[Ada] AI12-0001: Independence and Representation clauses for atomic objects
[gcc.git] / gcc / ada / sem_ch6.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch9; use Sem_Ch9;
64 with Sem_Ch10; use Sem_Ch10;
65 with Sem_Ch12; use Sem_Ch12;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elim; use Sem_Elim;
71 with Sem_Eval; use Sem_Eval;
72 with Sem_Mech; use Sem_Mech;
73 with Sem_Prag; use Sem_Prag;
74 with Sem_Res; use Sem_Res;
75 with Sem_Util; use Sem_Util;
76 with Sem_Type; use Sem_Type;
77 with Sem_Warn; use Sem_Warn;
78 with Sinput; use Sinput;
79 with Stand; use Stand;
80 with Sinfo; use Sinfo;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stringt; use Stringt;
84 with Style;
85 with Stylesw; use Stylesw;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
90
91 package body Sem_Ch6 is
92
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
101
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
105
106 procedure Analyze_Function_Return (N : Node_Id);
107 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
108 -- applies to a [generic] function.
109
110 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111 -- Analyze a generic subprogram body. N is the body to be analyzed, and
112 -- Gen_Id is the defining entity Id for the corresponding spec.
113
114 procedure Analyze_Null_Procedure
115 (N : Node_Id;
116 Is_Completion : out Boolean);
117 -- A null procedure can be a declaration or (Ada 2012) a completion
118
119 procedure Analyze_Return_Statement (N : Node_Id);
120 -- Common processing for simple and extended return statements
121
122 procedure Analyze_Return_Type (N : Node_Id);
123 -- Subsidiary to Process_Formals: analyze subtype mark in function
124 -- specification in a context where the formals are visible and hide
125 -- outer homographs.
126
127 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
129 -- that we can use RETURN but not skip the debug output at the end.
130
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
133
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
154
155 procedure Check_Limited_Return
156 (N : Node_Id;
157 Expr : Node_Id;
158 R_Type : Entity_Id);
159 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160 -- types. Used only for simple return statements. Expr is the expression
161 -- returned.
162
163 procedure Check_Subprogram_Order (N : Node_Id);
164 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
165 -- the alpha ordering rule for N if this ordering requirement applicable.
166
167 procedure Check_Returns
168 (HSS : Node_Id;
169 Mode : Character;
170 Err : out Boolean;
171 Proc : Entity_Id := Empty);
172 -- Called to check for missing return statements in a function body, or for
173 -- returns present in a procedure body which has No_Return set. HSS is the
174 -- handled statement sequence for the subprogram body. This procedure
175 -- checks all flow paths to make sure they either have return (Mode = 'F',
176 -- used for functions) or do not have a return (Mode = 'P', used for
177 -- No_Return procedures). The flag Err is set if there are any control
178 -- paths not explicitly terminated by a return in the function case, and is
179 -- True otherwise. Proc is the entity for the procedure case and is used
180 -- in posting the warning message.
181
182 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183 -- In Ada 2012, a primitive equality operator on an untagged record type
184 -- must appear before the type is frozen, and have the same visibility as
185 -- that of the type. This procedure checks that this rule is met, and
186 -- otherwise emits an error on the subprogram declaration and a warning
187 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190 -- is set, otherwise the call has no effect.
191
192 procedure Enter_Overloaded_Entity (S : Entity_Id);
193 -- This procedure makes S, a new overloaded entity, into the first visible
194 -- entity with that name.
195
196 function Is_Non_Overriding_Operation
197 (Prev_E : Entity_Id;
198 New_E : Entity_Id) return Boolean;
199 -- Enforce the rule given in 12.3(18): a private operation in an instance
200 -- overrides an inherited operation only if the corresponding operation
201 -- was overriding in the generic. This needs to be checked for primitive
202 -- operations of types derived (in the generic unit) from formal private
203 -- or formal derived types.
204
205 procedure Make_Inequality_Operator (S : Entity_Id);
206 -- Create the declaration for an inequality operator that is implicitly
207 -- created by a user-defined equality operator that yields a boolean.
208
209 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
210 -- Preanalysis of default expressions of subprogram formals. N is the
211 -- expression to be analyzed and T is the expected type.
212
213 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214 -- Formal_Id is an formal parameter entity. This procedure deals with
215 -- setting the proper validity status for this entity, which depends on
216 -- the kind of parameter and the validity checking mode.
217
218 ---------------------------------------------
219 -- Analyze_Abstract_Subprogram_Declaration --
220 ---------------------------------------------
221
222 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
223 Scop : constant Entity_Id := Current_Scope;
224 Subp_Id : constant Entity_Id :=
225 Analyze_Subprogram_Specification (Specification (N));
226
227 begin
228 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
229
230 Generate_Definition (Subp_Id);
231
232 -- Set the SPARK mode from the current context (may be overwritten later
233 -- with explicit pragma).
234
235 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
236 Set_SPARK_Pragma_Inherited (Subp_Id);
237
238 -- Preserve relevant elaboration-related attributes of the context which
239 -- are no longer available or very expensive to recompute once analysis,
240 -- resolution, and expansion are over.
241
242 Mark_Elaboration_Attributes
243 (N_Id => Subp_Id,
244 Checks => True,
245 Warnings => True);
246
247 Set_Is_Abstract_Subprogram (Subp_Id);
248 New_Overloaded_Entity (Subp_Id);
249 Check_Delayed_Subprogram (Subp_Id);
250
251 Set_Categorization_From_Scope (Subp_Id, Scop);
252
253 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
254 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
255
256 -- Issue a warning if the abstract subprogram is neither a dispatching
257 -- operation nor an operation that overrides an inherited subprogram or
258 -- predefined operator, since this most likely indicates a mistake.
259
260 elsif Warn_On_Redundant_Constructs
261 and then not Is_Dispatching_Operation (Subp_Id)
262 and then not Present (Overridden_Operation (Subp_Id))
263 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
264 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
265 then
266 Error_Msg_N
267 ("abstract subprogram is not dispatching or overriding?r?", N);
268 end if;
269
270 Generate_Reference_To_Formals (Subp_Id);
271 Check_Eliminated (Subp_Id);
272
273 if Has_Aspects (N) then
274 Analyze_Aspect_Specifications (N, Subp_Id);
275 end if;
276 end Analyze_Abstract_Subprogram_Declaration;
277
278 ---------------------------------
279 -- Analyze_Expression_Function --
280 ---------------------------------
281
282 procedure Analyze_Expression_Function (N : Node_Id) is
283 Expr : constant Node_Id := Expression (N);
284 Loc : constant Source_Ptr := Sloc (N);
285 LocX : constant Source_Ptr := Sloc (Expr);
286 Spec : constant Node_Id := Specification (N);
287
288 -- Local variables
289
290 Asp : Node_Id;
291 New_Body : Node_Id;
292 New_Spec : Node_Id;
293 Orig_N : Node_Id;
294 Ret : Node_Id;
295
296 Def_Id : Entity_Id := Empty;
297 Prev : Entity_Id;
298 -- If the expression is a completion, Prev is the entity whose
299 -- declaration is completed. Def_Id is needed to analyze the spec.
300
301 -- Start of processing for Analyze_Expression_Function
302
303 begin
304 -- This is one of the occasions on which we transform the tree during
305 -- semantic analysis. If this is a completion, transform the expression
306 -- function into an equivalent subprogram body, and analyze it.
307
308 -- Expression functions are inlined unconditionally. The back-end will
309 -- determine whether this is possible.
310
311 Inline_Processing_Required := True;
312
313 -- Create a specification for the generated body. This must be done
314 -- prior to the analysis of the initial declaration.
315
316 New_Spec := Copy_Subprogram_Spec (Spec);
317 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
318
319 -- If there are previous overloadable entities with the same name,
320 -- check whether any of them is completed by the expression function.
321 -- In a generic context a formal subprogram has no completion.
322
323 if Present (Prev)
324 and then Is_Overloadable (Prev)
325 and then not Is_Formal_Subprogram (Prev)
326 then
327 Def_Id := Analyze_Subprogram_Specification (Spec);
328 Prev := Find_Corresponding_Spec (N);
329
330 -- The previous entity may be an expression function as well, in
331 -- which case the redeclaration is illegal.
332
333 if Present (Prev)
334 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
335 N_Expression_Function
336 then
337 Error_Msg_Sloc := Sloc (Prev);
338 Error_Msg_N ("& conflicts with declaration#", Def_Id);
339 return;
340 end if;
341 end if;
342
343 Ret := Make_Simple_Return_Statement (LocX, Expr);
344
345 New_Body :=
346 Make_Subprogram_Body (Loc,
347 Specification => New_Spec,
348 Declarations => Empty_List,
349 Handled_Statement_Sequence =>
350 Make_Handled_Sequence_Of_Statements (LocX,
351 Statements => New_List (Ret)));
352 Set_Was_Expression_Function (New_Body);
353
354 -- If the expression completes a generic subprogram, we must create a
355 -- separate node for the body, because at instantiation the original
356 -- node of the generic copy must be a generic subprogram body, and
357 -- cannot be a expression function. Otherwise we just rewrite the
358 -- expression with the non-generic body.
359
360 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
361 Insert_After (N, New_Body);
362
363 -- Propagate any aspects or pragmas that apply to the expression
364 -- function to the proper body when the expression function acts
365 -- as a completion.
366
367 if Has_Aspects (N) then
368 Move_Aspects (N, To => New_Body);
369 end if;
370
371 Relocate_Pragmas_To_Body (New_Body);
372
373 Rewrite (N, Make_Null_Statement (Loc));
374 Set_Has_Completion (Prev, False);
375 Analyze (N);
376 Analyze (New_Body);
377 Set_Is_Inlined (Prev);
378
379 -- If the expression function is a completion, the previous declaration
380 -- must come from source. We know already that it appears in the current
381 -- scope. The entity itself may be internally created if within a body
382 -- to be inlined.
383
384 elsif Present (Prev)
385 and then Is_Overloadable (Prev)
386 and then not Is_Formal_Subprogram (Prev)
387 and then Comes_From_Source (Parent (Prev))
388 then
389 Set_Has_Completion (Prev, False);
390 Set_Is_Inlined (Prev);
391
392 -- AI12-0103: Expression functions that are a completion freeze their
393 -- expression but don't freeze anything else (unlike regular bodies).
394
395 -- Note that we cannot defer this freezing to the analysis of the
396 -- expression itself, because a freeze node might appear in a nested
397 -- scope, leading to an elaboration order issue in gigi.
398 -- As elsewhere, we do not emit freeze nodes within a generic unit.
399
400 if not Inside_A_Generic then
401 Freeze_Expr_Types
402 (Def_Id => Def_Id,
403 Typ => Etype (Def_Id),
404 Expr => Expr,
405 N => N);
406 end if;
407
408 -- For navigation purposes, indicate that the function is a body
409
410 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
411 Rewrite (N, New_Body);
412
413 -- Remove any existing aspects from the original node because the act
414 -- of rewriting causes the list to be shared between the two nodes.
415
416 Orig_N := Original_Node (N);
417 Remove_Aspects (Orig_N);
418
419 -- Propagate any pragmas that apply to expression function to the
420 -- proper body when the expression function acts as a completion.
421 -- Aspects are automatically transfered because of node rewriting.
422
423 Relocate_Pragmas_To_Body (N);
424 Analyze (N);
425
426 -- Once the aspects of the generated body have been analyzed, create
427 -- a copy for ASIS purposes and associate it with the original node.
428
429 if Has_Aspects (N) then
430 Set_Aspect_Specifications (Orig_N,
431 New_Copy_List_Tree (Aspect_Specifications (N)));
432 end if;
433
434 -- Prev is the previous entity with the same name, but it is can
435 -- be an unrelated spec that is not completed by the expression
436 -- function. In that case the relevant entity is the one in the body.
437 -- Not clear that the backend can inline it in this case ???
438
439 if Has_Completion (Prev) then
440
441 -- The formals of the expression function are body formals,
442 -- and do not appear in the ali file, which will only contain
443 -- references to the formals of the original subprogram spec.
444
445 declare
446 F1 : Entity_Id;
447 F2 : Entity_Id;
448
449 begin
450 F1 := First_Formal (Def_Id);
451 F2 := First_Formal (Prev);
452
453 while Present (F1) loop
454 Set_Spec_Entity (F1, F2);
455 Next_Formal (F1);
456 Next_Formal (F2);
457 end loop;
458 end;
459
460 else
461 Set_Is_Inlined (Defining_Entity (New_Body));
462 end if;
463
464 -- If this is not a completion, create both a declaration and a body, so
465 -- that the expression can be inlined whenever possible.
466
467 else
468 -- An expression function that is not a completion is not a
469 -- subprogram declaration, and thus cannot appear in a protected
470 -- definition.
471
472 if Nkind (Parent (N)) = N_Protected_Definition then
473 Error_Msg_N
474 ("an expression function is not a legal protected operation", N);
475 end if;
476
477 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
478
479 -- Remove any existing aspects from the original node because the act
480 -- of rewriting causes the list to be shared between the two nodes.
481
482 Orig_N := Original_Node (N);
483 Remove_Aspects (Orig_N);
484
485 Analyze (N);
486
487 -- Once the aspects of the generated spec have been analyzed, create
488 -- a copy for ASIS purposes and associate it with the original node.
489
490 if Has_Aspects (N) then
491 Set_Aspect_Specifications (Orig_N,
492 New_Copy_List_Tree (Aspect_Specifications (N)));
493 end if;
494
495 -- If aspect SPARK_Mode was specified on the body, it needs to be
496 -- repeated both on the generated spec and the body.
497
498 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
499
500 if Present (Asp) then
501 Asp := New_Copy_Tree (Asp);
502 Set_Analyzed (Asp, False);
503 Set_Aspect_Specifications (New_Body, New_List (Asp));
504 end if;
505
506 Def_Id := Defining_Entity (N);
507 Set_Is_Inlined (Def_Id);
508
509 -- Establish the linkages between the spec and the body. These are
510 -- used when the expression function acts as the prefix of attribute
511 -- 'Access in order to freeze the original expression which has been
512 -- moved to the generated body.
513
514 Set_Corresponding_Body (N, Defining_Entity (New_Body));
515 Set_Corresponding_Spec (New_Body, Def_Id);
516
517 -- Within a generic preanalyze the original expression for name
518 -- capture. The body is also generated but plays no role in
519 -- this because it is not part of the original source.
520
521 if Inside_A_Generic then
522 Set_Has_Completion (Def_Id);
523 Push_Scope (Def_Id);
524 Install_Formals (Def_Id);
525 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
526 End_Scope;
527 end if;
528
529 -- To prevent premature freeze action, insert the new body at the end
530 -- of the current declarations, or at the end of the package spec.
531 -- However, resolve usage names now, to prevent spurious visibility
532 -- on later entities. Note that the function can now be called in
533 -- the current declarative part, which will appear to be prior to
534 -- the presence of the body in the code. There are nevertheless no
535 -- order of elaboration issues because all name resolution has taken
536 -- place at the point of declaration.
537
538 declare
539 Decls : List_Id := List_Containing (N);
540 Expr : constant Node_Id := Expression (Ret);
541 Par : constant Node_Id := Parent (Decls);
542 Typ : constant Entity_Id := Etype (Def_Id);
543
544 begin
545 -- If this is a wrapper created for in an instance for a formal
546 -- subprogram, insert body after declaration, to be analyzed when
547 -- the enclosing instance is analyzed.
548
549 if GNATprove_Mode
550 and then Is_Generic_Actual_Subprogram (Def_Id)
551 then
552 Insert_After (N, New_Body);
553
554 else
555 if Nkind (Par) = N_Package_Specification
556 and then Decls = Visible_Declarations (Par)
557 and then Present (Private_Declarations (Par))
558 and then not Is_Empty_List (Private_Declarations (Par))
559 then
560 Decls := Private_Declarations (Par);
561 end if;
562
563 Insert_After (Last (Decls), New_Body);
564
565 -- Preanalyze the expression if not already done above
566
567 if not Inside_A_Generic then
568 Push_Scope (Def_Id);
569 Install_Formals (Def_Id);
570 Preanalyze_Formal_Expression (Expr, Typ);
571 Check_Limited_Return (Original_Node (N), Expr, Typ);
572 End_Scope;
573 end if;
574 end if;
575 end;
576 end if;
577
578 -- Check incorrect use of dynamically tagged expression. This doesn't
579 -- fall out automatically when analyzing the generated function body,
580 -- because Check_Dynamically_Tagged_Expression deliberately ignores
581 -- nodes that don't come from source.
582
583 if Present (Def_Id)
584 and then Nkind (Def_Id) in N_Has_Etype
585 and then Is_Tagged_Type (Etype (Def_Id))
586 then
587 Check_Dynamically_Tagged_Expression
588 (Expr => Expr,
589 Typ => Etype (Def_Id),
590 Related_Nod => Original_Node (N));
591 end if;
592
593 -- We must enforce checks for unreferenced formals in our newly
594 -- generated function, so we propagate the referenced flag from the
595 -- original spec to the new spec as well as setting Comes_From_Source.
596
597 if Present (Parameter_Specifications (New_Spec)) then
598 declare
599 Form_New_Def : Entity_Id;
600 Form_New_Spec : Entity_Id;
601 Form_Old_Def : Entity_Id;
602 Form_Old_Spec : Entity_Id;
603
604 begin
605 Form_New_Spec := First (Parameter_Specifications (New_Spec));
606 Form_Old_Spec := First (Parameter_Specifications (Spec));
607
608 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
609 Form_New_Def := Defining_Identifier (Form_New_Spec);
610 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
611
612 Set_Comes_From_Source (Form_New_Def, True);
613
614 -- Because of the usefulness of unreferenced controlling
615 -- formals we exempt them from unreferenced warnings by marking
616 -- them as always referenced.
617
618 Set_Referenced (Form_Old_Def,
619 (Is_Formal (Form_Old_Def)
620 and then Is_Controlling_Formal (Form_Old_Def))
621 or else Referenced (Form_Old_Def));
622
623 Next (Form_New_Spec);
624 Next (Form_Old_Spec);
625 end loop;
626 end;
627 end if;
628 end Analyze_Expression_Function;
629
630 ----------------------------------------
631 -- Analyze_Extended_Return_Statement --
632 ----------------------------------------
633
634 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
635 begin
636 Check_Compiler_Unit ("extended return statement", N);
637 Analyze_Return_Statement (N);
638 end Analyze_Extended_Return_Statement;
639
640 ----------------------------
641 -- Analyze_Function_Call --
642 ----------------------------
643
644 procedure Analyze_Function_Call (N : Node_Id) is
645 Actuals : constant List_Id := Parameter_Associations (N);
646 Func_Nam : constant Node_Id := Name (N);
647 Actual : Node_Id;
648
649 begin
650 Analyze (Func_Nam);
651
652 -- A call of the form A.B (X) may be an Ada 2005 call, which is
653 -- rewritten as B (A, X). If the rewriting is successful, the call
654 -- has been analyzed and we just return.
655
656 if Nkind (Func_Nam) = N_Selected_Component
657 and then Name (N) /= Func_Nam
658 and then Is_Rewrite_Substitution (N)
659 and then Present (Etype (N))
660 then
661 return;
662 end if;
663
664 -- If error analyzing name, then set Any_Type as result type and return
665
666 if Etype (Func_Nam) = Any_Type then
667 Set_Etype (N, Any_Type);
668 return;
669 end if;
670
671 -- Otherwise analyze the parameters
672
673 if Present (Actuals) then
674 Actual := First (Actuals);
675 while Present (Actual) loop
676 Analyze (Actual);
677 Check_Parameterless_Call (Actual);
678 Next (Actual);
679 end loop;
680 end if;
681
682 Analyze_Call (N);
683 end Analyze_Function_Call;
684
685 -----------------------------
686 -- Analyze_Function_Return --
687 -----------------------------
688
689 procedure Analyze_Function_Return (N : Node_Id) is
690 Loc : constant Source_Ptr := Sloc (N);
691 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
692 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
693
694 R_Type : constant Entity_Id := Etype (Scope_Id);
695 -- Function result subtype
696
697 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
698 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
699 -- aggregate in a return statement.
700
701 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
702 -- Check that the return_subtype_indication properly matches the result
703 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
704
705 -----------------------------------
706 -- Check_Aggregate_Accessibility --
707 -----------------------------------
708
709 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
710 Typ : constant Entity_Id := Etype (Aggr);
711 Assoc : Node_Id;
712 Discr : Entity_Id;
713 Expr : Node_Id;
714 Obj : Node_Id;
715
716 begin
717 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
718 Discr := First_Discriminant (Typ);
719 Assoc := First (Component_Associations (Aggr));
720 while Present (Discr) loop
721 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
722 Expr := Expression (Assoc);
723
724 if Nkind (Expr) = N_Attribute_Reference
725 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
726 then
727 Obj := Prefix (Expr);
728 while Nkind_In (Obj, N_Indexed_Component,
729 N_Selected_Component)
730 loop
731 Obj := Prefix (Obj);
732 end loop;
733
734 -- Do not check aliased formals or function calls. A
735 -- run-time check may still be needed ???
736
737 if Is_Entity_Name (Obj)
738 and then Comes_From_Source (Obj)
739 then
740 if Is_Formal (Entity (Obj))
741 and then Is_Aliased (Entity (Obj))
742 then
743 null;
744
745 elsif Object_Access_Level (Obj) >
746 Scope_Depth (Scope (Scope_Id))
747 then
748 Error_Msg_N
749 ("access discriminant in return aggregate would "
750 & "be a dangling reference", Obj);
751 end if;
752 end if;
753 end if;
754 end if;
755
756 Next_Discriminant (Discr);
757 end loop;
758 end if;
759 end Check_Aggregate_Accessibility;
760
761 -------------------------------------
762 -- Check_Return_Subtype_Indication --
763 -------------------------------------
764
765 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
766 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
767
768 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
769 -- Subtype given in the extended return statement (must match R_Type)
770
771 Subtype_Ind : constant Node_Id :=
772 Object_Definition (Original_Node (Obj_Decl));
773
774 procedure Error_No_Match (N : Node_Id);
775 -- Output error messages for case where types do not statically
776 -- match. N is the location for the messages.
777
778 --------------------
779 -- Error_No_Match --
780 --------------------
781
782 procedure Error_No_Match (N : Node_Id) is
783 begin
784 Error_Msg_N
785 ("subtype must statically match function result subtype", N);
786
787 if not Predicates_Match (R_Stm_Type, R_Type) then
788 Error_Msg_Node_2 := R_Type;
789 Error_Msg_NE
790 ("\predicate of& does not match predicate of&",
791 N, R_Stm_Type);
792 end if;
793 end Error_No_Match;
794
795 -- Start of processing for Check_Return_Subtype_Indication
796
797 begin
798 -- First, avoid cascaded errors
799
800 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
801 return;
802 end if;
803
804 -- "return access T" case; check that the return statement also has
805 -- "access T", and that the subtypes statically match:
806 -- if this is an access to subprogram the signatures must match.
807
808 if Is_Anonymous_Access_Type (R_Type) then
809 if Is_Anonymous_Access_Type (R_Stm_Type) then
810 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
811 then
812 if Base_Type (Designated_Type (R_Stm_Type)) /=
813 Base_Type (Designated_Type (R_Type))
814 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
815 then
816 Error_No_Match (Subtype_Mark (Subtype_Ind));
817 end if;
818
819 else
820 -- For two anonymous access to subprogram types, the types
821 -- themselves must be type conformant.
822
823 if not Conforming_Types
824 (R_Stm_Type, R_Type, Fully_Conformant)
825 then
826 Error_No_Match (Subtype_Ind);
827 end if;
828 end if;
829
830 else
831 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
832 end if;
833
834 -- If the return object is of an anonymous access type, then report
835 -- an error if the function's result type is not also anonymous.
836
837 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
838 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
839 Error_Msg_N
840 ("anonymous access not allowed for function with named access "
841 & "result", Subtype_Ind);
842
843 -- Subtype indication case: check that the return object's type is
844 -- covered by the result type, and that the subtypes statically match
845 -- when the result subtype is constrained. Also handle record types
846 -- with unknown discriminants for which we have built the underlying
847 -- record view. Coverage is needed to allow specific-type return
848 -- objects when the result type is class-wide (see AI05-32).
849
850 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
851 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
852 and then
853 Covers
854 (Base_Type (R_Type),
855 Underlying_Record_View (Base_Type (R_Stm_Type))))
856 then
857 -- A null exclusion may be present on the return type, on the
858 -- function specification, on the object declaration or on the
859 -- subtype itself.
860
861 if Is_Access_Type (R_Type)
862 and then
863 (Can_Never_Be_Null (R_Type)
864 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
865 Can_Never_Be_Null (R_Stm_Type)
866 then
867 Error_No_Match (Subtype_Ind);
868 end if;
869
870 -- AI05-103: for elementary types, subtypes must statically match
871
872 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
873 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
874 Error_No_Match (Subtype_Ind);
875 end if;
876 end if;
877
878 -- All remaining cases are illegal
879
880 -- Note: previous versions of this subprogram allowed the return
881 -- value to be the ancestor of the return type if the return type
882 -- was a null extension. This was plainly incorrect.
883
884 else
885 Error_Msg_N
886 ("wrong type for return_subtype_indication", Subtype_Ind);
887 end if;
888 end Check_Return_Subtype_Indication;
889
890 ---------------------
891 -- Local Variables --
892 ---------------------
893
894 Expr : Node_Id;
895 Obj_Decl : Node_Id := Empty;
896
897 -- Start of processing for Analyze_Function_Return
898
899 begin
900 Set_Return_Present (Scope_Id);
901
902 if Nkind (N) = N_Simple_Return_Statement then
903 Expr := Expression (N);
904
905 -- Guard against a malformed expression. The parser may have tried to
906 -- recover but the node is not analyzable.
907
908 if Nkind (Expr) = N_Error then
909 Set_Etype (Expr, Any_Type);
910 Expander_Mode_Save_And_Set (False);
911 return;
912
913 else
914 -- The resolution of a controlled [extension] aggregate associated
915 -- with a return statement creates a temporary which needs to be
916 -- finalized on function exit. Wrap the return statement inside a
917 -- block so that the finalization machinery can detect this case.
918 -- This early expansion is done only when the return statement is
919 -- not part of a handled sequence of statements.
920
921 if Nkind_In (Expr, N_Aggregate,
922 N_Extension_Aggregate)
923 and then Needs_Finalization (R_Type)
924 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
925 then
926 Rewrite (N,
927 Make_Block_Statement (Loc,
928 Handled_Statement_Sequence =>
929 Make_Handled_Sequence_Of_Statements (Loc,
930 Statements => New_List (Relocate_Node (N)))));
931
932 Analyze (N);
933 return;
934 end if;
935
936 Analyze (Expr);
937
938 -- Ada 2005 (AI-251): If the type of the returned object is
939 -- an access to an interface type then we add an implicit type
940 -- conversion to force the displacement of the "this" pointer to
941 -- reference the secondary dispatch table. We cannot delay the
942 -- generation of this implicit conversion until the expansion
943 -- because in this case the type resolution changes the decoration
944 -- of the expression node to match R_Type; by contrast, if the
945 -- returned object is a class-wide interface type then it is too
946 -- early to generate here the implicit conversion since the return
947 -- statement may be rewritten by the expander into an extended
948 -- return statement whose expansion takes care of adding the
949 -- implicit type conversion to displace the pointer to the object.
950
951 if Expander_Active
952 and then Serious_Errors_Detected = 0
953 and then Is_Access_Type (R_Type)
954 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
955 and then Is_Interface (Designated_Type (R_Type))
956 and then Is_Progenitor (Designated_Type (R_Type),
957 Designated_Type (Etype (Expr)))
958 then
959 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
960 Analyze (Expr);
961 end if;
962
963 Resolve (Expr, R_Type);
964 Check_Limited_Return (N, Expr, R_Type);
965
966 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
967 Check_Aggregate_Accessibility (Expr);
968 end if;
969 end if;
970
971 -- RETURN only allowed in SPARK as the last statement in function
972
973 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
974 and then
975 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
976 or else Present (Next (N)))
977 then
978 Check_SPARK_05_Restriction
979 ("RETURN should be the last statement in function", N);
980 end if;
981
982 else
983 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
984 Obj_Decl := Last (Return_Object_Declarations (N));
985
986 -- Analyze parts specific to extended_return_statement:
987
988 declare
989 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
990 HSS : constant Node_Id := Handled_Statement_Sequence (N);
991
992 begin
993 Expr := Expression (Obj_Decl);
994
995 -- Note: The check for OK_For_Limited_Init will happen in
996 -- Analyze_Object_Declaration; we treat it as a normal
997 -- object declaration.
998
999 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1000 Analyze (Obj_Decl);
1001
1002 Check_Return_Subtype_Indication (Obj_Decl);
1003
1004 if Present (HSS) then
1005 Analyze (HSS);
1006
1007 if Present (Exception_Handlers (HSS)) then
1008
1009 -- ???Has_Nested_Block_With_Handler needs to be set.
1010 -- Probably by creating an actual N_Block_Statement.
1011 -- Probably in Expand.
1012
1013 null;
1014 end if;
1015 end if;
1016
1017 -- Mark the return object as referenced, since the return is an
1018 -- implicit reference of the object.
1019
1020 Set_Referenced (Defining_Identifier (Obj_Decl));
1021
1022 Check_References (Stm_Entity);
1023
1024 -- Check RM 6.5 (5.9/3)
1025
1026 if Has_Aliased then
1027 if Ada_Version < Ada_2012 then
1028
1029 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1030 -- Can it really happen (extended return???)
1031
1032 Error_Msg_N
1033 ("aliased only allowed for limited return objects "
1034 & "in Ada 2012??", N);
1035
1036 elsif not Is_Limited_View (R_Type) then
1037 Error_Msg_N
1038 ("aliased only allowed for limited return objects", N);
1039 end if;
1040 end if;
1041 end;
1042 end if;
1043
1044 -- Case of Expr present
1045
1046 if Present (Expr) then
1047
1048 -- Defend against previous errors
1049
1050 if Nkind (Expr) = N_Empty
1051 or else No (Etype (Expr))
1052 then
1053 return;
1054 end if;
1055
1056 -- Apply constraint check. Note that this is done before the implicit
1057 -- conversion of the expression done for anonymous access types to
1058 -- ensure correct generation of the null-excluding check associated
1059 -- with null-excluding expressions found in return statements. We
1060 -- don't need a check if the subtype of the return object is the
1061 -- same as the result subtype of the function.
1062
1063 if Nkind (N) /= N_Extended_Return_Statement
1064 or else Nkind (Obj_Decl) /= N_Object_Declaration
1065 or else Nkind (Object_Definition (Obj_Decl)) not in N_Has_Entity
1066 or else Entity (Object_Definition (Obj_Decl)) /= R_Type
1067 then
1068 Apply_Constraint_Check (Expr, R_Type);
1069 end if;
1070
1071 -- The return value is converted to the return type of the function,
1072 -- which implies a predicate check if the return type is predicated.
1073 -- We do not apply the check to a case expression because it will
1074 -- be expanded into a series of return statements, each of which
1075 -- will receive a predicate check.
1076
1077 if Nkind (Expr) /= N_Case_Expression then
1078 Apply_Predicate_Check (Expr, R_Type);
1079 end if;
1080
1081 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1082 -- type, apply an implicit conversion of the expression to that type
1083 -- to force appropriate static and run-time accessibility checks.
1084
1085 if Ada_Version >= Ada_2005
1086 and then Ekind (R_Type) = E_Anonymous_Access_Type
1087 then
1088 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1089 Analyze_And_Resolve (Expr, R_Type);
1090
1091 -- If this is a local anonymous access to subprogram, the
1092 -- accessibility check can be applied statically. The return is
1093 -- illegal if the access type of the return expression is declared
1094 -- inside of the subprogram (except if it is the subtype indication
1095 -- of an extended return statement).
1096
1097 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1098 if not Comes_From_Source (Current_Scope)
1099 or else Ekind (Current_Scope) = E_Return_Statement
1100 then
1101 null;
1102
1103 elsif
1104 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1105 then
1106 Error_Msg_N ("cannot return local access to subprogram", N);
1107 end if;
1108
1109 -- The expression cannot be of a formal incomplete type
1110
1111 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1112 and then Is_Generic_Type (Etype (Expr))
1113 then
1114 Error_Msg_N
1115 ("cannot return expression of a formal incomplete type", N);
1116 end if;
1117
1118 -- If the result type is class-wide, then check that the return
1119 -- expression's type is not declared at a deeper level than the
1120 -- function (RM05-6.5(5.6/2)).
1121
1122 if Ada_Version >= Ada_2005
1123 and then Is_Class_Wide_Type (R_Type)
1124 then
1125 if Type_Access_Level (Etype (Expr)) >
1126 Subprogram_Access_Level (Scope_Id)
1127 then
1128 Error_Msg_N
1129 ("level of return expression type is deeper than "
1130 & "class-wide function!", Expr);
1131 end if;
1132 end if;
1133
1134 -- Check incorrect use of dynamically tagged expression
1135
1136 if Is_Tagged_Type (R_Type) then
1137 Check_Dynamically_Tagged_Expression
1138 (Expr => Expr,
1139 Typ => R_Type,
1140 Related_Nod => N);
1141 end if;
1142
1143 -- ??? A real run-time accessibility check is needed in cases
1144 -- involving dereferences of access parameters. For now we just
1145 -- check the static cases.
1146
1147 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1148 and then Is_Limited_View (Etype (Scope_Id))
1149 and then Object_Access_Level (Expr) >
1150 Subprogram_Access_Level (Scope_Id)
1151 then
1152 -- Suppress the message in a generic, where the rewriting
1153 -- is irrelevant.
1154
1155 if Inside_A_Generic then
1156 null;
1157
1158 else
1159 Rewrite (N,
1160 Make_Raise_Program_Error (Loc,
1161 Reason => PE_Accessibility_Check_Failed));
1162 Analyze (N);
1163
1164 Error_Msg_Warn := SPARK_Mode /= On;
1165 Error_Msg_N ("cannot return a local value by reference<<", N);
1166 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1167 end if;
1168 end if;
1169
1170 if Known_Null (Expr)
1171 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1172 and then Null_Exclusion_Present (Parent (Scope_Id))
1173 then
1174 Apply_Compile_Time_Constraint_Error
1175 (N => Expr,
1176 Msg => "(Ada 2005) null not allowed for "
1177 & "null-excluding return??",
1178 Reason => CE_Null_Not_Allowed);
1179 end if;
1180
1181 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1182 -- has no initializing expression.
1183
1184 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1185 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1186 Subprogram_Access_Level (Scope_Id)
1187 then
1188 Error_Msg_N
1189 ("level of return expression type is deeper than "
1190 & "class-wide function!", Obj_Decl);
1191 end if;
1192 end if;
1193 end Analyze_Function_Return;
1194
1195 -------------------------------------
1196 -- Analyze_Generic_Subprogram_Body --
1197 -------------------------------------
1198
1199 procedure Analyze_Generic_Subprogram_Body
1200 (N : Node_Id;
1201 Gen_Id : Entity_Id)
1202 is
1203 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1204 Kind : constant Entity_Kind := Ekind (Gen_Id);
1205 Body_Id : Entity_Id;
1206 New_N : Node_Id;
1207 Spec : Node_Id;
1208
1209 begin
1210 -- Copy body and disable expansion while analyzing the generic For a
1211 -- stub, do not copy the stub (which would load the proper body), this
1212 -- will be done when the proper body is analyzed.
1213
1214 if Nkind (N) /= N_Subprogram_Body_Stub then
1215 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1216 Rewrite (N, New_N);
1217
1218 -- Once the contents of the generic copy and the template are
1219 -- swapped, do the same for their respective aspect specifications.
1220
1221 Exchange_Aspects (N, New_N);
1222
1223 -- Collect all contract-related source pragmas found within the
1224 -- template and attach them to the contract of the subprogram body.
1225 -- This contract is used in the capture of global references within
1226 -- annotations.
1227
1228 Create_Generic_Contract (N);
1229
1230 Start_Generic;
1231 end if;
1232
1233 Spec := Specification (N);
1234
1235 -- Within the body of the generic, the subprogram is callable, and
1236 -- behaves like the corresponding non-generic unit.
1237
1238 Body_Id := Defining_Entity (Spec);
1239
1240 if Kind = E_Generic_Procedure
1241 and then Nkind (Spec) /= N_Procedure_Specification
1242 then
1243 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1244 return;
1245
1246 elsif Kind = E_Generic_Function
1247 and then Nkind (Spec) /= N_Function_Specification
1248 then
1249 Error_Msg_N ("invalid body for generic function ", Body_Id);
1250 return;
1251 end if;
1252
1253 Set_Corresponding_Body (Gen_Decl, Body_Id);
1254
1255 if Has_Completion (Gen_Id)
1256 and then Nkind (Parent (N)) /= N_Subunit
1257 then
1258 Error_Msg_N ("duplicate generic body", N);
1259 return;
1260 else
1261 Set_Has_Completion (Gen_Id);
1262 end if;
1263
1264 if Nkind (N) = N_Subprogram_Body_Stub then
1265 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1266 else
1267 Set_Corresponding_Spec (N, Gen_Id);
1268 end if;
1269
1270 if Nkind (Parent (N)) = N_Compilation_Unit then
1271 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1272 end if;
1273
1274 -- Make generic parameters immediately visible in the body. They are
1275 -- needed to process the formals declarations. Then make the formals
1276 -- visible in a separate step.
1277
1278 Push_Scope (Gen_Id);
1279
1280 declare
1281 E : Entity_Id;
1282 First_Ent : Entity_Id;
1283
1284 begin
1285 First_Ent := First_Entity (Gen_Id);
1286
1287 E := First_Ent;
1288 while Present (E) and then not Is_Formal (E) loop
1289 Install_Entity (E);
1290 Next_Entity (E);
1291 end loop;
1292
1293 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1294
1295 -- Now generic formals are visible, and the specification can be
1296 -- analyzed, for subsequent conformance check.
1297
1298 Body_Id := Analyze_Subprogram_Specification (Spec);
1299
1300 -- Make formal parameters visible
1301
1302 if Present (E) then
1303
1304 -- E is the first formal parameter, we loop through the formals
1305 -- installing them so that they will be visible.
1306
1307 Set_First_Entity (Gen_Id, E);
1308 while Present (E) loop
1309 Install_Entity (E);
1310 Next_Formal (E);
1311 end loop;
1312 end if;
1313
1314 -- Visible generic entity is callable within its own body
1315
1316 Set_Ekind (Gen_Id, Ekind (Body_Id));
1317 Set_Ekind (Body_Id, E_Subprogram_Body);
1318 Set_Convention (Body_Id, Convention (Gen_Id));
1319 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1320 Set_Scope (Body_Id, Scope (Gen_Id));
1321
1322 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1323
1324 if Nkind (N) = N_Subprogram_Body_Stub then
1325
1326 -- No body to analyze, so restore state of generic unit
1327
1328 Set_Ekind (Gen_Id, Kind);
1329 Set_Ekind (Body_Id, Kind);
1330
1331 if Present (First_Ent) then
1332 Set_First_Entity (Gen_Id, First_Ent);
1333 end if;
1334
1335 End_Scope;
1336 return;
1337 end if;
1338
1339 -- If this is a compilation unit, it must be made visible explicitly,
1340 -- because the compilation of the declaration, unlike other library
1341 -- unit declarations, does not. If it is not a unit, the following
1342 -- is redundant but harmless.
1343
1344 Set_Is_Immediately_Visible (Gen_Id);
1345 Reference_Body_Formals (Gen_Id, Body_Id);
1346
1347 if Is_Child_Unit (Gen_Id) then
1348 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1349 end if;
1350
1351 Set_Actual_Subtypes (N, Current_Scope);
1352
1353 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1354 Set_SPARK_Pragma_Inherited (Body_Id);
1355
1356 -- Analyze any aspect specifications that appear on the generic
1357 -- subprogram body.
1358
1359 if Has_Aspects (N) then
1360 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1361 end if;
1362
1363 Analyze_Declarations (Declarations (N));
1364 Check_Completion;
1365
1366 -- Process the contract of the subprogram body after all declarations
1367 -- have been analyzed. This ensures that any contract-related pragmas
1368 -- are available through the N_Contract node of the body.
1369
1370 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1371
1372 Analyze (Handled_Statement_Sequence (N));
1373 Save_Global_References (Original_Node (N));
1374
1375 -- Prior to exiting the scope, include generic formals again (if any
1376 -- are present) in the set of local entities.
1377
1378 if Present (First_Ent) then
1379 Set_First_Entity (Gen_Id, First_Ent);
1380 end if;
1381
1382 Check_References (Gen_Id);
1383 end;
1384
1385 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1386 Update_Use_Clause_Chain;
1387 Validate_Categorization_Dependency (N, Gen_Id);
1388 End_Scope;
1389 Check_Subprogram_Order (N);
1390
1391 -- Outside of its body, unit is generic again
1392
1393 Set_Ekind (Gen_Id, Kind);
1394 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1395
1396 if Style_Check then
1397 Style.Check_Identifier (Body_Id, Gen_Id);
1398 end if;
1399
1400 End_Generic;
1401 end Analyze_Generic_Subprogram_Body;
1402
1403 ----------------------------
1404 -- Analyze_Null_Procedure --
1405 ----------------------------
1406
1407 -- WARNING: This routine manages Ghost regions. Return statements must be
1408 -- replaced by gotos that jump to the end of the routine and restore the
1409 -- Ghost mode.
1410
1411 procedure Analyze_Null_Procedure
1412 (N : Node_Id;
1413 Is_Completion : out Boolean)
1414 is
1415 Loc : constant Source_Ptr := Sloc (N);
1416 Spec : constant Node_Id := Specification (N);
1417
1418 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1419 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1420 Saved_ISMP : constant Boolean :=
1421 Ignore_SPARK_Mode_Pragmas_In_Instance;
1422 -- Save the Ghost and SPARK mode-related data to restore on exit
1423
1424 Designator : Entity_Id;
1425 Form : Node_Id;
1426 Null_Body : Node_Id := Empty;
1427 Null_Stmt : Node_Id := Null_Statement (Spec);
1428 Prev : Entity_Id;
1429
1430 begin
1431 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1432
1433 -- A null procedure is Ghost when it is stand-alone and is subject to
1434 -- pragma Ghost, or when the corresponding spec is Ghost. Set the mode
1435 -- now, to ensure that any nodes generated during analysis and expansion
1436 -- are properly marked as Ghost.
1437
1438 if Present (Prev) then
1439 Mark_And_Set_Ghost_Body (N, Prev);
1440 end if;
1441
1442 -- Capture the profile of the null procedure before analysis, for
1443 -- expansion at the freeze point and at each point of call. The body is
1444 -- used if the procedure has preconditions, or if it is a completion. In
1445 -- the first case the body is analyzed at the freeze point, in the other
1446 -- it replaces the null procedure declaration.
1447
1448 -- For a null procedure that comes from source, a NULL statement is
1449 -- provided by the parser, which carries the source location of the
1450 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1451 -- from expansion, create one now.
1452
1453 if No (Null_Stmt) then
1454 Null_Stmt := Make_Null_Statement (Loc);
1455 end if;
1456
1457 Null_Body :=
1458 Make_Subprogram_Body (Loc,
1459 Specification => New_Copy_Tree (Spec),
1460 Declarations => New_List,
1461 Handled_Statement_Sequence =>
1462 Make_Handled_Sequence_Of_Statements (Loc,
1463 Statements => New_List (Null_Stmt)));
1464
1465 -- Create new entities for body and formals
1466
1467 Set_Defining_Unit_Name (Specification (Null_Body),
1468 Make_Defining_Identifier
1469 (Sloc (Defining_Entity (N)),
1470 Chars (Defining_Entity (N))));
1471
1472 Form := First (Parameter_Specifications (Specification (Null_Body)));
1473 while Present (Form) loop
1474 Set_Defining_Identifier (Form,
1475 Make_Defining_Identifier
1476 (Sloc (Defining_Identifier (Form)),
1477 Chars (Defining_Identifier (Form))));
1478 Next (Form);
1479 end loop;
1480
1481 -- Determine whether the null procedure may be a completion of a generic
1482 -- suprogram, in which case we use the new null body as the completion
1483 -- and set minimal semantic information on the original declaration,
1484 -- which is rewritten as a null statement.
1485
1486 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1487 Insert_Before (N, Null_Body);
1488 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1489
1490 Rewrite (N, Make_Null_Statement (Loc));
1491 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1492 Is_Completion := True;
1493
1494 goto Leave;
1495
1496 else
1497 -- Resolve the types of the formals now, because the freeze point may
1498 -- appear in a different context, e.g. an instantiation.
1499
1500 Form := First (Parameter_Specifications (Specification (Null_Body)));
1501 while Present (Form) loop
1502 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1503 Find_Type (Parameter_Type (Form));
1504
1505 elsif No (Access_To_Subprogram_Definition
1506 (Parameter_Type (Form)))
1507 then
1508 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1509
1510 -- The case of a null procedure with a formal that is an
1511 -- access-to-subprogram type, and that is used as an actual
1512 -- in an instantiation is left to the enthusiastic reader.
1513
1514 else
1515 null;
1516 end if;
1517
1518 Next (Form);
1519 end loop;
1520 end if;
1521
1522 -- If there are previous overloadable entities with the same name, check
1523 -- whether any of them is completed by the null procedure.
1524
1525 if Present (Prev) and then Is_Overloadable (Prev) then
1526 Designator := Analyze_Subprogram_Specification (Spec);
1527 Prev := Find_Corresponding_Spec (N);
1528 end if;
1529
1530 if No (Prev) or else not Comes_From_Source (Prev) then
1531 Designator := Analyze_Subprogram_Specification (Spec);
1532 Set_Has_Completion (Designator);
1533
1534 -- Signal to caller that this is a procedure declaration
1535
1536 Is_Completion := False;
1537
1538 -- Null procedures are always inlined, but generic formal subprograms
1539 -- which appear as such in the internal instance of formal packages,
1540 -- need no completion and are not marked Inline.
1541
1542 if Expander_Active
1543 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1544 then
1545 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1546 Set_Body_To_Inline (N, Null_Body);
1547 Set_Is_Inlined (Designator);
1548 end if;
1549
1550 else
1551 -- The null procedure is a completion. We unconditionally rewrite
1552 -- this as a null body (even if expansion is not active), because
1553 -- there are various error checks that are applied on this body
1554 -- when it is analyzed (e.g. correct aspect placement).
1555
1556 if Has_Completion (Prev) then
1557 Error_Msg_Sloc := Sloc (Prev);
1558 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1559 end if;
1560
1561 Check_Previous_Null_Procedure (N, Prev);
1562
1563 Is_Completion := True;
1564 Rewrite (N, Null_Body);
1565 Analyze (N);
1566 end if;
1567
1568 <<Leave>>
1569 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
1570 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1571 end Analyze_Null_Procedure;
1572
1573 -----------------------------
1574 -- Analyze_Operator_Symbol --
1575 -----------------------------
1576
1577 -- An operator symbol such as "+" or "and" may appear in context where the
1578 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1579 -- is just a string, as in (conjunction = "or"). In these cases the parser
1580 -- generates this node, and the semantics does the disambiguation. Other
1581 -- such case are actuals in an instantiation, the generic unit in an
1582 -- instantiation, and pragma arguments.
1583
1584 procedure Analyze_Operator_Symbol (N : Node_Id) is
1585 Par : constant Node_Id := Parent (N);
1586
1587 begin
1588 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1589 or else Nkind (Par) = N_Function_Instantiation
1590 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1591 or else (Nkind (Par) = N_Pragma_Argument_Association
1592 and then not Is_Pragma_String_Literal (Par))
1593 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1594 or else (Nkind (Par) = N_Attribute_Reference
1595 and then Attribute_Name (Par) /= Name_Value)
1596 then
1597 Find_Direct_Name (N);
1598
1599 else
1600 Change_Operator_Symbol_To_String_Literal (N);
1601 Analyze (N);
1602 end if;
1603 end Analyze_Operator_Symbol;
1604
1605 -----------------------------------
1606 -- Analyze_Parameter_Association --
1607 -----------------------------------
1608
1609 procedure Analyze_Parameter_Association (N : Node_Id) is
1610 begin
1611 Analyze (Explicit_Actual_Parameter (N));
1612 end Analyze_Parameter_Association;
1613
1614 ----------------------------
1615 -- Analyze_Procedure_Call --
1616 ----------------------------
1617
1618 -- WARNING: This routine manages Ghost regions. Return statements must be
1619 -- replaced by gotos that jump to the end of the routine and restore the
1620 -- Ghost mode.
1621
1622 procedure Analyze_Procedure_Call (N : Node_Id) is
1623 procedure Analyze_Call_And_Resolve;
1624 -- Do Analyze and Resolve calls for procedure call. At the end, check
1625 -- for illegal order dependence.
1626 -- ??? where is the check for illegal order dependencies?
1627
1628 ------------------------------
1629 -- Analyze_Call_And_Resolve --
1630 ------------------------------
1631
1632 procedure Analyze_Call_And_Resolve is
1633 begin
1634 if Nkind (N) = N_Procedure_Call_Statement then
1635 Analyze_Call (N);
1636 Resolve (N, Standard_Void_Type);
1637 else
1638 Analyze (N);
1639 end if;
1640 end Analyze_Call_And_Resolve;
1641
1642 -- Local variables
1643
1644 Actuals : constant List_Id := Parameter_Associations (N);
1645 Loc : constant Source_Ptr := Sloc (N);
1646 P : constant Node_Id := Name (N);
1647
1648 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1649 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1650 -- Save the Ghost-related attributes to restore on exit
1651
1652 Actual : Node_Id;
1653 New_N : Node_Id;
1654
1655 -- Start of processing for Analyze_Procedure_Call
1656
1657 begin
1658 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1659 -- a procedure call or an entry call. The prefix may denote an access
1660 -- to subprogram type, in which case an implicit dereference applies.
1661 -- If the prefix is an indexed component (without implicit dereference)
1662 -- then the construct denotes a call to a member of an entire family.
1663 -- If the prefix is a simple name, it may still denote a call to a
1664 -- parameterless member of an entry family. Resolution of these various
1665 -- interpretations is delicate.
1666
1667 -- Do not analyze machine code statements to avoid rejecting them in
1668 -- CodePeer mode.
1669
1670 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1671 Set_Etype (P, Standard_Void_Type);
1672 else
1673 Analyze (P);
1674 end if;
1675
1676 -- If this is a call of the form Obj.Op, the call may have been analyzed
1677 -- and possibly rewritten into a block, in which case we are done.
1678
1679 if Analyzed (N) then
1680 return;
1681
1682 -- If there is an error analyzing the name (which may have been
1683 -- rewritten if the original call was in prefix notation) then error
1684 -- has been emitted already, mark node and return.
1685
1686 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1687 Set_Etype (N, Any_Type);
1688 return;
1689 end if;
1690
1691 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1692 -- Set the mode now to ensure that any nodes generated during analysis
1693 -- and expansion are properly marked as Ghost.
1694
1695 Mark_And_Set_Ghost_Procedure_Call (N);
1696
1697 -- Otherwise analyze the parameters
1698
1699 if Present (Actuals) then
1700 Actual := First (Actuals);
1701
1702 while Present (Actual) loop
1703 Analyze (Actual);
1704 Check_Parameterless_Call (Actual);
1705 Next (Actual);
1706 end loop;
1707 end if;
1708
1709 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1710
1711 if Nkind (P) = N_Attribute_Reference
1712 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1713 Name_Elab_Body,
1714 Name_Elab_Subp_Body)
1715 then
1716 if Present (Actuals) then
1717 Error_Msg_N
1718 ("no parameters allowed for this call", First (Actuals));
1719 goto Leave;
1720 end if;
1721
1722 Set_Etype (N, Standard_Void_Type);
1723 Set_Analyzed (N);
1724
1725 elsif Is_Entity_Name (P)
1726 and then Is_Record_Type (Etype (Entity (P)))
1727 and then Remote_AST_I_Dereference (P)
1728 then
1729 goto Leave;
1730
1731 elsif Is_Entity_Name (P)
1732 and then Ekind (Entity (P)) /= E_Entry_Family
1733 then
1734 if Is_Access_Type (Etype (P))
1735 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1736 and then No (Actuals)
1737 and then Comes_From_Source (N)
1738 then
1739 Error_Msg_N ("missing explicit dereference in call", N);
1740 end if;
1741
1742 Analyze_Call_And_Resolve;
1743
1744 -- If the prefix is the simple name of an entry family, this is a
1745 -- parameterless call from within the task body itself.
1746
1747 elsif Is_Entity_Name (P)
1748 and then Nkind (P) = N_Identifier
1749 and then Ekind (Entity (P)) = E_Entry_Family
1750 and then Present (Actuals)
1751 and then No (Next (First (Actuals)))
1752 then
1753 -- Can be call to parameterless entry family. What appears to be the
1754 -- sole argument is in fact the entry index. Rewrite prefix of node
1755 -- accordingly. Source representation is unchanged by this
1756 -- transformation.
1757
1758 New_N :=
1759 Make_Indexed_Component (Loc,
1760 Prefix =>
1761 Make_Selected_Component (Loc,
1762 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1763 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1764 Expressions => Actuals);
1765 Set_Name (N, New_N);
1766 Set_Etype (New_N, Standard_Void_Type);
1767 Set_Parameter_Associations (N, No_List);
1768 Analyze_Call_And_Resolve;
1769
1770 elsif Nkind (P) = N_Explicit_Dereference then
1771 if Ekind (Etype (P)) = E_Subprogram_Type then
1772 Analyze_Call_And_Resolve;
1773 else
1774 Error_Msg_N ("expect access to procedure in call", P);
1775 end if;
1776
1777 -- The name can be a selected component or an indexed component that
1778 -- yields an access to subprogram. Such a prefix is legal if the call
1779 -- has parameter associations.
1780
1781 elsif Is_Access_Type (Etype (P))
1782 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1783 then
1784 if Present (Actuals) then
1785 Analyze_Call_And_Resolve;
1786 else
1787 Error_Msg_N ("missing explicit dereference in call ", N);
1788 end if;
1789
1790 -- If not an access to subprogram, then the prefix must resolve to the
1791 -- name of an entry, entry family, or protected operation.
1792
1793 -- For the case of a simple entry call, P is a selected component where
1794 -- the prefix is the task and the selector name is the entry. A call to
1795 -- a protected procedure will have the same syntax. If the protected
1796 -- object contains overloaded operations, the entity may appear as a
1797 -- function, the context will select the operation whose type is Void.
1798
1799 elsif Nkind (P) = N_Selected_Component
1800 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1801 E_Function,
1802 E_Procedure)
1803 then
1804 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1805 -- in prefix notation may still be missing its controlling argument,
1806 -- so perform the transformation now.
1807
1808 if SPARK_Mode = On and then In_Inlined_Body then
1809 declare
1810 Subp : constant Entity_Id := Entity (Selector_Name (P));
1811 Typ : constant Entity_Id := Etype (Prefix (P));
1812
1813 begin
1814 if Is_Tagged_Type (Typ)
1815 and then Present (First_Formal (Subp))
1816 and then (Etype (First_Formal (Subp)) = Typ
1817 or else
1818 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1819 and then Try_Object_Operation (P)
1820 then
1821 return;
1822
1823 else
1824 Analyze_Call_And_Resolve;
1825 end if;
1826 end;
1827
1828 else
1829 Analyze_Call_And_Resolve;
1830 end if;
1831
1832 elsif Nkind (P) = N_Selected_Component
1833 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1834 and then Present (Actuals)
1835 and then No (Next (First (Actuals)))
1836 then
1837 -- Can be call to parameterless entry family. What appears to be the
1838 -- sole argument is in fact the entry index. Rewrite prefix of node
1839 -- accordingly. Source representation is unchanged by this
1840 -- transformation.
1841
1842 New_N :=
1843 Make_Indexed_Component (Loc,
1844 Prefix => New_Copy (P),
1845 Expressions => Actuals);
1846 Set_Name (N, New_N);
1847 Set_Etype (New_N, Standard_Void_Type);
1848 Set_Parameter_Associations (N, No_List);
1849 Analyze_Call_And_Resolve;
1850
1851 -- For the case of a reference to an element of an entry family, P is
1852 -- an indexed component whose prefix is a selected component (task and
1853 -- entry family), and whose index is the entry family index.
1854
1855 elsif Nkind (P) = N_Indexed_Component
1856 and then Nkind (Prefix (P)) = N_Selected_Component
1857 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1858 then
1859 Analyze_Call_And_Resolve;
1860
1861 -- If the prefix is the name of an entry family, it is a call from
1862 -- within the task body itself.
1863
1864 elsif Nkind (P) = N_Indexed_Component
1865 and then Nkind (Prefix (P)) = N_Identifier
1866 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1867 then
1868 New_N :=
1869 Make_Selected_Component (Loc,
1870 Prefix =>
1871 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1872 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1873 Rewrite (Prefix (P), New_N);
1874 Analyze (P);
1875 Analyze_Call_And_Resolve;
1876
1877 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1878 -- procedure name, so the construct can only be a qualified expression.
1879
1880 elsif Nkind (P) = N_Qualified_Expression
1881 and then Ada_Version >= Ada_2012
1882 then
1883 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1884 Analyze (N);
1885
1886 -- Anything else is an error
1887
1888 else
1889 Error_Msg_N ("invalid procedure or entry call", N);
1890 end if;
1891
1892 <<Leave>>
1893 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1894 end Analyze_Procedure_Call;
1895
1896 ------------------------------
1897 -- Analyze_Return_Statement --
1898 ------------------------------
1899
1900 procedure Analyze_Return_Statement (N : Node_Id) is
1901 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
1902 N_Simple_Return_Statement));
1903
1904 Returns_Object : constant Boolean :=
1905 Nkind (N) = N_Extended_Return_Statement
1906 or else
1907 (Nkind (N) = N_Simple_Return_Statement
1908 and then Present (Expression (N)));
1909 -- True if we're returning something; that is, "return <expression>;"
1910 -- or "return Result : T [:= ...]". False for "return;". Used for error
1911 -- checking: If Returns_Object is True, N should apply to a function
1912 -- body; otherwise N should apply to a procedure body, entry body,
1913 -- accept statement, or extended return statement.
1914
1915 function Find_What_It_Applies_To return Entity_Id;
1916 -- Find the entity representing the innermost enclosing body, accept
1917 -- statement, or extended return statement. If the result is a callable
1918 -- construct or extended return statement, then this will be the value
1919 -- of the Return_Applies_To attribute. Otherwise, the program is
1920 -- illegal. See RM-6.5(4/2).
1921
1922 -----------------------------
1923 -- Find_What_It_Applies_To --
1924 -----------------------------
1925
1926 function Find_What_It_Applies_To return Entity_Id is
1927 Result : Entity_Id := Empty;
1928
1929 begin
1930 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1931 -- and postconditions.
1932
1933 for J in reverse 0 .. Scope_Stack.Last loop
1934 Result := Scope_Stack.Table (J).Entity;
1935 exit when not Ekind_In (Result, E_Block, E_Loop)
1936 and then Chars (Result) /= Name_uPostconditions;
1937 end loop;
1938
1939 pragma Assert (Present (Result));
1940 return Result;
1941 end Find_What_It_Applies_To;
1942
1943 -- Local declarations
1944
1945 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1946 Kind : constant Entity_Kind := Ekind (Scope_Id);
1947 Loc : constant Source_Ptr := Sloc (N);
1948 Stm_Entity : constant Entity_Id :=
1949 New_Internal_Entity
1950 (E_Return_Statement, Current_Scope, Loc, 'R');
1951
1952 -- Start of processing for Analyze_Return_Statement
1953
1954 begin
1955 Set_Return_Statement_Entity (N, Stm_Entity);
1956
1957 Set_Etype (Stm_Entity, Standard_Void_Type);
1958 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1959
1960 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1961 -- (4/2): an inner return statement will apply to this extended return.
1962
1963 if Nkind (N) = N_Extended_Return_Statement then
1964 Push_Scope (Stm_Entity);
1965 end if;
1966
1967 -- Check that pragma No_Return is obeyed. Don't complain about the
1968 -- implicitly-generated return that is placed at the end.
1969
1970 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1971 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1972 end if;
1973
1974 -- Warn on any unassigned OUT parameters if in procedure
1975
1976 if Ekind (Scope_Id) = E_Procedure then
1977 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1978 end if;
1979
1980 -- Check that functions return objects, and other things do not
1981
1982 if Kind = E_Function or else Kind = E_Generic_Function then
1983 if not Returns_Object then
1984 Error_Msg_N ("missing expression in return from function", N);
1985 end if;
1986
1987 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1988 if Returns_Object then
1989 Error_Msg_N ("procedure cannot return value (use function)", N);
1990 end if;
1991
1992 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1993 if Returns_Object then
1994 if Is_Protected_Type (Scope (Scope_Id)) then
1995 Error_Msg_N ("entry body cannot return value", N);
1996 else
1997 Error_Msg_N ("accept statement cannot return value", N);
1998 end if;
1999 end if;
2000
2001 elsif Kind = E_Return_Statement then
2002
2003 -- We are nested within another return statement, which must be an
2004 -- extended_return_statement.
2005
2006 if Returns_Object then
2007 if Nkind (N) = N_Extended_Return_Statement then
2008 Error_Msg_N
2009 ("extended return statement cannot be nested (use `RETURN;`)",
2010 N);
2011
2012 -- Case of a simple return statement with a value inside extended
2013 -- return statement.
2014
2015 else
2016 Error_Msg_N
2017 ("return nested in extended return statement cannot return "
2018 & "value (use `RETURN;`)", N);
2019 end if;
2020 end if;
2021
2022 else
2023 Error_Msg_N ("illegal context for return statement", N);
2024 end if;
2025
2026 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2027 Analyze_Function_Return (N);
2028
2029 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2030 Set_Return_Present (Scope_Id);
2031 end if;
2032
2033 if Nkind (N) = N_Extended_Return_Statement then
2034 End_Scope;
2035 end if;
2036
2037 Kill_Current_Values (Last_Assignment_Only => True);
2038 Check_Unreachable_Code (N);
2039
2040 Analyze_Dimension (N);
2041 end Analyze_Return_Statement;
2042
2043 -------------------------------------
2044 -- Analyze_Simple_Return_Statement --
2045 -------------------------------------
2046
2047 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2048 begin
2049 if Present (Expression (N)) then
2050 Mark_Coextensions (N, Expression (N));
2051 end if;
2052
2053 Analyze_Return_Statement (N);
2054 end Analyze_Simple_Return_Statement;
2055
2056 -------------------------
2057 -- Analyze_Return_Type --
2058 -------------------------
2059
2060 procedure Analyze_Return_Type (N : Node_Id) is
2061 Designator : constant Entity_Id := Defining_Entity (N);
2062 Typ : Entity_Id := Empty;
2063
2064 begin
2065 -- Normal case where result definition does not indicate an error
2066
2067 if Result_Definition (N) /= Error then
2068 if Nkind (Result_Definition (N)) = N_Access_Definition then
2069 Check_SPARK_05_Restriction
2070 ("access result is not allowed", Result_Definition (N));
2071
2072 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2073
2074 declare
2075 AD : constant Node_Id :=
2076 Access_To_Subprogram_Definition (Result_Definition (N));
2077 begin
2078 if Present (AD) and then Protected_Present (AD) then
2079 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2080 else
2081 Typ := Access_Definition (N, Result_Definition (N));
2082 end if;
2083 end;
2084
2085 Set_Parent (Typ, Result_Definition (N));
2086 Set_Is_Local_Anonymous_Access (Typ);
2087 Set_Etype (Designator, Typ);
2088
2089 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2090
2091 Null_Exclusion_Static_Checks (N);
2092
2093 -- Subtype_Mark case
2094
2095 else
2096 Find_Type (Result_Definition (N));
2097 Typ := Entity (Result_Definition (N));
2098 Set_Etype (Designator, Typ);
2099
2100 -- Unconstrained array as result is not allowed in SPARK
2101
2102 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2103 Check_SPARK_05_Restriction
2104 ("returning an unconstrained array is not allowed",
2105 Result_Definition (N));
2106 end if;
2107
2108 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2109
2110 Null_Exclusion_Static_Checks (N);
2111
2112 -- If a null exclusion is imposed on the result type, then create
2113 -- a null-excluding itype (an access subtype) and use it as the
2114 -- function's Etype. Note that the null exclusion checks are done
2115 -- right before this, because they don't get applied to types that
2116 -- do not come from source.
2117
2118 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2119 Set_Etype (Designator,
2120 Create_Null_Excluding_Itype
2121 (T => Typ,
2122 Related_Nod => N,
2123 Scope_Id => Scope (Current_Scope)));
2124
2125 -- The new subtype must be elaborated before use because
2126 -- it is visible outside of the function. However its base
2127 -- type may not be frozen yet, so the reference that will
2128 -- force elaboration must be attached to the freezing of
2129 -- the base type.
2130
2131 -- If the return specification appears on a proper body,
2132 -- the subtype will have been created already on the spec.
2133
2134 if Is_Frozen (Typ) then
2135 if Nkind (Parent (N)) = N_Subprogram_Body
2136 and then Nkind (Parent (Parent (N))) = N_Subunit
2137 then
2138 null;
2139 else
2140 Build_Itype_Reference (Etype (Designator), Parent (N));
2141 end if;
2142
2143 else
2144 Ensure_Freeze_Node (Typ);
2145
2146 declare
2147 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2148 begin
2149 Set_Itype (IR, Etype (Designator));
2150 Append_Freeze_Actions (Typ, New_List (IR));
2151 end;
2152 end if;
2153
2154 else
2155 Set_Etype (Designator, Typ);
2156 end if;
2157
2158 if Ekind (Typ) = E_Incomplete_Type
2159 or else (Is_Class_Wide_Type (Typ)
2160 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2161 then
2162 -- AI05-0151: Tagged incomplete types are allowed in all formal
2163 -- parts. Untagged incomplete types are not allowed in bodies.
2164 -- As a consequence, limited views cannot appear in a basic
2165 -- declaration that is itself within a body, because there is
2166 -- no point at which the non-limited view will become visible.
2167
2168 if Ada_Version >= Ada_2012 then
2169 if From_Limited_With (Typ) and then In_Package_Body then
2170 Error_Msg_NE
2171 ("invalid use of incomplete type&",
2172 Result_Definition (N), Typ);
2173
2174 -- The return type of a subprogram body cannot be of a
2175 -- formal incomplete type.
2176
2177 elsif Is_Generic_Type (Typ)
2178 and then Nkind (Parent (N)) = N_Subprogram_Body
2179 then
2180 Error_Msg_N
2181 ("return type cannot be a formal incomplete type",
2182 Result_Definition (N));
2183
2184 elsif Is_Class_Wide_Type (Typ)
2185 and then Is_Generic_Type (Root_Type (Typ))
2186 and then Nkind (Parent (N)) = N_Subprogram_Body
2187 then
2188 Error_Msg_N
2189 ("return type cannot be a formal incomplete type",
2190 Result_Definition (N));
2191
2192 elsif Is_Tagged_Type (Typ) then
2193 null;
2194
2195 -- Use is legal in a thunk generated for an operation
2196 -- inherited from a progenitor.
2197
2198 elsif Is_Thunk (Designator)
2199 and then Present (Non_Limited_View (Typ))
2200 then
2201 null;
2202
2203 elsif Nkind (Parent (N)) = N_Subprogram_Body
2204 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2205 N_Entry_Body)
2206 then
2207 Error_Msg_NE
2208 ("invalid use of untagged incomplete type&",
2209 Designator, Typ);
2210 end if;
2211
2212 -- The type must be completed in the current package. This
2213 -- is checked at the end of the package declaration when
2214 -- Taft-amendment types are identified. If the return type
2215 -- is class-wide, there is no required check, the type can
2216 -- be a bona fide TAT.
2217
2218 if Ekind (Scope (Current_Scope)) = E_Package
2219 and then In_Private_Part (Scope (Current_Scope))
2220 and then not Is_Class_Wide_Type (Typ)
2221 then
2222 Append_Elmt (Designator, Private_Dependents (Typ));
2223 end if;
2224
2225 else
2226 Error_Msg_NE
2227 ("invalid use of incomplete type&", Designator, Typ);
2228 end if;
2229 end if;
2230 end if;
2231
2232 -- Case where result definition does indicate an error
2233
2234 else
2235 Set_Etype (Designator, Any_Type);
2236 end if;
2237 end Analyze_Return_Type;
2238
2239 -----------------------------
2240 -- Analyze_Subprogram_Body --
2241 -----------------------------
2242
2243 procedure Analyze_Subprogram_Body (N : Node_Id) is
2244 Loc : constant Source_Ptr := Sloc (N);
2245 Body_Spec : constant Node_Id := Specification (N);
2246 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2247
2248 begin
2249 if Debug_Flag_C then
2250 Write_Str ("==> subprogram body ");
2251 Write_Name (Chars (Body_Id));
2252 Write_Str (" from ");
2253 Write_Location (Loc);
2254 Write_Eol;
2255 Indent;
2256 end if;
2257
2258 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2259
2260 -- The real work is split out into the helper, so it can do "return;"
2261 -- without skipping the debug output:
2262
2263 Analyze_Subprogram_Body_Helper (N);
2264
2265 if Debug_Flag_C then
2266 Outdent;
2267 Write_Str ("<== subprogram body ");
2268 Write_Name (Chars (Body_Id));
2269 Write_Str (" from ");
2270 Write_Location (Loc);
2271 Write_Eol;
2272 end if;
2273 end Analyze_Subprogram_Body;
2274
2275 ------------------------------------
2276 -- Analyze_Subprogram_Body_Helper --
2277 ------------------------------------
2278
2279 -- This procedure is called for regular subprogram bodies, generic bodies,
2280 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2281 -- specification matters, and is used to create a proper declaration for
2282 -- the subprogram, or to perform conformance checks.
2283
2284 -- WARNING: This routine manages Ghost regions. Return statements must be
2285 -- replaced by gotos that jump to the end of the routine and restore the
2286 -- Ghost mode.
2287
2288 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2289 Body_Spec : Node_Id := Specification (N);
2290 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2291 Loc : constant Source_Ptr := Sloc (N);
2292 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2293
2294 Conformant : Boolean;
2295 Desig_View : Entity_Id := Empty;
2296 Exch_Views : Elist_Id := No_Elist;
2297 HSS : Node_Id;
2298 Mask_Types : Elist_Id := No_Elist;
2299 Prot_Typ : Entity_Id := Empty;
2300 Spec_Decl : Node_Id := Empty;
2301 Spec_Id : Entity_Id;
2302
2303 Last_Real_Spec_Entity : Entity_Id := Empty;
2304 -- When we analyze a separate spec, the entity chain ends up containing
2305 -- the formals, as well as any itypes generated during analysis of the
2306 -- default expressions for parameters, or the arguments of associated
2307 -- precondition/postcondition pragmas (which are analyzed in the context
2308 -- of the spec since they have visibility on formals).
2309 --
2310 -- These entities belong with the spec and not the body. However we do
2311 -- the analysis of the body in the context of the spec (again to obtain
2312 -- visibility to the formals), and all the entities generated during
2313 -- this analysis end up also chained to the entity chain of the spec.
2314 -- But they really belong to the body, and there is circuitry to move
2315 -- them from the spec to the body.
2316 --
2317 -- However, when we do this move, we don't want to move the real spec
2318 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2319 -- variable points to the last real spec entity, so we only move those
2320 -- chained beyond that point. It is initialized to Empty to deal with
2321 -- the case where there is no separate spec.
2322
2323 function Body_Has_Contract return Boolean;
2324 -- Check whether unanalyzed body has an aspect or pragma that may
2325 -- generate a SPARK contract.
2326
2327 function Body_Has_SPARK_Mode_On return Boolean;
2328 -- Check whether SPARK_Mode On applies to the subprogram body, either
2329 -- because it is specified directly on the body, or because it is
2330 -- inherited from the enclosing subprogram or package.
2331
2332 procedure Build_Subprogram_Declaration;
2333 -- Create a matching subprogram declaration for subprogram body N
2334
2335 procedure Check_Anonymous_Return;
2336 -- Ada 2005: if a function returns an access type that denotes a task,
2337 -- or a type that contains tasks, we must create a master entity for
2338 -- the anonymous type, which typically will be used in an allocator
2339 -- in the body of the function.
2340
2341 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2342 -- Look ahead to recognize a pragma that may appear after the body.
2343 -- If there is a previous spec, check that it appears in the same
2344 -- declarative part. If the pragma is Inline_Always, perform inlining
2345 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2346 -- If the body acts as a spec, and inlining is required, we create a
2347 -- subprogram declaration for it, in order to attach the body to inline.
2348 -- If pragma does not appear after the body, check whether there is
2349 -- an inline pragma before any local declarations.
2350
2351 procedure Check_Missing_Return;
2352 -- Checks for a function with a no return statements, and also performs
2353 -- the warning checks implemented by Check_Returns. In formal mode, also
2354 -- verify that a function ends with a RETURN and that a procedure does
2355 -- not contain any RETURN.
2356
2357 function Disambiguate_Spec return Entity_Id;
2358 -- When a primitive is declared between the private view and the full
2359 -- view of a concurrent type which implements an interface, a special
2360 -- mechanism is used to find the corresponding spec of the primitive
2361 -- body.
2362
2363 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2364 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2365 -- incomplete types coming from a limited context and replace their
2366 -- limited views with the non-limited ones. Return the list of changes
2367 -- to be used to undo the transformation.
2368
2369 function Is_Private_Concurrent_Primitive
2370 (Subp_Id : Entity_Id) return Boolean;
2371 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2372 -- type that implements an interface and has a private view.
2373
2374 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2375 -- N is the body generated for an expression function that is not a
2376 -- completion and Spec_Id the defining entity of its spec. Mark all
2377 -- the not-yet-frozen types referenced by the simple return statement
2378 -- of the function as formally frozen.
2379
2380 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2381 -- Undo the transformation done by Exchange_Limited_Views.
2382
2383 procedure Set_Trivial_Subprogram (N : Node_Id);
2384 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2385 -- subprogram whose body is being analyzed. N is the statement node
2386 -- causing the flag to be set, if the following statement is a return
2387 -- of an entity, we mark the entity as set in source to suppress any
2388 -- warning on the stylized use of function stubs with a dummy return.
2389
2390 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2391 -- Undo the transformation done by Mask_Unfrozen_Types
2392
2393 procedure Verify_Overriding_Indicator;
2394 -- If there was a previous spec, the entity has been entered in the
2395 -- current scope previously. If the body itself carries an overriding
2396 -- indicator, check that it is consistent with the known status of the
2397 -- entity.
2398
2399 -----------------------
2400 -- Body_Has_Contract --
2401 -----------------------
2402
2403 function Body_Has_Contract return Boolean is
2404 Decls : constant List_Id := Declarations (N);
2405 Item : Node_Id;
2406
2407 begin
2408 -- Check for aspects that may generate a contract
2409
2410 if Present (Aspect_Specifications (N)) then
2411 Item := First (Aspect_Specifications (N));
2412 while Present (Item) loop
2413 if Is_Subprogram_Contract_Annotation (Item) then
2414 return True;
2415 end if;
2416
2417 Next (Item);
2418 end loop;
2419 end if;
2420
2421 -- Check for pragmas that may generate a contract
2422
2423 if Present (Decls) then
2424 Item := First (Decls);
2425 while Present (Item) loop
2426 if Nkind (Item) = N_Pragma
2427 and then Is_Subprogram_Contract_Annotation (Item)
2428 then
2429 return True;
2430 end if;
2431
2432 Next (Item);
2433 end loop;
2434 end if;
2435
2436 return False;
2437 end Body_Has_Contract;
2438
2439 ----------------------------
2440 -- Body_Has_SPARK_Mode_On --
2441 ----------------------------
2442
2443 function Body_Has_SPARK_Mode_On return Boolean is
2444 Decls : constant List_Id := Declarations (N);
2445 Item : Node_Id;
2446
2447 begin
2448 -- Check for SPARK_Mode aspect
2449
2450 if Present (Aspect_Specifications (N)) then
2451 Item := First (Aspect_Specifications (N));
2452 while Present (Item) loop
2453 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2454 return Get_SPARK_Mode_From_Annotation (Item) = On;
2455 end if;
2456
2457 Next (Item);
2458 end loop;
2459 end if;
2460
2461 -- Check for SPARK_Mode pragma
2462
2463 if Present (Decls) then
2464 Item := First (Decls);
2465 while Present (Item) loop
2466
2467 -- Pragmas that apply to a subprogram body are usually grouped
2468 -- together. Look for a potential pragma SPARK_Mode among them.
2469
2470 if Nkind (Item) = N_Pragma then
2471 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2472 return Get_SPARK_Mode_From_Annotation (Item) = On;
2473 end if;
2474
2475 -- Otherwise the first non-pragma declarative item terminates
2476 -- the region where pragma SPARK_Mode may appear.
2477
2478 else
2479 exit;
2480 end if;
2481
2482 Next (Item);
2483 end loop;
2484 end if;
2485
2486 -- Otherwise, the applicable SPARK_Mode is inherited from the
2487 -- enclosing subprogram or package.
2488
2489 return SPARK_Mode = On;
2490 end Body_Has_SPARK_Mode_On;
2491
2492 ----------------------------------
2493 -- Build_Subprogram_Declaration --
2494 ----------------------------------
2495
2496 procedure Build_Subprogram_Declaration is
2497 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2498 -- Relocate certain categorization pragmas from the declarative list
2499 -- of subprogram body From and insert them after node To. The pragmas
2500 -- in question are:
2501 -- Ghost
2502 -- Volatile_Function
2503 -- Also copy pragma SPARK_Mode if present in the declarative list
2504 -- of subprogram body From and insert it after node To. This pragma
2505 -- should not be moved, as it applies to the body too.
2506
2507 ------------------
2508 -- Move_Pragmas --
2509 ------------------
2510
2511 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2512 Decl : Node_Id;
2513 Next_Decl : Node_Id;
2514
2515 begin
2516 pragma Assert (Nkind (From) = N_Subprogram_Body);
2517
2518 -- The destination node must be part of a list, as the pragmas are
2519 -- inserted after it.
2520
2521 pragma Assert (Is_List_Member (To));
2522
2523 -- Inspect the declarations of the subprogram body looking for
2524 -- specific pragmas.
2525
2526 Decl := First (Declarations (N));
2527 while Present (Decl) loop
2528 Next_Decl := Next (Decl);
2529
2530 if Nkind (Decl) = N_Pragma then
2531 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2532 Insert_After (To, New_Copy_Tree (Decl));
2533
2534 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2535 Name_Ghost,
2536 Name_Volatile_Function)
2537 then
2538 Remove (Decl);
2539 Insert_After (To, Decl);
2540 end if;
2541 end if;
2542
2543 Decl := Next_Decl;
2544 end loop;
2545 end Move_Pragmas;
2546
2547 -- Local variables
2548
2549 Decl : Node_Id;
2550 Subp_Decl : Node_Id;
2551
2552 -- Start of processing for Build_Subprogram_Declaration
2553
2554 begin
2555 -- Create a matching subprogram spec using the profile of the body.
2556 -- The structure of the tree is identical, but has new entities for
2557 -- the defining unit name and formal parameters.
2558
2559 Subp_Decl :=
2560 Make_Subprogram_Declaration (Loc,
2561 Specification => Copy_Subprogram_Spec (Body_Spec));
2562 Set_Comes_From_Source (Subp_Decl, True);
2563
2564 -- Also mark parameters as coming from source
2565
2566 if Present (Parameter_Specifications (Specification (Subp_Decl))) then
2567 declare
2568 Form : Entity_Id;
2569 begin
2570 Form :=
2571 First (Parameter_Specifications (Specification (Subp_Decl)));
2572
2573 while Present (Form) loop
2574 Set_Comes_From_Source (Defining_Identifier (Form), True);
2575 Next (Form);
2576 end loop;
2577 end;
2578 end if;
2579
2580 -- Relocate the aspects and relevant pragmas from the subprogram body
2581 -- to the generated spec because it acts as the initial declaration.
2582
2583 Insert_Before (N, Subp_Decl);
2584 Move_Aspects (N, To => Subp_Decl);
2585 Move_Pragmas (N, To => Subp_Decl);
2586
2587 -- Ensure that the generated corresponding spec and original body
2588 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2589 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2590 -- correctly set for local subprograms.
2591
2592 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2593
2594 Analyze (Subp_Decl);
2595
2596 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2597 -- the body since the expander may generate calls using that entity.
2598 -- Required to ensure that Expand_Call rewrites calls to this
2599 -- function by calls to the built procedure.
2600
2601 if Modify_Tree_For_C
2602 and then Nkind (Body_Spec) = N_Function_Specification
2603 and then
2604 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2605 then
2606 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2607 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2608 Corresponding_Procedure
2609 (Defining_Entity (Specification (Subp_Decl))));
2610 end if;
2611
2612 -- Analyze any relocated source pragmas or pragmas created for aspect
2613 -- specifications.
2614
2615 Decl := Next (Subp_Decl);
2616 while Present (Decl) loop
2617
2618 -- Stop the search for pragmas once the body has been reached as
2619 -- this terminates the region where pragmas may appear.
2620
2621 if Decl = N then
2622 exit;
2623
2624 elsif Nkind (Decl) = N_Pragma then
2625 Analyze (Decl);
2626 end if;
2627
2628 Next (Decl);
2629 end loop;
2630
2631 Spec_Id := Defining_Entity (Subp_Decl);
2632 Set_Corresponding_Spec (N, Spec_Id);
2633
2634 -- Mark the generated spec as a source construct to ensure that all
2635 -- calls to it are properly registered in ALI files for GNATprove.
2636
2637 Set_Comes_From_Source (Spec_Id, True);
2638
2639 -- Ensure that the specs of the subprogram declaration and its body
2640 -- are identical, otherwise they will appear non-conformant due to
2641 -- rewritings in the default values of formal parameters.
2642
2643 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2644 Set_Specification (N, Body_Spec);
2645 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2646 end Build_Subprogram_Declaration;
2647
2648 ----------------------------
2649 -- Check_Anonymous_Return --
2650 ----------------------------
2651
2652 procedure Check_Anonymous_Return is
2653 Decl : Node_Id;
2654 Par : Node_Id;
2655 Scop : Entity_Id;
2656
2657 begin
2658 if Present (Spec_Id) then
2659 Scop := Spec_Id;
2660 else
2661 Scop := Body_Id;
2662 end if;
2663
2664 if Ekind (Scop) = E_Function
2665 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2666 and then not Is_Thunk (Scop)
2667
2668 -- Skip internally built functions which handle the case of
2669 -- a null access (see Expand_Interface_Conversion)
2670
2671 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2672 and then not Comes_From_Source (Parent (Scop)))
2673
2674 and then (Has_Task (Designated_Type (Etype (Scop)))
2675 or else
2676 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2677 and then
2678 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2679 and then Expander_Active
2680
2681 -- Avoid cases with no tasking support
2682
2683 and then RTE_Available (RE_Current_Master)
2684 and then not Restriction_Active (No_Task_Hierarchy)
2685 then
2686 Decl :=
2687 Make_Object_Declaration (Loc,
2688 Defining_Identifier =>
2689 Make_Defining_Identifier (Loc, Name_uMaster),
2690 Constant_Present => True,
2691 Object_Definition =>
2692 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2693 Expression =>
2694 Make_Explicit_Dereference (Loc,
2695 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2696
2697 if Present (Declarations (N)) then
2698 Prepend (Decl, Declarations (N));
2699 else
2700 Set_Declarations (N, New_List (Decl));
2701 end if;
2702
2703 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2704 Set_Has_Master_Entity (Scop);
2705
2706 -- Now mark the containing scope as a task master
2707
2708 Par := N;
2709 while Nkind (Par) /= N_Compilation_Unit loop
2710 Par := Parent (Par);
2711 pragma Assert (Present (Par));
2712
2713 -- If we fall off the top, we are at the outer level, and
2714 -- the environment task is our effective master, so nothing
2715 -- to mark.
2716
2717 if Nkind_In
2718 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2719 then
2720 Set_Is_Task_Master (Par, True);
2721 exit;
2722 end if;
2723 end loop;
2724 end if;
2725 end Check_Anonymous_Return;
2726
2727 -------------------------
2728 -- Check_Inline_Pragma --
2729 -------------------------
2730
2731 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2732 Prag : Node_Id;
2733 Plist : List_Id;
2734
2735 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2736 -- True when N is a pragma Inline or Inline_Always that applies
2737 -- to this subprogram.
2738
2739 -----------------------
2740 -- Is_Inline_Pragma --
2741 -----------------------
2742
2743 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2744 begin
2745 if Nkind (N) = N_Pragma
2746 and then
2747 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2748 or else (Pragma_Name_Unmapped (N) = Name_Inline
2749 and then
2750 (Front_End_Inlining or else Optimization_Level > 0)))
2751 and then Present (Pragma_Argument_Associations (N))
2752 then
2753 declare
2754 Pragma_Arg : Node_Id :=
2755 Expression (First (Pragma_Argument_Associations (N)));
2756 begin
2757 if Nkind (Pragma_Arg) = N_Selected_Component then
2758 Pragma_Arg := Selector_Name (Pragma_Arg);
2759 end if;
2760
2761 return Chars (Pragma_Arg) = Chars (Body_Id);
2762 end;
2763
2764 else
2765 return False;
2766 end if;
2767 end Is_Inline_Pragma;
2768
2769 -- Start of processing for Check_Inline_Pragma
2770
2771 begin
2772 if not Expander_Active then
2773 return;
2774 end if;
2775
2776 if Is_List_Member (N)
2777 and then Present (Next (N))
2778 and then Is_Inline_Pragma (Next (N))
2779 then
2780 Prag := Next (N);
2781
2782 elsif Nkind (N) /= N_Subprogram_Body_Stub
2783 and then Present (Declarations (N))
2784 and then Is_Inline_Pragma (First (Declarations (N)))
2785 then
2786 Prag := First (Declarations (N));
2787
2788 else
2789 Prag := Empty;
2790 end if;
2791
2792 if Present (Prag) then
2793 if Present (Spec_Id) then
2794 if Is_List_Member (N)
2795 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2796 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2797 then
2798 Analyze (Prag);
2799 end if;
2800
2801 else
2802 -- Create a subprogram declaration, to make treatment uniform.
2803 -- Make the sloc of the subprogram name that of the entity in
2804 -- the body, so that style checks find identical strings.
2805
2806 declare
2807 Subp : constant Entity_Id :=
2808 Make_Defining_Identifier
2809 (Sloc (Body_Id), Chars (Body_Id));
2810 Decl : constant Node_Id :=
2811 Make_Subprogram_Declaration (Loc,
2812 Specification =>
2813 New_Copy_Tree (Specification (N)));
2814
2815 begin
2816 -- Link the body and the generated spec
2817
2818 Set_Corresponding_Body (Decl, Body_Id);
2819 Set_Corresponding_Spec (N, Subp);
2820
2821 Set_Defining_Unit_Name (Specification (Decl), Subp);
2822
2823 -- To ensure proper coverage when body is inlined, indicate
2824 -- whether the subprogram comes from source.
2825
2826 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2827
2828 if Present (First_Formal (Body_Id)) then
2829 Plist := Copy_Parameter_List (Body_Id);
2830 Set_Parameter_Specifications
2831 (Specification (Decl), Plist);
2832 end if;
2833
2834 -- Move aspects to the new spec
2835
2836 if Has_Aspects (N) then
2837 Move_Aspects (N, To => Decl);
2838 end if;
2839
2840 Insert_Before (N, Decl);
2841 Analyze (Decl);
2842 Analyze (Prag);
2843 Set_Has_Pragma_Inline (Subp);
2844
2845 if Pragma_Name (Prag) = Name_Inline_Always then
2846 Set_Is_Inlined (Subp);
2847 Set_Has_Pragma_Inline_Always (Subp);
2848 end if;
2849
2850 -- Prior to copying the subprogram body to create a template
2851 -- for it for subsequent inlining, remove the pragma from
2852 -- the current body so that the copy that will produce the
2853 -- new body will start from a completely unanalyzed tree.
2854
2855 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2856 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2857 end if;
2858
2859 Spec := Subp;
2860 end;
2861 end if;
2862 end if;
2863 end Check_Inline_Pragma;
2864
2865 --------------------------
2866 -- Check_Missing_Return --
2867 --------------------------
2868
2869 procedure Check_Missing_Return is
2870 Id : Entity_Id;
2871 Missing_Ret : Boolean;
2872
2873 begin
2874 if Nkind (Body_Spec) = N_Function_Specification then
2875 if Present (Spec_Id) then
2876 Id := Spec_Id;
2877 else
2878 Id := Body_Id;
2879 end if;
2880
2881 if Return_Present (Id) then
2882 Check_Returns (HSS, 'F', Missing_Ret);
2883
2884 if Missing_Ret then
2885 Set_Has_Missing_Return (Id);
2886 end if;
2887
2888 -- Within a premature instantiation of a package with no body, we
2889 -- build completions of the functions therein, with a Raise
2890 -- statement. No point in complaining about a missing return in
2891 -- this case.
2892
2893 elsif Ekind (Id) = E_Function
2894 and then In_Instance
2895 and then Present (Statements (HSS))
2896 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2897 then
2898 null;
2899
2900 elsif Is_Generic_Subprogram (Id)
2901 or else not Is_Machine_Code_Subprogram (Id)
2902 then
2903 Error_Msg_N ("missing RETURN statement in function body", N);
2904 end if;
2905
2906 -- If procedure with No_Return, check returns
2907
2908 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2909 if Present (Spec_Id) then
2910 Id := Spec_Id;
2911 else
2912 Id := Body_Id;
2913 end if;
2914
2915 if No_Return (Id) then
2916 Check_Returns (HSS, 'P', Missing_Ret, Id);
2917 end if;
2918 end if;
2919
2920 -- Special checks in SPARK mode
2921
2922 if Nkind (Body_Spec) = N_Function_Specification then
2923
2924 -- In SPARK mode, last statement of a function should be a return
2925
2926 declare
2927 Stat : constant Node_Id := Last_Source_Statement (HSS);
2928 begin
2929 if Present (Stat)
2930 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2931 N_Extended_Return_Statement)
2932 then
2933 Check_SPARK_05_Restriction
2934 ("last statement in function should be RETURN", Stat);
2935 end if;
2936 end;
2937
2938 -- In SPARK mode, verify that a procedure has no return
2939
2940 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2941 if Present (Spec_Id) then
2942 Id := Spec_Id;
2943 else
2944 Id := Body_Id;
2945 end if;
2946
2947 -- Would be nice to point to return statement here, can we
2948 -- borrow the Check_Returns procedure here ???
2949
2950 if Return_Present (Id) then
2951 Check_SPARK_05_Restriction
2952 ("procedure should not have RETURN", N);
2953 end if;
2954 end if;
2955 end Check_Missing_Return;
2956
2957 -----------------------
2958 -- Disambiguate_Spec --
2959 -----------------------
2960
2961 function Disambiguate_Spec return Entity_Id is
2962 Priv_Spec : Entity_Id;
2963 Spec_N : Entity_Id;
2964
2965 procedure Replace_Types (To_Corresponding : Boolean);
2966 -- Depending on the flag, replace the type of formal parameters of
2967 -- Body_Id if it is a concurrent type implementing interfaces with
2968 -- the corresponding record type or the other way around.
2969
2970 procedure Replace_Types (To_Corresponding : Boolean) is
2971 Formal : Entity_Id;
2972 Formal_Typ : Entity_Id;
2973
2974 begin
2975 Formal := First_Formal (Body_Id);
2976 while Present (Formal) loop
2977 Formal_Typ := Etype (Formal);
2978
2979 if Is_Class_Wide_Type (Formal_Typ) then
2980 Formal_Typ := Root_Type (Formal_Typ);
2981 end if;
2982
2983 -- From concurrent type to corresponding record
2984
2985 if To_Corresponding then
2986 if Is_Concurrent_Type (Formal_Typ)
2987 and then Present (Corresponding_Record_Type (Formal_Typ))
2988 and then
2989 Present (Interfaces
2990 (Corresponding_Record_Type (Formal_Typ)))
2991 then
2992 Set_Etype (Formal,
2993 Corresponding_Record_Type (Formal_Typ));
2994 end if;
2995
2996 -- From corresponding record to concurrent type
2997
2998 else
2999 if Is_Concurrent_Record_Type (Formal_Typ)
3000 and then Present (Interfaces (Formal_Typ))
3001 then
3002 Set_Etype (Formal,
3003 Corresponding_Concurrent_Type (Formal_Typ));
3004 end if;
3005 end if;
3006
3007 Next_Formal (Formal);
3008 end loop;
3009 end Replace_Types;
3010
3011 -- Start of processing for Disambiguate_Spec
3012
3013 begin
3014 -- Try to retrieve the specification of the body as is. All error
3015 -- messages are suppressed because the body may not have a spec in
3016 -- its current state.
3017
3018 Spec_N := Find_Corresponding_Spec (N, False);
3019
3020 -- It is possible that this is the body of a primitive declared
3021 -- between a private and a full view of a concurrent type. The
3022 -- controlling parameter of the spec carries the concurrent type,
3023 -- not the corresponding record type as transformed by Analyze_
3024 -- Subprogram_Specification. In such cases, we undo the change
3025 -- made by the analysis of the specification and try to find the
3026 -- spec again.
3027
3028 -- Note that wrappers already have their corresponding specs and
3029 -- bodies set during their creation, so if the candidate spec is
3030 -- a wrapper, then we definitely need to swap all types to their
3031 -- original concurrent status.
3032
3033 if No (Spec_N)
3034 or else Is_Primitive_Wrapper (Spec_N)
3035 then
3036 -- Restore all references of corresponding record types to the
3037 -- original concurrent types.
3038
3039 Replace_Types (To_Corresponding => False);
3040 Priv_Spec := Find_Corresponding_Spec (N, False);
3041
3042 -- The current body truly belongs to a primitive declared between
3043 -- a private and a full view. We leave the modified body as is,
3044 -- and return the true spec.
3045
3046 if Present (Priv_Spec)
3047 and then Is_Private_Primitive (Priv_Spec)
3048 then
3049 return Priv_Spec;
3050 end if;
3051
3052 -- In case that this is some sort of error, restore the original
3053 -- state of the body.
3054
3055 Replace_Types (To_Corresponding => True);
3056 end if;
3057
3058 return Spec_N;
3059 end Disambiguate_Spec;
3060
3061 ----------------------------
3062 -- Exchange_Limited_Views --
3063 ----------------------------
3064
3065 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3066 Result : Elist_Id := No_Elist;
3067
3068 procedure Detect_And_Exchange (Id : Entity_Id);
3069 -- Determine whether Id's type denotes an incomplete type associated
3070 -- with a limited with clause and exchange the limited view with the
3071 -- non-limited one when available. Note that the non-limited view
3072 -- may exist because of a with_clause in another unit in the context,
3073 -- but cannot be used because the current view of the enclosing unit
3074 -- is still a limited view.
3075
3076 -------------------------
3077 -- Detect_And_Exchange --
3078 -------------------------
3079
3080 procedure Detect_And_Exchange (Id : Entity_Id) is
3081 Typ : constant Entity_Id := Etype (Id);
3082 begin
3083 if From_Limited_With (Typ)
3084 and then Has_Non_Limited_View (Typ)
3085 and then not From_Limited_With (Scope (Typ))
3086 then
3087 if No (Result) then
3088 Result := New_Elmt_List;
3089 end if;
3090
3091 Prepend_Elmt (Typ, Result);
3092 Prepend_Elmt (Id, Result);
3093 Set_Etype (Id, Non_Limited_View (Typ));
3094 end if;
3095 end Detect_And_Exchange;
3096
3097 -- Local variables
3098
3099 Formal : Entity_Id;
3100
3101 -- Start of processing for Exchange_Limited_Views
3102
3103 begin
3104 -- Do not process subprogram bodies as they already use the non-
3105 -- limited view of types.
3106
3107 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3108 return No_Elist;
3109 end if;
3110
3111 -- Examine all formals and swap views when applicable
3112
3113 Formal := First_Formal (Subp_Id);
3114 while Present (Formal) loop
3115 Detect_And_Exchange (Formal);
3116
3117 Next_Formal (Formal);
3118 end loop;
3119
3120 -- Process the return type of a function
3121
3122 if Ekind (Subp_Id) = E_Function then
3123 Detect_And_Exchange (Subp_Id);
3124 end if;
3125
3126 return Result;
3127 end Exchange_Limited_Views;
3128
3129 -------------------------------------
3130 -- Is_Private_Concurrent_Primitive --
3131 -------------------------------------
3132
3133 function Is_Private_Concurrent_Primitive
3134 (Subp_Id : Entity_Id) return Boolean
3135 is
3136 Formal_Typ : Entity_Id;
3137
3138 begin
3139 if Present (First_Formal (Subp_Id)) then
3140 Formal_Typ := Etype (First_Formal (Subp_Id));
3141
3142 if Is_Concurrent_Record_Type (Formal_Typ) then
3143 if Is_Class_Wide_Type (Formal_Typ) then
3144 Formal_Typ := Root_Type (Formal_Typ);
3145 end if;
3146
3147 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3148 end if;
3149
3150 -- The type of the first formal is a concurrent tagged type with
3151 -- a private view.
3152
3153 return
3154 Is_Concurrent_Type (Formal_Typ)
3155 and then Is_Tagged_Type (Formal_Typ)
3156 and then Has_Private_Declaration (Formal_Typ);
3157 end if;
3158
3159 return False;
3160 end Is_Private_Concurrent_Primitive;
3161
3162 -------------------------
3163 -- Mask_Unfrozen_Types --
3164 -------------------------
3165
3166 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3167 Result : Elist_Id := No_Elist;
3168
3169 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3170 -- Mask all types referenced in the subtree rooted at Node
3171
3172 --------------------
3173 -- Mask_Type_Refs --
3174 --------------------
3175
3176 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3177 procedure Mask_Type (Typ : Entity_Id);
3178 -- ??? what does this do?
3179
3180 ---------------
3181 -- Mask_Type --
3182 ---------------
3183
3184 procedure Mask_Type (Typ : Entity_Id) is
3185 begin
3186 -- Skip Itypes created by the preanalysis
3187
3188 if Is_Itype (Typ)
3189 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3190 then
3191 return;
3192 end if;
3193
3194 if not Is_Frozen (Typ) then
3195 if Scope (Typ) /= Current_Scope then
3196 Set_Is_Frozen (Typ);
3197 Append_New_Elmt (Typ, Result);
3198 else
3199 Freeze_Before (N, Typ);
3200 end if;
3201 end if;
3202 end Mask_Type;
3203
3204 -- Start of processing for Mask_Type_Refs
3205
3206 begin
3207 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3208 Mask_Type (Etype (Entity (Node)));
3209
3210 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3211 Mask_Type (Scope (Entity (Node)));
3212 end if;
3213
3214 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3215 and then Present (Etype (Node))
3216 then
3217 Mask_Type (Etype (Node));
3218 end if;
3219
3220 return OK;
3221 end Mask_Type_Refs;
3222
3223 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3224
3225 -- Local variables
3226
3227 Return_Stmt : constant Node_Id :=
3228 First (Statements (Handled_Statement_Sequence (N)));
3229
3230 -- Start of processing for Mask_Unfrozen_Types
3231
3232 begin
3233 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3234
3235 Mask_References (Expression (Return_Stmt));
3236
3237 return Result;
3238 end Mask_Unfrozen_Types;
3239
3240 ---------------------------
3241 -- Restore_Limited_Views --
3242 ---------------------------
3243
3244 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3245 Elmt : Elmt_Id := First_Elmt (Restore_List);
3246 Id : Entity_Id;
3247
3248 begin
3249 while Present (Elmt) loop
3250 Id := Node (Elmt);
3251 Next_Elmt (Elmt);
3252 Set_Etype (Id, Node (Elmt));
3253 Next_Elmt (Elmt);
3254 end loop;
3255 end Restore_Limited_Views;
3256
3257 ----------------------------
3258 -- Set_Trivial_Subprogram --
3259 ----------------------------
3260
3261 procedure Set_Trivial_Subprogram (N : Node_Id) is
3262 Nxt : constant Node_Id := Next (N);
3263
3264 begin
3265 Set_Is_Trivial_Subprogram (Body_Id);
3266
3267 if Present (Spec_Id) then
3268 Set_Is_Trivial_Subprogram (Spec_Id);
3269 end if;
3270
3271 if Present (Nxt)
3272 and then Nkind (Nxt) = N_Simple_Return_Statement
3273 and then No (Next (Nxt))
3274 and then Present (Expression (Nxt))
3275 and then Is_Entity_Name (Expression (Nxt))
3276 then
3277 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3278 end if;
3279 end Set_Trivial_Subprogram;
3280
3281 ---------------------------
3282 -- Unmask_Unfrozen_Types --
3283 ---------------------------
3284
3285 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3286 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3287
3288 begin
3289 while Present (Elmt) loop
3290 Set_Is_Frozen (Node (Elmt), False);
3291 Next_Elmt (Elmt);
3292 end loop;
3293 end Unmask_Unfrozen_Types;
3294
3295 ---------------------------------
3296 -- Verify_Overriding_Indicator --
3297 ---------------------------------
3298
3299 procedure Verify_Overriding_Indicator is
3300 begin
3301 if Must_Override (Body_Spec) then
3302 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3303 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3304 then
3305 null;
3306
3307 -- Overridden controlled primitives may have had their
3308 -- Overridden_Operation field cleared according to the setting of
3309 -- the Is_Hidden flag. An issue arises, however, when analyzing
3310 -- an instance that may have manipulated the flag during
3311 -- expansion. As a result, we add an exception for this case.
3312
3313 elsif not Present (Overridden_Operation (Spec_Id))
3314 and then not (Nam_In (Chars (Spec_Id), Name_Adjust,
3315 Name_Finalize,
3316 Name_Initialize)
3317 and then In_Instance)
3318 then
3319 Error_Msg_NE
3320 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3321
3322 -- Overriding indicators aren't allowed for protected subprogram
3323 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3324 -- this to a warning if -gnatd.E is enabled.
3325
3326 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3327 Error_Msg_Warn := Error_To_Warning;
3328 Error_Msg_N
3329 ("<<overriding indicator not allowed for protected "
3330 & "subprogram body", Body_Spec);
3331 end if;
3332
3333 elsif Must_Not_Override (Body_Spec) then
3334 if Present (Overridden_Operation (Spec_Id)) then
3335 Error_Msg_NE
3336 ("subprogram& overrides inherited operation",
3337 Body_Spec, Spec_Id);
3338
3339 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3340 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3341 then
3342 Error_Msg_NE
3343 ("subprogram& overrides predefined operator ",
3344 Body_Spec, Spec_Id);
3345
3346 -- Overriding indicators aren't allowed for protected subprogram
3347 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3348 -- this to a warning if -gnatd.E is enabled.
3349
3350 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3351 Error_Msg_Warn := Error_To_Warning;
3352
3353 Error_Msg_N
3354 ("<<overriding indicator not allowed "
3355 & "for protected subprogram body", Body_Spec);
3356
3357 -- If this is not a primitive operation, then the overriding
3358 -- indicator is altogether illegal.
3359
3360 elsif not Is_Primitive (Spec_Id) then
3361 Error_Msg_N
3362 ("overriding indicator only allowed "
3363 & "if subprogram is primitive", Body_Spec);
3364 end if;
3365
3366 -- If checking the style rule and the operation overrides, then
3367 -- issue a warning about a missing overriding_indicator. Protected
3368 -- subprogram bodies are excluded from this style checking, since
3369 -- they aren't primitives (even though their declarations can
3370 -- override) and aren't allowed to have an overriding_indicator.
3371
3372 elsif Style_Check
3373 and then Present (Overridden_Operation (Spec_Id))
3374 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3375 then
3376 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3377 Style.Missing_Overriding (N, Body_Id);
3378
3379 elsif Style_Check
3380 and then Can_Override_Operator (Spec_Id)
3381 and then not In_Predefined_Unit (Spec_Id)
3382 then
3383 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3384 Style.Missing_Overriding (N, Body_Id);
3385 end if;
3386 end Verify_Overriding_Indicator;
3387
3388 -- Local variables
3389
3390 Body_Nod : Node_Id := Empty;
3391 Minimum_Acc_Objs : List_Id := No_List;
3392
3393 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3394 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3395 Saved_EA : constant Boolean := Expander_Active;
3396 Saved_ISMP : constant Boolean :=
3397 Ignore_SPARK_Mode_Pragmas_In_Instance;
3398 -- Save the Ghost and SPARK mode-related data to restore on exit
3399
3400 -- Start of processing for Analyze_Subprogram_Body_Helper
3401
3402 begin
3403 -- A [generic] subprogram body freezes the contract of the nearest
3404 -- enclosing package body and all other contracts encountered in the
3405 -- same declarative part up to and excluding the subprogram body:
3406
3407 -- package body Nearest_Enclosing_Package
3408 -- with Refined_State => (State => Constit)
3409 -- is
3410 -- Constit : ...;
3411
3412 -- procedure Freezes_Enclosing_Package_Body
3413 -- with Refined_Depends => (Input => Constit) ...
3414
3415 -- This ensures that any annotations referenced by the contract of the
3416 -- [generic] subprogram body are available. This form of freezing is
3417 -- decoupled from the usual Freeze_xxx mechanism because it must also
3418 -- work in the context of generics where normal freezing is disabled.
3419
3420 -- Only bodies coming from source should cause this type of freezing.
3421 -- Expression functions that act as bodies and complete an initial
3422 -- declaration must be included in this category, hence the use of
3423 -- Original_Node.
3424
3425 if Comes_From_Source (Original_Node (N)) then
3426 Freeze_Previous_Contracts (N);
3427 end if;
3428
3429 -- Generic subprograms are handled separately. They always have a
3430 -- generic specification. Determine whether current scope has a
3431 -- previous declaration.
3432
3433 -- If the subprogram body is defined within an instance of the same
3434 -- name, the instance appears as a package renaming, and will be hidden
3435 -- within the subprogram.
3436
3437 if Present (Prev_Id)
3438 and then not Is_Overloadable (Prev_Id)
3439 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3440 or else Comes_From_Source (Prev_Id))
3441 then
3442 if Is_Generic_Subprogram (Prev_Id) then
3443 Spec_Id := Prev_Id;
3444
3445 -- A subprogram body is Ghost when it is stand-alone and subject
3446 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3447 -- the mode now to ensure that any nodes generated during analysis
3448 -- and expansion are properly marked as Ghost.
3449
3450 Mark_And_Set_Ghost_Body (N, Spec_Id);
3451
3452 -- If the body completes the initial declaration of a compilation
3453 -- unit which is subject to pragma Elaboration_Checks, set the
3454 -- model specified by the pragma because it applies to all parts
3455 -- of the unit.
3456
3457 Install_Elaboration_Model (Spec_Id);
3458
3459 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3460 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3461
3462 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3463
3464 if Nkind (N) = N_Subprogram_Body then
3465 HSS := Handled_Statement_Sequence (N);
3466 Check_Missing_Return;
3467 end if;
3468
3469 goto Leave;
3470
3471 -- Otherwise a previous entity conflicts with the subprogram name.
3472 -- Attempting to enter name will post error.
3473
3474 else
3475 Enter_Name (Body_Id);
3476 goto Leave;
3477 end if;
3478
3479 -- Non-generic case, find the subprogram declaration, if one was seen,
3480 -- or enter new overloaded entity in the current scope. If the
3481 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3482 -- part of the context of one of its subunits. No need to redo the
3483 -- analysis.
3484
3485 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3486 goto Leave;
3487
3488 else
3489 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3490
3491 if Nkind (N) = N_Subprogram_Body_Stub
3492 or else No (Corresponding_Spec (N))
3493 then
3494 if Is_Private_Concurrent_Primitive (Body_Id) then
3495 Spec_Id := Disambiguate_Spec;
3496
3497 -- A subprogram body is Ghost when it is stand-alone and
3498 -- subject to pragma Ghost or when the corresponding spec is
3499 -- Ghost. Set the mode now to ensure that any nodes generated
3500 -- during analysis and expansion are properly marked as Ghost.
3501
3502 Mark_And_Set_Ghost_Body (N, Spec_Id);
3503
3504 -- If the body completes a compilation unit which is subject
3505 -- to pragma Elaboration_Checks, set the model specified by
3506 -- the pragma because it applies to all parts of the unit.
3507
3508 Install_Elaboration_Model (Spec_Id);
3509
3510 else
3511 Spec_Id := Find_Corresponding_Spec (N);
3512
3513 -- A subprogram body is Ghost when it is stand-alone and
3514 -- subject to pragma Ghost or when the corresponding spec is
3515 -- Ghost. Set the mode now to ensure that any nodes generated
3516 -- during analysis and expansion are properly marked as Ghost.
3517
3518 Mark_And_Set_Ghost_Body (N, Spec_Id);
3519
3520 -- If the body completes a compilation unit which is subject
3521 -- to pragma Elaboration_Checks, set the model specified by
3522 -- the pragma because it applies to all parts of the unit.
3523
3524 Install_Elaboration_Model (Spec_Id);
3525
3526 -- In GNATprove mode, if the body has no previous spec, create
3527 -- one so that the inlining machinery can operate properly.
3528 -- Transfer aspects, if any, to the new spec, so that they
3529 -- are legal and can be processed ahead of the body.
3530 -- We make two copies of the given spec, one for the new
3531 -- declaration, and one for the body.
3532
3533 if No (Spec_Id) and then GNATprove_Mode
3534
3535 -- Inlining does not apply during preanalysis of code
3536
3537 and then Full_Analysis
3538
3539 -- Inlining only applies to full bodies, not stubs
3540
3541 and then Nkind (N) /= N_Subprogram_Body_Stub
3542
3543 -- Inlining only applies to bodies in the source code, not to
3544 -- those generated by the compiler. In particular, expression
3545 -- functions, whose body is generated by the compiler, are
3546 -- treated specially by GNATprove.
3547
3548 and then Comes_From_Source (Body_Id)
3549
3550 -- This cannot be done for a compilation unit, which is not
3551 -- in a context where we can insert a new spec.
3552
3553 and then Is_List_Member (N)
3554
3555 -- Inlining only applies to subprograms without contracts,
3556 -- as a contract is a sign that GNATprove should perform a
3557 -- modular analysis of the subprogram instead of a contextual
3558 -- analysis at each call site. The same test is performed in
3559 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3560 -- here in another form (because the contract has not been
3561 -- attached to the body) to avoid front-end errors in case
3562 -- pragmas are used instead of aspects, because the
3563 -- corresponding pragmas in the body would not be transferred
3564 -- to the spec, leading to legality errors.
3565
3566 and then not Body_Has_Contract
3567 and then not Inside_A_Generic
3568 then
3569 Build_Subprogram_Declaration;
3570
3571 -- If this is a function that returns a constrained array, and
3572 -- we are generating SPARK_For_C, create subprogram declaration
3573 -- to simplify subsequent C generation.
3574
3575 elsif No (Spec_Id)
3576 and then Modify_Tree_For_C
3577 and then Nkind (Body_Spec) = N_Function_Specification
3578 and then Is_Array_Type (Etype (Body_Id))
3579 and then Is_Constrained (Etype (Body_Id))
3580 then
3581 Build_Subprogram_Declaration;
3582 end if;
3583 end if;
3584
3585 -- If this is a duplicate body, no point in analyzing it
3586
3587 if Error_Posted (N) then
3588 goto Leave;
3589 end if;
3590
3591 -- A subprogram body should cause freezing of its own declaration,
3592 -- but if there was no previous explicit declaration, then the
3593 -- subprogram will get frozen too late (there may be code within
3594 -- the body that depends on the subprogram having been frozen,
3595 -- such as uses of extra formals), so we force it to be frozen
3596 -- here. Same holds if the body and spec are compilation units.
3597 -- Finally, if the return type is an anonymous access to protected
3598 -- subprogram, it must be frozen before the body because its
3599 -- expansion has generated an equivalent type that is used when
3600 -- elaborating the body.
3601
3602 -- An exception in the case of Ada 2012, AI05-177: The bodies
3603 -- created for expression functions do not freeze.
3604
3605 if No (Spec_Id)
3606 and then Nkind (Original_Node (N)) /= N_Expression_Function
3607 then
3608 Freeze_Before (N, Body_Id);
3609
3610 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3611 Freeze_Before (N, Spec_Id);
3612
3613 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3614 Freeze_Before (N, Etype (Body_Id));
3615 end if;
3616
3617 else
3618 Spec_Id := Corresponding_Spec (N);
3619
3620 -- A subprogram body is Ghost when it is stand-alone and subject
3621 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3622 -- the mode now to ensure that any nodes generated during analysis
3623 -- and expansion are properly marked as Ghost.
3624
3625 Mark_And_Set_Ghost_Body (N, Spec_Id);
3626
3627 -- If the body completes the initial declaration of a compilation
3628 -- unit which is subject to pragma Elaboration_Checks, set the
3629 -- model specified by the pragma because it applies to all parts
3630 -- of the unit.
3631
3632 Install_Elaboration_Model (Spec_Id);
3633 end if;
3634 end if;
3635
3636 -- Deactivate expansion inside the body of ignored Ghost entities,
3637 -- as this code will ultimately be ignored. This avoids requiring the
3638 -- presence of run-time units which are not needed. Only do this for
3639 -- user entities, as internally generated entitities might still need
3640 -- to be expanded (e.g. those generated for types).
3641
3642 if Present (Ignored_Ghost_Region)
3643 and then Comes_From_Source (Body_Id)
3644 then
3645 Expander_Active := False;
3646 end if;
3647
3648 -- Previously we scanned the body to look for nested subprograms, and
3649 -- rejected an inline directive if nested subprograms were present,
3650 -- because the back-end would generate conflicting symbols for the
3651 -- nested bodies. This is now unnecessary.
3652
3653 -- Look ahead to recognize a pragma Inline that appears after the body
3654
3655 Check_Inline_Pragma (Spec_Id);
3656
3657 -- Deal with special case of a fully private operation in the body of
3658 -- the protected type. We must create a declaration for the subprogram,
3659 -- in order to attach the protected subprogram that will be used in
3660 -- internal calls. We exclude compiler generated bodies from the
3661 -- expander since the issue does not arise for those cases.
3662
3663 if No (Spec_Id)
3664 and then Comes_From_Source (N)
3665 and then Is_Protected_Type (Current_Scope)
3666 then
3667 Spec_Id := Build_Private_Protected_Declaration (N);
3668 end if;
3669
3670 -- If we are generating C and this is a function returning a constrained
3671 -- array type for which we must create a procedure with an extra out
3672 -- parameter, build and analyze the body now. The procedure declaration
3673 -- has already been created. We reuse the source body of the function,
3674 -- because in an instance it may contain global references that cannot
3675 -- be reanalyzed. The source function itself is not used any further,
3676 -- so we mark it as having a completion. If the subprogram is a stub the
3677 -- transformation is done later, when the proper body is analyzed.
3678
3679 if Expander_Active
3680 and then Modify_Tree_For_C
3681 and then Present (Spec_Id)
3682 and then Ekind (Spec_Id) = E_Function
3683 and then Nkind (N) /= N_Subprogram_Body_Stub
3684 and then Rewritten_For_C (Spec_Id)
3685 then
3686 Set_Has_Completion (Spec_Id);
3687
3688 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3689 Analyze (N);
3690
3691 -- The entity for the created procedure must remain invisible, so it
3692 -- does not participate in resolution of subsequent references to the
3693 -- function.
3694
3695 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3696 goto Leave;
3697 end if;
3698
3699 -- If a separate spec is present, then deal with freezing issues
3700
3701 if Present (Spec_Id) then
3702 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3703 Verify_Overriding_Indicator;
3704
3705 -- In general, the spec will be frozen when we start analyzing the
3706 -- body. However, for internally generated operations, such as
3707 -- wrapper functions for inherited operations with controlling
3708 -- results, the spec may not have been frozen by the time we expand
3709 -- the freeze actions that include the bodies. In particular, extra
3710 -- formals for accessibility or for return-in-place may need to be
3711 -- generated. Freeze nodes, if any, are inserted before the current
3712 -- body. These freeze actions are also needed in ASIS mode and in
3713 -- Compile_Only mode to enable the proper back-end type annotations.
3714 -- They are necessary in any case to ensure proper elaboration order
3715 -- in gigi.
3716
3717 if Nkind (N) = N_Subprogram_Body
3718 and then Was_Expression_Function (N)
3719 and then not Has_Completion (Spec_Id)
3720 and then Serious_Errors_Detected = 0
3721 and then (Expander_Active
3722 or else ASIS_Mode
3723 or else Operating_Mode = Check_Semantics
3724 or else Is_Ignored_Ghost_Entity (Spec_Id))
3725 then
3726 -- The body generated for an expression function that is not a
3727 -- completion is a freeze point neither for the profile nor for
3728 -- anything else. That's why, in order to prevent any freezing
3729 -- during analysis, we need to mask types declared outside the
3730 -- expression (and in an outer scope) that are not yet frozen.
3731 -- This also needs to be done in the case of an ignored Ghost
3732 -- expression function, where the expander isn't active.
3733
3734 Set_Is_Frozen (Spec_Id);
3735 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3736
3737 elsif not Is_Frozen (Spec_Id)
3738 and then Serious_Errors_Detected = 0
3739 then
3740 Set_Has_Delayed_Freeze (Spec_Id);
3741 Freeze_Before (N, Spec_Id);
3742 end if;
3743 end if;
3744
3745 -- If the subprogram has a class-wide clone, build its body as a copy
3746 -- of the original body, and rewrite body of original subprogram as a
3747 -- wrapper that calls the clone. If N is a stub, this construction will
3748 -- take place when the proper body is analyzed. No action needed if this
3749 -- subprogram has been eliminated.
3750
3751 if Present (Spec_Id)
3752 and then Present (Class_Wide_Clone (Spec_Id))
3753 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3754 and then Nkind (N) /= N_Subprogram_Body_Stub
3755 and then not (Expander_Active and then Is_Eliminated (Spec_Id))
3756 then
3757 Build_Class_Wide_Clone_Body (Spec_Id, N);
3758
3759 -- This is the new body for the existing primitive operation
3760
3761 Rewrite (N, Build_Class_Wide_Clone_Call
3762 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3763 Set_Has_Completion (Spec_Id, False);
3764 Analyze (N);
3765 return;
3766 end if;
3767
3768 -- Place subprogram on scope stack, and make formals visible. If there
3769 -- is a spec, the visible entity remains that of the spec.
3770
3771 if Present (Spec_Id) then
3772 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3773
3774 if Is_Child_Unit (Spec_Id) then
3775 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3776 end if;
3777
3778 if Style_Check then
3779 Style.Check_Identifier (Body_Id, Spec_Id);
3780 end if;
3781
3782 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3783 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3784
3785 if Is_Abstract_Subprogram (Spec_Id) then
3786 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3787 goto Leave;
3788
3789 else
3790 Set_Convention (Body_Id, Convention (Spec_Id));
3791 Set_Has_Completion (Spec_Id);
3792
3793 if Is_Protected_Type (Scope (Spec_Id)) then
3794 Prot_Typ := Scope (Spec_Id);
3795 end if;
3796
3797 -- If this is a body generated for a renaming, do not check for
3798 -- full conformance. The check is redundant, because the spec of
3799 -- the body is a copy of the spec in the renaming declaration,
3800 -- and the test can lead to spurious errors on nested defaults.
3801
3802 if Present (Spec_Decl)
3803 and then not Comes_From_Source (N)
3804 and then
3805 (Nkind (Original_Node (Spec_Decl)) =
3806 N_Subprogram_Renaming_Declaration
3807 or else (Present (Corresponding_Body (Spec_Decl))
3808 and then
3809 Nkind (Unit_Declaration_Node
3810 (Corresponding_Body (Spec_Decl))) =
3811 N_Subprogram_Renaming_Declaration))
3812 then
3813 Conformant := True;
3814
3815 -- Conversely, the spec may have been generated for specless body
3816 -- with an inline pragma. The entity comes from source, which is
3817 -- both semantically correct and necessary for proper inlining.
3818 -- The subprogram declaration itself is not in the source.
3819
3820 elsif Comes_From_Source (N)
3821 and then Present (Spec_Decl)
3822 and then not Comes_From_Source (Spec_Decl)
3823 and then Has_Pragma_Inline (Spec_Id)
3824 then
3825 Conformant := True;
3826
3827 else
3828 Check_Conformance
3829 (Body_Id, Spec_Id,
3830 Fully_Conformant, True, Conformant, Body_Id);
3831 end if;
3832
3833 -- If the body is not fully conformant, we have to decide if we
3834 -- should analyze it or not. If it has a really messed up profile
3835 -- then we probably should not analyze it, since we will get too
3836 -- many bogus messages.
3837
3838 -- Our decision is to go ahead in the non-fully conformant case
3839 -- only if it is at least mode conformant with the spec. Note
3840 -- that the call to Check_Fully_Conformant has issued the proper
3841 -- error messages to complain about the lack of conformance.
3842
3843 if not Conformant
3844 and then not Mode_Conformant (Body_Id, Spec_Id)
3845 then
3846 goto Leave;
3847 end if;
3848 end if;
3849
3850 -- In the case we are dealing with an expression function we check
3851 -- the formals attached to the spec instead of the body - so we don't
3852 -- reference body formals.
3853
3854 if Spec_Id /= Body_Id
3855 and then not Is_Expression_Function (Spec_Id)
3856 then
3857 Reference_Body_Formals (Spec_Id, Body_Id);
3858 end if;
3859
3860 Set_Ekind (Body_Id, E_Subprogram_Body);
3861
3862 if Nkind (N) = N_Subprogram_Body_Stub then
3863 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3864
3865 -- Regular body
3866
3867 else
3868 Set_Corresponding_Spec (N, Spec_Id);
3869
3870 -- Ada 2005 (AI-345): If the operation is a primitive operation
3871 -- of a concurrent type, the type of the first parameter has been
3872 -- replaced with the corresponding record, which is the proper
3873 -- run-time structure to use. However, within the body there may
3874 -- be uses of the formals that depend on primitive operations
3875 -- of the type (in particular calls in prefixed form) for which
3876 -- we need the original concurrent type. The operation may have
3877 -- several controlling formals, so the replacement must be done
3878 -- for all of them.
3879
3880 if Comes_From_Source (Spec_Id)
3881 and then Present (First_Entity (Spec_Id))
3882 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3883 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3884 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3885 and then Present (Corresponding_Concurrent_Type
3886 (Etype (First_Entity (Spec_Id))))
3887 then
3888 declare
3889 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3890 Form : Entity_Id;
3891
3892 begin
3893 Form := First_Formal (Spec_Id);
3894 while Present (Form) loop
3895 if Etype (Form) = Typ then
3896 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3897 end if;
3898
3899 Next_Formal (Form);
3900 end loop;
3901 end;
3902 end if;
3903
3904 -- Make the formals visible, and place subprogram on scope stack.
3905 -- This is also the point at which we set Last_Real_Spec_Entity
3906 -- to mark the entities which will not be moved to the body.
3907
3908 Install_Formals (Spec_Id);
3909 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3910
3911 -- Within an instance, add local renaming declarations so that
3912 -- gdb can retrieve the values of actuals more easily. This is
3913 -- only relevant if generating code (and indeed we definitely
3914 -- do not want these definitions -gnatc mode, because that would
3915 -- confuse ASIS).
3916
3917 if Is_Generic_Instance (Spec_Id)
3918 and then Is_Wrapper_Package (Current_Scope)
3919 and then Expander_Active
3920 then
3921 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3922 end if;
3923
3924 Push_Scope (Spec_Id);
3925
3926 -- Make sure that the subprogram is immediately visible. For
3927 -- child units that have no separate spec this is indispensable.
3928 -- Otherwise it is safe albeit redundant.
3929
3930 Set_Is_Immediately_Visible (Spec_Id);
3931 end if;
3932
3933 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3934 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3935 Set_Scope (Body_Id, Scope (Spec_Id));
3936
3937 -- Case of subprogram body with no previous spec
3938
3939 else
3940 -- Check for style warning required
3941
3942 if Style_Check
3943
3944 -- Only apply check for source level subprograms for which checks
3945 -- have not been suppressed.
3946
3947 and then Comes_From_Source (Body_Id)
3948 and then not Suppress_Style_Checks (Body_Id)
3949
3950 -- No warnings within an instance
3951
3952 and then not In_Instance
3953
3954 -- No warnings for expression functions
3955
3956 and then Nkind (Original_Node (N)) /= N_Expression_Function
3957 then
3958 Style.Body_With_No_Spec (N);
3959 end if;
3960
3961 New_Overloaded_Entity (Body_Id);
3962
3963 if Nkind (N) /= N_Subprogram_Body_Stub then
3964 Set_Acts_As_Spec (N);
3965 Generate_Definition (Body_Id);
3966 Generate_Reference
3967 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3968
3969 -- If the body is an entry wrapper created for an entry with
3970 -- preconditions, it must be compiled in the context of the
3971 -- enclosing synchronized object, because it may mention other
3972 -- operations of the type.
3973
3974 if Is_Entry_Wrapper (Body_Id) then
3975 declare
3976 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3977 begin
3978 Push_Scope (Prot);
3979 Install_Declarations (Prot);
3980 end;
3981 end if;
3982
3983 Install_Formals (Body_Id);
3984
3985 Push_Scope (Body_Id);
3986 end if;
3987
3988 -- For stubs and bodies with no previous spec, generate references to
3989 -- formals.
3990
3991 Generate_Reference_To_Formals (Body_Id);
3992 end if;
3993
3994 -- Entry barrier functions are generated outside the protected type and
3995 -- should not carry the SPARK_Mode of the enclosing context.
3996
3997 if Nkind (N) = N_Subprogram_Body
3998 and then Is_Entry_Barrier_Function (N)
3999 then
4000 null;
4001
4002 -- The body is generated as part of expression function expansion. When
4003 -- the expression function appears in the visible declarations of a
4004 -- package, the body is added to the private declarations. Since both
4005 -- declarative lists may be subject to a different SPARK_Mode, inherit
4006 -- the mode of the spec.
4007
4008 -- package P with SPARK_Mode is
4009 -- function Expr_Func ... is (...); -- original
4010 -- [function Expr_Func ...;] -- generated spec
4011 -- -- mode is ON
4012 -- private
4013 -- pragma SPARK_Mode (Off);
4014 -- [function Expr_Func ... is return ...;] -- generated body
4015 -- end P; -- mode is ON
4016
4017 elsif not Comes_From_Source (N)
4018 and then Present (Spec_Id)
4019 and then Is_Expression_Function (Spec_Id)
4020 then
4021 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4022 Set_SPARK_Pragma_Inherited
4023 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4024
4025 -- Set the SPARK_Mode from the current context (may be overwritten later
4026 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4027 -- initially on a stand-alone subprogram body, but is then relocated to
4028 -- a generated corresponding spec. In this scenario the mode is shared
4029 -- between the spec and body.
4030
4031 elsif No (SPARK_Pragma (Body_Id)) then
4032 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4033 Set_SPARK_Pragma_Inherited (Body_Id);
4034 end if;
4035
4036 -- A subprogram body may be instantiated or inlined at a later pass.
4037 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4038 -- applied to the initial declaration of the body.
4039
4040 if Present (Spec_Id) then
4041 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4042 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4043 end if;
4044
4045 else
4046 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4047 -- case the body is instantiated or inlined later and out of context.
4048 -- The body uses this attribute to restore the value of the global
4049 -- flag.
4050
4051 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4052 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4053
4054 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4055 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4056 end if;
4057 end if;
4058
4059 -- Preserve relevant elaboration-related attributes of the context which
4060 -- are no longer available or very expensive to recompute once analysis,
4061 -- resolution, and expansion are over.
4062
4063 if No (Spec_Id) then
4064 Mark_Elaboration_Attributes
4065 (N_Id => Body_Id,
4066 Checks => True,
4067 Warnings => True);
4068 end if;
4069
4070 -- If this is the proper body of a stub, we must verify that the stub
4071 -- conforms to the body, and to the previous spec if one was present.
4072 -- We know already that the body conforms to that spec. This test is
4073 -- only required for subprograms that come from source.
4074
4075 if Nkind (Parent (N)) = N_Subunit
4076 and then Comes_From_Source (N)
4077 and then not Error_Posted (Body_Id)
4078 and then Nkind (Corresponding_Stub (Parent (N))) =
4079 N_Subprogram_Body_Stub
4080 then
4081 declare
4082 Old_Id : constant Entity_Id :=
4083 Defining_Entity
4084 (Specification (Corresponding_Stub (Parent (N))));
4085
4086 Conformant : Boolean := False;
4087
4088 begin
4089 if No (Spec_Id) then
4090 Check_Fully_Conformant (Body_Id, Old_Id);
4091
4092 else
4093 Check_Conformance
4094 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4095
4096 if not Conformant then
4097
4098 -- The stub was taken to be a new declaration. Indicate that
4099 -- it lacks a body.
4100
4101 Set_Has_Completion (Old_Id, False);
4102 end if;
4103 end if;
4104 end;
4105 end if;
4106
4107 Set_Has_Completion (Body_Id);
4108 Check_Eliminated (Body_Id);
4109
4110 -- Analyze any aspect specifications that appear on the subprogram body
4111 -- stub. Stop the analysis now as the stub does not have a declarative
4112 -- or a statement part, and it cannot be inlined.
4113
4114 if Nkind (N) = N_Subprogram_Body_Stub then
4115 if Has_Aspects (N) then
4116 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4117 end if;
4118
4119 goto Leave;
4120 end if;
4121
4122 -- Handle inlining
4123
4124 -- Note: Normally we don't do any inlining if expansion is off, since
4125 -- we won't generate code in any case. An exception arises in GNATprove
4126 -- mode where we want to expand some calls in place, even with expansion
4127 -- disabled, since the inlining eases formal verification.
4128
4129 if not GNATprove_Mode
4130 and then Expander_Active
4131 and then Serious_Errors_Detected = 0
4132 and then Present (Spec_Id)
4133 and then Has_Pragma_Inline (Spec_Id)
4134 then
4135 -- Legacy implementation (relying on front-end inlining)
4136
4137 if not Back_End_Inlining then
4138 if (Has_Pragma_Inline_Always (Spec_Id)
4139 and then not Opt.Disable_FE_Inline_Always)
4140 or else (Front_End_Inlining
4141 and then not Opt.Disable_FE_Inline)
4142 then
4143 Build_Body_To_Inline (N, Spec_Id);
4144 end if;
4145
4146 -- New implementation (relying on back-end inlining)
4147
4148 else
4149 if Has_Pragma_Inline_Always (Spec_Id)
4150 or else Optimization_Level > 0
4151 then
4152 -- Handle function returning an unconstrained type
4153
4154 if Comes_From_Source (Body_Id)
4155 and then Ekind (Spec_Id) = E_Function
4156 and then Returns_Unconstrained_Type (Spec_Id)
4157
4158 -- If function builds in place, i.e. returns a limited type,
4159 -- inlining cannot be done.
4160
4161 and then not Is_Limited_Type (Etype (Spec_Id))
4162 then
4163 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4164
4165 else
4166 declare
4167 Subp_Body : constant Node_Id :=
4168 Unit_Declaration_Node (Body_Id);
4169 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4170
4171 begin
4172 -- Do not pass inlining to the backend if the subprogram
4173 -- has declarations or statements which cannot be inlined
4174 -- by the backend. This check is done here to emit an
4175 -- error instead of the generic warning message reported
4176 -- by the GCC backend (ie. "function might not be
4177 -- inlinable").
4178
4179 if Present (Subp_Decl)
4180 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4181 then
4182 null;
4183
4184 elsif Has_Excluded_Statement
4185 (Spec_Id,
4186 Statements
4187 (Handled_Statement_Sequence (Subp_Body)))
4188 then
4189 null;
4190
4191 -- If the backend inlining is available then at this
4192 -- stage we only have to mark the subprogram as inlined.
4193 -- The expander will take care of registering it in the
4194 -- table of subprograms inlined by the backend a part of
4195 -- processing calls to it (cf. Expand_Call)
4196
4197 else
4198 Set_Is_Inlined (Spec_Id);
4199 end if;
4200 end;
4201 end if;
4202 end if;
4203 end if;
4204
4205 -- In GNATprove mode, inline only when there is a separate subprogram
4206 -- declaration for now, as inlining of subprogram bodies acting as
4207 -- declarations, or subprogram stubs, are not supported by front-end
4208 -- inlining. This inlining should occur after analysis of the body, so
4209 -- that it is known whether the value of SPARK_Mode, which can be
4210 -- defined by a pragma inside the body, is applicable to the body.
4211 -- Inlining can be disabled with switch -gnatdm
4212
4213 elsif GNATprove_Mode
4214 and then Full_Analysis
4215 and then not Inside_A_Generic
4216 and then Present (Spec_Id)
4217 and then
4218 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4219 and then Body_Has_SPARK_Mode_On
4220 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4221 and then not Body_Has_Contract
4222 and then not Debug_Flag_M
4223 then
4224 Build_Body_To_Inline (N, Spec_Id);
4225 end if;
4226
4227 -- When generating code, inherited pre/postconditions are handled when
4228 -- expanding the corresponding contract.
4229
4230 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4231 -- of the specification we have to install the private withed units.
4232 -- This holds for child units as well.
4233
4234 if Is_Compilation_Unit (Body_Id)
4235 or else Nkind (Parent (N)) = N_Compilation_Unit
4236 then
4237 Install_Private_With_Clauses (Body_Id);
4238 end if;
4239
4240 Check_Anonymous_Return;
4241
4242 -- Set the Protected_Formal field of each extra formal of the protected
4243 -- subprogram to reference the corresponding extra formal of the
4244 -- subprogram that implements it. For regular formals this occurs when
4245 -- the protected subprogram's declaration is expanded, but the extra
4246 -- formals don't get created until the subprogram is frozen. We need to
4247 -- do this before analyzing the protected subprogram's body so that any
4248 -- references to the original subprogram's extra formals will be changed
4249 -- refer to the implementing subprogram's formals (see Expand_Formal).
4250
4251 if Present (Spec_Id)
4252 and then Is_Protected_Type (Scope (Spec_Id))
4253 and then Present (Protected_Body_Subprogram (Spec_Id))
4254 then
4255 declare
4256 Impl_Subp : constant Entity_Id :=
4257 Protected_Body_Subprogram (Spec_Id);
4258 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4259 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4260
4261 begin
4262 while Present (Prot_Ext_Formal) loop
4263 pragma Assert (Present (Impl_Ext_Formal));
4264 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4265 Next_Formal_With_Extras (Prot_Ext_Formal);
4266 Next_Formal_With_Extras (Impl_Ext_Formal);
4267 end loop;
4268 end;
4269 end if;
4270
4271 -- Generate minimum accessibility local objects to correspond with
4272 -- any extra formal added for anonymous access types. This new local
4273 -- object can then be used instead of the formal in case it is used
4274 -- in an actual to a call to a nested subprogram.
4275
4276 -- This method is used to supplement our "small integer model" for
4277 -- accessibility-check generation (for more information see
4278 -- Dynamic_Accessibility_Level).
4279
4280 -- Because we allow accessibility values greater than our expected value
4281 -- passing along the same extra accessibility formal as an actual
4282 -- to a nested subprogram becomes a problem because high values mean
4283 -- different things to the callee even though they are the same to the
4284 -- caller. So, as described in the first section, we create a local
4285 -- object representing the minimum of the accessibility level value that
4286 -- is passed in and the accessibility level of the callee's parameter
4287 -- and locals and use it in the case of a call to a nested subprogram.
4288 -- This generated object is refered to as a "minimum accessiblity
4289 -- level."
4290
4291 if Present (Spec_Id) or else Present (Body_Id) then
4292 Body_Nod := Unit_Declaration_Node (Body_Id);
4293
4294 declare
4295 Form : Entity_Id;
4296 begin
4297 -- Grab the appropriate formal depending on whether there exists
4298 -- an actual spec for the subprogram or whether we are dealing
4299 -- with a protected subprogram.
4300
4301 if Present (Spec_Id) then
4302 if Present (Protected_Body_Subprogram (Spec_Id)) then
4303 Form := First_Formal (Protected_Body_Subprogram (Spec_Id));
4304 else
4305 Form := First_Formal (Spec_Id);
4306 end if;
4307 else
4308 Form := First_Formal (Body_Id);
4309 end if;
4310
4311 -- Loop through formals if the subprogram is capable of accepting
4312 -- a generated local object. If it is not then it is also not
4313 -- capable of having local subprograms meaning it would not need
4314 -- a minimum accessibility level object anyway.
4315
4316 if Present (Body_Nod)
4317 and then Has_Declarations (Body_Nod)
4318 and then Nkind (Body_Nod) /= N_Package_Specification
4319 then
4320 while Present (Form) loop
4321
4322 if Present (Extra_Accessibility (Form))
4323 and then No (Minimum_Accessibility (Form))
4324 then
4325 -- Generate the minimum accessibility level object
4326
4327 -- A60b : integer := integer'min(2, paramL);
4328
4329 declare
4330 Loc : constant Source_Ptr := Sloc (Body_Nod);
4331 Obj_Node : constant Node_Id :=
4332 Make_Object_Declaration (Loc,
4333 Defining_Identifier =>
4334 Make_Temporary
4335 (Loc, 'A', Extra_Accessibility (Form)),
4336 Object_Definition => New_Occurrence_Of
4337 (Standard_Integer, Loc),
4338 Expression =>
4339 Make_Attribute_Reference (Loc,
4340 Prefix => New_Occurrence_Of
4341 (Standard_Integer, Loc),
4342 Attribute_Name => Name_Min,
4343 Expressions => New_List (
4344 Make_Integer_Literal (Loc,
4345 Object_Access_Level (Form)),
4346 New_Occurrence_Of
4347 (Extra_Accessibility (Form), Loc))));
4348 begin
4349 -- Add the new local object to the Minimum_Acc_Obj to
4350 -- be later prepended to the subprogram's list of
4351 -- declarations after we are sure all expansion is
4352 -- done.
4353
4354 if Present (Minimum_Acc_Objs) then
4355 Prepend (Obj_Node, Minimum_Acc_Objs);
4356 else
4357 Minimum_Acc_Objs := New_List (Obj_Node);
4358 end if;
4359
4360 -- Register the object and analyze it
4361
4362 Set_Minimum_Accessibility
4363 (Form, Defining_Identifier (Obj_Node));
4364
4365 Analyze (Obj_Node);
4366 end;
4367 end if;
4368
4369 Next_Formal (Form);
4370 end loop;
4371 end if;
4372 end;
4373 end if;
4374
4375 -- Now we can go on to analyze the body
4376
4377 HSS := Handled_Statement_Sequence (N);
4378 Set_Actual_Subtypes (N, Current_Scope);
4379
4380 -- Add a declaration for the Protection object, renaming declarations
4381 -- for discriminals and privals and finally a declaration for the entry
4382 -- family index (if applicable). This form of early expansion is done
4383 -- when the Expander is active because Install_Private_Data_Declarations
4384 -- references entities which were created during regular expansion. The
4385 -- subprogram entity must come from source, and not be an internally
4386 -- generated subprogram.
4387
4388 if Expander_Active
4389 and then Present (Prot_Typ)
4390 and then Present (Spec_Id)
4391 and then Comes_From_Source (Spec_Id)
4392 and then not Is_Eliminated (Spec_Id)
4393 then
4394 Install_Private_Data_Declarations
4395 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4396 end if;
4397
4398 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4399 -- may now appear in parameter and result profiles. Since the analysis
4400 -- of a subprogram body may use the parameter and result profile of the
4401 -- spec, swap any limited views with their non-limited counterpart.
4402
4403 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4404 Exch_Views := Exchange_Limited_Views (Spec_Id);
4405 end if;
4406
4407 -- If the return type is an anonymous access type whose designated type
4408 -- is the limited view of a class-wide type and the non-limited view is
4409 -- available, update the return type accordingly.
4410
4411 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4412 declare
4413 Etyp : Entity_Id;
4414 Rtyp : Entity_Id;
4415
4416 begin
4417 Rtyp := Etype (Spec_Id);
4418
4419 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4420 Etyp := Directly_Designated_Type (Rtyp);
4421
4422 if Is_Class_Wide_Type (Etyp)
4423 and then From_Limited_With (Etyp)
4424 then
4425 Desig_View := Etyp;
4426 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4427 end if;
4428 end if;
4429 end;
4430 end if;
4431
4432 -- Analyze any aspect specifications that appear on the subprogram body
4433
4434 if Has_Aspects (N) then
4435 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4436 end if;
4437
4438 Analyze_Declarations (Declarations (N));
4439
4440 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4441
4442 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4443 if Present (SPARK_Pragma (Spec_Id)) then
4444 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4445 and then
4446 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4447 then
4448 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4449 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4450 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4451 Error_Msg_NE
4452 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4453 end if;
4454
4455 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4456 null;
4457
4458 else
4459 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4460 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4461 Error_Msg_Sloc := Sloc (Spec_Id);
4462 Error_Msg_NE
4463 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4464 end if;
4465 end if;
4466
4467 -- A subprogram body freezes its own contract. Analyze the contract
4468 -- after the declarations of the body have been processed as pragmas
4469 -- are now chained on the contract of the subprogram body.
4470
4471 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4472
4473 -- Check completion, and analyze the statements
4474
4475 Check_Completion;
4476 Inspect_Deferred_Constant_Completion (Declarations (N));
4477 Analyze (HSS);
4478
4479 -- Add the generated minimum accessibility objects to the subprogram
4480 -- body's list of declarations after analysis of the statements and
4481 -- contracts.
4482
4483 while Is_Non_Empty_List (Minimum_Acc_Objs) loop
4484 if Present (Declarations (Body_Nod)) then
4485 Prepend (Remove_Head (Minimum_Acc_Objs), Declarations (Body_Nod));
4486 else
4487 Set_Declarations
4488 (Body_Nod, New_List (Remove_Head (Minimum_Acc_Objs)));
4489 end if;
4490 end loop;
4491
4492 -- Deal with end of scope processing for the body
4493
4494 Process_End_Label (HSS, 't', Current_Scope);
4495 Update_Use_Clause_Chain;
4496 End_Scope;
4497
4498 -- If we are compiling an entry wrapper, remove the enclosing
4499 -- synchronized object from the stack.
4500
4501 if Is_Entry_Wrapper (Body_Id) then
4502 End_Scope;
4503 end if;
4504
4505 Check_Subprogram_Order (N);
4506 Set_Analyzed (Body_Id);
4507
4508 -- If we have a separate spec, then the analysis of the declarations
4509 -- caused the entities in the body to be chained to the spec id, but
4510 -- we want them chained to the body id. Only the formal parameters
4511 -- end up chained to the spec id in this case.
4512
4513 if Present (Spec_Id) then
4514
4515 -- We must conform to the categorization of our spec
4516
4517 Validate_Categorization_Dependency (N, Spec_Id);
4518
4519 -- And if this is a child unit, the parent units must conform
4520
4521 if Is_Child_Unit (Spec_Id) then
4522 Validate_Categorization_Dependency
4523 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4524 end if;
4525
4526 -- Here is where we move entities from the spec to the body
4527
4528 -- Case where there are entities that stay with the spec
4529
4530 if Present (Last_Real_Spec_Entity) then
4531
4532 -- No body entities (happens when the only real spec entities come
4533 -- from precondition and postcondition pragmas).
4534
4535 if No (Last_Entity (Body_Id)) then
4536 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4537
4538 -- Body entities present (formals), so chain stuff past them
4539
4540 else
4541 Link_Entities
4542 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4543 end if;
4544
4545 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4546 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4547 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4548
4549 -- Case where there are no spec entities, in this case there can be
4550 -- no body entities either, so just move everything.
4551
4552 -- If the body is generated for an expression function, it may have
4553 -- been preanalyzed already, if 'access was applied to it.
4554
4555 else
4556 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4557 N_Expression_Function
4558 then
4559 pragma Assert (No (Last_Entity (Body_Id)));
4560 null;
4561 end if;
4562
4563 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4564 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4565 Set_First_Entity (Spec_Id, Empty);
4566 Set_Last_Entity (Spec_Id, Empty);
4567 end if;
4568
4569 -- Otherwise the body does not complete a previous declaration. Check
4570 -- the categorization of the body against the units it withs.
4571
4572 else
4573 Validate_Categorization_Dependency (N, Body_Id);
4574 end if;
4575
4576 Check_Missing_Return;
4577
4578 -- Now we are going to check for variables that are never modified in
4579 -- the body of the procedure. But first we deal with a special case
4580 -- where we want to modify this check. If the body of the subprogram
4581 -- starts with a raise statement or its equivalent, or if the body
4582 -- consists entirely of a null statement, then it is pretty obvious that
4583 -- it is OK to not reference the parameters. For example, this might be
4584 -- the following common idiom for a stubbed function: statement of the
4585 -- procedure raises an exception. In particular this deals with the
4586 -- common idiom of a stubbed function, which appears something like:
4587
4588 -- function F (A : Integer) return Some_Type;
4589 -- X : Some_Type;
4590 -- begin
4591 -- raise Program_Error;
4592 -- return X;
4593 -- end F;
4594
4595 -- Here the purpose of X is simply to satisfy the annoying requirement
4596 -- in Ada that there be at least one return, and we certainly do not
4597 -- want to go posting warnings on X that it is not initialized. On
4598 -- the other hand, if X is entirely unreferenced that should still
4599 -- get a warning.
4600
4601 -- What we do is to detect these cases, and if we find them, flag the
4602 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4603 -- suppress unwanted warnings. For the case of the function stub above
4604 -- we have a special test to set X as apparently assigned to suppress
4605 -- the warning.
4606
4607 declare
4608 Stm : Node_Id;
4609
4610 begin
4611 -- Skip call markers installed by the ABE mechanism, labels, and
4612 -- Push_xxx_Error_Label to find the first real statement.
4613
4614 Stm := First (Statements (HSS));
4615 while Nkind_In (Stm, N_Call_Marker, N_Label)
4616 or else Nkind (Stm) in N_Push_xxx_Label
4617 loop
4618 Next (Stm);
4619 end loop;
4620
4621 -- Do the test on the original statement before expansion
4622
4623 declare
4624 Ostm : constant Node_Id := Original_Node (Stm);
4625
4626 begin
4627 -- If explicit raise statement, turn on flag
4628
4629 if Nkind (Ostm) = N_Raise_Statement then
4630 Set_Trivial_Subprogram (Stm);
4631
4632 -- If null statement, and no following statements, turn on flag
4633
4634 elsif Nkind (Stm) = N_Null_Statement
4635 and then Comes_From_Source (Stm)
4636 and then No (Next (Stm))
4637 then
4638 Set_Trivial_Subprogram (Stm);
4639
4640 -- Check for explicit call cases which likely raise an exception
4641
4642 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4643 if Is_Entity_Name (Name (Ostm)) then
4644 declare
4645 Ent : constant Entity_Id := Entity (Name (Ostm));
4646
4647 begin
4648 -- If the procedure is marked No_Return, then likely it
4649 -- raises an exception, but in any case it is not coming
4650 -- back here, so turn on the flag.
4651
4652 if Present (Ent)
4653 and then Ekind (Ent) = E_Procedure
4654 and then No_Return (Ent)
4655 then
4656 Set_Trivial_Subprogram (Stm);
4657 end if;
4658 end;
4659 end if;
4660 end if;
4661 end;
4662 end;
4663
4664 -- Check for variables that are never modified
4665
4666 declare
4667 E1 : Entity_Id;
4668 E2 : Entity_Id;
4669
4670 begin
4671 -- If there is a separate spec, then transfer Never_Set_In_Source
4672 -- flags from out parameters to the corresponding entities in the
4673 -- body. The reason we do that is we want to post error flags on
4674 -- the body entities, not the spec entities.
4675
4676 if Present (Spec_Id) then
4677 E1 := First_Entity (Spec_Id);
4678 while Present (E1) loop
4679 if Ekind (E1) = E_Out_Parameter then
4680 E2 := First_Entity (Body_Id);
4681 while Present (E2) loop
4682 exit when Chars (E1) = Chars (E2);
4683 Next_Entity (E2);
4684 end loop;
4685
4686 if Present (E2) then
4687 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4688 end if;
4689 end if;
4690
4691 Next_Entity (E1);
4692 end loop;
4693 end if;
4694
4695 -- Check references of the subprogram spec when we are dealing with
4696 -- an expression function due to it having a generated body.
4697 -- Otherwise, we simply check the formals of the subprogram body.
4698
4699 if Present (Spec_Id)
4700 and then Is_Expression_Function (Spec_Id)
4701 then
4702 Check_References (Spec_Id);
4703 else
4704 Check_References (Body_Id);
4705 end if;
4706 end;
4707
4708 -- Check for nested subprogram, and mark outer level subprogram if so
4709
4710 declare
4711 Ent : Entity_Id;
4712
4713 begin
4714 if Present (Spec_Id) then
4715 Ent := Spec_Id;
4716 else
4717 Ent := Body_Id;
4718 end if;
4719
4720 loop
4721 Ent := Enclosing_Subprogram (Ent);
4722 exit when No (Ent) or else Is_Subprogram (Ent);
4723 end loop;
4724
4725 if Present (Ent) then
4726 Set_Has_Nested_Subprogram (Ent);
4727 end if;
4728 end;
4729
4730 -- Restore the limited views in the spec, if any, to let the back end
4731 -- process it without running into circularities.
4732
4733 if Exch_Views /= No_Elist then
4734 Restore_Limited_Views (Exch_Views);
4735 end if;
4736
4737 if Mask_Types /= No_Elist then
4738 Unmask_Unfrozen_Types (Mask_Types);
4739 end if;
4740
4741 if Present (Desig_View) then
4742 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4743 end if;
4744
4745 <<Leave>>
4746 if Present (Ignored_Ghost_Region) then
4747 Expander_Active := Saved_EA;
4748 end if;
4749
4750 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4751 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4752 end Analyze_Subprogram_Body_Helper;
4753
4754 ------------------------------------
4755 -- Analyze_Subprogram_Declaration --
4756 ------------------------------------
4757
4758 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4759 Scop : constant Entity_Id := Current_Scope;
4760 Designator : Entity_Id;
4761
4762 Is_Completion : Boolean;
4763 -- Indicates whether a null procedure declaration is a completion
4764
4765 begin
4766 -- Null procedures are not allowed in SPARK
4767
4768 if Nkind (Specification (N)) = N_Procedure_Specification
4769 and then Null_Present (Specification (N))
4770 then
4771 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4772
4773 -- Null procedures are allowed in protected types, following the
4774 -- recent AI12-0147.
4775
4776 if Is_Protected_Type (Current_Scope)
4777 and then Ada_Version < Ada_2012
4778 then
4779 Error_Msg_N ("protected operation cannot be a null procedure", N);
4780 end if;
4781
4782 Analyze_Null_Procedure (N, Is_Completion);
4783
4784 -- The null procedure acts as a body, nothing further is needed
4785
4786 if Is_Completion then
4787 return;
4788 end if;
4789 end if;
4790
4791 Designator := Analyze_Subprogram_Specification (Specification (N));
4792
4793 -- A reference may already have been generated for the unit name, in
4794 -- which case the following call is redundant. However it is needed for
4795 -- declarations that are the rewriting of an expression function.
4796
4797 Generate_Definition (Designator);
4798
4799 -- Set the SPARK mode from the current context (may be overwritten later
4800 -- with explicit pragma). This is not done for entry barrier functions
4801 -- because they are generated outside the protected type and should not
4802 -- carry the mode of the enclosing context.
4803
4804 if Nkind (N) = N_Subprogram_Declaration
4805 and then Is_Entry_Barrier_Function (N)
4806 then
4807 null;
4808
4809 else
4810 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4811 Set_SPARK_Pragma_Inherited (Designator);
4812 end if;
4813
4814 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4815 -- the body of this subprogram is instantiated or inlined later and out
4816 -- of context. The body uses this attribute to restore the value of the
4817 -- global flag.
4818
4819 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4820 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4821 end if;
4822
4823 -- Preserve relevant elaboration-related attributes of the context which
4824 -- are no longer available or very expensive to recompute once analysis,
4825 -- resolution, and expansion are over.
4826
4827 Mark_Elaboration_Attributes
4828 (N_Id => Designator,
4829 Checks => True,
4830 Warnings => True);
4831
4832 if Debug_Flag_C then
4833 Write_Str ("==> subprogram spec ");
4834 Write_Name (Chars (Designator));
4835 Write_Str (" from ");
4836 Write_Location (Sloc (N));
4837 Write_Eol;
4838 Indent;
4839 end if;
4840
4841 Validate_RCI_Subprogram_Declaration (N);
4842 New_Overloaded_Entity (Designator);
4843 Check_Delayed_Subprogram (Designator);
4844
4845 -- If the type of the first formal of the current subprogram is a non-
4846 -- generic tagged private type, mark the subprogram as being a private
4847 -- primitive. Ditto if this is a function with controlling result, and
4848 -- the return type is currently private. In both cases, the type of the
4849 -- controlling argument or result must be in the current scope for the
4850 -- operation to be primitive.
4851
4852 if Has_Controlling_Result (Designator)
4853 and then Is_Private_Type (Etype (Designator))
4854 and then Scope (Etype (Designator)) = Current_Scope
4855 and then not Is_Generic_Actual_Type (Etype (Designator))
4856 then
4857 Set_Is_Private_Primitive (Designator);
4858
4859 elsif Present (First_Formal (Designator)) then
4860 declare
4861 Formal_Typ : constant Entity_Id :=
4862 Etype (First_Formal (Designator));
4863 begin
4864 Set_Is_Private_Primitive (Designator,
4865 Is_Tagged_Type (Formal_Typ)
4866 and then Scope (Formal_Typ) = Current_Scope
4867 and then Is_Private_Type (Formal_Typ)
4868 and then not Is_Generic_Actual_Type (Formal_Typ));
4869 end;
4870 end if;
4871
4872 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4873 -- or null.
4874
4875 if Ada_Version >= Ada_2005
4876 and then Comes_From_Source (N)
4877 and then Is_Dispatching_Operation (Designator)
4878 then
4879 declare
4880 E : Entity_Id;
4881 Etyp : Entity_Id;
4882
4883 begin
4884 if Has_Controlling_Result (Designator) then
4885 Etyp := Etype (Designator);
4886
4887 else
4888 E := First_Entity (Designator);
4889 while Present (E)
4890 and then Is_Formal (E)
4891 and then not Is_Controlling_Formal (E)
4892 loop
4893 Next_Entity (E);
4894 end loop;
4895
4896 Etyp := Etype (E);
4897 end if;
4898
4899 if Is_Access_Type (Etyp) then
4900 Etyp := Directly_Designated_Type (Etyp);
4901 end if;
4902
4903 if Is_Interface (Etyp)
4904 and then not Is_Abstract_Subprogram (Designator)
4905 and then not (Ekind (Designator) = E_Procedure
4906 and then Null_Present (Specification (N)))
4907 then
4908 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4909
4910 -- Specialize error message based on procedures vs. functions,
4911 -- since functions can't be null subprograms.
4912
4913 if Ekind (Designator) = E_Procedure then
4914 Error_Msg_N
4915 ("interface procedure % must be abstract or null", N);
4916 else
4917 Error_Msg_N
4918 ("interface function % must be abstract", N);
4919 end if;
4920 end if;
4921 end;
4922 end if;
4923
4924 -- What is the following code for, it used to be
4925
4926 -- ??? Set_Suppress_Elaboration_Checks
4927 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4928
4929 -- The following seems equivalent, but a bit dubious
4930
4931 if Elaboration_Checks_Suppressed (Designator) then
4932 Set_Kill_Elaboration_Checks (Designator);
4933 end if;
4934
4935 -- For a compilation unit, set body required. This flag will only be
4936 -- reset if a valid Import or Interface pragma is processed later on.
4937
4938 if Nkind (Parent (N)) = N_Compilation_Unit then
4939 Set_Body_Required (Parent (N), True);
4940
4941 if Ada_Version >= Ada_2005
4942 and then Nkind (Specification (N)) = N_Procedure_Specification
4943 and then Null_Present (Specification (N))
4944 then
4945 Error_Msg_N
4946 ("null procedure cannot be declared at library level", N);
4947 end if;
4948 end if;
4949
4950 Generate_Reference_To_Formals (Designator);
4951 Check_Eliminated (Designator);
4952
4953 if Debug_Flag_C then
4954 Outdent;
4955 Write_Str ("<== subprogram spec ");
4956 Write_Name (Chars (Designator));
4957 Write_Str (" from ");
4958 Write_Location (Sloc (N));
4959 Write_Eol;
4960 end if;
4961
4962 -- Indicate that this is a protected operation, because it may be used
4963 -- in subsequent declarations within the protected type.
4964
4965 if Is_Protected_Type (Current_Scope) then
4966 Set_Convention (Designator, Convention_Protected);
4967 end if;
4968
4969 List_Inherited_Pre_Post_Aspects (Designator);
4970
4971 -- Process the aspects before establishing the proper categorization in
4972 -- case the subprogram is a compilation unit and one of its aspects is
4973 -- converted into a categorization pragma.
4974
4975 if Has_Aspects (N) then
4976 Analyze_Aspect_Specifications (N, Designator);
4977 end if;
4978
4979 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4980 Set_Categorization_From_Scope (Designator, Scop);
4981
4982 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
4983 -- proper categorization of the unit based on its pragmas.
4984
4985 else
4986 Push_Scope (Designator);
4987 Set_Categorization_From_Pragmas (N);
4988 Validate_Categorization_Dependency (N, Designator);
4989 Pop_Scope;
4990 end if;
4991 end Analyze_Subprogram_Declaration;
4992
4993 --------------------------------------
4994 -- Analyze_Subprogram_Specification --
4995 --------------------------------------
4996
4997 -- Reminder: N here really is a subprogram specification (not a subprogram
4998 -- declaration). This procedure is called to analyze the specification in
4999 -- both subprogram bodies and subprogram declarations (specs).
5000
5001 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
5002 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
5003 -- Determine whether entity E denotes the spec or body of an invariant
5004 -- procedure.
5005
5006 ------------------------------------
5007 -- Is_Invariant_Procedure_Or_Body --
5008 ------------------------------------
5009
5010 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
5011 Decl : constant Node_Id := Unit_Declaration_Node (E);
5012 Spec : Entity_Id;
5013
5014 begin
5015 if Nkind (Decl) = N_Subprogram_Body then
5016 Spec := Corresponding_Spec (Decl);
5017 else
5018 Spec := E;
5019 end if;
5020
5021 return
5022 Present (Spec)
5023 and then Ekind (Spec) = E_Procedure
5024 and then (Is_Partial_Invariant_Procedure (Spec)
5025 or else Is_Invariant_Procedure (Spec));
5026 end Is_Invariant_Procedure_Or_Body;
5027
5028 -- Local variables
5029
5030 Designator : constant Entity_Id := Defining_Entity (N);
5031 Formals : constant List_Id := Parameter_Specifications (N);
5032
5033 -- Start of processing for Analyze_Subprogram_Specification
5034
5035 begin
5036 -- User-defined operator is not allowed in SPARK, except as a renaming
5037
5038 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
5039 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
5040 then
5041 Check_SPARK_05_Restriction
5042 ("user-defined operator is not allowed", N);
5043 end if;
5044
5045 -- Proceed with analysis. Do not emit a cross-reference entry if the
5046 -- specification comes from an expression function, because it may be
5047 -- the completion of a previous declaration. If it is not, the cross-
5048 -- reference entry will be emitted for the new subprogram declaration.
5049
5050 if Nkind (Parent (N)) /= N_Expression_Function then
5051 Generate_Definition (Designator);
5052 end if;
5053
5054 if Nkind (N) = N_Function_Specification then
5055 Set_Ekind (Designator, E_Function);
5056 Set_Mechanism (Designator, Default_Mechanism);
5057 else
5058 Set_Ekind (Designator, E_Procedure);
5059 Set_Etype (Designator, Standard_Void_Type);
5060 end if;
5061
5062 -- Flag Is_Inlined_Always is True by default, and reversed to False for
5063 -- those subprograms which could be inlined in GNATprove mode (because
5064 -- Body_To_Inline is non-Empty) but should not be inlined.
5065
5066 if GNATprove_Mode then
5067 Set_Is_Inlined_Always (Designator);
5068 end if;
5069
5070 -- Introduce new scope for analysis of the formals and the return type
5071
5072 Set_Scope (Designator, Current_Scope);
5073
5074 if Present (Formals) then
5075 Push_Scope (Designator);
5076 Process_Formals (Formals, N);
5077
5078 -- Check dimensions in N for formals with default expression
5079
5080 Analyze_Dimension_Formals (N, Formals);
5081
5082 -- Ada 2005 (AI-345): If this is an overriding operation of an
5083 -- inherited interface operation, and the controlling type is
5084 -- a synchronized type, replace the type with its corresponding
5085 -- record, to match the proper signature of an overriding operation.
5086 -- Same processing for an access parameter whose designated type is
5087 -- derived from a synchronized interface.
5088
5089 -- This modification is not done for invariant procedures because
5090 -- the corresponding record may not necessarely be visible when the
5091 -- concurrent type acts as the full view of a private type.
5092
5093 -- package Pack is
5094 -- type Prot is private with Type_Invariant => ...;
5095 -- procedure ConcInvariant (Obj : Prot);
5096 -- private
5097 -- protected type Prot is ...;
5098 -- type Concurrent_Record_Prot is record ...;
5099 -- procedure ConcInvariant (Obj : Prot) is
5100 -- ...
5101 -- end ConcInvariant;
5102 -- end Pack;
5103
5104 -- In the example above, both the spec and body of the invariant
5105 -- procedure must utilize the private type as the controlling type.
5106
5107 if Ada_Version >= Ada_2005
5108 and then not Is_Invariant_Procedure_Or_Body (Designator)
5109 then
5110 declare
5111 Formal : Entity_Id;
5112 Formal_Typ : Entity_Id;
5113 Rec_Typ : Entity_Id;
5114 Desig_Typ : Entity_Id;
5115
5116 begin
5117 Formal := First_Formal (Designator);
5118 while Present (Formal) loop
5119 Formal_Typ := Etype (Formal);
5120
5121 if Is_Concurrent_Type (Formal_Typ)
5122 and then Present (Corresponding_Record_Type (Formal_Typ))
5123 then
5124 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5125
5126 if Present (Interfaces (Rec_Typ)) then
5127 Set_Etype (Formal, Rec_Typ);
5128 end if;
5129
5130 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5131 Desig_Typ := Designated_Type (Formal_Typ);
5132
5133 if Is_Concurrent_Type (Desig_Typ)
5134 and then Present (Corresponding_Record_Type (Desig_Typ))
5135 then
5136 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5137
5138 if Present (Interfaces (Rec_Typ)) then
5139 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5140 end if;
5141 end if;
5142 end if;
5143
5144 Next_Formal (Formal);
5145 end loop;
5146 end;
5147 end if;
5148
5149 End_Scope;
5150
5151 -- The subprogram scope is pushed and popped around the processing of
5152 -- the return type for consistency with call above to Process_Formals
5153 -- (which itself can call Analyze_Return_Type), and to ensure that any
5154 -- itype created for the return type will be associated with the proper
5155 -- scope.
5156
5157 elsif Nkind (N) = N_Function_Specification then
5158 Push_Scope (Designator);
5159 Analyze_Return_Type (N);
5160 End_Scope;
5161 end if;
5162
5163 -- Function case
5164
5165 if Nkind (N) = N_Function_Specification then
5166
5167 -- Deal with operator symbol case
5168
5169 if Nkind (Designator) = N_Defining_Operator_Symbol then
5170 Valid_Operator_Definition (Designator);
5171 end if;
5172
5173 May_Need_Actuals (Designator);
5174
5175 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5176 -- the subprogram is abstract also. This does not apply to renaming
5177 -- declarations, where abstractness is inherited, and to subprogram
5178 -- bodies generated for stream operations, which become renamings as
5179 -- bodies.
5180
5181 -- In case of primitives associated with abstract interface types
5182 -- the check is applied later (see Analyze_Subprogram_Declaration).
5183
5184 if not Nkind_In (Original_Node (Parent (N)),
5185 N_Abstract_Subprogram_Declaration,
5186 N_Formal_Abstract_Subprogram_Declaration,
5187 N_Subprogram_Renaming_Declaration)
5188 then
5189 if Is_Abstract_Type (Etype (Designator))
5190 and then not Is_Interface (Etype (Designator))
5191 then
5192 Error_Msg_N
5193 ("function that returns abstract type must be abstract", N);
5194
5195 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5196 -- access result whose designated type is abstract.
5197
5198 elsif Ada_Version >= Ada_2012
5199 and then Nkind (Result_Definition (N)) = N_Access_Definition
5200 and then
5201 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5202 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5203 then
5204 Error_Msg_N
5205 ("function whose access result designates abstract type "
5206 & "must be abstract", N);
5207 end if;
5208 end if;
5209 end if;
5210
5211 return Designator;
5212 end Analyze_Subprogram_Specification;
5213
5214 -----------------------
5215 -- Check_Conformance --
5216 -----------------------
5217
5218 procedure Check_Conformance
5219 (New_Id : Entity_Id;
5220 Old_Id : Entity_Id;
5221 Ctype : Conformance_Type;
5222 Errmsg : Boolean;
5223 Conforms : out Boolean;
5224 Err_Loc : Node_Id := Empty;
5225 Get_Inst : Boolean := False;
5226 Skip_Controlling_Formals : Boolean := False)
5227 is
5228 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5229 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5230 -- If Errmsg is True, then processing continues to post an error message
5231 -- for conformance error on given node. Two messages are output. The
5232 -- first message points to the previous declaration with a general "no
5233 -- conformance" message. The second is the detailed reason, supplied as
5234 -- Msg. The parameter N provide information for a possible & insertion
5235 -- in the message, and also provides the location for posting the
5236 -- message in the absence of a specified Err_Loc location.
5237
5238 function Conventions_Match
5239 (Id1 : Entity_Id;
5240 Id2 : Entity_Id) return Boolean;
5241 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5242 -- match.
5243
5244 -----------------------
5245 -- Conformance_Error --
5246 -----------------------
5247
5248 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5249 Enode : Node_Id;
5250
5251 begin
5252 Conforms := False;
5253
5254 if Errmsg then
5255 if No (Err_Loc) then
5256 Enode := N;
5257 else
5258 Enode := Err_Loc;
5259 end if;
5260
5261 Error_Msg_Sloc := Sloc (Old_Id);
5262
5263 case Ctype is
5264 when Type_Conformant =>
5265 Error_Msg_N -- CODEFIX
5266 ("not type conformant with declaration#!", Enode);
5267
5268 when Mode_Conformant =>
5269 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5270 Error_Msg_N
5271 ("not mode conformant with operation inherited#!",
5272 Enode);
5273 else
5274 Error_Msg_N
5275 ("not mode conformant with declaration#!", Enode);
5276 end if;
5277
5278 when Subtype_Conformant =>
5279 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5280 Error_Msg_N
5281 ("not subtype conformant with operation inherited#!",
5282 Enode);
5283 else
5284 Error_Msg_N
5285 ("not subtype conformant with declaration#!", Enode);
5286 end if;
5287
5288 when Fully_Conformant =>
5289 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5290 Error_Msg_N -- CODEFIX
5291 ("not fully conformant with operation inherited#!",
5292 Enode);
5293 else
5294 Error_Msg_N -- CODEFIX
5295 ("not fully conformant with declaration#!", Enode);
5296 end if;
5297 end case;
5298
5299 Error_Msg_NE (Msg, Enode, N);
5300 end if;
5301 end Conformance_Error;
5302
5303 -----------------------
5304 -- Conventions_Match --
5305 -----------------------
5306
5307 function Conventions_Match
5308 (Id1 : Entity_Id;
5309 Id2 : Entity_Id) return Boolean
5310 is
5311 begin
5312 -- Ignore the conventions of anonymous access-to-subprogram types
5313 -- and subprogram types because these are internally generated and
5314 -- the only way these may receive a convention is if they inherit
5315 -- the convention of a related subprogram.
5316
5317 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5318 E_Subprogram_Type)
5319 or else
5320 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5321 E_Subprogram_Type)
5322 then
5323 return True;
5324
5325 -- Otherwise compare the conventions directly
5326
5327 else
5328 return Convention (Id1) = Convention (Id2);
5329 end if;
5330 end Conventions_Match;
5331
5332 -- Local Variables
5333
5334 Old_Type : constant Entity_Id := Etype (Old_Id);
5335 New_Type : constant Entity_Id := Etype (New_Id);
5336 Old_Formal : Entity_Id;
5337 New_Formal : Entity_Id;
5338 Access_Types_Match : Boolean;
5339 Old_Formal_Base : Entity_Id;
5340 New_Formal_Base : Entity_Id;
5341
5342 -- Start of processing for Check_Conformance
5343
5344 begin
5345 Conforms := True;
5346
5347 -- We need a special case for operators, since they don't appear
5348 -- explicitly.
5349
5350 if Ctype = Type_Conformant then
5351 if Ekind (New_Id) = E_Operator
5352 and then Operator_Matches_Spec (New_Id, Old_Id)
5353 then
5354 return;
5355 end if;
5356 end if;
5357
5358 -- If both are functions/operators, check return types conform
5359
5360 if Old_Type /= Standard_Void_Type
5361 and then
5362 New_Type /= Standard_Void_Type
5363 then
5364 -- If we are checking interface conformance we omit controlling
5365 -- arguments and result, because we are only checking the conformance
5366 -- of the remaining parameters.
5367
5368 if Has_Controlling_Result (Old_Id)
5369 and then Has_Controlling_Result (New_Id)
5370 and then Skip_Controlling_Formals
5371 then
5372 null;
5373
5374 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5375 if Ctype >= Subtype_Conformant
5376 and then not Predicates_Match (Old_Type, New_Type)
5377 then
5378 Conformance_Error
5379 ("\predicate of return type does not match!", New_Id);
5380 else
5381 Conformance_Error
5382 ("\return type does not match!", New_Id);
5383 end if;
5384
5385 return;
5386 end if;
5387
5388 -- Ada 2005 (AI-231): In case of anonymous access types check the
5389 -- null-exclusion and access-to-constant attributes match.
5390
5391 if Ada_Version >= Ada_2005
5392 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5393 and then
5394 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5395 or else Is_Access_Constant (Etype (Old_Type)) /=
5396 Is_Access_Constant (Etype (New_Type)))
5397 then
5398 Conformance_Error ("\return type does not match!", New_Id);
5399 return;
5400 end if;
5401
5402 -- If either is a function/operator and the other isn't, error
5403
5404 elsif Old_Type /= Standard_Void_Type
5405 or else New_Type /= Standard_Void_Type
5406 then
5407 Conformance_Error ("\functions can only match functions!", New_Id);
5408 return;
5409 end if;
5410
5411 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5412 -- If this is a renaming as body, refine error message to indicate that
5413 -- the conflict is with the original declaration. If the entity is not
5414 -- frozen, the conventions don't have to match, the one of the renamed
5415 -- entity is inherited.
5416
5417 if Ctype >= Subtype_Conformant then
5418 if not Conventions_Match (Old_Id, New_Id) then
5419 if not Is_Frozen (New_Id) then
5420 null;
5421
5422 elsif Present (Err_Loc)
5423 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5424 and then Present (Corresponding_Spec (Err_Loc))
5425 then
5426 Error_Msg_Name_1 := Chars (New_Id);
5427 Error_Msg_Name_2 :=
5428 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5429 Conformance_Error ("\prior declaration for% has convention %!");
5430
5431 else
5432 Conformance_Error ("\calling conventions do not match!");
5433 end if;
5434
5435 return;
5436
5437 elsif Is_Formal_Subprogram (Old_Id)
5438 or else Is_Formal_Subprogram (New_Id)
5439 or else (Is_Subprogram (New_Id)
5440 and then Present (Alias (New_Id))
5441 and then Is_Formal_Subprogram (Alias (New_Id)))
5442 then
5443 Conformance_Error
5444 ("\formal subprograms are not subtype conformant "
5445 & "(RM 6.3.1 (17/3))");
5446 end if;
5447 end if;
5448
5449 -- Deal with parameters
5450
5451 -- Note: we use the entity information, rather than going directly
5452 -- to the specification in the tree. This is not only simpler, but
5453 -- absolutely necessary for some cases of conformance tests between
5454 -- operators, where the declaration tree simply does not exist.
5455
5456 Old_Formal := First_Formal (Old_Id);
5457 New_Formal := First_Formal (New_Id);
5458 while Present (Old_Formal) and then Present (New_Formal) loop
5459 if Is_Controlling_Formal (Old_Formal)
5460 and then Is_Controlling_Formal (New_Formal)
5461 and then Skip_Controlling_Formals
5462 then
5463 -- The controlling formals will have different types when
5464 -- comparing an interface operation with its match, but both
5465 -- or neither must be access parameters.
5466
5467 if Is_Access_Type (Etype (Old_Formal))
5468 =
5469 Is_Access_Type (Etype (New_Formal))
5470 then
5471 goto Skip_Controlling_Formal;
5472 else
5473 Conformance_Error
5474 ("\access parameter does not match!", New_Formal);
5475 end if;
5476 end if;
5477
5478 -- Ada 2012: Mode conformance also requires that formal parameters
5479 -- be both aliased, or neither.
5480
5481 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5482 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5483 Conformance_Error
5484 ("\aliased parameter mismatch!", New_Formal);
5485 end if;
5486 end if;
5487
5488 if Ctype = Fully_Conformant then
5489
5490 -- Names must match. Error message is more accurate if we do
5491 -- this before checking that the types of the formals match.
5492
5493 if Chars (Old_Formal) /= Chars (New_Formal) then
5494 Conformance_Error ("\name& does not match!", New_Formal);
5495
5496 -- Set error posted flag on new formal as well to stop
5497 -- junk cascaded messages in some cases.
5498
5499 Set_Error_Posted (New_Formal);
5500 return;
5501 end if;
5502
5503 -- Null exclusion must match
5504
5505 if Null_Exclusion_Present (Parent (Old_Formal))
5506 /=
5507 Null_Exclusion_Present (Parent (New_Formal))
5508 then
5509 -- Only give error if both come from source. This should be
5510 -- investigated some time, since it should not be needed ???
5511
5512 if Comes_From_Source (Old_Formal)
5513 and then
5514 Comes_From_Source (New_Formal)
5515 then
5516 Conformance_Error
5517 ("\null exclusion for& does not match", New_Formal);
5518
5519 -- Mark error posted on the new formal to avoid duplicated
5520 -- complaint about types not matching.
5521
5522 Set_Error_Posted (New_Formal);
5523 end if;
5524 end if;
5525 end if;
5526
5527 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5528 -- case occurs whenever a subprogram is being renamed and one of its
5529 -- parameters imposes a null exclusion. For example:
5530
5531 -- type T is null record;
5532 -- type Acc_T is access T;
5533 -- subtype Acc_T_Sub is Acc_T;
5534
5535 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5536 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5537 -- renames P;
5538
5539 Old_Formal_Base := Etype (Old_Formal);
5540 New_Formal_Base := Etype (New_Formal);
5541
5542 if Get_Inst then
5543 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5544 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5545 end if;
5546
5547 Access_Types_Match := Ada_Version >= Ada_2005
5548
5549 -- Ensure that this rule is only applied when New_Id is a
5550 -- renaming of Old_Id.
5551
5552 and then Nkind (Parent (Parent (New_Id))) =
5553 N_Subprogram_Renaming_Declaration
5554 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5555 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5556 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5557
5558 -- Now handle the allowed access-type case
5559
5560 and then Is_Access_Type (Old_Formal_Base)
5561 and then Is_Access_Type (New_Formal_Base)
5562
5563 -- The type kinds must match. The only exception occurs with
5564 -- multiple generics of the form:
5565
5566 -- generic generic
5567 -- type F is private; type A is private;
5568 -- type F_Ptr is access F; type A_Ptr is access A;
5569 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5570 -- package F_Pack is ... package A_Pack is
5571 -- package F_Inst is
5572 -- new F_Pack (A, A_Ptr, A_P);
5573
5574 -- When checking for conformance between the parameters of A_P
5575 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5576 -- because the compiler has transformed A_Ptr into a subtype of
5577 -- F_Ptr. We catch this case in the code below.
5578
5579 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5580 or else
5581 (Is_Generic_Type (Old_Formal_Base)
5582 and then Is_Generic_Type (New_Formal_Base)
5583 and then Is_Internal (New_Formal_Base)
5584 and then Etype (Etype (New_Formal_Base)) =
5585 Old_Formal_Base))
5586 and then Directly_Designated_Type (Old_Formal_Base) =
5587 Directly_Designated_Type (New_Formal_Base)
5588 and then ((Is_Itype (Old_Formal_Base)
5589 and then (Can_Never_Be_Null (Old_Formal_Base)
5590 or else Is_Access_Constant
5591 (Old_Formal_Base)))
5592 or else
5593 (Is_Itype (New_Formal_Base)
5594 and then (Can_Never_Be_Null (New_Formal_Base)
5595 or else Is_Access_Constant
5596 (New_Formal_Base))));
5597
5598 -- Types must always match. In the visible part of an instance,
5599 -- usual overloading rules for dispatching operations apply, and
5600 -- we check base types (not the actual subtypes).
5601
5602 if In_Instance_Visible_Part
5603 and then Is_Dispatching_Operation (New_Id)
5604 then
5605 if not Conforming_Types
5606 (T1 => Base_Type (Etype (Old_Formal)),
5607 T2 => Base_Type (Etype (New_Formal)),
5608 Ctype => Ctype,
5609 Get_Inst => Get_Inst)
5610 and then not Access_Types_Match
5611 then
5612 Conformance_Error ("\type of & does not match!", New_Formal);
5613 return;
5614 end if;
5615
5616 elsif not Conforming_Types
5617 (T1 => Old_Formal_Base,
5618 T2 => New_Formal_Base,
5619 Ctype => Ctype,
5620 Get_Inst => Get_Inst)
5621 and then not Access_Types_Match
5622 then
5623 -- Don't give error message if old type is Any_Type. This test
5624 -- avoids some cascaded errors, e.g. in case of a bad spec.
5625
5626 if Errmsg and then Old_Formal_Base = Any_Type then
5627 Conforms := False;
5628 else
5629 if Ctype >= Subtype_Conformant
5630 and then
5631 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5632 then
5633 Conformance_Error
5634 ("\predicate of & does not match!", New_Formal);
5635 else
5636 Conformance_Error
5637 ("\type of & does not match!", New_Formal);
5638
5639 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5640 then
5641 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5642 end if;
5643 end if;
5644 end if;
5645
5646 return;
5647 end if;
5648
5649 -- For mode conformance, mode must match
5650
5651 if Ctype >= Mode_Conformant then
5652 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5653 if not Ekind_In (New_Id, E_Function, E_Procedure)
5654 or else not Is_Primitive_Wrapper (New_Id)
5655 then
5656 Conformance_Error ("\mode of & does not match!", New_Formal);
5657
5658 else
5659 declare
5660 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5661 begin
5662 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5663 then
5664 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5665 else
5666 Conformance_Error
5667 ("\mode of & does not match!", New_Formal);
5668 end if;
5669 end;
5670 end if;
5671
5672 return;
5673
5674 -- Part of mode conformance for access types is having the same
5675 -- constant modifier.
5676
5677 elsif Access_Types_Match
5678 and then Is_Access_Constant (Old_Formal_Base) /=
5679 Is_Access_Constant (New_Formal_Base)
5680 then
5681 Conformance_Error
5682 ("\constant modifier does not match!", New_Formal);
5683 return;
5684 end if;
5685 end if;
5686
5687 if Ctype >= Subtype_Conformant then
5688
5689 -- Ada 2005 (AI-231): In case of anonymous access types check
5690 -- the null-exclusion and access-to-constant attributes must
5691 -- match. For null exclusion, we test the types rather than the
5692 -- formals themselves, since the attribute is only set reliably
5693 -- on the formals in the Ada 95 case, and we exclude the case
5694 -- where Old_Formal is marked as controlling, to avoid errors
5695 -- when matching completing bodies with dispatching declarations
5696 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5697
5698 if Ada_Version >= Ada_2005
5699 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5700 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5701 and then
5702 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5703 Can_Never_Be_Null (Etype (New_Formal))
5704 and then
5705 not Is_Controlling_Formal (Old_Formal))
5706 or else
5707 Is_Access_Constant (Etype (Old_Formal)) /=
5708 Is_Access_Constant (Etype (New_Formal)))
5709
5710 -- Do not complain if error already posted on New_Formal. This
5711 -- avoids some redundant error messages.
5712
5713 and then not Error_Posted (New_Formal)
5714 then
5715 -- It is allowed to omit the null-exclusion in case of stream
5716 -- attribute subprograms. We recognize stream subprograms
5717 -- through their TSS-generated suffix.
5718
5719 declare
5720 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5721
5722 begin
5723 if TSS_Name /= TSS_Stream_Read
5724 and then TSS_Name /= TSS_Stream_Write
5725 and then TSS_Name /= TSS_Stream_Input
5726 and then TSS_Name /= TSS_Stream_Output
5727 then
5728 -- Here we have a definite conformance error. It is worth
5729 -- special casing the error message for the case of a
5730 -- controlling formal (which excludes null).
5731
5732 if Is_Controlling_Formal (New_Formal) then
5733 Error_Msg_Node_2 := Scope (New_Formal);
5734 Conformance_Error
5735 ("\controlling formal & of & excludes null, "
5736 & "declaration must exclude null as well",
5737 New_Formal);
5738
5739 -- Normal case (couldn't we give more detail here???)
5740
5741 else
5742 Conformance_Error
5743 ("\type of & does not match!", New_Formal);
5744 end if;
5745
5746 return;
5747 end if;
5748 end;
5749 end if;
5750 end if;
5751
5752 -- Full conformance checks
5753
5754 if Ctype = Fully_Conformant then
5755
5756 -- We have checked already that names match
5757
5758 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5759
5760 -- Check default expressions for in parameters
5761
5762 declare
5763 NewD : constant Boolean :=
5764 Present (Default_Value (New_Formal));
5765 OldD : constant Boolean :=
5766 Present (Default_Value (Old_Formal));
5767 begin
5768 if NewD or OldD then
5769
5770 -- The old default value has been analyzed because the
5771 -- current full declaration will have frozen everything
5772 -- before. The new default value has not been analyzed,
5773 -- so analyze it now before we check for conformance.
5774
5775 if NewD then
5776 Push_Scope (New_Id);
5777 Preanalyze_Spec_Expression
5778 (Default_Value (New_Formal), Etype (New_Formal));
5779 End_Scope;
5780 end if;
5781
5782 if not (NewD and OldD)
5783 or else not Fully_Conformant_Expressions
5784 (Default_Value (Old_Formal),
5785 Default_Value (New_Formal))
5786 then
5787 Conformance_Error
5788 ("\default expression for & does not match!",
5789 New_Formal);
5790 return;
5791 end if;
5792 end if;
5793 end;
5794 end if;
5795 end if;
5796
5797 -- A couple of special checks for Ada 83 mode. These checks are
5798 -- skipped if either entity is an operator in package Standard,
5799 -- or if either old or new instance is not from the source program.
5800
5801 if Ada_Version = Ada_83
5802 and then Sloc (Old_Id) > Standard_Location
5803 and then Sloc (New_Id) > Standard_Location
5804 and then Comes_From_Source (Old_Id)
5805 and then Comes_From_Source (New_Id)
5806 then
5807 declare
5808 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5809 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5810
5811 begin
5812 -- Explicit IN must be present or absent in both cases. This
5813 -- test is required only in the full conformance case.
5814
5815 if In_Present (Old_Param) /= In_Present (New_Param)
5816 and then Ctype = Fully_Conformant
5817 then
5818 Conformance_Error
5819 ("\(Ada 83) IN must appear in both declarations",
5820 New_Formal);
5821 return;
5822 end if;
5823
5824 -- Grouping (use of comma in param lists) must be the same
5825 -- This is where we catch a misconformance like:
5826
5827 -- A, B : Integer
5828 -- A : Integer; B : Integer
5829
5830 -- which are represented identically in the tree except
5831 -- for the setting of the flags More_Ids and Prev_Ids.
5832
5833 if More_Ids (Old_Param) /= More_Ids (New_Param)
5834 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5835 then
5836 Conformance_Error
5837 ("\grouping of & does not match!", New_Formal);
5838 return;
5839 end if;
5840 end;
5841 end if;
5842
5843 -- This label is required when skipping controlling formals
5844
5845 <<Skip_Controlling_Formal>>
5846
5847 Next_Formal (Old_Formal);
5848 Next_Formal (New_Formal);
5849 end loop;
5850
5851 if Present (Old_Formal) then
5852 Conformance_Error ("\too few parameters!");
5853 return;
5854
5855 elsif Present (New_Formal) then
5856 Conformance_Error ("\too many parameters!", New_Formal);
5857 return;
5858 end if;
5859 end Check_Conformance;
5860
5861 -----------------------
5862 -- Check_Conventions --
5863 -----------------------
5864
5865 procedure Check_Conventions (Typ : Entity_Id) is
5866 Ifaces_List : Elist_Id;
5867
5868 procedure Check_Convention (Op : Entity_Id);
5869 -- Verify that the convention of inherited dispatching operation Op is
5870 -- consistent among all subprograms it overrides. In order to minimize
5871 -- the search, Search_From is utilized to designate a specific point in
5872 -- the list rather than iterating over the whole list once more.
5873
5874 ----------------------
5875 -- Check_Convention --
5876 ----------------------
5877
5878 procedure Check_Convention (Op : Entity_Id) is
5879 Op_Conv : constant Convention_Id := Convention (Op);
5880 Iface_Conv : Convention_Id;
5881 Iface_Elmt : Elmt_Id;
5882 Iface_Prim_Elmt : Elmt_Id;
5883 Iface_Prim : Entity_Id;
5884
5885 begin
5886 Iface_Elmt := First_Elmt (Ifaces_List);
5887 while Present (Iface_Elmt) loop
5888 Iface_Prim_Elmt :=
5889 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5890 while Present (Iface_Prim_Elmt) loop
5891 Iface_Prim := Node (Iface_Prim_Elmt);
5892 Iface_Conv := Convention (Iface_Prim);
5893
5894 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5895 and then Iface_Conv /= Op_Conv
5896 then
5897 Error_Msg_N
5898 ("inconsistent conventions in primitive operations", Typ);
5899
5900 Error_Msg_Name_1 := Chars (Op);
5901 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5902 Error_Msg_Sloc := Sloc (Op);
5903
5904 if Comes_From_Source (Op) or else No (Alias (Op)) then
5905 if not Present (Overridden_Operation (Op)) then
5906 Error_Msg_N ("\\primitive % defined #", Typ);
5907 else
5908 Error_Msg_N
5909 ("\\overriding operation % with "
5910 & "convention % defined #", Typ);
5911 end if;
5912
5913 else pragma Assert (Present (Alias (Op)));
5914 Error_Msg_Sloc := Sloc (Alias (Op));
5915 Error_Msg_N ("\\inherited operation % with "
5916 & "convention % defined #", Typ);
5917 end if;
5918
5919 Error_Msg_Name_1 := Chars (Op);
5920 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5921 Error_Msg_Sloc := Sloc (Iface_Prim);
5922 Error_Msg_N ("\\overridden operation % with "
5923 & "convention % defined #", Typ);
5924
5925 -- Avoid cascading errors
5926
5927 return;
5928 end if;
5929
5930 Next_Elmt (Iface_Prim_Elmt);
5931 end loop;
5932
5933 Next_Elmt (Iface_Elmt);
5934 end loop;
5935 end Check_Convention;
5936
5937 -- Local variables
5938
5939 Prim_Op : Entity_Id;
5940 Prim_Op_Elmt : Elmt_Id;
5941
5942 -- Start of processing for Check_Conventions
5943
5944 begin
5945 if not Has_Interfaces (Typ) then
5946 return;
5947 end if;
5948
5949 Collect_Interfaces (Typ, Ifaces_List);
5950
5951 -- The algorithm checks every overriding dispatching operation against
5952 -- all the corresponding overridden dispatching operations, detecting
5953 -- differences in conventions.
5954
5955 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5956 while Present (Prim_Op_Elmt) loop
5957 Prim_Op := Node (Prim_Op_Elmt);
5958
5959 -- A small optimization: skip the predefined dispatching operations
5960 -- since they always have the same convention.
5961
5962 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5963 Check_Convention (Prim_Op);
5964 end if;
5965
5966 Next_Elmt (Prim_Op_Elmt);
5967 end loop;
5968 end Check_Conventions;
5969
5970 ------------------------------
5971 -- Check_Delayed_Subprogram --
5972 ------------------------------
5973
5974 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5975 procedure Possible_Freeze (T : Entity_Id);
5976 -- T is the type of either a formal parameter or of the return type. If
5977 -- T is not yet frozen and needs a delayed freeze, then the subprogram
5978 -- itself must be delayed.
5979
5980 ---------------------
5981 -- Possible_Freeze --
5982 ---------------------
5983
5984 procedure Possible_Freeze (T : Entity_Id) is
5985 Scop : constant Entity_Id := Scope (Designator);
5986
5987 begin
5988 -- If the subprogram appears within a package instance (which may be
5989 -- the wrapper package of a subprogram instance) the freeze node for
5990 -- that package will freeze the subprogram at the proper place, so
5991 -- do not emit a freeze node for the subprogram, given that it may
5992 -- appear in the wrong scope.
5993
5994 if Ekind (Scop) = E_Package
5995 and then not Comes_From_Source (Scop)
5996 and then Is_Generic_Instance (Scop)
5997 then
5998 null;
5999
6000 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
6001 Set_Has_Delayed_Freeze (Designator);
6002
6003 elsif Is_Access_Type (T)
6004 and then Has_Delayed_Freeze (Designated_Type (T))
6005 and then not Is_Frozen (Designated_Type (T))
6006 then
6007 Set_Has_Delayed_Freeze (Designator);
6008 end if;
6009 end Possible_Freeze;
6010
6011 -- Local variables
6012
6013 F : Entity_Id;
6014
6015 -- Start of processing for Check_Delayed_Subprogram
6016
6017 begin
6018 -- All subprograms, including abstract subprograms, may need a freeze
6019 -- node if some formal type or the return type needs one.
6020
6021 Possible_Freeze (Etype (Designator));
6022 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6023
6024 -- Need delayed freeze if any of the formal types themselves need a
6025 -- delayed freeze and are not yet frozen.
6026
6027 F := First_Formal (Designator);
6028 while Present (F) loop
6029 Possible_Freeze (Etype (F));
6030 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6031 Next_Formal (F);
6032 end loop;
6033
6034 -- Mark functions that return by reference. Note that it cannot be done
6035 -- for delayed_freeze subprograms because the underlying returned type
6036 -- may not be known yet (for private types).
6037
6038 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6039 declare
6040 Typ : constant Entity_Id := Etype (Designator);
6041 Utyp : constant Entity_Id := Underlying_Type (Typ);
6042
6043 begin
6044 if Is_Limited_View (Typ) then
6045 Set_Returns_By_Ref (Designator);
6046
6047 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6048 Set_Returns_By_Ref (Designator);
6049 end if;
6050 end;
6051 end if;
6052 end Check_Delayed_Subprogram;
6053
6054 ------------------------------------
6055 -- Check_Discriminant_Conformance --
6056 ------------------------------------
6057
6058 procedure Check_Discriminant_Conformance
6059 (N : Node_Id;
6060 Prev : Entity_Id;
6061 Prev_Loc : Node_Id)
6062 is
6063 Old_Discr : Entity_Id := First_Discriminant (Prev);
6064 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6065 New_Discr_Id : Entity_Id;
6066 New_Discr_Type : Entity_Id;
6067
6068 procedure Conformance_Error (Msg : String; N : Node_Id);
6069 -- Post error message for conformance error on given node. Two messages
6070 -- are output. The first points to the previous declaration with a
6071 -- general "no conformance" message. The second is the detailed reason,
6072 -- supplied as Msg. The parameter N provide information for a possible
6073 -- & insertion in the message.
6074
6075 -----------------------
6076 -- Conformance_Error --
6077 -----------------------
6078
6079 procedure Conformance_Error (Msg : String; N : Node_Id) is
6080 begin
6081 Error_Msg_Sloc := Sloc (Prev_Loc);
6082 Error_Msg_N -- CODEFIX
6083 ("not fully conformant with declaration#!", N);
6084 Error_Msg_NE (Msg, N, N);
6085 end Conformance_Error;
6086
6087 -- Start of processing for Check_Discriminant_Conformance
6088
6089 begin
6090 while Present (Old_Discr) and then Present (New_Discr) loop
6091 New_Discr_Id := Defining_Identifier (New_Discr);
6092
6093 -- The subtype mark of the discriminant on the full type has not
6094 -- been analyzed so we do it here. For an access discriminant a new
6095 -- type is created.
6096
6097 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6098 New_Discr_Type :=
6099 Access_Definition (N, Discriminant_Type (New_Discr));
6100
6101 else
6102 Find_Type (Discriminant_Type (New_Discr));
6103 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6104
6105 -- Ada 2005: if the discriminant definition carries a null
6106 -- exclusion, create an itype to check properly for consistency
6107 -- with partial declaration.
6108
6109 if Is_Access_Type (New_Discr_Type)
6110 and then Null_Exclusion_Present (New_Discr)
6111 then
6112 New_Discr_Type :=
6113 Create_Null_Excluding_Itype
6114 (T => New_Discr_Type,
6115 Related_Nod => New_Discr,
6116 Scope_Id => Current_Scope);
6117 end if;
6118 end if;
6119
6120 if not Conforming_Types
6121 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6122 then
6123 Conformance_Error ("type of & does not match!", New_Discr_Id);
6124 return;
6125 else
6126 -- Treat the new discriminant as an occurrence of the old one,
6127 -- for navigation purposes, and fill in some semantic
6128 -- information, for completeness.
6129
6130 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6131 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6132 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6133 end if;
6134
6135 -- Names must match
6136
6137 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6138 Conformance_Error ("name & does not match!", New_Discr_Id);
6139 return;
6140 end if;
6141
6142 -- Default expressions must match
6143
6144 declare
6145 NewD : constant Boolean :=
6146 Present (Expression (New_Discr));
6147 OldD : constant Boolean :=
6148 Present (Expression (Parent (Old_Discr)));
6149
6150 begin
6151 if NewD or OldD then
6152
6153 -- The old default value has been analyzed and expanded,
6154 -- because the current full declaration will have frozen
6155 -- everything before. The new default values have not been
6156 -- expanded, so expand now to check conformance.
6157
6158 if NewD then
6159 Preanalyze_Spec_Expression
6160 (Expression (New_Discr), New_Discr_Type);
6161 end if;
6162
6163 if not (NewD and OldD)
6164 or else not Fully_Conformant_Expressions
6165 (Expression (Parent (Old_Discr)),
6166 Expression (New_Discr))
6167
6168 then
6169 Conformance_Error
6170 ("default expression for & does not match!",
6171 New_Discr_Id);
6172 return;
6173 end if;
6174 end if;
6175 end;
6176
6177 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6178
6179 if Ada_Version = Ada_83 then
6180 declare
6181 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6182
6183 begin
6184 -- Grouping (use of comma in param lists) must be the same
6185 -- This is where we catch a misconformance like:
6186
6187 -- A, B : Integer
6188 -- A : Integer; B : Integer
6189
6190 -- which are represented identically in the tree except
6191 -- for the setting of the flags More_Ids and Prev_Ids.
6192
6193 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6194 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6195 then
6196 Conformance_Error
6197 ("grouping of & does not match!", New_Discr_Id);
6198 return;
6199 end if;
6200 end;
6201 end if;
6202
6203 Next_Discriminant (Old_Discr);
6204 Next (New_Discr);
6205 end loop;
6206
6207 if Present (Old_Discr) then
6208 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6209 return;
6210
6211 elsif Present (New_Discr) then
6212 Conformance_Error
6213 ("too many discriminants!", Defining_Identifier (New_Discr));
6214 return;
6215 end if;
6216 end Check_Discriminant_Conformance;
6217
6218 ----------------------------
6219 -- Check_Fully_Conformant --
6220 ----------------------------
6221
6222 procedure Check_Fully_Conformant
6223 (New_Id : Entity_Id;
6224 Old_Id : Entity_Id;
6225 Err_Loc : Node_Id := Empty)
6226 is
6227 Result : Boolean;
6228 pragma Warnings (Off, Result);
6229 begin
6230 Check_Conformance
6231 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6232 end Check_Fully_Conformant;
6233
6234 --------------------------
6235 -- Check_Limited_Return --
6236 --------------------------
6237
6238 procedure Check_Limited_Return
6239 (N : Node_Id;
6240 Expr : Node_Id;
6241 R_Type : Entity_Id)
6242 is
6243 begin
6244 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6245 -- replaced by anonymous access results. This is an incompatibility with
6246 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6247 -- controllable with special switch. ???
6248
6249 -- A limited interface that is not immutably limited is OK
6250
6251 if Is_Limited_Interface (R_Type)
6252 and then
6253 not (Is_Task_Interface (R_Type)
6254 or else Is_Protected_Interface (R_Type)
6255 or else Is_Synchronized_Interface (R_Type))
6256 then
6257 null;
6258
6259 elsif Is_Limited_Type (R_Type)
6260 and then not Is_Interface (R_Type)
6261 and then Comes_From_Source (N)
6262 and then not In_Instance_Body
6263 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6264 then
6265 -- Error in Ada 2005
6266
6267 if Ada_Version >= Ada_2005
6268 and then not Debug_Flag_Dot_L
6269 and then not GNAT_Mode
6270 then
6271 Error_Msg_N
6272 ("(Ada 2005) cannot copy object of a limited type "
6273 & "(RM-2005 6.5(5.5/2))", Expr);
6274
6275 if Is_Limited_View (R_Type) then
6276 Error_Msg_N
6277 ("\return by reference not permitted in Ada 2005", Expr);
6278 end if;
6279
6280 -- Warn in Ada 95 mode, to give folks a heads up about this
6281 -- incompatibility.
6282
6283 -- In GNAT mode, this is just a warning, to allow it to be evilly
6284 -- turned off. Otherwise it is a real error.
6285
6286 -- In a generic context, simplify the warning because it makes no
6287 -- sense to discuss pass-by-reference or copy.
6288
6289 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6290 if Inside_A_Generic then
6291 Error_Msg_N
6292 ("return of limited object not permitted in Ada 2005 "
6293 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6294
6295 elsif Is_Limited_View (R_Type) then
6296 Error_Msg_N
6297 ("return by reference not permitted in Ada 2005 "
6298 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6299 else
6300 Error_Msg_N
6301 ("cannot copy object of a limited type in Ada 2005 "
6302 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6303 end if;
6304
6305 -- Ada 95 mode, and compatibility warnings disabled
6306
6307 else
6308 pragma Assert (Ada_Version <= Ada_95);
6309 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6310 return; -- skip continuation messages below
6311 end if;
6312
6313 if not Inside_A_Generic then
6314 Error_Msg_N
6315 ("\consider switching to return of access type", Expr);
6316 Explain_Limited_Type (R_Type, Expr);
6317 end if;
6318 end if;
6319 end Check_Limited_Return;
6320
6321 ---------------------------
6322 -- Check_Mode_Conformant --
6323 ---------------------------
6324
6325 procedure Check_Mode_Conformant
6326 (New_Id : Entity_Id;
6327 Old_Id : Entity_Id;
6328 Err_Loc : Node_Id := Empty;
6329 Get_Inst : Boolean := False)
6330 is
6331 Result : Boolean;
6332 pragma Warnings (Off, Result);
6333 begin
6334 Check_Conformance
6335 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6336 end Check_Mode_Conformant;
6337
6338 --------------------------------
6339 -- Check_Overriding_Indicator --
6340 --------------------------------
6341
6342 procedure Check_Overriding_Indicator
6343 (Subp : Entity_Id;
6344 Overridden_Subp : Entity_Id;
6345 Is_Primitive : Boolean)
6346 is
6347 Decl : Node_Id;
6348 Spec : Node_Id;
6349
6350 begin
6351 -- No overriding indicator for literals
6352
6353 if Ekind (Subp) = E_Enumeration_Literal then
6354 return;
6355
6356 elsif Ekind (Subp) = E_Entry then
6357 Decl := Parent (Subp);
6358
6359 -- No point in analyzing a malformed operator
6360
6361 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6362 and then Error_Posted (Subp)
6363 then
6364 return;
6365
6366 else
6367 Decl := Unit_Declaration_Node (Subp);
6368 end if;
6369
6370 if Nkind_In (Decl, N_Subprogram_Body,
6371 N_Subprogram_Body_Stub,
6372 N_Subprogram_Declaration,
6373 N_Abstract_Subprogram_Declaration,
6374 N_Subprogram_Renaming_Declaration)
6375 then
6376 Spec := Specification (Decl);
6377
6378 elsif Nkind (Decl) = N_Entry_Declaration then
6379 Spec := Decl;
6380
6381 else
6382 return;
6383 end if;
6384
6385 -- The overriding operation is type conformant with the overridden one,
6386 -- but the names of the formals are not required to match. If the names
6387 -- appear permuted in the overriding operation, this is a possible
6388 -- source of confusion that is worth diagnosing. Controlling formals
6389 -- often carry names that reflect the type, and it is not worthwhile
6390 -- requiring that their names match.
6391
6392 if Present (Overridden_Subp)
6393 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6394 then
6395 declare
6396 Form1 : Entity_Id;
6397 Form2 : Entity_Id;
6398
6399 begin
6400 Form1 := First_Formal (Subp);
6401 Form2 := First_Formal (Overridden_Subp);
6402
6403 -- If the overriding operation is a synchronized operation, skip
6404 -- the first parameter of the overridden operation, which is
6405 -- implicit in the new one. If the operation is declared in the
6406 -- body it is not primitive and all formals must match.
6407
6408 if Is_Concurrent_Type (Scope (Subp))
6409 and then Is_Tagged_Type (Scope (Subp))
6410 and then not Has_Completion (Scope (Subp))
6411 then
6412 Form2 := Next_Formal (Form2);
6413 end if;
6414
6415 if Present (Form1) then
6416 Form1 := Next_Formal (Form1);
6417 Form2 := Next_Formal (Form2);
6418 end if;
6419
6420 while Present (Form1) loop
6421 if not Is_Controlling_Formal (Form1)
6422 and then Present (Next_Formal (Form2))
6423 and then Chars (Form1) = Chars (Next_Formal (Form2))
6424 then
6425 Error_Msg_Node_2 := Alias (Overridden_Subp);
6426 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6427 Error_Msg_NE
6428 ("& does not match corresponding formal of&#",
6429 Form1, Form1);
6430 exit;
6431 end if;
6432
6433 Next_Formal (Form1);
6434 Next_Formal (Form2);
6435 end loop;
6436 end;
6437 end if;
6438
6439 -- If there is an overridden subprogram, then check that there is no
6440 -- "not overriding" indicator, and mark the subprogram as overriding.
6441
6442 -- This is not done if the overridden subprogram is marked as hidden,
6443 -- which can occur for the case of inherited controlled operations
6444 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6445 -- subprogram is not itself hidden or we are within a generic instance,
6446 -- in which case the hidden flag may have been modified for the
6447 -- expansion of the instance.
6448
6449 -- (Note: This condition could probably be simplified, leaving out the
6450 -- testing for the specific controlled cases, but it seems safer and
6451 -- clearer this way, and echoes similar special-case tests of this
6452 -- kind in other places.)
6453
6454 if Present (Overridden_Subp)
6455 and then (not Is_Hidden (Overridden_Subp)
6456 or else
6457 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6458 Name_Adjust,
6459 Name_Finalize)
6460 and then Present (Alias (Overridden_Subp))
6461 and then (not Is_Hidden (Alias (Overridden_Subp))
6462 or else In_Instance)))
6463 then
6464 if Must_Not_Override (Spec) then
6465 Error_Msg_Sloc := Sloc (Overridden_Subp);
6466
6467 if Ekind (Subp) = E_Entry then
6468 Error_Msg_NE
6469 ("entry & overrides inherited operation #", Spec, Subp);
6470 else
6471 Error_Msg_NE
6472 ("subprogram & overrides inherited operation #", Spec, Subp);
6473 end if;
6474
6475 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6476 -- as an extension of Root_Controlled, and thus has a useless Adjust
6477 -- operation. This operation should not be inherited by other limited
6478 -- controlled types. An explicit Adjust for them is not overriding.
6479
6480 elsif Must_Override (Spec)
6481 and then Chars (Overridden_Subp) = Name_Adjust
6482 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6483 and then Present (Alias (Overridden_Subp))
6484 and then In_Predefined_Unit (Alias (Overridden_Subp))
6485 then
6486 Get_Name_String
6487 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6488 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6489
6490 elsif Is_Subprogram (Subp) then
6491 if Is_Init_Proc (Subp) then
6492 null;
6493
6494 elsif No (Overridden_Operation (Subp)) then
6495
6496 -- For entities generated by Derive_Subprograms the overridden
6497 -- operation is the inherited primitive (which is available
6498 -- through the attribute alias)
6499
6500 if (Is_Dispatching_Operation (Subp)
6501 or else Is_Dispatching_Operation (Overridden_Subp))
6502 and then not Comes_From_Source (Overridden_Subp)
6503 and then Find_Dispatching_Type (Overridden_Subp) =
6504 Find_Dispatching_Type (Subp)
6505 and then Present (Alias (Overridden_Subp))
6506 and then Comes_From_Source (Alias (Overridden_Subp))
6507 then
6508 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6509 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6510
6511 else
6512 Set_Overridden_Operation (Subp, Overridden_Subp);
6513 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6514 end if;
6515 end if;
6516 end if;
6517
6518 -- If primitive flag is set or this is a protected operation, then
6519 -- the operation is overriding at the point of its declaration, so
6520 -- warn if necessary. Otherwise it may have been declared before the
6521 -- operation it overrides and no check is required.
6522
6523 if Style_Check
6524 and then not Must_Override (Spec)
6525 and then (Is_Primitive
6526 or else Ekind (Scope (Subp)) = E_Protected_Type)
6527 then
6528 Style.Missing_Overriding (Decl, Subp);
6529 end if;
6530
6531 -- If Subp is an operator, it may override a predefined operation, if
6532 -- it is defined in the same scope as the type to which it applies.
6533 -- In that case Overridden_Subp is empty because of our implicit
6534 -- representation for predefined operators. We have to check whether the
6535 -- signature of Subp matches that of a predefined operator. Note that
6536 -- first argument provides the name of the operator, and the second
6537 -- argument the signature that may match that of a standard operation.
6538 -- If the indicator is overriding, then the operator must match a
6539 -- predefined signature, because we know already that there is no
6540 -- explicit overridden operation.
6541
6542 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6543 if Must_Not_Override (Spec) then
6544
6545 -- If this is not a primitive or a protected subprogram, then
6546 -- "not overriding" is illegal.
6547
6548 if not Is_Primitive
6549 and then Ekind (Scope (Subp)) /= E_Protected_Type
6550 then
6551 Error_Msg_N ("overriding indicator only allowed "
6552 & "if subprogram is primitive", Subp);
6553
6554 elsif Can_Override_Operator (Subp) then
6555 Error_Msg_NE
6556 ("subprogram& overrides predefined operator ", Spec, Subp);
6557 end if;
6558
6559 elsif Must_Override (Spec) then
6560 if No (Overridden_Operation (Subp))
6561 and then not Can_Override_Operator (Subp)
6562 then
6563 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6564 end if;
6565
6566 elsif not Error_Posted (Subp)
6567 and then Style_Check
6568 and then Can_Override_Operator (Subp)
6569 and then not In_Predefined_Unit (Subp)
6570 then
6571 -- If style checks are enabled, indicate that the indicator is
6572 -- missing. However, at the point of declaration, the type of
6573 -- which this is a primitive operation may be private, in which
6574 -- case the indicator would be premature.
6575
6576 if Has_Private_Declaration (Etype (Subp))
6577 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6578 then
6579 null;
6580 else
6581 Style.Missing_Overriding (Decl, Subp);
6582 end if;
6583 end if;
6584
6585 elsif Must_Override (Spec) then
6586 if Ekind (Subp) = E_Entry then
6587 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6588 else
6589 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6590 end if;
6591
6592 -- If the operation is marked "not overriding" and it's not primitive
6593 -- then an error is issued, unless this is an operation of a task or
6594 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6595 -- has been specified have already been checked above.
6596
6597 elsif Must_Not_Override (Spec)
6598 and then not Is_Primitive
6599 and then Ekind (Subp) /= E_Entry
6600 and then Ekind (Scope (Subp)) /= E_Protected_Type
6601 then
6602 Error_Msg_N
6603 ("overriding indicator only allowed if subprogram is primitive",
6604 Subp);
6605 return;
6606 end if;
6607 end Check_Overriding_Indicator;
6608
6609 -------------------
6610 -- Check_Returns --
6611 -------------------
6612
6613 -- Note: this procedure needs to know far too much about how the expander
6614 -- messes with exceptions. The use of the flag Exception_Junk and the
6615 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6616 -- works, but is not very clean. It would be better if the expansion
6617 -- routines would leave Original_Node working nicely, and we could use
6618 -- Original_Node here to ignore all the peculiar expander messing ???
6619
6620 procedure Check_Returns
6621 (HSS : Node_Id;
6622 Mode : Character;
6623 Err : out Boolean;
6624 Proc : Entity_Id := Empty)
6625 is
6626 Handler : Node_Id;
6627
6628 procedure Check_Statement_Sequence (L : List_Id);
6629 -- Internal recursive procedure to check a list of statements for proper
6630 -- termination by a return statement (or a transfer of control or a
6631 -- compound statement that is itself internally properly terminated).
6632
6633 ------------------------------
6634 -- Check_Statement_Sequence --
6635 ------------------------------
6636
6637 procedure Check_Statement_Sequence (L : List_Id) is
6638 Last_Stm : Node_Id;
6639 Stm : Node_Id;
6640 Kind : Node_Kind;
6641
6642 function Assert_False return Boolean;
6643 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6644 -- rewritten as a null statement when assertions are off. The assert
6645 -- is not active, but it is still enough to kill the warning.
6646
6647 ------------------
6648 -- Assert_False --
6649 ------------------
6650
6651 function Assert_False return Boolean is
6652 Orig : constant Node_Id := Original_Node (Last_Stm);
6653
6654 begin
6655 if Nkind (Orig) = N_Pragma
6656 and then Pragma_Name (Orig) = Name_Assert
6657 and then not Error_Posted (Orig)
6658 then
6659 declare
6660 Arg : constant Node_Id :=
6661 First (Pragma_Argument_Associations (Orig));
6662 Exp : constant Node_Id := Expression (Arg);
6663 begin
6664 return Nkind (Exp) = N_Identifier
6665 and then Chars (Exp) = Name_False;
6666 end;
6667
6668 else
6669 return False;
6670 end if;
6671 end Assert_False;
6672
6673 -- Local variables
6674
6675 Raise_Exception_Call : Boolean;
6676 -- Set True if statement sequence terminated by Raise_Exception call
6677 -- or a Reraise_Occurrence call.
6678
6679 -- Start of processing for Check_Statement_Sequence
6680
6681 begin
6682 Raise_Exception_Call := False;
6683
6684 -- Get last real statement
6685
6686 Last_Stm := Last (L);
6687
6688 -- Deal with digging out exception handler statement sequences that
6689 -- have been transformed by the local raise to goto optimization.
6690 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6691 -- optimization has occurred, we are looking at something like:
6692
6693 -- begin
6694 -- original stmts in block
6695
6696 -- exception \
6697 -- when excep1 => |
6698 -- goto L1; | omitted if No_Exception_Propagation
6699 -- when excep2 => |
6700 -- goto L2; /
6701 -- end;
6702
6703 -- goto L3; -- skip handler when exception not raised
6704
6705 -- <<L1>> -- target label for local exception
6706 -- begin
6707 -- estmts1
6708 -- end;
6709
6710 -- goto L3;
6711
6712 -- <<L2>>
6713 -- begin
6714 -- estmts2
6715 -- end;
6716
6717 -- <<L3>>
6718
6719 -- and what we have to do is to dig out the estmts1 and estmts2
6720 -- sequences (which were the original sequences of statements in
6721 -- the exception handlers) and check them.
6722
6723 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6724 Stm := Last_Stm;
6725 loop
6726 Prev (Stm);
6727 exit when No (Stm);
6728 exit when Nkind (Stm) /= N_Block_Statement;
6729 exit when not Exception_Junk (Stm);
6730 Prev (Stm);
6731 exit when No (Stm);
6732 exit when Nkind (Stm) /= N_Label;
6733 exit when not Exception_Junk (Stm);
6734 Check_Statement_Sequence
6735 (Statements (Handled_Statement_Sequence (Next (Stm))));
6736
6737 Prev (Stm);
6738 Last_Stm := Stm;
6739 exit when No (Stm);
6740 exit when Nkind (Stm) /= N_Goto_Statement;
6741 exit when not Exception_Junk (Stm);
6742 end loop;
6743 end if;
6744
6745 -- Don't count pragmas
6746
6747 while Nkind (Last_Stm) = N_Pragma
6748
6749 -- Don't count call to SS_Release (can happen after Raise_Exception)
6750
6751 or else
6752 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6753 and then
6754 Nkind (Name (Last_Stm)) = N_Identifier
6755 and then
6756 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6757
6758 -- Don't count exception junk
6759
6760 or else
6761 (Nkind_In (Last_Stm, N_Goto_Statement,
6762 N_Label,
6763 N_Object_Declaration)
6764 and then Exception_Junk (Last_Stm))
6765 or else Nkind (Last_Stm) in N_Push_xxx_Label
6766 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6767
6768 -- Inserted code, such as finalization calls, is irrelevant: we only
6769 -- need to check original source.
6770
6771 or else Is_Rewrite_Insertion (Last_Stm)
6772 loop
6773 Prev (Last_Stm);
6774 end loop;
6775
6776 -- Here we have the "real" last statement
6777
6778 Kind := Nkind (Last_Stm);
6779
6780 -- Transfer of control, OK. Note that in the No_Return procedure
6781 -- case, we already diagnosed any explicit return statements, so
6782 -- we can treat them as OK in this context.
6783
6784 if Is_Transfer (Last_Stm) then
6785 return;
6786
6787 -- Check cases of explicit non-indirect procedure calls
6788
6789 elsif Kind = N_Procedure_Call_Statement
6790 and then Is_Entity_Name (Name (Last_Stm))
6791 then
6792 -- Check call to Raise_Exception procedure which is treated
6793 -- specially, as is a call to Reraise_Occurrence.
6794
6795 -- We suppress the warning in these cases since it is likely that
6796 -- the programmer really does not expect to deal with the case
6797 -- of Null_Occurrence, and thus would find a warning about a
6798 -- missing return curious, and raising Program_Error does not
6799 -- seem such a bad behavior if this does occur.
6800
6801 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6802 -- behavior will be to raise Constraint_Error (see AI-329).
6803
6804 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6805 or else
6806 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6807 then
6808 Raise_Exception_Call := True;
6809
6810 -- For Raise_Exception call, test first argument, if it is
6811 -- an attribute reference for a 'Identity call, then we know
6812 -- that the call cannot possibly return.
6813
6814 declare
6815 Arg : constant Node_Id :=
6816 Original_Node (First_Actual (Last_Stm));
6817 begin
6818 if Nkind (Arg) = N_Attribute_Reference
6819 and then Attribute_Name (Arg) = Name_Identity
6820 then
6821 return;
6822 end if;
6823 end;
6824 end if;
6825
6826 -- If statement, need to look inside if there is an else and check
6827 -- each constituent statement sequence for proper termination.
6828
6829 elsif Kind = N_If_Statement
6830 and then Present (Else_Statements (Last_Stm))
6831 then
6832 Check_Statement_Sequence (Then_Statements (Last_Stm));
6833 Check_Statement_Sequence (Else_Statements (Last_Stm));
6834
6835 if Present (Elsif_Parts (Last_Stm)) then
6836 declare
6837 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6838
6839 begin
6840 while Present (Elsif_Part) loop
6841 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6842 Next (Elsif_Part);
6843 end loop;
6844 end;
6845 end if;
6846
6847 return;
6848
6849 -- Case statement, check each case for proper termination
6850
6851 elsif Kind = N_Case_Statement then
6852 declare
6853 Case_Alt : Node_Id;
6854 begin
6855 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6856 while Present (Case_Alt) loop
6857 Check_Statement_Sequence (Statements (Case_Alt));
6858 Next_Non_Pragma (Case_Alt);
6859 end loop;
6860 end;
6861
6862 return;
6863
6864 -- Block statement, check its handled sequence of statements
6865
6866 elsif Kind = N_Block_Statement then
6867 declare
6868 Err1 : Boolean;
6869
6870 begin
6871 Check_Returns
6872 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6873
6874 if Err1 then
6875 Err := True;
6876 end if;
6877
6878 return;
6879 end;
6880
6881 -- Loop statement. If there is an iteration scheme, we can definitely
6882 -- fall out of the loop. Similarly if there is an exit statement, we
6883 -- can fall out. In either case we need a following return.
6884
6885 elsif Kind = N_Loop_Statement then
6886 if Present (Iteration_Scheme (Last_Stm))
6887 or else Has_Exit (Entity (Identifier (Last_Stm)))
6888 then
6889 null;
6890
6891 -- A loop with no exit statement or iteration scheme is either
6892 -- an infinite loop, or it has some other exit (raise/return).
6893 -- In either case, no warning is required.
6894
6895 else
6896 return;
6897 end if;
6898
6899 -- Timed entry call, check entry call and delay alternatives
6900
6901 -- Note: in expanded code, the timed entry call has been converted
6902 -- to a set of expanded statements on which the check will work
6903 -- correctly in any case.
6904
6905 elsif Kind = N_Timed_Entry_Call then
6906 declare
6907 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6908 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6909
6910 begin
6911 -- If statement sequence of entry call alternative is missing,
6912 -- then we can definitely fall through, and we post the error
6913 -- message on the entry call alternative itself.
6914
6915 if No (Statements (ECA)) then
6916 Last_Stm := ECA;
6917
6918 -- If statement sequence of delay alternative is missing, then
6919 -- we can definitely fall through, and we post the error
6920 -- message on the delay alternative itself.
6921
6922 -- Note: if both ECA and DCA are missing the return, then we
6923 -- post only one message, should be enough to fix the bugs.
6924 -- If not we will get a message next time on the DCA when the
6925 -- ECA is fixed.
6926
6927 elsif No (Statements (DCA)) then
6928 Last_Stm := DCA;
6929
6930 -- Else check both statement sequences
6931
6932 else
6933 Check_Statement_Sequence (Statements (ECA));
6934 Check_Statement_Sequence (Statements (DCA));
6935 return;
6936 end if;
6937 end;
6938
6939 -- Conditional entry call, check entry call and else part
6940
6941 -- Note: in expanded code, the conditional entry call has been
6942 -- converted to a set of expanded statements on which the check
6943 -- will work correctly in any case.
6944
6945 elsif Kind = N_Conditional_Entry_Call then
6946 declare
6947 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6948
6949 begin
6950 -- If statement sequence of entry call alternative is missing,
6951 -- then we can definitely fall through, and we post the error
6952 -- message on the entry call alternative itself.
6953
6954 if No (Statements (ECA)) then
6955 Last_Stm := ECA;
6956
6957 -- Else check statement sequence and else part
6958
6959 else
6960 Check_Statement_Sequence (Statements (ECA));
6961 Check_Statement_Sequence (Else_Statements (Last_Stm));
6962 return;
6963 end if;
6964 end;
6965 end if;
6966
6967 -- If we fall through, issue appropriate message
6968
6969 if Mode = 'F' then
6970
6971 -- Kill warning if last statement is a raise exception call,
6972 -- or a pragma Assert (False). Note that with assertions enabled,
6973 -- such a pragma has been converted into a raise exception call
6974 -- already, so the Assert_False is for the assertions off case.
6975
6976 if not Raise_Exception_Call and then not Assert_False then
6977
6978 -- In GNATprove mode, it is an error to have a missing return
6979
6980 Error_Msg_Warn := SPARK_Mode /= On;
6981
6982 -- Issue error message or warning
6983
6984 Error_Msg_N
6985 ("RETURN statement missing following this statement<<!",
6986 Last_Stm);
6987 Error_Msg_N
6988 ("\Program_Error ]<<!", Last_Stm);
6989 end if;
6990
6991 -- Note: we set Err even though we have not issued a warning
6992 -- because we still have a case of a missing return. This is
6993 -- an extremely marginal case, probably will never be noticed
6994 -- but we might as well get it right.
6995
6996 Err := True;
6997
6998 -- Otherwise we have the case of a procedure marked No_Return
6999
7000 else
7001 if not Raise_Exception_Call then
7002 if GNATprove_Mode then
7003 Error_Msg_N
7004 ("implied return after this statement would have raised "
7005 & "Program_Error", Last_Stm);
7006
7007 -- In normal compilation mode, do not warn on a generated call
7008 -- (e.g. in the body of a renaming as completion).
7009
7010 elsif Comes_From_Source (Last_Stm) then
7011 Error_Msg_N
7012 ("implied return after this statement will raise "
7013 & "Program_Error??", Last_Stm);
7014 end if;
7015
7016 Error_Msg_Warn := SPARK_Mode /= On;
7017 Error_Msg_NE
7018 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
7019 end if;
7020
7021 declare
7022 RE : constant Node_Id :=
7023 Make_Raise_Program_Error (Sloc (Last_Stm),
7024 Reason => PE_Implicit_Return);
7025 begin
7026 Insert_After (Last_Stm, RE);
7027 Analyze (RE);
7028 end;
7029 end if;
7030 end Check_Statement_Sequence;
7031
7032 -- Start of processing for Check_Returns
7033
7034 begin
7035 Err := False;
7036 Check_Statement_Sequence (Statements (HSS));
7037
7038 if Present (Exception_Handlers (HSS)) then
7039 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7040 while Present (Handler) loop
7041 Check_Statement_Sequence (Statements (Handler));
7042 Next_Non_Pragma (Handler);
7043 end loop;
7044 end if;
7045 end Check_Returns;
7046
7047 ----------------------------
7048 -- Check_Subprogram_Order --
7049 ----------------------------
7050
7051 procedure Check_Subprogram_Order (N : Node_Id) is
7052
7053 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7054 -- This is used to check if S1 > S2 in the sense required by this test,
7055 -- for example nameab < namec, but name2 < name10.
7056
7057 -----------------------------
7058 -- Subprogram_Name_Greater --
7059 -----------------------------
7060
7061 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7062 L1, L2 : Positive;
7063 N1, N2 : Natural;
7064
7065 begin
7066 -- Deal with special case where names are identical except for a
7067 -- numerical suffix. These are handled specially, taking the numeric
7068 -- ordering from the suffix into account.
7069
7070 L1 := S1'Last;
7071 while S1 (L1) in '0' .. '9' loop
7072 L1 := L1 - 1;
7073 end loop;
7074
7075 L2 := S2'Last;
7076 while S2 (L2) in '0' .. '9' loop
7077 L2 := L2 - 1;
7078 end loop;
7079
7080 -- If non-numeric parts non-equal, do straight compare
7081
7082 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7083 return S1 > S2;
7084
7085 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7086 -- that a missing suffix is treated as numeric zero in this test.
7087
7088 else
7089 N1 := 0;
7090 while L1 < S1'Last loop
7091 L1 := L1 + 1;
7092 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7093 end loop;
7094
7095 N2 := 0;
7096 while L2 < S2'Last loop
7097 L2 := L2 + 1;
7098 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7099 end loop;
7100
7101 return N1 > N2;
7102 end if;
7103 end Subprogram_Name_Greater;
7104
7105 -- Start of processing for Check_Subprogram_Order
7106
7107 begin
7108 -- Check body in alpha order if this is option
7109
7110 if Style_Check
7111 and then Style_Check_Order_Subprograms
7112 and then Nkind (N) = N_Subprogram_Body
7113 and then Comes_From_Source (N)
7114 and then In_Extended_Main_Source_Unit (N)
7115 then
7116 declare
7117 LSN : String_Ptr
7118 renames Scope_Stack.Table
7119 (Scope_Stack.Last).Last_Subprogram_Name;
7120
7121 Body_Id : constant Entity_Id :=
7122 Defining_Entity (Specification (N));
7123
7124 begin
7125 Get_Decoded_Name_String (Chars (Body_Id));
7126
7127 if LSN /= null then
7128 if Subprogram_Name_Greater
7129 (LSN.all, Name_Buffer (1 .. Name_Len))
7130 then
7131 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7132 end if;
7133
7134 Free (LSN);
7135 end if;
7136
7137 LSN := new String'(Name_Buffer (1 .. Name_Len));
7138 end;
7139 end if;
7140 end Check_Subprogram_Order;
7141
7142 ------------------------------
7143 -- Check_Subtype_Conformant --
7144 ------------------------------
7145
7146 procedure Check_Subtype_Conformant
7147 (New_Id : Entity_Id;
7148 Old_Id : Entity_Id;
7149 Err_Loc : Node_Id := Empty;
7150 Skip_Controlling_Formals : Boolean := False;
7151 Get_Inst : Boolean := False)
7152 is
7153 Result : Boolean;
7154 pragma Warnings (Off, Result);
7155 begin
7156 Check_Conformance
7157 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7158 Skip_Controlling_Formals => Skip_Controlling_Formals,
7159 Get_Inst => Get_Inst);
7160 end Check_Subtype_Conformant;
7161
7162 -----------------------------------
7163 -- Check_Synchronized_Overriding --
7164 -----------------------------------
7165
7166 procedure Check_Synchronized_Overriding
7167 (Def_Id : Entity_Id;
7168 Overridden_Subp : out Entity_Id)
7169 is
7170 Ifaces_List : Elist_Id;
7171 In_Scope : Boolean;
7172 Typ : Entity_Id;
7173
7174 function Is_Valid_Formal (F : Entity_Id) return Boolean;
7175 -- Predicate for legality rule in 9.4 (11.9/2): If an inherited
7176 -- subprogram is implemented by a protected procedure or entry,
7177 -- its first parameter must be out, in out, or access-to-variable.
7178
7179 function Matches_Prefixed_View_Profile
7180 (Prim_Params : List_Id;
7181 Iface_Params : List_Id) return Boolean;
7182 -- Determine whether a subprogram's parameter profile Prim_Params
7183 -- matches that of a potentially overridden interface subprogram
7184 -- Iface_Params. Also determine if the type of first parameter of
7185 -- Iface_Params is an implemented interface.
7186
7187 ----------------------
7188 -- Is_Valid_Formal --
7189 ----------------------
7190
7191 function Is_Valid_Formal (F : Entity_Id) return Boolean is
7192 begin
7193 return
7194 Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
7195 or else
7196 (Nkind (Parameter_Type (Parent (F))) = N_Access_Definition
7197 and then not Constant_Present (Parameter_Type (Parent (F))));
7198 end Is_Valid_Formal;
7199
7200 -----------------------------------
7201 -- Matches_Prefixed_View_Profile --
7202 -----------------------------------
7203
7204 function Matches_Prefixed_View_Profile
7205 (Prim_Params : List_Id;
7206 Iface_Params : List_Id) return Boolean
7207 is
7208 function Is_Implemented
7209 (Ifaces_List : Elist_Id;
7210 Iface : Entity_Id) return Boolean;
7211 -- Determine if Iface is implemented by the current task or
7212 -- protected type.
7213
7214 --------------------
7215 -- Is_Implemented --
7216 --------------------
7217
7218 function Is_Implemented
7219 (Ifaces_List : Elist_Id;
7220 Iface : Entity_Id) return Boolean
7221 is
7222 Iface_Elmt : Elmt_Id;
7223
7224 begin
7225 Iface_Elmt := First_Elmt (Ifaces_List);
7226 while Present (Iface_Elmt) loop
7227 if Node (Iface_Elmt) = Iface then
7228 return True;
7229 end if;
7230
7231 Next_Elmt (Iface_Elmt);
7232 end loop;
7233
7234 return False;
7235 end Is_Implemented;
7236
7237 -- Local variables
7238
7239 Iface_Id : Entity_Id;
7240 Iface_Param : Node_Id;
7241 Iface_Typ : Entity_Id;
7242 Prim_Id : Entity_Id;
7243 Prim_Param : Node_Id;
7244 Prim_Typ : Entity_Id;
7245
7246 -- Start of processing for Matches_Prefixed_View_Profile
7247
7248 begin
7249 Iface_Param := First (Iface_Params);
7250 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7251
7252 if Is_Access_Type (Iface_Typ) then
7253 Iface_Typ := Designated_Type (Iface_Typ);
7254 end if;
7255
7256 Prim_Param := First (Prim_Params);
7257
7258 -- The first parameter of the potentially overridden subprogram must
7259 -- be an interface implemented by Prim.
7260
7261 if not Is_Interface (Iface_Typ)
7262 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7263 then
7264 return False;
7265 end if;
7266
7267 -- The checks on the object parameters are done, so move on to the
7268 -- rest of the parameters.
7269
7270 if not In_Scope then
7271 Prim_Param := Next (Prim_Param);
7272 end if;
7273
7274 Iface_Param := Next (Iface_Param);
7275 while Present (Iface_Param) and then Present (Prim_Param) loop
7276 Iface_Id := Defining_Identifier (Iface_Param);
7277 Iface_Typ := Find_Parameter_Type (Iface_Param);
7278
7279 Prim_Id := Defining_Identifier (Prim_Param);
7280 Prim_Typ := Find_Parameter_Type (Prim_Param);
7281
7282 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7283 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7284 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7285 then
7286 Iface_Typ := Designated_Type (Iface_Typ);
7287 Prim_Typ := Designated_Type (Prim_Typ);
7288 end if;
7289
7290 -- Case of multiple interface types inside a parameter profile
7291
7292 -- (Obj_Param : in out Iface; ...; Param : Iface)
7293
7294 -- If the interface type is implemented, then the matching type in
7295 -- the primitive should be the implementing record type.
7296
7297 if Ekind (Iface_Typ) = E_Record_Type
7298 and then Is_Interface (Iface_Typ)
7299 and then Is_Implemented (Ifaces_List, Iface_Typ)
7300 then
7301 if Prim_Typ /= Typ then
7302 return False;
7303 end if;
7304
7305 -- The two parameters must be both mode and subtype conformant
7306
7307 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7308 or else not
7309 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7310 then
7311 return False;
7312 end if;
7313
7314 Next (Iface_Param);
7315 Next (Prim_Param);
7316 end loop;
7317
7318 -- One of the two lists contains more parameters than the other
7319
7320 if Present (Iface_Param) or else Present (Prim_Param) then
7321 return False;
7322 end if;
7323
7324 return True;
7325 end Matches_Prefixed_View_Profile;
7326
7327 -- Start of processing for Check_Synchronized_Overriding
7328
7329 begin
7330 Overridden_Subp := Empty;
7331
7332 -- Def_Id must be an entry or a subprogram. We should skip predefined
7333 -- primitives internally generated by the front end; however at this
7334 -- stage predefined primitives are still not fully decorated. As a
7335 -- minor optimization we skip here internally generated subprograms.
7336
7337 if (Ekind (Def_Id) /= E_Entry
7338 and then Ekind (Def_Id) /= E_Function
7339 and then Ekind (Def_Id) /= E_Procedure)
7340 or else not Comes_From_Source (Def_Id)
7341 then
7342 return;
7343 end if;
7344
7345 -- Search for the concurrent declaration since it contains the list of
7346 -- all implemented interfaces. In this case, the subprogram is declared
7347 -- within the scope of a protected or a task type.
7348
7349 if Present (Scope (Def_Id))
7350 and then Is_Concurrent_Type (Scope (Def_Id))
7351 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7352 then
7353 Typ := Scope (Def_Id);
7354 In_Scope := True;
7355
7356 -- The enclosing scope is not a synchronized type and the subprogram
7357 -- has no formals.
7358
7359 elsif No (First_Formal (Def_Id)) then
7360 return;
7361
7362 -- The subprogram has formals and hence it may be a primitive of a
7363 -- concurrent type.
7364
7365 else
7366 Typ := Etype (First_Formal (Def_Id));
7367
7368 if Is_Access_Type (Typ) then
7369 Typ := Directly_Designated_Type (Typ);
7370 end if;
7371
7372 if Is_Concurrent_Type (Typ)
7373 and then not Is_Generic_Actual_Type (Typ)
7374 then
7375 In_Scope := False;
7376
7377 -- This case occurs when the concurrent type is declared within a
7378 -- generic unit. As a result the corresponding record has been built
7379 -- and used as the type of the first formal, we just have to retrieve
7380 -- the corresponding concurrent type.
7381
7382 elsif Is_Concurrent_Record_Type (Typ)
7383 and then not Is_Class_Wide_Type (Typ)
7384 and then Present (Corresponding_Concurrent_Type (Typ))
7385 then
7386 Typ := Corresponding_Concurrent_Type (Typ);
7387 In_Scope := False;
7388
7389 else
7390 return;
7391 end if;
7392 end if;
7393
7394 -- There is no overriding to check if this is an inherited operation in
7395 -- a type derivation for a generic actual.
7396
7397 Collect_Interfaces (Typ, Ifaces_List);
7398
7399 if Is_Empty_Elmt_List (Ifaces_List) then
7400 return;
7401 end if;
7402
7403 -- Determine whether entry or subprogram Def_Id overrides a primitive
7404 -- operation that belongs to one of the interfaces in Ifaces_List.
7405
7406 declare
7407 Candidate : Entity_Id := Empty;
7408 Hom : Entity_Id := Empty;
7409 Subp : Entity_Id := Empty;
7410
7411 begin
7412 -- Traverse the homonym chain, looking for a potentially overridden
7413 -- subprogram that belongs to an implemented interface.
7414
7415 Hom := Current_Entity_In_Scope (Def_Id);
7416 while Present (Hom) loop
7417 Subp := Hom;
7418
7419 if Subp = Def_Id
7420 or else not Is_Overloadable (Subp)
7421 or else not Is_Primitive (Subp)
7422 or else not Is_Dispatching_Operation (Subp)
7423 or else not Present (Find_Dispatching_Type (Subp))
7424 or else not Is_Interface (Find_Dispatching_Type (Subp))
7425 then
7426 null;
7427
7428 -- Entries and procedures can override abstract or null interface
7429 -- procedures.
7430
7431 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7432 and then Ekind (Subp) = E_Procedure
7433 and then Matches_Prefixed_View_Profile
7434 (Parameter_Specifications (Parent (Def_Id)),
7435 Parameter_Specifications (Parent (Subp)))
7436 then
7437 Candidate := Subp;
7438
7439 -- For an overridden subprogram Subp, check whether the mode
7440 -- of its first parameter is correct depending on the kind of
7441 -- synchronized type.
7442
7443 declare
7444 Formal : constant Node_Id := First_Formal (Candidate);
7445
7446 begin
7447 -- In order for an entry or a protected procedure to
7448 -- override, the first parameter of the overridden routine
7449 -- must be of mode "out", "in out", or access-to-variable.
7450
7451 if Ekind_In (Candidate, E_Entry, E_Procedure)
7452 and then Is_Protected_Type (Typ)
7453 and then not Is_Valid_Formal (Formal)
7454 then
7455 null;
7456
7457 -- All other cases are OK since a task entry or routine does
7458 -- not have a restriction on the mode of the first parameter
7459 -- of the overridden interface routine.
7460
7461 else
7462 Overridden_Subp := Candidate;
7463 return;
7464 end if;
7465 end;
7466
7467 -- Functions can override abstract interface functions. Return
7468 -- types must be subtype conformant.
7469
7470 elsif Ekind (Def_Id) = E_Function
7471 and then Ekind (Subp) = E_Function
7472 and then Matches_Prefixed_View_Profile
7473 (Parameter_Specifications (Parent (Def_Id)),
7474 Parameter_Specifications (Parent (Subp)))
7475 and then Conforming_Types
7476 (Etype (Def_Id), Etype (Subp), Subtype_Conformant)
7477 then
7478 Candidate := Subp;
7479
7480 -- If an inherited subprogram is implemented by a protected
7481 -- function, then the first parameter of the inherited
7482 -- subprogram shall be of mode in, but not an access-to-
7483 -- variable parameter (RM 9.4(11/9)).
7484
7485 if Present (First_Formal (Subp))
7486 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7487 and then
7488 (not Is_Access_Type (Etype (First_Formal (Subp)))
7489 or else
7490 Is_Access_Constant (Etype (First_Formal (Subp))))
7491 then
7492 Overridden_Subp := Subp;
7493 return;
7494 end if;
7495 end if;
7496
7497 Hom := Homonym (Hom);
7498 end loop;
7499
7500 -- After examining all candidates for overriding, we are left with
7501 -- the best match, which is a mode-incompatible interface routine.
7502
7503 if In_Scope and then Present (Candidate) then
7504 Error_Msg_PT (Def_Id, Candidate);
7505 end if;
7506
7507 Overridden_Subp := Candidate;
7508 return;
7509 end;
7510 end Check_Synchronized_Overriding;
7511
7512 ---------------------------
7513 -- Check_Type_Conformant --
7514 ---------------------------
7515
7516 procedure Check_Type_Conformant
7517 (New_Id : Entity_Id;
7518 Old_Id : Entity_Id;
7519 Err_Loc : Node_Id := Empty)
7520 is
7521 Result : Boolean;
7522 pragma Warnings (Off, Result);
7523 begin
7524 Check_Conformance
7525 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7526 end Check_Type_Conformant;
7527
7528 ---------------------------
7529 -- Can_Override_Operator --
7530 ---------------------------
7531
7532 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7533 Typ : Entity_Id;
7534
7535 begin
7536 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7537 return False;
7538
7539 else
7540 Typ := Base_Type (Etype (First_Formal (Subp)));
7541
7542 -- Check explicitly that the operation is a primitive of the type
7543
7544 return Operator_Matches_Spec (Subp, Subp)
7545 and then not Is_Generic_Type (Typ)
7546 and then Scope (Subp) = Scope (Typ)
7547 and then not Is_Class_Wide_Type (Typ);
7548 end if;
7549 end Can_Override_Operator;
7550
7551 ----------------------
7552 -- Conforming_Types --
7553 ----------------------
7554
7555 function Conforming_Types
7556 (T1 : Entity_Id;
7557 T2 : Entity_Id;
7558 Ctype : Conformance_Type;
7559 Get_Inst : Boolean := False) return Boolean
7560 is
7561 function Base_Types_Match
7562 (Typ_1 : Entity_Id;
7563 Typ_2 : Entity_Id) return Boolean;
7564 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7565 -- in different scopes (e.g. parent and child instances), then verify
7566 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7567 -- the same subtype chain. The whole purpose of this procedure is to
7568 -- prevent spurious ambiguities in an instantiation that may arise if
7569 -- two distinct generic types are instantiated with the same actual.
7570
7571 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7572 -- An access parameter can designate an incomplete type. If the
7573 -- incomplete type is the limited view of a type from a limited_
7574 -- with_clause, check whether the non-limited view is available.
7575 -- If it is a (non-limited) incomplete type, get the full view.
7576
7577 function Matches_Limited_With_View
7578 (Typ_1 : Entity_Id;
7579 Typ_2 : Entity_Id) return Boolean;
7580 -- Returns True if and only if either Typ_1 denotes a limited view of
7581 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7582 -- the limited with view of a type is used in a subprogram declaration
7583 -- and the subprogram body is in the scope of a regular with clause for
7584 -- the same unit. In such a case, the two type entities are considered
7585 -- identical for purposes of conformance checking.
7586
7587 ----------------------
7588 -- Base_Types_Match --
7589 ----------------------
7590
7591 function Base_Types_Match
7592 (Typ_1 : Entity_Id;
7593 Typ_2 : Entity_Id) return Boolean
7594 is
7595 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7596 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7597
7598 begin
7599 if Typ_1 = Typ_2 then
7600 return True;
7601
7602 elsif Base_1 = Base_2 then
7603
7604 -- The following is too permissive. A more precise test should
7605 -- check that the generic actual is an ancestor subtype of the
7606 -- other ???.
7607
7608 -- See code in Find_Corresponding_Spec that applies an additional
7609 -- filter to handle accidental amiguities in instances.
7610
7611 return
7612 not Is_Generic_Actual_Type (Typ_1)
7613 or else not Is_Generic_Actual_Type (Typ_2)
7614 or else Scope (Typ_1) /= Scope (Typ_2);
7615
7616 -- If Typ_2 is a generic actual type it is declared as the subtype of
7617 -- the actual. If that actual is itself a subtype we need to use its
7618 -- own base type to check for compatibility.
7619
7620 elsif Ekind (Base_2) = Ekind (Typ_2)
7621 and then Base_1 = Base_Type (Base_2)
7622 then
7623 return True;
7624
7625 elsif Ekind (Base_1) = Ekind (Typ_1)
7626 and then Base_2 = Base_Type (Base_1)
7627 then
7628 return True;
7629
7630 else
7631 return False;
7632 end if;
7633 end Base_Types_Match;
7634
7635 --------------------------
7636 -- Find_Designated_Type --
7637 --------------------------
7638
7639 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7640 Desig : Entity_Id;
7641
7642 begin
7643 Desig := Directly_Designated_Type (Typ);
7644
7645 if Ekind (Desig) = E_Incomplete_Type then
7646
7647 -- If regular incomplete type, get full view if available
7648
7649 if Present (Full_View (Desig)) then
7650 Desig := Full_View (Desig);
7651
7652 -- If limited view of a type, get non-limited view if available,
7653 -- and check again for a regular incomplete type.
7654
7655 elsif Present (Non_Limited_View (Desig)) then
7656 Desig := Get_Full_View (Non_Limited_View (Desig));
7657 end if;
7658 end if;
7659
7660 return Desig;
7661 end Find_Designated_Type;
7662
7663 -------------------------------
7664 -- Matches_Limited_With_View --
7665 -------------------------------
7666
7667 function Matches_Limited_With_View
7668 (Typ_1 : Entity_Id;
7669 Typ_2 : Entity_Id) return Boolean
7670 is
7671 function Is_Matching_Limited_View
7672 (Typ : Entity_Id;
7673 View : Entity_Id) return Boolean;
7674 -- Determine whether non-limited view View denotes type Typ in some
7675 -- conformant fashion.
7676
7677 ------------------------------
7678 -- Is_Matching_Limited_View --
7679 ------------------------------
7680
7681 function Is_Matching_Limited_View
7682 (Typ : Entity_Id;
7683 View : Entity_Id) return Boolean
7684 is
7685 Root_Typ : Entity_Id;
7686 Root_View : Entity_Id;
7687
7688 begin
7689 -- The non-limited view directly denotes the type
7690
7691 if Typ = View then
7692 return True;
7693
7694 -- The type is a subtype of the non-limited view
7695
7696 elsif Is_Subtype_Of (Typ, View) then
7697 return True;
7698
7699 -- Both the non-limited view and the type denote class-wide types
7700
7701 elsif Is_Class_Wide_Type (Typ)
7702 and then Is_Class_Wide_Type (View)
7703 then
7704 Root_Typ := Root_Type (Typ);
7705 Root_View := Root_Type (View);
7706
7707 if Root_Typ = Root_View then
7708 return True;
7709
7710 -- An incomplete tagged type and its full view may receive two
7711 -- distinct class-wide types when the related package has not
7712 -- been analyzed yet.
7713
7714 -- package Pack is
7715 -- type T is tagged; -- CW_1
7716 -- type T is tagged null record; -- CW_2
7717 -- end Pack;
7718
7719 -- This is because the package lacks any semantic information
7720 -- that may eventually link both views of T. As a consequence,
7721 -- a client of the limited view of Pack will see CW_2 while a
7722 -- client of the non-limited view of Pack will see CW_1.
7723
7724 elsif Is_Incomplete_Type (Root_Typ)
7725 and then Present (Full_View (Root_Typ))
7726 and then Full_View (Root_Typ) = Root_View
7727 then
7728 return True;
7729
7730 elsif Is_Incomplete_Type (Root_View)
7731 and then Present (Full_View (Root_View))
7732 and then Full_View (Root_View) = Root_Typ
7733 then
7734 return True;
7735 end if;
7736 end if;
7737
7738 return False;
7739 end Is_Matching_Limited_View;
7740
7741 -- Start of processing for Matches_Limited_With_View
7742
7743 begin
7744 -- In some cases a type imported through a limited_with clause, and
7745 -- its non-limited view are both visible, for example in an anonymous
7746 -- access-to-class-wide type in a formal, or when building the body
7747 -- for a subprogram renaming after the subprogram has been frozen.
7748 -- In these cases both entities designate the same type. In addition,
7749 -- if one of them is an actual in an instance, it may be a subtype of
7750 -- the non-limited view of the other.
7751
7752 if From_Limited_With (Typ_1)
7753 and then From_Limited_With (Typ_2)
7754 and then Available_View (Typ_1) = Available_View (Typ_2)
7755 then
7756 return True;
7757
7758 elsif From_Limited_With (Typ_1) then
7759 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7760
7761 elsif From_Limited_With (Typ_2) then
7762 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7763
7764 else
7765 return False;
7766 end if;
7767 end Matches_Limited_With_View;
7768
7769 -- Local variables
7770
7771 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7772
7773 Type_1 : Entity_Id := T1;
7774 Type_2 : Entity_Id := T2;
7775
7776 -- Start of processing for Conforming_Types
7777
7778 begin
7779 -- The context is an instance association for a formal access-to-
7780 -- subprogram type; the formal parameter types require mapping because
7781 -- they may denote other formal parameters of the generic unit.
7782
7783 if Get_Inst then
7784 Type_1 := Get_Instance_Of (T1);
7785 Type_2 := Get_Instance_Of (T2);
7786 end if;
7787
7788 -- If one of the types is a view of the other introduced by a limited
7789 -- with clause, treat these as conforming for all purposes.
7790
7791 if Matches_Limited_With_View (T1, T2) then
7792 return True;
7793
7794 elsif Base_Types_Match (Type_1, Type_2) then
7795 if Ctype <= Mode_Conformant then
7796 return True;
7797
7798 else
7799 return
7800 Subtypes_Statically_Match (Type_1, Type_2)
7801 and then Dimensions_Match (Type_1, Type_2);
7802 end if;
7803
7804 elsif Is_Incomplete_Or_Private_Type (Type_1)
7805 and then Present (Full_View (Type_1))
7806 and then Base_Types_Match (Full_View (Type_1), Type_2)
7807 then
7808 return
7809 Ctype <= Mode_Conformant
7810 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7811
7812 elsif Ekind (Type_2) = E_Incomplete_Type
7813 and then Present (Full_View (Type_2))
7814 and then Base_Types_Match (Type_1, Full_View (Type_2))
7815 then
7816 return
7817 Ctype <= Mode_Conformant
7818 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7819
7820 elsif Is_Private_Type (Type_2)
7821 and then In_Instance
7822 and then Present (Full_View (Type_2))
7823 and then Base_Types_Match (Type_1, Full_View (Type_2))
7824 then
7825 return
7826 Ctype <= Mode_Conformant
7827 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7828
7829 -- Another confusion between views in a nested instance with an
7830 -- actual private type whose full view is not in scope.
7831
7832 elsif Ekind (Type_2) = E_Private_Subtype
7833 and then In_Instance
7834 and then Etype (Type_2) = Type_1
7835 then
7836 return True;
7837
7838 -- In Ada 2012, incomplete types (including limited views) can appear
7839 -- as actuals in instantiations, where they are conformant to the
7840 -- corresponding incomplete formal.
7841
7842 elsif Is_Incomplete_Type (Type_1)
7843 and then Is_Incomplete_Type (Type_2)
7844 and then In_Instance
7845 and then (Used_As_Generic_Actual (Type_1)
7846 or else Used_As_Generic_Actual (Type_2))
7847 then
7848 return True;
7849 end if;
7850
7851 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7852 -- treated recursively because they carry a signature. As far as
7853 -- conformance is concerned, convention plays no role, and either
7854 -- or both could be access to protected subprograms.
7855
7856 Are_Anonymous_Access_To_Subprogram_Types :=
7857 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7858 E_Anonymous_Access_Protected_Subprogram_Type)
7859 and then
7860 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7861 E_Anonymous_Access_Protected_Subprogram_Type);
7862
7863 -- Test anonymous access type case. For this case, static subtype
7864 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7865 -- the base types because we may have built internal subtype entities
7866 -- to handle null-excluding types (see Process_Formals).
7867
7868 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7869 and then
7870 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7871
7872 -- Ada 2005 (AI-254)
7873
7874 or else Are_Anonymous_Access_To_Subprogram_Types
7875 then
7876 declare
7877 Desig_1 : Entity_Id;
7878 Desig_2 : Entity_Id;
7879
7880 begin
7881 -- In Ada 2005, access constant indicators must match for
7882 -- subtype conformance.
7883
7884 if Ada_Version >= Ada_2005
7885 and then Ctype >= Subtype_Conformant
7886 and then
7887 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7888 then
7889 return False;
7890 end if;
7891
7892 Desig_1 := Find_Designated_Type (Type_1);
7893 Desig_2 := Find_Designated_Type (Type_2);
7894
7895 -- If the context is an instance association for a formal
7896 -- access-to-subprogram type; formal access parameter designated
7897 -- types require mapping because they may denote other formal
7898 -- parameters of the generic unit.
7899
7900 if Get_Inst then
7901 Desig_1 := Get_Instance_Of (Desig_1);
7902 Desig_2 := Get_Instance_Of (Desig_2);
7903 end if;
7904
7905 -- It is possible for a Class_Wide_Type to be introduced for an
7906 -- incomplete type, in which case there is a separate class_ wide
7907 -- type for the full view. The types conform if their Etypes
7908 -- conform, i.e. one may be the full view of the other. This can
7909 -- only happen in the context of an access parameter, other uses
7910 -- of an incomplete Class_Wide_Type are illegal.
7911
7912 if Is_Class_Wide_Type (Desig_1)
7913 and then
7914 Is_Class_Wide_Type (Desig_2)
7915 then
7916 return
7917 Conforming_Types
7918 (Etype (Base_Type (Desig_1)),
7919 Etype (Base_Type (Desig_2)), Ctype);
7920
7921 elsif Are_Anonymous_Access_To_Subprogram_Types then
7922 if Ada_Version < Ada_2005 then
7923 return
7924 Ctype = Type_Conformant
7925 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7926
7927 -- We must check the conformance of the signatures themselves
7928
7929 else
7930 declare
7931 Conformant : Boolean;
7932 begin
7933 Check_Conformance
7934 (Desig_1, Desig_2, Ctype, False, Conformant);
7935 return Conformant;
7936 end;
7937 end if;
7938
7939 -- A limited view of an actual matches the corresponding
7940 -- incomplete formal.
7941
7942 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7943 and then From_Limited_With (Desig_2)
7944 and then Used_As_Generic_Actual (Etype (Desig_2))
7945 then
7946 return True;
7947
7948 else
7949 return Base_Type (Desig_1) = Base_Type (Desig_2)
7950 and then (Ctype = Type_Conformant
7951 or else
7952 Subtypes_Statically_Match (Desig_1, Desig_2));
7953 end if;
7954 end;
7955
7956 -- Otherwise definitely no match
7957
7958 else
7959 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7960 and then Is_Access_Type (Type_2))
7961 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7962 and then Is_Access_Type (Type_1)))
7963 and then
7964 Conforming_Types
7965 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7966 then
7967 May_Hide_Profile := True;
7968 end if;
7969
7970 return False;
7971 end if;
7972 end Conforming_Types;
7973
7974 --------------------------
7975 -- Create_Extra_Formals --
7976 --------------------------
7977
7978 procedure Create_Extra_Formals (E : Entity_Id) is
7979 First_Extra : Entity_Id := Empty;
7980 Formal : Entity_Id;
7981 Last_Extra : Entity_Id := Empty;
7982
7983 function Add_Extra_Formal
7984 (Assoc_Entity : Entity_Id;
7985 Typ : Entity_Id;
7986 Scope : Entity_Id;
7987 Suffix : String) return Entity_Id;
7988 -- Add an extra formal to the current list of formals and extra formals.
7989 -- The extra formal is added to the end of the list of extra formals,
7990 -- and also returned as the result. These formals are always of mode IN.
7991 -- The new formal has the type Typ, is declared in Scope, and its name
7992 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7993 -- The following suffixes are currently used. They should not be changed
7994 -- without coordinating with CodePeer, which makes use of these to
7995 -- provide better messages.
7996
7997 -- O denotes the Constrained bit.
7998 -- L denotes the accessibility level.
7999 -- BIP_xxx denotes an extra formal for a build-in-place function. See
8000 -- the full list in exp_ch6.BIP_Formal_Kind.
8001
8002 ----------------------
8003 -- Add_Extra_Formal --
8004 ----------------------
8005
8006 function Add_Extra_Formal
8007 (Assoc_Entity : Entity_Id;
8008 Typ : Entity_Id;
8009 Scope : Entity_Id;
8010 Suffix : String) return Entity_Id
8011 is
8012 EF : constant Entity_Id :=
8013 Make_Defining_Identifier (Sloc (Assoc_Entity),
8014 Chars => New_External_Name (Chars (Assoc_Entity),
8015 Suffix => Suffix));
8016
8017 begin
8018 -- A little optimization. Never generate an extra formal for the
8019 -- _init operand of an initialization procedure, since it could
8020 -- never be used.
8021
8022 if Chars (Formal) = Name_uInit then
8023 return Empty;
8024 end if;
8025
8026 Set_Ekind (EF, E_In_Parameter);
8027 Set_Actual_Subtype (EF, Typ);
8028 Set_Etype (EF, Typ);
8029 Set_Scope (EF, Scope);
8030 Set_Mechanism (EF, Default_Mechanism);
8031 Set_Formal_Validity (EF);
8032
8033 if No (First_Extra) then
8034 First_Extra := EF;
8035 Set_Extra_Formals (Scope, EF);
8036 end if;
8037
8038 if Present (Last_Extra) then
8039 Set_Extra_Formal (Last_Extra, EF);
8040 end if;
8041
8042 Last_Extra := EF;
8043
8044 return EF;
8045 end Add_Extra_Formal;
8046
8047 -- Local variables
8048
8049 Formal_Type : Entity_Id;
8050 P_Formal : Entity_Id := Empty;
8051
8052 -- Start of processing for Create_Extra_Formals
8053
8054 begin
8055 -- We never generate extra formals if expansion is not active because we
8056 -- don't need them unless we are generating code.
8057
8058 if not Expander_Active then
8059 return;
8060 end if;
8061
8062 -- No need to generate extra formals in interface thunks whose target
8063 -- primitive has no extra formals.
8064
8065 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
8066 return;
8067 end if;
8068
8069 -- If this is a derived subprogram then the subtypes of the parent
8070 -- subprogram's formal parameters will be used to determine the need
8071 -- for extra formals.
8072
8073 if Is_Overloadable (E) and then Present (Alias (E)) then
8074 P_Formal := First_Formal (Alias (E));
8075 end if;
8076
8077 Formal := First_Formal (E);
8078 while Present (Formal) loop
8079 Last_Extra := Formal;
8080 Next_Formal (Formal);
8081 end loop;
8082
8083 -- If Extra_Formals were already created, don't do it again. This
8084 -- situation may arise for subprogram types created as part of
8085 -- dispatching calls (see Expand_Dispatching_Call).
8086
8087 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8088 return;
8089 end if;
8090
8091 -- If the subprogram is a predefined dispatching subprogram then don't
8092 -- generate any extra constrained or accessibility level formals. In
8093 -- general we suppress these for internal subprograms (by not calling
8094 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8095 -- generated stream attributes do get passed through because extra
8096 -- build-in-place formals are needed in some cases (limited 'Input).
8097
8098 if Is_Predefined_Internal_Operation (E) then
8099 goto Test_For_Func_Result_Extras;
8100 end if;
8101
8102 Formal := First_Formal (E);
8103 while Present (Formal) loop
8104
8105 -- Create extra formal for supporting the attribute 'Constrained.
8106 -- The case of a private type view without discriminants also
8107 -- requires the extra formal if the underlying type has defaulted
8108 -- discriminants.
8109
8110 if Ekind (Formal) /= E_In_Parameter then
8111 if Present (P_Formal) then
8112 Formal_Type := Etype (P_Formal);
8113 else
8114 Formal_Type := Etype (Formal);
8115 end if;
8116
8117 -- Do not produce extra formals for Unchecked_Union parameters.
8118 -- Jump directly to the end of the loop.
8119
8120 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
8121 goto Skip_Extra_Formal_Generation;
8122 end if;
8123
8124 if not Has_Discriminants (Formal_Type)
8125 and then Ekind (Formal_Type) in Private_Kind
8126 and then Present (Underlying_Type (Formal_Type))
8127 then
8128 Formal_Type := Underlying_Type (Formal_Type);
8129 end if;
8130
8131 -- Suppress the extra formal if formal's subtype is constrained or
8132 -- indefinite, or we're compiling for Ada 2012 and the underlying
8133 -- type is tagged and limited. In Ada 2012, a limited tagged type
8134 -- can have defaulted discriminants, but 'Constrained is required
8135 -- to return True, so the formal is never needed (see AI05-0214).
8136 -- Note that this ensures consistency of calling sequences for
8137 -- dispatching operations when some types in a class have defaults
8138 -- on discriminants and others do not (and requiring the extra
8139 -- formal would introduce distributed overhead).
8140
8141 -- If the type does not have a completion yet, treat as prior to
8142 -- Ada 2012 for consistency.
8143
8144 if Has_Discriminants (Formal_Type)
8145 and then not Is_Constrained (Formal_Type)
8146 and then Is_Definite_Subtype (Formal_Type)
8147 and then (Ada_Version < Ada_2012
8148 or else No (Underlying_Type (Formal_Type))
8149 or else not
8150 (Is_Limited_Type (Formal_Type)
8151 and then
8152 (Is_Tagged_Type
8153 (Underlying_Type (Formal_Type)))))
8154 then
8155 Set_Extra_Constrained
8156 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8157 end if;
8158 end if;
8159
8160 -- Create extra formal for supporting accessibility checking. This
8161 -- is done for both anonymous access formals and formals of named
8162 -- access types that are marked as controlling formals. The latter
8163 -- case can occur when Expand_Dispatching_Call creates a subprogram
8164 -- type and substitutes the types of access-to-class-wide actuals
8165 -- for the anonymous access-to-specific-type of controlling formals.
8166 -- Base_Type is applied because in cases where there is a null
8167 -- exclusion the formal may have an access subtype.
8168
8169 -- This is suppressed if we specifically suppress accessibility
8170 -- checks at the package level for either the subprogram, or the
8171 -- package in which it resides. However, we do not suppress it
8172 -- simply if the scope has accessibility checks suppressed, since
8173 -- this could cause trouble when clients are compiled with a
8174 -- different suppression setting. The explicit checks at the
8175 -- package level are safe from this point of view.
8176
8177 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8178 or else (Is_Controlling_Formal (Formal)
8179 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8180 and then not
8181 (Explicit_Suppress (E, Accessibility_Check)
8182 or else
8183 Explicit_Suppress (Scope (E), Accessibility_Check))
8184 and then
8185 (No (P_Formal)
8186 or else Present (Extra_Accessibility (P_Formal)))
8187 then
8188 Set_Extra_Accessibility
8189 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8190 end if;
8191
8192 -- This label is required when skipping extra formal generation for
8193 -- Unchecked_Union parameters.
8194
8195 <<Skip_Extra_Formal_Generation>>
8196
8197 if Present (P_Formal) then
8198 Next_Formal (P_Formal);
8199 end if;
8200
8201 Next_Formal (Formal);
8202 end loop;
8203
8204 <<Test_For_Func_Result_Extras>>
8205
8206 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8207 -- function call is ... determined by the point of call ...".
8208
8209 if Needs_Result_Accessibility_Level (E) then
8210 Set_Extra_Accessibility_Of_Result
8211 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8212 end if;
8213
8214 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8215 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8216
8217 if Is_Build_In_Place_Function (E) then
8218 declare
8219 Result_Subt : constant Entity_Id := Etype (E);
8220 Formal_Typ : Entity_Id;
8221 Subp_Decl : Node_Id;
8222 Discard : Entity_Id;
8223
8224 begin
8225 -- In the case of functions with unconstrained result subtypes,
8226 -- add a 4-state formal indicating whether the return object is
8227 -- allocated by the caller (1), or should be allocated by the
8228 -- callee on the secondary stack (2), in the global heap (3), or
8229 -- in a user-defined storage pool (4). For the moment we just use
8230 -- Natural for the type of this formal. Note that this formal
8231 -- isn't usually needed in the case where the result subtype is
8232 -- constrained, but it is needed when the function has a tagged
8233 -- result, because generally such functions can be called in a
8234 -- dispatching context and such calls must be handled like calls
8235 -- to a class-wide function.
8236
8237 if Needs_BIP_Alloc_Form (E) then
8238 Discard :=
8239 Add_Extra_Formal
8240 (E, Standard_Natural,
8241 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8242
8243 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8244 -- use a user-defined pool. This formal is not added on
8245 -- ZFP as those targets do not support pools.
8246
8247 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8248 Discard :=
8249 Add_Extra_Formal
8250 (E, RTE (RE_Root_Storage_Pool_Ptr),
8251 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8252 end if;
8253 end if;
8254
8255 -- In the case of functions whose result type needs finalization,
8256 -- add an extra formal which represents the finalization master.
8257
8258 if Needs_BIP_Finalization_Master (E) then
8259 Discard :=
8260 Add_Extra_Formal
8261 (E, RTE (RE_Finalization_Master_Ptr),
8262 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8263 end if;
8264
8265 -- When the result type contains tasks, add two extra formals: the
8266 -- master of the tasks to be created, and the caller's activation
8267 -- chain.
8268
8269 if Needs_BIP_Task_Actuals (E) then
8270 Discard :=
8271 Add_Extra_Formal
8272 (E, RTE (RE_Master_Id),
8273 E, BIP_Formal_Suffix (BIP_Task_Master));
8274 Discard :=
8275 Add_Extra_Formal
8276 (E, RTE (RE_Activation_Chain_Access),
8277 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8278 end if;
8279
8280 -- All build-in-place functions get an extra formal that will be
8281 -- passed the address of the return object within the caller.
8282
8283 Formal_Typ :=
8284 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8285
8286 -- Incomplete_View_From_Limited_With is needed here because
8287 -- gigi gets confused if the designated type is the full view
8288 -- coming from a limited-with'ed package. In the normal case,
8289 -- (no limited with) Incomplete_View_From_Limited_With
8290 -- returns Result_Subt.
8291
8292 Set_Directly_Designated_Type
8293 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8294 Set_Etype (Formal_Typ, Formal_Typ);
8295 Set_Depends_On_Private
8296 (Formal_Typ, Has_Private_Component (Formal_Typ));
8297 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8298 Set_Is_Access_Constant (Formal_Typ, False);
8299
8300 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8301 -- the designated type comes from the limited view (for back-end
8302 -- purposes).
8303
8304 Set_From_Limited_With
8305 (Formal_Typ, From_Limited_With (Result_Subt));
8306
8307 Layout_Type (Formal_Typ);
8308
8309 -- Force the definition of the Itype in case of internal function
8310 -- calls within the same or nested scope.
8311
8312 if Is_Subprogram_Or_Generic_Subprogram (E) then
8313 Subp_Decl := Parent (E);
8314
8315 -- The insertion point for an Itype reference should be after
8316 -- the unit declaration node of the subprogram. An exception
8317 -- to this are inherited operations from a parent type in which
8318 -- case the derived type acts as their parent.
8319
8320 if Nkind_In (Subp_Decl, N_Function_Specification,
8321 N_Procedure_Specification)
8322 then
8323 Subp_Decl := Parent (Subp_Decl);
8324 end if;
8325
8326 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8327 end if;
8328
8329 Discard :=
8330 Add_Extra_Formal
8331 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8332 end;
8333 end if;
8334
8335 -- If this is an instance of a generic, we need to have extra formals
8336 -- for the Alias.
8337
8338 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8339 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8340 end if;
8341 end Create_Extra_Formals;
8342
8343 -----------------------------
8344 -- Enter_Overloaded_Entity --
8345 -----------------------------
8346
8347 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8348 function Matches_Predefined_Op return Boolean;
8349 -- This returns an approximation of whether S matches a predefined
8350 -- operator, based on the operator symbol, and the parameter and result
8351 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8352
8353 ---------------------------
8354 -- Matches_Predefined_Op --
8355 ---------------------------
8356
8357 function Matches_Predefined_Op return Boolean is
8358 Formal_1 : constant Entity_Id := First_Formal (S);
8359 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8360 Op : constant Name_Id := Chars (S);
8361 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8362 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8363
8364 begin
8365 -- Binary operator
8366
8367 if Present (Formal_2) then
8368 declare
8369 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8370
8371 begin
8372 -- All but "&" and "**" have same-types parameters
8373
8374 case Op is
8375 when Name_Op_Concat
8376 | Name_Op_Expon
8377 =>
8378 null;
8379
8380 when others =>
8381 if Type_1 /= Type_2 then
8382 return False;
8383 end if;
8384 end case;
8385
8386 -- Check parameter and result types
8387
8388 case Op is
8389 when Name_Op_And
8390 | Name_Op_Or
8391 | Name_Op_Xor
8392 =>
8393 return
8394 Is_Boolean_Type (Result_Type)
8395 and then Result_Type = Type_1;
8396
8397 when Name_Op_Mod
8398 | Name_Op_Rem
8399 =>
8400 return
8401 Is_Integer_Type (Result_Type)
8402 and then Result_Type = Type_1;
8403
8404 when Name_Op_Add
8405 | Name_Op_Divide
8406 | Name_Op_Multiply
8407 | Name_Op_Subtract
8408 =>
8409 return
8410 Is_Numeric_Type (Result_Type)
8411 and then Result_Type = Type_1;
8412
8413 when Name_Op_Eq
8414 | Name_Op_Ne
8415 =>
8416 return
8417 Is_Boolean_Type (Result_Type)
8418 and then not Is_Limited_Type (Type_1);
8419
8420 when Name_Op_Ge
8421 | Name_Op_Gt
8422 | Name_Op_Le
8423 | Name_Op_Lt
8424 =>
8425 return
8426 Is_Boolean_Type (Result_Type)
8427 and then (Is_Array_Type (Type_1)
8428 or else Is_Scalar_Type (Type_1));
8429
8430 when Name_Op_Concat =>
8431 return Is_Array_Type (Result_Type);
8432
8433 when Name_Op_Expon =>
8434 return
8435 (Is_Integer_Type (Result_Type)
8436 or else Is_Floating_Point_Type (Result_Type))
8437 and then Result_Type = Type_1
8438 and then Type_2 = Standard_Integer;
8439
8440 when others =>
8441 raise Program_Error;
8442 end case;
8443 end;
8444
8445 -- Unary operator
8446
8447 else
8448 case Op is
8449 when Name_Op_Abs
8450 | Name_Op_Add
8451 | Name_Op_Subtract
8452 =>
8453 return
8454 Is_Numeric_Type (Result_Type)
8455 and then Result_Type = Type_1;
8456
8457 when Name_Op_Not =>
8458 return
8459 Is_Boolean_Type (Result_Type)
8460 and then Result_Type = Type_1;
8461
8462 when others =>
8463 raise Program_Error;
8464 end case;
8465 end if;
8466 end Matches_Predefined_Op;
8467
8468 -- Local variables
8469
8470 E : Entity_Id := Current_Entity_In_Scope (S);
8471 C_E : Entity_Id := Current_Entity (S);
8472
8473 -- Start of processing for Enter_Overloaded_Entity
8474
8475 begin
8476 if Present (E) then
8477 Set_Has_Homonym (E);
8478 Set_Has_Homonym (S);
8479 end if;
8480
8481 Set_Is_Immediately_Visible (S);
8482 Set_Scope (S, Current_Scope);
8483
8484 -- Chain new entity if front of homonym in current scope, so that
8485 -- homonyms are contiguous.
8486
8487 if Present (E) and then E /= C_E then
8488 while Homonym (C_E) /= E loop
8489 C_E := Homonym (C_E);
8490 end loop;
8491
8492 Set_Homonym (C_E, S);
8493
8494 else
8495 E := C_E;
8496 Set_Current_Entity (S);
8497 end if;
8498
8499 Set_Homonym (S, E);
8500
8501 if Is_Inherited_Operation (S) then
8502 Append_Inherited_Subprogram (S);
8503 else
8504 Append_Entity (S, Current_Scope);
8505 end if;
8506
8507 Set_Public_Status (S);
8508
8509 if Debug_Flag_E then
8510 Write_Str ("New overloaded entity chain: ");
8511 Write_Name (Chars (S));
8512
8513 E := S;
8514 while Present (E) loop
8515 Write_Str (" "); Write_Int (Int (E));
8516 E := Homonym (E);
8517 end loop;
8518
8519 Write_Eol;
8520 end if;
8521
8522 -- Generate warning for hiding
8523
8524 if Warn_On_Hiding
8525 and then Comes_From_Source (S)
8526 and then In_Extended_Main_Source_Unit (S)
8527 then
8528 E := S;
8529 loop
8530 E := Homonym (E);
8531 exit when No (E);
8532
8533 -- Warn unless genuine overloading. Do not emit warning on
8534 -- hiding predefined operators in Standard (these are either an
8535 -- (artifact of our implicit declarations, or simple noise) but
8536 -- keep warning on a operator defined on a local subtype, because
8537 -- of the real danger that different operators may be applied in
8538 -- various parts of the program.
8539
8540 -- Note that if E and S have the same scope, there is never any
8541 -- hiding. Either the two conflict, and the program is illegal,
8542 -- or S is overriding an implicit inherited subprogram.
8543
8544 if Scope (E) /= Scope (S)
8545 and then (not Is_Overloadable (E)
8546 or else Subtype_Conformant (E, S))
8547 and then (Is_Immediately_Visible (E)
8548 or else Is_Potentially_Use_Visible (S))
8549 then
8550 if Scope (E) = Standard_Standard then
8551 if Nkind (S) = N_Defining_Operator_Symbol
8552 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8553 Scope (S)
8554 and then Matches_Predefined_Op
8555 then
8556 Error_Msg_N
8557 ("declaration of & hides predefined operator?h?", S);
8558 end if;
8559
8560 -- E not immediately within Standard
8561
8562 else
8563 Error_Msg_Sloc := Sloc (E);
8564 Error_Msg_N ("declaration of & hides one #?h?", S);
8565 end if;
8566 end if;
8567 end loop;
8568 end if;
8569 end Enter_Overloaded_Entity;
8570
8571 -----------------------------
8572 -- Check_Untagged_Equality --
8573 -----------------------------
8574
8575 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8576 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8577 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8578 Obj_Decl : Node_Id;
8579
8580 begin
8581 -- This check applies only if we have a subprogram declaration with an
8582 -- untagged record type that is conformant to the predefined op.
8583
8584 if Nkind (Decl) /= N_Subprogram_Declaration
8585 or else not Is_Record_Type (Typ)
8586 or else Is_Tagged_Type (Typ)
8587 or else Etype (Next_Formal (First_Formal (Eq_Op))) /= Typ
8588 then
8589 return;
8590 end if;
8591
8592 -- In Ada 2012 case, we will output errors or warnings depending on
8593 -- the setting of debug flag -gnatd.E.
8594
8595 if Ada_Version >= Ada_2012 then
8596 Error_Msg_Warn := Debug_Flag_Dot_EE;
8597
8598 -- In earlier versions of Ada, nothing to do unless we are warning on
8599 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8600
8601 else
8602 if not Warn_On_Ada_2012_Compatibility then
8603 return;
8604 end if;
8605 end if;
8606
8607 -- Cases where the type has already been frozen
8608
8609 if Is_Frozen (Typ) then
8610
8611 -- The check applies to a primitive operation, so check that type
8612 -- and equality operation are in the same scope.
8613
8614 if Scope (Typ) /= Current_Scope then
8615 return;
8616
8617 -- If the type is a generic actual (sub)type, the operation is not
8618 -- primitive either because the base type is declared elsewhere.
8619
8620 elsif Is_Generic_Actual_Type (Typ) then
8621 return;
8622
8623 -- Here we have a definite error of declaration after freezing
8624
8625 else
8626 if Ada_Version >= Ada_2012 then
8627 Error_Msg_NE
8628 ("equality operator must be declared before type & is "
8629 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8630
8631 -- In Ada 2012 mode with error turned to warning, output one
8632 -- more warning to warn that the equality operation may not
8633 -- compose. This is the consequence of ignoring the error.
8634
8635 if Error_Msg_Warn then
8636 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8637 end if;
8638
8639 else
8640 Error_Msg_NE
8641 ("equality operator must be declared before type& is "
8642 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8643 end if;
8644
8645 -- If we are in the package body, we could just move the
8646 -- declaration to the package spec, so add a message saying that.
8647
8648 if In_Package_Body (Scope (Typ)) then
8649 if Ada_Version >= Ada_2012 then
8650 Error_Msg_N
8651 ("\move declaration to package spec<<", Eq_Op);
8652 else
8653 Error_Msg_N
8654 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8655 end if;
8656
8657 -- Otherwise try to find the freezing point for better message.
8658
8659 else
8660 Obj_Decl := Next (Parent (Typ));
8661 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8662 if Nkind (Obj_Decl) = N_Object_Declaration
8663 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8664 then
8665 -- Freezing point, output warnings
8666
8667 if Ada_Version >= Ada_2012 then
8668 Error_Msg_NE
8669 ("type& is frozen by declaration??", Obj_Decl, Typ);
8670 Error_Msg_N
8671 ("\an equality operator cannot be declared after "
8672 & "this point??",
8673 Obj_Decl);
8674 else
8675 Error_Msg_NE
8676 ("type& is frozen by declaration (Ada 2012)?y?",
8677 Obj_Decl, Typ);
8678 Error_Msg_N
8679 ("\an equality operator cannot be declared after "
8680 & "this point (Ada 2012)?y?",
8681 Obj_Decl);
8682 end if;
8683
8684 exit;
8685
8686 -- If we reach generated code for subprogram declaration
8687 -- or body, it is the body that froze the type and the
8688 -- declaration is legal.
8689
8690 elsif Sloc (Obj_Decl) = Sloc (Decl) then
8691 return;
8692 end if;
8693
8694 Next (Obj_Decl);
8695 end loop;
8696 end if;
8697 end if;
8698
8699 -- Here if type is not frozen yet. It is illegal to have a primitive
8700 -- equality declared in the private part if the type is visible.
8701
8702 elsif not In_Same_List (Parent (Typ), Decl)
8703 and then not Is_Limited_Type (Typ)
8704 then
8705 -- Shouldn't we give an RM reference here???
8706
8707 if Ada_Version >= Ada_2012 then
8708 Error_Msg_N
8709 ("equality operator appears too late<<", Eq_Op);
8710 else
8711 Error_Msg_N
8712 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8713 end if;
8714
8715 -- No error detected
8716
8717 else
8718 return;
8719 end if;
8720 end Check_Untagged_Equality;
8721
8722 -----------------------------
8723 -- Find_Corresponding_Spec --
8724 -----------------------------
8725
8726 function Find_Corresponding_Spec
8727 (N : Node_Id;
8728 Post_Error : Boolean := True) return Entity_Id
8729 is
8730 Spec : constant Node_Id := Specification (N);
8731 Designator : constant Entity_Id := Defining_Entity (Spec);
8732
8733 E : Entity_Id;
8734
8735 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8736 -- Even if fully conformant, a body may depend on a generic actual when
8737 -- the spec does not, or vice versa, in which case they were distinct
8738 -- entities in the generic.
8739
8740 -------------------------------
8741 -- Different_Generic_Profile --
8742 -------------------------------
8743
8744 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8745 F1, F2 : Entity_Id;
8746
8747 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8748 -- Check that the types of corresponding formals have the same
8749 -- generic actual if any. We have to account for subtypes of a
8750 -- generic formal, declared between a spec and a body, which may
8751 -- appear distinct in an instance but matched in the generic, and
8752 -- the subtype may be used either in the spec or the body of the
8753 -- subprogram being checked.
8754
8755 -------------------------
8756 -- Same_Generic_Actual --
8757 -------------------------
8758
8759 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8760
8761 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8762 -- Predicate to check whether S1 is a subtype of S2 in the source
8763 -- of the instance.
8764
8765 -------------------------
8766 -- Is_Declared_Subtype --
8767 -------------------------
8768
8769 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8770 begin
8771 return Comes_From_Source (Parent (S1))
8772 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8773 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8774 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8775 end Is_Declared_Subtype;
8776
8777 -- Start of processing for Same_Generic_Actual
8778
8779 begin
8780 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8781 or else Is_Declared_Subtype (T1, T2)
8782 or else Is_Declared_Subtype (T2, T1);
8783 end Same_Generic_Actual;
8784
8785 -- Start of processing for Different_Generic_Profile
8786
8787 begin
8788 if not In_Instance then
8789 return False;
8790
8791 elsif Ekind (E) = E_Function
8792 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8793 then
8794 return True;
8795 end if;
8796
8797 F1 := First_Formal (Designator);
8798 F2 := First_Formal (E);
8799 while Present (F1) loop
8800 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8801 return True;
8802 end if;
8803
8804 Next_Formal (F1);
8805 Next_Formal (F2);
8806 end loop;
8807
8808 return False;
8809 end Different_Generic_Profile;
8810
8811 -- Start of processing for Find_Corresponding_Spec
8812
8813 begin
8814 E := Current_Entity (Designator);
8815 while Present (E) loop
8816
8817 -- We are looking for a matching spec. It must have the same scope,
8818 -- and the same name, and either be type conformant, or be the case
8819 -- of a library procedure spec and its body (which belong to one
8820 -- another regardless of whether they are type conformant or not).
8821
8822 if Scope (E) = Current_Scope then
8823 if Current_Scope = Standard_Standard
8824 or else (Ekind (E) = Ekind (Designator)
8825 and then Type_Conformant (E, Designator))
8826 then
8827 -- Within an instantiation, we know that spec and body are
8828 -- subtype conformant, because they were subtype conformant in
8829 -- the generic. We choose the subtype-conformant entity here as
8830 -- well, to resolve spurious ambiguities in the instance that
8831 -- were not present in the generic (i.e. when two different
8832 -- types are given the same actual). If we are looking for a
8833 -- spec to match a body, full conformance is expected.
8834
8835 if In_Instance then
8836
8837 -- Inherit the convention and "ghostness" of the matching
8838 -- spec to ensure proper full and subtype conformance.
8839
8840 Set_Convention (Designator, Convention (E));
8841
8842 -- Skip past subprogram bodies and subprogram renamings that
8843 -- may appear to have a matching spec, but that aren't fully
8844 -- conformant with it. That can occur in cases where an
8845 -- actual type causes unrelated homographs in the instance.
8846
8847 if Nkind_In (N, N_Subprogram_Body,
8848 N_Subprogram_Renaming_Declaration)
8849 and then Present (Homonym (E))
8850 and then not Fully_Conformant (Designator, E)
8851 then
8852 goto Next_Entity;
8853
8854 elsif not Subtype_Conformant (Designator, E) then
8855 goto Next_Entity;
8856
8857 elsif Different_Generic_Profile (E) then
8858 goto Next_Entity;
8859 end if;
8860 end if;
8861
8862 -- Ada 2012 (AI05-0165): For internally generated bodies of
8863 -- null procedures locate the internally generated spec. We
8864 -- enforce mode conformance since a tagged type may inherit
8865 -- from interfaces several null primitives which differ only
8866 -- in the mode of the formals.
8867
8868 if not (Comes_From_Source (E))
8869 and then Is_Null_Procedure (E)
8870 and then not Mode_Conformant (Designator, E)
8871 then
8872 null;
8873
8874 -- For null procedures coming from source that are completions,
8875 -- analysis of the generated body will establish the link.
8876
8877 elsif Comes_From_Source (E)
8878 and then Nkind (Spec) = N_Procedure_Specification
8879 and then Null_Present (Spec)
8880 then
8881 return E;
8882
8883 -- Expression functions can be completions, but cannot be
8884 -- completed by an explicit body.
8885
8886 elsif Comes_From_Source (E)
8887 and then Comes_From_Source (N)
8888 and then Nkind (N) = N_Subprogram_Body
8889 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8890 N_Expression_Function
8891 then
8892 Error_Msg_Sloc := Sloc (E);
8893 Error_Msg_N ("body conflicts with expression function#", N);
8894 return Empty;
8895
8896 elsif not Has_Completion (E) then
8897 if Nkind (N) /= N_Subprogram_Body_Stub then
8898 Set_Corresponding_Spec (N, E);
8899 end if;
8900
8901 Set_Has_Completion (E);
8902 return E;
8903
8904 elsif Nkind (Parent (N)) = N_Subunit then
8905
8906 -- If this is the proper body of a subunit, the completion
8907 -- flag is set when analyzing the stub.
8908
8909 return E;
8910
8911 -- If E is an internal function with a controlling result that
8912 -- was created for an operation inherited by a null extension,
8913 -- it may be overridden by a body without a previous spec (one
8914 -- more reason why these should be shunned). In that case we
8915 -- remove the generated body if present, because the current
8916 -- one is the explicit overriding.
8917
8918 elsif Ekind (E) = E_Function
8919 and then Ada_Version >= Ada_2005
8920 and then not Comes_From_Source (E)
8921 and then Has_Controlling_Result (E)
8922 and then Is_Null_Extension (Etype (E))
8923 and then Comes_From_Source (Spec)
8924 then
8925 Set_Has_Completion (E, False);
8926
8927 if Expander_Active
8928 and then Nkind (Parent (E)) = N_Function_Specification
8929 then
8930 Remove
8931 (Unit_Declaration_Node
8932 (Corresponding_Body (Unit_Declaration_Node (E))));
8933
8934 return E;
8935
8936 -- If expansion is disabled, or if the wrapper function has
8937 -- not been generated yet, this a late body overriding an
8938 -- inherited operation, or it is an overriding by some other
8939 -- declaration before the controlling result is frozen. In
8940 -- either case this is a declaration of a new entity.
8941
8942 else
8943 return Empty;
8944 end if;
8945
8946 -- If the body already exists, then this is an error unless
8947 -- the previous declaration is the implicit declaration of a
8948 -- derived subprogram. It is also legal for an instance to
8949 -- contain type conformant overloadable declarations (but the
8950 -- generic declaration may not), per 8.3(26/2).
8951
8952 elsif No (Alias (E))
8953 and then not Is_Intrinsic_Subprogram (E)
8954 and then not In_Instance
8955 and then Post_Error
8956 then
8957 Error_Msg_Sloc := Sloc (E);
8958
8959 if Is_Imported (E) then
8960 Error_Msg_NE
8961 ("body not allowed for imported subprogram & declared#",
8962 N, E);
8963 else
8964 Error_Msg_NE ("duplicate body for & declared#", N, E);
8965 end if;
8966 end if;
8967
8968 -- Child units cannot be overloaded, so a conformance mismatch
8969 -- between body and a previous spec is an error.
8970
8971 elsif Is_Child_Unit (E)
8972 and then
8973 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8974 and then
8975 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8976 N_Compilation_Unit
8977 and then Post_Error
8978 then
8979 Error_Msg_N
8980 ("body of child unit does not match previous declaration", N);
8981 end if;
8982 end if;
8983
8984 <<Next_Entity>>
8985 E := Homonym (E);
8986 end loop;
8987
8988 -- On exit, we know that no previous declaration of subprogram exists
8989
8990 return Empty;
8991 end Find_Corresponding_Spec;
8992
8993 ----------------------
8994 -- Fully_Conformant --
8995 ----------------------
8996
8997 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8998 Result : Boolean;
8999 begin
9000 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
9001 return Result;
9002 end Fully_Conformant;
9003
9004 ----------------------------------
9005 -- Fully_Conformant_Expressions --
9006 ----------------------------------
9007
9008 function Fully_Conformant_Expressions
9009 (Given_E1 : Node_Id;
9010 Given_E2 : Node_Id;
9011 Report : Boolean := False) return Boolean
9012 is
9013 E1 : constant Node_Id := Original_Node (Given_E1);
9014 E2 : constant Node_Id := Original_Node (Given_E2);
9015 -- We always test conformance on original nodes, since it is possible
9016 -- for analysis and/or expansion to make things look as though they
9017 -- conform when they do not, e.g. by converting 1+2 into 3.
9018
9019 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean;
9020 -- ???
9021
9022 function FCL (L1 : List_Id; L2 : List_Id) return Boolean;
9023 -- Compare elements of two lists for conformance. Elements have to be
9024 -- conformant, and actuals inserted as default parameters do not match
9025 -- explicit actuals with the same value.
9026
9027 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean;
9028 -- Compare an operator node with a function call
9029
9030 ---------
9031 -- FCE --
9032 ---------
9033
9034 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean is
9035 begin
9036 return Fully_Conformant_Expressions (Given_E1, Given_E2, Report);
9037 end FCE;
9038
9039 ---------
9040 -- FCL --
9041 ---------
9042
9043 function FCL (L1 : List_Id; L2 : List_Id) return Boolean is
9044 N1 : Node_Id;
9045 N2 : Node_Id;
9046
9047 begin
9048 if L1 = No_List then
9049 N1 := Empty;
9050 else
9051 N1 := First (L1);
9052 end if;
9053
9054 if L2 = No_List then
9055 N2 := Empty;
9056 else
9057 N2 := First (L2);
9058 end if;
9059
9060 -- Compare two lists, skipping rewrite insertions (we want to compare
9061 -- the original trees, not the expanded versions).
9062
9063 loop
9064 if Is_Rewrite_Insertion (N1) then
9065 Next (N1);
9066 elsif Is_Rewrite_Insertion (N2) then
9067 Next (N2);
9068 elsif No (N1) then
9069 return No (N2);
9070 elsif No (N2) then
9071 return False;
9072 elsif not FCE (N1, N2) then
9073 return False;
9074 else
9075 Next (N1);
9076 Next (N2);
9077 end if;
9078 end loop;
9079 end FCL;
9080
9081 ---------
9082 -- FCO --
9083 ---------
9084
9085 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean is
9086 Actuals : constant List_Id := Parameter_Associations (Call_Node);
9087 Act : Node_Id;
9088
9089 begin
9090 if No (Actuals)
9091 or else Entity (Op_Node) /= Entity (Name (Call_Node))
9092 then
9093 return False;
9094
9095 else
9096 Act := First (Actuals);
9097
9098 if Nkind (Op_Node) in N_Binary_Op then
9099 if not FCE (Left_Opnd (Op_Node), Act) then
9100 return False;
9101 end if;
9102
9103 Next (Act);
9104 end if;
9105
9106 return Present (Act)
9107 and then FCE (Right_Opnd (Op_Node), Act)
9108 and then No (Next (Act));
9109 end if;
9110 end FCO;
9111
9112 -- Local variables
9113
9114 Result : Boolean;
9115
9116 -- Start of processing for Fully_Conformant_Expressions
9117
9118 begin
9119 Result := True;
9120
9121 -- Nonconformant if paren count does not match. Note: if some idiot
9122 -- complains that we don't do this right for more than 3 levels of
9123 -- parentheses, they will be treated with the respect they deserve.
9124
9125 if Paren_Count (E1) /= Paren_Count (E2) then
9126 return False;
9127
9128 -- If same entities are referenced, then they are conformant even if
9129 -- they have different forms (RM 8.3.1(19-20)).
9130
9131 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
9132 if Present (Entity (E1)) then
9133 Result := Entity (E1) = Entity (E2)
9134
9135 -- One may be a discriminant that has been replaced by the
9136 -- corresponding discriminal.
9137
9138 or else
9139 (Chars (Entity (E1)) = Chars (Entity (E2))
9140 and then Ekind (Entity (E1)) = E_Discriminant
9141 and then Ekind (Entity (E2)) = E_In_Parameter)
9142
9143 -- The discriminant of a protected type is transformed into
9144 -- a local constant and then into a parameter of a protected
9145 -- operation.
9146
9147 or else
9148 (Ekind (Entity (E1)) = E_Constant
9149 and then Ekind (Entity (E2)) = E_In_Parameter
9150 and then Present (Discriminal_Link (Entity (E1)))
9151 and then Discriminal_Link (Entity (E1)) =
9152 Discriminal_Link (Entity (E2)))
9153
9154 -- AI12-050: The loop variables of quantified expressions match
9155 -- if they have the same identifier, even though they may have
9156 -- different entities.
9157
9158 or else
9159 (Chars (Entity (E1)) = Chars (Entity (E2))
9160 and then Ekind (Entity (E1)) = E_Loop_Parameter
9161 and then Ekind (Entity (E2)) = E_Loop_Parameter)
9162
9163 -- A call to an instantiation of Unchecked_Conversion is
9164 -- rewritten with the name of the generated function created for
9165 -- the instance, and this must be special-cased.
9166
9167 or else
9168 (Ekind (Entity (E1)) = E_Function
9169 and then Is_Intrinsic_Subprogram (Entity (E1))
9170 and then Is_Generic_Instance (Entity (E1))
9171 and then Entity (E2) = Alias (Entity (E1)));
9172 if Report and not Result then
9173 Error_Msg_Sloc :=
9174 Text_Ptr'Max (Sloc (Entity (E1)), Sloc (Entity (E2)));
9175 Error_Msg_NE
9176 ("Meaning of& differs because of declaration#", E1, E2);
9177 end if;
9178
9179 return Result;
9180
9181 elsif Nkind (E1) = N_Expanded_Name
9182 and then Nkind (E2) = N_Expanded_Name
9183 and then Nkind (Selector_Name (E1)) = N_Character_Literal
9184 and then Nkind (Selector_Name (E2)) = N_Character_Literal
9185 then
9186 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9187
9188 else
9189 -- Identifiers in component associations don't always have
9190 -- entities, but their names must conform.
9191
9192 return Nkind (E1) = N_Identifier
9193 and then Nkind (E2) = N_Identifier
9194 and then Chars (E1) = Chars (E2);
9195 end if;
9196
9197 elsif Nkind (E1) = N_Character_Literal
9198 and then Nkind (E2) = N_Expanded_Name
9199 then
9200 return Nkind (Selector_Name (E2)) = N_Character_Literal
9201 and then Chars (E1) = Chars (Selector_Name (E2));
9202
9203 elsif Nkind (E2) = N_Character_Literal
9204 and then Nkind (E1) = N_Expanded_Name
9205 then
9206 return Nkind (Selector_Name (E1)) = N_Character_Literal
9207 and then Chars (E2) = Chars (Selector_Name (E1));
9208
9209 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9210 return FCO (E1, E2);
9211
9212 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9213 return FCO (E2, E1);
9214
9215 -- Otherwise we must have the same syntactic entity
9216
9217 elsif Nkind (E1) /= Nkind (E2) then
9218 return False;
9219
9220 -- At this point, we specialize by node type
9221
9222 else
9223 case Nkind (E1) is
9224 when N_Aggregate =>
9225 return
9226 FCL (Expressions (E1), Expressions (E2))
9227 and then
9228 FCL (Component_Associations (E1),
9229 Component_Associations (E2));
9230
9231 when N_Allocator =>
9232 if Nkind (Expression (E1)) = N_Qualified_Expression
9233 or else
9234 Nkind (Expression (E2)) = N_Qualified_Expression
9235 then
9236 return FCE (Expression (E1), Expression (E2));
9237
9238 -- Check that the subtype marks and any constraints
9239 -- are conformant
9240
9241 else
9242 declare
9243 Indic1 : constant Node_Id := Expression (E1);
9244 Indic2 : constant Node_Id := Expression (E2);
9245 Elt1 : Node_Id;
9246 Elt2 : Node_Id;
9247
9248 begin
9249 if Nkind (Indic1) /= N_Subtype_Indication then
9250 return
9251 Nkind (Indic2) /= N_Subtype_Indication
9252 and then Entity (Indic1) = Entity (Indic2);
9253
9254 elsif Nkind (Indic2) /= N_Subtype_Indication then
9255 return
9256 Nkind (Indic1) /= N_Subtype_Indication
9257 and then Entity (Indic1) = Entity (Indic2);
9258
9259 else
9260 if Entity (Subtype_Mark (Indic1)) /=
9261 Entity (Subtype_Mark (Indic2))
9262 then
9263 return False;
9264 end if;
9265
9266 Elt1 := First (Constraints (Constraint (Indic1)));
9267 Elt2 := First (Constraints (Constraint (Indic2)));
9268 while Present (Elt1) and then Present (Elt2) loop
9269 if not FCE (Elt1, Elt2) then
9270 return False;
9271 end if;
9272
9273 Next (Elt1);
9274 Next (Elt2);
9275 end loop;
9276
9277 return True;
9278 end if;
9279 end;
9280 end if;
9281
9282 when N_Attribute_Reference =>
9283 return
9284 Attribute_Name (E1) = Attribute_Name (E2)
9285 and then FCL (Expressions (E1), Expressions (E2));
9286
9287 when N_Binary_Op =>
9288 return
9289 Entity (E1) = Entity (E2)
9290 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9291 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9292
9293 when N_Membership_Test
9294 | N_Short_Circuit
9295 =>
9296 return
9297 FCE (Left_Opnd (E1), Left_Opnd (E2))
9298 and then
9299 FCE (Right_Opnd (E1), Right_Opnd (E2));
9300
9301 when N_Case_Expression =>
9302 declare
9303 Alt1 : Node_Id;
9304 Alt2 : Node_Id;
9305
9306 begin
9307 if not FCE (Expression (E1), Expression (E2)) then
9308 return False;
9309
9310 else
9311 Alt1 := First (Alternatives (E1));
9312 Alt2 := First (Alternatives (E2));
9313 loop
9314 if Present (Alt1) /= Present (Alt2) then
9315 return False;
9316 elsif No (Alt1) then
9317 return True;
9318 end if;
9319
9320 if not FCE (Expression (Alt1), Expression (Alt2))
9321 or else not FCL (Discrete_Choices (Alt1),
9322 Discrete_Choices (Alt2))
9323 then
9324 return False;
9325 end if;
9326
9327 Next (Alt1);
9328 Next (Alt2);
9329 end loop;
9330 end if;
9331 end;
9332
9333 when N_Character_Literal =>
9334 return
9335 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9336
9337 when N_Component_Association =>
9338 return
9339 FCL (Choices (E1), Choices (E2))
9340 and then
9341 FCE (Expression (E1), Expression (E2));
9342
9343 when N_Explicit_Dereference =>
9344 return
9345 FCE (Prefix (E1), Prefix (E2));
9346
9347 when N_Extension_Aggregate =>
9348 return
9349 FCL (Expressions (E1), Expressions (E2))
9350 and then Null_Record_Present (E1) =
9351 Null_Record_Present (E2)
9352 and then FCL (Component_Associations (E1),
9353 Component_Associations (E2));
9354
9355 when N_Function_Call =>
9356 return
9357 FCE (Name (E1), Name (E2))
9358 and then
9359 FCL (Parameter_Associations (E1),
9360 Parameter_Associations (E2));
9361
9362 when N_If_Expression =>
9363 return
9364 FCL (Expressions (E1), Expressions (E2));
9365
9366 when N_Indexed_Component =>
9367 return
9368 FCE (Prefix (E1), Prefix (E2))
9369 and then
9370 FCL (Expressions (E1), Expressions (E2));
9371
9372 when N_Integer_Literal =>
9373 return (Intval (E1) = Intval (E2));
9374
9375 when N_Null =>
9376 return True;
9377
9378 when N_Operator_Symbol =>
9379 return
9380 Chars (E1) = Chars (E2);
9381
9382 when N_Others_Choice =>
9383 return True;
9384
9385 when N_Parameter_Association =>
9386 return
9387 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9388 and then FCE (Explicit_Actual_Parameter (E1),
9389 Explicit_Actual_Parameter (E2));
9390
9391 when N_Qualified_Expression
9392 | N_Type_Conversion
9393 | N_Unchecked_Type_Conversion
9394 =>
9395 return
9396 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9397 and then
9398 FCE (Expression (E1), Expression (E2));
9399
9400 when N_Quantified_Expression =>
9401 if not FCE (Condition (E1), Condition (E2)) then
9402 return False;
9403 end if;
9404
9405 if Present (Loop_Parameter_Specification (E1))
9406 and then Present (Loop_Parameter_Specification (E2))
9407 then
9408 declare
9409 L1 : constant Node_Id :=
9410 Loop_Parameter_Specification (E1);
9411 L2 : constant Node_Id :=
9412 Loop_Parameter_Specification (E2);
9413
9414 begin
9415 return
9416 Reverse_Present (L1) = Reverse_Present (L2)
9417 and then
9418 FCE (Defining_Identifier (L1),
9419 Defining_Identifier (L2))
9420 and then
9421 FCE (Discrete_Subtype_Definition (L1),
9422 Discrete_Subtype_Definition (L2));
9423 end;
9424
9425 elsif Present (Iterator_Specification (E1))
9426 and then Present (Iterator_Specification (E2))
9427 then
9428 declare
9429 I1 : constant Node_Id := Iterator_Specification (E1);
9430 I2 : constant Node_Id := Iterator_Specification (E2);
9431
9432 begin
9433 return
9434 FCE (Defining_Identifier (I1),
9435 Defining_Identifier (I2))
9436 and then
9437 Of_Present (I1) = Of_Present (I2)
9438 and then
9439 Reverse_Present (I1) = Reverse_Present (I2)
9440 and then FCE (Name (I1), Name (I2))
9441 and then FCE (Subtype_Indication (I1),
9442 Subtype_Indication (I2));
9443 end;
9444
9445 -- The quantified expressions used different specifications to
9446 -- walk their respective ranges.
9447
9448 else
9449 return False;
9450 end if;
9451
9452 when N_Range =>
9453 return
9454 FCE (Low_Bound (E1), Low_Bound (E2))
9455 and then
9456 FCE (High_Bound (E1), High_Bound (E2));
9457
9458 when N_Real_Literal =>
9459 return (Realval (E1) = Realval (E2));
9460
9461 when N_Selected_Component =>
9462 return
9463 FCE (Prefix (E1), Prefix (E2))
9464 and then
9465 FCE (Selector_Name (E1), Selector_Name (E2));
9466
9467 when N_Slice =>
9468 return
9469 FCE (Prefix (E1), Prefix (E2))
9470 and then
9471 FCE (Discrete_Range (E1), Discrete_Range (E2));
9472
9473 when N_String_Literal =>
9474 declare
9475 S1 : constant String_Id := Strval (E1);
9476 S2 : constant String_Id := Strval (E2);
9477 L1 : constant Nat := String_Length (S1);
9478 L2 : constant Nat := String_Length (S2);
9479
9480 begin
9481 if L1 /= L2 then
9482 return False;
9483
9484 else
9485 for J in 1 .. L1 loop
9486 if Get_String_Char (S1, J) /=
9487 Get_String_Char (S2, J)
9488 then
9489 return False;
9490 end if;
9491 end loop;
9492
9493 return True;
9494 end if;
9495 end;
9496
9497 when N_Unary_Op =>
9498 return
9499 Entity (E1) = Entity (E2)
9500 and then
9501 FCE (Right_Opnd (E1), Right_Opnd (E2));
9502
9503 -- All other node types cannot appear in this context. Strictly
9504 -- we should raise a fatal internal error. Instead we just ignore
9505 -- the nodes. This means that if anyone makes a mistake in the
9506 -- expander and mucks an expression tree irretrievably, the result
9507 -- will be a failure to detect a (probably very obscure) case
9508 -- of non-conformance, which is better than bombing on some
9509 -- case where two expressions do in fact conform.
9510
9511 when others =>
9512 return True;
9513 end case;
9514 end if;
9515 end Fully_Conformant_Expressions;
9516
9517 ----------------------------------------
9518 -- Fully_Conformant_Discrete_Subtypes --
9519 ----------------------------------------
9520
9521 function Fully_Conformant_Discrete_Subtypes
9522 (Given_S1 : Node_Id;
9523 Given_S2 : Node_Id) return Boolean
9524 is
9525 S1 : constant Node_Id := Original_Node (Given_S1);
9526 S2 : constant Node_Id := Original_Node (Given_S2);
9527
9528 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9529 -- Special-case for a bound given by a discriminant, which in the body
9530 -- is replaced with the discriminal of the enclosing type.
9531
9532 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9533 -- Check both bounds
9534
9535 -----------------------
9536 -- Conforming_Bounds --
9537 -----------------------
9538
9539 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9540 begin
9541 if Is_Entity_Name (B1)
9542 and then Is_Entity_Name (B2)
9543 and then Ekind (Entity (B1)) = E_Discriminant
9544 then
9545 return Chars (B1) = Chars (B2);
9546
9547 else
9548 return Fully_Conformant_Expressions (B1, B2);
9549 end if;
9550 end Conforming_Bounds;
9551
9552 -----------------------
9553 -- Conforming_Ranges --
9554 -----------------------
9555
9556 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9557 begin
9558 return
9559 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9560 and then
9561 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9562 end Conforming_Ranges;
9563
9564 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9565
9566 begin
9567 if Nkind (S1) /= Nkind (S2) then
9568 return False;
9569
9570 elsif Is_Entity_Name (S1) then
9571 return Entity (S1) = Entity (S2);
9572
9573 elsif Nkind (S1) = N_Range then
9574 return Conforming_Ranges (S1, S2);
9575
9576 elsif Nkind (S1) = N_Subtype_Indication then
9577 return
9578 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9579 and then
9580 Conforming_Ranges
9581 (Range_Expression (Constraint (S1)),
9582 Range_Expression (Constraint (S2)));
9583 else
9584 return True;
9585 end if;
9586 end Fully_Conformant_Discrete_Subtypes;
9587
9588 --------------------
9589 -- Install_Entity --
9590 --------------------
9591
9592 procedure Install_Entity (E : Entity_Id) is
9593 Prev : constant Entity_Id := Current_Entity (E);
9594 begin
9595 Set_Is_Immediately_Visible (E);
9596 Set_Current_Entity (E);
9597 Set_Homonym (E, Prev);
9598 end Install_Entity;
9599
9600 ---------------------
9601 -- Install_Formals --
9602 ---------------------
9603
9604 procedure Install_Formals (Id : Entity_Id) is
9605 F : Entity_Id;
9606 begin
9607 F := First_Formal (Id);
9608 while Present (F) loop
9609 Install_Entity (F);
9610 Next_Formal (F);
9611 end loop;
9612 end Install_Formals;
9613
9614 -----------------------------
9615 -- Is_Interface_Conformant --
9616 -----------------------------
9617
9618 function Is_Interface_Conformant
9619 (Tagged_Type : Entity_Id;
9620 Iface_Prim : Entity_Id;
9621 Prim : Entity_Id) return Boolean
9622 is
9623 -- The operation may in fact be an inherited (implicit) operation
9624 -- rather than the original interface primitive, so retrieve the
9625 -- ultimate ancestor.
9626
9627 Iface : constant Entity_Id :=
9628 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9629 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9630
9631 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9632 -- Return the controlling formal of Prim
9633
9634 ------------------------
9635 -- Controlling_Formal --
9636 ------------------------
9637
9638 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9639 E : Entity_Id;
9640
9641 begin
9642 E := First_Entity (Prim);
9643 while Present (E) loop
9644 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9645 return E;
9646 end if;
9647
9648 Next_Entity (E);
9649 end loop;
9650
9651 return Empty;
9652 end Controlling_Formal;
9653
9654 -- Local variables
9655
9656 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9657 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9658
9659 -- Start of processing for Is_Interface_Conformant
9660
9661 begin
9662 pragma Assert (Is_Subprogram (Iface_Prim)
9663 and then Is_Subprogram (Prim)
9664 and then Is_Dispatching_Operation (Iface_Prim)
9665 and then Is_Dispatching_Operation (Prim));
9666
9667 pragma Assert (Is_Interface (Iface)
9668 or else (Present (Alias (Iface_Prim))
9669 and then
9670 Is_Interface
9671 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9672
9673 if Prim = Iface_Prim
9674 or else not Is_Subprogram (Prim)
9675 or else Ekind (Prim) /= Ekind (Iface_Prim)
9676 or else not Is_Dispatching_Operation (Prim)
9677 or else Scope (Prim) /= Scope (Tagged_Type)
9678 or else No (Typ)
9679 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9680 or else not Primitive_Names_Match (Iface_Prim, Prim)
9681 then
9682 return False;
9683
9684 -- The mode of the controlling formals must match
9685
9686 elsif Present (Iface_Ctrl_F)
9687 and then Present (Prim_Ctrl_F)
9688 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9689 then
9690 return False;
9691
9692 -- Case of a procedure, or a function whose result type matches the
9693 -- result type of the interface primitive, or a function that has no
9694 -- controlling result (I or access I).
9695
9696 elsif Ekind (Iface_Prim) = E_Procedure
9697 or else Etype (Prim) = Etype (Iface_Prim)
9698 or else not Has_Controlling_Result (Prim)
9699 then
9700 return Type_Conformant
9701 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9702
9703 -- Case of a function returning an interface, or an access to one. Check
9704 -- that the return types correspond.
9705
9706 elsif Implements_Interface (Typ, Iface) then
9707 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9708 /=
9709 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9710 then
9711 return False;
9712 else
9713 return
9714 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9715 Skip_Controlling_Formals => True);
9716 end if;
9717
9718 else
9719 return False;
9720 end if;
9721 end Is_Interface_Conformant;
9722
9723 ---------------------------------
9724 -- Is_Non_Overriding_Operation --
9725 ---------------------------------
9726
9727 function Is_Non_Overriding_Operation
9728 (Prev_E : Entity_Id;
9729 New_E : Entity_Id) return Boolean
9730 is
9731 Formal : Entity_Id;
9732 F_Typ : Entity_Id;
9733 G_Typ : Entity_Id := Empty;
9734
9735 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9736 -- If F_Type is a derived type associated with a generic actual subtype,
9737 -- then return its Generic_Parent_Type attribute, else return Empty.
9738
9739 function Types_Correspond
9740 (P_Type : Entity_Id;
9741 N_Type : Entity_Id) return Boolean;
9742 -- Returns true if and only if the types (or designated types in the
9743 -- case of anonymous access types) are the same or N_Type is derived
9744 -- directly or indirectly from P_Type.
9745
9746 -----------------------------
9747 -- Get_Generic_Parent_Type --
9748 -----------------------------
9749
9750 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9751 G_Typ : Entity_Id;
9752 Defn : Node_Id;
9753 Indic : Node_Id;
9754
9755 begin
9756 if Is_Derived_Type (F_Typ)
9757 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9758 then
9759 -- The tree must be traversed to determine the parent subtype in
9760 -- the generic unit, which unfortunately isn't always available
9761 -- via semantic attributes. ??? (Note: The use of Original_Node
9762 -- is needed for cases where a full derived type has been
9763 -- rewritten.)
9764
9765 -- If the parent type is a scalar type, the derivation creates
9766 -- an anonymous base type for it, and the source type is its
9767 -- first subtype.
9768
9769 if Is_Scalar_Type (F_Typ)
9770 and then not Comes_From_Source (F_Typ)
9771 then
9772 Defn :=
9773 Type_Definition
9774 (Original_Node (Parent (First_Subtype (F_Typ))));
9775 else
9776 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9777 end if;
9778 if Nkind (Defn) = N_Derived_Type_Definition then
9779 Indic := Subtype_Indication (Defn);
9780
9781 if Nkind (Indic) = N_Subtype_Indication then
9782 G_Typ := Entity (Subtype_Mark (Indic));
9783 else
9784 G_Typ := Entity (Indic);
9785 end if;
9786
9787 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9788 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9789 then
9790 return Generic_Parent_Type (Parent (G_Typ));
9791 end if;
9792 end if;
9793 end if;
9794
9795 return Empty;
9796 end Get_Generic_Parent_Type;
9797
9798 ----------------------
9799 -- Types_Correspond --
9800 ----------------------
9801
9802 function Types_Correspond
9803 (P_Type : Entity_Id;
9804 N_Type : Entity_Id) return Boolean
9805 is
9806 Prev_Type : Entity_Id := Base_Type (P_Type);
9807 New_Type : Entity_Id := Base_Type (N_Type);
9808
9809 begin
9810 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9811 Prev_Type := Designated_Type (Prev_Type);
9812 end if;
9813
9814 if Ekind (New_Type) = E_Anonymous_Access_Type then
9815 New_Type := Designated_Type (New_Type);
9816 end if;
9817
9818 if Prev_Type = New_Type then
9819 return True;
9820
9821 elsif not Is_Class_Wide_Type (New_Type) then
9822 while Etype (New_Type) /= New_Type loop
9823 New_Type := Etype (New_Type);
9824
9825 if New_Type = Prev_Type then
9826 return True;
9827 end if;
9828 end loop;
9829 end if;
9830 return False;
9831 end Types_Correspond;
9832
9833 -- Start of processing for Is_Non_Overriding_Operation
9834
9835 begin
9836 -- In the case where both operations are implicit derived subprograms
9837 -- then neither overrides the other. This can only occur in certain
9838 -- obscure cases (e.g., derivation from homographs created in a generic
9839 -- instantiation).
9840
9841 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9842 return True;
9843
9844 elsif Ekind (Current_Scope) = E_Package
9845 and then Is_Generic_Instance (Current_Scope)
9846 and then In_Private_Part (Current_Scope)
9847 and then Comes_From_Source (New_E)
9848 then
9849 -- We examine the formals and result type of the inherited operation,
9850 -- to determine whether their type is derived from (the instance of)
9851 -- a generic type. The first such formal or result type is the one
9852 -- tested.
9853
9854 Formal := First_Formal (Prev_E);
9855 F_Typ := Empty;
9856 while Present (Formal) loop
9857 F_Typ := Base_Type (Etype (Formal));
9858
9859 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9860 F_Typ := Designated_Type (F_Typ);
9861 end if;
9862
9863 G_Typ := Get_Generic_Parent_Type (F_Typ);
9864 exit when Present (G_Typ);
9865
9866 Next_Formal (Formal);
9867 end loop;
9868
9869 -- If the function dispatches on result check the result type
9870
9871 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9872 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9873 end if;
9874
9875 if No (G_Typ) then
9876 return False;
9877 end if;
9878
9879 -- If the generic type is a private type, then the original operation
9880 -- was not overriding in the generic, because there was no primitive
9881 -- operation to override.
9882
9883 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9884 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9885 N_Formal_Private_Type_Definition
9886 then
9887 return True;
9888
9889 -- The generic parent type is the ancestor of a formal derived
9890 -- type declaration. We need to check whether it has a primitive
9891 -- operation that should be overridden by New_E in the generic.
9892
9893 else
9894 declare
9895 P_Formal : Entity_Id;
9896 N_Formal : Entity_Id;
9897 P_Typ : Entity_Id;
9898 N_Typ : Entity_Id;
9899 P_Prim : Entity_Id;
9900 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9901
9902 begin
9903 while Present (Prim_Elt) loop
9904 P_Prim := Node (Prim_Elt);
9905
9906 if Chars (P_Prim) = Chars (New_E)
9907 and then Ekind (P_Prim) = Ekind (New_E)
9908 then
9909 P_Formal := First_Formal (P_Prim);
9910 N_Formal := First_Formal (New_E);
9911 while Present (P_Formal) and then Present (N_Formal) loop
9912 P_Typ := Etype (P_Formal);
9913 N_Typ := Etype (N_Formal);
9914
9915 if not Types_Correspond (P_Typ, N_Typ) then
9916 exit;
9917 end if;
9918
9919 Next_Entity (P_Formal);
9920 Next_Entity (N_Formal);
9921 end loop;
9922
9923 -- Found a matching primitive operation belonging to the
9924 -- formal ancestor type, so the new subprogram is
9925 -- overriding.
9926
9927 if No (P_Formal)
9928 and then No (N_Formal)
9929 and then (Ekind (New_E) /= E_Function
9930 or else
9931 Types_Correspond
9932 (Etype (P_Prim), Etype (New_E)))
9933 then
9934 return False;
9935 end if;
9936 end if;
9937
9938 Next_Elmt (Prim_Elt);
9939 end loop;
9940
9941 -- If no match found, then the new subprogram does not override
9942 -- in the generic (nor in the instance).
9943
9944 -- If the type in question is not abstract, and the subprogram
9945 -- is, this will be an error if the new operation is in the
9946 -- private part of the instance. Emit a warning now, which will
9947 -- make the subsequent error message easier to understand.
9948
9949 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9950 and then Is_Abstract_Subprogram (Prev_E)
9951 and then In_Private_Part (Current_Scope)
9952 then
9953 Error_Msg_Node_2 := F_Typ;
9954 Error_Msg_NE
9955 ("private operation& in generic unit does not override "
9956 & "any primitive operation of& (RM 12.3 (18))??",
9957 New_E, New_E);
9958 end if;
9959
9960 return True;
9961 end;
9962 end if;
9963 else
9964 return False;
9965 end if;
9966 end Is_Non_Overriding_Operation;
9967
9968 -------------------------------------
9969 -- List_Inherited_Pre_Post_Aspects --
9970 -------------------------------------
9971
9972 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9973 begin
9974 if Opt.List_Inherited_Aspects
9975 and then Is_Subprogram_Or_Generic_Subprogram (E)
9976 then
9977 declare
9978 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9979 Items : Node_Id;
9980 Prag : Node_Id;
9981
9982 begin
9983 for Index in Subps'Range loop
9984 Items := Contract (Subps (Index));
9985
9986 if Present (Items) then
9987 Prag := Pre_Post_Conditions (Items);
9988 while Present (Prag) loop
9989 Error_Msg_Sloc := Sloc (Prag);
9990
9991 if Class_Present (Prag)
9992 and then not Split_PPC (Prag)
9993 then
9994 if Pragma_Name (Prag) = Name_Precondition then
9995 Error_Msg_N
9996 ("info: & inherits `Pre''Class` aspect from "
9997 & "#?L?", E);
9998 else
9999 Error_Msg_N
10000 ("info: & inherits `Post''Class` aspect from "
10001 & "#?L?", E);
10002 end if;
10003 end if;
10004
10005 Prag := Next_Pragma (Prag);
10006 end loop;
10007 end if;
10008 end loop;
10009 end;
10010 end if;
10011 end List_Inherited_Pre_Post_Aspects;
10012
10013 ------------------------------
10014 -- Make_Inequality_Operator --
10015 ------------------------------
10016
10017 -- S is the defining identifier of an equality operator. We build a
10018 -- subprogram declaration with the right signature. This operation is
10019 -- intrinsic, because it is always expanded as the negation of the
10020 -- call to the equality function.
10021
10022 procedure Make_Inequality_Operator (S : Entity_Id) is
10023 Loc : constant Source_Ptr := Sloc (S);
10024 Decl : Node_Id;
10025 Formals : List_Id;
10026 Op_Name : Entity_Id;
10027
10028 FF : constant Entity_Id := First_Formal (S);
10029 NF : constant Entity_Id := Next_Formal (FF);
10030
10031 begin
10032 -- Check that equality was properly defined, ignore call if not
10033
10034 if No (NF) then
10035 return;
10036 end if;
10037
10038 declare
10039 A : constant Entity_Id :=
10040 Make_Defining_Identifier (Sloc (FF),
10041 Chars => Chars (FF));
10042
10043 B : constant Entity_Id :=
10044 Make_Defining_Identifier (Sloc (NF),
10045 Chars => Chars (NF));
10046
10047 begin
10048 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
10049
10050 Formals := New_List (
10051 Make_Parameter_Specification (Loc,
10052 Defining_Identifier => A,
10053 Parameter_Type =>
10054 New_Occurrence_Of (Etype (First_Formal (S)),
10055 Sloc (Etype (First_Formal (S))))),
10056
10057 Make_Parameter_Specification (Loc,
10058 Defining_Identifier => B,
10059 Parameter_Type =>
10060 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
10061 Sloc (Etype (Next_Formal (First_Formal (S)))))));
10062
10063 Decl :=
10064 Make_Subprogram_Declaration (Loc,
10065 Specification =>
10066 Make_Function_Specification (Loc,
10067 Defining_Unit_Name => Op_Name,
10068 Parameter_Specifications => Formals,
10069 Result_Definition =>
10070 New_Occurrence_Of (Standard_Boolean, Loc)));
10071
10072 -- Insert inequality right after equality if it is explicit or after
10073 -- the derived type when implicit. These entities are created only
10074 -- for visibility purposes, and eventually replaced in the course
10075 -- of expansion, so they do not need to be attached to the tree and
10076 -- seen by the back-end. Keeping them internal also avoids spurious
10077 -- freezing problems. The declaration is inserted in the tree for
10078 -- analysis, and removed afterwards. If the equality operator comes
10079 -- from an explicit declaration, attach the inequality immediately
10080 -- after. Else the equality is inherited from a derived type
10081 -- declaration, so insert inequality after that declaration.
10082
10083 if No (Alias (S)) then
10084 Insert_After (Unit_Declaration_Node (S), Decl);
10085 elsif Is_List_Member (Parent (S)) then
10086 Insert_After (Parent (S), Decl);
10087 else
10088 Insert_After (Parent (Etype (First_Formal (S))), Decl);
10089 end if;
10090
10091 Mark_Rewrite_Insertion (Decl);
10092 Set_Is_Intrinsic_Subprogram (Op_Name);
10093 Analyze (Decl);
10094 Remove (Decl);
10095 Set_Has_Completion (Op_Name);
10096 Set_Corresponding_Equality (Op_Name, S);
10097 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
10098 end;
10099 end Make_Inequality_Operator;
10100
10101 ----------------------
10102 -- May_Need_Actuals --
10103 ----------------------
10104
10105 procedure May_Need_Actuals (Fun : Entity_Id) is
10106 F : Entity_Id;
10107 B : Boolean;
10108
10109 begin
10110 F := First_Formal (Fun);
10111 B := True;
10112 while Present (F) loop
10113 if No (Default_Value (F)) then
10114 B := False;
10115 exit;
10116 end if;
10117
10118 Next_Formal (F);
10119 end loop;
10120
10121 Set_Needs_No_Actuals (Fun, B);
10122 end May_Need_Actuals;
10123
10124 ---------------------
10125 -- Mode_Conformant --
10126 ---------------------
10127
10128 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
10129 Result : Boolean;
10130 begin
10131 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
10132 return Result;
10133 end Mode_Conformant;
10134
10135 ---------------------------
10136 -- New_Overloaded_Entity --
10137 ---------------------------
10138
10139 procedure New_Overloaded_Entity
10140 (S : Entity_Id;
10141 Derived_Type : Entity_Id := Empty)
10142 is
10143 Overridden_Subp : Entity_Id := Empty;
10144 -- Set if the current scope has an operation that is type-conformant
10145 -- with S, and becomes hidden by S.
10146
10147 Is_Primitive_Subp : Boolean;
10148 -- Set to True if the new subprogram is primitive
10149
10150 E : Entity_Id;
10151 -- Entity that S overrides
10152
10153 procedure Check_For_Primitive_Subprogram
10154 (Is_Primitive : out Boolean;
10155 Is_Overriding : Boolean := False);
10156 -- If the subprogram being analyzed is a primitive operation of the type
10157 -- of a formal or result, set the Has_Primitive_Operations flag on the
10158 -- type, and set Is_Primitive to True (otherwise set to False). Set the
10159 -- corresponding flag on the entity itself for later use.
10160
10161 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
10162 -- True if a) E is a subprogram whose first formal is a concurrent type
10163 -- defined in the scope of E that has some entry or subprogram whose
10164 -- profile matches E, or b) E is an internally built dispatching
10165 -- subprogram of a protected type and there is a matching subprogram
10166 -- defined in the enclosing scope of the protected type, or c) E is
10167 -- an entry of a synchronized type and a matching procedure has been
10168 -- previously defined in the enclosing scope of the synchronized type.
10169
10170 function Is_Private_Declaration (E : Entity_Id) return Boolean;
10171 -- Check that E is declared in the private part of the current package,
10172 -- or in the package body, where it may hide a previous declaration.
10173 -- We can't use In_Private_Part by itself because this flag is also
10174 -- set when freezing entities, so we must examine the place of the
10175 -- declaration in the tree, and recognize wrapper packages as well.
10176
10177 function Is_Overriding_Alias
10178 (Old_E : Entity_Id;
10179 New_E : Entity_Id) return Boolean;
10180 -- Check whether new subprogram and old subprogram are both inherited
10181 -- from subprograms that have distinct dispatch table entries. This can
10182 -- occur with derivations from instances with accidental homonyms. The
10183 -- function is conservative given that the converse is only true within
10184 -- instances that contain accidental overloadings.
10185
10186 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10187 -- Report conflict between entities S and E
10188
10189 ------------------------------------
10190 -- Check_For_Primitive_Subprogram --
10191 ------------------------------------
10192
10193 procedure Check_For_Primitive_Subprogram
10194 (Is_Primitive : out Boolean;
10195 Is_Overriding : Boolean := False)
10196 is
10197 Formal : Entity_Id;
10198 F_Typ : Entity_Id;
10199 B_Typ : Entity_Id;
10200
10201 function Visible_Part_Type (T : Entity_Id) return Boolean;
10202 -- Returns true if T is declared in the visible part of the current
10203 -- package scope; otherwise returns false. Assumes that T is declared
10204 -- in a package.
10205
10206 procedure Check_Private_Overriding (T : Entity_Id);
10207 -- Checks that if a primitive abstract subprogram of a visible
10208 -- abstract type is declared in a private part, then it must override
10209 -- an abstract subprogram declared in the visible part. Also checks
10210 -- that if a primitive function with a controlling result is declared
10211 -- in a private part, then it must override a function declared in
10212 -- the visible part.
10213
10214 ------------------------------
10215 -- Check_Private_Overriding --
10216 ------------------------------
10217
10218 procedure Check_Private_Overriding (T : Entity_Id) is
10219 function Overrides_Private_Part_Op return Boolean;
10220 -- This detects the special case where the overriding subprogram
10221 -- is overriding a subprogram that was declared in the same
10222 -- private part. That case is illegal by 3.9.3(10).
10223
10224 function Overrides_Visible_Function
10225 (Partial_View : Entity_Id) return Boolean;
10226 -- True if S overrides a function in the visible part. The
10227 -- overridden function could be explicitly or implicitly declared.
10228
10229 -------------------------------
10230 -- Overrides_Private_Part_Op --
10231 -------------------------------
10232
10233 function Overrides_Private_Part_Op return Boolean is
10234 Over_Decl : constant Node_Id :=
10235 Unit_Declaration_Node (Overridden_Operation (S));
10236 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10237
10238 begin
10239 pragma Assert (Is_Overriding);
10240 pragma Assert
10241 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10242 pragma Assert
10243 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10244
10245 return In_Same_List (Over_Decl, Subp_Decl);
10246 end Overrides_Private_Part_Op;
10247
10248 --------------------------------
10249 -- Overrides_Visible_Function --
10250 --------------------------------
10251
10252 function Overrides_Visible_Function
10253 (Partial_View : Entity_Id) return Boolean
10254 is
10255 begin
10256 if not Is_Overriding or else not Has_Homonym (S) then
10257 return False;
10258 end if;
10259
10260 if not Present (Partial_View) then
10261 return True;
10262 end if;
10263
10264 -- Search through all the homonyms H of S in the current
10265 -- package spec, and return True if we find one that matches.
10266 -- Note that Parent (H) will be the declaration of the
10267 -- partial view of T for a match.
10268
10269 declare
10270 H : Entity_Id := S;
10271 begin
10272 loop
10273 H := Homonym (H);
10274 exit when not Present (H) or else Scope (H) /= Scope (S);
10275
10276 if Nkind_In
10277 (Parent (H),
10278 N_Private_Extension_Declaration,
10279 N_Private_Type_Declaration)
10280 and then Defining_Identifier (Parent (H)) = Partial_View
10281 then
10282 return True;
10283 end if;
10284 end loop;
10285 end;
10286
10287 return False;
10288 end Overrides_Visible_Function;
10289
10290 -- Start of processing for Check_Private_Overriding
10291
10292 begin
10293 if Is_Package_Or_Generic_Package (Current_Scope)
10294 and then In_Private_Part (Current_Scope)
10295 and then Visible_Part_Type (T)
10296 and then not In_Instance
10297 then
10298 if Is_Abstract_Type (T)
10299 and then Is_Abstract_Subprogram (S)
10300 and then (not Is_Overriding
10301 or else not Is_Abstract_Subprogram (E)
10302 or else Overrides_Private_Part_Op)
10303 then
10304 Error_Msg_N
10305 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10306 S);
10307
10308 elsif Ekind (S) = E_Function then
10309 declare
10310 Partial_View : constant Entity_Id :=
10311 Incomplete_Or_Partial_View (T);
10312
10313 begin
10314 if not Overrides_Visible_Function (Partial_View) then
10315
10316 -- Here, S is "function ... return T;" declared in
10317 -- the private part, not overriding some visible
10318 -- operation. That's illegal in the tagged case
10319 -- (but not if the private type is untagged).
10320
10321 if ((Present (Partial_View)
10322 and then Is_Tagged_Type (Partial_View))
10323 or else (not Present (Partial_View)
10324 and then Is_Tagged_Type (T)))
10325 and then T = Base_Type (Etype (S))
10326 then
10327 Error_Msg_N
10328 ("private function with tagged result must"
10329 & " override visible-part function", S);
10330 Error_Msg_N
10331 ("\move subprogram to the visible part"
10332 & " (RM 3.9.3(10))", S);
10333
10334 -- AI05-0073: extend this test to the case of a
10335 -- function with a controlling access result.
10336
10337 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10338 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10339 and then
10340 not Is_Class_Wide_Type
10341 (Designated_Type (Etype (S)))
10342 and then Ada_Version >= Ada_2012
10343 then
10344 Error_Msg_N
10345 ("private function with controlling access "
10346 & "result must override visible-part function",
10347 S);
10348 Error_Msg_N
10349 ("\move subprogram to the visible part"
10350 & " (RM 3.9.3(10))", S);
10351 end if;
10352 end if;
10353 end;
10354 end if;
10355 end if;
10356 end Check_Private_Overriding;
10357
10358 -----------------------
10359 -- Visible_Part_Type --
10360 -----------------------
10361
10362 function Visible_Part_Type (T : Entity_Id) return Boolean is
10363 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10364
10365 begin
10366 -- If the entity is a private type, then it must be declared in a
10367 -- visible part.
10368
10369 if Ekind (T) in Private_Kind then
10370 return True;
10371
10372 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10373 return True;
10374
10375 elsif Is_List_Member (Declaration_Node (T))
10376 and then List_Containing (Declaration_Node (T)) =
10377 Visible_Declarations (Specification (P))
10378 then
10379 return True;
10380
10381 else
10382 return False;
10383 end if;
10384 end Visible_Part_Type;
10385
10386 -- Start of processing for Check_For_Primitive_Subprogram
10387
10388 begin
10389 Is_Primitive := False;
10390
10391 if not Comes_From_Source (S) then
10392 null;
10393
10394 -- If subprogram is at library level, it is not primitive operation
10395
10396 elsif Current_Scope = Standard_Standard then
10397 null;
10398
10399 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10400 and then not In_Package_Body (Current_Scope))
10401 or else Is_Overriding
10402 then
10403 -- For function, check return type
10404
10405 if Ekind (S) = E_Function then
10406 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10407 F_Typ := Designated_Type (Etype (S));
10408 else
10409 F_Typ := Etype (S);
10410 end if;
10411
10412 B_Typ := Base_Type (F_Typ);
10413
10414 if Scope (B_Typ) = Current_Scope
10415 and then not Is_Class_Wide_Type (B_Typ)
10416 and then not Is_Generic_Type (B_Typ)
10417 then
10418 Is_Primitive := True;
10419 Set_Has_Primitive_Operations (B_Typ);
10420 Set_Is_Primitive (S);
10421 Check_Private_Overriding (B_Typ);
10422
10423 -- The Ghost policy in effect at the point of declaration
10424 -- or a tagged type and a primitive operation must match
10425 -- (SPARK RM 6.9(16)).
10426
10427 Check_Ghost_Primitive (S, B_Typ);
10428 end if;
10429 end if;
10430
10431 -- For all subprograms, check formals
10432
10433 Formal := First_Formal (S);
10434 while Present (Formal) loop
10435 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10436 F_Typ := Designated_Type (Etype (Formal));
10437 else
10438 F_Typ := Etype (Formal);
10439 end if;
10440
10441 B_Typ := Base_Type (F_Typ);
10442
10443 if Ekind (B_Typ) = E_Access_Subtype then
10444 B_Typ := Base_Type (B_Typ);
10445 end if;
10446
10447 if Scope (B_Typ) = Current_Scope
10448 and then not Is_Class_Wide_Type (B_Typ)
10449 and then not Is_Generic_Type (B_Typ)
10450 then
10451 Is_Primitive := True;
10452 Set_Is_Primitive (S);
10453 Set_Has_Primitive_Operations (B_Typ);
10454 Check_Private_Overriding (B_Typ);
10455
10456 -- The Ghost policy in effect at the point of declaration
10457 -- of a tagged type and a primitive operation must match
10458 -- (SPARK RM 6.9(16)).
10459
10460 Check_Ghost_Primitive (S, B_Typ);
10461 end if;
10462
10463 Next_Formal (Formal);
10464 end loop;
10465
10466 -- Special case: An equality function can be redefined for a type
10467 -- occurring in a declarative part, and won't otherwise be treated as
10468 -- a primitive because it doesn't occur in a package spec and doesn't
10469 -- override an inherited subprogram. It's important that we mark it
10470 -- primitive so it can be returned by Collect_Primitive_Operations
10471 -- and be used in composing the equality operation of later types
10472 -- that have a component of the type.
10473
10474 elsif Chars (S) = Name_Op_Eq
10475 and then Etype (S) = Standard_Boolean
10476 then
10477 B_Typ := Base_Type (Etype (First_Formal (S)));
10478
10479 if Scope (B_Typ) = Current_Scope
10480 and then
10481 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10482 and then not Is_Limited_Type (B_Typ)
10483 then
10484 Is_Primitive := True;
10485 Set_Is_Primitive (S);
10486 Set_Has_Primitive_Operations (B_Typ);
10487 Check_Private_Overriding (B_Typ);
10488
10489 -- The Ghost policy in effect at the point of declaration of a
10490 -- tagged type and a primitive operation must match
10491 -- (SPARK RM 6.9(16)).
10492
10493 Check_Ghost_Primitive (S, B_Typ);
10494 end if;
10495 end if;
10496 end Check_For_Primitive_Subprogram;
10497
10498 --------------------------------------
10499 -- Has_Matching_Entry_Or_Subprogram --
10500 --------------------------------------
10501
10502 function Has_Matching_Entry_Or_Subprogram
10503 (E : Entity_Id) return Boolean
10504 is
10505 function Check_Conforming_Parameters
10506 (E1_Param : Node_Id;
10507 E2_Param : Node_Id;
10508 Ctype : Conformance_Type) return Boolean;
10509 -- Starting from the given parameters, check that all the parameters
10510 -- of two entries or subprograms are conformant. Used to skip
10511 -- the check on the controlling argument.
10512
10513 function Matching_Entry_Or_Subprogram
10514 (Conc_Typ : Entity_Id;
10515 Subp : Entity_Id) return Entity_Id;
10516 -- Return the first entry or subprogram of the given concurrent type
10517 -- whose name matches the name of Subp and has a profile conformant
10518 -- with Subp; return Empty if not found.
10519
10520 function Matching_Dispatching_Subprogram
10521 (Conc_Typ : Entity_Id;
10522 Ent : Entity_Id) return Entity_Id;
10523 -- Return the first dispatching primitive of Conc_Type defined in the
10524 -- enclosing scope of Conc_Type (i.e. before the full definition of
10525 -- this concurrent type) whose name matches the entry Ent and has a
10526 -- profile conformant with the profile of the corresponding (not yet
10527 -- built) dispatching primitive of Ent; return Empty if not found.
10528
10529 function Matching_Original_Protected_Subprogram
10530 (Prot_Typ : Entity_Id;
10531 Subp : Entity_Id) return Entity_Id;
10532 -- Return the first subprogram defined in the enclosing scope of
10533 -- Prot_Typ (before the full definition of this protected type)
10534 -- whose name matches the original name of Subp and has a profile
10535 -- conformant with the profile of Subp; return Empty if not found.
10536
10537 function Normalized_First_Parameter_Type
10538 (E : Entity_Id) return Entity_Id;
10539 -- Return the type of the first parameter unless that type
10540 -- is an anonymous access type, in which case return the
10541 -- designated type. Used to treat anonymous-access-to-synchronized
10542 -- the same as synchronized for purposes of checking for
10543 -- prefixed view profile conflicts.
10544
10545 ---------------------------------
10546 -- Check_Conforming_Parameters --
10547 ---------------------------------
10548
10549 function Check_Conforming_Parameters
10550 (E1_Param : Node_Id;
10551 E2_Param : Node_Id;
10552 Ctype : Conformance_Type) return Boolean
10553 is
10554 Param_E1 : Node_Id := E1_Param;
10555 Param_E2 : Node_Id := E2_Param;
10556
10557 begin
10558 while Present (Param_E1) and then Present (Param_E2) loop
10559 if (Ctype >= Mode_Conformant) and then
10560 Ekind (Defining_Identifier (Param_E1)) /=
10561 Ekind (Defining_Identifier (Param_E2))
10562 then
10563 return False;
10564 elsif not
10565 Conforming_Types
10566 (Find_Parameter_Type (Param_E1),
10567 Find_Parameter_Type (Param_E2),
10568 Ctype)
10569 then
10570 return False;
10571 end if;
10572
10573 Next (Param_E1);
10574 Next (Param_E2);
10575 end loop;
10576
10577 -- The candidate is not valid if one of the two lists contains
10578 -- more parameters than the other
10579
10580 return No (Param_E1) and then No (Param_E2);
10581 end Check_Conforming_Parameters;
10582
10583 ----------------------------------
10584 -- Matching_Entry_Or_Subprogram --
10585 ----------------------------------
10586
10587 function Matching_Entry_Or_Subprogram
10588 (Conc_Typ : Entity_Id;
10589 Subp : Entity_Id) return Entity_Id
10590 is
10591 E : Entity_Id;
10592
10593 begin
10594 E := First_Entity (Conc_Typ);
10595 while Present (E) loop
10596 if Chars (Subp) = Chars (E)
10597 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10598 and then
10599 Check_Conforming_Parameters
10600 (First (Parameter_Specifications (Parent (E))),
10601 Next (First (Parameter_Specifications (Parent (Subp)))),
10602 Type_Conformant)
10603 then
10604 return E;
10605 end if;
10606
10607 Next_Entity (E);
10608 end loop;
10609
10610 return Empty;
10611 end Matching_Entry_Or_Subprogram;
10612
10613 -------------------------------------
10614 -- Matching_Dispatching_Subprogram --
10615 -------------------------------------
10616
10617 function Matching_Dispatching_Subprogram
10618 (Conc_Typ : Entity_Id;
10619 Ent : Entity_Id) return Entity_Id
10620 is
10621 E : Entity_Id;
10622
10623 begin
10624 -- Search for entities in the enclosing scope of this synchonized
10625 -- type.
10626
10627 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10628 Push_Scope (Scope (Conc_Typ));
10629 E := Current_Entity_In_Scope (Ent);
10630 Pop_Scope;
10631
10632 while Present (E) loop
10633 if Scope (E) = Scope (Conc_Typ)
10634 and then Comes_From_Source (E)
10635 and then Ekind (E) = E_Procedure
10636 and then Present (First_Entity (E))
10637 and then Is_Controlling_Formal (First_Entity (E))
10638 and then Etype (First_Entity (E)) = Conc_Typ
10639 and then
10640 Check_Conforming_Parameters
10641 (First (Parameter_Specifications (Parent (Ent))),
10642 Next (First (Parameter_Specifications (Parent (E)))),
10643 Subtype_Conformant)
10644 then
10645 return E;
10646 end if;
10647
10648 E := Homonym (E);
10649 end loop;
10650
10651 return Empty;
10652 end Matching_Dispatching_Subprogram;
10653
10654 --------------------------------------------
10655 -- Matching_Original_Protected_Subprogram --
10656 --------------------------------------------
10657
10658 function Matching_Original_Protected_Subprogram
10659 (Prot_Typ : Entity_Id;
10660 Subp : Entity_Id) return Entity_Id
10661 is
10662 ICF : constant Boolean :=
10663 Is_Controlling_Formal (First_Entity (Subp));
10664 E : Entity_Id;
10665
10666 begin
10667 -- Temporarily decorate the first parameter of Subp as controlling
10668 -- formal, required to invoke Subtype_Conformant.
10669
10670 Set_Is_Controlling_Formal (First_Entity (Subp));
10671
10672 E :=
10673 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10674
10675 while Present (E) loop
10676 if Scope (E) = Scope (Prot_Typ)
10677 and then Comes_From_Source (E)
10678 and then Ekind (Subp) = Ekind (E)
10679 and then Present (First_Entity (E))
10680 and then Is_Controlling_Formal (First_Entity (E))
10681 and then Etype (First_Entity (E)) = Prot_Typ
10682 and then Subtype_Conformant (Subp, E,
10683 Skip_Controlling_Formals => True)
10684 then
10685 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10686 return E;
10687 end if;
10688
10689 E := Homonym (E);
10690 end loop;
10691
10692 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10693
10694 return Empty;
10695 end Matching_Original_Protected_Subprogram;
10696
10697 -------------------------------------
10698 -- Normalized_First_Parameter_Type --
10699 -------------------------------------
10700
10701 function Normalized_First_Parameter_Type
10702 (E : Entity_Id) return Entity_Id
10703 is
10704 Result : Entity_Id := Etype (First_Entity (E));
10705 begin
10706 if Ekind (Result) = E_Anonymous_Access_Type then
10707 Result := Designated_Type (Result);
10708 end if;
10709 return Result;
10710 end Normalized_First_Parameter_Type;
10711
10712 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10713
10714 begin
10715 -- Case 1: E is a subprogram whose first formal is a concurrent type
10716 -- defined in the scope of E that has an entry or subprogram whose
10717 -- profile matches E.
10718
10719 if Comes_From_Source (E)
10720 and then Is_Subprogram (E)
10721 and then Present (First_Entity (E))
10722 and then Is_Concurrent_Record_Type
10723 (Normalized_First_Parameter_Type (E))
10724 then
10725 if Scope (E) =
10726 Scope (Corresponding_Concurrent_Type
10727 (Normalized_First_Parameter_Type (E)))
10728 and then
10729 Present
10730 (Matching_Entry_Or_Subprogram
10731 (Corresponding_Concurrent_Type
10732 (Normalized_First_Parameter_Type (E)),
10733 Subp => E))
10734 then
10735 Report_Conflict (E,
10736 Matching_Entry_Or_Subprogram
10737 (Corresponding_Concurrent_Type
10738 (Normalized_First_Parameter_Type (E)),
10739 Subp => E));
10740 return True;
10741 end if;
10742
10743 -- Case 2: E is an internally built dispatching subprogram of a
10744 -- protected type and there is a subprogram defined in the enclosing
10745 -- scope of the protected type that has the original name of E and
10746 -- its profile is conformant with the profile of E. We check the
10747 -- name of the original protected subprogram associated with E since
10748 -- the expander builds dispatching primitives of protected functions
10749 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10750
10751 elsif not Comes_From_Source (E)
10752 and then Is_Subprogram (E)
10753 and then Present (First_Entity (E))
10754 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10755 and then Present (Original_Protected_Subprogram (E))
10756 and then
10757 Present
10758 (Matching_Original_Protected_Subprogram
10759 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10760 Subp => E))
10761 then
10762 Report_Conflict (E,
10763 Matching_Original_Protected_Subprogram
10764 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10765 Subp => E));
10766 return True;
10767
10768 -- Case 3: E is an entry of a synchronized type and a matching
10769 -- procedure has been previously defined in the enclosing scope
10770 -- of the synchronized type.
10771
10772 elsif Comes_From_Source (E)
10773 and then Ekind (E) = E_Entry
10774 and then
10775 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10776 then
10777 Report_Conflict (E,
10778 Matching_Dispatching_Subprogram (Current_Scope, E));
10779 return True;
10780 end if;
10781
10782 return False;
10783 end Has_Matching_Entry_Or_Subprogram;
10784
10785 ----------------------------
10786 -- Is_Private_Declaration --
10787 ----------------------------
10788
10789 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10790 Decl : constant Node_Id := Unit_Declaration_Node (E);
10791 Priv_Decls : List_Id;
10792
10793 begin
10794 if Is_Package_Or_Generic_Package (Current_Scope)
10795 and then In_Private_Part (Current_Scope)
10796 then
10797 Priv_Decls :=
10798 Private_Declarations (Package_Specification (Current_Scope));
10799
10800 return In_Package_Body (Current_Scope)
10801 or else
10802 (Is_List_Member (Decl)
10803 and then List_Containing (Decl) = Priv_Decls)
10804 or else (Nkind (Parent (Decl)) = N_Package_Specification
10805 and then not
10806 Is_Compilation_Unit
10807 (Defining_Entity (Parent (Decl)))
10808 and then List_Containing (Parent (Parent (Decl))) =
10809 Priv_Decls);
10810 else
10811 return False;
10812 end if;
10813 end Is_Private_Declaration;
10814
10815 --------------------------
10816 -- Is_Overriding_Alias --
10817 --------------------------
10818
10819 function Is_Overriding_Alias
10820 (Old_E : Entity_Id;
10821 New_E : Entity_Id) return Boolean
10822 is
10823 AO : constant Entity_Id := Alias (Old_E);
10824 AN : constant Entity_Id := Alias (New_E);
10825
10826 begin
10827 return Scope (AO) /= Scope (AN)
10828 or else No (DTC_Entity (AO))
10829 or else No (DTC_Entity (AN))
10830 or else DT_Position (AO) = DT_Position (AN);
10831 end Is_Overriding_Alias;
10832
10833 ---------------------
10834 -- Report_Conflict --
10835 ---------------------
10836
10837 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10838 begin
10839 Error_Msg_Sloc := Sloc (E);
10840
10841 -- Generate message, with useful additional warning if in generic
10842
10843 if Is_Generic_Unit (E) then
10844 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10845 Error_Msg_N ("\& conflicts with declaration#", S);
10846 else
10847 Error_Msg_N ("& conflicts with declaration#", S);
10848 end if;
10849 end Report_Conflict;
10850
10851 -- Start of processing for New_Overloaded_Entity
10852
10853 begin
10854 -- We need to look for an entity that S may override. This must be a
10855 -- homonym in the current scope, so we look for the first homonym of
10856 -- S in the current scope as the starting point for the search.
10857
10858 E := Current_Entity_In_Scope (S);
10859
10860 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10861 -- They are directly added to the list of primitive operations of
10862 -- Derived_Type, unless this is a rederivation in the private part
10863 -- of an operation that was already derived in the visible part of
10864 -- the current package.
10865
10866 if Ada_Version >= Ada_2005
10867 and then Present (Derived_Type)
10868 and then Present (Alias (S))
10869 and then Is_Dispatching_Operation (Alias (S))
10870 and then Present (Find_Dispatching_Type (Alias (S)))
10871 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10872 then
10873 -- For private types, when the full-view is processed we propagate to
10874 -- the full view the non-overridden entities whose attribute "alias"
10875 -- references an interface primitive. These entities were added by
10876 -- Derive_Subprograms to ensure that interface primitives are
10877 -- covered.
10878
10879 -- Inside_Freeze_Actions is non zero when S corresponds with an
10880 -- internal entity that links an interface primitive with its
10881 -- covering primitive through attribute Interface_Alias (see
10882 -- Add_Internal_Interface_Entities).
10883
10884 if Inside_Freezing_Actions = 0
10885 and then Is_Package_Or_Generic_Package (Current_Scope)
10886 and then In_Private_Part (Current_Scope)
10887 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10888 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10889 and then Full_View (Defining_Identifier (Parent (E)))
10890 = Defining_Identifier (Parent (S))
10891 and then Alias (E) = Alias (S)
10892 then
10893 Check_Operation_From_Private_View (S, E);
10894 Set_Is_Dispatching_Operation (S);
10895
10896 -- Common case
10897
10898 else
10899 Enter_Overloaded_Entity (S);
10900 Check_Dispatching_Operation (S, Empty);
10901 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10902 end if;
10903
10904 return;
10905 end if;
10906
10907 -- For synchronized types check conflicts of this entity with previously
10908 -- defined entities.
10909
10910 if Ada_Version >= Ada_2005
10911 and then Has_Matching_Entry_Or_Subprogram (S)
10912 then
10913 return;
10914 end if;
10915
10916 -- If there is no homonym then this is definitely not overriding
10917
10918 if No (E) then
10919 Enter_Overloaded_Entity (S);
10920 Check_Dispatching_Operation (S, Empty);
10921 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10922
10923 -- If subprogram has an explicit declaration, check whether it has an
10924 -- overriding indicator.
10925
10926 if Comes_From_Source (S) then
10927 Check_Synchronized_Overriding (S, Overridden_Subp);
10928
10929 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10930 -- it may have overridden some hidden inherited primitive. Update
10931 -- Overridden_Subp to avoid spurious errors when checking the
10932 -- overriding indicator.
10933
10934 if Ada_Version >= Ada_2012
10935 and then No (Overridden_Subp)
10936 and then Is_Dispatching_Operation (S)
10937 and then Present (Overridden_Operation (S))
10938 then
10939 Overridden_Subp := Overridden_Operation (S);
10940 end if;
10941
10942 Check_Overriding_Indicator
10943 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10944
10945 -- The Ghost policy in effect at the point of declaration of a
10946 -- parent subprogram and an overriding subprogram must match
10947 -- (SPARK RM 6.9(17)).
10948
10949 Check_Ghost_Overriding (S, Overridden_Subp);
10950 end if;
10951
10952 -- If there is a homonym that is not overloadable, then we have an
10953 -- error, except for the special cases checked explicitly below.
10954
10955 elsif not Is_Overloadable (E) then
10956
10957 -- Check for spurious conflict produced by a subprogram that has the
10958 -- same name as that of the enclosing generic package. The conflict
10959 -- occurs within an instance, between the subprogram and the renaming
10960 -- declaration for the package. After the subprogram, the package
10961 -- renaming declaration becomes hidden.
10962
10963 if Ekind (E) = E_Package
10964 and then Present (Renamed_Object (E))
10965 and then Renamed_Object (E) = Current_Scope
10966 and then Nkind (Parent (Renamed_Object (E))) =
10967 N_Package_Specification
10968 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10969 then
10970 Set_Is_Hidden (E);
10971 Set_Is_Immediately_Visible (E, False);
10972 Enter_Overloaded_Entity (S);
10973 Set_Homonym (S, Homonym (E));
10974 Check_Dispatching_Operation (S, Empty);
10975 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10976
10977 -- If the subprogram is implicit it is hidden by the previous
10978 -- declaration. However if it is dispatching, it must appear in the
10979 -- dispatch table anyway, because it can be dispatched to even if it
10980 -- cannot be called directly.
10981
10982 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10983 Set_Scope (S, Current_Scope);
10984
10985 if Is_Dispatching_Operation (Alias (S)) then
10986 Check_Dispatching_Operation (S, Empty);
10987 end if;
10988
10989 return;
10990
10991 else
10992 Report_Conflict (S, E);
10993 return;
10994 end if;
10995
10996 -- E exists and is overloadable
10997
10998 else
10999 Check_Synchronized_Overriding (S, Overridden_Subp);
11000
11001 -- Loop through E and its homonyms to determine if any of them is
11002 -- the candidate for overriding by S.
11003
11004 while Present (E) loop
11005
11006 -- Definitely not interesting if not in the current scope
11007
11008 if Scope (E) /= Current_Scope then
11009 null;
11010
11011 -- A function can overload the name of an abstract state. The
11012 -- state can be viewed as a function with a profile that cannot
11013 -- be matched by anything.
11014
11015 elsif Ekind (S) = E_Function
11016 and then Ekind (E) = E_Abstract_State
11017 then
11018 Enter_Overloaded_Entity (S);
11019 return;
11020
11021 -- Ada 2012 (AI05-0165): For internally generated bodies of null
11022 -- procedures locate the internally generated spec. We enforce
11023 -- mode conformance since a tagged type may inherit from
11024 -- interfaces several null primitives which differ only in
11025 -- the mode of the formals.
11026
11027 elsif not Comes_From_Source (S)
11028 and then Is_Null_Procedure (S)
11029 and then not Mode_Conformant (E, S)
11030 then
11031 null;
11032
11033 -- Check if we have type conformance
11034
11035 elsif Type_Conformant (E, S) then
11036
11037 -- If the old and new entities have the same profile and one
11038 -- is not the body of the other, then this is an error, unless
11039 -- one of them is implicitly declared.
11040
11041 -- There are some cases when both can be implicit, for example
11042 -- when both a literal and a function that overrides it are
11043 -- inherited in a derivation, or when an inherited operation
11044 -- of a tagged full type overrides the inherited operation of
11045 -- a private extension. Ada 83 had a special rule for the
11046 -- literal case. In Ada 95, the later implicit operation hides
11047 -- the former, and the literal is always the former. In the
11048 -- odd case where both are derived operations declared at the
11049 -- same point, both operations should be declared, and in that
11050 -- case we bypass the following test and proceed to the next
11051 -- part. This can only occur for certain obscure cases in
11052 -- instances, when an operation on a type derived from a formal
11053 -- private type does not override a homograph inherited from
11054 -- the actual. In subsequent derivations of such a type, the
11055 -- DT positions of these operations remain distinct, if they
11056 -- have been set.
11057
11058 if Present (Alias (S))
11059 and then (No (Alias (E))
11060 or else Comes_From_Source (E)
11061 or else Is_Abstract_Subprogram (S)
11062 or else
11063 (Is_Dispatching_Operation (E)
11064 and then Is_Overriding_Alias (E, S)))
11065 and then Ekind (E) /= E_Enumeration_Literal
11066 then
11067 -- When an derived operation is overloaded it may be due to
11068 -- the fact that the full view of a private extension
11069 -- re-inherits. It has to be dealt with.
11070
11071 if Is_Package_Or_Generic_Package (Current_Scope)
11072 and then In_Private_Part (Current_Scope)
11073 then
11074 Check_Operation_From_Private_View (S, E);
11075 end if;
11076
11077 -- In any case the implicit operation remains hidden by the
11078 -- existing declaration, which is overriding. Indicate that
11079 -- E overrides the operation from which S is inherited.
11080
11081 if Present (Alias (S)) then
11082 Set_Overridden_Operation (E, Alias (S));
11083 Inherit_Subprogram_Contract (E, Alias (S));
11084
11085 else
11086 Set_Overridden_Operation (E, S);
11087 Inherit_Subprogram_Contract (E, S);
11088 end if;
11089
11090 if Comes_From_Source (E) then
11091 Check_Overriding_Indicator (E, S, Is_Primitive => False);
11092
11093 -- The Ghost policy in effect at the point of declaration
11094 -- of a parent subprogram and an overriding subprogram
11095 -- must match (SPARK RM 6.9(17)).
11096
11097 Check_Ghost_Overriding (E, S);
11098 end if;
11099
11100 return;
11101
11102 -- Within an instance, the renaming declarations for actual
11103 -- subprograms may become ambiguous, but they do not hide each
11104 -- other.
11105
11106 elsif Ekind (E) /= E_Entry
11107 and then not Comes_From_Source (E)
11108 and then not Is_Generic_Instance (E)
11109 and then (Present (Alias (E))
11110 or else Is_Intrinsic_Subprogram (E))
11111 and then (not In_Instance
11112 or else No (Parent (E))
11113 or else Nkind (Unit_Declaration_Node (E)) /=
11114 N_Subprogram_Renaming_Declaration)
11115 then
11116 -- A subprogram child unit is not allowed to override an
11117 -- inherited subprogram (10.1.1(20)).
11118
11119 if Is_Child_Unit (S) then
11120 Error_Msg_N
11121 ("child unit overrides inherited subprogram in parent",
11122 S);
11123 return;
11124 end if;
11125
11126 if Is_Non_Overriding_Operation (E, S) then
11127 Enter_Overloaded_Entity (S);
11128
11129 if No (Derived_Type)
11130 or else Is_Tagged_Type (Derived_Type)
11131 then
11132 Check_Dispatching_Operation (S, Empty);
11133 end if;
11134
11135 return;
11136 end if;
11137
11138 -- E is a derived operation or an internal operator which
11139 -- is being overridden. Remove E from further visibility.
11140 -- Furthermore, if E is a dispatching operation, it must be
11141 -- replaced in the list of primitive operations of its type
11142 -- (see Override_Dispatching_Operation).
11143
11144 Overridden_Subp := E;
11145
11146 -- It is possible for E to be in the current scope and
11147 -- yet not in the entity chain. This can only occur in a
11148 -- generic context where E is an implicit concatenation
11149 -- in the formal part, because in a generic body the
11150 -- entity chain starts with the formals.
11151
11152 -- In GNATprove mode, a wrapper for an operation with
11153 -- axiomatization may be a homonym of another declaration
11154 -- for an actual subprogram (needs refinement ???).
11155
11156 if No (Prev_Entity (E)) then
11157 if In_Instance
11158 and then GNATprove_Mode
11159 and then
11160 Nkind (Original_Node (Unit_Declaration_Node (S))) =
11161 N_Subprogram_Renaming_Declaration
11162 then
11163 return;
11164 else
11165 pragma Assert (Chars (E) = Name_Op_Concat);
11166 null;
11167 end if;
11168 end if;
11169
11170 -- E must be removed both from the entity_list of the
11171 -- current scope, and from the visibility chain.
11172
11173 if Debug_Flag_E then
11174 Write_Str ("Override implicit operation ");
11175 Write_Int (Int (E));
11176 Write_Eol;
11177 end if;
11178
11179 -- If E is a predefined concatenation, it stands for four
11180 -- different operations. As a result, a single explicit
11181 -- declaration does not hide it. In a possible ambiguous
11182 -- situation, Disambiguate chooses the user-defined op,
11183 -- so it is correct to retain the previous internal one.
11184
11185 if Chars (E) /= Name_Op_Concat
11186 or else Ekind (E) /= E_Operator
11187 then
11188 -- For nondispatching derived operations that are
11189 -- overridden by a subprogram declared in the private
11190 -- part of a package, we retain the derived subprogram
11191 -- but mark it as not immediately visible. If the
11192 -- derived operation was declared in the visible part
11193 -- then this ensures that it will still be visible
11194 -- outside the package with the proper signature
11195 -- (calls from outside must also be directed to this
11196 -- version rather than the overriding one, unlike the
11197 -- dispatching case). Calls from inside the package
11198 -- will still resolve to the overriding subprogram
11199 -- since the derived one is marked as not visible
11200 -- within the package.
11201
11202 -- If the private operation is dispatching, we achieve
11203 -- the overriding by keeping the implicit operation
11204 -- but setting its alias to be the overriding one. In
11205 -- this fashion the proper body is executed in all
11206 -- cases, but the original signature is used outside
11207 -- of the package.
11208
11209 -- If the overriding is not in the private part, we
11210 -- remove the implicit operation altogether.
11211
11212 if Is_Private_Declaration (S) then
11213 if not Is_Dispatching_Operation (E) then
11214 Set_Is_Immediately_Visible (E, False);
11215 else
11216 -- Work done in Override_Dispatching_Operation, so
11217 -- nothing else needs to be done here.
11218
11219 null;
11220 end if;
11221
11222 else
11223 Remove_Entity_And_Homonym (E);
11224 end if;
11225 end if;
11226
11227 Enter_Overloaded_Entity (S);
11228
11229 -- For entities generated by Derive_Subprograms the
11230 -- overridden operation is the inherited primitive
11231 -- (which is available through the attribute alias).
11232
11233 if not (Comes_From_Source (E))
11234 and then Is_Dispatching_Operation (E)
11235 and then Find_Dispatching_Type (E) =
11236 Find_Dispatching_Type (S)
11237 and then Present (Alias (E))
11238 and then Comes_From_Source (Alias (E))
11239 then
11240 Set_Overridden_Operation (S, Alias (E));
11241 Inherit_Subprogram_Contract (S, Alias (E));
11242
11243 -- Normal case of setting entity as overridden
11244
11245 -- Note: Static_Initialization and Overridden_Operation
11246 -- attributes use the same field in subprogram entities.
11247 -- Static_Initialization is only defined for internal
11248 -- initialization procedures, where Overridden_Operation
11249 -- is irrelevant. Therefore the setting of this attribute
11250 -- must check whether the target is an init_proc.
11251
11252 elsif not Is_Init_Proc (S) then
11253 Set_Overridden_Operation (S, E);
11254 Inherit_Subprogram_Contract (S, E);
11255 end if;
11256
11257 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11258
11259 -- The Ghost policy in effect at the point of declaration
11260 -- of a parent subprogram and an overriding subprogram
11261 -- must match (SPARK RM 6.9(17)).
11262
11263 Check_Ghost_Overriding (S, E);
11264
11265 -- If S is a user-defined subprogram or a null procedure
11266 -- expanded to override an inherited null procedure, or a
11267 -- predefined dispatching primitive then indicate that E
11268 -- overrides the operation from which S is inherited.
11269
11270 if Comes_From_Source (S)
11271 or else
11272 (Present (Parent (S))
11273 and then Nkind (Parent (S)) = N_Procedure_Specification
11274 and then Null_Present (Parent (S)))
11275 or else
11276 (Present (Alias (E))
11277 and then
11278 Is_Predefined_Dispatching_Operation (Alias (E)))
11279 then
11280 if Present (Alias (E)) then
11281 Set_Overridden_Operation (S, Alias (E));
11282 Inherit_Subprogram_Contract (S, Alias (E));
11283 end if;
11284 end if;
11285
11286 if Is_Dispatching_Operation (E) then
11287
11288 -- An overriding dispatching subprogram inherits the
11289 -- convention of the overridden subprogram (AI-117).
11290
11291 Set_Convention (S, Convention (E));
11292 Check_Dispatching_Operation (S, E);
11293
11294 else
11295 Check_Dispatching_Operation (S, Empty);
11296 end if;
11297
11298 Check_For_Primitive_Subprogram
11299 (Is_Primitive_Subp, Is_Overriding => True);
11300 goto Check_Inequality;
11301
11302 -- Apparent redeclarations in instances can occur when two
11303 -- formal types get the same actual type. The subprograms in
11304 -- in the instance are legal, even if not callable from the
11305 -- outside. Calls from within are disambiguated elsewhere.
11306 -- For dispatching operations in the visible part, the usual
11307 -- rules apply, and operations with the same profile are not
11308 -- legal (B830001).
11309
11310 elsif (In_Instance_Visible_Part
11311 and then not Is_Dispatching_Operation (E))
11312 or else In_Instance_Not_Visible
11313 then
11314 null;
11315
11316 -- Here we have a real error (identical profile)
11317
11318 else
11319 Error_Msg_Sloc := Sloc (E);
11320
11321 -- Avoid cascaded errors if the entity appears in
11322 -- subsequent calls.
11323
11324 Set_Scope (S, Current_Scope);
11325
11326 -- Generate error, with extra useful warning for the case
11327 -- of a generic instance with no completion.
11328
11329 if Is_Generic_Instance (S)
11330 and then not Has_Completion (E)
11331 then
11332 Error_Msg_N
11333 ("instantiation cannot provide body for&", S);
11334 Error_Msg_N ("\& conflicts with declaration#", S);
11335 else
11336 Error_Msg_N ("& conflicts with declaration#", S);
11337 end if;
11338
11339 return;
11340 end if;
11341
11342 else
11343 -- If one subprogram has an access parameter and the other
11344 -- a parameter of an access type, calls to either might be
11345 -- ambiguous. Verify that parameters match except for the
11346 -- access parameter.
11347
11348 if May_Hide_Profile then
11349 declare
11350 F1 : Entity_Id;
11351 F2 : Entity_Id;
11352
11353 begin
11354 F1 := First_Formal (S);
11355 F2 := First_Formal (E);
11356 while Present (F1) and then Present (F2) loop
11357 if Is_Access_Type (Etype (F1)) then
11358 if not Is_Access_Type (Etype (F2))
11359 or else not Conforming_Types
11360 (Designated_Type (Etype (F1)),
11361 Designated_Type (Etype (F2)),
11362 Type_Conformant)
11363 then
11364 May_Hide_Profile := False;
11365 end if;
11366
11367 elsif
11368 not Conforming_Types
11369 (Etype (F1), Etype (F2), Type_Conformant)
11370 then
11371 May_Hide_Profile := False;
11372 end if;
11373
11374 Next_Formal (F1);
11375 Next_Formal (F2);
11376 end loop;
11377
11378 if May_Hide_Profile
11379 and then No (F1)
11380 and then No (F2)
11381 then
11382 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11383 end if;
11384 end;
11385 end if;
11386 end if;
11387
11388 E := Homonym (E);
11389 end loop;
11390
11391 -- On exit, we know that S is a new entity
11392
11393 Enter_Overloaded_Entity (S);
11394 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11395 Check_Overriding_Indicator
11396 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11397
11398 -- The Ghost policy in effect at the point of declaration of a parent
11399 -- subprogram and an overriding subprogram must match
11400 -- (SPARK RM 6.9(17)).
11401
11402 Check_Ghost_Overriding (S, Overridden_Subp);
11403
11404 -- Overloading is not allowed in SPARK, except for operators
11405
11406 if Nkind (S) /= N_Defining_Operator_Symbol then
11407 Error_Msg_Sloc := Sloc (Homonym (S));
11408 Check_SPARK_05_Restriction
11409 ("overloading not allowed with entity#", S);
11410 end if;
11411
11412 -- If S is a derived operation for an untagged type then by
11413 -- definition it's not a dispatching operation (even if the parent
11414 -- operation was dispatching), so Check_Dispatching_Operation is not
11415 -- called in that case.
11416
11417 if No (Derived_Type)
11418 or else Is_Tagged_Type (Derived_Type)
11419 then
11420 Check_Dispatching_Operation (S, Empty);
11421 end if;
11422 end if;
11423
11424 -- If this is a user-defined equality operator that is not a derived
11425 -- subprogram, create the corresponding inequality. If the operation is
11426 -- dispatching, the expansion is done elsewhere, and we do not create
11427 -- an explicit inequality operation.
11428
11429 <<Check_Inequality>>
11430 if Chars (S) = Name_Op_Eq
11431 and then Etype (S) = Standard_Boolean
11432 and then Present (Parent (S))
11433 and then not Is_Dispatching_Operation (S)
11434 then
11435 Make_Inequality_Operator (S);
11436 Check_Untagged_Equality (S);
11437 end if;
11438 end New_Overloaded_Entity;
11439
11440 ----------------------------------
11441 -- Preanalyze_Formal_Expression --
11442 ----------------------------------
11443
11444 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
11445 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
11446 begin
11447 In_Spec_Expression := True;
11448 Preanalyze_With_Freezing_And_Resolve (N, T);
11449 In_Spec_Expression := Save_In_Spec_Expression;
11450 end Preanalyze_Formal_Expression;
11451
11452 ---------------------
11453 -- Process_Formals --
11454 ---------------------
11455
11456 procedure Process_Formals
11457 (T : List_Id;
11458 Related_Nod : Node_Id)
11459 is
11460 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11461 -- Determine whether an access type designates a type coming from a
11462 -- limited view.
11463
11464 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11465 -- Check whether the default has a class-wide type. After analysis the
11466 -- default has the type of the formal, so we must also check explicitly
11467 -- for an access attribute.
11468
11469 ----------------------------------
11470 -- Designates_From_Limited_With --
11471 ----------------------------------
11472
11473 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11474 Desig : Entity_Id := Typ;
11475
11476 begin
11477 if Is_Access_Type (Desig) then
11478 Desig := Directly_Designated_Type (Desig);
11479 end if;
11480
11481 if Is_Class_Wide_Type (Desig) then
11482 Desig := Root_Type (Desig);
11483 end if;
11484
11485 return
11486 Ekind (Desig) = E_Incomplete_Type
11487 and then From_Limited_With (Desig);
11488 end Designates_From_Limited_With;
11489
11490 ---------------------------
11491 -- Is_Class_Wide_Default --
11492 ---------------------------
11493
11494 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11495 begin
11496 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11497 or else (Nkind (D) = N_Attribute_Reference
11498 and then Attribute_Name (D) = Name_Access
11499 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11500 end Is_Class_Wide_Default;
11501
11502 -- Local variables
11503
11504 Context : constant Node_Id := Parent (Parent (T));
11505 Default : Node_Id;
11506 Formal : Entity_Id;
11507 Formal_Type : Entity_Id;
11508 Param_Spec : Node_Id;
11509 Ptype : Entity_Id;
11510
11511 Num_Out_Params : Nat := 0;
11512 First_Out_Param : Entity_Id := Empty;
11513 -- Used for setting Is_Only_Out_Parameter
11514
11515 -- Start of processing for Process_Formals
11516
11517 begin
11518 -- In order to prevent premature use of the formals in the same formal
11519 -- part, the Ekind is left undefined until all default expressions are
11520 -- analyzed. The Ekind is established in a separate loop at the end.
11521
11522 Param_Spec := First (T);
11523 while Present (Param_Spec) loop
11524 Formal := Defining_Identifier (Param_Spec);
11525 Set_Never_Set_In_Source (Formal, True);
11526 Enter_Name (Formal);
11527
11528 -- Case of ordinary parameters
11529
11530 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11531 Find_Type (Parameter_Type (Param_Spec));
11532 Ptype := Parameter_Type (Param_Spec);
11533
11534 if Ptype = Error then
11535 goto Continue;
11536 end if;
11537
11538 -- Protect against malformed parameter types
11539
11540 if Nkind (Ptype) not in N_Has_Entity then
11541 Formal_Type := Any_Type;
11542 else
11543 Formal_Type := Entity (Ptype);
11544 end if;
11545
11546 if Is_Incomplete_Type (Formal_Type)
11547 or else
11548 (Is_Class_Wide_Type (Formal_Type)
11549 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11550 then
11551 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11552 -- primitive operations, as long as their completion is
11553 -- in the same declarative part. If in the private part
11554 -- this means that the type cannot be a Taft-amendment type.
11555 -- Check is done on package exit. For access to subprograms,
11556 -- the use is legal for Taft-amendment types.
11557
11558 -- Ada 2012: tagged incomplete types are allowed as generic
11559 -- formal types. They do not introduce dependencies and the
11560 -- corresponding generic subprogram does not have a delayed
11561 -- freeze, because it does not need a freeze node. However,
11562 -- it is still the case that untagged incomplete types cannot
11563 -- be Taft-amendment types and must be completed in private
11564 -- part, so the subprogram must appear in the list of private
11565 -- dependents of the type.
11566
11567 if Is_Tagged_Type (Formal_Type)
11568 or else (Ada_Version >= Ada_2012
11569 and then not From_Limited_With (Formal_Type)
11570 and then not Is_Generic_Type (Formal_Type))
11571 then
11572 if Ekind (Scope (Current_Scope)) = E_Package
11573 and then not Is_Generic_Type (Formal_Type)
11574 and then not Is_Class_Wide_Type (Formal_Type)
11575 then
11576 if not Nkind_In
11577 (Parent (T), N_Access_Function_Definition,
11578 N_Access_Procedure_Definition)
11579 then
11580 Append_Elmt (Current_Scope,
11581 Private_Dependents (Base_Type (Formal_Type)));
11582
11583 -- Freezing is delayed to ensure that Register_Prim
11584 -- will get called for this operation, which is needed
11585 -- in cases where static dispatch tables aren't built.
11586 -- (Note that the same is done for controlling access
11587 -- parameter cases in function Access_Definition.)
11588
11589 if not Is_Thunk (Current_Scope) then
11590 Set_Has_Delayed_Freeze (Current_Scope);
11591 end if;
11592 end if;
11593 end if;
11594
11595 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11596 N_Access_Procedure_Definition)
11597 then
11598 -- AI05-0151: Tagged incomplete types are allowed in all
11599 -- formal parts. Untagged incomplete types are not allowed
11600 -- in bodies. Limited views of either kind are not allowed
11601 -- if there is no place at which the non-limited view can
11602 -- become available.
11603
11604 -- Incomplete formal untagged types are not allowed in
11605 -- subprogram bodies (but are legal in their declarations).
11606 -- This excludes bodies created for null procedures, which
11607 -- are basic declarations.
11608
11609 if Is_Generic_Type (Formal_Type)
11610 and then not Is_Tagged_Type (Formal_Type)
11611 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11612 then
11613 Error_Msg_N
11614 ("invalid use of formal incomplete type", Param_Spec);
11615
11616 elsif Ada_Version >= Ada_2012 then
11617 if Is_Tagged_Type (Formal_Type)
11618 and then (not From_Limited_With (Formal_Type)
11619 or else not In_Package_Body)
11620 then
11621 null;
11622
11623 elsif Nkind_In (Context, N_Accept_Statement,
11624 N_Accept_Alternative,
11625 N_Entry_Body)
11626 or else (Nkind (Context) = N_Subprogram_Body
11627 and then Comes_From_Source (Context))
11628 then
11629 Error_Msg_NE
11630 ("invalid use of untagged incomplete type &",
11631 Ptype, Formal_Type);
11632 end if;
11633
11634 else
11635 Error_Msg_NE
11636 ("invalid use of incomplete type&",
11637 Param_Spec, Formal_Type);
11638
11639 -- Further checks on the legality of incomplete types
11640 -- in formal parts are delayed until the freeze point
11641 -- of the enclosing subprogram or access to subprogram.
11642 end if;
11643 end if;
11644
11645 elsif Ekind (Formal_Type) = E_Void then
11646 Error_Msg_NE
11647 ("premature use of&",
11648 Parameter_Type (Param_Spec), Formal_Type);
11649 end if;
11650
11651 -- Ada 2012 (AI-142): Handle aliased parameters
11652
11653 if Ada_Version >= Ada_2012
11654 and then Aliased_Present (Param_Spec)
11655 then
11656 Set_Is_Aliased (Formal);
11657
11658 -- AI12-001: All aliased objects are considered to be specified
11659 -- as independently addressable (RM C.6(8.1/4)).
11660
11661 Set_Is_Independent (Formal);
11662 end if;
11663
11664 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11665 -- declaration corresponding to the null-excluding type of the
11666 -- formal in the enclosing scope. Finally, replace the parameter
11667 -- type of the formal with the internal subtype.
11668
11669 if Ada_Version >= Ada_2005
11670 and then Null_Exclusion_Present (Param_Spec)
11671 then
11672 if not Is_Access_Type (Formal_Type) then
11673 Error_Msg_N
11674 ("`NOT NULL` allowed only for an access type", Param_Spec);
11675
11676 else
11677 if Can_Never_Be_Null (Formal_Type)
11678 and then Comes_From_Source (Related_Nod)
11679 then
11680 Error_Msg_NE
11681 ("`NOT NULL` not allowed (& already excludes null)",
11682 Param_Spec, Formal_Type);
11683 end if;
11684
11685 Formal_Type :=
11686 Create_Null_Excluding_Itype
11687 (T => Formal_Type,
11688 Related_Nod => Related_Nod,
11689 Scope_Id => Scope (Current_Scope));
11690
11691 -- If the designated type of the itype is an itype that is
11692 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11693 -- on the access subtype, to prevent order-of-elaboration
11694 -- issues in the backend.
11695
11696 -- Example:
11697 -- type T is access procedure;
11698 -- procedure Op (O : not null T);
11699
11700 if Is_Itype (Directly_Designated_Type (Formal_Type))
11701 and then
11702 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11703 then
11704 Set_Has_Delayed_Freeze (Formal_Type);
11705 end if;
11706 end if;
11707 end if;
11708
11709 -- An access formal type
11710
11711 else
11712 Formal_Type :=
11713 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11714
11715 -- No need to continue if we already notified errors
11716
11717 if not Present (Formal_Type) then
11718 return;
11719 end if;
11720
11721 -- Ada 2005 (AI-254)
11722
11723 declare
11724 AD : constant Node_Id :=
11725 Access_To_Subprogram_Definition
11726 (Parameter_Type (Param_Spec));
11727 begin
11728 if Present (AD) and then Protected_Present (AD) then
11729 Formal_Type :=
11730 Replace_Anonymous_Access_To_Protected_Subprogram
11731 (Param_Spec);
11732 end if;
11733 end;
11734 end if;
11735
11736 Set_Etype (Formal, Formal_Type);
11737
11738 -- Deal with default expression if present
11739
11740 Default := Expression (Param_Spec);
11741
11742 if Present (Default) then
11743 Check_SPARK_05_Restriction
11744 ("default expression is not allowed", Default);
11745
11746 if Out_Present (Param_Spec) then
11747 Error_Msg_N
11748 ("default initialization only allowed for IN parameters",
11749 Param_Spec);
11750 end if;
11751
11752 -- Do the special preanalysis of the expression (see section on
11753 -- "Handling of Default Expressions" in the spec of package Sem).
11754
11755 Preanalyze_Formal_Expression (Default, Formal_Type);
11756
11757 -- An access to constant cannot be the default for
11758 -- an access parameter that is an access to variable.
11759
11760 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11761 and then not Is_Access_Constant (Formal_Type)
11762 and then Is_Access_Type (Etype (Default))
11763 and then Is_Access_Constant (Etype (Default))
11764 then
11765 Error_Msg_N
11766 ("formal that is access to variable cannot be initialized "
11767 & "with an access-to-constant expression", Default);
11768 end if;
11769
11770 -- Check that the designated type of an access parameter's default
11771 -- is not a class-wide type unless the parameter's designated type
11772 -- is also class-wide.
11773
11774 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11775 and then not Designates_From_Limited_With (Formal_Type)
11776 and then Is_Class_Wide_Default (Default)
11777 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11778 then
11779 Error_Msg_N
11780 ("access to class-wide expression not allowed here", Default);
11781 end if;
11782
11783 -- Check incorrect use of dynamically tagged expressions
11784
11785 if Is_Tagged_Type (Formal_Type) then
11786 Check_Dynamically_Tagged_Expression
11787 (Expr => Default,
11788 Typ => Formal_Type,
11789 Related_Nod => Default);
11790 end if;
11791 end if;
11792
11793 -- Ada 2005 (AI-231): Static checks
11794
11795 if Ada_Version >= Ada_2005
11796 and then Is_Access_Type (Etype (Formal))
11797 and then Can_Never_Be_Null (Etype (Formal))
11798 then
11799 Null_Exclusion_Static_Checks (Param_Spec);
11800 end if;
11801
11802 -- The following checks are relevant only when SPARK_Mode is on as
11803 -- these are not standard Ada legality rules.
11804
11805 if SPARK_Mode = On then
11806 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11807
11808 -- A function cannot have a parameter of mode IN OUT or OUT
11809 -- (SPARK RM 6.1).
11810
11811 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11812 Error_Msg_N
11813 ("function cannot have parameter of mode `OUT` or "
11814 & "`IN OUT`", Formal);
11815 end if;
11816
11817 -- A procedure cannot have an effectively volatile formal
11818 -- parameter of mode IN because it behaves as a constant
11819 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11820
11821 elsif Ekind (Scope (Formal)) = E_Procedure
11822 and then Ekind (Formal) = E_In_Parameter
11823 and then Is_Effectively_Volatile (Formal)
11824 then
11825 Error_Msg_N
11826 ("formal parameter of mode `IN` cannot be volatile", Formal);
11827 end if;
11828 end if;
11829
11830 <<Continue>>
11831 Next (Param_Spec);
11832 end loop;
11833
11834 -- If this is the formal part of a function specification, analyze the
11835 -- subtype mark in the context where the formals are visible but not
11836 -- yet usable, and may hide outer homographs.
11837
11838 if Nkind (Related_Nod) = N_Function_Specification then
11839 Analyze_Return_Type (Related_Nod);
11840 end if;
11841
11842 -- Now set the kind (mode) of each formal
11843
11844 Param_Spec := First (T);
11845 while Present (Param_Spec) loop
11846 Formal := Defining_Identifier (Param_Spec);
11847 Set_Formal_Mode (Formal);
11848
11849 if Ekind (Formal) = E_In_Parameter then
11850 Set_Default_Value (Formal, Expression (Param_Spec));
11851
11852 if Present (Expression (Param_Spec)) then
11853 Default := Expression (Param_Spec);
11854
11855 if Is_Scalar_Type (Etype (Default)) then
11856 if Nkind (Parameter_Type (Param_Spec)) /=
11857 N_Access_Definition
11858 then
11859 Formal_Type := Entity (Parameter_Type (Param_Spec));
11860 else
11861 Formal_Type :=
11862 Access_Definition
11863 (Related_Nod, Parameter_Type (Param_Spec));
11864 end if;
11865
11866 Apply_Scalar_Range_Check (Default, Formal_Type);
11867 end if;
11868 end if;
11869
11870 elsif Ekind (Formal) = E_Out_Parameter then
11871 Num_Out_Params := Num_Out_Params + 1;
11872
11873 if Num_Out_Params = 1 then
11874 First_Out_Param := Formal;
11875 end if;
11876
11877 elsif Ekind (Formal) = E_In_Out_Parameter then
11878 Num_Out_Params := Num_Out_Params + 1;
11879 end if;
11880
11881 -- Skip remaining processing if formal type was in error
11882
11883 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11884 goto Next_Parameter;
11885 end if;
11886
11887 -- Force call by reference if aliased
11888
11889 declare
11890 Conv : constant Convention_Id := Convention (Etype (Formal));
11891 begin
11892 if Is_Aliased (Formal) then
11893 Set_Mechanism (Formal, By_Reference);
11894
11895 -- Warn if user asked this to be passed by copy
11896
11897 if Conv = Convention_Ada_Pass_By_Copy then
11898 Error_Msg_N
11899 ("cannot pass aliased parameter & by copy??", Formal);
11900 end if;
11901
11902 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11903
11904 elsif Conv = Convention_Ada_Pass_By_Copy then
11905 Set_Mechanism (Formal, By_Copy);
11906
11907 elsif Conv = Convention_Ada_Pass_By_Reference then
11908 Set_Mechanism (Formal, By_Reference);
11909 end if;
11910 end;
11911
11912 <<Next_Parameter>>
11913 Next (Param_Spec);
11914 end loop;
11915
11916 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11917 Set_Is_Only_Out_Parameter (First_Out_Param);
11918 end if;
11919 end Process_Formals;
11920
11921 ----------------------------
11922 -- Reference_Body_Formals --
11923 ----------------------------
11924
11925 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11926 Fs : Entity_Id;
11927 Fb : Entity_Id;
11928
11929 begin
11930 if Error_Posted (Spec) then
11931 return;
11932 end if;
11933
11934 -- Iterate over both lists. They may be of different lengths if the two
11935 -- specs are not conformant.
11936
11937 Fs := First_Formal (Spec);
11938 Fb := First_Formal (Bod);
11939 while Present (Fs) and then Present (Fb) loop
11940 Generate_Reference (Fs, Fb, 'b');
11941
11942 if Style_Check then
11943 Style.Check_Identifier (Fb, Fs);
11944 end if;
11945
11946 Set_Spec_Entity (Fb, Fs);
11947 Set_Referenced (Fs, False);
11948 Next_Formal (Fs);
11949 Next_Formal (Fb);
11950 end loop;
11951 end Reference_Body_Formals;
11952
11953 -------------------------
11954 -- Set_Actual_Subtypes --
11955 -------------------------
11956
11957 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11958 Decl : Node_Id;
11959 Formal : Entity_Id;
11960 T : Entity_Id;
11961 First_Stmt : Node_Id := Empty;
11962 AS_Needed : Boolean;
11963
11964 begin
11965 -- If this is an empty initialization procedure, no need to create
11966 -- actual subtypes (small optimization).
11967
11968 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11969 return;
11970
11971 -- Within a predicate function we do not want to generate local
11972 -- subtypes that may generate nested predicate functions.
11973
11974 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11975 return;
11976 end if;
11977
11978 -- The subtype declarations may freeze the formals. The body generated
11979 -- for an expression function is not a freeze point, so do not emit
11980 -- these declarations (small loss of efficiency in rare cases).
11981
11982 if Nkind (N) = N_Subprogram_Body
11983 and then Was_Expression_Function (N)
11984 then
11985 return;
11986 end if;
11987
11988 Formal := First_Formal (Subp);
11989 while Present (Formal) loop
11990 T := Etype (Formal);
11991
11992 -- We never need an actual subtype for a constrained formal
11993
11994 if Is_Constrained (T) then
11995 AS_Needed := False;
11996
11997 -- If we have unknown discriminants, then we do not need an actual
11998 -- subtype, or more accurately we cannot figure it out. Note that
11999 -- all class-wide types have unknown discriminants.
12000
12001 elsif Has_Unknown_Discriminants (T) then
12002 AS_Needed := False;
12003
12004 -- At this stage we have an unconstrained type that may need an
12005 -- actual subtype. For sure the actual subtype is needed if we have
12006 -- an unconstrained array type. However, in an instance, the type
12007 -- may appear as a subtype of the full view, while the actual is
12008 -- in fact private (in which case no actual subtype is needed) so
12009 -- check the kind of the base type.
12010
12011 elsif Is_Array_Type (Base_Type (T)) then
12012 AS_Needed := True;
12013
12014 -- The only other case needing an actual subtype is an unconstrained
12015 -- record type which is an IN parameter (we cannot generate actual
12016 -- subtypes for the OUT or IN OUT case, since an assignment can
12017 -- change the discriminant values. However we exclude the case of
12018 -- initialization procedures, since discriminants are handled very
12019 -- specially in this context, see the section entitled "Handling of
12020 -- Discriminants" in Einfo.
12021
12022 -- We also exclude the case of Discrim_SO_Functions (functions used
12023 -- in front-end layout mode for size/offset values), since in such
12024 -- functions only discriminants are referenced, and not only are such
12025 -- subtypes not needed, but they cannot always be generated, because
12026 -- of order of elaboration issues.
12027
12028 elsif Is_Record_Type (T)
12029 and then Ekind (Formal) = E_In_Parameter
12030 and then Chars (Formal) /= Name_uInit
12031 and then not Is_Unchecked_Union (T)
12032 and then not Is_Discrim_SO_Function (Subp)
12033 then
12034 AS_Needed := True;
12035
12036 -- All other cases do not need an actual subtype
12037
12038 else
12039 AS_Needed := False;
12040 end if;
12041
12042 -- Generate actual subtypes for unconstrained arrays and
12043 -- unconstrained discriminated records.
12044
12045 if AS_Needed then
12046 if Nkind (N) = N_Accept_Statement then
12047
12048 -- If expansion is active, the formal is replaced by a local
12049 -- variable that renames the corresponding entry of the
12050 -- parameter block, and it is this local variable that may
12051 -- require an actual subtype.
12052
12053 if Expander_Active then
12054 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
12055 else
12056 Decl := Build_Actual_Subtype (T, Formal);
12057 end if;
12058
12059 if Present (Handled_Statement_Sequence (N)) then
12060 First_Stmt :=
12061 First (Statements (Handled_Statement_Sequence (N)));
12062 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
12063 Mark_Rewrite_Insertion (Decl);
12064 else
12065 -- If the accept statement has no body, there will be no
12066 -- reference to the actuals, so no need to compute actual
12067 -- subtypes.
12068
12069 return;
12070 end if;
12071
12072 else
12073 Decl := Build_Actual_Subtype (T, Formal);
12074 Prepend (Decl, Declarations (N));
12075 Mark_Rewrite_Insertion (Decl);
12076 end if;
12077
12078 -- The declaration uses the bounds of an existing object, and
12079 -- therefore needs no constraint checks.
12080
12081 Analyze (Decl, Suppress => All_Checks);
12082 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
12083
12084 -- We need to freeze manually the generated type when it is
12085 -- inserted anywhere else than in a declarative part.
12086
12087 if Present (First_Stmt) then
12088 Insert_List_Before_And_Analyze (First_Stmt,
12089 Freeze_Entity (Defining_Identifier (Decl), N));
12090
12091 -- Ditto if the type has a dynamic predicate, because the
12092 -- generated function will mention the actual subtype. The
12093 -- predicate may come from an explicit aspect of be inherited.
12094
12095 elsif Has_Predicates (T) then
12096 Insert_List_After_And_Analyze (Decl,
12097 Freeze_Entity (Defining_Identifier (Decl), N));
12098 end if;
12099
12100 if Nkind (N) = N_Accept_Statement
12101 and then Expander_Active
12102 then
12103 Set_Actual_Subtype (Renamed_Object (Formal),
12104 Defining_Identifier (Decl));
12105 else
12106 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
12107 end if;
12108 end if;
12109
12110 Next_Formal (Formal);
12111 end loop;
12112 end Set_Actual_Subtypes;
12113
12114 ---------------------
12115 -- Set_Formal_Mode --
12116 ---------------------
12117
12118 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
12119 Spec : constant Node_Id := Parent (Formal_Id);
12120 Id : constant Entity_Id := Scope (Formal_Id);
12121
12122 begin
12123 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
12124 -- since we ensure that corresponding actuals are always valid at the
12125 -- point of the call.
12126
12127 if Out_Present (Spec) then
12128 if Ekind_In (Id, E_Entry, E_Entry_Family)
12129 or else Is_Subprogram_Or_Generic_Subprogram (Id)
12130 then
12131 Set_Has_Out_Or_In_Out_Parameter (Id, True);
12132 end if;
12133
12134 if Ekind_In (Id, E_Function, E_Generic_Function) then
12135
12136 -- [IN] OUT parameters allowed for functions in Ada 2012
12137
12138 if Ada_Version >= Ada_2012 then
12139
12140 -- Even in Ada 2012 operators can only have IN parameters
12141
12142 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
12143 Error_Msg_N ("operators can only have IN parameters", Spec);
12144 end if;
12145
12146 if In_Present (Spec) then
12147 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12148 else
12149 Set_Ekind (Formal_Id, E_Out_Parameter);
12150 end if;
12151
12152 -- But not in earlier versions of Ada
12153
12154 else
12155 Error_Msg_N ("functions can only have IN parameters", Spec);
12156 Set_Ekind (Formal_Id, E_In_Parameter);
12157 end if;
12158
12159 elsif In_Present (Spec) then
12160 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12161
12162 else
12163 Set_Ekind (Formal_Id, E_Out_Parameter);
12164 Set_Never_Set_In_Source (Formal_Id, True);
12165 Set_Is_True_Constant (Formal_Id, False);
12166 Set_Current_Value (Formal_Id, Empty);
12167 end if;
12168
12169 else
12170 Set_Ekind (Formal_Id, E_In_Parameter);
12171 end if;
12172
12173 -- Set Is_Known_Non_Null for access parameters since the language
12174 -- guarantees that access parameters are always non-null. We also set
12175 -- Can_Never_Be_Null, since there is no way to change the value.
12176
12177 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
12178
12179 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
12180 -- null; In Ada 2005, only if then null_exclusion is explicit.
12181
12182 if Ada_Version < Ada_2005
12183 or else Can_Never_Be_Null (Etype (Formal_Id))
12184 then
12185 Set_Is_Known_Non_Null (Formal_Id);
12186 Set_Can_Never_Be_Null (Formal_Id);
12187 end if;
12188
12189 -- Ada 2005 (AI-231): Null-exclusion access subtype
12190
12191 elsif Is_Access_Type (Etype (Formal_Id))
12192 and then Can_Never_Be_Null (Etype (Formal_Id))
12193 then
12194 Set_Is_Known_Non_Null (Formal_Id);
12195
12196 -- We can also set Can_Never_Be_Null (thus preventing some junk
12197 -- access checks) for the case of an IN parameter, which cannot
12198 -- be changed, or for an IN OUT parameter, which can be changed but
12199 -- not to a null value. But for an OUT parameter, the initial value
12200 -- passed in can be null, so we can't set this flag in that case.
12201
12202 if Ekind (Formal_Id) /= E_Out_Parameter then
12203 Set_Can_Never_Be_Null (Formal_Id);
12204 end if;
12205 end if;
12206
12207 Set_Mechanism (Formal_Id, Default_Mechanism);
12208 Set_Formal_Validity (Formal_Id);
12209 end Set_Formal_Mode;
12210
12211 -------------------------
12212 -- Set_Formal_Validity --
12213 -------------------------
12214
12215 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12216 begin
12217 -- If no validity checking, then we cannot assume anything about the
12218 -- validity of parameters, since we do not know there is any checking
12219 -- of the validity on the call side.
12220
12221 if not Validity_Checks_On then
12222 return;
12223
12224 -- If validity checking for parameters is enabled, this means we are
12225 -- not supposed to make any assumptions about argument values.
12226
12227 elsif Validity_Check_Parameters then
12228 return;
12229
12230 -- If we are checking in parameters, we will assume that the caller is
12231 -- also checking parameters, so we can assume the parameter is valid.
12232
12233 elsif Ekind (Formal_Id) = E_In_Parameter
12234 and then Validity_Check_In_Params
12235 then
12236 Set_Is_Known_Valid (Formal_Id, True);
12237
12238 -- Similar treatment for IN OUT parameters
12239
12240 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12241 and then Validity_Check_In_Out_Params
12242 then
12243 Set_Is_Known_Valid (Formal_Id, True);
12244 end if;
12245 end Set_Formal_Validity;
12246
12247 ------------------------
12248 -- Subtype_Conformant --
12249 ------------------------
12250
12251 function Subtype_Conformant
12252 (New_Id : Entity_Id;
12253 Old_Id : Entity_Id;
12254 Skip_Controlling_Formals : Boolean := False) return Boolean
12255 is
12256 Result : Boolean;
12257 begin
12258 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12259 Skip_Controlling_Formals => Skip_Controlling_Formals);
12260 return Result;
12261 end Subtype_Conformant;
12262
12263 ---------------------
12264 -- Type_Conformant --
12265 ---------------------
12266
12267 function Type_Conformant
12268 (New_Id : Entity_Id;
12269 Old_Id : Entity_Id;
12270 Skip_Controlling_Formals : Boolean := False) return Boolean
12271 is
12272 Result : Boolean;
12273 begin
12274 May_Hide_Profile := False;
12275 Check_Conformance
12276 (New_Id, Old_Id, Type_Conformant, False, Result,
12277 Skip_Controlling_Formals => Skip_Controlling_Formals);
12278 return Result;
12279 end Type_Conformant;
12280
12281 -------------------------------
12282 -- Valid_Operator_Definition --
12283 -------------------------------
12284
12285 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12286 N : Integer := 0;
12287 F : Entity_Id;
12288 Id : constant Name_Id := Chars (Designator);
12289 N_OK : Boolean;
12290
12291 begin
12292 F := First_Formal (Designator);
12293 while Present (F) loop
12294 N := N + 1;
12295
12296 if Present (Default_Value (F)) then
12297 Error_Msg_N
12298 ("default values not allowed for operator parameters",
12299 Parent (F));
12300
12301 -- For function instantiations that are operators, we must check
12302 -- separately that the corresponding generic only has in-parameters.
12303 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12304 -- an error could not arise in earlier versions of the language.
12305
12306 elsif Ekind (F) /= E_In_Parameter then
12307 Error_Msg_N ("operators can only have IN parameters", F);
12308 end if;
12309
12310 Next_Formal (F);
12311 end loop;
12312
12313 -- Verify that user-defined operators have proper number of arguments
12314 -- First case of operators which can only be unary
12315
12316 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12317 N_OK := (N = 1);
12318
12319 -- Case of operators which can be unary or binary
12320
12321 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12322 N_OK := (N in 1 .. 2);
12323
12324 -- All other operators can only be binary
12325
12326 else
12327 N_OK := (N = 2);
12328 end if;
12329
12330 if not N_OK then
12331 Error_Msg_N
12332 ("incorrect number of arguments for operator", Designator);
12333 end if;
12334
12335 if Id = Name_Op_Ne
12336 and then Base_Type (Etype (Designator)) = Standard_Boolean
12337 and then not Is_Intrinsic_Subprogram (Designator)
12338 then
12339 Error_Msg_N
12340 ("explicit definition of inequality not allowed", Designator);
12341 end if;
12342 end Valid_Operator_Definition;
12343
12344 end Sem_Ch6;