[Ada] Incorrect accessibility checking on aliased formals
[gcc.git] / gcc / ada / sem_ch6.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch9; use Sem_Ch9;
64 with Sem_Ch10; use Sem_Ch10;
65 with Sem_Ch12; use Sem_Ch12;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elim; use Sem_Elim;
71 with Sem_Eval; use Sem_Eval;
72 with Sem_Mech; use Sem_Mech;
73 with Sem_Prag; use Sem_Prag;
74 with Sem_Res; use Sem_Res;
75 with Sem_Util; use Sem_Util;
76 with Sem_Type; use Sem_Type;
77 with Sem_Warn; use Sem_Warn;
78 with Sinput; use Sinput;
79 with Stand; use Stand;
80 with Sinfo; use Sinfo;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stringt; use Stringt;
84 with Style;
85 with Stylesw; use Stylesw;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
90
91 package body Sem_Ch6 is
92
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
101
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
105
106 procedure Analyze_Function_Return (N : Node_Id);
107 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
108 -- applies to a [generic] function.
109
110 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111 -- Analyze a generic subprogram body. N is the body to be analyzed, and
112 -- Gen_Id is the defining entity Id for the corresponding spec.
113
114 procedure Analyze_Null_Procedure
115 (N : Node_Id;
116 Is_Completion : out Boolean);
117 -- A null procedure can be a declaration or (Ada 2012) a completion
118
119 procedure Analyze_Return_Statement (N : Node_Id);
120 -- Common processing for simple and extended return statements
121
122 procedure Analyze_Return_Type (N : Node_Id);
123 -- Subsidiary to Process_Formals: analyze subtype mark in function
124 -- specification in a context where the formals are visible and hide
125 -- outer homographs.
126
127 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
129 -- that we can use RETURN but not skip the debug output at the end.
130
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
133
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
154
155 procedure Check_Limited_Return
156 (N : Node_Id;
157 Expr : Node_Id;
158 R_Type : Entity_Id);
159 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160 -- types. Used only for simple return statements. Expr is the expression
161 -- returned.
162
163 procedure Check_Subprogram_Order (N : Node_Id);
164 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
165 -- the alpha ordering rule for N if this ordering requirement applicable.
166
167 procedure Check_Returns
168 (HSS : Node_Id;
169 Mode : Character;
170 Err : out Boolean;
171 Proc : Entity_Id := Empty);
172 -- Called to check for missing return statements in a function body, or for
173 -- returns present in a procedure body which has No_Return set. HSS is the
174 -- handled statement sequence for the subprogram body. This procedure
175 -- checks all flow paths to make sure they either have return (Mode = 'F',
176 -- used for functions) or do not have a return (Mode = 'P', used for
177 -- No_Return procedures). The flag Err is set if there are any control
178 -- paths not explicitly terminated by a return in the function case, and is
179 -- True otherwise. Proc is the entity for the procedure case and is used
180 -- in posting the warning message.
181
182 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183 -- In Ada 2012, a primitive equality operator on an untagged record type
184 -- must appear before the type is frozen, and have the same visibility as
185 -- that of the type. This procedure checks that this rule is met, and
186 -- otherwise emits an error on the subprogram declaration and a warning
187 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190 -- is set, otherwise the call has no effect.
191
192 procedure Enter_Overloaded_Entity (S : Entity_Id);
193 -- This procedure makes S, a new overloaded entity, into the first visible
194 -- entity with that name.
195
196 function Is_Non_Overriding_Operation
197 (Prev_E : Entity_Id;
198 New_E : Entity_Id) return Boolean;
199 -- Enforce the rule given in 12.3(18): a private operation in an instance
200 -- overrides an inherited operation only if the corresponding operation
201 -- was overriding in the generic. This needs to be checked for primitive
202 -- operations of types derived (in the generic unit) from formal private
203 -- or formal derived types.
204
205 procedure Make_Inequality_Operator (S : Entity_Id);
206 -- Create the declaration for an inequality operator that is implicitly
207 -- created by a user-defined equality operator that yields a boolean.
208
209 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
210 -- Preanalysis of default expressions of subprogram formals. N is the
211 -- expression to be analyzed and T is the expected type.
212
213 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214 -- Formal_Id is an formal parameter entity. This procedure deals with
215 -- setting the proper validity status for this entity, which depends on
216 -- the kind of parameter and the validity checking mode.
217
218 ---------------------------------------------
219 -- Analyze_Abstract_Subprogram_Declaration --
220 ---------------------------------------------
221
222 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
223 Scop : constant Entity_Id := Current_Scope;
224 Subp_Id : constant Entity_Id :=
225 Analyze_Subprogram_Specification (Specification (N));
226
227 begin
228 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
229
230 Generate_Definition (Subp_Id);
231
232 -- Set the SPARK mode from the current context (may be overwritten later
233 -- with explicit pragma).
234
235 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
236 Set_SPARK_Pragma_Inherited (Subp_Id);
237
238 -- Preserve relevant elaboration-related attributes of the context which
239 -- are no longer available or very expensive to recompute once analysis,
240 -- resolution, and expansion are over.
241
242 Mark_Elaboration_Attributes
243 (N_Id => Subp_Id,
244 Checks => True,
245 Warnings => True);
246
247 Set_Is_Abstract_Subprogram (Subp_Id);
248 New_Overloaded_Entity (Subp_Id);
249 Check_Delayed_Subprogram (Subp_Id);
250
251 Set_Categorization_From_Scope (Subp_Id, Scop);
252
253 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
254 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
255
256 -- Issue a warning if the abstract subprogram is neither a dispatching
257 -- operation nor an operation that overrides an inherited subprogram or
258 -- predefined operator, since this most likely indicates a mistake.
259
260 elsif Warn_On_Redundant_Constructs
261 and then not Is_Dispatching_Operation (Subp_Id)
262 and then not Present (Overridden_Operation (Subp_Id))
263 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
264 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
265 then
266 Error_Msg_N
267 ("abstract subprogram is not dispatching or overriding?r?", N);
268 end if;
269
270 Generate_Reference_To_Formals (Subp_Id);
271 Check_Eliminated (Subp_Id);
272
273 if Has_Aspects (N) then
274 Analyze_Aspect_Specifications (N, Subp_Id);
275 end if;
276 end Analyze_Abstract_Subprogram_Declaration;
277
278 ---------------------------------
279 -- Analyze_Expression_Function --
280 ---------------------------------
281
282 procedure Analyze_Expression_Function (N : Node_Id) is
283 Expr : constant Node_Id := Expression (N);
284 Loc : constant Source_Ptr := Sloc (N);
285 LocX : constant Source_Ptr := Sloc (Expr);
286 Spec : constant Node_Id := Specification (N);
287
288 -- Local variables
289
290 Asp : Node_Id;
291 New_Body : Node_Id;
292 New_Spec : Node_Id;
293 Orig_N : Node_Id;
294 Ret : Node_Id;
295
296 Def_Id : Entity_Id := Empty;
297 Prev : Entity_Id;
298 -- If the expression is a completion, Prev is the entity whose
299 -- declaration is completed. Def_Id is needed to analyze the spec.
300
301 -- Start of processing for Analyze_Expression_Function
302
303 begin
304 -- This is one of the occasions on which we transform the tree during
305 -- semantic analysis. If this is a completion, transform the expression
306 -- function into an equivalent subprogram body, and analyze it.
307
308 -- Expression functions are inlined unconditionally. The back-end will
309 -- determine whether this is possible.
310
311 Inline_Processing_Required := True;
312
313 -- Create a specification for the generated body. This must be done
314 -- prior to the analysis of the initial declaration.
315
316 New_Spec := Copy_Subprogram_Spec (Spec);
317 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
318
319 -- If there are previous overloadable entities with the same name,
320 -- check whether any of them is completed by the expression function.
321 -- In a generic context a formal subprogram has no completion.
322
323 if Present (Prev)
324 and then Is_Overloadable (Prev)
325 and then not Is_Formal_Subprogram (Prev)
326 then
327 Def_Id := Analyze_Subprogram_Specification (Spec);
328 Prev := Find_Corresponding_Spec (N);
329
330 -- The previous entity may be an expression function as well, in
331 -- which case the redeclaration is illegal.
332
333 if Present (Prev)
334 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
335 N_Expression_Function
336 then
337 Error_Msg_Sloc := Sloc (Prev);
338 Error_Msg_N ("& conflicts with declaration#", Def_Id);
339 return;
340 end if;
341 end if;
342
343 Ret := Make_Simple_Return_Statement (LocX, Expr);
344
345 New_Body :=
346 Make_Subprogram_Body (Loc,
347 Specification => New_Spec,
348 Declarations => Empty_List,
349 Handled_Statement_Sequence =>
350 Make_Handled_Sequence_Of_Statements (LocX,
351 Statements => New_List (Ret)));
352 Set_Was_Expression_Function (New_Body);
353
354 -- If the expression completes a generic subprogram, we must create a
355 -- separate node for the body, because at instantiation the original
356 -- node of the generic copy must be a generic subprogram body, and
357 -- cannot be a expression function. Otherwise we just rewrite the
358 -- expression with the non-generic body.
359
360 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
361 Insert_After (N, New_Body);
362
363 -- Propagate any aspects or pragmas that apply to the expression
364 -- function to the proper body when the expression function acts
365 -- as a completion.
366
367 if Has_Aspects (N) then
368 Move_Aspects (N, To => New_Body);
369 end if;
370
371 Relocate_Pragmas_To_Body (New_Body);
372
373 Rewrite (N, Make_Null_Statement (Loc));
374 Set_Has_Completion (Prev, False);
375 Analyze (N);
376 Analyze (New_Body);
377 Set_Is_Inlined (Prev);
378
379 -- If the expression function is a completion, the previous declaration
380 -- must come from source. We know already that it appears in the current
381 -- scope. The entity itself may be internally created if within a body
382 -- to be inlined.
383
384 elsif Present (Prev)
385 and then Is_Overloadable (Prev)
386 and then not Is_Formal_Subprogram (Prev)
387 and then Comes_From_Source (Parent (Prev))
388 then
389 Set_Has_Completion (Prev, False);
390 Set_Is_Inlined (Prev);
391
392 -- AI12-0103: Expression functions that are a completion freeze their
393 -- expression but don't freeze anything else (unlike regular bodies).
394
395 -- Note that we cannot defer this freezing to the analysis of the
396 -- expression itself, because a freeze node might appear in a nested
397 -- scope, leading to an elaboration order issue in gigi.
398 -- As elsewhere, we do not emit freeze nodes within a generic unit.
399
400 if not Inside_A_Generic then
401 Freeze_Expr_Types
402 (Def_Id => Def_Id,
403 Typ => Etype (Def_Id),
404 Expr => Expr,
405 N => N);
406 end if;
407
408 -- For navigation purposes, indicate that the function is a body
409
410 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
411 Rewrite (N, New_Body);
412
413 -- Remove any existing aspects from the original node because the act
414 -- of rewriting causes the list to be shared between the two nodes.
415
416 Orig_N := Original_Node (N);
417 Remove_Aspects (Orig_N);
418
419 -- Propagate any pragmas that apply to expression function to the
420 -- proper body when the expression function acts as a completion.
421 -- Aspects are automatically transfered because of node rewriting.
422
423 Relocate_Pragmas_To_Body (N);
424 Analyze (N);
425
426 -- Once the aspects of the generated body have been analyzed, create
427 -- a copy for ASIS purposes and associate it with the original node.
428 -- Is this still needed???
429
430 if Has_Aspects (N) then
431 Set_Aspect_Specifications (Orig_N,
432 New_Copy_List_Tree (Aspect_Specifications (N)));
433 end if;
434
435 -- Prev is the previous entity with the same name, but it is can
436 -- be an unrelated spec that is not completed by the expression
437 -- function. In that case the relevant entity is the one in the body.
438 -- Not clear that the backend can inline it in this case ???
439
440 if Has_Completion (Prev) then
441
442 -- The formals of the expression function are body formals,
443 -- and do not appear in the ali file, which will only contain
444 -- references to the formals of the original subprogram spec.
445
446 declare
447 F1 : Entity_Id;
448 F2 : Entity_Id;
449
450 begin
451 F1 := First_Formal (Def_Id);
452 F2 := First_Formal (Prev);
453
454 while Present (F1) loop
455 Set_Spec_Entity (F1, F2);
456 Next_Formal (F1);
457 Next_Formal (F2);
458 end loop;
459 end;
460
461 else
462 Set_Is_Inlined (Defining_Entity (New_Body));
463 end if;
464
465 -- If this is not a completion, create both a declaration and a body, so
466 -- that the expression can be inlined whenever possible.
467
468 else
469 -- An expression function that is not a completion is not a
470 -- subprogram declaration, and thus cannot appear in a protected
471 -- definition.
472
473 if Nkind (Parent (N)) = N_Protected_Definition then
474 Error_Msg_N
475 ("an expression function is not a legal protected operation", N);
476 end if;
477
478 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
479
480 -- Remove any existing aspects from the original node because the act
481 -- of rewriting causes the list to be shared between the two nodes.
482
483 Orig_N := Original_Node (N);
484 Remove_Aspects (Orig_N);
485
486 Analyze (N);
487
488 -- Once the aspects of the generated spec have been analyzed, create
489 -- a copy for ASIS purposes and associate it with the original node.
490 -- Is this still needed???
491
492 if Has_Aspects (N) then
493 Set_Aspect_Specifications (Orig_N,
494 New_Copy_List_Tree (Aspect_Specifications (N)));
495 end if;
496
497 -- If aspect SPARK_Mode was specified on the body, it needs to be
498 -- repeated both on the generated spec and the body.
499
500 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
501
502 if Present (Asp) then
503 Asp := New_Copy_Tree (Asp);
504 Set_Analyzed (Asp, False);
505 Set_Aspect_Specifications (New_Body, New_List (Asp));
506 end if;
507
508 Def_Id := Defining_Entity (N);
509 Set_Is_Inlined (Def_Id);
510
511 -- Establish the linkages between the spec and the body. These are
512 -- used when the expression function acts as the prefix of attribute
513 -- 'Access in order to freeze the original expression which has been
514 -- moved to the generated body.
515
516 Set_Corresponding_Body (N, Defining_Entity (New_Body));
517 Set_Corresponding_Spec (New_Body, Def_Id);
518
519 -- Within a generic preanalyze the original expression for name
520 -- capture. The body is also generated but plays no role in
521 -- this because it is not part of the original source.
522
523 if Inside_A_Generic then
524 Set_Has_Completion (Def_Id);
525 Push_Scope (Def_Id);
526 Install_Formals (Def_Id);
527 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
528 End_Scope;
529 end if;
530
531 -- To prevent premature freeze action, insert the new body at the end
532 -- of the current declarations, or at the end of the package spec.
533 -- However, resolve usage names now, to prevent spurious visibility
534 -- on later entities. Note that the function can now be called in
535 -- the current declarative part, which will appear to be prior to
536 -- the presence of the body in the code. There are nevertheless no
537 -- order of elaboration issues because all name resolution has taken
538 -- place at the point of declaration.
539
540 declare
541 Decls : List_Id := List_Containing (N);
542 Expr : constant Node_Id := Expression (Ret);
543 Par : constant Node_Id := Parent (Decls);
544 Typ : constant Entity_Id := Etype (Def_Id);
545
546 begin
547 -- If this is a wrapper created for in an instance for a formal
548 -- subprogram, insert body after declaration, to be analyzed when
549 -- the enclosing instance is analyzed.
550
551 if GNATprove_Mode
552 and then Is_Generic_Actual_Subprogram (Def_Id)
553 then
554 Insert_After (N, New_Body);
555
556 else
557 if Nkind (Par) = N_Package_Specification
558 and then Decls = Visible_Declarations (Par)
559 and then Present (Private_Declarations (Par))
560 and then not Is_Empty_List (Private_Declarations (Par))
561 then
562 Decls := Private_Declarations (Par);
563 end if;
564
565 Insert_After (Last (Decls), New_Body);
566
567 -- Preanalyze the expression if not already done above
568
569 if not Inside_A_Generic then
570 Push_Scope (Def_Id);
571 Install_Formals (Def_Id);
572 Preanalyze_Formal_Expression (Expr, Typ);
573 Check_Limited_Return (Original_Node (N), Expr, Typ);
574 End_Scope;
575 end if;
576 end if;
577 end;
578 end if;
579
580 -- Check incorrect use of dynamically tagged expression. This doesn't
581 -- fall out automatically when analyzing the generated function body,
582 -- because Check_Dynamically_Tagged_Expression deliberately ignores
583 -- nodes that don't come from source.
584
585 if Present (Def_Id)
586 and then Nkind (Def_Id) in N_Has_Etype
587 and then Is_Tagged_Type (Etype (Def_Id))
588 then
589 Check_Dynamically_Tagged_Expression
590 (Expr => Expr,
591 Typ => Etype (Def_Id),
592 Related_Nod => Original_Node (N));
593 end if;
594
595 -- We must enforce checks for unreferenced formals in our newly
596 -- generated function, so we propagate the referenced flag from the
597 -- original spec to the new spec as well as setting Comes_From_Source.
598
599 if Present (Parameter_Specifications (New_Spec)) then
600 declare
601 Form_New_Def : Entity_Id;
602 Form_New_Spec : Entity_Id;
603 Form_Old_Def : Entity_Id;
604 Form_Old_Spec : Entity_Id;
605
606 begin
607 Form_New_Spec := First (Parameter_Specifications (New_Spec));
608 Form_Old_Spec := First (Parameter_Specifications (Spec));
609
610 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
611 Form_New_Def := Defining_Identifier (Form_New_Spec);
612 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
613
614 Set_Comes_From_Source (Form_New_Def, True);
615
616 -- Because of the usefulness of unreferenced controlling
617 -- formals we exempt them from unreferenced warnings by marking
618 -- them as always referenced.
619
620 Set_Referenced (Form_Old_Def,
621 (Is_Formal (Form_Old_Def)
622 and then Is_Controlling_Formal (Form_Old_Def))
623 or else Referenced (Form_Old_Def));
624
625 Next (Form_New_Spec);
626 Next (Form_Old_Spec);
627 end loop;
628 end;
629 end if;
630 end Analyze_Expression_Function;
631
632 ----------------------------------------
633 -- Analyze_Extended_Return_Statement --
634 ----------------------------------------
635
636 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
637 begin
638 Check_Compiler_Unit ("extended return statement", N);
639 Analyze_Return_Statement (N);
640 end Analyze_Extended_Return_Statement;
641
642 ----------------------------
643 -- Analyze_Function_Call --
644 ----------------------------
645
646 procedure Analyze_Function_Call (N : Node_Id) is
647 Actuals : constant List_Id := Parameter_Associations (N);
648 Func_Nam : constant Node_Id := Name (N);
649 Actual : Node_Id;
650
651 begin
652 Analyze (Func_Nam);
653
654 -- A call of the form A.B (X) may be an Ada 2005 call, which is
655 -- rewritten as B (A, X). If the rewriting is successful, the call
656 -- has been analyzed and we just return.
657
658 if Nkind (Func_Nam) = N_Selected_Component
659 and then Name (N) /= Func_Nam
660 and then Is_Rewrite_Substitution (N)
661 and then Present (Etype (N))
662 then
663 return;
664 end if;
665
666 -- If error analyzing name, then set Any_Type as result type and return
667
668 if Etype (Func_Nam) = Any_Type then
669 Set_Etype (N, Any_Type);
670 return;
671 end if;
672
673 -- Otherwise analyze the parameters
674
675 if Present (Actuals) then
676 Actual := First (Actuals);
677 while Present (Actual) loop
678 Analyze (Actual);
679 Check_Parameterless_Call (Actual);
680 Next (Actual);
681 end loop;
682 end if;
683
684 Analyze_Call (N);
685 end Analyze_Function_Call;
686
687 -----------------------------
688 -- Analyze_Function_Return --
689 -----------------------------
690
691 procedure Analyze_Function_Return (N : Node_Id) is
692 Loc : constant Source_Ptr := Sloc (N);
693 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
694 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
695
696 R_Type : constant Entity_Id := Etype (Scope_Id);
697 -- Function result subtype
698
699 procedure Check_Return_Obj_Accessibility (Return_Stmt : Node_Id);
700 -- Apply legality rule of 6.5 (5.9) to the access discriminants of an
701 -- aggregate in a return statement.
702
703 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
704 -- Check that the return_subtype_indication properly matches the result
705 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
706
707 ------------------------------------
708 -- Check_Return_Obj_Accessibility --
709 ------------------------------------
710
711 procedure Check_Return_Obj_Accessibility (Return_Stmt : Node_Id) is
712 Assoc : Node_Id;
713 Agg : Node_Id := Empty;
714 Discr : Entity_Id;
715 Expr : Node_Id;
716 Obj : Node_Id;
717 Process_Exprs : Boolean := False;
718 Return_Obj : Node_Id;
719
720 begin
721 -- Only perform checks on record types with access discriminants
722
723 if not Is_Record_Type (R_Type)
724 or else not Has_Discriminants (R_Type)
725 then
726 return;
727 end if;
728
729 -- We are only interested in return statements
730
731 if not Nkind_In (Return_Stmt, N_Extended_Return_Statement,
732 N_Simple_Return_Statement)
733 then
734 return;
735 end if;
736
737 -- Fetch the object from the return statement, in the case of a
738 -- simple return statement the expression is part of the node.
739
740 if Nkind (Return_Stmt) = N_Extended_Return_Statement then
741 Return_Obj := Last (Return_Object_Declarations (Return_Stmt));
742
743 -- We could be looking at something that's been expanded with
744 -- an initialzation procedure which we can safely ignore.
745
746 if Nkind (Return_Obj) /= N_Object_Declaration then
747 return;
748 end if;
749 else
750 Return_Obj := Return_Stmt;
751 end if;
752
753 -- We may need to check an aggregate or a subtype indication
754 -- depending on how the discriminants were specified and whether
755 -- we are looking at an extended return statement.
756
757 if Nkind (Return_Obj) = N_Object_Declaration
758 and then Nkind (Object_Definition (Return_Obj))
759 = N_Subtype_Indication
760 then
761 Assoc := First (Constraints
762 (Constraint (Object_Definition (Return_Obj))));
763 else
764 -- Qualified expressions may be nested
765
766 Agg := Original_Node (Expression (Return_Obj));
767 while Nkind (Agg) = N_Qualified_Expression loop
768 Agg := Original_Node (Expression (Agg));
769 end loop;
770
771 -- If we are looking at an aggregate instead of a function call we
772 -- can continue checking accessibility for the supplied
773 -- discriminant associations.
774
775 if Nkind (Agg) = N_Aggregate then
776 if Present (Expressions (Agg)) then
777 Assoc := First (Expressions (Agg));
778 Process_Exprs := True;
779 else
780 Assoc := First (Component_Associations (Agg));
781 end if;
782
783 -- Otherwise the expression is not of interest ???
784
785 else
786 return;
787 end if;
788 end if;
789
790 -- Move through the discriminants checking the accessibility level
791 -- of each co-extension's associated expression.
792
793 Discr := First_Discriminant (R_Type);
794 while Present (Discr) loop
795 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
796
797 if Nkind (Assoc) = N_Attribute_Reference then
798 Expr := Assoc;
799 elsif Nkind_In (Assoc, N_Component_Association,
800 N_Discriminant_Association)
801 then
802 Expr := Expression (Assoc);
803 else
804 Expr := Empty;
805 end if;
806
807 -- This anonymous access discriminant has an associated
808 -- expression which needs checking.
809
810 if Present (Expr)
811 and then Nkind (Expr) = N_Attribute_Reference
812 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
813 then
814 -- Obtain the object to perform static checks on by moving
815 -- up the prefixes in the expression taking into account
816 -- named access types and renamed objects within the
817 -- expression.
818
819 Obj := Original_Node (Prefix (Expr));
820 loop
821 while Nkind_In (Obj, N_Explicit_Dereference,
822 N_Indexed_Component,
823 N_Selected_Component)
824 loop
825 -- When we encounter a named access type then we can
826 -- ignore accessibility checks on the dereference.
827
828 if Ekind (Etype (Original_Node (Prefix (Obj))))
829 in E_Access_Type ..
830 E_Access_Protected_Subprogram_Type
831 then
832 if Nkind (Obj) = N_Selected_Component then
833 Obj := Selector_Name (Obj);
834 else
835 Obj := Original_Node (Prefix (Obj));
836 end if;
837 exit;
838 end if;
839
840 Obj := Original_Node (Prefix (Obj));
841 end loop;
842
843 if Nkind (Obj) = N_Selected_Component then
844 Obj := Selector_Name (Obj);
845 end if;
846
847 -- Check for renamings
848
849 pragma Assert (Is_Entity_Name (Obj));
850
851 if Present (Renamed_Object (Entity (Obj))) then
852 Obj := Renamed_Object (Entity (Obj));
853 else
854 exit;
855 end if;
856 end loop;
857
858 -- Do not check aliased formals or function calls. A
859 -- run-time check may still be needed ???
860
861 if Is_Formal (Entity (Obj))
862 and then Is_Aliased (Entity (Obj))
863 then
864 null;
865
866 elsif Object_Access_Level (Obj) >
867 Scope_Depth (Scope (Scope_Id))
868 then
869 Error_Msg_N
870 ("access discriminant in return aggregate would "
871 & "be a dangling reference", Obj);
872 end if;
873 end if;
874 end if;
875
876 Next_Discriminant (Discr);
877
878 if not Is_List_Member (Assoc) then
879 Assoc := Empty;
880 else
881 Nlists.Next (Assoc);
882 end if;
883
884 -- After aggregate expressions, examine component associations if
885 -- present.
886
887 if No (Assoc) then
888 if Present (Agg)
889 and then Process_Exprs
890 and then Present (Component_Associations (Agg))
891 then
892 Assoc := First (Component_Associations (Agg));
893 Process_Exprs := False;
894 else
895 exit;
896 end if;
897 end if;
898 end loop;
899 end Check_Return_Obj_Accessibility;
900
901 -------------------------------------
902 -- Check_Return_Subtype_Indication --
903 -------------------------------------
904
905 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
906 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
907
908 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
909 -- Subtype given in the extended return statement (must match R_Type)
910
911 Subtype_Ind : constant Node_Id :=
912 Object_Definition (Original_Node (Obj_Decl));
913
914 procedure Error_No_Match (N : Node_Id);
915 -- Output error messages for case where types do not statically
916 -- match. N is the location for the messages.
917
918 --------------------
919 -- Error_No_Match --
920 --------------------
921
922 procedure Error_No_Match (N : Node_Id) is
923 begin
924 Error_Msg_N
925 ("subtype must statically match function result subtype", N);
926
927 if not Predicates_Match (R_Stm_Type, R_Type) then
928 Error_Msg_Node_2 := R_Type;
929 Error_Msg_NE
930 ("\predicate of& does not match predicate of&",
931 N, R_Stm_Type);
932 end if;
933 end Error_No_Match;
934
935 -- Start of processing for Check_Return_Subtype_Indication
936
937 begin
938 -- First, avoid cascaded errors
939
940 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
941 return;
942 end if;
943
944 -- "return access T" case; check that the return statement also has
945 -- "access T", and that the subtypes statically match:
946 -- if this is an access to subprogram the signatures must match.
947
948 if Is_Anonymous_Access_Type (R_Type) then
949 if Is_Anonymous_Access_Type (R_Stm_Type) then
950 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
951 then
952 if Base_Type (Designated_Type (R_Stm_Type)) /=
953 Base_Type (Designated_Type (R_Type))
954 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
955 then
956 Error_No_Match (Subtype_Mark (Subtype_Ind));
957 end if;
958
959 else
960 -- For two anonymous access to subprogram types, the types
961 -- themselves must be type conformant.
962
963 if not Conforming_Types
964 (R_Stm_Type, R_Type, Fully_Conformant)
965 then
966 Error_No_Match (Subtype_Ind);
967 end if;
968 end if;
969
970 else
971 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
972 end if;
973
974 -- If the return object is of an anonymous access type, then report
975 -- an error if the function's result type is not also anonymous.
976
977 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
978 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
979 Error_Msg_N
980 ("anonymous access not allowed for function with named access "
981 & "result", Subtype_Ind);
982
983 -- Subtype indication case: check that the return object's type is
984 -- covered by the result type, and that the subtypes statically match
985 -- when the result subtype is constrained. Also handle record types
986 -- with unknown discriminants for which we have built the underlying
987 -- record view. Coverage is needed to allow specific-type return
988 -- objects when the result type is class-wide (see AI05-32).
989
990 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
991 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
992 and then
993 Covers
994 (Base_Type (R_Type),
995 Underlying_Record_View (Base_Type (R_Stm_Type))))
996 then
997 -- A null exclusion may be present on the return type, on the
998 -- function specification, on the object declaration or on the
999 -- subtype itself.
1000
1001 if Is_Access_Type (R_Type)
1002 and then
1003 (Can_Never_Be_Null (R_Type)
1004 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
1005 Can_Never_Be_Null (R_Stm_Type)
1006 then
1007 Error_No_Match (Subtype_Ind);
1008 end if;
1009
1010 -- AI05-103: for elementary types, subtypes must statically match
1011
1012 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1013 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1014 Error_No_Match (Subtype_Ind);
1015 end if;
1016 end if;
1017
1018 -- All remaining cases are illegal
1019
1020 -- Note: previous versions of this subprogram allowed the return
1021 -- value to be the ancestor of the return type if the return type
1022 -- was a null extension. This was plainly incorrect.
1023
1024 else
1025 Error_Msg_N
1026 ("wrong type for return_subtype_indication", Subtype_Ind);
1027 end if;
1028 end Check_Return_Subtype_Indication;
1029
1030 ---------------------
1031 -- Local Variables --
1032 ---------------------
1033
1034 Expr : Node_Id;
1035 Obj_Decl : Node_Id := Empty;
1036
1037 -- Start of processing for Analyze_Function_Return
1038
1039 begin
1040 Set_Return_Present (Scope_Id);
1041
1042 if Nkind (N) = N_Simple_Return_Statement then
1043 Expr := Expression (N);
1044
1045 -- Guard against a malformed expression. The parser may have tried to
1046 -- recover but the node is not analyzable.
1047
1048 if Nkind (Expr) = N_Error then
1049 Set_Etype (Expr, Any_Type);
1050 Expander_Mode_Save_And_Set (False);
1051 return;
1052
1053 else
1054 -- The resolution of a controlled [extension] aggregate associated
1055 -- with a return statement creates a temporary which needs to be
1056 -- finalized on function exit. Wrap the return statement inside a
1057 -- block so that the finalization machinery can detect this case.
1058 -- This early expansion is done only when the return statement is
1059 -- not part of a handled sequence of statements.
1060
1061 if Nkind_In (Expr, N_Aggregate,
1062 N_Extension_Aggregate)
1063 and then Needs_Finalization (R_Type)
1064 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1065 then
1066 Rewrite (N,
1067 Make_Block_Statement (Loc,
1068 Handled_Statement_Sequence =>
1069 Make_Handled_Sequence_Of_Statements (Loc,
1070 Statements => New_List (Relocate_Node (N)))));
1071
1072 Analyze (N);
1073 return;
1074 end if;
1075
1076 Analyze (Expr);
1077
1078 -- Ada 2005 (AI-251): If the type of the returned object is
1079 -- an access to an interface type then we add an implicit type
1080 -- conversion to force the displacement of the "this" pointer to
1081 -- reference the secondary dispatch table. We cannot delay the
1082 -- generation of this implicit conversion until the expansion
1083 -- because in this case the type resolution changes the decoration
1084 -- of the expression node to match R_Type; by contrast, if the
1085 -- returned object is a class-wide interface type then it is too
1086 -- early to generate here the implicit conversion since the return
1087 -- statement may be rewritten by the expander into an extended
1088 -- return statement whose expansion takes care of adding the
1089 -- implicit type conversion to displace the pointer to the object.
1090
1091 if Expander_Active
1092 and then Serious_Errors_Detected = 0
1093 and then Is_Access_Type (R_Type)
1094 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1095 and then Is_Interface (Designated_Type (R_Type))
1096 and then Is_Progenitor (Designated_Type (R_Type),
1097 Designated_Type (Etype (Expr)))
1098 then
1099 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1100 Analyze (Expr);
1101 end if;
1102
1103 Resolve (Expr, R_Type);
1104 Check_Limited_Return (N, Expr, R_Type);
1105
1106 Check_Return_Obj_Accessibility (N);
1107 end if;
1108
1109 -- RETURN only allowed in SPARK as the last statement in function
1110
1111 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1112 and then
1113 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1114 or else Present (Next (N)))
1115 then
1116 Check_SPARK_05_Restriction
1117 ("RETURN should be the last statement in function", N);
1118 end if;
1119
1120 else
1121 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1122 Obj_Decl := Last (Return_Object_Declarations (N));
1123
1124 -- Analyze parts specific to extended_return_statement:
1125
1126 declare
1127 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1128 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1129
1130 begin
1131 Expr := Expression (Obj_Decl);
1132
1133 -- Note: The check for OK_For_Limited_Init will happen in
1134 -- Analyze_Object_Declaration; we treat it as a normal
1135 -- object declaration.
1136
1137 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1138 Analyze (Obj_Decl);
1139
1140 Check_Return_Subtype_Indication (Obj_Decl);
1141
1142 if Present (HSS) then
1143 Analyze (HSS);
1144
1145 if Present (Exception_Handlers (HSS)) then
1146
1147 -- ???Has_Nested_Block_With_Handler needs to be set.
1148 -- Probably by creating an actual N_Block_Statement.
1149 -- Probably in Expand.
1150
1151 null;
1152 end if;
1153 end if;
1154
1155 -- Mark the return object as referenced, since the return is an
1156 -- implicit reference of the object.
1157
1158 Set_Referenced (Defining_Identifier (Obj_Decl));
1159
1160 Check_References (Stm_Entity);
1161
1162 Check_Return_Obj_Accessibility (N);
1163
1164 -- Check RM 6.5 (5.9/3)
1165
1166 if Has_Aliased then
1167 if Ada_Version < Ada_2012 then
1168
1169 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1170 -- Can it really happen (extended return???)
1171
1172 Error_Msg_N
1173 ("aliased only allowed for limited return objects "
1174 & "in Ada 2012??", N);
1175
1176 elsif not Is_Limited_View (R_Type) then
1177 Error_Msg_N
1178 ("aliased only allowed for limited return objects", N);
1179 end if;
1180 end if;
1181 end;
1182 end if;
1183
1184 -- Case of Expr present
1185
1186 if Present (Expr) then
1187
1188 -- Defend against previous errors
1189
1190 if Nkind (Expr) = N_Empty
1191 or else No (Etype (Expr))
1192 then
1193 return;
1194 end if;
1195
1196 -- Apply constraint check. Note that this is done before the implicit
1197 -- conversion of the expression done for anonymous access types to
1198 -- ensure correct generation of the null-excluding check associated
1199 -- with null-excluding expressions found in return statements. We
1200 -- don't need a check if the subtype of the return object is the
1201 -- same as the result subtype of the function.
1202
1203 if Nkind (N) /= N_Extended_Return_Statement
1204 or else Nkind (Obj_Decl) /= N_Object_Declaration
1205 or else Nkind (Object_Definition (Obj_Decl)) not in N_Has_Entity
1206 or else Entity (Object_Definition (Obj_Decl)) /= R_Type
1207 then
1208 Apply_Constraint_Check (Expr, R_Type);
1209 end if;
1210
1211 -- The return value is converted to the return type of the function,
1212 -- which implies a predicate check if the return type is predicated.
1213 -- We do not apply the check to a case expression because it will
1214 -- be expanded into a series of return statements, each of which
1215 -- will receive a predicate check.
1216
1217 if Nkind (Expr) /= N_Case_Expression then
1218 Apply_Predicate_Check (Expr, R_Type);
1219 end if;
1220
1221 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1222 -- type, apply an implicit conversion of the expression to that type
1223 -- to force appropriate static and run-time accessibility checks.
1224
1225 if Ada_Version >= Ada_2005
1226 and then Ekind (R_Type) = E_Anonymous_Access_Type
1227 then
1228 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1229 Analyze_And_Resolve (Expr, R_Type);
1230
1231 -- If this is a local anonymous access to subprogram, the
1232 -- accessibility check can be applied statically. The return is
1233 -- illegal if the access type of the return expression is declared
1234 -- inside of the subprogram (except if it is the subtype indication
1235 -- of an extended return statement).
1236
1237 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1238 if not Comes_From_Source (Current_Scope)
1239 or else Ekind (Current_Scope) = E_Return_Statement
1240 then
1241 null;
1242
1243 elsif
1244 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1245 then
1246 Error_Msg_N ("cannot return local access to subprogram", N);
1247 end if;
1248
1249 -- The expression cannot be of a formal incomplete type
1250
1251 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1252 and then Is_Generic_Type (Etype (Expr))
1253 then
1254 Error_Msg_N
1255 ("cannot return expression of a formal incomplete type", N);
1256 end if;
1257
1258 -- If the result type is class-wide, then check that the return
1259 -- expression's type is not declared at a deeper level than the
1260 -- function (RM05-6.5(5.6/2)).
1261
1262 if Ada_Version >= Ada_2005
1263 and then Is_Class_Wide_Type (R_Type)
1264 then
1265 if Type_Access_Level (Etype (Expr)) >
1266 Subprogram_Access_Level (Scope_Id)
1267 then
1268 Error_Msg_N
1269 ("level of return expression type is deeper than "
1270 & "class-wide function!", Expr);
1271 end if;
1272 end if;
1273
1274 -- Check incorrect use of dynamically tagged expression
1275
1276 if Is_Tagged_Type (R_Type) then
1277 Check_Dynamically_Tagged_Expression
1278 (Expr => Expr,
1279 Typ => R_Type,
1280 Related_Nod => N);
1281 end if;
1282
1283 -- ??? A real run-time accessibility check is needed in cases
1284 -- involving dereferences of access parameters. For now we just
1285 -- check the static cases.
1286
1287 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1288 and then Is_Limited_View (Etype (Scope_Id))
1289 and then Object_Access_Level (Expr) >
1290 Subprogram_Access_Level (Scope_Id)
1291 then
1292 -- Suppress the message in a generic, where the rewriting
1293 -- is irrelevant.
1294
1295 if Inside_A_Generic then
1296 null;
1297
1298 else
1299 Rewrite (N,
1300 Make_Raise_Program_Error (Loc,
1301 Reason => PE_Accessibility_Check_Failed));
1302 Analyze (N);
1303
1304 Error_Msg_Warn := SPARK_Mode /= On;
1305 Error_Msg_N ("cannot return a local value by reference<<", N);
1306 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1307 end if;
1308 end if;
1309
1310 if Known_Null (Expr)
1311 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1312 and then Null_Exclusion_Present (Parent (Scope_Id))
1313 then
1314 Apply_Compile_Time_Constraint_Error
1315 (N => Expr,
1316 Msg => "(Ada 2005) null not allowed for "
1317 & "null-excluding return??",
1318 Reason => CE_Null_Not_Allowed);
1319 end if;
1320
1321 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1322 -- has no initializing expression.
1323
1324 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1325 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1326 Subprogram_Access_Level (Scope_Id)
1327 then
1328 Error_Msg_N
1329 ("level of return expression type is deeper than "
1330 & "class-wide function!", Obj_Decl);
1331 end if;
1332 end if;
1333 end Analyze_Function_Return;
1334
1335 -------------------------------------
1336 -- Analyze_Generic_Subprogram_Body --
1337 -------------------------------------
1338
1339 procedure Analyze_Generic_Subprogram_Body
1340 (N : Node_Id;
1341 Gen_Id : Entity_Id)
1342 is
1343 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1344 Kind : constant Entity_Kind := Ekind (Gen_Id);
1345 Body_Id : Entity_Id;
1346 New_N : Node_Id;
1347 Spec : Node_Id;
1348
1349 begin
1350 -- Copy body and disable expansion while analyzing the generic For a
1351 -- stub, do not copy the stub (which would load the proper body), this
1352 -- will be done when the proper body is analyzed.
1353
1354 if Nkind (N) /= N_Subprogram_Body_Stub then
1355 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1356 Rewrite (N, New_N);
1357
1358 -- Once the contents of the generic copy and the template are
1359 -- swapped, do the same for their respective aspect specifications.
1360
1361 Exchange_Aspects (N, New_N);
1362
1363 -- Collect all contract-related source pragmas found within the
1364 -- template and attach them to the contract of the subprogram body.
1365 -- This contract is used in the capture of global references within
1366 -- annotations.
1367
1368 Create_Generic_Contract (N);
1369
1370 Start_Generic;
1371 end if;
1372
1373 Spec := Specification (N);
1374
1375 -- Within the body of the generic, the subprogram is callable, and
1376 -- behaves like the corresponding non-generic unit.
1377
1378 Body_Id := Defining_Entity (Spec);
1379
1380 if Kind = E_Generic_Procedure
1381 and then Nkind (Spec) /= N_Procedure_Specification
1382 then
1383 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1384 return;
1385
1386 elsif Kind = E_Generic_Function
1387 and then Nkind (Spec) /= N_Function_Specification
1388 then
1389 Error_Msg_N ("invalid body for generic function ", Body_Id);
1390 return;
1391 end if;
1392
1393 Set_Corresponding_Body (Gen_Decl, Body_Id);
1394
1395 if Has_Completion (Gen_Id)
1396 and then Nkind (Parent (N)) /= N_Subunit
1397 then
1398 Error_Msg_N ("duplicate generic body", N);
1399 return;
1400 else
1401 Set_Has_Completion (Gen_Id);
1402 end if;
1403
1404 if Nkind (N) = N_Subprogram_Body_Stub then
1405 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1406 else
1407 Set_Corresponding_Spec (N, Gen_Id);
1408 end if;
1409
1410 if Nkind (Parent (N)) = N_Compilation_Unit then
1411 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1412 end if;
1413
1414 -- Make generic parameters immediately visible in the body. They are
1415 -- needed to process the formals declarations. Then make the formals
1416 -- visible in a separate step.
1417
1418 Push_Scope (Gen_Id);
1419
1420 declare
1421 E : Entity_Id;
1422 First_Ent : Entity_Id;
1423
1424 begin
1425 First_Ent := First_Entity (Gen_Id);
1426
1427 E := First_Ent;
1428 while Present (E) and then not Is_Formal (E) loop
1429 Install_Entity (E);
1430 Next_Entity (E);
1431 end loop;
1432
1433 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1434
1435 -- Now generic formals are visible, and the specification can be
1436 -- analyzed, for subsequent conformance check.
1437
1438 Body_Id := Analyze_Subprogram_Specification (Spec);
1439
1440 -- Make formal parameters visible
1441
1442 if Present (E) then
1443
1444 -- E is the first formal parameter, we loop through the formals
1445 -- installing them so that they will be visible.
1446
1447 Set_First_Entity (Gen_Id, E);
1448 while Present (E) loop
1449 Install_Entity (E);
1450 Next_Formal (E);
1451 end loop;
1452 end if;
1453
1454 -- Visible generic entity is callable within its own body
1455
1456 Set_Ekind (Gen_Id, Ekind (Body_Id));
1457 Set_Ekind (Body_Id, E_Subprogram_Body);
1458 Set_Convention (Body_Id, Convention (Gen_Id));
1459 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1460 Set_Scope (Body_Id, Scope (Gen_Id));
1461
1462 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1463
1464 if Nkind (N) = N_Subprogram_Body_Stub then
1465
1466 -- No body to analyze, so restore state of generic unit
1467
1468 Set_Ekind (Gen_Id, Kind);
1469 Set_Ekind (Body_Id, Kind);
1470
1471 if Present (First_Ent) then
1472 Set_First_Entity (Gen_Id, First_Ent);
1473 end if;
1474
1475 End_Scope;
1476 return;
1477 end if;
1478
1479 -- If this is a compilation unit, it must be made visible explicitly,
1480 -- because the compilation of the declaration, unlike other library
1481 -- unit declarations, does not. If it is not a unit, the following
1482 -- is redundant but harmless.
1483
1484 Set_Is_Immediately_Visible (Gen_Id);
1485 Reference_Body_Formals (Gen_Id, Body_Id);
1486
1487 if Is_Child_Unit (Gen_Id) then
1488 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1489 end if;
1490
1491 Set_Actual_Subtypes (N, Current_Scope);
1492
1493 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1494 Set_SPARK_Pragma_Inherited (Body_Id);
1495
1496 -- Analyze any aspect specifications that appear on the generic
1497 -- subprogram body.
1498
1499 if Has_Aspects (N) then
1500 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1501 end if;
1502
1503 Analyze_Declarations (Declarations (N));
1504 Check_Completion;
1505
1506 -- Process the contract of the subprogram body after all declarations
1507 -- have been analyzed. This ensures that any contract-related pragmas
1508 -- are available through the N_Contract node of the body.
1509
1510 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1511
1512 Analyze (Handled_Statement_Sequence (N));
1513 Save_Global_References (Original_Node (N));
1514
1515 -- Prior to exiting the scope, include generic formals again (if any
1516 -- are present) in the set of local entities.
1517
1518 if Present (First_Ent) then
1519 Set_First_Entity (Gen_Id, First_Ent);
1520 end if;
1521
1522 Check_References (Gen_Id);
1523 end;
1524
1525 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1526 Update_Use_Clause_Chain;
1527 Validate_Categorization_Dependency (N, Gen_Id);
1528 End_Scope;
1529 Check_Subprogram_Order (N);
1530
1531 -- Outside of its body, unit is generic again
1532
1533 Set_Ekind (Gen_Id, Kind);
1534 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1535
1536 if Style_Check then
1537 Style.Check_Identifier (Body_Id, Gen_Id);
1538 end if;
1539
1540 End_Generic;
1541 end Analyze_Generic_Subprogram_Body;
1542
1543 ----------------------------
1544 -- Analyze_Null_Procedure --
1545 ----------------------------
1546
1547 -- WARNING: This routine manages Ghost regions. Return statements must be
1548 -- replaced by gotos that jump to the end of the routine and restore the
1549 -- Ghost mode.
1550
1551 procedure Analyze_Null_Procedure
1552 (N : Node_Id;
1553 Is_Completion : out Boolean)
1554 is
1555 Loc : constant Source_Ptr := Sloc (N);
1556 Spec : constant Node_Id := Specification (N);
1557
1558 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1559 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1560 Saved_ISMP : constant Boolean :=
1561 Ignore_SPARK_Mode_Pragmas_In_Instance;
1562 -- Save the Ghost and SPARK mode-related data to restore on exit
1563
1564 Designator : Entity_Id;
1565 Form : Node_Id;
1566 Null_Body : Node_Id := Empty;
1567 Null_Stmt : Node_Id := Null_Statement (Spec);
1568 Prev : Entity_Id;
1569
1570 begin
1571 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1572
1573 -- A null procedure is Ghost when it is stand-alone and is subject to
1574 -- pragma Ghost, or when the corresponding spec is Ghost. Set the mode
1575 -- now, to ensure that any nodes generated during analysis and expansion
1576 -- are properly marked as Ghost.
1577
1578 if Present (Prev) then
1579 Mark_And_Set_Ghost_Body (N, Prev);
1580 end if;
1581
1582 -- Capture the profile of the null procedure before analysis, for
1583 -- expansion at the freeze point and at each point of call. The body is
1584 -- used if the procedure has preconditions, or if it is a completion. In
1585 -- the first case the body is analyzed at the freeze point, in the other
1586 -- it replaces the null procedure declaration.
1587
1588 -- For a null procedure that comes from source, a NULL statement is
1589 -- provided by the parser, which carries the source location of the
1590 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1591 -- from expansion, create one now.
1592
1593 if No (Null_Stmt) then
1594 Null_Stmt := Make_Null_Statement (Loc);
1595 end if;
1596
1597 Null_Body :=
1598 Make_Subprogram_Body (Loc,
1599 Specification => New_Copy_Tree (Spec),
1600 Declarations => New_List,
1601 Handled_Statement_Sequence =>
1602 Make_Handled_Sequence_Of_Statements (Loc,
1603 Statements => New_List (Null_Stmt)));
1604
1605 -- Create new entities for body and formals
1606
1607 Set_Defining_Unit_Name (Specification (Null_Body),
1608 Make_Defining_Identifier
1609 (Sloc (Defining_Entity (N)),
1610 Chars (Defining_Entity (N))));
1611
1612 Form := First (Parameter_Specifications (Specification (Null_Body)));
1613 while Present (Form) loop
1614 Set_Defining_Identifier (Form,
1615 Make_Defining_Identifier
1616 (Sloc (Defining_Identifier (Form)),
1617 Chars (Defining_Identifier (Form))));
1618 Next (Form);
1619 end loop;
1620
1621 -- Determine whether the null procedure may be a completion of a generic
1622 -- suprogram, in which case we use the new null body as the completion
1623 -- and set minimal semantic information on the original declaration,
1624 -- which is rewritten as a null statement.
1625
1626 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1627 Insert_Before (N, Null_Body);
1628 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1629
1630 Rewrite (N, Make_Null_Statement (Loc));
1631 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1632 Is_Completion := True;
1633
1634 goto Leave;
1635
1636 else
1637 -- Resolve the types of the formals now, because the freeze point may
1638 -- appear in a different context, e.g. an instantiation.
1639
1640 Form := First (Parameter_Specifications (Specification (Null_Body)));
1641 while Present (Form) loop
1642 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1643 Find_Type (Parameter_Type (Form));
1644
1645 elsif No (Access_To_Subprogram_Definition
1646 (Parameter_Type (Form)))
1647 then
1648 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1649
1650 -- The case of a null procedure with a formal that is an
1651 -- access-to-subprogram type, and that is used as an actual
1652 -- in an instantiation is left to the enthusiastic reader.
1653
1654 else
1655 null;
1656 end if;
1657
1658 Next (Form);
1659 end loop;
1660 end if;
1661
1662 -- If there are previous overloadable entities with the same name, check
1663 -- whether any of them is completed by the null procedure.
1664
1665 if Present (Prev) and then Is_Overloadable (Prev) then
1666 Designator := Analyze_Subprogram_Specification (Spec);
1667 Prev := Find_Corresponding_Spec (N);
1668 end if;
1669
1670 if No (Prev) or else not Comes_From_Source (Prev) then
1671 Designator := Analyze_Subprogram_Specification (Spec);
1672 Set_Has_Completion (Designator);
1673
1674 -- Signal to caller that this is a procedure declaration
1675
1676 Is_Completion := False;
1677
1678 -- Null procedures are always inlined, but generic formal subprograms
1679 -- which appear as such in the internal instance of formal packages,
1680 -- need no completion and are not marked Inline.
1681
1682 if Expander_Active
1683 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1684 then
1685 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1686 Set_Body_To_Inline (N, Null_Body);
1687 Set_Is_Inlined (Designator);
1688 end if;
1689
1690 else
1691 -- The null procedure is a completion. We unconditionally rewrite
1692 -- this as a null body (even if expansion is not active), because
1693 -- there are various error checks that are applied on this body
1694 -- when it is analyzed (e.g. correct aspect placement).
1695
1696 if Has_Completion (Prev) then
1697 Error_Msg_Sloc := Sloc (Prev);
1698 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1699 end if;
1700
1701 Check_Previous_Null_Procedure (N, Prev);
1702
1703 Is_Completion := True;
1704 Rewrite (N, Null_Body);
1705 Analyze (N);
1706 end if;
1707
1708 <<Leave>>
1709 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
1710 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1711 end Analyze_Null_Procedure;
1712
1713 -----------------------------
1714 -- Analyze_Operator_Symbol --
1715 -----------------------------
1716
1717 -- An operator symbol such as "+" or "and" may appear in context where the
1718 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1719 -- is just a string, as in (conjunction = "or"). In these cases the parser
1720 -- generates this node, and the semantics does the disambiguation. Other
1721 -- such case are actuals in an instantiation, the generic unit in an
1722 -- instantiation, and pragma arguments.
1723
1724 procedure Analyze_Operator_Symbol (N : Node_Id) is
1725 Par : constant Node_Id := Parent (N);
1726
1727 begin
1728 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1729 or else Nkind (Par) = N_Function_Instantiation
1730 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1731 or else (Nkind (Par) = N_Pragma_Argument_Association
1732 and then not Is_Pragma_String_Literal (Par))
1733 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1734 or else (Nkind (Par) = N_Attribute_Reference
1735 and then Attribute_Name (Par) /= Name_Value)
1736 then
1737 Find_Direct_Name (N);
1738
1739 else
1740 Change_Operator_Symbol_To_String_Literal (N);
1741 Analyze (N);
1742 end if;
1743 end Analyze_Operator_Symbol;
1744
1745 -----------------------------------
1746 -- Analyze_Parameter_Association --
1747 -----------------------------------
1748
1749 procedure Analyze_Parameter_Association (N : Node_Id) is
1750 begin
1751 Analyze (Explicit_Actual_Parameter (N));
1752 end Analyze_Parameter_Association;
1753
1754 ----------------------------
1755 -- Analyze_Procedure_Call --
1756 ----------------------------
1757
1758 -- WARNING: This routine manages Ghost regions. Return statements must be
1759 -- replaced by gotos that jump to the end of the routine and restore the
1760 -- Ghost mode.
1761
1762 procedure Analyze_Procedure_Call (N : Node_Id) is
1763 procedure Analyze_Call_And_Resolve;
1764 -- Do Analyze and Resolve calls for procedure call. At the end, check
1765 -- for illegal order dependence.
1766 -- ??? where is the check for illegal order dependencies?
1767
1768 ------------------------------
1769 -- Analyze_Call_And_Resolve --
1770 ------------------------------
1771
1772 procedure Analyze_Call_And_Resolve is
1773 begin
1774 if Nkind (N) = N_Procedure_Call_Statement then
1775 Analyze_Call (N);
1776 Resolve (N, Standard_Void_Type);
1777 else
1778 Analyze (N);
1779 end if;
1780 end Analyze_Call_And_Resolve;
1781
1782 -- Local variables
1783
1784 Actuals : constant List_Id := Parameter_Associations (N);
1785 Loc : constant Source_Ptr := Sloc (N);
1786 P : constant Node_Id := Name (N);
1787
1788 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1789 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1790 -- Save the Ghost-related attributes to restore on exit
1791
1792 Actual : Node_Id;
1793 New_N : Node_Id;
1794
1795 -- Start of processing for Analyze_Procedure_Call
1796
1797 begin
1798 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1799 -- a procedure call or an entry call. The prefix may denote an access
1800 -- to subprogram type, in which case an implicit dereference applies.
1801 -- If the prefix is an indexed component (without implicit dereference)
1802 -- then the construct denotes a call to a member of an entire family.
1803 -- If the prefix is a simple name, it may still denote a call to a
1804 -- parameterless member of an entry family. Resolution of these various
1805 -- interpretations is delicate.
1806
1807 -- Do not analyze machine code statements to avoid rejecting them in
1808 -- CodePeer mode.
1809
1810 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1811 Set_Etype (P, Standard_Void_Type);
1812 else
1813 Analyze (P);
1814 end if;
1815
1816 -- If this is a call of the form Obj.Op, the call may have been analyzed
1817 -- and possibly rewritten into a block, in which case we are done.
1818
1819 if Analyzed (N) then
1820 return;
1821
1822 -- If there is an error analyzing the name (which may have been
1823 -- rewritten if the original call was in prefix notation) then error
1824 -- has been emitted already, mark node and return.
1825
1826 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1827 Set_Etype (N, Any_Type);
1828 return;
1829 end if;
1830
1831 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1832 -- Set the mode now to ensure that any nodes generated during analysis
1833 -- and expansion are properly marked as Ghost.
1834
1835 Mark_And_Set_Ghost_Procedure_Call (N);
1836
1837 -- Otherwise analyze the parameters
1838
1839 if Present (Actuals) then
1840 Actual := First (Actuals);
1841
1842 while Present (Actual) loop
1843 Analyze (Actual);
1844 Check_Parameterless_Call (Actual);
1845 Next (Actual);
1846 end loop;
1847 end if;
1848
1849 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1850
1851 if Nkind (P) = N_Attribute_Reference
1852 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1853 Name_Elab_Body,
1854 Name_Elab_Subp_Body)
1855 then
1856 if Present (Actuals) then
1857 Error_Msg_N
1858 ("no parameters allowed for this call", First (Actuals));
1859 goto Leave;
1860 end if;
1861
1862 Set_Etype (N, Standard_Void_Type);
1863 Set_Analyzed (N);
1864
1865 elsif Is_Entity_Name (P)
1866 and then Is_Record_Type (Etype (Entity (P)))
1867 and then Remote_AST_I_Dereference (P)
1868 then
1869 goto Leave;
1870
1871 elsif Is_Entity_Name (P)
1872 and then Ekind (Entity (P)) /= E_Entry_Family
1873 then
1874 if Is_Access_Type (Etype (P))
1875 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1876 and then No (Actuals)
1877 and then Comes_From_Source (N)
1878 then
1879 Error_Msg_N ("missing explicit dereference in call", N);
1880 end if;
1881
1882 Analyze_Call_And_Resolve;
1883
1884 -- If the prefix is the simple name of an entry family, this is a
1885 -- parameterless call from within the task body itself.
1886
1887 elsif Is_Entity_Name (P)
1888 and then Nkind (P) = N_Identifier
1889 and then Ekind (Entity (P)) = E_Entry_Family
1890 and then Present (Actuals)
1891 and then No (Next (First (Actuals)))
1892 then
1893 -- Can be call to parameterless entry family. What appears to be the
1894 -- sole argument is in fact the entry index. Rewrite prefix of node
1895 -- accordingly. Source representation is unchanged by this
1896 -- transformation.
1897
1898 New_N :=
1899 Make_Indexed_Component (Loc,
1900 Prefix =>
1901 Make_Selected_Component (Loc,
1902 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1903 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1904 Expressions => Actuals);
1905 Set_Name (N, New_N);
1906 Set_Etype (New_N, Standard_Void_Type);
1907 Set_Parameter_Associations (N, No_List);
1908 Analyze_Call_And_Resolve;
1909
1910 elsif Nkind (P) = N_Explicit_Dereference then
1911 if Ekind (Etype (P)) = E_Subprogram_Type then
1912 Analyze_Call_And_Resolve;
1913 else
1914 Error_Msg_N ("expect access to procedure in call", P);
1915 end if;
1916
1917 -- The name can be a selected component or an indexed component that
1918 -- yields an access to subprogram. Such a prefix is legal if the call
1919 -- has parameter associations.
1920
1921 elsif Is_Access_Type (Etype (P))
1922 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1923 then
1924 if Present (Actuals) then
1925 Analyze_Call_And_Resolve;
1926 else
1927 Error_Msg_N ("missing explicit dereference in call ", N);
1928 end if;
1929
1930 -- If not an access to subprogram, then the prefix must resolve to the
1931 -- name of an entry, entry family, or protected operation.
1932
1933 -- For the case of a simple entry call, P is a selected component where
1934 -- the prefix is the task and the selector name is the entry. A call to
1935 -- a protected procedure will have the same syntax. If the protected
1936 -- object contains overloaded operations, the entity may appear as a
1937 -- function, the context will select the operation whose type is Void.
1938
1939 elsif Nkind (P) = N_Selected_Component
1940 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1941 E_Function,
1942 E_Procedure)
1943 then
1944 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1945 -- in prefix notation may still be missing its controlling argument,
1946 -- so perform the transformation now.
1947
1948 if SPARK_Mode = On and then In_Inlined_Body then
1949 declare
1950 Subp : constant Entity_Id := Entity (Selector_Name (P));
1951 Typ : constant Entity_Id := Etype (Prefix (P));
1952
1953 begin
1954 if Is_Tagged_Type (Typ)
1955 and then Present (First_Formal (Subp))
1956 and then (Etype (First_Formal (Subp)) = Typ
1957 or else
1958 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1959 and then Try_Object_Operation (P)
1960 then
1961 return;
1962
1963 else
1964 Analyze_Call_And_Resolve;
1965 end if;
1966 end;
1967
1968 else
1969 Analyze_Call_And_Resolve;
1970 end if;
1971
1972 elsif Nkind (P) = N_Selected_Component
1973 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1974 and then Present (Actuals)
1975 and then No (Next (First (Actuals)))
1976 then
1977 -- Can be call to parameterless entry family. What appears to be the
1978 -- sole argument is in fact the entry index. Rewrite prefix of node
1979 -- accordingly. Source representation is unchanged by this
1980 -- transformation.
1981
1982 New_N :=
1983 Make_Indexed_Component (Loc,
1984 Prefix => New_Copy (P),
1985 Expressions => Actuals);
1986 Set_Name (N, New_N);
1987 Set_Etype (New_N, Standard_Void_Type);
1988 Set_Parameter_Associations (N, No_List);
1989 Analyze_Call_And_Resolve;
1990
1991 -- For the case of a reference to an element of an entry family, P is
1992 -- an indexed component whose prefix is a selected component (task and
1993 -- entry family), and whose index is the entry family index.
1994
1995 elsif Nkind (P) = N_Indexed_Component
1996 and then Nkind (Prefix (P)) = N_Selected_Component
1997 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1998 then
1999 Analyze_Call_And_Resolve;
2000
2001 -- If the prefix is the name of an entry family, it is a call from
2002 -- within the task body itself.
2003
2004 elsif Nkind (P) = N_Indexed_Component
2005 and then Nkind (Prefix (P)) = N_Identifier
2006 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
2007 then
2008 New_N :=
2009 Make_Selected_Component (Loc,
2010 Prefix =>
2011 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
2012 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
2013 Rewrite (Prefix (P), New_N);
2014 Analyze (P);
2015 Analyze_Call_And_Resolve;
2016
2017 -- In Ada 2012. a qualified expression is a name, but it cannot be a
2018 -- procedure name, so the construct can only be a qualified expression.
2019
2020 elsif Nkind (P) = N_Qualified_Expression
2021 and then Ada_Version >= Ada_2012
2022 then
2023 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
2024 Analyze (N);
2025
2026 -- Anything else is an error
2027
2028 else
2029 Error_Msg_N ("invalid procedure or entry call", N);
2030 end if;
2031
2032 <<Leave>>
2033 Restore_Ghost_Region (Saved_GM, Saved_IGR);
2034 end Analyze_Procedure_Call;
2035
2036 ------------------------------
2037 -- Analyze_Return_Statement --
2038 ------------------------------
2039
2040 procedure Analyze_Return_Statement (N : Node_Id) is
2041 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
2042 N_Simple_Return_Statement));
2043
2044 Returns_Object : constant Boolean :=
2045 Nkind (N) = N_Extended_Return_Statement
2046 or else
2047 (Nkind (N) = N_Simple_Return_Statement
2048 and then Present (Expression (N)));
2049 -- True if we're returning something; that is, "return <expression>;"
2050 -- or "return Result : T [:= ...]". False for "return;". Used for error
2051 -- checking: If Returns_Object is True, N should apply to a function
2052 -- body; otherwise N should apply to a procedure body, entry body,
2053 -- accept statement, or extended return statement.
2054
2055 function Find_What_It_Applies_To return Entity_Id;
2056 -- Find the entity representing the innermost enclosing body, accept
2057 -- statement, or extended return statement. If the result is a callable
2058 -- construct or extended return statement, then this will be the value
2059 -- of the Return_Applies_To attribute. Otherwise, the program is
2060 -- illegal. See RM-6.5(4/2).
2061
2062 -----------------------------
2063 -- Find_What_It_Applies_To --
2064 -----------------------------
2065
2066 function Find_What_It_Applies_To return Entity_Id is
2067 Result : Entity_Id := Empty;
2068
2069 begin
2070 -- Loop outward through the Scope_Stack, skipping blocks, loops,
2071 -- and postconditions.
2072
2073 for J in reverse 0 .. Scope_Stack.Last loop
2074 Result := Scope_Stack.Table (J).Entity;
2075 exit when not Ekind_In (Result, E_Block, E_Loop)
2076 and then Chars (Result) /= Name_uPostconditions;
2077 end loop;
2078
2079 pragma Assert (Present (Result));
2080 return Result;
2081 end Find_What_It_Applies_To;
2082
2083 -- Local declarations
2084
2085 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2086 Kind : constant Entity_Kind := Ekind (Scope_Id);
2087 Loc : constant Source_Ptr := Sloc (N);
2088 Stm_Entity : constant Entity_Id :=
2089 New_Internal_Entity
2090 (E_Return_Statement, Current_Scope, Loc, 'R');
2091
2092 -- Start of processing for Analyze_Return_Statement
2093
2094 begin
2095 Set_Return_Statement_Entity (N, Stm_Entity);
2096
2097 Set_Etype (Stm_Entity, Standard_Void_Type);
2098 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2099
2100 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2101 -- (4/2): an inner return statement will apply to this extended return.
2102
2103 if Nkind (N) = N_Extended_Return_Statement then
2104 Push_Scope (Stm_Entity);
2105 end if;
2106
2107 -- Check that pragma No_Return is obeyed. Don't complain about the
2108 -- implicitly-generated return that is placed at the end.
2109
2110 if No_Return (Scope_Id) and then Comes_From_Source (N) then
2111 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2112 end if;
2113
2114 -- Warn on any unassigned OUT parameters if in procedure
2115
2116 if Ekind (Scope_Id) = E_Procedure then
2117 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2118 end if;
2119
2120 -- Check that functions return objects, and other things do not
2121
2122 if Kind = E_Function or else Kind = E_Generic_Function then
2123 if not Returns_Object then
2124 Error_Msg_N ("missing expression in return from function", N);
2125 end if;
2126
2127 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2128 if Returns_Object then
2129 Error_Msg_N ("procedure cannot return value (use function)", N);
2130 end if;
2131
2132 elsif Kind = E_Entry or else Kind = E_Entry_Family then
2133 if Returns_Object then
2134 if Is_Protected_Type (Scope (Scope_Id)) then
2135 Error_Msg_N ("entry body cannot return value", N);
2136 else
2137 Error_Msg_N ("accept statement cannot return value", N);
2138 end if;
2139 end if;
2140
2141 elsif Kind = E_Return_Statement then
2142
2143 -- We are nested within another return statement, which must be an
2144 -- extended_return_statement.
2145
2146 if Returns_Object then
2147 if Nkind (N) = N_Extended_Return_Statement then
2148 Error_Msg_N
2149 ("extended return statement cannot be nested (use `RETURN;`)",
2150 N);
2151
2152 -- Case of a simple return statement with a value inside extended
2153 -- return statement.
2154
2155 else
2156 Error_Msg_N
2157 ("return nested in extended return statement cannot return "
2158 & "value (use `RETURN;`)", N);
2159 end if;
2160 end if;
2161
2162 else
2163 Error_Msg_N ("illegal context for return statement", N);
2164 end if;
2165
2166 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2167 Analyze_Function_Return (N);
2168
2169 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2170 Set_Return_Present (Scope_Id);
2171 end if;
2172
2173 if Nkind (N) = N_Extended_Return_Statement then
2174 End_Scope;
2175 end if;
2176
2177 Kill_Current_Values (Last_Assignment_Only => True);
2178 Check_Unreachable_Code (N);
2179
2180 Analyze_Dimension (N);
2181 end Analyze_Return_Statement;
2182
2183 -------------------------------------
2184 -- Analyze_Simple_Return_Statement --
2185 -------------------------------------
2186
2187 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2188 begin
2189 if Present (Expression (N)) then
2190 Mark_Coextensions (N, Expression (N));
2191 end if;
2192
2193 Analyze_Return_Statement (N);
2194 end Analyze_Simple_Return_Statement;
2195
2196 -------------------------
2197 -- Analyze_Return_Type --
2198 -------------------------
2199
2200 procedure Analyze_Return_Type (N : Node_Id) is
2201 Designator : constant Entity_Id := Defining_Entity (N);
2202 Typ : Entity_Id := Empty;
2203
2204 begin
2205 -- Normal case where result definition does not indicate an error
2206
2207 if Result_Definition (N) /= Error then
2208 if Nkind (Result_Definition (N)) = N_Access_Definition then
2209 Check_SPARK_05_Restriction
2210 ("access result is not allowed", Result_Definition (N));
2211
2212 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2213
2214 declare
2215 AD : constant Node_Id :=
2216 Access_To_Subprogram_Definition (Result_Definition (N));
2217 begin
2218 if Present (AD) and then Protected_Present (AD) then
2219 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2220 else
2221 Typ := Access_Definition (N, Result_Definition (N));
2222 end if;
2223 end;
2224
2225 Set_Parent (Typ, Result_Definition (N));
2226 Set_Is_Local_Anonymous_Access (Typ);
2227 Set_Etype (Designator, Typ);
2228
2229 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2230
2231 Null_Exclusion_Static_Checks (N);
2232
2233 -- Subtype_Mark case
2234
2235 else
2236 Find_Type (Result_Definition (N));
2237 Typ := Entity (Result_Definition (N));
2238 Set_Etype (Designator, Typ);
2239
2240 -- Unconstrained array as result is not allowed in SPARK
2241
2242 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2243 Check_SPARK_05_Restriction
2244 ("returning an unconstrained array is not allowed",
2245 Result_Definition (N));
2246 end if;
2247
2248 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2249
2250 Null_Exclusion_Static_Checks (N);
2251
2252 -- If a null exclusion is imposed on the result type, then create
2253 -- a null-excluding itype (an access subtype) and use it as the
2254 -- function's Etype. Note that the null exclusion checks are done
2255 -- right before this, because they don't get applied to types that
2256 -- do not come from source.
2257
2258 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2259 Set_Etype (Designator,
2260 Create_Null_Excluding_Itype
2261 (T => Typ,
2262 Related_Nod => N,
2263 Scope_Id => Scope (Current_Scope)));
2264
2265 -- The new subtype must be elaborated before use because
2266 -- it is visible outside of the function. However its base
2267 -- type may not be frozen yet, so the reference that will
2268 -- force elaboration must be attached to the freezing of
2269 -- the base type.
2270
2271 -- If the return specification appears on a proper body,
2272 -- the subtype will have been created already on the spec.
2273
2274 if Is_Frozen (Typ) then
2275 if Nkind (Parent (N)) = N_Subprogram_Body
2276 and then Nkind (Parent (Parent (N))) = N_Subunit
2277 then
2278 null;
2279 else
2280 Build_Itype_Reference (Etype (Designator), Parent (N));
2281 end if;
2282
2283 else
2284 Ensure_Freeze_Node (Typ);
2285
2286 declare
2287 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2288 begin
2289 Set_Itype (IR, Etype (Designator));
2290 Append_Freeze_Actions (Typ, New_List (IR));
2291 end;
2292 end if;
2293
2294 else
2295 Set_Etype (Designator, Typ);
2296 end if;
2297
2298 if Ekind (Typ) = E_Incomplete_Type
2299 or else (Is_Class_Wide_Type (Typ)
2300 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2301 then
2302 -- AI05-0151: Tagged incomplete types are allowed in all formal
2303 -- parts. Untagged incomplete types are not allowed in bodies.
2304 -- As a consequence, limited views cannot appear in a basic
2305 -- declaration that is itself within a body, because there is
2306 -- no point at which the non-limited view will become visible.
2307
2308 if Ada_Version >= Ada_2012 then
2309 if From_Limited_With (Typ) and then In_Package_Body then
2310 Error_Msg_NE
2311 ("invalid use of incomplete type&",
2312 Result_Definition (N), Typ);
2313
2314 -- The return type of a subprogram body cannot be of a
2315 -- formal incomplete type.
2316
2317 elsif Is_Generic_Type (Typ)
2318 and then Nkind (Parent (N)) = N_Subprogram_Body
2319 then
2320 Error_Msg_N
2321 ("return type cannot be a formal incomplete type",
2322 Result_Definition (N));
2323
2324 elsif Is_Class_Wide_Type (Typ)
2325 and then Is_Generic_Type (Root_Type (Typ))
2326 and then Nkind (Parent (N)) = N_Subprogram_Body
2327 then
2328 Error_Msg_N
2329 ("return type cannot be a formal incomplete type",
2330 Result_Definition (N));
2331
2332 elsif Is_Tagged_Type (Typ) then
2333 null;
2334
2335 -- Use is legal in a thunk generated for an operation
2336 -- inherited from a progenitor.
2337
2338 elsif Is_Thunk (Designator)
2339 and then Present (Non_Limited_View (Typ))
2340 then
2341 null;
2342
2343 elsif Nkind (Parent (N)) = N_Subprogram_Body
2344 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2345 N_Entry_Body)
2346 then
2347 Error_Msg_NE
2348 ("invalid use of untagged incomplete type&",
2349 Designator, Typ);
2350 end if;
2351
2352 -- The type must be completed in the current package. This
2353 -- is checked at the end of the package declaration when
2354 -- Taft-amendment types are identified. If the return type
2355 -- is class-wide, there is no required check, the type can
2356 -- be a bona fide TAT.
2357
2358 if Ekind (Scope (Current_Scope)) = E_Package
2359 and then In_Private_Part (Scope (Current_Scope))
2360 and then not Is_Class_Wide_Type (Typ)
2361 then
2362 Append_Elmt (Designator, Private_Dependents (Typ));
2363 end if;
2364
2365 else
2366 Error_Msg_NE
2367 ("invalid use of incomplete type&", Designator, Typ);
2368 end if;
2369 end if;
2370 end if;
2371
2372 -- Case where result definition does indicate an error
2373
2374 else
2375 Set_Etype (Designator, Any_Type);
2376 end if;
2377 end Analyze_Return_Type;
2378
2379 -----------------------------
2380 -- Analyze_Subprogram_Body --
2381 -----------------------------
2382
2383 procedure Analyze_Subprogram_Body (N : Node_Id) is
2384 Loc : constant Source_Ptr := Sloc (N);
2385 Body_Spec : constant Node_Id := Specification (N);
2386 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2387
2388 begin
2389 if Debug_Flag_C then
2390 Write_Str ("==> subprogram body ");
2391 Write_Name (Chars (Body_Id));
2392 Write_Str (" from ");
2393 Write_Location (Loc);
2394 Write_Eol;
2395 Indent;
2396 end if;
2397
2398 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2399
2400 -- The real work is split out into the helper, so it can do "return;"
2401 -- without skipping the debug output:
2402
2403 Analyze_Subprogram_Body_Helper (N);
2404
2405 if Debug_Flag_C then
2406 Outdent;
2407 Write_Str ("<== subprogram body ");
2408 Write_Name (Chars (Body_Id));
2409 Write_Str (" from ");
2410 Write_Location (Loc);
2411 Write_Eol;
2412 end if;
2413 end Analyze_Subprogram_Body;
2414
2415 ------------------------------------
2416 -- Analyze_Subprogram_Body_Helper --
2417 ------------------------------------
2418
2419 -- This procedure is called for regular subprogram bodies, generic bodies,
2420 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2421 -- specification matters, and is used to create a proper declaration for
2422 -- the subprogram, or to perform conformance checks.
2423
2424 -- WARNING: This routine manages Ghost regions. Return statements must be
2425 -- replaced by gotos that jump to the end of the routine and restore the
2426 -- Ghost mode.
2427
2428 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2429 Body_Spec : Node_Id := Specification (N);
2430 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2431 Loc : constant Source_Ptr := Sloc (N);
2432 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2433
2434 Conformant : Boolean;
2435 Desig_View : Entity_Id := Empty;
2436 Exch_Views : Elist_Id := No_Elist;
2437 HSS : Node_Id;
2438 Mask_Types : Elist_Id := No_Elist;
2439 Prot_Typ : Entity_Id := Empty;
2440 Spec_Decl : Node_Id := Empty;
2441 Spec_Id : Entity_Id;
2442
2443 Last_Real_Spec_Entity : Entity_Id := Empty;
2444 -- When we analyze a separate spec, the entity chain ends up containing
2445 -- the formals, as well as any itypes generated during analysis of the
2446 -- default expressions for parameters, or the arguments of associated
2447 -- precondition/postcondition pragmas (which are analyzed in the context
2448 -- of the spec since they have visibility on formals).
2449 --
2450 -- These entities belong with the spec and not the body. However we do
2451 -- the analysis of the body in the context of the spec (again to obtain
2452 -- visibility to the formals), and all the entities generated during
2453 -- this analysis end up also chained to the entity chain of the spec.
2454 -- But they really belong to the body, and there is circuitry to move
2455 -- them from the spec to the body.
2456 --
2457 -- However, when we do this move, we don't want to move the real spec
2458 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2459 -- variable points to the last real spec entity, so we only move those
2460 -- chained beyond that point. It is initialized to Empty to deal with
2461 -- the case where there is no separate spec.
2462
2463 function Body_Has_Contract return Boolean;
2464 -- Check whether unanalyzed body has an aspect or pragma that may
2465 -- generate a SPARK contract.
2466
2467 function Body_Has_SPARK_Mode_On return Boolean;
2468 -- Check whether SPARK_Mode On applies to the subprogram body, either
2469 -- because it is specified directly on the body, or because it is
2470 -- inherited from the enclosing subprogram or package.
2471
2472 procedure Build_Subprogram_Declaration;
2473 -- Create a matching subprogram declaration for subprogram body N
2474
2475 procedure Check_Anonymous_Return;
2476 -- Ada 2005: if a function returns an access type that denotes a task,
2477 -- or a type that contains tasks, we must create a master entity for
2478 -- the anonymous type, which typically will be used in an allocator
2479 -- in the body of the function.
2480
2481 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2482 -- Look ahead to recognize a pragma that may appear after the body.
2483 -- If there is a previous spec, check that it appears in the same
2484 -- declarative part. If the pragma is Inline_Always, perform inlining
2485 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2486 -- If the body acts as a spec, and inlining is required, we create a
2487 -- subprogram declaration for it, in order to attach the body to inline.
2488 -- If pragma does not appear after the body, check whether there is
2489 -- an inline pragma before any local declarations.
2490
2491 procedure Check_Missing_Return;
2492 -- Checks for a function with a no return statements, and also performs
2493 -- the warning checks implemented by Check_Returns. In formal mode, also
2494 -- verify that a function ends with a RETURN and that a procedure does
2495 -- not contain any RETURN.
2496
2497 function Disambiguate_Spec return Entity_Id;
2498 -- When a primitive is declared between the private view and the full
2499 -- view of a concurrent type which implements an interface, a special
2500 -- mechanism is used to find the corresponding spec of the primitive
2501 -- body.
2502
2503 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2504 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2505 -- incomplete types coming from a limited context and replace their
2506 -- limited views with the non-limited ones. Return the list of changes
2507 -- to be used to undo the transformation.
2508
2509 function Is_Private_Concurrent_Primitive
2510 (Subp_Id : Entity_Id) return Boolean;
2511 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2512 -- type that implements an interface and has a private view.
2513
2514 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2515 -- N is the body generated for an expression function that is not a
2516 -- completion and Spec_Id the defining entity of its spec. Mark all
2517 -- the not-yet-frozen types referenced by the simple return statement
2518 -- of the function as formally frozen.
2519
2520 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2521 -- Undo the transformation done by Exchange_Limited_Views.
2522
2523 procedure Set_Trivial_Subprogram (N : Node_Id);
2524 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2525 -- subprogram whose body is being analyzed. N is the statement node
2526 -- causing the flag to be set, if the following statement is a return
2527 -- of an entity, we mark the entity as set in source to suppress any
2528 -- warning on the stylized use of function stubs with a dummy return.
2529
2530 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2531 -- Undo the transformation done by Mask_Unfrozen_Types
2532
2533 procedure Verify_Overriding_Indicator;
2534 -- If there was a previous spec, the entity has been entered in the
2535 -- current scope previously. If the body itself carries an overriding
2536 -- indicator, check that it is consistent with the known status of the
2537 -- entity.
2538
2539 -----------------------
2540 -- Body_Has_Contract --
2541 -----------------------
2542
2543 function Body_Has_Contract return Boolean is
2544 Decls : constant List_Id := Declarations (N);
2545 Item : Node_Id;
2546
2547 begin
2548 -- Check for aspects that may generate a contract
2549
2550 if Present (Aspect_Specifications (N)) then
2551 Item := First (Aspect_Specifications (N));
2552 while Present (Item) loop
2553 if Is_Subprogram_Contract_Annotation (Item) then
2554 return True;
2555 end if;
2556
2557 Next (Item);
2558 end loop;
2559 end if;
2560
2561 -- Check for pragmas that may generate a contract
2562
2563 if Present (Decls) then
2564 Item := First (Decls);
2565 while Present (Item) loop
2566 if Nkind (Item) = N_Pragma
2567 and then Is_Subprogram_Contract_Annotation (Item)
2568 then
2569 return True;
2570 end if;
2571
2572 Next (Item);
2573 end loop;
2574 end if;
2575
2576 return False;
2577 end Body_Has_Contract;
2578
2579 ----------------------------
2580 -- Body_Has_SPARK_Mode_On --
2581 ----------------------------
2582
2583 function Body_Has_SPARK_Mode_On return Boolean is
2584 Decls : constant List_Id := Declarations (N);
2585 Item : Node_Id;
2586
2587 begin
2588 -- Check for SPARK_Mode aspect
2589
2590 if Present (Aspect_Specifications (N)) then
2591 Item := First (Aspect_Specifications (N));
2592 while Present (Item) loop
2593 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2594 return Get_SPARK_Mode_From_Annotation (Item) = On;
2595 end if;
2596
2597 Next (Item);
2598 end loop;
2599 end if;
2600
2601 -- Check for SPARK_Mode pragma
2602
2603 if Present (Decls) then
2604 Item := First (Decls);
2605 while Present (Item) loop
2606
2607 -- Pragmas that apply to a subprogram body are usually grouped
2608 -- together. Look for a potential pragma SPARK_Mode among them.
2609
2610 if Nkind (Item) = N_Pragma then
2611 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2612 return Get_SPARK_Mode_From_Annotation (Item) = On;
2613 end if;
2614
2615 -- Otherwise the first non-pragma declarative item terminates
2616 -- the region where pragma SPARK_Mode may appear.
2617
2618 else
2619 exit;
2620 end if;
2621
2622 Next (Item);
2623 end loop;
2624 end if;
2625
2626 -- Otherwise, the applicable SPARK_Mode is inherited from the
2627 -- enclosing subprogram or package.
2628
2629 return SPARK_Mode = On;
2630 end Body_Has_SPARK_Mode_On;
2631
2632 ----------------------------------
2633 -- Build_Subprogram_Declaration --
2634 ----------------------------------
2635
2636 procedure Build_Subprogram_Declaration is
2637 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2638 -- Relocate certain categorization pragmas from the declarative list
2639 -- of subprogram body From and insert them after node To. The pragmas
2640 -- in question are:
2641 -- Ghost
2642 -- Volatile_Function
2643 -- Also copy pragma SPARK_Mode if present in the declarative list
2644 -- of subprogram body From and insert it after node To. This pragma
2645 -- should not be moved, as it applies to the body too.
2646
2647 ------------------
2648 -- Move_Pragmas --
2649 ------------------
2650
2651 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2652 Decl : Node_Id;
2653 Next_Decl : Node_Id;
2654
2655 begin
2656 pragma Assert (Nkind (From) = N_Subprogram_Body);
2657
2658 -- The destination node must be part of a list, as the pragmas are
2659 -- inserted after it.
2660
2661 pragma Assert (Is_List_Member (To));
2662
2663 -- Inspect the declarations of the subprogram body looking for
2664 -- specific pragmas.
2665
2666 Decl := First (Declarations (N));
2667 while Present (Decl) loop
2668 Next_Decl := Next (Decl);
2669
2670 if Nkind (Decl) = N_Pragma then
2671 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2672 Insert_After (To, New_Copy_Tree (Decl));
2673
2674 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2675 Name_Ghost,
2676 Name_Volatile_Function)
2677 then
2678 Remove (Decl);
2679 Insert_After (To, Decl);
2680 end if;
2681 end if;
2682
2683 Decl := Next_Decl;
2684 end loop;
2685 end Move_Pragmas;
2686
2687 -- Local variables
2688
2689 Decl : Node_Id;
2690 Subp_Decl : Node_Id;
2691
2692 -- Start of processing for Build_Subprogram_Declaration
2693
2694 begin
2695 -- Create a matching subprogram spec using the profile of the body.
2696 -- The structure of the tree is identical, but has new entities for
2697 -- the defining unit name and formal parameters.
2698
2699 Subp_Decl :=
2700 Make_Subprogram_Declaration (Loc,
2701 Specification => Copy_Subprogram_Spec (Body_Spec));
2702 Set_Comes_From_Source (Subp_Decl, True);
2703
2704 -- Also mark parameters as coming from source
2705
2706 if Present (Parameter_Specifications (Specification (Subp_Decl))) then
2707 declare
2708 Form : Entity_Id;
2709 begin
2710 Form :=
2711 First (Parameter_Specifications (Specification (Subp_Decl)));
2712
2713 while Present (Form) loop
2714 Set_Comes_From_Source (Defining_Identifier (Form), True);
2715 Next (Form);
2716 end loop;
2717 end;
2718 end if;
2719
2720 -- Relocate the aspects and relevant pragmas from the subprogram body
2721 -- to the generated spec because it acts as the initial declaration.
2722
2723 Insert_Before (N, Subp_Decl);
2724 Move_Aspects (N, To => Subp_Decl);
2725 Move_Pragmas (N, To => Subp_Decl);
2726
2727 -- Ensure that the generated corresponding spec and original body
2728 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2729 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2730 -- correctly set for local subprograms.
2731
2732 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2733
2734 Analyze (Subp_Decl);
2735
2736 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2737 -- the body since the expander may generate calls using that entity.
2738 -- Required to ensure that Expand_Call rewrites calls to this
2739 -- function by calls to the built procedure.
2740
2741 if Modify_Tree_For_C
2742 and then Nkind (Body_Spec) = N_Function_Specification
2743 and then
2744 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2745 then
2746 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2747 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2748 Corresponding_Procedure
2749 (Defining_Entity (Specification (Subp_Decl))));
2750 end if;
2751
2752 -- Analyze any relocated source pragmas or pragmas created for aspect
2753 -- specifications.
2754
2755 Decl := Next (Subp_Decl);
2756 while Present (Decl) loop
2757
2758 -- Stop the search for pragmas once the body has been reached as
2759 -- this terminates the region where pragmas may appear.
2760
2761 if Decl = N then
2762 exit;
2763
2764 elsif Nkind (Decl) = N_Pragma then
2765 Analyze (Decl);
2766 end if;
2767
2768 Next (Decl);
2769 end loop;
2770
2771 Spec_Id := Defining_Entity (Subp_Decl);
2772 Set_Corresponding_Spec (N, Spec_Id);
2773
2774 -- Mark the generated spec as a source construct to ensure that all
2775 -- calls to it are properly registered in ALI files for GNATprove.
2776
2777 Set_Comes_From_Source (Spec_Id, True);
2778
2779 -- Ensure that the specs of the subprogram declaration and its body
2780 -- are identical, otherwise they will appear non-conformant due to
2781 -- rewritings in the default values of formal parameters.
2782
2783 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2784 Set_Specification (N, Body_Spec);
2785 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2786 end Build_Subprogram_Declaration;
2787
2788 ----------------------------
2789 -- Check_Anonymous_Return --
2790 ----------------------------
2791
2792 procedure Check_Anonymous_Return is
2793 Decl : Node_Id;
2794 Par : Node_Id;
2795 Scop : Entity_Id;
2796
2797 begin
2798 if Present (Spec_Id) then
2799 Scop := Spec_Id;
2800 else
2801 Scop := Body_Id;
2802 end if;
2803
2804 if Ekind (Scop) = E_Function
2805 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2806 and then not Is_Thunk (Scop)
2807
2808 -- Skip internally built functions which handle the case of
2809 -- a null access (see Expand_Interface_Conversion)
2810
2811 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2812 and then not Comes_From_Source (Parent (Scop)))
2813
2814 and then (Has_Task (Designated_Type (Etype (Scop)))
2815 or else
2816 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2817 and then
2818 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2819 and then Expander_Active
2820
2821 -- Avoid cases with no tasking support
2822
2823 and then RTE_Available (RE_Current_Master)
2824 and then not Restriction_Active (No_Task_Hierarchy)
2825 then
2826 Decl :=
2827 Make_Object_Declaration (Loc,
2828 Defining_Identifier =>
2829 Make_Defining_Identifier (Loc, Name_uMaster),
2830 Constant_Present => True,
2831 Object_Definition =>
2832 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2833 Expression =>
2834 Make_Explicit_Dereference (Loc,
2835 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2836
2837 if Present (Declarations (N)) then
2838 Prepend (Decl, Declarations (N));
2839 else
2840 Set_Declarations (N, New_List (Decl));
2841 end if;
2842
2843 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2844 Set_Has_Master_Entity (Scop);
2845
2846 -- Now mark the containing scope as a task master
2847
2848 Par := N;
2849 while Nkind (Par) /= N_Compilation_Unit loop
2850 Par := Parent (Par);
2851 pragma Assert (Present (Par));
2852
2853 -- If we fall off the top, we are at the outer level, and
2854 -- the environment task is our effective master, so nothing
2855 -- to mark.
2856
2857 if Nkind_In
2858 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2859 then
2860 Set_Is_Task_Master (Par, True);
2861 exit;
2862 end if;
2863 end loop;
2864 end if;
2865 end Check_Anonymous_Return;
2866
2867 -------------------------
2868 -- Check_Inline_Pragma --
2869 -------------------------
2870
2871 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2872 Prag : Node_Id;
2873 Plist : List_Id;
2874
2875 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2876 -- True when N is a pragma Inline or Inline_Always that applies
2877 -- to this subprogram.
2878
2879 -----------------------
2880 -- Is_Inline_Pragma --
2881 -----------------------
2882
2883 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2884 begin
2885 if Nkind (N) = N_Pragma
2886 and then
2887 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2888 or else (Pragma_Name_Unmapped (N) = Name_Inline
2889 and then
2890 (Front_End_Inlining or else Optimization_Level > 0)))
2891 and then Present (Pragma_Argument_Associations (N))
2892 then
2893 declare
2894 Pragma_Arg : Node_Id :=
2895 Expression (First (Pragma_Argument_Associations (N)));
2896 begin
2897 if Nkind (Pragma_Arg) = N_Selected_Component then
2898 Pragma_Arg := Selector_Name (Pragma_Arg);
2899 end if;
2900
2901 return Chars (Pragma_Arg) = Chars (Body_Id);
2902 end;
2903
2904 else
2905 return False;
2906 end if;
2907 end Is_Inline_Pragma;
2908
2909 -- Start of processing for Check_Inline_Pragma
2910
2911 begin
2912 if not Expander_Active then
2913 return;
2914 end if;
2915
2916 if Is_List_Member (N)
2917 and then Present (Next (N))
2918 and then Is_Inline_Pragma (Next (N))
2919 then
2920 Prag := Next (N);
2921
2922 elsif Nkind (N) /= N_Subprogram_Body_Stub
2923 and then Present (Declarations (N))
2924 and then Is_Inline_Pragma (First (Declarations (N)))
2925 then
2926 Prag := First (Declarations (N));
2927
2928 else
2929 Prag := Empty;
2930 end if;
2931
2932 if Present (Prag) then
2933 if Present (Spec_Id) then
2934 if Is_List_Member (N)
2935 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2936 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2937 then
2938 Analyze (Prag);
2939 end if;
2940
2941 else
2942 -- Create a subprogram declaration, to make treatment uniform.
2943 -- Make the sloc of the subprogram name that of the entity in
2944 -- the body, so that style checks find identical strings.
2945
2946 declare
2947 Subp : constant Entity_Id :=
2948 Make_Defining_Identifier
2949 (Sloc (Body_Id), Chars (Body_Id));
2950 Decl : constant Node_Id :=
2951 Make_Subprogram_Declaration (Loc,
2952 Specification =>
2953 New_Copy_Tree (Specification (N)));
2954
2955 begin
2956 -- Link the body and the generated spec
2957
2958 Set_Corresponding_Body (Decl, Body_Id);
2959 Set_Corresponding_Spec (N, Subp);
2960
2961 Set_Defining_Unit_Name (Specification (Decl), Subp);
2962
2963 -- To ensure proper coverage when body is inlined, indicate
2964 -- whether the subprogram comes from source.
2965
2966 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2967
2968 if Present (First_Formal (Body_Id)) then
2969 Plist := Copy_Parameter_List (Body_Id);
2970 Set_Parameter_Specifications
2971 (Specification (Decl), Plist);
2972 end if;
2973
2974 -- Move aspects to the new spec
2975
2976 if Has_Aspects (N) then
2977 Move_Aspects (N, To => Decl);
2978 end if;
2979
2980 Insert_Before (N, Decl);
2981 Analyze (Decl);
2982 Analyze (Prag);
2983 Set_Has_Pragma_Inline (Subp);
2984
2985 if Pragma_Name (Prag) = Name_Inline_Always then
2986 Set_Is_Inlined (Subp);
2987 Set_Has_Pragma_Inline_Always (Subp);
2988 end if;
2989
2990 -- Prior to copying the subprogram body to create a template
2991 -- for it for subsequent inlining, remove the pragma from
2992 -- the current body so that the copy that will produce the
2993 -- new body will start from a completely unanalyzed tree.
2994
2995 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2996 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2997 end if;
2998
2999 Spec := Subp;
3000 end;
3001 end if;
3002 end if;
3003 end Check_Inline_Pragma;
3004
3005 --------------------------
3006 -- Check_Missing_Return --
3007 --------------------------
3008
3009 procedure Check_Missing_Return is
3010 Id : Entity_Id;
3011 Missing_Ret : Boolean;
3012
3013 begin
3014 if Nkind (Body_Spec) = N_Function_Specification then
3015 if Present (Spec_Id) then
3016 Id := Spec_Id;
3017 else
3018 Id := Body_Id;
3019 end if;
3020
3021 if Return_Present (Id) then
3022 Check_Returns (HSS, 'F', Missing_Ret);
3023
3024 if Missing_Ret then
3025 Set_Has_Missing_Return (Id);
3026 end if;
3027
3028 -- Within a premature instantiation of a package with no body, we
3029 -- build completions of the functions therein, with a Raise
3030 -- statement. No point in complaining about a missing return in
3031 -- this case.
3032
3033 elsif Ekind (Id) = E_Function
3034 and then In_Instance
3035 and then Present (Statements (HSS))
3036 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
3037 then
3038 null;
3039
3040 elsif Is_Generic_Subprogram (Id)
3041 or else not Is_Machine_Code_Subprogram (Id)
3042 then
3043 Error_Msg_N ("missing RETURN statement in function body", N);
3044 end if;
3045
3046 -- If procedure with No_Return, check returns
3047
3048 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3049 if Present (Spec_Id) then
3050 Id := Spec_Id;
3051 else
3052 Id := Body_Id;
3053 end if;
3054
3055 if No_Return (Id) then
3056 Check_Returns (HSS, 'P', Missing_Ret, Id);
3057 end if;
3058 end if;
3059
3060 -- Special checks in SPARK mode
3061
3062 if Nkind (Body_Spec) = N_Function_Specification then
3063
3064 -- In SPARK mode, last statement of a function should be a return
3065
3066 declare
3067 Stat : constant Node_Id := Last_Source_Statement (HSS);
3068 begin
3069 if Present (Stat)
3070 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3071 N_Extended_Return_Statement)
3072 then
3073 Check_SPARK_05_Restriction
3074 ("last statement in function should be RETURN", Stat);
3075 end if;
3076 end;
3077
3078 -- In SPARK mode, verify that a procedure has no return
3079
3080 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3081 if Present (Spec_Id) then
3082 Id := Spec_Id;
3083 else
3084 Id := Body_Id;
3085 end if;
3086
3087 -- Would be nice to point to return statement here, can we
3088 -- borrow the Check_Returns procedure here ???
3089
3090 if Return_Present (Id) then
3091 Check_SPARK_05_Restriction
3092 ("procedure should not have RETURN", N);
3093 end if;
3094 end if;
3095 end Check_Missing_Return;
3096
3097 -----------------------
3098 -- Disambiguate_Spec --
3099 -----------------------
3100
3101 function Disambiguate_Spec return Entity_Id is
3102 Priv_Spec : Entity_Id;
3103 Spec_N : Entity_Id;
3104
3105 procedure Replace_Types (To_Corresponding : Boolean);
3106 -- Depending on the flag, replace the type of formal parameters of
3107 -- Body_Id if it is a concurrent type implementing interfaces with
3108 -- the corresponding record type or the other way around.
3109
3110 procedure Replace_Types (To_Corresponding : Boolean) is
3111 Formal : Entity_Id;
3112 Formal_Typ : Entity_Id;
3113
3114 begin
3115 Formal := First_Formal (Body_Id);
3116 while Present (Formal) loop
3117 Formal_Typ := Etype (Formal);
3118
3119 if Is_Class_Wide_Type (Formal_Typ) then
3120 Formal_Typ := Root_Type (Formal_Typ);
3121 end if;
3122
3123 -- From concurrent type to corresponding record
3124
3125 if To_Corresponding then
3126 if Is_Concurrent_Type (Formal_Typ)
3127 and then Present (Corresponding_Record_Type (Formal_Typ))
3128 and then
3129 Present (Interfaces
3130 (Corresponding_Record_Type (Formal_Typ)))
3131 then
3132 Set_Etype (Formal,
3133 Corresponding_Record_Type (Formal_Typ));
3134 end if;
3135
3136 -- From corresponding record to concurrent type
3137
3138 else
3139 if Is_Concurrent_Record_Type (Formal_Typ)
3140 and then Present (Interfaces (Formal_Typ))
3141 then
3142 Set_Etype (Formal,
3143 Corresponding_Concurrent_Type (Formal_Typ));
3144 end if;
3145 end if;
3146
3147 Next_Formal (Formal);
3148 end loop;
3149 end Replace_Types;
3150
3151 -- Start of processing for Disambiguate_Spec
3152
3153 begin
3154 -- Try to retrieve the specification of the body as is. All error
3155 -- messages are suppressed because the body may not have a spec in
3156 -- its current state.
3157
3158 Spec_N := Find_Corresponding_Spec (N, False);
3159
3160 -- It is possible that this is the body of a primitive declared
3161 -- between a private and a full view of a concurrent type. The
3162 -- controlling parameter of the spec carries the concurrent type,
3163 -- not the corresponding record type as transformed by Analyze_
3164 -- Subprogram_Specification. In such cases, we undo the change
3165 -- made by the analysis of the specification and try to find the
3166 -- spec again.
3167
3168 -- Note that wrappers already have their corresponding specs and
3169 -- bodies set during their creation, so if the candidate spec is
3170 -- a wrapper, then we definitely need to swap all types to their
3171 -- original concurrent status.
3172
3173 if No (Spec_N)
3174 or else Is_Primitive_Wrapper (Spec_N)
3175 then
3176 -- Restore all references of corresponding record types to the
3177 -- original concurrent types.
3178
3179 Replace_Types (To_Corresponding => False);
3180 Priv_Spec := Find_Corresponding_Spec (N, False);
3181
3182 -- The current body truly belongs to a primitive declared between
3183 -- a private and a full view. We leave the modified body as is,
3184 -- and return the true spec.
3185
3186 if Present (Priv_Spec)
3187 and then Is_Private_Primitive (Priv_Spec)
3188 then
3189 return Priv_Spec;
3190 end if;
3191
3192 -- In case that this is some sort of error, restore the original
3193 -- state of the body.
3194
3195 Replace_Types (To_Corresponding => True);
3196 end if;
3197
3198 return Spec_N;
3199 end Disambiguate_Spec;
3200
3201 ----------------------------
3202 -- Exchange_Limited_Views --
3203 ----------------------------
3204
3205 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3206 Result : Elist_Id := No_Elist;
3207
3208 procedure Detect_And_Exchange (Id : Entity_Id);
3209 -- Determine whether Id's type denotes an incomplete type associated
3210 -- with a limited with clause and exchange the limited view with the
3211 -- non-limited one when available. Note that the non-limited view
3212 -- may exist because of a with_clause in another unit in the context,
3213 -- but cannot be used because the current view of the enclosing unit
3214 -- is still a limited view.
3215
3216 -------------------------
3217 -- Detect_And_Exchange --
3218 -------------------------
3219
3220 procedure Detect_And_Exchange (Id : Entity_Id) is
3221 Typ : constant Entity_Id := Etype (Id);
3222 begin
3223 if From_Limited_With (Typ)
3224 and then Has_Non_Limited_View (Typ)
3225 and then not From_Limited_With (Scope (Typ))
3226 then
3227 if No (Result) then
3228 Result := New_Elmt_List;
3229 end if;
3230
3231 Prepend_Elmt (Typ, Result);
3232 Prepend_Elmt (Id, Result);
3233 Set_Etype (Id, Non_Limited_View (Typ));
3234 end if;
3235 end Detect_And_Exchange;
3236
3237 -- Local variables
3238
3239 Formal : Entity_Id;
3240
3241 -- Start of processing for Exchange_Limited_Views
3242
3243 begin
3244 -- Do not process subprogram bodies as they already use the non-
3245 -- limited view of types.
3246
3247 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3248 return No_Elist;
3249 end if;
3250
3251 -- Examine all formals and swap views when applicable
3252
3253 Formal := First_Formal (Subp_Id);
3254 while Present (Formal) loop
3255 Detect_And_Exchange (Formal);
3256
3257 Next_Formal (Formal);
3258 end loop;
3259
3260 -- Process the return type of a function
3261
3262 if Ekind (Subp_Id) = E_Function then
3263 Detect_And_Exchange (Subp_Id);
3264 end if;
3265
3266 return Result;
3267 end Exchange_Limited_Views;
3268
3269 -------------------------------------
3270 -- Is_Private_Concurrent_Primitive --
3271 -------------------------------------
3272
3273 function Is_Private_Concurrent_Primitive
3274 (Subp_Id : Entity_Id) return Boolean
3275 is
3276 Formal_Typ : Entity_Id;
3277
3278 begin
3279 if Present (First_Formal (Subp_Id)) then
3280 Formal_Typ := Etype (First_Formal (Subp_Id));
3281
3282 if Is_Concurrent_Record_Type (Formal_Typ) then
3283 if Is_Class_Wide_Type (Formal_Typ) then
3284 Formal_Typ := Root_Type (Formal_Typ);
3285 end if;
3286
3287 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3288 end if;
3289
3290 -- The type of the first formal is a concurrent tagged type with
3291 -- a private view.
3292
3293 return
3294 Is_Concurrent_Type (Formal_Typ)
3295 and then Is_Tagged_Type (Formal_Typ)
3296 and then Has_Private_Declaration (Formal_Typ);
3297 end if;
3298
3299 return False;
3300 end Is_Private_Concurrent_Primitive;
3301
3302 -------------------------
3303 -- Mask_Unfrozen_Types --
3304 -------------------------
3305
3306 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3307 Result : Elist_Id := No_Elist;
3308
3309 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3310 -- Mask all types referenced in the subtree rooted at Node
3311
3312 --------------------
3313 -- Mask_Type_Refs --
3314 --------------------
3315
3316 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3317 procedure Mask_Type (Typ : Entity_Id);
3318 -- ??? what does this do?
3319
3320 ---------------
3321 -- Mask_Type --
3322 ---------------
3323
3324 procedure Mask_Type (Typ : Entity_Id) is
3325 begin
3326 -- Skip Itypes created by the preanalysis
3327
3328 if Is_Itype (Typ)
3329 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3330 then
3331 return;
3332 end if;
3333
3334 if not Is_Frozen (Typ) then
3335 if Scope (Typ) /= Current_Scope then
3336 Set_Is_Frozen (Typ);
3337 Append_New_Elmt (Typ, Result);
3338 else
3339 Freeze_Before (N, Typ);
3340 end if;
3341 end if;
3342 end Mask_Type;
3343
3344 -- Start of processing for Mask_Type_Refs
3345
3346 begin
3347 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3348 Mask_Type (Etype (Entity (Node)));
3349
3350 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3351 Mask_Type (Scope (Entity (Node)));
3352 end if;
3353
3354 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3355 and then Present (Etype (Node))
3356 then
3357 Mask_Type (Etype (Node));
3358 end if;
3359
3360 return OK;
3361 end Mask_Type_Refs;
3362
3363 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3364
3365 -- Local variables
3366
3367 Return_Stmt : constant Node_Id :=
3368 First (Statements (Handled_Statement_Sequence (N)));
3369
3370 -- Start of processing for Mask_Unfrozen_Types
3371
3372 begin
3373 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3374
3375 Mask_References (Expression (Return_Stmt));
3376
3377 return Result;
3378 end Mask_Unfrozen_Types;
3379
3380 ---------------------------
3381 -- Restore_Limited_Views --
3382 ---------------------------
3383
3384 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3385 Elmt : Elmt_Id := First_Elmt (Restore_List);
3386 Id : Entity_Id;
3387
3388 begin
3389 while Present (Elmt) loop
3390 Id := Node (Elmt);
3391 Next_Elmt (Elmt);
3392 Set_Etype (Id, Node (Elmt));
3393 Next_Elmt (Elmt);
3394 end loop;
3395 end Restore_Limited_Views;
3396
3397 ----------------------------
3398 -- Set_Trivial_Subprogram --
3399 ----------------------------
3400
3401 procedure Set_Trivial_Subprogram (N : Node_Id) is
3402 Nxt : constant Node_Id := Next (N);
3403
3404 begin
3405 Set_Is_Trivial_Subprogram (Body_Id);
3406
3407 if Present (Spec_Id) then
3408 Set_Is_Trivial_Subprogram (Spec_Id);
3409 end if;
3410
3411 if Present (Nxt)
3412 and then Nkind (Nxt) = N_Simple_Return_Statement
3413 and then No (Next (Nxt))
3414 and then Present (Expression (Nxt))
3415 and then Is_Entity_Name (Expression (Nxt))
3416 then
3417 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3418 end if;
3419 end Set_Trivial_Subprogram;
3420
3421 ---------------------------
3422 -- Unmask_Unfrozen_Types --
3423 ---------------------------
3424
3425 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3426 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3427
3428 begin
3429 while Present (Elmt) loop
3430 Set_Is_Frozen (Node (Elmt), False);
3431 Next_Elmt (Elmt);
3432 end loop;
3433 end Unmask_Unfrozen_Types;
3434
3435 ---------------------------------
3436 -- Verify_Overriding_Indicator --
3437 ---------------------------------
3438
3439 procedure Verify_Overriding_Indicator is
3440 begin
3441 if Must_Override (Body_Spec) then
3442 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3443 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3444 then
3445 null;
3446
3447 -- Overridden controlled primitives may have had their
3448 -- Overridden_Operation field cleared according to the setting of
3449 -- the Is_Hidden flag. An issue arises, however, when analyzing
3450 -- an instance that may have manipulated the flag during
3451 -- expansion. As a result, we add an exception for this case.
3452
3453 elsif not Present (Overridden_Operation (Spec_Id))
3454 and then not (Nam_In (Chars (Spec_Id), Name_Adjust,
3455 Name_Finalize,
3456 Name_Initialize)
3457 and then In_Instance)
3458 then
3459 Error_Msg_NE
3460 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3461
3462 -- Overriding indicators aren't allowed for protected subprogram
3463 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3464 -- this to a warning if -gnatd.E is enabled.
3465
3466 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3467 Error_Msg_Warn := Error_To_Warning;
3468 Error_Msg_N
3469 ("<<overriding indicator not allowed for protected "
3470 & "subprogram body", Body_Spec);
3471 end if;
3472
3473 elsif Must_Not_Override (Body_Spec) then
3474 if Present (Overridden_Operation (Spec_Id)) then
3475 Error_Msg_NE
3476 ("subprogram& overrides inherited operation",
3477 Body_Spec, Spec_Id);
3478
3479 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3480 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3481 then
3482 Error_Msg_NE
3483 ("subprogram& overrides predefined operator ",
3484 Body_Spec, Spec_Id);
3485
3486 -- Overriding indicators aren't allowed for protected subprogram
3487 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3488 -- this to a warning if -gnatd.E is enabled.
3489
3490 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3491 Error_Msg_Warn := Error_To_Warning;
3492
3493 Error_Msg_N
3494 ("<<overriding indicator not allowed "
3495 & "for protected subprogram body", Body_Spec);
3496
3497 -- If this is not a primitive operation, then the overriding
3498 -- indicator is altogether illegal.
3499
3500 elsif not Is_Primitive (Spec_Id) then
3501 Error_Msg_N
3502 ("overriding indicator only allowed "
3503 & "if subprogram is primitive", Body_Spec);
3504 end if;
3505
3506 -- If checking the style rule and the operation overrides, then
3507 -- issue a warning about a missing overriding_indicator. Protected
3508 -- subprogram bodies are excluded from this style checking, since
3509 -- they aren't primitives (even though their declarations can
3510 -- override) and aren't allowed to have an overriding_indicator.
3511
3512 elsif Style_Check
3513 and then Present (Overridden_Operation (Spec_Id))
3514 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3515 then
3516 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3517 Style.Missing_Overriding (N, Body_Id);
3518
3519 elsif Style_Check
3520 and then Can_Override_Operator (Spec_Id)
3521 and then not In_Predefined_Unit (Spec_Id)
3522 then
3523 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3524 Style.Missing_Overriding (N, Body_Id);
3525 end if;
3526 end Verify_Overriding_Indicator;
3527
3528 -- Local variables
3529
3530 Body_Nod : Node_Id := Empty;
3531 Minimum_Acc_Objs : List_Id := No_List;
3532
3533 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3534 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3535 Saved_EA : constant Boolean := Expander_Active;
3536 Saved_ISMP : constant Boolean :=
3537 Ignore_SPARK_Mode_Pragmas_In_Instance;
3538 -- Save the Ghost and SPARK mode-related data to restore on exit
3539
3540 -- Start of processing for Analyze_Subprogram_Body_Helper
3541
3542 begin
3543 -- A [generic] subprogram body freezes the contract of the nearest
3544 -- enclosing package body and all other contracts encountered in the
3545 -- same declarative part up to and excluding the subprogram body:
3546
3547 -- package body Nearest_Enclosing_Package
3548 -- with Refined_State => (State => Constit)
3549 -- is
3550 -- Constit : ...;
3551
3552 -- procedure Freezes_Enclosing_Package_Body
3553 -- with Refined_Depends => (Input => Constit) ...
3554
3555 -- This ensures that any annotations referenced by the contract of the
3556 -- [generic] subprogram body are available. This form of freezing is
3557 -- decoupled from the usual Freeze_xxx mechanism because it must also
3558 -- work in the context of generics where normal freezing is disabled.
3559
3560 -- Only bodies coming from source should cause this type of freezing.
3561 -- Expression functions that act as bodies and complete an initial
3562 -- declaration must be included in this category, hence the use of
3563 -- Original_Node.
3564
3565 if Comes_From_Source (Original_Node (N)) then
3566 Freeze_Previous_Contracts (N);
3567 end if;
3568
3569 -- Generic subprograms are handled separately. They always have a
3570 -- generic specification. Determine whether current scope has a
3571 -- previous declaration.
3572
3573 -- If the subprogram body is defined within an instance of the same
3574 -- name, the instance appears as a package renaming, and will be hidden
3575 -- within the subprogram.
3576
3577 if Present (Prev_Id)
3578 and then not Is_Overloadable (Prev_Id)
3579 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3580 or else Comes_From_Source (Prev_Id))
3581 then
3582 if Is_Generic_Subprogram (Prev_Id) then
3583 Spec_Id := Prev_Id;
3584
3585 -- A subprogram body is Ghost when it is stand-alone and subject
3586 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3587 -- the mode now to ensure that any nodes generated during analysis
3588 -- and expansion are properly marked as Ghost.
3589
3590 Mark_And_Set_Ghost_Body (N, Spec_Id);
3591
3592 -- If the body completes the initial declaration of a compilation
3593 -- unit which is subject to pragma Elaboration_Checks, set the
3594 -- model specified by the pragma because it applies to all parts
3595 -- of the unit.
3596
3597 Install_Elaboration_Model (Spec_Id);
3598
3599 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3600 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3601
3602 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3603
3604 if Nkind (N) = N_Subprogram_Body then
3605 HSS := Handled_Statement_Sequence (N);
3606 Check_Missing_Return;
3607 end if;
3608
3609 goto Leave;
3610
3611 -- Otherwise a previous entity conflicts with the subprogram name.
3612 -- Attempting to enter name will post error.
3613
3614 else
3615 Enter_Name (Body_Id);
3616 goto Leave;
3617 end if;
3618
3619 -- Non-generic case, find the subprogram declaration, if one was seen,
3620 -- or enter new overloaded entity in the current scope. If the
3621 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3622 -- part of the context of one of its subunits. No need to redo the
3623 -- analysis.
3624
3625 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3626 goto Leave;
3627
3628 else
3629 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3630
3631 if Nkind (N) = N_Subprogram_Body_Stub
3632 or else No (Corresponding_Spec (N))
3633 then
3634 if Is_Private_Concurrent_Primitive (Body_Id) then
3635 Spec_Id := Disambiguate_Spec;
3636
3637 -- A subprogram body is Ghost when it is stand-alone and
3638 -- subject to pragma Ghost or when the corresponding spec is
3639 -- Ghost. Set the mode now to ensure that any nodes generated
3640 -- during analysis and expansion are properly marked as Ghost.
3641
3642 Mark_And_Set_Ghost_Body (N, Spec_Id);
3643
3644 -- If the body completes a compilation unit which is subject
3645 -- to pragma Elaboration_Checks, set the model specified by
3646 -- the pragma because it applies to all parts of the unit.
3647
3648 Install_Elaboration_Model (Spec_Id);
3649
3650 else
3651 Spec_Id := Find_Corresponding_Spec (N);
3652
3653 -- A subprogram body is Ghost when it is stand-alone and
3654 -- subject to pragma Ghost or when the corresponding spec is
3655 -- Ghost. Set the mode now to ensure that any nodes generated
3656 -- during analysis and expansion are properly marked as Ghost.
3657
3658 Mark_And_Set_Ghost_Body (N, Spec_Id);
3659
3660 -- If the body completes a compilation unit which is subject
3661 -- to pragma Elaboration_Checks, set the model specified by
3662 -- the pragma because it applies to all parts of the unit.
3663
3664 Install_Elaboration_Model (Spec_Id);
3665
3666 -- In GNATprove mode, if the body has no previous spec, create
3667 -- one so that the inlining machinery can operate properly.
3668 -- Transfer aspects, if any, to the new spec, so that they
3669 -- are legal and can be processed ahead of the body.
3670 -- We make two copies of the given spec, one for the new
3671 -- declaration, and one for the body.
3672
3673 if No (Spec_Id) and then GNATprove_Mode
3674
3675 -- Inlining does not apply during preanalysis of code
3676
3677 and then Full_Analysis
3678
3679 -- Inlining only applies to full bodies, not stubs
3680
3681 and then Nkind (N) /= N_Subprogram_Body_Stub
3682
3683 -- Inlining only applies to bodies in the source code, not to
3684 -- those generated by the compiler. In particular, expression
3685 -- functions, whose body is generated by the compiler, are
3686 -- treated specially by GNATprove.
3687
3688 and then Comes_From_Source (Body_Id)
3689
3690 -- This cannot be done for a compilation unit, which is not
3691 -- in a context where we can insert a new spec.
3692
3693 and then Is_List_Member (N)
3694
3695 -- Inlining only applies to subprograms without contracts,
3696 -- as a contract is a sign that GNATprove should perform a
3697 -- modular analysis of the subprogram instead of a contextual
3698 -- analysis at each call site. The same test is performed in
3699 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3700 -- here in another form (because the contract has not been
3701 -- attached to the body) to avoid front-end errors in case
3702 -- pragmas are used instead of aspects, because the
3703 -- corresponding pragmas in the body would not be transferred
3704 -- to the spec, leading to legality errors.
3705
3706 and then not Body_Has_Contract
3707 and then not Inside_A_Generic
3708 then
3709 Build_Subprogram_Declaration;
3710
3711 -- If this is a function that returns a constrained array, and
3712 -- we are generating SPARK_For_C, create subprogram declaration
3713 -- to simplify subsequent C generation.
3714
3715 elsif No (Spec_Id)
3716 and then Modify_Tree_For_C
3717 and then Nkind (Body_Spec) = N_Function_Specification
3718 and then Is_Array_Type (Etype (Body_Id))
3719 and then Is_Constrained (Etype (Body_Id))
3720 then
3721 Build_Subprogram_Declaration;
3722 end if;
3723 end if;
3724
3725 -- If this is a duplicate body, no point in analyzing it
3726
3727 if Error_Posted (N) then
3728 goto Leave;
3729 end if;
3730
3731 -- A subprogram body should cause freezing of its own declaration,
3732 -- but if there was no previous explicit declaration, then the
3733 -- subprogram will get frozen too late (there may be code within
3734 -- the body that depends on the subprogram having been frozen,
3735 -- such as uses of extra formals), so we force it to be frozen
3736 -- here. Same holds if the body and spec are compilation units.
3737 -- Finally, if the return type is an anonymous access to protected
3738 -- subprogram, it must be frozen before the body because its
3739 -- expansion has generated an equivalent type that is used when
3740 -- elaborating the body.
3741
3742 -- An exception in the case of Ada 2012, AI05-177: The bodies
3743 -- created for expression functions do not freeze.
3744
3745 if No (Spec_Id)
3746 and then Nkind (Original_Node (N)) /= N_Expression_Function
3747 then
3748 Freeze_Before (N, Body_Id);
3749
3750 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3751 Freeze_Before (N, Spec_Id);
3752
3753 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3754 Freeze_Before (N, Etype (Body_Id));
3755 end if;
3756
3757 else
3758 Spec_Id := Corresponding_Spec (N);
3759
3760 -- A subprogram body is Ghost when it is stand-alone and subject
3761 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3762 -- the mode now to ensure that any nodes generated during analysis
3763 -- and expansion are properly marked as Ghost.
3764
3765 Mark_And_Set_Ghost_Body (N, Spec_Id);
3766
3767 -- If the body completes the initial declaration of a compilation
3768 -- unit which is subject to pragma Elaboration_Checks, set the
3769 -- model specified by the pragma because it applies to all parts
3770 -- of the unit.
3771
3772 Install_Elaboration_Model (Spec_Id);
3773 end if;
3774 end if;
3775
3776 -- Deactivate expansion inside the body of ignored Ghost entities,
3777 -- as this code will ultimately be ignored. This avoids requiring the
3778 -- presence of run-time units which are not needed. Only do this for
3779 -- user entities, as internally generated entitities might still need
3780 -- to be expanded (e.g. those generated for types).
3781
3782 if Present (Ignored_Ghost_Region)
3783 and then Comes_From_Source (Body_Id)
3784 then
3785 Expander_Active := False;
3786 end if;
3787
3788 -- Previously we scanned the body to look for nested subprograms, and
3789 -- rejected an inline directive if nested subprograms were present,
3790 -- because the back-end would generate conflicting symbols for the
3791 -- nested bodies. This is now unnecessary.
3792
3793 -- Look ahead to recognize a pragma Inline that appears after the body
3794
3795 Check_Inline_Pragma (Spec_Id);
3796
3797 -- Deal with special case of a fully private operation in the body of
3798 -- the protected type. We must create a declaration for the subprogram,
3799 -- in order to attach the protected subprogram that will be used in
3800 -- internal calls. We exclude compiler generated bodies from the
3801 -- expander since the issue does not arise for those cases.
3802
3803 if No (Spec_Id)
3804 and then Comes_From_Source (N)
3805 and then Is_Protected_Type (Current_Scope)
3806 then
3807 Spec_Id := Build_Private_Protected_Declaration (N);
3808 end if;
3809
3810 -- If we are generating C and this is a function returning a constrained
3811 -- array type for which we must create a procedure with an extra out
3812 -- parameter, build and analyze the body now. The procedure declaration
3813 -- has already been created. We reuse the source body of the function,
3814 -- because in an instance it may contain global references that cannot
3815 -- be reanalyzed. The source function itself is not used any further,
3816 -- so we mark it as having a completion. If the subprogram is a stub the
3817 -- transformation is done later, when the proper body is analyzed.
3818
3819 if Expander_Active
3820 and then Modify_Tree_For_C
3821 and then Present (Spec_Id)
3822 and then Ekind (Spec_Id) = E_Function
3823 and then Nkind (N) /= N_Subprogram_Body_Stub
3824 and then Rewritten_For_C (Spec_Id)
3825 then
3826 Set_Has_Completion (Spec_Id);
3827
3828 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3829 Analyze (N);
3830
3831 -- The entity for the created procedure must remain invisible, so it
3832 -- does not participate in resolution of subsequent references to the
3833 -- function.
3834
3835 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3836 goto Leave;
3837 end if;
3838
3839 -- If a separate spec is present, then deal with freezing issues
3840
3841 if Present (Spec_Id) then
3842 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3843 Verify_Overriding_Indicator;
3844
3845 -- In general, the spec will be frozen when we start analyzing the
3846 -- body. However, for internally generated operations, such as
3847 -- wrapper functions for inherited operations with controlling
3848 -- results, the spec may not have been frozen by the time we expand
3849 -- the freeze actions that include the bodies. In particular, extra
3850 -- formals for accessibility or for return-in-place may need to be
3851 -- generated. Freeze nodes, if any, are inserted before the current
3852 -- body. These freeze actions are also needed in Compile_Only mode to
3853 -- enable the proper back-end type annotations.
3854 -- They are necessary in any case to ensure proper elaboration order
3855 -- in gigi.
3856
3857 if Nkind (N) = N_Subprogram_Body
3858 and then Was_Expression_Function (N)
3859 and then not Has_Completion (Spec_Id)
3860 and then Serious_Errors_Detected = 0
3861 and then (Expander_Active
3862 or else Operating_Mode = Check_Semantics
3863 or else Is_Ignored_Ghost_Entity (Spec_Id))
3864 then
3865 -- The body generated for an expression function that is not a
3866 -- completion is a freeze point neither for the profile nor for
3867 -- anything else. That's why, in order to prevent any freezing
3868 -- during analysis, we need to mask types declared outside the
3869 -- expression (and in an outer scope) that are not yet frozen.
3870 -- This also needs to be done in the case of an ignored Ghost
3871 -- expression function, where the expander isn't active.
3872
3873 Set_Is_Frozen (Spec_Id);
3874 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3875
3876 elsif not Is_Frozen (Spec_Id)
3877 and then Serious_Errors_Detected = 0
3878 then
3879 Set_Has_Delayed_Freeze (Spec_Id);
3880 Freeze_Before (N, Spec_Id);
3881 end if;
3882 end if;
3883
3884 -- If the subprogram has a class-wide clone, build its body as a copy
3885 -- of the original body, and rewrite body of original subprogram as a
3886 -- wrapper that calls the clone. If N is a stub, this construction will
3887 -- take place when the proper body is analyzed. No action needed if this
3888 -- subprogram has been eliminated.
3889
3890 if Present (Spec_Id)
3891 and then Present (Class_Wide_Clone (Spec_Id))
3892 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3893 and then Nkind (N) /= N_Subprogram_Body_Stub
3894 and then not (Expander_Active and then Is_Eliminated (Spec_Id))
3895 then
3896 Build_Class_Wide_Clone_Body (Spec_Id, N);
3897
3898 -- This is the new body for the existing primitive operation
3899
3900 Rewrite (N, Build_Class_Wide_Clone_Call
3901 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3902 Set_Has_Completion (Spec_Id, False);
3903 Analyze (N);
3904 return;
3905 end if;
3906
3907 -- Place subprogram on scope stack, and make formals visible. If there
3908 -- is a spec, the visible entity remains that of the spec.
3909
3910 if Present (Spec_Id) then
3911 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3912
3913 if Is_Child_Unit (Spec_Id) then
3914 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3915 end if;
3916
3917 if Style_Check then
3918 Style.Check_Identifier (Body_Id, Spec_Id);
3919 end if;
3920
3921 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3922 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3923
3924 if Is_Abstract_Subprogram (Spec_Id) then
3925 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3926 goto Leave;
3927
3928 else
3929 Set_Convention (Body_Id, Convention (Spec_Id));
3930 Set_Has_Completion (Spec_Id);
3931
3932 if Is_Protected_Type (Scope (Spec_Id)) then
3933 Prot_Typ := Scope (Spec_Id);
3934 end if;
3935
3936 -- If this is a body generated for a renaming, do not check for
3937 -- full conformance. The check is redundant, because the spec of
3938 -- the body is a copy of the spec in the renaming declaration,
3939 -- and the test can lead to spurious errors on nested defaults.
3940
3941 if Present (Spec_Decl)
3942 and then not Comes_From_Source (N)
3943 and then
3944 (Nkind (Original_Node (Spec_Decl)) =
3945 N_Subprogram_Renaming_Declaration
3946 or else (Present (Corresponding_Body (Spec_Decl))
3947 and then
3948 Nkind (Unit_Declaration_Node
3949 (Corresponding_Body (Spec_Decl))) =
3950 N_Subprogram_Renaming_Declaration))
3951 then
3952 Conformant := True;
3953
3954 -- Conversely, the spec may have been generated for specless body
3955 -- with an inline pragma. The entity comes from source, which is
3956 -- both semantically correct and necessary for proper inlining.
3957 -- The subprogram declaration itself is not in the source.
3958
3959 elsif Comes_From_Source (N)
3960 and then Present (Spec_Decl)
3961 and then not Comes_From_Source (Spec_Decl)
3962 and then Has_Pragma_Inline (Spec_Id)
3963 then
3964 Conformant := True;
3965
3966 else
3967 Check_Conformance
3968 (Body_Id, Spec_Id,
3969 Fully_Conformant, True, Conformant, Body_Id);
3970 end if;
3971
3972 -- If the body is not fully conformant, we have to decide if we
3973 -- should analyze it or not. If it has a really messed up profile
3974 -- then we probably should not analyze it, since we will get too
3975 -- many bogus messages.
3976
3977 -- Our decision is to go ahead in the non-fully conformant case
3978 -- only if it is at least mode conformant with the spec. Note
3979 -- that the call to Check_Fully_Conformant has issued the proper
3980 -- error messages to complain about the lack of conformance.
3981
3982 if not Conformant
3983 and then not Mode_Conformant (Body_Id, Spec_Id)
3984 then
3985 goto Leave;
3986 end if;
3987 end if;
3988
3989 -- In the case we are dealing with an expression function we check
3990 -- the formals attached to the spec instead of the body - so we don't
3991 -- reference body formals.
3992
3993 if Spec_Id /= Body_Id
3994 and then not Is_Expression_Function (Spec_Id)
3995 then
3996 Reference_Body_Formals (Spec_Id, Body_Id);
3997 end if;
3998
3999 Set_Ekind (Body_Id, E_Subprogram_Body);
4000
4001 if Nkind (N) = N_Subprogram_Body_Stub then
4002 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
4003
4004 -- Regular body
4005
4006 else
4007 Set_Corresponding_Spec (N, Spec_Id);
4008
4009 -- Ada 2005 (AI-345): If the operation is a primitive operation
4010 -- of a concurrent type, the type of the first parameter has been
4011 -- replaced with the corresponding record, which is the proper
4012 -- run-time structure to use. However, within the body there may
4013 -- be uses of the formals that depend on primitive operations
4014 -- of the type (in particular calls in prefixed form) for which
4015 -- we need the original concurrent type. The operation may have
4016 -- several controlling formals, so the replacement must be done
4017 -- for all of them.
4018
4019 if Comes_From_Source (Spec_Id)
4020 and then Present (First_Entity (Spec_Id))
4021 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
4022 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
4023 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
4024 and then Present (Corresponding_Concurrent_Type
4025 (Etype (First_Entity (Spec_Id))))
4026 then
4027 declare
4028 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
4029 Form : Entity_Id;
4030
4031 begin
4032 Form := First_Formal (Spec_Id);
4033 while Present (Form) loop
4034 if Etype (Form) = Typ then
4035 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
4036 end if;
4037
4038 Next_Formal (Form);
4039 end loop;
4040 end;
4041 end if;
4042
4043 -- Make the formals visible, and place subprogram on scope stack.
4044 -- This is also the point at which we set Last_Real_Spec_Entity
4045 -- to mark the entities which will not be moved to the body.
4046
4047 Install_Formals (Spec_Id);
4048 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
4049
4050 -- Within an instance, add local renaming declarations so that
4051 -- gdb can retrieve the values of actuals more easily. This is
4052 -- only relevant if generating code.
4053
4054 if Is_Generic_Instance (Spec_Id)
4055 and then Is_Wrapper_Package (Current_Scope)
4056 and then Expander_Active
4057 then
4058 Build_Subprogram_Instance_Renamings (N, Current_Scope);
4059 end if;
4060
4061 Push_Scope (Spec_Id);
4062
4063 -- Make sure that the subprogram is immediately visible. For
4064 -- child units that have no separate spec this is indispensable.
4065 -- Otherwise it is safe albeit redundant.
4066
4067 Set_Is_Immediately_Visible (Spec_Id);
4068 end if;
4069
4070 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
4071 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
4072 Set_Scope (Body_Id, Scope (Spec_Id));
4073
4074 -- Case of subprogram body with no previous spec
4075
4076 else
4077 -- Check for style warning required
4078
4079 if Style_Check
4080
4081 -- Only apply check for source level subprograms for which checks
4082 -- have not been suppressed.
4083
4084 and then Comes_From_Source (Body_Id)
4085 and then not Suppress_Style_Checks (Body_Id)
4086
4087 -- No warnings within an instance
4088
4089 and then not In_Instance
4090
4091 -- No warnings for expression functions
4092
4093 and then Nkind (Original_Node (N)) /= N_Expression_Function
4094 then
4095 Style.Body_With_No_Spec (N);
4096 end if;
4097
4098 New_Overloaded_Entity (Body_Id);
4099
4100 if Nkind (N) /= N_Subprogram_Body_Stub then
4101 Set_Acts_As_Spec (N);
4102 Generate_Definition (Body_Id);
4103 Generate_Reference
4104 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
4105
4106 -- If the body is an entry wrapper created for an entry with
4107 -- preconditions, it must be compiled in the context of the
4108 -- enclosing synchronized object, because it may mention other
4109 -- operations of the type.
4110
4111 if Is_Entry_Wrapper (Body_Id) then
4112 declare
4113 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
4114 begin
4115 Push_Scope (Prot);
4116 Install_Declarations (Prot);
4117 end;
4118 end if;
4119
4120 Install_Formals (Body_Id);
4121
4122 Push_Scope (Body_Id);
4123 end if;
4124
4125 -- For stubs and bodies with no previous spec, generate references to
4126 -- formals.
4127
4128 Generate_Reference_To_Formals (Body_Id);
4129 end if;
4130
4131 -- Entry barrier functions are generated outside the protected type and
4132 -- should not carry the SPARK_Mode of the enclosing context.
4133
4134 if Nkind (N) = N_Subprogram_Body
4135 and then Is_Entry_Barrier_Function (N)
4136 then
4137 null;
4138
4139 -- The body is generated as part of expression function expansion. When
4140 -- the expression function appears in the visible declarations of a
4141 -- package, the body is added to the private declarations. Since both
4142 -- declarative lists may be subject to a different SPARK_Mode, inherit
4143 -- the mode of the spec.
4144
4145 -- package P with SPARK_Mode is
4146 -- function Expr_Func ... is (...); -- original
4147 -- [function Expr_Func ...;] -- generated spec
4148 -- -- mode is ON
4149 -- private
4150 -- pragma SPARK_Mode (Off);
4151 -- [function Expr_Func ... is return ...;] -- generated body
4152 -- end P; -- mode is ON
4153
4154 elsif not Comes_From_Source (N)
4155 and then Present (Spec_Id)
4156 and then Is_Expression_Function (Spec_Id)
4157 then
4158 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4159 Set_SPARK_Pragma_Inherited
4160 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4161
4162 -- Set the SPARK_Mode from the current context (may be overwritten later
4163 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4164 -- initially on a stand-alone subprogram body, but is then relocated to
4165 -- a generated corresponding spec. In this scenario the mode is shared
4166 -- between the spec and body.
4167
4168 elsif No (SPARK_Pragma (Body_Id)) then
4169 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4170 Set_SPARK_Pragma_Inherited (Body_Id);
4171 end if;
4172
4173 -- A subprogram body may be instantiated or inlined at a later pass.
4174 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4175 -- applied to the initial declaration of the body.
4176
4177 if Present (Spec_Id) then
4178 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4179 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4180 end if;
4181
4182 else
4183 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4184 -- case the body is instantiated or inlined later and out of context.
4185 -- The body uses this attribute to restore the value of the global
4186 -- flag.
4187
4188 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4189 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4190
4191 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4192 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4193 end if;
4194 end if;
4195
4196 -- Preserve relevant elaboration-related attributes of the context which
4197 -- are no longer available or very expensive to recompute once analysis,
4198 -- resolution, and expansion are over.
4199
4200 if No (Spec_Id) then
4201 Mark_Elaboration_Attributes
4202 (N_Id => Body_Id,
4203 Checks => True,
4204 Warnings => True);
4205 end if;
4206
4207 -- If this is the proper body of a stub, we must verify that the stub
4208 -- conforms to the body, and to the previous spec if one was present.
4209 -- We know already that the body conforms to that spec. This test is
4210 -- only required for subprograms that come from source.
4211
4212 if Nkind (Parent (N)) = N_Subunit
4213 and then Comes_From_Source (N)
4214 and then not Error_Posted (Body_Id)
4215 and then Nkind (Corresponding_Stub (Parent (N))) =
4216 N_Subprogram_Body_Stub
4217 then
4218 declare
4219 Old_Id : constant Entity_Id :=
4220 Defining_Entity
4221 (Specification (Corresponding_Stub (Parent (N))));
4222
4223 Conformant : Boolean := False;
4224
4225 begin
4226 if No (Spec_Id) then
4227 Check_Fully_Conformant (Body_Id, Old_Id);
4228
4229 else
4230 Check_Conformance
4231 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4232
4233 if not Conformant then
4234
4235 -- The stub was taken to be a new declaration. Indicate that
4236 -- it lacks a body.
4237
4238 Set_Has_Completion (Old_Id, False);
4239 end if;
4240 end if;
4241 end;
4242 end if;
4243
4244 Set_Has_Completion (Body_Id);
4245 Check_Eliminated (Body_Id);
4246
4247 -- Analyze any aspect specifications that appear on the subprogram body
4248 -- stub. Stop the analysis now as the stub does not have a declarative
4249 -- or a statement part, and it cannot be inlined.
4250
4251 if Nkind (N) = N_Subprogram_Body_Stub then
4252 if Has_Aspects (N) then
4253 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4254 end if;
4255
4256 goto Leave;
4257 end if;
4258
4259 -- Handle inlining
4260
4261 -- Note: Normally we don't do any inlining if expansion is off, since
4262 -- we won't generate code in any case. An exception arises in GNATprove
4263 -- mode where we want to expand some calls in place, even with expansion
4264 -- disabled, since the inlining eases formal verification.
4265
4266 if not GNATprove_Mode
4267 and then Expander_Active
4268 and then Serious_Errors_Detected = 0
4269 and then Present (Spec_Id)
4270 and then Has_Pragma_Inline (Spec_Id)
4271 then
4272 -- Legacy implementation (relying on front-end inlining)
4273
4274 if not Back_End_Inlining then
4275 if (Has_Pragma_Inline_Always (Spec_Id)
4276 and then not Opt.Disable_FE_Inline_Always)
4277 or else (Front_End_Inlining
4278 and then not Opt.Disable_FE_Inline)
4279 then
4280 Build_Body_To_Inline (N, Spec_Id);
4281 end if;
4282
4283 -- New implementation (relying on back-end inlining)
4284
4285 else
4286 if Has_Pragma_Inline_Always (Spec_Id)
4287 or else Optimization_Level > 0
4288 then
4289 -- Handle function returning an unconstrained type
4290
4291 if Comes_From_Source (Body_Id)
4292 and then Ekind (Spec_Id) = E_Function
4293 and then Returns_Unconstrained_Type (Spec_Id)
4294
4295 -- If function builds in place, i.e. returns a limited type,
4296 -- inlining cannot be done.
4297
4298 and then not Is_Limited_Type (Etype (Spec_Id))
4299 then
4300 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4301
4302 else
4303 declare
4304 Subp_Body : constant Node_Id :=
4305 Unit_Declaration_Node (Body_Id);
4306 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4307
4308 begin
4309 -- Do not pass inlining to the backend if the subprogram
4310 -- has declarations or statements which cannot be inlined
4311 -- by the backend. This check is done here to emit an
4312 -- error instead of the generic warning message reported
4313 -- by the GCC backend (ie. "function might not be
4314 -- inlinable").
4315
4316 if Present (Subp_Decl)
4317 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4318 then
4319 null;
4320
4321 elsif Has_Excluded_Statement
4322 (Spec_Id,
4323 Statements
4324 (Handled_Statement_Sequence (Subp_Body)))
4325 then
4326 null;
4327
4328 -- If the backend inlining is available then at this
4329 -- stage we only have to mark the subprogram as inlined.
4330 -- The expander will take care of registering it in the
4331 -- table of subprograms inlined by the backend a part of
4332 -- processing calls to it (cf. Expand_Call)
4333
4334 else
4335 Set_Is_Inlined (Spec_Id);
4336 end if;
4337 end;
4338 end if;
4339 end if;
4340 end if;
4341
4342 -- In GNATprove mode, inline only when there is a separate subprogram
4343 -- declaration for now, as inlining of subprogram bodies acting as
4344 -- declarations, or subprogram stubs, are not supported by front-end
4345 -- inlining. This inlining should occur after analysis of the body, so
4346 -- that it is known whether the value of SPARK_Mode, which can be
4347 -- defined by a pragma inside the body, is applicable to the body.
4348 -- Inlining can be disabled with switch -gnatdm
4349
4350 elsif GNATprove_Mode
4351 and then Full_Analysis
4352 and then not Inside_A_Generic
4353 and then Present (Spec_Id)
4354 and then
4355 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4356 and then Body_Has_SPARK_Mode_On
4357 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4358 and then not Body_Has_Contract
4359 and then not Debug_Flag_M
4360 then
4361 Build_Body_To_Inline (N, Spec_Id);
4362 end if;
4363
4364 -- When generating code, inherited pre/postconditions are handled when
4365 -- expanding the corresponding contract.
4366
4367 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4368 -- of the specification we have to install the private withed units.
4369 -- This holds for child units as well.
4370
4371 if Is_Compilation_Unit (Body_Id)
4372 or else Nkind (Parent (N)) = N_Compilation_Unit
4373 then
4374 Install_Private_With_Clauses (Body_Id);
4375 end if;
4376
4377 Check_Anonymous_Return;
4378
4379 -- Set the Protected_Formal field of each extra formal of the protected
4380 -- subprogram to reference the corresponding extra formal of the
4381 -- subprogram that implements it. For regular formals this occurs when
4382 -- the protected subprogram's declaration is expanded, but the extra
4383 -- formals don't get created until the subprogram is frozen. We need to
4384 -- do this before analyzing the protected subprogram's body so that any
4385 -- references to the original subprogram's extra formals will be changed
4386 -- refer to the implementing subprogram's formals (see Expand_Formal).
4387
4388 if Present (Spec_Id)
4389 and then Is_Protected_Type (Scope (Spec_Id))
4390 and then Present (Protected_Body_Subprogram (Spec_Id))
4391 then
4392 declare
4393 Impl_Subp : constant Entity_Id :=
4394 Protected_Body_Subprogram (Spec_Id);
4395 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4396 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4397
4398 begin
4399 while Present (Prot_Ext_Formal) loop
4400 pragma Assert (Present (Impl_Ext_Formal));
4401 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4402 Next_Formal_With_Extras (Prot_Ext_Formal);
4403 Next_Formal_With_Extras (Impl_Ext_Formal);
4404 end loop;
4405 end;
4406 end if;
4407
4408 -- Generate minimum accessibility local objects to correspond with
4409 -- any extra formal added for anonymous access types. This new local
4410 -- object can then be used instead of the formal in case it is used
4411 -- in an actual to a call to a nested subprogram.
4412
4413 -- This method is used to supplement our "small integer model" for
4414 -- accessibility-check generation (for more information see
4415 -- Dynamic_Accessibility_Level).
4416
4417 -- Because we allow accessibility values greater than our expected value
4418 -- passing along the same extra accessibility formal as an actual
4419 -- to a nested subprogram becomes a problem because high values mean
4420 -- different things to the callee even though they are the same to the
4421 -- caller. So, as described in the first section, we create a local
4422 -- object representing the minimum of the accessibility level value that
4423 -- is passed in and the accessibility level of the callee's parameter
4424 -- and locals and use it in the case of a call to a nested subprogram.
4425 -- This generated object is refered to as a "minimum accessiblity
4426 -- level."
4427
4428 if Present (Spec_Id) or else Present (Body_Id) then
4429 Body_Nod := Unit_Declaration_Node (Body_Id);
4430
4431 declare
4432 Form : Entity_Id;
4433 begin
4434 -- Grab the appropriate formal depending on whether there exists
4435 -- an actual spec for the subprogram or whether we are dealing
4436 -- with a protected subprogram.
4437
4438 if Present (Spec_Id) then
4439 if Present (Protected_Body_Subprogram (Spec_Id)) then
4440 Form := First_Formal (Protected_Body_Subprogram (Spec_Id));
4441 else
4442 Form := First_Formal (Spec_Id);
4443 end if;
4444 else
4445 Form := First_Formal (Body_Id);
4446 end if;
4447
4448 -- Loop through formals if the subprogram is capable of accepting
4449 -- a generated local object. If it is not then it is also not
4450 -- capable of having local subprograms meaning it would not need
4451 -- a minimum accessibility level object anyway.
4452
4453 if Present (Body_Nod)
4454 and then Has_Declarations (Body_Nod)
4455 and then Nkind (Body_Nod) /= N_Package_Specification
4456 then
4457 while Present (Form) loop
4458
4459 if Present (Extra_Accessibility (Form))
4460 and then No (Minimum_Accessibility (Form))
4461 then
4462 -- Generate the minimum accessibility level object
4463
4464 -- A60b : integer := integer'min(2, paramL);
4465
4466 declare
4467 Loc : constant Source_Ptr := Sloc (Body_Nod);
4468 Obj_Node : constant Node_Id :=
4469 Make_Object_Declaration (Loc,
4470 Defining_Identifier =>
4471 Make_Temporary
4472 (Loc, 'A', Extra_Accessibility (Form)),
4473 Object_Definition => New_Occurrence_Of
4474 (Standard_Integer, Loc),
4475 Expression =>
4476 Make_Attribute_Reference (Loc,
4477 Prefix => New_Occurrence_Of
4478 (Standard_Integer, Loc),
4479 Attribute_Name => Name_Min,
4480 Expressions => New_List (
4481 Make_Integer_Literal (Loc,
4482 Object_Access_Level (Form)),
4483 New_Occurrence_Of
4484 (Extra_Accessibility (Form), Loc))));
4485 begin
4486 -- Add the new local object to the Minimum_Acc_Obj to
4487 -- be later prepended to the subprogram's list of
4488 -- declarations after we are sure all expansion is
4489 -- done.
4490
4491 if Present (Minimum_Acc_Objs) then
4492 Prepend (Obj_Node, Minimum_Acc_Objs);
4493 else
4494 Minimum_Acc_Objs := New_List (Obj_Node);
4495 end if;
4496
4497 -- Register the object and analyze it
4498
4499 Set_Minimum_Accessibility
4500 (Form, Defining_Identifier (Obj_Node));
4501
4502 Analyze (Obj_Node);
4503 end;
4504 end if;
4505
4506 Next_Formal (Form);
4507 end loop;
4508 end if;
4509 end;
4510 end if;
4511
4512 -- Now we can go on to analyze the body
4513
4514 HSS := Handled_Statement_Sequence (N);
4515 Set_Actual_Subtypes (N, Current_Scope);
4516
4517 -- Add a declaration for the Protection object, renaming declarations
4518 -- for discriminals and privals and finally a declaration for the entry
4519 -- family index (if applicable). This form of early expansion is done
4520 -- when the Expander is active because Install_Private_Data_Declarations
4521 -- references entities which were created during regular expansion. The
4522 -- subprogram entity must come from source, and not be an internally
4523 -- generated subprogram.
4524
4525 if Expander_Active
4526 and then Present (Prot_Typ)
4527 and then Present (Spec_Id)
4528 and then Comes_From_Source (Spec_Id)
4529 and then not Is_Eliminated (Spec_Id)
4530 then
4531 Install_Private_Data_Declarations
4532 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4533 end if;
4534
4535 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4536 -- may now appear in parameter and result profiles. Since the analysis
4537 -- of a subprogram body may use the parameter and result profile of the
4538 -- spec, swap any limited views with their non-limited counterpart.
4539
4540 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4541 Exch_Views := Exchange_Limited_Views (Spec_Id);
4542 end if;
4543
4544 -- If the return type is an anonymous access type whose designated type
4545 -- is the limited view of a class-wide type and the non-limited view is
4546 -- available, update the return type accordingly.
4547
4548 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4549 declare
4550 Etyp : Entity_Id;
4551 Rtyp : Entity_Id;
4552
4553 begin
4554 Rtyp := Etype (Spec_Id);
4555
4556 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4557 Etyp := Directly_Designated_Type (Rtyp);
4558
4559 if Is_Class_Wide_Type (Etyp)
4560 and then From_Limited_With (Etyp)
4561 then
4562 Desig_View := Etyp;
4563 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4564 end if;
4565 end if;
4566 end;
4567 end if;
4568
4569 -- Analyze any aspect specifications that appear on the subprogram body
4570
4571 if Has_Aspects (N) then
4572 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4573 end if;
4574
4575 Analyze_Declarations (Declarations (N));
4576
4577 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4578
4579 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4580 if Present (SPARK_Pragma (Spec_Id)) then
4581 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4582 and then
4583 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4584 then
4585 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4586 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4587 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4588 Error_Msg_NE
4589 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4590 end if;
4591
4592 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4593 null;
4594
4595 else
4596 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4597 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4598 Error_Msg_Sloc := Sloc (Spec_Id);
4599 Error_Msg_NE
4600 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4601 end if;
4602 end if;
4603
4604 -- A subprogram body freezes its own contract. Analyze the contract
4605 -- after the declarations of the body have been processed as pragmas
4606 -- are now chained on the contract of the subprogram body.
4607
4608 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4609
4610 -- Check completion, and analyze the statements
4611
4612 Check_Completion;
4613 Inspect_Deferred_Constant_Completion (Declarations (N));
4614 Analyze (HSS);
4615
4616 -- Add the generated minimum accessibility objects to the subprogram
4617 -- body's list of declarations after analysis of the statements and
4618 -- contracts.
4619
4620 while Is_Non_Empty_List (Minimum_Acc_Objs) loop
4621 if Present (Declarations (Body_Nod)) then
4622 Prepend (Remove_Head (Minimum_Acc_Objs), Declarations (Body_Nod));
4623 else
4624 Set_Declarations
4625 (Body_Nod, New_List (Remove_Head (Minimum_Acc_Objs)));
4626 end if;
4627 end loop;
4628
4629 -- Deal with end of scope processing for the body
4630
4631 Process_End_Label (HSS, 't', Current_Scope);
4632 Update_Use_Clause_Chain;
4633 End_Scope;
4634
4635 -- If we are compiling an entry wrapper, remove the enclosing
4636 -- synchronized object from the stack.
4637
4638 if Is_Entry_Wrapper (Body_Id) then
4639 End_Scope;
4640 end if;
4641
4642 Check_Subprogram_Order (N);
4643 Set_Analyzed (Body_Id);
4644
4645 -- If we have a separate spec, then the analysis of the declarations
4646 -- caused the entities in the body to be chained to the spec id, but
4647 -- we want them chained to the body id. Only the formal parameters
4648 -- end up chained to the spec id in this case.
4649
4650 if Present (Spec_Id) then
4651
4652 -- We must conform to the categorization of our spec
4653
4654 Validate_Categorization_Dependency (N, Spec_Id);
4655
4656 -- And if this is a child unit, the parent units must conform
4657
4658 if Is_Child_Unit (Spec_Id) then
4659 Validate_Categorization_Dependency
4660 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4661 end if;
4662
4663 -- Here is where we move entities from the spec to the body
4664
4665 -- Case where there are entities that stay with the spec
4666
4667 if Present (Last_Real_Spec_Entity) then
4668
4669 -- No body entities (happens when the only real spec entities come
4670 -- from precondition and postcondition pragmas).
4671
4672 if No (Last_Entity (Body_Id)) then
4673 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4674
4675 -- Body entities present (formals), so chain stuff past them
4676
4677 else
4678 Link_Entities
4679 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4680 end if;
4681
4682 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4683 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4684 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4685
4686 -- Case where there are no spec entities, in this case there can be
4687 -- no body entities either, so just move everything.
4688
4689 -- If the body is generated for an expression function, it may have
4690 -- been preanalyzed already, if 'access was applied to it.
4691
4692 else
4693 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4694 N_Expression_Function
4695 then
4696 pragma Assert (No (Last_Entity (Body_Id)));
4697 null;
4698 end if;
4699
4700 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4701 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4702 Set_First_Entity (Spec_Id, Empty);
4703 Set_Last_Entity (Spec_Id, Empty);
4704 end if;
4705
4706 -- Otherwise the body does not complete a previous declaration. Check
4707 -- the categorization of the body against the units it withs.
4708
4709 else
4710 Validate_Categorization_Dependency (N, Body_Id);
4711 end if;
4712
4713 Check_Missing_Return;
4714
4715 -- Now we are going to check for variables that are never modified in
4716 -- the body of the procedure. But first we deal with a special case
4717 -- where we want to modify this check. If the body of the subprogram
4718 -- starts with a raise statement or its equivalent, or if the body
4719 -- consists entirely of a null statement, then it is pretty obvious that
4720 -- it is OK to not reference the parameters. For example, this might be
4721 -- the following common idiom for a stubbed function: statement of the
4722 -- procedure raises an exception. In particular this deals with the
4723 -- common idiom of a stubbed function, which appears something like:
4724
4725 -- function F (A : Integer) return Some_Type;
4726 -- X : Some_Type;
4727 -- begin
4728 -- raise Program_Error;
4729 -- return X;
4730 -- end F;
4731
4732 -- Here the purpose of X is simply to satisfy the annoying requirement
4733 -- in Ada that there be at least one return, and we certainly do not
4734 -- want to go posting warnings on X that it is not initialized. On
4735 -- the other hand, if X is entirely unreferenced that should still
4736 -- get a warning.
4737
4738 -- What we do is to detect these cases, and if we find them, flag the
4739 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4740 -- suppress unwanted warnings. For the case of the function stub above
4741 -- we have a special test to set X as apparently assigned to suppress
4742 -- the warning.
4743
4744 declare
4745 Stm : Node_Id;
4746
4747 begin
4748 -- Skip call markers installed by the ABE mechanism, labels, and
4749 -- Push_xxx_Error_Label to find the first real statement.
4750
4751 Stm := First (Statements (HSS));
4752 while Nkind_In (Stm, N_Call_Marker, N_Label)
4753 or else Nkind (Stm) in N_Push_xxx_Label
4754 loop
4755 Next (Stm);
4756 end loop;
4757
4758 -- Do the test on the original statement before expansion
4759
4760 declare
4761 Ostm : constant Node_Id := Original_Node (Stm);
4762
4763 begin
4764 -- If explicit raise statement, turn on flag
4765
4766 if Nkind (Ostm) = N_Raise_Statement then
4767 Set_Trivial_Subprogram (Stm);
4768
4769 -- If null statement, and no following statements, turn on flag
4770
4771 elsif Nkind (Stm) = N_Null_Statement
4772 and then Comes_From_Source (Stm)
4773 and then No (Next (Stm))
4774 then
4775 Set_Trivial_Subprogram (Stm);
4776
4777 -- Check for explicit call cases which likely raise an exception
4778
4779 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4780 if Is_Entity_Name (Name (Ostm)) then
4781 declare
4782 Ent : constant Entity_Id := Entity (Name (Ostm));
4783
4784 begin
4785 -- If the procedure is marked No_Return, then likely it
4786 -- raises an exception, but in any case it is not coming
4787 -- back here, so turn on the flag.
4788
4789 if Present (Ent)
4790 and then Ekind (Ent) = E_Procedure
4791 and then No_Return (Ent)
4792 then
4793 Set_Trivial_Subprogram (Stm);
4794 end if;
4795 end;
4796 end if;
4797 end if;
4798 end;
4799 end;
4800
4801 -- Check for variables that are never modified
4802
4803 declare
4804 E1 : Entity_Id;
4805 E2 : Entity_Id;
4806
4807 begin
4808 -- If there is a separate spec, then transfer Never_Set_In_Source
4809 -- flags from out parameters to the corresponding entities in the
4810 -- body. The reason we do that is we want to post error flags on
4811 -- the body entities, not the spec entities.
4812
4813 if Present (Spec_Id) then
4814 E1 := First_Entity (Spec_Id);
4815 while Present (E1) loop
4816 if Ekind (E1) = E_Out_Parameter then
4817 E2 := First_Entity (Body_Id);
4818 while Present (E2) loop
4819 exit when Chars (E1) = Chars (E2);
4820 Next_Entity (E2);
4821 end loop;
4822
4823 if Present (E2) then
4824 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4825 end if;
4826 end if;
4827
4828 Next_Entity (E1);
4829 end loop;
4830 end if;
4831
4832 -- Check references of the subprogram spec when we are dealing with
4833 -- an expression function due to it having a generated body.
4834 -- Otherwise, we simply check the formals of the subprogram body.
4835
4836 if Present (Spec_Id)
4837 and then Is_Expression_Function (Spec_Id)
4838 then
4839 Check_References (Spec_Id);
4840 else
4841 Check_References (Body_Id);
4842 end if;
4843 end;
4844
4845 -- Check for nested subprogram, and mark outer level subprogram if so
4846
4847 declare
4848 Ent : Entity_Id;
4849
4850 begin
4851 if Present (Spec_Id) then
4852 Ent := Spec_Id;
4853 else
4854 Ent := Body_Id;
4855 end if;
4856
4857 loop
4858 Ent := Enclosing_Subprogram (Ent);
4859 exit when No (Ent) or else Is_Subprogram (Ent);
4860 end loop;
4861
4862 if Present (Ent) then
4863 Set_Has_Nested_Subprogram (Ent);
4864 end if;
4865 end;
4866
4867 -- Restore the limited views in the spec, if any, to let the back end
4868 -- process it without running into circularities.
4869
4870 if Exch_Views /= No_Elist then
4871 Restore_Limited_Views (Exch_Views);
4872 end if;
4873
4874 if Mask_Types /= No_Elist then
4875 Unmask_Unfrozen_Types (Mask_Types);
4876 end if;
4877
4878 if Present (Desig_View) then
4879 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4880 end if;
4881
4882 <<Leave>>
4883 if Present (Ignored_Ghost_Region) then
4884 Expander_Active := Saved_EA;
4885 end if;
4886
4887 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4888 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4889 end Analyze_Subprogram_Body_Helper;
4890
4891 ------------------------------------
4892 -- Analyze_Subprogram_Declaration --
4893 ------------------------------------
4894
4895 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4896 Scop : constant Entity_Id := Current_Scope;
4897 Designator : Entity_Id;
4898
4899 Is_Completion : Boolean;
4900 -- Indicates whether a null procedure declaration is a completion
4901
4902 begin
4903 -- Null procedures are not allowed in SPARK
4904
4905 if Nkind (Specification (N)) = N_Procedure_Specification
4906 and then Null_Present (Specification (N))
4907 then
4908 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4909
4910 -- Null procedures are allowed in protected types, following the
4911 -- recent AI12-0147.
4912
4913 if Is_Protected_Type (Current_Scope)
4914 and then Ada_Version < Ada_2012
4915 then
4916 Error_Msg_N ("protected operation cannot be a null procedure", N);
4917 end if;
4918
4919 Analyze_Null_Procedure (N, Is_Completion);
4920
4921 -- The null procedure acts as a body, nothing further is needed
4922
4923 if Is_Completion then
4924 return;
4925 end if;
4926 end if;
4927
4928 Designator := Analyze_Subprogram_Specification (Specification (N));
4929
4930 -- A reference may already have been generated for the unit name, in
4931 -- which case the following call is redundant. However it is needed for
4932 -- declarations that are the rewriting of an expression function.
4933
4934 Generate_Definition (Designator);
4935
4936 -- Set the SPARK mode from the current context (may be overwritten later
4937 -- with explicit pragma). This is not done for entry barrier functions
4938 -- because they are generated outside the protected type and should not
4939 -- carry the mode of the enclosing context.
4940
4941 if Nkind (N) = N_Subprogram_Declaration
4942 and then Is_Entry_Barrier_Function (N)
4943 then
4944 null;
4945
4946 else
4947 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4948 Set_SPARK_Pragma_Inherited (Designator);
4949 end if;
4950
4951 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4952 -- the body of this subprogram is instantiated or inlined later and out
4953 -- of context. The body uses this attribute to restore the value of the
4954 -- global flag.
4955
4956 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4957 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4958 end if;
4959
4960 -- Preserve relevant elaboration-related attributes of the context which
4961 -- are no longer available or very expensive to recompute once analysis,
4962 -- resolution, and expansion are over.
4963
4964 Mark_Elaboration_Attributes
4965 (N_Id => Designator,
4966 Checks => True,
4967 Warnings => True);
4968
4969 if Debug_Flag_C then
4970 Write_Str ("==> subprogram spec ");
4971 Write_Name (Chars (Designator));
4972 Write_Str (" from ");
4973 Write_Location (Sloc (N));
4974 Write_Eol;
4975 Indent;
4976 end if;
4977
4978 Validate_RCI_Subprogram_Declaration (N);
4979 New_Overloaded_Entity (Designator);
4980 Check_Delayed_Subprogram (Designator);
4981
4982 -- If the type of the first formal of the current subprogram is a non-
4983 -- generic tagged private type, mark the subprogram as being a private
4984 -- primitive. Ditto if this is a function with controlling result, and
4985 -- the return type is currently private. In both cases, the type of the
4986 -- controlling argument or result must be in the current scope for the
4987 -- operation to be primitive.
4988
4989 if Has_Controlling_Result (Designator)
4990 and then Is_Private_Type (Etype (Designator))
4991 and then Scope (Etype (Designator)) = Current_Scope
4992 and then not Is_Generic_Actual_Type (Etype (Designator))
4993 then
4994 Set_Is_Private_Primitive (Designator);
4995
4996 elsif Present (First_Formal (Designator)) then
4997 declare
4998 Formal_Typ : constant Entity_Id :=
4999 Etype (First_Formal (Designator));
5000 begin
5001 Set_Is_Private_Primitive (Designator,
5002 Is_Tagged_Type (Formal_Typ)
5003 and then Scope (Formal_Typ) = Current_Scope
5004 and then Is_Private_Type (Formal_Typ)
5005 and then not Is_Generic_Actual_Type (Formal_Typ));
5006 end;
5007 end if;
5008
5009 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
5010 -- or null.
5011
5012 if Ada_Version >= Ada_2005
5013 and then Comes_From_Source (N)
5014 and then Is_Dispatching_Operation (Designator)
5015 then
5016 declare
5017 E : Entity_Id;
5018 Etyp : Entity_Id;
5019
5020 begin
5021 if Has_Controlling_Result (Designator) then
5022 Etyp := Etype (Designator);
5023
5024 else
5025 E := First_Entity (Designator);
5026 while Present (E)
5027 and then Is_Formal (E)
5028 and then not Is_Controlling_Formal (E)
5029 loop
5030 Next_Entity (E);
5031 end loop;
5032
5033 Etyp := Etype (E);
5034 end if;
5035
5036 if Is_Access_Type (Etyp) then
5037 Etyp := Directly_Designated_Type (Etyp);
5038 end if;
5039
5040 if Is_Interface (Etyp)
5041 and then not Is_Abstract_Subprogram (Designator)
5042 and then not (Ekind (Designator) = E_Procedure
5043 and then Null_Present (Specification (N)))
5044 then
5045 Error_Msg_Name_1 := Chars (Defining_Entity (N));
5046
5047 -- Specialize error message based on procedures vs. functions,
5048 -- since functions can't be null subprograms.
5049
5050 if Ekind (Designator) = E_Procedure then
5051 Error_Msg_N
5052 ("interface procedure % must be abstract or null", N);
5053 else
5054 Error_Msg_N
5055 ("interface function % must be abstract", N);
5056 end if;
5057 end if;
5058 end;
5059 end if;
5060
5061 -- What is the following code for, it used to be
5062
5063 -- ??? Set_Suppress_Elaboration_Checks
5064 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
5065
5066 -- The following seems equivalent, but a bit dubious
5067
5068 if Elaboration_Checks_Suppressed (Designator) then
5069 Set_Kill_Elaboration_Checks (Designator);
5070 end if;
5071
5072 -- For a compilation unit, set body required. This flag will only be
5073 -- reset if a valid Import or Interface pragma is processed later on.
5074
5075 if Nkind (Parent (N)) = N_Compilation_Unit then
5076 Set_Body_Required (Parent (N), True);
5077
5078 if Ada_Version >= Ada_2005
5079 and then Nkind (Specification (N)) = N_Procedure_Specification
5080 and then Null_Present (Specification (N))
5081 then
5082 Error_Msg_N
5083 ("null procedure cannot be declared at library level", N);
5084 end if;
5085 end if;
5086
5087 Generate_Reference_To_Formals (Designator);
5088 Check_Eliminated (Designator);
5089
5090 if Debug_Flag_C then
5091 Outdent;
5092 Write_Str ("<== subprogram spec ");
5093 Write_Name (Chars (Designator));
5094 Write_Str (" from ");
5095 Write_Location (Sloc (N));
5096 Write_Eol;
5097 end if;
5098
5099 -- Indicate that this is a protected operation, because it may be used
5100 -- in subsequent declarations within the protected type.
5101
5102 if Is_Protected_Type (Current_Scope) then
5103 Set_Convention (Designator, Convention_Protected);
5104 end if;
5105
5106 List_Inherited_Pre_Post_Aspects (Designator);
5107
5108 -- Process the aspects before establishing the proper categorization in
5109 -- case the subprogram is a compilation unit and one of its aspects is
5110 -- converted into a categorization pragma.
5111
5112 if Has_Aspects (N) then
5113 Analyze_Aspect_Specifications (N, Designator);
5114 end if;
5115
5116 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
5117 Set_Categorization_From_Scope (Designator, Scop);
5118
5119 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
5120 -- proper categorization of the unit based on its pragmas.
5121
5122 else
5123 Push_Scope (Designator);
5124 Set_Categorization_From_Pragmas (N);
5125 Validate_Categorization_Dependency (N, Designator);
5126 Pop_Scope;
5127 end if;
5128 end Analyze_Subprogram_Declaration;
5129
5130 --------------------------------------
5131 -- Analyze_Subprogram_Specification --
5132 --------------------------------------
5133
5134 -- Reminder: N here really is a subprogram specification (not a subprogram
5135 -- declaration). This procedure is called to analyze the specification in
5136 -- both subprogram bodies and subprogram declarations (specs).
5137
5138 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
5139 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
5140 -- Determine whether entity E denotes the spec or body of an invariant
5141 -- procedure.
5142
5143 ------------------------------------
5144 -- Is_Invariant_Procedure_Or_Body --
5145 ------------------------------------
5146
5147 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
5148 Decl : constant Node_Id := Unit_Declaration_Node (E);
5149 Spec : Entity_Id;
5150
5151 begin
5152 if Nkind (Decl) = N_Subprogram_Body then
5153 Spec := Corresponding_Spec (Decl);
5154 else
5155 Spec := E;
5156 end if;
5157
5158 return
5159 Present (Spec)
5160 and then Ekind (Spec) = E_Procedure
5161 and then (Is_Partial_Invariant_Procedure (Spec)
5162 or else Is_Invariant_Procedure (Spec));
5163 end Is_Invariant_Procedure_Or_Body;
5164
5165 -- Local variables
5166
5167 Designator : constant Entity_Id := Defining_Entity (N);
5168 Formals : constant List_Id := Parameter_Specifications (N);
5169
5170 -- Start of processing for Analyze_Subprogram_Specification
5171
5172 begin
5173 -- User-defined operator is not allowed in SPARK, except as a renaming
5174
5175 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
5176 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
5177 then
5178 Check_SPARK_05_Restriction
5179 ("user-defined operator is not allowed", N);
5180 end if;
5181
5182 -- Proceed with analysis. Do not emit a cross-reference entry if the
5183 -- specification comes from an expression function, because it may be
5184 -- the completion of a previous declaration. If it is not, the cross-
5185 -- reference entry will be emitted for the new subprogram declaration.
5186
5187 if Nkind (Parent (N)) /= N_Expression_Function then
5188 Generate_Definition (Designator);
5189 end if;
5190
5191 if Nkind (N) = N_Function_Specification then
5192 Set_Ekind (Designator, E_Function);
5193 Set_Mechanism (Designator, Default_Mechanism);
5194 else
5195 Set_Ekind (Designator, E_Procedure);
5196 Set_Etype (Designator, Standard_Void_Type);
5197 end if;
5198
5199 -- Flag Is_Inlined_Always is True by default, and reversed to False for
5200 -- those subprograms which could be inlined in GNATprove mode (because
5201 -- Body_To_Inline is non-Empty) but should not be inlined.
5202
5203 if GNATprove_Mode then
5204 Set_Is_Inlined_Always (Designator);
5205 end if;
5206
5207 -- Introduce new scope for analysis of the formals and the return type
5208
5209 Set_Scope (Designator, Current_Scope);
5210
5211 if Present (Formals) then
5212 Push_Scope (Designator);
5213 Process_Formals (Formals, N);
5214
5215 -- Check dimensions in N for formals with default expression
5216
5217 Analyze_Dimension_Formals (N, Formals);
5218
5219 -- Ada 2005 (AI-345): If this is an overriding operation of an
5220 -- inherited interface operation, and the controlling type is
5221 -- a synchronized type, replace the type with its corresponding
5222 -- record, to match the proper signature of an overriding operation.
5223 -- Same processing for an access parameter whose designated type is
5224 -- derived from a synchronized interface.
5225
5226 -- This modification is not done for invariant procedures because
5227 -- the corresponding record may not necessarely be visible when the
5228 -- concurrent type acts as the full view of a private type.
5229
5230 -- package Pack is
5231 -- type Prot is private with Type_Invariant => ...;
5232 -- procedure ConcInvariant (Obj : Prot);
5233 -- private
5234 -- protected type Prot is ...;
5235 -- type Concurrent_Record_Prot is record ...;
5236 -- procedure ConcInvariant (Obj : Prot) is
5237 -- ...
5238 -- end ConcInvariant;
5239 -- end Pack;
5240
5241 -- In the example above, both the spec and body of the invariant
5242 -- procedure must utilize the private type as the controlling type.
5243
5244 if Ada_Version >= Ada_2005
5245 and then not Is_Invariant_Procedure_Or_Body (Designator)
5246 then
5247 declare
5248 Formal : Entity_Id;
5249 Formal_Typ : Entity_Id;
5250 Rec_Typ : Entity_Id;
5251 Desig_Typ : Entity_Id;
5252
5253 begin
5254 Formal := First_Formal (Designator);
5255 while Present (Formal) loop
5256 Formal_Typ := Etype (Formal);
5257
5258 if Is_Concurrent_Type (Formal_Typ)
5259 and then Present (Corresponding_Record_Type (Formal_Typ))
5260 then
5261 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5262
5263 if Present (Interfaces (Rec_Typ)) then
5264 Set_Etype (Formal, Rec_Typ);
5265 end if;
5266
5267 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5268 Desig_Typ := Designated_Type (Formal_Typ);
5269
5270 if Is_Concurrent_Type (Desig_Typ)
5271 and then Present (Corresponding_Record_Type (Desig_Typ))
5272 then
5273 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5274
5275 if Present (Interfaces (Rec_Typ)) then
5276 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5277 end if;
5278 end if;
5279 end if;
5280
5281 Next_Formal (Formal);
5282 end loop;
5283 end;
5284 end if;
5285
5286 End_Scope;
5287
5288 -- The subprogram scope is pushed and popped around the processing of
5289 -- the return type for consistency with call above to Process_Formals
5290 -- (which itself can call Analyze_Return_Type), and to ensure that any
5291 -- itype created for the return type will be associated with the proper
5292 -- scope.
5293
5294 elsif Nkind (N) = N_Function_Specification then
5295 Push_Scope (Designator);
5296 Analyze_Return_Type (N);
5297 End_Scope;
5298 end if;
5299
5300 -- Function case
5301
5302 if Nkind (N) = N_Function_Specification then
5303
5304 -- Deal with operator symbol case
5305
5306 if Nkind (Designator) = N_Defining_Operator_Symbol then
5307 Valid_Operator_Definition (Designator);
5308 end if;
5309
5310 May_Need_Actuals (Designator);
5311
5312 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5313 -- the subprogram is abstract also. This does not apply to renaming
5314 -- declarations, where abstractness is inherited, and to subprogram
5315 -- bodies generated for stream operations, which become renamings as
5316 -- bodies.
5317
5318 -- In case of primitives associated with abstract interface types
5319 -- the check is applied later (see Analyze_Subprogram_Declaration).
5320
5321 if not Nkind_In (Original_Node (Parent (N)),
5322 N_Abstract_Subprogram_Declaration,
5323 N_Formal_Abstract_Subprogram_Declaration,
5324 N_Subprogram_Renaming_Declaration)
5325 then
5326 if Is_Abstract_Type (Etype (Designator))
5327 and then not Is_Interface (Etype (Designator))
5328 then
5329 Error_Msg_N
5330 ("function that returns abstract type must be abstract", N);
5331
5332 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5333 -- access result whose designated type is abstract.
5334
5335 elsif Ada_Version >= Ada_2012
5336 and then Nkind (Result_Definition (N)) = N_Access_Definition
5337 and then
5338 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5339 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5340 then
5341 Error_Msg_N
5342 ("function whose access result designates abstract type "
5343 & "must be abstract", N);
5344 end if;
5345 end if;
5346 end if;
5347
5348 return Designator;
5349 end Analyze_Subprogram_Specification;
5350
5351 -----------------------
5352 -- Check_Conformance --
5353 -----------------------
5354
5355 procedure Check_Conformance
5356 (New_Id : Entity_Id;
5357 Old_Id : Entity_Id;
5358 Ctype : Conformance_Type;
5359 Errmsg : Boolean;
5360 Conforms : out Boolean;
5361 Err_Loc : Node_Id := Empty;
5362 Get_Inst : Boolean := False;
5363 Skip_Controlling_Formals : Boolean := False)
5364 is
5365 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5366 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5367 -- If Errmsg is True, then processing continues to post an error message
5368 -- for conformance error on given node. Two messages are output. The
5369 -- first message points to the previous declaration with a general "no
5370 -- conformance" message. The second is the detailed reason, supplied as
5371 -- Msg. The parameter N provide information for a possible & insertion
5372 -- in the message, and also provides the location for posting the
5373 -- message in the absence of a specified Err_Loc location.
5374
5375 function Conventions_Match
5376 (Id1 : Entity_Id;
5377 Id2 : Entity_Id) return Boolean;
5378 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5379 -- match.
5380
5381 -----------------------
5382 -- Conformance_Error --
5383 -----------------------
5384
5385 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5386 Enode : Node_Id;
5387
5388 begin
5389 Conforms := False;
5390
5391 if Errmsg then
5392 if No (Err_Loc) then
5393 Enode := N;
5394 else
5395 Enode := Err_Loc;
5396 end if;
5397
5398 Error_Msg_Sloc := Sloc (Old_Id);
5399
5400 case Ctype is
5401 when Type_Conformant =>
5402 Error_Msg_N -- CODEFIX
5403 ("not type conformant with declaration#!", Enode);
5404
5405 when Mode_Conformant =>
5406 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5407 Error_Msg_N
5408 ("not mode conformant with operation inherited#!",
5409 Enode);
5410 else
5411 Error_Msg_N
5412 ("not mode conformant with declaration#!", Enode);
5413 end if;
5414
5415 when Subtype_Conformant =>
5416 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5417 Error_Msg_N
5418 ("not subtype conformant with operation inherited#!",
5419 Enode);
5420 else
5421 Error_Msg_N
5422 ("not subtype conformant with declaration#!", Enode);
5423 end if;
5424
5425 when Fully_Conformant =>
5426 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5427 Error_Msg_N -- CODEFIX
5428 ("not fully conformant with operation inherited#!",
5429 Enode);
5430 else
5431 Error_Msg_N -- CODEFIX
5432 ("not fully conformant with declaration#!", Enode);
5433 end if;
5434 end case;
5435
5436 Error_Msg_NE (Msg, Enode, N);
5437 end if;
5438 end Conformance_Error;
5439
5440 -----------------------
5441 -- Conventions_Match --
5442 -----------------------
5443
5444 function Conventions_Match
5445 (Id1 : Entity_Id;
5446 Id2 : Entity_Id) return Boolean
5447 is
5448 begin
5449 -- Ignore the conventions of anonymous access-to-subprogram types
5450 -- and subprogram types because these are internally generated and
5451 -- the only way these may receive a convention is if they inherit
5452 -- the convention of a related subprogram.
5453
5454 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5455 E_Subprogram_Type)
5456 or else
5457 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5458 E_Subprogram_Type)
5459 then
5460 return True;
5461
5462 -- Otherwise compare the conventions directly
5463
5464 else
5465 return Convention (Id1) = Convention (Id2);
5466 end if;
5467 end Conventions_Match;
5468
5469 -- Local Variables
5470
5471 Old_Type : constant Entity_Id := Etype (Old_Id);
5472 New_Type : constant Entity_Id := Etype (New_Id);
5473 Old_Formal : Entity_Id;
5474 New_Formal : Entity_Id;
5475 Access_Types_Match : Boolean;
5476 Old_Formal_Base : Entity_Id;
5477 New_Formal_Base : Entity_Id;
5478
5479 -- Start of processing for Check_Conformance
5480
5481 begin
5482 Conforms := True;
5483
5484 -- We need a special case for operators, since they don't appear
5485 -- explicitly.
5486
5487 if Ctype = Type_Conformant then
5488 if Ekind (New_Id) = E_Operator
5489 and then Operator_Matches_Spec (New_Id, Old_Id)
5490 then
5491 return;
5492 end if;
5493 end if;
5494
5495 -- If both are functions/operators, check return types conform
5496
5497 if Old_Type /= Standard_Void_Type
5498 and then
5499 New_Type /= Standard_Void_Type
5500 then
5501 -- If we are checking interface conformance we omit controlling
5502 -- arguments and result, because we are only checking the conformance
5503 -- of the remaining parameters.
5504
5505 if Has_Controlling_Result (Old_Id)
5506 and then Has_Controlling_Result (New_Id)
5507 and then Skip_Controlling_Formals
5508 then
5509 null;
5510
5511 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5512 if Ctype >= Subtype_Conformant
5513 and then not Predicates_Match (Old_Type, New_Type)
5514 then
5515 Conformance_Error
5516 ("\predicate of return type does not match!", New_Id);
5517 else
5518 Conformance_Error
5519 ("\return type does not match!", New_Id);
5520 end if;
5521
5522 return;
5523 end if;
5524
5525 -- Ada 2005 (AI-231): In case of anonymous access types check the
5526 -- null-exclusion and access-to-constant attributes match.
5527
5528 if Ada_Version >= Ada_2005
5529 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5530 and then
5531 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5532 or else Is_Access_Constant (Etype (Old_Type)) /=
5533 Is_Access_Constant (Etype (New_Type)))
5534 then
5535 Conformance_Error ("\return type does not match!", New_Id);
5536 return;
5537 end if;
5538
5539 -- If either is a function/operator and the other isn't, error
5540
5541 elsif Old_Type /= Standard_Void_Type
5542 or else New_Type /= Standard_Void_Type
5543 then
5544 Conformance_Error ("\functions can only match functions!", New_Id);
5545 return;
5546 end if;
5547
5548 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5549 -- If this is a renaming as body, refine error message to indicate that
5550 -- the conflict is with the original declaration. If the entity is not
5551 -- frozen, the conventions don't have to match, the one of the renamed
5552 -- entity is inherited.
5553
5554 if Ctype >= Subtype_Conformant then
5555 if not Conventions_Match (Old_Id, New_Id) then
5556 if not Is_Frozen (New_Id) then
5557 null;
5558
5559 elsif Present (Err_Loc)
5560 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5561 and then Present (Corresponding_Spec (Err_Loc))
5562 then
5563 Error_Msg_Name_1 := Chars (New_Id);
5564 Error_Msg_Name_2 :=
5565 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5566 Conformance_Error ("\prior declaration for% has convention %!");
5567
5568 else
5569 Conformance_Error ("\calling conventions do not match!");
5570 end if;
5571
5572 return;
5573
5574 elsif Is_Formal_Subprogram (Old_Id)
5575 or else Is_Formal_Subprogram (New_Id)
5576 or else (Is_Subprogram (New_Id)
5577 and then Present (Alias (New_Id))
5578 and then Is_Formal_Subprogram (Alias (New_Id)))
5579 then
5580 Conformance_Error
5581 ("\formal subprograms are not subtype conformant "
5582 & "(RM 6.3.1 (17/3))");
5583 end if;
5584 end if;
5585
5586 -- Deal with parameters
5587
5588 -- Note: we use the entity information, rather than going directly
5589 -- to the specification in the tree. This is not only simpler, but
5590 -- absolutely necessary for some cases of conformance tests between
5591 -- operators, where the declaration tree simply does not exist.
5592
5593 Old_Formal := First_Formal (Old_Id);
5594 New_Formal := First_Formal (New_Id);
5595 while Present (Old_Formal) and then Present (New_Formal) loop
5596 if Is_Controlling_Formal (Old_Formal)
5597 and then Is_Controlling_Formal (New_Formal)
5598 and then Skip_Controlling_Formals
5599 then
5600 -- The controlling formals will have different types when
5601 -- comparing an interface operation with its match, but both
5602 -- or neither must be access parameters.
5603
5604 if Is_Access_Type (Etype (Old_Formal))
5605 =
5606 Is_Access_Type (Etype (New_Formal))
5607 then
5608 goto Skip_Controlling_Formal;
5609 else
5610 Conformance_Error
5611 ("\access parameter does not match!", New_Formal);
5612 end if;
5613 end if;
5614
5615 -- Ada 2012: Mode conformance also requires that formal parameters
5616 -- be both aliased, or neither.
5617
5618 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5619 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5620 Conformance_Error
5621 ("\aliased parameter mismatch!", New_Formal);
5622 end if;
5623 end if;
5624
5625 if Ctype = Fully_Conformant then
5626
5627 -- Names must match. Error message is more accurate if we do
5628 -- this before checking that the types of the formals match.
5629
5630 if Chars (Old_Formal) /= Chars (New_Formal) then
5631 Conformance_Error ("\name& does not match!", New_Formal);
5632
5633 -- Set error posted flag on new formal as well to stop
5634 -- junk cascaded messages in some cases.
5635
5636 Set_Error_Posted (New_Formal);
5637 return;
5638 end if;
5639
5640 -- Null exclusion must match
5641
5642 if Null_Exclusion_Present (Parent (Old_Formal))
5643 /=
5644 Null_Exclusion_Present (Parent (New_Formal))
5645 then
5646 -- Only give error if both come from source. This should be
5647 -- investigated some time, since it should not be needed ???
5648
5649 if Comes_From_Source (Old_Formal)
5650 and then
5651 Comes_From_Source (New_Formal)
5652 then
5653 Conformance_Error
5654 ("\null exclusion for& does not match", New_Formal);
5655
5656 -- Mark error posted on the new formal to avoid duplicated
5657 -- complaint about types not matching.
5658
5659 Set_Error_Posted (New_Formal);
5660 end if;
5661 end if;
5662 end if;
5663
5664 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5665 -- case occurs whenever a subprogram is being renamed and one of its
5666 -- parameters imposes a null exclusion. For example:
5667
5668 -- type T is null record;
5669 -- type Acc_T is access T;
5670 -- subtype Acc_T_Sub is Acc_T;
5671
5672 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5673 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5674 -- renames P;
5675
5676 Old_Formal_Base := Etype (Old_Formal);
5677 New_Formal_Base := Etype (New_Formal);
5678
5679 if Get_Inst then
5680 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5681 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5682 end if;
5683
5684 Access_Types_Match := Ada_Version >= Ada_2005
5685
5686 -- Ensure that this rule is only applied when New_Id is a
5687 -- renaming of Old_Id.
5688
5689 and then Nkind (Parent (Parent (New_Id))) =
5690 N_Subprogram_Renaming_Declaration
5691 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5692 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5693 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5694
5695 -- Now handle the allowed access-type case
5696
5697 and then Is_Access_Type (Old_Formal_Base)
5698 and then Is_Access_Type (New_Formal_Base)
5699
5700 -- The type kinds must match. The only exception occurs with
5701 -- multiple generics of the form:
5702
5703 -- generic generic
5704 -- type F is private; type A is private;
5705 -- type F_Ptr is access F; type A_Ptr is access A;
5706 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5707 -- package F_Pack is ... package A_Pack is
5708 -- package F_Inst is
5709 -- new F_Pack (A, A_Ptr, A_P);
5710
5711 -- When checking for conformance between the parameters of A_P
5712 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5713 -- because the compiler has transformed A_Ptr into a subtype of
5714 -- F_Ptr. We catch this case in the code below.
5715
5716 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5717 or else
5718 (Is_Generic_Type (Old_Formal_Base)
5719 and then Is_Generic_Type (New_Formal_Base)
5720 and then Is_Internal (New_Formal_Base)
5721 and then Etype (Etype (New_Formal_Base)) =
5722 Old_Formal_Base))
5723 and then Directly_Designated_Type (Old_Formal_Base) =
5724 Directly_Designated_Type (New_Formal_Base)
5725 and then ((Is_Itype (Old_Formal_Base)
5726 and then (Can_Never_Be_Null (Old_Formal_Base)
5727 or else Is_Access_Constant
5728 (Old_Formal_Base)))
5729 or else
5730 (Is_Itype (New_Formal_Base)
5731 and then (Can_Never_Be_Null (New_Formal_Base)
5732 or else Is_Access_Constant
5733 (New_Formal_Base))));
5734
5735 -- Types must always match. In the visible part of an instance,
5736 -- usual overloading rules for dispatching operations apply, and
5737 -- we check base types (not the actual subtypes).
5738
5739 if In_Instance_Visible_Part
5740 and then Is_Dispatching_Operation (New_Id)
5741 then
5742 if not Conforming_Types
5743 (T1 => Base_Type (Etype (Old_Formal)),
5744 T2 => Base_Type (Etype (New_Formal)),
5745 Ctype => Ctype,
5746 Get_Inst => Get_Inst)
5747 and then not Access_Types_Match
5748 then
5749 Conformance_Error ("\type of & does not match!", New_Formal);
5750 return;
5751 end if;
5752
5753 elsif not Conforming_Types
5754 (T1 => Old_Formal_Base,
5755 T2 => New_Formal_Base,
5756 Ctype => Ctype,
5757 Get_Inst => Get_Inst)
5758 and then not Access_Types_Match
5759 then
5760 -- Don't give error message if old type is Any_Type. This test
5761 -- avoids some cascaded errors, e.g. in case of a bad spec.
5762
5763 if Errmsg and then Old_Formal_Base = Any_Type then
5764 Conforms := False;
5765 else
5766 if Ctype >= Subtype_Conformant
5767 and then
5768 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5769 then
5770 Conformance_Error
5771 ("\predicate of & does not match!", New_Formal);
5772 else
5773 Conformance_Error
5774 ("\type of & does not match!", New_Formal);
5775
5776 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5777 then
5778 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5779 end if;
5780 end if;
5781 end if;
5782
5783 return;
5784 end if;
5785
5786 -- For mode conformance, mode must match
5787
5788 if Ctype >= Mode_Conformant then
5789 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5790 if not Ekind_In (New_Id, E_Function, E_Procedure)
5791 or else not Is_Primitive_Wrapper (New_Id)
5792 then
5793 Conformance_Error ("\mode of & does not match!", New_Formal);
5794
5795 else
5796 declare
5797 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5798 begin
5799 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5800 then
5801 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5802 else
5803 Conformance_Error
5804 ("\mode of & does not match!", New_Formal);
5805 end if;
5806 end;
5807 end if;
5808
5809 return;
5810
5811 -- Part of mode conformance for access types is having the same
5812 -- constant modifier.
5813
5814 elsif Access_Types_Match
5815 and then Is_Access_Constant (Old_Formal_Base) /=
5816 Is_Access_Constant (New_Formal_Base)
5817 then
5818 Conformance_Error
5819 ("\constant modifier does not match!", New_Formal);
5820 return;
5821 end if;
5822 end if;
5823
5824 if Ctype >= Subtype_Conformant then
5825
5826 -- Ada 2005 (AI-231): In case of anonymous access types check
5827 -- the null-exclusion and access-to-constant attributes must
5828 -- match. For null exclusion, we test the types rather than the
5829 -- formals themselves, since the attribute is only set reliably
5830 -- on the formals in the Ada 95 case, and we exclude the case
5831 -- where Old_Formal is marked as controlling, to avoid errors
5832 -- when matching completing bodies with dispatching declarations
5833 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5834
5835 if Ada_Version >= Ada_2005
5836 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5837 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5838 and then
5839 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5840 Can_Never_Be_Null (Etype (New_Formal))
5841 and then
5842 not Is_Controlling_Formal (Old_Formal))
5843 or else
5844 Is_Access_Constant (Etype (Old_Formal)) /=
5845 Is_Access_Constant (Etype (New_Formal)))
5846
5847 -- Do not complain if error already posted on New_Formal. This
5848 -- avoids some redundant error messages.
5849
5850 and then not Error_Posted (New_Formal)
5851 then
5852 -- It is allowed to omit the null-exclusion in case of stream
5853 -- attribute subprograms. We recognize stream subprograms
5854 -- through their TSS-generated suffix.
5855
5856 declare
5857 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5858
5859 begin
5860 if TSS_Name /= TSS_Stream_Read
5861 and then TSS_Name /= TSS_Stream_Write
5862 and then TSS_Name /= TSS_Stream_Input
5863 and then TSS_Name /= TSS_Stream_Output
5864 then
5865 -- Here we have a definite conformance error. It is worth
5866 -- special casing the error message for the case of a
5867 -- controlling formal (which excludes null).
5868
5869 if Is_Controlling_Formal (New_Formal) then
5870 Error_Msg_Node_2 := Scope (New_Formal);
5871 Conformance_Error
5872 ("\controlling formal & of & excludes null, "
5873 & "declaration must exclude null as well",
5874 New_Formal);
5875
5876 -- Normal case (couldn't we give more detail here???)
5877
5878 else
5879 Conformance_Error
5880 ("\type of & does not match!", New_Formal);
5881 end if;
5882
5883 return;
5884 end if;
5885 end;
5886 end if;
5887 end if;
5888
5889 -- Full conformance checks
5890
5891 if Ctype = Fully_Conformant then
5892
5893 -- We have checked already that names match
5894
5895 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5896
5897 -- Check default expressions for in parameters
5898
5899 declare
5900 NewD : constant Boolean :=
5901 Present (Default_Value (New_Formal));
5902 OldD : constant Boolean :=
5903 Present (Default_Value (Old_Formal));
5904 begin
5905 if NewD or OldD then
5906
5907 -- The old default value has been analyzed because the
5908 -- current full declaration will have frozen everything
5909 -- before. The new default value has not been analyzed,
5910 -- so analyze it now before we check for conformance.
5911
5912 if NewD then
5913 Push_Scope (New_Id);
5914 Preanalyze_Spec_Expression
5915 (Default_Value (New_Formal), Etype (New_Formal));
5916 End_Scope;
5917 end if;
5918
5919 if not (NewD and OldD)
5920 or else not Fully_Conformant_Expressions
5921 (Default_Value (Old_Formal),
5922 Default_Value (New_Formal))
5923 then
5924 Conformance_Error
5925 ("\default expression for & does not match!",
5926 New_Formal);
5927 return;
5928 end if;
5929 end if;
5930 end;
5931 end if;
5932 end if;
5933
5934 -- A couple of special checks for Ada 83 mode. These checks are
5935 -- skipped if either entity is an operator in package Standard,
5936 -- or if either old or new instance is not from the source program.
5937
5938 if Ada_Version = Ada_83
5939 and then Sloc (Old_Id) > Standard_Location
5940 and then Sloc (New_Id) > Standard_Location
5941 and then Comes_From_Source (Old_Id)
5942 and then Comes_From_Source (New_Id)
5943 then
5944 declare
5945 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5946 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5947
5948 begin
5949 -- Explicit IN must be present or absent in both cases. This
5950 -- test is required only in the full conformance case.
5951
5952 if In_Present (Old_Param) /= In_Present (New_Param)
5953 and then Ctype = Fully_Conformant
5954 then
5955 Conformance_Error
5956 ("\(Ada 83) IN must appear in both declarations",
5957 New_Formal);
5958 return;
5959 end if;
5960
5961 -- Grouping (use of comma in param lists) must be the same
5962 -- This is where we catch a misconformance like:
5963
5964 -- A, B : Integer
5965 -- A : Integer; B : Integer
5966
5967 -- which are represented identically in the tree except
5968 -- for the setting of the flags More_Ids and Prev_Ids.
5969
5970 if More_Ids (Old_Param) /= More_Ids (New_Param)
5971 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5972 then
5973 Conformance_Error
5974 ("\grouping of & does not match!", New_Formal);
5975 return;
5976 end if;
5977 end;
5978 end if;
5979
5980 -- This label is required when skipping controlling formals
5981
5982 <<Skip_Controlling_Formal>>
5983
5984 Next_Formal (Old_Formal);
5985 Next_Formal (New_Formal);
5986 end loop;
5987
5988 if Present (Old_Formal) then
5989 Conformance_Error ("\too few parameters!");
5990 return;
5991
5992 elsif Present (New_Formal) then
5993 Conformance_Error ("\too many parameters!", New_Formal);
5994 return;
5995 end if;
5996 end Check_Conformance;
5997
5998 -----------------------
5999 -- Check_Conventions --
6000 -----------------------
6001
6002 procedure Check_Conventions (Typ : Entity_Id) is
6003 Ifaces_List : Elist_Id;
6004
6005 procedure Check_Convention (Op : Entity_Id);
6006 -- Verify that the convention of inherited dispatching operation Op is
6007 -- consistent among all subprograms it overrides. In order to minimize
6008 -- the search, Search_From is utilized to designate a specific point in
6009 -- the list rather than iterating over the whole list once more.
6010
6011 ----------------------
6012 -- Check_Convention --
6013 ----------------------
6014
6015 procedure Check_Convention (Op : Entity_Id) is
6016 Op_Conv : constant Convention_Id := Convention (Op);
6017 Iface_Conv : Convention_Id;
6018 Iface_Elmt : Elmt_Id;
6019 Iface_Prim_Elmt : Elmt_Id;
6020 Iface_Prim : Entity_Id;
6021
6022 begin
6023 Iface_Elmt := First_Elmt (Ifaces_List);
6024 while Present (Iface_Elmt) loop
6025 Iface_Prim_Elmt :=
6026 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
6027 while Present (Iface_Prim_Elmt) loop
6028 Iface_Prim := Node (Iface_Prim_Elmt);
6029 Iface_Conv := Convention (Iface_Prim);
6030
6031 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
6032 and then Iface_Conv /= Op_Conv
6033 then
6034 Error_Msg_N
6035 ("inconsistent conventions in primitive operations", Typ);
6036
6037 Error_Msg_Name_1 := Chars (Op);
6038 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
6039 Error_Msg_Sloc := Sloc (Op);
6040
6041 if Comes_From_Source (Op) or else No (Alias (Op)) then
6042 if not Present (Overridden_Operation (Op)) then
6043 Error_Msg_N ("\\primitive % defined #", Typ);
6044 else
6045 Error_Msg_N
6046 ("\\overriding operation % with "
6047 & "convention % defined #", Typ);
6048 end if;
6049
6050 else pragma Assert (Present (Alias (Op)));
6051 Error_Msg_Sloc := Sloc (Alias (Op));
6052 Error_Msg_N ("\\inherited operation % with "
6053 & "convention % defined #", Typ);
6054 end if;
6055
6056 Error_Msg_Name_1 := Chars (Op);
6057 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
6058 Error_Msg_Sloc := Sloc (Iface_Prim);
6059 Error_Msg_N ("\\overridden operation % with "
6060 & "convention % defined #", Typ);
6061
6062 -- Avoid cascading errors
6063
6064 return;
6065 end if;
6066
6067 Next_Elmt (Iface_Prim_Elmt);
6068 end loop;
6069
6070 Next_Elmt (Iface_Elmt);
6071 end loop;
6072 end Check_Convention;
6073
6074 -- Local variables
6075
6076 Prim_Op : Entity_Id;
6077 Prim_Op_Elmt : Elmt_Id;
6078
6079 -- Start of processing for Check_Conventions
6080
6081 begin
6082 if not Has_Interfaces (Typ) then
6083 return;
6084 end if;
6085
6086 Collect_Interfaces (Typ, Ifaces_List);
6087
6088 -- The algorithm checks every overriding dispatching operation against
6089 -- all the corresponding overridden dispatching operations, detecting
6090 -- differences in conventions.
6091
6092 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
6093 while Present (Prim_Op_Elmt) loop
6094 Prim_Op := Node (Prim_Op_Elmt);
6095
6096 -- A small optimization: skip the predefined dispatching operations
6097 -- since they always have the same convention.
6098
6099 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
6100 Check_Convention (Prim_Op);
6101 end if;
6102
6103 Next_Elmt (Prim_Op_Elmt);
6104 end loop;
6105 end Check_Conventions;
6106
6107 ------------------------------
6108 -- Check_Delayed_Subprogram --
6109 ------------------------------
6110
6111 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
6112 procedure Possible_Freeze (T : Entity_Id);
6113 -- T is the type of either a formal parameter or of the return type. If
6114 -- T is not yet frozen and needs a delayed freeze, then the subprogram
6115 -- itself must be delayed.
6116
6117 ---------------------
6118 -- Possible_Freeze --
6119 ---------------------
6120
6121 procedure Possible_Freeze (T : Entity_Id) is
6122 Scop : constant Entity_Id := Scope (Designator);
6123
6124 begin
6125 -- If the subprogram appears within a package instance (which may be
6126 -- the wrapper package of a subprogram instance) the freeze node for
6127 -- that package will freeze the subprogram at the proper place, so
6128 -- do not emit a freeze node for the subprogram, given that it may
6129 -- appear in the wrong scope.
6130
6131 if Ekind (Scop) = E_Package
6132 and then not Comes_From_Source (Scop)
6133 and then Is_Generic_Instance (Scop)
6134 then
6135 null;
6136
6137 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
6138 Set_Has_Delayed_Freeze (Designator);
6139
6140 elsif Is_Access_Type (T)
6141 and then Has_Delayed_Freeze (Designated_Type (T))
6142 and then not Is_Frozen (Designated_Type (T))
6143 then
6144 Set_Has_Delayed_Freeze (Designator);
6145 end if;
6146 end Possible_Freeze;
6147
6148 -- Local variables
6149
6150 F : Entity_Id;
6151
6152 -- Start of processing for Check_Delayed_Subprogram
6153
6154 begin
6155 -- All subprograms, including abstract subprograms, may need a freeze
6156 -- node if some formal type or the return type needs one.
6157
6158 Possible_Freeze (Etype (Designator));
6159 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6160
6161 -- Need delayed freeze if any of the formal types themselves need a
6162 -- delayed freeze and are not yet frozen.
6163
6164 F := First_Formal (Designator);
6165 while Present (F) loop
6166 Possible_Freeze (Etype (F));
6167 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6168 Next_Formal (F);
6169 end loop;
6170
6171 -- Mark functions that return by reference. Note that it cannot be done
6172 -- for delayed_freeze subprograms because the underlying returned type
6173 -- may not be known yet (for private types).
6174
6175 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6176 declare
6177 Typ : constant Entity_Id := Etype (Designator);
6178 Utyp : constant Entity_Id := Underlying_Type (Typ);
6179
6180 begin
6181 if Is_Limited_View (Typ) then
6182 Set_Returns_By_Ref (Designator);
6183
6184 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6185 Set_Returns_By_Ref (Designator);
6186 end if;
6187 end;
6188 end if;
6189 end Check_Delayed_Subprogram;
6190
6191 ------------------------------------
6192 -- Check_Discriminant_Conformance --
6193 ------------------------------------
6194
6195 procedure Check_Discriminant_Conformance
6196 (N : Node_Id;
6197 Prev : Entity_Id;
6198 Prev_Loc : Node_Id)
6199 is
6200 Old_Discr : Entity_Id := First_Discriminant (Prev);
6201 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6202 New_Discr_Id : Entity_Id;
6203 New_Discr_Type : Entity_Id;
6204
6205 procedure Conformance_Error (Msg : String; N : Node_Id);
6206 -- Post error message for conformance error on given node. Two messages
6207 -- are output. The first points to the previous declaration with a
6208 -- general "no conformance" message. The second is the detailed reason,
6209 -- supplied as Msg. The parameter N provide information for a possible
6210 -- & insertion in the message.
6211
6212 -----------------------
6213 -- Conformance_Error --
6214 -----------------------
6215
6216 procedure Conformance_Error (Msg : String; N : Node_Id) is
6217 begin
6218 Error_Msg_Sloc := Sloc (Prev_Loc);
6219 Error_Msg_N -- CODEFIX
6220 ("not fully conformant with declaration#!", N);
6221 Error_Msg_NE (Msg, N, N);
6222 end Conformance_Error;
6223
6224 -- Start of processing for Check_Discriminant_Conformance
6225
6226 begin
6227 while Present (Old_Discr) and then Present (New_Discr) loop
6228 New_Discr_Id := Defining_Identifier (New_Discr);
6229
6230 -- The subtype mark of the discriminant on the full type has not
6231 -- been analyzed so we do it here. For an access discriminant a new
6232 -- type is created.
6233
6234 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6235 New_Discr_Type :=
6236 Access_Definition (N, Discriminant_Type (New_Discr));
6237
6238 else
6239 Find_Type (Discriminant_Type (New_Discr));
6240 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6241
6242 -- Ada 2005: if the discriminant definition carries a null
6243 -- exclusion, create an itype to check properly for consistency
6244 -- with partial declaration.
6245
6246 if Is_Access_Type (New_Discr_Type)
6247 and then Null_Exclusion_Present (New_Discr)
6248 then
6249 New_Discr_Type :=
6250 Create_Null_Excluding_Itype
6251 (T => New_Discr_Type,
6252 Related_Nod => New_Discr,
6253 Scope_Id => Current_Scope);
6254 end if;
6255 end if;
6256
6257 if not Conforming_Types
6258 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6259 then
6260 Conformance_Error ("type of & does not match!", New_Discr_Id);
6261 return;
6262 else
6263 -- Treat the new discriminant as an occurrence of the old one,
6264 -- for navigation purposes, and fill in some semantic
6265 -- information, for completeness.
6266
6267 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6268 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6269 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6270 end if;
6271
6272 -- Names must match
6273
6274 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6275 Conformance_Error ("name & does not match!", New_Discr_Id);
6276 return;
6277 end if;
6278
6279 -- Default expressions must match
6280
6281 declare
6282 NewD : constant Boolean :=
6283 Present (Expression (New_Discr));
6284 OldD : constant Boolean :=
6285 Present (Expression (Parent (Old_Discr)));
6286
6287 begin
6288 if NewD or OldD then
6289
6290 -- The old default value has been analyzed and expanded,
6291 -- because the current full declaration will have frozen
6292 -- everything before. The new default values have not been
6293 -- expanded, so expand now to check conformance.
6294
6295 if NewD then
6296 Preanalyze_Spec_Expression
6297 (Expression (New_Discr), New_Discr_Type);
6298 end if;
6299
6300 if not (NewD and OldD)
6301 or else not Fully_Conformant_Expressions
6302 (Expression (Parent (Old_Discr)),
6303 Expression (New_Discr))
6304
6305 then
6306 Conformance_Error
6307 ("default expression for & does not match!",
6308 New_Discr_Id);
6309 return;
6310 end if;
6311 end if;
6312 end;
6313
6314 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6315
6316 if Ada_Version = Ada_83 then
6317 declare
6318 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6319
6320 begin
6321 -- Grouping (use of comma in param lists) must be the same
6322 -- This is where we catch a misconformance like:
6323
6324 -- A, B : Integer
6325 -- A : Integer; B : Integer
6326
6327 -- which are represented identically in the tree except
6328 -- for the setting of the flags More_Ids and Prev_Ids.
6329
6330 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6331 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6332 then
6333 Conformance_Error
6334 ("grouping of & does not match!", New_Discr_Id);
6335 return;
6336 end if;
6337 end;
6338 end if;
6339
6340 Next_Discriminant (Old_Discr);
6341 Next (New_Discr);
6342 end loop;
6343
6344 if Present (Old_Discr) then
6345 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6346 return;
6347
6348 elsif Present (New_Discr) then
6349 Conformance_Error
6350 ("too many discriminants!", Defining_Identifier (New_Discr));
6351 return;
6352 end if;
6353 end Check_Discriminant_Conformance;
6354
6355 ----------------------------
6356 -- Check_Fully_Conformant --
6357 ----------------------------
6358
6359 procedure Check_Fully_Conformant
6360 (New_Id : Entity_Id;
6361 Old_Id : Entity_Id;
6362 Err_Loc : Node_Id := Empty)
6363 is
6364 Result : Boolean;
6365 pragma Warnings (Off, Result);
6366 begin
6367 Check_Conformance
6368 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6369 end Check_Fully_Conformant;
6370
6371 --------------------------
6372 -- Check_Limited_Return --
6373 --------------------------
6374
6375 procedure Check_Limited_Return
6376 (N : Node_Id;
6377 Expr : Node_Id;
6378 R_Type : Entity_Id)
6379 is
6380 begin
6381 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6382 -- replaced by anonymous access results. This is an incompatibility with
6383 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6384 -- controllable with special switch. ???
6385
6386 -- A limited interface that is not immutably limited is OK
6387
6388 if Is_Limited_Interface (R_Type)
6389 and then
6390 not (Is_Task_Interface (R_Type)
6391 or else Is_Protected_Interface (R_Type)
6392 or else Is_Synchronized_Interface (R_Type))
6393 then
6394 null;
6395
6396 elsif Is_Limited_Type (R_Type)
6397 and then not Is_Interface (R_Type)
6398 and then Comes_From_Source (N)
6399 and then not In_Instance_Body
6400 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6401 then
6402 -- Error in Ada 2005
6403
6404 if Ada_Version >= Ada_2005
6405 and then not Debug_Flag_Dot_L
6406 and then not GNAT_Mode
6407 then
6408 Error_Msg_N
6409 ("(Ada 2005) cannot copy object of a limited type "
6410 & "(RM-2005 6.5(5.5/2))", Expr);
6411
6412 if Is_Limited_View (R_Type) then
6413 Error_Msg_N
6414 ("\return by reference not permitted in Ada 2005", Expr);
6415 end if;
6416
6417 -- Warn in Ada 95 mode, to give folks a heads up about this
6418 -- incompatibility.
6419
6420 -- In GNAT mode, this is just a warning, to allow it to be evilly
6421 -- turned off. Otherwise it is a real error.
6422
6423 -- In a generic context, simplify the warning because it makes no
6424 -- sense to discuss pass-by-reference or copy.
6425
6426 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6427 if Inside_A_Generic then
6428 Error_Msg_N
6429 ("return of limited object not permitted in Ada 2005 "
6430 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6431
6432 elsif Is_Limited_View (R_Type) then
6433 Error_Msg_N
6434 ("return by reference not permitted in Ada 2005 "
6435 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6436 else
6437 Error_Msg_N
6438 ("cannot copy object of a limited type in Ada 2005 "
6439 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6440 end if;
6441
6442 -- Ada 95 mode, and compatibility warnings disabled
6443
6444 else
6445 pragma Assert (Ada_Version <= Ada_95);
6446 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6447 return; -- skip continuation messages below
6448 end if;
6449
6450 if not Inside_A_Generic then
6451 Error_Msg_N
6452 ("\consider switching to return of access type", Expr);
6453 Explain_Limited_Type (R_Type, Expr);
6454 end if;
6455 end if;
6456 end Check_Limited_Return;
6457
6458 ---------------------------
6459 -- Check_Mode_Conformant --
6460 ---------------------------
6461
6462 procedure Check_Mode_Conformant
6463 (New_Id : Entity_Id;
6464 Old_Id : Entity_Id;
6465 Err_Loc : Node_Id := Empty;
6466 Get_Inst : Boolean := False)
6467 is
6468 Result : Boolean;
6469 pragma Warnings (Off, Result);
6470 begin
6471 Check_Conformance
6472 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6473 end Check_Mode_Conformant;
6474
6475 --------------------------------
6476 -- Check_Overriding_Indicator --
6477 --------------------------------
6478
6479 procedure Check_Overriding_Indicator
6480 (Subp : Entity_Id;
6481 Overridden_Subp : Entity_Id;
6482 Is_Primitive : Boolean)
6483 is
6484 Decl : Node_Id;
6485 Spec : Node_Id;
6486
6487 begin
6488 -- No overriding indicator for literals
6489
6490 if Ekind (Subp) = E_Enumeration_Literal then
6491 return;
6492
6493 elsif Ekind (Subp) = E_Entry then
6494 Decl := Parent (Subp);
6495
6496 -- No point in analyzing a malformed operator
6497
6498 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6499 and then Error_Posted (Subp)
6500 then
6501 return;
6502
6503 else
6504 Decl := Unit_Declaration_Node (Subp);
6505 end if;
6506
6507 if Nkind_In (Decl, N_Subprogram_Body,
6508 N_Subprogram_Body_Stub,
6509 N_Subprogram_Declaration,
6510 N_Abstract_Subprogram_Declaration,
6511 N_Subprogram_Renaming_Declaration)
6512 then
6513 Spec := Specification (Decl);
6514
6515 elsif Nkind (Decl) = N_Entry_Declaration then
6516 Spec := Decl;
6517
6518 else
6519 return;
6520 end if;
6521
6522 -- The overriding operation is type conformant with the overridden one,
6523 -- but the names of the formals are not required to match. If the names
6524 -- appear permuted in the overriding operation, this is a possible
6525 -- source of confusion that is worth diagnosing. Controlling formals
6526 -- often carry names that reflect the type, and it is not worthwhile
6527 -- requiring that their names match.
6528
6529 if Present (Overridden_Subp)
6530 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6531 then
6532 declare
6533 Form1 : Entity_Id;
6534 Form2 : Entity_Id;
6535
6536 begin
6537 Form1 := First_Formal (Subp);
6538 Form2 := First_Formal (Overridden_Subp);
6539
6540 -- If the overriding operation is a synchronized operation, skip
6541 -- the first parameter of the overridden operation, which is
6542 -- implicit in the new one. If the operation is declared in the
6543 -- body it is not primitive and all formals must match.
6544
6545 if Is_Concurrent_Type (Scope (Subp))
6546 and then Is_Tagged_Type (Scope (Subp))
6547 and then not Has_Completion (Scope (Subp))
6548 then
6549 Form2 := Next_Formal (Form2);
6550 end if;
6551
6552 if Present (Form1) then
6553 Form1 := Next_Formal (Form1);
6554 Form2 := Next_Formal (Form2);
6555 end if;
6556
6557 while Present (Form1) loop
6558 if not Is_Controlling_Formal (Form1)
6559 and then Present (Next_Formal (Form2))
6560 and then Chars (Form1) = Chars (Next_Formal (Form2))
6561 then
6562 Error_Msg_Node_2 := Alias (Overridden_Subp);
6563 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6564 Error_Msg_NE
6565 ("& does not match corresponding formal of&#",
6566 Form1, Form1);
6567 exit;
6568 end if;
6569
6570 Next_Formal (Form1);
6571 Next_Formal (Form2);
6572 end loop;
6573 end;
6574 end if;
6575
6576 -- If there is an overridden subprogram, then check that there is no
6577 -- "not overriding" indicator, and mark the subprogram as overriding.
6578
6579 -- This is not done if the overridden subprogram is marked as hidden,
6580 -- which can occur for the case of inherited controlled operations
6581 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6582 -- subprogram is not itself hidden or we are within a generic instance,
6583 -- in which case the hidden flag may have been modified for the
6584 -- expansion of the instance.
6585
6586 -- (Note: This condition could probably be simplified, leaving out the
6587 -- testing for the specific controlled cases, but it seems safer and
6588 -- clearer this way, and echoes similar special-case tests of this
6589 -- kind in other places.)
6590
6591 if Present (Overridden_Subp)
6592 and then (not Is_Hidden (Overridden_Subp)
6593 or else
6594 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6595 Name_Adjust,
6596 Name_Finalize)
6597 and then Present (Alias (Overridden_Subp))
6598 and then (not Is_Hidden (Alias (Overridden_Subp))
6599 or else In_Instance)))
6600 then
6601 if Must_Not_Override (Spec) then
6602 Error_Msg_Sloc := Sloc (Overridden_Subp);
6603
6604 if Ekind (Subp) = E_Entry then
6605 Error_Msg_NE
6606 ("entry & overrides inherited operation #", Spec, Subp);
6607 else
6608 Error_Msg_NE
6609 ("subprogram & overrides inherited operation #", Spec, Subp);
6610 end if;
6611
6612 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6613 -- as an extension of Root_Controlled, and thus has a useless Adjust
6614 -- operation. This operation should not be inherited by other limited
6615 -- controlled types. An explicit Adjust for them is not overriding.
6616
6617 elsif Must_Override (Spec)
6618 and then Chars (Overridden_Subp) = Name_Adjust
6619 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6620 and then Present (Alias (Overridden_Subp))
6621 and then In_Predefined_Unit (Alias (Overridden_Subp))
6622 then
6623 Get_Name_String
6624 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6625 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6626
6627 elsif Is_Subprogram (Subp) then
6628 if Is_Init_Proc (Subp) then
6629 null;
6630
6631 elsif No (Overridden_Operation (Subp)) then
6632
6633 -- For entities generated by Derive_Subprograms the overridden
6634 -- operation is the inherited primitive (which is available
6635 -- through the attribute alias)
6636
6637 if (Is_Dispatching_Operation (Subp)
6638 or else Is_Dispatching_Operation (Overridden_Subp))
6639 and then not Comes_From_Source (Overridden_Subp)
6640 and then Find_Dispatching_Type (Overridden_Subp) =
6641 Find_Dispatching_Type (Subp)
6642 and then Present (Alias (Overridden_Subp))
6643 and then Comes_From_Source (Alias (Overridden_Subp))
6644 then
6645 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6646 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6647
6648 else
6649 Set_Overridden_Operation (Subp, Overridden_Subp);
6650 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6651 end if;
6652 end if;
6653 end if;
6654
6655 -- If primitive flag is set or this is a protected operation, then
6656 -- the operation is overriding at the point of its declaration, so
6657 -- warn if necessary. Otherwise it may have been declared before the
6658 -- operation it overrides and no check is required.
6659
6660 if Style_Check
6661 and then not Must_Override (Spec)
6662 and then (Is_Primitive
6663 or else Ekind (Scope (Subp)) = E_Protected_Type)
6664 then
6665 Style.Missing_Overriding (Decl, Subp);
6666 end if;
6667
6668 -- If Subp is an operator, it may override a predefined operation, if
6669 -- it is defined in the same scope as the type to which it applies.
6670 -- In that case Overridden_Subp is empty because of our implicit
6671 -- representation for predefined operators. We have to check whether the
6672 -- signature of Subp matches that of a predefined operator. Note that
6673 -- first argument provides the name of the operator, and the second
6674 -- argument the signature that may match that of a standard operation.
6675 -- If the indicator is overriding, then the operator must match a
6676 -- predefined signature, because we know already that there is no
6677 -- explicit overridden operation.
6678
6679 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6680 if Must_Not_Override (Spec) then
6681
6682 -- If this is not a primitive or a protected subprogram, then
6683 -- "not overriding" is illegal.
6684
6685 if not Is_Primitive
6686 and then Ekind (Scope (Subp)) /= E_Protected_Type
6687 then
6688 Error_Msg_N ("overriding indicator only allowed "
6689 & "if subprogram is primitive", Subp);
6690
6691 elsif Can_Override_Operator (Subp) then
6692 Error_Msg_NE
6693 ("subprogram& overrides predefined operator ", Spec, Subp);
6694 end if;
6695
6696 elsif Must_Override (Spec) then
6697 if No (Overridden_Operation (Subp))
6698 and then not Can_Override_Operator (Subp)
6699 then
6700 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6701 end if;
6702
6703 elsif not Error_Posted (Subp)
6704 and then Style_Check
6705 and then Can_Override_Operator (Subp)
6706 and then not In_Predefined_Unit (Subp)
6707 then
6708 -- If style checks are enabled, indicate that the indicator is
6709 -- missing. However, at the point of declaration, the type of
6710 -- which this is a primitive operation may be private, in which
6711 -- case the indicator would be premature.
6712
6713 if Has_Private_Declaration (Etype (Subp))
6714 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6715 then
6716 null;
6717 else
6718 Style.Missing_Overriding (Decl, Subp);
6719 end if;
6720 end if;
6721
6722 elsif Must_Override (Spec) then
6723 if Ekind (Subp) = E_Entry then
6724 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6725 else
6726 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6727 end if;
6728
6729 -- If the operation is marked "not overriding" and it's not primitive
6730 -- then an error is issued, unless this is an operation of a task or
6731 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6732 -- has been specified have already been checked above.
6733
6734 elsif Must_Not_Override (Spec)
6735 and then not Is_Primitive
6736 and then Ekind (Subp) /= E_Entry
6737 and then Ekind (Scope (Subp)) /= E_Protected_Type
6738 then
6739 Error_Msg_N
6740 ("overriding indicator only allowed if subprogram is primitive",
6741 Subp);
6742 return;
6743 end if;
6744 end Check_Overriding_Indicator;
6745
6746 -------------------
6747 -- Check_Returns --
6748 -------------------
6749
6750 -- Note: this procedure needs to know far too much about how the expander
6751 -- messes with exceptions. The use of the flag Exception_Junk and the
6752 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6753 -- works, but is not very clean. It would be better if the expansion
6754 -- routines would leave Original_Node working nicely, and we could use
6755 -- Original_Node here to ignore all the peculiar expander messing ???
6756
6757 procedure Check_Returns
6758 (HSS : Node_Id;
6759 Mode : Character;
6760 Err : out Boolean;
6761 Proc : Entity_Id := Empty)
6762 is
6763 Handler : Node_Id;
6764
6765 procedure Check_Statement_Sequence (L : List_Id);
6766 -- Internal recursive procedure to check a list of statements for proper
6767 -- termination by a return statement (or a transfer of control or a
6768 -- compound statement that is itself internally properly terminated).
6769
6770 ------------------------------
6771 -- Check_Statement_Sequence --
6772 ------------------------------
6773
6774 procedure Check_Statement_Sequence (L : List_Id) is
6775 Last_Stm : Node_Id;
6776 Stm : Node_Id;
6777 Kind : Node_Kind;
6778
6779 function Assert_False return Boolean;
6780 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6781 -- rewritten as a null statement when assertions are off. The assert
6782 -- is not active, but it is still enough to kill the warning.
6783
6784 ------------------
6785 -- Assert_False --
6786 ------------------
6787
6788 function Assert_False return Boolean is
6789 Orig : constant Node_Id := Original_Node (Last_Stm);
6790
6791 begin
6792 if Nkind (Orig) = N_Pragma
6793 and then Pragma_Name (Orig) = Name_Assert
6794 and then not Error_Posted (Orig)
6795 then
6796 declare
6797 Arg : constant Node_Id :=
6798 First (Pragma_Argument_Associations (Orig));
6799 Exp : constant Node_Id := Expression (Arg);
6800 begin
6801 return Nkind (Exp) = N_Identifier
6802 and then Chars (Exp) = Name_False;
6803 end;
6804
6805 else
6806 return False;
6807 end if;
6808 end Assert_False;
6809
6810 -- Local variables
6811
6812 Raise_Exception_Call : Boolean;
6813 -- Set True if statement sequence terminated by Raise_Exception call
6814 -- or a Reraise_Occurrence call.
6815
6816 -- Start of processing for Check_Statement_Sequence
6817
6818 begin
6819 Raise_Exception_Call := False;
6820
6821 -- Get last real statement
6822
6823 Last_Stm := Last (L);
6824
6825 -- Deal with digging out exception handler statement sequences that
6826 -- have been transformed by the local raise to goto optimization.
6827 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6828 -- optimization has occurred, we are looking at something like:
6829
6830 -- begin
6831 -- original stmts in block
6832
6833 -- exception \
6834 -- when excep1 => |
6835 -- goto L1; | omitted if No_Exception_Propagation
6836 -- when excep2 => |
6837 -- goto L2; /
6838 -- end;
6839
6840 -- goto L3; -- skip handler when exception not raised
6841
6842 -- <<L1>> -- target label for local exception
6843 -- begin
6844 -- estmts1
6845 -- end;
6846
6847 -- goto L3;
6848
6849 -- <<L2>>
6850 -- begin
6851 -- estmts2
6852 -- end;
6853
6854 -- <<L3>>
6855
6856 -- and what we have to do is to dig out the estmts1 and estmts2
6857 -- sequences (which were the original sequences of statements in
6858 -- the exception handlers) and check them.
6859
6860 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6861 Stm := Last_Stm;
6862 loop
6863 Prev (Stm);
6864 exit when No (Stm);
6865 exit when Nkind (Stm) /= N_Block_Statement;
6866 exit when not Exception_Junk (Stm);
6867 Prev (Stm);
6868 exit when No (Stm);
6869 exit when Nkind (Stm) /= N_Label;
6870 exit when not Exception_Junk (Stm);
6871 Check_Statement_Sequence
6872 (Statements (Handled_Statement_Sequence (Next (Stm))));
6873
6874 Prev (Stm);
6875 Last_Stm := Stm;
6876 exit when No (Stm);
6877 exit when Nkind (Stm) /= N_Goto_Statement;
6878 exit when not Exception_Junk (Stm);
6879 end loop;
6880 end if;
6881
6882 -- Don't count pragmas
6883
6884 while Nkind (Last_Stm) = N_Pragma
6885
6886 -- Don't count call to SS_Release (can happen after Raise_Exception)
6887
6888 or else
6889 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6890 and then
6891 Nkind (Name (Last_Stm)) = N_Identifier
6892 and then
6893 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6894
6895 -- Don't count exception junk
6896
6897 or else
6898 (Nkind_In (Last_Stm, N_Goto_Statement,
6899 N_Label,
6900 N_Object_Declaration)
6901 and then Exception_Junk (Last_Stm))
6902 or else Nkind (Last_Stm) in N_Push_xxx_Label
6903 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6904
6905 -- Inserted code, such as finalization calls, is irrelevant: we only
6906 -- need to check original source.
6907
6908 or else Is_Rewrite_Insertion (Last_Stm)
6909 loop
6910 Prev (Last_Stm);
6911 end loop;
6912
6913 -- Here we have the "real" last statement
6914
6915 Kind := Nkind (Last_Stm);
6916
6917 -- Transfer of control, OK. Note that in the No_Return procedure
6918 -- case, we already diagnosed any explicit return statements, so
6919 -- we can treat them as OK in this context.
6920
6921 if Is_Transfer (Last_Stm) then
6922 return;
6923
6924 -- Check cases of explicit non-indirect procedure calls
6925
6926 elsif Kind = N_Procedure_Call_Statement
6927 and then Is_Entity_Name (Name (Last_Stm))
6928 then
6929 -- Check call to Raise_Exception procedure which is treated
6930 -- specially, as is a call to Reraise_Occurrence.
6931
6932 -- We suppress the warning in these cases since it is likely that
6933 -- the programmer really does not expect to deal with the case
6934 -- of Null_Occurrence, and thus would find a warning about a
6935 -- missing return curious, and raising Program_Error does not
6936 -- seem such a bad behavior if this does occur.
6937
6938 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6939 -- behavior will be to raise Constraint_Error (see AI-329).
6940
6941 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6942 or else
6943 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6944 then
6945 Raise_Exception_Call := True;
6946
6947 -- For Raise_Exception call, test first argument, if it is
6948 -- an attribute reference for a 'Identity call, then we know
6949 -- that the call cannot possibly return.
6950
6951 declare
6952 Arg : constant Node_Id :=
6953 Original_Node (First_Actual (Last_Stm));
6954 begin
6955 if Nkind (Arg) = N_Attribute_Reference
6956 and then Attribute_Name (Arg) = Name_Identity
6957 then
6958 return;
6959 end if;
6960 end;
6961 end if;
6962
6963 -- If statement, need to look inside if there is an else and check
6964 -- each constituent statement sequence for proper termination.
6965
6966 elsif Kind = N_If_Statement
6967 and then Present (Else_Statements (Last_Stm))
6968 then
6969 Check_Statement_Sequence (Then_Statements (Last_Stm));
6970 Check_Statement_Sequence (Else_Statements (Last_Stm));
6971
6972 if Present (Elsif_Parts (Last_Stm)) then
6973 declare
6974 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6975
6976 begin
6977 while Present (Elsif_Part) loop
6978 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6979 Next (Elsif_Part);
6980 end loop;
6981 end;
6982 end if;
6983
6984 return;
6985
6986 -- Case statement, check each case for proper termination
6987
6988 elsif Kind = N_Case_Statement then
6989 declare
6990 Case_Alt : Node_Id;
6991 begin
6992 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6993 while Present (Case_Alt) loop
6994 Check_Statement_Sequence (Statements (Case_Alt));
6995 Next_Non_Pragma (Case_Alt);
6996 end loop;
6997 end;
6998
6999 return;
7000
7001 -- Block statement, check its handled sequence of statements
7002
7003 elsif Kind = N_Block_Statement then
7004 declare
7005 Err1 : Boolean;
7006
7007 begin
7008 Check_Returns
7009 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
7010
7011 if Err1 then
7012 Err := True;
7013 end if;
7014
7015 return;
7016 end;
7017
7018 -- Loop statement. If there is an iteration scheme, we can definitely
7019 -- fall out of the loop. Similarly if there is an exit statement, we
7020 -- can fall out. In either case we need a following return.
7021
7022 elsif Kind = N_Loop_Statement then
7023 if Present (Iteration_Scheme (Last_Stm))
7024 or else Has_Exit (Entity (Identifier (Last_Stm)))
7025 then
7026 null;
7027
7028 -- A loop with no exit statement or iteration scheme is either
7029 -- an infinite loop, or it has some other exit (raise/return).
7030 -- In either case, no warning is required.
7031
7032 else
7033 return;
7034 end if;
7035
7036 -- Timed entry call, check entry call and delay alternatives
7037
7038 -- Note: in expanded code, the timed entry call has been converted
7039 -- to a set of expanded statements on which the check will work
7040 -- correctly in any case.
7041
7042 elsif Kind = N_Timed_Entry_Call then
7043 declare
7044 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7045 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
7046
7047 begin
7048 -- If statement sequence of entry call alternative is missing,
7049 -- then we can definitely fall through, and we post the error
7050 -- message on the entry call alternative itself.
7051
7052 if No (Statements (ECA)) then
7053 Last_Stm := ECA;
7054
7055 -- If statement sequence of delay alternative is missing, then
7056 -- we can definitely fall through, and we post the error
7057 -- message on the delay alternative itself.
7058
7059 -- Note: if both ECA and DCA are missing the return, then we
7060 -- post only one message, should be enough to fix the bugs.
7061 -- If not we will get a message next time on the DCA when the
7062 -- ECA is fixed.
7063
7064 elsif No (Statements (DCA)) then
7065 Last_Stm := DCA;
7066
7067 -- Else check both statement sequences
7068
7069 else
7070 Check_Statement_Sequence (Statements (ECA));
7071 Check_Statement_Sequence (Statements (DCA));
7072 return;
7073 end if;
7074 end;
7075
7076 -- Conditional entry call, check entry call and else part
7077
7078 -- Note: in expanded code, the conditional entry call has been
7079 -- converted to a set of expanded statements on which the check
7080 -- will work correctly in any case.
7081
7082 elsif Kind = N_Conditional_Entry_Call then
7083 declare
7084 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7085
7086 begin
7087 -- If statement sequence of entry call alternative is missing,
7088 -- then we can definitely fall through, and we post the error
7089 -- message on the entry call alternative itself.
7090
7091 if No (Statements (ECA)) then
7092 Last_Stm := ECA;
7093
7094 -- Else check statement sequence and else part
7095
7096 else
7097 Check_Statement_Sequence (Statements (ECA));
7098 Check_Statement_Sequence (Else_Statements (Last_Stm));
7099 return;
7100 end if;
7101 end;
7102 end if;
7103
7104 -- If we fall through, issue appropriate message
7105
7106 if Mode = 'F' then
7107
7108 -- Kill warning if last statement is a raise exception call,
7109 -- or a pragma Assert (False). Note that with assertions enabled,
7110 -- such a pragma has been converted into a raise exception call
7111 -- already, so the Assert_False is for the assertions off case.
7112
7113 if not Raise_Exception_Call and then not Assert_False then
7114
7115 -- In GNATprove mode, it is an error to have a missing return
7116
7117 Error_Msg_Warn := SPARK_Mode /= On;
7118
7119 -- Issue error message or warning
7120
7121 Error_Msg_N
7122 ("RETURN statement missing following this statement<<!",
7123 Last_Stm);
7124 Error_Msg_N
7125 ("\Program_Error ]<<!", Last_Stm);
7126 end if;
7127
7128 -- Note: we set Err even though we have not issued a warning
7129 -- because we still have a case of a missing return. This is
7130 -- an extremely marginal case, probably will never be noticed
7131 -- but we might as well get it right.
7132
7133 Err := True;
7134
7135 -- Otherwise we have the case of a procedure marked No_Return
7136
7137 else
7138 if not Raise_Exception_Call then
7139 if GNATprove_Mode then
7140 Error_Msg_N
7141 ("implied return after this statement would have raised "
7142 & "Program_Error", Last_Stm);
7143
7144 -- In normal compilation mode, do not warn on a generated call
7145 -- (e.g. in the body of a renaming as completion).
7146
7147 elsif Comes_From_Source (Last_Stm) then
7148 Error_Msg_N
7149 ("implied return after this statement will raise "
7150 & "Program_Error??", Last_Stm);
7151 end if;
7152
7153 Error_Msg_Warn := SPARK_Mode /= On;
7154 Error_Msg_NE
7155 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
7156 end if;
7157
7158 declare
7159 RE : constant Node_Id :=
7160 Make_Raise_Program_Error (Sloc (Last_Stm),
7161 Reason => PE_Implicit_Return);
7162 begin
7163 Insert_After (Last_Stm, RE);
7164 Analyze (RE);
7165 end;
7166 end if;
7167 end Check_Statement_Sequence;
7168
7169 -- Start of processing for Check_Returns
7170
7171 begin
7172 Err := False;
7173 Check_Statement_Sequence (Statements (HSS));
7174
7175 if Present (Exception_Handlers (HSS)) then
7176 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7177 while Present (Handler) loop
7178 Check_Statement_Sequence (Statements (Handler));
7179 Next_Non_Pragma (Handler);
7180 end loop;
7181 end if;
7182 end Check_Returns;
7183
7184 ----------------------------
7185 -- Check_Subprogram_Order --
7186 ----------------------------
7187
7188 procedure Check_Subprogram_Order (N : Node_Id) is
7189
7190 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7191 -- This is used to check if S1 > S2 in the sense required by this test,
7192 -- for example nameab < namec, but name2 < name10.
7193
7194 -----------------------------
7195 -- Subprogram_Name_Greater --
7196 -----------------------------
7197
7198 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7199 L1, L2 : Positive;
7200 N1, N2 : Natural;
7201
7202 begin
7203 -- Deal with special case where names are identical except for a
7204 -- numerical suffix. These are handled specially, taking the numeric
7205 -- ordering from the suffix into account.
7206
7207 L1 := S1'Last;
7208 while S1 (L1) in '0' .. '9' loop
7209 L1 := L1 - 1;
7210 end loop;
7211
7212 L2 := S2'Last;
7213 while S2 (L2) in '0' .. '9' loop
7214 L2 := L2 - 1;
7215 end loop;
7216
7217 -- If non-numeric parts non-equal, do straight compare
7218
7219 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7220 return S1 > S2;
7221
7222 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7223 -- that a missing suffix is treated as numeric zero in this test.
7224
7225 else
7226 N1 := 0;
7227 while L1 < S1'Last loop
7228 L1 := L1 + 1;
7229 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7230 end loop;
7231
7232 N2 := 0;
7233 while L2 < S2'Last loop
7234 L2 := L2 + 1;
7235 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7236 end loop;
7237
7238 return N1 > N2;
7239 end if;
7240 end Subprogram_Name_Greater;
7241
7242 -- Start of processing for Check_Subprogram_Order
7243
7244 begin
7245 -- Check body in alpha order if this is option
7246
7247 if Style_Check
7248 and then Style_Check_Order_Subprograms
7249 and then Nkind (N) = N_Subprogram_Body
7250 and then Comes_From_Source (N)
7251 and then In_Extended_Main_Source_Unit (N)
7252 then
7253 declare
7254 LSN : String_Ptr
7255 renames Scope_Stack.Table
7256 (Scope_Stack.Last).Last_Subprogram_Name;
7257
7258 Body_Id : constant Entity_Id :=
7259 Defining_Entity (Specification (N));
7260
7261 begin
7262 Get_Decoded_Name_String (Chars (Body_Id));
7263
7264 if LSN /= null then
7265 if Subprogram_Name_Greater
7266 (LSN.all, Name_Buffer (1 .. Name_Len))
7267 then
7268 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7269 end if;
7270
7271 Free (LSN);
7272 end if;
7273
7274 LSN := new String'(Name_Buffer (1 .. Name_Len));
7275 end;
7276 end if;
7277 end Check_Subprogram_Order;
7278
7279 ------------------------------
7280 -- Check_Subtype_Conformant --
7281 ------------------------------
7282
7283 procedure Check_Subtype_Conformant
7284 (New_Id : Entity_Id;
7285 Old_Id : Entity_Id;
7286 Err_Loc : Node_Id := Empty;
7287 Skip_Controlling_Formals : Boolean := False;
7288 Get_Inst : Boolean := False)
7289 is
7290 Result : Boolean;
7291 pragma Warnings (Off, Result);
7292 begin
7293 Check_Conformance
7294 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7295 Skip_Controlling_Formals => Skip_Controlling_Formals,
7296 Get_Inst => Get_Inst);
7297 end Check_Subtype_Conformant;
7298
7299 -----------------------------------
7300 -- Check_Synchronized_Overriding --
7301 -----------------------------------
7302
7303 procedure Check_Synchronized_Overriding
7304 (Def_Id : Entity_Id;
7305 Overridden_Subp : out Entity_Id)
7306 is
7307 Ifaces_List : Elist_Id;
7308 In_Scope : Boolean;
7309 Typ : Entity_Id;
7310
7311 function Is_Valid_Formal (F : Entity_Id) return Boolean;
7312 -- Predicate for legality rule in 9.4 (11.9/2): If an inherited
7313 -- subprogram is implemented by a protected procedure or entry,
7314 -- its first parameter must be out, in out, or access-to-variable.
7315
7316 function Matches_Prefixed_View_Profile
7317 (Prim_Params : List_Id;
7318 Iface_Params : List_Id) return Boolean;
7319 -- Determine whether a subprogram's parameter profile Prim_Params
7320 -- matches that of a potentially overridden interface subprogram
7321 -- Iface_Params. Also determine if the type of first parameter of
7322 -- Iface_Params is an implemented interface.
7323
7324 ----------------------
7325 -- Is_Valid_Formal --
7326 ----------------------
7327
7328 function Is_Valid_Formal (F : Entity_Id) return Boolean is
7329 begin
7330 return
7331 Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
7332 or else
7333 (Nkind (Parameter_Type (Parent (F))) = N_Access_Definition
7334 and then not Constant_Present (Parameter_Type (Parent (F))));
7335 end Is_Valid_Formal;
7336
7337 -----------------------------------
7338 -- Matches_Prefixed_View_Profile --
7339 -----------------------------------
7340
7341 function Matches_Prefixed_View_Profile
7342 (Prim_Params : List_Id;
7343 Iface_Params : List_Id) return Boolean
7344 is
7345 function Is_Implemented
7346 (Ifaces_List : Elist_Id;
7347 Iface : Entity_Id) return Boolean;
7348 -- Determine if Iface is implemented by the current task or
7349 -- protected type.
7350
7351 --------------------
7352 -- Is_Implemented --
7353 --------------------
7354
7355 function Is_Implemented
7356 (Ifaces_List : Elist_Id;
7357 Iface : Entity_Id) return Boolean
7358 is
7359 Iface_Elmt : Elmt_Id;
7360
7361 begin
7362 Iface_Elmt := First_Elmt (Ifaces_List);
7363 while Present (Iface_Elmt) loop
7364 if Node (Iface_Elmt) = Iface then
7365 return True;
7366 end if;
7367
7368 Next_Elmt (Iface_Elmt);
7369 end loop;
7370
7371 return False;
7372 end Is_Implemented;
7373
7374 -- Local variables
7375
7376 Iface_Id : Entity_Id;
7377 Iface_Param : Node_Id;
7378 Iface_Typ : Entity_Id;
7379 Prim_Id : Entity_Id;
7380 Prim_Param : Node_Id;
7381 Prim_Typ : Entity_Id;
7382
7383 -- Start of processing for Matches_Prefixed_View_Profile
7384
7385 begin
7386 Iface_Param := First (Iface_Params);
7387 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7388
7389 if Is_Access_Type (Iface_Typ) then
7390 Iface_Typ := Designated_Type (Iface_Typ);
7391 end if;
7392
7393 Prim_Param := First (Prim_Params);
7394
7395 -- The first parameter of the potentially overridden subprogram must
7396 -- be an interface implemented by Prim.
7397
7398 if not Is_Interface (Iface_Typ)
7399 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7400 then
7401 return False;
7402 end if;
7403
7404 -- The checks on the object parameters are done, so move on to the
7405 -- rest of the parameters.
7406
7407 if not In_Scope then
7408 Prim_Param := Next (Prim_Param);
7409 end if;
7410
7411 Iface_Param := Next (Iface_Param);
7412 while Present (Iface_Param) and then Present (Prim_Param) loop
7413 Iface_Id := Defining_Identifier (Iface_Param);
7414 Iface_Typ := Find_Parameter_Type (Iface_Param);
7415
7416 Prim_Id := Defining_Identifier (Prim_Param);
7417 Prim_Typ := Find_Parameter_Type (Prim_Param);
7418
7419 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7420 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7421 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7422 then
7423 Iface_Typ := Designated_Type (Iface_Typ);
7424 Prim_Typ := Designated_Type (Prim_Typ);
7425 end if;
7426
7427 -- Case of multiple interface types inside a parameter profile
7428
7429 -- (Obj_Param : in out Iface; ...; Param : Iface)
7430
7431 -- If the interface type is implemented, then the matching type in
7432 -- the primitive should be the implementing record type.
7433
7434 if Ekind (Iface_Typ) = E_Record_Type
7435 and then Is_Interface (Iface_Typ)
7436 and then Is_Implemented (Ifaces_List, Iface_Typ)
7437 then
7438 if Prim_Typ /= Typ then
7439 return False;
7440 end if;
7441
7442 -- The two parameters must be both mode and subtype conformant
7443
7444 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7445 or else not
7446 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7447 then
7448 return False;
7449 end if;
7450
7451 Next (Iface_Param);
7452 Next (Prim_Param);
7453 end loop;
7454
7455 -- One of the two lists contains more parameters than the other
7456
7457 if Present (Iface_Param) or else Present (Prim_Param) then
7458 return False;
7459 end if;
7460
7461 return True;
7462 end Matches_Prefixed_View_Profile;
7463
7464 -- Start of processing for Check_Synchronized_Overriding
7465
7466 begin
7467 Overridden_Subp := Empty;
7468
7469 -- Def_Id must be an entry or a subprogram. We should skip predefined
7470 -- primitives internally generated by the front end; however at this
7471 -- stage predefined primitives are still not fully decorated. As a
7472 -- minor optimization we skip here internally generated subprograms.
7473
7474 if (Ekind (Def_Id) /= E_Entry
7475 and then Ekind (Def_Id) /= E_Function
7476 and then Ekind (Def_Id) /= E_Procedure)
7477 or else not Comes_From_Source (Def_Id)
7478 then
7479 return;
7480 end if;
7481
7482 -- Search for the concurrent declaration since it contains the list of
7483 -- all implemented interfaces. In this case, the subprogram is declared
7484 -- within the scope of a protected or a task type.
7485
7486 if Present (Scope (Def_Id))
7487 and then Is_Concurrent_Type (Scope (Def_Id))
7488 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7489 then
7490 Typ := Scope (Def_Id);
7491 In_Scope := True;
7492
7493 -- The enclosing scope is not a synchronized type and the subprogram
7494 -- has no formals.
7495
7496 elsif No (First_Formal (Def_Id)) then
7497 return;
7498
7499 -- The subprogram has formals and hence it may be a primitive of a
7500 -- concurrent type.
7501
7502 else
7503 Typ := Etype (First_Formal (Def_Id));
7504
7505 if Is_Access_Type (Typ) then
7506 Typ := Directly_Designated_Type (Typ);
7507 end if;
7508
7509 if Is_Concurrent_Type (Typ)
7510 and then not Is_Generic_Actual_Type (Typ)
7511 then
7512 In_Scope := False;
7513
7514 -- This case occurs when the concurrent type is declared within a
7515 -- generic unit. As a result the corresponding record has been built
7516 -- and used as the type of the first formal, we just have to retrieve
7517 -- the corresponding concurrent type.
7518
7519 elsif Is_Concurrent_Record_Type (Typ)
7520 and then not Is_Class_Wide_Type (Typ)
7521 and then Present (Corresponding_Concurrent_Type (Typ))
7522 then
7523 Typ := Corresponding_Concurrent_Type (Typ);
7524 In_Scope := False;
7525
7526 else
7527 return;
7528 end if;
7529 end if;
7530
7531 -- There is no overriding to check if this is an inherited operation in
7532 -- a type derivation for a generic actual.
7533
7534 Collect_Interfaces (Typ, Ifaces_List);
7535
7536 if Is_Empty_Elmt_List (Ifaces_List) then
7537 return;
7538 end if;
7539
7540 -- Determine whether entry or subprogram Def_Id overrides a primitive
7541 -- operation that belongs to one of the interfaces in Ifaces_List.
7542
7543 declare
7544 Candidate : Entity_Id := Empty;
7545 Hom : Entity_Id := Empty;
7546 Subp : Entity_Id := Empty;
7547
7548 begin
7549 -- Traverse the homonym chain, looking for a potentially overridden
7550 -- subprogram that belongs to an implemented interface.
7551
7552 Hom := Current_Entity_In_Scope (Def_Id);
7553 while Present (Hom) loop
7554 Subp := Hom;
7555
7556 if Subp = Def_Id
7557 or else not Is_Overloadable (Subp)
7558 or else not Is_Primitive (Subp)
7559 or else not Is_Dispatching_Operation (Subp)
7560 or else not Present (Find_Dispatching_Type (Subp))
7561 or else not Is_Interface (Find_Dispatching_Type (Subp))
7562 then
7563 null;
7564
7565 -- Entries and procedures can override abstract or null interface
7566 -- procedures.
7567
7568 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7569 and then Ekind (Subp) = E_Procedure
7570 and then Matches_Prefixed_View_Profile
7571 (Parameter_Specifications (Parent (Def_Id)),
7572 Parameter_Specifications (Parent (Subp)))
7573 then
7574 Candidate := Subp;
7575
7576 -- For an overridden subprogram Subp, check whether the mode
7577 -- of its first parameter is correct depending on the kind of
7578 -- synchronized type.
7579
7580 declare
7581 Formal : constant Node_Id := First_Formal (Candidate);
7582
7583 begin
7584 -- In order for an entry or a protected procedure to
7585 -- override, the first parameter of the overridden routine
7586 -- must be of mode "out", "in out", or access-to-variable.
7587
7588 if Ekind_In (Candidate, E_Entry, E_Procedure)
7589 and then Is_Protected_Type (Typ)
7590 and then not Is_Valid_Formal (Formal)
7591 then
7592 null;
7593
7594 -- All other cases are OK since a task entry or routine does
7595 -- not have a restriction on the mode of the first parameter
7596 -- of the overridden interface routine.
7597
7598 else
7599 Overridden_Subp := Candidate;
7600 return;
7601 end if;
7602 end;
7603
7604 -- Functions can override abstract interface functions. Return
7605 -- types must be subtype conformant.
7606
7607 elsif Ekind (Def_Id) = E_Function
7608 and then Ekind (Subp) = E_Function
7609 and then Matches_Prefixed_View_Profile
7610 (Parameter_Specifications (Parent (Def_Id)),
7611 Parameter_Specifications (Parent (Subp)))
7612 and then Conforming_Types
7613 (Etype (Def_Id), Etype (Subp), Subtype_Conformant)
7614 then
7615 Candidate := Subp;
7616
7617 -- If an inherited subprogram is implemented by a protected
7618 -- function, then the first parameter of the inherited
7619 -- subprogram shall be of mode in, but not an access-to-
7620 -- variable parameter (RM 9.4(11/9)).
7621
7622 if Present (First_Formal (Subp))
7623 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7624 and then
7625 (not Is_Access_Type (Etype (First_Formal (Subp)))
7626 or else
7627 Is_Access_Constant (Etype (First_Formal (Subp))))
7628 then
7629 Overridden_Subp := Subp;
7630 return;
7631 end if;
7632 end if;
7633
7634 Hom := Homonym (Hom);
7635 end loop;
7636
7637 -- After examining all candidates for overriding, we are left with
7638 -- the best match, which is a mode-incompatible interface routine.
7639
7640 if In_Scope and then Present (Candidate) then
7641 Error_Msg_PT (Def_Id, Candidate);
7642 end if;
7643
7644 Overridden_Subp := Candidate;
7645 return;
7646 end;
7647 end Check_Synchronized_Overriding;
7648
7649 ---------------------------
7650 -- Check_Type_Conformant --
7651 ---------------------------
7652
7653 procedure Check_Type_Conformant
7654 (New_Id : Entity_Id;
7655 Old_Id : Entity_Id;
7656 Err_Loc : Node_Id := Empty)
7657 is
7658 Result : Boolean;
7659 pragma Warnings (Off, Result);
7660 begin
7661 Check_Conformance
7662 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7663 end Check_Type_Conformant;
7664
7665 ---------------------------
7666 -- Can_Override_Operator --
7667 ---------------------------
7668
7669 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7670 Typ : Entity_Id;
7671
7672 begin
7673 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7674 return False;
7675
7676 else
7677 Typ := Base_Type (Etype (First_Formal (Subp)));
7678
7679 -- Check explicitly that the operation is a primitive of the type
7680
7681 return Operator_Matches_Spec (Subp, Subp)
7682 and then not Is_Generic_Type (Typ)
7683 and then Scope (Subp) = Scope (Typ)
7684 and then not Is_Class_Wide_Type (Typ);
7685 end if;
7686 end Can_Override_Operator;
7687
7688 ----------------------
7689 -- Conforming_Types --
7690 ----------------------
7691
7692 function Conforming_Types
7693 (T1 : Entity_Id;
7694 T2 : Entity_Id;
7695 Ctype : Conformance_Type;
7696 Get_Inst : Boolean := False) return Boolean
7697 is
7698 function Base_Types_Match
7699 (Typ_1 : Entity_Id;
7700 Typ_2 : Entity_Id) return Boolean;
7701 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7702 -- in different scopes (e.g. parent and child instances), then verify
7703 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7704 -- the same subtype chain. The whole purpose of this procedure is to
7705 -- prevent spurious ambiguities in an instantiation that may arise if
7706 -- two distinct generic types are instantiated with the same actual.
7707
7708 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7709 -- An access parameter can designate an incomplete type. If the
7710 -- incomplete type is the limited view of a type from a limited_
7711 -- with_clause, check whether the non-limited view is available.
7712 -- If it is a (non-limited) incomplete type, get the full view.
7713
7714 function Matches_Limited_With_View
7715 (Typ_1 : Entity_Id;
7716 Typ_2 : Entity_Id) return Boolean;
7717 -- Returns True if and only if either Typ_1 denotes a limited view of
7718 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7719 -- the limited with view of a type is used in a subprogram declaration
7720 -- and the subprogram body is in the scope of a regular with clause for
7721 -- the same unit. In such a case, the two type entities are considered
7722 -- identical for purposes of conformance checking.
7723
7724 ----------------------
7725 -- Base_Types_Match --
7726 ----------------------
7727
7728 function Base_Types_Match
7729 (Typ_1 : Entity_Id;
7730 Typ_2 : Entity_Id) return Boolean
7731 is
7732 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7733 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7734
7735 begin
7736 if Typ_1 = Typ_2 then
7737 return True;
7738
7739 elsif Base_1 = Base_2 then
7740
7741 -- The following is too permissive. A more precise test should
7742 -- check that the generic actual is an ancestor subtype of the
7743 -- other ???.
7744
7745 -- See code in Find_Corresponding_Spec that applies an additional
7746 -- filter to handle accidental amiguities in instances.
7747
7748 return
7749 not Is_Generic_Actual_Type (Typ_1)
7750 or else not Is_Generic_Actual_Type (Typ_2)
7751 or else Scope (Typ_1) /= Scope (Typ_2);
7752
7753 -- If Typ_2 is a generic actual type it is declared as the subtype of
7754 -- the actual. If that actual is itself a subtype we need to use its
7755 -- own base type to check for compatibility.
7756
7757 elsif Ekind (Base_2) = Ekind (Typ_2)
7758 and then Base_1 = Base_Type (Base_2)
7759 then
7760 return True;
7761
7762 elsif Ekind (Base_1) = Ekind (Typ_1)
7763 and then Base_2 = Base_Type (Base_1)
7764 then
7765 return True;
7766
7767 else
7768 return False;
7769 end if;
7770 end Base_Types_Match;
7771
7772 --------------------------
7773 -- Find_Designated_Type --
7774 --------------------------
7775
7776 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7777 Desig : Entity_Id;
7778
7779 begin
7780 Desig := Directly_Designated_Type (Typ);
7781
7782 if Ekind (Desig) = E_Incomplete_Type then
7783
7784 -- If regular incomplete type, get full view if available
7785
7786 if Present (Full_View (Desig)) then
7787 Desig := Full_View (Desig);
7788
7789 -- If limited view of a type, get non-limited view if available,
7790 -- and check again for a regular incomplete type.
7791
7792 elsif Present (Non_Limited_View (Desig)) then
7793 Desig := Get_Full_View (Non_Limited_View (Desig));
7794 end if;
7795 end if;
7796
7797 return Desig;
7798 end Find_Designated_Type;
7799
7800 -------------------------------
7801 -- Matches_Limited_With_View --
7802 -------------------------------
7803
7804 function Matches_Limited_With_View
7805 (Typ_1 : Entity_Id;
7806 Typ_2 : Entity_Id) return Boolean
7807 is
7808 function Is_Matching_Limited_View
7809 (Typ : Entity_Id;
7810 View : Entity_Id) return Boolean;
7811 -- Determine whether non-limited view View denotes type Typ in some
7812 -- conformant fashion.
7813
7814 ------------------------------
7815 -- Is_Matching_Limited_View --
7816 ------------------------------
7817
7818 function Is_Matching_Limited_View
7819 (Typ : Entity_Id;
7820 View : Entity_Id) return Boolean
7821 is
7822 Root_Typ : Entity_Id;
7823 Root_View : Entity_Id;
7824
7825 begin
7826 -- The non-limited view directly denotes the type
7827
7828 if Typ = View then
7829 return True;
7830
7831 -- The type is a subtype of the non-limited view
7832
7833 elsif Is_Subtype_Of (Typ, View) then
7834 return True;
7835
7836 -- Both the non-limited view and the type denote class-wide types
7837
7838 elsif Is_Class_Wide_Type (Typ)
7839 and then Is_Class_Wide_Type (View)
7840 then
7841 Root_Typ := Root_Type (Typ);
7842 Root_View := Root_Type (View);
7843
7844 if Root_Typ = Root_View then
7845 return True;
7846
7847 -- An incomplete tagged type and its full view may receive two
7848 -- distinct class-wide types when the related package has not
7849 -- been analyzed yet.
7850
7851 -- package Pack is
7852 -- type T is tagged; -- CW_1
7853 -- type T is tagged null record; -- CW_2
7854 -- end Pack;
7855
7856 -- This is because the package lacks any semantic information
7857 -- that may eventually link both views of T. As a consequence,
7858 -- a client of the limited view of Pack will see CW_2 while a
7859 -- client of the non-limited view of Pack will see CW_1.
7860
7861 elsif Is_Incomplete_Type (Root_Typ)
7862 and then Present (Full_View (Root_Typ))
7863 and then Full_View (Root_Typ) = Root_View
7864 then
7865 return True;
7866
7867 elsif Is_Incomplete_Type (Root_View)
7868 and then Present (Full_View (Root_View))
7869 and then Full_View (Root_View) = Root_Typ
7870 then
7871 return True;
7872 end if;
7873 end if;
7874
7875 return False;
7876 end Is_Matching_Limited_View;
7877
7878 -- Start of processing for Matches_Limited_With_View
7879
7880 begin
7881 -- In some cases a type imported through a limited_with clause, and
7882 -- its non-limited view are both visible, for example in an anonymous
7883 -- access-to-class-wide type in a formal, or when building the body
7884 -- for a subprogram renaming after the subprogram has been frozen.
7885 -- In these cases both entities designate the same type. In addition,
7886 -- if one of them is an actual in an instance, it may be a subtype of
7887 -- the non-limited view of the other.
7888
7889 if From_Limited_With (Typ_1)
7890 and then From_Limited_With (Typ_2)
7891 and then Available_View (Typ_1) = Available_View (Typ_2)
7892 then
7893 return True;
7894
7895 elsif From_Limited_With (Typ_1) then
7896 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7897
7898 elsif From_Limited_With (Typ_2) then
7899 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7900
7901 else
7902 return False;
7903 end if;
7904 end Matches_Limited_With_View;
7905
7906 -- Local variables
7907
7908 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7909
7910 Type_1 : Entity_Id := T1;
7911 Type_2 : Entity_Id := T2;
7912
7913 -- Start of processing for Conforming_Types
7914
7915 begin
7916 -- The context is an instance association for a formal access-to-
7917 -- subprogram type; the formal parameter types require mapping because
7918 -- they may denote other formal parameters of the generic unit.
7919
7920 if Get_Inst then
7921 Type_1 := Get_Instance_Of (T1);
7922 Type_2 := Get_Instance_Of (T2);
7923 end if;
7924
7925 -- If one of the types is a view of the other introduced by a limited
7926 -- with clause, treat these as conforming for all purposes.
7927
7928 if Matches_Limited_With_View (T1, T2) then
7929 return True;
7930
7931 elsif Base_Types_Match (Type_1, Type_2) then
7932 if Ctype <= Mode_Conformant then
7933 return True;
7934
7935 else
7936 return
7937 Subtypes_Statically_Match (Type_1, Type_2)
7938 and then Dimensions_Match (Type_1, Type_2);
7939 end if;
7940
7941 elsif Is_Incomplete_Or_Private_Type (Type_1)
7942 and then Present (Full_View (Type_1))
7943 and then Base_Types_Match (Full_View (Type_1), Type_2)
7944 then
7945 return
7946 Ctype <= Mode_Conformant
7947 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7948
7949 elsif Ekind (Type_2) = E_Incomplete_Type
7950 and then Present (Full_View (Type_2))
7951 and then Base_Types_Match (Type_1, Full_View (Type_2))
7952 then
7953 return
7954 Ctype <= Mode_Conformant
7955 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7956
7957 elsif Is_Private_Type (Type_2)
7958 and then In_Instance
7959 and then Present (Full_View (Type_2))
7960 and then Base_Types_Match (Type_1, Full_View (Type_2))
7961 then
7962 return
7963 Ctype <= Mode_Conformant
7964 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7965
7966 -- Another confusion between views in a nested instance with an
7967 -- actual private type whose full view is not in scope.
7968
7969 elsif Ekind (Type_2) = E_Private_Subtype
7970 and then In_Instance
7971 and then Etype (Type_2) = Type_1
7972 then
7973 return True;
7974
7975 -- In Ada 2012, incomplete types (including limited views) can appear
7976 -- as actuals in instantiations, where they are conformant to the
7977 -- corresponding incomplete formal.
7978
7979 elsif Is_Incomplete_Type (Type_1)
7980 and then Is_Incomplete_Type (Type_2)
7981 and then In_Instance
7982 and then (Used_As_Generic_Actual (Type_1)
7983 or else Used_As_Generic_Actual (Type_2))
7984 then
7985 return True;
7986 end if;
7987
7988 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7989 -- treated recursively because they carry a signature. As far as
7990 -- conformance is concerned, convention plays no role, and either
7991 -- or both could be access to protected subprograms.
7992
7993 Are_Anonymous_Access_To_Subprogram_Types :=
7994 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7995 E_Anonymous_Access_Protected_Subprogram_Type)
7996 and then
7997 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7998 E_Anonymous_Access_Protected_Subprogram_Type);
7999
8000 -- Test anonymous access type case. For this case, static subtype
8001 -- matching is required for mode conformance (RM 6.3.1(15)). We check
8002 -- the base types because we may have built internal subtype entities
8003 -- to handle null-excluding types (see Process_Formals).
8004
8005 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
8006 and then
8007 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
8008
8009 -- Ada 2005 (AI-254)
8010
8011 or else Are_Anonymous_Access_To_Subprogram_Types
8012 then
8013 declare
8014 Desig_1 : Entity_Id;
8015 Desig_2 : Entity_Id;
8016
8017 begin
8018 -- In Ada 2005, access constant indicators must match for
8019 -- subtype conformance.
8020
8021 if Ada_Version >= Ada_2005
8022 and then Ctype >= Subtype_Conformant
8023 and then
8024 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
8025 then
8026 return False;
8027 end if;
8028
8029 Desig_1 := Find_Designated_Type (Type_1);
8030 Desig_2 := Find_Designated_Type (Type_2);
8031
8032 -- If the context is an instance association for a formal
8033 -- access-to-subprogram type; formal access parameter designated
8034 -- types require mapping because they may denote other formal
8035 -- parameters of the generic unit.
8036
8037 if Get_Inst then
8038 Desig_1 := Get_Instance_Of (Desig_1);
8039 Desig_2 := Get_Instance_Of (Desig_2);
8040 end if;
8041
8042 -- It is possible for a Class_Wide_Type to be introduced for an
8043 -- incomplete type, in which case there is a separate class_ wide
8044 -- type for the full view. The types conform if their Etypes
8045 -- conform, i.e. one may be the full view of the other. This can
8046 -- only happen in the context of an access parameter, other uses
8047 -- of an incomplete Class_Wide_Type are illegal.
8048
8049 if Is_Class_Wide_Type (Desig_1)
8050 and then
8051 Is_Class_Wide_Type (Desig_2)
8052 then
8053 return
8054 Conforming_Types
8055 (Etype (Base_Type (Desig_1)),
8056 Etype (Base_Type (Desig_2)), Ctype);
8057
8058 elsif Are_Anonymous_Access_To_Subprogram_Types then
8059 if Ada_Version < Ada_2005 then
8060 return
8061 Ctype = Type_Conformant
8062 or else Subtypes_Statically_Match (Desig_1, Desig_2);
8063
8064 -- We must check the conformance of the signatures themselves
8065
8066 else
8067 declare
8068 Conformant : Boolean;
8069 begin
8070 Check_Conformance
8071 (Desig_1, Desig_2, Ctype, False, Conformant);
8072 return Conformant;
8073 end;
8074 end if;
8075
8076 -- A limited view of an actual matches the corresponding
8077 -- incomplete formal.
8078
8079 elsif Ekind (Desig_2) = E_Incomplete_Subtype
8080 and then From_Limited_With (Desig_2)
8081 and then Used_As_Generic_Actual (Etype (Desig_2))
8082 then
8083 return True;
8084
8085 else
8086 return Base_Type (Desig_1) = Base_Type (Desig_2)
8087 and then (Ctype = Type_Conformant
8088 or else
8089 Subtypes_Statically_Match (Desig_1, Desig_2));
8090 end if;
8091 end;
8092
8093 -- Otherwise definitely no match
8094
8095 else
8096 if ((Ekind (Type_1) = E_Anonymous_Access_Type
8097 and then Is_Access_Type (Type_2))
8098 or else (Ekind (Type_2) = E_Anonymous_Access_Type
8099 and then Is_Access_Type (Type_1)))
8100 and then
8101 Conforming_Types
8102 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
8103 then
8104 May_Hide_Profile := True;
8105 end if;
8106
8107 return False;
8108 end if;
8109 end Conforming_Types;
8110
8111 --------------------------
8112 -- Create_Extra_Formals --
8113 --------------------------
8114
8115 procedure Create_Extra_Formals (E : Entity_Id) is
8116 First_Extra : Entity_Id := Empty;
8117 Formal : Entity_Id;
8118 Last_Extra : Entity_Id := Empty;
8119
8120 function Add_Extra_Formal
8121 (Assoc_Entity : Entity_Id;
8122 Typ : Entity_Id;
8123 Scope : Entity_Id;
8124 Suffix : String) return Entity_Id;
8125 -- Add an extra formal to the current list of formals and extra formals.
8126 -- The extra formal is added to the end of the list of extra formals,
8127 -- and also returned as the result. These formals are always of mode IN.
8128 -- The new formal has the type Typ, is declared in Scope, and its name
8129 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
8130 -- The following suffixes are currently used. They should not be changed
8131 -- without coordinating with CodePeer, which makes use of these to
8132 -- provide better messages.
8133
8134 -- O denotes the Constrained bit.
8135 -- L denotes the accessibility level.
8136 -- BIP_xxx denotes an extra formal for a build-in-place function. See
8137 -- the full list in exp_ch6.BIP_Formal_Kind.
8138
8139 ----------------------
8140 -- Add_Extra_Formal --
8141 ----------------------
8142
8143 function Add_Extra_Formal
8144 (Assoc_Entity : Entity_Id;
8145 Typ : Entity_Id;
8146 Scope : Entity_Id;
8147 Suffix : String) return Entity_Id
8148 is
8149 EF : constant Entity_Id :=
8150 Make_Defining_Identifier (Sloc (Assoc_Entity),
8151 Chars => New_External_Name (Chars (Assoc_Entity),
8152 Suffix => Suffix));
8153
8154 begin
8155 -- A little optimization. Never generate an extra formal for the
8156 -- _init operand of an initialization procedure, since it could
8157 -- never be used.
8158
8159 if Chars (Formal) = Name_uInit then
8160 return Empty;
8161 end if;
8162
8163 Set_Ekind (EF, E_In_Parameter);
8164 Set_Actual_Subtype (EF, Typ);
8165 Set_Etype (EF, Typ);
8166 Set_Scope (EF, Scope);
8167 Set_Mechanism (EF, Default_Mechanism);
8168 Set_Formal_Validity (EF);
8169
8170 if No (First_Extra) then
8171 First_Extra := EF;
8172 Set_Extra_Formals (Scope, EF);
8173 end if;
8174
8175 if Present (Last_Extra) then
8176 Set_Extra_Formal (Last_Extra, EF);
8177 end if;
8178
8179 Last_Extra := EF;
8180
8181 return EF;
8182 end Add_Extra_Formal;
8183
8184 -- Local variables
8185
8186 Formal_Type : Entity_Id;
8187 P_Formal : Entity_Id := Empty;
8188
8189 -- Start of processing for Create_Extra_Formals
8190
8191 begin
8192 -- We never generate extra formals if expansion is not active because we
8193 -- don't need them unless we are generating code.
8194
8195 if not Expander_Active then
8196 return;
8197 end if;
8198
8199 -- No need to generate extra formals in interface thunks whose target
8200 -- primitive has no extra formals.
8201
8202 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
8203 return;
8204 end if;
8205
8206 -- If this is a derived subprogram then the subtypes of the parent
8207 -- subprogram's formal parameters will be used to determine the need
8208 -- for extra formals.
8209
8210 if Is_Overloadable (E) and then Present (Alias (E)) then
8211 P_Formal := First_Formal (Alias (E));
8212 end if;
8213
8214 Formal := First_Formal (E);
8215 while Present (Formal) loop
8216 Last_Extra := Formal;
8217 Next_Formal (Formal);
8218 end loop;
8219
8220 -- If Extra_Formals were already created, don't do it again. This
8221 -- situation may arise for subprogram types created as part of
8222 -- dispatching calls (see Expand_Dispatching_Call).
8223
8224 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8225 return;
8226 end if;
8227
8228 -- If the subprogram is a predefined dispatching subprogram then don't
8229 -- generate any extra constrained or accessibility level formals. In
8230 -- general we suppress these for internal subprograms (by not calling
8231 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8232 -- generated stream attributes do get passed through because extra
8233 -- build-in-place formals are needed in some cases (limited 'Input).
8234
8235 if Is_Predefined_Internal_Operation (E) then
8236 goto Test_For_Func_Result_Extras;
8237 end if;
8238
8239 Formal := First_Formal (E);
8240 while Present (Formal) loop
8241
8242 -- Create extra formal for supporting the attribute 'Constrained.
8243 -- The case of a private type view without discriminants also
8244 -- requires the extra formal if the underlying type has defaulted
8245 -- discriminants.
8246
8247 if Ekind (Formal) /= E_In_Parameter then
8248 if Present (P_Formal) then
8249 Formal_Type := Etype (P_Formal);
8250 else
8251 Formal_Type := Etype (Formal);
8252 end if;
8253
8254 -- Do not produce extra formals for Unchecked_Union parameters.
8255 -- Jump directly to the end of the loop.
8256
8257 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
8258 goto Skip_Extra_Formal_Generation;
8259 end if;
8260
8261 if not Has_Discriminants (Formal_Type)
8262 and then Ekind (Formal_Type) in Private_Kind
8263 and then Present (Underlying_Type (Formal_Type))
8264 then
8265 Formal_Type := Underlying_Type (Formal_Type);
8266 end if;
8267
8268 -- Suppress the extra formal if formal's subtype is constrained or
8269 -- indefinite, or we're compiling for Ada 2012 and the underlying
8270 -- type is tagged and limited. In Ada 2012, a limited tagged type
8271 -- can have defaulted discriminants, but 'Constrained is required
8272 -- to return True, so the formal is never needed (see AI05-0214).
8273 -- Note that this ensures consistency of calling sequences for
8274 -- dispatching operations when some types in a class have defaults
8275 -- on discriminants and others do not (and requiring the extra
8276 -- formal would introduce distributed overhead).
8277
8278 -- If the type does not have a completion yet, treat as prior to
8279 -- Ada 2012 for consistency.
8280
8281 if Has_Discriminants (Formal_Type)
8282 and then not Is_Constrained (Formal_Type)
8283 and then Is_Definite_Subtype (Formal_Type)
8284 and then (Ada_Version < Ada_2012
8285 or else No (Underlying_Type (Formal_Type))
8286 or else not
8287 (Is_Limited_Type (Formal_Type)
8288 and then
8289 (Is_Tagged_Type
8290 (Underlying_Type (Formal_Type)))))
8291 then
8292 Set_Extra_Constrained
8293 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8294 end if;
8295 end if;
8296
8297 -- Create extra formal for supporting accessibility checking. This
8298 -- is done for both anonymous access formals and formals of named
8299 -- access types that are marked as controlling formals. The latter
8300 -- case can occur when Expand_Dispatching_Call creates a subprogram
8301 -- type and substitutes the types of access-to-class-wide actuals
8302 -- for the anonymous access-to-specific-type of controlling formals.
8303 -- Base_Type is applied because in cases where there is a null
8304 -- exclusion the formal may have an access subtype.
8305
8306 -- This is suppressed if we specifically suppress accessibility
8307 -- checks at the package level for either the subprogram, or the
8308 -- package in which it resides. However, we do not suppress it
8309 -- simply if the scope has accessibility checks suppressed, since
8310 -- this could cause trouble when clients are compiled with a
8311 -- different suppression setting. The explicit checks at the
8312 -- package level are safe from this point of view.
8313
8314 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8315 or else (Is_Controlling_Formal (Formal)
8316 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8317 and then not
8318 (Explicit_Suppress (E, Accessibility_Check)
8319 or else
8320 Explicit_Suppress (Scope (E), Accessibility_Check))
8321 and then
8322 (No (P_Formal)
8323 or else Present (Extra_Accessibility (P_Formal)))
8324 then
8325 Set_Extra_Accessibility
8326 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8327 end if;
8328
8329 -- This label is required when skipping extra formal generation for
8330 -- Unchecked_Union parameters.
8331
8332 <<Skip_Extra_Formal_Generation>>
8333
8334 if Present (P_Formal) then
8335 Next_Formal (P_Formal);
8336 end if;
8337
8338 Next_Formal (Formal);
8339 end loop;
8340
8341 <<Test_For_Func_Result_Extras>>
8342
8343 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8344 -- function call is ... determined by the point of call ...".
8345
8346 if Needs_Result_Accessibility_Level (E) then
8347 Set_Extra_Accessibility_Of_Result
8348 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8349 end if;
8350
8351 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8352 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8353
8354 if Is_Build_In_Place_Function (E) then
8355 declare
8356 Result_Subt : constant Entity_Id := Etype (E);
8357 Formal_Typ : Entity_Id;
8358 Subp_Decl : Node_Id;
8359 Discard : Entity_Id;
8360
8361 begin
8362 -- In the case of functions with unconstrained result subtypes,
8363 -- add a 4-state formal indicating whether the return object is
8364 -- allocated by the caller (1), or should be allocated by the
8365 -- callee on the secondary stack (2), in the global heap (3), or
8366 -- in a user-defined storage pool (4). For the moment we just use
8367 -- Natural for the type of this formal. Note that this formal
8368 -- isn't usually needed in the case where the result subtype is
8369 -- constrained, but it is needed when the function has a tagged
8370 -- result, because generally such functions can be called in a
8371 -- dispatching context and such calls must be handled like calls
8372 -- to a class-wide function.
8373
8374 if Needs_BIP_Alloc_Form (E) then
8375 Discard :=
8376 Add_Extra_Formal
8377 (E, Standard_Natural,
8378 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8379
8380 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8381 -- use a user-defined pool. This formal is not added on
8382 -- ZFP as those targets do not support pools.
8383
8384 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8385 Discard :=
8386 Add_Extra_Formal
8387 (E, RTE (RE_Root_Storage_Pool_Ptr),
8388 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8389 end if;
8390 end if;
8391
8392 -- In the case of functions whose result type needs finalization,
8393 -- add an extra formal which represents the finalization master.
8394
8395 if Needs_BIP_Finalization_Master (E) then
8396 Discard :=
8397 Add_Extra_Formal
8398 (E, RTE (RE_Finalization_Master_Ptr),
8399 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8400 end if;
8401
8402 -- When the result type contains tasks, add two extra formals: the
8403 -- master of the tasks to be created, and the caller's activation
8404 -- chain.
8405
8406 if Needs_BIP_Task_Actuals (E) then
8407 Discard :=
8408 Add_Extra_Formal
8409 (E, RTE (RE_Master_Id),
8410 E, BIP_Formal_Suffix (BIP_Task_Master));
8411 Discard :=
8412 Add_Extra_Formal
8413 (E, RTE (RE_Activation_Chain_Access),
8414 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8415 end if;
8416
8417 -- All build-in-place functions get an extra formal that will be
8418 -- passed the address of the return object within the caller.
8419
8420 Formal_Typ :=
8421 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8422
8423 -- Incomplete_View_From_Limited_With is needed here because
8424 -- gigi gets confused if the designated type is the full view
8425 -- coming from a limited-with'ed package. In the normal case,
8426 -- (no limited with) Incomplete_View_From_Limited_With
8427 -- returns Result_Subt.
8428
8429 Set_Directly_Designated_Type
8430 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8431 Set_Etype (Formal_Typ, Formal_Typ);
8432 Set_Depends_On_Private
8433 (Formal_Typ, Has_Private_Component (Formal_Typ));
8434 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8435 Set_Is_Access_Constant (Formal_Typ, False);
8436
8437 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8438 -- the designated type comes from the limited view (for back-end
8439 -- purposes).
8440
8441 Set_From_Limited_With
8442 (Formal_Typ, From_Limited_With (Result_Subt));
8443
8444 Layout_Type (Formal_Typ);
8445
8446 -- Force the definition of the Itype in case of internal function
8447 -- calls within the same or nested scope.
8448
8449 if Is_Subprogram_Or_Generic_Subprogram (E) then
8450 Subp_Decl := Parent (E);
8451
8452 -- The insertion point for an Itype reference should be after
8453 -- the unit declaration node of the subprogram. An exception
8454 -- to this are inherited operations from a parent type in which
8455 -- case the derived type acts as their parent.
8456
8457 if Nkind_In (Subp_Decl, N_Function_Specification,
8458 N_Procedure_Specification)
8459 then
8460 Subp_Decl := Parent (Subp_Decl);
8461 end if;
8462
8463 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8464 end if;
8465
8466 Discard :=
8467 Add_Extra_Formal
8468 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8469 end;
8470 end if;
8471
8472 -- If this is an instance of a generic, we need to have extra formals
8473 -- for the Alias.
8474
8475 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8476 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8477 end if;
8478 end Create_Extra_Formals;
8479
8480 -----------------------------
8481 -- Enter_Overloaded_Entity --
8482 -----------------------------
8483
8484 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8485 function Matches_Predefined_Op return Boolean;
8486 -- This returns an approximation of whether S matches a predefined
8487 -- operator, based on the operator symbol, and the parameter and result
8488 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8489
8490 ---------------------------
8491 -- Matches_Predefined_Op --
8492 ---------------------------
8493
8494 function Matches_Predefined_Op return Boolean is
8495 Formal_1 : constant Entity_Id := First_Formal (S);
8496 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8497 Op : constant Name_Id := Chars (S);
8498 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8499 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8500
8501 begin
8502 -- Binary operator
8503
8504 if Present (Formal_2) then
8505 declare
8506 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8507
8508 begin
8509 -- All but "&" and "**" have same-types parameters
8510
8511 case Op is
8512 when Name_Op_Concat
8513 | Name_Op_Expon
8514 =>
8515 null;
8516
8517 when others =>
8518 if Type_1 /= Type_2 then
8519 return False;
8520 end if;
8521 end case;
8522
8523 -- Check parameter and result types
8524
8525 case Op is
8526 when Name_Op_And
8527 | Name_Op_Or
8528 | Name_Op_Xor
8529 =>
8530 return
8531 Is_Boolean_Type (Result_Type)
8532 and then Result_Type = Type_1;
8533
8534 when Name_Op_Mod
8535 | Name_Op_Rem
8536 =>
8537 return
8538 Is_Integer_Type (Result_Type)
8539 and then Result_Type = Type_1;
8540
8541 when Name_Op_Add
8542 | Name_Op_Divide
8543 | Name_Op_Multiply
8544 | Name_Op_Subtract
8545 =>
8546 return
8547 Is_Numeric_Type (Result_Type)
8548 and then Result_Type = Type_1;
8549
8550 when Name_Op_Eq
8551 | Name_Op_Ne
8552 =>
8553 return
8554 Is_Boolean_Type (Result_Type)
8555 and then not Is_Limited_Type (Type_1);
8556
8557 when Name_Op_Ge
8558 | Name_Op_Gt
8559 | Name_Op_Le
8560 | Name_Op_Lt
8561 =>
8562 return
8563 Is_Boolean_Type (Result_Type)
8564 and then (Is_Array_Type (Type_1)
8565 or else Is_Scalar_Type (Type_1));
8566
8567 when Name_Op_Concat =>
8568 return Is_Array_Type (Result_Type);
8569
8570 when Name_Op_Expon =>
8571 return
8572 (Is_Integer_Type (Result_Type)
8573 or else Is_Floating_Point_Type (Result_Type))
8574 and then Result_Type = Type_1
8575 and then Type_2 = Standard_Integer;
8576
8577 when others =>
8578 raise Program_Error;
8579 end case;
8580 end;
8581
8582 -- Unary operator
8583
8584 else
8585 case Op is
8586 when Name_Op_Abs
8587 | Name_Op_Add
8588 | Name_Op_Subtract
8589 =>
8590 return
8591 Is_Numeric_Type (Result_Type)
8592 and then Result_Type = Type_1;
8593
8594 when Name_Op_Not =>
8595 return
8596 Is_Boolean_Type (Result_Type)
8597 and then Result_Type = Type_1;
8598
8599 when others =>
8600 raise Program_Error;
8601 end case;
8602 end if;
8603 end Matches_Predefined_Op;
8604
8605 -- Local variables
8606
8607 E : Entity_Id := Current_Entity_In_Scope (S);
8608 C_E : Entity_Id := Current_Entity (S);
8609
8610 -- Start of processing for Enter_Overloaded_Entity
8611
8612 begin
8613 if Present (E) then
8614 Set_Has_Homonym (E);
8615 Set_Has_Homonym (S);
8616 end if;
8617
8618 Set_Is_Immediately_Visible (S);
8619 Set_Scope (S, Current_Scope);
8620
8621 -- Chain new entity if front of homonym in current scope, so that
8622 -- homonyms are contiguous.
8623
8624 if Present (E) and then E /= C_E then
8625 while Homonym (C_E) /= E loop
8626 C_E := Homonym (C_E);
8627 end loop;
8628
8629 Set_Homonym (C_E, S);
8630
8631 else
8632 E := C_E;
8633 Set_Current_Entity (S);
8634 end if;
8635
8636 Set_Homonym (S, E);
8637
8638 if Is_Inherited_Operation (S) then
8639 Append_Inherited_Subprogram (S);
8640 else
8641 Append_Entity (S, Current_Scope);
8642 end if;
8643
8644 Set_Public_Status (S);
8645
8646 if Debug_Flag_E then
8647 Write_Str ("New overloaded entity chain: ");
8648 Write_Name (Chars (S));
8649
8650 E := S;
8651 while Present (E) loop
8652 Write_Str (" "); Write_Int (Int (E));
8653 E := Homonym (E);
8654 end loop;
8655
8656 Write_Eol;
8657 end if;
8658
8659 -- Generate warning for hiding
8660
8661 if Warn_On_Hiding
8662 and then Comes_From_Source (S)
8663 and then In_Extended_Main_Source_Unit (S)
8664 then
8665 E := S;
8666 loop
8667 E := Homonym (E);
8668 exit when No (E);
8669
8670 -- Warn unless genuine overloading. Do not emit warning on
8671 -- hiding predefined operators in Standard (these are either an
8672 -- (artifact of our implicit declarations, or simple noise) but
8673 -- keep warning on a operator defined on a local subtype, because
8674 -- of the real danger that different operators may be applied in
8675 -- various parts of the program.
8676
8677 -- Note that if E and S have the same scope, there is never any
8678 -- hiding. Either the two conflict, and the program is illegal,
8679 -- or S is overriding an implicit inherited subprogram.
8680
8681 if Scope (E) /= Scope (S)
8682 and then (not Is_Overloadable (E)
8683 or else Subtype_Conformant (E, S))
8684 and then (Is_Immediately_Visible (E)
8685 or else Is_Potentially_Use_Visible (S))
8686 then
8687 if Scope (E) = Standard_Standard then
8688 if Nkind (S) = N_Defining_Operator_Symbol
8689 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8690 Scope (S)
8691 and then Matches_Predefined_Op
8692 then
8693 Error_Msg_N
8694 ("declaration of & hides predefined operator?h?", S);
8695 end if;
8696
8697 -- E not immediately within Standard
8698
8699 else
8700 Error_Msg_Sloc := Sloc (E);
8701 Error_Msg_N ("declaration of & hides one #?h?", S);
8702 end if;
8703 end if;
8704 end loop;
8705 end if;
8706 end Enter_Overloaded_Entity;
8707
8708 -----------------------------
8709 -- Check_Untagged_Equality --
8710 -----------------------------
8711
8712 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8713 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8714 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8715 Obj_Decl : Node_Id;
8716
8717 begin
8718 -- This check applies only if we have a subprogram declaration with an
8719 -- untagged record type that is conformant to the predefined op.
8720
8721 if Nkind (Decl) /= N_Subprogram_Declaration
8722 or else not Is_Record_Type (Typ)
8723 or else Is_Tagged_Type (Typ)
8724 or else Etype (Next_Formal (First_Formal (Eq_Op))) /= Typ
8725 then
8726 return;
8727 end if;
8728
8729 -- In Ada 2012 case, we will output errors or warnings depending on
8730 -- the setting of debug flag -gnatd.E.
8731
8732 if Ada_Version >= Ada_2012 then
8733 Error_Msg_Warn := Debug_Flag_Dot_EE;
8734
8735 -- In earlier versions of Ada, nothing to do unless we are warning on
8736 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8737
8738 else
8739 if not Warn_On_Ada_2012_Compatibility then
8740 return;
8741 end if;
8742 end if;
8743
8744 -- Cases where the type has already been frozen
8745
8746 if Is_Frozen (Typ) then
8747
8748 -- The check applies to a primitive operation, so check that type
8749 -- and equality operation are in the same scope.
8750
8751 if Scope (Typ) /= Current_Scope then
8752 return;
8753
8754 -- If the type is a generic actual (sub)type, the operation is not
8755 -- primitive either because the base type is declared elsewhere.
8756
8757 elsif Is_Generic_Actual_Type (Typ) then
8758 return;
8759
8760 -- Here we have a definite error of declaration after freezing
8761
8762 else
8763 if Ada_Version >= Ada_2012 then
8764 Error_Msg_NE
8765 ("equality operator must be declared before type & is "
8766 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8767
8768 -- In Ada 2012 mode with error turned to warning, output one
8769 -- more warning to warn that the equality operation may not
8770 -- compose. This is the consequence of ignoring the error.
8771
8772 if Error_Msg_Warn then
8773 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8774 end if;
8775
8776 else
8777 Error_Msg_NE
8778 ("equality operator must be declared before type& is "
8779 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8780 end if;
8781
8782 -- If we are in the package body, we could just move the
8783 -- declaration to the package spec, so add a message saying that.
8784
8785 if In_Package_Body (Scope (Typ)) then
8786 if Ada_Version >= Ada_2012 then
8787 Error_Msg_N
8788 ("\move declaration to package spec<<", Eq_Op);
8789 else
8790 Error_Msg_N
8791 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8792 end if;
8793
8794 -- Otherwise try to find the freezing point for better message.
8795
8796 else
8797 Obj_Decl := Next (Parent (Typ));
8798 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8799 if Nkind (Obj_Decl) = N_Object_Declaration
8800 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8801 then
8802 -- Freezing point, output warnings
8803
8804 if Ada_Version >= Ada_2012 then
8805 Error_Msg_NE
8806 ("type& is frozen by declaration??", Obj_Decl, Typ);
8807 Error_Msg_N
8808 ("\an equality operator cannot be declared after "
8809 & "this point??",
8810 Obj_Decl);
8811 else
8812 Error_Msg_NE
8813 ("type& is frozen by declaration (Ada 2012)?y?",
8814 Obj_Decl, Typ);
8815 Error_Msg_N
8816 ("\an equality operator cannot be declared after "
8817 & "this point (Ada 2012)?y?",
8818 Obj_Decl);
8819 end if;
8820
8821 exit;
8822
8823 -- If we reach generated code for subprogram declaration
8824 -- or body, it is the body that froze the type and the
8825 -- declaration is legal.
8826
8827 elsif Sloc (Obj_Decl) = Sloc (Decl) then
8828 return;
8829 end if;
8830
8831 Next (Obj_Decl);
8832 end loop;
8833 end if;
8834 end if;
8835
8836 -- Here if type is not frozen yet. It is illegal to have a primitive
8837 -- equality declared in the private part if the type is visible.
8838
8839 elsif not In_Same_List (Parent (Typ), Decl)
8840 and then not Is_Limited_Type (Typ)
8841 then
8842 -- Shouldn't we give an RM reference here???
8843
8844 if Ada_Version >= Ada_2012 then
8845 Error_Msg_N
8846 ("equality operator appears too late<<", Eq_Op);
8847 else
8848 Error_Msg_N
8849 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8850 end if;
8851
8852 -- No error detected
8853
8854 else
8855 return;
8856 end if;
8857 end Check_Untagged_Equality;
8858
8859 -----------------------------
8860 -- Find_Corresponding_Spec --
8861 -----------------------------
8862
8863 function Find_Corresponding_Spec
8864 (N : Node_Id;
8865 Post_Error : Boolean := True) return Entity_Id
8866 is
8867 Spec : constant Node_Id := Specification (N);
8868 Designator : constant Entity_Id := Defining_Entity (Spec);
8869
8870 E : Entity_Id;
8871
8872 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8873 -- Even if fully conformant, a body may depend on a generic actual when
8874 -- the spec does not, or vice versa, in which case they were distinct
8875 -- entities in the generic.
8876
8877 -------------------------------
8878 -- Different_Generic_Profile --
8879 -------------------------------
8880
8881 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8882 F1, F2 : Entity_Id;
8883
8884 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8885 -- Check that the types of corresponding formals have the same
8886 -- generic actual if any. We have to account for subtypes of a
8887 -- generic formal, declared between a spec and a body, which may
8888 -- appear distinct in an instance but matched in the generic, and
8889 -- the subtype may be used either in the spec or the body of the
8890 -- subprogram being checked.
8891
8892 -------------------------
8893 -- Same_Generic_Actual --
8894 -------------------------
8895
8896 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8897
8898 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8899 -- Predicate to check whether S1 is a subtype of S2 in the source
8900 -- of the instance.
8901
8902 -------------------------
8903 -- Is_Declared_Subtype --
8904 -------------------------
8905
8906 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8907 begin
8908 return Comes_From_Source (Parent (S1))
8909 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8910 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8911 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8912 end Is_Declared_Subtype;
8913
8914 -- Start of processing for Same_Generic_Actual
8915
8916 begin
8917 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8918 or else Is_Declared_Subtype (T1, T2)
8919 or else Is_Declared_Subtype (T2, T1);
8920 end Same_Generic_Actual;
8921
8922 -- Start of processing for Different_Generic_Profile
8923
8924 begin
8925 if not In_Instance then
8926 return False;
8927
8928 elsif Ekind (E) = E_Function
8929 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8930 then
8931 return True;
8932 end if;
8933
8934 F1 := First_Formal (Designator);
8935 F2 := First_Formal (E);
8936 while Present (F1) loop
8937 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8938 return True;
8939 end if;
8940
8941 Next_Formal (F1);
8942 Next_Formal (F2);
8943 end loop;
8944
8945 return False;
8946 end Different_Generic_Profile;
8947
8948 -- Start of processing for Find_Corresponding_Spec
8949
8950 begin
8951 E := Current_Entity (Designator);
8952 while Present (E) loop
8953
8954 -- We are looking for a matching spec. It must have the same scope,
8955 -- and the same name, and either be type conformant, or be the case
8956 -- of a library procedure spec and its body (which belong to one
8957 -- another regardless of whether they are type conformant or not).
8958
8959 if Scope (E) = Current_Scope then
8960 if Current_Scope = Standard_Standard
8961 or else (Ekind (E) = Ekind (Designator)
8962 and then Type_Conformant (E, Designator))
8963 then
8964 -- Within an instantiation, we know that spec and body are
8965 -- subtype conformant, because they were subtype conformant in
8966 -- the generic. We choose the subtype-conformant entity here as
8967 -- well, to resolve spurious ambiguities in the instance that
8968 -- were not present in the generic (i.e. when two different
8969 -- types are given the same actual). If we are looking for a
8970 -- spec to match a body, full conformance is expected.
8971
8972 if In_Instance then
8973
8974 -- Inherit the convention and "ghostness" of the matching
8975 -- spec to ensure proper full and subtype conformance.
8976
8977 Set_Convention (Designator, Convention (E));
8978
8979 -- Skip past subprogram bodies and subprogram renamings that
8980 -- may appear to have a matching spec, but that aren't fully
8981 -- conformant with it. That can occur in cases where an
8982 -- actual type causes unrelated homographs in the instance.
8983
8984 if Nkind_In (N, N_Subprogram_Body,
8985 N_Subprogram_Renaming_Declaration)
8986 and then Present (Homonym (E))
8987 and then not Fully_Conformant (Designator, E)
8988 then
8989 goto Next_Entity;
8990
8991 elsif not Subtype_Conformant (Designator, E) then
8992 goto Next_Entity;
8993
8994 elsif Different_Generic_Profile (E) then
8995 goto Next_Entity;
8996 end if;
8997 end if;
8998
8999 -- Ada 2012 (AI05-0165): For internally generated bodies of
9000 -- null procedures locate the internally generated spec. We
9001 -- enforce mode conformance since a tagged type may inherit
9002 -- from interfaces several null primitives which differ only
9003 -- in the mode of the formals.
9004
9005 if not (Comes_From_Source (E))
9006 and then Is_Null_Procedure (E)
9007 and then not Mode_Conformant (Designator, E)
9008 then
9009 null;
9010
9011 -- For null procedures coming from source that are completions,
9012 -- analysis of the generated body will establish the link.
9013
9014 elsif Comes_From_Source (E)
9015 and then Nkind (Spec) = N_Procedure_Specification
9016 and then Null_Present (Spec)
9017 then
9018 return E;
9019
9020 -- Expression functions can be completions, but cannot be
9021 -- completed by an explicit body.
9022
9023 elsif Comes_From_Source (E)
9024 and then Comes_From_Source (N)
9025 and then Nkind (N) = N_Subprogram_Body
9026 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
9027 N_Expression_Function
9028 then
9029 Error_Msg_Sloc := Sloc (E);
9030 Error_Msg_N ("body conflicts with expression function#", N);
9031 return Empty;
9032
9033 elsif not Has_Completion (E) then
9034 if Nkind (N) /= N_Subprogram_Body_Stub then
9035 Set_Corresponding_Spec (N, E);
9036 end if;
9037
9038 Set_Has_Completion (E);
9039 return E;
9040
9041 elsif Nkind (Parent (N)) = N_Subunit then
9042
9043 -- If this is the proper body of a subunit, the completion
9044 -- flag is set when analyzing the stub.
9045
9046 return E;
9047
9048 -- If E is an internal function with a controlling result that
9049 -- was created for an operation inherited by a null extension,
9050 -- it may be overridden by a body without a previous spec (one
9051 -- more reason why these should be shunned). In that case we
9052 -- remove the generated body if present, because the current
9053 -- one is the explicit overriding.
9054
9055 elsif Ekind (E) = E_Function
9056 and then Ada_Version >= Ada_2005
9057 and then not Comes_From_Source (E)
9058 and then Has_Controlling_Result (E)
9059 and then Is_Null_Extension (Etype (E))
9060 and then Comes_From_Source (Spec)
9061 then
9062 Set_Has_Completion (E, False);
9063
9064 if Expander_Active
9065 and then Nkind (Parent (E)) = N_Function_Specification
9066 then
9067 Remove
9068 (Unit_Declaration_Node
9069 (Corresponding_Body (Unit_Declaration_Node (E))));
9070
9071 return E;
9072
9073 -- If expansion is disabled, or if the wrapper function has
9074 -- not been generated yet, this a late body overriding an
9075 -- inherited operation, or it is an overriding by some other
9076 -- declaration before the controlling result is frozen. In
9077 -- either case this is a declaration of a new entity.
9078
9079 else
9080 return Empty;
9081 end if;
9082
9083 -- If the body already exists, then this is an error unless
9084 -- the previous declaration is the implicit declaration of a
9085 -- derived subprogram. It is also legal for an instance to
9086 -- contain type conformant overloadable declarations (but the
9087 -- generic declaration may not), per 8.3(26/2).
9088
9089 elsif No (Alias (E))
9090 and then not Is_Intrinsic_Subprogram (E)
9091 and then not In_Instance
9092 and then Post_Error
9093 then
9094 Error_Msg_Sloc := Sloc (E);
9095
9096 if Is_Imported (E) then
9097 Error_Msg_NE
9098 ("body not allowed for imported subprogram & declared#",
9099 N, E);
9100 else
9101 Error_Msg_NE ("duplicate body for & declared#", N, E);
9102 end if;
9103 end if;
9104
9105 -- Child units cannot be overloaded, so a conformance mismatch
9106 -- between body and a previous spec is an error.
9107
9108 elsif Is_Child_Unit (E)
9109 and then
9110 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
9111 and then
9112 Nkind (Parent (Unit_Declaration_Node (Designator))) =
9113 N_Compilation_Unit
9114 and then Post_Error
9115 then
9116 Error_Msg_N
9117 ("body of child unit does not match previous declaration", N);
9118 end if;
9119 end if;
9120
9121 <<Next_Entity>>
9122 E := Homonym (E);
9123 end loop;
9124
9125 -- On exit, we know that no previous declaration of subprogram exists
9126
9127 return Empty;
9128 end Find_Corresponding_Spec;
9129
9130 ----------------------
9131 -- Fully_Conformant --
9132 ----------------------
9133
9134 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9135 Result : Boolean;
9136 begin
9137 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
9138 return Result;
9139 end Fully_Conformant;
9140
9141 ----------------------------------
9142 -- Fully_Conformant_Expressions --
9143 ----------------------------------
9144
9145 function Fully_Conformant_Expressions
9146 (Given_E1 : Node_Id;
9147 Given_E2 : Node_Id;
9148 Report : Boolean := False) return Boolean
9149 is
9150 E1 : constant Node_Id := Original_Node (Given_E1);
9151 E2 : constant Node_Id := Original_Node (Given_E2);
9152 -- We always test conformance on original nodes, since it is possible
9153 -- for analysis and/or expansion to make things look as though they
9154 -- conform when they do not, e.g. by converting 1+2 into 3.
9155
9156 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean;
9157 -- ???
9158
9159 function FCL (L1 : List_Id; L2 : List_Id) return Boolean;
9160 -- Compare elements of two lists for conformance. Elements have to be
9161 -- conformant, and actuals inserted as default parameters do not match
9162 -- explicit actuals with the same value.
9163
9164 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean;
9165 -- Compare an operator node with a function call
9166
9167 ---------
9168 -- FCE --
9169 ---------
9170
9171 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean is
9172 begin
9173 return Fully_Conformant_Expressions (Given_E1, Given_E2, Report);
9174 end FCE;
9175
9176 ---------
9177 -- FCL --
9178 ---------
9179
9180 function FCL (L1 : List_Id; L2 : List_Id) return Boolean is
9181 N1 : Node_Id;
9182 N2 : Node_Id;
9183
9184 begin
9185 if L1 = No_List then
9186 N1 := Empty;
9187 else
9188 N1 := First (L1);
9189 end if;
9190
9191 if L2 = No_List then
9192 N2 := Empty;
9193 else
9194 N2 := First (L2);
9195 end if;
9196
9197 -- Compare two lists, skipping rewrite insertions (we want to compare
9198 -- the original trees, not the expanded versions).
9199
9200 loop
9201 if Is_Rewrite_Insertion (N1) then
9202 Next (N1);
9203 elsif Is_Rewrite_Insertion (N2) then
9204 Next (N2);
9205 elsif No (N1) then
9206 return No (N2);
9207 elsif No (N2) then
9208 return False;
9209 elsif not FCE (N1, N2) then
9210 return False;
9211 else
9212 Next (N1);
9213 Next (N2);
9214 end if;
9215 end loop;
9216 end FCL;
9217
9218 ---------
9219 -- FCO --
9220 ---------
9221
9222 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean is
9223 Actuals : constant List_Id := Parameter_Associations (Call_Node);
9224 Act : Node_Id;
9225
9226 begin
9227 if No (Actuals)
9228 or else Entity (Op_Node) /= Entity (Name (Call_Node))
9229 then
9230 return False;
9231
9232 else
9233 Act := First (Actuals);
9234
9235 if Nkind (Op_Node) in N_Binary_Op then
9236 if not FCE (Left_Opnd (Op_Node), Act) then
9237 return False;
9238 end if;
9239
9240 Next (Act);
9241 end if;
9242
9243 return Present (Act)
9244 and then FCE (Right_Opnd (Op_Node), Act)
9245 and then No (Next (Act));
9246 end if;
9247 end FCO;
9248
9249 -- Local variables
9250
9251 Result : Boolean;
9252
9253 -- Start of processing for Fully_Conformant_Expressions
9254
9255 begin
9256 Result := True;
9257
9258 -- Nonconformant if paren count does not match. Note: if some idiot
9259 -- complains that we don't do this right for more than 3 levels of
9260 -- parentheses, they will be treated with the respect they deserve.
9261
9262 if Paren_Count (E1) /= Paren_Count (E2) then
9263 return False;
9264
9265 -- If same entities are referenced, then they are conformant even if
9266 -- they have different forms (RM 8.3.1(19-20)).
9267
9268 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
9269 if Present (Entity (E1)) then
9270 Result := Entity (E1) = Entity (E2)
9271
9272 -- One may be a discriminant that has been replaced by the
9273 -- corresponding discriminal.
9274
9275 or else
9276 (Chars (Entity (E1)) = Chars (Entity (E2))
9277 and then Ekind (Entity (E1)) = E_Discriminant
9278 and then Ekind (Entity (E2)) = E_In_Parameter)
9279
9280 -- The discriminant of a protected type is transformed into
9281 -- a local constant and then into a parameter of a protected
9282 -- operation.
9283
9284 or else
9285 (Ekind (Entity (E1)) = E_Constant
9286 and then Ekind (Entity (E2)) = E_In_Parameter
9287 and then Present (Discriminal_Link (Entity (E1)))
9288 and then Discriminal_Link (Entity (E1)) =
9289 Discriminal_Link (Entity (E2)))
9290
9291 -- AI12-050: The loop variables of quantified expressions match
9292 -- if they have the same identifier, even though they may have
9293 -- different entities.
9294
9295 or else
9296 (Chars (Entity (E1)) = Chars (Entity (E2))
9297 and then Ekind (Entity (E1)) = E_Loop_Parameter
9298 and then Ekind (Entity (E2)) = E_Loop_Parameter)
9299
9300 -- A call to an instantiation of Unchecked_Conversion is
9301 -- rewritten with the name of the generated function created for
9302 -- the instance, and this must be special-cased.
9303
9304 or else
9305 (Ekind (Entity (E1)) = E_Function
9306 and then Is_Intrinsic_Subprogram (Entity (E1))
9307 and then Is_Generic_Instance (Entity (E1))
9308 and then Entity (E2) = Alias (Entity (E1)));
9309 if Report and not Result then
9310 Error_Msg_Sloc :=
9311 Text_Ptr'Max (Sloc (Entity (E1)), Sloc (Entity (E2)));
9312 Error_Msg_NE
9313 ("Meaning of& differs because of declaration#", E1, E2);
9314 end if;
9315
9316 return Result;
9317
9318 elsif Nkind (E1) = N_Expanded_Name
9319 and then Nkind (E2) = N_Expanded_Name
9320 and then Nkind (Selector_Name (E1)) = N_Character_Literal
9321 and then Nkind (Selector_Name (E2)) = N_Character_Literal
9322 then
9323 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9324
9325 else
9326 -- Identifiers in component associations don't always have
9327 -- entities, but their names must conform.
9328
9329 return Nkind (E1) = N_Identifier
9330 and then Nkind (E2) = N_Identifier
9331 and then Chars (E1) = Chars (E2);
9332 end if;
9333
9334 elsif Nkind (E1) = N_Character_Literal
9335 and then Nkind (E2) = N_Expanded_Name
9336 then
9337 return Nkind (Selector_Name (E2)) = N_Character_Literal
9338 and then Chars (E1) = Chars (Selector_Name (E2));
9339
9340 elsif Nkind (E2) = N_Character_Literal
9341 and then Nkind (E1) = N_Expanded_Name
9342 then
9343 return Nkind (Selector_Name (E1)) = N_Character_Literal
9344 and then Chars (E2) = Chars (Selector_Name (E1));
9345
9346 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9347 return FCO (E1, E2);
9348
9349 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9350 return FCO (E2, E1);
9351
9352 -- Otherwise we must have the same syntactic entity
9353
9354 elsif Nkind (E1) /= Nkind (E2) then
9355 return False;
9356
9357 -- At this point, we specialize by node type
9358
9359 else
9360 case Nkind (E1) is
9361 when N_Aggregate =>
9362 return
9363 FCL (Expressions (E1), Expressions (E2))
9364 and then
9365 FCL (Component_Associations (E1),
9366 Component_Associations (E2));
9367
9368 when N_Allocator =>
9369 if Nkind (Expression (E1)) = N_Qualified_Expression
9370 or else
9371 Nkind (Expression (E2)) = N_Qualified_Expression
9372 then
9373 return FCE (Expression (E1), Expression (E2));
9374
9375 -- Check that the subtype marks and any constraints
9376 -- are conformant
9377
9378 else
9379 declare
9380 Indic1 : constant Node_Id := Expression (E1);
9381 Indic2 : constant Node_Id := Expression (E2);
9382 Elt1 : Node_Id;
9383 Elt2 : Node_Id;
9384
9385 begin
9386 if Nkind (Indic1) /= N_Subtype_Indication then
9387 return
9388 Nkind (Indic2) /= N_Subtype_Indication
9389 and then Entity (Indic1) = Entity (Indic2);
9390
9391 elsif Nkind (Indic2) /= N_Subtype_Indication then
9392 return
9393 Nkind (Indic1) /= N_Subtype_Indication
9394 and then Entity (Indic1) = Entity (Indic2);
9395
9396 else
9397 if Entity (Subtype_Mark (Indic1)) /=
9398 Entity (Subtype_Mark (Indic2))
9399 then
9400 return False;
9401 end if;
9402
9403 Elt1 := First (Constraints (Constraint (Indic1)));
9404 Elt2 := First (Constraints (Constraint (Indic2)));
9405 while Present (Elt1) and then Present (Elt2) loop
9406 if not FCE (Elt1, Elt2) then
9407 return False;
9408 end if;
9409
9410 Next (Elt1);
9411 Next (Elt2);
9412 end loop;
9413
9414 return True;
9415 end if;
9416 end;
9417 end if;
9418
9419 when N_Attribute_Reference =>
9420 return
9421 Attribute_Name (E1) = Attribute_Name (E2)
9422 and then FCL (Expressions (E1), Expressions (E2));
9423
9424 when N_Binary_Op =>
9425 return
9426 Entity (E1) = Entity (E2)
9427 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9428 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9429
9430 when N_Membership_Test
9431 | N_Short_Circuit
9432 =>
9433 return
9434 FCE (Left_Opnd (E1), Left_Opnd (E2))
9435 and then
9436 FCE (Right_Opnd (E1), Right_Opnd (E2));
9437
9438 when N_Case_Expression =>
9439 declare
9440 Alt1 : Node_Id;
9441 Alt2 : Node_Id;
9442
9443 begin
9444 if not FCE (Expression (E1), Expression (E2)) then
9445 return False;
9446
9447 else
9448 Alt1 := First (Alternatives (E1));
9449 Alt2 := First (Alternatives (E2));
9450 loop
9451 if Present (Alt1) /= Present (Alt2) then
9452 return False;
9453 elsif No (Alt1) then
9454 return True;
9455 end if;
9456
9457 if not FCE (Expression (Alt1), Expression (Alt2))
9458 or else not FCL (Discrete_Choices (Alt1),
9459 Discrete_Choices (Alt2))
9460 then
9461 return False;
9462 end if;
9463
9464 Next (Alt1);
9465 Next (Alt2);
9466 end loop;
9467 end if;
9468 end;
9469
9470 when N_Character_Literal =>
9471 return
9472 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9473
9474 when N_Component_Association =>
9475 return
9476 FCL (Choices (E1), Choices (E2))
9477 and then
9478 FCE (Expression (E1), Expression (E2));
9479
9480 when N_Explicit_Dereference =>
9481 return
9482 FCE (Prefix (E1), Prefix (E2));
9483
9484 when N_Extension_Aggregate =>
9485 return
9486 FCL (Expressions (E1), Expressions (E2))
9487 and then Null_Record_Present (E1) =
9488 Null_Record_Present (E2)
9489 and then FCL (Component_Associations (E1),
9490 Component_Associations (E2));
9491
9492 when N_Function_Call =>
9493 return
9494 FCE (Name (E1), Name (E2))
9495 and then
9496 FCL (Parameter_Associations (E1),
9497 Parameter_Associations (E2));
9498
9499 when N_If_Expression =>
9500 return
9501 FCL (Expressions (E1), Expressions (E2));
9502
9503 when N_Indexed_Component =>
9504 return
9505 FCE (Prefix (E1), Prefix (E2))
9506 and then
9507 FCL (Expressions (E1), Expressions (E2));
9508
9509 when N_Integer_Literal =>
9510 return (Intval (E1) = Intval (E2));
9511
9512 when N_Null =>
9513 return True;
9514
9515 when N_Operator_Symbol =>
9516 return
9517 Chars (E1) = Chars (E2);
9518
9519 when N_Others_Choice =>
9520 return True;
9521
9522 when N_Parameter_Association =>
9523 return
9524 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9525 and then FCE (Explicit_Actual_Parameter (E1),
9526 Explicit_Actual_Parameter (E2));
9527
9528 when N_Qualified_Expression
9529 | N_Type_Conversion
9530 | N_Unchecked_Type_Conversion
9531 =>
9532 return
9533 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9534 and then
9535 FCE (Expression (E1), Expression (E2));
9536
9537 when N_Quantified_Expression =>
9538 if not FCE (Condition (E1), Condition (E2)) then
9539 return False;
9540 end if;
9541
9542 if Present (Loop_Parameter_Specification (E1))
9543 and then Present (Loop_Parameter_Specification (E2))
9544 then
9545 declare
9546 L1 : constant Node_Id :=
9547 Loop_Parameter_Specification (E1);
9548 L2 : constant Node_Id :=
9549 Loop_Parameter_Specification (E2);
9550
9551 begin
9552 return
9553 Reverse_Present (L1) = Reverse_Present (L2)
9554 and then
9555 FCE (Defining_Identifier (L1),
9556 Defining_Identifier (L2))
9557 and then
9558 FCE (Discrete_Subtype_Definition (L1),
9559 Discrete_Subtype_Definition (L2));
9560 end;
9561
9562 elsif Present (Iterator_Specification (E1))
9563 and then Present (Iterator_Specification (E2))
9564 then
9565 declare
9566 I1 : constant Node_Id := Iterator_Specification (E1);
9567 I2 : constant Node_Id := Iterator_Specification (E2);
9568
9569 begin
9570 return
9571 FCE (Defining_Identifier (I1),
9572 Defining_Identifier (I2))
9573 and then
9574 Of_Present (I1) = Of_Present (I2)
9575 and then
9576 Reverse_Present (I1) = Reverse_Present (I2)
9577 and then FCE (Name (I1), Name (I2))
9578 and then FCE (Subtype_Indication (I1),
9579 Subtype_Indication (I2));
9580 end;
9581
9582 -- The quantified expressions used different specifications to
9583 -- walk their respective ranges.
9584
9585 else
9586 return False;
9587 end if;
9588
9589 when N_Range =>
9590 return
9591 FCE (Low_Bound (E1), Low_Bound (E2))
9592 and then
9593 FCE (High_Bound (E1), High_Bound (E2));
9594
9595 when N_Real_Literal =>
9596 return (Realval (E1) = Realval (E2));
9597
9598 when N_Selected_Component =>
9599 return
9600 FCE (Prefix (E1), Prefix (E2))
9601 and then
9602 FCE (Selector_Name (E1), Selector_Name (E2));
9603
9604 when N_Slice =>
9605 return
9606 FCE (Prefix (E1), Prefix (E2))
9607 and then
9608 FCE (Discrete_Range (E1), Discrete_Range (E2));
9609
9610 when N_String_Literal =>
9611 declare
9612 S1 : constant String_Id := Strval (E1);
9613 S2 : constant String_Id := Strval (E2);
9614 L1 : constant Nat := String_Length (S1);
9615 L2 : constant Nat := String_Length (S2);
9616
9617 begin
9618 if L1 /= L2 then
9619 return False;
9620
9621 else
9622 for J in 1 .. L1 loop
9623 if Get_String_Char (S1, J) /=
9624 Get_String_Char (S2, J)
9625 then
9626 return False;
9627 end if;
9628 end loop;
9629
9630 return True;
9631 end if;
9632 end;
9633
9634 when N_Unary_Op =>
9635 return
9636 Entity (E1) = Entity (E2)
9637 and then
9638 FCE (Right_Opnd (E1), Right_Opnd (E2));
9639
9640 -- All other node types cannot appear in this context. Strictly
9641 -- we should raise a fatal internal error. Instead we just ignore
9642 -- the nodes. This means that if anyone makes a mistake in the
9643 -- expander and mucks an expression tree irretrievably, the result
9644 -- will be a failure to detect a (probably very obscure) case
9645 -- of non-conformance, which is better than bombing on some
9646 -- case where two expressions do in fact conform.
9647
9648 when others =>
9649 return True;
9650 end case;
9651 end if;
9652 end Fully_Conformant_Expressions;
9653
9654 ----------------------------------------
9655 -- Fully_Conformant_Discrete_Subtypes --
9656 ----------------------------------------
9657
9658 function Fully_Conformant_Discrete_Subtypes
9659 (Given_S1 : Node_Id;
9660 Given_S2 : Node_Id) return Boolean
9661 is
9662 S1 : constant Node_Id := Original_Node (Given_S1);
9663 S2 : constant Node_Id := Original_Node (Given_S2);
9664
9665 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9666 -- Special-case for a bound given by a discriminant, which in the body
9667 -- is replaced with the discriminal of the enclosing type.
9668
9669 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9670 -- Check both bounds
9671
9672 -----------------------
9673 -- Conforming_Bounds --
9674 -----------------------
9675
9676 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9677 begin
9678 if Is_Entity_Name (B1)
9679 and then Is_Entity_Name (B2)
9680 and then Ekind (Entity (B1)) = E_Discriminant
9681 then
9682 return Chars (B1) = Chars (B2);
9683
9684 else
9685 return Fully_Conformant_Expressions (B1, B2);
9686 end if;
9687 end Conforming_Bounds;
9688
9689 -----------------------
9690 -- Conforming_Ranges --
9691 -----------------------
9692
9693 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9694 begin
9695 return
9696 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9697 and then
9698 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9699 end Conforming_Ranges;
9700
9701 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9702
9703 begin
9704 if Nkind (S1) /= Nkind (S2) then
9705 return False;
9706
9707 elsif Is_Entity_Name (S1) then
9708 return Entity (S1) = Entity (S2);
9709
9710 elsif Nkind (S1) = N_Range then
9711 return Conforming_Ranges (S1, S2);
9712
9713 elsif Nkind (S1) = N_Subtype_Indication then
9714 return
9715 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9716 and then
9717 Conforming_Ranges
9718 (Range_Expression (Constraint (S1)),
9719 Range_Expression (Constraint (S2)));
9720 else
9721 return True;
9722 end if;
9723 end Fully_Conformant_Discrete_Subtypes;
9724
9725 --------------------
9726 -- Install_Entity --
9727 --------------------
9728
9729 procedure Install_Entity (E : Entity_Id) is
9730 Prev : constant Entity_Id := Current_Entity (E);
9731 begin
9732 Set_Is_Immediately_Visible (E);
9733 Set_Current_Entity (E);
9734 Set_Homonym (E, Prev);
9735 end Install_Entity;
9736
9737 ---------------------
9738 -- Install_Formals --
9739 ---------------------
9740
9741 procedure Install_Formals (Id : Entity_Id) is
9742 F : Entity_Id;
9743 begin
9744 F := First_Formal (Id);
9745 while Present (F) loop
9746 Install_Entity (F);
9747 Next_Formal (F);
9748 end loop;
9749 end Install_Formals;
9750
9751 -----------------------------
9752 -- Is_Interface_Conformant --
9753 -----------------------------
9754
9755 function Is_Interface_Conformant
9756 (Tagged_Type : Entity_Id;
9757 Iface_Prim : Entity_Id;
9758 Prim : Entity_Id) return Boolean
9759 is
9760 -- The operation may in fact be an inherited (implicit) operation
9761 -- rather than the original interface primitive, so retrieve the
9762 -- ultimate ancestor.
9763
9764 Iface : constant Entity_Id :=
9765 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9766 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9767
9768 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9769 -- Return the controlling formal of Prim
9770
9771 ------------------------
9772 -- Controlling_Formal --
9773 ------------------------
9774
9775 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9776 E : Entity_Id;
9777
9778 begin
9779 E := First_Entity (Prim);
9780 while Present (E) loop
9781 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9782 return E;
9783 end if;
9784
9785 Next_Entity (E);
9786 end loop;
9787
9788 return Empty;
9789 end Controlling_Formal;
9790
9791 -- Local variables
9792
9793 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9794 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9795
9796 -- Start of processing for Is_Interface_Conformant
9797
9798 begin
9799 pragma Assert (Is_Subprogram (Iface_Prim)
9800 and then Is_Subprogram (Prim)
9801 and then Is_Dispatching_Operation (Iface_Prim)
9802 and then Is_Dispatching_Operation (Prim));
9803
9804 pragma Assert (Is_Interface (Iface)
9805 or else (Present (Alias (Iface_Prim))
9806 and then
9807 Is_Interface
9808 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9809
9810 if Prim = Iface_Prim
9811 or else not Is_Subprogram (Prim)
9812 or else Ekind (Prim) /= Ekind (Iface_Prim)
9813 or else not Is_Dispatching_Operation (Prim)
9814 or else Scope (Prim) /= Scope (Tagged_Type)
9815 or else No (Typ)
9816 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9817 or else not Primitive_Names_Match (Iface_Prim, Prim)
9818 then
9819 return False;
9820
9821 -- The mode of the controlling formals must match
9822
9823 elsif Present (Iface_Ctrl_F)
9824 and then Present (Prim_Ctrl_F)
9825 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9826 then
9827 return False;
9828
9829 -- Case of a procedure, or a function whose result type matches the
9830 -- result type of the interface primitive, or a function that has no
9831 -- controlling result (I or access I).
9832
9833 elsif Ekind (Iface_Prim) = E_Procedure
9834 or else Etype (Prim) = Etype (Iface_Prim)
9835 or else not Has_Controlling_Result (Prim)
9836 then
9837 return Type_Conformant
9838 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9839
9840 -- Case of a function returning an interface, or an access to one. Check
9841 -- that the return types correspond.
9842
9843 elsif Implements_Interface (Typ, Iface) then
9844 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9845 /=
9846 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9847 then
9848 return False;
9849 else
9850 return
9851 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9852 Skip_Controlling_Formals => True);
9853 end if;
9854
9855 else
9856 return False;
9857 end if;
9858 end Is_Interface_Conformant;
9859
9860 ---------------------------------
9861 -- Is_Non_Overriding_Operation --
9862 ---------------------------------
9863
9864 function Is_Non_Overriding_Operation
9865 (Prev_E : Entity_Id;
9866 New_E : Entity_Id) return Boolean
9867 is
9868 Formal : Entity_Id;
9869 F_Typ : Entity_Id;
9870 G_Typ : Entity_Id := Empty;
9871
9872 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9873 -- If F_Type is a derived type associated with a generic actual subtype,
9874 -- then return its Generic_Parent_Type attribute, else return Empty.
9875
9876 function Types_Correspond
9877 (P_Type : Entity_Id;
9878 N_Type : Entity_Id) return Boolean;
9879 -- Returns true if and only if the types (or designated types in the
9880 -- case of anonymous access types) are the same or N_Type is derived
9881 -- directly or indirectly from P_Type.
9882
9883 -----------------------------
9884 -- Get_Generic_Parent_Type --
9885 -----------------------------
9886
9887 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9888 G_Typ : Entity_Id;
9889 Defn : Node_Id;
9890 Indic : Node_Id;
9891
9892 begin
9893 if Is_Derived_Type (F_Typ)
9894 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9895 then
9896 -- The tree must be traversed to determine the parent subtype in
9897 -- the generic unit, which unfortunately isn't always available
9898 -- via semantic attributes. ??? (Note: The use of Original_Node
9899 -- is needed for cases where a full derived type has been
9900 -- rewritten.)
9901
9902 -- If the parent type is a scalar type, the derivation creates
9903 -- an anonymous base type for it, and the source type is its
9904 -- first subtype.
9905
9906 if Is_Scalar_Type (F_Typ)
9907 and then not Comes_From_Source (F_Typ)
9908 then
9909 Defn :=
9910 Type_Definition
9911 (Original_Node (Parent (First_Subtype (F_Typ))));
9912 else
9913 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9914 end if;
9915 if Nkind (Defn) = N_Derived_Type_Definition then
9916 Indic := Subtype_Indication (Defn);
9917
9918 if Nkind (Indic) = N_Subtype_Indication then
9919 G_Typ := Entity (Subtype_Mark (Indic));
9920 else
9921 G_Typ := Entity (Indic);
9922 end if;
9923
9924 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9925 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9926 then
9927 return Generic_Parent_Type (Parent (G_Typ));
9928 end if;
9929 end if;
9930 end if;
9931
9932 return Empty;
9933 end Get_Generic_Parent_Type;
9934
9935 ----------------------
9936 -- Types_Correspond --
9937 ----------------------
9938
9939 function Types_Correspond
9940 (P_Type : Entity_Id;
9941 N_Type : Entity_Id) return Boolean
9942 is
9943 Prev_Type : Entity_Id := Base_Type (P_Type);
9944 New_Type : Entity_Id := Base_Type (N_Type);
9945
9946 begin
9947 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9948 Prev_Type := Designated_Type (Prev_Type);
9949 end if;
9950
9951 if Ekind (New_Type) = E_Anonymous_Access_Type then
9952 New_Type := Designated_Type (New_Type);
9953 end if;
9954
9955 if Prev_Type = New_Type then
9956 return True;
9957
9958 elsif not Is_Class_Wide_Type (New_Type) then
9959 while Etype (New_Type) /= New_Type loop
9960 New_Type := Etype (New_Type);
9961
9962 if New_Type = Prev_Type then
9963 return True;
9964 end if;
9965 end loop;
9966 end if;
9967 return False;
9968 end Types_Correspond;
9969
9970 -- Start of processing for Is_Non_Overriding_Operation
9971
9972 begin
9973 -- In the case where both operations are implicit derived subprograms
9974 -- then neither overrides the other. This can only occur in certain
9975 -- obscure cases (e.g., derivation from homographs created in a generic
9976 -- instantiation).
9977
9978 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9979 return True;
9980
9981 elsif Ekind (Current_Scope) = E_Package
9982 and then Is_Generic_Instance (Current_Scope)
9983 and then In_Private_Part (Current_Scope)
9984 and then Comes_From_Source (New_E)
9985 then
9986 -- We examine the formals and result type of the inherited operation,
9987 -- to determine whether their type is derived from (the instance of)
9988 -- a generic type. The first such formal or result type is the one
9989 -- tested.
9990
9991 Formal := First_Formal (Prev_E);
9992 F_Typ := Empty;
9993 while Present (Formal) loop
9994 F_Typ := Base_Type (Etype (Formal));
9995
9996 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9997 F_Typ := Designated_Type (F_Typ);
9998 end if;
9999
10000 G_Typ := Get_Generic_Parent_Type (F_Typ);
10001 exit when Present (G_Typ);
10002
10003 Next_Formal (Formal);
10004 end loop;
10005
10006 -- If the function dispatches on result check the result type
10007
10008 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
10009 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
10010 end if;
10011
10012 if No (G_Typ) then
10013 return False;
10014 end if;
10015
10016 -- If the generic type is a private type, then the original operation
10017 -- was not overriding in the generic, because there was no primitive
10018 -- operation to override.
10019
10020 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
10021 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
10022 N_Formal_Private_Type_Definition
10023 then
10024 return True;
10025
10026 -- The generic parent type is the ancestor of a formal derived
10027 -- type declaration. We need to check whether it has a primitive
10028 -- operation that should be overridden by New_E in the generic.
10029
10030 else
10031 declare
10032 P_Formal : Entity_Id;
10033 N_Formal : Entity_Id;
10034 P_Typ : Entity_Id;
10035 N_Typ : Entity_Id;
10036 P_Prim : Entity_Id;
10037 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
10038
10039 begin
10040 while Present (Prim_Elt) loop
10041 P_Prim := Node (Prim_Elt);
10042
10043 if Chars (P_Prim) = Chars (New_E)
10044 and then Ekind (P_Prim) = Ekind (New_E)
10045 then
10046 P_Formal := First_Formal (P_Prim);
10047 N_Formal := First_Formal (New_E);
10048 while Present (P_Formal) and then Present (N_Formal) loop
10049 P_Typ := Etype (P_Formal);
10050 N_Typ := Etype (N_Formal);
10051
10052 if not Types_Correspond (P_Typ, N_Typ) then
10053 exit;
10054 end if;
10055
10056 Next_Entity (P_Formal);
10057 Next_Entity (N_Formal);
10058 end loop;
10059
10060 -- Found a matching primitive operation belonging to the
10061 -- formal ancestor type, so the new subprogram is
10062 -- overriding.
10063
10064 if No (P_Formal)
10065 and then No (N_Formal)
10066 and then (Ekind (New_E) /= E_Function
10067 or else
10068 Types_Correspond
10069 (Etype (P_Prim), Etype (New_E)))
10070 then
10071 return False;
10072 end if;
10073 end if;
10074
10075 Next_Elmt (Prim_Elt);
10076 end loop;
10077
10078 -- If no match found, then the new subprogram does not override
10079 -- in the generic (nor in the instance).
10080
10081 -- If the type in question is not abstract, and the subprogram
10082 -- is, this will be an error if the new operation is in the
10083 -- private part of the instance. Emit a warning now, which will
10084 -- make the subsequent error message easier to understand.
10085
10086 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
10087 and then Is_Abstract_Subprogram (Prev_E)
10088 and then In_Private_Part (Current_Scope)
10089 then
10090 Error_Msg_Node_2 := F_Typ;
10091 Error_Msg_NE
10092 ("private operation& in generic unit does not override "
10093 & "any primitive operation of& (RM 12.3 (18))??",
10094 New_E, New_E);
10095 end if;
10096
10097 return True;
10098 end;
10099 end if;
10100 else
10101 return False;
10102 end if;
10103 end Is_Non_Overriding_Operation;
10104
10105 -------------------------------------
10106 -- List_Inherited_Pre_Post_Aspects --
10107 -------------------------------------
10108
10109 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
10110 begin
10111 if Opt.List_Inherited_Aspects
10112 and then Is_Subprogram_Or_Generic_Subprogram (E)
10113 then
10114 declare
10115 Subps : constant Subprogram_List := Inherited_Subprograms (E);
10116 Items : Node_Id;
10117 Prag : Node_Id;
10118
10119 begin
10120 for Index in Subps'Range loop
10121 Items := Contract (Subps (Index));
10122
10123 if Present (Items) then
10124 Prag := Pre_Post_Conditions (Items);
10125 while Present (Prag) loop
10126 Error_Msg_Sloc := Sloc (Prag);
10127
10128 if Class_Present (Prag)
10129 and then not Split_PPC (Prag)
10130 then
10131 if Pragma_Name (Prag) = Name_Precondition then
10132 Error_Msg_N
10133 ("info: & inherits `Pre''Class` aspect from "
10134 & "#?L?", E);
10135 else
10136 Error_Msg_N
10137 ("info: & inherits `Post''Class` aspect from "
10138 & "#?L?", E);
10139 end if;
10140 end if;
10141
10142 Prag := Next_Pragma (Prag);
10143 end loop;
10144 end if;
10145 end loop;
10146 end;
10147 end if;
10148 end List_Inherited_Pre_Post_Aspects;
10149
10150 ------------------------------
10151 -- Make_Inequality_Operator --
10152 ------------------------------
10153
10154 -- S is the defining identifier of an equality operator. We build a
10155 -- subprogram declaration with the right signature. This operation is
10156 -- intrinsic, because it is always expanded as the negation of the
10157 -- call to the equality function.
10158
10159 procedure Make_Inequality_Operator (S : Entity_Id) is
10160 Loc : constant Source_Ptr := Sloc (S);
10161 Decl : Node_Id;
10162 Formals : List_Id;
10163 Op_Name : Entity_Id;
10164
10165 FF : constant Entity_Id := First_Formal (S);
10166 NF : constant Entity_Id := Next_Formal (FF);
10167
10168 begin
10169 -- Check that equality was properly defined, ignore call if not
10170
10171 if No (NF) then
10172 return;
10173 end if;
10174
10175 declare
10176 A : constant Entity_Id :=
10177 Make_Defining_Identifier (Sloc (FF),
10178 Chars => Chars (FF));
10179
10180 B : constant Entity_Id :=
10181 Make_Defining_Identifier (Sloc (NF),
10182 Chars => Chars (NF));
10183
10184 begin
10185 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
10186
10187 Formals := New_List (
10188 Make_Parameter_Specification (Loc,
10189 Defining_Identifier => A,
10190 Parameter_Type =>
10191 New_Occurrence_Of (Etype (First_Formal (S)),
10192 Sloc (Etype (First_Formal (S))))),
10193
10194 Make_Parameter_Specification (Loc,
10195 Defining_Identifier => B,
10196 Parameter_Type =>
10197 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
10198 Sloc (Etype (Next_Formal (First_Formal (S)))))));
10199
10200 Decl :=
10201 Make_Subprogram_Declaration (Loc,
10202 Specification =>
10203 Make_Function_Specification (Loc,
10204 Defining_Unit_Name => Op_Name,
10205 Parameter_Specifications => Formals,
10206 Result_Definition =>
10207 New_Occurrence_Of (Standard_Boolean, Loc)));
10208
10209 -- Insert inequality right after equality if it is explicit or after
10210 -- the derived type when implicit. These entities are created only
10211 -- for visibility purposes, and eventually replaced in the course
10212 -- of expansion, so they do not need to be attached to the tree and
10213 -- seen by the back-end. Keeping them internal also avoids spurious
10214 -- freezing problems. The declaration is inserted in the tree for
10215 -- analysis, and removed afterwards. If the equality operator comes
10216 -- from an explicit declaration, attach the inequality immediately
10217 -- after. Else the equality is inherited from a derived type
10218 -- declaration, so insert inequality after that declaration.
10219
10220 if No (Alias (S)) then
10221 Insert_After (Unit_Declaration_Node (S), Decl);
10222 elsif Is_List_Member (Parent (S)) then
10223 Insert_After (Parent (S), Decl);
10224 else
10225 Insert_After (Parent (Etype (First_Formal (S))), Decl);
10226 end if;
10227
10228 Mark_Rewrite_Insertion (Decl);
10229 Set_Is_Intrinsic_Subprogram (Op_Name);
10230 Analyze (Decl);
10231 Remove (Decl);
10232 Set_Has_Completion (Op_Name);
10233 Set_Corresponding_Equality (Op_Name, S);
10234 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
10235 end;
10236 end Make_Inequality_Operator;
10237
10238 ----------------------
10239 -- May_Need_Actuals --
10240 ----------------------
10241
10242 procedure May_Need_Actuals (Fun : Entity_Id) is
10243 F : Entity_Id;
10244 B : Boolean;
10245
10246 begin
10247 F := First_Formal (Fun);
10248 B := True;
10249 while Present (F) loop
10250 if No (Default_Value (F)) then
10251 B := False;
10252 exit;
10253 end if;
10254
10255 Next_Formal (F);
10256 end loop;
10257
10258 Set_Needs_No_Actuals (Fun, B);
10259 end May_Need_Actuals;
10260
10261 ---------------------
10262 -- Mode_Conformant --
10263 ---------------------
10264
10265 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
10266 Result : Boolean;
10267 begin
10268 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
10269 return Result;
10270 end Mode_Conformant;
10271
10272 ---------------------------
10273 -- New_Overloaded_Entity --
10274 ---------------------------
10275
10276 procedure New_Overloaded_Entity
10277 (S : Entity_Id;
10278 Derived_Type : Entity_Id := Empty)
10279 is
10280 Overridden_Subp : Entity_Id := Empty;
10281 -- Set if the current scope has an operation that is type-conformant
10282 -- with S, and becomes hidden by S.
10283
10284 Is_Primitive_Subp : Boolean;
10285 -- Set to True if the new subprogram is primitive
10286
10287 E : Entity_Id;
10288 -- Entity that S overrides
10289
10290 procedure Check_For_Primitive_Subprogram
10291 (Is_Primitive : out Boolean;
10292 Is_Overriding : Boolean := False);
10293 -- If the subprogram being analyzed is a primitive operation of the type
10294 -- of a formal or result, set the Has_Primitive_Operations flag on the
10295 -- type, and set Is_Primitive to True (otherwise set to False). Set the
10296 -- corresponding flag on the entity itself for later use.
10297
10298 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
10299 -- True if a) E is a subprogram whose first formal is a concurrent type
10300 -- defined in the scope of E that has some entry or subprogram whose
10301 -- profile matches E, or b) E is an internally built dispatching
10302 -- subprogram of a protected type and there is a matching subprogram
10303 -- defined in the enclosing scope of the protected type, or c) E is
10304 -- an entry of a synchronized type and a matching procedure has been
10305 -- previously defined in the enclosing scope of the synchronized type.
10306
10307 function Is_Private_Declaration (E : Entity_Id) return Boolean;
10308 -- Check that E is declared in the private part of the current package,
10309 -- or in the package body, where it may hide a previous declaration.
10310 -- We can't use In_Private_Part by itself because this flag is also
10311 -- set when freezing entities, so we must examine the place of the
10312 -- declaration in the tree, and recognize wrapper packages as well.
10313
10314 function Is_Overriding_Alias
10315 (Old_E : Entity_Id;
10316 New_E : Entity_Id) return Boolean;
10317 -- Check whether new subprogram and old subprogram are both inherited
10318 -- from subprograms that have distinct dispatch table entries. This can
10319 -- occur with derivations from instances with accidental homonyms. The
10320 -- function is conservative given that the converse is only true within
10321 -- instances that contain accidental overloadings.
10322
10323 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10324 -- Report conflict between entities S and E
10325
10326 ------------------------------------
10327 -- Check_For_Primitive_Subprogram --
10328 ------------------------------------
10329
10330 procedure Check_For_Primitive_Subprogram
10331 (Is_Primitive : out Boolean;
10332 Is_Overriding : Boolean := False)
10333 is
10334 Formal : Entity_Id;
10335 F_Typ : Entity_Id;
10336 B_Typ : Entity_Id;
10337
10338 function Visible_Part_Type (T : Entity_Id) return Boolean;
10339 -- Returns true if T is declared in the visible part of the current
10340 -- package scope; otherwise returns false. Assumes that T is declared
10341 -- in a package.
10342
10343 procedure Check_Private_Overriding (T : Entity_Id);
10344 -- Checks that if a primitive abstract subprogram of a visible
10345 -- abstract type is declared in a private part, then it must override
10346 -- an abstract subprogram declared in the visible part. Also checks
10347 -- that if a primitive function with a controlling result is declared
10348 -- in a private part, then it must override a function declared in
10349 -- the visible part.
10350
10351 ------------------------------
10352 -- Check_Private_Overriding --
10353 ------------------------------
10354
10355 procedure Check_Private_Overriding (T : Entity_Id) is
10356 function Overrides_Private_Part_Op return Boolean;
10357 -- This detects the special case where the overriding subprogram
10358 -- is overriding a subprogram that was declared in the same
10359 -- private part. That case is illegal by 3.9.3(10).
10360
10361 function Overrides_Visible_Function
10362 (Partial_View : Entity_Id) return Boolean;
10363 -- True if S overrides a function in the visible part. The
10364 -- overridden function could be explicitly or implicitly declared.
10365
10366 -------------------------------
10367 -- Overrides_Private_Part_Op --
10368 -------------------------------
10369
10370 function Overrides_Private_Part_Op return Boolean is
10371 Over_Decl : constant Node_Id :=
10372 Unit_Declaration_Node (Overridden_Operation (S));
10373 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10374
10375 begin
10376 pragma Assert (Is_Overriding);
10377 pragma Assert
10378 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10379 pragma Assert
10380 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10381
10382 return In_Same_List (Over_Decl, Subp_Decl);
10383 end Overrides_Private_Part_Op;
10384
10385 --------------------------------
10386 -- Overrides_Visible_Function --
10387 --------------------------------
10388
10389 function Overrides_Visible_Function
10390 (Partial_View : Entity_Id) return Boolean
10391 is
10392 begin
10393 if not Is_Overriding or else not Has_Homonym (S) then
10394 return False;
10395 end if;
10396
10397 if not Present (Partial_View) then
10398 return True;
10399 end if;
10400
10401 -- Search through all the homonyms H of S in the current
10402 -- package spec, and return True if we find one that matches.
10403 -- Note that Parent (H) will be the declaration of the
10404 -- partial view of T for a match.
10405
10406 declare
10407 H : Entity_Id := S;
10408 begin
10409 loop
10410 H := Homonym (H);
10411 exit when not Present (H) or else Scope (H) /= Scope (S);
10412
10413 if Nkind_In
10414 (Parent (H),
10415 N_Private_Extension_Declaration,
10416 N_Private_Type_Declaration)
10417 and then Defining_Identifier (Parent (H)) = Partial_View
10418 then
10419 return True;
10420 end if;
10421 end loop;
10422 end;
10423
10424 return False;
10425 end Overrides_Visible_Function;
10426
10427 -- Start of processing for Check_Private_Overriding
10428
10429 begin
10430 if Is_Package_Or_Generic_Package (Current_Scope)
10431 and then In_Private_Part (Current_Scope)
10432 and then Visible_Part_Type (T)
10433 and then not In_Instance
10434 then
10435 if Is_Abstract_Type (T)
10436 and then Is_Abstract_Subprogram (S)
10437 and then (not Is_Overriding
10438 or else not Is_Abstract_Subprogram (E)
10439 or else Overrides_Private_Part_Op)
10440 then
10441 Error_Msg_N
10442 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10443 S);
10444
10445 elsif Ekind (S) = E_Function then
10446 declare
10447 Partial_View : constant Entity_Id :=
10448 Incomplete_Or_Partial_View (T);
10449
10450 begin
10451 if not Overrides_Visible_Function (Partial_View) then
10452
10453 -- Here, S is "function ... return T;" declared in
10454 -- the private part, not overriding some visible
10455 -- operation. That's illegal in the tagged case
10456 -- (but not if the private type is untagged).
10457
10458 if ((Present (Partial_View)
10459 and then Is_Tagged_Type (Partial_View))
10460 or else (not Present (Partial_View)
10461 and then Is_Tagged_Type (T)))
10462 and then T = Base_Type (Etype (S))
10463 then
10464 Error_Msg_N
10465 ("private function with tagged result must"
10466 & " override visible-part function", S);
10467 Error_Msg_N
10468 ("\move subprogram to the visible part"
10469 & " (RM 3.9.3(10))", S);
10470
10471 -- AI05-0073: extend this test to the case of a
10472 -- function with a controlling access result.
10473
10474 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10475 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10476 and then
10477 not Is_Class_Wide_Type
10478 (Designated_Type (Etype (S)))
10479 and then Ada_Version >= Ada_2012
10480 then
10481 Error_Msg_N
10482 ("private function with controlling access "
10483 & "result must override visible-part function",
10484 S);
10485 Error_Msg_N
10486 ("\move subprogram to the visible part"
10487 & " (RM 3.9.3(10))", S);
10488 end if;
10489 end if;
10490 end;
10491 end if;
10492 end if;
10493 end Check_Private_Overriding;
10494
10495 -----------------------
10496 -- Visible_Part_Type --
10497 -----------------------
10498
10499 function Visible_Part_Type (T : Entity_Id) return Boolean is
10500 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10501
10502 begin
10503 -- If the entity is a private type, then it must be declared in a
10504 -- visible part.
10505
10506 if Ekind (T) in Private_Kind then
10507 return True;
10508
10509 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10510 return True;
10511
10512 elsif Is_List_Member (Declaration_Node (T))
10513 and then List_Containing (Declaration_Node (T)) =
10514 Visible_Declarations (Specification (P))
10515 then
10516 return True;
10517
10518 else
10519 return False;
10520 end if;
10521 end Visible_Part_Type;
10522
10523 -- Start of processing for Check_For_Primitive_Subprogram
10524
10525 begin
10526 Is_Primitive := False;
10527
10528 if not Comes_From_Source (S) then
10529 null;
10530
10531 -- If subprogram is at library level, it is not primitive operation
10532
10533 elsif Current_Scope = Standard_Standard then
10534 null;
10535
10536 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10537 and then not In_Package_Body (Current_Scope))
10538 or else Is_Overriding
10539 then
10540 -- For function, check return type
10541
10542 if Ekind (S) = E_Function then
10543 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10544 F_Typ := Designated_Type (Etype (S));
10545 else
10546 F_Typ := Etype (S);
10547 end if;
10548
10549 B_Typ := Base_Type (F_Typ);
10550
10551 if Scope (B_Typ) = Current_Scope
10552 and then not Is_Class_Wide_Type (B_Typ)
10553 and then not Is_Generic_Type (B_Typ)
10554 then
10555 Is_Primitive := True;
10556 Set_Has_Primitive_Operations (B_Typ);
10557 Set_Is_Primitive (S);
10558 Check_Private_Overriding (B_Typ);
10559
10560 -- The Ghost policy in effect at the point of declaration
10561 -- or a tagged type and a primitive operation must match
10562 -- (SPARK RM 6.9(16)).
10563
10564 Check_Ghost_Primitive (S, B_Typ);
10565 end if;
10566 end if;
10567
10568 -- For all subprograms, check formals
10569
10570 Formal := First_Formal (S);
10571 while Present (Formal) loop
10572 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10573 F_Typ := Designated_Type (Etype (Formal));
10574 else
10575 F_Typ := Etype (Formal);
10576 end if;
10577
10578 B_Typ := Base_Type (F_Typ);
10579
10580 if Ekind (B_Typ) = E_Access_Subtype then
10581 B_Typ := Base_Type (B_Typ);
10582 end if;
10583
10584 if Scope (B_Typ) = Current_Scope
10585 and then not Is_Class_Wide_Type (B_Typ)
10586 and then not Is_Generic_Type (B_Typ)
10587 then
10588 Is_Primitive := True;
10589 Set_Is_Primitive (S);
10590 Set_Has_Primitive_Operations (B_Typ);
10591 Check_Private_Overriding (B_Typ);
10592
10593 -- The Ghost policy in effect at the point of declaration
10594 -- of a tagged type and a primitive operation must match
10595 -- (SPARK RM 6.9(16)).
10596
10597 Check_Ghost_Primitive (S, B_Typ);
10598 end if;
10599
10600 Next_Formal (Formal);
10601 end loop;
10602
10603 -- Special case: An equality function can be redefined for a type
10604 -- occurring in a declarative part, and won't otherwise be treated as
10605 -- a primitive because it doesn't occur in a package spec and doesn't
10606 -- override an inherited subprogram. It's important that we mark it
10607 -- primitive so it can be returned by Collect_Primitive_Operations
10608 -- and be used in composing the equality operation of later types
10609 -- that have a component of the type.
10610
10611 elsif Chars (S) = Name_Op_Eq
10612 and then Etype (S) = Standard_Boolean
10613 then
10614 B_Typ := Base_Type (Etype (First_Formal (S)));
10615
10616 if Scope (B_Typ) = Current_Scope
10617 and then
10618 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10619 and then not Is_Limited_Type (B_Typ)
10620 then
10621 Is_Primitive := True;
10622 Set_Is_Primitive (S);
10623 Set_Has_Primitive_Operations (B_Typ);
10624 Check_Private_Overriding (B_Typ);
10625
10626 -- The Ghost policy in effect at the point of declaration of a
10627 -- tagged type and a primitive operation must match
10628 -- (SPARK RM 6.9(16)).
10629
10630 Check_Ghost_Primitive (S, B_Typ);
10631 end if;
10632 end if;
10633 end Check_For_Primitive_Subprogram;
10634
10635 --------------------------------------
10636 -- Has_Matching_Entry_Or_Subprogram --
10637 --------------------------------------
10638
10639 function Has_Matching_Entry_Or_Subprogram
10640 (E : Entity_Id) return Boolean
10641 is
10642 function Check_Conforming_Parameters
10643 (E1_Param : Node_Id;
10644 E2_Param : Node_Id;
10645 Ctype : Conformance_Type) return Boolean;
10646 -- Starting from the given parameters, check that all the parameters
10647 -- of two entries or subprograms are conformant. Used to skip
10648 -- the check on the controlling argument.
10649
10650 function Matching_Entry_Or_Subprogram
10651 (Conc_Typ : Entity_Id;
10652 Subp : Entity_Id) return Entity_Id;
10653 -- Return the first entry or subprogram of the given concurrent type
10654 -- whose name matches the name of Subp and has a profile conformant
10655 -- with Subp; return Empty if not found.
10656
10657 function Matching_Dispatching_Subprogram
10658 (Conc_Typ : Entity_Id;
10659 Ent : Entity_Id) return Entity_Id;
10660 -- Return the first dispatching primitive of Conc_Type defined in the
10661 -- enclosing scope of Conc_Type (i.e. before the full definition of
10662 -- this concurrent type) whose name matches the entry Ent and has a
10663 -- profile conformant with the profile of the corresponding (not yet
10664 -- built) dispatching primitive of Ent; return Empty if not found.
10665
10666 function Matching_Original_Protected_Subprogram
10667 (Prot_Typ : Entity_Id;
10668 Subp : Entity_Id) return Entity_Id;
10669 -- Return the first subprogram defined in the enclosing scope of
10670 -- Prot_Typ (before the full definition of this protected type)
10671 -- whose name matches the original name of Subp and has a profile
10672 -- conformant with the profile of Subp; return Empty if not found.
10673
10674 function Normalized_First_Parameter_Type
10675 (E : Entity_Id) return Entity_Id;
10676 -- Return the type of the first parameter unless that type
10677 -- is an anonymous access type, in which case return the
10678 -- designated type. Used to treat anonymous-access-to-synchronized
10679 -- the same as synchronized for purposes of checking for
10680 -- prefixed view profile conflicts.
10681
10682 ---------------------------------
10683 -- Check_Conforming_Parameters --
10684 ---------------------------------
10685
10686 function Check_Conforming_Parameters
10687 (E1_Param : Node_Id;
10688 E2_Param : Node_Id;
10689 Ctype : Conformance_Type) return Boolean
10690 is
10691 Param_E1 : Node_Id := E1_Param;
10692 Param_E2 : Node_Id := E2_Param;
10693
10694 begin
10695 while Present (Param_E1) and then Present (Param_E2) loop
10696 if (Ctype >= Mode_Conformant) and then
10697 Ekind (Defining_Identifier (Param_E1)) /=
10698 Ekind (Defining_Identifier (Param_E2))
10699 then
10700 return False;
10701 elsif not
10702 Conforming_Types
10703 (Find_Parameter_Type (Param_E1),
10704 Find_Parameter_Type (Param_E2),
10705 Ctype)
10706 then
10707 return False;
10708 end if;
10709
10710 Next (Param_E1);
10711 Next (Param_E2);
10712 end loop;
10713
10714 -- The candidate is not valid if one of the two lists contains
10715 -- more parameters than the other
10716
10717 return No (Param_E1) and then No (Param_E2);
10718 end Check_Conforming_Parameters;
10719
10720 ----------------------------------
10721 -- Matching_Entry_Or_Subprogram --
10722 ----------------------------------
10723
10724 function Matching_Entry_Or_Subprogram
10725 (Conc_Typ : Entity_Id;
10726 Subp : Entity_Id) return Entity_Id
10727 is
10728 E : Entity_Id;
10729
10730 begin
10731 E := First_Entity (Conc_Typ);
10732 while Present (E) loop
10733 if Chars (Subp) = Chars (E)
10734 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10735 and then
10736 Check_Conforming_Parameters
10737 (First (Parameter_Specifications (Parent (E))),
10738 Next (First (Parameter_Specifications (Parent (Subp)))),
10739 Type_Conformant)
10740 then
10741 return E;
10742 end if;
10743
10744 Next_Entity (E);
10745 end loop;
10746
10747 return Empty;
10748 end Matching_Entry_Or_Subprogram;
10749
10750 -------------------------------------
10751 -- Matching_Dispatching_Subprogram --
10752 -------------------------------------
10753
10754 function Matching_Dispatching_Subprogram
10755 (Conc_Typ : Entity_Id;
10756 Ent : Entity_Id) return Entity_Id
10757 is
10758 E : Entity_Id;
10759
10760 begin
10761 -- Search for entities in the enclosing scope of this synchonized
10762 -- type.
10763
10764 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10765 Push_Scope (Scope (Conc_Typ));
10766 E := Current_Entity_In_Scope (Ent);
10767 Pop_Scope;
10768
10769 while Present (E) loop
10770 if Scope (E) = Scope (Conc_Typ)
10771 and then Comes_From_Source (E)
10772 and then Ekind (E) = E_Procedure
10773 and then Present (First_Entity (E))
10774 and then Is_Controlling_Formal (First_Entity (E))
10775 and then Etype (First_Entity (E)) = Conc_Typ
10776 and then
10777 Check_Conforming_Parameters
10778 (First (Parameter_Specifications (Parent (Ent))),
10779 Next (First (Parameter_Specifications (Parent (E)))),
10780 Subtype_Conformant)
10781 then
10782 return E;
10783 end if;
10784
10785 E := Homonym (E);
10786 end loop;
10787
10788 return Empty;
10789 end Matching_Dispatching_Subprogram;
10790
10791 --------------------------------------------
10792 -- Matching_Original_Protected_Subprogram --
10793 --------------------------------------------
10794
10795 function Matching_Original_Protected_Subprogram
10796 (Prot_Typ : Entity_Id;
10797 Subp : Entity_Id) return Entity_Id
10798 is
10799 ICF : constant Boolean :=
10800 Is_Controlling_Formal (First_Entity (Subp));
10801 E : Entity_Id;
10802
10803 begin
10804 -- Temporarily decorate the first parameter of Subp as controlling
10805 -- formal, required to invoke Subtype_Conformant.
10806
10807 Set_Is_Controlling_Formal (First_Entity (Subp));
10808
10809 E :=
10810 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10811
10812 while Present (E) loop
10813 if Scope (E) = Scope (Prot_Typ)
10814 and then Comes_From_Source (E)
10815 and then Ekind (Subp) = Ekind (E)
10816 and then Present (First_Entity (E))
10817 and then Is_Controlling_Formal (First_Entity (E))
10818 and then Etype (First_Entity (E)) = Prot_Typ
10819 and then Subtype_Conformant (Subp, E,
10820 Skip_Controlling_Formals => True)
10821 then
10822 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10823 return E;
10824 end if;
10825
10826 E := Homonym (E);
10827 end loop;
10828
10829 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10830
10831 return Empty;
10832 end Matching_Original_Protected_Subprogram;
10833
10834 -------------------------------------
10835 -- Normalized_First_Parameter_Type --
10836 -------------------------------------
10837
10838 function Normalized_First_Parameter_Type
10839 (E : Entity_Id) return Entity_Id
10840 is
10841 Result : Entity_Id := Etype (First_Entity (E));
10842 begin
10843 if Ekind (Result) = E_Anonymous_Access_Type then
10844 Result := Designated_Type (Result);
10845 end if;
10846 return Result;
10847 end Normalized_First_Parameter_Type;
10848
10849 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10850
10851 begin
10852 -- Case 1: E is a subprogram whose first formal is a concurrent type
10853 -- defined in the scope of E that has an entry or subprogram whose
10854 -- profile matches E.
10855
10856 if Comes_From_Source (E)
10857 and then Is_Subprogram (E)
10858 and then Present (First_Entity (E))
10859 and then Is_Concurrent_Record_Type
10860 (Normalized_First_Parameter_Type (E))
10861 then
10862 if Scope (E) =
10863 Scope (Corresponding_Concurrent_Type
10864 (Normalized_First_Parameter_Type (E)))
10865 and then
10866 Present
10867 (Matching_Entry_Or_Subprogram
10868 (Corresponding_Concurrent_Type
10869 (Normalized_First_Parameter_Type (E)),
10870 Subp => E))
10871 then
10872 Report_Conflict (E,
10873 Matching_Entry_Or_Subprogram
10874 (Corresponding_Concurrent_Type
10875 (Normalized_First_Parameter_Type (E)),
10876 Subp => E));
10877 return True;
10878 end if;
10879
10880 -- Case 2: E is an internally built dispatching subprogram of a
10881 -- protected type and there is a subprogram defined in the enclosing
10882 -- scope of the protected type that has the original name of E and
10883 -- its profile is conformant with the profile of E. We check the
10884 -- name of the original protected subprogram associated with E since
10885 -- the expander builds dispatching primitives of protected functions
10886 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10887
10888 elsif not Comes_From_Source (E)
10889 and then Is_Subprogram (E)
10890 and then Present (First_Entity (E))
10891 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10892 and then Present (Original_Protected_Subprogram (E))
10893 and then
10894 Present
10895 (Matching_Original_Protected_Subprogram
10896 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10897 Subp => E))
10898 then
10899 Report_Conflict (E,
10900 Matching_Original_Protected_Subprogram
10901 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10902 Subp => E));
10903 return True;
10904
10905 -- Case 3: E is an entry of a synchronized type and a matching
10906 -- procedure has been previously defined in the enclosing scope
10907 -- of the synchronized type.
10908
10909 elsif Comes_From_Source (E)
10910 and then Ekind (E) = E_Entry
10911 and then
10912 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10913 then
10914 Report_Conflict (E,
10915 Matching_Dispatching_Subprogram (Current_Scope, E));
10916 return True;
10917 end if;
10918
10919 return False;
10920 end Has_Matching_Entry_Or_Subprogram;
10921
10922 ----------------------------
10923 -- Is_Private_Declaration --
10924 ----------------------------
10925
10926 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10927 Decl : constant Node_Id := Unit_Declaration_Node (E);
10928 Priv_Decls : List_Id;
10929
10930 begin
10931 if Is_Package_Or_Generic_Package (Current_Scope)
10932 and then In_Private_Part (Current_Scope)
10933 then
10934 Priv_Decls :=
10935 Private_Declarations (Package_Specification (Current_Scope));
10936
10937 return In_Package_Body (Current_Scope)
10938 or else
10939 (Is_List_Member (Decl)
10940 and then List_Containing (Decl) = Priv_Decls)
10941 or else (Nkind (Parent (Decl)) = N_Package_Specification
10942 and then not
10943 Is_Compilation_Unit
10944 (Defining_Entity (Parent (Decl)))
10945 and then List_Containing (Parent (Parent (Decl))) =
10946 Priv_Decls);
10947 else
10948 return False;
10949 end if;
10950 end Is_Private_Declaration;
10951
10952 --------------------------
10953 -- Is_Overriding_Alias --
10954 --------------------------
10955
10956 function Is_Overriding_Alias
10957 (Old_E : Entity_Id;
10958 New_E : Entity_Id) return Boolean
10959 is
10960 AO : constant Entity_Id := Alias (Old_E);
10961 AN : constant Entity_Id := Alias (New_E);
10962
10963 begin
10964 return Scope (AO) /= Scope (AN)
10965 or else No (DTC_Entity (AO))
10966 or else No (DTC_Entity (AN))
10967 or else DT_Position (AO) = DT_Position (AN);
10968 end Is_Overriding_Alias;
10969
10970 ---------------------
10971 -- Report_Conflict --
10972 ---------------------
10973
10974 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10975 begin
10976 Error_Msg_Sloc := Sloc (E);
10977
10978 -- Generate message, with useful additional warning if in generic
10979
10980 if Is_Generic_Unit (E) then
10981 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10982 Error_Msg_N ("\& conflicts with declaration#", S);
10983 else
10984 Error_Msg_N ("& conflicts with declaration#", S);
10985 end if;
10986 end Report_Conflict;
10987
10988 -- Start of processing for New_Overloaded_Entity
10989
10990 begin
10991 -- We need to look for an entity that S may override. This must be a
10992 -- homonym in the current scope, so we look for the first homonym of
10993 -- S in the current scope as the starting point for the search.
10994
10995 E := Current_Entity_In_Scope (S);
10996
10997 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10998 -- They are directly added to the list of primitive operations of
10999 -- Derived_Type, unless this is a rederivation in the private part
11000 -- of an operation that was already derived in the visible part of
11001 -- the current package.
11002
11003 if Ada_Version >= Ada_2005
11004 and then Present (Derived_Type)
11005 and then Present (Alias (S))
11006 and then Is_Dispatching_Operation (Alias (S))
11007 and then Present (Find_Dispatching_Type (Alias (S)))
11008 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
11009 then
11010 -- For private types, when the full-view is processed we propagate to
11011 -- the full view the non-overridden entities whose attribute "alias"
11012 -- references an interface primitive. These entities were added by
11013 -- Derive_Subprograms to ensure that interface primitives are
11014 -- covered.
11015
11016 -- Inside_Freeze_Actions is non zero when S corresponds with an
11017 -- internal entity that links an interface primitive with its
11018 -- covering primitive through attribute Interface_Alias (see
11019 -- Add_Internal_Interface_Entities).
11020
11021 if Inside_Freezing_Actions = 0
11022 and then Is_Package_Or_Generic_Package (Current_Scope)
11023 and then In_Private_Part (Current_Scope)
11024 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
11025 and then Nkind (Parent (S)) = N_Full_Type_Declaration
11026 and then Full_View (Defining_Identifier (Parent (E)))
11027 = Defining_Identifier (Parent (S))
11028 and then Alias (E) = Alias (S)
11029 then
11030 Check_Operation_From_Private_View (S, E);
11031 Set_Is_Dispatching_Operation (S);
11032
11033 -- Common case
11034
11035 else
11036 Enter_Overloaded_Entity (S);
11037 Check_Dispatching_Operation (S, Empty);
11038 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11039 end if;
11040
11041 return;
11042 end if;
11043
11044 -- For synchronized types check conflicts of this entity with previously
11045 -- defined entities.
11046
11047 if Ada_Version >= Ada_2005
11048 and then Has_Matching_Entry_Or_Subprogram (S)
11049 then
11050 return;
11051 end if;
11052
11053 -- If there is no homonym then this is definitely not overriding
11054
11055 if No (E) then
11056 Enter_Overloaded_Entity (S);
11057 Check_Dispatching_Operation (S, Empty);
11058 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11059
11060 -- If subprogram has an explicit declaration, check whether it has an
11061 -- overriding indicator.
11062
11063 if Comes_From_Source (S) then
11064 Check_Synchronized_Overriding (S, Overridden_Subp);
11065
11066 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
11067 -- it may have overridden some hidden inherited primitive. Update
11068 -- Overridden_Subp to avoid spurious errors when checking the
11069 -- overriding indicator.
11070
11071 if Ada_Version >= Ada_2012
11072 and then No (Overridden_Subp)
11073 and then Is_Dispatching_Operation (S)
11074 and then Present (Overridden_Operation (S))
11075 then
11076 Overridden_Subp := Overridden_Operation (S);
11077 end if;
11078
11079 Check_Overriding_Indicator
11080 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11081
11082 -- The Ghost policy in effect at the point of declaration of a
11083 -- parent subprogram and an overriding subprogram must match
11084 -- (SPARK RM 6.9(17)).
11085
11086 Check_Ghost_Overriding (S, Overridden_Subp);
11087 end if;
11088
11089 -- If there is a homonym that is not overloadable, then we have an
11090 -- error, except for the special cases checked explicitly below.
11091
11092 elsif not Is_Overloadable (E) then
11093
11094 -- Check for spurious conflict produced by a subprogram that has the
11095 -- same name as that of the enclosing generic package. The conflict
11096 -- occurs within an instance, between the subprogram and the renaming
11097 -- declaration for the package. After the subprogram, the package
11098 -- renaming declaration becomes hidden.
11099
11100 if Ekind (E) = E_Package
11101 and then Present (Renamed_Object (E))
11102 and then Renamed_Object (E) = Current_Scope
11103 and then Nkind (Parent (Renamed_Object (E))) =
11104 N_Package_Specification
11105 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
11106 then
11107 Set_Is_Hidden (E);
11108 Set_Is_Immediately_Visible (E, False);
11109 Enter_Overloaded_Entity (S);
11110 Set_Homonym (S, Homonym (E));
11111 Check_Dispatching_Operation (S, Empty);
11112 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
11113
11114 -- If the subprogram is implicit it is hidden by the previous
11115 -- declaration. However if it is dispatching, it must appear in the
11116 -- dispatch table anyway, because it can be dispatched to even if it
11117 -- cannot be called directly.
11118
11119 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
11120 Set_Scope (S, Current_Scope);
11121
11122 if Is_Dispatching_Operation (Alias (S)) then
11123 Check_Dispatching_Operation (S, Empty);
11124 end if;
11125
11126 return;
11127
11128 else
11129 Report_Conflict (S, E);
11130 return;
11131 end if;
11132
11133 -- E exists and is overloadable
11134
11135 else
11136 Check_Synchronized_Overriding (S, Overridden_Subp);
11137
11138 -- Loop through E and its homonyms to determine if any of them is
11139 -- the candidate for overriding by S.
11140
11141 while Present (E) loop
11142
11143 -- Definitely not interesting if not in the current scope
11144
11145 if Scope (E) /= Current_Scope then
11146 null;
11147
11148 -- A function can overload the name of an abstract state. The
11149 -- state can be viewed as a function with a profile that cannot
11150 -- be matched by anything.
11151
11152 elsif Ekind (S) = E_Function
11153 and then Ekind (E) = E_Abstract_State
11154 then
11155 Enter_Overloaded_Entity (S);
11156 return;
11157
11158 -- Ada 2012 (AI05-0165): For internally generated bodies of null
11159 -- procedures locate the internally generated spec. We enforce
11160 -- mode conformance since a tagged type may inherit from
11161 -- interfaces several null primitives which differ only in
11162 -- the mode of the formals.
11163
11164 elsif not Comes_From_Source (S)
11165 and then Is_Null_Procedure (S)
11166 and then not Mode_Conformant (E, S)
11167 then
11168 null;
11169
11170 -- Check if we have type conformance
11171
11172 elsif Type_Conformant (E, S) then
11173
11174 -- If the old and new entities have the same profile and one
11175 -- is not the body of the other, then this is an error, unless
11176 -- one of them is implicitly declared.
11177
11178 -- There are some cases when both can be implicit, for example
11179 -- when both a literal and a function that overrides it are
11180 -- inherited in a derivation, or when an inherited operation
11181 -- of a tagged full type overrides the inherited operation of
11182 -- a private extension. Ada 83 had a special rule for the
11183 -- literal case. In Ada 95, the later implicit operation hides
11184 -- the former, and the literal is always the former. In the
11185 -- odd case where both are derived operations declared at the
11186 -- same point, both operations should be declared, and in that
11187 -- case we bypass the following test and proceed to the next
11188 -- part. This can only occur for certain obscure cases in
11189 -- instances, when an operation on a type derived from a formal
11190 -- private type does not override a homograph inherited from
11191 -- the actual. In subsequent derivations of such a type, the
11192 -- DT positions of these operations remain distinct, if they
11193 -- have been set.
11194
11195 if Present (Alias (S))
11196 and then (No (Alias (E))
11197 or else Comes_From_Source (E)
11198 or else Is_Abstract_Subprogram (S)
11199 or else
11200 (Is_Dispatching_Operation (E)
11201 and then Is_Overriding_Alias (E, S)))
11202 and then Ekind (E) /= E_Enumeration_Literal
11203 then
11204 -- When an derived operation is overloaded it may be due to
11205 -- the fact that the full view of a private extension
11206 -- re-inherits. It has to be dealt with.
11207
11208 if Is_Package_Or_Generic_Package (Current_Scope)
11209 and then In_Private_Part (Current_Scope)
11210 then
11211 Check_Operation_From_Private_View (S, E);
11212 end if;
11213
11214 -- In any case the implicit operation remains hidden by the
11215 -- existing declaration, which is overriding. Indicate that
11216 -- E overrides the operation from which S is inherited.
11217
11218 if Present (Alias (S)) then
11219 Set_Overridden_Operation (E, Alias (S));
11220 Inherit_Subprogram_Contract (E, Alias (S));
11221
11222 else
11223 Set_Overridden_Operation (E, S);
11224 Inherit_Subprogram_Contract (E, S);
11225 end if;
11226
11227 if Comes_From_Source (E) then
11228 Check_Overriding_Indicator (E, S, Is_Primitive => False);
11229
11230 -- The Ghost policy in effect at the point of declaration
11231 -- of a parent subprogram and an overriding subprogram
11232 -- must match (SPARK RM 6.9(17)).
11233
11234 Check_Ghost_Overriding (E, S);
11235 end if;
11236
11237 return;
11238
11239 -- Within an instance, the renaming declarations for actual
11240 -- subprograms may become ambiguous, but they do not hide each
11241 -- other.
11242
11243 elsif Ekind (E) /= E_Entry
11244 and then not Comes_From_Source (E)
11245 and then not Is_Generic_Instance (E)
11246 and then (Present (Alias (E))
11247 or else Is_Intrinsic_Subprogram (E))
11248 and then (not In_Instance
11249 or else No (Parent (E))
11250 or else Nkind (Unit_Declaration_Node (E)) /=
11251 N_Subprogram_Renaming_Declaration)
11252 then
11253 -- A subprogram child unit is not allowed to override an
11254 -- inherited subprogram (10.1.1(20)).
11255
11256 if Is_Child_Unit (S) then
11257 Error_Msg_N
11258 ("child unit overrides inherited subprogram in parent",
11259 S);
11260 return;
11261 end if;
11262
11263 if Is_Non_Overriding_Operation (E, S) then
11264 Enter_Overloaded_Entity (S);
11265
11266 if No (Derived_Type)
11267 or else Is_Tagged_Type (Derived_Type)
11268 then
11269 Check_Dispatching_Operation (S, Empty);
11270 end if;
11271
11272 return;
11273 end if;
11274
11275 -- E is a derived operation or an internal operator which
11276 -- is being overridden. Remove E from further visibility.
11277 -- Furthermore, if E is a dispatching operation, it must be
11278 -- replaced in the list of primitive operations of its type
11279 -- (see Override_Dispatching_Operation).
11280
11281 Overridden_Subp := E;
11282
11283 -- It is possible for E to be in the current scope and
11284 -- yet not in the entity chain. This can only occur in a
11285 -- generic context where E is an implicit concatenation
11286 -- in the formal part, because in a generic body the
11287 -- entity chain starts with the formals.
11288
11289 -- In GNATprove mode, a wrapper for an operation with
11290 -- axiomatization may be a homonym of another declaration
11291 -- for an actual subprogram (needs refinement ???).
11292
11293 if No (Prev_Entity (E)) then
11294 if In_Instance
11295 and then GNATprove_Mode
11296 and then
11297 Nkind (Original_Node (Unit_Declaration_Node (S))) =
11298 N_Subprogram_Renaming_Declaration
11299 then
11300 return;
11301 else
11302 pragma Assert (Chars (E) = Name_Op_Concat);
11303 null;
11304 end if;
11305 end if;
11306
11307 -- E must be removed both from the entity_list of the
11308 -- current scope, and from the visibility chain.
11309
11310 if Debug_Flag_E then
11311 Write_Str ("Override implicit operation ");
11312 Write_Int (Int (E));
11313 Write_Eol;
11314 end if;
11315
11316 -- If E is a predefined concatenation, it stands for four
11317 -- different operations. As a result, a single explicit
11318 -- declaration does not hide it. In a possible ambiguous
11319 -- situation, Disambiguate chooses the user-defined op,
11320 -- so it is correct to retain the previous internal one.
11321
11322 if Chars (E) /= Name_Op_Concat
11323 or else Ekind (E) /= E_Operator
11324 then
11325 -- For nondispatching derived operations that are
11326 -- overridden by a subprogram declared in the private
11327 -- part of a package, we retain the derived subprogram
11328 -- but mark it as not immediately visible. If the
11329 -- derived operation was declared in the visible part
11330 -- then this ensures that it will still be visible
11331 -- outside the package with the proper signature
11332 -- (calls from outside must also be directed to this
11333 -- version rather than the overriding one, unlike the
11334 -- dispatching case). Calls from inside the package
11335 -- will still resolve to the overriding subprogram
11336 -- since the derived one is marked as not visible
11337 -- within the package.
11338
11339 -- If the private operation is dispatching, we achieve
11340 -- the overriding by keeping the implicit operation
11341 -- but setting its alias to be the overriding one. In
11342 -- this fashion the proper body is executed in all
11343 -- cases, but the original signature is used outside
11344 -- of the package.
11345
11346 -- If the overriding is not in the private part, we
11347 -- remove the implicit operation altogether.
11348
11349 if Is_Private_Declaration (S) then
11350 if not Is_Dispatching_Operation (E) then
11351 Set_Is_Immediately_Visible (E, False);
11352 else
11353 -- Work done in Override_Dispatching_Operation, so
11354 -- nothing else needs to be done here.
11355
11356 null;
11357 end if;
11358
11359 else
11360 Remove_Entity_And_Homonym (E);
11361 end if;
11362 end if;
11363
11364 Enter_Overloaded_Entity (S);
11365
11366 -- For entities generated by Derive_Subprograms the
11367 -- overridden operation is the inherited primitive
11368 -- (which is available through the attribute alias).
11369
11370 if not (Comes_From_Source (E))
11371 and then Is_Dispatching_Operation (E)
11372 and then Find_Dispatching_Type (E) =
11373 Find_Dispatching_Type (S)
11374 and then Present (Alias (E))
11375 and then Comes_From_Source (Alias (E))
11376 then
11377 Set_Overridden_Operation (S, Alias (E));
11378 Inherit_Subprogram_Contract (S, Alias (E));
11379
11380 -- Normal case of setting entity as overridden
11381
11382 -- Note: Static_Initialization and Overridden_Operation
11383 -- attributes use the same field in subprogram entities.
11384 -- Static_Initialization is only defined for internal
11385 -- initialization procedures, where Overridden_Operation
11386 -- is irrelevant. Therefore the setting of this attribute
11387 -- must check whether the target is an init_proc.
11388
11389 elsif not Is_Init_Proc (S) then
11390 Set_Overridden_Operation (S, E);
11391 Inherit_Subprogram_Contract (S, E);
11392 end if;
11393
11394 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11395
11396 -- The Ghost policy in effect at the point of declaration
11397 -- of a parent subprogram and an overriding subprogram
11398 -- must match (SPARK RM 6.9(17)).
11399
11400 Check_Ghost_Overriding (S, E);
11401
11402 -- If S is a user-defined subprogram or a null procedure
11403 -- expanded to override an inherited null procedure, or a
11404 -- predefined dispatching primitive then indicate that E
11405 -- overrides the operation from which S is inherited.
11406
11407 if Comes_From_Source (S)
11408 or else
11409 (Present (Parent (S))
11410 and then Nkind (Parent (S)) = N_Procedure_Specification
11411 and then Null_Present (Parent (S)))
11412 or else
11413 (Present (Alias (E))
11414 and then
11415 Is_Predefined_Dispatching_Operation (Alias (E)))
11416 then
11417 if Present (Alias (E)) then
11418 Set_Overridden_Operation (S, Alias (E));
11419 Inherit_Subprogram_Contract (S, Alias (E));
11420 end if;
11421 end if;
11422
11423 if Is_Dispatching_Operation (E) then
11424
11425 -- An overriding dispatching subprogram inherits the
11426 -- convention of the overridden subprogram (AI-117).
11427
11428 Set_Convention (S, Convention (E));
11429 Check_Dispatching_Operation (S, E);
11430
11431 else
11432 Check_Dispatching_Operation (S, Empty);
11433 end if;
11434
11435 Check_For_Primitive_Subprogram
11436 (Is_Primitive_Subp, Is_Overriding => True);
11437 goto Check_Inequality;
11438
11439 -- Apparent redeclarations in instances can occur when two
11440 -- formal types get the same actual type. The subprograms in
11441 -- in the instance are legal, even if not callable from the
11442 -- outside. Calls from within are disambiguated elsewhere.
11443 -- For dispatching operations in the visible part, the usual
11444 -- rules apply, and operations with the same profile are not
11445 -- legal (B830001).
11446
11447 elsif (In_Instance_Visible_Part
11448 and then not Is_Dispatching_Operation (E))
11449 or else In_Instance_Not_Visible
11450 then
11451 null;
11452
11453 -- Here we have a real error (identical profile)
11454
11455 else
11456 Error_Msg_Sloc := Sloc (E);
11457
11458 -- Avoid cascaded errors if the entity appears in
11459 -- subsequent calls.
11460
11461 Set_Scope (S, Current_Scope);
11462
11463 -- Generate error, with extra useful warning for the case
11464 -- of a generic instance with no completion.
11465
11466 if Is_Generic_Instance (S)
11467 and then not Has_Completion (E)
11468 then
11469 Error_Msg_N
11470 ("instantiation cannot provide body for&", S);
11471 Error_Msg_N ("\& conflicts with declaration#", S);
11472 else
11473 Error_Msg_N ("& conflicts with declaration#", S);
11474 end if;
11475
11476 return;
11477 end if;
11478
11479 else
11480 -- If one subprogram has an access parameter and the other
11481 -- a parameter of an access type, calls to either might be
11482 -- ambiguous. Verify that parameters match except for the
11483 -- access parameter.
11484
11485 if May_Hide_Profile then
11486 declare
11487 F1 : Entity_Id;
11488 F2 : Entity_Id;
11489
11490 begin
11491 F1 := First_Formal (S);
11492 F2 := First_Formal (E);
11493 while Present (F1) and then Present (F2) loop
11494 if Is_Access_Type (Etype (F1)) then
11495 if not Is_Access_Type (Etype (F2))
11496 or else not Conforming_Types
11497 (Designated_Type (Etype (F1)),
11498 Designated_Type (Etype (F2)),
11499 Type_Conformant)
11500 then
11501 May_Hide_Profile := False;
11502 end if;
11503
11504 elsif
11505 not Conforming_Types
11506 (Etype (F1), Etype (F2), Type_Conformant)
11507 then
11508 May_Hide_Profile := False;
11509 end if;
11510
11511 Next_Formal (F1);
11512 Next_Formal (F2);
11513 end loop;
11514
11515 if May_Hide_Profile
11516 and then No (F1)
11517 and then No (F2)
11518 then
11519 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11520 end if;
11521 end;
11522 end if;
11523 end if;
11524
11525 E := Homonym (E);
11526 end loop;
11527
11528 -- On exit, we know that S is a new entity
11529
11530 Enter_Overloaded_Entity (S);
11531 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11532 Check_Overriding_Indicator
11533 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11534
11535 -- The Ghost policy in effect at the point of declaration of a parent
11536 -- subprogram and an overriding subprogram must match
11537 -- (SPARK RM 6.9(17)).
11538
11539 Check_Ghost_Overriding (S, Overridden_Subp);
11540
11541 -- Overloading is not allowed in SPARK, except for operators
11542
11543 if Nkind (S) /= N_Defining_Operator_Symbol then
11544 Error_Msg_Sloc := Sloc (Homonym (S));
11545 Check_SPARK_05_Restriction
11546 ("overloading not allowed with entity#", S);
11547 end if;
11548
11549 -- If S is a derived operation for an untagged type then by
11550 -- definition it's not a dispatching operation (even if the parent
11551 -- operation was dispatching), so Check_Dispatching_Operation is not
11552 -- called in that case.
11553
11554 if No (Derived_Type)
11555 or else Is_Tagged_Type (Derived_Type)
11556 then
11557 Check_Dispatching_Operation (S, Empty);
11558 end if;
11559 end if;
11560
11561 -- If this is a user-defined equality operator that is not a derived
11562 -- subprogram, create the corresponding inequality. If the operation is
11563 -- dispatching, the expansion is done elsewhere, and we do not create
11564 -- an explicit inequality operation.
11565
11566 <<Check_Inequality>>
11567 if Chars (S) = Name_Op_Eq
11568 and then Etype (S) = Standard_Boolean
11569 and then Present (Parent (S))
11570 and then not Is_Dispatching_Operation (S)
11571 then
11572 Make_Inequality_Operator (S);
11573 Check_Untagged_Equality (S);
11574 end if;
11575 end New_Overloaded_Entity;
11576
11577 ----------------------------------
11578 -- Preanalyze_Formal_Expression --
11579 ----------------------------------
11580
11581 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
11582 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
11583 begin
11584 In_Spec_Expression := True;
11585 Preanalyze_With_Freezing_And_Resolve (N, T);
11586 In_Spec_Expression := Save_In_Spec_Expression;
11587 end Preanalyze_Formal_Expression;
11588
11589 ---------------------
11590 -- Process_Formals --
11591 ---------------------
11592
11593 procedure Process_Formals
11594 (T : List_Id;
11595 Related_Nod : Node_Id)
11596 is
11597 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11598 -- Determine whether an access type designates a type coming from a
11599 -- limited view.
11600
11601 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11602 -- Check whether the default has a class-wide type. After analysis the
11603 -- default has the type of the formal, so we must also check explicitly
11604 -- for an access attribute.
11605
11606 ----------------------------------
11607 -- Designates_From_Limited_With --
11608 ----------------------------------
11609
11610 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11611 Desig : Entity_Id := Typ;
11612
11613 begin
11614 if Is_Access_Type (Desig) then
11615 Desig := Directly_Designated_Type (Desig);
11616 end if;
11617
11618 if Is_Class_Wide_Type (Desig) then
11619 Desig := Root_Type (Desig);
11620 end if;
11621
11622 return
11623 Ekind (Desig) = E_Incomplete_Type
11624 and then From_Limited_With (Desig);
11625 end Designates_From_Limited_With;
11626
11627 ---------------------------
11628 -- Is_Class_Wide_Default --
11629 ---------------------------
11630
11631 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11632 begin
11633 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11634 or else (Nkind (D) = N_Attribute_Reference
11635 and then Attribute_Name (D) = Name_Access
11636 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11637 end Is_Class_Wide_Default;
11638
11639 -- Local variables
11640
11641 Context : constant Node_Id := Parent (Parent (T));
11642 Default : Node_Id;
11643 Formal : Entity_Id;
11644 Formal_Type : Entity_Id;
11645 Param_Spec : Node_Id;
11646 Ptype : Entity_Id;
11647
11648 Num_Out_Params : Nat := 0;
11649 First_Out_Param : Entity_Id := Empty;
11650 -- Used for setting Is_Only_Out_Parameter
11651
11652 -- Start of processing for Process_Formals
11653
11654 begin
11655 -- In order to prevent premature use of the formals in the same formal
11656 -- part, the Ekind is left undefined until all default expressions are
11657 -- analyzed. The Ekind is established in a separate loop at the end.
11658
11659 Param_Spec := First (T);
11660 while Present (Param_Spec) loop
11661 Formal := Defining_Identifier (Param_Spec);
11662 Set_Never_Set_In_Source (Formal, True);
11663 Enter_Name (Formal);
11664
11665 -- Case of ordinary parameters
11666
11667 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11668 Find_Type (Parameter_Type (Param_Spec));
11669 Ptype := Parameter_Type (Param_Spec);
11670
11671 if Ptype = Error then
11672 goto Continue;
11673 end if;
11674
11675 -- Protect against malformed parameter types
11676
11677 if Nkind (Ptype) not in N_Has_Entity then
11678 Formal_Type := Any_Type;
11679 else
11680 Formal_Type := Entity (Ptype);
11681 end if;
11682
11683 if Is_Incomplete_Type (Formal_Type)
11684 or else
11685 (Is_Class_Wide_Type (Formal_Type)
11686 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11687 then
11688 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11689 -- primitive operations, as long as their completion is
11690 -- in the same declarative part. If in the private part
11691 -- this means that the type cannot be a Taft-amendment type.
11692 -- Check is done on package exit. For access to subprograms,
11693 -- the use is legal for Taft-amendment types.
11694
11695 -- Ada 2012: tagged incomplete types are allowed as generic
11696 -- formal types. They do not introduce dependencies and the
11697 -- corresponding generic subprogram does not have a delayed
11698 -- freeze, because it does not need a freeze node. However,
11699 -- it is still the case that untagged incomplete types cannot
11700 -- be Taft-amendment types and must be completed in private
11701 -- part, so the subprogram must appear in the list of private
11702 -- dependents of the type.
11703
11704 if Is_Tagged_Type (Formal_Type)
11705 or else (Ada_Version >= Ada_2012
11706 and then not From_Limited_With (Formal_Type)
11707 and then not Is_Generic_Type (Formal_Type))
11708 then
11709 if Ekind (Scope (Current_Scope)) = E_Package
11710 and then not Is_Generic_Type (Formal_Type)
11711 and then not Is_Class_Wide_Type (Formal_Type)
11712 then
11713 if not Nkind_In
11714 (Parent (T), N_Access_Function_Definition,
11715 N_Access_Procedure_Definition)
11716 then
11717 Append_Elmt (Current_Scope,
11718 Private_Dependents (Base_Type (Formal_Type)));
11719
11720 -- Freezing is delayed to ensure that Register_Prim
11721 -- will get called for this operation, which is needed
11722 -- in cases where static dispatch tables aren't built.
11723 -- (Note that the same is done for controlling access
11724 -- parameter cases in function Access_Definition.)
11725
11726 if not Is_Thunk (Current_Scope) then
11727 Set_Has_Delayed_Freeze (Current_Scope);
11728 end if;
11729 end if;
11730 end if;
11731
11732 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11733 N_Access_Procedure_Definition)
11734 then
11735 -- AI05-0151: Tagged incomplete types are allowed in all
11736 -- formal parts. Untagged incomplete types are not allowed
11737 -- in bodies. Limited views of either kind are not allowed
11738 -- if there is no place at which the non-limited view can
11739 -- become available.
11740
11741 -- Incomplete formal untagged types are not allowed in
11742 -- subprogram bodies (but are legal in their declarations).
11743 -- This excludes bodies created for null procedures, which
11744 -- are basic declarations.
11745
11746 if Is_Generic_Type (Formal_Type)
11747 and then not Is_Tagged_Type (Formal_Type)
11748 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11749 then
11750 Error_Msg_N
11751 ("invalid use of formal incomplete type", Param_Spec);
11752
11753 elsif Ada_Version >= Ada_2012 then
11754 if Is_Tagged_Type (Formal_Type)
11755 and then (not From_Limited_With (Formal_Type)
11756 or else not In_Package_Body)
11757 then
11758 null;
11759
11760 elsif Nkind_In (Context, N_Accept_Statement,
11761 N_Accept_Alternative,
11762 N_Entry_Body)
11763 or else (Nkind (Context) = N_Subprogram_Body
11764 and then Comes_From_Source (Context))
11765 then
11766 Error_Msg_NE
11767 ("invalid use of untagged incomplete type &",
11768 Ptype, Formal_Type);
11769 end if;
11770
11771 else
11772 Error_Msg_NE
11773 ("invalid use of incomplete type&",
11774 Param_Spec, Formal_Type);
11775
11776 -- Further checks on the legality of incomplete types
11777 -- in formal parts are delayed until the freeze point
11778 -- of the enclosing subprogram or access to subprogram.
11779 end if;
11780 end if;
11781
11782 elsif Ekind (Formal_Type) = E_Void then
11783 Error_Msg_NE
11784 ("premature use of&",
11785 Parameter_Type (Param_Spec), Formal_Type);
11786 end if;
11787
11788 -- Ada 2012 (AI-142): Handle aliased parameters
11789
11790 if Ada_Version >= Ada_2012
11791 and then Aliased_Present (Param_Spec)
11792 then
11793 Set_Is_Aliased (Formal);
11794
11795 -- AI12-001: All aliased objects are considered to be specified
11796 -- as independently addressable (RM C.6(8.1/4)).
11797
11798 Set_Is_Independent (Formal);
11799 end if;
11800
11801 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11802 -- declaration corresponding to the null-excluding type of the
11803 -- formal in the enclosing scope. Finally, replace the parameter
11804 -- type of the formal with the internal subtype.
11805
11806 if Ada_Version >= Ada_2005
11807 and then Null_Exclusion_Present (Param_Spec)
11808 then
11809 if not Is_Access_Type (Formal_Type) then
11810 Error_Msg_N
11811 ("`NOT NULL` allowed only for an access type", Param_Spec);
11812
11813 else
11814 if Can_Never_Be_Null (Formal_Type)
11815 and then Comes_From_Source (Related_Nod)
11816 then
11817 Error_Msg_NE
11818 ("`NOT NULL` not allowed (& already excludes null)",
11819 Param_Spec, Formal_Type);
11820 end if;
11821
11822 Formal_Type :=
11823 Create_Null_Excluding_Itype
11824 (T => Formal_Type,
11825 Related_Nod => Related_Nod,
11826 Scope_Id => Scope (Current_Scope));
11827
11828 -- If the designated type of the itype is an itype that is
11829 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11830 -- on the access subtype, to prevent order-of-elaboration
11831 -- issues in the backend.
11832
11833 -- Example:
11834 -- type T is access procedure;
11835 -- procedure Op (O : not null T);
11836
11837 if Is_Itype (Directly_Designated_Type (Formal_Type))
11838 and then
11839 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11840 then
11841 Set_Has_Delayed_Freeze (Formal_Type);
11842 end if;
11843 end if;
11844 end if;
11845
11846 -- An access formal type
11847
11848 else
11849 Formal_Type :=
11850 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11851
11852 -- No need to continue if we already notified errors
11853
11854 if not Present (Formal_Type) then
11855 return;
11856 end if;
11857
11858 -- Ada 2005 (AI-254)
11859
11860 declare
11861 AD : constant Node_Id :=
11862 Access_To_Subprogram_Definition
11863 (Parameter_Type (Param_Spec));
11864 begin
11865 if Present (AD) and then Protected_Present (AD) then
11866 Formal_Type :=
11867 Replace_Anonymous_Access_To_Protected_Subprogram
11868 (Param_Spec);
11869 end if;
11870 end;
11871 end if;
11872
11873 Set_Etype (Formal, Formal_Type);
11874
11875 -- Deal with default expression if present
11876
11877 Default := Expression (Param_Spec);
11878
11879 if Present (Default) then
11880 Check_SPARK_05_Restriction
11881 ("default expression is not allowed", Default);
11882
11883 if Out_Present (Param_Spec) then
11884 Error_Msg_N
11885 ("default initialization only allowed for IN parameters",
11886 Param_Spec);
11887 end if;
11888
11889 -- Do the special preanalysis of the expression (see section on
11890 -- "Handling of Default Expressions" in the spec of package Sem).
11891
11892 Preanalyze_Formal_Expression (Default, Formal_Type);
11893
11894 -- An access to constant cannot be the default for
11895 -- an access parameter that is an access to variable.
11896
11897 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11898 and then not Is_Access_Constant (Formal_Type)
11899 and then Is_Access_Type (Etype (Default))
11900 and then Is_Access_Constant (Etype (Default))
11901 then
11902 Error_Msg_N
11903 ("formal that is access to variable cannot be initialized "
11904 & "with an access-to-constant expression", Default);
11905 end if;
11906
11907 -- Check that the designated type of an access parameter's default
11908 -- is not a class-wide type unless the parameter's designated type
11909 -- is also class-wide.
11910
11911 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11912 and then not Designates_From_Limited_With (Formal_Type)
11913 and then Is_Class_Wide_Default (Default)
11914 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11915 then
11916 Error_Msg_N
11917 ("access to class-wide expression not allowed here", Default);
11918 end if;
11919
11920 -- Check incorrect use of dynamically tagged expressions
11921
11922 if Is_Tagged_Type (Formal_Type) then
11923 Check_Dynamically_Tagged_Expression
11924 (Expr => Default,
11925 Typ => Formal_Type,
11926 Related_Nod => Default);
11927 end if;
11928 end if;
11929
11930 -- Ada 2005 (AI-231): Static checks
11931
11932 if Ada_Version >= Ada_2005
11933 and then Is_Access_Type (Etype (Formal))
11934 and then Can_Never_Be_Null (Etype (Formal))
11935 then
11936 Null_Exclusion_Static_Checks (Param_Spec);
11937 end if;
11938
11939 -- The following checks are relevant only when SPARK_Mode is on as
11940 -- these are not standard Ada legality rules.
11941
11942 if SPARK_Mode = On then
11943 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11944
11945 -- A function cannot have a parameter of mode IN OUT or OUT
11946 -- (SPARK RM 6.1).
11947
11948 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11949 Error_Msg_N
11950 ("function cannot have parameter of mode `OUT` or "
11951 & "`IN OUT`", Formal);
11952 end if;
11953
11954 -- A procedure cannot have an effectively volatile formal
11955 -- parameter of mode IN because it behaves as a constant
11956 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11957
11958 elsif Ekind (Scope (Formal)) = E_Procedure
11959 and then Ekind (Formal) = E_In_Parameter
11960 and then Is_Effectively_Volatile (Formal)
11961 then
11962 Error_Msg_N
11963 ("formal parameter of mode `IN` cannot be volatile", Formal);
11964 end if;
11965 end if;
11966
11967 <<Continue>>
11968 Next (Param_Spec);
11969 end loop;
11970
11971 -- If this is the formal part of a function specification, analyze the
11972 -- subtype mark in the context where the formals are visible but not
11973 -- yet usable, and may hide outer homographs.
11974
11975 if Nkind (Related_Nod) = N_Function_Specification then
11976 Analyze_Return_Type (Related_Nod);
11977 end if;
11978
11979 -- Now set the kind (mode) of each formal
11980
11981 Param_Spec := First (T);
11982 while Present (Param_Spec) loop
11983 Formal := Defining_Identifier (Param_Spec);
11984 Set_Formal_Mode (Formal);
11985
11986 if Ekind (Formal) = E_In_Parameter then
11987 Set_Default_Value (Formal, Expression (Param_Spec));
11988
11989 if Present (Expression (Param_Spec)) then
11990 Default := Expression (Param_Spec);
11991
11992 if Is_Scalar_Type (Etype (Default)) then
11993 if Nkind (Parameter_Type (Param_Spec)) /=
11994 N_Access_Definition
11995 then
11996 Formal_Type := Entity (Parameter_Type (Param_Spec));
11997 else
11998 Formal_Type :=
11999 Access_Definition
12000 (Related_Nod, Parameter_Type (Param_Spec));
12001 end if;
12002
12003 Apply_Scalar_Range_Check (Default, Formal_Type);
12004 end if;
12005 end if;
12006
12007 elsif Ekind (Formal) = E_Out_Parameter then
12008 Num_Out_Params := Num_Out_Params + 1;
12009
12010 if Num_Out_Params = 1 then
12011 First_Out_Param := Formal;
12012 end if;
12013
12014 elsif Ekind (Formal) = E_In_Out_Parameter then
12015 Num_Out_Params := Num_Out_Params + 1;
12016 end if;
12017
12018 -- Skip remaining processing if formal type was in error
12019
12020 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
12021 goto Next_Parameter;
12022 end if;
12023
12024 -- Force call by reference if aliased
12025
12026 declare
12027 Conv : constant Convention_Id := Convention (Etype (Formal));
12028 begin
12029 if Is_Aliased (Formal) then
12030 Set_Mechanism (Formal, By_Reference);
12031
12032 -- Warn if user asked this to be passed by copy
12033
12034 if Conv = Convention_Ada_Pass_By_Copy then
12035 Error_Msg_N
12036 ("cannot pass aliased parameter & by copy??", Formal);
12037 end if;
12038
12039 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
12040
12041 elsif Conv = Convention_Ada_Pass_By_Copy then
12042 Set_Mechanism (Formal, By_Copy);
12043
12044 elsif Conv = Convention_Ada_Pass_By_Reference then
12045 Set_Mechanism (Formal, By_Reference);
12046 end if;
12047 end;
12048
12049 <<Next_Parameter>>
12050 Next (Param_Spec);
12051 end loop;
12052
12053 if Present (First_Out_Param) and then Num_Out_Params = 1 then
12054 Set_Is_Only_Out_Parameter (First_Out_Param);
12055 end if;
12056 end Process_Formals;
12057
12058 ----------------------------
12059 -- Reference_Body_Formals --
12060 ----------------------------
12061
12062 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
12063 Fs : Entity_Id;
12064 Fb : Entity_Id;
12065
12066 begin
12067 if Error_Posted (Spec) then
12068 return;
12069 end if;
12070
12071 -- Iterate over both lists. They may be of different lengths if the two
12072 -- specs are not conformant.
12073
12074 Fs := First_Formal (Spec);
12075 Fb := First_Formal (Bod);
12076 while Present (Fs) and then Present (Fb) loop
12077 Generate_Reference (Fs, Fb, 'b');
12078
12079 if Style_Check then
12080 Style.Check_Identifier (Fb, Fs);
12081 end if;
12082
12083 Set_Spec_Entity (Fb, Fs);
12084 Set_Referenced (Fs, False);
12085 Next_Formal (Fs);
12086 Next_Formal (Fb);
12087 end loop;
12088 end Reference_Body_Formals;
12089
12090 -------------------------
12091 -- Set_Actual_Subtypes --
12092 -------------------------
12093
12094 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
12095 Decl : Node_Id;
12096 Formal : Entity_Id;
12097 T : Entity_Id;
12098 First_Stmt : Node_Id := Empty;
12099 AS_Needed : Boolean;
12100
12101 begin
12102 -- If this is an empty initialization procedure, no need to create
12103 -- actual subtypes (small optimization).
12104
12105 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
12106 return;
12107
12108 -- Within a predicate function we do not want to generate local
12109 -- subtypes that may generate nested predicate functions.
12110
12111 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
12112 return;
12113 end if;
12114
12115 -- The subtype declarations may freeze the formals. The body generated
12116 -- for an expression function is not a freeze point, so do not emit
12117 -- these declarations (small loss of efficiency in rare cases).
12118
12119 if Nkind (N) = N_Subprogram_Body
12120 and then Was_Expression_Function (N)
12121 then
12122 return;
12123 end if;
12124
12125 Formal := First_Formal (Subp);
12126 while Present (Formal) loop
12127 T := Etype (Formal);
12128
12129 -- We never need an actual subtype for a constrained formal
12130
12131 if Is_Constrained (T) then
12132 AS_Needed := False;
12133
12134 -- If we have unknown discriminants, then we do not need an actual
12135 -- subtype, or more accurately we cannot figure it out. Note that
12136 -- all class-wide types have unknown discriminants.
12137
12138 elsif Has_Unknown_Discriminants (T) then
12139 AS_Needed := False;
12140
12141 -- At this stage we have an unconstrained type that may need an
12142 -- actual subtype. For sure the actual subtype is needed if we have
12143 -- an unconstrained array type. However, in an instance, the type
12144 -- may appear as a subtype of the full view, while the actual is
12145 -- in fact private (in which case no actual subtype is needed) so
12146 -- check the kind of the base type.
12147
12148 elsif Is_Array_Type (Base_Type (T)) then
12149 AS_Needed := True;
12150
12151 -- The only other case needing an actual subtype is an unconstrained
12152 -- record type which is an IN parameter (we cannot generate actual
12153 -- subtypes for the OUT or IN OUT case, since an assignment can
12154 -- change the discriminant values. However we exclude the case of
12155 -- initialization procedures, since discriminants are handled very
12156 -- specially in this context, see the section entitled "Handling of
12157 -- Discriminants" in Einfo.
12158
12159 -- We also exclude the case of Discrim_SO_Functions (functions used
12160 -- in front-end layout mode for size/offset values), since in such
12161 -- functions only discriminants are referenced, and not only are such
12162 -- subtypes not needed, but they cannot always be generated, because
12163 -- of order of elaboration issues.
12164
12165 elsif Is_Record_Type (T)
12166 and then Ekind (Formal) = E_In_Parameter
12167 and then Chars (Formal) /= Name_uInit
12168 and then not Is_Unchecked_Union (T)
12169 and then not Is_Discrim_SO_Function (Subp)
12170 then
12171 AS_Needed := True;
12172
12173 -- All other cases do not need an actual subtype
12174
12175 else
12176 AS_Needed := False;
12177 end if;
12178
12179 -- Generate actual subtypes for unconstrained arrays and
12180 -- unconstrained discriminated records.
12181
12182 if AS_Needed then
12183 if Nkind (N) = N_Accept_Statement then
12184
12185 -- If expansion is active, the formal is replaced by a local
12186 -- variable that renames the corresponding entry of the
12187 -- parameter block, and it is this local variable that may
12188 -- require an actual subtype.
12189
12190 if Expander_Active then
12191 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
12192 else
12193 Decl := Build_Actual_Subtype (T, Formal);
12194 end if;
12195
12196 if Present (Handled_Statement_Sequence (N)) then
12197 First_Stmt :=
12198 First (Statements (Handled_Statement_Sequence (N)));
12199 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
12200 Mark_Rewrite_Insertion (Decl);
12201 else
12202 -- If the accept statement has no body, there will be no
12203 -- reference to the actuals, so no need to compute actual
12204 -- subtypes.
12205
12206 return;
12207 end if;
12208
12209 else
12210 Decl := Build_Actual_Subtype (T, Formal);
12211 Prepend (Decl, Declarations (N));
12212 Mark_Rewrite_Insertion (Decl);
12213 end if;
12214
12215 -- The declaration uses the bounds of an existing object, and
12216 -- therefore needs no constraint checks.
12217
12218 Analyze (Decl, Suppress => All_Checks);
12219 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
12220
12221 -- We need to freeze manually the generated type when it is
12222 -- inserted anywhere else than in a declarative part.
12223
12224 if Present (First_Stmt) then
12225 Insert_List_Before_And_Analyze (First_Stmt,
12226 Freeze_Entity (Defining_Identifier (Decl), N));
12227
12228 -- Ditto if the type has a dynamic predicate, because the
12229 -- generated function will mention the actual subtype. The
12230 -- predicate may come from an explicit aspect of be inherited.
12231
12232 elsif Has_Predicates (T) then
12233 Insert_List_After_And_Analyze (Decl,
12234 Freeze_Entity (Defining_Identifier (Decl), N));
12235 end if;
12236
12237 if Nkind (N) = N_Accept_Statement
12238 and then Expander_Active
12239 then
12240 Set_Actual_Subtype (Renamed_Object (Formal),
12241 Defining_Identifier (Decl));
12242 else
12243 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
12244 end if;
12245 end if;
12246
12247 Next_Formal (Formal);
12248 end loop;
12249 end Set_Actual_Subtypes;
12250
12251 ---------------------
12252 -- Set_Formal_Mode --
12253 ---------------------
12254
12255 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
12256 Spec : constant Node_Id := Parent (Formal_Id);
12257 Id : constant Entity_Id := Scope (Formal_Id);
12258
12259 begin
12260 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
12261 -- since we ensure that corresponding actuals are always valid at the
12262 -- point of the call.
12263
12264 if Out_Present (Spec) then
12265 if Ekind_In (Id, E_Entry, E_Entry_Family)
12266 or else Is_Subprogram_Or_Generic_Subprogram (Id)
12267 then
12268 Set_Has_Out_Or_In_Out_Parameter (Id, True);
12269 end if;
12270
12271 if Ekind_In (Id, E_Function, E_Generic_Function) then
12272
12273 -- [IN] OUT parameters allowed for functions in Ada 2012
12274
12275 if Ada_Version >= Ada_2012 then
12276
12277 -- Even in Ada 2012 operators can only have IN parameters
12278
12279 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
12280 Error_Msg_N ("operators can only have IN parameters", Spec);
12281 end if;
12282
12283 if In_Present (Spec) then
12284 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12285 else
12286 Set_Ekind (Formal_Id, E_Out_Parameter);
12287 end if;
12288
12289 -- But not in earlier versions of Ada
12290
12291 else
12292 Error_Msg_N ("functions can only have IN parameters", Spec);
12293 Set_Ekind (Formal_Id, E_In_Parameter);
12294 end if;
12295
12296 elsif In_Present (Spec) then
12297 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12298
12299 else
12300 Set_Ekind (Formal_Id, E_Out_Parameter);
12301 Set_Never_Set_In_Source (Formal_Id, True);
12302 Set_Is_True_Constant (Formal_Id, False);
12303 Set_Current_Value (Formal_Id, Empty);
12304 end if;
12305
12306 else
12307 Set_Ekind (Formal_Id, E_In_Parameter);
12308 end if;
12309
12310 -- Set Is_Known_Non_Null for access parameters since the language
12311 -- guarantees that access parameters are always non-null. We also set
12312 -- Can_Never_Be_Null, since there is no way to change the value.
12313
12314 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
12315
12316 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
12317 -- null; In Ada 2005, only if then null_exclusion is explicit.
12318
12319 if Ada_Version < Ada_2005
12320 or else Can_Never_Be_Null (Etype (Formal_Id))
12321 then
12322 Set_Is_Known_Non_Null (Formal_Id);
12323 Set_Can_Never_Be_Null (Formal_Id);
12324 end if;
12325
12326 -- Ada 2005 (AI-231): Null-exclusion access subtype
12327
12328 elsif Is_Access_Type (Etype (Formal_Id))
12329 and then Can_Never_Be_Null (Etype (Formal_Id))
12330 then
12331 Set_Is_Known_Non_Null (Formal_Id);
12332
12333 -- We can also set Can_Never_Be_Null (thus preventing some junk
12334 -- access checks) for the case of an IN parameter, which cannot
12335 -- be changed, or for an IN OUT parameter, which can be changed but
12336 -- not to a null value. But for an OUT parameter, the initial value
12337 -- passed in can be null, so we can't set this flag in that case.
12338
12339 if Ekind (Formal_Id) /= E_Out_Parameter then
12340 Set_Can_Never_Be_Null (Formal_Id);
12341 end if;
12342 end if;
12343
12344 Set_Mechanism (Formal_Id, Default_Mechanism);
12345 Set_Formal_Validity (Formal_Id);
12346 end Set_Formal_Mode;
12347
12348 -------------------------
12349 -- Set_Formal_Validity --
12350 -------------------------
12351
12352 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12353 begin
12354 -- If no validity checking, then we cannot assume anything about the
12355 -- validity of parameters, since we do not know there is any checking
12356 -- of the validity on the call side.
12357
12358 if not Validity_Checks_On then
12359 return;
12360
12361 -- If validity checking for parameters is enabled, this means we are
12362 -- not supposed to make any assumptions about argument values.
12363
12364 elsif Validity_Check_Parameters then
12365 return;
12366
12367 -- If we are checking in parameters, we will assume that the caller is
12368 -- also checking parameters, so we can assume the parameter is valid.
12369
12370 elsif Ekind (Formal_Id) = E_In_Parameter
12371 and then Validity_Check_In_Params
12372 then
12373 Set_Is_Known_Valid (Formal_Id, True);
12374
12375 -- Similar treatment for IN OUT parameters
12376
12377 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12378 and then Validity_Check_In_Out_Params
12379 then
12380 Set_Is_Known_Valid (Formal_Id, True);
12381 end if;
12382 end Set_Formal_Validity;
12383
12384 ------------------------
12385 -- Subtype_Conformant --
12386 ------------------------
12387
12388 function Subtype_Conformant
12389 (New_Id : Entity_Id;
12390 Old_Id : Entity_Id;
12391 Skip_Controlling_Formals : Boolean := False) return Boolean
12392 is
12393 Result : Boolean;
12394 begin
12395 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12396 Skip_Controlling_Formals => Skip_Controlling_Formals);
12397 return Result;
12398 end Subtype_Conformant;
12399
12400 ---------------------
12401 -- Type_Conformant --
12402 ---------------------
12403
12404 function Type_Conformant
12405 (New_Id : Entity_Id;
12406 Old_Id : Entity_Id;
12407 Skip_Controlling_Formals : Boolean := False) return Boolean
12408 is
12409 Result : Boolean;
12410 begin
12411 May_Hide_Profile := False;
12412 Check_Conformance
12413 (New_Id, Old_Id, Type_Conformant, False, Result,
12414 Skip_Controlling_Formals => Skip_Controlling_Formals);
12415 return Result;
12416 end Type_Conformant;
12417
12418 -------------------------------
12419 -- Valid_Operator_Definition --
12420 -------------------------------
12421
12422 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12423 N : Integer := 0;
12424 F : Entity_Id;
12425 Id : constant Name_Id := Chars (Designator);
12426 N_OK : Boolean;
12427
12428 begin
12429 F := First_Formal (Designator);
12430 while Present (F) loop
12431 N := N + 1;
12432
12433 if Present (Default_Value (F)) then
12434 Error_Msg_N
12435 ("default values not allowed for operator parameters",
12436 Parent (F));
12437
12438 -- For function instantiations that are operators, we must check
12439 -- separately that the corresponding generic only has in-parameters.
12440 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12441 -- an error could not arise in earlier versions of the language.
12442
12443 elsif Ekind (F) /= E_In_Parameter then
12444 Error_Msg_N ("operators can only have IN parameters", F);
12445 end if;
12446
12447 Next_Formal (F);
12448 end loop;
12449
12450 -- Verify that user-defined operators have proper number of arguments
12451 -- First case of operators which can only be unary
12452
12453 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12454 N_OK := (N = 1);
12455
12456 -- Case of operators which can be unary or binary
12457
12458 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12459 N_OK := (N in 1 .. 2);
12460
12461 -- All other operators can only be binary
12462
12463 else
12464 N_OK := (N = 2);
12465 end if;
12466
12467 if not N_OK then
12468 Error_Msg_N
12469 ("incorrect number of arguments for operator", Designator);
12470 end if;
12471
12472 if Id = Name_Op_Ne
12473 and then Base_Type (Etype (Designator)) = Standard_Boolean
12474 and then not Is_Intrinsic_Subprogram (Designator)
12475 then
12476 Error_Msg_N
12477 ("explicit definition of inequality not allowed", Designator);
12478 end if;
12479 end Valid_Operator_Definition;
12480
12481 end Sem_Ch6;