[Ada] Do not suppress checks in instances of internal generics
[gcc.git] / gcc / ada / sem_ch6.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch9; use Sem_Ch9;
64 with Sem_Ch10; use Sem_Ch10;
65 with Sem_Ch12; use Sem_Ch12;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elim; use Sem_Elim;
71 with Sem_Eval; use Sem_Eval;
72 with Sem_Mech; use Sem_Mech;
73 with Sem_Prag; use Sem_Prag;
74 with Sem_Res; use Sem_Res;
75 with Sem_Util; use Sem_Util;
76 with Sem_Type; use Sem_Type;
77 with Sem_Warn; use Sem_Warn;
78 with Sinput; use Sinput;
79 with Stand; use Stand;
80 with Sinfo; use Sinfo;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stringt; use Stringt;
84 with Style;
85 with Stylesw; use Stylesw;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
90
91 package body Sem_Ch6 is
92
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
101
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
105
106 procedure Analyze_Function_Return (N : Node_Id);
107 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
108 -- applies to a [generic] function.
109
110 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111 -- Analyze a generic subprogram body. N is the body to be analyzed, and
112 -- Gen_Id is the defining entity Id for the corresponding spec.
113
114 procedure Analyze_Null_Procedure
115 (N : Node_Id;
116 Is_Completion : out Boolean);
117 -- A null procedure can be a declaration or (Ada 2012) a completion
118
119 procedure Analyze_Return_Statement (N : Node_Id);
120 -- Common processing for simple and extended return statements
121
122 procedure Analyze_Return_Type (N : Node_Id);
123 -- Subsidiary to Process_Formals: analyze subtype mark in function
124 -- specification in a context where the formals are visible and hide
125 -- outer homographs.
126
127 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
129 -- that we can use RETURN but not skip the debug output at the end.
130
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
133
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
154
155 procedure Check_Limited_Return
156 (N : Node_Id;
157 Expr : Node_Id;
158 R_Type : Entity_Id);
159 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160 -- types. Used only for simple return statements. Expr is the expression
161 -- returned.
162
163 procedure Check_Subprogram_Order (N : Node_Id);
164 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
165 -- the alpha ordering rule for N if this ordering requirement applicable.
166
167 procedure Check_Returns
168 (HSS : Node_Id;
169 Mode : Character;
170 Err : out Boolean;
171 Proc : Entity_Id := Empty);
172 -- Called to check for missing return statements in a function body, or for
173 -- returns present in a procedure body which has No_Return set. HSS is the
174 -- handled statement sequence for the subprogram body. This procedure
175 -- checks all flow paths to make sure they either have return (Mode = 'F',
176 -- used for functions) or do not have a return (Mode = 'P', used for
177 -- No_Return procedures). The flag Err is set if there are any control
178 -- paths not explicitly terminated by a return in the function case, and is
179 -- True otherwise. Proc is the entity for the procedure case and is used
180 -- in posting the warning message.
181
182 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183 -- In Ada 2012, a primitive equality operator on an untagged record type
184 -- must appear before the type is frozen, and have the same visibility as
185 -- that of the type. This procedure checks that this rule is met, and
186 -- otherwise emits an error on the subprogram declaration and a warning
187 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190 -- is set, otherwise the call has no effect.
191
192 procedure Enter_Overloaded_Entity (S : Entity_Id);
193 -- This procedure makes S, a new overloaded entity, into the first visible
194 -- entity with that name.
195
196 function Is_Non_Overriding_Operation
197 (Prev_E : Entity_Id;
198 New_E : Entity_Id) return Boolean;
199 -- Enforce the rule given in 12.3(18): a private operation in an instance
200 -- overrides an inherited operation only if the corresponding operation
201 -- was overriding in the generic. This needs to be checked for primitive
202 -- operations of types derived (in the generic unit) from formal private
203 -- or formal derived types.
204
205 procedure Make_Inequality_Operator (S : Entity_Id);
206 -- Create the declaration for an inequality operator that is implicitly
207 -- created by a user-defined equality operator that yields a boolean.
208
209 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
210 -- Preanalysis of default expressions of subprogram formals. N is the
211 -- expression to be analyzed and T is the expected type.
212
213 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214 -- Formal_Id is an formal parameter entity. This procedure deals with
215 -- setting the proper validity status for this entity, which depends on
216 -- the kind of parameter and the validity checking mode.
217
218 ---------------------------------------------
219 -- Analyze_Abstract_Subprogram_Declaration --
220 ---------------------------------------------
221
222 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
223 Scop : constant Entity_Id := Current_Scope;
224 Subp_Id : constant Entity_Id :=
225 Analyze_Subprogram_Specification (Specification (N));
226
227 begin
228 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
229
230 Generate_Definition (Subp_Id);
231
232 -- Set the SPARK mode from the current context (may be overwritten later
233 -- with explicit pragma).
234
235 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
236 Set_SPARK_Pragma_Inherited (Subp_Id);
237
238 -- Preserve relevant elaboration-related attributes of the context which
239 -- are no longer available or very expensive to recompute once analysis,
240 -- resolution, and expansion are over.
241
242 Mark_Elaboration_Attributes
243 (N_Id => Subp_Id,
244 Checks => True,
245 Warnings => True);
246
247 Set_Is_Abstract_Subprogram (Subp_Id);
248 New_Overloaded_Entity (Subp_Id);
249 Check_Delayed_Subprogram (Subp_Id);
250
251 Set_Categorization_From_Scope (Subp_Id, Scop);
252
253 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
254 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
255
256 -- Issue a warning if the abstract subprogram is neither a dispatching
257 -- operation nor an operation that overrides an inherited subprogram or
258 -- predefined operator, since this most likely indicates a mistake.
259
260 elsif Warn_On_Redundant_Constructs
261 and then not Is_Dispatching_Operation (Subp_Id)
262 and then not Present (Overridden_Operation (Subp_Id))
263 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
264 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
265 then
266 Error_Msg_N
267 ("abstract subprogram is not dispatching or overriding?r?", N);
268 end if;
269
270 Generate_Reference_To_Formals (Subp_Id);
271 Check_Eliminated (Subp_Id);
272
273 if Has_Aspects (N) then
274 Analyze_Aspect_Specifications (N, Subp_Id);
275 end if;
276 end Analyze_Abstract_Subprogram_Declaration;
277
278 ---------------------------------
279 -- Analyze_Expression_Function --
280 ---------------------------------
281
282 procedure Analyze_Expression_Function (N : Node_Id) is
283 Expr : constant Node_Id := Expression (N);
284 Loc : constant Source_Ptr := Sloc (N);
285 LocX : constant Source_Ptr := Sloc (Expr);
286 Spec : constant Node_Id := Specification (N);
287
288 -- Local variables
289
290 Asp : Node_Id;
291 New_Body : Node_Id;
292 New_Spec : Node_Id;
293 Orig_N : Node_Id;
294 Ret : Node_Id;
295
296 Def_Id : Entity_Id := Empty;
297 Prev : Entity_Id;
298 -- If the expression is a completion, Prev is the entity whose
299 -- declaration is completed. Def_Id is needed to analyze the spec.
300
301 -- Start of processing for Analyze_Expression_Function
302
303 begin
304 -- This is one of the occasions on which we transform the tree during
305 -- semantic analysis. If this is a completion, transform the expression
306 -- function into an equivalent subprogram body, and analyze it.
307
308 -- Expression functions are inlined unconditionally. The back-end will
309 -- determine whether this is possible.
310
311 Inline_Processing_Required := True;
312
313 -- Create a specification for the generated body. This must be done
314 -- prior to the analysis of the initial declaration.
315
316 New_Spec := Copy_Subprogram_Spec (Spec);
317 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
318
319 -- If there are previous overloadable entities with the same name,
320 -- check whether any of them is completed by the expression function.
321 -- In a generic context a formal subprogram has no completion.
322
323 if Present (Prev)
324 and then Is_Overloadable (Prev)
325 and then not Is_Formal_Subprogram (Prev)
326 then
327 Def_Id := Analyze_Subprogram_Specification (Spec);
328 Prev := Find_Corresponding_Spec (N);
329
330 -- The previous entity may be an expression function as well, in
331 -- which case the redeclaration is illegal.
332
333 if Present (Prev)
334 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
335 N_Expression_Function
336 then
337 Error_Msg_Sloc := Sloc (Prev);
338 Error_Msg_N ("& conflicts with declaration#", Def_Id);
339 return;
340 end if;
341 end if;
342
343 Ret := Make_Simple_Return_Statement (LocX, Expr);
344
345 New_Body :=
346 Make_Subprogram_Body (Loc,
347 Specification => New_Spec,
348 Declarations => Empty_List,
349 Handled_Statement_Sequence =>
350 Make_Handled_Sequence_Of_Statements (LocX,
351 Statements => New_List (Ret)));
352 Set_Was_Expression_Function (New_Body);
353
354 -- If the expression completes a generic subprogram, we must create a
355 -- separate node for the body, because at instantiation the original
356 -- node of the generic copy must be a generic subprogram body, and
357 -- cannot be a expression function. Otherwise we just rewrite the
358 -- expression with the non-generic body.
359
360 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
361 Insert_After (N, New_Body);
362
363 -- Propagate any aspects or pragmas that apply to the expression
364 -- function to the proper body when the expression function acts
365 -- as a completion.
366
367 if Has_Aspects (N) then
368 Move_Aspects (N, To => New_Body);
369 end if;
370
371 Relocate_Pragmas_To_Body (New_Body);
372
373 Rewrite (N, Make_Null_Statement (Loc));
374 Set_Has_Completion (Prev, False);
375 Analyze (N);
376 Analyze (New_Body);
377 Set_Is_Inlined (Prev);
378
379 -- If the expression function is a completion, the previous declaration
380 -- must come from source. We know already that it appears in the current
381 -- scope. The entity itself may be internally created if within a body
382 -- to be inlined.
383
384 elsif Present (Prev)
385 and then Is_Overloadable (Prev)
386 and then not Is_Formal_Subprogram (Prev)
387 and then Comes_From_Source (Parent (Prev))
388 then
389 Set_Has_Completion (Prev, False);
390 Set_Is_Inlined (Prev);
391
392 -- AI12-0103: Expression functions that are a completion freeze their
393 -- expression but don't freeze anything else (unlike regular bodies).
394
395 -- Note that we cannot defer this freezing to the analysis of the
396 -- expression itself, because a freeze node might appear in a nested
397 -- scope, leading to an elaboration order issue in gigi.
398 -- As elsewhere, we do not emit freeze nodes within a generic unit.
399
400 if not Inside_A_Generic then
401 Freeze_Expr_Types
402 (Def_Id => Def_Id,
403 Typ => Etype (Def_Id),
404 Expr => Expr,
405 N => N);
406 end if;
407
408 -- For navigation purposes, indicate that the function is a body
409
410 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
411 Rewrite (N, New_Body);
412
413 -- Remove any existing aspects from the original node because the act
414 -- of rewriting causes the list to be shared between the two nodes.
415
416 Orig_N := Original_Node (N);
417 Remove_Aspects (Orig_N);
418
419 -- Propagate any pragmas that apply to expression function to the
420 -- proper body when the expression function acts as a completion.
421 -- Aspects are automatically transfered because of node rewriting.
422
423 Relocate_Pragmas_To_Body (N);
424 Analyze (N);
425
426 -- Once the aspects of the generated body have been analyzed, create
427 -- a copy for ASIS purposes and associate it with the original node.
428
429 if Has_Aspects (N) then
430 Set_Aspect_Specifications (Orig_N,
431 New_Copy_List_Tree (Aspect_Specifications (N)));
432 end if;
433
434 -- Prev is the previous entity with the same name, but it is can
435 -- be an unrelated spec that is not completed by the expression
436 -- function. In that case the relevant entity is the one in the body.
437 -- Not clear that the backend can inline it in this case ???
438
439 if Has_Completion (Prev) then
440
441 -- The formals of the expression function are body formals,
442 -- and do not appear in the ali file, which will only contain
443 -- references to the formals of the original subprogram spec.
444
445 declare
446 F1 : Entity_Id;
447 F2 : Entity_Id;
448
449 begin
450 F1 := First_Formal (Def_Id);
451 F2 := First_Formal (Prev);
452
453 while Present (F1) loop
454 Set_Spec_Entity (F1, F2);
455 Next_Formal (F1);
456 Next_Formal (F2);
457 end loop;
458 end;
459
460 else
461 Set_Is_Inlined (Defining_Entity (New_Body));
462 end if;
463
464 -- If this is not a completion, create both a declaration and a body, so
465 -- that the expression can be inlined whenever possible.
466
467 else
468 -- An expression function that is not a completion is not a
469 -- subprogram declaration, and thus cannot appear in a protected
470 -- definition.
471
472 if Nkind (Parent (N)) = N_Protected_Definition then
473 Error_Msg_N
474 ("an expression function is not a legal protected operation", N);
475 end if;
476
477 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
478
479 -- Remove any existing aspects from the original node because the act
480 -- of rewriting causes the list to be shared between the two nodes.
481
482 Orig_N := Original_Node (N);
483 Remove_Aspects (Orig_N);
484
485 Analyze (N);
486
487 -- Once the aspects of the generated spec have been analyzed, create
488 -- a copy for ASIS purposes and associate it with the original node.
489
490 if Has_Aspects (N) then
491 Set_Aspect_Specifications (Orig_N,
492 New_Copy_List_Tree (Aspect_Specifications (N)));
493 end if;
494
495 -- If aspect SPARK_Mode was specified on the body, it needs to be
496 -- repeated both on the generated spec and the body.
497
498 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
499
500 if Present (Asp) then
501 Asp := New_Copy_Tree (Asp);
502 Set_Analyzed (Asp, False);
503 Set_Aspect_Specifications (New_Body, New_List (Asp));
504 end if;
505
506 Def_Id := Defining_Entity (N);
507 Set_Is_Inlined (Def_Id);
508
509 -- Establish the linkages between the spec and the body. These are
510 -- used when the expression function acts as the prefix of attribute
511 -- 'Access in order to freeze the original expression which has been
512 -- moved to the generated body.
513
514 Set_Corresponding_Body (N, Defining_Entity (New_Body));
515 Set_Corresponding_Spec (New_Body, Def_Id);
516
517 -- Within a generic preanalyze the original expression for name
518 -- capture. The body is also generated but plays no role in
519 -- this because it is not part of the original source.
520
521 if Inside_A_Generic then
522 Set_Has_Completion (Def_Id);
523 Push_Scope (Def_Id);
524 Install_Formals (Def_Id);
525 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
526 End_Scope;
527 end if;
528
529 -- To prevent premature freeze action, insert the new body at the end
530 -- of the current declarations, or at the end of the package spec.
531 -- However, resolve usage names now, to prevent spurious visibility
532 -- on later entities. Note that the function can now be called in
533 -- the current declarative part, which will appear to be prior to
534 -- the presence of the body in the code. There are nevertheless no
535 -- order of elaboration issues because all name resolution has taken
536 -- place at the point of declaration.
537
538 declare
539 Decls : List_Id := List_Containing (N);
540 Expr : constant Node_Id := Expression (Ret);
541 Par : constant Node_Id := Parent (Decls);
542 Typ : constant Entity_Id := Etype (Def_Id);
543
544 begin
545 -- If this is a wrapper created for in an instance for a formal
546 -- subprogram, insert body after declaration, to be analyzed when
547 -- the enclosing instance is analyzed.
548
549 if GNATprove_Mode
550 and then Is_Generic_Actual_Subprogram (Def_Id)
551 then
552 Insert_After (N, New_Body);
553
554 else
555 if Nkind (Par) = N_Package_Specification
556 and then Decls = Visible_Declarations (Par)
557 and then Present (Private_Declarations (Par))
558 and then not Is_Empty_List (Private_Declarations (Par))
559 then
560 Decls := Private_Declarations (Par);
561 end if;
562
563 Insert_After (Last (Decls), New_Body);
564
565 -- Preanalyze the expression if not already done above
566
567 if not Inside_A_Generic then
568 Push_Scope (Def_Id);
569 Install_Formals (Def_Id);
570 Preanalyze_Formal_Expression (Expr, Typ);
571 Check_Limited_Return (Original_Node (N), Expr, Typ);
572 End_Scope;
573 end if;
574 end if;
575 end;
576 end if;
577
578 -- Check incorrect use of dynamically tagged expression. This doesn't
579 -- fall out automatically when analyzing the generated function body,
580 -- because Check_Dynamically_Tagged_Expression deliberately ignores
581 -- nodes that don't come from source.
582
583 if Present (Def_Id)
584 and then Nkind (Def_Id) in N_Has_Etype
585 and then Is_Tagged_Type (Etype (Def_Id))
586 then
587 Check_Dynamically_Tagged_Expression
588 (Expr => Expr,
589 Typ => Etype (Def_Id),
590 Related_Nod => Original_Node (N));
591 end if;
592
593 -- We must enforce checks for unreferenced formals in our newly
594 -- generated function, so we propagate the referenced flag from the
595 -- original spec to the new spec as well as setting Comes_From_Source.
596
597 if Present (Parameter_Specifications (New_Spec)) then
598 declare
599 Form_New_Def : Entity_Id;
600 Form_New_Spec : Entity_Id;
601 Form_Old_Def : Entity_Id;
602 Form_Old_Spec : Entity_Id;
603
604 begin
605 Form_New_Spec := First (Parameter_Specifications (New_Spec));
606 Form_Old_Spec := First (Parameter_Specifications (Spec));
607
608 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
609 Form_New_Def := Defining_Identifier (Form_New_Spec);
610 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
611
612 Set_Comes_From_Source (Form_New_Def, True);
613
614 -- Because of the usefulness of unreferenced controlling
615 -- formals we exempt them from unreferenced warnings by marking
616 -- them as always referenced.
617
618 Set_Referenced (Form_Old_Def,
619 (Is_Formal (Form_Old_Def)
620 and then Is_Controlling_Formal (Form_Old_Def))
621 or else Referenced (Form_Old_Def));
622
623 Next (Form_New_Spec);
624 Next (Form_Old_Spec);
625 end loop;
626 end;
627 end if;
628 end Analyze_Expression_Function;
629
630 ----------------------------------------
631 -- Analyze_Extended_Return_Statement --
632 ----------------------------------------
633
634 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
635 begin
636 Check_Compiler_Unit ("extended return statement", N);
637 Analyze_Return_Statement (N);
638 end Analyze_Extended_Return_Statement;
639
640 ----------------------------
641 -- Analyze_Function_Call --
642 ----------------------------
643
644 procedure Analyze_Function_Call (N : Node_Id) is
645 Actuals : constant List_Id := Parameter_Associations (N);
646 Func_Nam : constant Node_Id := Name (N);
647 Actual : Node_Id;
648
649 begin
650 Analyze (Func_Nam);
651
652 -- A call of the form A.B (X) may be an Ada 2005 call, which is
653 -- rewritten as B (A, X). If the rewriting is successful, the call
654 -- has been analyzed and we just return.
655
656 if Nkind (Func_Nam) = N_Selected_Component
657 and then Name (N) /= Func_Nam
658 and then Is_Rewrite_Substitution (N)
659 and then Present (Etype (N))
660 then
661 return;
662 end if;
663
664 -- If error analyzing name, then set Any_Type as result type and return
665
666 if Etype (Func_Nam) = Any_Type then
667 Set_Etype (N, Any_Type);
668 return;
669 end if;
670
671 -- Otherwise analyze the parameters
672
673 if Present (Actuals) then
674 Actual := First (Actuals);
675 while Present (Actual) loop
676 Analyze (Actual);
677 Check_Parameterless_Call (Actual);
678 Next (Actual);
679 end loop;
680 end if;
681
682 Analyze_Call (N);
683 end Analyze_Function_Call;
684
685 -----------------------------
686 -- Analyze_Function_Return --
687 -----------------------------
688
689 procedure Analyze_Function_Return (N : Node_Id) is
690 Loc : constant Source_Ptr := Sloc (N);
691 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
692 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
693
694 R_Type : constant Entity_Id := Etype (Scope_Id);
695 -- Function result subtype
696
697 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
698 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
699 -- aggregate in a return statement.
700
701 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
702 -- Check that the return_subtype_indication properly matches the result
703 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
704
705 -----------------------------------
706 -- Check_Aggregate_Accessibility --
707 -----------------------------------
708
709 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
710 Typ : constant Entity_Id := Etype (Aggr);
711 Assoc : Node_Id;
712 Discr : Entity_Id;
713 Expr : Node_Id;
714 Obj : Node_Id;
715
716 begin
717 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
718 Discr := First_Discriminant (Typ);
719 Assoc := First (Component_Associations (Aggr));
720 while Present (Discr) loop
721 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
722 Expr := Expression (Assoc);
723
724 if Nkind (Expr) = N_Attribute_Reference
725 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
726 then
727 Obj := Prefix (Expr);
728 while Nkind_In (Obj, N_Indexed_Component,
729 N_Selected_Component)
730 loop
731 Obj := Prefix (Obj);
732 end loop;
733
734 -- Do not check aliased formals or function calls. A
735 -- run-time check may still be needed ???
736
737 if Is_Entity_Name (Obj)
738 and then Comes_From_Source (Obj)
739 then
740 if Is_Formal (Entity (Obj))
741 and then Is_Aliased (Entity (Obj))
742 then
743 null;
744
745 elsif Object_Access_Level (Obj) >
746 Scope_Depth (Scope (Scope_Id))
747 then
748 Error_Msg_N
749 ("access discriminant in return aggregate would "
750 & "be a dangling reference", Obj);
751 end if;
752 end if;
753 end if;
754 end if;
755
756 Next_Discriminant (Discr);
757 end loop;
758 end if;
759 end Check_Aggregate_Accessibility;
760
761 -------------------------------------
762 -- Check_Return_Subtype_Indication --
763 -------------------------------------
764
765 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
766 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
767
768 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
769 -- Subtype given in the extended return statement (must match R_Type)
770
771 Subtype_Ind : constant Node_Id :=
772 Object_Definition (Original_Node (Obj_Decl));
773
774 procedure Error_No_Match (N : Node_Id);
775 -- Output error messages for case where types do not statically
776 -- match. N is the location for the messages.
777
778 --------------------
779 -- Error_No_Match --
780 --------------------
781
782 procedure Error_No_Match (N : Node_Id) is
783 begin
784 Error_Msg_N
785 ("subtype must statically match function result subtype", N);
786
787 if not Predicates_Match (R_Stm_Type, R_Type) then
788 Error_Msg_Node_2 := R_Type;
789 Error_Msg_NE
790 ("\predicate of& does not match predicate of&",
791 N, R_Stm_Type);
792 end if;
793 end Error_No_Match;
794
795 -- Start of processing for Check_Return_Subtype_Indication
796
797 begin
798 -- First, avoid cascaded errors
799
800 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
801 return;
802 end if;
803
804 -- "return access T" case; check that the return statement also has
805 -- "access T", and that the subtypes statically match:
806 -- if this is an access to subprogram the signatures must match.
807
808 if Is_Anonymous_Access_Type (R_Type) then
809 if Is_Anonymous_Access_Type (R_Stm_Type) then
810 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
811 then
812 if Base_Type (Designated_Type (R_Stm_Type)) /=
813 Base_Type (Designated_Type (R_Type))
814 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
815 then
816 Error_No_Match (Subtype_Mark (Subtype_Ind));
817 end if;
818
819 else
820 -- For two anonymous access to subprogram types, the types
821 -- themselves must be type conformant.
822
823 if not Conforming_Types
824 (R_Stm_Type, R_Type, Fully_Conformant)
825 then
826 Error_No_Match (Subtype_Ind);
827 end if;
828 end if;
829
830 else
831 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
832 end if;
833
834 -- If the return object is of an anonymous access type, then report
835 -- an error if the function's result type is not also anonymous.
836
837 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
838 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
839 Error_Msg_N
840 ("anonymous access not allowed for function with named access "
841 & "result", Subtype_Ind);
842
843 -- Subtype indication case: check that the return object's type is
844 -- covered by the result type, and that the subtypes statically match
845 -- when the result subtype is constrained. Also handle record types
846 -- with unknown discriminants for which we have built the underlying
847 -- record view. Coverage is needed to allow specific-type return
848 -- objects when the result type is class-wide (see AI05-32).
849
850 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
851 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
852 and then
853 Covers
854 (Base_Type (R_Type),
855 Underlying_Record_View (Base_Type (R_Stm_Type))))
856 then
857 -- A null exclusion may be present on the return type, on the
858 -- function specification, on the object declaration or on the
859 -- subtype itself.
860
861 if Is_Access_Type (R_Type)
862 and then
863 (Can_Never_Be_Null (R_Type)
864 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
865 Can_Never_Be_Null (R_Stm_Type)
866 then
867 Error_No_Match (Subtype_Ind);
868 end if;
869
870 -- AI05-103: for elementary types, subtypes must statically match
871
872 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
873 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
874 Error_No_Match (Subtype_Ind);
875 end if;
876 end if;
877
878 -- All remaining cases are illegal
879
880 -- Note: previous versions of this subprogram allowed the return
881 -- value to be the ancestor of the return type if the return type
882 -- was a null extension. This was plainly incorrect.
883
884 else
885 Error_Msg_N
886 ("wrong type for return_subtype_indication", Subtype_Ind);
887 end if;
888 end Check_Return_Subtype_Indication;
889
890 ---------------------
891 -- Local Variables --
892 ---------------------
893
894 Expr : Node_Id;
895 Obj_Decl : Node_Id := Empty;
896
897 -- Start of processing for Analyze_Function_Return
898
899 begin
900 Set_Return_Present (Scope_Id);
901
902 if Nkind (N) = N_Simple_Return_Statement then
903 Expr := Expression (N);
904
905 -- Guard against a malformed expression. The parser may have tried to
906 -- recover but the node is not analyzable.
907
908 if Nkind (Expr) = N_Error then
909 Set_Etype (Expr, Any_Type);
910 Expander_Mode_Save_And_Set (False);
911 return;
912
913 else
914 -- The resolution of a controlled [extension] aggregate associated
915 -- with a return statement creates a temporary which needs to be
916 -- finalized on function exit. Wrap the return statement inside a
917 -- block so that the finalization machinery can detect this case.
918 -- This early expansion is done only when the return statement is
919 -- not part of a handled sequence of statements.
920
921 if Nkind_In (Expr, N_Aggregate,
922 N_Extension_Aggregate)
923 and then Needs_Finalization (R_Type)
924 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
925 then
926 Rewrite (N,
927 Make_Block_Statement (Loc,
928 Handled_Statement_Sequence =>
929 Make_Handled_Sequence_Of_Statements (Loc,
930 Statements => New_List (Relocate_Node (N)))));
931
932 Analyze (N);
933 return;
934 end if;
935
936 Analyze (Expr);
937
938 -- Ada 2005 (AI-251): If the type of the returned object is
939 -- an access to an interface type then we add an implicit type
940 -- conversion to force the displacement of the "this" pointer to
941 -- reference the secondary dispatch table. We cannot delay the
942 -- generation of this implicit conversion until the expansion
943 -- because in this case the type resolution changes the decoration
944 -- of the expression node to match R_Type; by contrast, if the
945 -- returned object is a class-wide interface type then it is too
946 -- early to generate here the implicit conversion since the return
947 -- statement may be rewritten by the expander into an extended
948 -- return statement whose expansion takes care of adding the
949 -- implicit type conversion to displace the pointer to the object.
950
951 if Expander_Active
952 and then Serious_Errors_Detected = 0
953 and then Is_Access_Type (R_Type)
954 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
955 and then Is_Interface (Designated_Type (R_Type))
956 and then Is_Progenitor (Designated_Type (R_Type),
957 Designated_Type (Etype (Expr)))
958 then
959 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
960 Analyze (Expr);
961 end if;
962
963 Resolve (Expr, R_Type);
964 Check_Limited_Return (N, Expr, R_Type);
965
966 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
967 Check_Aggregate_Accessibility (Expr);
968 end if;
969 end if;
970
971 -- RETURN only allowed in SPARK as the last statement in function
972
973 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
974 and then
975 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
976 or else Present (Next (N)))
977 then
978 Check_SPARK_05_Restriction
979 ("RETURN should be the last statement in function", N);
980 end if;
981
982 else
983 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
984 Obj_Decl := Last (Return_Object_Declarations (N));
985
986 -- Analyze parts specific to extended_return_statement:
987
988 declare
989 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
990 HSS : constant Node_Id := Handled_Statement_Sequence (N);
991
992 begin
993 Expr := Expression (Obj_Decl);
994
995 -- Note: The check for OK_For_Limited_Init will happen in
996 -- Analyze_Object_Declaration; we treat it as a normal
997 -- object declaration.
998
999 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1000 Analyze (Obj_Decl);
1001
1002 Check_Return_Subtype_Indication (Obj_Decl);
1003
1004 if Present (HSS) then
1005 Analyze (HSS);
1006
1007 if Present (Exception_Handlers (HSS)) then
1008
1009 -- ???Has_Nested_Block_With_Handler needs to be set.
1010 -- Probably by creating an actual N_Block_Statement.
1011 -- Probably in Expand.
1012
1013 null;
1014 end if;
1015 end if;
1016
1017 -- Mark the return object as referenced, since the return is an
1018 -- implicit reference of the object.
1019
1020 Set_Referenced (Defining_Identifier (Obj_Decl));
1021
1022 Check_References (Stm_Entity);
1023
1024 -- Check RM 6.5 (5.9/3)
1025
1026 if Has_Aliased then
1027 if Ada_Version < Ada_2012 then
1028
1029 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1030 -- Can it really happen (extended return???)
1031
1032 Error_Msg_N
1033 ("aliased only allowed for limited return objects "
1034 & "in Ada 2012??", N);
1035
1036 elsif not Is_Limited_View (R_Type) then
1037 Error_Msg_N
1038 ("aliased only allowed for limited return objects", N);
1039 end if;
1040 end if;
1041 end;
1042 end if;
1043
1044 -- Case of Expr present
1045
1046 if Present (Expr) then
1047
1048 -- Defend against previous errors
1049
1050 if Nkind (Expr) = N_Empty
1051 or else No (Etype (Expr))
1052 then
1053 return;
1054 end if;
1055
1056 -- Apply constraint check. Note that this is done before the implicit
1057 -- conversion of the expression done for anonymous access types to
1058 -- ensure correct generation of the null-excluding check associated
1059 -- with null-excluding expressions found in return statements. We
1060 -- don't need a check if the subtype of the return object is the
1061 -- same as the result subtype of the function.
1062
1063 if Nkind (N) /= N_Extended_Return_Statement
1064 or else Nkind (Obj_Decl) /= N_Object_Declaration
1065 or else Nkind (Object_Definition (Obj_Decl)) not in N_Has_Entity
1066 or else Entity (Object_Definition (Obj_Decl)) /= R_Type
1067 then
1068 Apply_Constraint_Check (Expr, R_Type);
1069 end if;
1070
1071 -- The return value is converted to the return type of the function,
1072 -- which implies a predicate check if the return type is predicated.
1073 -- We do not apply the check to a case expression because it will
1074 -- be expanded into a series of return statements, each of which
1075 -- will receive a predicate check.
1076
1077 if Nkind (Expr) /= N_Case_Expression then
1078 Apply_Predicate_Check (Expr, R_Type);
1079 end if;
1080
1081 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1082 -- type, apply an implicit conversion of the expression to that type
1083 -- to force appropriate static and run-time accessibility checks.
1084
1085 if Ada_Version >= Ada_2005
1086 and then Ekind (R_Type) = E_Anonymous_Access_Type
1087 then
1088 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1089 Analyze_And_Resolve (Expr, R_Type);
1090
1091 -- If this is a local anonymous access to subprogram, the
1092 -- accessibility check can be applied statically. The return is
1093 -- illegal if the access type of the return expression is declared
1094 -- inside of the subprogram (except if it is the subtype indication
1095 -- of an extended return statement).
1096
1097 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1098 if not Comes_From_Source (Current_Scope)
1099 or else Ekind (Current_Scope) = E_Return_Statement
1100 then
1101 null;
1102
1103 elsif
1104 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1105 then
1106 Error_Msg_N ("cannot return local access to subprogram", N);
1107 end if;
1108
1109 -- The expression cannot be of a formal incomplete type
1110
1111 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1112 and then Is_Generic_Type (Etype (Expr))
1113 then
1114 Error_Msg_N
1115 ("cannot return expression of a formal incomplete type", N);
1116 end if;
1117
1118 -- If the result type is class-wide, then check that the return
1119 -- expression's type is not declared at a deeper level than the
1120 -- function (RM05-6.5(5.6/2)).
1121
1122 if Ada_Version >= Ada_2005
1123 and then Is_Class_Wide_Type (R_Type)
1124 then
1125 if Type_Access_Level (Etype (Expr)) >
1126 Subprogram_Access_Level (Scope_Id)
1127 then
1128 Error_Msg_N
1129 ("level of return expression type is deeper than "
1130 & "class-wide function!", Expr);
1131 end if;
1132 end if;
1133
1134 -- Check incorrect use of dynamically tagged expression
1135
1136 if Is_Tagged_Type (R_Type) then
1137 Check_Dynamically_Tagged_Expression
1138 (Expr => Expr,
1139 Typ => R_Type,
1140 Related_Nod => N);
1141 end if;
1142
1143 -- ??? A real run-time accessibility check is needed in cases
1144 -- involving dereferences of access parameters. For now we just
1145 -- check the static cases.
1146
1147 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1148 and then Is_Limited_View (Etype (Scope_Id))
1149 and then Object_Access_Level (Expr) >
1150 Subprogram_Access_Level (Scope_Id)
1151 then
1152 -- Suppress the message in a generic, where the rewriting
1153 -- is irrelevant.
1154
1155 if Inside_A_Generic then
1156 null;
1157
1158 else
1159 Rewrite (N,
1160 Make_Raise_Program_Error (Loc,
1161 Reason => PE_Accessibility_Check_Failed));
1162 Analyze (N);
1163
1164 Error_Msg_Warn := SPARK_Mode /= On;
1165 Error_Msg_N ("cannot return a local value by reference<<", N);
1166 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1167 end if;
1168 end if;
1169
1170 if Known_Null (Expr)
1171 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1172 and then Null_Exclusion_Present (Parent (Scope_Id))
1173 then
1174 Apply_Compile_Time_Constraint_Error
1175 (N => Expr,
1176 Msg => "(Ada 2005) null not allowed for "
1177 & "null-excluding return??",
1178 Reason => CE_Null_Not_Allowed);
1179 end if;
1180
1181 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1182 -- has no initializing expression.
1183
1184 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1185 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1186 Subprogram_Access_Level (Scope_Id)
1187 then
1188 Error_Msg_N
1189 ("level of return expression type is deeper than "
1190 & "class-wide function!", Obj_Decl);
1191 end if;
1192 end if;
1193 end Analyze_Function_Return;
1194
1195 -------------------------------------
1196 -- Analyze_Generic_Subprogram_Body --
1197 -------------------------------------
1198
1199 procedure Analyze_Generic_Subprogram_Body
1200 (N : Node_Id;
1201 Gen_Id : Entity_Id)
1202 is
1203 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1204 Kind : constant Entity_Kind := Ekind (Gen_Id);
1205 Body_Id : Entity_Id;
1206 New_N : Node_Id;
1207 Spec : Node_Id;
1208
1209 begin
1210 -- Copy body and disable expansion while analyzing the generic For a
1211 -- stub, do not copy the stub (which would load the proper body), this
1212 -- will be done when the proper body is analyzed.
1213
1214 if Nkind (N) /= N_Subprogram_Body_Stub then
1215 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1216 Rewrite (N, New_N);
1217
1218 -- Once the contents of the generic copy and the template are
1219 -- swapped, do the same for their respective aspect specifications.
1220
1221 Exchange_Aspects (N, New_N);
1222
1223 -- Collect all contract-related source pragmas found within the
1224 -- template and attach them to the contract of the subprogram body.
1225 -- This contract is used in the capture of global references within
1226 -- annotations.
1227
1228 Create_Generic_Contract (N);
1229
1230 Start_Generic;
1231 end if;
1232
1233 Spec := Specification (N);
1234
1235 -- Within the body of the generic, the subprogram is callable, and
1236 -- behaves like the corresponding non-generic unit.
1237
1238 Body_Id := Defining_Entity (Spec);
1239
1240 if Kind = E_Generic_Procedure
1241 and then Nkind (Spec) /= N_Procedure_Specification
1242 then
1243 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1244 return;
1245
1246 elsif Kind = E_Generic_Function
1247 and then Nkind (Spec) /= N_Function_Specification
1248 then
1249 Error_Msg_N ("invalid body for generic function ", Body_Id);
1250 return;
1251 end if;
1252
1253 Set_Corresponding_Body (Gen_Decl, Body_Id);
1254
1255 if Has_Completion (Gen_Id)
1256 and then Nkind (Parent (N)) /= N_Subunit
1257 then
1258 Error_Msg_N ("duplicate generic body", N);
1259 return;
1260 else
1261 Set_Has_Completion (Gen_Id);
1262 end if;
1263
1264 if Nkind (N) = N_Subprogram_Body_Stub then
1265 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1266 else
1267 Set_Corresponding_Spec (N, Gen_Id);
1268 end if;
1269
1270 if Nkind (Parent (N)) = N_Compilation_Unit then
1271 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1272 end if;
1273
1274 -- Make generic parameters immediately visible in the body. They are
1275 -- needed to process the formals declarations. Then make the formals
1276 -- visible in a separate step.
1277
1278 Push_Scope (Gen_Id);
1279
1280 declare
1281 E : Entity_Id;
1282 First_Ent : Entity_Id;
1283
1284 begin
1285 First_Ent := First_Entity (Gen_Id);
1286
1287 E := First_Ent;
1288 while Present (E) and then not Is_Formal (E) loop
1289 Install_Entity (E);
1290 Next_Entity (E);
1291 end loop;
1292
1293 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1294
1295 -- Now generic formals are visible, and the specification can be
1296 -- analyzed, for subsequent conformance check.
1297
1298 Body_Id := Analyze_Subprogram_Specification (Spec);
1299
1300 -- Make formal parameters visible
1301
1302 if Present (E) then
1303
1304 -- E is the first formal parameter, we loop through the formals
1305 -- installing them so that they will be visible.
1306
1307 Set_First_Entity (Gen_Id, E);
1308 while Present (E) loop
1309 Install_Entity (E);
1310 Next_Formal (E);
1311 end loop;
1312 end if;
1313
1314 -- Visible generic entity is callable within its own body
1315
1316 Set_Ekind (Gen_Id, Ekind (Body_Id));
1317 Set_Ekind (Body_Id, E_Subprogram_Body);
1318 Set_Convention (Body_Id, Convention (Gen_Id));
1319 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1320 Set_Scope (Body_Id, Scope (Gen_Id));
1321
1322 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1323
1324 if Nkind (N) = N_Subprogram_Body_Stub then
1325
1326 -- No body to analyze, so restore state of generic unit
1327
1328 Set_Ekind (Gen_Id, Kind);
1329 Set_Ekind (Body_Id, Kind);
1330
1331 if Present (First_Ent) then
1332 Set_First_Entity (Gen_Id, First_Ent);
1333 end if;
1334
1335 End_Scope;
1336 return;
1337 end if;
1338
1339 -- If this is a compilation unit, it must be made visible explicitly,
1340 -- because the compilation of the declaration, unlike other library
1341 -- unit declarations, does not. If it is not a unit, the following
1342 -- is redundant but harmless.
1343
1344 Set_Is_Immediately_Visible (Gen_Id);
1345 Reference_Body_Formals (Gen_Id, Body_Id);
1346
1347 if Is_Child_Unit (Gen_Id) then
1348 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1349 end if;
1350
1351 Set_Actual_Subtypes (N, Current_Scope);
1352
1353 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1354 Set_SPARK_Pragma_Inherited (Body_Id);
1355
1356 -- Analyze any aspect specifications that appear on the generic
1357 -- subprogram body.
1358
1359 if Has_Aspects (N) then
1360 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1361 end if;
1362
1363 Analyze_Declarations (Declarations (N));
1364 Check_Completion;
1365
1366 -- Process the contract of the subprogram body after all declarations
1367 -- have been analyzed. This ensures that any contract-related pragmas
1368 -- are available through the N_Contract node of the body.
1369
1370 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1371
1372 Analyze (Handled_Statement_Sequence (N));
1373 Save_Global_References (Original_Node (N));
1374
1375 -- Prior to exiting the scope, include generic formals again (if any
1376 -- are present) in the set of local entities.
1377
1378 if Present (First_Ent) then
1379 Set_First_Entity (Gen_Id, First_Ent);
1380 end if;
1381
1382 Check_References (Gen_Id);
1383 end;
1384
1385 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1386 Update_Use_Clause_Chain;
1387 Validate_Categorization_Dependency (N, Gen_Id);
1388 End_Scope;
1389 Check_Subprogram_Order (N);
1390
1391 -- Outside of its body, unit is generic again
1392
1393 Set_Ekind (Gen_Id, Kind);
1394 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1395
1396 if Style_Check then
1397 Style.Check_Identifier (Body_Id, Gen_Id);
1398 end if;
1399
1400 End_Generic;
1401 end Analyze_Generic_Subprogram_Body;
1402
1403 ----------------------------
1404 -- Analyze_Null_Procedure --
1405 ----------------------------
1406
1407 -- WARNING: This routine manages Ghost regions. Return statements must be
1408 -- replaced by gotos that jump to the end of the routine and restore the
1409 -- Ghost mode.
1410
1411 procedure Analyze_Null_Procedure
1412 (N : Node_Id;
1413 Is_Completion : out Boolean)
1414 is
1415 Loc : constant Source_Ptr := Sloc (N);
1416 Spec : constant Node_Id := Specification (N);
1417
1418 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1419 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1420 Saved_ISMP : constant Boolean :=
1421 Ignore_SPARK_Mode_Pragmas_In_Instance;
1422 -- Save the Ghost and SPARK mode-related data to restore on exit
1423
1424 Designator : Entity_Id;
1425 Form : Node_Id;
1426 Null_Body : Node_Id := Empty;
1427 Null_Stmt : Node_Id := Null_Statement (Spec);
1428 Prev : Entity_Id;
1429
1430 begin
1431 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1432
1433 -- A null procedure is Ghost when it is stand-alone and is subject to
1434 -- pragma Ghost, or when the corresponding spec is Ghost. Set the mode
1435 -- now, to ensure that any nodes generated during analysis and expansion
1436 -- are properly marked as Ghost.
1437
1438 if Present (Prev) then
1439 Mark_And_Set_Ghost_Body (N, Prev);
1440 end if;
1441
1442 -- Capture the profile of the null procedure before analysis, for
1443 -- expansion at the freeze point and at each point of call. The body is
1444 -- used if the procedure has preconditions, or if it is a completion. In
1445 -- the first case the body is analyzed at the freeze point, in the other
1446 -- it replaces the null procedure declaration.
1447
1448 -- For a null procedure that comes from source, a NULL statement is
1449 -- provided by the parser, which carries the source location of the
1450 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1451 -- from expansion, create one now.
1452
1453 if No (Null_Stmt) then
1454 Null_Stmt := Make_Null_Statement (Loc);
1455 end if;
1456
1457 Null_Body :=
1458 Make_Subprogram_Body (Loc,
1459 Specification => New_Copy_Tree (Spec),
1460 Declarations => New_List,
1461 Handled_Statement_Sequence =>
1462 Make_Handled_Sequence_Of_Statements (Loc,
1463 Statements => New_List (Null_Stmt)));
1464
1465 -- Create new entities for body and formals
1466
1467 Set_Defining_Unit_Name (Specification (Null_Body),
1468 Make_Defining_Identifier
1469 (Sloc (Defining_Entity (N)),
1470 Chars (Defining_Entity (N))));
1471
1472 Form := First (Parameter_Specifications (Specification (Null_Body)));
1473 while Present (Form) loop
1474 Set_Defining_Identifier (Form,
1475 Make_Defining_Identifier
1476 (Sloc (Defining_Identifier (Form)),
1477 Chars (Defining_Identifier (Form))));
1478 Next (Form);
1479 end loop;
1480
1481 -- Determine whether the null procedure may be a completion of a generic
1482 -- suprogram, in which case we use the new null body as the completion
1483 -- and set minimal semantic information on the original declaration,
1484 -- which is rewritten as a null statement.
1485
1486 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1487 Insert_Before (N, Null_Body);
1488 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1489
1490 Rewrite (N, Make_Null_Statement (Loc));
1491 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1492 Is_Completion := True;
1493
1494 goto Leave;
1495
1496 else
1497 -- Resolve the types of the formals now, because the freeze point may
1498 -- appear in a different context, e.g. an instantiation.
1499
1500 Form := First (Parameter_Specifications (Specification (Null_Body)));
1501 while Present (Form) loop
1502 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1503 Find_Type (Parameter_Type (Form));
1504
1505 elsif No (Access_To_Subprogram_Definition
1506 (Parameter_Type (Form)))
1507 then
1508 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1509
1510 -- The case of a null procedure with a formal that is an
1511 -- access-to-subprogram type, and that is used as an actual
1512 -- in an instantiation is left to the enthusiastic reader.
1513
1514 else
1515 null;
1516 end if;
1517
1518 Next (Form);
1519 end loop;
1520 end if;
1521
1522 -- If there are previous overloadable entities with the same name, check
1523 -- whether any of them is completed by the null procedure.
1524
1525 if Present (Prev) and then Is_Overloadable (Prev) then
1526 Designator := Analyze_Subprogram_Specification (Spec);
1527 Prev := Find_Corresponding_Spec (N);
1528 end if;
1529
1530 if No (Prev) or else not Comes_From_Source (Prev) then
1531 Designator := Analyze_Subprogram_Specification (Spec);
1532 Set_Has_Completion (Designator);
1533
1534 -- Signal to caller that this is a procedure declaration
1535
1536 Is_Completion := False;
1537
1538 -- Null procedures are always inlined, but generic formal subprograms
1539 -- which appear as such in the internal instance of formal packages,
1540 -- need no completion and are not marked Inline.
1541
1542 if Expander_Active
1543 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1544 then
1545 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1546 Set_Body_To_Inline (N, Null_Body);
1547 Set_Is_Inlined (Designator);
1548 end if;
1549
1550 else
1551 -- The null procedure is a completion. We unconditionally rewrite
1552 -- this as a null body (even if expansion is not active), because
1553 -- there are various error checks that are applied on this body
1554 -- when it is analyzed (e.g. correct aspect placement).
1555
1556 if Has_Completion (Prev) then
1557 Error_Msg_Sloc := Sloc (Prev);
1558 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1559 end if;
1560
1561 Check_Previous_Null_Procedure (N, Prev);
1562
1563 Is_Completion := True;
1564 Rewrite (N, Null_Body);
1565 Analyze (N);
1566 end if;
1567
1568 <<Leave>>
1569 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
1570 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1571 end Analyze_Null_Procedure;
1572
1573 -----------------------------
1574 -- Analyze_Operator_Symbol --
1575 -----------------------------
1576
1577 -- An operator symbol such as "+" or "and" may appear in context where the
1578 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1579 -- is just a string, as in (conjunction = "or"). In these cases the parser
1580 -- generates this node, and the semantics does the disambiguation. Other
1581 -- such case are actuals in an instantiation, the generic unit in an
1582 -- instantiation, and pragma arguments.
1583
1584 procedure Analyze_Operator_Symbol (N : Node_Id) is
1585 Par : constant Node_Id := Parent (N);
1586
1587 begin
1588 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1589 or else Nkind (Par) = N_Function_Instantiation
1590 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1591 or else (Nkind (Par) = N_Pragma_Argument_Association
1592 and then not Is_Pragma_String_Literal (Par))
1593 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1594 or else (Nkind (Par) = N_Attribute_Reference
1595 and then Attribute_Name (Par) /= Name_Value)
1596 then
1597 Find_Direct_Name (N);
1598
1599 else
1600 Change_Operator_Symbol_To_String_Literal (N);
1601 Analyze (N);
1602 end if;
1603 end Analyze_Operator_Symbol;
1604
1605 -----------------------------------
1606 -- Analyze_Parameter_Association --
1607 -----------------------------------
1608
1609 procedure Analyze_Parameter_Association (N : Node_Id) is
1610 begin
1611 Analyze (Explicit_Actual_Parameter (N));
1612 end Analyze_Parameter_Association;
1613
1614 ----------------------------
1615 -- Analyze_Procedure_Call --
1616 ----------------------------
1617
1618 -- WARNING: This routine manages Ghost regions. Return statements must be
1619 -- replaced by gotos that jump to the end of the routine and restore the
1620 -- Ghost mode.
1621
1622 procedure Analyze_Procedure_Call (N : Node_Id) is
1623 procedure Analyze_Call_And_Resolve;
1624 -- Do Analyze and Resolve calls for procedure call. At the end, check
1625 -- for illegal order dependence.
1626 -- ??? where is the check for illegal order dependencies?
1627
1628 ------------------------------
1629 -- Analyze_Call_And_Resolve --
1630 ------------------------------
1631
1632 procedure Analyze_Call_And_Resolve is
1633 begin
1634 if Nkind (N) = N_Procedure_Call_Statement then
1635 Analyze_Call (N);
1636 Resolve (N, Standard_Void_Type);
1637 else
1638 Analyze (N);
1639 end if;
1640 end Analyze_Call_And_Resolve;
1641
1642 -- Local variables
1643
1644 Actuals : constant List_Id := Parameter_Associations (N);
1645 Loc : constant Source_Ptr := Sloc (N);
1646 P : constant Node_Id := Name (N);
1647
1648 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1649 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1650 -- Save the Ghost-related attributes to restore on exit
1651
1652 Actual : Node_Id;
1653 New_N : Node_Id;
1654
1655 -- Start of processing for Analyze_Procedure_Call
1656
1657 begin
1658 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1659 -- a procedure call or an entry call. The prefix may denote an access
1660 -- to subprogram type, in which case an implicit dereference applies.
1661 -- If the prefix is an indexed component (without implicit dereference)
1662 -- then the construct denotes a call to a member of an entire family.
1663 -- If the prefix is a simple name, it may still denote a call to a
1664 -- parameterless member of an entry family. Resolution of these various
1665 -- interpretations is delicate.
1666
1667 -- Do not analyze machine code statements to avoid rejecting them in
1668 -- CodePeer mode.
1669
1670 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1671 Set_Etype (P, Standard_Void_Type);
1672 else
1673 Analyze (P);
1674 end if;
1675
1676 -- If this is a call of the form Obj.Op, the call may have been analyzed
1677 -- and possibly rewritten into a block, in which case we are done.
1678
1679 if Analyzed (N) then
1680 return;
1681
1682 -- If there is an error analyzing the name (which may have been
1683 -- rewritten if the original call was in prefix notation) then error
1684 -- has been emitted already, mark node and return.
1685
1686 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1687 Set_Etype (N, Any_Type);
1688 return;
1689 end if;
1690
1691 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1692 -- Set the mode now to ensure that any nodes generated during analysis
1693 -- and expansion are properly marked as Ghost.
1694
1695 Mark_And_Set_Ghost_Procedure_Call (N);
1696
1697 -- Otherwise analyze the parameters
1698
1699 if Present (Actuals) then
1700 Actual := First (Actuals);
1701
1702 while Present (Actual) loop
1703 Analyze (Actual);
1704 Check_Parameterless_Call (Actual);
1705 Next (Actual);
1706 end loop;
1707 end if;
1708
1709 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1710
1711 if Nkind (P) = N_Attribute_Reference
1712 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1713 Name_Elab_Body,
1714 Name_Elab_Subp_Body)
1715 then
1716 if Present (Actuals) then
1717 Error_Msg_N
1718 ("no parameters allowed for this call", First (Actuals));
1719 goto Leave;
1720 end if;
1721
1722 Set_Etype (N, Standard_Void_Type);
1723 Set_Analyzed (N);
1724
1725 elsif Is_Entity_Name (P)
1726 and then Is_Record_Type (Etype (Entity (P)))
1727 and then Remote_AST_I_Dereference (P)
1728 then
1729 goto Leave;
1730
1731 elsif Is_Entity_Name (P)
1732 and then Ekind (Entity (P)) /= E_Entry_Family
1733 then
1734 if Is_Access_Type (Etype (P))
1735 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1736 and then No (Actuals)
1737 and then Comes_From_Source (N)
1738 then
1739 Error_Msg_N ("missing explicit dereference in call", N);
1740 end if;
1741
1742 Analyze_Call_And_Resolve;
1743
1744 -- If the prefix is the simple name of an entry family, this is a
1745 -- parameterless call from within the task body itself.
1746
1747 elsif Is_Entity_Name (P)
1748 and then Nkind (P) = N_Identifier
1749 and then Ekind (Entity (P)) = E_Entry_Family
1750 and then Present (Actuals)
1751 and then No (Next (First (Actuals)))
1752 then
1753 -- Can be call to parameterless entry family. What appears to be the
1754 -- sole argument is in fact the entry index. Rewrite prefix of node
1755 -- accordingly. Source representation is unchanged by this
1756 -- transformation.
1757
1758 New_N :=
1759 Make_Indexed_Component (Loc,
1760 Prefix =>
1761 Make_Selected_Component (Loc,
1762 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1763 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1764 Expressions => Actuals);
1765 Set_Name (N, New_N);
1766 Set_Etype (New_N, Standard_Void_Type);
1767 Set_Parameter_Associations (N, No_List);
1768 Analyze_Call_And_Resolve;
1769
1770 elsif Nkind (P) = N_Explicit_Dereference then
1771 if Ekind (Etype (P)) = E_Subprogram_Type then
1772 Analyze_Call_And_Resolve;
1773 else
1774 Error_Msg_N ("expect access to procedure in call", P);
1775 end if;
1776
1777 -- The name can be a selected component or an indexed component that
1778 -- yields an access to subprogram. Such a prefix is legal if the call
1779 -- has parameter associations.
1780
1781 elsif Is_Access_Type (Etype (P))
1782 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1783 then
1784 if Present (Actuals) then
1785 Analyze_Call_And_Resolve;
1786 else
1787 Error_Msg_N ("missing explicit dereference in call ", N);
1788 end if;
1789
1790 -- If not an access to subprogram, then the prefix must resolve to the
1791 -- name of an entry, entry family, or protected operation.
1792
1793 -- For the case of a simple entry call, P is a selected component where
1794 -- the prefix is the task and the selector name is the entry. A call to
1795 -- a protected procedure will have the same syntax. If the protected
1796 -- object contains overloaded operations, the entity may appear as a
1797 -- function, the context will select the operation whose type is Void.
1798
1799 elsif Nkind (P) = N_Selected_Component
1800 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1801 E_Function,
1802 E_Procedure)
1803 then
1804 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1805 -- in prefix notation may still be missing its controlling argument,
1806 -- so perform the transformation now.
1807
1808 if SPARK_Mode = On and then In_Inlined_Body then
1809 declare
1810 Subp : constant Entity_Id := Entity (Selector_Name (P));
1811 Typ : constant Entity_Id := Etype (Prefix (P));
1812
1813 begin
1814 if Is_Tagged_Type (Typ)
1815 and then Present (First_Formal (Subp))
1816 and then (Etype (First_Formal (Subp)) = Typ
1817 or else
1818 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1819 and then Try_Object_Operation (P)
1820 then
1821 return;
1822
1823 else
1824 Analyze_Call_And_Resolve;
1825 end if;
1826 end;
1827
1828 else
1829 Analyze_Call_And_Resolve;
1830 end if;
1831
1832 elsif Nkind (P) = N_Selected_Component
1833 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1834 and then Present (Actuals)
1835 and then No (Next (First (Actuals)))
1836 then
1837 -- Can be call to parameterless entry family. What appears to be the
1838 -- sole argument is in fact the entry index. Rewrite prefix of node
1839 -- accordingly. Source representation is unchanged by this
1840 -- transformation.
1841
1842 New_N :=
1843 Make_Indexed_Component (Loc,
1844 Prefix => New_Copy (P),
1845 Expressions => Actuals);
1846 Set_Name (N, New_N);
1847 Set_Etype (New_N, Standard_Void_Type);
1848 Set_Parameter_Associations (N, No_List);
1849 Analyze_Call_And_Resolve;
1850
1851 -- For the case of a reference to an element of an entry family, P is
1852 -- an indexed component whose prefix is a selected component (task and
1853 -- entry family), and whose index is the entry family index.
1854
1855 elsif Nkind (P) = N_Indexed_Component
1856 and then Nkind (Prefix (P)) = N_Selected_Component
1857 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1858 then
1859 Analyze_Call_And_Resolve;
1860
1861 -- If the prefix is the name of an entry family, it is a call from
1862 -- within the task body itself.
1863
1864 elsif Nkind (P) = N_Indexed_Component
1865 and then Nkind (Prefix (P)) = N_Identifier
1866 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1867 then
1868 New_N :=
1869 Make_Selected_Component (Loc,
1870 Prefix =>
1871 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1872 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1873 Rewrite (Prefix (P), New_N);
1874 Analyze (P);
1875 Analyze_Call_And_Resolve;
1876
1877 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1878 -- procedure name, so the construct can only be a qualified expression.
1879
1880 elsif Nkind (P) = N_Qualified_Expression
1881 and then Ada_Version >= Ada_2012
1882 then
1883 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1884 Analyze (N);
1885
1886 -- Anything else is an error
1887
1888 else
1889 Error_Msg_N ("invalid procedure or entry call", N);
1890 end if;
1891
1892 <<Leave>>
1893 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1894 end Analyze_Procedure_Call;
1895
1896 ------------------------------
1897 -- Analyze_Return_Statement --
1898 ------------------------------
1899
1900 procedure Analyze_Return_Statement (N : Node_Id) is
1901 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
1902 N_Simple_Return_Statement));
1903
1904 Returns_Object : constant Boolean :=
1905 Nkind (N) = N_Extended_Return_Statement
1906 or else
1907 (Nkind (N) = N_Simple_Return_Statement
1908 and then Present (Expression (N)));
1909 -- True if we're returning something; that is, "return <expression>;"
1910 -- or "return Result : T [:= ...]". False for "return;". Used for error
1911 -- checking: If Returns_Object is True, N should apply to a function
1912 -- body; otherwise N should apply to a procedure body, entry body,
1913 -- accept statement, or extended return statement.
1914
1915 function Find_What_It_Applies_To return Entity_Id;
1916 -- Find the entity representing the innermost enclosing body, accept
1917 -- statement, or extended return statement. If the result is a callable
1918 -- construct or extended return statement, then this will be the value
1919 -- of the Return_Applies_To attribute. Otherwise, the program is
1920 -- illegal. See RM-6.5(4/2).
1921
1922 -----------------------------
1923 -- Find_What_It_Applies_To --
1924 -----------------------------
1925
1926 function Find_What_It_Applies_To return Entity_Id is
1927 Result : Entity_Id := Empty;
1928
1929 begin
1930 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1931 -- and postconditions.
1932
1933 for J in reverse 0 .. Scope_Stack.Last loop
1934 Result := Scope_Stack.Table (J).Entity;
1935 exit when not Ekind_In (Result, E_Block, E_Loop)
1936 and then Chars (Result) /= Name_uPostconditions;
1937 end loop;
1938
1939 pragma Assert (Present (Result));
1940 return Result;
1941 end Find_What_It_Applies_To;
1942
1943 -- Local declarations
1944
1945 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1946 Kind : constant Entity_Kind := Ekind (Scope_Id);
1947 Loc : constant Source_Ptr := Sloc (N);
1948 Stm_Entity : constant Entity_Id :=
1949 New_Internal_Entity
1950 (E_Return_Statement, Current_Scope, Loc, 'R');
1951
1952 -- Start of processing for Analyze_Return_Statement
1953
1954 begin
1955 Set_Return_Statement_Entity (N, Stm_Entity);
1956
1957 Set_Etype (Stm_Entity, Standard_Void_Type);
1958 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1959
1960 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1961 -- (4/2): an inner return statement will apply to this extended return.
1962
1963 if Nkind (N) = N_Extended_Return_Statement then
1964 Push_Scope (Stm_Entity);
1965 end if;
1966
1967 -- Check that pragma No_Return is obeyed. Don't complain about the
1968 -- implicitly-generated return that is placed at the end.
1969
1970 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1971 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1972 end if;
1973
1974 -- Warn on any unassigned OUT parameters if in procedure
1975
1976 if Ekind (Scope_Id) = E_Procedure then
1977 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1978 end if;
1979
1980 -- Check that functions return objects, and other things do not
1981
1982 if Kind = E_Function or else Kind = E_Generic_Function then
1983 if not Returns_Object then
1984 Error_Msg_N ("missing expression in return from function", N);
1985 end if;
1986
1987 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1988 if Returns_Object then
1989 Error_Msg_N ("procedure cannot return value (use function)", N);
1990 end if;
1991
1992 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1993 if Returns_Object then
1994 if Is_Protected_Type (Scope (Scope_Id)) then
1995 Error_Msg_N ("entry body cannot return value", N);
1996 else
1997 Error_Msg_N ("accept statement cannot return value", N);
1998 end if;
1999 end if;
2000
2001 elsif Kind = E_Return_Statement then
2002
2003 -- We are nested within another return statement, which must be an
2004 -- extended_return_statement.
2005
2006 if Returns_Object then
2007 if Nkind (N) = N_Extended_Return_Statement then
2008 Error_Msg_N
2009 ("extended return statement cannot be nested (use `RETURN;`)",
2010 N);
2011
2012 -- Case of a simple return statement with a value inside extended
2013 -- return statement.
2014
2015 else
2016 Error_Msg_N
2017 ("return nested in extended return statement cannot return "
2018 & "value (use `RETURN;`)", N);
2019 end if;
2020 end if;
2021
2022 else
2023 Error_Msg_N ("illegal context for return statement", N);
2024 end if;
2025
2026 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2027 Analyze_Function_Return (N);
2028
2029 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2030 Set_Return_Present (Scope_Id);
2031 end if;
2032
2033 if Nkind (N) = N_Extended_Return_Statement then
2034 End_Scope;
2035 end if;
2036
2037 Kill_Current_Values (Last_Assignment_Only => True);
2038 Check_Unreachable_Code (N);
2039
2040 Analyze_Dimension (N);
2041 end Analyze_Return_Statement;
2042
2043 -------------------------------------
2044 -- Analyze_Simple_Return_Statement --
2045 -------------------------------------
2046
2047 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2048 begin
2049 if Present (Expression (N)) then
2050 Mark_Coextensions (N, Expression (N));
2051 end if;
2052
2053 Analyze_Return_Statement (N);
2054 end Analyze_Simple_Return_Statement;
2055
2056 -------------------------
2057 -- Analyze_Return_Type --
2058 -------------------------
2059
2060 procedure Analyze_Return_Type (N : Node_Id) is
2061 Designator : constant Entity_Id := Defining_Entity (N);
2062 Typ : Entity_Id := Empty;
2063
2064 begin
2065 -- Normal case where result definition does not indicate an error
2066
2067 if Result_Definition (N) /= Error then
2068 if Nkind (Result_Definition (N)) = N_Access_Definition then
2069 Check_SPARK_05_Restriction
2070 ("access result is not allowed", Result_Definition (N));
2071
2072 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2073
2074 declare
2075 AD : constant Node_Id :=
2076 Access_To_Subprogram_Definition (Result_Definition (N));
2077 begin
2078 if Present (AD) and then Protected_Present (AD) then
2079 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2080 else
2081 Typ := Access_Definition (N, Result_Definition (N));
2082 end if;
2083 end;
2084
2085 Set_Parent (Typ, Result_Definition (N));
2086 Set_Is_Local_Anonymous_Access (Typ);
2087 Set_Etype (Designator, Typ);
2088
2089 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2090
2091 Null_Exclusion_Static_Checks (N);
2092
2093 -- Subtype_Mark case
2094
2095 else
2096 Find_Type (Result_Definition (N));
2097 Typ := Entity (Result_Definition (N));
2098 Set_Etype (Designator, Typ);
2099
2100 -- Unconstrained array as result is not allowed in SPARK
2101
2102 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2103 Check_SPARK_05_Restriction
2104 ("returning an unconstrained array is not allowed",
2105 Result_Definition (N));
2106 end if;
2107
2108 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2109
2110 Null_Exclusion_Static_Checks (N);
2111
2112 -- If a null exclusion is imposed on the result type, then create
2113 -- a null-excluding itype (an access subtype) and use it as the
2114 -- function's Etype. Note that the null exclusion checks are done
2115 -- right before this, because they don't get applied to types that
2116 -- do not come from source.
2117
2118 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2119 Set_Etype (Designator,
2120 Create_Null_Excluding_Itype
2121 (T => Typ,
2122 Related_Nod => N,
2123 Scope_Id => Scope (Current_Scope)));
2124
2125 -- The new subtype must be elaborated before use because
2126 -- it is visible outside of the function. However its base
2127 -- type may not be frozen yet, so the reference that will
2128 -- force elaboration must be attached to the freezing of
2129 -- the base type.
2130
2131 -- If the return specification appears on a proper body,
2132 -- the subtype will have been created already on the spec.
2133
2134 if Is_Frozen (Typ) then
2135 if Nkind (Parent (N)) = N_Subprogram_Body
2136 and then Nkind (Parent (Parent (N))) = N_Subunit
2137 then
2138 null;
2139 else
2140 Build_Itype_Reference (Etype (Designator), Parent (N));
2141 end if;
2142
2143 else
2144 Ensure_Freeze_Node (Typ);
2145
2146 declare
2147 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2148 begin
2149 Set_Itype (IR, Etype (Designator));
2150 Append_Freeze_Actions (Typ, New_List (IR));
2151 end;
2152 end if;
2153
2154 else
2155 Set_Etype (Designator, Typ);
2156 end if;
2157
2158 if Ekind (Typ) = E_Incomplete_Type
2159 or else (Is_Class_Wide_Type (Typ)
2160 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2161 then
2162 -- AI05-0151: Tagged incomplete types are allowed in all formal
2163 -- parts. Untagged incomplete types are not allowed in bodies.
2164 -- As a consequence, limited views cannot appear in a basic
2165 -- declaration that is itself within a body, because there is
2166 -- no point at which the non-limited view will become visible.
2167
2168 if Ada_Version >= Ada_2012 then
2169 if From_Limited_With (Typ) and then In_Package_Body then
2170 Error_Msg_NE
2171 ("invalid use of incomplete type&",
2172 Result_Definition (N), Typ);
2173
2174 -- The return type of a subprogram body cannot be of a
2175 -- formal incomplete type.
2176
2177 elsif Is_Generic_Type (Typ)
2178 and then Nkind (Parent (N)) = N_Subprogram_Body
2179 then
2180 Error_Msg_N
2181 ("return type cannot be a formal incomplete type",
2182 Result_Definition (N));
2183
2184 elsif Is_Class_Wide_Type (Typ)
2185 and then Is_Generic_Type (Root_Type (Typ))
2186 and then Nkind (Parent (N)) = N_Subprogram_Body
2187 then
2188 Error_Msg_N
2189 ("return type cannot be a formal incomplete type",
2190 Result_Definition (N));
2191
2192 elsif Is_Tagged_Type (Typ) then
2193 null;
2194
2195 -- Use is legal in a thunk generated for an operation
2196 -- inherited from a progenitor.
2197
2198 elsif Is_Thunk (Designator)
2199 and then Present (Non_Limited_View (Typ))
2200 then
2201 null;
2202
2203 elsif Nkind (Parent (N)) = N_Subprogram_Body
2204 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2205 N_Entry_Body)
2206 then
2207 Error_Msg_NE
2208 ("invalid use of untagged incomplete type&",
2209 Designator, Typ);
2210 end if;
2211
2212 -- The type must be completed in the current package. This
2213 -- is checked at the end of the package declaration when
2214 -- Taft-amendment types are identified. If the return type
2215 -- is class-wide, there is no required check, the type can
2216 -- be a bona fide TAT.
2217
2218 if Ekind (Scope (Current_Scope)) = E_Package
2219 and then In_Private_Part (Scope (Current_Scope))
2220 and then not Is_Class_Wide_Type (Typ)
2221 then
2222 Append_Elmt (Designator, Private_Dependents (Typ));
2223 end if;
2224
2225 else
2226 Error_Msg_NE
2227 ("invalid use of incomplete type&", Designator, Typ);
2228 end if;
2229 end if;
2230 end if;
2231
2232 -- Case where result definition does indicate an error
2233
2234 else
2235 Set_Etype (Designator, Any_Type);
2236 end if;
2237 end Analyze_Return_Type;
2238
2239 -----------------------------
2240 -- Analyze_Subprogram_Body --
2241 -----------------------------
2242
2243 procedure Analyze_Subprogram_Body (N : Node_Id) is
2244 Loc : constant Source_Ptr := Sloc (N);
2245 Body_Spec : constant Node_Id := Specification (N);
2246 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2247
2248 begin
2249 if Debug_Flag_C then
2250 Write_Str ("==> subprogram body ");
2251 Write_Name (Chars (Body_Id));
2252 Write_Str (" from ");
2253 Write_Location (Loc);
2254 Write_Eol;
2255 Indent;
2256 end if;
2257
2258 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2259
2260 -- The real work is split out into the helper, so it can do "return;"
2261 -- without skipping the debug output:
2262
2263 Analyze_Subprogram_Body_Helper (N);
2264
2265 if Debug_Flag_C then
2266 Outdent;
2267 Write_Str ("<== subprogram body ");
2268 Write_Name (Chars (Body_Id));
2269 Write_Str (" from ");
2270 Write_Location (Loc);
2271 Write_Eol;
2272 end if;
2273 end Analyze_Subprogram_Body;
2274
2275 ------------------------------------
2276 -- Analyze_Subprogram_Body_Helper --
2277 ------------------------------------
2278
2279 -- This procedure is called for regular subprogram bodies, generic bodies,
2280 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2281 -- specification matters, and is used to create a proper declaration for
2282 -- the subprogram, or to perform conformance checks.
2283
2284 -- WARNING: This routine manages Ghost regions. Return statements must be
2285 -- replaced by gotos that jump to the end of the routine and restore the
2286 -- Ghost mode.
2287
2288 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2289 Body_Spec : Node_Id := Specification (N);
2290 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2291 Loc : constant Source_Ptr := Sloc (N);
2292 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2293
2294 Conformant : Boolean;
2295 Desig_View : Entity_Id := Empty;
2296 Exch_Views : Elist_Id := No_Elist;
2297 HSS : Node_Id;
2298 Mask_Types : Elist_Id := No_Elist;
2299 Prot_Typ : Entity_Id := Empty;
2300 Spec_Decl : Node_Id := Empty;
2301 Spec_Id : Entity_Id;
2302
2303 Last_Real_Spec_Entity : Entity_Id := Empty;
2304 -- When we analyze a separate spec, the entity chain ends up containing
2305 -- the formals, as well as any itypes generated during analysis of the
2306 -- default expressions for parameters, or the arguments of associated
2307 -- precondition/postcondition pragmas (which are analyzed in the context
2308 -- of the spec since they have visibility on formals).
2309 --
2310 -- These entities belong with the spec and not the body. However we do
2311 -- the analysis of the body in the context of the spec (again to obtain
2312 -- visibility to the formals), and all the entities generated during
2313 -- this analysis end up also chained to the entity chain of the spec.
2314 -- But they really belong to the body, and there is circuitry to move
2315 -- them from the spec to the body.
2316 --
2317 -- However, when we do this move, we don't want to move the real spec
2318 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2319 -- variable points to the last real spec entity, so we only move those
2320 -- chained beyond that point. It is initialized to Empty to deal with
2321 -- the case where there is no separate spec.
2322
2323 function Body_Has_Contract return Boolean;
2324 -- Check whether unanalyzed body has an aspect or pragma that may
2325 -- generate a SPARK contract.
2326
2327 function Body_Has_SPARK_Mode_On return Boolean;
2328 -- Check whether SPARK_Mode On applies to the subprogram body, either
2329 -- because it is specified directly on the body, or because it is
2330 -- inherited from the enclosing subprogram or package.
2331
2332 procedure Build_Subprogram_Declaration;
2333 -- Create a matching subprogram declaration for subprogram body N
2334
2335 procedure Check_Anonymous_Return;
2336 -- Ada 2005: if a function returns an access type that denotes a task,
2337 -- or a type that contains tasks, we must create a master entity for
2338 -- the anonymous type, which typically will be used in an allocator
2339 -- in the body of the function.
2340
2341 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2342 -- Look ahead to recognize a pragma that may appear after the body.
2343 -- If there is a previous spec, check that it appears in the same
2344 -- declarative part. If the pragma is Inline_Always, perform inlining
2345 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2346 -- If the body acts as a spec, and inlining is required, we create a
2347 -- subprogram declaration for it, in order to attach the body to inline.
2348 -- If pragma does not appear after the body, check whether there is
2349 -- an inline pragma before any local declarations.
2350
2351 procedure Check_Missing_Return;
2352 -- Checks for a function with a no return statements, and also performs
2353 -- the warning checks implemented by Check_Returns. In formal mode, also
2354 -- verify that a function ends with a RETURN and that a procedure does
2355 -- not contain any RETURN.
2356
2357 function Disambiguate_Spec return Entity_Id;
2358 -- When a primitive is declared between the private view and the full
2359 -- view of a concurrent type which implements an interface, a special
2360 -- mechanism is used to find the corresponding spec of the primitive
2361 -- body.
2362
2363 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2364 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2365 -- incomplete types coming from a limited context and replace their
2366 -- limited views with the non-limited ones. Return the list of changes
2367 -- to be used to undo the transformation.
2368
2369 function Is_Private_Concurrent_Primitive
2370 (Subp_Id : Entity_Id) return Boolean;
2371 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2372 -- type that implements an interface and has a private view.
2373
2374 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2375 -- N is the body generated for an expression function that is not a
2376 -- completion and Spec_Id the defining entity of its spec. Mark all
2377 -- the not-yet-frozen types referenced by the simple return statement
2378 -- of the function as formally frozen.
2379
2380 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2381 -- Undo the transformation done by Exchange_Limited_Views.
2382
2383 procedure Set_Trivial_Subprogram (N : Node_Id);
2384 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2385 -- subprogram whose body is being analyzed. N is the statement node
2386 -- causing the flag to be set, if the following statement is a return
2387 -- of an entity, we mark the entity as set in source to suppress any
2388 -- warning on the stylized use of function stubs with a dummy return.
2389
2390 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2391 -- Undo the transformation done by Mask_Unfrozen_Types
2392
2393 procedure Verify_Overriding_Indicator;
2394 -- If there was a previous spec, the entity has been entered in the
2395 -- current scope previously. If the body itself carries an overriding
2396 -- indicator, check that it is consistent with the known status of the
2397 -- entity.
2398
2399 -----------------------
2400 -- Body_Has_Contract --
2401 -----------------------
2402
2403 function Body_Has_Contract return Boolean is
2404 Decls : constant List_Id := Declarations (N);
2405 Item : Node_Id;
2406
2407 begin
2408 -- Check for aspects that may generate a contract
2409
2410 if Present (Aspect_Specifications (N)) then
2411 Item := First (Aspect_Specifications (N));
2412 while Present (Item) loop
2413 if Is_Subprogram_Contract_Annotation (Item) then
2414 return True;
2415 end if;
2416
2417 Next (Item);
2418 end loop;
2419 end if;
2420
2421 -- Check for pragmas that may generate a contract
2422
2423 if Present (Decls) then
2424 Item := First (Decls);
2425 while Present (Item) loop
2426 if Nkind (Item) = N_Pragma
2427 and then Is_Subprogram_Contract_Annotation (Item)
2428 then
2429 return True;
2430 end if;
2431
2432 Next (Item);
2433 end loop;
2434 end if;
2435
2436 return False;
2437 end Body_Has_Contract;
2438
2439 ----------------------------
2440 -- Body_Has_SPARK_Mode_On --
2441 ----------------------------
2442
2443 function Body_Has_SPARK_Mode_On return Boolean is
2444 Decls : constant List_Id := Declarations (N);
2445 Item : Node_Id;
2446
2447 begin
2448 -- Check for SPARK_Mode aspect
2449
2450 if Present (Aspect_Specifications (N)) then
2451 Item := First (Aspect_Specifications (N));
2452 while Present (Item) loop
2453 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2454 return Get_SPARK_Mode_From_Annotation (Item) = On;
2455 end if;
2456
2457 Next (Item);
2458 end loop;
2459 end if;
2460
2461 -- Check for SPARK_Mode pragma
2462
2463 if Present (Decls) then
2464 Item := First (Decls);
2465 while Present (Item) loop
2466
2467 -- Pragmas that apply to a subprogram body are usually grouped
2468 -- together. Look for a potential pragma SPARK_Mode among them.
2469
2470 if Nkind (Item) = N_Pragma then
2471 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2472 return Get_SPARK_Mode_From_Annotation (Item) = On;
2473 end if;
2474
2475 -- Otherwise the first non-pragma declarative item terminates
2476 -- the region where pragma SPARK_Mode may appear.
2477
2478 else
2479 exit;
2480 end if;
2481
2482 Next (Item);
2483 end loop;
2484 end if;
2485
2486 -- Otherwise, the applicable SPARK_Mode is inherited from the
2487 -- enclosing subprogram or package.
2488
2489 return SPARK_Mode = On;
2490 end Body_Has_SPARK_Mode_On;
2491
2492 ----------------------------------
2493 -- Build_Subprogram_Declaration --
2494 ----------------------------------
2495
2496 procedure Build_Subprogram_Declaration is
2497 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2498 -- Relocate certain categorization pragmas from the declarative list
2499 -- of subprogram body From and insert them after node To. The pragmas
2500 -- in question are:
2501 -- Ghost
2502 -- Volatile_Function
2503 -- Also copy pragma SPARK_Mode if present in the declarative list
2504 -- of subprogram body From and insert it after node To. This pragma
2505 -- should not be moved, as it applies to the body too.
2506
2507 ------------------
2508 -- Move_Pragmas --
2509 ------------------
2510
2511 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2512 Decl : Node_Id;
2513 Next_Decl : Node_Id;
2514
2515 begin
2516 pragma Assert (Nkind (From) = N_Subprogram_Body);
2517
2518 -- The destination node must be part of a list, as the pragmas are
2519 -- inserted after it.
2520
2521 pragma Assert (Is_List_Member (To));
2522
2523 -- Inspect the declarations of the subprogram body looking for
2524 -- specific pragmas.
2525
2526 Decl := First (Declarations (N));
2527 while Present (Decl) loop
2528 Next_Decl := Next (Decl);
2529
2530 if Nkind (Decl) = N_Pragma then
2531 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2532 Insert_After (To, New_Copy_Tree (Decl));
2533
2534 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2535 Name_Ghost,
2536 Name_Volatile_Function)
2537 then
2538 Remove (Decl);
2539 Insert_After (To, Decl);
2540 end if;
2541 end if;
2542
2543 Decl := Next_Decl;
2544 end loop;
2545 end Move_Pragmas;
2546
2547 -- Local variables
2548
2549 Decl : Node_Id;
2550 Subp_Decl : Node_Id;
2551
2552 -- Start of processing for Build_Subprogram_Declaration
2553
2554 begin
2555 -- Create a matching subprogram spec using the profile of the body.
2556 -- The structure of the tree is identical, but has new entities for
2557 -- the defining unit name and formal parameters.
2558
2559 Subp_Decl :=
2560 Make_Subprogram_Declaration (Loc,
2561 Specification => Copy_Subprogram_Spec (Body_Spec));
2562 Set_Comes_From_Source (Subp_Decl, True);
2563
2564 -- Also mark parameters as coming from source
2565
2566 if Present (Parameter_Specifications (Specification (Subp_Decl))) then
2567 declare
2568 Form : Entity_Id;
2569 begin
2570 Form :=
2571 First (Parameter_Specifications (Specification (Subp_Decl)));
2572
2573 while Present (Form) loop
2574 Set_Comes_From_Source (Defining_Identifier (Form), True);
2575 Next (Form);
2576 end loop;
2577 end;
2578 end if;
2579
2580 -- Relocate the aspects and relevant pragmas from the subprogram body
2581 -- to the generated spec because it acts as the initial declaration.
2582
2583 Insert_Before (N, Subp_Decl);
2584 Move_Aspects (N, To => Subp_Decl);
2585 Move_Pragmas (N, To => Subp_Decl);
2586
2587 -- Ensure that the generated corresponding spec and original body
2588 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2589 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2590 -- correctly set for local subprograms.
2591
2592 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2593
2594 Analyze (Subp_Decl);
2595
2596 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2597 -- the body since the expander may generate calls using that entity.
2598 -- Required to ensure that Expand_Call rewrites calls to this
2599 -- function by calls to the built procedure.
2600
2601 if Modify_Tree_For_C
2602 and then Nkind (Body_Spec) = N_Function_Specification
2603 and then
2604 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2605 then
2606 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2607 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2608 Corresponding_Procedure
2609 (Defining_Entity (Specification (Subp_Decl))));
2610 end if;
2611
2612 -- Analyze any relocated source pragmas or pragmas created for aspect
2613 -- specifications.
2614
2615 Decl := Next (Subp_Decl);
2616 while Present (Decl) loop
2617
2618 -- Stop the search for pragmas once the body has been reached as
2619 -- this terminates the region where pragmas may appear.
2620
2621 if Decl = N then
2622 exit;
2623
2624 elsif Nkind (Decl) = N_Pragma then
2625 Analyze (Decl);
2626 end if;
2627
2628 Next (Decl);
2629 end loop;
2630
2631 Spec_Id := Defining_Entity (Subp_Decl);
2632 Set_Corresponding_Spec (N, Spec_Id);
2633
2634 -- Mark the generated spec as a source construct to ensure that all
2635 -- calls to it are properly registered in ALI files for GNATprove.
2636
2637 Set_Comes_From_Source (Spec_Id, True);
2638
2639 -- Ensure that the specs of the subprogram declaration and its body
2640 -- are identical, otherwise they will appear non-conformant due to
2641 -- rewritings in the default values of formal parameters.
2642
2643 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2644 Set_Specification (N, Body_Spec);
2645 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2646 end Build_Subprogram_Declaration;
2647
2648 ----------------------------
2649 -- Check_Anonymous_Return --
2650 ----------------------------
2651
2652 procedure Check_Anonymous_Return is
2653 Decl : Node_Id;
2654 Par : Node_Id;
2655 Scop : Entity_Id;
2656
2657 begin
2658 if Present (Spec_Id) then
2659 Scop := Spec_Id;
2660 else
2661 Scop := Body_Id;
2662 end if;
2663
2664 if Ekind (Scop) = E_Function
2665 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2666 and then not Is_Thunk (Scop)
2667
2668 -- Skip internally built functions which handle the case of
2669 -- a null access (see Expand_Interface_Conversion)
2670
2671 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2672 and then not Comes_From_Source (Parent (Scop)))
2673
2674 and then (Has_Task (Designated_Type (Etype (Scop)))
2675 or else
2676 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2677 and then
2678 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2679 and then Expander_Active
2680
2681 -- Avoid cases with no tasking support
2682
2683 and then RTE_Available (RE_Current_Master)
2684 and then not Restriction_Active (No_Task_Hierarchy)
2685 then
2686 Decl :=
2687 Make_Object_Declaration (Loc,
2688 Defining_Identifier =>
2689 Make_Defining_Identifier (Loc, Name_uMaster),
2690 Constant_Present => True,
2691 Object_Definition =>
2692 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2693 Expression =>
2694 Make_Explicit_Dereference (Loc,
2695 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2696
2697 if Present (Declarations (N)) then
2698 Prepend (Decl, Declarations (N));
2699 else
2700 Set_Declarations (N, New_List (Decl));
2701 end if;
2702
2703 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2704 Set_Has_Master_Entity (Scop);
2705
2706 -- Now mark the containing scope as a task master
2707
2708 Par := N;
2709 while Nkind (Par) /= N_Compilation_Unit loop
2710 Par := Parent (Par);
2711 pragma Assert (Present (Par));
2712
2713 -- If we fall off the top, we are at the outer level, and
2714 -- the environment task is our effective master, so nothing
2715 -- to mark.
2716
2717 if Nkind_In
2718 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2719 then
2720 Set_Is_Task_Master (Par, True);
2721 exit;
2722 end if;
2723 end loop;
2724 end if;
2725 end Check_Anonymous_Return;
2726
2727 -------------------------
2728 -- Check_Inline_Pragma --
2729 -------------------------
2730
2731 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2732 Prag : Node_Id;
2733 Plist : List_Id;
2734
2735 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2736 -- True when N is a pragma Inline or Inline_Always that applies
2737 -- to this subprogram.
2738
2739 -----------------------
2740 -- Is_Inline_Pragma --
2741 -----------------------
2742
2743 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2744 begin
2745 if Nkind (N) = N_Pragma
2746 and then
2747 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2748 or else (Pragma_Name_Unmapped (N) = Name_Inline
2749 and then
2750 (Front_End_Inlining or else Optimization_Level > 0)))
2751 and then Present (Pragma_Argument_Associations (N))
2752 then
2753 declare
2754 Pragma_Arg : Node_Id :=
2755 Expression (First (Pragma_Argument_Associations (N)));
2756 begin
2757 if Nkind (Pragma_Arg) = N_Selected_Component then
2758 Pragma_Arg := Selector_Name (Pragma_Arg);
2759 end if;
2760
2761 return Chars (Pragma_Arg) = Chars (Body_Id);
2762 end;
2763
2764 else
2765 return False;
2766 end if;
2767 end Is_Inline_Pragma;
2768
2769 -- Start of processing for Check_Inline_Pragma
2770
2771 begin
2772 if not Expander_Active then
2773 return;
2774 end if;
2775
2776 if Is_List_Member (N)
2777 and then Present (Next (N))
2778 and then Is_Inline_Pragma (Next (N))
2779 then
2780 Prag := Next (N);
2781
2782 elsif Nkind (N) /= N_Subprogram_Body_Stub
2783 and then Present (Declarations (N))
2784 and then Is_Inline_Pragma (First (Declarations (N)))
2785 then
2786 Prag := First (Declarations (N));
2787
2788 else
2789 Prag := Empty;
2790 end if;
2791
2792 if Present (Prag) then
2793 if Present (Spec_Id) then
2794 if Is_List_Member (N)
2795 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2796 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2797 then
2798 Analyze (Prag);
2799 end if;
2800
2801 else
2802 -- Create a subprogram declaration, to make treatment uniform.
2803 -- Make the sloc of the subprogram name that of the entity in
2804 -- the body, so that style checks find identical strings.
2805
2806 declare
2807 Subp : constant Entity_Id :=
2808 Make_Defining_Identifier
2809 (Sloc (Body_Id), Chars (Body_Id));
2810 Decl : constant Node_Id :=
2811 Make_Subprogram_Declaration (Loc,
2812 Specification =>
2813 New_Copy_Tree (Specification (N)));
2814
2815 begin
2816 -- Link the body and the generated spec
2817
2818 Set_Corresponding_Body (Decl, Body_Id);
2819 Set_Corresponding_Spec (N, Subp);
2820
2821 Set_Defining_Unit_Name (Specification (Decl), Subp);
2822
2823 -- To ensure proper coverage when body is inlined, indicate
2824 -- whether the subprogram comes from source.
2825
2826 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2827
2828 if Present (First_Formal (Body_Id)) then
2829 Plist := Copy_Parameter_List (Body_Id);
2830 Set_Parameter_Specifications
2831 (Specification (Decl), Plist);
2832 end if;
2833
2834 -- Move aspects to the new spec
2835
2836 if Has_Aspects (N) then
2837 Move_Aspects (N, To => Decl);
2838 end if;
2839
2840 Insert_Before (N, Decl);
2841 Analyze (Decl);
2842 Analyze (Prag);
2843 Set_Has_Pragma_Inline (Subp);
2844
2845 if Pragma_Name (Prag) = Name_Inline_Always then
2846 Set_Is_Inlined (Subp);
2847 Set_Has_Pragma_Inline_Always (Subp);
2848 end if;
2849
2850 -- Prior to copying the subprogram body to create a template
2851 -- for it for subsequent inlining, remove the pragma from
2852 -- the current body so that the copy that will produce the
2853 -- new body will start from a completely unanalyzed tree.
2854
2855 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2856 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2857 end if;
2858
2859 Spec := Subp;
2860 end;
2861 end if;
2862 end if;
2863 end Check_Inline_Pragma;
2864
2865 --------------------------
2866 -- Check_Missing_Return --
2867 --------------------------
2868
2869 procedure Check_Missing_Return is
2870 Id : Entity_Id;
2871 Missing_Ret : Boolean;
2872
2873 begin
2874 if Nkind (Body_Spec) = N_Function_Specification then
2875 if Present (Spec_Id) then
2876 Id := Spec_Id;
2877 else
2878 Id := Body_Id;
2879 end if;
2880
2881 if Return_Present (Id) then
2882 Check_Returns (HSS, 'F', Missing_Ret);
2883
2884 if Missing_Ret then
2885 Set_Has_Missing_Return (Id);
2886 end if;
2887
2888 -- Within a premature instantiation of a package with no body, we
2889 -- build completions of the functions therein, with a Raise
2890 -- statement. No point in complaining about a missing return in
2891 -- this case.
2892
2893 elsif Ekind (Id) = E_Function
2894 and then In_Instance
2895 and then Present (Statements (HSS))
2896 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2897 then
2898 null;
2899
2900 elsif Is_Generic_Subprogram (Id)
2901 or else not Is_Machine_Code_Subprogram (Id)
2902 then
2903 Error_Msg_N ("missing RETURN statement in function body", N);
2904 end if;
2905
2906 -- If procedure with No_Return, check returns
2907
2908 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2909 if Present (Spec_Id) then
2910 Id := Spec_Id;
2911 else
2912 Id := Body_Id;
2913 end if;
2914
2915 if No_Return (Id) then
2916 Check_Returns (HSS, 'P', Missing_Ret, Id);
2917 end if;
2918 end if;
2919
2920 -- Special checks in SPARK mode
2921
2922 if Nkind (Body_Spec) = N_Function_Specification then
2923
2924 -- In SPARK mode, last statement of a function should be a return
2925
2926 declare
2927 Stat : constant Node_Id := Last_Source_Statement (HSS);
2928 begin
2929 if Present (Stat)
2930 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2931 N_Extended_Return_Statement)
2932 then
2933 Check_SPARK_05_Restriction
2934 ("last statement in function should be RETURN", Stat);
2935 end if;
2936 end;
2937
2938 -- In SPARK mode, verify that a procedure has no return
2939
2940 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2941 if Present (Spec_Id) then
2942 Id := Spec_Id;
2943 else
2944 Id := Body_Id;
2945 end if;
2946
2947 -- Would be nice to point to return statement here, can we
2948 -- borrow the Check_Returns procedure here ???
2949
2950 if Return_Present (Id) then
2951 Check_SPARK_05_Restriction
2952 ("procedure should not have RETURN", N);
2953 end if;
2954 end if;
2955 end Check_Missing_Return;
2956
2957 -----------------------
2958 -- Disambiguate_Spec --
2959 -----------------------
2960
2961 function Disambiguate_Spec return Entity_Id is
2962 Priv_Spec : Entity_Id;
2963 Spec_N : Entity_Id;
2964
2965 procedure Replace_Types (To_Corresponding : Boolean);
2966 -- Depending on the flag, replace the type of formal parameters of
2967 -- Body_Id if it is a concurrent type implementing interfaces with
2968 -- the corresponding record type or the other way around.
2969
2970 procedure Replace_Types (To_Corresponding : Boolean) is
2971 Formal : Entity_Id;
2972 Formal_Typ : Entity_Id;
2973
2974 begin
2975 Formal := First_Formal (Body_Id);
2976 while Present (Formal) loop
2977 Formal_Typ := Etype (Formal);
2978
2979 if Is_Class_Wide_Type (Formal_Typ) then
2980 Formal_Typ := Root_Type (Formal_Typ);
2981 end if;
2982
2983 -- From concurrent type to corresponding record
2984
2985 if To_Corresponding then
2986 if Is_Concurrent_Type (Formal_Typ)
2987 and then Present (Corresponding_Record_Type (Formal_Typ))
2988 and then
2989 Present (Interfaces
2990 (Corresponding_Record_Type (Formal_Typ)))
2991 then
2992 Set_Etype (Formal,
2993 Corresponding_Record_Type (Formal_Typ));
2994 end if;
2995
2996 -- From corresponding record to concurrent type
2997
2998 else
2999 if Is_Concurrent_Record_Type (Formal_Typ)
3000 and then Present (Interfaces (Formal_Typ))
3001 then
3002 Set_Etype (Formal,
3003 Corresponding_Concurrent_Type (Formal_Typ));
3004 end if;
3005 end if;
3006
3007 Next_Formal (Formal);
3008 end loop;
3009 end Replace_Types;
3010
3011 -- Start of processing for Disambiguate_Spec
3012
3013 begin
3014 -- Try to retrieve the specification of the body as is. All error
3015 -- messages are suppressed because the body may not have a spec in
3016 -- its current state.
3017
3018 Spec_N := Find_Corresponding_Spec (N, False);
3019
3020 -- It is possible that this is the body of a primitive declared
3021 -- between a private and a full view of a concurrent type. The
3022 -- controlling parameter of the spec carries the concurrent type,
3023 -- not the corresponding record type as transformed by Analyze_
3024 -- Subprogram_Specification. In such cases, we undo the change
3025 -- made by the analysis of the specification and try to find the
3026 -- spec again.
3027
3028 -- Note that wrappers already have their corresponding specs and
3029 -- bodies set during their creation, so if the candidate spec is
3030 -- a wrapper, then we definitely need to swap all types to their
3031 -- original concurrent status.
3032
3033 if No (Spec_N)
3034 or else Is_Primitive_Wrapper (Spec_N)
3035 then
3036 -- Restore all references of corresponding record types to the
3037 -- original concurrent types.
3038
3039 Replace_Types (To_Corresponding => False);
3040 Priv_Spec := Find_Corresponding_Spec (N, False);
3041
3042 -- The current body truly belongs to a primitive declared between
3043 -- a private and a full view. We leave the modified body as is,
3044 -- and return the true spec.
3045
3046 if Present (Priv_Spec)
3047 and then Is_Private_Primitive (Priv_Spec)
3048 then
3049 return Priv_Spec;
3050 end if;
3051
3052 -- In case that this is some sort of error, restore the original
3053 -- state of the body.
3054
3055 Replace_Types (To_Corresponding => True);
3056 end if;
3057
3058 return Spec_N;
3059 end Disambiguate_Spec;
3060
3061 ----------------------------
3062 -- Exchange_Limited_Views --
3063 ----------------------------
3064
3065 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3066 Result : Elist_Id := No_Elist;
3067
3068 procedure Detect_And_Exchange (Id : Entity_Id);
3069 -- Determine whether Id's type denotes an incomplete type associated
3070 -- with a limited with clause and exchange the limited view with the
3071 -- non-limited one when available. Note that the non-limited view
3072 -- may exist because of a with_clause in another unit in the context,
3073 -- but cannot be used because the current view of the enclosing unit
3074 -- is still a limited view.
3075
3076 -------------------------
3077 -- Detect_And_Exchange --
3078 -------------------------
3079
3080 procedure Detect_And_Exchange (Id : Entity_Id) is
3081 Typ : constant Entity_Id := Etype (Id);
3082 begin
3083 if From_Limited_With (Typ)
3084 and then Has_Non_Limited_View (Typ)
3085 and then not From_Limited_With (Scope (Typ))
3086 then
3087 if No (Result) then
3088 Result := New_Elmt_List;
3089 end if;
3090
3091 Prepend_Elmt (Typ, Result);
3092 Prepend_Elmt (Id, Result);
3093 Set_Etype (Id, Non_Limited_View (Typ));
3094 end if;
3095 end Detect_And_Exchange;
3096
3097 -- Local variables
3098
3099 Formal : Entity_Id;
3100
3101 -- Start of processing for Exchange_Limited_Views
3102
3103 begin
3104 -- Do not process subprogram bodies as they already use the non-
3105 -- limited view of types.
3106
3107 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3108 return No_Elist;
3109 end if;
3110
3111 -- Examine all formals and swap views when applicable
3112
3113 Formal := First_Formal (Subp_Id);
3114 while Present (Formal) loop
3115 Detect_And_Exchange (Formal);
3116
3117 Next_Formal (Formal);
3118 end loop;
3119
3120 -- Process the return type of a function
3121
3122 if Ekind (Subp_Id) = E_Function then
3123 Detect_And_Exchange (Subp_Id);
3124 end if;
3125
3126 return Result;
3127 end Exchange_Limited_Views;
3128
3129 -------------------------------------
3130 -- Is_Private_Concurrent_Primitive --
3131 -------------------------------------
3132
3133 function Is_Private_Concurrent_Primitive
3134 (Subp_Id : Entity_Id) return Boolean
3135 is
3136 Formal_Typ : Entity_Id;
3137
3138 begin
3139 if Present (First_Formal (Subp_Id)) then
3140 Formal_Typ := Etype (First_Formal (Subp_Id));
3141
3142 if Is_Concurrent_Record_Type (Formal_Typ) then
3143 if Is_Class_Wide_Type (Formal_Typ) then
3144 Formal_Typ := Root_Type (Formal_Typ);
3145 end if;
3146
3147 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3148 end if;
3149
3150 -- The type of the first formal is a concurrent tagged type with
3151 -- a private view.
3152
3153 return
3154 Is_Concurrent_Type (Formal_Typ)
3155 and then Is_Tagged_Type (Formal_Typ)
3156 and then Has_Private_Declaration (Formal_Typ);
3157 end if;
3158
3159 return False;
3160 end Is_Private_Concurrent_Primitive;
3161
3162 -------------------------
3163 -- Mask_Unfrozen_Types --
3164 -------------------------
3165
3166 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3167 Result : Elist_Id := No_Elist;
3168
3169 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3170 -- Mask all types referenced in the subtree rooted at Node
3171
3172 --------------------
3173 -- Mask_Type_Refs --
3174 --------------------
3175
3176 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3177 procedure Mask_Type (Typ : Entity_Id);
3178 -- ??? what does this do?
3179
3180 ---------------
3181 -- Mask_Type --
3182 ---------------
3183
3184 procedure Mask_Type (Typ : Entity_Id) is
3185 begin
3186 -- Skip Itypes created by the preanalysis
3187
3188 if Is_Itype (Typ)
3189 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3190 then
3191 return;
3192 end if;
3193
3194 if not Is_Frozen (Typ) then
3195 if Scope (Typ) /= Current_Scope then
3196 Set_Is_Frozen (Typ);
3197 Append_New_Elmt (Typ, Result);
3198 else
3199 Freeze_Before (N, Typ);
3200 end if;
3201 end if;
3202 end Mask_Type;
3203
3204 -- Start of processing for Mask_Type_Refs
3205
3206 begin
3207 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3208 Mask_Type (Etype (Entity (Node)));
3209
3210 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3211 Mask_Type (Scope (Entity (Node)));
3212 end if;
3213
3214 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3215 and then Present (Etype (Node))
3216 then
3217 Mask_Type (Etype (Node));
3218 end if;
3219
3220 return OK;
3221 end Mask_Type_Refs;
3222
3223 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3224
3225 -- Local variables
3226
3227 Return_Stmt : constant Node_Id :=
3228 First (Statements (Handled_Statement_Sequence (N)));
3229
3230 -- Start of processing for Mask_Unfrozen_Types
3231
3232 begin
3233 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3234
3235 Mask_References (Expression (Return_Stmt));
3236
3237 return Result;
3238 end Mask_Unfrozen_Types;
3239
3240 ---------------------------
3241 -- Restore_Limited_Views --
3242 ---------------------------
3243
3244 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3245 Elmt : Elmt_Id := First_Elmt (Restore_List);
3246 Id : Entity_Id;
3247
3248 begin
3249 while Present (Elmt) loop
3250 Id := Node (Elmt);
3251 Next_Elmt (Elmt);
3252 Set_Etype (Id, Node (Elmt));
3253 Next_Elmt (Elmt);
3254 end loop;
3255 end Restore_Limited_Views;
3256
3257 ----------------------------
3258 -- Set_Trivial_Subprogram --
3259 ----------------------------
3260
3261 procedure Set_Trivial_Subprogram (N : Node_Id) is
3262 Nxt : constant Node_Id := Next (N);
3263
3264 begin
3265 Set_Is_Trivial_Subprogram (Body_Id);
3266
3267 if Present (Spec_Id) then
3268 Set_Is_Trivial_Subprogram (Spec_Id);
3269 end if;
3270
3271 if Present (Nxt)
3272 and then Nkind (Nxt) = N_Simple_Return_Statement
3273 and then No (Next (Nxt))
3274 and then Present (Expression (Nxt))
3275 and then Is_Entity_Name (Expression (Nxt))
3276 then
3277 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3278 end if;
3279 end Set_Trivial_Subprogram;
3280
3281 ---------------------------
3282 -- Unmask_Unfrozen_Types --
3283 ---------------------------
3284
3285 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3286 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3287
3288 begin
3289 while Present (Elmt) loop
3290 Set_Is_Frozen (Node (Elmt), False);
3291 Next_Elmt (Elmt);
3292 end loop;
3293 end Unmask_Unfrozen_Types;
3294
3295 ---------------------------------
3296 -- Verify_Overriding_Indicator --
3297 ---------------------------------
3298
3299 procedure Verify_Overriding_Indicator is
3300 begin
3301 if Must_Override (Body_Spec) then
3302 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3303 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3304 then
3305 null;
3306
3307 elsif not Present (Overridden_Operation (Spec_Id)) then
3308 Error_Msg_NE
3309 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3310
3311 -- Overriding indicators aren't allowed for protected subprogram
3312 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3313 -- this to a warning if -gnatd.E is enabled.
3314
3315 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3316 Error_Msg_Warn := Error_To_Warning;
3317 Error_Msg_N
3318 ("<<overriding indicator not allowed for protected "
3319 & "subprogram body", Body_Spec);
3320 end if;
3321
3322 elsif Must_Not_Override (Body_Spec) then
3323 if Present (Overridden_Operation (Spec_Id)) then
3324 Error_Msg_NE
3325 ("subprogram& overrides inherited operation",
3326 Body_Spec, Spec_Id);
3327
3328 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3329 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3330 then
3331 Error_Msg_NE
3332 ("subprogram& overrides predefined operator ",
3333 Body_Spec, Spec_Id);
3334
3335 -- Overriding indicators aren't allowed for protected subprogram
3336 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3337 -- this to a warning if -gnatd.E is enabled.
3338
3339 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3340 Error_Msg_Warn := Error_To_Warning;
3341
3342 Error_Msg_N
3343 ("<<overriding indicator not allowed "
3344 & "for protected subprogram body", Body_Spec);
3345
3346 -- If this is not a primitive operation, then the overriding
3347 -- indicator is altogether illegal.
3348
3349 elsif not Is_Primitive (Spec_Id) then
3350 Error_Msg_N
3351 ("overriding indicator only allowed "
3352 & "if subprogram is primitive", Body_Spec);
3353 end if;
3354
3355 -- If checking the style rule and the operation overrides, then
3356 -- issue a warning about a missing overriding_indicator. Protected
3357 -- subprogram bodies are excluded from this style checking, since
3358 -- they aren't primitives (even though their declarations can
3359 -- override) and aren't allowed to have an overriding_indicator.
3360
3361 elsif Style_Check
3362 and then Present (Overridden_Operation (Spec_Id))
3363 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3364 then
3365 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3366 Style.Missing_Overriding (N, Body_Id);
3367
3368 elsif Style_Check
3369 and then Can_Override_Operator (Spec_Id)
3370 and then not In_Predefined_Unit (Spec_Id)
3371 then
3372 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3373 Style.Missing_Overriding (N, Body_Id);
3374 end if;
3375 end Verify_Overriding_Indicator;
3376
3377 -- Local variables
3378
3379 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3380 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3381 Saved_EA : constant Boolean := Expander_Active;
3382 Saved_ISMP : constant Boolean :=
3383 Ignore_SPARK_Mode_Pragmas_In_Instance;
3384 -- Save the Ghost and SPARK mode-related data to restore on exit
3385
3386 -- Start of processing for Analyze_Subprogram_Body_Helper
3387
3388 begin
3389 -- A [generic] subprogram body freezes the contract of the nearest
3390 -- enclosing package body and all other contracts encountered in the
3391 -- same declarative part up to and excluding the subprogram body:
3392
3393 -- package body Nearest_Enclosing_Package
3394 -- with Refined_State => (State => Constit)
3395 -- is
3396 -- Constit : ...;
3397
3398 -- procedure Freezes_Enclosing_Package_Body
3399 -- with Refined_Depends => (Input => Constit) ...
3400
3401 -- This ensures that any annotations referenced by the contract of the
3402 -- [generic] subprogram body are available. This form of freezing is
3403 -- decoupled from the usual Freeze_xxx mechanism because it must also
3404 -- work in the context of generics where normal freezing is disabled.
3405
3406 -- Only bodies coming from source should cause this type of freezing.
3407 -- Expression functions that act as bodies and complete an initial
3408 -- declaration must be included in this category, hence the use of
3409 -- Original_Node.
3410
3411 if Comes_From_Source (Original_Node (N)) then
3412 Freeze_Previous_Contracts (N);
3413 end if;
3414
3415 -- Generic subprograms are handled separately. They always have a
3416 -- generic specification. Determine whether current scope has a
3417 -- previous declaration.
3418
3419 -- If the subprogram body is defined within an instance of the same
3420 -- name, the instance appears as a package renaming, and will be hidden
3421 -- within the subprogram.
3422
3423 if Present (Prev_Id)
3424 and then not Is_Overloadable (Prev_Id)
3425 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3426 or else Comes_From_Source (Prev_Id))
3427 then
3428 if Is_Generic_Subprogram (Prev_Id) then
3429 Spec_Id := Prev_Id;
3430
3431 -- A subprogram body is Ghost when it is stand-alone and subject
3432 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3433 -- the mode now to ensure that any nodes generated during analysis
3434 -- and expansion are properly marked as Ghost.
3435
3436 Mark_And_Set_Ghost_Body (N, Spec_Id);
3437
3438 -- If the body completes the initial declaration of a compilation
3439 -- unit which is subject to pragma Elaboration_Checks, set the
3440 -- model specified by the pragma because it applies to all parts
3441 -- of the unit.
3442
3443 Install_Elaboration_Model (Spec_Id);
3444
3445 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3446 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3447
3448 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3449
3450 if Nkind (N) = N_Subprogram_Body then
3451 HSS := Handled_Statement_Sequence (N);
3452 Check_Missing_Return;
3453 end if;
3454
3455 goto Leave;
3456
3457 -- Otherwise a previous entity conflicts with the subprogram name.
3458 -- Attempting to enter name will post error.
3459
3460 else
3461 Enter_Name (Body_Id);
3462 goto Leave;
3463 end if;
3464
3465 -- Non-generic case, find the subprogram declaration, if one was seen,
3466 -- or enter new overloaded entity in the current scope. If the
3467 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3468 -- part of the context of one of its subunits. No need to redo the
3469 -- analysis.
3470
3471 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3472 goto Leave;
3473
3474 else
3475 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3476
3477 if Nkind (N) = N_Subprogram_Body_Stub
3478 or else No (Corresponding_Spec (N))
3479 then
3480 if Is_Private_Concurrent_Primitive (Body_Id) then
3481 Spec_Id := Disambiguate_Spec;
3482
3483 -- A subprogram body is Ghost when it is stand-alone and
3484 -- subject to pragma Ghost or when the corresponding spec is
3485 -- Ghost. Set the mode now to ensure that any nodes generated
3486 -- during analysis and expansion are properly marked as Ghost.
3487
3488 Mark_And_Set_Ghost_Body (N, Spec_Id);
3489
3490 -- If the body completes a compilation unit which is subject
3491 -- to pragma Elaboration_Checks, set the model specified by
3492 -- the pragma because it applies to all parts of the unit.
3493
3494 Install_Elaboration_Model (Spec_Id);
3495
3496 else
3497 Spec_Id := Find_Corresponding_Spec (N);
3498
3499 -- A subprogram body is Ghost when it is stand-alone and
3500 -- subject to pragma Ghost or when the corresponding spec is
3501 -- Ghost. Set the mode now to ensure that any nodes generated
3502 -- during analysis and expansion are properly marked as Ghost.
3503
3504 Mark_And_Set_Ghost_Body (N, Spec_Id);
3505
3506 -- If the body completes a compilation unit which is subject
3507 -- to pragma Elaboration_Checks, set the model specified by
3508 -- the pragma because it applies to all parts of the unit.
3509
3510 Install_Elaboration_Model (Spec_Id);
3511
3512 -- In GNATprove mode, if the body has no previous spec, create
3513 -- one so that the inlining machinery can operate properly.
3514 -- Transfer aspects, if any, to the new spec, so that they
3515 -- are legal and can be processed ahead of the body.
3516 -- We make two copies of the given spec, one for the new
3517 -- declaration, and one for the body.
3518
3519 if No (Spec_Id) and then GNATprove_Mode
3520
3521 -- Inlining does not apply during preanalysis of code
3522
3523 and then Full_Analysis
3524
3525 -- Inlining only applies to full bodies, not stubs
3526
3527 and then Nkind (N) /= N_Subprogram_Body_Stub
3528
3529 -- Inlining only applies to bodies in the source code, not to
3530 -- those generated by the compiler. In particular, expression
3531 -- functions, whose body is generated by the compiler, are
3532 -- treated specially by GNATprove.
3533
3534 and then Comes_From_Source (Body_Id)
3535
3536 -- This cannot be done for a compilation unit, which is not
3537 -- in a context where we can insert a new spec.
3538
3539 and then Is_List_Member (N)
3540
3541 -- Inlining only applies to subprograms without contracts,
3542 -- as a contract is a sign that GNATprove should perform a
3543 -- modular analysis of the subprogram instead of a contextual
3544 -- analysis at each call site. The same test is performed in
3545 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3546 -- here in another form (because the contract has not been
3547 -- attached to the body) to avoid front-end errors in case
3548 -- pragmas are used instead of aspects, because the
3549 -- corresponding pragmas in the body would not be transferred
3550 -- to the spec, leading to legality errors.
3551
3552 and then not Body_Has_Contract
3553 and then not Inside_A_Generic
3554 then
3555 Build_Subprogram_Declaration;
3556
3557 -- If this is a function that returns a constrained array, and
3558 -- we are generating SPARK_For_C, create subprogram declaration
3559 -- to simplify subsequent C generation.
3560
3561 elsif No (Spec_Id)
3562 and then Modify_Tree_For_C
3563 and then Nkind (Body_Spec) = N_Function_Specification
3564 and then Is_Array_Type (Etype (Body_Id))
3565 and then Is_Constrained (Etype (Body_Id))
3566 then
3567 Build_Subprogram_Declaration;
3568 end if;
3569 end if;
3570
3571 -- If this is a duplicate body, no point in analyzing it
3572
3573 if Error_Posted (N) then
3574 goto Leave;
3575 end if;
3576
3577 -- A subprogram body should cause freezing of its own declaration,
3578 -- but if there was no previous explicit declaration, then the
3579 -- subprogram will get frozen too late (there may be code within
3580 -- the body that depends on the subprogram having been frozen,
3581 -- such as uses of extra formals), so we force it to be frozen
3582 -- here. Same holds if the body and spec are compilation units.
3583 -- Finally, if the return type is an anonymous access to protected
3584 -- subprogram, it must be frozen before the body because its
3585 -- expansion has generated an equivalent type that is used when
3586 -- elaborating the body.
3587
3588 -- An exception in the case of Ada 2012, AI05-177: The bodies
3589 -- created for expression functions do not freeze.
3590
3591 if No (Spec_Id)
3592 and then Nkind (Original_Node (N)) /= N_Expression_Function
3593 then
3594 Freeze_Before (N, Body_Id);
3595
3596 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3597 Freeze_Before (N, Spec_Id);
3598
3599 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3600 Freeze_Before (N, Etype (Body_Id));
3601 end if;
3602
3603 else
3604 Spec_Id := Corresponding_Spec (N);
3605
3606 -- A subprogram body is Ghost when it is stand-alone and subject
3607 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3608 -- the mode now to ensure that any nodes generated during analysis
3609 -- and expansion are properly marked as Ghost.
3610
3611 Mark_And_Set_Ghost_Body (N, Spec_Id);
3612
3613 -- If the body completes the initial declaration of a compilation
3614 -- unit which is subject to pragma Elaboration_Checks, set the
3615 -- model specified by the pragma because it applies to all parts
3616 -- of the unit.
3617
3618 Install_Elaboration_Model (Spec_Id);
3619 end if;
3620 end if;
3621
3622 -- Deactivate expansion inside the body of ignored Ghost entities,
3623 -- as this code will ultimately be ignored. This avoids requiring the
3624 -- presence of run-time units which are not needed. Only do this for
3625 -- user entities, as internally generated entitities might still need
3626 -- to be expanded (e.g. those generated for types).
3627
3628 if Present (Ignored_Ghost_Region)
3629 and then Comes_From_Source (Body_Id)
3630 then
3631 Expander_Active := False;
3632 end if;
3633
3634 -- Previously we scanned the body to look for nested subprograms, and
3635 -- rejected an inline directive if nested subprograms were present,
3636 -- because the back-end would generate conflicting symbols for the
3637 -- nested bodies. This is now unnecessary.
3638
3639 -- Look ahead to recognize a pragma Inline that appears after the body
3640
3641 Check_Inline_Pragma (Spec_Id);
3642
3643 -- Deal with special case of a fully private operation in the body of
3644 -- the protected type. We must create a declaration for the subprogram,
3645 -- in order to attach the protected subprogram that will be used in
3646 -- internal calls. We exclude compiler generated bodies from the
3647 -- expander since the issue does not arise for those cases.
3648
3649 if No (Spec_Id)
3650 and then Comes_From_Source (N)
3651 and then Is_Protected_Type (Current_Scope)
3652 then
3653 Spec_Id := Build_Private_Protected_Declaration (N);
3654 end if;
3655
3656 -- If we are generating C and this is a function returning a constrained
3657 -- array type for which we must create a procedure with an extra out
3658 -- parameter, build and analyze the body now. The procedure declaration
3659 -- has already been created. We reuse the source body of the function,
3660 -- because in an instance it may contain global references that cannot
3661 -- be reanalyzed. The source function itself is not used any further,
3662 -- so we mark it as having a completion. If the subprogram is a stub the
3663 -- transformation is done later, when the proper body is analyzed.
3664
3665 if Expander_Active
3666 and then Modify_Tree_For_C
3667 and then Present (Spec_Id)
3668 and then Ekind (Spec_Id) = E_Function
3669 and then Nkind (N) /= N_Subprogram_Body_Stub
3670 and then Rewritten_For_C (Spec_Id)
3671 then
3672 Set_Has_Completion (Spec_Id);
3673
3674 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3675 Analyze (N);
3676
3677 -- The entity for the created procedure must remain invisible, so it
3678 -- does not participate in resolution of subsequent references to the
3679 -- function.
3680
3681 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3682 goto Leave;
3683 end if;
3684
3685 -- If a separate spec is present, then deal with freezing issues
3686
3687 if Present (Spec_Id) then
3688 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3689 Verify_Overriding_Indicator;
3690
3691 -- In general, the spec will be frozen when we start analyzing the
3692 -- body. However, for internally generated operations, such as
3693 -- wrapper functions for inherited operations with controlling
3694 -- results, the spec may not have been frozen by the time we expand
3695 -- the freeze actions that include the bodies. In particular, extra
3696 -- formals for accessibility or for return-in-place may need to be
3697 -- generated. Freeze nodes, if any, are inserted before the current
3698 -- body. These freeze actions are also needed in ASIS mode and in
3699 -- Compile_Only mode to enable the proper back-end type annotations.
3700 -- They are necessary in any case to ensure proper elaboration order
3701 -- in gigi.
3702
3703 if Nkind (N) = N_Subprogram_Body
3704 and then Was_Expression_Function (N)
3705 and then not Has_Completion (Spec_Id)
3706 and then Serious_Errors_Detected = 0
3707 and then (Expander_Active
3708 or else ASIS_Mode
3709 or else Operating_Mode = Check_Semantics
3710 or else Is_Ignored_Ghost_Entity (Spec_Id))
3711 then
3712 -- The body generated for an expression function that is not a
3713 -- completion is a freeze point neither for the profile nor for
3714 -- anything else. That's why, in order to prevent any freezing
3715 -- during analysis, we need to mask types declared outside the
3716 -- expression (and in an outer scope) that are not yet frozen.
3717 -- This also needs to be done in the case of an ignored Ghost
3718 -- expression function, where the expander isn't active.
3719
3720 Set_Is_Frozen (Spec_Id);
3721 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3722
3723 elsif not Is_Frozen (Spec_Id)
3724 and then Serious_Errors_Detected = 0
3725 then
3726 Set_Has_Delayed_Freeze (Spec_Id);
3727 Freeze_Before (N, Spec_Id);
3728 end if;
3729 end if;
3730
3731 -- If the subprogram has a class-wide clone, build its body as a copy
3732 -- of the original body, and rewrite body of original subprogram as a
3733 -- wrapper that calls the clone. If N is a stub, this construction will
3734 -- take place when the proper body is analyzed. No action needed if this
3735 -- subprogram has been eliminated.
3736
3737 if Present (Spec_Id)
3738 and then Present (Class_Wide_Clone (Spec_Id))
3739 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3740 and then Nkind (N) /= N_Subprogram_Body_Stub
3741 and then not (Expander_Active and then Is_Eliminated (Spec_Id))
3742 then
3743 Build_Class_Wide_Clone_Body (Spec_Id, N);
3744
3745 -- This is the new body for the existing primitive operation
3746
3747 Rewrite (N, Build_Class_Wide_Clone_Call
3748 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3749 Set_Has_Completion (Spec_Id, False);
3750 Analyze (N);
3751 return;
3752 end if;
3753
3754 -- Place subprogram on scope stack, and make formals visible. If there
3755 -- is a spec, the visible entity remains that of the spec.
3756
3757 if Present (Spec_Id) then
3758 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3759
3760 if Is_Child_Unit (Spec_Id) then
3761 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3762 end if;
3763
3764 if Style_Check then
3765 Style.Check_Identifier (Body_Id, Spec_Id);
3766 end if;
3767
3768 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3769 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3770
3771 if Is_Abstract_Subprogram (Spec_Id) then
3772 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3773 goto Leave;
3774
3775 else
3776 Set_Convention (Body_Id, Convention (Spec_Id));
3777 Set_Has_Completion (Spec_Id);
3778
3779 if Is_Protected_Type (Scope (Spec_Id)) then
3780 Prot_Typ := Scope (Spec_Id);
3781 end if;
3782
3783 -- If this is a body generated for a renaming, do not check for
3784 -- full conformance. The check is redundant, because the spec of
3785 -- the body is a copy of the spec in the renaming declaration,
3786 -- and the test can lead to spurious errors on nested defaults.
3787
3788 if Present (Spec_Decl)
3789 and then not Comes_From_Source (N)
3790 and then
3791 (Nkind (Original_Node (Spec_Decl)) =
3792 N_Subprogram_Renaming_Declaration
3793 or else (Present (Corresponding_Body (Spec_Decl))
3794 and then
3795 Nkind (Unit_Declaration_Node
3796 (Corresponding_Body (Spec_Decl))) =
3797 N_Subprogram_Renaming_Declaration))
3798 then
3799 Conformant := True;
3800
3801 -- Conversely, the spec may have been generated for specless body
3802 -- with an inline pragma. The entity comes from source, which is
3803 -- both semantically correct and necessary for proper inlining.
3804 -- The subprogram declaration itself is not in the source.
3805
3806 elsif Comes_From_Source (N)
3807 and then Present (Spec_Decl)
3808 and then not Comes_From_Source (Spec_Decl)
3809 and then Has_Pragma_Inline (Spec_Id)
3810 then
3811 Conformant := True;
3812
3813 else
3814 Check_Conformance
3815 (Body_Id, Spec_Id,
3816 Fully_Conformant, True, Conformant, Body_Id);
3817 end if;
3818
3819 -- If the body is not fully conformant, we have to decide if we
3820 -- should analyze it or not. If it has a really messed up profile
3821 -- then we probably should not analyze it, since we will get too
3822 -- many bogus messages.
3823
3824 -- Our decision is to go ahead in the non-fully conformant case
3825 -- only if it is at least mode conformant with the spec. Note
3826 -- that the call to Check_Fully_Conformant has issued the proper
3827 -- error messages to complain about the lack of conformance.
3828
3829 if not Conformant
3830 and then not Mode_Conformant (Body_Id, Spec_Id)
3831 then
3832 goto Leave;
3833 end if;
3834 end if;
3835
3836 -- In the case we are dealing with an expression function we check
3837 -- the formals attached to the spec instead of the body - so we don't
3838 -- reference body formals.
3839
3840 if Spec_Id /= Body_Id
3841 and then not Is_Expression_Function (Spec_Id)
3842 then
3843 Reference_Body_Formals (Spec_Id, Body_Id);
3844 end if;
3845
3846 Set_Ekind (Body_Id, E_Subprogram_Body);
3847
3848 if Nkind (N) = N_Subprogram_Body_Stub then
3849 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3850
3851 -- Regular body
3852
3853 else
3854 Set_Corresponding_Spec (N, Spec_Id);
3855
3856 -- Ada 2005 (AI-345): If the operation is a primitive operation
3857 -- of a concurrent type, the type of the first parameter has been
3858 -- replaced with the corresponding record, which is the proper
3859 -- run-time structure to use. However, within the body there may
3860 -- be uses of the formals that depend on primitive operations
3861 -- of the type (in particular calls in prefixed form) for which
3862 -- we need the original concurrent type. The operation may have
3863 -- several controlling formals, so the replacement must be done
3864 -- for all of them.
3865
3866 if Comes_From_Source (Spec_Id)
3867 and then Present (First_Entity (Spec_Id))
3868 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3869 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3870 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3871 and then Present (Corresponding_Concurrent_Type
3872 (Etype (First_Entity (Spec_Id))))
3873 then
3874 declare
3875 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3876 Form : Entity_Id;
3877
3878 begin
3879 Form := First_Formal (Spec_Id);
3880 while Present (Form) loop
3881 if Etype (Form) = Typ then
3882 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3883 end if;
3884
3885 Next_Formal (Form);
3886 end loop;
3887 end;
3888 end if;
3889
3890 -- Make the formals visible, and place subprogram on scope stack.
3891 -- This is also the point at which we set Last_Real_Spec_Entity
3892 -- to mark the entities which will not be moved to the body.
3893
3894 Install_Formals (Spec_Id);
3895 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3896
3897 -- Within an instance, add local renaming declarations so that
3898 -- gdb can retrieve the values of actuals more easily. This is
3899 -- only relevant if generating code (and indeed we definitely
3900 -- do not want these definitions -gnatc mode, because that would
3901 -- confuse ASIS).
3902
3903 if Is_Generic_Instance (Spec_Id)
3904 and then Is_Wrapper_Package (Current_Scope)
3905 and then Expander_Active
3906 then
3907 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3908 end if;
3909
3910 Push_Scope (Spec_Id);
3911
3912 -- Make sure that the subprogram is immediately visible. For
3913 -- child units that have no separate spec this is indispensable.
3914 -- Otherwise it is safe albeit redundant.
3915
3916 Set_Is_Immediately_Visible (Spec_Id);
3917 end if;
3918
3919 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3920 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3921 Set_Scope (Body_Id, Scope (Spec_Id));
3922
3923 -- Case of subprogram body with no previous spec
3924
3925 else
3926 -- Check for style warning required
3927
3928 if Style_Check
3929
3930 -- Only apply check for source level subprograms for which checks
3931 -- have not been suppressed.
3932
3933 and then Comes_From_Source (Body_Id)
3934 and then not Suppress_Style_Checks (Body_Id)
3935
3936 -- No warnings within an instance
3937
3938 and then not In_Instance
3939
3940 -- No warnings for expression functions
3941
3942 and then Nkind (Original_Node (N)) /= N_Expression_Function
3943 then
3944 Style.Body_With_No_Spec (N);
3945 end if;
3946
3947 New_Overloaded_Entity (Body_Id);
3948
3949 if Nkind (N) /= N_Subprogram_Body_Stub then
3950 Set_Acts_As_Spec (N);
3951 Generate_Definition (Body_Id);
3952 Generate_Reference
3953 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3954
3955 -- If the body is an entry wrapper created for an entry with
3956 -- preconditions, it must be compiled in the context of the
3957 -- enclosing synchronized object, because it may mention other
3958 -- operations of the type.
3959
3960 if Is_Entry_Wrapper (Body_Id) then
3961 declare
3962 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3963 begin
3964 Push_Scope (Prot);
3965 Install_Declarations (Prot);
3966 end;
3967 end if;
3968
3969 Install_Formals (Body_Id);
3970
3971 Push_Scope (Body_Id);
3972 end if;
3973
3974 -- For stubs and bodies with no previous spec, generate references to
3975 -- formals.
3976
3977 Generate_Reference_To_Formals (Body_Id);
3978 end if;
3979
3980 -- Entry barrier functions are generated outside the protected type and
3981 -- should not carry the SPARK_Mode of the enclosing context.
3982
3983 if Nkind (N) = N_Subprogram_Body
3984 and then Is_Entry_Barrier_Function (N)
3985 then
3986 null;
3987
3988 -- The body is generated as part of expression function expansion. When
3989 -- the expression function appears in the visible declarations of a
3990 -- package, the body is added to the private declarations. Since both
3991 -- declarative lists may be subject to a different SPARK_Mode, inherit
3992 -- the mode of the spec.
3993
3994 -- package P with SPARK_Mode is
3995 -- function Expr_Func ... is (...); -- original
3996 -- [function Expr_Func ...;] -- generated spec
3997 -- -- mode is ON
3998 -- private
3999 -- pragma SPARK_Mode (Off);
4000 -- [function Expr_Func ... is return ...;] -- generated body
4001 -- end P; -- mode is ON
4002
4003 elsif not Comes_From_Source (N)
4004 and then Present (Spec_Id)
4005 and then Is_Expression_Function (Spec_Id)
4006 then
4007 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4008 Set_SPARK_Pragma_Inherited
4009 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4010
4011 -- Set the SPARK_Mode from the current context (may be overwritten later
4012 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4013 -- initially on a stand-alone subprogram body, but is then relocated to
4014 -- a generated corresponding spec. In this scenario the mode is shared
4015 -- between the spec and body.
4016
4017 elsif No (SPARK_Pragma (Body_Id)) then
4018 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4019 Set_SPARK_Pragma_Inherited (Body_Id);
4020 end if;
4021
4022 -- A subprogram body may be instantiated or inlined at a later pass.
4023 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4024 -- applied to the initial declaration of the body.
4025
4026 if Present (Spec_Id) then
4027 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4028 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4029 end if;
4030
4031 else
4032 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4033 -- case the body is instantiated or inlined later and out of context.
4034 -- The body uses this attribute to restore the value of the global
4035 -- flag.
4036
4037 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4038 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4039
4040 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4041 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4042 end if;
4043 end if;
4044
4045 -- Preserve relevant elaboration-related attributes of the context which
4046 -- are no longer available or very expensive to recompute once analysis,
4047 -- resolution, and expansion are over.
4048
4049 if No (Spec_Id) then
4050 Mark_Elaboration_Attributes
4051 (N_Id => Body_Id,
4052 Checks => True,
4053 Warnings => True);
4054 end if;
4055
4056 -- If this is the proper body of a stub, we must verify that the stub
4057 -- conforms to the body, and to the previous spec if one was present.
4058 -- We know already that the body conforms to that spec. This test is
4059 -- only required for subprograms that come from source.
4060
4061 if Nkind (Parent (N)) = N_Subunit
4062 and then Comes_From_Source (N)
4063 and then not Error_Posted (Body_Id)
4064 and then Nkind (Corresponding_Stub (Parent (N))) =
4065 N_Subprogram_Body_Stub
4066 then
4067 declare
4068 Old_Id : constant Entity_Id :=
4069 Defining_Entity
4070 (Specification (Corresponding_Stub (Parent (N))));
4071
4072 Conformant : Boolean := False;
4073
4074 begin
4075 if No (Spec_Id) then
4076 Check_Fully_Conformant (Body_Id, Old_Id);
4077
4078 else
4079 Check_Conformance
4080 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4081
4082 if not Conformant then
4083
4084 -- The stub was taken to be a new declaration. Indicate that
4085 -- it lacks a body.
4086
4087 Set_Has_Completion (Old_Id, False);
4088 end if;
4089 end if;
4090 end;
4091 end if;
4092
4093 Set_Has_Completion (Body_Id);
4094 Check_Eliminated (Body_Id);
4095
4096 -- Analyze any aspect specifications that appear on the subprogram body
4097 -- stub. Stop the analysis now as the stub does not have a declarative
4098 -- or a statement part, and it cannot be inlined.
4099
4100 if Nkind (N) = N_Subprogram_Body_Stub then
4101 if Has_Aspects (N) then
4102 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4103 end if;
4104
4105 goto Leave;
4106 end if;
4107
4108 -- Handle inlining
4109
4110 -- Note: Normally we don't do any inlining if expansion is off, since
4111 -- we won't generate code in any case. An exception arises in GNATprove
4112 -- mode where we want to expand some calls in place, even with expansion
4113 -- disabled, since the inlining eases formal verification.
4114
4115 if not GNATprove_Mode
4116 and then Expander_Active
4117 and then Serious_Errors_Detected = 0
4118 and then Present (Spec_Id)
4119 and then Has_Pragma_Inline (Spec_Id)
4120 then
4121 -- Legacy implementation (relying on front-end inlining)
4122
4123 if not Back_End_Inlining then
4124 if (Has_Pragma_Inline_Always (Spec_Id)
4125 and then not Opt.Disable_FE_Inline_Always)
4126 or else (Front_End_Inlining
4127 and then not Opt.Disable_FE_Inline)
4128 then
4129 Build_Body_To_Inline (N, Spec_Id);
4130 end if;
4131
4132 -- New implementation (relying on back-end inlining)
4133
4134 else
4135 if Has_Pragma_Inline_Always (Spec_Id)
4136 or else Optimization_Level > 0
4137 then
4138 -- Handle function returning an unconstrained type
4139
4140 if Comes_From_Source (Body_Id)
4141 and then Ekind (Spec_Id) = E_Function
4142 and then Returns_Unconstrained_Type (Spec_Id)
4143
4144 -- If function builds in place, i.e. returns a limited type,
4145 -- inlining cannot be done.
4146
4147 and then not Is_Limited_Type (Etype (Spec_Id))
4148 then
4149 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4150
4151 else
4152 declare
4153 Subp_Body : constant Node_Id :=
4154 Unit_Declaration_Node (Body_Id);
4155 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4156
4157 begin
4158 -- Do not pass inlining to the backend if the subprogram
4159 -- has declarations or statements which cannot be inlined
4160 -- by the backend. This check is done here to emit an
4161 -- error instead of the generic warning message reported
4162 -- by the GCC backend (ie. "function might not be
4163 -- inlinable").
4164
4165 if Present (Subp_Decl)
4166 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4167 then
4168 null;
4169
4170 elsif Has_Excluded_Statement
4171 (Spec_Id,
4172 Statements
4173 (Handled_Statement_Sequence (Subp_Body)))
4174 then
4175 null;
4176
4177 -- If the backend inlining is available then at this
4178 -- stage we only have to mark the subprogram as inlined.
4179 -- The expander will take care of registering it in the
4180 -- table of subprograms inlined by the backend a part of
4181 -- processing calls to it (cf. Expand_Call)
4182
4183 else
4184 Set_Is_Inlined (Spec_Id);
4185 end if;
4186 end;
4187 end if;
4188 end if;
4189 end if;
4190
4191 -- In GNATprove mode, inline only when there is a separate subprogram
4192 -- declaration for now, as inlining of subprogram bodies acting as
4193 -- declarations, or subprogram stubs, are not supported by front-end
4194 -- inlining. This inlining should occur after analysis of the body, so
4195 -- that it is known whether the value of SPARK_Mode, which can be
4196 -- defined by a pragma inside the body, is applicable to the body.
4197 -- Inlining can be disabled with switch -gnatdm
4198
4199 elsif GNATprove_Mode
4200 and then Full_Analysis
4201 and then not Inside_A_Generic
4202 and then Present (Spec_Id)
4203 and then
4204 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4205 and then Body_Has_SPARK_Mode_On
4206 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4207 and then not Body_Has_Contract
4208 and then not Debug_Flag_M
4209 then
4210 Build_Body_To_Inline (N, Spec_Id);
4211 end if;
4212
4213 -- When generating code, inherited pre/postconditions are handled when
4214 -- expanding the corresponding contract.
4215
4216 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4217 -- of the specification we have to install the private withed units.
4218 -- This holds for child units as well.
4219
4220 if Is_Compilation_Unit (Body_Id)
4221 or else Nkind (Parent (N)) = N_Compilation_Unit
4222 then
4223 Install_Private_With_Clauses (Body_Id);
4224 end if;
4225
4226 Check_Anonymous_Return;
4227
4228 -- Set the Protected_Formal field of each extra formal of the protected
4229 -- subprogram to reference the corresponding extra formal of the
4230 -- subprogram that implements it. For regular formals this occurs when
4231 -- the protected subprogram's declaration is expanded, but the extra
4232 -- formals don't get created until the subprogram is frozen. We need to
4233 -- do this before analyzing the protected subprogram's body so that any
4234 -- references to the original subprogram's extra formals will be changed
4235 -- refer to the implementing subprogram's formals (see Expand_Formal).
4236
4237 if Present (Spec_Id)
4238 and then Is_Protected_Type (Scope (Spec_Id))
4239 and then Present (Protected_Body_Subprogram (Spec_Id))
4240 then
4241 declare
4242 Impl_Subp : constant Entity_Id :=
4243 Protected_Body_Subprogram (Spec_Id);
4244 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4245 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4246
4247 begin
4248 while Present (Prot_Ext_Formal) loop
4249 pragma Assert (Present (Impl_Ext_Formal));
4250 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4251 Next_Formal_With_Extras (Prot_Ext_Formal);
4252 Next_Formal_With_Extras (Impl_Ext_Formal);
4253 end loop;
4254 end;
4255 end if;
4256
4257 -- Now we can go on to analyze the body
4258
4259 HSS := Handled_Statement_Sequence (N);
4260 Set_Actual_Subtypes (N, Current_Scope);
4261
4262 -- Add a declaration for the Protection object, renaming declarations
4263 -- for discriminals and privals and finally a declaration for the entry
4264 -- family index (if applicable). This form of early expansion is done
4265 -- when the Expander is active because Install_Private_Data_Declarations
4266 -- references entities which were created during regular expansion. The
4267 -- subprogram entity must come from source, and not be an internally
4268 -- generated subprogram.
4269
4270 if Expander_Active
4271 and then Present (Prot_Typ)
4272 and then Present (Spec_Id)
4273 and then Comes_From_Source (Spec_Id)
4274 and then not Is_Eliminated (Spec_Id)
4275 then
4276 Install_Private_Data_Declarations
4277 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4278 end if;
4279
4280 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4281 -- may now appear in parameter and result profiles. Since the analysis
4282 -- of a subprogram body may use the parameter and result profile of the
4283 -- spec, swap any limited views with their non-limited counterpart.
4284
4285 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4286 Exch_Views := Exchange_Limited_Views (Spec_Id);
4287 end if;
4288
4289 -- If the return type is an anonymous access type whose designated type
4290 -- is the limited view of a class-wide type and the non-limited view is
4291 -- available, update the return type accordingly.
4292
4293 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4294 declare
4295 Etyp : Entity_Id;
4296 Rtyp : Entity_Id;
4297
4298 begin
4299 Rtyp := Etype (Spec_Id);
4300
4301 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4302 Etyp := Directly_Designated_Type (Rtyp);
4303
4304 if Is_Class_Wide_Type (Etyp)
4305 and then From_Limited_With (Etyp)
4306 then
4307 Desig_View := Etyp;
4308 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4309 end if;
4310 end if;
4311 end;
4312 end if;
4313
4314 -- Analyze any aspect specifications that appear on the subprogram body
4315
4316 if Has_Aspects (N) then
4317 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4318 end if;
4319
4320 Analyze_Declarations (Declarations (N));
4321
4322 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4323
4324 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4325 if Present (SPARK_Pragma (Spec_Id)) then
4326 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4327 and then
4328 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4329 then
4330 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4331 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4332 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4333 Error_Msg_NE
4334 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4335 end if;
4336
4337 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4338 null;
4339
4340 else
4341 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4342 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4343 Error_Msg_Sloc := Sloc (Spec_Id);
4344 Error_Msg_NE
4345 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4346 end if;
4347 end if;
4348
4349 -- A subprogram body freezes its own contract. Analyze the contract
4350 -- after the declarations of the body have been processed as pragmas
4351 -- are now chained on the contract of the subprogram body.
4352
4353 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4354
4355 -- Check completion, and analyze the statements
4356
4357 Check_Completion;
4358 Inspect_Deferred_Constant_Completion (Declarations (N));
4359 Analyze (HSS);
4360
4361 -- Deal with end of scope processing for the body
4362
4363 Process_End_Label (HSS, 't', Current_Scope);
4364 Update_Use_Clause_Chain;
4365 End_Scope;
4366
4367 -- If we are compiling an entry wrapper, remove the enclosing
4368 -- synchronized object from the stack.
4369
4370 if Is_Entry_Wrapper (Body_Id) then
4371 End_Scope;
4372 end if;
4373
4374 Check_Subprogram_Order (N);
4375 Set_Analyzed (Body_Id);
4376
4377 -- If we have a separate spec, then the analysis of the declarations
4378 -- caused the entities in the body to be chained to the spec id, but
4379 -- we want them chained to the body id. Only the formal parameters
4380 -- end up chained to the spec id in this case.
4381
4382 if Present (Spec_Id) then
4383
4384 -- We must conform to the categorization of our spec
4385
4386 Validate_Categorization_Dependency (N, Spec_Id);
4387
4388 -- And if this is a child unit, the parent units must conform
4389
4390 if Is_Child_Unit (Spec_Id) then
4391 Validate_Categorization_Dependency
4392 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4393 end if;
4394
4395 -- Here is where we move entities from the spec to the body
4396
4397 -- Case where there are entities that stay with the spec
4398
4399 if Present (Last_Real_Spec_Entity) then
4400
4401 -- No body entities (happens when the only real spec entities come
4402 -- from precondition and postcondition pragmas).
4403
4404 if No (Last_Entity (Body_Id)) then
4405 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4406
4407 -- Body entities present (formals), so chain stuff past them
4408
4409 else
4410 Link_Entities
4411 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4412 end if;
4413
4414 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4415 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4416 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4417
4418 -- Case where there are no spec entities, in this case there can be
4419 -- no body entities either, so just move everything.
4420
4421 -- If the body is generated for an expression function, it may have
4422 -- been preanalyzed already, if 'access was applied to it.
4423
4424 else
4425 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4426 N_Expression_Function
4427 then
4428 pragma Assert (No (Last_Entity (Body_Id)));
4429 null;
4430 end if;
4431
4432 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4433 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4434 Set_First_Entity (Spec_Id, Empty);
4435 Set_Last_Entity (Spec_Id, Empty);
4436 end if;
4437
4438 -- Otherwise the body does not complete a previous declaration. Check
4439 -- the categorization of the body against the units it withs.
4440
4441 else
4442 Validate_Categorization_Dependency (N, Body_Id);
4443 end if;
4444
4445 Check_Missing_Return;
4446
4447 -- Now we are going to check for variables that are never modified in
4448 -- the body of the procedure. But first we deal with a special case
4449 -- where we want to modify this check. If the body of the subprogram
4450 -- starts with a raise statement or its equivalent, or if the body
4451 -- consists entirely of a null statement, then it is pretty obvious that
4452 -- it is OK to not reference the parameters. For example, this might be
4453 -- the following common idiom for a stubbed function: statement of the
4454 -- procedure raises an exception. In particular this deals with the
4455 -- common idiom of a stubbed function, which appears something like:
4456
4457 -- function F (A : Integer) return Some_Type;
4458 -- X : Some_Type;
4459 -- begin
4460 -- raise Program_Error;
4461 -- return X;
4462 -- end F;
4463
4464 -- Here the purpose of X is simply to satisfy the annoying requirement
4465 -- in Ada that there be at least one return, and we certainly do not
4466 -- want to go posting warnings on X that it is not initialized. On
4467 -- the other hand, if X is entirely unreferenced that should still
4468 -- get a warning.
4469
4470 -- What we do is to detect these cases, and if we find them, flag the
4471 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4472 -- suppress unwanted warnings. For the case of the function stub above
4473 -- we have a special test to set X as apparently assigned to suppress
4474 -- the warning.
4475
4476 declare
4477 Stm : Node_Id;
4478
4479 begin
4480 -- Skip call markers installed by the ABE mechanism, labels, and
4481 -- Push_xxx_Error_Label to find the first real statement.
4482
4483 Stm := First (Statements (HSS));
4484 while Nkind_In (Stm, N_Call_Marker, N_Label)
4485 or else Nkind (Stm) in N_Push_xxx_Label
4486 loop
4487 Next (Stm);
4488 end loop;
4489
4490 -- Do the test on the original statement before expansion
4491
4492 declare
4493 Ostm : constant Node_Id := Original_Node (Stm);
4494
4495 begin
4496 -- If explicit raise statement, turn on flag
4497
4498 if Nkind (Ostm) = N_Raise_Statement then
4499 Set_Trivial_Subprogram (Stm);
4500
4501 -- If null statement, and no following statements, turn on flag
4502
4503 elsif Nkind (Stm) = N_Null_Statement
4504 and then Comes_From_Source (Stm)
4505 and then No (Next (Stm))
4506 then
4507 Set_Trivial_Subprogram (Stm);
4508
4509 -- Check for explicit call cases which likely raise an exception
4510
4511 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4512 if Is_Entity_Name (Name (Ostm)) then
4513 declare
4514 Ent : constant Entity_Id := Entity (Name (Ostm));
4515
4516 begin
4517 -- If the procedure is marked No_Return, then likely it
4518 -- raises an exception, but in any case it is not coming
4519 -- back here, so turn on the flag.
4520
4521 if Present (Ent)
4522 and then Ekind (Ent) = E_Procedure
4523 and then No_Return (Ent)
4524 then
4525 Set_Trivial_Subprogram (Stm);
4526 end if;
4527 end;
4528 end if;
4529 end if;
4530 end;
4531 end;
4532
4533 -- Check for variables that are never modified
4534
4535 declare
4536 E1 : Entity_Id;
4537 E2 : Entity_Id;
4538
4539 begin
4540 -- If there is a separate spec, then transfer Never_Set_In_Source
4541 -- flags from out parameters to the corresponding entities in the
4542 -- body. The reason we do that is we want to post error flags on
4543 -- the body entities, not the spec entities.
4544
4545 if Present (Spec_Id) then
4546 E1 := First_Entity (Spec_Id);
4547 while Present (E1) loop
4548 if Ekind (E1) = E_Out_Parameter then
4549 E2 := First_Entity (Body_Id);
4550 while Present (E2) loop
4551 exit when Chars (E1) = Chars (E2);
4552 Next_Entity (E2);
4553 end loop;
4554
4555 if Present (E2) then
4556 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4557 end if;
4558 end if;
4559
4560 Next_Entity (E1);
4561 end loop;
4562 end if;
4563
4564 -- Check references of the subprogram spec when we are dealing with
4565 -- an expression function due to it having a generated body.
4566 -- Otherwise, we simply check the formals of the subprogram body.
4567
4568 if Present (Spec_Id)
4569 and then Is_Expression_Function (Spec_Id)
4570 then
4571 Check_References (Spec_Id);
4572 else
4573 Check_References (Body_Id);
4574 end if;
4575 end;
4576
4577 -- Check for nested subprogram, and mark outer level subprogram if so
4578
4579 declare
4580 Ent : Entity_Id;
4581
4582 begin
4583 if Present (Spec_Id) then
4584 Ent := Spec_Id;
4585 else
4586 Ent := Body_Id;
4587 end if;
4588
4589 loop
4590 Ent := Enclosing_Subprogram (Ent);
4591 exit when No (Ent) or else Is_Subprogram (Ent);
4592 end loop;
4593
4594 if Present (Ent) then
4595 Set_Has_Nested_Subprogram (Ent);
4596 end if;
4597 end;
4598
4599 -- Restore the limited views in the spec, if any, to let the back end
4600 -- process it without running into circularities.
4601
4602 if Exch_Views /= No_Elist then
4603 Restore_Limited_Views (Exch_Views);
4604 end if;
4605
4606 if Mask_Types /= No_Elist then
4607 Unmask_Unfrozen_Types (Mask_Types);
4608 end if;
4609
4610 if Present (Desig_View) then
4611 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4612 end if;
4613
4614 <<Leave>>
4615 if Present (Ignored_Ghost_Region) then
4616 Expander_Active := Saved_EA;
4617 end if;
4618
4619 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4620 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4621 end Analyze_Subprogram_Body_Helper;
4622
4623 ------------------------------------
4624 -- Analyze_Subprogram_Declaration --
4625 ------------------------------------
4626
4627 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4628 Scop : constant Entity_Id := Current_Scope;
4629 Designator : Entity_Id;
4630
4631 Is_Completion : Boolean;
4632 -- Indicates whether a null procedure declaration is a completion
4633
4634 begin
4635 -- Null procedures are not allowed in SPARK
4636
4637 if Nkind (Specification (N)) = N_Procedure_Specification
4638 and then Null_Present (Specification (N))
4639 then
4640 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4641
4642 -- Null procedures are allowed in protected types, following the
4643 -- recent AI12-0147.
4644
4645 if Is_Protected_Type (Current_Scope)
4646 and then Ada_Version < Ada_2012
4647 then
4648 Error_Msg_N ("protected operation cannot be a null procedure", N);
4649 end if;
4650
4651 Analyze_Null_Procedure (N, Is_Completion);
4652
4653 -- The null procedure acts as a body, nothing further is needed
4654
4655 if Is_Completion then
4656 return;
4657 end if;
4658 end if;
4659
4660 Designator := Analyze_Subprogram_Specification (Specification (N));
4661
4662 -- A reference may already have been generated for the unit name, in
4663 -- which case the following call is redundant. However it is needed for
4664 -- declarations that are the rewriting of an expression function.
4665
4666 Generate_Definition (Designator);
4667
4668 -- Set the SPARK mode from the current context (may be overwritten later
4669 -- with explicit pragma). This is not done for entry barrier functions
4670 -- because they are generated outside the protected type and should not
4671 -- carry the mode of the enclosing context.
4672
4673 if Nkind (N) = N_Subprogram_Declaration
4674 and then Is_Entry_Barrier_Function (N)
4675 then
4676 null;
4677
4678 else
4679 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4680 Set_SPARK_Pragma_Inherited (Designator);
4681 end if;
4682
4683 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4684 -- the body of this subprogram is instantiated or inlined later and out
4685 -- of context. The body uses this attribute to restore the value of the
4686 -- global flag.
4687
4688 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4689 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4690 end if;
4691
4692 -- Preserve relevant elaboration-related attributes of the context which
4693 -- are no longer available or very expensive to recompute once analysis,
4694 -- resolution, and expansion are over.
4695
4696 Mark_Elaboration_Attributes
4697 (N_Id => Designator,
4698 Checks => True,
4699 Warnings => True);
4700
4701 if Debug_Flag_C then
4702 Write_Str ("==> subprogram spec ");
4703 Write_Name (Chars (Designator));
4704 Write_Str (" from ");
4705 Write_Location (Sloc (N));
4706 Write_Eol;
4707 Indent;
4708 end if;
4709
4710 Validate_RCI_Subprogram_Declaration (N);
4711 New_Overloaded_Entity (Designator);
4712 Check_Delayed_Subprogram (Designator);
4713
4714 -- If the type of the first formal of the current subprogram is a non-
4715 -- generic tagged private type, mark the subprogram as being a private
4716 -- primitive. Ditto if this is a function with controlling result, and
4717 -- the return type is currently private. In both cases, the type of the
4718 -- controlling argument or result must be in the current scope for the
4719 -- operation to be primitive.
4720
4721 if Has_Controlling_Result (Designator)
4722 and then Is_Private_Type (Etype (Designator))
4723 and then Scope (Etype (Designator)) = Current_Scope
4724 and then not Is_Generic_Actual_Type (Etype (Designator))
4725 then
4726 Set_Is_Private_Primitive (Designator);
4727
4728 elsif Present (First_Formal (Designator)) then
4729 declare
4730 Formal_Typ : constant Entity_Id :=
4731 Etype (First_Formal (Designator));
4732 begin
4733 Set_Is_Private_Primitive (Designator,
4734 Is_Tagged_Type (Formal_Typ)
4735 and then Scope (Formal_Typ) = Current_Scope
4736 and then Is_Private_Type (Formal_Typ)
4737 and then not Is_Generic_Actual_Type (Formal_Typ));
4738 end;
4739 end if;
4740
4741 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4742 -- or null.
4743
4744 if Ada_Version >= Ada_2005
4745 and then Comes_From_Source (N)
4746 and then Is_Dispatching_Operation (Designator)
4747 then
4748 declare
4749 E : Entity_Id;
4750 Etyp : Entity_Id;
4751
4752 begin
4753 if Has_Controlling_Result (Designator) then
4754 Etyp := Etype (Designator);
4755
4756 else
4757 E := First_Entity (Designator);
4758 while Present (E)
4759 and then Is_Formal (E)
4760 and then not Is_Controlling_Formal (E)
4761 loop
4762 Next_Entity (E);
4763 end loop;
4764
4765 Etyp := Etype (E);
4766 end if;
4767
4768 if Is_Access_Type (Etyp) then
4769 Etyp := Directly_Designated_Type (Etyp);
4770 end if;
4771
4772 if Is_Interface (Etyp)
4773 and then not Is_Abstract_Subprogram (Designator)
4774 and then not (Ekind (Designator) = E_Procedure
4775 and then Null_Present (Specification (N)))
4776 then
4777 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4778
4779 -- Specialize error message based on procedures vs. functions,
4780 -- since functions can't be null subprograms.
4781
4782 if Ekind (Designator) = E_Procedure then
4783 Error_Msg_N
4784 ("interface procedure % must be abstract or null", N);
4785 else
4786 Error_Msg_N
4787 ("interface function % must be abstract", N);
4788 end if;
4789 end if;
4790 end;
4791 end if;
4792
4793 -- What is the following code for, it used to be
4794
4795 -- ??? Set_Suppress_Elaboration_Checks
4796 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4797
4798 -- The following seems equivalent, but a bit dubious
4799
4800 if Elaboration_Checks_Suppressed (Designator) then
4801 Set_Kill_Elaboration_Checks (Designator);
4802 end if;
4803
4804 -- For a compilation unit, set body required. This flag will only be
4805 -- reset if a valid Import or Interface pragma is processed later on.
4806
4807 if Nkind (Parent (N)) = N_Compilation_Unit then
4808 Set_Body_Required (Parent (N), True);
4809
4810 if Ada_Version >= Ada_2005
4811 and then Nkind (Specification (N)) = N_Procedure_Specification
4812 and then Null_Present (Specification (N))
4813 then
4814 Error_Msg_N
4815 ("null procedure cannot be declared at library level", N);
4816 end if;
4817 end if;
4818
4819 Generate_Reference_To_Formals (Designator);
4820 Check_Eliminated (Designator);
4821
4822 if Debug_Flag_C then
4823 Outdent;
4824 Write_Str ("<== subprogram spec ");
4825 Write_Name (Chars (Designator));
4826 Write_Str (" from ");
4827 Write_Location (Sloc (N));
4828 Write_Eol;
4829 end if;
4830
4831 -- Indicate that this is a protected operation, because it may be used
4832 -- in subsequent declarations within the protected type.
4833
4834 if Is_Protected_Type (Current_Scope) then
4835 Set_Convention (Designator, Convention_Protected);
4836 end if;
4837
4838 List_Inherited_Pre_Post_Aspects (Designator);
4839
4840 -- Process the aspects before establishing the proper categorization in
4841 -- case the subprogram is a compilation unit and one of its aspects is
4842 -- converted into a categorization pragma.
4843
4844 if Has_Aspects (N) then
4845 Analyze_Aspect_Specifications (N, Designator);
4846 end if;
4847
4848 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4849 Set_Categorization_From_Scope (Designator, Scop);
4850
4851 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
4852 -- proper categorization of the unit based on its pragmas.
4853
4854 else
4855 Push_Scope (Designator);
4856 Set_Categorization_From_Pragmas (N);
4857 Validate_Categorization_Dependency (N, Designator);
4858 Pop_Scope;
4859 end if;
4860 end Analyze_Subprogram_Declaration;
4861
4862 --------------------------------------
4863 -- Analyze_Subprogram_Specification --
4864 --------------------------------------
4865
4866 -- Reminder: N here really is a subprogram specification (not a subprogram
4867 -- declaration). This procedure is called to analyze the specification in
4868 -- both subprogram bodies and subprogram declarations (specs).
4869
4870 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4871 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4872 -- Determine whether entity E denotes the spec or body of an invariant
4873 -- procedure.
4874
4875 ------------------------------------
4876 -- Is_Invariant_Procedure_Or_Body --
4877 ------------------------------------
4878
4879 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4880 Decl : constant Node_Id := Unit_Declaration_Node (E);
4881 Spec : Entity_Id;
4882
4883 begin
4884 if Nkind (Decl) = N_Subprogram_Body then
4885 Spec := Corresponding_Spec (Decl);
4886 else
4887 Spec := E;
4888 end if;
4889
4890 return
4891 Present (Spec)
4892 and then Ekind (Spec) = E_Procedure
4893 and then (Is_Partial_Invariant_Procedure (Spec)
4894 or else Is_Invariant_Procedure (Spec));
4895 end Is_Invariant_Procedure_Or_Body;
4896
4897 -- Local variables
4898
4899 Designator : constant Entity_Id := Defining_Entity (N);
4900 Formals : constant List_Id := Parameter_Specifications (N);
4901
4902 -- Start of processing for Analyze_Subprogram_Specification
4903
4904 begin
4905 -- User-defined operator is not allowed in SPARK, except as a renaming
4906
4907 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4908 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4909 then
4910 Check_SPARK_05_Restriction
4911 ("user-defined operator is not allowed", N);
4912 end if;
4913
4914 -- Proceed with analysis. Do not emit a cross-reference entry if the
4915 -- specification comes from an expression function, because it may be
4916 -- the completion of a previous declaration. If it is not, the cross-
4917 -- reference entry will be emitted for the new subprogram declaration.
4918
4919 if Nkind (Parent (N)) /= N_Expression_Function then
4920 Generate_Definition (Designator);
4921 end if;
4922
4923 if Nkind (N) = N_Function_Specification then
4924 Set_Ekind (Designator, E_Function);
4925 Set_Mechanism (Designator, Default_Mechanism);
4926 else
4927 Set_Ekind (Designator, E_Procedure);
4928 Set_Etype (Designator, Standard_Void_Type);
4929 end if;
4930
4931 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4932 -- those subprograms which could be inlined in GNATprove mode (because
4933 -- Body_To_Inline is non-Empty) but should not be inlined.
4934
4935 if GNATprove_Mode then
4936 Set_Is_Inlined_Always (Designator);
4937 end if;
4938
4939 -- Introduce new scope for analysis of the formals and the return type
4940
4941 Set_Scope (Designator, Current_Scope);
4942
4943 if Present (Formals) then
4944 Push_Scope (Designator);
4945 Process_Formals (Formals, N);
4946
4947 -- Check dimensions in N for formals with default expression
4948
4949 Analyze_Dimension_Formals (N, Formals);
4950
4951 -- Ada 2005 (AI-345): If this is an overriding operation of an
4952 -- inherited interface operation, and the controlling type is
4953 -- a synchronized type, replace the type with its corresponding
4954 -- record, to match the proper signature of an overriding operation.
4955 -- Same processing for an access parameter whose designated type is
4956 -- derived from a synchronized interface.
4957
4958 -- This modification is not done for invariant procedures because
4959 -- the corresponding record may not necessarely be visible when the
4960 -- concurrent type acts as the full view of a private type.
4961
4962 -- package Pack is
4963 -- type Prot is private with Type_Invariant => ...;
4964 -- procedure ConcInvariant (Obj : Prot);
4965 -- private
4966 -- protected type Prot is ...;
4967 -- type Concurrent_Record_Prot is record ...;
4968 -- procedure ConcInvariant (Obj : Prot) is
4969 -- ...
4970 -- end ConcInvariant;
4971 -- end Pack;
4972
4973 -- In the example above, both the spec and body of the invariant
4974 -- procedure must utilize the private type as the controlling type.
4975
4976 if Ada_Version >= Ada_2005
4977 and then not Is_Invariant_Procedure_Or_Body (Designator)
4978 then
4979 declare
4980 Formal : Entity_Id;
4981 Formal_Typ : Entity_Id;
4982 Rec_Typ : Entity_Id;
4983 Desig_Typ : Entity_Id;
4984
4985 begin
4986 Formal := First_Formal (Designator);
4987 while Present (Formal) loop
4988 Formal_Typ := Etype (Formal);
4989
4990 if Is_Concurrent_Type (Formal_Typ)
4991 and then Present (Corresponding_Record_Type (Formal_Typ))
4992 then
4993 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4994
4995 if Present (Interfaces (Rec_Typ)) then
4996 Set_Etype (Formal, Rec_Typ);
4997 end if;
4998
4999 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5000 Desig_Typ := Designated_Type (Formal_Typ);
5001
5002 if Is_Concurrent_Type (Desig_Typ)
5003 and then Present (Corresponding_Record_Type (Desig_Typ))
5004 then
5005 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5006
5007 if Present (Interfaces (Rec_Typ)) then
5008 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5009 end if;
5010 end if;
5011 end if;
5012
5013 Next_Formal (Formal);
5014 end loop;
5015 end;
5016 end if;
5017
5018 End_Scope;
5019
5020 -- The subprogram scope is pushed and popped around the processing of
5021 -- the return type for consistency with call above to Process_Formals
5022 -- (which itself can call Analyze_Return_Type), and to ensure that any
5023 -- itype created for the return type will be associated with the proper
5024 -- scope.
5025
5026 elsif Nkind (N) = N_Function_Specification then
5027 Push_Scope (Designator);
5028 Analyze_Return_Type (N);
5029 End_Scope;
5030 end if;
5031
5032 -- Function case
5033
5034 if Nkind (N) = N_Function_Specification then
5035
5036 -- Deal with operator symbol case
5037
5038 if Nkind (Designator) = N_Defining_Operator_Symbol then
5039 Valid_Operator_Definition (Designator);
5040 end if;
5041
5042 May_Need_Actuals (Designator);
5043
5044 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5045 -- the subprogram is abstract also. This does not apply to renaming
5046 -- declarations, where abstractness is inherited, and to subprogram
5047 -- bodies generated for stream operations, which become renamings as
5048 -- bodies.
5049
5050 -- In case of primitives associated with abstract interface types
5051 -- the check is applied later (see Analyze_Subprogram_Declaration).
5052
5053 if not Nkind_In (Original_Node (Parent (N)),
5054 N_Abstract_Subprogram_Declaration,
5055 N_Formal_Abstract_Subprogram_Declaration,
5056 N_Subprogram_Renaming_Declaration)
5057 then
5058 if Is_Abstract_Type (Etype (Designator))
5059 and then not Is_Interface (Etype (Designator))
5060 then
5061 Error_Msg_N
5062 ("function that returns abstract type must be abstract", N);
5063
5064 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5065 -- access result whose designated type is abstract.
5066
5067 elsif Ada_Version >= Ada_2012
5068 and then Nkind (Result_Definition (N)) = N_Access_Definition
5069 and then
5070 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5071 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5072 then
5073 Error_Msg_N
5074 ("function whose access result designates abstract type "
5075 & "must be abstract", N);
5076 end if;
5077 end if;
5078 end if;
5079
5080 return Designator;
5081 end Analyze_Subprogram_Specification;
5082
5083 -----------------------
5084 -- Check_Conformance --
5085 -----------------------
5086
5087 procedure Check_Conformance
5088 (New_Id : Entity_Id;
5089 Old_Id : Entity_Id;
5090 Ctype : Conformance_Type;
5091 Errmsg : Boolean;
5092 Conforms : out Boolean;
5093 Err_Loc : Node_Id := Empty;
5094 Get_Inst : Boolean := False;
5095 Skip_Controlling_Formals : Boolean := False)
5096 is
5097 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5098 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5099 -- If Errmsg is True, then processing continues to post an error message
5100 -- for conformance error on given node. Two messages are output. The
5101 -- first message points to the previous declaration with a general "no
5102 -- conformance" message. The second is the detailed reason, supplied as
5103 -- Msg. The parameter N provide information for a possible & insertion
5104 -- in the message, and also provides the location for posting the
5105 -- message in the absence of a specified Err_Loc location.
5106
5107 function Conventions_Match
5108 (Id1 : Entity_Id;
5109 Id2 : Entity_Id) return Boolean;
5110 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5111 -- match.
5112
5113 -----------------------
5114 -- Conformance_Error --
5115 -----------------------
5116
5117 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5118 Enode : Node_Id;
5119
5120 begin
5121 Conforms := False;
5122
5123 if Errmsg then
5124 if No (Err_Loc) then
5125 Enode := N;
5126 else
5127 Enode := Err_Loc;
5128 end if;
5129
5130 Error_Msg_Sloc := Sloc (Old_Id);
5131
5132 case Ctype is
5133 when Type_Conformant =>
5134 Error_Msg_N -- CODEFIX
5135 ("not type conformant with declaration#!", Enode);
5136
5137 when Mode_Conformant =>
5138 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5139 Error_Msg_N
5140 ("not mode conformant with operation inherited#!",
5141 Enode);
5142 else
5143 Error_Msg_N
5144 ("not mode conformant with declaration#!", Enode);
5145 end if;
5146
5147 when Subtype_Conformant =>
5148 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5149 Error_Msg_N
5150 ("not subtype conformant with operation inherited#!",
5151 Enode);
5152 else
5153 Error_Msg_N
5154 ("not subtype conformant with declaration#!", Enode);
5155 end if;
5156
5157 when Fully_Conformant =>
5158 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5159 Error_Msg_N -- CODEFIX
5160 ("not fully conformant with operation inherited#!",
5161 Enode);
5162 else
5163 Error_Msg_N -- CODEFIX
5164 ("not fully conformant with declaration#!", Enode);
5165 end if;
5166 end case;
5167
5168 Error_Msg_NE (Msg, Enode, N);
5169 end if;
5170 end Conformance_Error;
5171
5172 -----------------------
5173 -- Conventions_Match --
5174 -----------------------
5175
5176 function Conventions_Match
5177 (Id1 : Entity_Id;
5178 Id2 : Entity_Id) return Boolean
5179 is
5180 begin
5181 -- Ignore the conventions of anonymous access-to-subprogram types
5182 -- and subprogram types because these are internally generated and
5183 -- the only way these may receive a convention is if they inherit
5184 -- the convention of a related subprogram.
5185
5186 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5187 E_Subprogram_Type)
5188 or else
5189 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5190 E_Subprogram_Type)
5191 then
5192 return True;
5193
5194 -- Otherwise compare the conventions directly
5195
5196 else
5197 return Convention (Id1) = Convention (Id2);
5198 end if;
5199 end Conventions_Match;
5200
5201 -- Local Variables
5202
5203 Old_Type : constant Entity_Id := Etype (Old_Id);
5204 New_Type : constant Entity_Id := Etype (New_Id);
5205 Old_Formal : Entity_Id;
5206 New_Formal : Entity_Id;
5207 Access_Types_Match : Boolean;
5208 Old_Formal_Base : Entity_Id;
5209 New_Formal_Base : Entity_Id;
5210
5211 -- Start of processing for Check_Conformance
5212
5213 begin
5214 Conforms := True;
5215
5216 -- We need a special case for operators, since they don't appear
5217 -- explicitly.
5218
5219 if Ctype = Type_Conformant then
5220 if Ekind (New_Id) = E_Operator
5221 and then Operator_Matches_Spec (New_Id, Old_Id)
5222 then
5223 return;
5224 end if;
5225 end if;
5226
5227 -- If both are functions/operators, check return types conform
5228
5229 if Old_Type /= Standard_Void_Type
5230 and then
5231 New_Type /= Standard_Void_Type
5232 then
5233 -- If we are checking interface conformance we omit controlling
5234 -- arguments and result, because we are only checking the conformance
5235 -- of the remaining parameters.
5236
5237 if Has_Controlling_Result (Old_Id)
5238 and then Has_Controlling_Result (New_Id)
5239 and then Skip_Controlling_Formals
5240 then
5241 null;
5242
5243 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5244 if Ctype >= Subtype_Conformant
5245 and then not Predicates_Match (Old_Type, New_Type)
5246 then
5247 Conformance_Error
5248 ("\predicate of return type does not match!", New_Id);
5249 else
5250 Conformance_Error
5251 ("\return type does not match!", New_Id);
5252 end if;
5253
5254 return;
5255 end if;
5256
5257 -- Ada 2005 (AI-231): In case of anonymous access types check the
5258 -- null-exclusion and access-to-constant attributes match.
5259
5260 if Ada_Version >= Ada_2005
5261 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5262 and then
5263 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5264 or else Is_Access_Constant (Etype (Old_Type)) /=
5265 Is_Access_Constant (Etype (New_Type)))
5266 then
5267 Conformance_Error ("\return type does not match!", New_Id);
5268 return;
5269 end if;
5270
5271 -- If either is a function/operator and the other isn't, error
5272
5273 elsif Old_Type /= Standard_Void_Type
5274 or else New_Type /= Standard_Void_Type
5275 then
5276 Conformance_Error ("\functions can only match functions!", New_Id);
5277 return;
5278 end if;
5279
5280 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5281 -- If this is a renaming as body, refine error message to indicate that
5282 -- the conflict is with the original declaration. If the entity is not
5283 -- frozen, the conventions don't have to match, the one of the renamed
5284 -- entity is inherited.
5285
5286 if Ctype >= Subtype_Conformant then
5287 if not Conventions_Match (Old_Id, New_Id) then
5288 if not Is_Frozen (New_Id) then
5289 null;
5290
5291 elsif Present (Err_Loc)
5292 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5293 and then Present (Corresponding_Spec (Err_Loc))
5294 then
5295 Error_Msg_Name_1 := Chars (New_Id);
5296 Error_Msg_Name_2 :=
5297 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5298 Conformance_Error ("\prior declaration for% has convention %!");
5299
5300 else
5301 Conformance_Error ("\calling conventions do not match!");
5302 end if;
5303
5304 return;
5305
5306 elsif Is_Formal_Subprogram (Old_Id)
5307 or else Is_Formal_Subprogram (New_Id)
5308 or else (Is_Subprogram (New_Id)
5309 and then Present (Alias (New_Id))
5310 and then Is_Formal_Subprogram (Alias (New_Id)))
5311 then
5312 Conformance_Error
5313 ("\formal subprograms are not subtype conformant "
5314 & "(RM 6.3.1 (17/3))");
5315 end if;
5316 end if;
5317
5318 -- Deal with parameters
5319
5320 -- Note: we use the entity information, rather than going directly
5321 -- to the specification in the tree. This is not only simpler, but
5322 -- absolutely necessary for some cases of conformance tests between
5323 -- operators, where the declaration tree simply does not exist.
5324
5325 Old_Formal := First_Formal (Old_Id);
5326 New_Formal := First_Formal (New_Id);
5327 while Present (Old_Formal) and then Present (New_Formal) loop
5328 if Is_Controlling_Formal (Old_Formal)
5329 and then Is_Controlling_Formal (New_Formal)
5330 and then Skip_Controlling_Formals
5331 then
5332 -- The controlling formals will have different types when
5333 -- comparing an interface operation with its match, but both
5334 -- or neither must be access parameters.
5335
5336 if Is_Access_Type (Etype (Old_Formal))
5337 =
5338 Is_Access_Type (Etype (New_Formal))
5339 then
5340 goto Skip_Controlling_Formal;
5341 else
5342 Conformance_Error
5343 ("\access parameter does not match!", New_Formal);
5344 end if;
5345 end if;
5346
5347 -- Ada 2012: Mode conformance also requires that formal parameters
5348 -- be both aliased, or neither.
5349
5350 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5351 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5352 Conformance_Error
5353 ("\aliased parameter mismatch!", New_Formal);
5354 end if;
5355 end if;
5356
5357 if Ctype = Fully_Conformant then
5358
5359 -- Names must match. Error message is more accurate if we do
5360 -- this before checking that the types of the formals match.
5361
5362 if Chars (Old_Formal) /= Chars (New_Formal) then
5363 Conformance_Error ("\name& does not match!", New_Formal);
5364
5365 -- Set error posted flag on new formal as well to stop
5366 -- junk cascaded messages in some cases.
5367
5368 Set_Error_Posted (New_Formal);
5369 return;
5370 end if;
5371
5372 -- Null exclusion must match
5373
5374 if Null_Exclusion_Present (Parent (Old_Formal))
5375 /=
5376 Null_Exclusion_Present (Parent (New_Formal))
5377 then
5378 -- Only give error if both come from source. This should be
5379 -- investigated some time, since it should not be needed ???
5380
5381 if Comes_From_Source (Old_Formal)
5382 and then
5383 Comes_From_Source (New_Formal)
5384 then
5385 Conformance_Error
5386 ("\null exclusion for& does not match", New_Formal);
5387
5388 -- Mark error posted on the new formal to avoid duplicated
5389 -- complaint about types not matching.
5390
5391 Set_Error_Posted (New_Formal);
5392 end if;
5393 end if;
5394 end if;
5395
5396 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5397 -- case occurs whenever a subprogram is being renamed and one of its
5398 -- parameters imposes a null exclusion. For example:
5399
5400 -- type T is null record;
5401 -- type Acc_T is access T;
5402 -- subtype Acc_T_Sub is Acc_T;
5403
5404 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5405 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5406 -- renames P;
5407
5408 Old_Formal_Base := Etype (Old_Formal);
5409 New_Formal_Base := Etype (New_Formal);
5410
5411 if Get_Inst then
5412 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5413 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5414 end if;
5415
5416 Access_Types_Match := Ada_Version >= Ada_2005
5417
5418 -- Ensure that this rule is only applied when New_Id is a
5419 -- renaming of Old_Id.
5420
5421 and then Nkind (Parent (Parent (New_Id))) =
5422 N_Subprogram_Renaming_Declaration
5423 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5424 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5425 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5426
5427 -- Now handle the allowed access-type case
5428
5429 and then Is_Access_Type (Old_Formal_Base)
5430 and then Is_Access_Type (New_Formal_Base)
5431
5432 -- The type kinds must match. The only exception occurs with
5433 -- multiple generics of the form:
5434
5435 -- generic generic
5436 -- type F is private; type A is private;
5437 -- type F_Ptr is access F; type A_Ptr is access A;
5438 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5439 -- package F_Pack is ... package A_Pack is
5440 -- package F_Inst is
5441 -- new F_Pack (A, A_Ptr, A_P);
5442
5443 -- When checking for conformance between the parameters of A_P
5444 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5445 -- because the compiler has transformed A_Ptr into a subtype of
5446 -- F_Ptr. We catch this case in the code below.
5447
5448 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5449 or else
5450 (Is_Generic_Type (Old_Formal_Base)
5451 and then Is_Generic_Type (New_Formal_Base)
5452 and then Is_Internal (New_Formal_Base)
5453 and then Etype (Etype (New_Formal_Base)) =
5454 Old_Formal_Base))
5455 and then Directly_Designated_Type (Old_Formal_Base) =
5456 Directly_Designated_Type (New_Formal_Base)
5457 and then ((Is_Itype (Old_Formal_Base)
5458 and then (Can_Never_Be_Null (Old_Formal_Base)
5459 or else Is_Access_Constant
5460 (Old_Formal_Base)))
5461 or else
5462 (Is_Itype (New_Formal_Base)
5463 and then (Can_Never_Be_Null (New_Formal_Base)
5464 or else Is_Access_Constant
5465 (New_Formal_Base))));
5466
5467 -- Types must always match. In the visible part of an instance,
5468 -- usual overloading rules for dispatching operations apply, and
5469 -- we check base types (not the actual subtypes).
5470
5471 if In_Instance_Visible_Part
5472 and then Is_Dispatching_Operation (New_Id)
5473 then
5474 if not Conforming_Types
5475 (T1 => Base_Type (Etype (Old_Formal)),
5476 T2 => Base_Type (Etype (New_Formal)),
5477 Ctype => Ctype,
5478 Get_Inst => Get_Inst)
5479 and then not Access_Types_Match
5480 then
5481 Conformance_Error ("\type of & does not match!", New_Formal);
5482 return;
5483 end if;
5484
5485 elsif not Conforming_Types
5486 (T1 => Old_Formal_Base,
5487 T2 => New_Formal_Base,
5488 Ctype => Ctype,
5489 Get_Inst => Get_Inst)
5490 and then not Access_Types_Match
5491 then
5492 -- Don't give error message if old type is Any_Type. This test
5493 -- avoids some cascaded errors, e.g. in case of a bad spec.
5494
5495 if Errmsg and then Old_Formal_Base = Any_Type then
5496 Conforms := False;
5497 else
5498 if Ctype >= Subtype_Conformant
5499 and then
5500 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5501 then
5502 Conformance_Error
5503 ("\predicate of & does not match!", New_Formal);
5504 else
5505 Conformance_Error
5506 ("\type of & does not match!", New_Formal);
5507
5508 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5509 then
5510 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5511 end if;
5512 end if;
5513 end if;
5514
5515 return;
5516 end if;
5517
5518 -- For mode conformance, mode must match
5519
5520 if Ctype >= Mode_Conformant then
5521 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5522 if not Ekind_In (New_Id, E_Function, E_Procedure)
5523 or else not Is_Primitive_Wrapper (New_Id)
5524 then
5525 Conformance_Error ("\mode of & does not match!", New_Formal);
5526
5527 else
5528 declare
5529 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5530 begin
5531 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5532 then
5533 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5534 else
5535 Conformance_Error
5536 ("\mode of & does not match!", New_Formal);
5537 end if;
5538 end;
5539 end if;
5540
5541 return;
5542
5543 -- Part of mode conformance for access types is having the same
5544 -- constant modifier.
5545
5546 elsif Access_Types_Match
5547 and then Is_Access_Constant (Old_Formal_Base) /=
5548 Is_Access_Constant (New_Formal_Base)
5549 then
5550 Conformance_Error
5551 ("\constant modifier does not match!", New_Formal);
5552 return;
5553 end if;
5554 end if;
5555
5556 if Ctype >= Subtype_Conformant then
5557
5558 -- Ada 2005 (AI-231): In case of anonymous access types check
5559 -- the null-exclusion and access-to-constant attributes must
5560 -- match. For null exclusion, we test the types rather than the
5561 -- formals themselves, since the attribute is only set reliably
5562 -- on the formals in the Ada 95 case, and we exclude the case
5563 -- where Old_Formal is marked as controlling, to avoid errors
5564 -- when matching completing bodies with dispatching declarations
5565 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5566
5567 if Ada_Version >= Ada_2005
5568 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5569 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5570 and then
5571 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5572 Can_Never_Be_Null (Etype (New_Formal))
5573 and then
5574 not Is_Controlling_Formal (Old_Formal))
5575 or else
5576 Is_Access_Constant (Etype (Old_Formal)) /=
5577 Is_Access_Constant (Etype (New_Formal)))
5578
5579 -- Do not complain if error already posted on New_Formal. This
5580 -- avoids some redundant error messages.
5581
5582 and then not Error_Posted (New_Formal)
5583 then
5584 -- It is allowed to omit the null-exclusion in case of stream
5585 -- attribute subprograms. We recognize stream subprograms
5586 -- through their TSS-generated suffix.
5587
5588 declare
5589 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5590
5591 begin
5592 if TSS_Name /= TSS_Stream_Read
5593 and then TSS_Name /= TSS_Stream_Write
5594 and then TSS_Name /= TSS_Stream_Input
5595 and then TSS_Name /= TSS_Stream_Output
5596 then
5597 -- Here we have a definite conformance error. It is worth
5598 -- special casing the error message for the case of a
5599 -- controlling formal (which excludes null).
5600
5601 if Is_Controlling_Formal (New_Formal) then
5602 Error_Msg_Node_2 := Scope (New_Formal);
5603 Conformance_Error
5604 ("\controlling formal & of & excludes null, "
5605 & "declaration must exclude null as well",
5606 New_Formal);
5607
5608 -- Normal case (couldn't we give more detail here???)
5609
5610 else
5611 Conformance_Error
5612 ("\type of & does not match!", New_Formal);
5613 end if;
5614
5615 return;
5616 end if;
5617 end;
5618 end if;
5619 end if;
5620
5621 -- Full conformance checks
5622
5623 if Ctype = Fully_Conformant then
5624
5625 -- We have checked already that names match
5626
5627 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5628
5629 -- Check default expressions for in parameters
5630
5631 declare
5632 NewD : constant Boolean :=
5633 Present (Default_Value (New_Formal));
5634 OldD : constant Boolean :=
5635 Present (Default_Value (Old_Formal));
5636 begin
5637 if NewD or OldD then
5638
5639 -- The old default value has been analyzed because the
5640 -- current full declaration will have frozen everything
5641 -- before. The new default value has not been analyzed,
5642 -- so analyze it now before we check for conformance.
5643
5644 if NewD then
5645 Push_Scope (New_Id);
5646 Preanalyze_Spec_Expression
5647 (Default_Value (New_Formal), Etype (New_Formal));
5648 End_Scope;
5649 end if;
5650
5651 if not (NewD and OldD)
5652 or else not Fully_Conformant_Expressions
5653 (Default_Value (Old_Formal),
5654 Default_Value (New_Formal))
5655 then
5656 Conformance_Error
5657 ("\default expression for & does not match!",
5658 New_Formal);
5659 return;
5660 end if;
5661 end if;
5662 end;
5663 end if;
5664 end if;
5665
5666 -- A couple of special checks for Ada 83 mode. These checks are
5667 -- skipped if either entity is an operator in package Standard,
5668 -- or if either old or new instance is not from the source program.
5669
5670 if Ada_Version = Ada_83
5671 and then Sloc (Old_Id) > Standard_Location
5672 and then Sloc (New_Id) > Standard_Location
5673 and then Comes_From_Source (Old_Id)
5674 and then Comes_From_Source (New_Id)
5675 then
5676 declare
5677 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5678 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5679
5680 begin
5681 -- Explicit IN must be present or absent in both cases. This
5682 -- test is required only in the full conformance case.
5683
5684 if In_Present (Old_Param) /= In_Present (New_Param)
5685 and then Ctype = Fully_Conformant
5686 then
5687 Conformance_Error
5688 ("\(Ada 83) IN must appear in both declarations",
5689 New_Formal);
5690 return;
5691 end if;
5692
5693 -- Grouping (use of comma in param lists) must be the same
5694 -- This is where we catch a misconformance like:
5695
5696 -- A, B : Integer
5697 -- A : Integer; B : Integer
5698
5699 -- which are represented identically in the tree except
5700 -- for the setting of the flags More_Ids and Prev_Ids.
5701
5702 if More_Ids (Old_Param) /= More_Ids (New_Param)
5703 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5704 then
5705 Conformance_Error
5706 ("\grouping of & does not match!", New_Formal);
5707 return;
5708 end if;
5709 end;
5710 end if;
5711
5712 -- This label is required when skipping controlling formals
5713
5714 <<Skip_Controlling_Formal>>
5715
5716 Next_Formal (Old_Formal);
5717 Next_Formal (New_Formal);
5718 end loop;
5719
5720 if Present (Old_Formal) then
5721 Conformance_Error ("\too few parameters!");
5722 return;
5723
5724 elsif Present (New_Formal) then
5725 Conformance_Error ("\too many parameters!", New_Formal);
5726 return;
5727 end if;
5728 end Check_Conformance;
5729
5730 -----------------------
5731 -- Check_Conventions --
5732 -----------------------
5733
5734 procedure Check_Conventions (Typ : Entity_Id) is
5735 Ifaces_List : Elist_Id;
5736
5737 procedure Check_Convention (Op : Entity_Id);
5738 -- Verify that the convention of inherited dispatching operation Op is
5739 -- consistent among all subprograms it overrides. In order to minimize
5740 -- the search, Search_From is utilized to designate a specific point in
5741 -- the list rather than iterating over the whole list once more.
5742
5743 ----------------------
5744 -- Check_Convention --
5745 ----------------------
5746
5747 procedure Check_Convention (Op : Entity_Id) is
5748 Op_Conv : constant Convention_Id := Convention (Op);
5749 Iface_Conv : Convention_Id;
5750 Iface_Elmt : Elmt_Id;
5751 Iface_Prim_Elmt : Elmt_Id;
5752 Iface_Prim : Entity_Id;
5753
5754 begin
5755 Iface_Elmt := First_Elmt (Ifaces_List);
5756 while Present (Iface_Elmt) loop
5757 Iface_Prim_Elmt :=
5758 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5759 while Present (Iface_Prim_Elmt) loop
5760 Iface_Prim := Node (Iface_Prim_Elmt);
5761 Iface_Conv := Convention (Iface_Prim);
5762
5763 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5764 and then Iface_Conv /= Op_Conv
5765 then
5766 Error_Msg_N
5767 ("inconsistent conventions in primitive operations", Typ);
5768
5769 Error_Msg_Name_1 := Chars (Op);
5770 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5771 Error_Msg_Sloc := Sloc (Op);
5772
5773 if Comes_From_Source (Op) or else No (Alias (Op)) then
5774 if not Present (Overridden_Operation (Op)) then
5775 Error_Msg_N ("\\primitive % defined #", Typ);
5776 else
5777 Error_Msg_N
5778 ("\\overriding operation % with "
5779 & "convention % defined #", Typ);
5780 end if;
5781
5782 else pragma Assert (Present (Alias (Op)));
5783 Error_Msg_Sloc := Sloc (Alias (Op));
5784 Error_Msg_N ("\\inherited operation % with "
5785 & "convention % defined #", Typ);
5786 end if;
5787
5788 Error_Msg_Name_1 := Chars (Op);
5789 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5790 Error_Msg_Sloc := Sloc (Iface_Prim);
5791 Error_Msg_N ("\\overridden operation % with "
5792 & "convention % defined #", Typ);
5793
5794 -- Avoid cascading errors
5795
5796 return;
5797 end if;
5798
5799 Next_Elmt (Iface_Prim_Elmt);
5800 end loop;
5801
5802 Next_Elmt (Iface_Elmt);
5803 end loop;
5804 end Check_Convention;
5805
5806 -- Local variables
5807
5808 Prim_Op : Entity_Id;
5809 Prim_Op_Elmt : Elmt_Id;
5810
5811 -- Start of processing for Check_Conventions
5812
5813 begin
5814 if not Has_Interfaces (Typ) then
5815 return;
5816 end if;
5817
5818 Collect_Interfaces (Typ, Ifaces_List);
5819
5820 -- The algorithm checks every overriding dispatching operation against
5821 -- all the corresponding overridden dispatching operations, detecting
5822 -- differences in conventions.
5823
5824 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5825 while Present (Prim_Op_Elmt) loop
5826 Prim_Op := Node (Prim_Op_Elmt);
5827
5828 -- A small optimization: skip the predefined dispatching operations
5829 -- since they always have the same convention.
5830
5831 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5832 Check_Convention (Prim_Op);
5833 end if;
5834
5835 Next_Elmt (Prim_Op_Elmt);
5836 end loop;
5837 end Check_Conventions;
5838
5839 ------------------------------
5840 -- Check_Delayed_Subprogram --
5841 ------------------------------
5842
5843 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5844 procedure Possible_Freeze (T : Entity_Id);
5845 -- T is the type of either a formal parameter or of the return type. If
5846 -- T is not yet frozen and needs a delayed freeze, then the subprogram
5847 -- itself must be delayed.
5848
5849 ---------------------
5850 -- Possible_Freeze --
5851 ---------------------
5852
5853 procedure Possible_Freeze (T : Entity_Id) is
5854 Scop : constant Entity_Id := Scope (Designator);
5855
5856 begin
5857 -- If the subprogram appears within a package instance (which may be
5858 -- the wrapper package of a subprogram instance) the freeze node for
5859 -- that package will freeze the subprogram at the proper place, so
5860 -- do not emit a freeze node for the subprogram, given that it may
5861 -- appear in the wrong scope.
5862
5863 if Ekind (Scop) = E_Package
5864 and then not Comes_From_Source (Scop)
5865 and then Is_Generic_Instance (Scop)
5866 then
5867 null;
5868
5869 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5870 Set_Has_Delayed_Freeze (Designator);
5871
5872 elsif Is_Access_Type (T)
5873 and then Has_Delayed_Freeze (Designated_Type (T))
5874 and then not Is_Frozen (Designated_Type (T))
5875 then
5876 Set_Has_Delayed_Freeze (Designator);
5877 end if;
5878 end Possible_Freeze;
5879
5880 -- Local variables
5881
5882 F : Entity_Id;
5883
5884 -- Start of processing for Check_Delayed_Subprogram
5885
5886 begin
5887 -- All subprograms, including abstract subprograms, may need a freeze
5888 -- node if some formal type or the return type needs one.
5889
5890 Possible_Freeze (Etype (Designator));
5891 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5892
5893 -- Need delayed freeze if any of the formal types themselves need a
5894 -- delayed freeze and are not yet frozen.
5895
5896 F := First_Formal (Designator);
5897 while Present (F) loop
5898 Possible_Freeze (Etype (F));
5899 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5900 Next_Formal (F);
5901 end loop;
5902
5903 -- Mark functions that return by reference. Note that it cannot be done
5904 -- for delayed_freeze subprograms because the underlying returned type
5905 -- may not be known yet (for private types).
5906
5907 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5908 declare
5909 Typ : constant Entity_Id := Etype (Designator);
5910 Utyp : constant Entity_Id := Underlying_Type (Typ);
5911
5912 begin
5913 if Is_Limited_View (Typ) then
5914 Set_Returns_By_Ref (Designator);
5915
5916 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5917 Set_Returns_By_Ref (Designator);
5918 end if;
5919 end;
5920 end if;
5921 end Check_Delayed_Subprogram;
5922
5923 ------------------------------------
5924 -- Check_Discriminant_Conformance --
5925 ------------------------------------
5926
5927 procedure Check_Discriminant_Conformance
5928 (N : Node_Id;
5929 Prev : Entity_Id;
5930 Prev_Loc : Node_Id)
5931 is
5932 Old_Discr : Entity_Id := First_Discriminant (Prev);
5933 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5934 New_Discr_Id : Entity_Id;
5935 New_Discr_Type : Entity_Id;
5936
5937 procedure Conformance_Error (Msg : String; N : Node_Id);
5938 -- Post error message for conformance error on given node. Two messages
5939 -- are output. The first points to the previous declaration with a
5940 -- general "no conformance" message. The second is the detailed reason,
5941 -- supplied as Msg. The parameter N provide information for a possible
5942 -- & insertion in the message.
5943
5944 -----------------------
5945 -- Conformance_Error --
5946 -----------------------
5947
5948 procedure Conformance_Error (Msg : String; N : Node_Id) is
5949 begin
5950 Error_Msg_Sloc := Sloc (Prev_Loc);
5951 Error_Msg_N -- CODEFIX
5952 ("not fully conformant with declaration#!", N);
5953 Error_Msg_NE (Msg, N, N);
5954 end Conformance_Error;
5955
5956 -- Start of processing for Check_Discriminant_Conformance
5957
5958 begin
5959 while Present (Old_Discr) and then Present (New_Discr) loop
5960 New_Discr_Id := Defining_Identifier (New_Discr);
5961
5962 -- The subtype mark of the discriminant on the full type has not
5963 -- been analyzed so we do it here. For an access discriminant a new
5964 -- type is created.
5965
5966 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5967 New_Discr_Type :=
5968 Access_Definition (N, Discriminant_Type (New_Discr));
5969
5970 else
5971 Find_Type (Discriminant_Type (New_Discr));
5972 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5973
5974 -- Ada 2005: if the discriminant definition carries a null
5975 -- exclusion, create an itype to check properly for consistency
5976 -- with partial declaration.
5977
5978 if Is_Access_Type (New_Discr_Type)
5979 and then Null_Exclusion_Present (New_Discr)
5980 then
5981 New_Discr_Type :=
5982 Create_Null_Excluding_Itype
5983 (T => New_Discr_Type,
5984 Related_Nod => New_Discr,
5985 Scope_Id => Current_Scope);
5986 end if;
5987 end if;
5988
5989 if not Conforming_Types
5990 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5991 then
5992 Conformance_Error ("type of & does not match!", New_Discr_Id);
5993 return;
5994 else
5995 -- Treat the new discriminant as an occurrence of the old one,
5996 -- for navigation purposes, and fill in some semantic
5997 -- information, for completeness.
5998
5999 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6000 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6001 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6002 end if;
6003
6004 -- Names must match
6005
6006 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6007 Conformance_Error ("name & does not match!", New_Discr_Id);
6008 return;
6009 end if;
6010
6011 -- Default expressions must match
6012
6013 declare
6014 NewD : constant Boolean :=
6015 Present (Expression (New_Discr));
6016 OldD : constant Boolean :=
6017 Present (Expression (Parent (Old_Discr)));
6018
6019 begin
6020 if NewD or OldD then
6021
6022 -- The old default value has been analyzed and expanded,
6023 -- because the current full declaration will have frozen
6024 -- everything before. The new default values have not been
6025 -- expanded, so expand now to check conformance.
6026
6027 if NewD then
6028 Preanalyze_Spec_Expression
6029 (Expression (New_Discr), New_Discr_Type);
6030 end if;
6031
6032 if not (NewD and OldD)
6033 or else not Fully_Conformant_Expressions
6034 (Expression (Parent (Old_Discr)),
6035 Expression (New_Discr))
6036
6037 then
6038 Conformance_Error
6039 ("default expression for & does not match!",
6040 New_Discr_Id);
6041 return;
6042 end if;
6043 end if;
6044 end;
6045
6046 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6047
6048 if Ada_Version = Ada_83 then
6049 declare
6050 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6051
6052 begin
6053 -- Grouping (use of comma in param lists) must be the same
6054 -- This is where we catch a misconformance like:
6055
6056 -- A, B : Integer
6057 -- A : Integer; B : Integer
6058
6059 -- which are represented identically in the tree except
6060 -- for the setting of the flags More_Ids and Prev_Ids.
6061
6062 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6063 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6064 then
6065 Conformance_Error
6066 ("grouping of & does not match!", New_Discr_Id);
6067 return;
6068 end if;
6069 end;
6070 end if;
6071
6072 Next_Discriminant (Old_Discr);
6073 Next (New_Discr);
6074 end loop;
6075
6076 if Present (Old_Discr) then
6077 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6078 return;
6079
6080 elsif Present (New_Discr) then
6081 Conformance_Error
6082 ("too many discriminants!", Defining_Identifier (New_Discr));
6083 return;
6084 end if;
6085 end Check_Discriminant_Conformance;
6086
6087 ----------------------------
6088 -- Check_Fully_Conformant --
6089 ----------------------------
6090
6091 procedure Check_Fully_Conformant
6092 (New_Id : Entity_Id;
6093 Old_Id : Entity_Id;
6094 Err_Loc : Node_Id := Empty)
6095 is
6096 Result : Boolean;
6097 pragma Warnings (Off, Result);
6098 begin
6099 Check_Conformance
6100 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6101 end Check_Fully_Conformant;
6102
6103 --------------------------
6104 -- Check_Limited_Return --
6105 --------------------------
6106
6107 procedure Check_Limited_Return
6108 (N : Node_Id;
6109 Expr : Node_Id;
6110 R_Type : Entity_Id)
6111 is
6112 begin
6113 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6114 -- replaced by anonymous access results. This is an incompatibility with
6115 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6116 -- controllable with special switch. ???
6117
6118 -- A limited interface that is not immutably limited is OK
6119
6120 if Is_Limited_Interface (R_Type)
6121 and then
6122 not (Is_Task_Interface (R_Type)
6123 or else Is_Protected_Interface (R_Type)
6124 or else Is_Synchronized_Interface (R_Type))
6125 then
6126 null;
6127
6128 elsif Is_Limited_Type (R_Type)
6129 and then not Is_Interface (R_Type)
6130 and then Comes_From_Source (N)
6131 and then not In_Instance_Body
6132 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6133 then
6134 -- Error in Ada 2005
6135
6136 if Ada_Version >= Ada_2005
6137 and then not Debug_Flag_Dot_L
6138 and then not GNAT_Mode
6139 then
6140 Error_Msg_N
6141 ("(Ada 2005) cannot copy object of a limited type "
6142 & "(RM-2005 6.5(5.5/2))", Expr);
6143
6144 if Is_Limited_View (R_Type) then
6145 Error_Msg_N
6146 ("\return by reference not permitted in Ada 2005", Expr);
6147 end if;
6148
6149 -- Warn in Ada 95 mode, to give folks a heads up about this
6150 -- incompatibility.
6151
6152 -- In GNAT mode, this is just a warning, to allow it to be evilly
6153 -- turned off. Otherwise it is a real error.
6154
6155 -- In a generic context, simplify the warning because it makes no
6156 -- sense to discuss pass-by-reference or copy.
6157
6158 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6159 if Inside_A_Generic then
6160 Error_Msg_N
6161 ("return of limited object not permitted in Ada 2005 "
6162 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6163
6164 elsif Is_Limited_View (R_Type) then
6165 Error_Msg_N
6166 ("return by reference not permitted in Ada 2005 "
6167 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6168 else
6169 Error_Msg_N
6170 ("cannot copy object of a limited type in Ada 2005 "
6171 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6172 end if;
6173
6174 -- Ada 95 mode, and compatibility warnings disabled
6175
6176 else
6177 pragma Assert (Ada_Version <= Ada_95);
6178 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6179 return; -- skip continuation messages below
6180 end if;
6181
6182 if not Inside_A_Generic then
6183 Error_Msg_N
6184 ("\consider switching to return of access type", Expr);
6185 Explain_Limited_Type (R_Type, Expr);
6186 end if;
6187 end if;
6188 end Check_Limited_Return;
6189
6190 ---------------------------
6191 -- Check_Mode_Conformant --
6192 ---------------------------
6193
6194 procedure Check_Mode_Conformant
6195 (New_Id : Entity_Id;
6196 Old_Id : Entity_Id;
6197 Err_Loc : Node_Id := Empty;
6198 Get_Inst : Boolean := False)
6199 is
6200 Result : Boolean;
6201 pragma Warnings (Off, Result);
6202 begin
6203 Check_Conformance
6204 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6205 end Check_Mode_Conformant;
6206
6207 --------------------------------
6208 -- Check_Overriding_Indicator --
6209 --------------------------------
6210
6211 procedure Check_Overriding_Indicator
6212 (Subp : Entity_Id;
6213 Overridden_Subp : Entity_Id;
6214 Is_Primitive : Boolean)
6215 is
6216 Decl : Node_Id;
6217 Spec : Node_Id;
6218
6219 begin
6220 -- No overriding indicator for literals
6221
6222 if Ekind (Subp) = E_Enumeration_Literal then
6223 return;
6224
6225 elsif Ekind (Subp) = E_Entry then
6226 Decl := Parent (Subp);
6227
6228 -- No point in analyzing a malformed operator
6229
6230 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6231 and then Error_Posted (Subp)
6232 then
6233 return;
6234
6235 else
6236 Decl := Unit_Declaration_Node (Subp);
6237 end if;
6238
6239 if Nkind_In (Decl, N_Subprogram_Body,
6240 N_Subprogram_Body_Stub,
6241 N_Subprogram_Declaration,
6242 N_Abstract_Subprogram_Declaration,
6243 N_Subprogram_Renaming_Declaration)
6244 then
6245 Spec := Specification (Decl);
6246
6247 elsif Nkind (Decl) = N_Entry_Declaration then
6248 Spec := Decl;
6249
6250 else
6251 return;
6252 end if;
6253
6254 -- The overriding operation is type conformant with the overridden one,
6255 -- but the names of the formals are not required to match. If the names
6256 -- appear permuted in the overriding operation, this is a possible
6257 -- source of confusion that is worth diagnosing. Controlling formals
6258 -- often carry names that reflect the type, and it is not worthwhile
6259 -- requiring that their names match.
6260
6261 if Present (Overridden_Subp)
6262 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6263 then
6264 declare
6265 Form1 : Entity_Id;
6266 Form2 : Entity_Id;
6267
6268 begin
6269 Form1 := First_Formal (Subp);
6270 Form2 := First_Formal (Overridden_Subp);
6271
6272 -- If the overriding operation is a synchronized operation, skip
6273 -- the first parameter of the overridden operation, which is
6274 -- implicit in the new one. If the operation is declared in the
6275 -- body it is not primitive and all formals must match.
6276
6277 if Is_Concurrent_Type (Scope (Subp))
6278 and then Is_Tagged_Type (Scope (Subp))
6279 and then not Has_Completion (Scope (Subp))
6280 then
6281 Form2 := Next_Formal (Form2);
6282 end if;
6283
6284 if Present (Form1) then
6285 Form1 := Next_Formal (Form1);
6286 Form2 := Next_Formal (Form2);
6287 end if;
6288
6289 while Present (Form1) loop
6290 if not Is_Controlling_Formal (Form1)
6291 and then Present (Next_Formal (Form2))
6292 and then Chars (Form1) = Chars (Next_Formal (Form2))
6293 then
6294 Error_Msg_Node_2 := Alias (Overridden_Subp);
6295 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6296 Error_Msg_NE
6297 ("& does not match corresponding formal of&#",
6298 Form1, Form1);
6299 exit;
6300 end if;
6301
6302 Next_Formal (Form1);
6303 Next_Formal (Form2);
6304 end loop;
6305 end;
6306 end if;
6307
6308 -- If there is an overridden subprogram, then check that there is no
6309 -- "not overriding" indicator, and mark the subprogram as overriding.
6310 -- This is not done if the overridden subprogram is marked as hidden,
6311 -- which can occur for the case of inherited controlled operations
6312 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6313 -- subprogram is not itself hidden. (Note: This condition could probably
6314 -- be simplified, leaving out the testing for the specific controlled
6315 -- cases, but it seems safer and clearer this way, and echoes similar
6316 -- special-case tests of this kind in other places.)
6317
6318 if Present (Overridden_Subp)
6319 and then (not Is_Hidden (Overridden_Subp)
6320 or else
6321 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6322 Name_Adjust,
6323 Name_Finalize)
6324 and then Present (Alias (Overridden_Subp))
6325 and then not Is_Hidden (Alias (Overridden_Subp))))
6326 then
6327 if Must_Not_Override (Spec) then
6328 Error_Msg_Sloc := Sloc (Overridden_Subp);
6329
6330 if Ekind (Subp) = E_Entry then
6331 Error_Msg_NE
6332 ("entry & overrides inherited operation #", Spec, Subp);
6333 else
6334 Error_Msg_NE
6335 ("subprogram & overrides inherited operation #", Spec, Subp);
6336 end if;
6337
6338 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6339 -- as an extension of Root_Controlled, and thus has a useless Adjust
6340 -- operation. This operation should not be inherited by other limited
6341 -- controlled types. An explicit Adjust for them is not overriding.
6342
6343 elsif Must_Override (Spec)
6344 and then Chars (Overridden_Subp) = Name_Adjust
6345 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6346 and then Present (Alias (Overridden_Subp))
6347 and then In_Predefined_Unit (Alias (Overridden_Subp))
6348 then
6349 Get_Name_String
6350 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6351 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6352
6353 elsif Is_Subprogram (Subp) then
6354 if Is_Init_Proc (Subp) then
6355 null;
6356
6357 elsif No (Overridden_Operation (Subp)) then
6358
6359 -- For entities generated by Derive_Subprograms the overridden
6360 -- operation is the inherited primitive (which is available
6361 -- through the attribute alias)
6362
6363 if (Is_Dispatching_Operation (Subp)
6364 or else Is_Dispatching_Operation (Overridden_Subp))
6365 and then not Comes_From_Source (Overridden_Subp)
6366 and then Find_Dispatching_Type (Overridden_Subp) =
6367 Find_Dispatching_Type (Subp)
6368 and then Present (Alias (Overridden_Subp))
6369 and then Comes_From_Source (Alias (Overridden_Subp))
6370 then
6371 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6372 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6373
6374 else
6375 Set_Overridden_Operation (Subp, Overridden_Subp);
6376 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6377 end if;
6378 end if;
6379 end if;
6380
6381 -- If primitive flag is set or this is a protected operation, then
6382 -- the operation is overriding at the point of its declaration, so
6383 -- warn if necessary. Otherwise it may have been declared before the
6384 -- operation it overrides and no check is required.
6385
6386 if Style_Check
6387 and then not Must_Override (Spec)
6388 and then (Is_Primitive
6389 or else Ekind (Scope (Subp)) = E_Protected_Type)
6390 then
6391 Style.Missing_Overriding (Decl, Subp);
6392 end if;
6393
6394 -- If Subp is an operator, it may override a predefined operation, if
6395 -- it is defined in the same scope as the type to which it applies.
6396 -- In that case Overridden_Subp is empty because of our implicit
6397 -- representation for predefined operators. We have to check whether the
6398 -- signature of Subp matches that of a predefined operator. Note that
6399 -- first argument provides the name of the operator, and the second
6400 -- argument the signature that may match that of a standard operation.
6401 -- If the indicator is overriding, then the operator must match a
6402 -- predefined signature, because we know already that there is no
6403 -- explicit overridden operation.
6404
6405 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6406 if Must_Not_Override (Spec) then
6407
6408 -- If this is not a primitive or a protected subprogram, then
6409 -- "not overriding" is illegal.
6410
6411 if not Is_Primitive
6412 and then Ekind (Scope (Subp)) /= E_Protected_Type
6413 then
6414 Error_Msg_N ("overriding indicator only allowed "
6415 & "if subprogram is primitive", Subp);
6416
6417 elsif Can_Override_Operator (Subp) then
6418 Error_Msg_NE
6419 ("subprogram& overrides predefined operator ", Spec, Subp);
6420 end if;
6421
6422 elsif Must_Override (Spec) then
6423 if No (Overridden_Operation (Subp))
6424 and then not Can_Override_Operator (Subp)
6425 then
6426 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6427 end if;
6428
6429 elsif not Error_Posted (Subp)
6430 and then Style_Check
6431 and then Can_Override_Operator (Subp)
6432 and then not In_Predefined_Unit (Subp)
6433 then
6434 -- If style checks are enabled, indicate that the indicator is
6435 -- missing. However, at the point of declaration, the type of
6436 -- which this is a primitive operation may be private, in which
6437 -- case the indicator would be premature.
6438
6439 if Has_Private_Declaration (Etype (Subp))
6440 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6441 then
6442 null;
6443 else
6444 Style.Missing_Overriding (Decl, Subp);
6445 end if;
6446 end if;
6447
6448 elsif Must_Override (Spec) then
6449 if Ekind (Subp) = E_Entry then
6450 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6451 else
6452 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6453 end if;
6454
6455 -- If the operation is marked "not overriding" and it's not primitive
6456 -- then an error is issued, unless this is an operation of a task or
6457 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6458 -- has been specified have already been checked above.
6459
6460 elsif Must_Not_Override (Spec)
6461 and then not Is_Primitive
6462 and then Ekind (Subp) /= E_Entry
6463 and then Ekind (Scope (Subp)) /= E_Protected_Type
6464 then
6465 Error_Msg_N
6466 ("overriding indicator only allowed if subprogram is primitive",
6467 Subp);
6468 return;
6469 end if;
6470 end Check_Overriding_Indicator;
6471
6472 -------------------
6473 -- Check_Returns --
6474 -------------------
6475
6476 -- Note: this procedure needs to know far too much about how the expander
6477 -- messes with exceptions. The use of the flag Exception_Junk and the
6478 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6479 -- works, but is not very clean. It would be better if the expansion
6480 -- routines would leave Original_Node working nicely, and we could use
6481 -- Original_Node here to ignore all the peculiar expander messing ???
6482
6483 procedure Check_Returns
6484 (HSS : Node_Id;
6485 Mode : Character;
6486 Err : out Boolean;
6487 Proc : Entity_Id := Empty)
6488 is
6489 Handler : Node_Id;
6490
6491 procedure Check_Statement_Sequence (L : List_Id);
6492 -- Internal recursive procedure to check a list of statements for proper
6493 -- termination by a return statement (or a transfer of control or a
6494 -- compound statement that is itself internally properly terminated).
6495
6496 ------------------------------
6497 -- Check_Statement_Sequence --
6498 ------------------------------
6499
6500 procedure Check_Statement_Sequence (L : List_Id) is
6501 Last_Stm : Node_Id;
6502 Stm : Node_Id;
6503 Kind : Node_Kind;
6504
6505 function Assert_False return Boolean;
6506 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6507 -- rewritten as a null statement when assertions are off. The assert
6508 -- is not active, but it is still enough to kill the warning.
6509
6510 ------------------
6511 -- Assert_False --
6512 ------------------
6513
6514 function Assert_False return Boolean is
6515 Orig : constant Node_Id := Original_Node (Last_Stm);
6516
6517 begin
6518 if Nkind (Orig) = N_Pragma
6519 and then Pragma_Name (Orig) = Name_Assert
6520 and then not Error_Posted (Orig)
6521 then
6522 declare
6523 Arg : constant Node_Id :=
6524 First (Pragma_Argument_Associations (Orig));
6525 Exp : constant Node_Id := Expression (Arg);
6526 begin
6527 return Nkind (Exp) = N_Identifier
6528 and then Chars (Exp) = Name_False;
6529 end;
6530
6531 else
6532 return False;
6533 end if;
6534 end Assert_False;
6535
6536 -- Local variables
6537
6538 Raise_Exception_Call : Boolean;
6539 -- Set True if statement sequence terminated by Raise_Exception call
6540 -- or a Reraise_Occurrence call.
6541
6542 -- Start of processing for Check_Statement_Sequence
6543
6544 begin
6545 Raise_Exception_Call := False;
6546
6547 -- Get last real statement
6548
6549 Last_Stm := Last (L);
6550
6551 -- Deal with digging out exception handler statement sequences that
6552 -- have been transformed by the local raise to goto optimization.
6553 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6554 -- optimization has occurred, we are looking at something like:
6555
6556 -- begin
6557 -- original stmts in block
6558
6559 -- exception \
6560 -- when excep1 => |
6561 -- goto L1; | omitted if No_Exception_Propagation
6562 -- when excep2 => |
6563 -- goto L2; /
6564 -- end;
6565
6566 -- goto L3; -- skip handler when exception not raised
6567
6568 -- <<L1>> -- target label for local exception
6569 -- begin
6570 -- estmts1
6571 -- end;
6572
6573 -- goto L3;
6574
6575 -- <<L2>>
6576 -- begin
6577 -- estmts2
6578 -- end;
6579
6580 -- <<L3>>
6581
6582 -- and what we have to do is to dig out the estmts1 and estmts2
6583 -- sequences (which were the original sequences of statements in
6584 -- the exception handlers) and check them.
6585
6586 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6587 Stm := Last_Stm;
6588 loop
6589 Prev (Stm);
6590 exit when No (Stm);
6591 exit when Nkind (Stm) /= N_Block_Statement;
6592 exit when not Exception_Junk (Stm);
6593 Prev (Stm);
6594 exit when No (Stm);
6595 exit when Nkind (Stm) /= N_Label;
6596 exit when not Exception_Junk (Stm);
6597 Check_Statement_Sequence
6598 (Statements (Handled_Statement_Sequence (Next (Stm))));
6599
6600 Prev (Stm);
6601 Last_Stm := Stm;
6602 exit when No (Stm);
6603 exit when Nkind (Stm) /= N_Goto_Statement;
6604 exit when not Exception_Junk (Stm);
6605 end loop;
6606 end if;
6607
6608 -- Don't count pragmas
6609
6610 while Nkind (Last_Stm) = N_Pragma
6611
6612 -- Don't count call to SS_Release (can happen after Raise_Exception)
6613
6614 or else
6615 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6616 and then
6617 Nkind (Name (Last_Stm)) = N_Identifier
6618 and then
6619 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6620
6621 -- Don't count exception junk
6622
6623 or else
6624 (Nkind_In (Last_Stm, N_Goto_Statement,
6625 N_Label,
6626 N_Object_Declaration)
6627 and then Exception_Junk (Last_Stm))
6628 or else Nkind (Last_Stm) in N_Push_xxx_Label
6629 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6630
6631 -- Inserted code, such as finalization calls, is irrelevant: we only
6632 -- need to check original source.
6633
6634 or else Is_Rewrite_Insertion (Last_Stm)
6635 loop
6636 Prev (Last_Stm);
6637 end loop;
6638
6639 -- Here we have the "real" last statement
6640
6641 Kind := Nkind (Last_Stm);
6642
6643 -- Transfer of control, OK. Note that in the No_Return procedure
6644 -- case, we already diagnosed any explicit return statements, so
6645 -- we can treat them as OK in this context.
6646
6647 if Is_Transfer (Last_Stm) then
6648 return;
6649
6650 -- Check cases of explicit non-indirect procedure calls
6651
6652 elsif Kind = N_Procedure_Call_Statement
6653 and then Is_Entity_Name (Name (Last_Stm))
6654 then
6655 -- Check call to Raise_Exception procedure which is treated
6656 -- specially, as is a call to Reraise_Occurrence.
6657
6658 -- We suppress the warning in these cases since it is likely that
6659 -- the programmer really does not expect to deal with the case
6660 -- of Null_Occurrence, and thus would find a warning about a
6661 -- missing return curious, and raising Program_Error does not
6662 -- seem such a bad behavior if this does occur.
6663
6664 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6665 -- behavior will be to raise Constraint_Error (see AI-329).
6666
6667 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6668 or else
6669 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6670 then
6671 Raise_Exception_Call := True;
6672
6673 -- For Raise_Exception call, test first argument, if it is
6674 -- an attribute reference for a 'Identity call, then we know
6675 -- that the call cannot possibly return.
6676
6677 declare
6678 Arg : constant Node_Id :=
6679 Original_Node (First_Actual (Last_Stm));
6680 begin
6681 if Nkind (Arg) = N_Attribute_Reference
6682 and then Attribute_Name (Arg) = Name_Identity
6683 then
6684 return;
6685 end if;
6686 end;
6687 end if;
6688
6689 -- If statement, need to look inside if there is an else and check
6690 -- each constituent statement sequence for proper termination.
6691
6692 elsif Kind = N_If_Statement
6693 and then Present (Else_Statements (Last_Stm))
6694 then
6695 Check_Statement_Sequence (Then_Statements (Last_Stm));
6696 Check_Statement_Sequence (Else_Statements (Last_Stm));
6697
6698 if Present (Elsif_Parts (Last_Stm)) then
6699 declare
6700 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6701
6702 begin
6703 while Present (Elsif_Part) loop
6704 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6705 Next (Elsif_Part);
6706 end loop;
6707 end;
6708 end if;
6709
6710 return;
6711
6712 -- Case statement, check each case for proper termination
6713
6714 elsif Kind = N_Case_Statement then
6715 declare
6716 Case_Alt : Node_Id;
6717 begin
6718 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6719 while Present (Case_Alt) loop
6720 Check_Statement_Sequence (Statements (Case_Alt));
6721 Next_Non_Pragma (Case_Alt);
6722 end loop;
6723 end;
6724
6725 return;
6726
6727 -- Block statement, check its handled sequence of statements
6728
6729 elsif Kind = N_Block_Statement then
6730 declare
6731 Err1 : Boolean;
6732
6733 begin
6734 Check_Returns
6735 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6736
6737 if Err1 then
6738 Err := True;
6739 end if;
6740
6741 return;
6742 end;
6743
6744 -- Loop statement. If there is an iteration scheme, we can definitely
6745 -- fall out of the loop. Similarly if there is an exit statement, we
6746 -- can fall out. In either case we need a following return.
6747
6748 elsif Kind = N_Loop_Statement then
6749 if Present (Iteration_Scheme (Last_Stm))
6750 or else Has_Exit (Entity (Identifier (Last_Stm)))
6751 then
6752 null;
6753
6754 -- A loop with no exit statement or iteration scheme is either
6755 -- an infinite loop, or it has some other exit (raise/return).
6756 -- In either case, no warning is required.
6757
6758 else
6759 return;
6760 end if;
6761
6762 -- Timed entry call, check entry call and delay alternatives
6763
6764 -- Note: in expanded code, the timed entry call has been converted
6765 -- to a set of expanded statements on which the check will work
6766 -- correctly in any case.
6767
6768 elsif Kind = N_Timed_Entry_Call then
6769 declare
6770 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6771 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6772
6773 begin
6774 -- If statement sequence of entry call alternative is missing,
6775 -- then we can definitely fall through, and we post the error
6776 -- message on the entry call alternative itself.
6777
6778 if No (Statements (ECA)) then
6779 Last_Stm := ECA;
6780
6781 -- If statement sequence of delay alternative is missing, then
6782 -- we can definitely fall through, and we post the error
6783 -- message on the delay alternative itself.
6784
6785 -- Note: if both ECA and DCA are missing the return, then we
6786 -- post only one message, should be enough to fix the bugs.
6787 -- If not we will get a message next time on the DCA when the
6788 -- ECA is fixed.
6789
6790 elsif No (Statements (DCA)) then
6791 Last_Stm := DCA;
6792
6793 -- Else check both statement sequences
6794
6795 else
6796 Check_Statement_Sequence (Statements (ECA));
6797 Check_Statement_Sequence (Statements (DCA));
6798 return;
6799 end if;
6800 end;
6801
6802 -- Conditional entry call, check entry call and else part
6803
6804 -- Note: in expanded code, the conditional entry call has been
6805 -- converted to a set of expanded statements on which the check
6806 -- will work correctly in any case.
6807
6808 elsif Kind = N_Conditional_Entry_Call then
6809 declare
6810 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6811
6812 begin
6813 -- If statement sequence of entry call alternative is missing,
6814 -- then we can definitely fall through, and we post the error
6815 -- message on the entry call alternative itself.
6816
6817 if No (Statements (ECA)) then
6818 Last_Stm := ECA;
6819
6820 -- Else check statement sequence and else part
6821
6822 else
6823 Check_Statement_Sequence (Statements (ECA));
6824 Check_Statement_Sequence (Else_Statements (Last_Stm));
6825 return;
6826 end if;
6827 end;
6828 end if;
6829
6830 -- If we fall through, issue appropriate message
6831
6832 if Mode = 'F' then
6833
6834 -- Kill warning if last statement is a raise exception call,
6835 -- or a pragma Assert (False). Note that with assertions enabled,
6836 -- such a pragma has been converted into a raise exception call
6837 -- already, so the Assert_False is for the assertions off case.
6838
6839 if not Raise_Exception_Call and then not Assert_False then
6840
6841 -- In GNATprove mode, it is an error to have a missing return
6842
6843 Error_Msg_Warn := SPARK_Mode /= On;
6844
6845 -- Issue error message or warning
6846
6847 Error_Msg_N
6848 ("RETURN statement missing following this statement<<!",
6849 Last_Stm);
6850 Error_Msg_N
6851 ("\Program_Error ]<<!", Last_Stm);
6852 end if;
6853
6854 -- Note: we set Err even though we have not issued a warning
6855 -- because we still have a case of a missing return. This is
6856 -- an extremely marginal case, probably will never be noticed
6857 -- but we might as well get it right.
6858
6859 Err := True;
6860
6861 -- Otherwise we have the case of a procedure marked No_Return
6862
6863 else
6864 if not Raise_Exception_Call then
6865 if GNATprove_Mode then
6866 Error_Msg_N
6867 ("implied return after this statement would have raised "
6868 & "Program_Error", Last_Stm);
6869
6870 -- In normal compilation mode, do not warn on a generated call
6871 -- (e.g. in the body of a renaming as completion).
6872
6873 elsif Comes_From_Source (Last_Stm) then
6874 Error_Msg_N
6875 ("implied return after this statement will raise "
6876 & "Program_Error??", Last_Stm);
6877 end if;
6878
6879 Error_Msg_Warn := SPARK_Mode /= On;
6880 Error_Msg_NE
6881 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6882 end if;
6883
6884 declare
6885 RE : constant Node_Id :=
6886 Make_Raise_Program_Error (Sloc (Last_Stm),
6887 Reason => PE_Implicit_Return);
6888 begin
6889 Insert_After (Last_Stm, RE);
6890 Analyze (RE);
6891 end;
6892 end if;
6893 end Check_Statement_Sequence;
6894
6895 -- Start of processing for Check_Returns
6896
6897 begin
6898 Err := False;
6899 Check_Statement_Sequence (Statements (HSS));
6900
6901 if Present (Exception_Handlers (HSS)) then
6902 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6903 while Present (Handler) loop
6904 Check_Statement_Sequence (Statements (Handler));
6905 Next_Non_Pragma (Handler);
6906 end loop;
6907 end if;
6908 end Check_Returns;
6909
6910 ----------------------------
6911 -- Check_Subprogram_Order --
6912 ----------------------------
6913
6914 procedure Check_Subprogram_Order (N : Node_Id) is
6915
6916 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6917 -- This is used to check if S1 > S2 in the sense required by this test,
6918 -- for example nameab < namec, but name2 < name10.
6919
6920 -----------------------------
6921 -- Subprogram_Name_Greater --
6922 -----------------------------
6923
6924 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6925 L1, L2 : Positive;
6926 N1, N2 : Natural;
6927
6928 begin
6929 -- Deal with special case where names are identical except for a
6930 -- numerical suffix. These are handled specially, taking the numeric
6931 -- ordering from the suffix into account.
6932
6933 L1 := S1'Last;
6934 while S1 (L1) in '0' .. '9' loop
6935 L1 := L1 - 1;
6936 end loop;
6937
6938 L2 := S2'Last;
6939 while S2 (L2) in '0' .. '9' loop
6940 L2 := L2 - 1;
6941 end loop;
6942
6943 -- If non-numeric parts non-equal, do straight compare
6944
6945 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6946 return S1 > S2;
6947
6948 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6949 -- that a missing suffix is treated as numeric zero in this test.
6950
6951 else
6952 N1 := 0;
6953 while L1 < S1'Last loop
6954 L1 := L1 + 1;
6955 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6956 end loop;
6957
6958 N2 := 0;
6959 while L2 < S2'Last loop
6960 L2 := L2 + 1;
6961 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6962 end loop;
6963
6964 return N1 > N2;
6965 end if;
6966 end Subprogram_Name_Greater;
6967
6968 -- Start of processing for Check_Subprogram_Order
6969
6970 begin
6971 -- Check body in alpha order if this is option
6972
6973 if Style_Check
6974 and then Style_Check_Order_Subprograms
6975 and then Nkind (N) = N_Subprogram_Body
6976 and then Comes_From_Source (N)
6977 and then In_Extended_Main_Source_Unit (N)
6978 then
6979 declare
6980 LSN : String_Ptr
6981 renames Scope_Stack.Table
6982 (Scope_Stack.Last).Last_Subprogram_Name;
6983
6984 Body_Id : constant Entity_Id :=
6985 Defining_Entity (Specification (N));
6986
6987 begin
6988 Get_Decoded_Name_String (Chars (Body_Id));
6989
6990 if LSN /= null then
6991 if Subprogram_Name_Greater
6992 (LSN.all, Name_Buffer (1 .. Name_Len))
6993 then
6994 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6995 end if;
6996
6997 Free (LSN);
6998 end if;
6999
7000 LSN := new String'(Name_Buffer (1 .. Name_Len));
7001 end;
7002 end if;
7003 end Check_Subprogram_Order;
7004
7005 ------------------------------
7006 -- Check_Subtype_Conformant --
7007 ------------------------------
7008
7009 procedure Check_Subtype_Conformant
7010 (New_Id : Entity_Id;
7011 Old_Id : Entity_Id;
7012 Err_Loc : Node_Id := Empty;
7013 Skip_Controlling_Formals : Boolean := False;
7014 Get_Inst : Boolean := False)
7015 is
7016 Result : Boolean;
7017 pragma Warnings (Off, Result);
7018 begin
7019 Check_Conformance
7020 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7021 Skip_Controlling_Formals => Skip_Controlling_Formals,
7022 Get_Inst => Get_Inst);
7023 end Check_Subtype_Conformant;
7024
7025 -----------------------------------
7026 -- Check_Synchronized_Overriding --
7027 -----------------------------------
7028
7029 procedure Check_Synchronized_Overriding
7030 (Def_Id : Entity_Id;
7031 Overridden_Subp : out Entity_Id)
7032 is
7033 Ifaces_List : Elist_Id;
7034 In_Scope : Boolean;
7035 Typ : Entity_Id;
7036
7037 function Matches_Prefixed_View_Profile
7038 (Prim_Params : List_Id;
7039 Iface_Params : List_Id) return Boolean;
7040 -- Determine whether a subprogram's parameter profile Prim_Params
7041 -- matches that of a potentially overridden interface subprogram
7042 -- Iface_Params. Also determine if the type of first parameter of
7043 -- Iface_Params is an implemented interface.
7044
7045 -----------------------------------
7046 -- Matches_Prefixed_View_Profile --
7047 -----------------------------------
7048
7049 function Matches_Prefixed_View_Profile
7050 (Prim_Params : List_Id;
7051 Iface_Params : List_Id) return Boolean
7052 is
7053 function Is_Implemented
7054 (Ifaces_List : Elist_Id;
7055 Iface : Entity_Id) return Boolean;
7056 -- Determine if Iface is implemented by the current task or
7057 -- protected type.
7058
7059 --------------------
7060 -- Is_Implemented --
7061 --------------------
7062
7063 function Is_Implemented
7064 (Ifaces_List : Elist_Id;
7065 Iface : Entity_Id) return Boolean
7066 is
7067 Iface_Elmt : Elmt_Id;
7068
7069 begin
7070 Iface_Elmt := First_Elmt (Ifaces_List);
7071 while Present (Iface_Elmt) loop
7072 if Node (Iface_Elmt) = Iface then
7073 return True;
7074 end if;
7075
7076 Next_Elmt (Iface_Elmt);
7077 end loop;
7078
7079 return False;
7080 end Is_Implemented;
7081
7082 -- Local variables
7083
7084 Iface_Id : Entity_Id;
7085 Iface_Param : Node_Id;
7086 Iface_Typ : Entity_Id;
7087 Prim_Id : Entity_Id;
7088 Prim_Param : Node_Id;
7089 Prim_Typ : Entity_Id;
7090
7091 -- Start of processing for Matches_Prefixed_View_Profile
7092
7093 begin
7094 Iface_Param := First (Iface_Params);
7095 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7096
7097 if Is_Access_Type (Iface_Typ) then
7098 Iface_Typ := Designated_Type (Iface_Typ);
7099 end if;
7100
7101 Prim_Param := First (Prim_Params);
7102
7103 -- The first parameter of the potentially overridden subprogram must
7104 -- be an interface implemented by Prim.
7105
7106 if not Is_Interface (Iface_Typ)
7107 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7108 then
7109 return False;
7110 end if;
7111
7112 -- The checks on the object parameters are done, so move on to the
7113 -- rest of the parameters.
7114
7115 if not In_Scope then
7116 Prim_Param := Next (Prim_Param);
7117 end if;
7118
7119 Iface_Param := Next (Iface_Param);
7120 while Present (Iface_Param) and then Present (Prim_Param) loop
7121 Iface_Id := Defining_Identifier (Iface_Param);
7122 Iface_Typ := Find_Parameter_Type (Iface_Param);
7123
7124 Prim_Id := Defining_Identifier (Prim_Param);
7125 Prim_Typ := Find_Parameter_Type (Prim_Param);
7126
7127 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7128 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7129 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7130 then
7131 Iface_Typ := Designated_Type (Iface_Typ);
7132 Prim_Typ := Designated_Type (Prim_Typ);
7133 end if;
7134
7135 -- Case of multiple interface types inside a parameter profile
7136
7137 -- (Obj_Param : in out Iface; ...; Param : Iface)
7138
7139 -- If the interface type is implemented, then the matching type in
7140 -- the primitive should be the implementing record type.
7141
7142 if Ekind (Iface_Typ) = E_Record_Type
7143 and then Is_Interface (Iface_Typ)
7144 and then Is_Implemented (Ifaces_List, Iface_Typ)
7145 then
7146 if Prim_Typ /= Typ then
7147 return False;
7148 end if;
7149
7150 -- The two parameters must be both mode and subtype conformant
7151
7152 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7153 or else not
7154 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7155 then
7156 return False;
7157 end if;
7158
7159 Next (Iface_Param);
7160 Next (Prim_Param);
7161 end loop;
7162
7163 -- One of the two lists contains more parameters than the other
7164
7165 if Present (Iface_Param) or else Present (Prim_Param) then
7166 return False;
7167 end if;
7168
7169 return True;
7170 end Matches_Prefixed_View_Profile;
7171
7172 -- Start of processing for Check_Synchronized_Overriding
7173
7174 begin
7175 Overridden_Subp := Empty;
7176
7177 -- Def_Id must be an entry or a subprogram. We should skip predefined
7178 -- primitives internally generated by the front end; however at this
7179 -- stage predefined primitives are still not fully decorated. As a
7180 -- minor optimization we skip here internally generated subprograms.
7181
7182 if (Ekind (Def_Id) /= E_Entry
7183 and then Ekind (Def_Id) /= E_Function
7184 and then Ekind (Def_Id) /= E_Procedure)
7185 or else not Comes_From_Source (Def_Id)
7186 then
7187 return;
7188 end if;
7189
7190 -- Search for the concurrent declaration since it contains the list of
7191 -- all implemented interfaces. In this case, the subprogram is declared
7192 -- within the scope of a protected or a task type.
7193
7194 if Present (Scope (Def_Id))
7195 and then Is_Concurrent_Type (Scope (Def_Id))
7196 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7197 then
7198 Typ := Scope (Def_Id);
7199 In_Scope := True;
7200
7201 -- The enclosing scope is not a synchronized type and the subprogram
7202 -- has no formals.
7203
7204 elsif No (First_Formal (Def_Id)) then
7205 return;
7206
7207 -- The subprogram has formals and hence it may be a primitive of a
7208 -- concurrent type.
7209
7210 else
7211 Typ := Etype (First_Formal (Def_Id));
7212
7213 if Is_Access_Type (Typ) then
7214 Typ := Directly_Designated_Type (Typ);
7215 end if;
7216
7217 if Is_Concurrent_Type (Typ)
7218 and then not Is_Generic_Actual_Type (Typ)
7219 then
7220 In_Scope := False;
7221
7222 -- This case occurs when the concurrent type is declared within a
7223 -- generic unit. As a result the corresponding record has been built
7224 -- and used as the type of the first formal, we just have to retrieve
7225 -- the corresponding concurrent type.
7226
7227 elsif Is_Concurrent_Record_Type (Typ)
7228 and then not Is_Class_Wide_Type (Typ)
7229 and then Present (Corresponding_Concurrent_Type (Typ))
7230 then
7231 Typ := Corresponding_Concurrent_Type (Typ);
7232 In_Scope := False;
7233
7234 else
7235 return;
7236 end if;
7237 end if;
7238
7239 -- There is no overriding to check if this is an inherited operation in
7240 -- a type derivation for a generic actual.
7241
7242 Collect_Interfaces (Typ, Ifaces_List);
7243
7244 if Is_Empty_Elmt_List (Ifaces_List) then
7245 return;
7246 end if;
7247
7248 -- Determine whether entry or subprogram Def_Id overrides a primitive
7249 -- operation that belongs to one of the interfaces in Ifaces_List.
7250
7251 declare
7252 Candidate : Entity_Id := Empty;
7253 Hom : Entity_Id := Empty;
7254 Subp : Entity_Id := Empty;
7255
7256 begin
7257 -- Traverse the homonym chain, looking for a potentially overridden
7258 -- subprogram that belongs to an implemented interface.
7259
7260 Hom := Current_Entity_In_Scope (Def_Id);
7261 while Present (Hom) loop
7262 Subp := Hom;
7263
7264 if Subp = Def_Id
7265 or else not Is_Overloadable (Subp)
7266 or else not Is_Primitive (Subp)
7267 or else not Is_Dispatching_Operation (Subp)
7268 or else not Present (Find_Dispatching_Type (Subp))
7269 or else not Is_Interface (Find_Dispatching_Type (Subp))
7270 then
7271 null;
7272
7273 -- Entries and procedures can override abstract or null interface
7274 -- procedures.
7275
7276 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7277 and then Ekind (Subp) = E_Procedure
7278 and then Matches_Prefixed_View_Profile
7279 (Parameter_Specifications (Parent (Def_Id)),
7280 Parameter_Specifications (Parent (Subp)))
7281 then
7282 Candidate := Subp;
7283
7284 -- For an overridden subprogram Subp, check whether the mode
7285 -- of its first parameter is correct depending on the kind of
7286 -- synchronized type.
7287
7288 declare
7289 Formal : constant Node_Id := First_Formal (Candidate);
7290
7291 begin
7292 -- In order for an entry or a protected procedure to
7293 -- override, the first parameter of the overridden routine
7294 -- must be of mode "out", "in out", or access-to-variable.
7295
7296 if Ekind_In (Candidate, E_Entry, E_Procedure)
7297 and then Is_Protected_Type (Typ)
7298 and then Ekind (Formal) /= E_In_Out_Parameter
7299 and then Ekind (Formal) /= E_Out_Parameter
7300 and then Nkind (Parameter_Type (Parent (Formal))) /=
7301 N_Access_Definition
7302 then
7303 null;
7304
7305 -- All other cases are OK since a task entry or routine does
7306 -- not have a restriction on the mode of the first parameter
7307 -- of the overridden interface routine.
7308
7309 else
7310 Overridden_Subp := Candidate;
7311 return;
7312 end if;
7313 end;
7314
7315 -- Functions can override abstract interface functions. Return
7316 -- types must be subtype conformant.
7317
7318 elsif Ekind (Def_Id) = E_Function
7319 and then Ekind (Subp) = E_Function
7320 and then Matches_Prefixed_View_Profile
7321 (Parameter_Specifications (Parent (Def_Id)),
7322 Parameter_Specifications (Parent (Subp)))
7323 and then Conforming_Types
7324 (Etype (Def_Id), Etype (Subp), Subtype_Conformant)
7325 then
7326 Candidate := Subp;
7327
7328 -- If an inherited subprogram is implemented by a protected
7329 -- function, then the first parameter of the inherited
7330 -- subprogram shall be of mode in, but not an access-to-
7331 -- variable parameter (RM 9.4(11/9)).
7332
7333 if Present (First_Formal (Subp))
7334 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7335 and then
7336 (not Is_Access_Type (Etype (First_Formal (Subp)))
7337 or else
7338 Is_Access_Constant (Etype (First_Formal (Subp))))
7339 then
7340 Overridden_Subp := Subp;
7341 return;
7342 end if;
7343 end if;
7344
7345 Hom := Homonym (Hom);
7346 end loop;
7347
7348 -- After examining all candidates for overriding, we are left with
7349 -- the best match, which is a mode-incompatible interface routine.
7350
7351 if In_Scope and then Present (Candidate) then
7352 Error_Msg_PT (Def_Id, Candidate);
7353 end if;
7354
7355 Overridden_Subp := Candidate;
7356 return;
7357 end;
7358 end Check_Synchronized_Overriding;
7359
7360 ---------------------------
7361 -- Check_Type_Conformant --
7362 ---------------------------
7363
7364 procedure Check_Type_Conformant
7365 (New_Id : Entity_Id;
7366 Old_Id : Entity_Id;
7367 Err_Loc : Node_Id := Empty)
7368 is
7369 Result : Boolean;
7370 pragma Warnings (Off, Result);
7371 begin
7372 Check_Conformance
7373 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7374 end Check_Type_Conformant;
7375
7376 ---------------------------
7377 -- Can_Override_Operator --
7378 ---------------------------
7379
7380 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7381 Typ : Entity_Id;
7382
7383 begin
7384 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7385 return False;
7386
7387 else
7388 Typ := Base_Type (Etype (First_Formal (Subp)));
7389
7390 -- Check explicitly that the operation is a primitive of the type
7391
7392 return Operator_Matches_Spec (Subp, Subp)
7393 and then not Is_Generic_Type (Typ)
7394 and then Scope (Subp) = Scope (Typ)
7395 and then not Is_Class_Wide_Type (Typ);
7396 end if;
7397 end Can_Override_Operator;
7398
7399 ----------------------
7400 -- Conforming_Types --
7401 ----------------------
7402
7403 function Conforming_Types
7404 (T1 : Entity_Id;
7405 T2 : Entity_Id;
7406 Ctype : Conformance_Type;
7407 Get_Inst : Boolean := False) return Boolean
7408 is
7409 function Base_Types_Match
7410 (Typ_1 : Entity_Id;
7411 Typ_2 : Entity_Id) return Boolean;
7412 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7413 -- in different scopes (e.g. parent and child instances), then verify
7414 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7415 -- the same subtype chain. The whole purpose of this procedure is to
7416 -- prevent spurious ambiguities in an instantiation that may arise if
7417 -- two distinct generic types are instantiated with the same actual.
7418
7419 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7420 -- An access parameter can designate an incomplete type. If the
7421 -- incomplete type is the limited view of a type from a limited_
7422 -- with_clause, check whether the non-limited view is available.
7423 -- If it is a (non-limited) incomplete type, get the full view.
7424
7425 function Matches_Limited_With_View
7426 (Typ_1 : Entity_Id;
7427 Typ_2 : Entity_Id) return Boolean;
7428 -- Returns True if and only if either Typ_1 denotes a limited view of
7429 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7430 -- the limited with view of a type is used in a subprogram declaration
7431 -- and the subprogram body is in the scope of a regular with clause for
7432 -- the same unit. In such a case, the two type entities are considered
7433 -- identical for purposes of conformance checking.
7434
7435 ----------------------
7436 -- Base_Types_Match --
7437 ----------------------
7438
7439 function Base_Types_Match
7440 (Typ_1 : Entity_Id;
7441 Typ_2 : Entity_Id) return Boolean
7442 is
7443 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7444 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7445
7446 begin
7447 if Typ_1 = Typ_2 then
7448 return True;
7449
7450 elsif Base_1 = Base_2 then
7451
7452 -- The following is too permissive. A more precise test should
7453 -- check that the generic actual is an ancestor subtype of the
7454 -- other ???.
7455
7456 -- See code in Find_Corresponding_Spec that applies an additional
7457 -- filter to handle accidental amiguities in instances.
7458
7459 return
7460 not Is_Generic_Actual_Type (Typ_1)
7461 or else not Is_Generic_Actual_Type (Typ_2)
7462 or else Scope (Typ_1) /= Scope (Typ_2);
7463
7464 -- If Typ_2 is a generic actual type it is declared as the subtype of
7465 -- the actual. If that actual is itself a subtype we need to use its
7466 -- own base type to check for compatibility.
7467
7468 elsif Ekind (Base_2) = Ekind (Typ_2)
7469 and then Base_1 = Base_Type (Base_2)
7470 then
7471 return True;
7472
7473 elsif Ekind (Base_1) = Ekind (Typ_1)
7474 and then Base_2 = Base_Type (Base_1)
7475 then
7476 return True;
7477
7478 else
7479 return False;
7480 end if;
7481 end Base_Types_Match;
7482
7483 --------------------------
7484 -- Find_Designated_Type --
7485 --------------------------
7486
7487 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7488 Desig : Entity_Id;
7489
7490 begin
7491 Desig := Directly_Designated_Type (Typ);
7492
7493 if Ekind (Desig) = E_Incomplete_Type then
7494
7495 -- If regular incomplete type, get full view if available
7496
7497 if Present (Full_View (Desig)) then
7498 Desig := Full_View (Desig);
7499
7500 -- If limited view of a type, get non-limited view if available,
7501 -- and check again for a regular incomplete type.
7502
7503 elsif Present (Non_Limited_View (Desig)) then
7504 Desig := Get_Full_View (Non_Limited_View (Desig));
7505 end if;
7506 end if;
7507
7508 return Desig;
7509 end Find_Designated_Type;
7510
7511 -------------------------------
7512 -- Matches_Limited_With_View --
7513 -------------------------------
7514
7515 function Matches_Limited_With_View
7516 (Typ_1 : Entity_Id;
7517 Typ_2 : Entity_Id) return Boolean
7518 is
7519 function Is_Matching_Limited_View
7520 (Typ : Entity_Id;
7521 View : Entity_Id) return Boolean;
7522 -- Determine whether non-limited view View denotes type Typ in some
7523 -- conformant fashion.
7524
7525 ------------------------------
7526 -- Is_Matching_Limited_View --
7527 ------------------------------
7528
7529 function Is_Matching_Limited_View
7530 (Typ : Entity_Id;
7531 View : Entity_Id) return Boolean
7532 is
7533 Root_Typ : Entity_Id;
7534 Root_View : Entity_Id;
7535
7536 begin
7537 -- The non-limited view directly denotes the type
7538
7539 if Typ = View then
7540 return True;
7541
7542 -- The type is a subtype of the non-limited view
7543
7544 elsif Is_Subtype_Of (Typ, View) then
7545 return True;
7546
7547 -- Both the non-limited view and the type denote class-wide types
7548
7549 elsif Is_Class_Wide_Type (Typ)
7550 and then Is_Class_Wide_Type (View)
7551 then
7552 Root_Typ := Root_Type (Typ);
7553 Root_View := Root_Type (View);
7554
7555 if Root_Typ = Root_View then
7556 return True;
7557
7558 -- An incomplete tagged type and its full view may receive two
7559 -- distinct class-wide types when the related package has not
7560 -- been analyzed yet.
7561
7562 -- package Pack is
7563 -- type T is tagged; -- CW_1
7564 -- type T is tagged null record; -- CW_2
7565 -- end Pack;
7566
7567 -- This is because the package lacks any semantic information
7568 -- that may eventually link both views of T. As a consequence,
7569 -- a client of the limited view of Pack will see CW_2 while a
7570 -- client of the non-limited view of Pack will see CW_1.
7571
7572 elsif Is_Incomplete_Type (Root_Typ)
7573 and then Present (Full_View (Root_Typ))
7574 and then Full_View (Root_Typ) = Root_View
7575 then
7576 return True;
7577
7578 elsif Is_Incomplete_Type (Root_View)
7579 and then Present (Full_View (Root_View))
7580 and then Full_View (Root_View) = Root_Typ
7581 then
7582 return True;
7583 end if;
7584 end if;
7585
7586 return False;
7587 end Is_Matching_Limited_View;
7588
7589 -- Start of processing for Matches_Limited_With_View
7590
7591 begin
7592 -- In some cases a type imported through a limited_with clause, and
7593 -- its non-limited view are both visible, for example in an anonymous
7594 -- access-to-class-wide type in a formal, or when building the body
7595 -- for a subprogram renaming after the subprogram has been frozen.
7596 -- In these cases both entities designate the same type. In addition,
7597 -- if one of them is an actual in an instance, it may be a subtype of
7598 -- the non-limited view of the other.
7599
7600 if From_Limited_With (Typ_1)
7601 and then From_Limited_With (Typ_2)
7602 and then Available_View (Typ_1) = Available_View (Typ_2)
7603 then
7604 return True;
7605
7606 elsif From_Limited_With (Typ_1) then
7607 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7608
7609 elsif From_Limited_With (Typ_2) then
7610 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7611
7612 else
7613 return False;
7614 end if;
7615 end Matches_Limited_With_View;
7616
7617 -- Local variables
7618
7619 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7620
7621 Type_1 : Entity_Id := T1;
7622 Type_2 : Entity_Id := T2;
7623
7624 -- Start of processing for Conforming_Types
7625
7626 begin
7627 -- The context is an instance association for a formal access-to-
7628 -- subprogram type; the formal parameter types require mapping because
7629 -- they may denote other formal parameters of the generic unit.
7630
7631 if Get_Inst then
7632 Type_1 := Get_Instance_Of (T1);
7633 Type_2 := Get_Instance_Of (T2);
7634 end if;
7635
7636 -- If one of the types is a view of the other introduced by a limited
7637 -- with clause, treat these as conforming for all purposes.
7638
7639 if Matches_Limited_With_View (T1, T2) then
7640 return True;
7641
7642 elsif Base_Types_Match (Type_1, Type_2) then
7643 if Ctype <= Mode_Conformant then
7644 return True;
7645
7646 else
7647 return
7648 Subtypes_Statically_Match (Type_1, Type_2)
7649 and then Dimensions_Match (Type_1, Type_2);
7650 end if;
7651
7652 elsif Is_Incomplete_Or_Private_Type (Type_1)
7653 and then Present (Full_View (Type_1))
7654 and then Base_Types_Match (Full_View (Type_1), Type_2)
7655 then
7656 return
7657 Ctype <= Mode_Conformant
7658 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7659
7660 elsif Ekind (Type_2) = E_Incomplete_Type
7661 and then Present (Full_View (Type_2))
7662 and then Base_Types_Match (Type_1, Full_View (Type_2))
7663 then
7664 return
7665 Ctype <= Mode_Conformant
7666 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7667
7668 elsif Is_Private_Type (Type_2)
7669 and then In_Instance
7670 and then Present (Full_View (Type_2))
7671 and then Base_Types_Match (Type_1, Full_View (Type_2))
7672 then
7673 return
7674 Ctype <= Mode_Conformant
7675 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7676
7677 -- Another confusion between views in a nested instance with an
7678 -- actual private type whose full view is not in scope.
7679
7680 elsif Ekind (Type_2) = E_Private_Subtype
7681 and then In_Instance
7682 and then Etype (Type_2) = Type_1
7683 then
7684 return True;
7685
7686 -- In Ada 2012, incomplete types (including limited views) can appear
7687 -- as actuals in instantiations, where they are conformant to the
7688 -- corresponding incomplete formal.
7689
7690 elsif Is_Incomplete_Type (Type_1)
7691 and then Is_Incomplete_Type (Type_2)
7692 and then In_Instance
7693 and then (Used_As_Generic_Actual (Type_1)
7694 or else Used_As_Generic_Actual (Type_2))
7695 then
7696 return True;
7697 end if;
7698
7699 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7700 -- treated recursively because they carry a signature. As far as
7701 -- conformance is concerned, convention plays no role, and either
7702 -- or both could be access to protected subprograms.
7703
7704 Are_Anonymous_Access_To_Subprogram_Types :=
7705 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7706 E_Anonymous_Access_Protected_Subprogram_Type)
7707 and then
7708 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7709 E_Anonymous_Access_Protected_Subprogram_Type);
7710
7711 -- Test anonymous access type case. For this case, static subtype
7712 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7713 -- the base types because we may have built internal subtype entities
7714 -- to handle null-excluding types (see Process_Formals).
7715
7716 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7717 and then
7718 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7719
7720 -- Ada 2005 (AI-254)
7721
7722 or else Are_Anonymous_Access_To_Subprogram_Types
7723 then
7724 declare
7725 Desig_1 : Entity_Id;
7726 Desig_2 : Entity_Id;
7727
7728 begin
7729 -- In Ada 2005, access constant indicators must match for
7730 -- subtype conformance.
7731
7732 if Ada_Version >= Ada_2005
7733 and then Ctype >= Subtype_Conformant
7734 and then
7735 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7736 then
7737 return False;
7738 end if;
7739
7740 Desig_1 := Find_Designated_Type (Type_1);
7741 Desig_2 := Find_Designated_Type (Type_2);
7742
7743 -- If the context is an instance association for a formal
7744 -- access-to-subprogram type; formal access parameter designated
7745 -- types require mapping because they may denote other formal
7746 -- parameters of the generic unit.
7747
7748 if Get_Inst then
7749 Desig_1 := Get_Instance_Of (Desig_1);
7750 Desig_2 := Get_Instance_Of (Desig_2);
7751 end if;
7752
7753 -- It is possible for a Class_Wide_Type to be introduced for an
7754 -- incomplete type, in which case there is a separate class_ wide
7755 -- type for the full view. The types conform if their Etypes
7756 -- conform, i.e. one may be the full view of the other. This can
7757 -- only happen in the context of an access parameter, other uses
7758 -- of an incomplete Class_Wide_Type are illegal.
7759
7760 if Is_Class_Wide_Type (Desig_1)
7761 and then
7762 Is_Class_Wide_Type (Desig_2)
7763 then
7764 return
7765 Conforming_Types
7766 (Etype (Base_Type (Desig_1)),
7767 Etype (Base_Type (Desig_2)), Ctype);
7768
7769 elsif Are_Anonymous_Access_To_Subprogram_Types then
7770 if Ada_Version < Ada_2005 then
7771 return
7772 Ctype = Type_Conformant
7773 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7774
7775 -- We must check the conformance of the signatures themselves
7776
7777 else
7778 declare
7779 Conformant : Boolean;
7780 begin
7781 Check_Conformance
7782 (Desig_1, Desig_2, Ctype, False, Conformant);
7783 return Conformant;
7784 end;
7785 end if;
7786
7787 -- A limited view of an actual matches the corresponding
7788 -- incomplete formal.
7789
7790 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7791 and then From_Limited_With (Desig_2)
7792 and then Used_As_Generic_Actual (Etype (Desig_2))
7793 then
7794 return True;
7795
7796 else
7797 return Base_Type (Desig_1) = Base_Type (Desig_2)
7798 and then (Ctype = Type_Conformant
7799 or else
7800 Subtypes_Statically_Match (Desig_1, Desig_2));
7801 end if;
7802 end;
7803
7804 -- Otherwise definitely no match
7805
7806 else
7807 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7808 and then Is_Access_Type (Type_2))
7809 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7810 and then Is_Access_Type (Type_1)))
7811 and then
7812 Conforming_Types
7813 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7814 then
7815 May_Hide_Profile := True;
7816 end if;
7817
7818 return False;
7819 end if;
7820 end Conforming_Types;
7821
7822 --------------------------
7823 -- Create_Extra_Formals --
7824 --------------------------
7825
7826 procedure Create_Extra_Formals (E : Entity_Id) is
7827 First_Extra : Entity_Id := Empty;
7828 Formal : Entity_Id;
7829 Last_Extra : Entity_Id := Empty;
7830
7831 function Add_Extra_Formal
7832 (Assoc_Entity : Entity_Id;
7833 Typ : Entity_Id;
7834 Scope : Entity_Id;
7835 Suffix : String) return Entity_Id;
7836 -- Add an extra formal to the current list of formals and extra formals.
7837 -- The extra formal is added to the end of the list of extra formals,
7838 -- and also returned as the result. These formals are always of mode IN.
7839 -- The new formal has the type Typ, is declared in Scope, and its name
7840 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7841 -- The following suffixes are currently used. They should not be changed
7842 -- without coordinating with CodePeer, which makes use of these to
7843 -- provide better messages.
7844
7845 -- O denotes the Constrained bit.
7846 -- L denotes the accessibility level.
7847 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7848 -- the full list in exp_ch6.BIP_Formal_Kind.
7849
7850 ----------------------
7851 -- Add_Extra_Formal --
7852 ----------------------
7853
7854 function Add_Extra_Formal
7855 (Assoc_Entity : Entity_Id;
7856 Typ : Entity_Id;
7857 Scope : Entity_Id;
7858 Suffix : String) return Entity_Id
7859 is
7860 EF : constant Entity_Id :=
7861 Make_Defining_Identifier (Sloc (Assoc_Entity),
7862 Chars => New_External_Name (Chars (Assoc_Entity),
7863 Suffix => Suffix));
7864
7865 begin
7866 -- A little optimization. Never generate an extra formal for the
7867 -- _init operand of an initialization procedure, since it could
7868 -- never be used.
7869
7870 if Chars (Formal) = Name_uInit then
7871 return Empty;
7872 end if;
7873
7874 Set_Ekind (EF, E_In_Parameter);
7875 Set_Actual_Subtype (EF, Typ);
7876 Set_Etype (EF, Typ);
7877 Set_Scope (EF, Scope);
7878 Set_Mechanism (EF, Default_Mechanism);
7879 Set_Formal_Validity (EF);
7880
7881 if No (First_Extra) then
7882 First_Extra := EF;
7883 Set_Extra_Formals (Scope, EF);
7884 end if;
7885
7886 if Present (Last_Extra) then
7887 Set_Extra_Formal (Last_Extra, EF);
7888 end if;
7889
7890 Last_Extra := EF;
7891
7892 return EF;
7893 end Add_Extra_Formal;
7894
7895 -- Local variables
7896
7897 Formal_Type : Entity_Id;
7898 P_Formal : Entity_Id := Empty;
7899
7900 -- Start of processing for Create_Extra_Formals
7901
7902 begin
7903 -- We never generate extra formals if expansion is not active because we
7904 -- don't need them unless we are generating code.
7905
7906 if not Expander_Active then
7907 return;
7908 end if;
7909
7910 -- No need to generate extra formals in interface thunks whose target
7911 -- primitive has no extra formals.
7912
7913 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7914 return;
7915 end if;
7916
7917 -- If this is a derived subprogram then the subtypes of the parent
7918 -- subprogram's formal parameters will be used to determine the need
7919 -- for extra formals.
7920
7921 if Is_Overloadable (E) and then Present (Alias (E)) then
7922 P_Formal := First_Formal (Alias (E));
7923 end if;
7924
7925 Formal := First_Formal (E);
7926 while Present (Formal) loop
7927 Last_Extra := Formal;
7928 Next_Formal (Formal);
7929 end loop;
7930
7931 -- If Extra_Formals were already created, don't do it again. This
7932 -- situation may arise for subprogram types created as part of
7933 -- dispatching calls (see Expand_Dispatching_Call).
7934
7935 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7936 return;
7937 end if;
7938
7939 -- If the subprogram is a predefined dispatching subprogram then don't
7940 -- generate any extra constrained or accessibility level formals. In
7941 -- general we suppress these for internal subprograms (by not calling
7942 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7943 -- generated stream attributes do get passed through because extra
7944 -- build-in-place formals are needed in some cases (limited 'Input).
7945
7946 if Is_Predefined_Internal_Operation (E) then
7947 goto Test_For_Func_Result_Extras;
7948 end if;
7949
7950 Formal := First_Formal (E);
7951 while Present (Formal) loop
7952
7953 -- Create extra formal for supporting the attribute 'Constrained.
7954 -- The case of a private type view without discriminants also
7955 -- requires the extra formal if the underlying type has defaulted
7956 -- discriminants.
7957
7958 if Ekind (Formal) /= E_In_Parameter then
7959 if Present (P_Formal) then
7960 Formal_Type := Etype (P_Formal);
7961 else
7962 Formal_Type := Etype (Formal);
7963 end if;
7964
7965 -- Do not produce extra formals for Unchecked_Union parameters.
7966 -- Jump directly to the end of the loop.
7967
7968 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7969 goto Skip_Extra_Formal_Generation;
7970 end if;
7971
7972 if not Has_Discriminants (Formal_Type)
7973 and then Ekind (Formal_Type) in Private_Kind
7974 and then Present (Underlying_Type (Formal_Type))
7975 then
7976 Formal_Type := Underlying_Type (Formal_Type);
7977 end if;
7978
7979 -- Suppress the extra formal if formal's subtype is constrained or
7980 -- indefinite, or we're compiling for Ada 2012 and the underlying
7981 -- type is tagged and limited. In Ada 2012, a limited tagged type
7982 -- can have defaulted discriminants, but 'Constrained is required
7983 -- to return True, so the formal is never needed (see AI05-0214).
7984 -- Note that this ensures consistency of calling sequences for
7985 -- dispatching operations when some types in a class have defaults
7986 -- on discriminants and others do not (and requiring the extra
7987 -- formal would introduce distributed overhead).
7988
7989 -- If the type does not have a completion yet, treat as prior to
7990 -- Ada 2012 for consistency.
7991
7992 if Has_Discriminants (Formal_Type)
7993 and then not Is_Constrained (Formal_Type)
7994 and then Is_Definite_Subtype (Formal_Type)
7995 and then (Ada_Version < Ada_2012
7996 or else No (Underlying_Type (Formal_Type))
7997 or else not
7998 (Is_Limited_Type (Formal_Type)
7999 and then
8000 (Is_Tagged_Type
8001 (Underlying_Type (Formal_Type)))))
8002 then
8003 Set_Extra_Constrained
8004 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8005 end if;
8006 end if;
8007
8008 -- Create extra formal for supporting accessibility checking. This
8009 -- is done for both anonymous access formals and formals of named
8010 -- access types that are marked as controlling formals. The latter
8011 -- case can occur when Expand_Dispatching_Call creates a subprogram
8012 -- type and substitutes the types of access-to-class-wide actuals
8013 -- for the anonymous access-to-specific-type of controlling formals.
8014 -- Base_Type is applied because in cases where there is a null
8015 -- exclusion the formal may have an access subtype.
8016
8017 -- This is suppressed if we specifically suppress accessibility
8018 -- checks at the package level for either the subprogram, or the
8019 -- package in which it resides. However, we do not suppress it
8020 -- simply if the scope has accessibility checks suppressed, since
8021 -- this could cause trouble when clients are compiled with a
8022 -- different suppression setting. The explicit checks at the
8023 -- package level are safe from this point of view.
8024
8025 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8026 or else (Is_Controlling_Formal (Formal)
8027 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8028 and then not
8029 (Explicit_Suppress (E, Accessibility_Check)
8030 or else
8031 Explicit_Suppress (Scope (E), Accessibility_Check))
8032 and then
8033 (No (P_Formal)
8034 or else Present (Extra_Accessibility (P_Formal)))
8035 then
8036 Set_Extra_Accessibility
8037 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8038 end if;
8039
8040 -- This label is required when skipping extra formal generation for
8041 -- Unchecked_Union parameters.
8042
8043 <<Skip_Extra_Formal_Generation>>
8044
8045 if Present (P_Formal) then
8046 Next_Formal (P_Formal);
8047 end if;
8048
8049 Next_Formal (Formal);
8050 end loop;
8051
8052 <<Test_For_Func_Result_Extras>>
8053
8054 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8055 -- function call is ... determined by the point of call ...".
8056
8057 if Needs_Result_Accessibility_Level (E) then
8058 Set_Extra_Accessibility_Of_Result
8059 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8060 end if;
8061
8062 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8063 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8064
8065 if Is_Build_In_Place_Function (E) then
8066 declare
8067 Result_Subt : constant Entity_Id := Etype (E);
8068 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8069 Formal_Typ : Entity_Id;
8070 Subp_Decl : Node_Id;
8071 Discard : Entity_Id;
8072
8073 begin
8074 -- In the case of functions with unconstrained result subtypes,
8075 -- add a 4-state formal indicating whether the return object is
8076 -- allocated by the caller (1), or should be allocated by the
8077 -- callee on the secondary stack (2), in the global heap (3), or
8078 -- in a user-defined storage pool (4). For the moment we just use
8079 -- Natural for the type of this formal. Note that this formal
8080 -- isn't usually needed in the case where the result subtype is
8081 -- constrained, but it is needed when the function has a tagged
8082 -- result, because generally such functions can be called in a
8083 -- dispatching context and such calls must be handled like calls
8084 -- to a class-wide function.
8085
8086 if Needs_BIP_Alloc_Form (E) then
8087 Discard :=
8088 Add_Extra_Formal
8089 (E, Standard_Natural,
8090 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8091
8092 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8093 -- use a user-defined pool. This formal is not added on
8094 -- ZFP as those targets do not support pools.
8095
8096 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8097 Discard :=
8098 Add_Extra_Formal
8099 (E, RTE (RE_Root_Storage_Pool_Ptr),
8100 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8101 end if;
8102 end if;
8103
8104 -- In the case of functions whose result type needs finalization,
8105 -- add an extra formal which represents the finalization master.
8106
8107 if Needs_BIP_Finalization_Master (E) then
8108 Discard :=
8109 Add_Extra_Formal
8110 (E, RTE (RE_Finalization_Master_Ptr),
8111 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8112 end if;
8113
8114 -- When the result type contains tasks, add two extra formals: the
8115 -- master of the tasks to be created, and the caller's activation
8116 -- chain.
8117
8118 if Has_Task (Full_Subt) then
8119 Discard :=
8120 Add_Extra_Formal
8121 (E, RTE (RE_Master_Id),
8122 E, BIP_Formal_Suffix (BIP_Task_Master));
8123 Discard :=
8124 Add_Extra_Formal
8125 (E, RTE (RE_Activation_Chain_Access),
8126 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8127 end if;
8128
8129 -- All build-in-place functions get an extra formal that will be
8130 -- passed the address of the return object within the caller.
8131
8132 Formal_Typ :=
8133 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8134
8135 -- Incomplete_View_From_Limited_With is needed here because
8136 -- gigi gets confused if the designated type is the full view
8137 -- coming from a limited-with'ed package. In the normal case,
8138 -- (no limited with) Incomplete_View_From_Limited_With
8139 -- returns Result_Subt.
8140
8141 Set_Directly_Designated_Type
8142 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8143 Set_Etype (Formal_Typ, Formal_Typ);
8144 Set_Depends_On_Private
8145 (Formal_Typ, Has_Private_Component (Formal_Typ));
8146 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8147 Set_Is_Access_Constant (Formal_Typ, False);
8148
8149 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8150 -- the designated type comes from the limited view (for back-end
8151 -- purposes).
8152
8153 Set_From_Limited_With
8154 (Formal_Typ, From_Limited_With (Result_Subt));
8155
8156 Layout_Type (Formal_Typ);
8157
8158 -- Force the definition of the Itype in case of internal function
8159 -- calls within the same or nested scope.
8160
8161 if Is_Subprogram_Or_Generic_Subprogram (E) then
8162 Subp_Decl := Parent (E);
8163
8164 -- The insertion point for an Itype reference should be after
8165 -- the unit declaration node of the subprogram. An exception
8166 -- to this are inherited operations from a parent type in which
8167 -- case the derived type acts as their parent.
8168
8169 if Nkind_In (Subp_Decl, N_Function_Specification,
8170 N_Procedure_Specification)
8171 then
8172 Subp_Decl := Parent (Subp_Decl);
8173 end if;
8174
8175 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8176 end if;
8177
8178 Discard :=
8179 Add_Extra_Formal
8180 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8181 end;
8182 end if;
8183
8184 -- If this is an instance of a generic, we need to have extra formals
8185 -- for the Alias.
8186
8187 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8188 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8189 end if;
8190 end Create_Extra_Formals;
8191
8192 -----------------------------
8193 -- Enter_Overloaded_Entity --
8194 -----------------------------
8195
8196 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8197 function Matches_Predefined_Op return Boolean;
8198 -- This returns an approximation of whether S matches a predefined
8199 -- operator, based on the operator symbol, and the parameter and result
8200 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8201
8202 ---------------------------
8203 -- Matches_Predefined_Op --
8204 ---------------------------
8205
8206 function Matches_Predefined_Op return Boolean is
8207 Formal_1 : constant Entity_Id := First_Formal (S);
8208 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8209 Op : constant Name_Id := Chars (S);
8210 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8211 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8212
8213 begin
8214 -- Binary operator
8215
8216 if Present (Formal_2) then
8217 declare
8218 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8219
8220 begin
8221 -- All but "&" and "**" have same-types parameters
8222
8223 case Op is
8224 when Name_Op_Concat
8225 | Name_Op_Expon
8226 =>
8227 null;
8228
8229 when others =>
8230 if Type_1 /= Type_2 then
8231 return False;
8232 end if;
8233 end case;
8234
8235 -- Check parameter and result types
8236
8237 case Op is
8238 when Name_Op_And
8239 | Name_Op_Or
8240 | Name_Op_Xor
8241 =>
8242 return
8243 Is_Boolean_Type (Result_Type)
8244 and then Result_Type = Type_1;
8245
8246 when Name_Op_Mod
8247 | Name_Op_Rem
8248 =>
8249 return
8250 Is_Integer_Type (Result_Type)
8251 and then Result_Type = Type_1;
8252
8253 when Name_Op_Add
8254 | Name_Op_Divide
8255 | Name_Op_Multiply
8256 | Name_Op_Subtract
8257 =>
8258 return
8259 Is_Numeric_Type (Result_Type)
8260 and then Result_Type = Type_1;
8261
8262 when Name_Op_Eq
8263 | Name_Op_Ne
8264 =>
8265 return
8266 Is_Boolean_Type (Result_Type)
8267 and then not Is_Limited_Type (Type_1);
8268
8269 when Name_Op_Ge
8270 | Name_Op_Gt
8271 | Name_Op_Le
8272 | Name_Op_Lt
8273 =>
8274 return
8275 Is_Boolean_Type (Result_Type)
8276 and then (Is_Array_Type (Type_1)
8277 or else Is_Scalar_Type (Type_1));
8278
8279 when Name_Op_Concat =>
8280 return Is_Array_Type (Result_Type);
8281
8282 when Name_Op_Expon =>
8283 return
8284 (Is_Integer_Type (Result_Type)
8285 or else Is_Floating_Point_Type (Result_Type))
8286 and then Result_Type = Type_1
8287 and then Type_2 = Standard_Integer;
8288
8289 when others =>
8290 raise Program_Error;
8291 end case;
8292 end;
8293
8294 -- Unary operator
8295
8296 else
8297 case Op is
8298 when Name_Op_Abs
8299 | Name_Op_Add
8300 | Name_Op_Subtract
8301 =>
8302 return
8303 Is_Numeric_Type (Result_Type)
8304 and then Result_Type = Type_1;
8305
8306 when Name_Op_Not =>
8307 return
8308 Is_Boolean_Type (Result_Type)
8309 and then Result_Type = Type_1;
8310
8311 when others =>
8312 raise Program_Error;
8313 end case;
8314 end if;
8315 end Matches_Predefined_Op;
8316
8317 -- Local variables
8318
8319 E : Entity_Id := Current_Entity_In_Scope (S);
8320 C_E : Entity_Id := Current_Entity (S);
8321
8322 -- Start of processing for Enter_Overloaded_Entity
8323
8324 begin
8325 if Present (E) then
8326 Set_Has_Homonym (E);
8327 Set_Has_Homonym (S);
8328 end if;
8329
8330 Set_Is_Immediately_Visible (S);
8331 Set_Scope (S, Current_Scope);
8332
8333 -- Chain new entity if front of homonym in current scope, so that
8334 -- homonyms are contiguous.
8335
8336 if Present (E) and then E /= C_E then
8337 while Homonym (C_E) /= E loop
8338 C_E := Homonym (C_E);
8339 end loop;
8340
8341 Set_Homonym (C_E, S);
8342
8343 else
8344 E := C_E;
8345 Set_Current_Entity (S);
8346 end if;
8347
8348 Set_Homonym (S, E);
8349
8350 if Is_Inherited_Operation (S) then
8351 Append_Inherited_Subprogram (S);
8352 else
8353 Append_Entity (S, Current_Scope);
8354 end if;
8355
8356 Set_Public_Status (S);
8357
8358 if Debug_Flag_E then
8359 Write_Str ("New overloaded entity chain: ");
8360 Write_Name (Chars (S));
8361
8362 E := S;
8363 while Present (E) loop
8364 Write_Str (" "); Write_Int (Int (E));
8365 E := Homonym (E);
8366 end loop;
8367
8368 Write_Eol;
8369 end if;
8370
8371 -- Generate warning for hiding
8372
8373 if Warn_On_Hiding
8374 and then Comes_From_Source (S)
8375 and then In_Extended_Main_Source_Unit (S)
8376 then
8377 E := S;
8378 loop
8379 E := Homonym (E);
8380 exit when No (E);
8381
8382 -- Warn unless genuine overloading. Do not emit warning on
8383 -- hiding predefined operators in Standard (these are either an
8384 -- (artifact of our implicit declarations, or simple noise) but
8385 -- keep warning on a operator defined on a local subtype, because
8386 -- of the real danger that different operators may be applied in
8387 -- various parts of the program.
8388
8389 -- Note that if E and S have the same scope, there is never any
8390 -- hiding. Either the two conflict, and the program is illegal,
8391 -- or S is overriding an implicit inherited subprogram.
8392
8393 if Scope (E) /= Scope (S)
8394 and then (not Is_Overloadable (E)
8395 or else Subtype_Conformant (E, S))
8396 and then (Is_Immediately_Visible (E)
8397 or else Is_Potentially_Use_Visible (S))
8398 then
8399 if Scope (E) = Standard_Standard then
8400 if Nkind (S) = N_Defining_Operator_Symbol
8401 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8402 Scope (S)
8403 and then Matches_Predefined_Op
8404 then
8405 Error_Msg_N
8406 ("declaration of & hides predefined operator?h?", S);
8407 end if;
8408
8409 -- E not immediately within Standard
8410
8411 else
8412 Error_Msg_Sloc := Sloc (E);
8413 Error_Msg_N ("declaration of & hides one #?h?", S);
8414 end if;
8415 end if;
8416 end loop;
8417 end if;
8418 end Enter_Overloaded_Entity;
8419
8420 -----------------------------
8421 -- Check_Untagged_Equality --
8422 -----------------------------
8423
8424 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8425 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8426 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8427 Obj_Decl : Node_Id;
8428
8429 begin
8430 -- This check applies only if we have a subprogram declaration with an
8431 -- untagged record type that is conformant to the predefined op.
8432
8433 if Nkind (Decl) /= N_Subprogram_Declaration
8434 or else not Is_Record_Type (Typ)
8435 or else Is_Tagged_Type (Typ)
8436 or else Etype (Next_Formal (First_Formal (Eq_Op))) /= Typ
8437 then
8438 return;
8439 end if;
8440
8441 -- In Ada 2012 case, we will output errors or warnings depending on
8442 -- the setting of debug flag -gnatd.E.
8443
8444 if Ada_Version >= Ada_2012 then
8445 Error_Msg_Warn := Debug_Flag_Dot_EE;
8446
8447 -- In earlier versions of Ada, nothing to do unless we are warning on
8448 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8449
8450 else
8451 if not Warn_On_Ada_2012_Compatibility then
8452 return;
8453 end if;
8454 end if;
8455
8456 -- Cases where the type has already been frozen
8457
8458 if Is_Frozen (Typ) then
8459
8460 -- The check applies to a primitive operation, so check that type
8461 -- and equality operation are in the same scope.
8462
8463 if Scope (Typ) /= Current_Scope then
8464 return;
8465
8466 -- If the type is a generic actual (sub)type, the operation is not
8467 -- primitive either because the base type is declared elsewhere.
8468
8469 elsif Is_Generic_Actual_Type (Typ) then
8470 return;
8471
8472 -- Here we have a definite error of declaration after freezing
8473
8474 else
8475 if Ada_Version >= Ada_2012 then
8476 Error_Msg_NE
8477 ("equality operator must be declared before type & is "
8478 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8479
8480 -- In Ada 2012 mode with error turned to warning, output one
8481 -- more warning to warn that the equality operation may not
8482 -- compose. This is the consequence of ignoring the error.
8483
8484 if Error_Msg_Warn then
8485 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8486 end if;
8487
8488 else
8489 Error_Msg_NE
8490 ("equality operator must be declared before type& is "
8491 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8492 end if;
8493
8494 -- If we are in the package body, we could just move the
8495 -- declaration to the package spec, so add a message saying that.
8496
8497 if In_Package_Body (Scope (Typ)) then
8498 if Ada_Version >= Ada_2012 then
8499 Error_Msg_N
8500 ("\move declaration to package spec<<", Eq_Op);
8501 else
8502 Error_Msg_N
8503 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8504 end if;
8505
8506 -- Otherwise try to find the freezing point for better message.
8507
8508 else
8509 Obj_Decl := Next (Parent (Typ));
8510 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8511 if Nkind (Obj_Decl) = N_Object_Declaration
8512 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8513 then
8514 -- Freezing point, output warnings
8515
8516 if Ada_Version >= Ada_2012 then
8517 Error_Msg_NE
8518 ("type& is frozen by declaration??", Obj_Decl, Typ);
8519 Error_Msg_N
8520 ("\an equality operator cannot be declared after "
8521 & "this point??",
8522 Obj_Decl);
8523 else
8524 Error_Msg_NE
8525 ("type& is frozen by declaration (Ada 2012)?y?",
8526 Obj_Decl, Typ);
8527 Error_Msg_N
8528 ("\an equality operator cannot be declared after "
8529 & "this point (Ada 2012)?y?",
8530 Obj_Decl);
8531 end if;
8532
8533 exit;
8534
8535 -- If we reach generated code for subprogram declaration
8536 -- or body, it is the body that froze the type and the
8537 -- declaration is legal.
8538
8539 elsif Sloc (Obj_Decl) = Sloc (Decl) then
8540 return;
8541 end if;
8542
8543 Next (Obj_Decl);
8544 end loop;
8545 end if;
8546 end if;
8547
8548 -- Here if type is not frozen yet. It is illegal to have a primitive
8549 -- equality declared in the private part if the type is visible.
8550
8551 elsif not In_Same_List (Parent (Typ), Decl)
8552 and then not Is_Limited_Type (Typ)
8553 then
8554 -- Shouldn't we give an RM reference here???
8555
8556 if Ada_Version >= Ada_2012 then
8557 Error_Msg_N
8558 ("equality operator appears too late<<", Eq_Op);
8559 else
8560 Error_Msg_N
8561 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8562 end if;
8563
8564 -- No error detected
8565
8566 else
8567 return;
8568 end if;
8569 end Check_Untagged_Equality;
8570
8571 -----------------------------
8572 -- Find_Corresponding_Spec --
8573 -----------------------------
8574
8575 function Find_Corresponding_Spec
8576 (N : Node_Id;
8577 Post_Error : Boolean := True) return Entity_Id
8578 is
8579 Spec : constant Node_Id := Specification (N);
8580 Designator : constant Entity_Id := Defining_Entity (Spec);
8581
8582 E : Entity_Id;
8583
8584 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8585 -- Even if fully conformant, a body may depend on a generic actual when
8586 -- the spec does not, or vice versa, in which case they were distinct
8587 -- entities in the generic.
8588
8589 -------------------------------
8590 -- Different_Generic_Profile --
8591 -------------------------------
8592
8593 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8594 F1, F2 : Entity_Id;
8595
8596 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8597 -- Check that the types of corresponding formals have the same
8598 -- generic actual if any. We have to account for subtypes of a
8599 -- generic formal, declared between a spec and a body, which may
8600 -- appear distinct in an instance but matched in the generic, and
8601 -- the subtype may be used either in the spec or the body of the
8602 -- subprogram being checked.
8603
8604 -------------------------
8605 -- Same_Generic_Actual --
8606 -------------------------
8607
8608 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8609
8610 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8611 -- Predicate to check whether S1 is a subtype of S2 in the source
8612 -- of the instance.
8613
8614 -------------------------
8615 -- Is_Declared_Subtype --
8616 -------------------------
8617
8618 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8619 begin
8620 return Comes_From_Source (Parent (S1))
8621 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8622 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8623 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8624 end Is_Declared_Subtype;
8625
8626 -- Start of processing for Same_Generic_Actual
8627
8628 begin
8629 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8630 or else Is_Declared_Subtype (T1, T2)
8631 or else Is_Declared_Subtype (T2, T1);
8632 end Same_Generic_Actual;
8633
8634 -- Start of processing for Different_Generic_Profile
8635
8636 begin
8637 if not In_Instance then
8638 return False;
8639
8640 elsif Ekind (E) = E_Function
8641 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8642 then
8643 return True;
8644 end if;
8645
8646 F1 := First_Formal (Designator);
8647 F2 := First_Formal (E);
8648 while Present (F1) loop
8649 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8650 return True;
8651 end if;
8652
8653 Next_Formal (F1);
8654 Next_Formal (F2);
8655 end loop;
8656
8657 return False;
8658 end Different_Generic_Profile;
8659
8660 -- Start of processing for Find_Corresponding_Spec
8661
8662 begin
8663 E := Current_Entity (Designator);
8664 while Present (E) loop
8665
8666 -- We are looking for a matching spec. It must have the same scope,
8667 -- and the same name, and either be type conformant, or be the case
8668 -- of a library procedure spec and its body (which belong to one
8669 -- another regardless of whether they are type conformant or not).
8670
8671 if Scope (E) = Current_Scope then
8672 if Current_Scope = Standard_Standard
8673 or else (Ekind (E) = Ekind (Designator)
8674 and then Type_Conformant (E, Designator))
8675 then
8676 -- Within an instantiation, we know that spec and body are
8677 -- subtype conformant, because they were subtype conformant in
8678 -- the generic. We choose the subtype-conformant entity here as
8679 -- well, to resolve spurious ambiguities in the instance that
8680 -- were not present in the generic (i.e. when two different
8681 -- types are given the same actual). If we are looking for a
8682 -- spec to match a body, full conformance is expected.
8683
8684 if In_Instance then
8685
8686 -- Inherit the convention and "ghostness" of the matching
8687 -- spec to ensure proper full and subtype conformance.
8688
8689 Set_Convention (Designator, Convention (E));
8690
8691 -- Skip past subprogram bodies and subprogram renamings that
8692 -- may appear to have a matching spec, but that aren't fully
8693 -- conformant with it. That can occur in cases where an
8694 -- actual type causes unrelated homographs in the instance.
8695
8696 if Nkind_In (N, N_Subprogram_Body,
8697 N_Subprogram_Renaming_Declaration)
8698 and then Present (Homonym (E))
8699 and then not Fully_Conformant (Designator, E)
8700 then
8701 goto Next_Entity;
8702
8703 elsif not Subtype_Conformant (Designator, E) then
8704 goto Next_Entity;
8705
8706 elsif Different_Generic_Profile (E) then
8707 goto Next_Entity;
8708 end if;
8709 end if;
8710
8711 -- Ada 2012 (AI05-0165): For internally generated bodies of
8712 -- null procedures locate the internally generated spec. We
8713 -- enforce mode conformance since a tagged type may inherit
8714 -- from interfaces several null primitives which differ only
8715 -- in the mode of the formals.
8716
8717 if not (Comes_From_Source (E))
8718 and then Is_Null_Procedure (E)
8719 and then not Mode_Conformant (Designator, E)
8720 then
8721 null;
8722
8723 -- For null procedures coming from source that are completions,
8724 -- analysis of the generated body will establish the link.
8725
8726 elsif Comes_From_Source (E)
8727 and then Nkind (Spec) = N_Procedure_Specification
8728 and then Null_Present (Spec)
8729 then
8730 return E;
8731
8732 -- Expression functions can be completions, but cannot be
8733 -- completed by an explicit body.
8734
8735 elsif Comes_From_Source (E)
8736 and then Comes_From_Source (N)
8737 and then Nkind (N) = N_Subprogram_Body
8738 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8739 N_Expression_Function
8740 then
8741 Error_Msg_Sloc := Sloc (E);
8742 Error_Msg_N ("body conflicts with expression function#", N);
8743 return Empty;
8744
8745 elsif not Has_Completion (E) then
8746 if Nkind (N) /= N_Subprogram_Body_Stub then
8747 Set_Corresponding_Spec (N, E);
8748 end if;
8749
8750 Set_Has_Completion (E);
8751 return E;
8752
8753 elsif Nkind (Parent (N)) = N_Subunit then
8754
8755 -- If this is the proper body of a subunit, the completion
8756 -- flag is set when analyzing the stub.
8757
8758 return E;
8759
8760 -- If E is an internal function with a controlling result that
8761 -- was created for an operation inherited by a null extension,
8762 -- it may be overridden by a body without a previous spec (one
8763 -- more reason why these should be shunned). In that case we
8764 -- remove the generated body if present, because the current
8765 -- one is the explicit overriding.
8766
8767 elsif Ekind (E) = E_Function
8768 and then Ada_Version >= Ada_2005
8769 and then not Comes_From_Source (E)
8770 and then Has_Controlling_Result (E)
8771 and then Is_Null_Extension (Etype (E))
8772 and then Comes_From_Source (Spec)
8773 then
8774 Set_Has_Completion (E, False);
8775
8776 if Expander_Active
8777 and then Nkind (Parent (E)) = N_Function_Specification
8778 then
8779 Remove
8780 (Unit_Declaration_Node
8781 (Corresponding_Body (Unit_Declaration_Node (E))));
8782
8783 return E;
8784
8785 -- If expansion is disabled, or if the wrapper function has
8786 -- not been generated yet, this a late body overriding an
8787 -- inherited operation, or it is an overriding by some other
8788 -- declaration before the controlling result is frozen. In
8789 -- either case this is a declaration of a new entity.
8790
8791 else
8792 return Empty;
8793 end if;
8794
8795 -- If the body already exists, then this is an error unless
8796 -- the previous declaration is the implicit declaration of a
8797 -- derived subprogram. It is also legal for an instance to
8798 -- contain type conformant overloadable declarations (but the
8799 -- generic declaration may not), per 8.3(26/2).
8800
8801 elsif No (Alias (E))
8802 and then not Is_Intrinsic_Subprogram (E)
8803 and then not In_Instance
8804 and then Post_Error
8805 then
8806 Error_Msg_Sloc := Sloc (E);
8807
8808 if Is_Imported (E) then
8809 Error_Msg_NE
8810 ("body not allowed for imported subprogram & declared#",
8811 N, E);
8812 else
8813 Error_Msg_NE ("duplicate body for & declared#", N, E);
8814 end if;
8815 end if;
8816
8817 -- Child units cannot be overloaded, so a conformance mismatch
8818 -- between body and a previous spec is an error.
8819
8820 elsif Is_Child_Unit (E)
8821 and then
8822 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8823 and then
8824 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8825 N_Compilation_Unit
8826 and then Post_Error
8827 then
8828 Error_Msg_N
8829 ("body of child unit does not match previous declaration", N);
8830 end if;
8831 end if;
8832
8833 <<Next_Entity>>
8834 E := Homonym (E);
8835 end loop;
8836
8837 -- On exit, we know that no previous declaration of subprogram exists
8838
8839 return Empty;
8840 end Find_Corresponding_Spec;
8841
8842 ----------------------
8843 -- Fully_Conformant --
8844 ----------------------
8845
8846 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8847 Result : Boolean;
8848 begin
8849 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8850 return Result;
8851 end Fully_Conformant;
8852
8853 ----------------------------------
8854 -- Fully_Conformant_Expressions --
8855 ----------------------------------
8856
8857 function Fully_Conformant_Expressions
8858 (Given_E1 : Node_Id;
8859 Given_E2 : Node_Id;
8860 Report : Boolean := False) return Boolean
8861 is
8862 E1 : constant Node_Id := Original_Node (Given_E1);
8863 E2 : constant Node_Id := Original_Node (Given_E2);
8864 -- We always test conformance on original nodes, since it is possible
8865 -- for analysis and/or expansion to make things look as though they
8866 -- conform when they do not, e.g. by converting 1+2 into 3.
8867
8868 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean;
8869 -- ???
8870
8871 function FCL (L1 : List_Id; L2 : List_Id) return Boolean;
8872 -- Compare elements of two lists for conformance. Elements have to be
8873 -- conformant, and actuals inserted as default parameters do not match
8874 -- explicit actuals with the same value.
8875
8876 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean;
8877 -- Compare an operator node with a function call
8878
8879 ---------
8880 -- FCE --
8881 ---------
8882
8883 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean is
8884 begin
8885 return Fully_Conformant_Expressions (Given_E1, Given_E2, Report);
8886 end FCE;
8887
8888 ---------
8889 -- FCL --
8890 ---------
8891
8892 function FCL (L1 : List_Id; L2 : List_Id) return Boolean is
8893 N1 : Node_Id;
8894 N2 : Node_Id;
8895
8896 begin
8897 if L1 = No_List then
8898 N1 := Empty;
8899 else
8900 N1 := First (L1);
8901 end if;
8902
8903 if L2 = No_List then
8904 N2 := Empty;
8905 else
8906 N2 := First (L2);
8907 end if;
8908
8909 -- Compare two lists, skipping rewrite insertions (we want to compare
8910 -- the original trees, not the expanded versions).
8911
8912 loop
8913 if Is_Rewrite_Insertion (N1) then
8914 Next (N1);
8915 elsif Is_Rewrite_Insertion (N2) then
8916 Next (N2);
8917 elsif No (N1) then
8918 return No (N2);
8919 elsif No (N2) then
8920 return False;
8921 elsif not FCE (N1, N2) then
8922 return False;
8923 else
8924 Next (N1);
8925 Next (N2);
8926 end if;
8927 end loop;
8928 end FCL;
8929
8930 ---------
8931 -- FCO --
8932 ---------
8933
8934 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean is
8935 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8936 Act : Node_Id;
8937
8938 begin
8939 if No (Actuals)
8940 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8941 then
8942 return False;
8943
8944 else
8945 Act := First (Actuals);
8946
8947 if Nkind (Op_Node) in N_Binary_Op then
8948 if not FCE (Left_Opnd (Op_Node), Act) then
8949 return False;
8950 end if;
8951
8952 Next (Act);
8953 end if;
8954
8955 return Present (Act)
8956 and then FCE (Right_Opnd (Op_Node), Act)
8957 and then No (Next (Act));
8958 end if;
8959 end FCO;
8960
8961 -- Local variables
8962
8963 Result : Boolean;
8964
8965 -- Start of processing for Fully_Conformant_Expressions
8966
8967 begin
8968 Result := True;
8969
8970 -- Nonconformant if paren count does not match. Note: if some idiot
8971 -- complains that we don't do this right for more than 3 levels of
8972 -- parentheses, they will be treated with the respect they deserve.
8973
8974 if Paren_Count (E1) /= Paren_Count (E2) then
8975 return False;
8976
8977 -- If same entities are referenced, then they are conformant even if
8978 -- they have different forms (RM 8.3.1(19-20)).
8979
8980 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8981 if Present (Entity (E1)) then
8982 Result := Entity (E1) = Entity (E2)
8983
8984 -- One may be a discriminant that has been replaced by the
8985 -- corresponding discriminal.
8986
8987 or else
8988 (Chars (Entity (E1)) = Chars (Entity (E2))
8989 and then Ekind (Entity (E1)) = E_Discriminant
8990 and then Ekind (Entity (E2)) = E_In_Parameter)
8991
8992 -- The discriminant of a protected type is transformed into
8993 -- a local constant and then into a parameter of a protected
8994 -- operation.
8995
8996 or else
8997 (Ekind (Entity (E1)) = E_Constant
8998 and then Ekind (Entity (E2)) = E_In_Parameter
8999 and then Present (Discriminal_Link (Entity (E1)))
9000 and then Discriminal_Link (Entity (E1)) =
9001 Discriminal_Link (Entity (E2)))
9002
9003 -- AI12-050: The loop variables of quantified expressions match
9004 -- if they have the same identifier, even though they may have
9005 -- different entities.
9006
9007 or else
9008 (Chars (Entity (E1)) = Chars (Entity (E2))
9009 and then Ekind (Entity (E1)) = E_Loop_Parameter
9010 and then Ekind (Entity (E2)) = E_Loop_Parameter)
9011
9012 -- A call to an instantiation of Unchecked_Conversion is
9013 -- rewritten with the name of the generated function created for
9014 -- the instance, and this must be special-cased.
9015
9016 or else
9017 (Ekind (Entity (E1)) = E_Function
9018 and then Is_Intrinsic_Subprogram (Entity (E1))
9019 and then Is_Generic_Instance (Entity (E1))
9020 and then Entity (E2) = Alias (Entity (E1)));
9021 if Report and not Result then
9022 Error_Msg_Sloc :=
9023 Text_Ptr'Max (Sloc (Entity (E1)), Sloc (Entity (E2)));
9024 Error_Msg_NE
9025 ("Meaning of& differs because of declaration#", E1, E2);
9026 end if;
9027
9028 return Result;
9029
9030 elsif Nkind (E1) = N_Expanded_Name
9031 and then Nkind (E2) = N_Expanded_Name
9032 and then Nkind (Selector_Name (E1)) = N_Character_Literal
9033 and then Nkind (Selector_Name (E2)) = N_Character_Literal
9034 then
9035 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9036
9037 else
9038 -- Identifiers in component associations don't always have
9039 -- entities, but their names must conform.
9040
9041 return Nkind (E1) = N_Identifier
9042 and then Nkind (E2) = N_Identifier
9043 and then Chars (E1) = Chars (E2);
9044 end if;
9045
9046 elsif Nkind (E1) = N_Character_Literal
9047 and then Nkind (E2) = N_Expanded_Name
9048 then
9049 return Nkind (Selector_Name (E2)) = N_Character_Literal
9050 and then Chars (E1) = Chars (Selector_Name (E2));
9051
9052 elsif Nkind (E2) = N_Character_Literal
9053 and then Nkind (E1) = N_Expanded_Name
9054 then
9055 return Nkind (Selector_Name (E1)) = N_Character_Literal
9056 and then Chars (E2) = Chars (Selector_Name (E1));
9057
9058 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9059 return FCO (E1, E2);
9060
9061 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9062 return FCO (E2, E1);
9063
9064 -- Otherwise we must have the same syntactic entity
9065
9066 elsif Nkind (E1) /= Nkind (E2) then
9067 return False;
9068
9069 -- At this point, we specialize by node type
9070
9071 else
9072 case Nkind (E1) is
9073 when N_Aggregate =>
9074 return
9075 FCL (Expressions (E1), Expressions (E2))
9076 and then
9077 FCL (Component_Associations (E1),
9078 Component_Associations (E2));
9079
9080 when N_Allocator =>
9081 if Nkind (Expression (E1)) = N_Qualified_Expression
9082 or else
9083 Nkind (Expression (E2)) = N_Qualified_Expression
9084 then
9085 return FCE (Expression (E1), Expression (E2));
9086
9087 -- Check that the subtype marks and any constraints
9088 -- are conformant
9089
9090 else
9091 declare
9092 Indic1 : constant Node_Id := Expression (E1);
9093 Indic2 : constant Node_Id := Expression (E2);
9094 Elt1 : Node_Id;
9095 Elt2 : Node_Id;
9096
9097 begin
9098 if Nkind (Indic1) /= N_Subtype_Indication then
9099 return
9100 Nkind (Indic2) /= N_Subtype_Indication
9101 and then Entity (Indic1) = Entity (Indic2);
9102
9103 elsif Nkind (Indic2) /= N_Subtype_Indication then
9104 return
9105 Nkind (Indic1) /= N_Subtype_Indication
9106 and then Entity (Indic1) = Entity (Indic2);
9107
9108 else
9109 if Entity (Subtype_Mark (Indic1)) /=
9110 Entity (Subtype_Mark (Indic2))
9111 then
9112 return False;
9113 end if;
9114
9115 Elt1 := First (Constraints (Constraint (Indic1)));
9116 Elt2 := First (Constraints (Constraint (Indic2)));
9117 while Present (Elt1) and then Present (Elt2) loop
9118 if not FCE (Elt1, Elt2) then
9119 return False;
9120 end if;
9121
9122 Next (Elt1);
9123 Next (Elt2);
9124 end loop;
9125
9126 return True;
9127 end if;
9128 end;
9129 end if;
9130
9131 when N_Attribute_Reference =>
9132 return
9133 Attribute_Name (E1) = Attribute_Name (E2)
9134 and then FCL (Expressions (E1), Expressions (E2));
9135
9136 when N_Binary_Op =>
9137 return
9138 Entity (E1) = Entity (E2)
9139 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9140 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9141
9142 when N_Membership_Test
9143 | N_Short_Circuit
9144 =>
9145 return
9146 FCE (Left_Opnd (E1), Left_Opnd (E2))
9147 and then
9148 FCE (Right_Opnd (E1), Right_Opnd (E2));
9149
9150 when N_Case_Expression =>
9151 declare
9152 Alt1 : Node_Id;
9153 Alt2 : Node_Id;
9154
9155 begin
9156 if not FCE (Expression (E1), Expression (E2)) then
9157 return False;
9158
9159 else
9160 Alt1 := First (Alternatives (E1));
9161 Alt2 := First (Alternatives (E2));
9162 loop
9163 if Present (Alt1) /= Present (Alt2) then
9164 return False;
9165 elsif No (Alt1) then
9166 return True;
9167 end if;
9168
9169 if not FCE (Expression (Alt1), Expression (Alt2))
9170 or else not FCL (Discrete_Choices (Alt1),
9171 Discrete_Choices (Alt2))
9172 then
9173 return False;
9174 end if;
9175
9176 Next (Alt1);
9177 Next (Alt2);
9178 end loop;
9179 end if;
9180 end;
9181
9182 when N_Character_Literal =>
9183 return
9184 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9185
9186 when N_Component_Association =>
9187 return
9188 FCL (Choices (E1), Choices (E2))
9189 and then
9190 FCE (Expression (E1), Expression (E2));
9191
9192 when N_Explicit_Dereference =>
9193 return
9194 FCE (Prefix (E1), Prefix (E2));
9195
9196 when N_Extension_Aggregate =>
9197 return
9198 FCL (Expressions (E1), Expressions (E2))
9199 and then Null_Record_Present (E1) =
9200 Null_Record_Present (E2)
9201 and then FCL (Component_Associations (E1),
9202 Component_Associations (E2));
9203
9204 when N_Function_Call =>
9205 return
9206 FCE (Name (E1), Name (E2))
9207 and then
9208 FCL (Parameter_Associations (E1),
9209 Parameter_Associations (E2));
9210
9211 when N_If_Expression =>
9212 return
9213 FCL (Expressions (E1), Expressions (E2));
9214
9215 when N_Indexed_Component =>
9216 return
9217 FCE (Prefix (E1), Prefix (E2))
9218 and then
9219 FCL (Expressions (E1), Expressions (E2));
9220
9221 when N_Integer_Literal =>
9222 return (Intval (E1) = Intval (E2));
9223
9224 when N_Null =>
9225 return True;
9226
9227 when N_Operator_Symbol =>
9228 return
9229 Chars (E1) = Chars (E2);
9230
9231 when N_Others_Choice =>
9232 return True;
9233
9234 when N_Parameter_Association =>
9235 return
9236 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9237 and then FCE (Explicit_Actual_Parameter (E1),
9238 Explicit_Actual_Parameter (E2));
9239
9240 when N_Qualified_Expression
9241 | N_Type_Conversion
9242 | N_Unchecked_Type_Conversion
9243 =>
9244 return
9245 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9246 and then
9247 FCE (Expression (E1), Expression (E2));
9248
9249 when N_Quantified_Expression =>
9250 if not FCE (Condition (E1), Condition (E2)) then
9251 return False;
9252 end if;
9253
9254 if Present (Loop_Parameter_Specification (E1))
9255 and then Present (Loop_Parameter_Specification (E2))
9256 then
9257 declare
9258 L1 : constant Node_Id :=
9259 Loop_Parameter_Specification (E1);
9260 L2 : constant Node_Id :=
9261 Loop_Parameter_Specification (E2);
9262
9263 begin
9264 return
9265 Reverse_Present (L1) = Reverse_Present (L2)
9266 and then
9267 FCE (Defining_Identifier (L1),
9268 Defining_Identifier (L2))
9269 and then
9270 FCE (Discrete_Subtype_Definition (L1),
9271 Discrete_Subtype_Definition (L2));
9272 end;
9273
9274 elsif Present (Iterator_Specification (E1))
9275 and then Present (Iterator_Specification (E2))
9276 then
9277 declare
9278 I1 : constant Node_Id := Iterator_Specification (E1);
9279 I2 : constant Node_Id := Iterator_Specification (E2);
9280
9281 begin
9282 return
9283 FCE (Defining_Identifier (I1),
9284 Defining_Identifier (I2))
9285 and then
9286 Of_Present (I1) = Of_Present (I2)
9287 and then
9288 Reverse_Present (I1) = Reverse_Present (I2)
9289 and then FCE (Name (I1), Name (I2))
9290 and then FCE (Subtype_Indication (I1),
9291 Subtype_Indication (I2));
9292 end;
9293
9294 -- The quantified expressions used different specifications to
9295 -- walk their respective ranges.
9296
9297 else
9298 return False;
9299 end if;
9300
9301 when N_Range =>
9302 return
9303 FCE (Low_Bound (E1), Low_Bound (E2))
9304 and then
9305 FCE (High_Bound (E1), High_Bound (E2));
9306
9307 when N_Real_Literal =>
9308 return (Realval (E1) = Realval (E2));
9309
9310 when N_Selected_Component =>
9311 return
9312 FCE (Prefix (E1), Prefix (E2))
9313 and then
9314 FCE (Selector_Name (E1), Selector_Name (E2));
9315
9316 when N_Slice =>
9317 return
9318 FCE (Prefix (E1), Prefix (E2))
9319 and then
9320 FCE (Discrete_Range (E1), Discrete_Range (E2));
9321
9322 when N_String_Literal =>
9323 declare
9324 S1 : constant String_Id := Strval (E1);
9325 S2 : constant String_Id := Strval (E2);
9326 L1 : constant Nat := String_Length (S1);
9327 L2 : constant Nat := String_Length (S2);
9328
9329 begin
9330 if L1 /= L2 then
9331 return False;
9332
9333 else
9334 for J in 1 .. L1 loop
9335 if Get_String_Char (S1, J) /=
9336 Get_String_Char (S2, J)
9337 then
9338 return False;
9339 end if;
9340 end loop;
9341
9342 return True;
9343 end if;
9344 end;
9345
9346 when N_Unary_Op =>
9347 return
9348 Entity (E1) = Entity (E2)
9349 and then
9350 FCE (Right_Opnd (E1), Right_Opnd (E2));
9351
9352 -- All other node types cannot appear in this context. Strictly
9353 -- we should raise a fatal internal error. Instead we just ignore
9354 -- the nodes. This means that if anyone makes a mistake in the
9355 -- expander and mucks an expression tree irretrievably, the result
9356 -- will be a failure to detect a (probably very obscure) case
9357 -- of non-conformance, which is better than bombing on some
9358 -- case where two expressions do in fact conform.
9359
9360 when others =>
9361 return True;
9362 end case;
9363 end if;
9364 end Fully_Conformant_Expressions;
9365
9366 ----------------------------------------
9367 -- Fully_Conformant_Discrete_Subtypes --
9368 ----------------------------------------
9369
9370 function Fully_Conformant_Discrete_Subtypes
9371 (Given_S1 : Node_Id;
9372 Given_S2 : Node_Id) return Boolean
9373 is
9374 S1 : constant Node_Id := Original_Node (Given_S1);
9375 S2 : constant Node_Id := Original_Node (Given_S2);
9376
9377 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9378 -- Special-case for a bound given by a discriminant, which in the body
9379 -- is replaced with the discriminal of the enclosing type.
9380
9381 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9382 -- Check both bounds
9383
9384 -----------------------
9385 -- Conforming_Bounds --
9386 -----------------------
9387
9388 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9389 begin
9390 if Is_Entity_Name (B1)
9391 and then Is_Entity_Name (B2)
9392 and then Ekind (Entity (B1)) = E_Discriminant
9393 then
9394 return Chars (B1) = Chars (B2);
9395
9396 else
9397 return Fully_Conformant_Expressions (B1, B2);
9398 end if;
9399 end Conforming_Bounds;
9400
9401 -----------------------
9402 -- Conforming_Ranges --
9403 -----------------------
9404
9405 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9406 begin
9407 return
9408 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9409 and then
9410 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9411 end Conforming_Ranges;
9412
9413 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9414
9415 begin
9416 if Nkind (S1) /= Nkind (S2) then
9417 return False;
9418
9419 elsif Is_Entity_Name (S1) then
9420 return Entity (S1) = Entity (S2);
9421
9422 elsif Nkind (S1) = N_Range then
9423 return Conforming_Ranges (S1, S2);
9424
9425 elsif Nkind (S1) = N_Subtype_Indication then
9426 return
9427 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9428 and then
9429 Conforming_Ranges
9430 (Range_Expression (Constraint (S1)),
9431 Range_Expression (Constraint (S2)));
9432 else
9433 return True;
9434 end if;
9435 end Fully_Conformant_Discrete_Subtypes;
9436
9437 --------------------
9438 -- Install_Entity --
9439 --------------------
9440
9441 procedure Install_Entity (E : Entity_Id) is
9442 Prev : constant Entity_Id := Current_Entity (E);
9443 begin
9444 Set_Is_Immediately_Visible (E);
9445 Set_Current_Entity (E);
9446 Set_Homonym (E, Prev);
9447 end Install_Entity;
9448
9449 ---------------------
9450 -- Install_Formals --
9451 ---------------------
9452
9453 procedure Install_Formals (Id : Entity_Id) is
9454 F : Entity_Id;
9455 begin
9456 F := First_Formal (Id);
9457 while Present (F) loop
9458 Install_Entity (F);
9459 Next_Formal (F);
9460 end loop;
9461 end Install_Formals;
9462
9463 -----------------------------
9464 -- Is_Interface_Conformant --
9465 -----------------------------
9466
9467 function Is_Interface_Conformant
9468 (Tagged_Type : Entity_Id;
9469 Iface_Prim : Entity_Id;
9470 Prim : Entity_Id) return Boolean
9471 is
9472 -- The operation may in fact be an inherited (implicit) operation
9473 -- rather than the original interface primitive, so retrieve the
9474 -- ultimate ancestor.
9475
9476 Iface : constant Entity_Id :=
9477 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9478 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9479
9480 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9481 -- Return the controlling formal of Prim
9482
9483 ------------------------
9484 -- Controlling_Formal --
9485 ------------------------
9486
9487 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9488 E : Entity_Id;
9489
9490 begin
9491 E := First_Entity (Prim);
9492 while Present (E) loop
9493 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9494 return E;
9495 end if;
9496
9497 Next_Entity (E);
9498 end loop;
9499
9500 return Empty;
9501 end Controlling_Formal;
9502
9503 -- Local variables
9504
9505 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9506 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9507
9508 -- Start of processing for Is_Interface_Conformant
9509
9510 begin
9511 pragma Assert (Is_Subprogram (Iface_Prim)
9512 and then Is_Subprogram (Prim)
9513 and then Is_Dispatching_Operation (Iface_Prim)
9514 and then Is_Dispatching_Operation (Prim));
9515
9516 pragma Assert (Is_Interface (Iface)
9517 or else (Present (Alias (Iface_Prim))
9518 and then
9519 Is_Interface
9520 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9521
9522 if Prim = Iface_Prim
9523 or else not Is_Subprogram (Prim)
9524 or else Ekind (Prim) /= Ekind (Iface_Prim)
9525 or else not Is_Dispatching_Operation (Prim)
9526 or else Scope (Prim) /= Scope (Tagged_Type)
9527 or else No (Typ)
9528 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9529 or else not Primitive_Names_Match (Iface_Prim, Prim)
9530 then
9531 return False;
9532
9533 -- The mode of the controlling formals must match
9534
9535 elsif Present (Iface_Ctrl_F)
9536 and then Present (Prim_Ctrl_F)
9537 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9538 then
9539 return False;
9540
9541 -- Case of a procedure, or a function whose result type matches the
9542 -- result type of the interface primitive, or a function that has no
9543 -- controlling result (I or access I).
9544
9545 elsif Ekind (Iface_Prim) = E_Procedure
9546 or else Etype (Prim) = Etype (Iface_Prim)
9547 or else not Has_Controlling_Result (Prim)
9548 then
9549 return Type_Conformant
9550 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9551
9552 -- Case of a function returning an interface, or an access to one. Check
9553 -- that the return types correspond.
9554
9555 elsif Implements_Interface (Typ, Iface) then
9556 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9557 /=
9558 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9559 then
9560 return False;
9561 else
9562 return
9563 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9564 Skip_Controlling_Formals => True);
9565 end if;
9566
9567 else
9568 return False;
9569 end if;
9570 end Is_Interface_Conformant;
9571
9572 ---------------------------------
9573 -- Is_Non_Overriding_Operation --
9574 ---------------------------------
9575
9576 function Is_Non_Overriding_Operation
9577 (Prev_E : Entity_Id;
9578 New_E : Entity_Id) return Boolean
9579 is
9580 Formal : Entity_Id;
9581 F_Typ : Entity_Id;
9582 G_Typ : Entity_Id := Empty;
9583
9584 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9585 -- If F_Type is a derived type associated with a generic actual subtype,
9586 -- then return its Generic_Parent_Type attribute, else return Empty.
9587
9588 function Types_Correspond
9589 (P_Type : Entity_Id;
9590 N_Type : Entity_Id) return Boolean;
9591 -- Returns true if and only if the types (or designated types in the
9592 -- case of anonymous access types) are the same or N_Type is derived
9593 -- directly or indirectly from P_Type.
9594
9595 -----------------------------
9596 -- Get_Generic_Parent_Type --
9597 -----------------------------
9598
9599 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9600 G_Typ : Entity_Id;
9601 Defn : Node_Id;
9602 Indic : Node_Id;
9603
9604 begin
9605 if Is_Derived_Type (F_Typ)
9606 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9607 then
9608 -- The tree must be traversed to determine the parent subtype in
9609 -- the generic unit, which unfortunately isn't always available
9610 -- via semantic attributes. ??? (Note: The use of Original_Node
9611 -- is needed for cases where a full derived type has been
9612 -- rewritten.)
9613
9614 -- If the parent type is a scalar type, the derivation creates
9615 -- an anonymous base type for it, and the source type is its
9616 -- first subtype.
9617
9618 if Is_Scalar_Type (F_Typ)
9619 and then not Comes_From_Source (F_Typ)
9620 then
9621 Defn :=
9622 Type_Definition
9623 (Original_Node (Parent (First_Subtype (F_Typ))));
9624 else
9625 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9626 end if;
9627 if Nkind (Defn) = N_Derived_Type_Definition then
9628 Indic := Subtype_Indication (Defn);
9629
9630 if Nkind (Indic) = N_Subtype_Indication then
9631 G_Typ := Entity (Subtype_Mark (Indic));
9632 else
9633 G_Typ := Entity (Indic);
9634 end if;
9635
9636 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9637 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9638 then
9639 return Generic_Parent_Type (Parent (G_Typ));
9640 end if;
9641 end if;
9642 end if;
9643
9644 return Empty;
9645 end Get_Generic_Parent_Type;
9646
9647 ----------------------
9648 -- Types_Correspond --
9649 ----------------------
9650
9651 function Types_Correspond
9652 (P_Type : Entity_Id;
9653 N_Type : Entity_Id) return Boolean
9654 is
9655 Prev_Type : Entity_Id := Base_Type (P_Type);
9656 New_Type : Entity_Id := Base_Type (N_Type);
9657
9658 begin
9659 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9660 Prev_Type := Designated_Type (Prev_Type);
9661 end if;
9662
9663 if Ekind (New_Type) = E_Anonymous_Access_Type then
9664 New_Type := Designated_Type (New_Type);
9665 end if;
9666
9667 if Prev_Type = New_Type then
9668 return True;
9669
9670 elsif not Is_Class_Wide_Type (New_Type) then
9671 while Etype (New_Type) /= New_Type loop
9672 New_Type := Etype (New_Type);
9673
9674 if New_Type = Prev_Type then
9675 return True;
9676 end if;
9677 end loop;
9678 end if;
9679 return False;
9680 end Types_Correspond;
9681
9682 -- Start of processing for Is_Non_Overriding_Operation
9683
9684 begin
9685 -- In the case where both operations are implicit derived subprograms
9686 -- then neither overrides the other. This can only occur in certain
9687 -- obscure cases (e.g., derivation from homographs created in a generic
9688 -- instantiation).
9689
9690 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9691 return True;
9692
9693 elsif Ekind (Current_Scope) = E_Package
9694 and then Is_Generic_Instance (Current_Scope)
9695 and then In_Private_Part (Current_Scope)
9696 and then Comes_From_Source (New_E)
9697 then
9698 -- We examine the formals and result type of the inherited operation,
9699 -- to determine whether their type is derived from (the instance of)
9700 -- a generic type. The first such formal or result type is the one
9701 -- tested.
9702
9703 Formal := First_Formal (Prev_E);
9704 F_Typ := Empty;
9705 while Present (Formal) loop
9706 F_Typ := Base_Type (Etype (Formal));
9707
9708 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9709 F_Typ := Designated_Type (F_Typ);
9710 end if;
9711
9712 G_Typ := Get_Generic_Parent_Type (F_Typ);
9713 exit when Present (G_Typ);
9714
9715 Next_Formal (Formal);
9716 end loop;
9717
9718 -- If the function dispatches on result check the result type
9719
9720 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9721 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9722 end if;
9723
9724 if No (G_Typ) then
9725 return False;
9726 end if;
9727
9728 -- If the generic type is a private type, then the original operation
9729 -- was not overriding in the generic, because there was no primitive
9730 -- operation to override.
9731
9732 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9733 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9734 N_Formal_Private_Type_Definition
9735 then
9736 return True;
9737
9738 -- The generic parent type is the ancestor of a formal derived
9739 -- type declaration. We need to check whether it has a primitive
9740 -- operation that should be overridden by New_E in the generic.
9741
9742 else
9743 declare
9744 P_Formal : Entity_Id;
9745 N_Formal : Entity_Id;
9746 P_Typ : Entity_Id;
9747 N_Typ : Entity_Id;
9748 P_Prim : Entity_Id;
9749 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9750
9751 begin
9752 while Present (Prim_Elt) loop
9753 P_Prim := Node (Prim_Elt);
9754
9755 if Chars (P_Prim) = Chars (New_E)
9756 and then Ekind (P_Prim) = Ekind (New_E)
9757 then
9758 P_Formal := First_Formal (P_Prim);
9759 N_Formal := First_Formal (New_E);
9760 while Present (P_Formal) and then Present (N_Formal) loop
9761 P_Typ := Etype (P_Formal);
9762 N_Typ := Etype (N_Formal);
9763
9764 if not Types_Correspond (P_Typ, N_Typ) then
9765 exit;
9766 end if;
9767
9768 Next_Entity (P_Formal);
9769 Next_Entity (N_Formal);
9770 end loop;
9771
9772 -- Found a matching primitive operation belonging to the
9773 -- formal ancestor type, so the new subprogram is
9774 -- overriding.
9775
9776 if No (P_Formal)
9777 and then No (N_Formal)
9778 and then (Ekind (New_E) /= E_Function
9779 or else
9780 Types_Correspond
9781 (Etype (P_Prim), Etype (New_E)))
9782 then
9783 return False;
9784 end if;
9785 end if;
9786
9787 Next_Elmt (Prim_Elt);
9788 end loop;
9789
9790 -- If no match found, then the new subprogram does not override
9791 -- in the generic (nor in the instance).
9792
9793 -- If the type in question is not abstract, and the subprogram
9794 -- is, this will be an error if the new operation is in the
9795 -- private part of the instance. Emit a warning now, which will
9796 -- make the subsequent error message easier to understand.
9797
9798 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9799 and then Is_Abstract_Subprogram (Prev_E)
9800 and then In_Private_Part (Current_Scope)
9801 then
9802 Error_Msg_Node_2 := F_Typ;
9803 Error_Msg_NE
9804 ("private operation& in generic unit does not override "
9805 & "any primitive operation of& (RM 12.3 (18))??",
9806 New_E, New_E);
9807 end if;
9808
9809 return True;
9810 end;
9811 end if;
9812 else
9813 return False;
9814 end if;
9815 end Is_Non_Overriding_Operation;
9816
9817 -------------------------------------
9818 -- List_Inherited_Pre_Post_Aspects --
9819 -------------------------------------
9820
9821 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9822 begin
9823 if Opt.List_Inherited_Aspects
9824 and then Is_Subprogram_Or_Generic_Subprogram (E)
9825 then
9826 declare
9827 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9828 Items : Node_Id;
9829 Prag : Node_Id;
9830
9831 begin
9832 for Index in Subps'Range loop
9833 Items := Contract (Subps (Index));
9834
9835 if Present (Items) then
9836 Prag := Pre_Post_Conditions (Items);
9837 while Present (Prag) loop
9838 Error_Msg_Sloc := Sloc (Prag);
9839
9840 if Class_Present (Prag)
9841 and then not Split_PPC (Prag)
9842 then
9843 if Pragma_Name (Prag) = Name_Precondition then
9844 Error_Msg_N
9845 ("info: & inherits `Pre''Class` aspect from "
9846 & "#?L?", E);
9847 else
9848 Error_Msg_N
9849 ("info: & inherits `Post''Class` aspect from "
9850 & "#?L?", E);
9851 end if;
9852 end if;
9853
9854 Prag := Next_Pragma (Prag);
9855 end loop;
9856 end if;
9857 end loop;
9858 end;
9859 end if;
9860 end List_Inherited_Pre_Post_Aspects;
9861
9862 ------------------------------
9863 -- Make_Inequality_Operator --
9864 ------------------------------
9865
9866 -- S is the defining identifier of an equality operator. We build a
9867 -- subprogram declaration with the right signature. This operation is
9868 -- intrinsic, because it is always expanded as the negation of the
9869 -- call to the equality function.
9870
9871 procedure Make_Inequality_Operator (S : Entity_Id) is
9872 Loc : constant Source_Ptr := Sloc (S);
9873 Decl : Node_Id;
9874 Formals : List_Id;
9875 Op_Name : Entity_Id;
9876
9877 FF : constant Entity_Id := First_Formal (S);
9878 NF : constant Entity_Id := Next_Formal (FF);
9879
9880 begin
9881 -- Check that equality was properly defined, ignore call if not
9882
9883 if No (NF) then
9884 return;
9885 end if;
9886
9887 declare
9888 A : constant Entity_Id :=
9889 Make_Defining_Identifier (Sloc (FF),
9890 Chars => Chars (FF));
9891
9892 B : constant Entity_Id :=
9893 Make_Defining_Identifier (Sloc (NF),
9894 Chars => Chars (NF));
9895
9896 begin
9897 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9898
9899 Formals := New_List (
9900 Make_Parameter_Specification (Loc,
9901 Defining_Identifier => A,
9902 Parameter_Type =>
9903 New_Occurrence_Of (Etype (First_Formal (S)),
9904 Sloc (Etype (First_Formal (S))))),
9905
9906 Make_Parameter_Specification (Loc,
9907 Defining_Identifier => B,
9908 Parameter_Type =>
9909 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9910 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9911
9912 Decl :=
9913 Make_Subprogram_Declaration (Loc,
9914 Specification =>
9915 Make_Function_Specification (Loc,
9916 Defining_Unit_Name => Op_Name,
9917 Parameter_Specifications => Formals,
9918 Result_Definition =>
9919 New_Occurrence_Of (Standard_Boolean, Loc)));
9920
9921 -- Insert inequality right after equality if it is explicit or after
9922 -- the derived type when implicit. These entities are created only
9923 -- for visibility purposes, and eventually replaced in the course
9924 -- of expansion, so they do not need to be attached to the tree and
9925 -- seen by the back-end. Keeping them internal also avoids spurious
9926 -- freezing problems. The declaration is inserted in the tree for
9927 -- analysis, and removed afterwards. If the equality operator comes
9928 -- from an explicit declaration, attach the inequality immediately
9929 -- after. Else the equality is inherited from a derived type
9930 -- declaration, so insert inequality after that declaration.
9931
9932 if No (Alias (S)) then
9933 Insert_After (Unit_Declaration_Node (S), Decl);
9934 elsif Is_List_Member (Parent (S)) then
9935 Insert_After (Parent (S), Decl);
9936 else
9937 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9938 end if;
9939
9940 Mark_Rewrite_Insertion (Decl);
9941 Set_Is_Intrinsic_Subprogram (Op_Name);
9942 Analyze (Decl);
9943 Remove (Decl);
9944 Set_Has_Completion (Op_Name);
9945 Set_Corresponding_Equality (Op_Name, S);
9946 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9947 end;
9948 end Make_Inequality_Operator;
9949
9950 ----------------------
9951 -- May_Need_Actuals --
9952 ----------------------
9953
9954 procedure May_Need_Actuals (Fun : Entity_Id) is
9955 F : Entity_Id;
9956 B : Boolean;
9957
9958 begin
9959 F := First_Formal (Fun);
9960 B := True;
9961 while Present (F) loop
9962 if No (Default_Value (F)) then
9963 B := False;
9964 exit;
9965 end if;
9966
9967 Next_Formal (F);
9968 end loop;
9969
9970 Set_Needs_No_Actuals (Fun, B);
9971 end May_Need_Actuals;
9972
9973 ---------------------
9974 -- Mode_Conformant --
9975 ---------------------
9976
9977 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9978 Result : Boolean;
9979 begin
9980 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9981 return Result;
9982 end Mode_Conformant;
9983
9984 ---------------------------
9985 -- New_Overloaded_Entity --
9986 ---------------------------
9987
9988 procedure New_Overloaded_Entity
9989 (S : Entity_Id;
9990 Derived_Type : Entity_Id := Empty)
9991 is
9992 Overridden_Subp : Entity_Id := Empty;
9993 -- Set if the current scope has an operation that is type-conformant
9994 -- with S, and becomes hidden by S.
9995
9996 Is_Primitive_Subp : Boolean;
9997 -- Set to True if the new subprogram is primitive
9998
9999 E : Entity_Id;
10000 -- Entity that S overrides
10001
10002 procedure Check_For_Primitive_Subprogram
10003 (Is_Primitive : out Boolean;
10004 Is_Overriding : Boolean := False);
10005 -- If the subprogram being analyzed is a primitive operation of the type
10006 -- of a formal or result, set the Has_Primitive_Operations flag on the
10007 -- type, and set Is_Primitive to True (otherwise set to False). Set the
10008 -- corresponding flag on the entity itself for later use.
10009
10010 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
10011 -- True if a) E is a subprogram whose first formal is a concurrent type
10012 -- defined in the scope of E that has some entry or subprogram whose
10013 -- profile matches E, or b) E is an internally built dispatching
10014 -- subprogram of a protected type and there is a matching subprogram
10015 -- defined in the enclosing scope of the protected type, or c) E is
10016 -- an entry of a synchronized type and a matching procedure has been
10017 -- previously defined in the enclosing scope of the synchronized type.
10018
10019 function Is_Private_Declaration (E : Entity_Id) return Boolean;
10020 -- Check that E is declared in the private part of the current package,
10021 -- or in the package body, where it may hide a previous declaration.
10022 -- We can't use In_Private_Part by itself because this flag is also
10023 -- set when freezing entities, so we must examine the place of the
10024 -- declaration in the tree, and recognize wrapper packages as well.
10025
10026 function Is_Overriding_Alias
10027 (Old_E : Entity_Id;
10028 New_E : Entity_Id) return Boolean;
10029 -- Check whether new subprogram and old subprogram are both inherited
10030 -- from subprograms that have distinct dispatch table entries. This can
10031 -- occur with derivations from instances with accidental homonyms. The
10032 -- function is conservative given that the converse is only true within
10033 -- instances that contain accidental overloadings.
10034
10035 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10036 -- Report conflict between entities S and E
10037
10038 ------------------------------------
10039 -- Check_For_Primitive_Subprogram --
10040 ------------------------------------
10041
10042 procedure Check_For_Primitive_Subprogram
10043 (Is_Primitive : out Boolean;
10044 Is_Overriding : Boolean := False)
10045 is
10046 Formal : Entity_Id;
10047 F_Typ : Entity_Id;
10048 B_Typ : Entity_Id;
10049
10050 function Visible_Part_Type (T : Entity_Id) return Boolean;
10051 -- Returns true if T is declared in the visible part of the current
10052 -- package scope; otherwise returns false. Assumes that T is declared
10053 -- in a package.
10054
10055 procedure Check_Private_Overriding (T : Entity_Id);
10056 -- Checks that if a primitive abstract subprogram of a visible
10057 -- abstract type is declared in a private part, then it must override
10058 -- an abstract subprogram declared in the visible part. Also checks
10059 -- that if a primitive function with a controlling result is declared
10060 -- in a private part, then it must override a function declared in
10061 -- the visible part.
10062
10063 ------------------------------
10064 -- Check_Private_Overriding --
10065 ------------------------------
10066
10067 procedure Check_Private_Overriding (T : Entity_Id) is
10068 function Overrides_Private_Part_Op return Boolean;
10069 -- This detects the special case where the overriding subprogram
10070 -- is overriding a subprogram that was declared in the same
10071 -- private part. That case is illegal by 3.9.3(10).
10072
10073 function Overrides_Visible_Function
10074 (Partial_View : Entity_Id) return Boolean;
10075 -- True if S overrides a function in the visible part. The
10076 -- overridden function could be explicitly or implicitly declared.
10077
10078 -------------------------------
10079 -- Overrides_Private_Part_Op --
10080 -------------------------------
10081
10082 function Overrides_Private_Part_Op return Boolean is
10083 Over_Decl : constant Node_Id :=
10084 Unit_Declaration_Node (Overridden_Operation (S));
10085 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10086
10087 begin
10088 pragma Assert (Is_Overriding);
10089 pragma Assert
10090 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10091 pragma Assert
10092 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10093
10094 return In_Same_List (Over_Decl, Subp_Decl);
10095 end Overrides_Private_Part_Op;
10096
10097 --------------------------------
10098 -- Overrides_Visible_Function --
10099 --------------------------------
10100
10101 function Overrides_Visible_Function
10102 (Partial_View : Entity_Id) return Boolean
10103 is
10104 begin
10105 if not Is_Overriding or else not Has_Homonym (S) then
10106 return False;
10107 end if;
10108
10109 if not Present (Partial_View) then
10110 return True;
10111 end if;
10112
10113 -- Search through all the homonyms H of S in the current
10114 -- package spec, and return True if we find one that matches.
10115 -- Note that Parent (H) will be the declaration of the
10116 -- partial view of T for a match.
10117
10118 declare
10119 H : Entity_Id := S;
10120 begin
10121 loop
10122 H := Homonym (H);
10123 exit when not Present (H) or else Scope (H) /= Scope (S);
10124
10125 if Nkind_In
10126 (Parent (H),
10127 N_Private_Extension_Declaration,
10128 N_Private_Type_Declaration)
10129 and then Defining_Identifier (Parent (H)) = Partial_View
10130 then
10131 return True;
10132 end if;
10133 end loop;
10134 end;
10135
10136 return False;
10137 end Overrides_Visible_Function;
10138
10139 -- Start of processing for Check_Private_Overriding
10140
10141 begin
10142 if Is_Package_Or_Generic_Package (Current_Scope)
10143 and then In_Private_Part (Current_Scope)
10144 and then Visible_Part_Type (T)
10145 and then not In_Instance
10146 then
10147 if Is_Abstract_Type (T)
10148 and then Is_Abstract_Subprogram (S)
10149 and then (not Is_Overriding
10150 or else not Is_Abstract_Subprogram (E)
10151 or else Overrides_Private_Part_Op)
10152 then
10153 Error_Msg_N
10154 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10155 S);
10156
10157 elsif Ekind (S) = E_Function then
10158 declare
10159 Partial_View : constant Entity_Id :=
10160 Incomplete_Or_Partial_View (T);
10161
10162 begin
10163 if not Overrides_Visible_Function (Partial_View) then
10164
10165 -- Here, S is "function ... return T;" declared in
10166 -- the private part, not overriding some visible
10167 -- operation. That's illegal in the tagged case
10168 -- (but not if the private type is untagged).
10169
10170 if ((Present (Partial_View)
10171 and then Is_Tagged_Type (Partial_View))
10172 or else (not Present (Partial_View)
10173 and then Is_Tagged_Type (T)))
10174 and then T = Base_Type (Etype (S))
10175 then
10176 Error_Msg_N
10177 ("private function with tagged result must"
10178 & " override visible-part function", S);
10179 Error_Msg_N
10180 ("\move subprogram to the visible part"
10181 & " (RM 3.9.3(10))", S);
10182
10183 -- AI05-0073: extend this test to the case of a
10184 -- function with a controlling access result.
10185
10186 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10187 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10188 and then
10189 not Is_Class_Wide_Type
10190 (Designated_Type (Etype (S)))
10191 and then Ada_Version >= Ada_2012
10192 then
10193 Error_Msg_N
10194 ("private function with controlling access "
10195 & "result must override visible-part function",
10196 S);
10197 Error_Msg_N
10198 ("\move subprogram to the visible part"
10199 & " (RM 3.9.3(10))", S);
10200 end if;
10201 end if;
10202 end;
10203 end if;
10204 end if;
10205 end Check_Private_Overriding;
10206
10207 -----------------------
10208 -- Visible_Part_Type --
10209 -----------------------
10210
10211 function Visible_Part_Type (T : Entity_Id) return Boolean is
10212 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10213
10214 begin
10215 -- If the entity is a private type, then it must be declared in a
10216 -- visible part.
10217
10218 if Ekind (T) in Private_Kind then
10219 return True;
10220
10221 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10222 return True;
10223
10224 elsif Is_List_Member (Declaration_Node (T))
10225 and then List_Containing (Declaration_Node (T)) =
10226 Visible_Declarations (Specification (P))
10227 then
10228 return True;
10229
10230 else
10231 return False;
10232 end if;
10233 end Visible_Part_Type;
10234
10235 -- Start of processing for Check_For_Primitive_Subprogram
10236
10237 begin
10238 Is_Primitive := False;
10239
10240 if not Comes_From_Source (S) then
10241 null;
10242
10243 -- If subprogram is at library level, it is not primitive operation
10244
10245 elsif Current_Scope = Standard_Standard then
10246 null;
10247
10248 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10249 and then not In_Package_Body (Current_Scope))
10250 or else Is_Overriding
10251 then
10252 -- For function, check return type
10253
10254 if Ekind (S) = E_Function then
10255 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10256 F_Typ := Designated_Type (Etype (S));
10257 else
10258 F_Typ := Etype (S);
10259 end if;
10260
10261 B_Typ := Base_Type (F_Typ);
10262
10263 if Scope (B_Typ) = Current_Scope
10264 and then not Is_Class_Wide_Type (B_Typ)
10265 and then not Is_Generic_Type (B_Typ)
10266 then
10267 Is_Primitive := True;
10268 Set_Has_Primitive_Operations (B_Typ);
10269 Set_Is_Primitive (S);
10270 Check_Private_Overriding (B_Typ);
10271
10272 -- The Ghost policy in effect at the point of declaration
10273 -- or a tagged type and a primitive operation must match
10274 -- (SPARK RM 6.9(16)).
10275
10276 Check_Ghost_Primitive (S, B_Typ);
10277 end if;
10278 end if;
10279
10280 -- For all subprograms, check formals
10281
10282 Formal := First_Formal (S);
10283 while Present (Formal) loop
10284 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10285 F_Typ := Designated_Type (Etype (Formal));
10286 else
10287 F_Typ := Etype (Formal);
10288 end if;
10289
10290 B_Typ := Base_Type (F_Typ);
10291
10292 if Ekind (B_Typ) = E_Access_Subtype then
10293 B_Typ := Base_Type (B_Typ);
10294 end if;
10295
10296 if Scope (B_Typ) = Current_Scope
10297 and then not Is_Class_Wide_Type (B_Typ)
10298 and then not Is_Generic_Type (B_Typ)
10299 then
10300 Is_Primitive := True;
10301 Set_Is_Primitive (S);
10302 Set_Has_Primitive_Operations (B_Typ);
10303 Check_Private_Overriding (B_Typ);
10304
10305 -- The Ghost policy in effect at the point of declaration
10306 -- of a tagged type and a primitive operation must match
10307 -- (SPARK RM 6.9(16)).
10308
10309 Check_Ghost_Primitive (S, B_Typ);
10310 end if;
10311
10312 Next_Formal (Formal);
10313 end loop;
10314
10315 -- Special case: An equality function can be redefined for a type
10316 -- occurring in a declarative part, and won't otherwise be treated as
10317 -- a primitive because it doesn't occur in a package spec and doesn't
10318 -- override an inherited subprogram. It's important that we mark it
10319 -- primitive so it can be returned by Collect_Primitive_Operations
10320 -- and be used in composing the equality operation of later types
10321 -- that have a component of the type.
10322
10323 elsif Chars (S) = Name_Op_Eq
10324 and then Etype (S) = Standard_Boolean
10325 then
10326 B_Typ := Base_Type (Etype (First_Formal (S)));
10327
10328 if Scope (B_Typ) = Current_Scope
10329 and then
10330 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10331 and then not Is_Limited_Type (B_Typ)
10332 then
10333 Is_Primitive := True;
10334 Set_Is_Primitive (S);
10335 Set_Has_Primitive_Operations (B_Typ);
10336 Check_Private_Overriding (B_Typ);
10337
10338 -- The Ghost policy in effect at the point of declaration of a
10339 -- tagged type and a primitive operation must match
10340 -- (SPARK RM 6.9(16)).
10341
10342 Check_Ghost_Primitive (S, B_Typ);
10343 end if;
10344 end if;
10345 end Check_For_Primitive_Subprogram;
10346
10347 --------------------------------------
10348 -- Has_Matching_Entry_Or_Subprogram --
10349 --------------------------------------
10350
10351 function Has_Matching_Entry_Or_Subprogram
10352 (E : Entity_Id) return Boolean
10353 is
10354 function Check_Conforming_Parameters
10355 (E1_Param : Node_Id;
10356 E2_Param : Node_Id) return Boolean;
10357 -- Starting from the given parameters, check that all the parameters
10358 -- of two entries or subprograms are subtype conformant. Used to skip
10359 -- the check on the controlling argument.
10360
10361 function Matching_Entry_Or_Subprogram
10362 (Conc_Typ : Entity_Id;
10363 Subp : Entity_Id) return Entity_Id;
10364 -- Return the first entry or subprogram of the given concurrent type
10365 -- whose name matches the name of Subp and has a profile conformant
10366 -- with Subp; return Empty if not found.
10367
10368 function Matching_Dispatching_Subprogram
10369 (Conc_Typ : Entity_Id;
10370 Ent : Entity_Id) return Entity_Id;
10371 -- Return the first dispatching primitive of Conc_Type defined in the
10372 -- enclosing scope of Conc_Type (i.e. before the full definition of
10373 -- this concurrent type) whose name matches the entry Ent and has a
10374 -- profile conformant with the profile of the corresponding (not yet
10375 -- built) dispatching primitive of Ent; return Empty if not found.
10376
10377 function Matching_Original_Protected_Subprogram
10378 (Prot_Typ : Entity_Id;
10379 Subp : Entity_Id) return Entity_Id;
10380 -- Return the first subprogram defined in the enclosing scope of
10381 -- Prot_Typ (before the full definition of this protected type)
10382 -- whose name matches the original name of Subp and has a profile
10383 -- conformant with the profile of Subp; return Empty if not found.
10384
10385 ---------------------------------
10386 -- Check_Conforming_Parameters --
10387 ---------------------------------
10388
10389 function Check_Conforming_Parameters
10390 (E1_Param : Node_Id;
10391 E2_Param : Node_Id) return Boolean
10392 is
10393 Param_E1 : Node_Id := E1_Param;
10394 Param_E2 : Node_Id := E2_Param;
10395
10396 begin
10397 while Present (Param_E1) and then Present (Param_E2) loop
10398 if Ekind (Defining_Identifier (Param_E1)) /=
10399 Ekind (Defining_Identifier (Param_E2))
10400 or else not
10401 Conforming_Types
10402 (Find_Parameter_Type (Param_E1),
10403 Find_Parameter_Type (Param_E2),
10404 Subtype_Conformant)
10405 then
10406 return False;
10407 end if;
10408
10409 Next (Param_E1);
10410 Next (Param_E2);
10411 end loop;
10412
10413 -- The candidate is not valid if one of the two lists contains
10414 -- more parameters than the other
10415
10416 return No (Param_E1) and then No (Param_E2);
10417 end Check_Conforming_Parameters;
10418
10419 ----------------------------------
10420 -- Matching_Entry_Or_Subprogram --
10421 ----------------------------------
10422
10423 function Matching_Entry_Or_Subprogram
10424 (Conc_Typ : Entity_Id;
10425 Subp : Entity_Id) return Entity_Id
10426 is
10427 E : Entity_Id;
10428
10429 begin
10430 E := First_Entity (Conc_Typ);
10431 while Present (E) loop
10432 if Chars (Subp) = Chars (E)
10433 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10434 and then
10435 Check_Conforming_Parameters
10436 (First (Parameter_Specifications (Parent (E))),
10437 Next (First (Parameter_Specifications (Parent (Subp)))))
10438 then
10439 return E;
10440 end if;
10441
10442 Next_Entity (E);
10443 end loop;
10444
10445 return Empty;
10446 end Matching_Entry_Or_Subprogram;
10447
10448 -------------------------------------
10449 -- Matching_Dispatching_Subprogram --
10450 -------------------------------------
10451
10452 function Matching_Dispatching_Subprogram
10453 (Conc_Typ : Entity_Id;
10454 Ent : Entity_Id) return Entity_Id
10455 is
10456 E : Entity_Id;
10457
10458 begin
10459 -- Search for entities in the enclosing scope of this synchonized
10460 -- type.
10461
10462 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10463 Push_Scope (Scope (Conc_Typ));
10464 E := Current_Entity_In_Scope (Ent);
10465 Pop_Scope;
10466
10467 while Present (E) loop
10468 if Scope (E) = Scope (Conc_Typ)
10469 and then Comes_From_Source (E)
10470 and then Ekind (E) = E_Procedure
10471 and then Present (First_Entity (E))
10472 and then Is_Controlling_Formal (First_Entity (E))
10473 and then Etype (First_Entity (E)) = Conc_Typ
10474 and then
10475 Check_Conforming_Parameters
10476 (First (Parameter_Specifications (Parent (Ent))),
10477 Next (First (Parameter_Specifications (Parent (E)))))
10478 then
10479 return E;
10480 end if;
10481
10482 E := Homonym (E);
10483 end loop;
10484
10485 return Empty;
10486 end Matching_Dispatching_Subprogram;
10487
10488 --------------------------------------------
10489 -- Matching_Original_Protected_Subprogram --
10490 --------------------------------------------
10491
10492 function Matching_Original_Protected_Subprogram
10493 (Prot_Typ : Entity_Id;
10494 Subp : Entity_Id) return Entity_Id
10495 is
10496 ICF : constant Boolean :=
10497 Is_Controlling_Formal (First_Entity (Subp));
10498 E : Entity_Id;
10499
10500 begin
10501 -- Temporarily decorate the first parameter of Subp as controlling
10502 -- formal, required to invoke Subtype_Conformant.
10503
10504 Set_Is_Controlling_Formal (First_Entity (Subp));
10505
10506 E :=
10507 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10508
10509 while Present (E) loop
10510 if Scope (E) = Scope (Prot_Typ)
10511 and then Comes_From_Source (E)
10512 and then Ekind (Subp) = Ekind (E)
10513 and then Present (First_Entity (E))
10514 and then Is_Controlling_Formal (First_Entity (E))
10515 and then Etype (First_Entity (E)) = Prot_Typ
10516 and then Subtype_Conformant (Subp, E,
10517 Skip_Controlling_Formals => True)
10518 then
10519 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10520 return E;
10521 end if;
10522
10523 E := Homonym (E);
10524 end loop;
10525
10526 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10527
10528 return Empty;
10529 end Matching_Original_Protected_Subprogram;
10530
10531 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10532
10533 begin
10534 -- Case 1: E is a subprogram whose first formal is a concurrent type
10535 -- defined in the scope of E that has an entry or subprogram whose
10536 -- profile matches E.
10537
10538 if Comes_From_Source (E)
10539 and then Is_Subprogram (E)
10540 and then Present (First_Entity (E))
10541 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10542 then
10543 if Scope (E) =
10544 Scope (Corresponding_Concurrent_Type
10545 (Etype (First_Entity (E))))
10546 and then
10547 Present
10548 (Matching_Entry_Or_Subprogram
10549 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10550 Subp => E))
10551 then
10552 Report_Conflict (E,
10553 Matching_Entry_Or_Subprogram
10554 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10555 Subp => E));
10556 return True;
10557 end if;
10558
10559 -- Case 2: E is an internally built dispatching subprogram of a
10560 -- protected type and there is a subprogram defined in the enclosing
10561 -- scope of the protected type that has the original name of E and
10562 -- its profile is conformant with the profile of E. We check the
10563 -- name of the original protected subprogram associated with E since
10564 -- the expander builds dispatching primitives of protected functions
10565 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10566
10567 elsif not Comes_From_Source (E)
10568 and then Is_Subprogram (E)
10569 and then Present (First_Entity (E))
10570 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10571 and then Present (Original_Protected_Subprogram (E))
10572 and then
10573 Present
10574 (Matching_Original_Protected_Subprogram
10575 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10576 Subp => E))
10577 then
10578 Report_Conflict (E,
10579 Matching_Original_Protected_Subprogram
10580 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10581 Subp => E));
10582 return True;
10583
10584 -- Case 3: E is an entry of a synchronized type and a matching
10585 -- procedure has been previously defined in the enclosing scope
10586 -- of the synchronized type.
10587
10588 elsif Comes_From_Source (E)
10589 and then Ekind (E) = E_Entry
10590 and then
10591 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10592 then
10593 Report_Conflict (E,
10594 Matching_Dispatching_Subprogram (Current_Scope, E));
10595 return True;
10596 end if;
10597
10598 return False;
10599 end Has_Matching_Entry_Or_Subprogram;
10600
10601 ----------------------------
10602 -- Is_Private_Declaration --
10603 ----------------------------
10604
10605 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10606 Decl : constant Node_Id := Unit_Declaration_Node (E);
10607 Priv_Decls : List_Id;
10608
10609 begin
10610 if Is_Package_Or_Generic_Package (Current_Scope)
10611 and then In_Private_Part (Current_Scope)
10612 then
10613 Priv_Decls :=
10614 Private_Declarations (Package_Specification (Current_Scope));
10615
10616 return In_Package_Body (Current_Scope)
10617 or else
10618 (Is_List_Member (Decl)
10619 and then List_Containing (Decl) = Priv_Decls)
10620 or else (Nkind (Parent (Decl)) = N_Package_Specification
10621 and then not
10622 Is_Compilation_Unit
10623 (Defining_Entity (Parent (Decl)))
10624 and then List_Containing (Parent (Parent (Decl))) =
10625 Priv_Decls);
10626 else
10627 return False;
10628 end if;
10629 end Is_Private_Declaration;
10630
10631 --------------------------
10632 -- Is_Overriding_Alias --
10633 --------------------------
10634
10635 function Is_Overriding_Alias
10636 (Old_E : Entity_Id;
10637 New_E : Entity_Id) return Boolean
10638 is
10639 AO : constant Entity_Id := Alias (Old_E);
10640 AN : constant Entity_Id := Alias (New_E);
10641
10642 begin
10643 return Scope (AO) /= Scope (AN)
10644 or else No (DTC_Entity (AO))
10645 or else No (DTC_Entity (AN))
10646 or else DT_Position (AO) = DT_Position (AN);
10647 end Is_Overriding_Alias;
10648
10649 ---------------------
10650 -- Report_Conflict --
10651 ---------------------
10652
10653 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10654 begin
10655 Error_Msg_Sloc := Sloc (E);
10656
10657 -- Generate message, with useful additional warning if in generic
10658
10659 if Is_Generic_Unit (E) then
10660 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10661 Error_Msg_N ("\& conflicts with declaration#", S);
10662 else
10663 Error_Msg_N ("& conflicts with declaration#", S);
10664 end if;
10665 end Report_Conflict;
10666
10667 -- Start of processing for New_Overloaded_Entity
10668
10669 begin
10670 -- We need to look for an entity that S may override. This must be a
10671 -- homonym in the current scope, so we look for the first homonym of
10672 -- S in the current scope as the starting point for the search.
10673
10674 E := Current_Entity_In_Scope (S);
10675
10676 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10677 -- They are directly added to the list of primitive operations of
10678 -- Derived_Type, unless this is a rederivation in the private part
10679 -- of an operation that was already derived in the visible part of
10680 -- the current package.
10681
10682 if Ada_Version >= Ada_2005
10683 and then Present (Derived_Type)
10684 and then Present (Alias (S))
10685 and then Is_Dispatching_Operation (Alias (S))
10686 and then Present (Find_Dispatching_Type (Alias (S)))
10687 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10688 then
10689 -- For private types, when the full-view is processed we propagate to
10690 -- the full view the non-overridden entities whose attribute "alias"
10691 -- references an interface primitive. These entities were added by
10692 -- Derive_Subprograms to ensure that interface primitives are
10693 -- covered.
10694
10695 -- Inside_Freeze_Actions is non zero when S corresponds with an
10696 -- internal entity that links an interface primitive with its
10697 -- covering primitive through attribute Interface_Alias (see
10698 -- Add_Internal_Interface_Entities).
10699
10700 if Inside_Freezing_Actions = 0
10701 and then Is_Package_Or_Generic_Package (Current_Scope)
10702 and then In_Private_Part (Current_Scope)
10703 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10704 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10705 and then Full_View (Defining_Identifier (Parent (E)))
10706 = Defining_Identifier (Parent (S))
10707 and then Alias (E) = Alias (S)
10708 then
10709 Check_Operation_From_Private_View (S, E);
10710 Set_Is_Dispatching_Operation (S);
10711
10712 -- Common case
10713
10714 else
10715 Enter_Overloaded_Entity (S);
10716 Check_Dispatching_Operation (S, Empty);
10717 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10718 end if;
10719
10720 return;
10721 end if;
10722
10723 -- For synchronized types check conflicts of this entity with previously
10724 -- defined entities.
10725
10726 if Ada_Version >= Ada_2005
10727 and then Has_Matching_Entry_Or_Subprogram (S)
10728 then
10729 return;
10730 end if;
10731
10732 -- If there is no homonym then this is definitely not overriding
10733
10734 if No (E) then
10735 Enter_Overloaded_Entity (S);
10736 Check_Dispatching_Operation (S, Empty);
10737 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10738
10739 -- If subprogram has an explicit declaration, check whether it has an
10740 -- overriding indicator.
10741
10742 if Comes_From_Source (S) then
10743 Check_Synchronized_Overriding (S, Overridden_Subp);
10744
10745 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10746 -- it may have overridden some hidden inherited primitive. Update
10747 -- Overridden_Subp to avoid spurious errors when checking the
10748 -- overriding indicator.
10749
10750 if Ada_Version >= Ada_2012
10751 and then No (Overridden_Subp)
10752 and then Is_Dispatching_Operation (S)
10753 and then Present (Overridden_Operation (S))
10754 then
10755 Overridden_Subp := Overridden_Operation (S);
10756 end if;
10757
10758 Check_Overriding_Indicator
10759 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10760
10761 -- The Ghost policy in effect at the point of declaration of a
10762 -- parent subprogram and an overriding subprogram must match
10763 -- (SPARK RM 6.9(17)).
10764
10765 Check_Ghost_Overriding (S, Overridden_Subp);
10766 end if;
10767
10768 -- If there is a homonym that is not overloadable, then we have an
10769 -- error, except for the special cases checked explicitly below.
10770
10771 elsif not Is_Overloadable (E) then
10772
10773 -- Check for spurious conflict produced by a subprogram that has the
10774 -- same name as that of the enclosing generic package. The conflict
10775 -- occurs within an instance, between the subprogram and the renaming
10776 -- declaration for the package. After the subprogram, the package
10777 -- renaming declaration becomes hidden.
10778
10779 if Ekind (E) = E_Package
10780 and then Present (Renamed_Object (E))
10781 and then Renamed_Object (E) = Current_Scope
10782 and then Nkind (Parent (Renamed_Object (E))) =
10783 N_Package_Specification
10784 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10785 then
10786 Set_Is_Hidden (E);
10787 Set_Is_Immediately_Visible (E, False);
10788 Enter_Overloaded_Entity (S);
10789 Set_Homonym (S, Homonym (E));
10790 Check_Dispatching_Operation (S, Empty);
10791 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10792
10793 -- If the subprogram is implicit it is hidden by the previous
10794 -- declaration. However if it is dispatching, it must appear in the
10795 -- dispatch table anyway, because it can be dispatched to even if it
10796 -- cannot be called directly.
10797
10798 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10799 Set_Scope (S, Current_Scope);
10800
10801 if Is_Dispatching_Operation (Alias (S)) then
10802 Check_Dispatching_Operation (S, Empty);
10803 end if;
10804
10805 return;
10806
10807 else
10808 Report_Conflict (S, E);
10809 return;
10810 end if;
10811
10812 -- E exists and is overloadable
10813
10814 else
10815 Check_Synchronized_Overriding (S, Overridden_Subp);
10816
10817 -- Loop through E and its homonyms to determine if any of them is
10818 -- the candidate for overriding by S.
10819
10820 while Present (E) loop
10821
10822 -- Definitely not interesting if not in the current scope
10823
10824 if Scope (E) /= Current_Scope then
10825 null;
10826
10827 -- A function can overload the name of an abstract state. The
10828 -- state can be viewed as a function with a profile that cannot
10829 -- be matched by anything.
10830
10831 elsif Ekind (S) = E_Function
10832 and then Ekind (E) = E_Abstract_State
10833 then
10834 Enter_Overloaded_Entity (S);
10835 return;
10836
10837 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10838 -- procedures locate the internally generated spec. We enforce
10839 -- mode conformance since a tagged type may inherit from
10840 -- interfaces several null primitives which differ only in
10841 -- the mode of the formals.
10842
10843 elsif not Comes_From_Source (S)
10844 and then Is_Null_Procedure (S)
10845 and then not Mode_Conformant (E, S)
10846 then
10847 null;
10848
10849 -- Check if we have type conformance
10850
10851 elsif Type_Conformant (E, S) then
10852
10853 -- If the old and new entities have the same profile and one
10854 -- is not the body of the other, then this is an error, unless
10855 -- one of them is implicitly declared.
10856
10857 -- There are some cases when both can be implicit, for example
10858 -- when both a literal and a function that overrides it are
10859 -- inherited in a derivation, or when an inherited operation
10860 -- of a tagged full type overrides the inherited operation of
10861 -- a private extension. Ada 83 had a special rule for the
10862 -- literal case. In Ada 95, the later implicit operation hides
10863 -- the former, and the literal is always the former. In the
10864 -- odd case where both are derived operations declared at the
10865 -- same point, both operations should be declared, and in that
10866 -- case we bypass the following test and proceed to the next
10867 -- part. This can only occur for certain obscure cases in
10868 -- instances, when an operation on a type derived from a formal
10869 -- private type does not override a homograph inherited from
10870 -- the actual. In subsequent derivations of such a type, the
10871 -- DT positions of these operations remain distinct, if they
10872 -- have been set.
10873
10874 if Present (Alias (S))
10875 and then (No (Alias (E))
10876 or else Comes_From_Source (E)
10877 or else Is_Abstract_Subprogram (S)
10878 or else
10879 (Is_Dispatching_Operation (E)
10880 and then Is_Overriding_Alias (E, S)))
10881 and then Ekind (E) /= E_Enumeration_Literal
10882 then
10883 -- When an derived operation is overloaded it may be due to
10884 -- the fact that the full view of a private extension
10885 -- re-inherits. It has to be dealt with.
10886
10887 if Is_Package_Or_Generic_Package (Current_Scope)
10888 and then In_Private_Part (Current_Scope)
10889 then
10890 Check_Operation_From_Private_View (S, E);
10891 end if;
10892
10893 -- In any case the implicit operation remains hidden by the
10894 -- existing declaration, which is overriding. Indicate that
10895 -- E overrides the operation from which S is inherited.
10896
10897 if Present (Alias (S)) then
10898 Set_Overridden_Operation (E, Alias (S));
10899 Inherit_Subprogram_Contract (E, Alias (S));
10900
10901 else
10902 Set_Overridden_Operation (E, S);
10903 Inherit_Subprogram_Contract (E, S);
10904 end if;
10905
10906 if Comes_From_Source (E) then
10907 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10908
10909 -- The Ghost policy in effect at the point of declaration
10910 -- of a parent subprogram and an overriding subprogram
10911 -- must match (SPARK RM 6.9(17)).
10912
10913 Check_Ghost_Overriding (E, S);
10914 end if;
10915
10916 return;
10917
10918 -- Within an instance, the renaming declarations for actual
10919 -- subprograms may become ambiguous, but they do not hide each
10920 -- other.
10921
10922 elsif Ekind (E) /= E_Entry
10923 and then not Comes_From_Source (E)
10924 and then not Is_Generic_Instance (E)
10925 and then (Present (Alias (E))
10926 or else Is_Intrinsic_Subprogram (E))
10927 and then (not In_Instance
10928 or else No (Parent (E))
10929 or else Nkind (Unit_Declaration_Node (E)) /=
10930 N_Subprogram_Renaming_Declaration)
10931 then
10932 -- A subprogram child unit is not allowed to override an
10933 -- inherited subprogram (10.1.1(20)).
10934
10935 if Is_Child_Unit (S) then
10936 Error_Msg_N
10937 ("child unit overrides inherited subprogram in parent",
10938 S);
10939 return;
10940 end if;
10941
10942 if Is_Non_Overriding_Operation (E, S) then
10943 Enter_Overloaded_Entity (S);
10944
10945 if No (Derived_Type)
10946 or else Is_Tagged_Type (Derived_Type)
10947 then
10948 Check_Dispatching_Operation (S, Empty);
10949 end if;
10950
10951 return;
10952 end if;
10953
10954 -- E is a derived operation or an internal operator which
10955 -- is being overridden. Remove E from further visibility.
10956 -- Furthermore, if E is a dispatching operation, it must be
10957 -- replaced in the list of primitive operations of its type
10958 -- (see Override_Dispatching_Operation).
10959
10960 Overridden_Subp := E;
10961
10962 -- It is possible for E to be in the current scope and
10963 -- yet not in the entity chain. This can only occur in a
10964 -- generic context where E is an implicit concatenation
10965 -- in the formal part, because in a generic body the
10966 -- entity chain starts with the formals.
10967
10968 -- In GNATprove mode, a wrapper for an operation with
10969 -- axiomatization may be a homonym of another declaration
10970 -- for an actual subprogram (needs refinement ???).
10971
10972 if No (Prev_Entity (E)) then
10973 if In_Instance
10974 and then GNATprove_Mode
10975 and then
10976 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10977 N_Subprogram_Renaming_Declaration
10978 then
10979 return;
10980 else
10981 pragma Assert (Chars (E) = Name_Op_Concat);
10982 null;
10983 end if;
10984 end if;
10985
10986 -- E must be removed both from the entity_list of the
10987 -- current scope, and from the visibility chain.
10988
10989 if Debug_Flag_E then
10990 Write_Str ("Override implicit operation ");
10991 Write_Int (Int (E));
10992 Write_Eol;
10993 end if;
10994
10995 -- If E is a predefined concatenation, it stands for four
10996 -- different operations. As a result, a single explicit
10997 -- declaration does not hide it. In a possible ambiguous
10998 -- situation, Disambiguate chooses the user-defined op,
10999 -- so it is correct to retain the previous internal one.
11000
11001 if Chars (E) /= Name_Op_Concat
11002 or else Ekind (E) /= E_Operator
11003 then
11004 -- For nondispatching derived operations that are
11005 -- overridden by a subprogram declared in the private
11006 -- part of a package, we retain the derived subprogram
11007 -- but mark it as not immediately visible. If the
11008 -- derived operation was declared in the visible part
11009 -- then this ensures that it will still be visible
11010 -- outside the package with the proper signature
11011 -- (calls from outside must also be directed to this
11012 -- version rather than the overriding one, unlike the
11013 -- dispatching case). Calls from inside the package
11014 -- will still resolve to the overriding subprogram
11015 -- since the derived one is marked as not visible
11016 -- within the package.
11017
11018 -- If the private operation is dispatching, we achieve
11019 -- the overriding by keeping the implicit operation
11020 -- but setting its alias to be the overriding one. In
11021 -- this fashion the proper body is executed in all
11022 -- cases, but the original signature is used outside
11023 -- of the package.
11024
11025 -- If the overriding is not in the private part, we
11026 -- remove the implicit operation altogether.
11027
11028 if Is_Private_Declaration (S) then
11029 if not Is_Dispatching_Operation (E) then
11030 Set_Is_Immediately_Visible (E, False);
11031 else
11032 -- Work done in Override_Dispatching_Operation, so
11033 -- nothing else needs to be done here.
11034
11035 null;
11036 end if;
11037
11038 else
11039 Remove_Entity_And_Homonym (E);
11040 end if;
11041 end if;
11042
11043 Enter_Overloaded_Entity (S);
11044
11045 -- For entities generated by Derive_Subprograms the
11046 -- overridden operation is the inherited primitive
11047 -- (which is available through the attribute alias).
11048
11049 if not (Comes_From_Source (E))
11050 and then Is_Dispatching_Operation (E)
11051 and then Find_Dispatching_Type (E) =
11052 Find_Dispatching_Type (S)
11053 and then Present (Alias (E))
11054 and then Comes_From_Source (Alias (E))
11055 then
11056 Set_Overridden_Operation (S, Alias (E));
11057 Inherit_Subprogram_Contract (S, Alias (E));
11058
11059 -- Normal case of setting entity as overridden
11060
11061 -- Note: Static_Initialization and Overridden_Operation
11062 -- attributes use the same field in subprogram entities.
11063 -- Static_Initialization is only defined for internal
11064 -- initialization procedures, where Overridden_Operation
11065 -- is irrelevant. Therefore the setting of this attribute
11066 -- must check whether the target is an init_proc.
11067
11068 elsif not Is_Init_Proc (S) then
11069 Set_Overridden_Operation (S, E);
11070 Inherit_Subprogram_Contract (S, E);
11071 end if;
11072
11073 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11074
11075 -- The Ghost policy in effect at the point of declaration
11076 -- of a parent subprogram and an overriding subprogram
11077 -- must match (SPARK RM 6.9(17)).
11078
11079 Check_Ghost_Overriding (S, E);
11080
11081 -- If S is a user-defined subprogram or a null procedure
11082 -- expanded to override an inherited null procedure, or a
11083 -- predefined dispatching primitive then indicate that E
11084 -- overrides the operation from which S is inherited.
11085
11086 if Comes_From_Source (S)
11087 or else
11088 (Present (Parent (S))
11089 and then Nkind (Parent (S)) = N_Procedure_Specification
11090 and then Null_Present (Parent (S)))
11091 or else
11092 (Present (Alias (E))
11093 and then
11094 Is_Predefined_Dispatching_Operation (Alias (E)))
11095 then
11096 if Present (Alias (E)) then
11097 Set_Overridden_Operation (S, Alias (E));
11098 Inherit_Subprogram_Contract (S, Alias (E));
11099 end if;
11100 end if;
11101
11102 if Is_Dispatching_Operation (E) then
11103
11104 -- An overriding dispatching subprogram inherits the
11105 -- convention of the overridden subprogram (AI-117).
11106
11107 Set_Convention (S, Convention (E));
11108 Check_Dispatching_Operation (S, E);
11109
11110 else
11111 Check_Dispatching_Operation (S, Empty);
11112 end if;
11113
11114 Check_For_Primitive_Subprogram
11115 (Is_Primitive_Subp, Is_Overriding => True);
11116 goto Check_Inequality;
11117
11118 -- Apparent redeclarations in instances can occur when two
11119 -- formal types get the same actual type. The subprograms in
11120 -- in the instance are legal, even if not callable from the
11121 -- outside. Calls from within are disambiguated elsewhere.
11122 -- For dispatching operations in the visible part, the usual
11123 -- rules apply, and operations with the same profile are not
11124 -- legal (B830001).
11125
11126 elsif (In_Instance_Visible_Part
11127 and then not Is_Dispatching_Operation (E))
11128 or else In_Instance_Not_Visible
11129 then
11130 null;
11131
11132 -- Here we have a real error (identical profile)
11133
11134 else
11135 Error_Msg_Sloc := Sloc (E);
11136
11137 -- Avoid cascaded errors if the entity appears in
11138 -- subsequent calls.
11139
11140 Set_Scope (S, Current_Scope);
11141
11142 -- Generate error, with extra useful warning for the case
11143 -- of a generic instance with no completion.
11144
11145 if Is_Generic_Instance (S)
11146 and then not Has_Completion (E)
11147 then
11148 Error_Msg_N
11149 ("instantiation cannot provide body for&", S);
11150 Error_Msg_N ("\& conflicts with declaration#", S);
11151 else
11152 Error_Msg_N ("& conflicts with declaration#", S);
11153 end if;
11154
11155 return;
11156 end if;
11157
11158 else
11159 -- If one subprogram has an access parameter and the other
11160 -- a parameter of an access type, calls to either might be
11161 -- ambiguous. Verify that parameters match except for the
11162 -- access parameter.
11163
11164 if May_Hide_Profile then
11165 declare
11166 F1 : Entity_Id;
11167 F2 : Entity_Id;
11168
11169 begin
11170 F1 := First_Formal (S);
11171 F2 := First_Formal (E);
11172 while Present (F1) and then Present (F2) loop
11173 if Is_Access_Type (Etype (F1)) then
11174 if not Is_Access_Type (Etype (F2))
11175 or else not Conforming_Types
11176 (Designated_Type (Etype (F1)),
11177 Designated_Type (Etype (F2)),
11178 Type_Conformant)
11179 then
11180 May_Hide_Profile := False;
11181 end if;
11182
11183 elsif
11184 not Conforming_Types
11185 (Etype (F1), Etype (F2), Type_Conformant)
11186 then
11187 May_Hide_Profile := False;
11188 end if;
11189
11190 Next_Formal (F1);
11191 Next_Formal (F2);
11192 end loop;
11193
11194 if May_Hide_Profile
11195 and then No (F1)
11196 and then No (F2)
11197 then
11198 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11199 end if;
11200 end;
11201 end if;
11202 end if;
11203
11204 E := Homonym (E);
11205 end loop;
11206
11207 -- On exit, we know that S is a new entity
11208
11209 Enter_Overloaded_Entity (S);
11210 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11211 Check_Overriding_Indicator
11212 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11213
11214 -- The Ghost policy in effect at the point of declaration of a parent
11215 -- subprogram and an overriding subprogram must match
11216 -- (SPARK RM 6.9(17)).
11217
11218 Check_Ghost_Overriding (S, Overridden_Subp);
11219
11220 -- Overloading is not allowed in SPARK, except for operators
11221
11222 if Nkind (S) /= N_Defining_Operator_Symbol then
11223 Error_Msg_Sloc := Sloc (Homonym (S));
11224 Check_SPARK_05_Restriction
11225 ("overloading not allowed with entity#", S);
11226 end if;
11227
11228 -- If S is a derived operation for an untagged type then by
11229 -- definition it's not a dispatching operation (even if the parent
11230 -- operation was dispatching), so Check_Dispatching_Operation is not
11231 -- called in that case.
11232
11233 if No (Derived_Type)
11234 or else Is_Tagged_Type (Derived_Type)
11235 then
11236 Check_Dispatching_Operation (S, Empty);
11237 end if;
11238 end if;
11239
11240 -- If this is a user-defined equality operator that is not a derived
11241 -- subprogram, create the corresponding inequality. If the operation is
11242 -- dispatching, the expansion is done elsewhere, and we do not create
11243 -- an explicit inequality operation.
11244
11245 <<Check_Inequality>>
11246 if Chars (S) = Name_Op_Eq
11247 and then Etype (S) = Standard_Boolean
11248 and then Present (Parent (S))
11249 and then not Is_Dispatching_Operation (S)
11250 then
11251 Make_Inequality_Operator (S);
11252 Check_Untagged_Equality (S);
11253 end if;
11254 end New_Overloaded_Entity;
11255
11256 ----------------------------------
11257 -- Preanalyze_Formal_Expression --
11258 ----------------------------------
11259
11260 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
11261 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
11262 begin
11263 In_Spec_Expression := True;
11264 Preanalyze_With_Freezing_And_Resolve (N, T);
11265 In_Spec_Expression := Save_In_Spec_Expression;
11266 end Preanalyze_Formal_Expression;
11267
11268 ---------------------
11269 -- Process_Formals --
11270 ---------------------
11271
11272 procedure Process_Formals
11273 (T : List_Id;
11274 Related_Nod : Node_Id)
11275 is
11276 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11277 -- Determine whether an access type designates a type coming from a
11278 -- limited view.
11279
11280 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11281 -- Check whether the default has a class-wide type. After analysis the
11282 -- default has the type of the formal, so we must also check explicitly
11283 -- for an access attribute.
11284
11285 ----------------------------------
11286 -- Designates_From_Limited_With --
11287 ----------------------------------
11288
11289 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11290 Desig : Entity_Id := Typ;
11291
11292 begin
11293 if Is_Access_Type (Desig) then
11294 Desig := Directly_Designated_Type (Desig);
11295 end if;
11296
11297 if Is_Class_Wide_Type (Desig) then
11298 Desig := Root_Type (Desig);
11299 end if;
11300
11301 return
11302 Ekind (Desig) = E_Incomplete_Type
11303 and then From_Limited_With (Desig);
11304 end Designates_From_Limited_With;
11305
11306 ---------------------------
11307 -- Is_Class_Wide_Default --
11308 ---------------------------
11309
11310 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11311 begin
11312 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11313 or else (Nkind (D) = N_Attribute_Reference
11314 and then Attribute_Name (D) = Name_Access
11315 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11316 end Is_Class_Wide_Default;
11317
11318 -- Local variables
11319
11320 Context : constant Node_Id := Parent (Parent (T));
11321 Default : Node_Id;
11322 Formal : Entity_Id;
11323 Formal_Type : Entity_Id;
11324 Param_Spec : Node_Id;
11325 Ptype : Entity_Id;
11326
11327 Num_Out_Params : Nat := 0;
11328 First_Out_Param : Entity_Id := Empty;
11329 -- Used for setting Is_Only_Out_Parameter
11330
11331 -- Start of processing for Process_Formals
11332
11333 begin
11334 -- In order to prevent premature use of the formals in the same formal
11335 -- part, the Ekind is left undefined until all default expressions are
11336 -- analyzed. The Ekind is established in a separate loop at the end.
11337
11338 Param_Spec := First (T);
11339 while Present (Param_Spec) loop
11340 Formal := Defining_Identifier (Param_Spec);
11341 Set_Never_Set_In_Source (Formal, True);
11342 Enter_Name (Formal);
11343
11344 -- Case of ordinary parameters
11345
11346 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11347 Find_Type (Parameter_Type (Param_Spec));
11348 Ptype := Parameter_Type (Param_Spec);
11349
11350 if Ptype = Error then
11351 goto Continue;
11352 end if;
11353
11354 -- Protect against malformed parameter types
11355
11356 if Nkind (Ptype) not in N_Has_Entity then
11357 Formal_Type := Any_Type;
11358 else
11359 Formal_Type := Entity (Ptype);
11360 end if;
11361
11362 if Is_Incomplete_Type (Formal_Type)
11363 or else
11364 (Is_Class_Wide_Type (Formal_Type)
11365 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11366 then
11367 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11368 -- primitive operations, as long as their completion is
11369 -- in the same declarative part. If in the private part
11370 -- this means that the type cannot be a Taft-amendment type.
11371 -- Check is done on package exit. For access to subprograms,
11372 -- the use is legal for Taft-amendment types.
11373
11374 -- Ada 2012: tagged incomplete types are allowed as generic
11375 -- formal types. They do not introduce dependencies and the
11376 -- corresponding generic subprogram does not have a delayed
11377 -- freeze, because it does not need a freeze node. However,
11378 -- it is still the case that untagged incomplete types cannot
11379 -- be Taft-amendment types and must be completed in private
11380 -- part, so the subprogram must appear in the list of private
11381 -- dependents of the type.
11382
11383 if Is_Tagged_Type (Formal_Type)
11384 or else (Ada_Version >= Ada_2012
11385 and then not From_Limited_With (Formal_Type)
11386 and then not Is_Generic_Type (Formal_Type))
11387 then
11388 if Ekind (Scope (Current_Scope)) = E_Package
11389 and then not Is_Generic_Type (Formal_Type)
11390 and then not Is_Class_Wide_Type (Formal_Type)
11391 then
11392 if not Nkind_In
11393 (Parent (T), N_Access_Function_Definition,
11394 N_Access_Procedure_Definition)
11395 then
11396 Append_Elmt (Current_Scope,
11397 Private_Dependents (Base_Type (Formal_Type)));
11398
11399 -- Freezing is delayed to ensure that Register_Prim
11400 -- will get called for this operation, which is needed
11401 -- in cases where static dispatch tables aren't built.
11402 -- (Note that the same is done for controlling access
11403 -- parameter cases in function Access_Definition.)
11404
11405 if not Is_Thunk (Current_Scope) then
11406 Set_Has_Delayed_Freeze (Current_Scope);
11407 end if;
11408 end if;
11409 end if;
11410
11411 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11412 N_Access_Procedure_Definition)
11413 then
11414 -- AI05-0151: Tagged incomplete types are allowed in all
11415 -- formal parts. Untagged incomplete types are not allowed
11416 -- in bodies. Limited views of either kind are not allowed
11417 -- if there is no place at which the non-limited view can
11418 -- become available.
11419
11420 -- Incomplete formal untagged types are not allowed in
11421 -- subprogram bodies (but are legal in their declarations).
11422 -- This excludes bodies created for null procedures, which
11423 -- are basic declarations.
11424
11425 if Is_Generic_Type (Formal_Type)
11426 and then not Is_Tagged_Type (Formal_Type)
11427 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11428 then
11429 Error_Msg_N
11430 ("invalid use of formal incomplete type", Param_Spec);
11431
11432 elsif Ada_Version >= Ada_2012 then
11433 if Is_Tagged_Type (Formal_Type)
11434 and then (not From_Limited_With (Formal_Type)
11435 or else not In_Package_Body)
11436 then
11437 null;
11438
11439 elsif Nkind_In (Context, N_Accept_Statement,
11440 N_Accept_Alternative,
11441 N_Entry_Body)
11442 or else (Nkind (Context) = N_Subprogram_Body
11443 and then Comes_From_Source (Context))
11444 then
11445 Error_Msg_NE
11446 ("invalid use of untagged incomplete type &",
11447 Ptype, Formal_Type);
11448 end if;
11449
11450 else
11451 Error_Msg_NE
11452 ("invalid use of incomplete type&",
11453 Param_Spec, Formal_Type);
11454
11455 -- Further checks on the legality of incomplete types
11456 -- in formal parts are delayed until the freeze point
11457 -- of the enclosing subprogram or access to subprogram.
11458 end if;
11459 end if;
11460
11461 elsif Ekind (Formal_Type) = E_Void then
11462 Error_Msg_NE
11463 ("premature use of&",
11464 Parameter_Type (Param_Spec), Formal_Type);
11465 end if;
11466
11467 -- Ada 2012 (AI-142): Handle aliased parameters
11468
11469 if Ada_Version >= Ada_2012
11470 and then Aliased_Present (Param_Spec)
11471 then
11472 Set_Is_Aliased (Formal);
11473 end if;
11474
11475 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11476 -- declaration corresponding to the null-excluding type of the
11477 -- formal in the enclosing scope. Finally, replace the parameter
11478 -- type of the formal with the internal subtype.
11479
11480 if Ada_Version >= Ada_2005
11481 and then Null_Exclusion_Present (Param_Spec)
11482 then
11483 if not Is_Access_Type (Formal_Type) then
11484 Error_Msg_N
11485 ("`NOT NULL` allowed only for an access type", Param_Spec);
11486
11487 else
11488 if Can_Never_Be_Null (Formal_Type)
11489 and then Comes_From_Source (Related_Nod)
11490 then
11491 Error_Msg_NE
11492 ("`NOT NULL` not allowed (& already excludes null)",
11493 Param_Spec, Formal_Type);
11494 end if;
11495
11496 Formal_Type :=
11497 Create_Null_Excluding_Itype
11498 (T => Formal_Type,
11499 Related_Nod => Related_Nod,
11500 Scope_Id => Scope (Current_Scope));
11501
11502 -- If the designated type of the itype is an itype that is
11503 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11504 -- on the access subtype, to prevent order-of-elaboration
11505 -- issues in the backend.
11506
11507 -- Example:
11508 -- type T is access procedure;
11509 -- procedure Op (O : not null T);
11510
11511 if Is_Itype (Directly_Designated_Type (Formal_Type))
11512 and then
11513 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11514 then
11515 Set_Has_Delayed_Freeze (Formal_Type);
11516 end if;
11517 end if;
11518 end if;
11519
11520 -- An access formal type
11521
11522 else
11523 Formal_Type :=
11524 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11525
11526 -- No need to continue if we already notified errors
11527
11528 if not Present (Formal_Type) then
11529 return;
11530 end if;
11531
11532 -- Ada 2005 (AI-254)
11533
11534 declare
11535 AD : constant Node_Id :=
11536 Access_To_Subprogram_Definition
11537 (Parameter_Type (Param_Spec));
11538 begin
11539 if Present (AD) and then Protected_Present (AD) then
11540 Formal_Type :=
11541 Replace_Anonymous_Access_To_Protected_Subprogram
11542 (Param_Spec);
11543 end if;
11544 end;
11545 end if;
11546
11547 Set_Etype (Formal, Formal_Type);
11548
11549 -- Deal with default expression if present
11550
11551 Default := Expression (Param_Spec);
11552
11553 if Present (Default) then
11554 Check_SPARK_05_Restriction
11555 ("default expression is not allowed", Default);
11556
11557 if Out_Present (Param_Spec) then
11558 Error_Msg_N
11559 ("default initialization only allowed for IN parameters",
11560 Param_Spec);
11561 end if;
11562
11563 -- Do the special preanalysis of the expression (see section on
11564 -- "Handling of Default Expressions" in the spec of package Sem).
11565
11566 Preanalyze_Formal_Expression (Default, Formal_Type);
11567
11568 -- An access to constant cannot be the default for
11569 -- an access parameter that is an access to variable.
11570
11571 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11572 and then not Is_Access_Constant (Formal_Type)
11573 and then Is_Access_Type (Etype (Default))
11574 and then Is_Access_Constant (Etype (Default))
11575 then
11576 Error_Msg_N
11577 ("formal that is access to variable cannot be initialized "
11578 & "with an access-to-constant expression", Default);
11579 end if;
11580
11581 -- Check that the designated type of an access parameter's default
11582 -- is not a class-wide type unless the parameter's designated type
11583 -- is also class-wide.
11584
11585 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11586 and then not Designates_From_Limited_With (Formal_Type)
11587 and then Is_Class_Wide_Default (Default)
11588 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11589 then
11590 Error_Msg_N
11591 ("access to class-wide expression not allowed here", Default);
11592 end if;
11593
11594 -- Check incorrect use of dynamically tagged expressions
11595
11596 if Is_Tagged_Type (Formal_Type) then
11597 Check_Dynamically_Tagged_Expression
11598 (Expr => Default,
11599 Typ => Formal_Type,
11600 Related_Nod => Default);
11601 end if;
11602 end if;
11603
11604 -- Ada 2005 (AI-231): Static checks
11605
11606 if Ada_Version >= Ada_2005
11607 and then Is_Access_Type (Etype (Formal))
11608 and then Can_Never_Be_Null (Etype (Formal))
11609 then
11610 Null_Exclusion_Static_Checks (Param_Spec);
11611 end if;
11612
11613 -- The following checks are relevant only when SPARK_Mode is on as
11614 -- these are not standard Ada legality rules.
11615
11616 if SPARK_Mode = On then
11617 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11618
11619 -- A function cannot have a parameter of mode IN OUT or OUT
11620 -- (SPARK RM 6.1).
11621
11622 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11623 Error_Msg_N
11624 ("function cannot have parameter of mode `OUT` or "
11625 & "`IN OUT`", Formal);
11626 end if;
11627
11628 -- A procedure cannot have an effectively volatile formal
11629 -- parameter of mode IN because it behaves as a constant
11630 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11631
11632 elsif Ekind (Scope (Formal)) = E_Procedure
11633 and then Ekind (Formal) = E_In_Parameter
11634 and then Is_Effectively_Volatile (Formal)
11635 then
11636 Error_Msg_N
11637 ("formal parameter of mode `IN` cannot be volatile", Formal);
11638 end if;
11639 end if;
11640
11641 <<Continue>>
11642 Next (Param_Spec);
11643 end loop;
11644
11645 -- If this is the formal part of a function specification, analyze the
11646 -- subtype mark in the context where the formals are visible but not
11647 -- yet usable, and may hide outer homographs.
11648
11649 if Nkind (Related_Nod) = N_Function_Specification then
11650 Analyze_Return_Type (Related_Nod);
11651 end if;
11652
11653 -- Now set the kind (mode) of each formal
11654
11655 Param_Spec := First (T);
11656 while Present (Param_Spec) loop
11657 Formal := Defining_Identifier (Param_Spec);
11658 Set_Formal_Mode (Formal);
11659
11660 if Ekind (Formal) = E_In_Parameter then
11661 Set_Default_Value (Formal, Expression (Param_Spec));
11662
11663 if Present (Expression (Param_Spec)) then
11664 Default := Expression (Param_Spec);
11665
11666 if Is_Scalar_Type (Etype (Default)) then
11667 if Nkind (Parameter_Type (Param_Spec)) /=
11668 N_Access_Definition
11669 then
11670 Formal_Type := Entity (Parameter_Type (Param_Spec));
11671 else
11672 Formal_Type :=
11673 Access_Definition
11674 (Related_Nod, Parameter_Type (Param_Spec));
11675 end if;
11676
11677 Apply_Scalar_Range_Check (Default, Formal_Type);
11678 end if;
11679 end if;
11680
11681 elsif Ekind (Formal) = E_Out_Parameter then
11682 Num_Out_Params := Num_Out_Params + 1;
11683
11684 if Num_Out_Params = 1 then
11685 First_Out_Param := Formal;
11686 end if;
11687
11688 elsif Ekind (Formal) = E_In_Out_Parameter then
11689 Num_Out_Params := Num_Out_Params + 1;
11690 end if;
11691
11692 -- Skip remaining processing if formal type was in error
11693
11694 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11695 goto Next_Parameter;
11696 end if;
11697
11698 -- Force call by reference if aliased
11699
11700 declare
11701 Conv : constant Convention_Id := Convention (Etype (Formal));
11702 begin
11703 if Is_Aliased (Formal) then
11704 Set_Mechanism (Formal, By_Reference);
11705
11706 -- Warn if user asked this to be passed by copy
11707
11708 if Conv = Convention_Ada_Pass_By_Copy then
11709 Error_Msg_N
11710 ("cannot pass aliased parameter & by copy??", Formal);
11711 end if;
11712
11713 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11714
11715 elsif Conv = Convention_Ada_Pass_By_Copy then
11716 Set_Mechanism (Formal, By_Copy);
11717
11718 elsif Conv = Convention_Ada_Pass_By_Reference then
11719 Set_Mechanism (Formal, By_Reference);
11720 end if;
11721 end;
11722
11723 <<Next_Parameter>>
11724 Next (Param_Spec);
11725 end loop;
11726
11727 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11728 Set_Is_Only_Out_Parameter (First_Out_Param);
11729 end if;
11730 end Process_Formals;
11731
11732 ----------------------------
11733 -- Reference_Body_Formals --
11734 ----------------------------
11735
11736 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11737 Fs : Entity_Id;
11738 Fb : Entity_Id;
11739
11740 begin
11741 if Error_Posted (Spec) then
11742 return;
11743 end if;
11744
11745 -- Iterate over both lists. They may be of different lengths if the two
11746 -- specs are not conformant.
11747
11748 Fs := First_Formal (Spec);
11749 Fb := First_Formal (Bod);
11750 while Present (Fs) and then Present (Fb) loop
11751 Generate_Reference (Fs, Fb, 'b');
11752
11753 if Style_Check then
11754 Style.Check_Identifier (Fb, Fs);
11755 end if;
11756
11757 Set_Spec_Entity (Fb, Fs);
11758 Set_Referenced (Fs, False);
11759 Next_Formal (Fs);
11760 Next_Formal (Fb);
11761 end loop;
11762 end Reference_Body_Formals;
11763
11764 -------------------------
11765 -- Set_Actual_Subtypes --
11766 -------------------------
11767
11768 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11769 Decl : Node_Id;
11770 Formal : Entity_Id;
11771 T : Entity_Id;
11772 First_Stmt : Node_Id := Empty;
11773 AS_Needed : Boolean;
11774
11775 begin
11776 -- If this is an empty initialization procedure, no need to create
11777 -- actual subtypes (small optimization).
11778
11779 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11780 return;
11781
11782 -- Within a predicate function we do not want to generate local
11783 -- subtypes that may generate nested predicate functions.
11784
11785 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11786 return;
11787 end if;
11788
11789 -- The subtype declarations may freeze the formals. The body generated
11790 -- for an expression function is not a freeze point, so do not emit
11791 -- these declarations (small loss of efficiency in rare cases).
11792
11793 if Nkind (N) = N_Subprogram_Body
11794 and then Was_Expression_Function (N)
11795 then
11796 return;
11797 end if;
11798
11799 Formal := First_Formal (Subp);
11800 while Present (Formal) loop
11801 T := Etype (Formal);
11802
11803 -- We never need an actual subtype for a constrained formal
11804
11805 if Is_Constrained (T) then
11806 AS_Needed := False;
11807
11808 -- If we have unknown discriminants, then we do not need an actual
11809 -- subtype, or more accurately we cannot figure it out. Note that
11810 -- all class-wide types have unknown discriminants.
11811
11812 elsif Has_Unknown_Discriminants (T) then
11813 AS_Needed := False;
11814
11815 -- At this stage we have an unconstrained type that may need an
11816 -- actual subtype. For sure the actual subtype is needed if we have
11817 -- an unconstrained array type. However, in an instance, the type
11818 -- may appear as a subtype of the full view, while the actual is
11819 -- in fact private (in which case no actual subtype is needed) so
11820 -- check the kind of the base type.
11821
11822 elsif Is_Array_Type (Base_Type (T)) then
11823 AS_Needed := True;
11824
11825 -- The only other case needing an actual subtype is an unconstrained
11826 -- record type which is an IN parameter (we cannot generate actual
11827 -- subtypes for the OUT or IN OUT case, since an assignment can
11828 -- change the discriminant values. However we exclude the case of
11829 -- initialization procedures, since discriminants are handled very
11830 -- specially in this context, see the section entitled "Handling of
11831 -- Discriminants" in Einfo.
11832
11833 -- We also exclude the case of Discrim_SO_Functions (functions used
11834 -- in front-end layout mode for size/offset values), since in such
11835 -- functions only discriminants are referenced, and not only are such
11836 -- subtypes not needed, but they cannot always be generated, because
11837 -- of order of elaboration issues.
11838
11839 elsif Is_Record_Type (T)
11840 and then Ekind (Formal) = E_In_Parameter
11841 and then Chars (Formal) /= Name_uInit
11842 and then not Is_Unchecked_Union (T)
11843 and then not Is_Discrim_SO_Function (Subp)
11844 then
11845 AS_Needed := True;
11846
11847 -- All other cases do not need an actual subtype
11848
11849 else
11850 AS_Needed := False;
11851 end if;
11852
11853 -- Generate actual subtypes for unconstrained arrays and
11854 -- unconstrained discriminated records.
11855
11856 if AS_Needed then
11857 if Nkind (N) = N_Accept_Statement then
11858
11859 -- If expansion is active, the formal is replaced by a local
11860 -- variable that renames the corresponding entry of the
11861 -- parameter block, and it is this local variable that may
11862 -- require an actual subtype.
11863
11864 if Expander_Active then
11865 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11866 else
11867 Decl := Build_Actual_Subtype (T, Formal);
11868 end if;
11869
11870 if Present (Handled_Statement_Sequence (N)) then
11871 First_Stmt :=
11872 First (Statements (Handled_Statement_Sequence (N)));
11873 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11874 Mark_Rewrite_Insertion (Decl);
11875 else
11876 -- If the accept statement has no body, there will be no
11877 -- reference to the actuals, so no need to compute actual
11878 -- subtypes.
11879
11880 return;
11881 end if;
11882
11883 else
11884 Decl := Build_Actual_Subtype (T, Formal);
11885 Prepend (Decl, Declarations (N));
11886 Mark_Rewrite_Insertion (Decl);
11887 end if;
11888
11889 -- The declaration uses the bounds of an existing object, and
11890 -- therefore needs no constraint checks.
11891
11892 Analyze (Decl, Suppress => All_Checks);
11893 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11894
11895 -- We need to freeze manually the generated type when it is
11896 -- inserted anywhere else than in a declarative part.
11897
11898 if Present (First_Stmt) then
11899 Insert_List_Before_And_Analyze (First_Stmt,
11900 Freeze_Entity (Defining_Identifier (Decl), N));
11901
11902 -- Ditto if the type has a dynamic predicate, because the
11903 -- generated function will mention the actual subtype. The
11904 -- predicate may come from an explicit aspect of be inherited.
11905
11906 elsif Has_Predicates (T) then
11907 Insert_List_Before_And_Analyze (Decl,
11908 Freeze_Entity (Defining_Identifier (Decl), N));
11909 end if;
11910
11911 if Nkind (N) = N_Accept_Statement
11912 and then Expander_Active
11913 then
11914 Set_Actual_Subtype (Renamed_Object (Formal),
11915 Defining_Identifier (Decl));
11916 else
11917 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11918 end if;
11919 end if;
11920
11921 Next_Formal (Formal);
11922 end loop;
11923 end Set_Actual_Subtypes;
11924
11925 ---------------------
11926 -- Set_Formal_Mode --
11927 ---------------------
11928
11929 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11930 Spec : constant Node_Id := Parent (Formal_Id);
11931 Id : constant Entity_Id := Scope (Formal_Id);
11932
11933 begin
11934 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11935 -- since we ensure that corresponding actuals are always valid at the
11936 -- point of the call.
11937
11938 if Out_Present (Spec) then
11939 if Ekind_In (Id, E_Entry, E_Entry_Family)
11940 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11941 then
11942 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11943 end if;
11944
11945 if Ekind_In (Id, E_Function, E_Generic_Function) then
11946
11947 -- [IN] OUT parameters allowed for functions in Ada 2012
11948
11949 if Ada_Version >= Ada_2012 then
11950
11951 -- Even in Ada 2012 operators can only have IN parameters
11952
11953 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11954 Error_Msg_N ("operators can only have IN parameters", Spec);
11955 end if;
11956
11957 if In_Present (Spec) then
11958 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11959 else
11960 Set_Ekind (Formal_Id, E_Out_Parameter);
11961 end if;
11962
11963 -- But not in earlier versions of Ada
11964
11965 else
11966 Error_Msg_N ("functions can only have IN parameters", Spec);
11967 Set_Ekind (Formal_Id, E_In_Parameter);
11968 end if;
11969
11970 elsif In_Present (Spec) then
11971 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11972
11973 else
11974 Set_Ekind (Formal_Id, E_Out_Parameter);
11975 Set_Never_Set_In_Source (Formal_Id, True);
11976 Set_Is_True_Constant (Formal_Id, False);
11977 Set_Current_Value (Formal_Id, Empty);
11978 end if;
11979
11980 else
11981 Set_Ekind (Formal_Id, E_In_Parameter);
11982 end if;
11983
11984 -- Set Is_Known_Non_Null for access parameters since the language
11985 -- guarantees that access parameters are always non-null. We also set
11986 -- Can_Never_Be_Null, since there is no way to change the value.
11987
11988 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11989
11990 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11991 -- null; In Ada 2005, only if then null_exclusion is explicit.
11992
11993 if Ada_Version < Ada_2005
11994 or else Can_Never_Be_Null (Etype (Formal_Id))
11995 then
11996 Set_Is_Known_Non_Null (Formal_Id);
11997 Set_Can_Never_Be_Null (Formal_Id);
11998 end if;
11999
12000 -- Ada 2005 (AI-231): Null-exclusion access subtype
12001
12002 elsif Is_Access_Type (Etype (Formal_Id))
12003 and then Can_Never_Be_Null (Etype (Formal_Id))
12004 then
12005 Set_Is_Known_Non_Null (Formal_Id);
12006
12007 -- We can also set Can_Never_Be_Null (thus preventing some junk
12008 -- access checks) for the case of an IN parameter, which cannot
12009 -- be changed, or for an IN OUT parameter, which can be changed but
12010 -- not to a null value. But for an OUT parameter, the initial value
12011 -- passed in can be null, so we can't set this flag in that case.
12012
12013 if Ekind (Formal_Id) /= E_Out_Parameter then
12014 Set_Can_Never_Be_Null (Formal_Id);
12015 end if;
12016 end if;
12017
12018 Set_Mechanism (Formal_Id, Default_Mechanism);
12019 Set_Formal_Validity (Formal_Id);
12020 end Set_Formal_Mode;
12021
12022 -------------------------
12023 -- Set_Formal_Validity --
12024 -------------------------
12025
12026 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12027 begin
12028 -- If no validity checking, then we cannot assume anything about the
12029 -- validity of parameters, since we do not know there is any checking
12030 -- of the validity on the call side.
12031
12032 if not Validity_Checks_On then
12033 return;
12034
12035 -- If validity checking for parameters is enabled, this means we are
12036 -- not supposed to make any assumptions about argument values.
12037
12038 elsif Validity_Check_Parameters then
12039 return;
12040
12041 -- If we are checking in parameters, we will assume that the caller is
12042 -- also checking parameters, so we can assume the parameter is valid.
12043
12044 elsif Ekind (Formal_Id) = E_In_Parameter
12045 and then Validity_Check_In_Params
12046 then
12047 Set_Is_Known_Valid (Formal_Id, True);
12048
12049 -- Similar treatment for IN OUT parameters
12050
12051 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12052 and then Validity_Check_In_Out_Params
12053 then
12054 Set_Is_Known_Valid (Formal_Id, True);
12055 end if;
12056 end Set_Formal_Validity;
12057
12058 ------------------------
12059 -- Subtype_Conformant --
12060 ------------------------
12061
12062 function Subtype_Conformant
12063 (New_Id : Entity_Id;
12064 Old_Id : Entity_Id;
12065 Skip_Controlling_Formals : Boolean := False) return Boolean
12066 is
12067 Result : Boolean;
12068 begin
12069 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12070 Skip_Controlling_Formals => Skip_Controlling_Formals);
12071 return Result;
12072 end Subtype_Conformant;
12073
12074 ---------------------
12075 -- Type_Conformant --
12076 ---------------------
12077
12078 function Type_Conformant
12079 (New_Id : Entity_Id;
12080 Old_Id : Entity_Id;
12081 Skip_Controlling_Formals : Boolean := False) return Boolean
12082 is
12083 Result : Boolean;
12084 begin
12085 May_Hide_Profile := False;
12086 Check_Conformance
12087 (New_Id, Old_Id, Type_Conformant, False, Result,
12088 Skip_Controlling_Formals => Skip_Controlling_Formals);
12089 return Result;
12090 end Type_Conformant;
12091
12092 -------------------------------
12093 -- Valid_Operator_Definition --
12094 -------------------------------
12095
12096 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12097 N : Integer := 0;
12098 F : Entity_Id;
12099 Id : constant Name_Id := Chars (Designator);
12100 N_OK : Boolean;
12101
12102 begin
12103 F := First_Formal (Designator);
12104 while Present (F) loop
12105 N := N + 1;
12106
12107 if Present (Default_Value (F)) then
12108 Error_Msg_N
12109 ("default values not allowed for operator parameters",
12110 Parent (F));
12111
12112 -- For function instantiations that are operators, we must check
12113 -- separately that the corresponding generic only has in-parameters.
12114 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12115 -- an error could not arise in earlier versions of the language.
12116
12117 elsif Ekind (F) /= E_In_Parameter then
12118 Error_Msg_N ("operators can only have IN parameters", F);
12119 end if;
12120
12121 Next_Formal (F);
12122 end loop;
12123
12124 -- Verify that user-defined operators have proper number of arguments
12125 -- First case of operators which can only be unary
12126
12127 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12128 N_OK := (N = 1);
12129
12130 -- Case of operators which can be unary or binary
12131
12132 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12133 N_OK := (N in 1 .. 2);
12134
12135 -- All other operators can only be binary
12136
12137 else
12138 N_OK := (N = 2);
12139 end if;
12140
12141 if not N_OK then
12142 Error_Msg_N
12143 ("incorrect number of arguments for operator", Designator);
12144 end if;
12145
12146 if Id = Name_Op_Ne
12147 and then Base_Type (Etype (Designator)) = Standard_Boolean
12148 and then not Is_Intrinsic_Subprogram (Designator)
12149 then
12150 Error_Msg_N
12151 ("explicit definition of inequality not allowed", Designator);
12152 end if;
12153 end Valid_Operator_Definition;
12154
12155 end Sem_Ch6;