_Accessibility
8136 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8137 end if;
8138
8139 -- This label is required when skipping extra formal generation for
8140 -- Unchecked_Union parameters.
8141
8142 <<Skip_Extra_Formal_Generation>>
8143
8144 if Present (P_Formal) then
8145 Next_Formal (P_Formal);
8146 end if;
8147
8148 Next_Formal (Formal);
8149 end loop;
8150
8151 <<Test_For_Func_Result_Extras>>
8152
8153 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8154 -- function call is ... determined by the point of call ...".
8155
8156 if Needs_Result_Accessibility_Level (E) then
8157 Set_Extra_Accessibility_Of_Result
8158 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8159 end if;
8160
8161 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8162 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8163
8164 if Is_Build_In_Place_Function (E) then
8165 declare
8166 Result_Subt : constant Entity_Id := Etype (E);
8167 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8168 Formal_Typ : Entity_Id;
8169 Subp_Decl : Node_Id;
8170 Discard : Entity_Id;
8171
8172 begin
8173 -- In the case of functions with unconstrained result subtypes,
8174 -- add a 4-state formal indicating whether the return object is
8175 -- allocated by the caller (1), or should be allocated by the
8176 -- callee on the secondary stack (2), in the global heap (3), or
8177 -- in a user-defined storage pool (4). For the moment we just use
8178 -- Natural for the type of this formal. Note that this formal
8179 -- isn't usually needed in the case where the result subtype is
8180 -- constrained, but it is needed when the function has a tagged
8181 -- result, because generally such functions can be called in a
8182 -- dispatching context and such calls must be handled like calls
8183 -- to a class-wide function.
8184
8185 if Needs_BIP_Alloc_Form (E) then
8186 Discard :=
8187 Add_Extra_Formal
8188 (E, Standard_Natural,
8189 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8190
8191 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8192 -- use a user-defined pool. This formal is not added on
8193 -- ZFP as those targets do not support pools.
8194
8195 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8196 Discard :=
8197 Add_Extra_Formal
8198 (E, RTE (RE_Root_Storage_Pool_Ptr),
8199 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8200 end if;
8201 end if;
8202
8203 -- In the case of functions whose result type needs finalization,
8204 -- add an extra formal which represents the finalization master.
8205
8206 if Needs_BIP_Finalization_Master (E) then
8207 Discard :=
8208 Add_Extra_Formal
8209 (E, RTE (RE_Finalization_Master_Ptr),
8210 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8211 end if;
8212
8213 -- When the result type contains tasks, add two extra formals: the
8214 -- master of the tasks to be created, and the caller's activation
8215 -- chain.
8216
8217 if Has_Task (Full_Subt) then
8218 Discard :=
8219 Add_Extra_Formal
8220 (E, RTE (RE_Master_Id),
8221 E, BIP_Formal_Suffix (BIP_Task_Master));
8222 Discard :=
8223 Add_Extra_Formal
8224 (E, RTE (RE_Activation_Chain_Access),
8225 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8226 end if;
8227
8228 -- All build-in-place functions get an extra formal that will be
8229 -- passed the address of the return object within the caller.
8230
8231 Formal_Typ :=
8232 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8233
8234 -- Incomplete_View_From_Limited_With is needed here because
8235 -- gigi gets confused if the designated type is the full view
8236 -- coming from a limited-with'ed package. In the normal case,
8237 -- (no limited with) Incomplete_View_From_Limited_With
8238 -- returns Result_Subt.
8239
8240 Set_Directly_Designated_Type
8241 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8242 Set_Etype (Formal_Typ, Formal_Typ);
8243 Set_Depends_On_Private
8244 (Formal_Typ, Has_Private_Component (Formal_Typ));
8245 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8246 Set_Is_Access_Constant (Formal_Typ, False);
8247
8248 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8249 -- the designated type comes from the limited view (for back-end
8250 -- purposes).
8251
8252 Set_From_Limited_With
8253 (Formal_Typ, From_Limited_With (Result_Subt));
8254
8255 Layout_Type (Formal_Typ);
8256
8257 -- Force the definition of the Itype in case of internal function
8258 -- calls within the same or nested scope.
8259
8260 if Is_Subprogram_Or_Generic_Subprogram (E) then
8261 Subp_Decl := Parent (E);
8262
8263 -- The insertion point for an Itype reference should be after
8264 -- the unit declaration node of the subprogram. An exception
8265 -- to this are inherited operations from a parent type in which
8266 -- case the derived type acts as their parent.
8267
8268 if Nkind_In (Subp_Decl, N_Function_Specification,
8269 N_Procedure_Specification)
8270 then
8271 Subp_Decl := Parent (Subp_Decl);
8272 end if;
8273
8274 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8275 end if;
8276
8277 Discard :=
8278 Add_Extra_Formal
8279 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8280 end;
8281 end if;
8282
8283 -- If this is an instance of a generic, we need to have extra formals
8284 -- for the Alias.
8285
8286 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8287 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8288 end if;
8289 end Create_Extra_Formals;
8290
8291 -----------------------------
8292 -- Enter_Overloaded_Entity --
8293 -----------------------------
8294
8295 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8296 function Matches_Predefined_Op return Boolean;
8297 -- This returns an approximation of whether S matches a predefined
8298 -- operator, based on the operator symbol, and the parameter and result
8299 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8300
8301 ---------------------------
8302 -- Matches_Predefined_Op --
8303 ---------------------------
8304
8305 function Matches_Predefined_Op return Boolean is
8306 Formal_1 : constant Entity_Id := First_Formal (S);
8307 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8308 Op : constant Name_Id := Chars (S);
8309 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8310 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8311
8312 begin
8313 -- Binary operator
8314
8315 if Present (Formal_2) then
8316 declare
8317 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8318
8319 begin
8320 -- All but "&" and "**" have same-types parameters
8321
8322 case Op is
8323 when Name_Op_Concat
8324 | Name_Op_Expon
8325 =>
8326 null;
8327
8328 when others =>
8329 if Type_1 /= Type_2 then
8330 return False;
8331 end if;
8332 end case;
8333
8334 -- Check parameter and result types
8335
8336 case Op is
8337 when Name_Op_And
8338 | Name_Op_Or
8339 | Name_Op_Xor
8340 =>
8341 return
8342 Is_Boolean_Type (Result_Type)
8343 and then Result_Type = Type_1;
8344
8345 when Name_Op_Mod
8346 | Name_Op_Rem
8347 =>
8348 return
8349 Is_Integer_Type (Result_Type)
8350 and then Result_Type = Type_1;
8351
8352 when Name_Op_Add
8353 | Name_Op_Divide
8354 | Name_Op_Multiply
8355 | Name_Op_Subtract
8356 =>
8357 return
8358 Is_Numeric_Type (Result_Type)
8359 and then Result_Type = Type_1;
8360
8361 when Name_Op_Eq
8362 | Name_Op_Ne
8363 =>
8364 return
8365 Is_Boolean_Type (Result_Type)
8366 and then not Is_Limited_Type (Type_1);
8367
8368 when Name_Op_Ge
8369 | Name_Op_Gt
8370 | Name_Op_Le
8371 | Name_Op_Lt
8372 =>
8373 return
8374 Is_Boolean_Type (Result_Type)
8375 and then (Is_Array_Type (Type_1)
8376 or else Is_Scalar_Type (Type_1));
8377
8378 when Name_Op_Concat =>
8379 return Is_Array_Type (Result_Type);
8380
8381 when Name_Op_Expon =>
8382 return
8383 (Is_Integer_Type (Result_Type)
8384 or else Is_Floating_Point_Type (Result_Type))
8385 and then Result_Type = Type_1
8386 and then Type_2 = Standard_Integer;
8387
8388 when others =>
8389 raise Program_Error;
8390 end case;
8391 end;
8392
8393 -- Unary operator
8394
8395 else
8396 case Op is
8397 when Name_Op_Abs
8398 | Name_Op_Add
8399 | Name_Op_Subtract
8400 =>
8401 return
8402 Is_Numeric_Type (Result_Type)
8403 and then Result_Type = Type_1;
8404
8405 when Name_Op_Not =>
8406 return
8407 Is_Boolean_Type (Result_Type)
8408 and then Result_Type = Type_1;
8409
8410 when others =>
8411 raise Program_Error;
8412 end case;
8413 end if;
8414 end Matches_Predefined_Op;
8415
8416 -- Local variables
8417
8418 E : Entity_Id := Current_Entity_In_Scope (S);
8419 C_E : Entity_Id := Current_Entity (S);
8420
8421 -- Start of processing for Enter_Overloaded_Entity
8422
8423 begin
8424 if Present (E) then
8425 Set_Has_Homonym (E);
8426 Set_Has_Homonym (S);
8427 end if;
8428
8429 Set_Is_Immediately_Visible (S);
8430 Set_Scope (S, Current_Scope);
8431
8432 -- Chain new entity if front of homonym in current scope, so that
8433 -- homonyms are contiguous.
8434
8435 if Present (E) and then E /= C_E then
8436 while Homonym (C_E) /= E loop
8437 C_E := Homonym (C_E);
8438 end loop;
8439
8440 Set_Homonym (C_E, S);
8441
8442 else
8443 E := C_E;
8444 Set_Current_Entity (S);
8445 end if;
8446
8447 Set_Homonym (S, E);
8448
8449 if Is_Inherited_Operation (S) then
8450 Append_Inherited_Subprogram (S);
8451 else
8452 Append_Entity (S, Current_Scope);
8453 end if;
8454
8455 Set_Public_Status (S);
8456
8457 if Debug_Flag_E then
8458 Write_Str ("New overloaded entity chain: ");
8459 Write_Name (Chars (S));
8460
8461 E := S;
8462 while Present (E) loop
8463 Write_Str (" "); Write_Int (Int (E));
8464 E := Homonym (E);
8465 end loop;
8466
8467 Write_Eol;
8468 end if;
8469
8470 -- Generate warning for hiding
8471
8472 if Warn_On_Hiding
8473 and then Comes_From_Source (S)
8474 and then In_Extended_Main_Source_Unit (S)
8475 then
8476 E := S;
8477 loop
8478 E := Homonym (E);
8479 exit when No (E);
8480
8481 -- Warn unless genuine overloading. Do not emit warning on
8482 -- hiding predefined operators in Standard (these are either an
8483 -- (artifact of our implicit declarations, or simple noise) but
8484 -- keep warning on a operator defined on a local subtype, because
8485 -- of the real danger that different operators may be applied in
8486 -- various parts of the program.
8487
8488 -- Note that if E and S have the same scope, there is never any
8489 -- hiding. Either the two conflict, and the program is illegal,
8490 -- or S is overriding an implicit inherited subprogram.
8491
8492 if Scope (E) /= Scope (S)
8493 and then (not Is_Overloadable (E)
8494 or else Subtype_Conformant (E, S))
8495 and then (Is_Immediately_Visible (E)
8496 or else Is_Potentially_Use_Visible (S))
8497 then
8498 if Scope (E) = Standard_Standard then
8499 if Nkind (S) = N_Defining_Operator_Symbol
8500 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8501 Scope (S)
8502 and then Matches_Predefined_Op
8503 then
8504 Error_Msg_N
8505 ("declaration of & hides predefined operator?h?", S);
8506 end if;
8507
8508 -- E not immediately within Standard
8509
8510 else
8511 Error_Msg_Sloc := Sloc (E);
8512 Error_Msg_N ("declaration of & hides one #?h?", S);
8513 end if;
8514 end if;
8515 end loop;
8516 end if;
8517 end Enter_Overloaded_Entity;
8518
8519 -----------------------------
8520 -- Check_Untagged_Equality --
8521 -----------------------------
8522
8523 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8524 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8525 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8526 Obj_Decl : Node_Id;
8527
8528 begin
8529 -- This check applies only if we have a subprogram declaration with an
8530 -- untagged record type.
8531
8532 if Nkind (Decl) /= N_Subprogram_Declaration
8533 or else not Is_Record_Type (Typ)
8534 or else Is_Tagged_Type (Typ)
8535 then
8536 return;
8537 end if;
8538
8539 -- In Ada 2012 case, we will output errors or warnings depending on
8540 -- the setting of debug flag -gnatd.E.
8541
8542 if Ada_Version >= Ada_2012 then
8543 Error_Msg_Warn := Debug_Flag_Dot_EE;
8544
8545 -- In earlier versions of Ada, nothing to do unless we are warning on
8546 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8547
8548 else
8549 if not Warn_On_Ada_2012_Compatibility then
8550 return;
8551 end if;
8552 end if;
8553
8554 -- Cases where the type has already been frozen
8555
8556 if Is_Frozen (Typ) then
8557
8558 -- If the type is not declared in a package, or if we are in the body
8559 -- of the package or in some other scope, the new operation is not
8560 -- primitive, and therefore legal, though suspicious. Should we
8561 -- generate a warning in this case ???
8562
8563 if Ekind (Scope (Typ)) /= E_Package
8564 or else Scope (Typ) /= Current_Scope
8565 then
8566 return;
8567
8568 -- If the type is a generic actual (sub)type, the operation is not
8569 -- primitive either because the base type is declared elsewhere.
8570
8571 elsif Is_Generic_Actual_Type (Typ) then
8572 return;
8573
8574 -- Here we have a definite error of declaration after freezing
8575
8576 else
8577 if Ada_Version >= Ada_2012 then
8578 Error_Msg_NE
8579 ("equality operator must be declared before type & is "
8580 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8581
8582 -- In Ada 2012 mode with error turned to warning, output one
8583 -- more warning to warn that the equality operation may not
8584 -- compose. This is the consequence of ignoring the error.
8585
8586 if Error_Msg_Warn then
8587 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8588 end if;
8589
8590 else
8591 Error_Msg_NE
8592 ("equality operator must be declared before type& is "
8593 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8594 end if;
8595
8596 -- If we are in the package body, we could just move the
8597 -- declaration to the package spec, so add a message saying that.
8598
8599 if In_Package_Body (Scope (Typ)) then
8600 if Ada_Version >= Ada_2012 then
8601 Error_Msg_N
8602 ("\move declaration to package spec<<", Eq_Op);
8603 else
8604 Error_Msg_N
8605 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8606 end if;
8607
8608 -- Otherwise try to find the freezing point
8609
8610 else
8611 Obj_Decl := Next (Parent (Typ));
8612 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8613 if Nkind (Obj_Decl) = N_Object_Declaration
8614 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8615 then
8616 -- Freezing point, output warnings
8617
8618 if Ada_Version >= Ada_2012 then
8619 Error_Msg_NE
8620 ("type& is frozen by declaration??", Obj_Decl, Typ);
8621 Error_Msg_N
8622 ("\an equality operator cannot be declared after "
8623 & "this point??",
8624 Obj_Decl);
8625 else
8626 Error_Msg_NE
8627 ("type& is frozen by declaration (Ada 2012)?y?",
8628 Obj_Decl, Typ);
8629 Error_Msg_N
8630 ("\an equality operator cannot be declared after "
8631 & "this point (Ada 2012)?y?",
8632 Obj_Decl);
8633 end if;
8634
8635 exit;
8636 end if;
8637
8638 Next (Obj_Decl);
8639 end loop;
8640 end if;
8641 end if;
8642
8643 -- Here if type is not frozen yet. It is illegal to have a primitive
8644 -- equality declared in the private part if the type is visible.
8645
8646 elsif not In_Same_List (Parent (Typ), Decl)
8647 and then not Is_Limited_Type (Typ)
8648 then
8649 -- Shouldn't we give an RM reference here???
8650
8651 if Ada_Version >= Ada_2012 then
8652 Error_Msg_N
8653 ("equality operator appears too late<<", Eq_Op);
8654 else
8655 Error_Msg_N
8656 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8657 end if;
8658
8659 -- No error detected
8660
8661 else
8662 return;
8663 end if;
8664 end Check_Untagged_Equality;
8665
8666 -----------------------------
8667 -- Find_Corresponding_Spec --
8668 -----------------------------
8669
8670 function Find_Corresponding_Spec
8671 (N : Node_Id;
8672 Post_Error : Boolean := True) return Entity_Id
8673 is
8674 Spec : constant Node_Id := Specification (N);
8675 Designator : constant Entity_Id := Defining_Entity (Spec);
8676
8677 E : Entity_Id;
8678
8679 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8680 -- Even if fully conformant, a body may depend on a generic actual when
8681 -- the spec does not, or vice versa, in which case they were distinct
8682 -- entities in the generic.
8683
8684 -------------------------------
8685 -- Different_Generic_Profile --
8686 -------------------------------
8687
8688 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8689 F1, F2 : Entity_Id;
8690
8691 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8692 -- Check that the types of corresponding formals have the same
8693 -- generic actual if any. We have to account for subtypes of a
8694 -- generic formal, declared between a spec and a body, which may
8695 -- appear distinct in an instance but matched in the generic, and
8696 -- the subtype may be used either in the spec or the body of the
8697 -- subprogram being checked.
8698
8699 -------------------------
8700 -- Same_Generic_Actual --
8701 -------------------------
8702
8703 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8704
8705 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8706 -- Predicate to check whether S1 is a subtype of S2 in the source
8707 -- of the instance.
8708
8709 -------------------------
8710 -- Is_Declared_Subtype --
8711 -------------------------
8712
8713 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8714 begin
8715 return Comes_From_Source (Parent (S1))
8716 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8717 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8718 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8719 end Is_Declared_Subtype;
8720
8721 -- Start of processing for Same_Generic_Actual
8722
8723 begin
8724 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8725 or else Is_Declared_Subtype (T1, T2)
8726 or else Is_Declared_Subtype (T2, T1);
8727 end Same_Generic_Actual;
8728
8729 -- Start of processing for Different_Generic_Profile
8730
8731 begin
8732 if not In_Instance then
8733 return False;
8734
8735 elsif Ekind (E) = E_Function
8736 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8737 then
8738 return True;
8739 end if;
8740
8741 F1 := First_Formal (Designator);
8742 F2 := First_Formal (E);
8743 while Present (F1) loop
8744 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8745 return True;
8746 end if;
8747
8748 Next_Formal (F1);
8749 Next_Formal (F2);
8750 end loop;
8751
8752 return False;
8753 end Different_Generic_Profile;
8754
8755 -- Start of processing for Find_Corresponding_Spec
8756
8757 begin
8758 E := Current_Entity (Designator);
8759 while Present (E) loop
8760
8761 -- We are looking for a matching spec. It must have the same scope,
8762 -- and the same name, and either be type conformant, or be the case
8763 -- of a library procedure spec and its body (which belong to one
8764 -- another regardless of whether they are type conformant or not).
8765
8766 if Scope (E) = Current_Scope then
8767 if Current_Scope = Standard_Standard
8768 or else (Ekind (E) = Ekind (Designator)
8769 and then Type_Conformant (E, Designator))
8770 then
8771 -- Within an instantiation, we know that spec and body are
8772 -- subtype conformant, because they were subtype conformant in
8773 -- the generic. We choose the subtype-conformant entity here as
8774 -- well, to resolve spurious ambiguities in the instance that
8775 -- were not present in the generic (i.e. when two different
8776 -- types are given the same actual). If we are looking for a
8777 -- spec to match a body, full conformance is expected.
8778
8779 if In_Instance then
8780
8781 -- Inherit the convention and "ghostness" of the matching
8782 -- spec to ensure proper full and subtype conformance.
8783
8784 Set_Convention (Designator, Convention (E));
8785
8786 -- Skip past subprogram bodies and subprogram renamings that
8787 -- may appear to have a matching spec, but that aren't fully
8788 -- conformant with it. That can occur in cases where an
8789 -- actual type causes unrelated homographs in the instance.
8790
8791 if Nkind_In (N, N_Subprogram_Body,
8792 N_Subprogram_Renaming_Declaration)
8793 and then Present (Homonym (E))
8794 and then not Fully_Conformant (Designator, E)
8795 then
8796 goto Next_Entity;
8797
8798 elsif not Subtype_Conformant (Designator, E) then
8799 goto Next_Entity;
8800
8801 elsif Different_Generic_Profile (E) then
8802 goto Next_Entity;
8803 end if;
8804 end if;
8805
8806 -- Ada 2012 (AI05-0165): For internally generated bodies of
8807 -- null procedures locate the internally generated spec. We
8808 -- enforce mode conformance since a tagged type may inherit
8809 -- from interfaces several null primitives which differ only
8810 -- in the mode of the formals.
8811
8812 if not (Comes_From_Source (E))
8813 and then Is_Null_Procedure (E)
8814 and then not Mode_Conformant (Designator, E)
8815 then
8816 null;
8817
8818 -- For null procedures coming from source that are completions,
8819 -- analysis of the generated body will establish the link.
8820
8821 elsif Comes_From_Source (E)
8822 and then Nkind (Spec) = N_Procedure_Specification
8823 and then Null_Present (Spec)
8824 then
8825 return E;
8826
8827 -- Expression functions can be completions, but cannot be
8828 -- completed by an explicit body.
8829
8830 elsif Comes_From_Source (E)
8831 and then Comes_From_Source (N)
8832 and then Nkind (N) = N_Subprogram_Body
8833 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8834 N_Expression_Function
8835 then
8836 Error_Msg_Sloc := Sloc (E);
8837 Error_Msg_N ("body conflicts with expression function#", N);
8838 return Empty;
8839
8840 elsif not Has_Completion (E) then
8841 if Nkind (N) /= N_Subprogram_Body_Stub then
8842 Set_Corresponding_Spec (N, E);
8843 end if;
8844
8845 Set_Has_Completion (E);
8846 return E;
8847
8848 elsif Nkind (Parent (N)) = N_Subunit then
8849
8850 -- If this is the proper body of a subunit, the completion
8851 -- flag is set when analyzing the stub.
8852
8853 return E;
8854
8855 -- If E is an internal function with a controlling result that
8856 -- was created for an operation inherited by a null extension,
8857 -- it may be overridden by a body without a previous spec (one
8858 -- more reason why these should be shunned). In that case we
8859 -- remove the generated body if present, because the current
8860 -- one is the explicit overriding.
8861
8862 elsif Ekind (E) = E_Function
8863 and then Ada_Version >= Ada_2005
8864 and then not Comes_From_Source (E)
8865 and then Has_Controlling_Result (E)
8866 and then Is_Null_Extension (Etype (E))
8867 and then Comes_From_Source (Spec)
8868 then
8869 Set_Has_Completion (E, False);
8870
8871 if Expander_Active
8872 and then Nkind (Parent (E)) = N_Function_Specification
8873 then
8874 Remove
8875 (Unit_Declaration_Node
8876 (Corresponding_Body (Unit_Declaration_Node (E))));
8877
8878 return E;
8879
8880 -- If expansion is disabled, or if the wrapper function has
8881 -- not been generated yet, this a late body overriding an
8882 -- inherited operation, or it is an overriding by some other
8883 -- declaration before the controlling result is frozen. In
8884 -- either case this is a declaration of a new entity.
8885
8886 else
8887 return Empty;
8888 end if;
8889
8890 -- If the body already exists, then this is an error unless
8891 -- the previous declaration is the implicit declaration of a
8892 -- derived subprogram. It is also legal for an instance to
8893 -- contain type conformant overloadable declarations (but the
8894 -- generic declaration may not), per 8.3(26/2).
8895
8896 elsif No (Alias (E))
8897 and then not Is_Intrinsic_Subprogram (E)
8898 and then not In_Instance
8899 and then Post_Error
8900 then
8901 Error_Msg_Sloc := Sloc (E);
8902
8903 if Is_Imported (E) then
8904 Error_Msg_NE
8905 ("body not allowed for imported subprogram & declared#",
8906 N, E);
8907 else
8908 Error_Msg_NE ("duplicate body for & declared#", N, E);
8909 end if;
8910 end if;
8911
8912 -- Child units cannot be overloaded, so a conformance mismatch
8913 -- between body and a previous spec is an error.
8914
8915 elsif Is_Child_Unit (E)
8916 and then
8917 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8918 and then
8919 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8920 N_Compilation_Unit
8921 and then Post_Error
8922 then
8923 Error_Msg_N
8924 ("body of child unit does not match previous declaration", N);
8925 end if;
8926 end if;
8927
8928 <<Next_Entity>>
8929 E := Homonym (E);
8930 end loop;
8931
8932 -- On exit, we know that no previous declaration of subprogram exists
8933
8934 return Empty;
8935 end Find_Corresponding_Spec;
8936
8937 ----------------------
8938 -- Fully_Conformant --
8939 ----------------------
8940
8941 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8942 Result : Boolean;
8943 begin
8944 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8945 return Result;
8946 end Fully_Conformant;
8947
8948 ----------------------------------
8949 -- Fully_Conformant_Expressions --
8950 ----------------------------------
8951
8952 function Fully_Conformant_Expressions
8953 (Given_E1 : Node_Id;
8954 Given_E2 : Node_Id) return Boolean
8955 is
8956 E1 : constant Node_Id := Original_Node (Given_E1);
8957 E2 : constant Node_Id := Original_Node (Given_E2);
8958 -- We always test conformance on original nodes, since it is possible
8959 -- for analysis and/or expansion to make things look as though they
8960 -- conform when they do not, e.g. by converting 1+2 into 3.
8961
8962 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8963 renames Fully_Conformant_Expressions;
8964
8965 function FCL (L1, L2 : List_Id) return Boolean;
8966 -- Compare elements of two lists for conformance. Elements have to be
8967 -- conformant, and actuals inserted as default parameters do not match
8968 -- explicit actuals with the same value.
8969
8970 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8971 -- Compare an operator node with a function call
8972
8973 ---------
8974 -- FCL --
8975 ---------
8976
8977 function FCL (L1, L2 : List_Id) return Boolean is
8978 N1, N2 : Node_Id;
8979
8980 begin
8981 if L1 = No_List then
8982 N1 := Empty;
8983 else
8984 N1 := First (L1);
8985 end if;
8986
8987 if L2 = No_List then
8988 N2 := Empty;
8989 else
8990 N2 := First (L2);
8991 end if;
8992
8993 -- Compare two lists, skipping rewrite insertions (we want to compare
8994 -- the original trees, not the expanded versions).
8995
8996 loop
8997 if Is_Rewrite_Insertion (N1) then
8998 Next (N1);
8999 elsif Is_Rewrite_Insertion (N2) then
9000 Next (N2);
9001 elsif No (N1) then
9002 return No (N2);
9003 elsif No (N2) then
9004 return False;
9005 elsif not FCE (N1, N2) then
9006 return False;
9007 else
9008 Next (N1);
9009 Next (N2);
9010 end if;
9011 end loop;
9012 end FCL;
9013
9014 ---------
9015 -- FCO --
9016 ---------
9017
9018 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
9019 Actuals : constant List_Id := Parameter_Associations (Call_Node);
9020 Act : Node_Id;
9021
9022 begin
9023 if No (Actuals)
9024 or else Entity (Op_Node) /= Entity (Name (Call_Node))
9025 then
9026 return False;
9027
9028 else
9029 Act := First (Actuals);
9030
9031 if Nkind (Op_Node) in N_Binary_Op then
9032 if not FCE (Left_Opnd (Op_Node), Act) then
9033 return False;
9034 end if;
9035
9036 Next (Act);
9037 end if;
9038
9039 return Present (Act)
9040 and then FCE (Right_Opnd (Op_Node), Act)
9041 and then No (Next (Act));
9042 end if;
9043 end FCO;
9044
9045 -- Start of processing for Fully_Conformant_Expressions
9046
9047 begin
9048 -- Nonconformant if paren count does not match. Note: if some idiot
9049 -- complains that we don't do this right for more than 3 levels of
9050 -- parentheses, they will be treated with the respect they deserve.
9051
9052 if Paren_Count (E1) /= Paren_Count (E2) then
9053 return False;
9054
9055 -- If same entities are referenced, then they are conformant even if
9056 -- they have different forms (RM 8.3.1(19-20)).
9057
9058 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
9059 if Present (Entity (E1)) then
9060 return Entity (E1) = Entity (E2)
9061
9062 -- One may be a discriminant that has been replaced by the
9063 -- corresponding discriminal.
9064
9065 or else
9066 (Chars (Entity (E1)) = Chars (Entity (E2))
9067 and then Ekind (Entity (E1)) = E_Discriminant
9068 and then Ekind (Entity (E2)) = E_In_Parameter)
9069
9070 -- The discriminant of a protected type is transformed into
9071 -- a local constant and then into a parameter of a protected
9072 -- operation.
9073
9074 or else
9075 (Ekind (Entity (E1)) = E_Constant
9076 and then Ekind (Entity (E2)) = E_In_Parameter
9077 and then Present (Discriminal_Link (Entity (E1)))
9078 and then Discriminal_Link (Entity (E1)) =
9079 Discriminal_Link (Entity (E2)))
9080
9081 -- AI12-050: The loop variables of quantified expressions
9082 -- match if they have the same identifier, even though they
9083 -- are different entities.
9084
9085 or else
9086 (Chars (Entity (E1)) = Chars (Entity (E2))
9087 and then Ekind (Entity (E1)) = E_Loop_Parameter
9088 and then Ekind (Entity (E2)) = E_Loop_Parameter);
9089
9090 elsif Nkind (E1) = N_Expanded_Name
9091 and then Nkind (E2) = N_Expanded_Name
9092 and then Nkind (Selector_Name (E1)) = N_Character_Literal
9093 and then Nkind (Selector_Name (E2)) = N_Character_Literal
9094 then
9095 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9096
9097 else
9098 -- Identifiers in component associations don't always have
9099 -- entities, but their names must conform.
9100
9101 return Nkind (E1) = N_Identifier
9102 and then Nkind (E2) = N_Identifier
9103 and then Chars (E1) = Chars (E2);
9104 end if;
9105
9106 elsif Nkind (E1) = N_Character_Literal
9107 and then Nkind (E2) = N_Expanded_Name
9108 then
9109 return Nkind (Selector_Name (E2)) = N_Character_Literal
9110 and then Chars (E1) = Chars (Selector_Name (E2));
9111
9112 elsif Nkind (E2) = N_Character_Literal
9113 and then Nkind (E1) = N_Expanded_Name
9114 then
9115 return Nkind (Selector_Name (E1)) = N_Character_Literal
9116 and then Chars (E2) = Chars (Selector_Name (E1));
9117
9118 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9119 return FCO (E1, E2);
9120
9121 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9122 return FCO (E2, E1);
9123
9124 -- Otherwise we must have the same syntactic entity
9125
9126 elsif Nkind (E1) /= Nkind (E2) then
9127 return False;
9128
9129 -- At this point, we specialize by node type
9130
9131 else
9132 case Nkind (E1) is
9133 when N_Aggregate =>
9134 return
9135 FCL (Expressions (E1), Expressions (E2))
9136 and then
9137 FCL (Component_Associations (E1),
9138 Component_Associations (E2));
9139
9140 when N_Allocator =>
9141 if Nkind (Expression (E1)) = N_Qualified_Expression
9142 or else
9143 Nkind (Expression (E2)) = N_Qualified_Expression
9144 then
9145 return FCE (Expression (E1), Expression (E2));
9146
9147 -- Check that the subtype marks and any constraints
9148 -- are conformant
9149
9150 else
9151 declare
9152 Indic1 : constant Node_Id := Expression (E1);
9153 Indic2 : constant Node_Id := Expression (E2);
9154 Elt1 : Node_Id;
9155 Elt2 : Node_Id;
9156
9157 begin
9158 if Nkind (Indic1) /= N_Subtype_Indication then
9159 return
9160 Nkind (Indic2) /= N_Subtype_Indication
9161 and then Entity (Indic1) = Entity (Indic2);
9162
9163 elsif Nkind (Indic2) /= N_Subtype_Indication then
9164 return
9165 Nkind (Indic1) /= N_Subtype_Indication
9166 and then Entity (Indic1) = Entity (Indic2);
9167
9168 else
9169 if Entity (Subtype_Mark (Indic1)) /=
9170 Entity (Subtype_Mark (Indic2))
9171 then
9172 return False;
9173 end if;
9174
9175 Elt1 := First (Constraints (Constraint (Indic1)));
9176 Elt2 := First (Constraints (Constraint (Indic2)));
9177 while Present (Elt1) and then Present (Elt2) loop
9178 if not FCE (Elt1, Elt2) then
9179 return False;
9180 end if;
9181
9182 Next (Elt1);
9183 Next (Elt2);
9184 end loop;
9185
9186 return True;
9187 end if;
9188 end;
9189 end if;
9190
9191 when N_Attribute_Reference =>
9192 return
9193 Attribute_Name (E1) = Attribute_Name (E2)
9194 and then FCL (Expressions (E1), Expressions (E2));
9195
9196 when N_Binary_Op =>
9197 return
9198 Entity (E1) = Entity (E2)
9199 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9200 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9201
9202 when N_Membership_Test
9203 | N_Short_Circuit
9204 =>
9205 return
9206 FCE (Left_Opnd (E1), Left_Opnd (E2))
9207 and then
9208 FCE (Right_Opnd (E1), Right_Opnd (E2));
9209
9210 when N_Case_Expression =>
9211 declare
9212 Alt1 : Node_Id;
9213 Alt2 : Node_Id;
9214
9215 begin
9216 if not FCE (Expression (E1), Expression (E2)) then
9217 return False;
9218
9219 else
9220 Alt1 := First (Alternatives (E1));
9221 Alt2 := First (Alternatives (E2));
9222 loop
9223 if Present (Alt1) /= Present (Alt2) then
9224 return False;
9225 elsif No (Alt1) then
9226 return True;
9227 end if;
9228
9229 if not FCE (Expression (Alt1), Expression (Alt2))
9230 or else not FCL (Discrete_Choices (Alt1),
9231 Discrete_Choices (Alt2))
9232 then
9233 return False;
9234 end if;
9235
9236 Next (Alt1);
9237 Next (Alt2);
9238 end loop;
9239 end if;
9240 end;
9241
9242 when N_Character_Literal =>
9243 return
9244 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9245
9246 when N_Component_Association =>
9247 return
9248 FCL (Choices (E1), Choices (E2))
9249 and then
9250 FCE (Expression (E1), Expression (E2));
9251
9252 when N_Explicit_Dereference =>
9253 return
9254 FCE (Prefix (E1), Prefix (E2));
9255
9256 when N_Extension_Aggregate =>
9257 return
9258 FCL (Expressions (E1), Expressions (E2))
9259 and then Null_Record_Present (E1) =
9260 Null_Record_Present (E2)
9261 and then FCL (Component_Associations (E1),
9262 Component_Associations (E2));
9263
9264 when N_Function_Call =>
9265 return
9266 FCE (Name (E1), Name (E2))
9267 and then
9268 FCL (Parameter_Associations (E1),
9269 Parameter_Associations (E2));
9270
9271 when N_If_Expression =>
9272 return
9273 FCL (Expressions (E1), Expressions (E2));
9274
9275 when N_Indexed_Component =>
9276 return
9277 FCE (Prefix (E1), Prefix (E2))
9278 and then
9279 FCL (Expressions (E1), Expressions (E2));
9280
9281 when N_Integer_Literal =>
9282 return (Intval (E1) = Intval (E2));
9283
9284 when N_Null =>
9285 return True;
9286
9287 when N_Operator_Symbol =>
9288 return
9289 Chars (E1) = Chars (E2);
9290
9291 when N_Others_Choice =>
9292 return True;
9293
9294 when N_Parameter_Association =>
9295 return
9296 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9297 and then FCE (Explicit_Actual_Parameter (E1),
9298 Explicit_Actual_Parameter (E2));
9299
9300 when N_Qualified_Expression
9301 | N_Type_Conversion
9302 | N_Unchecked_Type_Conversion
9303 =>
9304 return
9305 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9306 and then
9307 FCE (Expression (E1), Expression (E2));
9308
9309 when N_Quantified_Expression =>
9310 if not FCE (Condition (E1), Condition (E2)) then
9311 return False;
9312 end if;
9313
9314 if Present (Loop_Parameter_Specification (E1))
9315 and then Present (Loop_Parameter_Specification (E2))
9316 then
9317 declare
9318 L1 : constant Node_Id :=
9319 Loop_Parameter_Specification (E1);
9320 L2 : constant Node_Id :=
9321 Loop_Parameter_Specification (E2);
9322
9323 begin
9324 return
9325 Reverse_Present (L1) = Reverse_Present (L2)
9326 and then
9327 FCE (Defining_Identifier (L1),
9328 Defining_Identifier (L2))
9329 and then
9330 FCE (Discrete_Subtype_Definition (L1),
9331 Discrete_Subtype_Definition (L2));
9332 end;
9333
9334 elsif Present (Iterator_Specification (E1))
9335 and then Present (Iterator_Specification (E2))
9336 then
9337 declare
9338 I1 : constant Node_Id := Iterator_Specification (E1);
9339 I2 : constant Node_Id := Iterator_Specification (E2);
9340
9341 begin
9342 return
9343 FCE (Defining_Identifier (I1),
9344 Defining_Identifier (I2))
9345 and then
9346 Of_Present (I1) = Of_Present (I2)
9347 and then
9348 Reverse_Present (I1) = Reverse_Present (I2)
9349 and then FCE (Name (I1), Name (I2))
9350 and then FCE (Subtype_Indication (I1),
9351 Subtype_Indication (I2));
9352 end;
9353
9354 -- The quantified expressions used different specifications to
9355 -- walk their respective ranges.
9356
9357 else
9358 return False;
9359 end if;
9360
9361 when N_Range =>
9362 return
9363 FCE (Low_Bound (E1), Low_Bound (E2))
9364 and then
9365 FCE (High_Bound (E1), High_Bound (E2));
9366
9367 when N_Real_Literal =>
9368 return (Realval (E1) = Realval (E2));
9369
9370 when N_Selected_Component =>
9371 return
9372 FCE (Prefix (E1), Prefix (E2))
9373 and then
9374 FCE (Selector_Name (E1), Selector_Name (E2));
9375
9376 when N_Slice =>
9377 return
9378 FCE (Prefix (E1), Prefix (E2))
9379 and then
9380 FCE (Discrete_Range (E1), Discrete_Range (E2));
9381
9382 when N_String_Literal =>
9383 declare
9384 S1 : constant String_Id := Strval (E1);
9385 S2 : constant String_Id := Strval (E2);
9386 L1 : constant Nat := String_Length (S1);
9387 L2 : constant Nat := String_Length (S2);
9388
9389 begin
9390 if L1 /= L2 then
9391 return False;
9392
9393 else
9394 for J in 1 .. L1 loop
9395 if Get_String_Char (S1, J) /=
9396 Get_String_Char (S2, J)
9397 then
9398 return False;
9399 end if;
9400 end loop;
9401
9402 return True;
9403 end if;
9404 end;
9405
9406 when N_Unary_Op =>
9407 return
9408 Entity (E1) = Entity (E2)
9409 and then
9410 FCE (Right_Opnd (E1), Right_Opnd (E2));
9411
9412 -- All other node types cannot appear in this context. Strictly
9413 -- we should raise a fatal internal error. Instead we just ignore
9414 -- the nodes. This means that if anyone makes a mistake in the
9415 -- expander and mucks an expression tree irretrievably, the result
9416 -- will be a failure to detect a (probably very obscure) case
9417 -- of non-conformance, which is better than bombing on some
9418 -- case where two expressions do in fact conform.
9419
9420 when others =>
9421 return True;
9422 end case;
9423 end if;
9424 end Fully_Conformant_Expressions;
9425
9426 ----------------------------------------
9427 -- Fully_Conformant_Discrete_Subtypes --
9428 ----------------------------------------
9429
9430 function Fully_Conformant_Discrete_Subtypes
9431 (Given_S1 : Node_Id;
9432 Given_S2 : Node_Id) return Boolean
9433 is
9434 S1 : constant Node_Id := Original_Node (Given_S1);
9435 S2 : constant Node_Id := Original_Node (Given_S2);
9436
9437 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9438 -- Special-case for a bound given by a discriminant, which in the body
9439 -- is replaced with the discriminal of the enclosing type.
9440
9441 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9442 -- Check both bounds
9443
9444 -----------------------
9445 -- Conforming_Bounds --
9446 -----------------------
9447
9448 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9449 begin
9450 if Is_Entity_Name (B1)
9451 and then Is_Entity_Name (B2)
9452 and then Ekind (Entity (B1)) = E_Discriminant
9453 then
9454 return Chars (B1) = Chars (B2);
9455
9456 else
9457 return Fully_Conformant_Expressions (B1, B2);
9458 end if;
9459 end Conforming_Bounds;
9460
9461 -----------------------
9462 -- Conforming_Ranges --
9463 -----------------------
9464
9465 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9466 begin
9467 return
9468 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9469 and then
9470 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9471 end Conforming_Ranges;
9472
9473 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9474
9475 begin
9476 if Nkind (S1) /= Nkind (S2) then
9477 return False;
9478
9479 elsif Is_Entity_Name (S1) then
9480 return Entity (S1) = Entity (S2);
9481
9482 elsif Nkind (S1) = N_Range then
9483 return Conforming_Ranges (S1, S2);
9484
9485 elsif Nkind (S1) = N_Subtype_Indication then
9486 return
9487 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9488 and then
9489 Conforming_Ranges
9490 (Range_Expression (Constraint (S1)),
9491 Range_Expression (Constraint (S2)));
9492 else
9493 return True;
9494 end if;
9495 end Fully_Conformant_Discrete_Subtypes;
9496
9497 --------------------
9498 -- Install_Entity --
9499 --------------------
9500
9501 procedure Install_Entity (E : Entity_Id) is
9502 Prev : constant Entity_Id := Current_Entity (E);
9503 begin
9504 Set_Is_Immediately_Visible (E);
9505 Set_Current_Entity (E);
9506 Set_Homonym (E, Prev);
9507 end Install_Entity;
9508
9509 ---------------------
9510 -- Install_Formals --
9511 ---------------------
9512
9513 procedure Install_Formals (Id : Entity_Id) is
9514 F : Entity_Id;
9515 begin
9516 F := First_Formal (Id);
9517 while Present (F) loop
9518 Install_Entity (F);
9519 Next_Formal (F);
9520 end loop;
9521 end Install_Formals;
9522
9523 -----------------------------
9524 -- Is_Interface_Conformant --
9525 -----------------------------
9526
9527 function Is_Interface_Conformant
9528 (Tagged_Type : Entity_Id;
9529 Iface_Prim : Entity_Id;
9530 Prim : Entity_Id) return Boolean
9531 is
9532 -- The operation may in fact be an inherited (implicit) operation
9533 -- rather than the original interface primitive, so retrieve the
9534 -- ultimate ancestor.
9535
9536 Iface : constant Entity_Id :=
9537 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9538 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9539
9540 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9541 -- Return the controlling formal of Prim
9542
9543 ------------------------
9544 -- Controlling_Formal --
9545 ------------------------
9546
9547 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9548 E : Entity_Id;
9549
9550 begin
9551 E := First_Entity (Prim);
9552 while Present (E) loop
9553 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9554 return E;
9555 end if;
9556
9557 Next_Entity (E);
9558 end loop;
9559
9560 return Empty;
9561 end Controlling_Formal;
9562
9563 -- Local variables
9564
9565 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9566 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9567
9568 -- Start of processing for Is_Interface_Conformant
9569
9570 begin
9571 pragma Assert (Is_Subprogram (Iface_Prim)
9572 and then Is_Subprogram (Prim)
9573 and then Is_Dispatching_Operation (Iface_Prim)
9574 and then Is_Dispatching_Operation (Prim));
9575
9576 pragma Assert (Is_Interface (Iface)
9577 or else (Present (Alias (Iface_Prim))
9578 and then
9579 Is_Interface
9580 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9581
9582 if Prim = Iface_Prim
9583 or else not Is_Subprogram (Prim)
9584 or else Ekind (Prim) /= Ekind (Iface_Prim)
9585 or else not Is_Dispatching_Operation (Prim)
9586 or else Scope (Prim) /= Scope (Tagged_Type)
9587 or else No (Typ)
9588 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9589 or else not Primitive_Names_Match (Iface_Prim, Prim)
9590 then
9591 return False;
9592
9593 -- The mode of the controlling formals must match
9594
9595 elsif Present (Iface_Ctrl_F)
9596 and then Present (Prim_Ctrl_F)
9597 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9598 then
9599 return False;
9600
9601 -- Case of a procedure, or a function whose result type matches the
9602 -- result type of the interface primitive, or a function that has no
9603 -- controlling result (I or access I).
9604
9605 elsif Ekind (Iface_Prim) = E_Procedure
9606 or else Etype (Prim) = Etype (Iface_Prim)
9607 or else not Has_Controlling_Result (Prim)
9608 then
9609 return Type_Conformant
9610 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9611
9612 -- Case of a function returning an interface, or an access to one. Check
9613 -- that the return types correspond.
9614
9615 elsif Implements_Interface (Typ, Iface) then
9616 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9617 /=
9618 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9619 then
9620 return False;
9621 else
9622 return
9623 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9624 Skip_Controlling_Formals => True);
9625 end if;
9626
9627 else
9628 return False;
9629 end if;
9630 end Is_Interface_Conformant;
9631
9632 ---------------------------------
9633 -- Is_Non_Overriding_Operation --
9634 ---------------------------------
9635
9636 function Is_Non_Overriding_Operation
9637 (Prev_E : Entity_Id;
9638 New_E : Entity_Id) return Boolean
9639 is
9640 Formal : Entity_Id;
9641 F_Typ : Entity_Id;
9642 G_Typ : Entity_Id := Empty;
9643
9644 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9645 -- If F_Type is a derived type associated with a generic actual subtype,
9646 -- then return its Generic_Parent_Type attribute, else return Empty.
9647
9648 function Types_Correspond
9649 (P_Type : Entity_Id;
9650 N_Type : Entity_Id) return Boolean;
9651 -- Returns true if and only if the types (or designated types in the
9652 -- case of anonymous access types) are the same or N_Type is derived
9653 -- directly or indirectly from P_Type.
9654
9655 -----------------------------
9656 -- Get_Generic_Parent_Type --
9657 -----------------------------
9658
9659 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9660 G_Typ : Entity_Id;
9661 Defn : Node_Id;
9662 Indic : Node_Id;
9663
9664 begin
9665 if Is_Derived_Type (F_Typ)
9666 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9667 then
9668 -- The tree must be traversed to determine the parent subtype in
9669 -- the generic unit, which unfortunately isn't always available
9670 -- via semantic attributes. ??? (Note: The use of Original_Node
9671 -- is needed for cases where a full derived type has been
9672 -- rewritten.)
9673
9674 -- If the parent type is a scalar type, the derivation creates
9675 -- an anonymous base type for it, and the source type is its
9676 -- first subtype.
9677
9678 if Is_Scalar_Type (F_Typ)
9679 and then not Comes_From_Source (F_Typ)
9680 then
9681 Defn :=
9682 Type_Definition
9683 (Original_Node (Parent (First_Subtype (F_Typ))));
9684 else
9685 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9686 end if;
9687 if Nkind (Defn) = N_Derived_Type_Definition then
9688 Indic := Subtype_Indication (Defn);
9689
9690 if Nkind (Indic) = N_Subtype_Indication then
9691 G_Typ := Entity (Subtype_Mark (Indic));
9692 else
9693 G_Typ := Entity (Indic);
9694 end if;
9695
9696 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9697 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9698 then
9699 return Generic_Parent_Type (Parent (G_Typ));
9700 end if;
9701 end if;
9702 end if;
9703
9704 return Empty;
9705 end Get_Generic_Parent_Type;
9706
9707 ----------------------
9708 -- Types_Correspond --
9709 ----------------------
9710
9711 function Types_Correspond
9712 (P_Type : Entity_Id;
9713 N_Type : Entity_Id) return Boolean
9714 is
9715 Prev_Type : Entity_Id := Base_Type (P_Type);
9716 New_Type : Entity_Id := Base_Type (N_Type);
9717
9718 begin
9719 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9720 Prev_Type := Designated_Type (Prev_Type);
9721 end if;
9722
9723 if Ekind (New_Type) = E_Anonymous_Access_Type then
9724 New_Type := Designated_Type (New_Type);
9725 end if;
9726
9727 if Prev_Type = New_Type then
9728 return True;
9729
9730 elsif not Is_Class_Wide_Type (New_Type) then
9731 while Etype (New_Type) /= New_Type loop
9732 New_Type := Etype (New_Type);
9733
9734 if New_Type = Prev_Type then
9735 return True;
9736 end if;
9737 end loop;
9738 end if;
9739 return False;
9740 end Types_Correspond;
9741
9742 -- Start of processing for Is_Non_Overriding_Operation
9743
9744 begin
9745 -- In the case where both operations are implicit derived subprograms
9746 -- then neither overrides the other. This can only occur in certain
9747 -- obscure cases (e.g., derivation from homographs created in a generic
9748 -- instantiation).
9749
9750 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9751 return True;
9752
9753 elsif Ekind (Current_Scope) = E_Package
9754 and then Is_Generic_Instance (Current_Scope)
9755 and then In_Private_Part (Current_Scope)
9756 and then Comes_From_Source (New_E)
9757 then
9758 -- We examine the formals and result type of the inherited operation,
9759 -- to determine whether their type is derived from (the instance of)
9760 -- a generic type. The first such formal or result type is the one
9761 -- tested.
9762
9763 Formal := First_Formal (Prev_E);
9764 F_Typ := Empty;
9765 while Present (Formal) loop
9766 F_Typ := Base_Type (Etype (Formal));
9767
9768 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9769 F_Typ := Designated_Type (F_Typ);
9770 end if;
9771
9772 G_Typ := Get_Generic_Parent_Type (F_Typ);
9773 exit when Present (G_Typ);
9774
9775 Next_Formal (Formal);
9776 end loop;
9777
9778 -- If the function dispatches on result check the result type
9779
9780 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9781 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9782 end if;
9783
9784 if No (G_Typ) then
9785 return False;
9786 end if;
9787
9788 -- If the generic type is a private type, then the original operation
9789 -- was not overriding in the generic, because there was no primitive
9790 -- operation to override.
9791
9792 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9793 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9794 N_Formal_Private_Type_Definition
9795 then
9796 return True;
9797
9798 -- The generic parent type is the ancestor of a formal derived
9799 -- type declaration. We need to check whether it has a primitive
9800 -- operation that should be overridden by New_E in the generic.
9801
9802 else
9803 declare
9804 P_Formal : Entity_Id;
9805 N_Formal : Entity_Id;
9806 P_Typ : Entity_Id;
9807 N_Typ : Entity_Id;
9808 P_Prim : Entity_Id;
9809 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9810
9811 begin
9812 while Present (Prim_Elt) loop
9813 P_Prim := Node (Prim_Elt);
9814
9815 if Chars (P_Prim) = Chars (New_E)
9816 and then Ekind (P_Prim) = Ekind (New_E)
9817 then
9818 P_Formal := First_Formal (P_Prim);
9819 N_Formal := First_Formal (New_E);
9820 while Present (P_Formal) and then Present (N_Formal) loop
9821 P_Typ := Etype (P_Formal);
9822 N_Typ := Etype (N_Formal);
9823
9824 if not Types_Correspond (P_Typ, N_Typ) then
9825 exit;
9826 end if;
9827
9828 Next_Entity (P_Formal);
9829 Next_Entity (N_Formal);
9830 end loop;
9831
9832 -- Found a matching primitive operation belonging to the
9833 -- formal ancestor type, so the new subprogram is
9834 -- overriding.
9835
9836 if No (P_Formal)
9837 and then No (N_Formal)
9838 and then (Ekind (New_E) /= E_Function
9839 or else
9840 Types_Correspond
9841 (Etype (P_Prim), Etype (New_E)))
9842 then
9843 return False;
9844 end if;
9845 end if;
9846
9847 Next_Elmt (Prim_Elt);
9848 end loop;
9849
9850 -- If no match found, then the new subprogram does not override
9851 -- in the generic (nor in the instance).
9852
9853 -- If the type in question is not abstract, and the subprogram
9854 -- is, this will be an error if the new operation is in the
9855 -- private part of the instance. Emit a warning now, which will
9856 -- make the subsequent error message easier to understand.
9857
9858 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9859 and then Is_Abstract_Subprogram (Prev_E)
9860 and then In_Private_Part (Current_Scope)
9861 then
9862 Error_Msg_Node_2 := F_Typ;
9863 Error_Msg_NE
9864 ("private operation& in generic unit does not override "
9865 & "any primitive operation of& (RM 12.3 (18))??",
9866 New_E, New_E);
9867 end if;
9868
9869 return True;
9870 end;
9871 end if;
9872 else
9873 return False;
9874 end if;
9875 end Is_Non_Overriding_Operation;
9876
9877 -------------------------------------
9878 -- List_Inherited_Pre_Post_Aspects --
9879 -------------------------------------
9880
9881 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9882 begin
9883 if Opt.List_Inherited_Aspects
9884 and then Is_Subprogram_Or_Generic_Subprogram (E)
9885 then
9886 declare
9887 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9888 Items : Node_Id;
9889 Prag : Node_Id;
9890
9891 begin
9892 for Index in Subps'Range loop
9893 Items := Contract (Subps (Index));
9894
9895 if Present (Items) then
9896 Prag := Pre_Post_Conditions (Items);
9897 while Present (Prag) loop
9898 Error_Msg_Sloc := Sloc (Prag);
9899
9900 if Class_Present (Prag)
9901 and then not Split_PPC (Prag)
9902 then
9903 if Pragma_Name (Prag) = Name_Precondition then
9904 Error_Msg_N
9905 ("info: & inherits `Pre''Class` aspect from "
9906 & "#?L?", E);
9907 else
9908 Error_Msg_N
9909 ("info: & inherits `Post''Class` aspect from "
9910 & "#?L?", E);
9911 end if;
9912 end if;
9913
9914 Prag := Next_Pragma (Prag);
9915 end loop;
9916 end if;
9917 end loop;
9918 end;
9919 end if;
9920 end List_Inherited_Pre_Post_Aspects;
9921
9922 ------------------------------
9923 -- Make_Inequality_Operator --
9924 ------------------------------
9925
9926 -- S is the defining identifier of an equality operator. We build a
9927 -- subprogram declaration with the right signature. This operation is
9928 -- intrinsic, because it is always expanded as the negation of the
9929 -- call to the equality function.
9930
9931 procedure Make_Inequality_Operator (S : Entity_Id) is
9932 Loc : constant Source_Ptr := Sloc (S);
9933 Decl : Node_Id;
9934 Formals : List_Id;
9935 Op_Name : Entity_Id;
9936
9937 FF : constant Entity_Id := First_Formal (S);
9938 NF : constant Entity_Id := Next_Formal (FF);
9939
9940 begin
9941 -- Check that equality was properly defined, ignore call if not
9942
9943 if No (NF) then
9944 return;
9945 end if;
9946
9947 declare
9948 A : constant Entity_Id :=
9949 Make_Defining_Identifier (Sloc (FF),
9950 Chars => Chars (FF));
9951
9952 B : constant Entity_Id :=
9953 Make_Defining_Identifier (Sloc (NF),
9954 Chars => Chars (NF));
9955
9956 begin
9957 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9958
9959 Formals := New_List (
9960 Make_Parameter_Specification (Loc,
9961 Defining_Identifier => A,
9962 Parameter_Type =>
9963 New_Occurrence_Of (Etype (First_Formal (S)),
9964 Sloc (Etype (First_Formal (S))))),
9965
9966 Make_Parameter_Specification (Loc,
9967 Defining_Identifier => B,
9968 Parameter_Type =>
9969 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9970 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9971
9972 Decl :=
9973 Make_Subprogram_Declaration (Loc,
9974 Specification =>
9975 Make_Function_Specification (Loc,
9976 Defining_Unit_Name => Op_Name,
9977 Parameter_Specifications => Formals,
9978 Result_Definition =>
9979 New_Occurrence_Of (Standard_Boolean, Loc)));
9980
9981 -- Insert inequality right after equality if it is explicit or after
9982 -- the derived type when implicit. These entities are created only
9983 -- for visibility purposes, and eventually replaced in the course
9984 -- of expansion, so they do not need to be attached to the tree and
9985 -- seen by the back-end. Keeping them internal also avoids spurious
9986 -- freezing problems. The declaration is inserted in the tree for
9987 -- analysis, and removed afterwards. If the equality operator comes
9988 -- from an explicit declaration, attach the inequality immediately
9989 -- after. Else the equality is inherited from a derived type
9990 -- declaration, so insert inequality after that declaration.
9991
9992 if No (Alias (S)) then
9993 Insert_After (Unit_Declaration_Node (S), Decl);
9994 elsif Is_List_Member (Parent (S)) then
9995 Insert_After (Parent (S), Decl);
9996 else
9997 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9998 end if;
9999
10000 Mark_Rewrite_Insertion (Decl);
10001 Set_Is_Intrinsic_Subprogram (Op_Name);
10002 Analyze (Decl);
10003 Remove (Decl);
10004 Set_Has_Completion (Op_Name);
10005 Set_Corresponding_Equality (Op_Name, S);
10006 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
10007 end;
10008 end Make_Inequality_Operator;
10009
10010 ----------------------
10011 -- May_Need_Actuals --
10012 ----------------------
10013
10014 procedure May_Need_Actuals (Fun : Entity_Id) is
10015 F : Entity_Id;
10016 B : Boolean;
10017
10018 begin
10019 F := First_Formal (Fun);
10020 B := True;
10021 while Present (F) loop
10022 if No (Default_Value (F)) then
10023 B := False;
10024 exit;
10025 end if;
10026
10027 Next_Formal (F);
10028 end loop;
10029
10030 Set_Needs_No_Actuals (Fun, B);
10031 end May_Need_Actuals;
10032
10033 ---------------------
10034 -- Mode_Conformant --
10035 ---------------------
10036
10037 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
10038 Result : Boolean;
10039 begin
10040 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
10041 return Result;
10042 end Mode_Conformant;
10043
10044 ---------------------------
10045 -- New_Overloaded_Entity --
10046 ---------------------------
10047
10048 procedure New_Overloaded_Entity
10049 (S : Entity_Id;
10050 Derived_Type : Entity_Id := Empty)
10051 is
10052 Overridden_Subp : Entity_Id := Empty;
10053 -- Set if the current scope has an operation that is type-conformant
10054 -- with S, and becomes hidden by S.
10055
10056 Is_Primitive_Subp : Boolean;
10057 -- Set to True if the new subprogram is primitive
10058
10059 E : Entity_Id;
10060 -- Entity that S overrides
10061
10062 Prev_Vis : Entity_Id := Empty;
10063 -- Predecessor of E in Homonym chain
10064
10065 procedure Check_For_Primitive_Subprogram
10066 (Is_Primitive : out Boolean;
10067 Is_Overriding : Boolean := False);
10068 -- If the subprogram being analyzed is a primitive operation of the type
10069 -- of a formal or result, set the Has_Primitive_Operations flag on the
10070 -- type, and set Is_Primitive to True (otherwise set to False). Set the
10071 -- corresponding flag on the entity itself for later use.
10072
10073 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
10074 -- True if a) E is a subprogram whose first formal is a concurrent type
10075 -- defined in the scope of E that has some entry or subprogram whose
10076 -- profile matches E, or b) E is an internally built dispatching
10077 -- subprogram of a protected type and there is a matching subprogram
10078 -- defined in the enclosing scope of the protected type, or c) E is
10079 -- an entry of a synchronized type and a matching procedure has been
10080 -- previously defined in the enclosing scope of the synchronized type.
10081
10082 function Is_Private_Declaration (E : Entity_Id) return Boolean;
10083 -- Check that E is declared in the private part of the current package,
10084 -- or in the package body, where it may hide a previous declaration.
10085 -- We can't use In_Private_Part by itself because this flag is also
10086 -- set when freezing entities, so we must examine the place of the
10087 -- declaration in the tree, and recognize wrapper packages as well.
10088
10089 function Is_Overriding_Alias
10090 (Old_E : Entity_Id;
10091 New_E : Entity_Id) return Boolean;
10092 -- Check whether new subprogram and old subprogram are both inherited
10093 -- from subprograms that have distinct dispatch table entries. This can
10094 -- occur with derivations from instances with accidental homonyms. The
10095 -- function is conservative given that the converse is only true within
10096 -- instances that contain accidental overloadings.
10097
10098 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10099 -- Report conflict between entities S and E
10100
10101 ------------------------------------
10102 -- Check_For_Primitive_Subprogram --
10103 ------------------------------------
10104
10105 procedure Check_For_Primitive_Subprogram
10106 (Is_Primitive : out Boolean;
10107 Is_Overriding : Boolean := False)
10108 is
10109 Formal : Entity_Id;
10110 F_Typ : Entity_Id;
10111 B_Typ : Entity_Id;
10112
10113 function Visible_Part_Type (T : Entity_Id) return Boolean;
10114 -- Returns true if T is declared in the visible part of the current
10115 -- package scope; otherwise returns false. Assumes that T is declared
10116 -- in a package.
10117
10118 procedure Check_Private_Overriding (T : Entity_Id);
10119 -- Checks that if a primitive abstract subprogram of a visible
10120 -- abstract type is declared in a private part, then it must override
10121 -- an abstract subprogram declared in the visible part. Also checks
10122 -- that if a primitive function with a controlling result is declared
10123 -- in a private part, then it must override a function declared in
10124 -- the visible part.
10125
10126 ------------------------------
10127 -- Check_Private_Overriding --
10128 ------------------------------
10129
10130 procedure Check_Private_Overriding (T : Entity_Id) is
10131 function Overrides_Private_Part_Op return Boolean;
10132 -- This detects the special case where the overriding subprogram
10133 -- is overriding a subprogram that was declared in the same
10134 -- private part. That case is illegal by 3.9.3(10).
10135
10136 function Overrides_Visible_Function
10137 (Partial_View : Entity_Id) return Boolean;
10138 -- True if S overrides a function in the visible part. The
10139 -- overridden function could be explicitly or implicitly declared.
10140
10141 -------------------------------
10142 -- Overrides_Private_Part_Op --
10143 -------------------------------
10144
10145 function Overrides_Private_Part_Op return Boolean is
10146 Over_Decl : constant Node_Id :=
10147 Unit_Declaration_Node (Overridden_Operation (S));
10148 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10149
10150 begin
10151 pragma Assert (Is_Overriding);
10152 pragma Assert
10153 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10154 pragma Assert
10155 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10156
10157 return In_Same_List (Over_Decl, Subp_Decl);
10158 end Overrides_Private_Part_Op;
10159
10160 --------------------------------
10161 -- Overrides_Visible_Function --
10162 --------------------------------
10163
10164 function Overrides_Visible_Function
10165 (Partial_View : Entity_Id) return Boolean
10166 is
10167 begin
10168 if not Is_Overriding or else not Has_Homonym (S) then
10169 return False;
10170 end if;
10171
10172 if not Present (Partial_View) then
10173 return True;
10174 end if;
10175
10176 -- Search through all the homonyms H of S in the current
10177 -- package spec, and return True if we find one that matches.
10178 -- Note that Parent (H) will be the declaration of the
10179 -- partial view of T for a match.
10180
10181 declare
10182 H : Entity_Id := S;
10183 begin
10184 loop
10185 H := Homonym (H);
10186 exit when not Present (H) or else Scope (H) /= Scope (S);
10187
10188 if Nkind_In
10189 (Parent (H),
10190 N_Private_Extension_Declaration,
10191 N_Private_Type_Declaration)
10192 and then Defining_Identifier (Parent (H)) = Partial_View
10193 then
10194 return True;
10195 end if;
10196 end loop;
10197 end;
10198
10199 return False;
10200 end Overrides_Visible_Function;
10201
10202 -- Start of processing for Check_Private_Overriding
10203
10204 begin
10205 if Is_Package_Or_Generic_Package (Current_Scope)
10206 and then In_Private_Part (Current_Scope)
10207 and then Visible_Part_Type (T)
10208 and then not In_Instance
10209 then
10210 if Is_Abstract_Type (T)
10211 and then Is_Abstract_Subprogram (S)
10212 and then (not Is_Overriding
10213 or else not Is_Abstract_Subprogram (E)
10214 or else Overrides_Private_Part_Op)
10215 then
10216 Error_Msg_N
10217 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10218 S);
10219
10220 elsif Ekind (S) = E_Function then
10221 declare
10222 Partial_View : constant Entity_Id :=
10223 Incomplete_Or_Partial_View (T);
10224
10225 begin
10226 if not Overrides_Visible_Function (Partial_View) then
10227
10228 -- Here, S is "function ... return T;" declared in
10229 -- the private part, not overriding some visible
10230 -- operation. That's illegal in the tagged case
10231 -- (but not if the private type is untagged).
10232
10233 if ((Present (Partial_View)
10234 and then Is_Tagged_Type (Partial_View))
10235 or else (not Present (Partial_View)
10236 and then Is_Tagged_Type (T)))
10237 and then T = Base_Type (Etype (S))
10238 then
10239 Error_Msg_N
10240 ("private function with tagged result must"
10241 & " override visible-part function", S);
10242 Error_Msg_N
10243 ("\move subprogram to the visible part"
10244 & " (RM 3.9.3(10))", S);
10245
10246 -- AI05-0073: extend this test to the case of a
10247 -- function with a controlling access result.
10248
10249 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10250 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10251 and then
10252 not Is_Class_Wide_Type
10253 (Designated_Type (Etype (S)))
10254 and then Ada_Version >= Ada_2012
10255 then
10256 Error_Msg_N
10257 ("private function with controlling access "
10258 & "result must override visible-part function",
10259 S);
10260 Error_Msg_N
10261 ("\move subprogram to the visible part"
10262 & " (RM 3.9.3(10))", S);
10263 end if;
10264 end if;
10265 end;
10266 end if;
10267 end if;
10268 end Check_Private_Overriding;
10269
10270 -----------------------
10271 -- Visible_Part_Type --
10272 -----------------------
10273
10274 function Visible_Part_Type (T : Entity_Id) return Boolean is
10275 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10276
10277 begin
10278 -- If the entity is a private type, then it must be declared in a
10279 -- visible part.
10280
10281 if Ekind (T) in Private_Kind then
10282 return True;
10283
10284 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10285 return True;
10286
10287 elsif Is_List_Member (Declaration_Node (T))
10288 and then List_Containing (Declaration_Node (T)) =
10289 Visible_Declarations (Specification (P))
10290 then
10291 return True;
10292
10293 else
10294 return False;
10295 end if;
10296 end Visible_Part_Type;
10297
10298 -- Start of processing for Check_For_Primitive_Subprogram
10299
10300 begin
10301 Is_Primitive := False;
10302
10303 if not Comes_From_Source (S) then
10304 null;
10305
10306 -- If subprogram is at library level, it is not primitive operation
10307
10308 elsif Current_Scope = Standard_Standard then
10309 null;
10310
10311 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10312 and then not In_Package_Body (Current_Scope))
10313 or else Is_Overriding
10314 then
10315 -- For function, check return type
10316
10317 if Ekind (S) = E_Function then
10318 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10319 F_Typ := Designated_Type (Etype (S));
10320 else
10321 F_Typ := Etype (S);
10322 end if;
10323
10324 B_Typ := Base_Type (F_Typ);
10325
10326 if Scope (B_Typ) = Current_Scope
10327 and then not Is_Class_Wide_Type (B_Typ)
10328 and then not Is_Generic_Type (B_Typ)
10329 then
10330 Is_Primitive := True;
10331 Set_Has_Primitive_Operations (B_Typ);
10332 Set_Is_Primitive (S);
10333 Check_Private_Overriding (B_Typ);
10334
10335 -- The Ghost policy in effect at the point of declaration
10336 -- or a tagged type and a primitive operation must match
10337 -- (SPARK RM 6.9(16)).
10338
10339 Check_Ghost_Primitive (S, B_Typ);
10340 end if;
10341 end if;
10342
10343 -- For all subprograms, check formals
10344
10345 Formal := First_Formal (S);
10346 while Present (Formal) loop
10347 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10348 F_Typ := Designated_Type (Etype (Formal));
10349 else
10350 F_Typ := Etype (Formal);
10351 end if;
10352
10353 B_Typ := Base_Type (F_Typ);
10354
10355 if Ekind (B_Typ) = E_Access_Subtype then
10356 B_Typ := Base_Type (B_Typ);
10357 end if;
10358
10359 if Scope (B_Typ) = Current_Scope
10360 and then not Is_Class_Wide_Type (B_Typ)
10361 and then not Is_Generic_Type (B_Typ)
10362 then
10363 Is_Primitive := True;
10364 Set_Is_Primitive (S);
10365 Set_Has_Primitive_Operations (B_Typ);
10366 Check_Private_Overriding (B_Typ);
10367
10368 -- The Ghost policy in effect at the point of declaration
10369 -- of a tagged type and a primitive operation must match
10370 -- (SPARK RM 6.9(16)).
10371
10372 Check_Ghost_Primitive (S, B_Typ);
10373 end if;
10374
10375 Next_Formal (Formal);
10376 end loop;
10377
10378 -- Special case: An equality function can be redefined for a type
10379 -- occurring in a declarative part, and won't otherwise be treated as
10380 -- a primitive because it doesn't occur in a package spec and doesn't
10381 -- override an inherited subprogram. It's important that we mark it
10382 -- primitive so it can be returned by Collect_Primitive_Operations
10383 -- and be used in composing the equality operation of later types
10384 -- that have a component of the type.
10385
10386 elsif Chars (S) = Name_Op_Eq
10387 and then Etype (S) = Standard_Boolean
10388 then
10389 B_Typ := Base_Type (Etype (First_Formal (S)));
10390
10391 if Scope (B_Typ) = Current_Scope
10392 and then
10393 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10394 and then not Is_Limited_Type (B_Typ)
10395 then
10396 Is_Primitive := True;
10397 Set_Is_Primitive (S);
10398 Set_Has_Primitive_Operations (B_Typ);
10399 Check_Private_Overriding (B_Typ);
10400
10401 -- The Ghost policy in effect at the point of declaration of a
10402 -- tagged type and a primitive operation must match
10403 -- (SPARK RM 6.9(16)).
10404
10405 Check_Ghost_Primitive (S, B_Typ);
10406 end if;
10407 end if;
10408 end Check_For_Primitive_Subprogram;
10409
10410 --------------------------------------
10411 -- Has_Matching_Entry_Or_Subprogram --
10412 --------------------------------------
10413
10414 function Has_Matching_Entry_Or_Subprogram
10415 (E : Entity_Id) return Boolean
10416 is
10417 function Check_Conforming_Parameters
10418 (E1_Param : Node_Id;
10419 E2_Param : Node_Id) return Boolean;
10420 -- Starting from the given parameters, check that all the parameters
10421 -- of two entries or subprograms are subtype conformant. Used to skip
10422 -- the check on the controlling argument.
10423
10424 function Matching_Entry_Or_Subprogram
10425 (Conc_Typ : Entity_Id;
10426 Subp : Entity_Id) return Entity_Id;
10427 -- Return the first entry or subprogram of the given concurrent type
10428 -- whose name matches the name of Subp and has a profile conformant
10429 -- with Subp; return Empty if not found.
10430
10431 function Matching_Dispatching_Subprogram
10432 (Conc_Typ : Entity_Id;
10433 Ent : Entity_Id) return Entity_Id;
10434 -- Return the first dispatching primitive of Conc_Type defined in the
10435 -- enclosing scope of Conc_Type (i.e. before the full definition of
10436 -- this concurrent type) whose name matches the entry Ent and has a
10437 -- profile conformant with the profile of the corresponding (not yet
10438 -- built) dispatching primitive of Ent; return Empty if not found.
10439
10440 function Matching_Original_Protected_Subprogram
10441 (Prot_Typ : Entity_Id;
10442 Subp : Entity_Id) return Entity_Id;
10443 -- Return the first subprogram defined in the enclosing scope of
10444 -- Prot_Typ (before the full definition of this protected type)
10445 -- whose name matches the original name of Subp and has a profile
10446 -- conformant with the profile of Subp; return Empty if not found.
10447
10448 ---------------------------------
10449 -- Check_Conforming_Parameters --
10450 ---------------------------------
10451
10452 function Check_Conforming_Parameters
10453 (E1_Param : Node_Id;
10454 E2_Param : Node_Id) return Boolean
10455 is
10456 Param_E1 : Node_Id := E1_Param;
10457 Param_E2 : Node_Id := E2_Param;
10458
10459 begin
10460 while Present (Param_E1) and then Present (Param_E2) loop
10461 if Ekind (Defining_Identifier (Param_E1)) /=
10462 Ekind (Defining_Identifier (Param_E2))
10463 or else not
10464 Conforming_Types
10465 (Find_Parameter_Type (Param_E1),
10466 Find_Parameter_Type (Param_E2),
10467 Subtype_Conformant)
10468 then
10469 return False;
10470 end if;
10471
10472 Next (Param_E1);
10473 Next (Param_E2);
10474 end loop;
10475
10476 -- The candidate is not valid if one of the two lists contains
10477 -- more parameters than the other
10478
10479 return No (Param_E1) and then No (Param_E2);
10480 end Check_Conforming_Parameters;
10481
10482 ----------------------------------
10483 -- Matching_Entry_Or_Subprogram --
10484 ----------------------------------
10485
10486 function Matching_Entry_Or_Subprogram
10487 (Conc_Typ : Entity_Id;
10488 Subp : Entity_Id) return Entity_Id
10489 is
10490 E : Entity_Id;
10491
10492 begin
10493 E := First_Entity (Conc_Typ);
10494 while Present (E) loop
10495 if Chars (Subp) = Chars (E)
10496 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10497 and then
10498 Check_Conforming_Parameters
10499 (First (Parameter_Specifications (Parent (E))),
10500 Next (First (Parameter_Specifications (Parent (Subp)))))
10501 then
10502 return E;
10503 end if;
10504
10505 Next_Entity (E);
10506 end loop;
10507
10508 return Empty;
10509 end Matching_Entry_Or_Subprogram;
10510
10511 -------------------------------------
10512 -- Matching_Dispatching_Subprogram --
10513 -------------------------------------
10514
10515 function Matching_Dispatching_Subprogram
10516 (Conc_Typ : Entity_Id;
10517 Ent : Entity_Id) return Entity_Id
10518 is
10519 E : Entity_Id;
10520
10521 begin
10522 -- Search for entities in the enclosing scope of this synchonized
10523 -- type.
10524
10525 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10526 Push_Scope (Scope (Conc_Typ));
10527 E := Current_Entity_In_Scope (Ent);
10528 Pop_Scope;
10529
10530 while Present (E) loop
10531 if Scope (E) = Scope (Conc_Typ)
10532 and then Comes_From_Source (E)
10533 and then Ekind (E) = E_Procedure
10534 and then Present (First_Entity (E))
10535 and then Is_Controlling_Formal (First_Entity (E))
10536 and then Etype (First_Entity (E)) = Conc_Typ
10537 and then
10538 Check_Conforming_Parameters
10539 (First (Parameter_Specifications (Parent (Ent))),
10540 Next (First (Parameter_Specifications (Parent (E)))))
10541 then
10542 return E;
10543 end if;
10544
10545 E := Homonym (E);
10546 end loop;
10547
10548 return Empty;
10549 end Matching_Dispatching_Subprogram;
10550
10551 --------------------------------------------
10552 -- Matching_Original_Protected_Subprogram --
10553 --------------------------------------------
10554
10555 function Matching_Original_Protected_Subprogram
10556 (Prot_Typ : Entity_Id;
10557 Subp : Entity_Id) return Entity_Id
10558 is
10559 ICF : constant Boolean :=
10560 Is_Controlling_Formal (First_Entity (Subp));
10561 E : Entity_Id;
10562
10563 begin
10564 -- Temporarily decorate the first parameter of Subp as controlling
10565 -- formal, required to invoke Subtype_Conformant.
10566
10567 Set_Is_Controlling_Formal (First_Entity (Subp));
10568
10569 E :=
10570 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10571
10572 while Present (E) loop
10573 if Scope (E) = Scope (Prot_Typ)
10574 and then Comes_From_Source (E)
10575 and then Ekind (Subp) = Ekind (E)
10576 and then Present (First_Entity (E))
10577 and then Is_Controlling_Formal (First_Entity (E))
10578 and then Etype (First_Entity (E)) = Prot_Typ
10579 and then Subtype_Conformant (Subp, E,
10580 Skip_Controlling_Formals => True)
10581 then
10582 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10583 return E;
10584 end if;
10585
10586 E := Homonym (E);
10587 end loop;
10588
10589 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10590
10591 return Empty;
10592 end Matching_Original_Protected_Subprogram;
10593
10594 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10595
10596 begin
10597 -- Case 1: E is a subprogram whose first formal is a concurrent type
10598 -- defined in the scope of E that has an entry or subprogram whose
10599 -- profile matches E.
10600
10601 if Comes_From_Source (E)
10602 and then Is_Subprogram (E)
10603 and then Present (First_Entity (E))
10604 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10605 then
10606 if Scope (E) =
10607 Scope (Corresponding_Concurrent_Type
10608 (Etype (First_Entity (E))))
10609 and then
10610 Present
10611 (Matching_Entry_Or_Subprogram
10612 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10613 Subp => E))
10614 then
10615 Report_Conflict (E,
10616 Matching_Entry_Or_Subprogram
10617 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10618 Subp => E));
10619 return True;
10620 end if;
10621
10622 -- Case 2: E is an internally built dispatching subprogram of a
10623 -- protected type and there is a subprogram defined in the enclosing
10624 -- scope of the protected type that has the original name of E and
10625 -- its profile is conformant with the profile of E. We check the
10626 -- name of the original protected subprogram associated with E since
10627 -- the expander builds dispatching primitives of protected functions
10628 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10629
10630 elsif not Comes_From_Source (E)
10631 and then Is_Subprogram (E)
10632 and then Present (First_Entity (E))
10633 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10634 and then Present (Original_Protected_Subprogram (E))
10635 and then
10636 Present
10637 (Matching_Original_Protected_Subprogram
10638 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10639 Subp => E))
10640 then
10641 Report_Conflict (E,
10642 Matching_Original_Protected_Subprogram
10643 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10644 Subp => E));
10645 return True;
10646
10647 -- Case 3: E is an entry of a synchronized type and a matching
10648 -- procedure has been previously defined in the enclosing scope
10649 -- of the synchronized type.
10650
10651 elsif Comes_From_Source (E)
10652 and then Ekind (E) = E_Entry
10653 and then
10654 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10655 then
10656 Report_Conflict (E,
10657 Matching_Dispatching_Subprogram (Current_Scope, E));
10658 return True;
10659 end if;
10660
10661 return False;
10662 end Has_Matching_Entry_Or_Subprogram;
10663
10664 ----------------------------
10665 -- Is_Private_Declaration --
10666 ----------------------------
10667
10668 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10669 Decl : constant Node_Id := Unit_Declaration_Node (E);
10670 Priv_Decls : List_Id;
10671
10672 begin
10673 if Is_Package_Or_Generic_Package (Current_Scope)
10674 and then In_Private_Part (Current_Scope)
10675 then
10676 Priv_Decls :=
10677 Private_Declarations (Package_Specification (Current_Scope));
10678
10679 return In_Package_Body (Current_Scope)
10680 or else
10681 (Is_List_Member (Decl)
10682 and then List_Containing (Decl) = Priv_Decls)
10683 or else (Nkind (Parent (Decl)) = N_Package_Specification
10684 and then not
10685 Is_Compilation_Unit
10686 (Defining_Entity (Parent (Decl)))
10687 and then List_Containing (Parent (Parent (Decl))) =
10688 Priv_Decls);
10689 else
10690 return False;
10691 end if;
10692 end Is_Private_Declaration;
10693
10694 --------------------------
10695 -- Is_Overriding_Alias --
10696 --------------------------
10697
10698 function Is_Overriding_Alias
10699 (Old_E : Entity_Id;
10700 New_E : Entity_Id) return Boolean
10701 is
10702 AO : constant Entity_Id := Alias (Old_E);
10703 AN : constant Entity_Id := Alias (New_E);
10704
10705 begin
10706 return Scope (AO) /= Scope (AN)
10707 or else No (DTC_Entity (AO))
10708 or else No (DTC_Entity (AN))
10709 or else DT_Position (AO) = DT_Position (AN);
10710 end Is_Overriding_Alias;
10711
10712 ---------------------
10713 -- Report_Conflict --
10714 ---------------------
10715
10716 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10717 begin
10718 Error_Msg_Sloc := Sloc (E);
10719
10720 -- Generate message, with useful additional warning if in generic
10721
10722 if Is_Generic_Unit (E) then
10723 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10724 Error_Msg_N ("\& conflicts with declaration#", S);
10725 else
10726 Error_Msg_N ("& conflicts with declaration#", S);
10727 end if;
10728 end Report_Conflict;
10729
10730 -- Start of processing for New_Overloaded_Entity
10731
10732 begin
10733 -- We need to look for an entity that S may override. This must be a
10734 -- homonym in the current scope, so we look for the first homonym of
10735 -- S in the current scope as the starting point for the search.
10736
10737 E := Current_Entity_In_Scope (S);
10738
10739 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10740 -- They are directly added to the list of primitive operations of
10741 -- Derived_Type, unless this is a rederivation in the private part
10742 -- of an operation that was already derived in the visible part of
10743 -- the current package.
10744
10745 if Ada_Version >= Ada_2005
10746 and then Present (Derived_Type)
10747 and then Present (Alias (S))
10748 and then Is_Dispatching_Operation (Alias (S))
10749 and then Present (Find_Dispatching_Type (Alias (S)))
10750 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10751 then
10752 -- For private types, when the full-view is processed we propagate to
10753 -- the full view the non-overridden entities whose attribute "alias"
10754 -- references an interface primitive. These entities were added by
10755 -- Derive_Subprograms to ensure that interface primitives are
10756 -- covered.
10757
10758 -- Inside_Freeze_Actions is non zero when S corresponds with an
10759 -- internal entity that links an interface primitive with its
10760 -- covering primitive through attribute Interface_Alias (see
10761 -- Add_Internal_Interface_Entities).
10762
10763 if Inside_Freezing_Actions = 0
10764 and then Is_Package_Or_Generic_Package (Current_Scope)
10765 and then In_Private_Part (Current_Scope)
10766 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10767 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10768 and then Full_View (Defining_Identifier (Parent (E)))
10769 = Defining_Identifier (Parent (S))
10770 and then Alias (E) = Alias (S)
10771 then
10772 Check_Operation_From_Private_View (S, E);
10773 Set_Is_Dispatching_Operation (S);
10774
10775 -- Common case
10776
10777 else
10778 Enter_Overloaded_Entity (S);
10779 Check_Dispatching_Operation (S, Empty);
10780 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10781 end if;
10782
10783 return;
10784 end if;
10785
10786 -- For synchronized types check conflicts of this entity with previously
10787 -- defined entities.
10788
10789 if Ada_Version >= Ada_2005
10790 and then Has_Matching_Entry_Or_Subprogram (S)
10791 then
10792 return;
10793 end if;
10794
10795 -- If there is no homonym then this is definitely not overriding
10796
10797 if No (E) then
10798 Enter_Overloaded_Entity (S);
10799 Check_Dispatching_Operation (S, Empty);
10800 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10801
10802 -- If subprogram has an explicit declaration, check whether it has an
10803 -- overriding indicator.
10804
10805 if Comes_From_Source (S) then
10806 Check_Synchronized_Overriding (S, Overridden_Subp);
10807
10808 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10809 -- it may have overridden some hidden inherited primitive. Update
10810 -- Overridden_Subp to avoid spurious errors when checking the
10811 -- overriding indicator.
10812
10813 if Ada_Version >= Ada_2012
10814 and then No (Overridden_Subp)
10815 and then Is_Dispatching_Operation (S)
10816 and then Present (Overridden_Operation (S))
10817 then
10818 Overridden_Subp := Overridden_Operation (S);
10819 end if;
10820
10821 Check_Overriding_Indicator
10822 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10823
10824 -- The Ghost policy in effect at the point of declaration of a
10825 -- parent subprogram and an overriding subprogram must match
10826 -- (SPARK RM 6.9(17)).
10827
10828 Check_Ghost_Overriding (S, Overridden_Subp);
10829 end if;
10830
10831 -- If there is a homonym that is not overloadable, then we have an
10832 -- error, except for the special cases checked explicitly below.
10833
10834 elsif not Is_Overloadable (E) then
10835
10836 -- Check for spurious conflict produced by a subprogram that has the
10837 -- same name as that of the enclosing generic package. The conflict
10838 -- occurs within an instance, between the subprogram and the renaming
10839 -- declaration for the package. After the subprogram, the package
10840 -- renaming declaration becomes hidden.
10841
10842 if Ekind (E) = E_Package
10843 and then Present (Renamed_Object (E))
10844 and then Renamed_Object (E) = Current_Scope
10845 and then Nkind (Parent (Renamed_Object (E))) =
10846 N_Package_Specification
10847 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10848 then
10849 Set_Is_Hidden (E);
10850 Set_Is_Immediately_Visible (E, False);
10851 Enter_Overloaded_Entity (S);
10852 Set_Homonym (S, Homonym (E));
10853 Check_Dispatching_Operation (S, Empty);
10854 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10855
10856 -- If the subprogram is implicit it is hidden by the previous
10857 -- declaration. However if it is dispatching, it must appear in the
10858 -- dispatch table anyway, because it can be dispatched to even if it
10859 -- cannot be called directly.
10860
10861 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10862 Set_Scope (S, Current_Scope);
10863
10864 if Is_Dispatching_Operation (Alias (S)) then
10865 Check_Dispatching_Operation (S, Empty);
10866 end if;
10867
10868 return;
10869
10870 else
10871 Report_Conflict (S, E);
10872 return;
10873 end if;
10874
10875 -- E exists and is overloadable
10876
10877 else
10878 Check_Synchronized_Overriding (S, Overridden_Subp);
10879
10880 -- Loop through E and its homonyms to determine if any of them is
10881 -- the candidate for overriding by S.
10882
10883 while Present (E) loop
10884
10885 -- Definitely not interesting if not in the current scope
10886
10887 if Scope (E) /= Current_Scope then
10888 null;
10889
10890 -- A function can overload the name of an abstract state. The
10891 -- state can be viewed as a function with a profile that cannot
10892 -- be matched by anything.
10893
10894 elsif Ekind (S) = E_Function
10895 and then Ekind (E) = E_Abstract_State
10896 then
10897 Enter_Overloaded_Entity (S);
10898 return;
10899
10900 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10901 -- procedures locate the internally generated spec. We enforce
10902 -- mode conformance since a tagged type may inherit from
10903 -- interfaces several null primitives which differ only in
10904 -- the mode of the formals.
10905
10906 elsif not Comes_From_Source (S)
10907 and then Is_Null_Procedure (S)
10908 and then not Mode_Conformant (E, S)
10909 then
10910 null;
10911
10912 -- Check if we have type conformance
10913
10914 elsif Type_Conformant (E, S) then
10915
10916 -- If the old and new entities have the same profile and one
10917 -- is not the body of the other, then this is an error, unless
10918 -- one of them is implicitly declared.
10919
10920 -- There are some cases when both can be implicit, for example
10921 -- when both a literal and a function that overrides it are
10922 -- inherited in a derivation, or when an inherited operation
10923 -- of a tagged full type overrides the inherited operation of
10924 -- a private extension. Ada 83 had a special rule for the
10925 -- literal case. In Ada 95, the later implicit operation hides
10926 -- the former, and the literal is always the former. In the
10927 -- odd case where both are derived operations declared at the
10928 -- same point, both operations should be declared, and in that
10929 -- case we bypass the following test and proceed to the next
10930 -- part. This can only occur for certain obscure cases in
10931 -- instances, when an operation on a type derived from a formal
10932 -- private type does not override a homograph inherited from
10933 -- the actual. In subsequent derivations of such a type, the
10934 -- DT positions of these operations remain distinct, if they
10935 -- have been set.
10936
10937 if Present (Alias (S))
10938 and then (No (Alias (E))
10939 or else Comes_From_Source (E)
10940 or else Is_Abstract_Subprogram (S)
10941 or else
10942 (Is_Dispatching_Operation (E)
10943 and then Is_Overriding_Alias (E, S)))
10944 and then Ekind (E) /= E_Enumeration_Literal
10945 then
10946 -- When an derived operation is overloaded it may be due to
10947 -- the fact that the full view of a private extension
10948 -- re-inherits. It has to be dealt with.
10949
10950 if Is_Package_Or_Generic_Package (Current_Scope)
10951 and then In_Private_Part (Current_Scope)
10952 then
10953 Check_Operation_From_Private_View (S, E);
10954 end if;
10955
10956 -- In any case the implicit operation remains hidden by the
10957 -- existing declaration, which is overriding. Indicate that
10958 -- E overrides the operation from which S is inherited.
10959
10960 if Present (Alias (S)) then
10961 Set_Overridden_Operation (E, Alias (S));
10962 Inherit_Subprogram_Contract (E, Alias (S));
10963
10964 else
10965 Set_Overridden_Operation (E, S);
10966 Inherit_Subprogram_Contract (E, S);
10967 end if;
10968
10969 if Comes_From_Source (E) then
10970 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10971
10972 -- The Ghost policy in effect at the point of declaration
10973 -- of a parent subprogram and an overriding subprogram
10974 -- must match (SPARK RM 6.9(17)).
10975
10976 Check_Ghost_Overriding (E, S);
10977 end if;
10978
10979 return;
10980
10981 -- Within an instance, the renaming declarations for actual
10982 -- subprograms may become ambiguous, but they do not hide each
10983 -- other.
10984
10985 elsif Ekind (E) /= E_Entry
10986 and then not Comes_From_Source (E)
10987 and then not Is_Generic_Instance (E)
10988 and then (Present (Alias (E))
10989 or else Is_Intrinsic_Subprogram (E))
10990 and then (not In_Instance
10991 or else No (Parent (E))
10992 or else Nkind (Unit_Declaration_Node (E)) /=
10993 N_Subprogram_Renaming_Declaration)
10994 then
10995 -- A subprogram child unit is not allowed to override an
10996 -- inherited subprogram (10.1.1(20)).
10997
10998 if Is_Child_Unit (S) then
10999 Error_Msg_N
11000 ("child unit overrides inherited subprogram in parent",
11001 S);
11002 return;
11003 end if;
11004
11005 if Is_Non_Overriding_Operation (E, S) then
11006 Enter_Overloaded_Entity (S);
11007
11008 if No (Derived_Type)
11009 or else Is_Tagged_Type (Derived_Type)
11010 then
11011 Check_Dispatching_Operation (S, Empty);
11012 end if;
11013
11014 return;
11015 end if;
11016
11017 -- E is a derived operation or an internal operator which
11018 -- is being overridden. Remove E from further visibility.
11019 -- Furthermore, if E is a dispatching operation, it must be
11020 -- replaced in the list of primitive operations of its type
11021 -- (see Override_Dispatching_Operation).
11022
11023 Overridden_Subp := E;
11024
11025 declare
11026 Prev : Entity_Id;
11027
11028 begin
11029 Prev := First_Entity (Current_Scope);
11030 while Present (Prev) and then Next_Entity (Prev) /= E loop
11031 Next_Entity (Prev);
11032 end loop;
11033
11034 -- It is possible for E to be in the current scope and
11035 -- yet not in the entity chain. This can only occur in a
11036 -- generic context where E is an implicit concatenation
11037 -- in the formal part, because in a generic body the
11038 -- entity chain starts with the formals.
11039
11040 -- In GNATprove mode, a wrapper for an operation with
11041 -- axiomatization may be a homonym of another declaration
11042 -- for an actual subprogram (needs refinement ???).
11043
11044 if No (Prev) then
11045 if In_Instance
11046 and then GNATprove_Mode
11047 and then
11048 Nkind (Original_Node (Unit_Declaration_Node (S))) =
11049 N_Subprogram_Renaming_Declaration
11050 then
11051 return;
11052 else
11053 pragma Assert (Chars (E) = Name_Op_Concat);
11054 null;
11055 end if;
11056 end if;
11057
11058 -- E must be removed both from the entity_list of the
11059 -- current scope, and from the visibility chain.
11060
11061 if Debug_Flag_E then
11062 Write_Str ("Override implicit operation ");
11063 Write_Int (Int (E));
11064 Write_Eol;
11065 end if;
11066
11067 -- If E is a predefined concatenation, it stands for four
11068 -- different operations. As a result, a single explicit
11069 -- declaration does not hide it. In a possible ambiguous
11070 -- situation, Disambiguate chooses the user-defined op,
11071 -- so it is correct to retain the previous internal one.
11072
11073 if Chars (E) /= Name_Op_Concat
11074 or else Ekind (E) /= E_Operator
11075 then
11076 -- For nondispatching derived operations that are
11077 -- overridden by a subprogram declared in the private
11078 -- part of a package, we retain the derived subprogram
11079 -- but mark it as not immediately visible. If the
11080 -- derived operation was declared in the visible part
11081 -- then this ensures that it will still be visible
11082 -- outside the package with the proper signature
11083 -- (calls from outside must also be directed to this
11084 -- version rather than the overriding one, unlike the
11085 -- dispatching case). Calls from inside the package
11086 -- will still resolve to the overriding subprogram
11087 -- since the derived one is marked as not visible
11088 -- within the package.
11089
11090 -- If the private operation is dispatching, we achieve
11091 -- the overriding by keeping the implicit operation
11092 -- but setting its alias to be the overriding one. In
11093 -- this fashion the proper body is executed in all
11094 -- cases, but the original signature is used outside
11095 -- of the package.
11096
11097 -- If the overriding is not in the private part, we
11098 -- remove the implicit operation altogether.
11099
11100 if Is_Private_Declaration (S) then
11101 if not Is_Dispatching_Operation (E) then
11102 Set_Is_Immediately_Visible (E, False);
11103 else
11104 -- Work done in Override_Dispatching_Operation,
11105 -- so nothing else needs to be done here.
11106
11107 null;
11108 end if;
11109
11110 else
11111 -- Find predecessor of E in Homonym chain
11112
11113 if E = Current_Entity (E) then
11114 Prev_Vis := Empty;
11115 else
11116 Prev_Vis := Current_Entity (E);
11117 while Homonym (Prev_Vis) /= E loop
11118 Prev_Vis := Homonym (Prev_Vis);
11119 end loop;
11120 end if;
11121
11122 if Prev_Vis /= Empty then
11123
11124 -- Skip E in the visibility chain
11125
11126 Set_Homonym (Prev_Vis, Homonym (E));
11127
11128 else
11129 Set_Name_Entity_Id (Chars (E), Homonym (E));
11130 end if;
11131
11132 Set_Next_Entity (Prev, Next_Entity (E));
11133
11134 if No (Next_Entity (Prev)) then
11135 Set_Last_Entity (Current_Scope, Prev);
11136 end if;
11137 end if;
11138 end if;
11139
11140 Enter_Overloaded_Entity (S);
11141
11142 -- For entities generated by Derive_Subprograms the
11143 -- overridden operation is the inherited primitive
11144 -- (which is available through the attribute alias).
11145
11146 if not (Comes_From_Source (E))
11147 and then Is_Dispatching_Operation (E)
11148 and then Find_Dispatching_Type (E) =
11149 Find_Dispatching_Type (S)
11150 and then Present (Alias (E))
11151 and then Comes_From_Source (Alias (E))
11152 then
11153 Set_Overridden_Operation (S, Alias (E));
11154 Inherit_Subprogram_Contract (S, Alias (E));
11155
11156 -- Normal case of setting entity as overridden
11157
11158 -- Note: Static_Initialization and Overridden_Operation
11159 -- attributes use the same field in subprogram entities.
11160 -- Static_Initialization is only defined for internal
11161 -- initialization procedures, where Overridden_Operation
11162 -- is irrelevant. Therefore the setting of this attribute
11163 -- must check whether the target is an init_proc.
11164
11165 elsif not Is_Init_Proc (S) then
11166 Set_Overridden_Operation (S, E);
11167 Inherit_Subprogram_Contract (S, E);
11168 end if;
11169
11170 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11171
11172 -- The Ghost policy in effect at the point of declaration
11173 -- of a parent subprogram and an overriding subprogram
11174 -- must match (SPARK RM 6.9(17)).
11175
11176 Check_Ghost_Overriding (S, E);
11177
11178 -- If S is a user-defined subprogram or a null procedure
11179 -- expanded to override an inherited null procedure, or a
11180 -- predefined dispatching primitive then indicate that E
11181 -- overrides the operation from which S is inherited.
11182
11183 if Comes_From_Source (S)
11184 or else
11185 (Present (Parent (S))
11186 and then
11187 Nkind (Parent (S)) = N_Procedure_Specification
11188 and then
11189 Null_Present (Parent (S)))
11190 or else
11191 (Present (Alias (E))
11192 and then
11193 Is_Predefined_Dispatching_Operation (Alias (E)))
11194 then
11195 if Present (Alias (E)) then
11196 Set_Overridden_Operation (S, Alias (E));
11197 Inherit_Subprogram_Contract (S, Alias (E));
11198 end if;
11199 end if;
11200
11201 if Is_Dispatching_Operation (E) then
11202
11203 -- An overriding dispatching subprogram inherits the
11204 -- convention of the overridden subprogram (AI-117).
11205
11206 Set_Convention (S, Convention (E));
11207 Check_Dispatching_Operation (S, E);
11208
11209 else
11210 Check_Dispatching_Operation (S, Empty);
11211 end if;
11212
11213 Check_For_Primitive_Subprogram
11214 (Is_Primitive_Subp, Is_Overriding => True);
11215 goto Check_Inequality;
11216 end;
11217
11218 -- Apparent redeclarations in instances can occur when two
11219 -- formal types get the same actual type. The subprograms in
11220 -- in the instance are legal, even if not callable from the
11221 -- outside. Calls from within are disambiguated elsewhere.
11222 -- For dispatching operations in the visible part, the usual
11223 -- rules apply, and operations with the same profile are not
11224 -- legal (B830001).
11225
11226 elsif (In_Instance_Visible_Part
11227 and then not Is_Dispatching_Operation (E))
11228 or else In_Instance_Not_Visible
11229 then
11230 null;
11231
11232 -- Here we have a real error (identical profile)
11233
11234 else
11235 Error_Msg_Sloc := Sloc (E);
11236
11237 -- Avoid cascaded errors if the entity appears in
11238 -- subsequent calls.
11239
11240 Set_Scope (S, Current_Scope);
11241
11242 -- Generate error, with extra useful warning for the case
11243 -- of a generic instance with no completion.
11244
11245 if Is_Generic_Instance (S)
11246 and then not Has_Completion (E)
11247 then
11248 Error_Msg_N
11249 ("instantiation cannot provide body for&", S);
11250 Error_Msg_N ("\& conflicts with declaration#", S);
11251 else
11252 Error_Msg_N ("& conflicts with declaration#", S);
11253 end if;
11254
11255 return;
11256 end if;
11257
11258 else
11259 -- If one subprogram has an access parameter and the other
11260 -- a parameter of an access type, calls to either might be
11261 -- ambiguous. Verify that parameters match except for the
11262 -- access parameter.
11263
11264 if May_Hide_Profile then
11265 declare
11266 F1 : Entity_Id;
11267 F2 : Entity_Id;
11268
11269 begin
11270 F1 := First_Formal (S);
11271 F2 := First_Formal (E);
11272 while Present (F1) and then Present (F2) loop
11273 if Is_Access_Type (Etype (F1)) then
11274 if not Is_Access_Type (Etype (F2))
11275 or else not Conforming_Types
11276 (Designated_Type (Etype (F1)),
11277 Designated_Type (Etype (F2)),
11278 Type_Conformant)
11279 then
11280 May_Hide_Profile := False;
11281 end if;
11282
11283 elsif
11284 not Conforming_Types
11285 (Etype (F1), Etype (F2), Type_Conformant)
11286 then
11287 May_Hide_Profile := False;
11288 end if;
11289
11290 Next_Formal (F1);
11291 Next_Formal (F2);
11292 end loop;
11293
11294 if May_Hide_Profile
11295 and then No (F1)
11296 and then No (F2)
11297 then
11298 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11299 end if;
11300 end;
11301 end if;
11302 end if;
11303
11304 E := Homonym (E);
11305 end loop;
11306
11307 -- On exit, we know that S is a new entity
11308
11309 Enter_Overloaded_Entity (S);
11310 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11311 Check_Overriding_Indicator
11312 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11313
11314 -- The Ghost policy in effect at the point of declaration of a parent
11315 -- subprogram and an overriding subprogram must match
11316 -- (SPARK RM 6.9(17)).
11317
11318 Check_Ghost_Overriding (S, Overridden_Subp);
11319
11320 -- Overloading is not allowed in SPARK, except for operators
11321
11322 if Nkind (S) /= N_Defining_Operator_Symbol then
11323 Error_Msg_Sloc := Sloc (Homonym (S));
11324 Check_SPARK_05_Restriction
11325 ("overloading not allowed with entity#", S);
11326 end if;
11327
11328 -- If S is a derived operation for an untagged type then by
11329 -- definition it's not a dispatching operation (even if the parent
11330 -- operation was dispatching), so Check_Dispatching_Operation is not
11331 -- called in that case.
11332
11333 if No (Derived_Type)
11334 or else Is_Tagged_Type (Derived_Type)
11335 then
11336 Check_Dispatching_Operation (S, Empty);
11337 end if;
11338 end if;
11339
11340 -- If this is a user-defined equality operator that is not a derived
11341 -- subprogram, create the corresponding inequality. If the operation is
11342 -- dispatching, the expansion is done elsewhere, and we do not create
11343 -- an explicit inequality operation.
11344
11345 <<Check_Inequality>>
11346 if Chars (S) = Name_Op_Eq
11347 and then Etype (S) = Standard_Boolean
11348 and then Present (Parent (S))
11349 and then not Is_Dispatching_Operation (S)
11350 then
11351 Make_Inequality_Operator (S);
11352 Check_Untagged_Equality (S);
11353 end if;
11354 end New_Overloaded_Entity;
11355
11356 ---------------------
11357 -- Process_Formals --
11358 ---------------------
11359
11360 procedure Process_Formals
11361 (T : List_Id;
11362 Related_Nod : Node_Id)
11363 is
11364 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11365 -- Determine whether an access type designates a type coming from a
11366 -- limited view.
11367
11368 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11369 -- Check whether the default has a class-wide type. After analysis the
11370 -- default has the type of the formal, so we must also check explicitly
11371 -- for an access attribute.
11372
11373 ----------------------------------
11374 -- Designates_From_Limited_With --
11375 ----------------------------------
11376
11377 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11378 Desig : Entity_Id := Typ;
11379
11380 begin
11381 if Is_Access_Type (Desig) then
11382 Desig := Directly_Designated_Type (Desig);
11383 end if;
11384
11385 if Is_Class_Wide_Type (Desig) then
11386 Desig := Root_Type (Desig);
11387 end if;
11388
11389 return
11390 Ekind (Desig) = E_Incomplete_Type
11391 and then From_Limited_With (Desig);
11392 end Designates_From_Limited_With;
11393
11394 ---------------------------
11395 -- Is_Class_Wide_Default --
11396 ---------------------------
11397
11398 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11399 begin
11400 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11401 or else (Nkind (D) = N_Attribute_Reference
11402 and then Attribute_Name (D) = Name_Access
11403 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11404 end Is_Class_Wide_Default;
11405
11406 -- Local variables
11407
11408 Context : constant Node_Id := Parent (Parent (T));
11409 Default : Node_Id;
11410 Formal : Entity_Id;
11411 Formal_Type : Entity_Id;
11412 Param_Spec : Node_Id;
11413 Ptype : Entity_Id;
11414
11415 Num_Out_Params : Nat := 0;
11416 First_Out_Param : Entity_Id := Empty;
11417 -- Used for setting Is_Only_Out_Parameter
11418
11419 -- Start of processing for Process_Formals
11420
11421 begin
11422 -- In order to prevent premature use of the formals in the same formal
11423 -- part, the Ekind is left undefined until all default expressions are
11424 -- analyzed. The Ekind is established in a separate loop at the end.
11425
11426 Param_Spec := First (T);
11427 while Present (Param_Spec) loop
11428 Formal := Defining_Identifier (Param_Spec);
11429 Set_Never_Set_In_Source (Formal, True);
11430 Enter_Name (Formal);
11431
11432 -- Case of ordinary parameters
11433
11434 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11435 Find_Type (Parameter_Type (Param_Spec));
11436 Ptype := Parameter_Type (Param_Spec);
11437
11438 if Ptype = Error then
11439 goto Continue;
11440 end if;
11441
11442 Formal_Type := Entity (Ptype);
11443
11444 if Is_Incomplete_Type (Formal_Type)
11445 or else
11446 (Is_Class_Wide_Type (Formal_Type)
11447 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11448 then
11449 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11450 -- primitive operations, as long as their completion is
11451 -- in the same declarative part. If in the private part
11452 -- this means that the type cannot be a Taft-amendment type.
11453 -- Check is done on package exit. For access to subprograms,
11454 -- the use is legal for Taft-amendment types.
11455
11456 -- Ada 2012: tagged incomplete types are allowed as generic
11457 -- formal types. They do not introduce dependencies and the
11458 -- corresponding generic subprogram does not have a delayed
11459 -- freeze, because it does not need a freeze node. However,
11460 -- it is still the case that untagged incomplete types cannot
11461 -- be Taft-amendment types and must be completed in private
11462 -- part, so the subprogram must appear in the list of private
11463 -- dependents of the type.
11464
11465 if Is_Tagged_Type (Formal_Type)
11466 or else (Ada_Version >= Ada_2012
11467 and then not From_Limited_With (Formal_Type)
11468 and then not Is_Generic_Type (Formal_Type))
11469 then
11470 if Ekind (Scope (Current_Scope)) = E_Package
11471 and then not Is_Generic_Type (Formal_Type)
11472 and then not Is_Class_Wide_Type (Formal_Type)
11473 then
11474 if not Nkind_In
11475 (Parent (T), N_Access_Function_Definition,
11476 N_Access_Procedure_Definition)
11477 then
11478 Append_Elmt (Current_Scope,
11479 Private_Dependents (Base_Type (Formal_Type)));
11480
11481 -- Freezing is delayed to ensure that Register_Prim
11482 -- will get called for this operation, which is needed
11483 -- in cases where static dispatch tables aren't built.
11484 -- (Note that the same is done for controlling access
11485 -- parameter cases in function Access_Definition.)
11486
11487 if not Is_Thunk (Current_Scope) then
11488 Set_Has_Delayed_Freeze (Current_Scope);
11489 end if;
11490 end if;
11491 end if;
11492
11493 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11494 N_Access_Procedure_Definition)
11495 then
11496 -- AI05-0151: Tagged incomplete types are allowed in all
11497 -- formal parts. Untagged incomplete types are not allowed
11498 -- in bodies. Limited views of either kind are not allowed
11499 -- if there is no place at which the non-limited view can
11500 -- become available.
11501
11502 -- Incomplete formal untagged types are not allowed in
11503 -- subprogram bodies (but are legal in their declarations).
11504 -- This excludes bodies created for null procedures, which
11505 -- are basic declarations.
11506
11507 if Is_Generic_Type (Formal_Type)
11508 and then not Is_Tagged_Type (Formal_Type)
11509 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11510 then
11511 Error_Msg_N
11512 ("invalid use of formal incomplete type", Param_Spec);
11513
11514 elsif Ada_Version >= Ada_2012 then
11515 if Is_Tagged_Type (Formal_Type)
11516 and then (not From_Limited_With (Formal_Type)
11517 or else not In_Package_Body)
11518 then
11519 null;
11520
11521 elsif Nkind_In (Context, N_Accept_Statement,
11522 N_Accept_Alternative,
11523 N_Entry_Body)
11524 or else (Nkind (Context) = N_Subprogram_Body
11525 and then Comes_From_Source (Context))
11526 then
11527 Error_Msg_NE
11528 ("invalid use of untagged incomplete type &",
11529 Ptype, Formal_Type);
11530 end if;
11531
11532 else
11533 Error_Msg_NE
11534 ("invalid use of incomplete type&",
11535 Param_Spec, Formal_Type);
11536
11537 -- Further checks on the legality of incomplete types
11538 -- in formal parts are delayed until the freeze point
11539 -- of the enclosing subprogram or access to subprogram.
11540 end if;
11541 end if;
11542
11543 elsif Ekind (Formal_Type) = E_Void then
11544 Error_Msg_NE
11545 ("premature use of&",
11546 Parameter_Type (Param_Spec), Formal_Type);
11547 end if;
11548
11549 -- Ada 2012 (AI-142): Handle aliased parameters
11550
11551 if Ada_Version >= Ada_2012
11552 and then Aliased_Present (Param_Spec)
11553 then
11554 Set_Is_Aliased (Formal);
11555 end if;
11556
11557 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11558 -- declaration corresponding to the null-excluding type of the
11559 -- formal in the enclosing scope. Finally, replace the parameter
11560 -- type of the formal with the internal subtype.
11561
11562 if Ada_Version >= Ada_2005
11563 and then Null_Exclusion_Present (Param_Spec)
11564 then
11565 if not Is_Access_Type (Formal_Type) then
11566 Error_Msg_N
11567 ("`NOT NULL` allowed only for an access type", Param_Spec);
11568
11569 else
11570 if Can_Never_Be_Null (Formal_Type)
11571 and then Comes_From_Source (Related_Nod)
11572 then
11573 Error_Msg_NE
11574 ("`NOT NULL` not allowed (& already excludes null)",
11575 Param_Spec, Formal_Type);
11576 end if;
11577
11578 Formal_Type :=
11579 Create_Null_Excluding_Itype
11580 (T => Formal_Type,
11581 Related_Nod => Related_Nod,
11582 Scope_Id => Scope (Current_Scope));
11583
11584 -- If the designated type of the itype is an itype that is
11585 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11586 -- on the access subtype, to prevent order-of-elaboration
11587 -- issues in the backend.
11588
11589 -- Example:
11590 -- type T is access procedure;
11591 -- procedure Op (O : not null T);
11592
11593 if Is_Itype (Directly_Designated_Type (Formal_Type))
11594 and then
11595 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11596 then
11597 Set_Has_Delayed_Freeze (Formal_Type);
11598 end if;
11599 end if;
11600 end if;
11601
11602 -- An access formal type
11603
11604 else
11605 Formal_Type :=
11606 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11607
11608 -- No need to continue if we already notified errors
11609
11610 if not Present (Formal_Type) then
11611 return;
11612 end if;
11613
11614 -- Ada 2005 (AI-254)
11615
11616 declare
11617 AD : constant Node_Id :=
11618 Access_To_Subprogram_Definition
11619 (Parameter_Type (Param_Spec));
11620 begin
11621 if Present (AD) and then Protected_Present (AD) then
11622 Formal_Type :=
11623 Replace_Anonymous_Access_To_Protected_Subprogram
11624 (Param_Spec);
11625 end if;
11626 end;
11627 end if;
11628
11629 Set_Etype (Formal, Formal_Type);
11630
11631 -- Deal with default expression if present
11632
11633 Default := Expression (Param_Spec);
11634
11635 if Present (Default) then
11636 Check_SPARK_05_Restriction
11637 ("default expression is not allowed", Default);
11638
11639 if Out_Present (Param_Spec) then
11640 Error_Msg_N
11641 ("default initialization only allowed for IN parameters",
11642 Param_Spec);
11643 end if;
11644
11645 -- Do the special preanalysis of the expression (see section on
11646 -- "Handling of Default Expressions" in the spec of package Sem).
11647
11648 Preanalyze_Spec_Expression (Default, Formal_Type);
11649
11650 -- An access to constant cannot be the default for
11651 -- an access parameter that is an access to variable.
11652
11653 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11654 and then not Is_Access_Constant (Formal_Type)
11655 and then Is_Access_Type (Etype (Default))
11656 and then Is_Access_Constant (Etype (Default))
11657 then
11658 Error_Msg_N
11659 ("formal that is access to variable cannot be initialized "
11660 & "with an access-to-constant expression", Default);
11661 end if;
11662
11663 -- Check that the designated type of an access parameter's default
11664 -- is not a class-wide type unless the parameter's designated type
11665 -- is also class-wide.
11666
11667 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11668 and then not Designates_From_Limited_With (Formal_Type)
11669 and then Is_Class_Wide_Default (Default)
11670 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11671 then
11672 Error_Msg_N
11673 ("access to class-wide expression not allowed here", Default);
11674 end if;
11675
11676 -- Check incorrect use of dynamically tagged expressions
11677
11678 if Is_Tagged_Type (Formal_Type) then
11679 Check_Dynamically_Tagged_Expression
11680 (Expr => Default,
11681 Typ => Formal_Type,
11682 Related_Nod => Default);
11683 end if;
11684 end if;
11685
11686 -- Ada 2005 (AI-231): Static checks
11687
11688 if Ada_Version >= Ada_2005
11689 and then Is_Access_Type (Etype (Formal))
11690 and then Can_Never_Be_Null (Etype (Formal))
11691 then
11692 Null_Exclusion_Static_Checks (Param_Spec);
11693 end if;
11694
11695 -- The following checks are relevant only when SPARK_Mode is on as
11696 -- these are not standard Ada legality rules.
11697
11698 if SPARK_Mode = On then
11699 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11700
11701 -- A function cannot have a parameter of mode IN OUT or OUT
11702 -- (SPARK RM 6.1).
11703
11704 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11705 Error_Msg_N
11706 ("function cannot have parameter of mode `OUT` or "
11707 & "`IN OUT`", Formal);
11708 end if;
11709
11710 -- A procedure cannot have an effectively volatile formal
11711 -- parameter of mode IN because it behaves as a constant
11712 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11713
11714 elsif Ekind (Scope (Formal)) = E_Procedure
11715 and then Ekind (Formal) = E_In_Parameter
11716 and then Is_Effectively_Volatile (Formal)
11717 then
11718 Error_Msg_N
11719 ("formal parameter of mode `IN` cannot be volatile", Formal);
11720 end if;
11721 end if;
11722
11723 <<Continue>>
11724 Next (Param_Spec);
11725 end loop;
11726
11727 -- If this is the formal part of a function specification, analyze the
11728 -- subtype mark in the context where the formals are visible but not
11729 -- yet usable, and may hide outer homographs.
11730
11731 if Nkind (Related_Nod) = N_Function_Specification then
11732 Analyze_Return_Type (Related_Nod);
11733 end if;
11734
11735 -- Now set the kind (mode) of each formal
11736
11737 Param_Spec := First (T);
11738 while Present (Param_Spec) loop
11739 Formal := Defining_Identifier (Param_Spec);
11740 Set_Formal_Mode (Formal);
11741
11742 if Ekind (Formal) = E_In_Parameter then
11743 Set_Default_Value (Formal, Expression (Param_Spec));
11744
11745 if Present (Expression (Param_Spec)) then
11746 Default := Expression (Param_Spec);
11747
11748 if Is_Scalar_Type (Etype (Default)) then
11749 if Nkind (Parameter_Type (Param_Spec)) /=
11750 N_Access_Definition
11751 then
11752 Formal_Type := Entity (Parameter_Type (Param_Spec));
11753 else
11754 Formal_Type :=
11755 Access_Definition
11756 (Related_Nod, Parameter_Type (Param_Spec));
11757 end if;
11758
11759 Apply_Scalar_Range_Check (Default, Formal_Type);
11760 end if;
11761 end if;
11762
11763 elsif Ekind (Formal) = E_Out_Parameter then
11764 Num_Out_Params := Num_Out_Params + 1;
11765
11766 if Num_Out_Params = 1 then
11767 First_Out_Param := Formal;
11768 end if;
11769
11770 elsif Ekind (Formal) = E_In_Out_Parameter then
11771 Num_Out_Params := Num_Out_Params + 1;
11772 end if;
11773
11774 -- Skip remaining processing if formal type was in error
11775
11776 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11777 goto Next_Parameter;
11778 end if;
11779
11780 -- Force call by reference if aliased
11781
11782 declare
11783 Conv : constant Convention_Id := Convention (Etype (Formal));
11784 begin
11785 if Is_Aliased (Formal) then
11786 Set_Mechanism (Formal, By_Reference);
11787
11788 -- Warn if user asked this to be passed by copy
11789
11790 if Conv = Convention_Ada_Pass_By_Copy then
11791 Error_Msg_N
11792 ("cannot pass aliased parameter & by copy??", Formal);
11793 end if;
11794
11795 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11796
11797 elsif Conv = Convention_Ada_Pass_By_Copy then
11798 Set_Mechanism (Formal, By_Copy);
11799
11800 elsif Conv = Convention_Ada_Pass_By_Reference then
11801 Set_Mechanism (Formal, By_Reference);
11802 end if;
11803 end;
11804
11805 <<Next_Parameter>>
11806 Next (Param_Spec);
11807 end loop;
11808
11809 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11810 Set_Is_Only_Out_Parameter (First_Out_Param);
11811 end if;
11812 end Process_Formals;
11813
11814 ----------------------------
11815 -- Reference_Body_Formals --
11816 ----------------------------
11817
11818 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11819 Fs : Entity_Id;
11820 Fb : Entity_Id;
11821
11822 begin
11823 if Error_Posted (Spec) then
11824 return;
11825 end if;
11826
11827 -- Iterate over both lists. They may be of different lengths if the two
11828 -- specs are not conformant.
11829
11830 Fs := First_Formal (Spec);
11831 Fb := First_Formal (Bod);
11832 while Present (Fs) and then Present (Fb) loop
11833 Generate_Reference (Fs, Fb, 'b');
11834
11835 if Style_Check then
11836 Style.Check_Identifier (Fb, Fs);
11837 end if;
11838
11839 Set_Spec_Entity (Fb, Fs);
11840 Set_Referenced (Fs, False);
11841 Next_Formal (Fs);
11842 Next_Formal (Fb);
11843 end loop;
11844 end Reference_Body_Formals;
11845
11846 -------------------------
11847 -- Set_Actual_Subtypes --
11848 -------------------------
11849
11850 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11851 Decl : Node_Id;
11852 Formal : Entity_Id;
11853 T : Entity_Id;
11854 First_Stmt : Node_Id := Empty;
11855 AS_Needed : Boolean;
11856
11857 begin
11858 -- If this is an empty initialization procedure, no need to create
11859 -- actual subtypes (small optimization).
11860
11861 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11862 return;
11863
11864 -- Within a predicate function we do not want to generate local
11865 -- subtypes that may generate nested predicate functions.
11866
11867 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11868 return;
11869 end if;
11870
11871 -- The subtype declarations may freeze the formals. The body generated
11872 -- for an expression function is not a freeze point, so do not emit
11873 -- these declarations (small loss of efficiency in rare cases).
11874
11875 if Nkind (N) = N_Subprogram_Body
11876 and then Was_Expression_Function (N)
11877 then
11878 return;
11879 end if;
11880
11881 Formal := First_Formal (Subp);
11882 while Present (Formal) loop
11883 T := Etype (Formal);
11884
11885 -- We never need an actual subtype for a constrained formal
11886
11887 if Is_Constrained (T) then
11888 AS_Needed := False;
11889
11890 -- If we have unknown discriminants, then we do not need an actual
11891 -- subtype, or more accurately we cannot figure it out. Note that
11892 -- all class-wide types have unknown discriminants.
11893
11894 elsif Has_Unknown_Discriminants (T) then
11895 AS_Needed := False;
11896
11897 -- At this stage we have an unconstrained type that may need an
11898 -- actual subtype. For sure the actual subtype is needed if we have
11899 -- an unconstrained array type. However, in an instance, the type
11900 -- may appear as a subtype of the full view, while the actual is
11901 -- in fact private (in which case no actual subtype is needed) so
11902 -- check the kind of the base type.
11903
11904 elsif Is_Array_Type (Base_Type (T)) then
11905 AS_Needed := True;
11906
11907 -- The only other case needing an actual subtype is an unconstrained
11908 -- record type which is an IN parameter (we cannot generate actual
11909 -- subtypes for the OUT or IN OUT case, since an assignment can
11910 -- change the discriminant values. However we exclude the case of
11911 -- initialization procedures, since discriminants are handled very
11912 -- specially in this context, see the section entitled "Handling of
11913 -- Discriminants" in Einfo.
11914
11915 -- We also exclude the case of Discrim_SO_Functions (functions used
11916 -- in front-end layout mode for size/offset values), since in such
11917 -- functions only discriminants are referenced, and not only are such
11918 -- subtypes not needed, but they cannot always be generated, because
11919 -- of order of elaboration issues.
11920
11921 elsif Is_Record_Type (T)
11922 and then Ekind (Formal) = E_In_Parameter
11923 and then Chars (Formal) /= Name_uInit
11924 and then not Is_Unchecked_Union (T)
11925 and then not Is_Discrim_SO_Function (Subp)
11926 then
11927 AS_Needed := True;
11928
11929 -- All other cases do not need an actual subtype
11930
11931 else
11932 AS_Needed := False;
11933 end if;
11934
11935 -- Generate actual subtypes for unconstrained arrays and
11936 -- unconstrained discriminated records.
11937
11938 if AS_Needed then
11939 if Nkind (N) = N_Accept_Statement then
11940
11941 -- If expansion is active, the formal is replaced by a local
11942 -- variable that renames the corresponding entry of the
11943 -- parameter block, and it is this local variable that may
11944 -- require an actual subtype.
11945
11946 if Expander_Active then
11947 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11948 else
11949 Decl := Build_Actual_Subtype (T, Formal);
11950 end if;
11951
11952 if Present (Handled_Statement_Sequence (N)) then
11953 First_Stmt :=
11954 First (Statements (Handled_Statement_Sequence (N)));
11955 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11956 Mark_Rewrite_Insertion (Decl);
11957 else
11958 -- If the accept statement has no body, there will be no
11959 -- reference to the actuals, so no need to compute actual
11960 -- subtypes.
11961
11962 return;
11963 end if;
11964
11965 else
11966 Decl := Build_Actual_Subtype (T, Formal);
11967 Prepend (Decl, Declarations (N));
11968 Mark_Rewrite_Insertion (Decl);
11969 end if;
11970
11971 -- The declaration uses the bounds of an existing object, and
11972 -- therefore needs no constraint checks.
11973
11974 Analyze (Decl, Suppress => All_Checks);
11975 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11976
11977 -- We need to freeze manually the generated type when it is
11978 -- inserted anywhere else than in a declarative part.
11979
11980 if Present (First_Stmt) then
11981 Insert_List_Before_And_Analyze (First_Stmt,
11982 Freeze_Entity (Defining_Identifier (Decl), N));
11983
11984 -- Ditto if the type has a dynamic predicate, because the
11985 -- generated function will mention the actual subtype. The
11986 -- predicate may come from an explicit aspect of be inherited.
11987
11988 elsif Has_Predicates (T) then
11989 Insert_List_Before_And_Analyze (Decl,
11990 Freeze_Entity (Defining_Identifier (Decl), N));
11991 end if;
11992
11993 if Nkind (N) = N_Accept_Statement
11994 and then Expander_Active
11995 then
11996 Set_Actual_Subtype (Renamed_Object (Formal),
11997 Defining_Identifier (Decl));
11998 else
11999 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
12000 end if;
12001 end if;
12002
12003 Next_Formal (Formal);
12004 end loop;
12005 end Set_Actual_Subtypes;
12006
12007 ---------------------
12008 -- Set_Formal_Mode --
12009 ---------------------
12010
12011 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
12012 Spec : constant Node_Id := Parent (Formal_Id);
12013 Id : constant Entity_Id := Scope (Formal_Id);
12014
12015 begin
12016 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
12017 -- since we ensure that corresponding actuals are always valid at the
12018 -- point of the call.
12019
12020 if Out_Present (Spec) then
12021 if Ekind_In (Id, E_Entry, E_Entry_Family)
12022 or else Is_Subprogram_Or_Generic_Subprogram (Id)
12023 then
12024 Set_Has_Out_Or_In_Out_Parameter (Id, True);
12025 end if;
12026
12027 if Ekind_In (Id, E_Function, E_Generic_Function) then
12028
12029 -- [IN] OUT parameters allowed for functions in Ada 2012
12030
12031 if Ada_Version >= Ada_2012 then
12032
12033 -- Even in Ada 2012 operators can only have IN parameters
12034
12035 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
12036 Error_Msg_N ("operators can only have IN parameters", Spec);
12037 end if;
12038
12039 if In_Present (Spec) then
12040 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12041 else
12042 Set_Ekind (Formal_Id, E_Out_Parameter);
12043 end if;
12044
12045 -- But not in earlier versions of Ada
12046
12047 else
12048 Error_Msg_N ("functions can only have IN parameters", Spec);
12049 Set_Ekind (Formal_Id, E_In_Parameter);
12050 end if;
12051
12052 elsif In_Present (Spec) then
12053 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12054
12055 else
12056 Set_Ekind (Formal_Id, E_Out_Parameter);
12057 Set_Never_Set_In_Source (Formal_Id, True);
12058 Set_Is_True_Constant (Formal_Id, False);
12059 Set_Current_Value (Formal_Id, Empty);
12060 end if;
12061
12062 else
12063 Set_Ekind (Formal_Id, E_In_Parameter);
12064 end if;
12065
12066 -- Set Is_Known_Non_Null for access parameters since the language
12067 -- guarantees that access parameters are always non-null. We also set
12068 -- Can_Never_Be_Null, since there is no way to change the value.
12069
12070 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
12071
12072 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
12073 -- null; In Ada 2005, only if then null_exclusion is explicit.
12074
12075 if Ada_Version < Ada_2005
12076 or else Can_Never_Be_Null (Etype (Formal_Id))
12077 then
12078 Set_Is_Known_Non_Null (Formal_Id);
12079 Set_Can_Never_Be_Null (Formal_Id);
12080 end if;
12081
12082 -- Ada 2005 (AI-231): Null-exclusion access subtype
12083
12084 elsif Is_Access_Type (Etype (Formal_Id))
12085 and then Can_Never_Be_Null (Etype (Formal_Id))
12086 then
12087 Set_Is_Known_Non_Null (Formal_Id);
12088
12089 -- We can also set Can_Never_Be_Null (thus preventing some junk
12090 -- access checks) for the case of an IN parameter, which cannot
12091 -- be changed, or for an IN OUT parameter, which can be changed but
12092 -- not to a null value. But for an OUT parameter, the initial value
12093 -- passed in can be null, so we can't set this flag in that case.
12094
12095 if Ekind (Formal_Id) /= E_Out_Parameter then
12096 Set_Can_Never_Be_Null (Formal_Id);
12097 end if;
12098 end if;
12099
12100 Set_Mechanism (Formal_Id, Default_Mechanism);
12101 Set_Formal_Validity (Formal_Id);
12102 end Set_Formal_Mode;
12103
12104 -------------------------
12105 -- Set_Formal_Validity --
12106 -------------------------
12107
12108 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12109 begin
12110 -- If no validity checking, then we cannot assume anything about the
12111 -- validity of parameters, since we do not know there is any checking
12112 -- of the validity on the call side.
12113
12114 if not Validity_Checks_On then
12115 return;
12116
12117 -- If validity checking for parameters is enabled, this means we are
12118 -- not supposed to make any assumptions about argument values.
12119
12120 elsif Validity_Check_Parameters then
12121 return;
12122
12123 -- If we are checking in parameters, we will assume that the caller is
12124 -- also checking parameters, so we can assume the parameter is valid.
12125
12126 elsif Ekind (Formal_Id) = E_In_Parameter
12127 and then Validity_Check_In_Params
12128 then
12129 Set_Is_Known_Valid (Formal_Id, True);
12130
12131 -- Similar treatment for IN OUT parameters
12132
12133 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12134 and then Validity_Check_In_Out_Params
12135 then
12136 Set_Is_Known_Valid (Formal_Id, True);
12137 end if;
12138 end Set_Formal_Validity;
12139
12140 ------------------------
12141 -- Subtype_Conformant --
12142 ------------------------
12143
12144 function Subtype_Conformant
12145 (New_Id : Entity_Id;
12146 Old_Id : Entity_Id;
12147 Skip_Controlling_Formals : Boolean := False) return Boolean
12148 is
12149 Result : Boolean;
12150 begin
12151 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12152 Skip_Controlling_Formals => Skip_Controlling_Formals);
12153 return Result;
12154 end Subtype_Conformant;
12155
12156 ---------------------
12157 -- Type_Conformant --
12158 ---------------------
12159
12160 function Type_Conformant
12161 (New_Id : Entity_Id;
12162 Old_Id : Entity_Id;
12163 Skip_Controlling_Formals : Boolean := False) return Boolean
12164 is
12165 Result : Boolean;
12166 begin
12167 May_Hide_Profile := False;
12168 Check_Conformance
12169 (New_Id, Old_Id, Type_Conformant, False, Result,
12170 Skip_Controlling_Formals => Skip_Controlling_Formals);
12171 return Result;
12172 end Type_Conformant;
12173
12174 -------------------------------
12175 -- Valid_Operator_Definition --
12176 -------------------------------
12177
12178 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12179 N : Integer := 0;
12180 F : Entity_Id;
12181 Id : constant Name_Id := Chars (Designator);
12182 N_OK : Boolean;
12183
12184 begin
12185 F := First_Formal (Designator);
12186 while Present (F) loop
12187 N := N + 1;
12188
12189 if Present (Default_Value (F)) then
12190 Error_Msg_N
12191 ("default values not allowed for operator parameters",
12192 Parent (F));
12193
12194 -- For function instantiations that are operators, we must check
12195 -- separately that the corresponding generic only has in-parameters.
12196 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12197 -- an error could not arise in earlier versions of the language.
12198
12199 elsif Ekind (F) /= E_In_Parameter then
12200 Error_Msg_N ("operators can only have IN parameters", F);
12201 end if;
12202
12203 Next_Formal (F);
12204 end loop;
12205
12206 -- Verify that user-defined operators have proper number of arguments
12207 -- First case of operators which can only be unary
12208
12209 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12210 N_OK := (N = 1);
12211
12212 -- Case of operators which can be unary or binary
12213
12214 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12215 N_OK := (N in 1 .. 2);
12216
12217 -- All other operators can only be binary
12218
12219 else
12220 N_OK := (N = 2);
12221 end if;
12222
12223 if not N_OK then
12224 Error_Msg_N
12225 ("incorrect number of arguments for operator", Designator);
12226 end if;
12227
12228 if Id = Name_Op_Ne
12229 and then Base_Type (Etype (Designator)) = Standard_Boolean
12230 and then not Is_Intrinsic_Subprogram (Designator)
12231 then
12232 Error_Msg_N
12233 ("explicit definition of inequality not allowed", Designator);
12234 end if;
12235 end Valid_Operator_Definition;
12236
12237 end Sem_Ch6;