[Ada] Fix awkward placement of freeze node for actual subtype
[gcc.git] / gcc / ada / sem_ch6.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch9; use Sem_Ch9;
64 with Sem_Ch10; use Sem_Ch10;
65 with Sem_Ch12; use Sem_Ch12;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elim; use Sem_Elim;
71 with Sem_Eval; use Sem_Eval;
72 with Sem_Mech; use Sem_Mech;
73 with Sem_Prag; use Sem_Prag;
74 with Sem_Res; use Sem_Res;
75 with Sem_Util; use Sem_Util;
76 with Sem_Type; use Sem_Type;
77 with Sem_Warn; use Sem_Warn;
78 with Sinput; use Sinput;
79 with Stand; use Stand;
80 with Sinfo; use Sinfo;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stringt; use Stringt;
84 with Style;
85 with Stylesw; use Stylesw;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
90
91 package body Sem_Ch6 is
92
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
101
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
105
106 procedure Analyze_Function_Return (N : Node_Id);
107 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
108 -- applies to a [generic] function.
109
110 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111 -- Analyze a generic subprogram body. N is the body to be analyzed, and
112 -- Gen_Id is the defining entity Id for the corresponding spec.
113
114 procedure Analyze_Null_Procedure
115 (N : Node_Id;
116 Is_Completion : out Boolean);
117 -- A null procedure can be a declaration or (Ada 2012) a completion
118
119 procedure Analyze_Return_Statement (N : Node_Id);
120 -- Common processing for simple and extended return statements
121
122 procedure Analyze_Return_Type (N : Node_Id);
123 -- Subsidiary to Process_Formals: analyze subtype mark in function
124 -- specification in a context where the formals are visible and hide
125 -- outer homographs.
126
127 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
129 -- that we can use RETURN but not skip the debug output at the end.
130
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
133
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
154
155 procedure Check_Limited_Return
156 (N : Node_Id;
157 Expr : Node_Id;
158 R_Type : Entity_Id);
159 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160 -- types. Used only for simple return statements. Expr is the expression
161 -- returned.
162
163 procedure Check_Subprogram_Order (N : Node_Id);
164 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
165 -- the alpha ordering rule for N if this ordering requirement applicable.
166
167 procedure Check_Returns
168 (HSS : Node_Id;
169 Mode : Character;
170 Err : out Boolean;
171 Proc : Entity_Id := Empty);
172 -- Called to check for missing return statements in a function body, or for
173 -- returns present in a procedure body which has No_Return set. HSS is the
174 -- handled statement sequence for the subprogram body. This procedure
175 -- checks all flow paths to make sure they either have return (Mode = 'F',
176 -- used for functions) or do not have a return (Mode = 'P', used for
177 -- No_Return procedures). The flag Err is set if there are any control
178 -- paths not explicitly terminated by a return in the function case, and is
179 -- True otherwise. Proc is the entity for the procedure case and is used
180 -- in posting the warning message.
181
182 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183 -- In Ada 2012, a primitive equality operator on an untagged record type
184 -- must appear before the type is frozen, and have the same visibility as
185 -- that of the type. This procedure checks that this rule is met, and
186 -- otherwise emits an error on the subprogram declaration and a warning
187 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190 -- is set, otherwise the call has no effect.
191
192 procedure Enter_Overloaded_Entity (S : Entity_Id);
193 -- This procedure makes S, a new overloaded entity, into the first visible
194 -- entity with that name.
195
196 function Is_Non_Overriding_Operation
197 (Prev_E : Entity_Id;
198 New_E : Entity_Id) return Boolean;
199 -- Enforce the rule given in 12.3(18): a private operation in an instance
200 -- overrides an inherited operation only if the corresponding operation
201 -- was overriding in the generic. This needs to be checked for primitive
202 -- operations of types derived (in the generic unit) from formal private
203 -- or formal derived types.
204
205 procedure Make_Inequality_Operator (S : Entity_Id);
206 -- Create the declaration for an inequality operator that is implicitly
207 -- created by a user-defined equality operator that yields a boolean.
208
209 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
210 -- Preanalysis of default expressions of subprogram formals. N is the
211 -- expression to be analyzed and T is the expected type.
212
213 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214 -- Formal_Id is an formal parameter entity. This procedure deals with
215 -- setting the proper validity status for this entity, which depends on
216 -- the kind of parameter and the validity checking mode.
217
218 ---------------------------------------------
219 -- Analyze_Abstract_Subprogram_Declaration --
220 ---------------------------------------------
221
222 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
223 Scop : constant Entity_Id := Current_Scope;
224 Subp_Id : constant Entity_Id :=
225 Analyze_Subprogram_Specification (Specification (N));
226
227 begin
228 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
229
230 Generate_Definition (Subp_Id);
231
232 -- Set the SPARK mode from the current context (may be overwritten later
233 -- with explicit pragma).
234
235 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
236 Set_SPARK_Pragma_Inherited (Subp_Id);
237
238 -- Preserve relevant elaboration-related attributes of the context which
239 -- are no longer available or very expensive to recompute once analysis,
240 -- resolution, and expansion are over.
241
242 Mark_Elaboration_Attributes
243 (N_Id => Subp_Id,
244 Checks => True,
245 Warnings => True);
246
247 Set_Is_Abstract_Subprogram (Subp_Id);
248 New_Overloaded_Entity (Subp_Id);
249 Check_Delayed_Subprogram (Subp_Id);
250
251 Set_Categorization_From_Scope (Subp_Id, Scop);
252
253 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
254 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
255
256 -- Issue a warning if the abstract subprogram is neither a dispatching
257 -- operation nor an operation that overrides an inherited subprogram or
258 -- predefined operator, since this most likely indicates a mistake.
259
260 elsif Warn_On_Redundant_Constructs
261 and then not Is_Dispatching_Operation (Subp_Id)
262 and then not Present (Overridden_Operation (Subp_Id))
263 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
264 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
265 then
266 Error_Msg_N
267 ("abstract subprogram is not dispatching or overriding?r?", N);
268 end if;
269
270 Generate_Reference_To_Formals (Subp_Id);
271 Check_Eliminated (Subp_Id);
272
273 if Has_Aspects (N) then
274 Analyze_Aspect_Specifications (N, Subp_Id);
275 end if;
276 end Analyze_Abstract_Subprogram_Declaration;
277
278 ---------------------------------
279 -- Analyze_Expression_Function --
280 ---------------------------------
281
282 procedure Analyze_Expression_Function (N : Node_Id) is
283 Expr : constant Node_Id := Expression (N);
284 Loc : constant Source_Ptr := Sloc (N);
285 LocX : constant Source_Ptr := Sloc (Expr);
286 Spec : constant Node_Id := Specification (N);
287
288 -- Local variables
289
290 Asp : Node_Id;
291 New_Body : Node_Id;
292 New_Spec : Node_Id;
293 Orig_N : Node_Id;
294 Ret : Node_Id;
295
296 Def_Id : Entity_Id := Empty;
297 Prev : Entity_Id;
298 -- If the expression is a completion, Prev is the entity whose
299 -- declaration is completed. Def_Id is needed to analyze the spec.
300
301 -- Start of processing for Analyze_Expression_Function
302
303 begin
304 -- This is one of the occasions on which we transform the tree during
305 -- semantic analysis. If this is a completion, transform the expression
306 -- function into an equivalent subprogram body, and analyze it.
307
308 -- Expression functions are inlined unconditionally. The back-end will
309 -- determine whether this is possible.
310
311 Inline_Processing_Required := True;
312
313 -- Create a specification for the generated body. This must be done
314 -- prior to the analysis of the initial declaration.
315
316 New_Spec := Copy_Subprogram_Spec (Spec);
317 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
318
319 -- If there are previous overloadable entities with the same name,
320 -- check whether any of them is completed by the expression function.
321 -- In a generic context a formal subprogram has no completion.
322
323 if Present (Prev)
324 and then Is_Overloadable (Prev)
325 and then not Is_Formal_Subprogram (Prev)
326 then
327 Def_Id := Analyze_Subprogram_Specification (Spec);
328 Prev := Find_Corresponding_Spec (N);
329
330 -- The previous entity may be an expression function as well, in
331 -- which case the redeclaration is illegal.
332
333 if Present (Prev)
334 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
335 N_Expression_Function
336 then
337 Error_Msg_Sloc := Sloc (Prev);
338 Error_Msg_N ("& conflicts with declaration#", Def_Id);
339 return;
340 end if;
341 end if;
342
343 Ret := Make_Simple_Return_Statement (LocX, Expr);
344
345 New_Body :=
346 Make_Subprogram_Body (Loc,
347 Specification => New_Spec,
348 Declarations => Empty_List,
349 Handled_Statement_Sequence =>
350 Make_Handled_Sequence_Of_Statements (LocX,
351 Statements => New_List (Ret)));
352 Set_Was_Expression_Function (New_Body);
353
354 -- If the expression completes a generic subprogram, we must create a
355 -- separate node for the body, because at instantiation the original
356 -- node of the generic copy must be a generic subprogram body, and
357 -- cannot be a expression function. Otherwise we just rewrite the
358 -- expression with the non-generic body.
359
360 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
361 Insert_After (N, New_Body);
362
363 -- Propagate any aspects or pragmas that apply to the expression
364 -- function to the proper body when the expression function acts
365 -- as a completion.
366
367 if Has_Aspects (N) then
368 Move_Aspects (N, To => New_Body);
369 end if;
370
371 Relocate_Pragmas_To_Body (New_Body);
372
373 Rewrite (N, Make_Null_Statement (Loc));
374 Set_Has_Completion (Prev, False);
375 Analyze (N);
376 Analyze (New_Body);
377 Set_Is_Inlined (Prev);
378
379 -- If the expression function is a completion, the previous declaration
380 -- must come from source. We know already that it appears in the current
381 -- scope. The entity itself may be internally created if within a body
382 -- to be inlined.
383
384 elsif Present (Prev)
385 and then Is_Overloadable (Prev)
386 and then not Is_Formal_Subprogram (Prev)
387 and then Comes_From_Source (Parent (Prev))
388 then
389 Set_Has_Completion (Prev, False);
390 Set_Is_Inlined (Prev);
391
392 -- AI12-0103: Expression functions that are a completion freeze their
393 -- expression but don't freeze anything else (unlike regular bodies).
394
395 -- Note that we cannot defer this freezing to the analysis of the
396 -- expression itself, because a freeze node might appear in a nested
397 -- scope, leading to an elaboration order issue in gigi.
398 -- As elsewhere, we do not emit freeze nodes within a generic unit.
399
400 if not Inside_A_Generic then
401 Freeze_Expr_Types
402 (Def_Id => Def_Id,
403 Typ => Etype (Def_Id),
404 Expr => Expr,
405 N => N);
406 end if;
407
408 -- For navigation purposes, indicate that the function is a body
409
410 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
411 Rewrite (N, New_Body);
412
413 -- Remove any existing aspects from the original node because the act
414 -- of rewriting causes the list to be shared between the two nodes.
415
416 Orig_N := Original_Node (N);
417 Remove_Aspects (Orig_N);
418
419 -- Propagate any pragmas that apply to expression function to the
420 -- proper body when the expression function acts as a completion.
421 -- Aspects are automatically transfered because of node rewriting.
422
423 Relocate_Pragmas_To_Body (N);
424 Analyze (N);
425
426 -- Once the aspects of the generated body have been analyzed, create
427 -- a copy for ASIS purposes and associate it with the original node.
428
429 if Has_Aspects (N) then
430 Set_Aspect_Specifications (Orig_N,
431 New_Copy_List_Tree (Aspect_Specifications (N)));
432 end if;
433
434 -- Prev is the previous entity with the same name, but it is can
435 -- be an unrelated spec that is not completed by the expression
436 -- function. In that case the relevant entity is the one in the body.
437 -- Not clear that the backend can inline it in this case ???
438
439 if Has_Completion (Prev) then
440
441 -- The formals of the expression function are body formals,
442 -- and do not appear in the ali file, which will only contain
443 -- references to the formals of the original subprogram spec.
444
445 declare
446 F1 : Entity_Id;
447 F2 : Entity_Id;
448
449 begin
450 F1 := First_Formal (Def_Id);
451 F2 := First_Formal (Prev);
452
453 while Present (F1) loop
454 Set_Spec_Entity (F1, F2);
455 Next_Formal (F1);
456 Next_Formal (F2);
457 end loop;
458 end;
459
460 else
461 Set_Is_Inlined (Defining_Entity (New_Body));
462 end if;
463
464 -- If this is not a completion, create both a declaration and a body, so
465 -- that the expression can be inlined whenever possible.
466
467 else
468 -- An expression function that is not a completion is not a
469 -- subprogram declaration, and thus cannot appear in a protected
470 -- definition.
471
472 if Nkind (Parent (N)) = N_Protected_Definition then
473 Error_Msg_N
474 ("an expression function is not a legal protected operation", N);
475 end if;
476
477 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
478
479 -- Remove any existing aspects from the original node because the act
480 -- of rewriting causes the list to be shared between the two nodes.
481
482 Orig_N := Original_Node (N);
483 Remove_Aspects (Orig_N);
484
485 Analyze (N);
486
487 -- Once the aspects of the generated spec have been analyzed, create
488 -- a copy for ASIS purposes and associate it with the original node.
489
490 if Has_Aspects (N) then
491 Set_Aspect_Specifications (Orig_N,
492 New_Copy_List_Tree (Aspect_Specifications (N)));
493 end if;
494
495 -- If aspect SPARK_Mode was specified on the body, it needs to be
496 -- repeated both on the generated spec and the body.
497
498 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
499
500 if Present (Asp) then
501 Asp := New_Copy_Tree (Asp);
502 Set_Analyzed (Asp, False);
503 Set_Aspect_Specifications (New_Body, New_List (Asp));
504 end if;
505
506 Def_Id := Defining_Entity (N);
507 Set_Is_Inlined (Def_Id);
508
509 -- Establish the linkages between the spec and the body. These are
510 -- used when the expression function acts as the prefix of attribute
511 -- 'Access in order to freeze the original expression which has been
512 -- moved to the generated body.
513
514 Set_Corresponding_Body (N, Defining_Entity (New_Body));
515 Set_Corresponding_Spec (New_Body, Def_Id);
516
517 -- Within a generic preanalyze the original expression for name
518 -- capture. The body is also generated but plays no role in
519 -- this because it is not part of the original source.
520
521 if Inside_A_Generic then
522 Set_Has_Completion (Def_Id);
523 Push_Scope (Def_Id);
524 Install_Formals (Def_Id);
525 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
526 End_Scope;
527 end if;
528
529 -- To prevent premature freeze action, insert the new body at the end
530 -- of the current declarations, or at the end of the package spec.
531 -- However, resolve usage names now, to prevent spurious visibility
532 -- on later entities. Note that the function can now be called in
533 -- the current declarative part, which will appear to be prior to
534 -- the presence of the body in the code. There are nevertheless no
535 -- order of elaboration issues because all name resolution has taken
536 -- place at the point of declaration.
537
538 declare
539 Decls : List_Id := List_Containing (N);
540 Expr : constant Node_Id := Expression (Ret);
541 Par : constant Node_Id := Parent (Decls);
542 Typ : constant Entity_Id := Etype (Def_Id);
543
544 begin
545 -- If this is a wrapper created for in an instance for a formal
546 -- subprogram, insert body after declaration, to be analyzed when
547 -- the enclosing instance is analyzed.
548
549 if GNATprove_Mode
550 and then Is_Generic_Actual_Subprogram (Def_Id)
551 then
552 Insert_After (N, New_Body);
553
554 else
555 if Nkind (Par) = N_Package_Specification
556 and then Decls = Visible_Declarations (Par)
557 and then Present (Private_Declarations (Par))
558 and then not Is_Empty_List (Private_Declarations (Par))
559 then
560 Decls := Private_Declarations (Par);
561 end if;
562
563 Insert_After (Last (Decls), New_Body);
564
565 -- Preanalyze the expression if not already done above
566
567 if not Inside_A_Generic then
568 Push_Scope (Def_Id);
569 Install_Formals (Def_Id);
570 Preanalyze_Formal_Expression (Expr, Typ);
571 Check_Limited_Return (Original_Node (N), Expr, Typ);
572 End_Scope;
573 end if;
574 end if;
575 end;
576 end if;
577
578 -- Check incorrect use of dynamically tagged expression. This doesn't
579 -- fall out automatically when analyzing the generated function body,
580 -- because Check_Dynamically_Tagged_Expression deliberately ignores
581 -- nodes that don't come from source.
582
583 if Present (Def_Id)
584 and then Nkind (Def_Id) in N_Has_Etype
585 and then Is_Tagged_Type (Etype (Def_Id))
586 then
587 Check_Dynamically_Tagged_Expression
588 (Expr => Expr,
589 Typ => Etype (Def_Id),
590 Related_Nod => Original_Node (N));
591 end if;
592
593 -- We must enforce checks for unreferenced formals in our newly
594 -- generated function, so we propagate the referenced flag from the
595 -- original spec to the new spec as well as setting Comes_From_Source.
596
597 if Present (Parameter_Specifications (New_Spec)) then
598 declare
599 Form_New_Def : Entity_Id;
600 Form_New_Spec : Entity_Id;
601 Form_Old_Def : Entity_Id;
602 Form_Old_Spec : Entity_Id;
603
604 begin
605 Form_New_Spec := First (Parameter_Specifications (New_Spec));
606 Form_Old_Spec := First (Parameter_Specifications (Spec));
607
608 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
609 Form_New_Def := Defining_Identifier (Form_New_Spec);
610 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
611
612 Set_Comes_From_Source (Form_New_Def, True);
613
614 -- Because of the usefulness of unreferenced controlling
615 -- formals we exempt them from unreferenced warnings by marking
616 -- them as always referenced.
617
618 Set_Referenced (Form_Old_Def,
619 (Is_Formal (Form_Old_Def)
620 and then Is_Controlling_Formal (Form_Old_Def))
621 or else Referenced (Form_Old_Def));
622
623 Next (Form_New_Spec);
624 Next (Form_Old_Spec);
625 end loop;
626 end;
627 end if;
628 end Analyze_Expression_Function;
629
630 ----------------------------------------
631 -- Analyze_Extended_Return_Statement --
632 ----------------------------------------
633
634 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
635 begin
636 Check_Compiler_Unit ("extended return statement", N);
637 Analyze_Return_Statement (N);
638 end Analyze_Extended_Return_Statement;
639
640 ----------------------------
641 -- Analyze_Function_Call --
642 ----------------------------
643
644 procedure Analyze_Function_Call (N : Node_Id) is
645 Actuals : constant List_Id := Parameter_Associations (N);
646 Func_Nam : constant Node_Id := Name (N);
647 Actual : Node_Id;
648
649 begin
650 Analyze (Func_Nam);
651
652 -- A call of the form A.B (X) may be an Ada 2005 call, which is
653 -- rewritten as B (A, X). If the rewriting is successful, the call
654 -- has been analyzed and we just return.
655
656 if Nkind (Func_Nam) = N_Selected_Component
657 and then Name (N) /= Func_Nam
658 and then Is_Rewrite_Substitution (N)
659 and then Present (Etype (N))
660 then
661 return;
662 end if;
663
664 -- If error analyzing name, then set Any_Type as result type and return
665
666 if Etype (Func_Nam) = Any_Type then
667 Set_Etype (N, Any_Type);
668 return;
669 end if;
670
671 -- Otherwise analyze the parameters
672
673 if Present (Actuals) then
674 Actual := First (Actuals);
675 while Present (Actual) loop
676 Analyze (Actual);
677 Check_Parameterless_Call (Actual);
678 Next (Actual);
679 end loop;
680 end if;
681
682 Analyze_Call (N);
683 end Analyze_Function_Call;
684
685 -----------------------------
686 -- Analyze_Function_Return --
687 -----------------------------
688
689 procedure Analyze_Function_Return (N : Node_Id) is
690 Loc : constant Source_Ptr := Sloc (N);
691 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
692 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
693
694 R_Type : constant Entity_Id := Etype (Scope_Id);
695 -- Function result subtype
696
697 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
698 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
699 -- aggregate in a return statement.
700
701 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
702 -- Check that the return_subtype_indication properly matches the result
703 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
704
705 -----------------------------------
706 -- Check_Aggregate_Accessibility --
707 -----------------------------------
708
709 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
710 Typ : constant Entity_Id := Etype (Aggr);
711 Assoc : Node_Id;
712 Discr : Entity_Id;
713 Expr : Node_Id;
714 Obj : Node_Id;
715
716 begin
717 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
718 Discr := First_Discriminant (Typ);
719 Assoc := First (Component_Associations (Aggr));
720 while Present (Discr) loop
721 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
722 Expr := Expression (Assoc);
723
724 if Nkind (Expr) = N_Attribute_Reference
725 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
726 then
727 Obj := Prefix (Expr);
728 while Nkind_In (Obj, N_Indexed_Component,
729 N_Selected_Component)
730 loop
731 Obj := Prefix (Obj);
732 end loop;
733
734 -- Do not check aliased formals or function calls. A
735 -- run-time check may still be needed ???
736
737 if Is_Entity_Name (Obj)
738 and then Comes_From_Source (Obj)
739 then
740 if Is_Formal (Entity (Obj))
741 and then Is_Aliased (Entity (Obj))
742 then
743 null;
744
745 elsif Object_Access_Level (Obj) >
746 Scope_Depth (Scope (Scope_Id))
747 then
748 Error_Msg_N
749 ("access discriminant in return aggregate would "
750 & "be a dangling reference", Obj);
751 end if;
752 end if;
753 end if;
754 end if;
755
756 Next_Discriminant (Discr);
757 end loop;
758 end if;
759 end Check_Aggregate_Accessibility;
760
761 -------------------------------------
762 -- Check_Return_Subtype_Indication --
763 -------------------------------------
764
765 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
766 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
767
768 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
769 -- Subtype given in the extended return statement (must match R_Type)
770
771 Subtype_Ind : constant Node_Id :=
772 Object_Definition (Original_Node (Obj_Decl));
773
774 procedure Error_No_Match (N : Node_Id);
775 -- Output error messages for case where types do not statically
776 -- match. N is the location for the messages.
777
778 --------------------
779 -- Error_No_Match --
780 --------------------
781
782 procedure Error_No_Match (N : Node_Id) is
783 begin
784 Error_Msg_N
785 ("subtype must statically match function result subtype", N);
786
787 if not Predicates_Match (R_Stm_Type, R_Type) then
788 Error_Msg_Node_2 := R_Type;
789 Error_Msg_NE
790 ("\predicate of& does not match predicate of&",
791 N, R_Stm_Type);
792 end if;
793 end Error_No_Match;
794
795 -- Start of processing for Check_Return_Subtype_Indication
796
797 begin
798 -- First, avoid cascaded errors
799
800 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
801 return;
802 end if;
803
804 -- "return access T" case; check that the return statement also has
805 -- "access T", and that the subtypes statically match:
806 -- if this is an access to subprogram the signatures must match.
807
808 if Is_Anonymous_Access_Type (R_Type) then
809 if Is_Anonymous_Access_Type (R_Stm_Type) then
810 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
811 then
812 if Base_Type (Designated_Type (R_Stm_Type)) /=
813 Base_Type (Designated_Type (R_Type))
814 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
815 then
816 Error_No_Match (Subtype_Mark (Subtype_Ind));
817 end if;
818
819 else
820 -- For two anonymous access to subprogram types, the types
821 -- themselves must be type conformant.
822
823 if not Conforming_Types
824 (R_Stm_Type, R_Type, Fully_Conformant)
825 then
826 Error_No_Match (Subtype_Ind);
827 end if;
828 end if;
829
830 else
831 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
832 end if;
833
834 -- If the return object is of an anonymous access type, then report
835 -- an error if the function's result type is not also anonymous.
836
837 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
838 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
839 Error_Msg_N
840 ("anonymous access not allowed for function with named access "
841 & "result", Subtype_Ind);
842
843 -- Subtype indication case: check that the return object's type is
844 -- covered by the result type, and that the subtypes statically match
845 -- when the result subtype is constrained. Also handle record types
846 -- with unknown discriminants for which we have built the underlying
847 -- record view. Coverage is needed to allow specific-type return
848 -- objects when the result type is class-wide (see AI05-32).
849
850 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
851 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
852 and then
853 Covers
854 (Base_Type (R_Type),
855 Underlying_Record_View (Base_Type (R_Stm_Type))))
856 then
857 -- A null exclusion may be present on the return type, on the
858 -- function specification, on the object declaration or on the
859 -- subtype itself.
860
861 if Is_Access_Type (R_Type)
862 and then
863 (Can_Never_Be_Null (R_Type)
864 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
865 Can_Never_Be_Null (R_Stm_Type)
866 then
867 Error_No_Match (Subtype_Ind);
868 end if;
869
870 -- AI05-103: for elementary types, subtypes must statically match
871
872 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
873 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
874 Error_No_Match (Subtype_Ind);
875 end if;
876 end if;
877
878 -- All remaining cases are illegal
879
880 -- Note: previous versions of this subprogram allowed the return
881 -- value to be the ancestor of the return type if the return type
882 -- was a null extension. This was plainly incorrect.
883
884 else
885 Error_Msg_N
886 ("wrong type for return_subtype_indication", Subtype_Ind);
887 end if;
888 end Check_Return_Subtype_Indication;
889
890 ---------------------
891 -- Local Variables --
892 ---------------------
893
894 Expr : Node_Id;
895 Obj_Decl : Node_Id := Empty;
896
897 -- Start of processing for Analyze_Function_Return
898
899 begin
900 Set_Return_Present (Scope_Id);
901
902 if Nkind (N) = N_Simple_Return_Statement then
903 Expr := Expression (N);
904
905 -- Guard against a malformed expression. The parser may have tried to
906 -- recover but the node is not analyzable.
907
908 if Nkind (Expr) = N_Error then
909 Set_Etype (Expr, Any_Type);
910 Expander_Mode_Save_And_Set (False);
911 return;
912
913 else
914 -- The resolution of a controlled [extension] aggregate associated
915 -- with a return statement creates a temporary which needs to be
916 -- finalized on function exit. Wrap the return statement inside a
917 -- block so that the finalization machinery can detect this case.
918 -- This early expansion is done only when the return statement is
919 -- not part of a handled sequence of statements.
920
921 if Nkind_In (Expr, N_Aggregate,
922 N_Extension_Aggregate)
923 and then Needs_Finalization (R_Type)
924 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
925 then
926 Rewrite (N,
927 Make_Block_Statement (Loc,
928 Handled_Statement_Sequence =>
929 Make_Handled_Sequence_Of_Statements (Loc,
930 Statements => New_List (Relocate_Node (N)))));
931
932 Analyze (N);
933 return;
934 end if;
935
936 Analyze (Expr);
937
938 -- Ada 2005 (AI-251): If the type of the returned object is
939 -- an access to an interface type then we add an implicit type
940 -- conversion to force the displacement of the "this" pointer to
941 -- reference the secondary dispatch table. We cannot delay the
942 -- generation of this implicit conversion until the expansion
943 -- because in this case the type resolution changes the decoration
944 -- of the expression node to match R_Type; by contrast, if the
945 -- returned object is a class-wide interface type then it is too
946 -- early to generate here the implicit conversion since the return
947 -- statement may be rewritten by the expander into an extended
948 -- return statement whose expansion takes care of adding the
949 -- implicit type conversion to displace the pointer to the object.
950
951 if Expander_Active
952 and then Serious_Errors_Detected = 0
953 and then Is_Access_Type (R_Type)
954 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
955 and then Is_Interface (Designated_Type (R_Type))
956 and then Is_Progenitor (Designated_Type (R_Type),
957 Designated_Type (Etype (Expr)))
958 then
959 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
960 Analyze (Expr);
961 end if;
962
963 Resolve (Expr, R_Type);
964 Check_Limited_Return (N, Expr, R_Type);
965
966 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
967 Check_Aggregate_Accessibility (Expr);
968 end if;
969 end if;
970
971 -- RETURN only allowed in SPARK as the last statement in function
972
973 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
974 and then
975 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
976 or else Present (Next (N)))
977 then
978 Check_SPARK_05_Restriction
979 ("RETURN should be the last statement in function", N);
980 end if;
981
982 else
983 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
984 Obj_Decl := Last (Return_Object_Declarations (N));
985
986 -- Analyze parts specific to extended_return_statement:
987
988 declare
989 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
990 HSS : constant Node_Id := Handled_Statement_Sequence (N);
991
992 begin
993 Expr := Expression (Obj_Decl);
994
995 -- Note: The check for OK_For_Limited_Init will happen in
996 -- Analyze_Object_Declaration; we treat it as a normal
997 -- object declaration.
998
999 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1000 Analyze (Obj_Decl);
1001
1002 Check_Return_Subtype_Indication (Obj_Decl);
1003
1004 if Present (HSS) then
1005 Analyze (HSS);
1006
1007 if Present (Exception_Handlers (HSS)) then
1008
1009 -- ???Has_Nested_Block_With_Handler needs to be set.
1010 -- Probably by creating an actual N_Block_Statement.
1011 -- Probably in Expand.
1012
1013 null;
1014 end if;
1015 end if;
1016
1017 -- Mark the return object as referenced, since the return is an
1018 -- implicit reference of the object.
1019
1020 Set_Referenced (Defining_Identifier (Obj_Decl));
1021
1022 Check_References (Stm_Entity);
1023
1024 -- Check RM 6.5 (5.9/3)
1025
1026 if Has_Aliased then
1027 if Ada_Version < Ada_2012 then
1028
1029 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1030 -- Can it really happen (extended return???)
1031
1032 Error_Msg_N
1033 ("aliased only allowed for limited return objects "
1034 & "in Ada 2012??", N);
1035
1036 elsif not Is_Limited_View (R_Type) then
1037 Error_Msg_N
1038 ("aliased only allowed for limited return objects", N);
1039 end if;
1040 end if;
1041 end;
1042 end if;
1043
1044 -- Case of Expr present
1045
1046 if Present (Expr) then
1047
1048 -- Defend against previous errors
1049
1050 if Nkind (Expr) = N_Empty
1051 or else No (Etype (Expr))
1052 then
1053 return;
1054 end if;
1055
1056 -- Apply constraint check. Note that this is done before the implicit
1057 -- conversion of the expression done for anonymous access types to
1058 -- ensure correct generation of the null-excluding check associated
1059 -- with null-excluding expressions found in return statements. We
1060 -- don't need a check if the subtype of the return object is the
1061 -- same as the result subtype of the function.
1062
1063 if Nkind (N) /= N_Extended_Return_Statement
1064 or else Nkind (Obj_Decl) /= N_Object_Declaration
1065 or else Nkind (Object_Definition (Obj_Decl)) not in N_Has_Entity
1066 or else Entity (Object_Definition (Obj_Decl)) /= R_Type
1067 then
1068 Apply_Constraint_Check (Expr, R_Type);
1069 end if;
1070
1071 -- The return value is converted to the return type of the function,
1072 -- which implies a predicate check if the return type is predicated.
1073 -- We do not apply the check to a case expression because it will
1074 -- be expanded into a series of return statements, each of which
1075 -- will receive a predicate check.
1076
1077 if Nkind (Expr) /= N_Case_Expression then
1078 Apply_Predicate_Check (Expr, R_Type);
1079 end if;
1080
1081 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1082 -- type, apply an implicit conversion of the expression to that type
1083 -- to force appropriate static and run-time accessibility checks.
1084
1085 if Ada_Version >= Ada_2005
1086 and then Ekind (R_Type) = E_Anonymous_Access_Type
1087 then
1088 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1089 Analyze_And_Resolve (Expr, R_Type);
1090
1091 -- If this is a local anonymous access to subprogram, the
1092 -- accessibility check can be applied statically. The return is
1093 -- illegal if the access type of the return expression is declared
1094 -- inside of the subprogram (except if it is the subtype indication
1095 -- of an extended return statement).
1096
1097 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1098 if not Comes_From_Source (Current_Scope)
1099 or else Ekind (Current_Scope) = E_Return_Statement
1100 then
1101 null;
1102
1103 elsif
1104 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1105 then
1106 Error_Msg_N ("cannot return local access to subprogram", N);
1107 end if;
1108
1109 -- The expression cannot be of a formal incomplete type
1110
1111 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1112 and then Is_Generic_Type (Etype (Expr))
1113 then
1114 Error_Msg_N
1115 ("cannot return expression of a formal incomplete type", N);
1116 end if;
1117
1118 -- If the result type is class-wide, then check that the return
1119 -- expression's type is not declared at a deeper level than the
1120 -- function (RM05-6.5(5.6/2)).
1121
1122 if Ada_Version >= Ada_2005
1123 and then Is_Class_Wide_Type (R_Type)
1124 then
1125 if Type_Access_Level (Etype (Expr)) >
1126 Subprogram_Access_Level (Scope_Id)
1127 then
1128 Error_Msg_N
1129 ("level of return expression type is deeper than "
1130 & "class-wide function!", Expr);
1131 end if;
1132 end if;
1133
1134 -- Check incorrect use of dynamically tagged expression
1135
1136 if Is_Tagged_Type (R_Type) then
1137 Check_Dynamically_Tagged_Expression
1138 (Expr => Expr,
1139 Typ => R_Type,
1140 Related_Nod => N);
1141 end if;
1142
1143 -- ??? A real run-time accessibility check is needed in cases
1144 -- involving dereferences of access parameters. For now we just
1145 -- check the static cases.
1146
1147 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1148 and then Is_Limited_View (Etype (Scope_Id))
1149 and then Object_Access_Level (Expr) >
1150 Subprogram_Access_Level (Scope_Id)
1151 then
1152 -- Suppress the message in a generic, where the rewriting
1153 -- is irrelevant.
1154
1155 if Inside_A_Generic then
1156 null;
1157
1158 else
1159 Rewrite (N,
1160 Make_Raise_Program_Error (Loc,
1161 Reason => PE_Accessibility_Check_Failed));
1162 Analyze (N);
1163
1164 Error_Msg_Warn := SPARK_Mode /= On;
1165 Error_Msg_N ("cannot return a local value by reference<<", N);
1166 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1167 end if;
1168 end if;
1169
1170 if Known_Null (Expr)
1171 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1172 and then Null_Exclusion_Present (Parent (Scope_Id))
1173 then
1174 Apply_Compile_Time_Constraint_Error
1175 (N => Expr,
1176 Msg => "(Ada 2005) null not allowed for "
1177 & "null-excluding return??",
1178 Reason => CE_Null_Not_Allowed);
1179 end if;
1180
1181 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1182 -- has no initializing expression.
1183
1184 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1185 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1186 Subprogram_Access_Level (Scope_Id)
1187 then
1188 Error_Msg_N
1189 ("level of return expression type is deeper than "
1190 & "class-wide function!", Obj_Decl);
1191 end if;
1192 end if;
1193 end Analyze_Function_Return;
1194
1195 -------------------------------------
1196 -- Analyze_Generic_Subprogram_Body --
1197 -------------------------------------
1198
1199 procedure Analyze_Generic_Subprogram_Body
1200 (N : Node_Id;
1201 Gen_Id : Entity_Id)
1202 is
1203 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1204 Kind : constant Entity_Kind := Ekind (Gen_Id);
1205 Body_Id : Entity_Id;
1206 New_N : Node_Id;
1207 Spec : Node_Id;
1208
1209 begin
1210 -- Copy body and disable expansion while analyzing the generic For a
1211 -- stub, do not copy the stub (which would load the proper body), this
1212 -- will be done when the proper body is analyzed.
1213
1214 if Nkind (N) /= N_Subprogram_Body_Stub then
1215 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1216 Rewrite (N, New_N);
1217
1218 -- Once the contents of the generic copy and the template are
1219 -- swapped, do the same for their respective aspect specifications.
1220
1221 Exchange_Aspects (N, New_N);
1222
1223 -- Collect all contract-related source pragmas found within the
1224 -- template and attach them to the contract of the subprogram body.
1225 -- This contract is used in the capture of global references within
1226 -- annotations.
1227
1228 Create_Generic_Contract (N);
1229
1230 Start_Generic;
1231 end if;
1232
1233 Spec := Specification (N);
1234
1235 -- Within the body of the generic, the subprogram is callable, and
1236 -- behaves like the corresponding non-generic unit.
1237
1238 Body_Id := Defining_Entity (Spec);
1239
1240 if Kind = E_Generic_Procedure
1241 and then Nkind (Spec) /= N_Procedure_Specification
1242 then
1243 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1244 return;
1245
1246 elsif Kind = E_Generic_Function
1247 and then Nkind (Spec) /= N_Function_Specification
1248 then
1249 Error_Msg_N ("invalid body for generic function ", Body_Id);
1250 return;
1251 end if;
1252
1253 Set_Corresponding_Body (Gen_Decl, Body_Id);
1254
1255 if Has_Completion (Gen_Id)
1256 and then Nkind (Parent (N)) /= N_Subunit
1257 then
1258 Error_Msg_N ("duplicate generic body", N);
1259 return;
1260 else
1261 Set_Has_Completion (Gen_Id);
1262 end if;
1263
1264 if Nkind (N) = N_Subprogram_Body_Stub then
1265 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1266 else
1267 Set_Corresponding_Spec (N, Gen_Id);
1268 end if;
1269
1270 if Nkind (Parent (N)) = N_Compilation_Unit then
1271 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1272 end if;
1273
1274 -- Make generic parameters immediately visible in the body. They are
1275 -- needed to process the formals declarations. Then make the formals
1276 -- visible in a separate step.
1277
1278 Push_Scope (Gen_Id);
1279
1280 declare
1281 E : Entity_Id;
1282 First_Ent : Entity_Id;
1283
1284 begin
1285 First_Ent := First_Entity (Gen_Id);
1286
1287 E := First_Ent;
1288 while Present (E) and then not Is_Formal (E) loop
1289 Install_Entity (E);
1290 Next_Entity (E);
1291 end loop;
1292
1293 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1294
1295 -- Now generic formals are visible, and the specification can be
1296 -- analyzed, for subsequent conformance check.
1297
1298 Body_Id := Analyze_Subprogram_Specification (Spec);
1299
1300 -- Make formal parameters visible
1301
1302 if Present (E) then
1303
1304 -- E is the first formal parameter, we loop through the formals
1305 -- installing them so that they will be visible.
1306
1307 Set_First_Entity (Gen_Id, E);
1308 while Present (E) loop
1309 Install_Entity (E);
1310 Next_Formal (E);
1311 end loop;
1312 end if;
1313
1314 -- Visible generic entity is callable within its own body
1315
1316 Set_Ekind (Gen_Id, Ekind (Body_Id));
1317 Set_Ekind (Body_Id, E_Subprogram_Body);
1318 Set_Convention (Body_Id, Convention (Gen_Id));
1319 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1320 Set_Scope (Body_Id, Scope (Gen_Id));
1321
1322 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1323
1324 if Nkind (N) = N_Subprogram_Body_Stub then
1325
1326 -- No body to analyze, so restore state of generic unit
1327
1328 Set_Ekind (Gen_Id, Kind);
1329 Set_Ekind (Body_Id, Kind);
1330
1331 if Present (First_Ent) then
1332 Set_First_Entity (Gen_Id, First_Ent);
1333 end if;
1334
1335 End_Scope;
1336 return;
1337 end if;
1338
1339 -- If this is a compilation unit, it must be made visible explicitly,
1340 -- because the compilation of the declaration, unlike other library
1341 -- unit declarations, does not. If it is not a unit, the following
1342 -- is redundant but harmless.
1343
1344 Set_Is_Immediately_Visible (Gen_Id);
1345 Reference_Body_Formals (Gen_Id, Body_Id);
1346
1347 if Is_Child_Unit (Gen_Id) then
1348 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1349 end if;
1350
1351 Set_Actual_Subtypes (N, Current_Scope);
1352
1353 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1354 Set_SPARK_Pragma_Inherited (Body_Id);
1355
1356 -- Analyze any aspect specifications that appear on the generic
1357 -- subprogram body.
1358
1359 if Has_Aspects (N) then
1360 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1361 end if;
1362
1363 Analyze_Declarations (Declarations (N));
1364 Check_Completion;
1365
1366 -- Process the contract of the subprogram body after all declarations
1367 -- have been analyzed. This ensures that any contract-related pragmas
1368 -- are available through the N_Contract node of the body.
1369
1370 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1371
1372 Analyze (Handled_Statement_Sequence (N));
1373 Save_Global_References (Original_Node (N));
1374
1375 -- Prior to exiting the scope, include generic formals again (if any
1376 -- are present) in the set of local entities.
1377
1378 if Present (First_Ent) then
1379 Set_First_Entity (Gen_Id, First_Ent);
1380 end if;
1381
1382 Check_References (Gen_Id);
1383 end;
1384
1385 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1386 Update_Use_Clause_Chain;
1387 Validate_Categorization_Dependency (N, Gen_Id);
1388 End_Scope;
1389 Check_Subprogram_Order (N);
1390
1391 -- Outside of its body, unit is generic again
1392
1393 Set_Ekind (Gen_Id, Kind);
1394 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1395
1396 if Style_Check then
1397 Style.Check_Identifier (Body_Id, Gen_Id);
1398 end if;
1399
1400 End_Generic;
1401 end Analyze_Generic_Subprogram_Body;
1402
1403 ----------------------------
1404 -- Analyze_Null_Procedure --
1405 ----------------------------
1406
1407 -- WARNING: This routine manages Ghost regions. Return statements must be
1408 -- replaced by gotos that jump to the end of the routine and restore the
1409 -- Ghost mode.
1410
1411 procedure Analyze_Null_Procedure
1412 (N : Node_Id;
1413 Is_Completion : out Boolean)
1414 is
1415 Loc : constant Source_Ptr := Sloc (N);
1416 Spec : constant Node_Id := Specification (N);
1417
1418 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1419 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1420 Saved_ISMP : constant Boolean :=
1421 Ignore_SPARK_Mode_Pragmas_In_Instance;
1422 -- Save the Ghost and SPARK mode-related data to restore on exit
1423
1424 Designator : Entity_Id;
1425 Form : Node_Id;
1426 Null_Body : Node_Id := Empty;
1427 Null_Stmt : Node_Id := Null_Statement (Spec);
1428 Prev : Entity_Id;
1429
1430 begin
1431 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1432
1433 -- A null procedure is Ghost when it is stand-alone and is subject to
1434 -- pragma Ghost, or when the corresponding spec is Ghost. Set the mode
1435 -- now, to ensure that any nodes generated during analysis and expansion
1436 -- are properly marked as Ghost.
1437
1438 if Present (Prev) then
1439 Mark_And_Set_Ghost_Body (N, Prev);
1440 end if;
1441
1442 -- Capture the profile of the null procedure before analysis, for
1443 -- expansion at the freeze point and at each point of call. The body is
1444 -- used if the procedure has preconditions, or if it is a completion. In
1445 -- the first case the body is analyzed at the freeze point, in the other
1446 -- it replaces the null procedure declaration.
1447
1448 -- For a null procedure that comes from source, a NULL statement is
1449 -- provided by the parser, which carries the source location of the
1450 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1451 -- from expansion, create one now.
1452
1453 if No (Null_Stmt) then
1454 Null_Stmt := Make_Null_Statement (Loc);
1455 end if;
1456
1457 Null_Body :=
1458 Make_Subprogram_Body (Loc,
1459 Specification => New_Copy_Tree (Spec),
1460 Declarations => New_List,
1461 Handled_Statement_Sequence =>
1462 Make_Handled_Sequence_Of_Statements (Loc,
1463 Statements => New_List (Null_Stmt)));
1464
1465 -- Create new entities for body and formals
1466
1467 Set_Defining_Unit_Name (Specification (Null_Body),
1468 Make_Defining_Identifier
1469 (Sloc (Defining_Entity (N)),
1470 Chars (Defining_Entity (N))));
1471
1472 Form := First (Parameter_Specifications (Specification (Null_Body)));
1473 while Present (Form) loop
1474 Set_Defining_Identifier (Form,
1475 Make_Defining_Identifier
1476 (Sloc (Defining_Identifier (Form)),
1477 Chars (Defining_Identifier (Form))));
1478 Next (Form);
1479 end loop;
1480
1481 -- Determine whether the null procedure may be a completion of a generic
1482 -- suprogram, in which case we use the new null body as the completion
1483 -- and set minimal semantic information on the original declaration,
1484 -- which is rewritten as a null statement.
1485
1486 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1487 Insert_Before (N, Null_Body);
1488 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1489
1490 Rewrite (N, Make_Null_Statement (Loc));
1491 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1492 Is_Completion := True;
1493
1494 goto Leave;
1495
1496 else
1497 -- Resolve the types of the formals now, because the freeze point may
1498 -- appear in a different context, e.g. an instantiation.
1499
1500 Form := First (Parameter_Specifications (Specification (Null_Body)));
1501 while Present (Form) loop
1502 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1503 Find_Type (Parameter_Type (Form));
1504
1505 elsif No (Access_To_Subprogram_Definition
1506 (Parameter_Type (Form)))
1507 then
1508 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1509
1510 -- The case of a null procedure with a formal that is an
1511 -- access-to-subprogram type, and that is used as an actual
1512 -- in an instantiation is left to the enthusiastic reader.
1513
1514 else
1515 null;
1516 end if;
1517
1518 Next (Form);
1519 end loop;
1520 end if;
1521
1522 -- If there are previous overloadable entities with the same name, check
1523 -- whether any of them is completed by the null procedure.
1524
1525 if Present (Prev) and then Is_Overloadable (Prev) then
1526 Designator := Analyze_Subprogram_Specification (Spec);
1527 Prev := Find_Corresponding_Spec (N);
1528 end if;
1529
1530 if No (Prev) or else not Comes_From_Source (Prev) then
1531 Designator := Analyze_Subprogram_Specification (Spec);
1532 Set_Has_Completion (Designator);
1533
1534 -- Signal to caller that this is a procedure declaration
1535
1536 Is_Completion := False;
1537
1538 -- Null procedures are always inlined, but generic formal subprograms
1539 -- which appear as such in the internal instance of formal packages,
1540 -- need no completion and are not marked Inline.
1541
1542 if Expander_Active
1543 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1544 then
1545 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1546 Set_Body_To_Inline (N, Null_Body);
1547 Set_Is_Inlined (Designator);
1548 end if;
1549
1550 else
1551 -- The null procedure is a completion. We unconditionally rewrite
1552 -- this as a null body (even if expansion is not active), because
1553 -- there are various error checks that are applied on this body
1554 -- when it is analyzed (e.g. correct aspect placement).
1555
1556 if Has_Completion (Prev) then
1557 Error_Msg_Sloc := Sloc (Prev);
1558 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1559 end if;
1560
1561 Check_Previous_Null_Procedure (N, Prev);
1562
1563 Is_Completion := True;
1564 Rewrite (N, Null_Body);
1565 Analyze (N);
1566 end if;
1567
1568 <<Leave>>
1569 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
1570 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1571 end Analyze_Null_Procedure;
1572
1573 -----------------------------
1574 -- Analyze_Operator_Symbol --
1575 -----------------------------
1576
1577 -- An operator symbol such as "+" or "and" may appear in context where the
1578 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1579 -- is just a string, as in (conjunction = "or"). In these cases the parser
1580 -- generates this node, and the semantics does the disambiguation. Other
1581 -- such case are actuals in an instantiation, the generic unit in an
1582 -- instantiation, and pragma arguments.
1583
1584 procedure Analyze_Operator_Symbol (N : Node_Id) is
1585 Par : constant Node_Id := Parent (N);
1586
1587 begin
1588 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1589 or else Nkind (Par) = N_Function_Instantiation
1590 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1591 or else (Nkind (Par) = N_Pragma_Argument_Association
1592 and then not Is_Pragma_String_Literal (Par))
1593 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1594 or else (Nkind (Par) = N_Attribute_Reference
1595 and then Attribute_Name (Par) /= Name_Value)
1596 then
1597 Find_Direct_Name (N);
1598
1599 else
1600 Change_Operator_Symbol_To_String_Literal (N);
1601 Analyze (N);
1602 end if;
1603 end Analyze_Operator_Symbol;
1604
1605 -----------------------------------
1606 -- Analyze_Parameter_Association --
1607 -----------------------------------
1608
1609 procedure Analyze_Parameter_Association (N : Node_Id) is
1610 begin
1611 Analyze (Explicit_Actual_Parameter (N));
1612 end Analyze_Parameter_Association;
1613
1614 ----------------------------
1615 -- Analyze_Procedure_Call --
1616 ----------------------------
1617
1618 -- WARNING: This routine manages Ghost regions. Return statements must be
1619 -- replaced by gotos that jump to the end of the routine and restore the
1620 -- Ghost mode.
1621
1622 procedure Analyze_Procedure_Call (N : Node_Id) is
1623 procedure Analyze_Call_And_Resolve;
1624 -- Do Analyze and Resolve calls for procedure call. At the end, check
1625 -- for illegal order dependence.
1626 -- ??? where is the check for illegal order dependencies?
1627
1628 ------------------------------
1629 -- Analyze_Call_And_Resolve --
1630 ------------------------------
1631
1632 procedure Analyze_Call_And_Resolve is
1633 begin
1634 if Nkind (N) = N_Procedure_Call_Statement then
1635 Analyze_Call (N);
1636 Resolve (N, Standard_Void_Type);
1637 else
1638 Analyze (N);
1639 end if;
1640 end Analyze_Call_And_Resolve;
1641
1642 -- Local variables
1643
1644 Actuals : constant List_Id := Parameter_Associations (N);
1645 Loc : constant Source_Ptr := Sloc (N);
1646 P : constant Node_Id := Name (N);
1647
1648 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1649 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1650 -- Save the Ghost-related attributes to restore on exit
1651
1652 Actual : Node_Id;
1653 New_N : Node_Id;
1654
1655 -- Start of processing for Analyze_Procedure_Call
1656
1657 begin
1658 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1659 -- a procedure call or an entry call. The prefix may denote an access
1660 -- to subprogram type, in which case an implicit dereference applies.
1661 -- If the prefix is an indexed component (without implicit dereference)
1662 -- then the construct denotes a call to a member of an entire family.
1663 -- If the prefix is a simple name, it may still denote a call to a
1664 -- parameterless member of an entry family. Resolution of these various
1665 -- interpretations is delicate.
1666
1667 -- Do not analyze machine code statements to avoid rejecting them in
1668 -- CodePeer mode.
1669
1670 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1671 Set_Etype (P, Standard_Void_Type);
1672 else
1673 Analyze (P);
1674 end if;
1675
1676 -- If this is a call of the form Obj.Op, the call may have been analyzed
1677 -- and possibly rewritten into a block, in which case we are done.
1678
1679 if Analyzed (N) then
1680 return;
1681
1682 -- If there is an error analyzing the name (which may have been
1683 -- rewritten if the original call was in prefix notation) then error
1684 -- has been emitted already, mark node and return.
1685
1686 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1687 Set_Etype (N, Any_Type);
1688 return;
1689 end if;
1690
1691 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1692 -- Set the mode now to ensure that any nodes generated during analysis
1693 -- and expansion are properly marked as Ghost.
1694
1695 Mark_And_Set_Ghost_Procedure_Call (N);
1696
1697 -- Otherwise analyze the parameters
1698
1699 if Present (Actuals) then
1700 Actual := First (Actuals);
1701
1702 while Present (Actual) loop
1703 Analyze (Actual);
1704 Check_Parameterless_Call (Actual);
1705 Next (Actual);
1706 end loop;
1707 end if;
1708
1709 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1710
1711 if Nkind (P) = N_Attribute_Reference
1712 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1713 Name_Elab_Body,
1714 Name_Elab_Subp_Body)
1715 then
1716 if Present (Actuals) then
1717 Error_Msg_N
1718 ("no parameters allowed for this call", First (Actuals));
1719 goto Leave;
1720 end if;
1721
1722 Set_Etype (N, Standard_Void_Type);
1723 Set_Analyzed (N);
1724
1725 elsif Is_Entity_Name (P)
1726 and then Is_Record_Type (Etype (Entity (P)))
1727 and then Remote_AST_I_Dereference (P)
1728 then
1729 goto Leave;
1730
1731 elsif Is_Entity_Name (P)
1732 and then Ekind (Entity (P)) /= E_Entry_Family
1733 then
1734 if Is_Access_Type (Etype (P))
1735 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1736 and then No (Actuals)
1737 and then Comes_From_Source (N)
1738 then
1739 Error_Msg_N ("missing explicit dereference in call", N);
1740 end if;
1741
1742 Analyze_Call_And_Resolve;
1743
1744 -- If the prefix is the simple name of an entry family, this is a
1745 -- parameterless call from within the task body itself.
1746
1747 elsif Is_Entity_Name (P)
1748 and then Nkind (P) = N_Identifier
1749 and then Ekind (Entity (P)) = E_Entry_Family
1750 and then Present (Actuals)
1751 and then No (Next (First (Actuals)))
1752 then
1753 -- Can be call to parameterless entry family. What appears to be the
1754 -- sole argument is in fact the entry index. Rewrite prefix of node
1755 -- accordingly. Source representation is unchanged by this
1756 -- transformation.
1757
1758 New_N :=
1759 Make_Indexed_Component (Loc,
1760 Prefix =>
1761 Make_Selected_Component (Loc,
1762 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1763 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1764 Expressions => Actuals);
1765 Set_Name (N, New_N);
1766 Set_Etype (New_N, Standard_Void_Type);
1767 Set_Parameter_Associations (N, No_List);
1768 Analyze_Call_And_Resolve;
1769
1770 elsif Nkind (P) = N_Explicit_Dereference then
1771 if Ekind (Etype (P)) = E_Subprogram_Type then
1772 Analyze_Call_And_Resolve;
1773 else
1774 Error_Msg_N ("expect access to procedure in call", P);
1775 end if;
1776
1777 -- The name can be a selected component or an indexed component that
1778 -- yields an access to subprogram. Such a prefix is legal if the call
1779 -- has parameter associations.
1780
1781 elsif Is_Access_Type (Etype (P))
1782 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1783 then
1784 if Present (Actuals) then
1785 Analyze_Call_And_Resolve;
1786 else
1787 Error_Msg_N ("missing explicit dereference in call ", N);
1788 end if;
1789
1790 -- If not an access to subprogram, then the prefix must resolve to the
1791 -- name of an entry, entry family, or protected operation.
1792
1793 -- For the case of a simple entry call, P is a selected component where
1794 -- the prefix is the task and the selector name is the entry. A call to
1795 -- a protected procedure will have the same syntax. If the protected
1796 -- object contains overloaded operations, the entity may appear as a
1797 -- function, the context will select the operation whose type is Void.
1798
1799 elsif Nkind (P) = N_Selected_Component
1800 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1801 E_Function,
1802 E_Procedure)
1803 then
1804 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1805 -- in prefix notation may still be missing its controlling argument,
1806 -- so perform the transformation now.
1807
1808 if SPARK_Mode = On and then In_Inlined_Body then
1809 declare
1810 Subp : constant Entity_Id := Entity (Selector_Name (P));
1811 Typ : constant Entity_Id := Etype (Prefix (P));
1812
1813 begin
1814 if Is_Tagged_Type (Typ)
1815 and then Present (First_Formal (Subp))
1816 and then (Etype (First_Formal (Subp)) = Typ
1817 or else
1818 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1819 and then Try_Object_Operation (P)
1820 then
1821 return;
1822
1823 else
1824 Analyze_Call_And_Resolve;
1825 end if;
1826 end;
1827
1828 else
1829 Analyze_Call_And_Resolve;
1830 end if;
1831
1832 elsif Nkind (P) = N_Selected_Component
1833 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1834 and then Present (Actuals)
1835 and then No (Next (First (Actuals)))
1836 then
1837 -- Can be call to parameterless entry family. What appears to be the
1838 -- sole argument is in fact the entry index. Rewrite prefix of node
1839 -- accordingly. Source representation is unchanged by this
1840 -- transformation.
1841
1842 New_N :=
1843 Make_Indexed_Component (Loc,
1844 Prefix => New_Copy (P),
1845 Expressions => Actuals);
1846 Set_Name (N, New_N);
1847 Set_Etype (New_N, Standard_Void_Type);
1848 Set_Parameter_Associations (N, No_List);
1849 Analyze_Call_And_Resolve;
1850
1851 -- For the case of a reference to an element of an entry family, P is
1852 -- an indexed component whose prefix is a selected component (task and
1853 -- entry family), and whose index is the entry family index.
1854
1855 elsif Nkind (P) = N_Indexed_Component
1856 and then Nkind (Prefix (P)) = N_Selected_Component
1857 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1858 then
1859 Analyze_Call_And_Resolve;
1860
1861 -- If the prefix is the name of an entry family, it is a call from
1862 -- within the task body itself.
1863
1864 elsif Nkind (P) = N_Indexed_Component
1865 and then Nkind (Prefix (P)) = N_Identifier
1866 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1867 then
1868 New_N :=
1869 Make_Selected_Component (Loc,
1870 Prefix =>
1871 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1872 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1873 Rewrite (Prefix (P), New_N);
1874 Analyze (P);
1875 Analyze_Call_And_Resolve;
1876
1877 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1878 -- procedure name, so the construct can only be a qualified expression.
1879
1880 elsif Nkind (P) = N_Qualified_Expression
1881 and then Ada_Version >= Ada_2012
1882 then
1883 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1884 Analyze (N);
1885
1886 -- Anything else is an error
1887
1888 else
1889 Error_Msg_N ("invalid procedure or entry call", N);
1890 end if;
1891
1892 <<Leave>>
1893 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1894 end Analyze_Procedure_Call;
1895
1896 ------------------------------
1897 -- Analyze_Return_Statement --
1898 ------------------------------
1899
1900 procedure Analyze_Return_Statement (N : Node_Id) is
1901 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
1902 N_Simple_Return_Statement));
1903
1904 Returns_Object : constant Boolean :=
1905 Nkind (N) = N_Extended_Return_Statement
1906 or else
1907 (Nkind (N) = N_Simple_Return_Statement
1908 and then Present (Expression (N)));
1909 -- True if we're returning something; that is, "return <expression>;"
1910 -- or "return Result : T [:= ...]". False for "return;". Used for error
1911 -- checking: If Returns_Object is True, N should apply to a function
1912 -- body; otherwise N should apply to a procedure body, entry body,
1913 -- accept statement, or extended return statement.
1914
1915 function Find_What_It_Applies_To return Entity_Id;
1916 -- Find the entity representing the innermost enclosing body, accept
1917 -- statement, or extended return statement. If the result is a callable
1918 -- construct or extended return statement, then this will be the value
1919 -- of the Return_Applies_To attribute. Otherwise, the program is
1920 -- illegal. See RM-6.5(4/2).
1921
1922 -----------------------------
1923 -- Find_What_It_Applies_To --
1924 -----------------------------
1925
1926 function Find_What_It_Applies_To return Entity_Id is
1927 Result : Entity_Id := Empty;
1928
1929 begin
1930 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1931 -- and postconditions.
1932
1933 for J in reverse 0 .. Scope_Stack.Last loop
1934 Result := Scope_Stack.Table (J).Entity;
1935 exit when not Ekind_In (Result, E_Block, E_Loop)
1936 and then Chars (Result) /= Name_uPostconditions;
1937 end loop;
1938
1939 pragma Assert (Present (Result));
1940 return Result;
1941 end Find_What_It_Applies_To;
1942
1943 -- Local declarations
1944
1945 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1946 Kind : constant Entity_Kind := Ekind (Scope_Id);
1947 Loc : constant Source_Ptr := Sloc (N);
1948 Stm_Entity : constant Entity_Id :=
1949 New_Internal_Entity
1950 (E_Return_Statement, Current_Scope, Loc, 'R');
1951
1952 -- Start of processing for Analyze_Return_Statement
1953
1954 begin
1955 Set_Return_Statement_Entity (N, Stm_Entity);
1956
1957 Set_Etype (Stm_Entity, Standard_Void_Type);
1958 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1959
1960 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1961 -- (4/2): an inner return statement will apply to this extended return.
1962
1963 if Nkind (N) = N_Extended_Return_Statement then
1964 Push_Scope (Stm_Entity);
1965 end if;
1966
1967 -- Check that pragma No_Return is obeyed. Don't complain about the
1968 -- implicitly-generated return that is placed at the end.
1969
1970 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1971 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1972 end if;
1973
1974 -- Warn on any unassigned OUT parameters if in procedure
1975
1976 if Ekind (Scope_Id) = E_Procedure then
1977 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1978 end if;
1979
1980 -- Check that functions return objects, and other things do not
1981
1982 if Kind = E_Function or else Kind = E_Generic_Function then
1983 if not Returns_Object then
1984 Error_Msg_N ("missing expression in return from function", N);
1985 end if;
1986
1987 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1988 if Returns_Object then
1989 Error_Msg_N ("procedure cannot return value (use function)", N);
1990 end if;
1991
1992 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1993 if Returns_Object then
1994 if Is_Protected_Type (Scope (Scope_Id)) then
1995 Error_Msg_N ("entry body cannot return value", N);
1996 else
1997 Error_Msg_N ("accept statement cannot return value", N);
1998 end if;
1999 end if;
2000
2001 elsif Kind = E_Return_Statement then
2002
2003 -- We are nested within another return statement, which must be an
2004 -- extended_return_statement.
2005
2006 if Returns_Object then
2007 if Nkind (N) = N_Extended_Return_Statement then
2008 Error_Msg_N
2009 ("extended return statement cannot be nested (use `RETURN;`)",
2010 N);
2011
2012 -- Case of a simple return statement with a value inside extended
2013 -- return statement.
2014
2015 else
2016 Error_Msg_N
2017 ("return nested in extended return statement cannot return "
2018 & "value (use `RETURN;`)", N);
2019 end if;
2020 end if;
2021
2022 else
2023 Error_Msg_N ("illegal context for return statement", N);
2024 end if;
2025
2026 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2027 Analyze_Function_Return (N);
2028
2029 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2030 Set_Return_Present (Scope_Id);
2031 end if;
2032
2033 if Nkind (N) = N_Extended_Return_Statement then
2034 End_Scope;
2035 end if;
2036
2037 Kill_Current_Values (Last_Assignment_Only => True);
2038 Check_Unreachable_Code (N);
2039
2040 Analyze_Dimension (N);
2041 end Analyze_Return_Statement;
2042
2043 -------------------------------------
2044 -- Analyze_Simple_Return_Statement --
2045 -------------------------------------
2046
2047 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2048 begin
2049 if Present (Expression (N)) then
2050 Mark_Coextensions (N, Expression (N));
2051 end if;
2052
2053 Analyze_Return_Statement (N);
2054 end Analyze_Simple_Return_Statement;
2055
2056 -------------------------
2057 -- Analyze_Return_Type --
2058 -------------------------
2059
2060 procedure Analyze_Return_Type (N : Node_Id) is
2061 Designator : constant Entity_Id := Defining_Entity (N);
2062 Typ : Entity_Id := Empty;
2063
2064 begin
2065 -- Normal case where result definition does not indicate an error
2066
2067 if Result_Definition (N) /= Error then
2068 if Nkind (Result_Definition (N)) = N_Access_Definition then
2069 Check_SPARK_05_Restriction
2070 ("access result is not allowed", Result_Definition (N));
2071
2072 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2073
2074 declare
2075 AD : constant Node_Id :=
2076 Access_To_Subprogram_Definition (Result_Definition (N));
2077 begin
2078 if Present (AD) and then Protected_Present (AD) then
2079 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2080 else
2081 Typ := Access_Definition (N, Result_Definition (N));
2082 end if;
2083 end;
2084
2085 Set_Parent (Typ, Result_Definition (N));
2086 Set_Is_Local_Anonymous_Access (Typ);
2087 Set_Etype (Designator, Typ);
2088
2089 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2090
2091 Null_Exclusion_Static_Checks (N);
2092
2093 -- Subtype_Mark case
2094
2095 else
2096 Find_Type (Result_Definition (N));
2097 Typ := Entity (Result_Definition (N));
2098 Set_Etype (Designator, Typ);
2099
2100 -- Unconstrained array as result is not allowed in SPARK
2101
2102 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2103 Check_SPARK_05_Restriction
2104 ("returning an unconstrained array is not allowed",
2105 Result_Definition (N));
2106 end if;
2107
2108 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2109
2110 Null_Exclusion_Static_Checks (N);
2111
2112 -- If a null exclusion is imposed on the result type, then create
2113 -- a null-excluding itype (an access subtype) and use it as the
2114 -- function's Etype. Note that the null exclusion checks are done
2115 -- right before this, because they don't get applied to types that
2116 -- do not come from source.
2117
2118 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2119 Set_Etype (Designator,
2120 Create_Null_Excluding_Itype
2121 (T => Typ,
2122 Related_Nod => N,
2123 Scope_Id => Scope (Current_Scope)));
2124
2125 -- The new subtype must be elaborated before use because
2126 -- it is visible outside of the function. However its base
2127 -- type may not be frozen yet, so the reference that will
2128 -- force elaboration must be attached to the freezing of
2129 -- the base type.
2130
2131 -- If the return specification appears on a proper body,
2132 -- the subtype will have been created already on the spec.
2133
2134 if Is_Frozen (Typ) then
2135 if Nkind (Parent (N)) = N_Subprogram_Body
2136 and then Nkind (Parent (Parent (N))) = N_Subunit
2137 then
2138 null;
2139 else
2140 Build_Itype_Reference (Etype (Designator), Parent (N));
2141 end if;
2142
2143 else
2144 Ensure_Freeze_Node (Typ);
2145
2146 declare
2147 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2148 begin
2149 Set_Itype (IR, Etype (Designator));
2150 Append_Freeze_Actions (Typ, New_List (IR));
2151 end;
2152 end if;
2153
2154 else
2155 Set_Etype (Designator, Typ);
2156 end if;
2157
2158 if Ekind (Typ) = E_Incomplete_Type
2159 or else (Is_Class_Wide_Type (Typ)
2160 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2161 then
2162 -- AI05-0151: Tagged incomplete types are allowed in all formal
2163 -- parts. Untagged incomplete types are not allowed in bodies.
2164 -- As a consequence, limited views cannot appear in a basic
2165 -- declaration that is itself within a body, because there is
2166 -- no point at which the non-limited view will become visible.
2167
2168 if Ada_Version >= Ada_2012 then
2169 if From_Limited_With (Typ) and then In_Package_Body then
2170 Error_Msg_NE
2171 ("invalid use of incomplete type&",
2172 Result_Definition (N), Typ);
2173
2174 -- The return type of a subprogram body cannot be of a
2175 -- formal incomplete type.
2176
2177 elsif Is_Generic_Type (Typ)
2178 and then Nkind (Parent (N)) = N_Subprogram_Body
2179 then
2180 Error_Msg_N
2181 ("return type cannot be a formal incomplete type",
2182 Result_Definition (N));
2183
2184 elsif Is_Class_Wide_Type (Typ)
2185 and then Is_Generic_Type (Root_Type (Typ))
2186 and then Nkind (Parent (N)) = N_Subprogram_Body
2187 then
2188 Error_Msg_N
2189 ("return type cannot be a formal incomplete type",
2190 Result_Definition (N));
2191
2192 elsif Is_Tagged_Type (Typ) then
2193 null;
2194
2195 -- Use is legal in a thunk generated for an operation
2196 -- inherited from a progenitor.
2197
2198 elsif Is_Thunk (Designator)
2199 and then Present (Non_Limited_View (Typ))
2200 then
2201 null;
2202
2203 elsif Nkind (Parent (N)) = N_Subprogram_Body
2204 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2205 N_Entry_Body)
2206 then
2207 Error_Msg_NE
2208 ("invalid use of untagged incomplete type&",
2209 Designator, Typ);
2210 end if;
2211
2212 -- The type must be completed in the current package. This
2213 -- is checked at the end of the package declaration when
2214 -- Taft-amendment types are identified. If the return type
2215 -- is class-wide, there is no required check, the type can
2216 -- be a bona fide TAT.
2217
2218 if Ekind (Scope (Current_Scope)) = E_Package
2219 and then In_Private_Part (Scope (Current_Scope))
2220 and then not Is_Class_Wide_Type (Typ)
2221 then
2222 Append_Elmt (Designator, Private_Dependents (Typ));
2223 end if;
2224
2225 else
2226 Error_Msg_NE
2227 ("invalid use of incomplete type&", Designator, Typ);
2228 end if;
2229 end if;
2230 end if;
2231
2232 -- Case where result definition does indicate an error
2233
2234 else
2235 Set_Etype (Designator, Any_Type);
2236 end if;
2237 end Analyze_Return_Type;
2238
2239 -----------------------------
2240 -- Analyze_Subprogram_Body --
2241 -----------------------------
2242
2243 procedure Analyze_Subprogram_Body (N : Node_Id) is
2244 Loc : constant Source_Ptr := Sloc (N);
2245 Body_Spec : constant Node_Id := Specification (N);
2246 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2247
2248 begin
2249 if Debug_Flag_C then
2250 Write_Str ("==> subprogram body ");
2251 Write_Name (Chars (Body_Id));
2252 Write_Str (" from ");
2253 Write_Location (Loc);
2254 Write_Eol;
2255 Indent;
2256 end if;
2257
2258 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2259
2260 -- The real work is split out into the helper, so it can do "return;"
2261 -- without skipping the debug output:
2262
2263 Analyze_Subprogram_Body_Helper (N);
2264
2265 if Debug_Flag_C then
2266 Outdent;
2267 Write_Str ("<== subprogram body ");
2268 Write_Name (Chars (Body_Id));
2269 Write_Str (" from ");
2270 Write_Location (Loc);
2271 Write_Eol;
2272 end if;
2273 end Analyze_Subprogram_Body;
2274
2275 ------------------------------------
2276 -- Analyze_Subprogram_Body_Helper --
2277 ------------------------------------
2278
2279 -- This procedure is called for regular subprogram bodies, generic bodies,
2280 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2281 -- specification matters, and is used to create a proper declaration for
2282 -- the subprogram, or to perform conformance checks.
2283
2284 -- WARNING: This routine manages Ghost regions. Return statements must be
2285 -- replaced by gotos that jump to the end of the routine and restore the
2286 -- Ghost mode.
2287
2288 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2289 Body_Spec : Node_Id := Specification (N);
2290 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2291 Loc : constant Source_Ptr := Sloc (N);
2292 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2293
2294 Conformant : Boolean;
2295 Desig_View : Entity_Id := Empty;
2296 Exch_Views : Elist_Id := No_Elist;
2297 HSS : Node_Id;
2298 Mask_Types : Elist_Id := No_Elist;
2299 Prot_Typ : Entity_Id := Empty;
2300 Spec_Decl : Node_Id := Empty;
2301 Spec_Id : Entity_Id;
2302
2303 Last_Real_Spec_Entity : Entity_Id := Empty;
2304 -- When we analyze a separate spec, the entity chain ends up containing
2305 -- the formals, as well as any itypes generated during analysis of the
2306 -- default expressions for parameters, or the arguments of associated
2307 -- precondition/postcondition pragmas (which are analyzed in the context
2308 -- of the spec since they have visibility on formals).
2309 --
2310 -- These entities belong with the spec and not the body. However we do
2311 -- the analysis of the body in the context of the spec (again to obtain
2312 -- visibility to the formals), and all the entities generated during
2313 -- this analysis end up also chained to the entity chain of the spec.
2314 -- But they really belong to the body, and there is circuitry to move
2315 -- them from the spec to the body.
2316 --
2317 -- However, when we do this move, we don't want to move the real spec
2318 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2319 -- variable points to the last real spec entity, so we only move those
2320 -- chained beyond that point. It is initialized to Empty to deal with
2321 -- the case where there is no separate spec.
2322
2323 function Body_Has_Contract return Boolean;
2324 -- Check whether unanalyzed body has an aspect or pragma that may
2325 -- generate a SPARK contract.
2326
2327 function Body_Has_SPARK_Mode_On return Boolean;
2328 -- Check whether SPARK_Mode On applies to the subprogram body, either
2329 -- because it is specified directly on the body, or because it is
2330 -- inherited from the enclosing subprogram or package.
2331
2332 procedure Build_Subprogram_Declaration;
2333 -- Create a matching subprogram declaration for subprogram body N
2334
2335 procedure Check_Anonymous_Return;
2336 -- Ada 2005: if a function returns an access type that denotes a task,
2337 -- or a type that contains tasks, we must create a master entity for
2338 -- the anonymous type, which typically will be used in an allocator
2339 -- in the body of the function.
2340
2341 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2342 -- Look ahead to recognize a pragma that may appear after the body.
2343 -- If there is a previous spec, check that it appears in the same
2344 -- declarative part. If the pragma is Inline_Always, perform inlining
2345 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2346 -- If the body acts as a spec, and inlining is required, we create a
2347 -- subprogram declaration for it, in order to attach the body to inline.
2348 -- If pragma does not appear after the body, check whether there is
2349 -- an inline pragma before any local declarations.
2350
2351 procedure Check_Missing_Return;
2352 -- Checks for a function with a no return statements, and also performs
2353 -- the warning checks implemented by Check_Returns. In formal mode, also
2354 -- verify that a function ends with a RETURN and that a procedure does
2355 -- not contain any RETURN.
2356
2357 function Disambiguate_Spec return Entity_Id;
2358 -- When a primitive is declared between the private view and the full
2359 -- view of a concurrent type which implements an interface, a special
2360 -- mechanism is used to find the corresponding spec of the primitive
2361 -- body.
2362
2363 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2364 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2365 -- incomplete types coming from a limited context and replace their
2366 -- limited views with the non-limited ones. Return the list of changes
2367 -- to be used to undo the transformation.
2368
2369 function Is_Private_Concurrent_Primitive
2370 (Subp_Id : Entity_Id) return Boolean;
2371 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2372 -- type that implements an interface and has a private view.
2373
2374 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2375 -- N is the body generated for an expression function that is not a
2376 -- completion and Spec_Id the defining entity of its spec. Mark all
2377 -- the not-yet-frozen types referenced by the simple return statement
2378 -- of the function as formally frozen.
2379
2380 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2381 -- Undo the transformation done by Exchange_Limited_Views.
2382
2383 procedure Set_Trivial_Subprogram (N : Node_Id);
2384 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2385 -- subprogram whose body is being analyzed. N is the statement node
2386 -- causing the flag to be set, if the following statement is a return
2387 -- of an entity, we mark the entity as set in source to suppress any
2388 -- warning on the stylized use of function stubs with a dummy return.
2389
2390 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2391 -- Undo the transformation done by Mask_Unfrozen_Types
2392
2393 procedure Verify_Overriding_Indicator;
2394 -- If there was a previous spec, the entity has been entered in the
2395 -- current scope previously. If the body itself carries an overriding
2396 -- indicator, check that it is consistent with the known status of the
2397 -- entity.
2398
2399 -----------------------
2400 -- Body_Has_Contract --
2401 -----------------------
2402
2403 function Body_Has_Contract return Boolean is
2404 Decls : constant List_Id := Declarations (N);
2405 Item : Node_Id;
2406
2407 begin
2408 -- Check for aspects that may generate a contract
2409
2410 if Present (Aspect_Specifications (N)) then
2411 Item := First (Aspect_Specifications (N));
2412 while Present (Item) loop
2413 if Is_Subprogram_Contract_Annotation (Item) then
2414 return True;
2415 end if;
2416
2417 Next (Item);
2418 end loop;
2419 end if;
2420
2421 -- Check for pragmas that may generate a contract
2422
2423 if Present (Decls) then
2424 Item := First (Decls);
2425 while Present (Item) loop
2426 if Nkind (Item) = N_Pragma
2427 and then Is_Subprogram_Contract_Annotation (Item)
2428 then
2429 return True;
2430 end if;
2431
2432 Next (Item);
2433 end loop;
2434 end if;
2435
2436 return False;
2437 end Body_Has_Contract;
2438
2439 ----------------------------
2440 -- Body_Has_SPARK_Mode_On --
2441 ----------------------------
2442
2443 function Body_Has_SPARK_Mode_On return Boolean is
2444 Decls : constant List_Id := Declarations (N);
2445 Item : Node_Id;
2446
2447 begin
2448 -- Check for SPARK_Mode aspect
2449
2450 if Present (Aspect_Specifications (N)) then
2451 Item := First (Aspect_Specifications (N));
2452 while Present (Item) loop
2453 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2454 return Get_SPARK_Mode_From_Annotation (Item) = On;
2455 end if;
2456
2457 Next (Item);
2458 end loop;
2459 end if;
2460
2461 -- Check for SPARK_Mode pragma
2462
2463 if Present (Decls) then
2464 Item := First (Decls);
2465 while Present (Item) loop
2466
2467 -- Pragmas that apply to a subprogram body are usually grouped
2468 -- together. Look for a potential pragma SPARK_Mode among them.
2469
2470 if Nkind (Item) = N_Pragma then
2471 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2472 return Get_SPARK_Mode_From_Annotation (Item) = On;
2473 end if;
2474
2475 -- Otherwise the first non-pragma declarative item terminates
2476 -- the region where pragma SPARK_Mode may appear.
2477
2478 else
2479 exit;
2480 end if;
2481
2482 Next (Item);
2483 end loop;
2484 end if;
2485
2486 -- Otherwise, the applicable SPARK_Mode is inherited from the
2487 -- enclosing subprogram or package.
2488
2489 return SPARK_Mode = On;
2490 end Body_Has_SPARK_Mode_On;
2491
2492 ----------------------------------
2493 -- Build_Subprogram_Declaration --
2494 ----------------------------------
2495
2496 procedure Build_Subprogram_Declaration is
2497 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2498 -- Relocate certain categorization pragmas from the declarative list
2499 -- of subprogram body From and insert them after node To. The pragmas
2500 -- in question are:
2501 -- Ghost
2502 -- Volatile_Function
2503 -- Also copy pragma SPARK_Mode if present in the declarative list
2504 -- of subprogram body From and insert it after node To. This pragma
2505 -- should not be moved, as it applies to the body too.
2506
2507 ------------------
2508 -- Move_Pragmas --
2509 ------------------
2510
2511 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2512 Decl : Node_Id;
2513 Next_Decl : Node_Id;
2514
2515 begin
2516 pragma Assert (Nkind (From) = N_Subprogram_Body);
2517
2518 -- The destination node must be part of a list, as the pragmas are
2519 -- inserted after it.
2520
2521 pragma Assert (Is_List_Member (To));
2522
2523 -- Inspect the declarations of the subprogram body looking for
2524 -- specific pragmas.
2525
2526 Decl := First (Declarations (N));
2527 while Present (Decl) loop
2528 Next_Decl := Next (Decl);
2529
2530 if Nkind (Decl) = N_Pragma then
2531 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2532 Insert_After (To, New_Copy_Tree (Decl));
2533
2534 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2535 Name_Ghost,
2536 Name_Volatile_Function)
2537 then
2538 Remove (Decl);
2539 Insert_After (To, Decl);
2540 end if;
2541 end if;
2542
2543 Decl := Next_Decl;
2544 end loop;
2545 end Move_Pragmas;
2546
2547 -- Local variables
2548
2549 Decl : Node_Id;
2550 Subp_Decl : Node_Id;
2551
2552 -- Start of processing for Build_Subprogram_Declaration
2553
2554 begin
2555 -- Create a matching subprogram spec using the profile of the body.
2556 -- The structure of the tree is identical, but has new entities for
2557 -- the defining unit name and formal parameters.
2558
2559 Subp_Decl :=
2560 Make_Subprogram_Declaration (Loc,
2561 Specification => Copy_Subprogram_Spec (Body_Spec));
2562 Set_Comes_From_Source (Subp_Decl, True);
2563
2564 -- Also mark parameters as coming from source
2565
2566 if Present (Parameter_Specifications (Specification (Subp_Decl))) then
2567 declare
2568 Form : Entity_Id;
2569 begin
2570 Form :=
2571 First (Parameter_Specifications (Specification (Subp_Decl)));
2572
2573 while Present (Form) loop
2574 Set_Comes_From_Source (Defining_Identifier (Form), True);
2575 Next (Form);
2576 end loop;
2577 end;
2578 end if;
2579
2580 -- Relocate the aspects and relevant pragmas from the subprogram body
2581 -- to the generated spec because it acts as the initial declaration.
2582
2583 Insert_Before (N, Subp_Decl);
2584 Move_Aspects (N, To => Subp_Decl);
2585 Move_Pragmas (N, To => Subp_Decl);
2586
2587 -- Ensure that the generated corresponding spec and original body
2588 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2589 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2590 -- correctly set for local subprograms.
2591
2592 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2593
2594 Analyze (Subp_Decl);
2595
2596 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2597 -- the body since the expander may generate calls using that entity.
2598 -- Required to ensure that Expand_Call rewrites calls to this
2599 -- function by calls to the built procedure.
2600
2601 if Modify_Tree_For_C
2602 and then Nkind (Body_Spec) = N_Function_Specification
2603 and then
2604 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2605 then
2606 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2607 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2608 Corresponding_Procedure
2609 (Defining_Entity (Specification (Subp_Decl))));
2610 end if;
2611
2612 -- Analyze any relocated source pragmas or pragmas created for aspect
2613 -- specifications.
2614
2615 Decl := Next (Subp_Decl);
2616 while Present (Decl) loop
2617
2618 -- Stop the search for pragmas once the body has been reached as
2619 -- this terminates the region where pragmas may appear.
2620
2621 if Decl = N then
2622 exit;
2623
2624 elsif Nkind (Decl) = N_Pragma then
2625 Analyze (Decl);
2626 end if;
2627
2628 Next (Decl);
2629 end loop;
2630
2631 Spec_Id := Defining_Entity (Subp_Decl);
2632 Set_Corresponding_Spec (N, Spec_Id);
2633
2634 -- Mark the generated spec as a source construct to ensure that all
2635 -- calls to it are properly registered in ALI files for GNATprove.
2636
2637 Set_Comes_From_Source (Spec_Id, True);
2638
2639 -- Ensure that the specs of the subprogram declaration and its body
2640 -- are identical, otherwise they will appear non-conformant due to
2641 -- rewritings in the default values of formal parameters.
2642
2643 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2644 Set_Specification (N, Body_Spec);
2645 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2646 end Build_Subprogram_Declaration;
2647
2648 ----------------------------
2649 -- Check_Anonymous_Return --
2650 ----------------------------
2651
2652 procedure Check_Anonymous_Return is
2653 Decl : Node_Id;
2654 Par : Node_Id;
2655 Scop : Entity_Id;
2656
2657 begin
2658 if Present (Spec_Id) then
2659 Scop := Spec_Id;
2660 else
2661 Scop := Body_Id;
2662 end if;
2663
2664 if Ekind (Scop) = E_Function
2665 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2666 and then not Is_Thunk (Scop)
2667
2668 -- Skip internally built functions which handle the case of
2669 -- a null access (see Expand_Interface_Conversion)
2670
2671 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2672 and then not Comes_From_Source (Parent (Scop)))
2673
2674 and then (Has_Task (Designated_Type (Etype (Scop)))
2675 or else
2676 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2677 and then
2678 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2679 and then Expander_Active
2680
2681 -- Avoid cases with no tasking support
2682
2683 and then RTE_Available (RE_Current_Master)
2684 and then not Restriction_Active (No_Task_Hierarchy)
2685 then
2686 Decl :=
2687 Make_Object_Declaration (Loc,
2688 Defining_Identifier =>
2689 Make_Defining_Identifier (Loc, Name_uMaster),
2690 Constant_Present => True,
2691 Object_Definition =>
2692 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2693 Expression =>
2694 Make_Explicit_Dereference (Loc,
2695 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2696
2697 if Present (Declarations (N)) then
2698 Prepend (Decl, Declarations (N));
2699 else
2700 Set_Declarations (N, New_List (Decl));
2701 end if;
2702
2703 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2704 Set_Has_Master_Entity (Scop);
2705
2706 -- Now mark the containing scope as a task master
2707
2708 Par := N;
2709 while Nkind (Par) /= N_Compilation_Unit loop
2710 Par := Parent (Par);
2711 pragma Assert (Present (Par));
2712
2713 -- If we fall off the top, we are at the outer level, and
2714 -- the environment task is our effective master, so nothing
2715 -- to mark.
2716
2717 if Nkind_In
2718 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2719 then
2720 Set_Is_Task_Master (Par, True);
2721 exit;
2722 end if;
2723 end loop;
2724 end if;
2725 end Check_Anonymous_Return;
2726
2727 -------------------------
2728 -- Check_Inline_Pragma --
2729 -------------------------
2730
2731 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2732 Prag : Node_Id;
2733 Plist : List_Id;
2734
2735 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2736 -- True when N is a pragma Inline or Inline_Always that applies
2737 -- to this subprogram.
2738
2739 -----------------------
2740 -- Is_Inline_Pragma --
2741 -----------------------
2742
2743 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2744 begin
2745 if Nkind (N) = N_Pragma
2746 and then
2747 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2748 or else (Pragma_Name_Unmapped (N) = Name_Inline
2749 and then
2750 (Front_End_Inlining or else Optimization_Level > 0)))
2751 and then Present (Pragma_Argument_Associations (N))
2752 then
2753 declare
2754 Pragma_Arg : Node_Id :=
2755 Expression (First (Pragma_Argument_Associations (N)));
2756 begin
2757 if Nkind (Pragma_Arg) = N_Selected_Component then
2758 Pragma_Arg := Selector_Name (Pragma_Arg);
2759 end if;
2760
2761 return Chars (Pragma_Arg) = Chars (Body_Id);
2762 end;
2763
2764 else
2765 return False;
2766 end if;
2767 end Is_Inline_Pragma;
2768
2769 -- Start of processing for Check_Inline_Pragma
2770
2771 begin
2772 if not Expander_Active then
2773 return;
2774 end if;
2775
2776 if Is_List_Member (N)
2777 and then Present (Next (N))
2778 and then Is_Inline_Pragma (Next (N))
2779 then
2780 Prag := Next (N);
2781
2782 elsif Nkind (N) /= N_Subprogram_Body_Stub
2783 and then Present (Declarations (N))
2784 and then Is_Inline_Pragma (First (Declarations (N)))
2785 then
2786 Prag := First (Declarations (N));
2787
2788 else
2789 Prag := Empty;
2790 end if;
2791
2792 if Present (Prag) then
2793 if Present (Spec_Id) then
2794 if Is_List_Member (N)
2795 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2796 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2797 then
2798 Analyze (Prag);
2799 end if;
2800
2801 else
2802 -- Create a subprogram declaration, to make treatment uniform.
2803 -- Make the sloc of the subprogram name that of the entity in
2804 -- the body, so that style checks find identical strings.
2805
2806 declare
2807 Subp : constant Entity_Id :=
2808 Make_Defining_Identifier
2809 (Sloc (Body_Id), Chars (Body_Id));
2810 Decl : constant Node_Id :=
2811 Make_Subprogram_Declaration (Loc,
2812 Specification =>
2813 New_Copy_Tree (Specification (N)));
2814
2815 begin
2816 -- Link the body and the generated spec
2817
2818 Set_Corresponding_Body (Decl, Body_Id);
2819 Set_Corresponding_Spec (N, Subp);
2820
2821 Set_Defining_Unit_Name (Specification (Decl), Subp);
2822
2823 -- To ensure proper coverage when body is inlined, indicate
2824 -- whether the subprogram comes from source.
2825
2826 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2827
2828 if Present (First_Formal (Body_Id)) then
2829 Plist := Copy_Parameter_List (Body_Id);
2830 Set_Parameter_Specifications
2831 (Specification (Decl), Plist);
2832 end if;
2833
2834 -- Move aspects to the new spec
2835
2836 if Has_Aspects (N) then
2837 Move_Aspects (N, To => Decl);
2838 end if;
2839
2840 Insert_Before (N, Decl);
2841 Analyze (Decl);
2842 Analyze (Prag);
2843 Set_Has_Pragma_Inline (Subp);
2844
2845 if Pragma_Name (Prag) = Name_Inline_Always then
2846 Set_Is_Inlined (Subp);
2847 Set_Has_Pragma_Inline_Always (Subp);
2848 end if;
2849
2850 -- Prior to copying the subprogram body to create a template
2851 -- for it for subsequent inlining, remove the pragma from
2852 -- the current body so that the copy that will produce the
2853 -- new body will start from a completely unanalyzed tree.
2854
2855 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2856 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2857 end if;
2858
2859 Spec := Subp;
2860 end;
2861 end if;
2862 end if;
2863 end Check_Inline_Pragma;
2864
2865 --------------------------
2866 -- Check_Missing_Return --
2867 --------------------------
2868
2869 procedure Check_Missing_Return is
2870 Id : Entity_Id;
2871 Missing_Ret : Boolean;
2872
2873 begin
2874 if Nkind (Body_Spec) = N_Function_Specification then
2875 if Present (Spec_Id) then
2876 Id := Spec_Id;
2877 else
2878 Id := Body_Id;
2879 end if;
2880
2881 if Return_Present (Id) then
2882 Check_Returns (HSS, 'F', Missing_Ret);
2883
2884 if Missing_Ret then
2885 Set_Has_Missing_Return (Id);
2886 end if;
2887
2888 -- Within a premature instantiation of a package with no body, we
2889 -- build completions of the functions therein, with a Raise
2890 -- statement. No point in complaining about a missing return in
2891 -- this case.
2892
2893 elsif Ekind (Id) = E_Function
2894 and then In_Instance
2895 and then Present (Statements (HSS))
2896 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2897 then
2898 null;
2899
2900 elsif Is_Generic_Subprogram (Id)
2901 or else not Is_Machine_Code_Subprogram (Id)
2902 then
2903 Error_Msg_N ("missing RETURN statement in function body", N);
2904 end if;
2905
2906 -- If procedure with No_Return, check returns
2907
2908 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2909 if Present (Spec_Id) then
2910 Id := Spec_Id;
2911 else
2912 Id := Body_Id;
2913 end if;
2914
2915 if No_Return (Id) then
2916 Check_Returns (HSS, 'P', Missing_Ret, Id);
2917 end if;
2918 end if;
2919
2920 -- Special checks in SPARK mode
2921
2922 if Nkind (Body_Spec) = N_Function_Specification then
2923
2924 -- In SPARK mode, last statement of a function should be a return
2925
2926 declare
2927 Stat : constant Node_Id := Last_Source_Statement (HSS);
2928 begin
2929 if Present (Stat)
2930 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2931 N_Extended_Return_Statement)
2932 then
2933 Check_SPARK_05_Restriction
2934 ("last statement in function should be RETURN", Stat);
2935 end if;
2936 end;
2937
2938 -- In SPARK mode, verify that a procedure has no return
2939
2940 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2941 if Present (Spec_Id) then
2942 Id := Spec_Id;
2943 else
2944 Id := Body_Id;
2945 end if;
2946
2947 -- Would be nice to point to return statement here, can we
2948 -- borrow the Check_Returns procedure here ???
2949
2950 if Return_Present (Id) then
2951 Check_SPARK_05_Restriction
2952 ("procedure should not have RETURN", N);
2953 end if;
2954 end if;
2955 end Check_Missing_Return;
2956
2957 -----------------------
2958 -- Disambiguate_Spec --
2959 -----------------------
2960
2961 function Disambiguate_Spec return Entity_Id is
2962 Priv_Spec : Entity_Id;
2963 Spec_N : Entity_Id;
2964
2965 procedure Replace_Types (To_Corresponding : Boolean);
2966 -- Depending on the flag, replace the type of formal parameters of
2967 -- Body_Id if it is a concurrent type implementing interfaces with
2968 -- the corresponding record type or the other way around.
2969
2970 procedure Replace_Types (To_Corresponding : Boolean) is
2971 Formal : Entity_Id;
2972 Formal_Typ : Entity_Id;
2973
2974 begin
2975 Formal := First_Formal (Body_Id);
2976 while Present (Formal) loop
2977 Formal_Typ := Etype (Formal);
2978
2979 if Is_Class_Wide_Type (Formal_Typ) then
2980 Formal_Typ := Root_Type (Formal_Typ);
2981 end if;
2982
2983 -- From concurrent type to corresponding record
2984
2985 if To_Corresponding then
2986 if Is_Concurrent_Type (Formal_Typ)
2987 and then Present (Corresponding_Record_Type (Formal_Typ))
2988 and then
2989 Present (Interfaces
2990 (Corresponding_Record_Type (Formal_Typ)))
2991 then
2992 Set_Etype (Formal,
2993 Corresponding_Record_Type (Formal_Typ));
2994 end if;
2995
2996 -- From corresponding record to concurrent type
2997
2998 else
2999 if Is_Concurrent_Record_Type (Formal_Typ)
3000 and then Present (Interfaces (Formal_Typ))
3001 then
3002 Set_Etype (Formal,
3003 Corresponding_Concurrent_Type (Formal_Typ));
3004 end if;
3005 end if;
3006
3007 Next_Formal (Formal);
3008 end loop;
3009 end Replace_Types;
3010
3011 -- Start of processing for Disambiguate_Spec
3012
3013 begin
3014 -- Try to retrieve the specification of the body as is. All error
3015 -- messages are suppressed because the body may not have a spec in
3016 -- its current state.
3017
3018 Spec_N := Find_Corresponding_Spec (N, False);
3019
3020 -- It is possible that this is the body of a primitive declared
3021 -- between a private and a full view of a concurrent type. The
3022 -- controlling parameter of the spec carries the concurrent type,
3023 -- not the corresponding record type as transformed by Analyze_
3024 -- Subprogram_Specification. In such cases, we undo the change
3025 -- made by the analysis of the specification and try to find the
3026 -- spec again.
3027
3028 -- Note that wrappers already have their corresponding specs and
3029 -- bodies set during their creation, so if the candidate spec is
3030 -- a wrapper, then we definitely need to swap all types to their
3031 -- original concurrent status.
3032
3033 if No (Spec_N)
3034 or else Is_Primitive_Wrapper (Spec_N)
3035 then
3036 -- Restore all references of corresponding record types to the
3037 -- original concurrent types.
3038
3039 Replace_Types (To_Corresponding => False);
3040 Priv_Spec := Find_Corresponding_Spec (N, False);
3041
3042 -- The current body truly belongs to a primitive declared between
3043 -- a private and a full view. We leave the modified body as is,
3044 -- and return the true spec.
3045
3046 if Present (Priv_Spec)
3047 and then Is_Private_Primitive (Priv_Spec)
3048 then
3049 return Priv_Spec;
3050 end if;
3051
3052 -- In case that this is some sort of error, restore the original
3053 -- state of the body.
3054
3055 Replace_Types (To_Corresponding => True);
3056 end if;
3057
3058 return Spec_N;
3059 end Disambiguate_Spec;
3060
3061 ----------------------------
3062 -- Exchange_Limited_Views --
3063 ----------------------------
3064
3065 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3066 Result : Elist_Id := No_Elist;
3067
3068 procedure Detect_And_Exchange (Id : Entity_Id);
3069 -- Determine whether Id's type denotes an incomplete type associated
3070 -- with a limited with clause and exchange the limited view with the
3071 -- non-limited one when available. Note that the non-limited view
3072 -- may exist because of a with_clause in another unit in the context,
3073 -- but cannot be used because the current view of the enclosing unit
3074 -- is still a limited view.
3075
3076 -------------------------
3077 -- Detect_And_Exchange --
3078 -------------------------
3079
3080 procedure Detect_And_Exchange (Id : Entity_Id) is
3081 Typ : constant Entity_Id := Etype (Id);
3082 begin
3083 if From_Limited_With (Typ)
3084 and then Has_Non_Limited_View (Typ)
3085 and then not From_Limited_With (Scope (Typ))
3086 then
3087 if No (Result) then
3088 Result := New_Elmt_List;
3089 end if;
3090
3091 Prepend_Elmt (Typ, Result);
3092 Prepend_Elmt (Id, Result);
3093 Set_Etype (Id, Non_Limited_View (Typ));
3094 end if;
3095 end Detect_And_Exchange;
3096
3097 -- Local variables
3098
3099 Formal : Entity_Id;
3100
3101 -- Start of processing for Exchange_Limited_Views
3102
3103 begin
3104 -- Do not process subprogram bodies as they already use the non-
3105 -- limited view of types.
3106
3107 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3108 return No_Elist;
3109 end if;
3110
3111 -- Examine all formals and swap views when applicable
3112
3113 Formal := First_Formal (Subp_Id);
3114 while Present (Formal) loop
3115 Detect_And_Exchange (Formal);
3116
3117 Next_Formal (Formal);
3118 end loop;
3119
3120 -- Process the return type of a function
3121
3122 if Ekind (Subp_Id) = E_Function then
3123 Detect_And_Exchange (Subp_Id);
3124 end if;
3125
3126 return Result;
3127 end Exchange_Limited_Views;
3128
3129 -------------------------------------
3130 -- Is_Private_Concurrent_Primitive --
3131 -------------------------------------
3132
3133 function Is_Private_Concurrent_Primitive
3134 (Subp_Id : Entity_Id) return Boolean
3135 is
3136 Formal_Typ : Entity_Id;
3137
3138 begin
3139 if Present (First_Formal (Subp_Id)) then
3140 Formal_Typ := Etype (First_Formal (Subp_Id));
3141
3142 if Is_Concurrent_Record_Type (Formal_Typ) then
3143 if Is_Class_Wide_Type (Formal_Typ) then
3144 Formal_Typ := Root_Type (Formal_Typ);
3145 end if;
3146
3147 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3148 end if;
3149
3150 -- The type of the first formal is a concurrent tagged type with
3151 -- a private view.
3152
3153 return
3154 Is_Concurrent_Type (Formal_Typ)
3155 and then Is_Tagged_Type (Formal_Typ)
3156 and then Has_Private_Declaration (Formal_Typ);
3157 end if;
3158
3159 return False;
3160 end Is_Private_Concurrent_Primitive;
3161
3162 -------------------------
3163 -- Mask_Unfrozen_Types --
3164 -------------------------
3165
3166 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3167 Result : Elist_Id := No_Elist;
3168
3169 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3170 -- Mask all types referenced in the subtree rooted at Node
3171
3172 --------------------
3173 -- Mask_Type_Refs --
3174 --------------------
3175
3176 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3177 procedure Mask_Type (Typ : Entity_Id);
3178 -- ??? what does this do?
3179
3180 ---------------
3181 -- Mask_Type --
3182 ---------------
3183
3184 procedure Mask_Type (Typ : Entity_Id) is
3185 begin
3186 -- Skip Itypes created by the preanalysis
3187
3188 if Is_Itype (Typ)
3189 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3190 then
3191 return;
3192 end if;
3193
3194 if not Is_Frozen (Typ) then
3195 if Scope (Typ) /= Current_Scope then
3196 Set_Is_Frozen (Typ);
3197 Append_New_Elmt (Typ, Result);
3198 else
3199 Freeze_Before (N, Typ);
3200 end if;
3201 end if;
3202 end Mask_Type;
3203
3204 -- Start of processing for Mask_Type_Refs
3205
3206 begin
3207 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3208 Mask_Type (Etype (Entity (Node)));
3209
3210 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3211 Mask_Type (Scope (Entity (Node)));
3212 end if;
3213
3214 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3215 and then Present (Etype (Node))
3216 then
3217 Mask_Type (Etype (Node));
3218 end if;
3219
3220 return OK;
3221 end Mask_Type_Refs;
3222
3223 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3224
3225 -- Local variables
3226
3227 Return_Stmt : constant Node_Id :=
3228 First (Statements (Handled_Statement_Sequence (N)));
3229
3230 -- Start of processing for Mask_Unfrozen_Types
3231
3232 begin
3233 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3234
3235 Mask_References (Expression (Return_Stmt));
3236
3237 return Result;
3238 end Mask_Unfrozen_Types;
3239
3240 ---------------------------
3241 -- Restore_Limited_Views --
3242 ---------------------------
3243
3244 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3245 Elmt : Elmt_Id := First_Elmt (Restore_List);
3246 Id : Entity_Id;
3247
3248 begin
3249 while Present (Elmt) loop
3250 Id := Node (Elmt);
3251 Next_Elmt (Elmt);
3252 Set_Etype (Id, Node (Elmt));
3253 Next_Elmt (Elmt);
3254 end loop;
3255 end Restore_Limited_Views;
3256
3257 ----------------------------
3258 -- Set_Trivial_Subprogram --
3259 ----------------------------
3260
3261 procedure Set_Trivial_Subprogram (N : Node_Id) is
3262 Nxt : constant Node_Id := Next (N);
3263
3264 begin
3265 Set_Is_Trivial_Subprogram (Body_Id);
3266
3267 if Present (Spec_Id) then
3268 Set_Is_Trivial_Subprogram (Spec_Id);
3269 end if;
3270
3271 if Present (Nxt)
3272 and then Nkind (Nxt) = N_Simple_Return_Statement
3273 and then No (Next (Nxt))
3274 and then Present (Expression (Nxt))
3275 and then Is_Entity_Name (Expression (Nxt))
3276 then
3277 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3278 end if;
3279 end Set_Trivial_Subprogram;
3280
3281 ---------------------------
3282 -- Unmask_Unfrozen_Types --
3283 ---------------------------
3284
3285 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3286 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3287
3288 begin
3289 while Present (Elmt) loop
3290 Set_Is_Frozen (Node (Elmt), False);
3291 Next_Elmt (Elmt);
3292 end loop;
3293 end Unmask_Unfrozen_Types;
3294
3295 ---------------------------------
3296 -- Verify_Overriding_Indicator --
3297 ---------------------------------
3298
3299 procedure Verify_Overriding_Indicator is
3300 begin
3301 if Must_Override (Body_Spec) then
3302 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3303 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3304 then
3305 null;
3306
3307 elsif not Present (Overridden_Operation (Spec_Id)) then
3308 Error_Msg_NE
3309 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3310
3311 -- Overriding indicators aren't allowed for protected subprogram
3312 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3313 -- this to a warning if -gnatd.E is enabled.
3314
3315 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3316 Error_Msg_Warn := Error_To_Warning;
3317 Error_Msg_N
3318 ("<<overriding indicator not allowed for protected "
3319 & "subprogram body", Body_Spec);
3320 end if;
3321
3322 elsif Must_Not_Override (Body_Spec) then
3323 if Present (Overridden_Operation (Spec_Id)) then
3324 Error_Msg_NE
3325 ("subprogram& overrides inherited operation",
3326 Body_Spec, Spec_Id);
3327
3328 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3329 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3330 then
3331 Error_Msg_NE
3332 ("subprogram& overrides predefined operator ",
3333 Body_Spec, Spec_Id);
3334
3335 -- Overriding indicators aren't allowed for protected subprogram
3336 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3337 -- this to a warning if -gnatd.E is enabled.
3338
3339 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3340 Error_Msg_Warn := Error_To_Warning;
3341
3342 Error_Msg_N
3343 ("<<overriding indicator not allowed "
3344 & "for protected subprogram body", Body_Spec);
3345
3346 -- If this is not a primitive operation, then the overriding
3347 -- indicator is altogether illegal.
3348
3349 elsif not Is_Primitive (Spec_Id) then
3350 Error_Msg_N
3351 ("overriding indicator only allowed "
3352 & "if subprogram is primitive", Body_Spec);
3353 end if;
3354
3355 -- If checking the style rule and the operation overrides, then
3356 -- issue a warning about a missing overriding_indicator. Protected
3357 -- subprogram bodies are excluded from this style checking, since
3358 -- they aren't primitives (even though their declarations can
3359 -- override) and aren't allowed to have an overriding_indicator.
3360
3361 elsif Style_Check
3362 and then Present (Overridden_Operation (Spec_Id))
3363 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3364 then
3365 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3366 Style.Missing_Overriding (N, Body_Id);
3367
3368 elsif Style_Check
3369 and then Can_Override_Operator (Spec_Id)
3370 and then not In_Predefined_Unit (Spec_Id)
3371 then
3372 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3373 Style.Missing_Overriding (N, Body_Id);
3374 end if;
3375 end Verify_Overriding_Indicator;
3376
3377 -- Local variables
3378
3379 Body_Nod : Node_Id := Empty;
3380 Minimum_Acc_Objs : List_Id := No_List;
3381
3382 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3383 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3384 Saved_EA : constant Boolean := Expander_Active;
3385 Saved_ISMP : constant Boolean :=
3386 Ignore_SPARK_Mode_Pragmas_In_Instance;
3387 -- Save the Ghost and SPARK mode-related data to restore on exit
3388
3389 -- Start of processing for Analyze_Subprogram_Body_Helper
3390
3391 begin
3392 -- A [generic] subprogram body freezes the contract of the nearest
3393 -- enclosing package body and all other contracts encountered in the
3394 -- same declarative part up to and excluding the subprogram body:
3395
3396 -- package body Nearest_Enclosing_Package
3397 -- with Refined_State => (State => Constit)
3398 -- is
3399 -- Constit : ...;
3400
3401 -- procedure Freezes_Enclosing_Package_Body
3402 -- with Refined_Depends => (Input => Constit) ...
3403
3404 -- This ensures that any annotations referenced by the contract of the
3405 -- [generic] subprogram body are available. This form of freezing is
3406 -- decoupled from the usual Freeze_xxx mechanism because it must also
3407 -- work in the context of generics where normal freezing is disabled.
3408
3409 -- Only bodies coming from source should cause this type of freezing.
3410 -- Expression functions that act as bodies and complete an initial
3411 -- declaration must be included in this category, hence the use of
3412 -- Original_Node.
3413
3414 if Comes_From_Source (Original_Node (N)) then
3415 Freeze_Previous_Contracts (N);
3416 end if;
3417
3418 -- Generic subprograms are handled separately. They always have a
3419 -- generic specification. Determine whether current scope has a
3420 -- previous declaration.
3421
3422 -- If the subprogram body is defined within an instance of the same
3423 -- name, the instance appears as a package renaming, and will be hidden
3424 -- within the subprogram.
3425
3426 if Present (Prev_Id)
3427 and then not Is_Overloadable (Prev_Id)
3428 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3429 or else Comes_From_Source (Prev_Id))
3430 then
3431 if Is_Generic_Subprogram (Prev_Id) then
3432 Spec_Id := Prev_Id;
3433
3434 -- A subprogram body is Ghost when it is stand-alone and subject
3435 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3436 -- the mode now to ensure that any nodes generated during analysis
3437 -- and expansion are properly marked as Ghost.
3438
3439 Mark_And_Set_Ghost_Body (N, Spec_Id);
3440
3441 -- If the body completes the initial declaration of a compilation
3442 -- unit which is subject to pragma Elaboration_Checks, set the
3443 -- model specified by the pragma because it applies to all parts
3444 -- of the unit.
3445
3446 Install_Elaboration_Model (Spec_Id);
3447
3448 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3449 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3450
3451 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3452
3453 if Nkind (N) = N_Subprogram_Body then
3454 HSS := Handled_Statement_Sequence (N);
3455 Check_Missing_Return;
3456 end if;
3457
3458 goto Leave;
3459
3460 -- Otherwise a previous entity conflicts with the subprogram name.
3461 -- Attempting to enter name will post error.
3462
3463 else
3464 Enter_Name (Body_Id);
3465 goto Leave;
3466 end if;
3467
3468 -- Non-generic case, find the subprogram declaration, if one was seen,
3469 -- or enter new overloaded entity in the current scope. If the
3470 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3471 -- part of the context of one of its subunits. No need to redo the
3472 -- analysis.
3473
3474 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3475 goto Leave;
3476
3477 else
3478 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3479
3480 if Nkind (N) = N_Subprogram_Body_Stub
3481 or else No (Corresponding_Spec (N))
3482 then
3483 if Is_Private_Concurrent_Primitive (Body_Id) then
3484 Spec_Id := Disambiguate_Spec;
3485
3486 -- A subprogram body is Ghost when it is stand-alone and
3487 -- subject to pragma Ghost or when the corresponding spec is
3488 -- Ghost. Set the mode now to ensure that any nodes generated
3489 -- during analysis and expansion are properly marked as Ghost.
3490
3491 Mark_And_Set_Ghost_Body (N, Spec_Id);
3492
3493 -- If the body completes a compilation unit which is subject
3494 -- to pragma Elaboration_Checks, set the model specified by
3495 -- the pragma because it applies to all parts of the unit.
3496
3497 Install_Elaboration_Model (Spec_Id);
3498
3499 else
3500 Spec_Id := Find_Corresponding_Spec (N);
3501
3502 -- A subprogram body is Ghost when it is stand-alone and
3503 -- subject to pragma Ghost or when the corresponding spec is
3504 -- Ghost. Set the mode now to ensure that any nodes generated
3505 -- during analysis and expansion are properly marked as Ghost.
3506
3507 Mark_And_Set_Ghost_Body (N, Spec_Id);
3508
3509 -- If the body completes a compilation unit which is subject
3510 -- to pragma Elaboration_Checks, set the model specified by
3511 -- the pragma because it applies to all parts of the unit.
3512
3513 Install_Elaboration_Model (Spec_Id);
3514
3515 -- In GNATprove mode, if the body has no previous spec, create
3516 -- one so that the inlining machinery can operate properly.
3517 -- Transfer aspects, if any, to the new spec, so that they
3518 -- are legal and can be processed ahead of the body.
3519 -- We make two copies of the given spec, one for the new
3520 -- declaration, and one for the body.
3521
3522 if No (Spec_Id) and then GNATprove_Mode
3523
3524 -- Inlining does not apply during preanalysis of code
3525
3526 and then Full_Analysis
3527
3528 -- Inlining only applies to full bodies, not stubs
3529
3530 and then Nkind (N) /= N_Subprogram_Body_Stub
3531
3532 -- Inlining only applies to bodies in the source code, not to
3533 -- those generated by the compiler. In particular, expression
3534 -- functions, whose body is generated by the compiler, are
3535 -- treated specially by GNATprove.
3536
3537 and then Comes_From_Source (Body_Id)
3538
3539 -- This cannot be done for a compilation unit, which is not
3540 -- in a context where we can insert a new spec.
3541
3542 and then Is_List_Member (N)
3543
3544 -- Inlining only applies to subprograms without contracts,
3545 -- as a contract is a sign that GNATprove should perform a
3546 -- modular analysis of the subprogram instead of a contextual
3547 -- analysis at each call site. The same test is performed in
3548 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3549 -- here in another form (because the contract has not been
3550 -- attached to the body) to avoid front-end errors in case
3551 -- pragmas are used instead of aspects, because the
3552 -- corresponding pragmas in the body would not be transferred
3553 -- to the spec, leading to legality errors.
3554
3555 and then not Body_Has_Contract
3556 and then not Inside_A_Generic
3557 then
3558 Build_Subprogram_Declaration;
3559
3560 -- If this is a function that returns a constrained array, and
3561 -- we are generating SPARK_For_C, create subprogram declaration
3562 -- to simplify subsequent C generation.
3563
3564 elsif No (Spec_Id)
3565 and then Modify_Tree_For_C
3566 and then Nkind (Body_Spec) = N_Function_Specification
3567 and then Is_Array_Type (Etype (Body_Id))
3568 and then Is_Constrained (Etype (Body_Id))
3569 then
3570 Build_Subprogram_Declaration;
3571 end if;
3572 end if;
3573
3574 -- If this is a duplicate body, no point in analyzing it
3575
3576 if Error_Posted (N) then
3577 goto Leave;
3578 end if;
3579
3580 -- A subprogram body should cause freezing of its own declaration,
3581 -- but if there was no previous explicit declaration, then the
3582 -- subprogram will get frozen too late (there may be code within
3583 -- the body that depends on the subprogram having been frozen,
3584 -- such as uses of extra formals), so we force it to be frozen
3585 -- here. Same holds if the body and spec are compilation units.
3586 -- Finally, if the return type is an anonymous access to protected
3587 -- subprogram, it must be frozen before the body because its
3588 -- expansion has generated an equivalent type that is used when
3589 -- elaborating the body.
3590
3591 -- An exception in the case of Ada 2012, AI05-177: The bodies
3592 -- created for expression functions do not freeze.
3593
3594 if No (Spec_Id)
3595 and then Nkind (Original_Node (N)) /= N_Expression_Function
3596 then
3597 Freeze_Before (N, Body_Id);
3598
3599 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3600 Freeze_Before (N, Spec_Id);
3601
3602 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3603 Freeze_Before (N, Etype (Body_Id));
3604 end if;
3605
3606 else
3607 Spec_Id := Corresponding_Spec (N);
3608
3609 -- A subprogram body is Ghost when it is stand-alone and subject
3610 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3611 -- the mode now to ensure that any nodes generated during analysis
3612 -- and expansion are properly marked as Ghost.
3613
3614 Mark_And_Set_Ghost_Body (N, Spec_Id);
3615
3616 -- If the body completes the initial declaration of a compilation
3617 -- unit which is subject to pragma Elaboration_Checks, set the
3618 -- model specified by the pragma because it applies to all parts
3619 -- of the unit.
3620
3621 Install_Elaboration_Model (Spec_Id);
3622 end if;
3623 end if;
3624
3625 -- Deactivate expansion inside the body of ignored Ghost entities,
3626 -- as this code will ultimately be ignored. This avoids requiring the
3627 -- presence of run-time units which are not needed. Only do this for
3628 -- user entities, as internally generated entitities might still need
3629 -- to be expanded (e.g. those generated for types).
3630
3631 if Present (Ignored_Ghost_Region)
3632 and then Comes_From_Source (Body_Id)
3633 then
3634 Expander_Active := False;
3635 end if;
3636
3637 -- Previously we scanned the body to look for nested subprograms, and
3638 -- rejected an inline directive if nested subprograms were present,
3639 -- because the back-end would generate conflicting symbols for the
3640 -- nested bodies. This is now unnecessary.
3641
3642 -- Look ahead to recognize a pragma Inline that appears after the body
3643
3644 Check_Inline_Pragma (Spec_Id);
3645
3646 -- Deal with special case of a fully private operation in the body of
3647 -- the protected type. We must create a declaration for the subprogram,
3648 -- in order to attach the protected subprogram that will be used in
3649 -- internal calls. We exclude compiler generated bodies from the
3650 -- expander since the issue does not arise for those cases.
3651
3652 if No (Spec_Id)
3653 and then Comes_From_Source (N)
3654 and then Is_Protected_Type (Current_Scope)
3655 then
3656 Spec_Id := Build_Private_Protected_Declaration (N);
3657 end if;
3658
3659 -- If we are generating C and this is a function returning a constrained
3660 -- array type for which we must create a procedure with an extra out
3661 -- parameter, build and analyze the body now. The procedure declaration
3662 -- has already been created. We reuse the source body of the function,
3663 -- because in an instance it may contain global references that cannot
3664 -- be reanalyzed. The source function itself is not used any further,
3665 -- so we mark it as having a completion. If the subprogram is a stub the
3666 -- transformation is done later, when the proper body is analyzed.
3667
3668 if Expander_Active
3669 and then Modify_Tree_For_C
3670 and then Present (Spec_Id)
3671 and then Ekind (Spec_Id) = E_Function
3672 and then Nkind (N) /= N_Subprogram_Body_Stub
3673 and then Rewritten_For_C (Spec_Id)
3674 then
3675 Set_Has_Completion (Spec_Id);
3676
3677 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3678 Analyze (N);
3679
3680 -- The entity for the created procedure must remain invisible, so it
3681 -- does not participate in resolution of subsequent references to the
3682 -- function.
3683
3684 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3685 goto Leave;
3686 end if;
3687
3688 -- If a separate spec is present, then deal with freezing issues
3689
3690 if Present (Spec_Id) then
3691 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3692 Verify_Overriding_Indicator;
3693
3694 -- In general, the spec will be frozen when we start analyzing the
3695 -- body. However, for internally generated operations, such as
3696 -- wrapper functions for inherited operations with controlling
3697 -- results, the spec may not have been frozen by the time we expand
3698 -- the freeze actions that include the bodies. In particular, extra
3699 -- formals for accessibility or for return-in-place may need to be
3700 -- generated. Freeze nodes, if any, are inserted before the current
3701 -- body. These freeze actions are also needed in ASIS mode and in
3702 -- Compile_Only mode to enable the proper back-end type annotations.
3703 -- They are necessary in any case to ensure proper elaboration order
3704 -- in gigi.
3705
3706 if Nkind (N) = N_Subprogram_Body
3707 and then Was_Expression_Function (N)
3708 and then not Has_Completion (Spec_Id)
3709 and then Serious_Errors_Detected = 0
3710 and then (Expander_Active
3711 or else ASIS_Mode
3712 or else Operating_Mode = Check_Semantics
3713 or else Is_Ignored_Ghost_Entity (Spec_Id))
3714 then
3715 -- The body generated for an expression function that is not a
3716 -- completion is a freeze point neither for the profile nor for
3717 -- anything else. That's why, in order to prevent any freezing
3718 -- during analysis, we need to mask types declared outside the
3719 -- expression (and in an outer scope) that are not yet frozen.
3720 -- This also needs to be done in the case of an ignored Ghost
3721 -- expression function, where the expander isn't active.
3722
3723 Set_Is_Frozen (Spec_Id);
3724 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3725
3726 elsif not Is_Frozen (Spec_Id)
3727 and then Serious_Errors_Detected = 0
3728 then
3729 Set_Has_Delayed_Freeze (Spec_Id);
3730 Freeze_Before (N, Spec_Id);
3731 end if;
3732 end if;
3733
3734 -- If the subprogram has a class-wide clone, build its body as a copy
3735 -- of the original body, and rewrite body of original subprogram as a
3736 -- wrapper that calls the clone. If N is a stub, this construction will
3737 -- take place when the proper body is analyzed. No action needed if this
3738 -- subprogram has been eliminated.
3739
3740 if Present (Spec_Id)
3741 and then Present (Class_Wide_Clone (Spec_Id))
3742 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3743 and then Nkind (N) /= N_Subprogram_Body_Stub
3744 and then not (Expander_Active and then Is_Eliminated (Spec_Id))
3745 then
3746 Build_Class_Wide_Clone_Body (Spec_Id, N);
3747
3748 -- This is the new body for the existing primitive operation
3749
3750 Rewrite (N, Build_Class_Wide_Clone_Call
3751 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3752 Set_Has_Completion (Spec_Id, False);
3753 Analyze (N);
3754 return;
3755 end if;
3756
3757 -- Place subprogram on scope stack, and make formals visible. If there
3758 -- is a spec, the visible entity remains that of the spec.
3759
3760 if Present (Spec_Id) then
3761 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3762
3763 if Is_Child_Unit (Spec_Id) then
3764 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3765 end if;
3766
3767 if Style_Check then
3768 Style.Check_Identifier (Body_Id, Spec_Id);
3769 end if;
3770
3771 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3772 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3773
3774 if Is_Abstract_Subprogram (Spec_Id) then
3775 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3776 goto Leave;
3777
3778 else
3779 Set_Convention (Body_Id, Convention (Spec_Id));
3780 Set_Has_Completion (Spec_Id);
3781
3782 if Is_Protected_Type (Scope (Spec_Id)) then
3783 Prot_Typ := Scope (Spec_Id);
3784 end if;
3785
3786 -- If this is a body generated for a renaming, do not check for
3787 -- full conformance. The check is redundant, because the spec of
3788 -- the body is a copy of the spec in the renaming declaration,
3789 -- and the test can lead to spurious errors on nested defaults.
3790
3791 if Present (Spec_Decl)
3792 and then not Comes_From_Source (N)
3793 and then
3794 (Nkind (Original_Node (Spec_Decl)) =
3795 N_Subprogram_Renaming_Declaration
3796 or else (Present (Corresponding_Body (Spec_Decl))
3797 and then
3798 Nkind (Unit_Declaration_Node
3799 (Corresponding_Body (Spec_Decl))) =
3800 N_Subprogram_Renaming_Declaration))
3801 then
3802 Conformant := True;
3803
3804 -- Conversely, the spec may have been generated for specless body
3805 -- with an inline pragma. The entity comes from source, which is
3806 -- both semantically correct and necessary for proper inlining.
3807 -- The subprogram declaration itself is not in the source.
3808
3809 elsif Comes_From_Source (N)
3810 and then Present (Spec_Decl)
3811 and then not Comes_From_Source (Spec_Decl)
3812 and then Has_Pragma_Inline (Spec_Id)
3813 then
3814 Conformant := True;
3815
3816 else
3817 Check_Conformance
3818 (Body_Id, Spec_Id,
3819 Fully_Conformant, True, Conformant, Body_Id);
3820 end if;
3821
3822 -- If the body is not fully conformant, we have to decide if we
3823 -- should analyze it or not. If it has a really messed up profile
3824 -- then we probably should not analyze it, since we will get too
3825 -- many bogus messages.
3826
3827 -- Our decision is to go ahead in the non-fully conformant case
3828 -- only if it is at least mode conformant with the spec. Note
3829 -- that the call to Check_Fully_Conformant has issued the proper
3830 -- error messages to complain about the lack of conformance.
3831
3832 if not Conformant
3833 and then not Mode_Conformant (Body_Id, Spec_Id)
3834 then
3835 goto Leave;
3836 end if;
3837 end if;
3838
3839 -- In the case we are dealing with an expression function we check
3840 -- the formals attached to the spec instead of the body - so we don't
3841 -- reference body formals.
3842
3843 if Spec_Id /= Body_Id
3844 and then not Is_Expression_Function (Spec_Id)
3845 then
3846 Reference_Body_Formals (Spec_Id, Body_Id);
3847 end if;
3848
3849 Set_Ekind (Body_Id, E_Subprogram_Body);
3850
3851 if Nkind (N) = N_Subprogram_Body_Stub then
3852 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3853
3854 -- Regular body
3855
3856 else
3857 Set_Corresponding_Spec (N, Spec_Id);
3858
3859 -- Ada 2005 (AI-345): If the operation is a primitive operation
3860 -- of a concurrent type, the type of the first parameter has been
3861 -- replaced with the corresponding record, which is the proper
3862 -- run-time structure to use. However, within the body there may
3863 -- be uses of the formals that depend on primitive operations
3864 -- of the type (in particular calls in prefixed form) for which
3865 -- we need the original concurrent type. The operation may have
3866 -- several controlling formals, so the replacement must be done
3867 -- for all of them.
3868
3869 if Comes_From_Source (Spec_Id)
3870 and then Present (First_Entity (Spec_Id))
3871 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3872 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3873 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3874 and then Present (Corresponding_Concurrent_Type
3875 (Etype (First_Entity (Spec_Id))))
3876 then
3877 declare
3878 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3879 Form : Entity_Id;
3880
3881 begin
3882 Form := First_Formal (Spec_Id);
3883 while Present (Form) loop
3884 if Etype (Form) = Typ then
3885 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3886 end if;
3887
3888 Next_Formal (Form);
3889 end loop;
3890 end;
3891 end if;
3892
3893 -- Make the formals visible, and place subprogram on scope stack.
3894 -- This is also the point at which we set Last_Real_Spec_Entity
3895 -- to mark the entities which will not be moved to the body.
3896
3897 Install_Formals (Spec_Id);
3898 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3899
3900 -- Within an instance, add local renaming declarations so that
3901 -- gdb can retrieve the values of actuals more easily. This is
3902 -- only relevant if generating code (and indeed we definitely
3903 -- do not want these definitions -gnatc mode, because that would
3904 -- confuse ASIS).
3905
3906 if Is_Generic_Instance (Spec_Id)
3907 and then Is_Wrapper_Package (Current_Scope)
3908 and then Expander_Active
3909 then
3910 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3911 end if;
3912
3913 Push_Scope (Spec_Id);
3914
3915 -- Make sure that the subprogram is immediately visible. For
3916 -- child units that have no separate spec this is indispensable.
3917 -- Otherwise it is safe albeit redundant.
3918
3919 Set_Is_Immediately_Visible (Spec_Id);
3920 end if;
3921
3922 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3923 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3924 Set_Scope (Body_Id, Scope (Spec_Id));
3925
3926 -- Case of subprogram body with no previous spec
3927
3928 else
3929 -- Check for style warning required
3930
3931 if Style_Check
3932
3933 -- Only apply check for source level subprograms for which checks
3934 -- have not been suppressed.
3935
3936 and then Comes_From_Source (Body_Id)
3937 and then not Suppress_Style_Checks (Body_Id)
3938
3939 -- No warnings within an instance
3940
3941 and then not In_Instance
3942
3943 -- No warnings for expression functions
3944
3945 and then Nkind (Original_Node (N)) /= N_Expression_Function
3946 then
3947 Style.Body_With_No_Spec (N);
3948 end if;
3949
3950 New_Overloaded_Entity (Body_Id);
3951
3952 if Nkind (N) /= N_Subprogram_Body_Stub then
3953 Set_Acts_As_Spec (N);
3954 Generate_Definition (Body_Id);
3955 Generate_Reference
3956 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3957
3958 -- If the body is an entry wrapper created for an entry with
3959 -- preconditions, it must be compiled in the context of the
3960 -- enclosing synchronized object, because it may mention other
3961 -- operations of the type.
3962
3963 if Is_Entry_Wrapper (Body_Id) then
3964 declare
3965 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3966 begin
3967 Push_Scope (Prot);
3968 Install_Declarations (Prot);
3969 end;
3970 end if;
3971
3972 Install_Formals (Body_Id);
3973
3974 Push_Scope (Body_Id);
3975 end if;
3976
3977 -- For stubs and bodies with no previous spec, generate references to
3978 -- formals.
3979
3980 Generate_Reference_To_Formals (Body_Id);
3981 end if;
3982
3983 -- Entry barrier functions are generated outside the protected type and
3984 -- should not carry the SPARK_Mode of the enclosing context.
3985
3986 if Nkind (N) = N_Subprogram_Body
3987 and then Is_Entry_Barrier_Function (N)
3988 then
3989 null;
3990
3991 -- The body is generated as part of expression function expansion. When
3992 -- the expression function appears in the visible declarations of a
3993 -- package, the body is added to the private declarations. Since both
3994 -- declarative lists may be subject to a different SPARK_Mode, inherit
3995 -- the mode of the spec.
3996
3997 -- package P with SPARK_Mode is
3998 -- function Expr_Func ... is (...); -- original
3999 -- [function Expr_Func ...;] -- generated spec
4000 -- -- mode is ON
4001 -- private
4002 -- pragma SPARK_Mode (Off);
4003 -- [function Expr_Func ... is return ...;] -- generated body
4004 -- end P; -- mode is ON
4005
4006 elsif not Comes_From_Source (N)
4007 and then Present (Spec_Id)
4008 and then Is_Expression_Function (Spec_Id)
4009 then
4010 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4011 Set_SPARK_Pragma_Inherited
4012 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4013
4014 -- Set the SPARK_Mode from the current context (may be overwritten later
4015 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4016 -- initially on a stand-alone subprogram body, but is then relocated to
4017 -- a generated corresponding spec. In this scenario the mode is shared
4018 -- between the spec and body.
4019
4020 elsif No (SPARK_Pragma (Body_Id)) then
4021 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4022 Set_SPARK_Pragma_Inherited (Body_Id);
4023 end if;
4024
4025 -- A subprogram body may be instantiated or inlined at a later pass.
4026 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4027 -- applied to the initial declaration of the body.
4028
4029 if Present (Spec_Id) then
4030 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4031 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4032 end if;
4033
4034 else
4035 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4036 -- case the body is instantiated or inlined later and out of context.
4037 -- The body uses this attribute to restore the value of the global
4038 -- flag.
4039
4040 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4041 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4042
4043 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4044 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4045 end if;
4046 end if;
4047
4048 -- Preserve relevant elaboration-related attributes of the context which
4049 -- are no longer available or very expensive to recompute once analysis,
4050 -- resolution, and expansion are over.
4051
4052 if No (Spec_Id) then
4053 Mark_Elaboration_Attributes
4054 (N_Id => Body_Id,
4055 Checks => True,
4056 Warnings => True);
4057 end if;
4058
4059 -- If this is the proper body of a stub, we must verify that the stub
4060 -- conforms to the body, and to the previous spec if one was present.
4061 -- We know already that the body conforms to that spec. This test is
4062 -- only required for subprograms that come from source.
4063
4064 if Nkind (Parent (N)) = N_Subunit
4065 and then Comes_From_Source (N)
4066 and then not Error_Posted (Body_Id)
4067 and then Nkind (Corresponding_Stub (Parent (N))) =
4068 N_Subprogram_Body_Stub
4069 then
4070 declare
4071 Old_Id : constant Entity_Id :=
4072 Defining_Entity
4073 (Specification (Corresponding_Stub (Parent (N))));
4074
4075 Conformant : Boolean := False;
4076
4077 begin
4078 if No (Spec_Id) then
4079 Check_Fully_Conformant (Body_Id, Old_Id);
4080
4081 else
4082 Check_Conformance
4083 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4084
4085 if not Conformant then
4086
4087 -- The stub was taken to be a new declaration. Indicate that
4088 -- it lacks a body.
4089
4090 Set_Has_Completion (Old_Id, False);
4091 end if;
4092 end if;
4093 end;
4094 end if;
4095
4096 Set_Has_Completion (Body_Id);
4097 Check_Eliminated (Body_Id);
4098
4099 -- Analyze any aspect specifications that appear on the subprogram body
4100 -- stub. Stop the analysis now as the stub does not have a declarative
4101 -- or a statement part, and it cannot be inlined.
4102
4103 if Nkind (N) = N_Subprogram_Body_Stub then
4104 if Has_Aspects (N) then
4105 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4106 end if;
4107
4108 goto Leave;
4109 end if;
4110
4111 -- Handle inlining
4112
4113 -- Note: Normally we don't do any inlining if expansion is off, since
4114 -- we won't generate code in any case. An exception arises in GNATprove
4115 -- mode where we want to expand some calls in place, even with expansion
4116 -- disabled, since the inlining eases formal verification.
4117
4118 if not GNATprove_Mode
4119 and then Expander_Active
4120 and then Serious_Errors_Detected = 0
4121 and then Present (Spec_Id)
4122 and then Has_Pragma_Inline (Spec_Id)
4123 then
4124 -- Legacy implementation (relying on front-end inlining)
4125
4126 if not Back_End_Inlining then
4127 if (Has_Pragma_Inline_Always (Spec_Id)
4128 and then not Opt.Disable_FE_Inline_Always)
4129 or else (Front_End_Inlining
4130 and then not Opt.Disable_FE_Inline)
4131 then
4132 Build_Body_To_Inline (N, Spec_Id);
4133 end if;
4134
4135 -- New implementation (relying on back-end inlining)
4136
4137 else
4138 if Has_Pragma_Inline_Always (Spec_Id)
4139 or else Optimization_Level > 0
4140 then
4141 -- Handle function returning an unconstrained type
4142
4143 if Comes_From_Source (Body_Id)
4144 and then Ekind (Spec_Id) = E_Function
4145 and then Returns_Unconstrained_Type (Spec_Id)
4146
4147 -- If function builds in place, i.e. returns a limited type,
4148 -- inlining cannot be done.
4149
4150 and then not Is_Limited_Type (Etype (Spec_Id))
4151 then
4152 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4153
4154 else
4155 declare
4156 Subp_Body : constant Node_Id :=
4157 Unit_Declaration_Node (Body_Id);
4158 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4159
4160 begin
4161 -- Do not pass inlining to the backend if the subprogram
4162 -- has declarations or statements which cannot be inlined
4163 -- by the backend. This check is done here to emit an
4164 -- error instead of the generic warning message reported
4165 -- by the GCC backend (ie. "function might not be
4166 -- inlinable").
4167
4168 if Present (Subp_Decl)
4169 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4170 then
4171 null;
4172
4173 elsif Has_Excluded_Statement
4174 (Spec_Id,
4175 Statements
4176 (Handled_Statement_Sequence (Subp_Body)))
4177 then
4178 null;
4179
4180 -- If the backend inlining is available then at this
4181 -- stage we only have to mark the subprogram as inlined.
4182 -- The expander will take care of registering it in the
4183 -- table of subprograms inlined by the backend a part of
4184 -- processing calls to it (cf. Expand_Call)
4185
4186 else
4187 Set_Is_Inlined (Spec_Id);
4188 end if;
4189 end;
4190 end if;
4191 end if;
4192 end if;
4193
4194 -- In GNATprove mode, inline only when there is a separate subprogram
4195 -- declaration for now, as inlining of subprogram bodies acting as
4196 -- declarations, or subprogram stubs, are not supported by front-end
4197 -- inlining. This inlining should occur after analysis of the body, so
4198 -- that it is known whether the value of SPARK_Mode, which can be
4199 -- defined by a pragma inside the body, is applicable to the body.
4200 -- Inlining can be disabled with switch -gnatdm
4201
4202 elsif GNATprove_Mode
4203 and then Full_Analysis
4204 and then not Inside_A_Generic
4205 and then Present (Spec_Id)
4206 and then
4207 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4208 and then Body_Has_SPARK_Mode_On
4209 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4210 and then not Body_Has_Contract
4211 and then not Debug_Flag_M
4212 then
4213 Build_Body_To_Inline (N, Spec_Id);
4214 end if;
4215
4216 -- When generating code, inherited pre/postconditions are handled when
4217 -- expanding the corresponding contract.
4218
4219 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4220 -- of the specification we have to install the private withed units.
4221 -- This holds for child units as well.
4222
4223 if Is_Compilation_Unit (Body_Id)
4224 or else Nkind (Parent (N)) = N_Compilation_Unit
4225 then
4226 Install_Private_With_Clauses (Body_Id);
4227 end if;
4228
4229 Check_Anonymous_Return;
4230
4231 -- Set the Protected_Formal field of each extra formal of the protected
4232 -- subprogram to reference the corresponding extra formal of the
4233 -- subprogram that implements it. For regular formals this occurs when
4234 -- the protected subprogram's declaration is expanded, but the extra
4235 -- formals don't get created until the subprogram is frozen. We need to
4236 -- do this before analyzing the protected subprogram's body so that any
4237 -- references to the original subprogram's extra formals will be changed
4238 -- refer to the implementing subprogram's formals (see Expand_Formal).
4239
4240 if Present (Spec_Id)
4241 and then Is_Protected_Type (Scope (Spec_Id))
4242 and then Present (Protected_Body_Subprogram (Spec_Id))
4243 then
4244 declare
4245 Impl_Subp : constant Entity_Id :=
4246 Protected_Body_Subprogram (Spec_Id);
4247 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4248 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4249
4250 begin
4251 while Present (Prot_Ext_Formal) loop
4252 pragma Assert (Present (Impl_Ext_Formal));
4253 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4254 Next_Formal_With_Extras (Prot_Ext_Formal);
4255 Next_Formal_With_Extras (Impl_Ext_Formal);
4256 end loop;
4257 end;
4258 end if;
4259
4260 -- Generate minimum accessibility local objects to correspond with
4261 -- any extra formal added for anonymous access types. This new local
4262 -- object can then be used instead of the formal in case it is used
4263 -- in an actual to a call to a nested subprogram.
4264
4265 -- This method is used to suppliment our "small integer model" for
4266 -- accessibility check generation (for more information see
4267 -- Dynamic_Accessibility_Level).
4268
4269 -- Because we allow accesibility values greater than our expected value
4270 -- passing along the same extra accessibility formal as an actual
4271 -- to a nested subprogram becomes a problem because high values mean
4272 -- different things to the callee even though they are the same to the
4273 -- caller. So, as described in the first section, we create a local
4274 -- object representing the minimum of the accessibility level value that
4275 -- is passed in and the accessibility level of the callee's parameter
4276 -- and locals and use it in the case of a call to a nested subprogram.
4277 -- This generated object is refered to as a "minimum accessiblity
4278 -- level."
4279
4280 if Present (Spec_Id) or else Present (Body_Id) then
4281 Body_Nod := Unit_Declaration_Node (Body_Id);
4282
4283 declare
4284 Form : Entity_Id;
4285 begin
4286 -- Grab the appropriate formal depending on whether there exists
4287 -- an actual spec for the subprogram or whether we are dealing
4288 -- with a protected subprogram.
4289
4290 if Present (Spec_Id) then
4291 if Present (Protected_Body_Subprogram (Spec_Id)) then
4292 Form := First_Formal (Protected_Body_Subprogram (Spec_Id));
4293 else
4294 Form := First_Formal (Spec_Id);
4295 end if;
4296 else
4297 Form := First_Formal (Body_Id);
4298 end if;
4299
4300 -- Loop through formals if the subprogram is capable of accepting
4301 -- a generated local object. If it is not then it is also not
4302 -- capable of having local subprograms meaning it would not need
4303 -- a minimum accessibility level object anyway.
4304
4305 if Present (Body_Nod)
4306 and then Has_Declarations (Body_Nod)
4307 and then Nkind (Body_Nod) /= N_Package_Specification
4308 then
4309 while Present (Form) loop
4310
4311 if Present (Extra_Accessibility (Form))
4312 and then No (Minimum_Accessibility (Form))
4313 then
4314 -- Generate the minimum accessibility level object
4315
4316 -- A60b : integer := integer'min(2, paramL);
4317
4318 declare
4319 Loc : constant Source_Ptr := Sloc (Body_Nod);
4320 Obj_Node : constant Node_Id :=
4321 Make_Object_Declaration (Loc,
4322 Defining_Identifier =>
4323 Make_Temporary
4324 (Loc, 'A', Extra_Accessibility (Form)),
4325 Object_Definition => New_Occurrence_Of
4326 (Standard_Integer, Loc),
4327 Expression =>
4328 Make_Attribute_Reference (Loc,
4329 Prefix => New_Occurrence_Of
4330 (Standard_Integer, Loc),
4331 Attribute_Name => Name_Min,
4332 Expressions => New_List (
4333 Make_Integer_Literal (Loc,
4334 Object_Access_Level (Form)),
4335 New_Occurrence_Of
4336 (Extra_Accessibility (Form), Loc))));
4337 begin
4338 -- Add the new local object to the Minimum_Acc_Obj to
4339 -- be later prepended to the subprogram's list of
4340 -- declarations after we are sure all expansion is
4341 -- done.
4342
4343 if Present (Minimum_Acc_Objs) then
4344 Prepend (Obj_Node, Minimum_Acc_Objs);
4345 else
4346 Minimum_Acc_Objs := New_List (Obj_Node);
4347 end if;
4348
4349 -- Register the object and analyze it
4350
4351 Set_Minimum_Accessibility
4352 (Form, Defining_Identifier (Obj_Node));
4353
4354 Analyze (Obj_Node);
4355 end;
4356 end if;
4357
4358 Next_Formal (Form);
4359 end loop;
4360 end if;
4361 end;
4362 end if;
4363
4364 -- Now we can go on to analyze the body
4365
4366 HSS := Handled_Statement_Sequence (N);
4367 Set_Actual_Subtypes (N, Current_Scope);
4368
4369 -- Add a declaration for the Protection object, renaming declarations
4370 -- for discriminals and privals and finally a declaration for the entry
4371 -- family index (if applicable). This form of early expansion is done
4372 -- when the Expander is active because Install_Private_Data_Declarations
4373 -- references entities which were created during regular expansion. The
4374 -- subprogram entity must come from source, and not be an internally
4375 -- generated subprogram.
4376
4377 if Expander_Active
4378 and then Present (Prot_Typ)
4379 and then Present (Spec_Id)
4380 and then Comes_From_Source (Spec_Id)
4381 and then not Is_Eliminated (Spec_Id)
4382 then
4383 Install_Private_Data_Declarations
4384 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4385 end if;
4386
4387 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4388 -- may now appear in parameter and result profiles. Since the analysis
4389 -- of a subprogram body may use the parameter and result profile of the
4390 -- spec, swap any limited views with their non-limited counterpart.
4391
4392 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4393 Exch_Views := Exchange_Limited_Views (Spec_Id);
4394 end if;
4395
4396 -- If the return type is an anonymous access type whose designated type
4397 -- is the limited view of a class-wide type and the non-limited view is
4398 -- available, update the return type accordingly.
4399
4400 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4401 declare
4402 Etyp : Entity_Id;
4403 Rtyp : Entity_Id;
4404
4405 begin
4406 Rtyp := Etype (Spec_Id);
4407
4408 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4409 Etyp := Directly_Designated_Type (Rtyp);
4410
4411 if Is_Class_Wide_Type (Etyp)
4412 and then From_Limited_With (Etyp)
4413 then
4414 Desig_View := Etyp;
4415 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4416 end if;
4417 end if;
4418 end;
4419 end if;
4420
4421 -- Analyze any aspect specifications that appear on the subprogram body
4422
4423 if Has_Aspects (N) then
4424 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4425 end if;
4426
4427 Analyze_Declarations (Declarations (N));
4428
4429 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4430
4431 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4432 if Present (SPARK_Pragma (Spec_Id)) then
4433 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4434 and then
4435 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4436 then
4437 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4438 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4439 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4440 Error_Msg_NE
4441 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4442 end if;
4443
4444 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4445 null;
4446
4447 else
4448 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4449 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4450 Error_Msg_Sloc := Sloc (Spec_Id);
4451 Error_Msg_NE
4452 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4453 end if;
4454 end if;
4455
4456 -- A subprogram body freezes its own contract. Analyze the contract
4457 -- after the declarations of the body have been processed as pragmas
4458 -- are now chained on the contract of the subprogram body.
4459
4460 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4461
4462 -- Check completion, and analyze the statements
4463
4464 Check_Completion;
4465 Inspect_Deferred_Constant_Completion (Declarations (N));
4466 Analyze (HSS);
4467
4468 -- Add the generated minimum accessibility objects to the subprogram
4469 -- body's list of declarations after analysis of the statements and
4470 -- contracts.
4471
4472 while Is_Non_Empty_List (Minimum_Acc_Objs) loop
4473 if Present (Declarations (Body_Nod)) then
4474 Prepend (Remove_Head (Minimum_Acc_Objs), Declarations (Body_Nod));
4475 else
4476 Set_Declarations
4477 (Body_Nod, New_List (Remove_Head (Minimum_Acc_Objs)));
4478 end if;
4479 end loop;
4480
4481 -- Deal with end of scope processing for the body
4482
4483 Process_End_Label (HSS, 't', Current_Scope);
4484 Update_Use_Clause_Chain;
4485 End_Scope;
4486
4487 -- If we are compiling an entry wrapper, remove the enclosing
4488 -- synchronized object from the stack.
4489
4490 if Is_Entry_Wrapper (Body_Id) then
4491 End_Scope;
4492 end if;
4493
4494 Check_Subprogram_Order (N);
4495 Set_Analyzed (Body_Id);
4496
4497 -- If we have a separate spec, then the analysis of the declarations
4498 -- caused the entities in the body to be chained to the spec id, but
4499 -- we want them chained to the body id. Only the formal parameters
4500 -- end up chained to the spec id in this case.
4501
4502 if Present (Spec_Id) then
4503
4504 -- We must conform to the categorization of our spec
4505
4506 Validate_Categorization_Dependency (N, Spec_Id);
4507
4508 -- And if this is a child unit, the parent units must conform
4509
4510 if Is_Child_Unit (Spec_Id) then
4511 Validate_Categorization_Dependency
4512 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4513 end if;
4514
4515 -- Here is where we move entities from the spec to the body
4516
4517 -- Case where there are entities that stay with the spec
4518
4519 if Present (Last_Real_Spec_Entity) then
4520
4521 -- No body entities (happens when the only real spec entities come
4522 -- from precondition and postcondition pragmas).
4523
4524 if No (Last_Entity (Body_Id)) then
4525 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4526
4527 -- Body entities present (formals), so chain stuff past them
4528
4529 else
4530 Link_Entities
4531 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4532 end if;
4533
4534 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4535 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4536 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4537
4538 -- Case where there are no spec entities, in this case there can be
4539 -- no body entities either, so just move everything.
4540
4541 -- If the body is generated for an expression function, it may have
4542 -- been preanalyzed already, if 'access was applied to it.
4543
4544 else
4545 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4546 N_Expression_Function
4547 then
4548 pragma Assert (No (Last_Entity (Body_Id)));
4549 null;
4550 end if;
4551
4552 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4553 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4554 Set_First_Entity (Spec_Id, Empty);
4555 Set_Last_Entity (Spec_Id, Empty);
4556 end if;
4557
4558 -- Otherwise the body does not complete a previous declaration. Check
4559 -- the categorization of the body against the units it withs.
4560
4561 else
4562 Validate_Categorization_Dependency (N, Body_Id);
4563 end if;
4564
4565 Check_Missing_Return;
4566
4567 -- Now we are going to check for variables that are never modified in
4568 -- the body of the procedure. But first we deal with a special case
4569 -- where we want to modify this check. If the body of the subprogram
4570 -- starts with a raise statement or its equivalent, or if the body
4571 -- consists entirely of a null statement, then it is pretty obvious that
4572 -- it is OK to not reference the parameters. For example, this might be
4573 -- the following common idiom for a stubbed function: statement of the
4574 -- procedure raises an exception. In particular this deals with the
4575 -- common idiom of a stubbed function, which appears something like:
4576
4577 -- function F (A : Integer) return Some_Type;
4578 -- X : Some_Type;
4579 -- begin
4580 -- raise Program_Error;
4581 -- return X;
4582 -- end F;
4583
4584 -- Here the purpose of X is simply to satisfy the annoying requirement
4585 -- in Ada that there be at least one return, and we certainly do not
4586 -- want to go posting warnings on X that it is not initialized. On
4587 -- the other hand, if X is entirely unreferenced that should still
4588 -- get a warning.
4589
4590 -- What we do is to detect these cases, and if we find them, flag the
4591 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4592 -- suppress unwanted warnings. For the case of the function stub above
4593 -- we have a special test to set X as apparently assigned to suppress
4594 -- the warning.
4595
4596 declare
4597 Stm : Node_Id;
4598
4599 begin
4600 -- Skip call markers installed by the ABE mechanism, labels, and
4601 -- Push_xxx_Error_Label to find the first real statement.
4602
4603 Stm := First (Statements (HSS));
4604 while Nkind_In (Stm, N_Call_Marker, N_Label)
4605 or else Nkind (Stm) in N_Push_xxx_Label
4606 loop
4607 Next (Stm);
4608 end loop;
4609
4610 -- Do the test on the original statement before expansion
4611
4612 declare
4613 Ostm : constant Node_Id := Original_Node (Stm);
4614
4615 begin
4616 -- If explicit raise statement, turn on flag
4617
4618 if Nkind (Ostm) = N_Raise_Statement then
4619 Set_Trivial_Subprogram (Stm);
4620
4621 -- If null statement, and no following statements, turn on flag
4622
4623 elsif Nkind (Stm) = N_Null_Statement
4624 and then Comes_From_Source (Stm)
4625 and then No (Next (Stm))
4626 then
4627 Set_Trivial_Subprogram (Stm);
4628
4629 -- Check for explicit call cases which likely raise an exception
4630
4631 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4632 if Is_Entity_Name (Name (Ostm)) then
4633 declare
4634 Ent : constant Entity_Id := Entity (Name (Ostm));
4635
4636 begin
4637 -- If the procedure is marked No_Return, then likely it
4638 -- raises an exception, but in any case it is not coming
4639 -- back here, so turn on the flag.
4640
4641 if Present (Ent)
4642 and then Ekind (Ent) = E_Procedure
4643 and then No_Return (Ent)
4644 then
4645 Set_Trivial_Subprogram (Stm);
4646 end if;
4647 end;
4648 end if;
4649 end if;
4650 end;
4651 end;
4652
4653 -- Check for variables that are never modified
4654
4655 declare
4656 E1 : Entity_Id;
4657 E2 : Entity_Id;
4658
4659 begin
4660 -- If there is a separate spec, then transfer Never_Set_In_Source
4661 -- flags from out parameters to the corresponding entities in the
4662 -- body. The reason we do that is we want to post error flags on
4663 -- the body entities, not the spec entities.
4664
4665 if Present (Spec_Id) then
4666 E1 := First_Entity (Spec_Id);
4667 while Present (E1) loop
4668 if Ekind (E1) = E_Out_Parameter then
4669 E2 := First_Entity (Body_Id);
4670 while Present (E2) loop
4671 exit when Chars (E1) = Chars (E2);
4672 Next_Entity (E2);
4673 end loop;
4674
4675 if Present (E2) then
4676 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4677 end if;
4678 end if;
4679
4680 Next_Entity (E1);
4681 end loop;
4682 end if;
4683
4684 -- Check references of the subprogram spec when we are dealing with
4685 -- an expression function due to it having a generated body.
4686 -- Otherwise, we simply check the formals of the subprogram body.
4687
4688 if Present (Spec_Id)
4689 and then Is_Expression_Function (Spec_Id)
4690 then
4691 Check_References (Spec_Id);
4692 else
4693 Check_References (Body_Id);
4694 end if;
4695 end;
4696
4697 -- Check for nested subprogram, and mark outer level subprogram if so
4698
4699 declare
4700 Ent : Entity_Id;
4701
4702 begin
4703 if Present (Spec_Id) then
4704 Ent := Spec_Id;
4705 else
4706 Ent := Body_Id;
4707 end if;
4708
4709 loop
4710 Ent := Enclosing_Subprogram (Ent);
4711 exit when No (Ent) or else Is_Subprogram (Ent);
4712 end loop;
4713
4714 if Present (Ent) then
4715 Set_Has_Nested_Subprogram (Ent);
4716 end if;
4717 end;
4718
4719 -- Restore the limited views in the spec, if any, to let the back end
4720 -- process it without running into circularities.
4721
4722 if Exch_Views /= No_Elist then
4723 Restore_Limited_Views (Exch_Views);
4724 end if;
4725
4726 if Mask_Types /= No_Elist then
4727 Unmask_Unfrozen_Types (Mask_Types);
4728 end if;
4729
4730 if Present (Desig_View) then
4731 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4732 end if;
4733
4734 <<Leave>>
4735 if Present (Ignored_Ghost_Region) then
4736 Expander_Active := Saved_EA;
4737 end if;
4738
4739 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4740 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4741 end Analyze_Subprogram_Body_Helper;
4742
4743 ------------------------------------
4744 -- Analyze_Subprogram_Declaration --
4745 ------------------------------------
4746
4747 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4748 Scop : constant Entity_Id := Current_Scope;
4749 Designator : Entity_Id;
4750
4751 Is_Completion : Boolean;
4752 -- Indicates whether a null procedure declaration is a completion
4753
4754 begin
4755 -- Null procedures are not allowed in SPARK
4756
4757 if Nkind (Specification (N)) = N_Procedure_Specification
4758 and then Null_Present (Specification (N))
4759 then
4760 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4761
4762 -- Null procedures are allowed in protected types, following the
4763 -- recent AI12-0147.
4764
4765 if Is_Protected_Type (Current_Scope)
4766 and then Ada_Version < Ada_2012
4767 then
4768 Error_Msg_N ("protected operation cannot be a null procedure", N);
4769 end if;
4770
4771 Analyze_Null_Procedure (N, Is_Completion);
4772
4773 -- The null procedure acts as a body, nothing further is needed
4774
4775 if Is_Completion then
4776 return;
4777 end if;
4778 end if;
4779
4780 Designator := Analyze_Subprogram_Specification (Specification (N));
4781
4782 -- A reference may already have been generated for the unit name, in
4783 -- which case the following call is redundant. However it is needed for
4784 -- declarations that are the rewriting of an expression function.
4785
4786 Generate_Definition (Designator);
4787
4788 -- Set the SPARK mode from the current context (may be overwritten later
4789 -- with explicit pragma). This is not done for entry barrier functions
4790 -- because they are generated outside the protected type and should not
4791 -- carry the mode of the enclosing context.
4792
4793 if Nkind (N) = N_Subprogram_Declaration
4794 and then Is_Entry_Barrier_Function (N)
4795 then
4796 null;
4797
4798 else
4799 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4800 Set_SPARK_Pragma_Inherited (Designator);
4801 end if;
4802
4803 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4804 -- the body of this subprogram is instantiated or inlined later and out
4805 -- of context. The body uses this attribute to restore the value of the
4806 -- global flag.
4807
4808 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4809 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4810 end if;
4811
4812 -- Preserve relevant elaboration-related attributes of the context which
4813 -- are no longer available or very expensive to recompute once analysis,
4814 -- resolution, and expansion are over.
4815
4816 Mark_Elaboration_Attributes
4817 (N_Id => Designator,
4818 Checks => True,
4819 Warnings => True);
4820
4821 if Debug_Flag_C then
4822 Write_Str ("==> subprogram spec ");
4823 Write_Name (Chars (Designator));
4824 Write_Str (" from ");
4825 Write_Location (Sloc (N));
4826 Write_Eol;
4827 Indent;
4828 end if;
4829
4830 Validate_RCI_Subprogram_Declaration (N);
4831 New_Overloaded_Entity (Designator);
4832 Check_Delayed_Subprogram (Designator);
4833
4834 -- If the type of the first formal of the current subprogram is a non-
4835 -- generic tagged private type, mark the subprogram as being a private
4836 -- primitive. Ditto if this is a function with controlling result, and
4837 -- the return type is currently private. In both cases, the type of the
4838 -- controlling argument or result must be in the current scope for the
4839 -- operation to be primitive.
4840
4841 if Has_Controlling_Result (Designator)
4842 and then Is_Private_Type (Etype (Designator))
4843 and then Scope (Etype (Designator)) = Current_Scope
4844 and then not Is_Generic_Actual_Type (Etype (Designator))
4845 then
4846 Set_Is_Private_Primitive (Designator);
4847
4848 elsif Present (First_Formal (Designator)) then
4849 declare
4850 Formal_Typ : constant Entity_Id :=
4851 Etype (First_Formal (Designator));
4852 begin
4853 Set_Is_Private_Primitive (Designator,
4854 Is_Tagged_Type (Formal_Typ)
4855 and then Scope (Formal_Typ) = Current_Scope
4856 and then Is_Private_Type (Formal_Typ)
4857 and then not Is_Generic_Actual_Type (Formal_Typ));
4858 end;
4859 end if;
4860
4861 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4862 -- or null.
4863
4864 if Ada_Version >= Ada_2005
4865 and then Comes_From_Source (N)
4866 and then Is_Dispatching_Operation (Designator)
4867 then
4868 declare
4869 E : Entity_Id;
4870 Etyp : Entity_Id;
4871
4872 begin
4873 if Has_Controlling_Result (Designator) then
4874 Etyp := Etype (Designator);
4875
4876 else
4877 E := First_Entity (Designator);
4878 while Present (E)
4879 and then Is_Formal (E)
4880 and then not Is_Controlling_Formal (E)
4881 loop
4882 Next_Entity (E);
4883 end loop;
4884
4885 Etyp := Etype (E);
4886 end if;
4887
4888 if Is_Access_Type (Etyp) then
4889 Etyp := Directly_Designated_Type (Etyp);
4890 end if;
4891
4892 if Is_Interface (Etyp)
4893 and then not Is_Abstract_Subprogram (Designator)
4894 and then not (Ekind (Designator) = E_Procedure
4895 and then Null_Present (Specification (N)))
4896 then
4897 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4898
4899 -- Specialize error message based on procedures vs. functions,
4900 -- since functions can't be null subprograms.
4901
4902 if Ekind (Designator) = E_Procedure then
4903 Error_Msg_N
4904 ("interface procedure % must be abstract or null", N);
4905 else
4906 Error_Msg_N
4907 ("interface function % must be abstract", N);
4908 end if;
4909 end if;
4910 end;
4911 end if;
4912
4913 -- What is the following code for, it used to be
4914
4915 -- ??? Set_Suppress_Elaboration_Checks
4916 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4917
4918 -- The following seems equivalent, but a bit dubious
4919
4920 if Elaboration_Checks_Suppressed (Designator) then
4921 Set_Kill_Elaboration_Checks (Designator);
4922 end if;
4923
4924 -- For a compilation unit, set body required. This flag will only be
4925 -- reset if a valid Import or Interface pragma is processed later on.
4926
4927 if Nkind (Parent (N)) = N_Compilation_Unit then
4928 Set_Body_Required (Parent (N), True);
4929
4930 if Ada_Version >= Ada_2005
4931 and then Nkind (Specification (N)) = N_Procedure_Specification
4932 and then Null_Present (Specification (N))
4933 then
4934 Error_Msg_N
4935 ("null procedure cannot be declared at library level", N);
4936 end if;
4937 end if;
4938
4939 Generate_Reference_To_Formals (Designator);
4940 Check_Eliminated (Designator);
4941
4942 if Debug_Flag_C then
4943 Outdent;
4944 Write_Str ("<== subprogram spec ");
4945 Write_Name (Chars (Designator));
4946 Write_Str (" from ");
4947 Write_Location (Sloc (N));
4948 Write_Eol;
4949 end if;
4950
4951 -- Indicate that this is a protected operation, because it may be used
4952 -- in subsequent declarations within the protected type.
4953
4954 if Is_Protected_Type (Current_Scope) then
4955 Set_Convention (Designator, Convention_Protected);
4956 end if;
4957
4958 List_Inherited_Pre_Post_Aspects (Designator);
4959
4960 -- Process the aspects before establishing the proper categorization in
4961 -- case the subprogram is a compilation unit and one of its aspects is
4962 -- converted into a categorization pragma.
4963
4964 if Has_Aspects (N) then
4965 Analyze_Aspect_Specifications (N, Designator);
4966 end if;
4967
4968 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4969 Set_Categorization_From_Scope (Designator, Scop);
4970
4971 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
4972 -- proper categorization of the unit based on its pragmas.
4973
4974 else
4975 Push_Scope (Designator);
4976 Set_Categorization_From_Pragmas (N);
4977 Validate_Categorization_Dependency (N, Designator);
4978 Pop_Scope;
4979 end if;
4980 end Analyze_Subprogram_Declaration;
4981
4982 --------------------------------------
4983 -- Analyze_Subprogram_Specification --
4984 --------------------------------------
4985
4986 -- Reminder: N here really is a subprogram specification (not a subprogram
4987 -- declaration). This procedure is called to analyze the specification in
4988 -- both subprogram bodies and subprogram declarations (specs).
4989
4990 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4991 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4992 -- Determine whether entity E denotes the spec or body of an invariant
4993 -- procedure.
4994
4995 ------------------------------------
4996 -- Is_Invariant_Procedure_Or_Body --
4997 ------------------------------------
4998
4999 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
5000 Decl : constant Node_Id := Unit_Declaration_Node (E);
5001 Spec : Entity_Id;
5002
5003 begin
5004 if Nkind (Decl) = N_Subprogram_Body then
5005 Spec := Corresponding_Spec (Decl);
5006 else
5007 Spec := E;
5008 end if;
5009
5010 return
5011 Present (Spec)
5012 and then Ekind (Spec) = E_Procedure
5013 and then (Is_Partial_Invariant_Procedure (Spec)
5014 or else Is_Invariant_Procedure (Spec));
5015 end Is_Invariant_Procedure_Or_Body;
5016
5017 -- Local variables
5018
5019 Designator : constant Entity_Id := Defining_Entity (N);
5020 Formals : constant List_Id := Parameter_Specifications (N);
5021
5022 -- Start of processing for Analyze_Subprogram_Specification
5023
5024 begin
5025 -- User-defined operator is not allowed in SPARK, except as a renaming
5026
5027 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
5028 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
5029 then
5030 Check_SPARK_05_Restriction
5031 ("user-defined operator is not allowed", N);
5032 end if;
5033
5034 -- Proceed with analysis. Do not emit a cross-reference entry if the
5035 -- specification comes from an expression function, because it may be
5036 -- the completion of a previous declaration. If it is not, the cross-
5037 -- reference entry will be emitted for the new subprogram declaration.
5038
5039 if Nkind (Parent (N)) /= N_Expression_Function then
5040 Generate_Definition (Designator);
5041 end if;
5042
5043 if Nkind (N) = N_Function_Specification then
5044 Set_Ekind (Designator, E_Function);
5045 Set_Mechanism (Designator, Default_Mechanism);
5046 else
5047 Set_Ekind (Designator, E_Procedure);
5048 Set_Etype (Designator, Standard_Void_Type);
5049 end if;
5050
5051 -- Flag Is_Inlined_Always is True by default, and reversed to False for
5052 -- those subprograms which could be inlined in GNATprove mode (because
5053 -- Body_To_Inline is non-Empty) but should not be inlined.
5054
5055 if GNATprove_Mode then
5056 Set_Is_Inlined_Always (Designator);
5057 end if;
5058
5059 -- Introduce new scope for analysis of the formals and the return type
5060
5061 Set_Scope (Designator, Current_Scope);
5062
5063 if Present (Formals) then
5064 Push_Scope (Designator);
5065 Process_Formals (Formals, N);
5066
5067 -- Check dimensions in N for formals with default expression
5068
5069 Analyze_Dimension_Formals (N, Formals);
5070
5071 -- Ada 2005 (AI-345): If this is an overriding operation of an
5072 -- inherited interface operation, and the controlling type is
5073 -- a synchronized type, replace the type with its corresponding
5074 -- record, to match the proper signature of an overriding operation.
5075 -- Same processing for an access parameter whose designated type is
5076 -- derived from a synchronized interface.
5077
5078 -- This modification is not done for invariant procedures because
5079 -- the corresponding record may not necessarely be visible when the
5080 -- concurrent type acts as the full view of a private type.
5081
5082 -- package Pack is
5083 -- type Prot is private with Type_Invariant => ...;
5084 -- procedure ConcInvariant (Obj : Prot);
5085 -- private
5086 -- protected type Prot is ...;
5087 -- type Concurrent_Record_Prot is record ...;
5088 -- procedure ConcInvariant (Obj : Prot) is
5089 -- ...
5090 -- end ConcInvariant;
5091 -- end Pack;
5092
5093 -- In the example above, both the spec and body of the invariant
5094 -- procedure must utilize the private type as the controlling type.
5095
5096 if Ada_Version >= Ada_2005
5097 and then not Is_Invariant_Procedure_Or_Body (Designator)
5098 then
5099 declare
5100 Formal : Entity_Id;
5101 Formal_Typ : Entity_Id;
5102 Rec_Typ : Entity_Id;
5103 Desig_Typ : Entity_Id;
5104
5105 begin
5106 Formal := First_Formal (Designator);
5107 while Present (Formal) loop
5108 Formal_Typ := Etype (Formal);
5109
5110 if Is_Concurrent_Type (Formal_Typ)
5111 and then Present (Corresponding_Record_Type (Formal_Typ))
5112 then
5113 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5114
5115 if Present (Interfaces (Rec_Typ)) then
5116 Set_Etype (Formal, Rec_Typ);
5117 end if;
5118
5119 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5120 Desig_Typ := Designated_Type (Formal_Typ);
5121
5122 if Is_Concurrent_Type (Desig_Typ)
5123 and then Present (Corresponding_Record_Type (Desig_Typ))
5124 then
5125 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5126
5127 if Present (Interfaces (Rec_Typ)) then
5128 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5129 end if;
5130 end if;
5131 end if;
5132
5133 Next_Formal (Formal);
5134 end loop;
5135 end;
5136 end if;
5137
5138 End_Scope;
5139
5140 -- The subprogram scope is pushed and popped around the processing of
5141 -- the return type for consistency with call above to Process_Formals
5142 -- (which itself can call Analyze_Return_Type), and to ensure that any
5143 -- itype created for the return type will be associated with the proper
5144 -- scope.
5145
5146 elsif Nkind (N) = N_Function_Specification then
5147 Push_Scope (Designator);
5148 Analyze_Return_Type (N);
5149 End_Scope;
5150 end if;
5151
5152 -- Function case
5153
5154 if Nkind (N) = N_Function_Specification then
5155
5156 -- Deal with operator symbol case
5157
5158 if Nkind (Designator) = N_Defining_Operator_Symbol then
5159 Valid_Operator_Definition (Designator);
5160 end if;
5161
5162 May_Need_Actuals (Designator);
5163
5164 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5165 -- the subprogram is abstract also. This does not apply to renaming
5166 -- declarations, where abstractness is inherited, and to subprogram
5167 -- bodies generated for stream operations, which become renamings as
5168 -- bodies.
5169
5170 -- In case of primitives associated with abstract interface types
5171 -- the check is applied later (see Analyze_Subprogram_Declaration).
5172
5173 if not Nkind_In (Original_Node (Parent (N)),
5174 N_Abstract_Subprogram_Declaration,
5175 N_Formal_Abstract_Subprogram_Declaration,
5176 N_Subprogram_Renaming_Declaration)
5177 then
5178 if Is_Abstract_Type (Etype (Designator))
5179 and then not Is_Interface (Etype (Designator))
5180 then
5181 Error_Msg_N
5182 ("function that returns abstract type must be abstract", N);
5183
5184 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5185 -- access result whose designated type is abstract.
5186
5187 elsif Ada_Version >= Ada_2012
5188 and then Nkind (Result_Definition (N)) = N_Access_Definition
5189 and then
5190 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5191 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5192 then
5193 Error_Msg_N
5194 ("function whose access result designates abstract type "
5195 & "must be abstract", N);
5196 end if;
5197 end if;
5198 end if;
5199
5200 return Designator;
5201 end Analyze_Subprogram_Specification;
5202
5203 -----------------------
5204 -- Check_Conformance --
5205 -----------------------
5206
5207 procedure Check_Conformance
5208 (New_Id : Entity_Id;
5209 Old_Id : Entity_Id;
5210 Ctype : Conformance_Type;
5211 Errmsg : Boolean;
5212 Conforms : out Boolean;
5213 Err_Loc : Node_Id := Empty;
5214 Get_Inst : Boolean := False;
5215 Skip_Controlling_Formals : Boolean := False)
5216 is
5217 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5218 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5219 -- If Errmsg is True, then processing continues to post an error message
5220 -- for conformance error on given node. Two messages are output. The
5221 -- first message points to the previous declaration with a general "no
5222 -- conformance" message. The second is the detailed reason, supplied as
5223 -- Msg. The parameter N provide information for a possible & insertion
5224 -- in the message, and also provides the location for posting the
5225 -- message in the absence of a specified Err_Loc location.
5226
5227 function Conventions_Match
5228 (Id1 : Entity_Id;
5229 Id2 : Entity_Id) return Boolean;
5230 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5231 -- match.
5232
5233 -----------------------
5234 -- Conformance_Error --
5235 -----------------------
5236
5237 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5238 Enode : Node_Id;
5239
5240 begin
5241 Conforms := False;
5242
5243 if Errmsg then
5244 if No (Err_Loc) then
5245 Enode := N;
5246 else
5247 Enode := Err_Loc;
5248 end if;
5249
5250 Error_Msg_Sloc := Sloc (Old_Id);
5251
5252 case Ctype is
5253 when Type_Conformant =>
5254 Error_Msg_N -- CODEFIX
5255 ("not type conformant with declaration#!", Enode);
5256
5257 when Mode_Conformant =>
5258 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5259 Error_Msg_N
5260 ("not mode conformant with operation inherited#!",
5261 Enode);
5262 else
5263 Error_Msg_N
5264 ("not mode conformant with declaration#!", Enode);
5265 end if;
5266
5267 when Subtype_Conformant =>
5268 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5269 Error_Msg_N
5270 ("not subtype conformant with operation inherited#!",
5271 Enode);
5272 else
5273 Error_Msg_N
5274 ("not subtype conformant with declaration#!", Enode);
5275 end if;
5276
5277 when Fully_Conformant =>
5278 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5279 Error_Msg_N -- CODEFIX
5280 ("not fully conformant with operation inherited#!",
5281 Enode);
5282 else
5283 Error_Msg_N -- CODEFIX
5284 ("not fully conformant with declaration#!", Enode);
5285 end if;
5286 end case;
5287
5288 Error_Msg_NE (Msg, Enode, N);
5289 end if;
5290 end Conformance_Error;
5291
5292 -----------------------
5293 -- Conventions_Match --
5294 -----------------------
5295
5296 function Conventions_Match
5297 (Id1 : Entity_Id;
5298 Id2 : Entity_Id) return Boolean
5299 is
5300 begin
5301 -- Ignore the conventions of anonymous access-to-subprogram types
5302 -- and subprogram types because these are internally generated and
5303 -- the only way these may receive a convention is if they inherit
5304 -- the convention of a related subprogram.
5305
5306 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5307 E_Subprogram_Type)
5308 or else
5309 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5310 E_Subprogram_Type)
5311 then
5312 return True;
5313
5314 -- Otherwise compare the conventions directly
5315
5316 else
5317 return Convention (Id1) = Convention (Id2);
5318 end if;
5319 end Conventions_Match;
5320
5321 -- Local Variables
5322
5323 Old_Type : constant Entity_Id := Etype (Old_Id);
5324 New_Type : constant Entity_Id := Etype (New_Id);
5325 Old_Formal : Entity_Id;
5326 New_Formal : Entity_Id;
5327 Access_Types_Match : Boolean;
5328 Old_Formal_Base : Entity_Id;
5329 New_Formal_Base : Entity_Id;
5330
5331 -- Start of processing for Check_Conformance
5332
5333 begin
5334 Conforms := True;
5335
5336 -- We need a special case for operators, since they don't appear
5337 -- explicitly.
5338
5339 if Ctype = Type_Conformant then
5340 if Ekind (New_Id) = E_Operator
5341 and then Operator_Matches_Spec (New_Id, Old_Id)
5342 then
5343 return;
5344 end if;
5345 end if;
5346
5347 -- If both are functions/operators, check return types conform
5348
5349 if Old_Type /= Standard_Void_Type
5350 and then
5351 New_Type /= Standard_Void_Type
5352 then
5353 -- If we are checking interface conformance we omit controlling
5354 -- arguments and result, because we are only checking the conformance
5355 -- of the remaining parameters.
5356
5357 if Has_Controlling_Result (Old_Id)
5358 and then Has_Controlling_Result (New_Id)
5359 and then Skip_Controlling_Formals
5360 then
5361 null;
5362
5363 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5364 if Ctype >= Subtype_Conformant
5365 and then not Predicates_Match (Old_Type, New_Type)
5366 then
5367 Conformance_Error
5368 ("\predicate of return type does not match!", New_Id);
5369 else
5370 Conformance_Error
5371 ("\return type does not match!", New_Id);
5372 end if;
5373
5374 return;
5375 end if;
5376
5377 -- Ada 2005 (AI-231): In case of anonymous access types check the
5378 -- null-exclusion and access-to-constant attributes match.
5379
5380 if Ada_Version >= Ada_2005
5381 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5382 and then
5383 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5384 or else Is_Access_Constant (Etype (Old_Type)) /=
5385 Is_Access_Constant (Etype (New_Type)))
5386 then
5387 Conformance_Error ("\return type does not match!", New_Id);
5388 return;
5389 end if;
5390
5391 -- If either is a function/operator and the other isn't, error
5392
5393 elsif Old_Type /= Standard_Void_Type
5394 or else New_Type /= Standard_Void_Type
5395 then
5396 Conformance_Error ("\functions can only match functions!", New_Id);
5397 return;
5398 end if;
5399
5400 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5401 -- If this is a renaming as body, refine error message to indicate that
5402 -- the conflict is with the original declaration. If the entity is not
5403 -- frozen, the conventions don't have to match, the one of the renamed
5404 -- entity is inherited.
5405
5406 if Ctype >= Subtype_Conformant then
5407 if not Conventions_Match (Old_Id, New_Id) then
5408 if not Is_Frozen (New_Id) then
5409 null;
5410
5411 elsif Present (Err_Loc)
5412 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5413 and then Present (Corresponding_Spec (Err_Loc))
5414 then
5415 Error_Msg_Name_1 := Chars (New_Id);
5416 Error_Msg_Name_2 :=
5417 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5418 Conformance_Error ("\prior declaration for% has convention %!");
5419
5420 else
5421 Conformance_Error ("\calling conventions do not match!");
5422 end if;
5423
5424 return;
5425
5426 elsif Is_Formal_Subprogram (Old_Id)
5427 or else Is_Formal_Subprogram (New_Id)
5428 or else (Is_Subprogram (New_Id)
5429 and then Present (Alias (New_Id))
5430 and then Is_Formal_Subprogram (Alias (New_Id)))
5431 then
5432 Conformance_Error
5433 ("\formal subprograms are not subtype conformant "
5434 & "(RM 6.3.1 (17/3))");
5435 end if;
5436 end if;
5437
5438 -- Deal with parameters
5439
5440 -- Note: we use the entity information, rather than going directly
5441 -- to the specification in the tree. This is not only simpler, but
5442 -- absolutely necessary for some cases of conformance tests between
5443 -- operators, where the declaration tree simply does not exist.
5444
5445 Old_Formal := First_Formal (Old_Id);
5446 New_Formal := First_Formal (New_Id);
5447 while Present (Old_Formal) and then Present (New_Formal) loop
5448 if Is_Controlling_Formal (Old_Formal)
5449 and then Is_Controlling_Formal (New_Formal)
5450 and then Skip_Controlling_Formals
5451 then
5452 -- The controlling formals will have different types when
5453 -- comparing an interface operation with its match, but both
5454 -- or neither must be access parameters.
5455
5456 if Is_Access_Type (Etype (Old_Formal))
5457 =
5458 Is_Access_Type (Etype (New_Formal))
5459 then
5460 goto Skip_Controlling_Formal;
5461 else
5462 Conformance_Error
5463 ("\access parameter does not match!", New_Formal);
5464 end if;
5465 end if;
5466
5467 -- Ada 2012: Mode conformance also requires that formal parameters
5468 -- be both aliased, or neither.
5469
5470 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5471 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5472 Conformance_Error
5473 ("\aliased parameter mismatch!", New_Formal);
5474 end if;
5475 end if;
5476
5477 if Ctype = Fully_Conformant then
5478
5479 -- Names must match. Error message is more accurate if we do
5480 -- this before checking that the types of the formals match.
5481
5482 if Chars (Old_Formal) /= Chars (New_Formal) then
5483 Conformance_Error ("\name& does not match!", New_Formal);
5484
5485 -- Set error posted flag on new formal as well to stop
5486 -- junk cascaded messages in some cases.
5487
5488 Set_Error_Posted (New_Formal);
5489 return;
5490 end if;
5491
5492 -- Null exclusion must match
5493
5494 if Null_Exclusion_Present (Parent (Old_Formal))
5495 /=
5496 Null_Exclusion_Present (Parent (New_Formal))
5497 then
5498 -- Only give error if both come from source. This should be
5499 -- investigated some time, since it should not be needed ???
5500
5501 if Comes_From_Source (Old_Formal)
5502 and then
5503 Comes_From_Source (New_Formal)
5504 then
5505 Conformance_Error
5506 ("\null exclusion for& does not match", New_Formal);
5507
5508 -- Mark error posted on the new formal to avoid duplicated
5509 -- complaint about types not matching.
5510
5511 Set_Error_Posted (New_Formal);
5512 end if;
5513 end if;
5514 end if;
5515
5516 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5517 -- case occurs whenever a subprogram is being renamed and one of its
5518 -- parameters imposes a null exclusion. For example:
5519
5520 -- type T is null record;
5521 -- type Acc_T is access T;
5522 -- subtype Acc_T_Sub is Acc_T;
5523
5524 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5525 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5526 -- renames P;
5527
5528 Old_Formal_Base := Etype (Old_Formal);
5529 New_Formal_Base := Etype (New_Formal);
5530
5531 if Get_Inst then
5532 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5533 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5534 end if;
5535
5536 Access_Types_Match := Ada_Version >= Ada_2005
5537
5538 -- Ensure that this rule is only applied when New_Id is a
5539 -- renaming of Old_Id.
5540
5541 and then Nkind (Parent (Parent (New_Id))) =
5542 N_Subprogram_Renaming_Declaration
5543 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5544 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5545 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5546
5547 -- Now handle the allowed access-type case
5548
5549 and then Is_Access_Type (Old_Formal_Base)
5550 and then Is_Access_Type (New_Formal_Base)
5551
5552 -- The type kinds must match. The only exception occurs with
5553 -- multiple generics of the form:
5554
5555 -- generic generic
5556 -- type F is private; type A is private;
5557 -- type F_Ptr is access F; type A_Ptr is access A;
5558 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5559 -- package F_Pack is ... package A_Pack is
5560 -- package F_Inst is
5561 -- new F_Pack (A, A_Ptr, A_P);
5562
5563 -- When checking for conformance between the parameters of A_P
5564 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5565 -- because the compiler has transformed A_Ptr into a subtype of
5566 -- F_Ptr. We catch this case in the code below.
5567
5568 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5569 or else
5570 (Is_Generic_Type (Old_Formal_Base)
5571 and then Is_Generic_Type (New_Formal_Base)
5572 and then Is_Internal (New_Formal_Base)
5573 and then Etype (Etype (New_Formal_Base)) =
5574 Old_Formal_Base))
5575 and then Directly_Designated_Type (Old_Formal_Base) =
5576 Directly_Designated_Type (New_Formal_Base)
5577 and then ((Is_Itype (Old_Formal_Base)
5578 and then (Can_Never_Be_Null (Old_Formal_Base)
5579 or else Is_Access_Constant
5580 (Old_Formal_Base)))
5581 or else
5582 (Is_Itype (New_Formal_Base)
5583 and then (Can_Never_Be_Null (New_Formal_Base)
5584 or else Is_Access_Constant
5585 (New_Formal_Base))));
5586
5587 -- Types must always match. In the visible part of an instance,
5588 -- usual overloading rules for dispatching operations apply, and
5589 -- we check base types (not the actual subtypes).
5590
5591 if In_Instance_Visible_Part
5592 and then Is_Dispatching_Operation (New_Id)
5593 then
5594 if not Conforming_Types
5595 (T1 => Base_Type (Etype (Old_Formal)),
5596 T2 => Base_Type (Etype (New_Formal)),
5597 Ctype => Ctype,
5598 Get_Inst => Get_Inst)
5599 and then not Access_Types_Match
5600 then
5601 Conformance_Error ("\type of & does not match!", New_Formal);
5602 return;
5603 end if;
5604
5605 elsif not Conforming_Types
5606 (T1 => Old_Formal_Base,
5607 T2 => New_Formal_Base,
5608 Ctype => Ctype,
5609 Get_Inst => Get_Inst)
5610 and then not Access_Types_Match
5611 then
5612 -- Don't give error message if old type is Any_Type. This test
5613 -- avoids some cascaded errors, e.g. in case of a bad spec.
5614
5615 if Errmsg and then Old_Formal_Base = Any_Type then
5616 Conforms := False;
5617 else
5618 if Ctype >= Subtype_Conformant
5619 and then
5620 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5621 then
5622 Conformance_Error
5623 ("\predicate of & does not match!", New_Formal);
5624 else
5625 Conformance_Error
5626 ("\type of & does not match!", New_Formal);
5627
5628 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5629 then
5630 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5631 end if;
5632 end if;
5633 end if;
5634
5635 return;
5636 end if;
5637
5638 -- For mode conformance, mode must match
5639
5640 if Ctype >= Mode_Conformant then
5641 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5642 if not Ekind_In (New_Id, E_Function, E_Procedure)
5643 or else not Is_Primitive_Wrapper (New_Id)
5644 then
5645 Conformance_Error ("\mode of & does not match!", New_Formal);
5646
5647 else
5648 declare
5649 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5650 begin
5651 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5652 then
5653 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5654 else
5655 Conformance_Error
5656 ("\mode of & does not match!", New_Formal);
5657 end if;
5658 end;
5659 end if;
5660
5661 return;
5662
5663 -- Part of mode conformance for access types is having the same
5664 -- constant modifier.
5665
5666 elsif Access_Types_Match
5667 and then Is_Access_Constant (Old_Formal_Base) /=
5668 Is_Access_Constant (New_Formal_Base)
5669 then
5670 Conformance_Error
5671 ("\constant modifier does not match!", New_Formal);
5672 return;
5673 end if;
5674 end if;
5675
5676 if Ctype >= Subtype_Conformant then
5677
5678 -- Ada 2005 (AI-231): In case of anonymous access types check
5679 -- the null-exclusion and access-to-constant attributes must
5680 -- match. For null exclusion, we test the types rather than the
5681 -- formals themselves, since the attribute is only set reliably
5682 -- on the formals in the Ada 95 case, and we exclude the case
5683 -- where Old_Formal is marked as controlling, to avoid errors
5684 -- when matching completing bodies with dispatching declarations
5685 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5686
5687 if Ada_Version >= Ada_2005
5688 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5689 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5690 and then
5691 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5692 Can_Never_Be_Null (Etype (New_Formal))
5693 and then
5694 not Is_Controlling_Formal (Old_Formal))
5695 or else
5696 Is_Access_Constant (Etype (Old_Formal)) /=
5697 Is_Access_Constant (Etype (New_Formal)))
5698
5699 -- Do not complain if error already posted on New_Formal. This
5700 -- avoids some redundant error messages.
5701
5702 and then not Error_Posted (New_Formal)
5703 then
5704 -- It is allowed to omit the null-exclusion in case of stream
5705 -- attribute subprograms. We recognize stream subprograms
5706 -- through their TSS-generated suffix.
5707
5708 declare
5709 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5710
5711 begin
5712 if TSS_Name /= TSS_Stream_Read
5713 and then TSS_Name /= TSS_Stream_Write
5714 and then TSS_Name /= TSS_Stream_Input
5715 and then TSS_Name /= TSS_Stream_Output
5716 then
5717 -- Here we have a definite conformance error. It is worth
5718 -- special casing the error message for the case of a
5719 -- controlling formal (which excludes null).
5720
5721 if Is_Controlling_Formal (New_Formal) then
5722 Error_Msg_Node_2 := Scope (New_Formal);
5723 Conformance_Error
5724 ("\controlling formal & of & excludes null, "
5725 & "declaration must exclude null as well",
5726 New_Formal);
5727
5728 -- Normal case (couldn't we give more detail here???)
5729
5730 else
5731 Conformance_Error
5732 ("\type of & does not match!", New_Formal);
5733 end if;
5734
5735 return;
5736 end if;
5737 end;
5738 end if;
5739 end if;
5740
5741 -- Full conformance checks
5742
5743 if Ctype = Fully_Conformant then
5744
5745 -- We have checked already that names match
5746
5747 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5748
5749 -- Check default expressions for in parameters
5750
5751 declare
5752 NewD : constant Boolean :=
5753 Present (Default_Value (New_Formal));
5754 OldD : constant Boolean :=
5755 Present (Default_Value (Old_Formal));
5756 begin
5757 if NewD or OldD then
5758
5759 -- The old default value has been analyzed because the
5760 -- current full declaration will have frozen everything
5761 -- before. The new default value has not been analyzed,
5762 -- so analyze it now before we check for conformance.
5763
5764 if NewD then
5765 Push_Scope (New_Id);
5766 Preanalyze_Spec_Expression
5767 (Default_Value (New_Formal), Etype (New_Formal));
5768 End_Scope;
5769 end if;
5770
5771 if not (NewD and OldD)
5772 or else not Fully_Conformant_Expressions
5773 (Default_Value (Old_Formal),
5774 Default_Value (New_Formal))
5775 then
5776 Conformance_Error
5777 ("\default expression for & does not match!",
5778 New_Formal);
5779 return;
5780 end if;
5781 end if;
5782 end;
5783 end if;
5784 end if;
5785
5786 -- A couple of special checks for Ada 83 mode. These checks are
5787 -- skipped if either entity is an operator in package Standard,
5788 -- or if either old or new instance is not from the source program.
5789
5790 if Ada_Version = Ada_83
5791 and then Sloc (Old_Id) > Standard_Location
5792 and then Sloc (New_Id) > Standard_Location
5793 and then Comes_From_Source (Old_Id)
5794 and then Comes_From_Source (New_Id)
5795 then
5796 declare
5797 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5798 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5799
5800 begin
5801 -- Explicit IN must be present or absent in both cases. This
5802 -- test is required only in the full conformance case.
5803
5804 if In_Present (Old_Param) /= In_Present (New_Param)
5805 and then Ctype = Fully_Conformant
5806 then
5807 Conformance_Error
5808 ("\(Ada 83) IN must appear in both declarations",
5809 New_Formal);
5810 return;
5811 end if;
5812
5813 -- Grouping (use of comma in param lists) must be the same
5814 -- This is where we catch a misconformance like:
5815
5816 -- A, B : Integer
5817 -- A : Integer; B : Integer
5818
5819 -- which are represented identically in the tree except
5820 -- for the setting of the flags More_Ids and Prev_Ids.
5821
5822 if More_Ids (Old_Param) /= More_Ids (New_Param)
5823 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5824 then
5825 Conformance_Error
5826 ("\grouping of & does not match!", New_Formal);
5827 return;
5828 end if;
5829 end;
5830 end if;
5831
5832 -- This label is required when skipping controlling formals
5833
5834 <<Skip_Controlling_Formal>>
5835
5836 Next_Formal (Old_Formal);
5837 Next_Formal (New_Formal);
5838 end loop;
5839
5840 if Present (Old_Formal) then
5841 Conformance_Error ("\too few parameters!");
5842 return;
5843
5844 elsif Present (New_Formal) then
5845 Conformance_Error ("\too many parameters!", New_Formal);
5846 return;
5847 end if;
5848 end Check_Conformance;
5849
5850 -----------------------
5851 -- Check_Conventions --
5852 -----------------------
5853
5854 procedure Check_Conventions (Typ : Entity_Id) is
5855 Ifaces_List : Elist_Id;
5856
5857 procedure Check_Convention (Op : Entity_Id);
5858 -- Verify that the convention of inherited dispatching operation Op is
5859 -- consistent among all subprograms it overrides. In order to minimize
5860 -- the search, Search_From is utilized to designate a specific point in
5861 -- the list rather than iterating over the whole list once more.
5862
5863 ----------------------
5864 -- Check_Convention --
5865 ----------------------
5866
5867 procedure Check_Convention (Op : Entity_Id) is
5868 Op_Conv : constant Convention_Id := Convention (Op);
5869 Iface_Conv : Convention_Id;
5870 Iface_Elmt : Elmt_Id;
5871 Iface_Prim_Elmt : Elmt_Id;
5872 Iface_Prim : Entity_Id;
5873
5874 begin
5875 Iface_Elmt := First_Elmt (Ifaces_List);
5876 while Present (Iface_Elmt) loop
5877 Iface_Prim_Elmt :=
5878 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5879 while Present (Iface_Prim_Elmt) loop
5880 Iface_Prim := Node (Iface_Prim_Elmt);
5881 Iface_Conv := Convention (Iface_Prim);
5882
5883 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5884 and then Iface_Conv /= Op_Conv
5885 then
5886 Error_Msg_N
5887 ("inconsistent conventions in primitive operations", Typ);
5888
5889 Error_Msg_Name_1 := Chars (Op);
5890 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5891 Error_Msg_Sloc := Sloc (Op);
5892
5893 if Comes_From_Source (Op) or else No (Alias (Op)) then
5894 if not Present (Overridden_Operation (Op)) then
5895 Error_Msg_N ("\\primitive % defined #", Typ);
5896 else
5897 Error_Msg_N
5898 ("\\overriding operation % with "
5899 & "convention % defined #", Typ);
5900 end if;
5901
5902 else pragma Assert (Present (Alias (Op)));
5903 Error_Msg_Sloc := Sloc (Alias (Op));
5904 Error_Msg_N ("\\inherited operation % with "
5905 & "convention % defined #", Typ);
5906 end if;
5907
5908 Error_Msg_Name_1 := Chars (Op);
5909 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5910 Error_Msg_Sloc := Sloc (Iface_Prim);
5911 Error_Msg_N ("\\overridden operation % with "
5912 & "convention % defined #", Typ);
5913
5914 -- Avoid cascading errors
5915
5916 return;
5917 end if;
5918
5919 Next_Elmt (Iface_Prim_Elmt);
5920 end loop;
5921
5922 Next_Elmt (Iface_Elmt);
5923 end loop;
5924 end Check_Convention;
5925
5926 -- Local variables
5927
5928 Prim_Op : Entity_Id;
5929 Prim_Op_Elmt : Elmt_Id;
5930
5931 -- Start of processing for Check_Conventions
5932
5933 begin
5934 if not Has_Interfaces (Typ) then
5935 return;
5936 end if;
5937
5938 Collect_Interfaces (Typ, Ifaces_List);
5939
5940 -- The algorithm checks every overriding dispatching operation against
5941 -- all the corresponding overridden dispatching operations, detecting
5942 -- differences in conventions.
5943
5944 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5945 while Present (Prim_Op_Elmt) loop
5946 Prim_Op := Node (Prim_Op_Elmt);
5947
5948 -- A small optimization: skip the predefined dispatching operations
5949 -- since they always have the same convention.
5950
5951 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5952 Check_Convention (Prim_Op);
5953 end if;
5954
5955 Next_Elmt (Prim_Op_Elmt);
5956 end loop;
5957 end Check_Conventions;
5958
5959 ------------------------------
5960 -- Check_Delayed_Subprogram --
5961 ------------------------------
5962
5963 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5964 procedure Possible_Freeze (T : Entity_Id);
5965 -- T is the type of either a formal parameter or of the return type. If
5966 -- T is not yet frozen and needs a delayed freeze, then the subprogram
5967 -- itself must be delayed.
5968
5969 ---------------------
5970 -- Possible_Freeze --
5971 ---------------------
5972
5973 procedure Possible_Freeze (T : Entity_Id) is
5974 Scop : constant Entity_Id := Scope (Designator);
5975
5976 begin
5977 -- If the subprogram appears within a package instance (which may be
5978 -- the wrapper package of a subprogram instance) the freeze node for
5979 -- that package will freeze the subprogram at the proper place, so
5980 -- do not emit a freeze node for the subprogram, given that it may
5981 -- appear in the wrong scope.
5982
5983 if Ekind (Scop) = E_Package
5984 and then not Comes_From_Source (Scop)
5985 and then Is_Generic_Instance (Scop)
5986 then
5987 null;
5988
5989 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5990 Set_Has_Delayed_Freeze (Designator);
5991
5992 elsif Is_Access_Type (T)
5993 and then Has_Delayed_Freeze (Designated_Type (T))
5994 and then not Is_Frozen (Designated_Type (T))
5995 then
5996 Set_Has_Delayed_Freeze (Designator);
5997 end if;
5998 end Possible_Freeze;
5999
6000 -- Local variables
6001
6002 F : Entity_Id;
6003
6004 -- Start of processing for Check_Delayed_Subprogram
6005
6006 begin
6007 -- All subprograms, including abstract subprograms, may need a freeze
6008 -- node if some formal type or the return type needs one.
6009
6010 Possible_Freeze (Etype (Designator));
6011 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6012
6013 -- Need delayed freeze if any of the formal types themselves need a
6014 -- delayed freeze and are not yet frozen.
6015
6016 F := First_Formal (Designator);
6017 while Present (F) loop
6018 Possible_Freeze (Etype (F));
6019 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6020 Next_Formal (F);
6021 end loop;
6022
6023 -- Mark functions that return by reference. Note that it cannot be done
6024 -- for delayed_freeze subprograms because the underlying returned type
6025 -- may not be known yet (for private types).
6026
6027 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6028 declare
6029 Typ : constant Entity_Id := Etype (Designator);
6030 Utyp : constant Entity_Id := Underlying_Type (Typ);
6031
6032 begin
6033 if Is_Limited_View (Typ) then
6034 Set_Returns_By_Ref (Designator);
6035
6036 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6037 Set_Returns_By_Ref (Designator);
6038 end if;
6039 end;
6040 end if;
6041 end Check_Delayed_Subprogram;
6042
6043 ------------------------------------
6044 -- Check_Discriminant_Conformance --
6045 ------------------------------------
6046
6047 procedure Check_Discriminant_Conformance
6048 (N : Node_Id;
6049 Prev : Entity_Id;
6050 Prev_Loc : Node_Id)
6051 is
6052 Old_Discr : Entity_Id := First_Discriminant (Prev);
6053 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6054 New_Discr_Id : Entity_Id;
6055 New_Discr_Type : Entity_Id;
6056
6057 procedure Conformance_Error (Msg : String; N : Node_Id);
6058 -- Post error message for conformance error on given node. Two messages
6059 -- are output. The first points to the previous declaration with a
6060 -- general "no conformance" message. The second is the detailed reason,
6061 -- supplied as Msg. The parameter N provide information for a possible
6062 -- & insertion in the message.
6063
6064 -----------------------
6065 -- Conformance_Error --
6066 -----------------------
6067
6068 procedure Conformance_Error (Msg : String; N : Node_Id) is
6069 begin
6070 Error_Msg_Sloc := Sloc (Prev_Loc);
6071 Error_Msg_N -- CODEFIX
6072 ("not fully conformant with declaration#!", N);
6073 Error_Msg_NE (Msg, N, N);
6074 end Conformance_Error;
6075
6076 -- Start of processing for Check_Discriminant_Conformance
6077
6078 begin
6079 while Present (Old_Discr) and then Present (New_Discr) loop
6080 New_Discr_Id := Defining_Identifier (New_Discr);
6081
6082 -- The subtype mark of the discriminant on the full type has not
6083 -- been analyzed so we do it here. For an access discriminant a new
6084 -- type is created.
6085
6086 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6087 New_Discr_Type :=
6088 Access_Definition (N, Discriminant_Type (New_Discr));
6089
6090 else
6091 Find_Type (Discriminant_Type (New_Discr));
6092 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6093
6094 -- Ada 2005: if the discriminant definition carries a null
6095 -- exclusion, create an itype to check properly for consistency
6096 -- with partial declaration.
6097
6098 if Is_Access_Type (New_Discr_Type)
6099 and then Null_Exclusion_Present (New_Discr)
6100 then
6101 New_Discr_Type :=
6102 Create_Null_Excluding_Itype
6103 (T => New_Discr_Type,
6104 Related_Nod => New_Discr,
6105 Scope_Id => Current_Scope);
6106 end if;
6107 end if;
6108
6109 if not Conforming_Types
6110 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6111 then
6112 Conformance_Error ("type of & does not match!", New_Discr_Id);
6113 return;
6114 else
6115 -- Treat the new discriminant as an occurrence of the old one,
6116 -- for navigation purposes, and fill in some semantic
6117 -- information, for completeness.
6118
6119 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6120 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6121 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6122 end if;
6123
6124 -- Names must match
6125
6126 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6127 Conformance_Error ("name & does not match!", New_Discr_Id);
6128 return;
6129 end if;
6130
6131 -- Default expressions must match
6132
6133 declare
6134 NewD : constant Boolean :=
6135 Present (Expression (New_Discr));
6136 OldD : constant Boolean :=
6137 Present (Expression (Parent (Old_Discr)));
6138
6139 begin
6140 if NewD or OldD then
6141
6142 -- The old default value has been analyzed and expanded,
6143 -- because the current full declaration will have frozen
6144 -- everything before. The new default values have not been
6145 -- expanded, so expand now to check conformance.
6146
6147 if NewD then
6148 Preanalyze_Spec_Expression
6149 (Expression (New_Discr), New_Discr_Type);
6150 end if;
6151
6152 if not (NewD and OldD)
6153 or else not Fully_Conformant_Expressions
6154 (Expression (Parent (Old_Discr)),
6155 Expression (New_Discr))
6156
6157 then
6158 Conformance_Error
6159 ("default expression for & does not match!",
6160 New_Discr_Id);
6161 return;
6162 end if;
6163 end if;
6164 end;
6165
6166 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6167
6168 if Ada_Version = Ada_83 then
6169 declare
6170 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6171
6172 begin
6173 -- Grouping (use of comma in param lists) must be the same
6174 -- This is where we catch a misconformance like:
6175
6176 -- A, B : Integer
6177 -- A : Integer; B : Integer
6178
6179 -- which are represented identically in the tree except
6180 -- for the setting of the flags More_Ids and Prev_Ids.
6181
6182 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6183 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6184 then
6185 Conformance_Error
6186 ("grouping of & does not match!", New_Discr_Id);
6187 return;
6188 end if;
6189 end;
6190 end if;
6191
6192 Next_Discriminant (Old_Discr);
6193 Next (New_Discr);
6194 end loop;
6195
6196 if Present (Old_Discr) then
6197 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6198 return;
6199
6200 elsif Present (New_Discr) then
6201 Conformance_Error
6202 ("too many discriminants!", Defining_Identifier (New_Discr));
6203 return;
6204 end if;
6205 end Check_Discriminant_Conformance;
6206
6207 ----------------------------
6208 -- Check_Fully_Conformant --
6209 ----------------------------
6210
6211 procedure Check_Fully_Conformant
6212 (New_Id : Entity_Id;
6213 Old_Id : Entity_Id;
6214 Err_Loc : Node_Id := Empty)
6215 is
6216 Result : Boolean;
6217 pragma Warnings (Off, Result);
6218 begin
6219 Check_Conformance
6220 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6221 end Check_Fully_Conformant;
6222
6223 --------------------------
6224 -- Check_Limited_Return --
6225 --------------------------
6226
6227 procedure Check_Limited_Return
6228 (N : Node_Id;
6229 Expr : Node_Id;
6230 R_Type : Entity_Id)
6231 is
6232 begin
6233 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6234 -- replaced by anonymous access results. This is an incompatibility with
6235 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6236 -- controllable with special switch. ???
6237
6238 -- A limited interface that is not immutably limited is OK
6239
6240 if Is_Limited_Interface (R_Type)
6241 and then
6242 not (Is_Task_Interface (R_Type)
6243 or else Is_Protected_Interface (R_Type)
6244 or else Is_Synchronized_Interface (R_Type))
6245 then
6246 null;
6247
6248 elsif Is_Limited_Type (R_Type)
6249 and then not Is_Interface (R_Type)
6250 and then Comes_From_Source (N)
6251 and then not In_Instance_Body
6252 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6253 then
6254 -- Error in Ada 2005
6255
6256 if Ada_Version >= Ada_2005
6257 and then not Debug_Flag_Dot_L
6258 and then not GNAT_Mode
6259 then
6260 Error_Msg_N
6261 ("(Ada 2005) cannot copy object of a limited type "
6262 & "(RM-2005 6.5(5.5/2))", Expr);
6263
6264 if Is_Limited_View (R_Type) then
6265 Error_Msg_N
6266 ("\return by reference not permitted in Ada 2005", Expr);
6267 end if;
6268
6269 -- Warn in Ada 95 mode, to give folks a heads up about this
6270 -- incompatibility.
6271
6272 -- In GNAT mode, this is just a warning, to allow it to be evilly
6273 -- turned off. Otherwise it is a real error.
6274
6275 -- In a generic context, simplify the warning because it makes no
6276 -- sense to discuss pass-by-reference or copy.
6277
6278 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6279 if Inside_A_Generic then
6280 Error_Msg_N
6281 ("return of limited object not permitted in Ada 2005 "
6282 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6283
6284 elsif Is_Limited_View (R_Type) then
6285 Error_Msg_N
6286 ("return by reference not permitted in Ada 2005 "
6287 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6288 else
6289 Error_Msg_N
6290 ("cannot copy object of a limited type in Ada 2005 "
6291 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6292 end if;
6293
6294 -- Ada 95 mode, and compatibility warnings disabled
6295
6296 else
6297 pragma Assert (Ada_Version <= Ada_95);
6298 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6299 return; -- skip continuation messages below
6300 end if;
6301
6302 if not Inside_A_Generic then
6303 Error_Msg_N
6304 ("\consider switching to return of access type", Expr);
6305 Explain_Limited_Type (R_Type, Expr);
6306 end if;
6307 end if;
6308 end Check_Limited_Return;
6309
6310 ---------------------------
6311 -- Check_Mode_Conformant --
6312 ---------------------------
6313
6314 procedure Check_Mode_Conformant
6315 (New_Id : Entity_Id;
6316 Old_Id : Entity_Id;
6317 Err_Loc : Node_Id := Empty;
6318 Get_Inst : Boolean := False)
6319 is
6320 Result : Boolean;
6321 pragma Warnings (Off, Result);
6322 begin
6323 Check_Conformance
6324 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6325 end Check_Mode_Conformant;
6326
6327 --------------------------------
6328 -- Check_Overriding_Indicator --
6329 --------------------------------
6330
6331 procedure Check_Overriding_Indicator
6332 (Subp : Entity_Id;
6333 Overridden_Subp : Entity_Id;
6334 Is_Primitive : Boolean)
6335 is
6336 Decl : Node_Id;
6337 Spec : Node_Id;
6338
6339 begin
6340 -- No overriding indicator for literals
6341
6342 if Ekind (Subp) = E_Enumeration_Literal then
6343 return;
6344
6345 elsif Ekind (Subp) = E_Entry then
6346 Decl := Parent (Subp);
6347
6348 -- No point in analyzing a malformed operator
6349
6350 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6351 and then Error_Posted (Subp)
6352 then
6353 return;
6354
6355 else
6356 Decl := Unit_Declaration_Node (Subp);
6357 end if;
6358
6359 if Nkind_In (Decl, N_Subprogram_Body,
6360 N_Subprogram_Body_Stub,
6361 N_Subprogram_Declaration,
6362 N_Abstract_Subprogram_Declaration,
6363 N_Subprogram_Renaming_Declaration)
6364 then
6365 Spec := Specification (Decl);
6366
6367 elsif Nkind (Decl) = N_Entry_Declaration then
6368 Spec := Decl;
6369
6370 else
6371 return;
6372 end if;
6373
6374 -- The overriding operation is type conformant with the overridden one,
6375 -- but the names of the formals are not required to match. If the names
6376 -- appear permuted in the overriding operation, this is a possible
6377 -- source of confusion that is worth diagnosing. Controlling formals
6378 -- often carry names that reflect the type, and it is not worthwhile
6379 -- requiring that their names match.
6380
6381 if Present (Overridden_Subp)
6382 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6383 then
6384 declare
6385 Form1 : Entity_Id;
6386 Form2 : Entity_Id;
6387
6388 begin
6389 Form1 := First_Formal (Subp);
6390 Form2 := First_Formal (Overridden_Subp);
6391
6392 -- If the overriding operation is a synchronized operation, skip
6393 -- the first parameter of the overridden operation, which is
6394 -- implicit in the new one. If the operation is declared in the
6395 -- body it is not primitive and all formals must match.
6396
6397 if Is_Concurrent_Type (Scope (Subp))
6398 and then Is_Tagged_Type (Scope (Subp))
6399 and then not Has_Completion (Scope (Subp))
6400 then
6401 Form2 := Next_Formal (Form2);
6402 end if;
6403
6404 if Present (Form1) then
6405 Form1 := Next_Formal (Form1);
6406 Form2 := Next_Formal (Form2);
6407 end if;
6408
6409 while Present (Form1) loop
6410 if not Is_Controlling_Formal (Form1)
6411 and then Present (Next_Formal (Form2))
6412 and then Chars (Form1) = Chars (Next_Formal (Form2))
6413 then
6414 Error_Msg_Node_2 := Alias (Overridden_Subp);
6415 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6416 Error_Msg_NE
6417 ("& does not match corresponding formal of&#",
6418 Form1, Form1);
6419 exit;
6420 end if;
6421
6422 Next_Formal (Form1);
6423 Next_Formal (Form2);
6424 end loop;
6425 end;
6426 end if;
6427
6428 -- If there is an overridden subprogram, then check that there is no
6429 -- "not overriding" indicator, and mark the subprogram as overriding.
6430 -- This is not done if the overridden subprogram is marked as hidden,
6431 -- which can occur for the case of inherited controlled operations
6432 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6433 -- subprogram is not itself hidden. (Note: This condition could probably
6434 -- be simplified, leaving out the testing for the specific controlled
6435 -- cases, but it seems safer and clearer this way, and echoes similar
6436 -- special-case tests of this kind in other places.)
6437
6438 if Present (Overridden_Subp)
6439 and then (not Is_Hidden (Overridden_Subp)
6440 or else
6441 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6442 Name_Adjust,
6443 Name_Finalize)
6444 and then Present (Alias (Overridden_Subp))
6445 and then not Is_Hidden (Alias (Overridden_Subp))))
6446 then
6447 if Must_Not_Override (Spec) then
6448 Error_Msg_Sloc := Sloc (Overridden_Subp);
6449
6450 if Ekind (Subp) = E_Entry then
6451 Error_Msg_NE
6452 ("entry & overrides inherited operation #", Spec, Subp);
6453 else
6454 Error_Msg_NE
6455 ("subprogram & overrides inherited operation #", Spec, Subp);
6456 end if;
6457
6458 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6459 -- as an extension of Root_Controlled, and thus has a useless Adjust
6460 -- operation. This operation should not be inherited by other limited
6461 -- controlled types. An explicit Adjust for them is not overriding.
6462
6463 elsif Must_Override (Spec)
6464 and then Chars (Overridden_Subp) = Name_Adjust
6465 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6466 and then Present (Alias (Overridden_Subp))
6467 and then In_Predefined_Unit (Alias (Overridden_Subp))
6468 then
6469 Get_Name_String
6470 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6471 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6472
6473 elsif Is_Subprogram (Subp) then
6474 if Is_Init_Proc (Subp) then
6475 null;
6476
6477 elsif No (Overridden_Operation (Subp)) then
6478
6479 -- For entities generated by Derive_Subprograms the overridden
6480 -- operation is the inherited primitive (which is available
6481 -- through the attribute alias)
6482
6483 if (Is_Dispatching_Operation (Subp)
6484 or else Is_Dispatching_Operation (Overridden_Subp))
6485 and then not Comes_From_Source (Overridden_Subp)
6486 and then Find_Dispatching_Type (Overridden_Subp) =
6487 Find_Dispatching_Type (Subp)
6488 and then Present (Alias (Overridden_Subp))
6489 and then Comes_From_Source (Alias (Overridden_Subp))
6490 then
6491 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6492 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6493
6494 else
6495 Set_Overridden_Operation (Subp, Overridden_Subp);
6496 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6497 end if;
6498 end if;
6499 end if;
6500
6501 -- If primitive flag is set or this is a protected operation, then
6502 -- the operation is overriding at the point of its declaration, so
6503 -- warn if necessary. Otherwise it may have been declared before the
6504 -- operation it overrides and no check is required.
6505
6506 if Style_Check
6507 and then not Must_Override (Spec)
6508 and then (Is_Primitive
6509 or else Ekind (Scope (Subp)) = E_Protected_Type)
6510 then
6511 Style.Missing_Overriding (Decl, Subp);
6512 end if;
6513
6514 -- If Subp is an operator, it may override a predefined operation, if
6515 -- it is defined in the same scope as the type to which it applies.
6516 -- In that case Overridden_Subp is empty because of our implicit
6517 -- representation for predefined operators. We have to check whether the
6518 -- signature of Subp matches that of a predefined operator. Note that
6519 -- first argument provides the name of the operator, and the second
6520 -- argument the signature that may match that of a standard operation.
6521 -- If the indicator is overriding, then the operator must match a
6522 -- predefined signature, because we know already that there is no
6523 -- explicit overridden operation.
6524
6525 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6526 if Must_Not_Override (Spec) then
6527
6528 -- If this is not a primitive or a protected subprogram, then
6529 -- "not overriding" is illegal.
6530
6531 if not Is_Primitive
6532 and then Ekind (Scope (Subp)) /= E_Protected_Type
6533 then
6534 Error_Msg_N ("overriding indicator only allowed "
6535 & "if subprogram is primitive", Subp);
6536
6537 elsif Can_Override_Operator (Subp) then
6538 Error_Msg_NE
6539 ("subprogram& overrides predefined operator ", Spec, Subp);
6540 end if;
6541
6542 elsif Must_Override (Spec) then
6543 if No (Overridden_Operation (Subp))
6544 and then not Can_Override_Operator (Subp)
6545 then
6546 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6547 end if;
6548
6549 elsif not Error_Posted (Subp)
6550 and then Style_Check
6551 and then Can_Override_Operator (Subp)
6552 and then not In_Predefined_Unit (Subp)
6553 then
6554 -- If style checks are enabled, indicate that the indicator is
6555 -- missing. However, at the point of declaration, the type of
6556 -- which this is a primitive operation may be private, in which
6557 -- case the indicator would be premature.
6558
6559 if Has_Private_Declaration (Etype (Subp))
6560 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6561 then
6562 null;
6563 else
6564 Style.Missing_Overriding (Decl, Subp);
6565 end if;
6566 end if;
6567
6568 elsif Must_Override (Spec) then
6569 if Ekind (Subp) = E_Entry then
6570 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6571 else
6572 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6573 end if;
6574
6575 -- If the operation is marked "not overriding" and it's not primitive
6576 -- then an error is issued, unless this is an operation of a task or
6577 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6578 -- has been specified have already been checked above.
6579
6580 elsif Must_Not_Override (Spec)
6581 and then not Is_Primitive
6582 and then Ekind (Subp) /= E_Entry
6583 and then Ekind (Scope (Subp)) /= E_Protected_Type
6584 then
6585 Error_Msg_N
6586 ("overriding indicator only allowed if subprogram is primitive",
6587 Subp);
6588 return;
6589 end if;
6590 end Check_Overriding_Indicator;
6591
6592 -------------------
6593 -- Check_Returns --
6594 -------------------
6595
6596 -- Note: this procedure needs to know far too much about how the expander
6597 -- messes with exceptions. The use of the flag Exception_Junk and the
6598 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6599 -- works, but is not very clean. It would be better if the expansion
6600 -- routines would leave Original_Node working nicely, and we could use
6601 -- Original_Node here to ignore all the peculiar expander messing ???
6602
6603 procedure Check_Returns
6604 (HSS : Node_Id;
6605 Mode : Character;
6606 Err : out Boolean;
6607 Proc : Entity_Id := Empty)
6608 is
6609 Handler : Node_Id;
6610
6611 procedure Check_Statement_Sequence (L : List_Id);
6612 -- Internal recursive procedure to check a list of statements for proper
6613 -- termination by a return statement (or a transfer of control or a
6614 -- compound statement that is itself internally properly terminated).
6615
6616 ------------------------------
6617 -- Check_Statement_Sequence --
6618 ------------------------------
6619
6620 procedure Check_Statement_Sequence (L : List_Id) is
6621 Last_Stm : Node_Id;
6622 Stm : Node_Id;
6623 Kind : Node_Kind;
6624
6625 function Assert_False return Boolean;
6626 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6627 -- rewritten as a null statement when assertions are off. The assert
6628 -- is not active, but it is still enough to kill the warning.
6629
6630 ------------------
6631 -- Assert_False --
6632 ------------------
6633
6634 function Assert_False return Boolean is
6635 Orig : constant Node_Id := Original_Node (Last_Stm);
6636
6637 begin
6638 if Nkind (Orig) = N_Pragma
6639 and then Pragma_Name (Orig) = Name_Assert
6640 and then not Error_Posted (Orig)
6641 then
6642 declare
6643 Arg : constant Node_Id :=
6644 First (Pragma_Argument_Associations (Orig));
6645 Exp : constant Node_Id := Expression (Arg);
6646 begin
6647 return Nkind (Exp) = N_Identifier
6648 and then Chars (Exp) = Name_False;
6649 end;
6650
6651 else
6652 return False;
6653 end if;
6654 end Assert_False;
6655
6656 -- Local variables
6657
6658 Raise_Exception_Call : Boolean;
6659 -- Set True if statement sequence terminated by Raise_Exception call
6660 -- or a Reraise_Occurrence call.
6661
6662 -- Start of processing for Check_Statement_Sequence
6663
6664 begin
6665 Raise_Exception_Call := False;
6666
6667 -- Get last real statement
6668
6669 Last_Stm := Last (L);
6670
6671 -- Deal with digging out exception handler statement sequences that
6672 -- have been transformed by the local raise to goto optimization.
6673 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6674 -- optimization has occurred, we are looking at something like:
6675
6676 -- begin
6677 -- original stmts in block
6678
6679 -- exception \
6680 -- when excep1 => |
6681 -- goto L1; | omitted if No_Exception_Propagation
6682 -- when excep2 => |
6683 -- goto L2; /
6684 -- end;
6685
6686 -- goto L3; -- skip handler when exception not raised
6687
6688 -- <<L1>> -- target label for local exception
6689 -- begin
6690 -- estmts1
6691 -- end;
6692
6693 -- goto L3;
6694
6695 -- <<L2>>
6696 -- begin
6697 -- estmts2
6698 -- end;
6699
6700 -- <<L3>>
6701
6702 -- and what we have to do is to dig out the estmts1 and estmts2
6703 -- sequences (which were the original sequences of statements in
6704 -- the exception handlers) and check them.
6705
6706 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6707 Stm := Last_Stm;
6708 loop
6709 Prev (Stm);
6710 exit when No (Stm);
6711 exit when Nkind (Stm) /= N_Block_Statement;
6712 exit when not Exception_Junk (Stm);
6713 Prev (Stm);
6714 exit when No (Stm);
6715 exit when Nkind (Stm) /= N_Label;
6716 exit when not Exception_Junk (Stm);
6717 Check_Statement_Sequence
6718 (Statements (Handled_Statement_Sequence (Next (Stm))));
6719
6720 Prev (Stm);
6721 Last_Stm := Stm;
6722 exit when No (Stm);
6723 exit when Nkind (Stm) /= N_Goto_Statement;
6724 exit when not Exception_Junk (Stm);
6725 end loop;
6726 end if;
6727
6728 -- Don't count pragmas
6729
6730 while Nkind (Last_Stm) = N_Pragma
6731
6732 -- Don't count call to SS_Release (can happen after Raise_Exception)
6733
6734 or else
6735 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6736 and then
6737 Nkind (Name (Last_Stm)) = N_Identifier
6738 and then
6739 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6740
6741 -- Don't count exception junk
6742
6743 or else
6744 (Nkind_In (Last_Stm, N_Goto_Statement,
6745 N_Label,
6746 N_Object_Declaration)
6747 and then Exception_Junk (Last_Stm))
6748 or else Nkind (Last_Stm) in N_Push_xxx_Label
6749 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6750
6751 -- Inserted code, such as finalization calls, is irrelevant: we only
6752 -- need to check original source.
6753
6754 or else Is_Rewrite_Insertion (Last_Stm)
6755 loop
6756 Prev (Last_Stm);
6757 end loop;
6758
6759 -- Here we have the "real" last statement
6760
6761 Kind := Nkind (Last_Stm);
6762
6763 -- Transfer of control, OK. Note that in the No_Return procedure
6764 -- case, we already diagnosed any explicit return statements, so
6765 -- we can treat them as OK in this context.
6766
6767 if Is_Transfer (Last_Stm) then
6768 return;
6769
6770 -- Check cases of explicit non-indirect procedure calls
6771
6772 elsif Kind = N_Procedure_Call_Statement
6773 and then Is_Entity_Name (Name (Last_Stm))
6774 then
6775 -- Check call to Raise_Exception procedure which is treated
6776 -- specially, as is a call to Reraise_Occurrence.
6777
6778 -- We suppress the warning in these cases since it is likely that
6779 -- the programmer really does not expect to deal with the case
6780 -- of Null_Occurrence, and thus would find a warning about a
6781 -- missing return curious, and raising Program_Error does not
6782 -- seem such a bad behavior if this does occur.
6783
6784 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6785 -- behavior will be to raise Constraint_Error (see AI-329).
6786
6787 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6788 or else
6789 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6790 then
6791 Raise_Exception_Call := True;
6792
6793 -- For Raise_Exception call, test first argument, if it is
6794 -- an attribute reference for a 'Identity call, then we know
6795 -- that the call cannot possibly return.
6796
6797 declare
6798 Arg : constant Node_Id :=
6799 Original_Node (First_Actual (Last_Stm));
6800 begin
6801 if Nkind (Arg) = N_Attribute_Reference
6802 and then Attribute_Name (Arg) = Name_Identity
6803 then
6804 return;
6805 end if;
6806 end;
6807 end if;
6808
6809 -- If statement, need to look inside if there is an else and check
6810 -- each constituent statement sequence for proper termination.
6811
6812 elsif Kind = N_If_Statement
6813 and then Present (Else_Statements (Last_Stm))
6814 then
6815 Check_Statement_Sequence (Then_Statements (Last_Stm));
6816 Check_Statement_Sequence (Else_Statements (Last_Stm));
6817
6818 if Present (Elsif_Parts (Last_Stm)) then
6819 declare
6820 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6821
6822 begin
6823 while Present (Elsif_Part) loop
6824 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6825 Next (Elsif_Part);
6826 end loop;
6827 end;
6828 end if;
6829
6830 return;
6831
6832 -- Case statement, check each case for proper termination
6833
6834 elsif Kind = N_Case_Statement then
6835 declare
6836 Case_Alt : Node_Id;
6837 begin
6838 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6839 while Present (Case_Alt) loop
6840 Check_Statement_Sequence (Statements (Case_Alt));
6841 Next_Non_Pragma (Case_Alt);
6842 end loop;
6843 end;
6844
6845 return;
6846
6847 -- Block statement, check its handled sequence of statements
6848
6849 elsif Kind = N_Block_Statement then
6850 declare
6851 Err1 : Boolean;
6852
6853 begin
6854 Check_Returns
6855 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6856
6857 if Err1 then
6858 Err := True;
6859 end if;
6860
6861 return;
6862 end;
6863
6864 -- Loop statement. If there is an iteration scheme, we can definitely
6865 -- fall out of the loop. Similarly if there is an exit statement, we
6866 -- can fall out. In either case we need a following return.
6867
6868 elsif Kind = N_Loop_Statement then
6869 if Present (Iteration_Scheme (Last_Stm))
6870 or else Has_Exit (Entity (Identifier (Last_Stm)))
6871 then
6872 null;
6873
6874 -- A loop with no exit statement or iteration scheme is either
6875 -- an infinite loop, or it has some other exit (raise/return).
6876 -- In either case, no warning is required.
6877
6878 else
6879 return;
6880 end if;
6881
6882 -- Timed entry call, check entry call and delay alternatives
6883
6884 -- Note: in expanded code, the timed entry call has been converted
6885 -- to a set of expanded statements on which the check will work
6886 -- correctly in any case.
6887
6888 elsif Kind = N_Timed_Entry_Call then
6889 declare
6890 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6891 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6892
6893 begin
6894 -- If statement sequence of entry call alternative is missing,
6895 -- then we can definitely fall through, and we post the error
6896 -- message on the entry call alternative itself.
6897
6898 if No (Statements (ECA)) then
6899 Last_Stm := ECA;
6900
6901 -- If statement sequence of delay alternative is missing, then
6902 -- we can definitely fall through, and we post the error
6903 -- message on the delay alternative itself.
6904
6905 -- Note: if both ECA and DCA are missing the return, then we
6906 -- post only one message, should be enough to fix the bugs.
6907 -- If not we will get a message next time on the DCA when the
6908 -- ECA is fixed.
6909
6910 elsif No (Statements (DCA)) then
6911 Last_Stm := DCA;
6912
6913 -- Else check both statement sequences
6914
6915 else
6916 Check_Statement_Sequence (Statements (ECA));
6917 Check_Statement_Sequence (Statements (DCA));
6918 return;
6919 end if;
6920 end;
6921
6922 -- Conditional entry call, check entry call and else part
6923
6924 -- Note: in expanded code, the conditional entry call has been
6925 -- converted to a set of expanded statements on which the check
6926 -- will work correctly in any case.
6927
6928 elsif Kind = N_Conditional_Entry_Call then
6929 declare
6930 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6931
6932 begin
6933 -- If statement sequence of entry call alternative is missing,
6934 -- then we can definitely fall through, and we post the error
6935 -- message on the entry call alternative itself.
6936
6937 if No (Statements (ECA)) then
6938 Last_Stm := ECA;
6939
6940 -- Else check statement sequence and else part
6941
6942 else
6943 Check_Statement_Sequence (Statements (ECA));
6944 Check_Statement_Sequence (Else_Statements (Last_Stm));
6945 return;
6946 end if;
6947 end;
6948 end if;
6949
6950 -- If we fall through, issue appropriate message
6951
6952 if Mode = 'F' then
6953
6954 -- Kill warning if last statement is a raise exception call,
6955 -- or a pragma Assert (False). Note that with assertions enabled,
6956 -- such a pragma has been converted into a raise exception call
6957 -- already, so the Assert_False is for the assertions off case.
6958
6959 if not Raise_Exception_Call and then not Assert_False then
6960
6961 -- In GNATprove mode, it is an error to have a missing return
6962
6963 Error_Msg_Warn := SPARK_Mode /= On;
6964
6965 -- Issue error message or warning
6966
6967 Error_Msg_N
6968 ("RETURN statement missing following this statement<<!",
6969 Last_Stm);
6970 Error_Msg_N
6971 ("\Program_Error ]<<!", Last_Stm);
6972 end if;
6973
6974 -- Note: we set Err even though we have not issued a warning
6975 -- because we still have a case of a missing return. This is
6976 -- an extremely marginal case, probably will never be noticed
6977 -- but we might as well get it right.
6978
6979 Err := True;
6980
6981 -- Otherwise we have the case of a procedure marked No_Return
6982
6983 else
6984 if not Raise_Exception_Call then
6985 if GNATprove_Mode then
6986 Error_Msg_N
6987 ("implied return after this statement would have raised "
6988 & "Program_Error", Last_Stm);
6989
6990 -- In normal compilation mode, do not warn on a generated call
6991 -- (e.g. in the body of a renaming as completion).
6992
6993 elsif Comes_From_Source (Last_Stm) then
6994 Error_Msg_N
6995 ("implied return after this statement will raise "
6996 & "Program_Error??", Last_Stm);
6997 end if;
6998
6999 Error_Msg_Warn := SPARK_Mode /= On;
7000 Error_Msg_NE
7001 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
7002 end if;
7003
7004 declare
7005 RE : constant Node_Id :=
7006 Make_Raise_Program_Error (Sloc (Last_Stm),
7007 Reason => PE_Implicit_Return);
7008 begin
7009 Insert_After (Last_Stm, RE);
7010 Analyze (RE);
7011 end;
7012 end if;
7013 end Check_Statement_Sequence;
7014
7015 -- Start of processing for Check_Returns
7016
7017 begin
7018 Err := False;
7019 Check_Statement_Sequence (Statements (HSS));
7020
7021 if Present (Exception_Handlers (HSS)) then
7022 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7023 while Present (Handler) loop
7024 Check_Statement_Sequence (Statements (Handler));
7025 Next_Non_Pragma (Handler);
7026 end loop;
7027 end if;
7028 end Check_Returns;
7029
7030 ----------------------------
7031 -- Check_Subprogram_Order --
7032 ----------------------------
7033
7034 procedure Check_Subprogram_Order (N : Node_Id) is
7035
7036 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7037 -- This is used to check if S1 > S2 in the sense required by this test,
7038 -- for example nameab < namec, but name2 < name10.
7039
7040 -----------------------------
7041 -- Subprogram_Name_Greater --
7042 -----------------------------
7043
7044 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7045 L1, L2 : Positive;
7046 N1, N2 : Natural;
7047
7048 begin
7049 -- Deal with special case where names are identical except for a
7050 -- numerical suffix. These are handled specially, taking the numeric
7051 -- ordering from the suffix into account.
7052
7053 L1 := S1'Last;
7054 while S1 (L1) in '0' .. '9' loop
7055 L1 := L1 - 1;
7056 end loop;
7057
7058 L2 := S2'Last;
7059 while S2 (L2) in '0' .. '9' loop
7060 L2 := L2 - 1;
7061 end loop;
7062
7063 -- If non-numeric parts non-equal, do straight compare
7064
7065 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7066 return S1 > S2;
7067
7068 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7069 -- that a missing suffix is treated as numeric zero in this test.
7070
7071 else
7072 N1 := 0;
7073 while L1 < S1'Last loop
7074 L1 := L1 + 1;
7075 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7076 end loop;
7077
7078 N2 := 0;
7079 while L2 < S2'Last loop
7080 L2 := L2 + 1;
7081 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7082 end loop;
7083
7084 return N1 > N2;
7085 end if;
7086 end Subprogram_Name_Greater;
7087
7088 -- Start of processing for Check_Subprogram_Order
7089
7090 begin
7091 -- Check body in alpha order if this is option
7092
7093 if Style_Check
7094 and then Style_Check_Order_Subprograms
7095 and then Nkind (N) = N_Subprogram_Body
7096 and then Comes_From_Source (N)
7097 and then In_Extended_Main_Source_Unit (N)
7098 then
7099 declare
7100 LSN : String_Ptr
7101 renames Scope_Stack.Table
7102 (Scope_Stack.Last).Last_Subprogram_Name;
7103
7104 Body_Id : constant Entity_Id :=
7105 Defining_Entity (Specification (N));
7106
7107 begin
7108 Get_Decoded_Name_String (Chars (Body_Id));
7109
7110 if LSN /= null then
7111 if Subprogram_Name_Greater
7112 (LSN.all, Name_Buffer (1 .. Name_Len))
7113 then
7114 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7115 end if;
7116
7117 Free (LSN);
7118 end if;
7119
7120 LSN := new String'(Name_Buffer (1 .. Name_Len));
7121 end;
7122 end if;
7123 end Check_Subprogram_Order;
7124
7125 ------------------------------
7126 -- Check_Subtype_Conformant --
7127 ------------------------------
7128
7129 procedure Check_Subtype_Conformant
7130 (New_Id : Entity_Id;
7131 Old_Id : Entity_Id;
7132 Err_Loc : Node_Id := Empty;
7133 Skip_Controlling_Formals : Boolean := False;
7134 Get_Inst : Boolean := False)
7135 is
7136 Result : Boolean;
7137 pragma Warnings (Off, Result);
7138 begin
7139 Check_Conformance
7140 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7141 Skip_Controlling_Formals => Skip_Controlling_Formals,
7142 Get_Inst => Get_Inst);
7143 end Check_Subtype_Conformant;
7144
7145 -----------------------------------
7146 -- Check_Synchronized_Overriding --
7147 -----------------------------------
7148
7149 procedure Check_Synchronized_Overriding
7150 (Def_Id : Entity_Id;
7151 Overridden_Subp : out Entity_Id)
7152 is
7153 Ifaces_List : Elist_Id;
7154 In_Scope : Boolean;
7155 Typ : Entity_Id;
7156
7157 function Is_Valid_Formal (F : Entity_Id) return Boolean;
7158 -- Predicate for legality rule in 9.4 (11.9/2): If an inherited
7159 -- subprogram is implemented by a protected procedure or entry,
7160 -- its first parameter must be out, in out, or access-to-variable.
7161
7162 function Matches_Prefixed_View_Profile
7163 (Prim_Params : List_Id;
7164 Iface_Params : List_Id) return Boolean;
7165 -- Determine whether a subprogram's parameter profile Prim_Params
7166 -- matches that of a potentially overridden interface subprogram
7167 -- Iface_Params. Also determine if the type of first parameter of
7168 -- Iface_Params is an implemented interface.
7169
7170 ----------------------
7171 -- Is_Valid_Formal --
7172 ----------------------
7173
7174 function Is_Valid_Formal (F : Entity_Id) return Boolean is
7175 begin
7176 return
7177 Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
7178 or else
7179 (Nkind (Parameter_Type (Parent (F))) = N_Access_Definition
7180 and then not Constant_Present (Parameter_Type (Parent (F))));
7181 end Is_Valid_Formal;
7182
7183 -----------------------------------
7184 -- Matches_Prefixed_View_Profile --
7185 -----------------------------------
7186
7187 function Matches_Prefixed_View_Profile
7188 (Prim_Params : List_Id;
7189 Iface_Params : List_Id) return Boolean
7190 is
7191 function Is_Implemented
7192 (Ifaces_List : Elist_Id;
7193 Iface : Entity_Id) return Boolean;
7194 -- Determine if Iface is implemented by the current task or
7195 -- protected type.
7196
7197 --------------------
7198 -- Is_Implemented --
7199 --------------------
7200
7201 function Is_Implemented
7202 (Ifaces_List : Elist_Id;
7203 Iface : Entity_Id) return Boolean
7204 is
7205 Iface_Elmt : Elmt_Id;
7206
7207 begin
7208 Iface_Elmt := First_Elmt (Ifaces_List);
7209 while Present (Iface_Elmt) loop
7210 if Node (Iface_Elmt) = Iface then
7211 return True;
7212 end if;
7213
7214 Next_Elmt (Iface_Elmt);
7215 end loop;
7216
7217 return False;
7218 end Is_Implemented;
7219
7220 -- Local variables
7221
7222 Iface_Id : Entity_Id;
7223 Iface_Param : Node_Id;
7224 Iface_Typ : Entity_Id;
7225 Prim_Id : Entity_Id;
7226 Prim_Param : Node_Id;
7227 Prim_Typ : Entity_Id;
7228
7229 -- Start of processing for Matches_Prefixed_View_Profile
7230
7231 begin
7232 Iface_Param := First (Iface_Params);
7233 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7234
7235 if Is_Access_Type (Iface_Typ) then
7236 Iface_Typ := Designated_Type (Iface_Typ);
7237 end if;
7238
7239 Prim_Param := First (Prim_Params);
7240
7241 -- The first parameter of the potentially overridden subprogram must
7242 -- be an interface implemented by Prim.
7243
7244 if not Is_Interface (Iface_Typ)
7245 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7246 then
7247 return False;
7248 end if;
7249
7250 -- The checks on the object parameters are done, so move on to the
7251 -- rest of the parameters.
7252
7253 if not In_Scope then
7254 Prim_Param := Next (Prim_Param);
7255 end if;
7256
7257 Iface_Param := Next (Iface_Param);
7258 while Present (Iface_Param) and then Present (Prim_Param) loop
7259 Iface_Id := Defining_Identifier (Iface_Param);
7260 Iface_Typ := Find_Parameter_Type (Iface_Param);
7261
7262 Prim_Id := Defining_Identifier (Prim_Param);
7263 Prim_Typ := Find_Parameter_Type (Prim_Param);
7264
7265 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7266 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7267 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7268 then
7269 Iface_Typ := Designated_Type (Iface_Typ);
7270 Prim_Typ := Designated_Type (Prim_Typ);
7271 end if;
7272
7273 -- Case of multiple interface types inside a parameter profile
7274
7275 -- (Obj_Param : in out Iface; ...; Param : Iface)
7276
7277 -- If the interface type is implemented, then the matching type in
7278 -- the primitive should be the implementing record type.
7279
7280 if Ekind (Iface_Typ) = E_Record_Type
7281 and then Is_Interface (Iface_Typ)
7282 and then Is_Implemented (Ifaces_List, Iface_Typ)
7283 then
7284 if Prim_Typ /= Typ then
7285 return False;
7286 end if;
7287
7288 -- The two parameters must be both mode and subtype conformant
7289
7290 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7291 or else not
7292 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7293 then
7294 return False;
7295 end if;
7296
7297 Next (Iface_Param);
7298 Next (Prim_Param);
7299 end loop;
7300
7301 -- One of the two lists contains more parameters than the other
7302
7303 if Present (Iface_Param) or else Present (Prim_Param) then
7304 return False;
7305 end if;
7306
7307 return True;
7308 end Matches_Prefixed_View_Profile;
7309
7310 -- Start of processing for Check_Synchronized_Overriding
7311
7312 begin
7313 Overridden_Subp := Empty;
7314
7315 -- Def_Id must be an entry or a subprogram. We should skip predefined
7316 -- primitives internally generated by the front end; however at this
7317 -- stage predefined primitives are still not fully decorated. As a
7318 -- minor optimization we skip here internally generated subprograms.
7319
7320 if (Ekind (Def_Id) /= E_Entry
7321 and then Ekind (Def_Id) /= E_Function
7322 and then Ekind (Def_Id) /= E_Procedure)
7323 or else not Comes_From_Source (Def_Id)
7324 then
7325 return;
7326 end if;
7327
7328 -- Search for the concurrent declaration since it contains the list of
7329 -- all implemented interfaces. In this case, the subprogram is declared
7330 -- within the scope of a protected or a task type.
7331
7332 if Present (Scope (Def_Id))
7333 and then Is_Concurrent_Type (Scope (Def_Id))
7334 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7335 then
7336 Typ := Scope (Def_Id);
7337 In_Scope := True;
7338
7339 -- The enclosing scope is not a synchronized type and the subprogram
7340 -- has no formals.
7341
7342 elsif No (First_Formal (Def_Id)) then
7343 return;
7344
7345 -- The subprogram has formals and hence it may be a primitive of a
7346 -- concurrent type.
7347
7348 else
7349 Typ := Etype (First_Formal (Def_Id));
7350
7351 if Is_Access_Type (Typ) then
7352 Typ := Directly_Designated_Type (Typ);
7353 end if;
7354
7355 if Is_Concurrent_Type (Typ)
7356 and then not Is_Generic_Actual_Type (Typ)
7357 then
7358 In_Scope := False;
7359
7360 -- This case occurs when the concurrent type is declared within a
7361 -- generic unit. As a result the corresponding record has been built
7362 -- and used as the type of the first formal, we just have to retrieve
7363 -- the corresponding concurrent type.
7364
7365 elsif Is_Concurrent_Record_Type (Typ)
7366 and then not Is_Class_Wide_Type (Typ)
7367 and then Present (Corresponding_Concurrent_Type (Typ))
7368 then
7369 Typ := Corresponding_Concurrent_Type (Typ);
7370 In_Scope := False;
7371
7372 else
7373 return;
7374 end if;
7375 end if;
7376
7377 -- There is no overriding to check if this is an inherited operation in
7378 -- a type derivation for a generic actual.
7379
7380 Collect_Interfaces (Typ, Ifaces_List);
7381
7382 if Is_Empty_Elmt_List (Ifaces_List) then
7383 return;
7384 end if;
7385
7386 -- Determine whether entry or subprogram Def_Id overrides a primitive
7387 -- operation that belongs to one of the interfaces in Ifaces_List.
7388
7389 declare
7390 Candidate : Entity_Id := Empty;
7391 Hom : Entity_Id := Empty;
7392 Subp : Entity_Id := Empty;
7393
7394 begin
7395 -- Traverse the homonym chain, looking for a potentially overridden
7396 -- subprogram that belongs to an implemented interface.
7397
7398 Hom := Current_Entity_In_Scope (Def_Id);
7399 while Present (Hom) loop
7400 Subp := Hom;
7401
7402 if Subp = Def_Id
7403 or else not Is_Overloadable (Subp)
7404 or else not Is_Primitive (Subp)
7405 or else not Is_Dispatching_Operation (Subp)
7406 or else not Present (Find_Dispatching_Type (Subp))
7407 or else not Is_Interface (Find_Dispatching_Type (Subp))
7408 then
7409 null;
7410
7411 -- Entries and procedures can override abstract or null interface
7412 -- procedures.
7413
7414 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7415 and then Ekind (Subp) = E_Procedure
7416 and then Matches_Prefixed_View_Profile
7417 (Parameter_Specifications (Parent (Def_Id)),
7418 Parameter_Specifications (Parent (Subp)))
7419 then
7420 Candidate := Subp;
7421
7422 -- For an overridden subprogram Subp, check whether the mode
7423 -- of its first parameter is correct depending on the kind of
7424 -- synchronized type.
7425
7426 declare
7427 Formal : constant Node_Id := First_Formal (Candidate);
7428
7429 begin
7430 -- In order for an entry or a protected procedure to
7431 -- override, the first parameter of the overridden routine
7432 -- must be of mode "out", "in out", or access-to-variable.
7433
7434 if Ekind_In (Candidate, E_Entry, E_Procedure)
7435 and then Is_Protected_Type (Typ)
7436 and then not Is_Valid_Formal (Formal)
7437 then
7438 null;
7439
7440 -- All other cases are OK since a task entry or routine does
7441 -- not have a restriction on the mode of the first parameter
7442 -- of the overridden interface routine.
7443
7444 else
7445 Overridden_Subp := Candidate;
7446 return;
7447 end if;
7448 end;
7449
7450 -- Functions can override abstract interface functions. Return
7451 -- types must be subtype conformant.
7452
7453 elsif Ekind (Def_Id) = E_Function
7454 and then Ekind (Subp) = E_Function
7455 and then Matches_Prefixed_View_Profile
7456 (Parameter_Specifications (Parent (Def_Id)),
7457 Parameter_Specifications (Parent (Subp)))
7458 and then Conforming_Types
7459 (Etype (Def_Id), Etype (Subp), Subtype_Conformant)
7460 then
7461 Candidate := Subp;
7462
7463 -- If an inherited subprogram is implemented by a protected
7464 -- function, then the first parameter of the inherited
7465 -- subprogram shall be of mode in, but not an access-to-
7466 -- variable parameter (RM 9.4(11/9)).
7467
7468 if Present (First_Formal (Subp))
7469 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7470 and then
7471 (not Is_Access_Type (Etype (First_Formal (Subp)))
7472 or else
7473 Is_Access_Constant (Etype (First_Formal (Subp))))
7474 then
7475 Overridden_Subp := Subp;
7476 return;
7477 end if;
7478 end if;
7479
7480 Hom := Homonym (Hom);
7481 end loop;
7482
7483 -- After examining all candidates for overriding, we are left with
7484 -- the best match, which is a mode-incompatible interface routine.
7485
7486 if In_Scope and then Present (Candidate) then
7487 Error_Msg_PT (Def_Id, Candidate);
7488 end if;
7489
7490 Overridden_Subp := Candidate;
7491 return;
7492 end;
7493 end Check_Synchronized_Overriding;
7494
7495 ---------------------------
7496 -- Check_Type_Conformant --
7497 ---------------------------
7498
7499 procedure Check_Type_Conformant
7500 (New_Id : Entity_Id;
7501 Old_Id : Entity_Id;
7502 Err_Loc : Node_Id := Empty)
7503 is
7504 Result : Boolean;
7505 pragma Warnings (Off, Result);
7506 begin
7507 Check_Conformance
7508 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7509 end Check_Type_Conformant;
7510
7511 ---------------------------
7512 -- Can_Override_Operator --
7513 ---------------------------
7514
7515 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7516 Typ : Entity_Id;
7517
7518 begin
7519 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7520 return False;
7521
7522 else
7523 Typ := Base_Type (Etype (First_Formal (Subp)));
7524
7525 -- Check explicitly that the operation is a primitive of the type
7526
7527 return Operator_Matches_Spec (Subp, Subp)
7528 and then not Is_Generic_Type (Typ)
7529 and then Scope (Subp) = Scope (Typ)
7530 and then not Is_Class_Wide_Type (Typ);
7531 end if;
7532 end Can_Override_Operator;
7533
7534 ----------------------
7535 -- Conforming_Types --
7536 ----------------------
7537
7538 function Conforming_Types
7539 (T1 : Entity_Id;
7540 T2 : Entity_Id;
7541 Ctype : Conformance_Type;
7542 Get_Inst : Boolean := False) return Boolean
7543 is
7544 function Base_Types_Match
7545 (Typ_1 : Entity_Id;
7546 Typ_2 : Entity_Id) return Boolean;
7547 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7548 -- in different scopes (e.g. parent and child instances), then verify
7549 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7550 -- the same subtype chain. The whole purpose of this procedure is to
7551 -- prevent spurious ambiguities in an instantiation that may arise if
7552 -- two distinct generic types are instantiated with the same actual.
7553
7554 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7555 -- An access parameter can designate an incomplete type. If the
7556 -- incomplete type is the limited view of a type from a limited_
7557 -- with_clause, check whether the non-limited view is available.
7558 -- If it is a (non-limited) incomplete type, get the full view.
7559
7560 function Matches_Limited_With_View
7561 (Typ_1 : Entity_Id;
7562 Typ_2 : Entity_Id) return Boolean;
7563 -- Returns True if and only if either Typ_1 denotes a limited view of
7564 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7565 -- the limited with view of a type is used in a subprogram declaration
7566 -- and the subprogram body is in the scope of a regular with clause for
7567 -- the same unit. In such a case, the two type entities are considered
7568 -- identical for purposes of conformance checking.
7569
7570 ----------------------
7571 -- Base_Types_Match --
7572 ----------------------
7573
7574 function Base_Types_Match
7575 (Typ_1 : Entity_Id;
7576 Typ_2 : Entity_Id) return Boolean
7577 is
7578 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7579 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7580
7581 begin
7582 if Typ_1 = Typ_2 then
7583 return True;
7584
7585 elsif Base_1 = Base_2 then
7586
7587 -- The following is too permissive. A more precise test should
7588 -- check that the generic actual is an ancestor subtype of the
7589 -- other ???.
7590
7591 -- See code in Find_Corresponding_Spec that applies an additional
7592 -- filter to handle accidental amiguities in instances.
7593
7594 return
7595 not Is_Generic_Actual_Type (Typ_1)
7596 or else not Is_Generic_Actual_Type (Typ_2)
7597 or else Scope (Typ_1) /= Scope (Typ_2);
7598
7599 -- If Typ_2 is a generic actual type it is declared as the subtype of
7600 -- the actual. If that actual is itself a subtype we need to use its
7601 -- own base type to check for compatibility.
7602
7603 elsif Ekind (Base_2) = Ekind (Typ_2)
7604 and then Base_1 = Base_Type (Base_2)
7605 then
7606 return True;
7607
7608 elsif Ekind (Base_1) = Ekind (Typ_1)
7609 and then Base_2 = Base_Type (Base_1)
7610 then
7611 return True;
7612
7613 else
7614 return False;
7615 end if;
7616 end Base_Types_Match;
7617
7618 --------------------------
7619 -- Find_Designated_Type --
7620 --------------------------
7621
7622 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7623 Desig : Entity_Id;
7624
7625 begin
7626 Desig := Directly_Designated_Type (Typ);
7627
7628 if Ekind (Desig) = E_Incomplete_Type then
7629
7630 -- If regular incomplete type, get full view if available
7631
7632 if Present (Full_View (Desig)) then
7633 Desig := Full_View (Desig);
7634
7635 -- If limited view of a type, get non-limited view if available,
7636 -- and check again for a regular incomplete type.
7637
7638 elsif Present (Non_Limited_View (Desig)) then
7639 Desig := Get_Full_View (Non_Limited_View (Desig));
7640 end if;
7641 end if;
7642
7643 return Desig;
7644 end Find_Designated_Type;
7645
7646 -------------------------------
7647 -- Matches_Limited_With_View --
7648 -------------------------------
7649
7650 function Matches_Limited_With_View
7651 (Typ_1 : Entity_Id;
7652 Typ_2 : Entity_Id) return Boolean
7653 is
7654 function Is_Matching_Limited_View
7655 (Typ : Entity_Id;
7656 View : Entity_Id) return Boolean;
7657 -- Determine whether non-limited view View denotes type Typ in some
7658 -- conformant fashion.
7659
7660 ------------------------------
7661 -- Is_Matching_Limited_View --
7662 ------------------------------
7663
7664 function Is_Matching_Limited_View
7665 (Typ : Entity_Id;
7666 View : Entity_Id) return Boolean
7667 is
7668 Root_Typ : Entity_Id;
7669 Root_View : Entity_Id;
7670
7671 begin
7672 -- The non-limited view directly denotes the type
7673
7674 if Typ = View then
7675 return True;
7676
7677 -- The type is a subtype of the non-limited view
7678
7679 elsif Is_Subtype_Of (Typ, View) then
7680 return True;
7681
7682 -- Both the non-limited view and the type denote class-wide types
7683
7684 elsif Is_Class_Wide_Type (Typ)
7685 and then Is_Class_Wide_Type (View)
7686 then
7687 Root_Typ := Root_Type (Typ);
7688 Root_View := Root_Type (View);
7689
7690 if Root_Typ = Root_View then
7691 return True;
7692
7693 -- An incomplete tagged type and its full view may receive two
7694 -- distinct class-wide types when the related package has not
7695 -- been analyzed yet.
7696
7697 -- package Pack is
7698 -- type T is tagged; -- CW_1
7699 -- type T is tagged null record; -- CW_2
7700 -- end Pack;
7701
7702 -- This is because the package lacks any semantic information
7703 -- that may eventually link both views of T. As a consequence,
7704 -- a client of the limited view of Pack will see CW_2 while a
7705 -- client of the non-limited view of Pack will see CW_1.
7706
7707 elsif Is_Incomplete_Type (Root_Typ)
7708 and then Present (Full_View (Root_Typ))
7709 and then Full_View (Root_Typ) = Root_View
7710 then
7711 return True;
7712
7713 elsif Is_Incomplete_Type (Root_View)
7714 and then Present (Full_View (Root_View))
7715 and then Full_View (Root_View) = Root_Typ
7716 then
7717 return True;
7718 end if;
7719 end if;
7720
7721 return False;
7722 end Is_Matching_Limited_View;
7723
7724 -- Start of processing for Matches_Limited_With_View
7725
7726 begin
7727 -- In some cases a type imported through a limited_with clause, and
7728 -- its non-limited view are both visible, for example in an anonymous
7729 -- access-to-class-wide type in a formal, or when building the body
7730 -- for a subprogram renaming after the subprogram has been frozen.
7731 -- In these cases both entities designate the same type. In addition,
7732 -- if one of them is an actual in an instance, it may be a subtype of
7733 -- the non-limited view of the other.
7734
7735 if From_Limited_With (Typ_1)
7736 and then From_Limited_With (Typ_2)
7737 and then Available_View (Typ_1) = Available_View (Typ_2)
7738 then
7739 return True;
7740
7741 elsif From_Limited_With (Typ_1) then
7742 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7743
7744 elsif From_Limited_With (Typ_2) then
7745 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7746
7747 else
7748 return False;
7749 end if;
7750 end Matches_Limited_With_View;
7751
7752 -- Local variables
7753
7754 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7755
7756 Type_1 : Entity_Id := T1;
7757 Type_2 : Entity_Id := T2;
7758
7759 -- Start of processing for Conforming_Types
7760
7761 begin
7762 -- The context is an instance association for a formal access-to-
7763 -- subprogram type; the formal parameter types require mapping because
7764 -- they may denote other formal parameters of the generic unit.
7765
7766 if Get_Inst then
7767 Type_1 := Get_Instance_Of (T1);
7768 Type_2 := Get_Instance_Of (T2);
7769 end if;
7770
7771 -- If one of the types is a view of the other introduced by a limited
7772 -- with clause, treat these as conforming for all purposes.
7773
7774 if Matches_Limited_With_View (T1, T2) then
7775 return True;
7776
7777 elsif Base_Types_Match (Type_1, Type_2) then
7778 if Ctype <= Mode_Conformant then
7779 return True;
7780
7781 else
7782 return
7783 Subtypes_Statically_Match (Type_1, Type_2)
7784 and then Dimensions_Match (Type_1, Type_2);
7785 end if;
7786
7787 elsif Is_Incomplete_Or_Private_Type (Type_1)
7788 and then Present (Full_View (Type_1))
7789 and then Base_Types_Match (Full_View (Type_1), Type_2)
7790 then
7791 return
7792 Ctype <= Mode_Conformant
7793 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7794
7795 elsif Ekind (Type_2) = E_Incomplete_Type
7796 and then Present (Full_View (Type_2))
7797 and then Base_Types_Match (Type_1, Full_View (Type_2))
7798 then
7799 return
7800 Ctype <= Mode_Conformant
7801 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7802
7803 elsif Is_Private_Type (Type_2)
7804 and then In_Instance
7805 and then Present (Full_View (Type_2))
7806 and then Base_Types_Match (Type_1, Full_View (Type_2))
7807 then
7808 return
7809 Ctype <= Mode_Conformant
7810 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7811
7812 -- Another confusion between views in a nested instance with an
7813 -- actual private type whose full view is not in scope.
7814
7815 elsif Ekind (Type_2) = E_Private_Subtype
7816 and then In_Instance
7817 and then Etype (Type_2) = Type_1
7818 then
7819 return True;
7820
7821 -- In Ada 2012, incomplete types (including limited views) can appear
7822 -- as actuals in instantiations, where they are conformant to the
7823 -- corresponding incomplete formal.
7824
7825 elsif Is_Incomplete_Type (Type_1)
7826 and then Is_Incomplete_Type (Type_2)
7827 and then In_Instance
7828 and then (Used_As_Generic_Actual (Type_1)
7829 or else Used_As_Generic_Actual (Type_2))
7830 then
7831 return True;
7832 end if;
7833
7834 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7835 -- treated recursively because they carry a signature. As far as
7836 -- conformance is concerned, convention plays no role, and either
7837 -- or both could be access to protected subprograms.
7838
7839 Are_Anonymous_Access_To_Subprogram_Types :=
7840 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7841 E_Anonymous_Access_Protected_Subprogram_Type)
7842 and then
7843 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7844 E_Anonymous_Access_Protected_Subprogram_Type);
7845
7846 -- Test anonymous access type case. For this case, static subtype
7847 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7848 -- the base types because we may have built internal subtype entities
7849 -- to handle null-excluding types (see Process_Formals).
7850
7851 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7852 and then
7853 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7854
7855 -- Ada 2005 (AI-254)
7856
7857 or else Are_Anonymous_Access_To_Subprogram_Types
7858 then
7859 declare
7860 Desig_1 : Entity_Id;
7861 Desig_2 : Entity_Id;
7862
7863 begin
7864 -- In Ada 2005, access constant indicators must match for
7865 -- subtype conformance.
7866
7867 if Ada_Version >= Ada_2005
7868 and then Ctype >= Subtype_Conformant
7869 and then
7870 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7871 then
7872 return False;
7873 end if;
7874
7875 Desig_1 := Find_Designated_Type (Type_1);
7876 Desig_2 := Find_Designated_Type (Type_2);
7877
7878 -- If the context is an instance association for a formal
7879 -- access-to-subprogram type; formal access parameter designated
7880 -- types require mapping because they may denote other formal
7881 -- parameters of the generic unit.
7882
7883 if Get_Inst then
7884 Desig_1 := Get_Instance_Of (Desig_1);
7885 Desig_2 := Get_Instance_Of (Desig_2);
7886 end if;
7887
7888 -- It is possible for a Class_Wide_Type to be introduced for an
7889 -- incomplete type, in which case there is a separate class_ wide
7890 -- type for the full view. The types conform if their Etypes
7891 -- conform, i.e. one may be the full view of the other. This can
7892 -- only happen in the context of an access parameter, other uses
7893 -- of an incomplete Class_Wide_Type are illegal.
7894
7895 if Is_Class_Wide_Type (Desig_1)
7896 and then
7897 Is_Class_Wide_Type (Desig_2)
7898 then
7899 return
7900 Conforming_Types
7901 (Etype (Base_Type (Desig_1)),
7902 Etype (Base_Type (Desig_2)), Ctype);
7903
7904 elsif Are_Anonymous_Access_To_Subprogram_Types then
7905 if Ada_Version < Ada_2005 then
7906 return
7907 Ctype = Type_Conformant
7908 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7909
7910 -- We must check the conformance of the signatures themselves
7911
7912 else
7913 declare
7914 Conformant : Boolean;
7915 begin
7916 Check_Conformance
7917 (Desig_1, Desig_2, Ctype, False, Conformant);
7918 return Conformant;
7919 end;
7920 end if;
7921
7922 -- A limited view of an actual matches the corresponding
7923 -- incomplete formal.
7924
7925 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7926 and then From_Limited_With (Desig_2)
7927 and then Used_As_Generic_Actual (Etype (Desig_2))
7928 then
7929 return True;
7930
7931 else
7932 return Base_Type (Desig_1) = Base_Type (Desig_2)
7933 and then (Ctype = Type_Conformant
7934 or else
7935 Subtypes_Statically_Match (Desig_1, Desig_2));
7936 end if;
7937 end;
7938
7939 -- Otherwise definitely no match
7940
7941 else
7942 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7943 and then Is_Access_Type (Type_2))
7944 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7945 and then Is_Access_Type (Type_1)))
7946 and then
7947 Conforming_Types
7948 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7949 then
7950 May_Hide_Profile := True;
7951 end if;
7952
7953 return False;
7954 end if;
7955 end Conforming_Types;
7956
7957 --------------------------
7958 -- Create_Extra_Formals --
7959 --------------------------
7960
7961 procedure Create_Extra_Formals (E : Entity_Id) is
7962 First_Extra : Entity_Id := Empty;
7963 Formal : Entity_Id;
7964 Last_Extra : Entity_Id := Empty;
7965
7966 function Add_Extra_Formal
7967 (Assoc_Entity : Entity_Id;
7968 Typ : Entity_Id;
7969 Scope : Entity_Id;
7970 Suffix : String) return Entity_Id;
7971 -- Add an extra formal to the current list of formals and extra formals.
7972 -- The extra formal is added to the end of the list of extra formals,
7973 -- and also returned as the result. These formals are always of mode IN.
7974 -- The new formal has the type Typ, is declared in Scope, and its name
7975 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7976 -- The following suffixes are currently used. They should not be changed
7977 -- without coordinating with CodePeer, which makes use of these to
7978 -- provide better messages.
7979
7980 -- O denotes the Constrained bit.
7981 -- L denotes the accessibility level.
7982 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7983 -- the full list in exp_ch6.BIP_Formal_Kind.
7984
7985 ----------------------
7986 -- Add_Extra_Formal --
7987 ----------------------
7988
7989 function Add_Extra_Formal
7990 (Assoc_Entity : Entity_Id;
7991 Typ : Entity_Id;
7992 Scope : Entity_Id;
7993 Suffix : String) return Entity_Id
7994 is
7995 EF : constant Entity_Id :=
7996 Make_Defining_Identifier (Sloc (Assoc_Entity),
7997 Chars => New_External_Name (Chars (Assoc_Entity),
7998 Suffix => Suffix));
7999
8000 begin
8001 -- A little optimization. Never generate an extra formal for the
8002 -- _init operand of an initialization procedure, since it could
8003 -- never be used.
8004
8005 if Chars (Formal) = Name_uInit then
8006 return Empty;
8007 end if;
8008
8009 Set_Ekind (EF, E_In_Parameter);
8010 Set_Actual_Subtype (EF, Typ);
8011 Set_Etype (EF, Typ);
8012 Set_Scope (EF, Scope);
8013 Set_Mechanism (EF, Default_Mechanism);
8014 Set_Formal_Validity (EF);
8015
8016 if No (First_Extra) then
8017 First_Extra := EF;
8018 Set_Extra_Formals (Scope, EF);
8019 end if;
8020
8021 if Present (Last_Extra) then
8022 Set_Extra_Formal (Last_Extra, EF);
8023 end if;
8024
8025 Last_Extra := EF;
8026
8027 return EF;
8028 end Add_Extra_Formal;
8029
8030 -- Local variables
8031
8032 Formal_Type : Entity_Id;
8033 P_Formal : Entity_Id := Empty;
8034
8035 -- Start of processing for Create_Extra_Formals
8036
8037 begin
8038 -- We never generate extra formals if expansion is not active because we
8039 -- don't need them unless we are generating code.
8040
8041 if not Expander_Active then
8042 return;
8043 end if;
8044
8045 -- No need to generate extra formals in interface thunks whose target
8046 -- primitive has no extra formals.
8047
8048 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
8049 return;
8050 end if;
8051
8052 -- If this is a derived subprogram then the subtypes of the parent
8053 -- subprogram's formal parameters will be used to determine the need
8054 -- for extra formals.
8055
8056 if Is_Overloadable (E) and then Present (Alias (E)) then
8057 P_Formal := First_Formal (Alias (E));
8058 end if;
8059
8060 Formal := First_Formal (E);
8061 while Present (Formal) loop
8062 Last_Extra := Formal;
8063 Next_Formal (Formal);
8064 end loop;
8065
8066 -- If Extra_Formals were already created, don't do it again. This
8067 -- situation may arise for subprogram types created as part of
8068 -- dispatching calls (see Expand_Dispatching_Call).
8069
8070 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8071 return;
8072 end if;
8073
8074 -- If the subprogram is a predefined dispatching subprogram then don't
8075 -- generate any extra constrained or accessibility level formals. In
8076 -- general we suppress these for internal subprograms (by not calling
8077 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8078 -- generated stream attributes do get passed through because extra
8079 -- build-in-place formals are needed in some cases (limited 'Input).
8080
8081 if Is_Predefined_Internal_Operation (E) then
8082 goto Test_For_Func_Result_Extras;
8083 end if;
8084
8085 Formal := First_Formal (E);
8086 while Present (Formal) loop
8087
8088 -- Create extra formal for supporting the attribute 'Constrained.
8089 -- The case of a private type view without discriminants also
8090 -- requires the extra formal if the underlying type has defaulted
8091 -- discriminants.
8092
8093 if Ekind (Formal) /= E_In_Parameter then
8094 if Present (P_Formal) then
8095 Formal_Type := Etype (P_Formal);
8096 else
8097 Formal_Type := Etype (Formal);
8098 end if;
8099
8100 -- Do not produce extra formals for Unchecked_Union parameters.
8101 -- Jump directly to the end of the loop.
8102
8103 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
8104 goto Skip_Extra_Formal_Generation;
8105 end if;
8106
8107 if not Has_Discriminants (Formal_Type)
8108 and then Ekind (Formal_Type) in Private_Kind
8109 and then Present (Underlying_Type (Formal_Type))
8110 then
8111 Formal_Type := Underlying_Type (Formal_Type);
8112 end if;
8113
8114 -- Suppress the extra formal if formal's subtype is constrained or
8115 -- indefinite, or we're compiling for Ada 2012 and the underlying
8116 -- type is tagged and limited. In Ada 2012, a limited tagged type
8117 -- can have defaulted discriminants, but 'Constrained is required
8118 -- to return True, so the formal is never needed (see AI05-0214).
8119 -- Note that this ensures consistency of calling sequences for
8120 -- dispatching operations when some types in a class have defaults
8121 -- on discriminants and others do not (and requiring the extra
8122 -- formal would introduce distributed overhead).
8123
8124 -- If the type does not have a completion yet, treat as prior to
8125 -- Ada 2012 for consistency.
8126
8127 if Has_Discriminants (Formal_Type)
8128 and then not Is_Constrained (Formal_Type)
8129 and then Is_Definite_Subtype (Formal_Type)
8130 and then (Ada_Version < Ada_2012
8131 or else No (Underlying_Type (Formal_Type))
8132 or else not
8133 (Is_Limited_Type (Formal_Type)
8134 and then
8135 (Is_Tagged_Type
8136 (Underlying_Type (Formal_Type)))))
8137 then
8138 Set_Extra_Constrained
8139 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8140 end if;
8141 end if;
8142
8143 -- Create extra formal for supporting accessibility checking. This
8144 -- is done for both anonymous access formals and formals of named
8145 -- access types that are marked as controlling formals. The latter
8146 -- case can occur when Expand_Dispatching_Call creates a subprogram
8147 -- type and substitutes the types of access-to-class-wide actuals
8148 -- for the anonymous access-to-specific-type of controlling formals.
8149 -- Base_Type is applied because in cases where there is a null
8150 -- exclusion the formal may have an access subtype.
8151
8152 -- This is suppressed if we specifically suppress accessibility
8153 -- checks at the package level for either the subprogram, or the
8154 -- package in which it resides. However, we do not suppress it
8155 -- simply if the scope has accessibility checks suppressed, since
8156 -- this could cause trouble when clients are compiled with a
8157 -- different suppression setting. The explicit checks at the
8158 -- package level are safe from this point of view.
8159
8160 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8161 or else (Is_Controlling_Formal (Formal)
8162 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8163 and then not
8164 (Explicit_Suppress (E, Accessibility_Check)
8165 or else
8166 Explicit_Suppress (Scope (E), Accessibility_Check))
8167 and then
8168 (No (P_Formal)
8169 or else Present (Extra_Accessibility (P_Formal)))
8170 then
8171 Set_Extra_Accessibility
8172 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8173 end if;
8174
8175 -- This label is required when skipping extra formal generation for
8176 -- Unchecked_Union parameters.
8177
8178 <<Skip_Extra_Formal_Generation>>
8179
8180 if Present (P_Formal) then
8181 Next_Formal (P_Formal);
8182 end if;
8183
8184 Next_Formal (Formal);
8185 end loop;
8186
8187 <<Test_For_Func_Result_Extras>>
8188
8189 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8190 -- function call is ... determined by the point of call ...".
8191
8192 if Needs_Result_Accessibility_Level (E) then
8193 Set_Extra_Accessibility_Of_Result
8194 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8195 end if;
8196
8197 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8198 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8199
8200 if Is_Build_In_Place_Function (E) then
8201 declare
8202 Result_Subt : constant Entity_Id := Etype (E);
8203 Formal_Typ : Entity_Id;
8204 Subp_Decl : Node_Id;
8205 Discard : Entity_Id;
8206
8207 begin
8208 -- In the case of functions with unconstrained result subtypes,
8209 -- add a 4-state formal indicating whether the return object is
8210 -- allocated by the caller (1), or should be allocated by the
8211 -- callee on the secondary stack (2), in the global heap (3), or
8212 -- in a user-defined storage pool (4). For the moment we just use
8213 -- Natural for the type of this formal. Note that this formal
8214 -- isn't usually needed in the case where the result subtype is
8215 -- constrained, but it is needed when the function has a tagged
8216 -- result, because generally such functions can be called in a
8217 -- dispatching context and such calls must be handled like calls
8218 -- to a class-wide function.
8219
8220 if Needs_BIP_Alloc_Form (E) then
8221 Discard :=
8222 Add_Extra_Formal
8223 (E, Standard_Natural,
8224 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8225
8226 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8227 -- use a user-defined pool. This formal is not added on
8228 -- ZFP as those targets do not support pools.
8229
8230 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8231 Discard :=
8232 Add_Extra_Formal
8233 (E, RTE (RE_Root_Storage_Pool_Ptr),
8234 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8235 end if;
8236 end if;
8237
8238 -- In the case of functions whose result type needs finalization,
8239 -- add an extra formal which represents the finalization master.
8240
8241 if Needs_BIP_Finalization_Master (E) then
8242 Discard :=
8243 Add_Extra_Formal
8244 (E, RTE (RE_Finalization_Master_Ptr),
8245 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8246 end if;
8247
8248 -- When the result type contains tasks, add two extra formals: the
8249 -- master of the tasks to be created, and the caller's activation
8250 -- chain.
8251
8252 if Needs_BIP_Task_Actuals (E) then
8253 Discard :=
8254 Add_Extra_Formal
8255 (E, RTE (RE_Master_Id),
8256 E, BIP_Formal_Suffix (BIP_Task_Master));
8257 Discard :=
8258 Add_Extra_Formal
8259 (E, RTE (RE_Activation_Chain_Access),
8260 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8261 end if;
8262
8263 -- All build-in-place functions get an extra formal that will be
8264 -- passed the address of the return object within the caller.
8265
8266 Formal_Typ :=
8267 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8268
8269 -- Incomplete_View_From_Limited_With is needed here because
8270 -- gigi gets confused if the designated type is the full view
8271 -- coming from a limited-with'ed package. In the normal case,
8272 -- (no limited with) Incomplete_View_From_Limited_With
8273 -- returns Result_Subt.
8274
8275 Set_Directly_Designated_Type
8276 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8277 Set_Etype (Formal_Typ, Formal_Typ);
8278 Set_Depends_On_Private
8279 (Formal_Typ, Has_Private_Component (Formal_Typ));
8280 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8281 Set_Is_Access_Constant (Formal_Typ, False);
8282
8283 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8284 -- the designated type comes from the limited view (for back-end
8285 -- purposes).
8286
8287 Set_From_Limited_With
8288 (Formal_Typ, From_Limited_With (Result_Subt));
8289
8290 Layout_Type (Formal_Typ);
8291
8292 -- Force the definition of the Itype in case of internal function
8293 -- calls within the same or nested scope.
8294
8295 if Is_Subprogram_Or_Generic_Subprogram (E) then
8296 Subp_Decl := Parent (E);
8297
8298 -- The insertion point for an Itype reference should be after
8299 -- the unit declaration node of the subprogram. An exception
8300 -- to this are inherited operations from a parent type in which
8301 -- case the derived type acts as their parent.
8302
8303 if Nkind_In (Subp_Decl, N_Function_Specification,
8304 N_Procedure_Specification)
8305 then
8306 Subp_Decl := Parent (Subp_Decl);
8307 end if;
8308
8309 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8310 end if;
8311
8312 Discard :=
8313 Add_Extra_Formal
8314 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8315 end;
8316 end if;
8317
8318 -- If this is an instance of a generic, we need to have extra formals
8319 -- for the Alias.
8320
8321 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8322 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8323 end if;
8324 end Create_Extra_Formals;
8325
8326 -----------------------------
8327 -- Enter_Overloaded_Entity --
8328 -----------------------------
8329
8330 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8331 function Matches_Predefined_Op return Boolean;
8332 -- This returns an approximation of whether S matches a predefined
8333 -- operator, based on the operator symbol, and the parameter and result
8334 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8335
8336 ---------------------------
8337 -- Matches_Predefined_Op --
8338 ---------------------------
8339
8340 function Matches_Predefined_Op return Boolean is
8341 Formal_1 : constant Entity_Id := First_Formal (S);
8342 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8343 Op : constant Name_Id := Chars (S);
8344 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8345 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8346
8347 begin
8348 -- Binary operator
8349
8350 if Present (Formal_2) then
8351 declare
8352 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8353
8354 begin
8355 -- All but "&" and "**" have same-types parameters
8356
8357 case Op is
8358 when Name_Op_Concat
8359 | Name_Op_Expon
8360 =>
8361 null;
8362
8363 when others =>
8364 if Type_1 /= Type_2 then
8365 return False;
8366 end if;
8367 end case;
8368
8369 -- Check parameter and result types
8370
8371 case Op is
8372 when Name_Op_And
8373 | Name_Op_Or
8374 | Name_Op_Xor
8375 =>
8376 return
8377 Is_Boolean_Type (Result_Type)
8378 and then Result_Type = Type_1;
8379
8380 when Name_Op_Mod
8381 | Name_Op_Rem
8382 =>
8383 return
8384 Is_Integer_Type (Result_Type)
8385 and then Result_Type = Type_1;
8386
8387 when Name_Op_Add
8388 | Name_Op_Divide
8389 | Name_Op_Multiply
8390 | Name_Op_Subtract
8391 =>
8392 return
8393 Is_Numeric_Type (Result_Type)
8394 and then Result_Type = Type_1;
8395
8396 when Name_Op_Eq
8397 | Name_Op_Ne
8398 =>
8399 return
8400 Is_Boolean_Type (Result_Type)
8401 and then not Is_Limited_Type (Type_1);
8402
8403 when Name_Op_Ge
8404 | Name_Op_Gt
8405 | Name_Op_Le
8406 | Name_Op_Lt
8407 =>
8408 return
8409 Is_Boolean_Type (Result_Type)
8410 and then (Is_Array_Type (Type_1)
8411 or else Is_Scalar_Type (Type_1));
8412
8413 when Name_Op_Concat =>
8414 return Is_Array_Type (Result_Type);
8415
8416 when Name_Op_Expon =>
8417 return
8418 (Is_Integer_Type (Result_Type)
8419 or else Is_Floating_Point_Type (Result_Type))
8420 and then Result_Type = Type_1
8421 and then Type_2 = Standard_Integer;
8422
8423 when others =>
8424 raise Program_Error;
8425 end case;
8426 end;
8427
8428 -- Unary operator
8429
8430 else
8431 case Op is
8432 when Name_Op_Abs
8433 | Name_Op_Add
8434 | Name_Op_Subtract
8435 =>
8436 return
8437 Is_Numeric_Type (Result_Type)
8438 and then Result_Type = Type_1;
8439
8440 when Name_Op_Not =>
8441 return
8442 Is_Boolean_Type (Result_Type)
8443 and then Result_Type = Type_1;
8444
8445 when others =>
8446 raise Program_Error;
8447 end case;
8448 end if;
8449 end Matches_Predefined_Op;
8450
8451 -- Local variables
8452
8453 E : Entity_Id := Current_Entity_In_Scope (S);
8454 C_E : Entity_Id := Current_Entity (S);
8455
8456 -- Start of processing for Enter_Overloaded_Entity
8457
8458 begin
8459 if Present (E) then
8460 Set_Has_Homonym (E);
8461 Set_Has_Homonym (S);
8462 end if;
8463
8464 Set_Is_Immediately_Visible (S);
8465 Set_Scope (S, Current_Scope);
8466
8467 -- Chain new entity if front of homonym in current scope, so that
8468 -- homonyms are contiguous.
8469
8470 if Present (E) and then E /= C_E then
8471 while Homonym (C_E) /= E loop
8472 C_E := Homonym (C_E);
8473 end loop;
8474
8475 Set_Homonym (C_E, S);
8476
8477 else
8478 E := C_E;
8479 Set_Current_Entity (S);
8480 end if;
8481
8482 Set_Homonym (S, E);
8483
8484 if Is_Inherited_Operation (S) then
8485 Append_Inherited_Subprogram (S);
8486 else
8487 Append_Entity (S, Current_Scope);
8488 end if;
8489
8490 Set_Public_Status (S);
8491
8492 if Debug_Flag_E then
8493 Write_Str ("New overloaded entity chain: ");
8494 Write_Name (Chars (S));
8495
8496 E := S;
8497 while Present (E) loop
8498 Write_Str (" "); Write_Int (Int (E));
8499 E := Homonym (E);
8500 end loop;
8501
8502 Write_Eol;
8503 end if;
8504
8505 -- Generate warning for hiding
8506
8507 if Warn_On_Hiding
8508 and then Comes_From_Source (S)
8509 and then In_Extended_Main_Source_Unit (S)
8510 then
8511 E := S;
8512 loop
8513 E := Homonym (E);
8514 exit when No (E);
8515
8516 -- Warn unless genuine overloading. Do not emit warning on
8517 -- hiding predefined operators in Standard (these are either an
8518 -- (artifact of our implicit declarations, or simple noise) but
8519 -- keep warning on a operator defined on a local subtype, because
8520 -- of the real danger that different operators may be applied in
8521 -- various parts of the program.
8522
8523 -- Note that if E and S have the same scope, there is never any
8524 -- hiding. Either the two conflict, and the program is illegal,
8525 -- or S is overriding an implicit inherited subprogram.
8526
8527 if Scope (E) /= Scope (S)
8528 and then (not Is_Overloadable (E)
8529 or else Subtype_Conformant (E, S))
8530 and then (Is_Immediately_Visible (E)
8531 or else Is_Potentially_Use_Visible (S))
8532 then
8533 if Scope (E) = Standard_Standard then
8534 if Nkind (S) = N_Defining_Operator_Symbol
8535 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8536 Scope (S)
8537 and then Matches_Predefined_Op
8538 then
8539 Error_Msg_N
8540 ("declaration of & hides predefined operator?h?", S);
8541 end if;
8542
8543 -- E not immediately within Standard
8544
8545 else
8546 Error_Msg_Sloc := Sloc (E);
8547 Error_Msg_N ("declaration of & hides one #?h?", S);
8548 end if;
8549 end if;
8550 end loop;
8551 end if;
8552 end Enter_Overloaded_Entity;
8553
8554 -----------------------------
8555 -- Check_Untagged_Equality --
8556 -----------------------------
8557
8558 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8559 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8560 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8561 Obj_Decl : Node_Id;
8562
8563 begin
8564 -- This check applies only if we have a subprogram declaration with an
8565 -- untagged record type that is conformant to the predefined op.
8566
8567 if Nkind (Decl) /= N_Subprogram_Declaration
8568 or else not Is_Record_Type (Typ)
8569 or else Is_Tagged_Type (Typ)
8570 or else Etype (Next_Formal (First_Formal (Eq_Op))) /= Typ
8571 then
8572 return;
8573 end if;
8574
8575 -- In Ada 2012 case, we will output errors or warnings depending on
8576 -- the setting of debug flag -gnatd.E.
8577
8578 if Ada_Version >= Ada_2012 then
8579 Error_Msg_Warn := Debug_Flag_Dot_EE;
8580
8581 -- In earlier versions of Ada, nothing to do unless we are warning on
8582 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8583
8584 else
8585 if not Warn_On_Ada_2012_Compatibility then
8586 return;
8587 end if;
8588 end if;
8589
8590 -- Cases where the type has already been frozen
8591
8592 if Is_Frozen (Typ) then
8593
8594 -- The check applies to a primitive operation, so check that type
8595 -- and equality operation are in the same scope.
8596
8597 if Scope (Typ) /= Current_Scope then
8598 return;
8599
8600 -- If the type is a generic actual (sub)type, the operation is not
8601 -- primitive either because the base type is declared elsewhere.
8602
8603 elsif Is_Generic_Actual_Type (Typ) then
8604 return;
8605
8606 -- Here we have a definite error of declaration after freezing
8607
8608 else
8609 if Ada_Version >= Ada_2012 then
8610 Error_Msg_NE
8611 ("equality operator must be declared before type & is "
8612 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8613
8614 -- In Ada 2012 mode with error turned to warning, output one
8615 -- more warning to warn that the equality operation may not
8616 -- compose. This is the consequence of ignoring the error.
8617
8618 if Error_Msg_Warn then
8619 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8620 end if;
8621
8622 else
8623 Error_Msg_NE
8624 ("equality operator must be declared before type& is "
8625 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8626 end if;
8627
8628 -- If we are in the package body, we could just move the
8629 -- declaration to the package spec, so add a message saying that.
8630
8631 if In_Package_Body (Scope (Typ)) then
8632 if Ada_Version >= Ada_2012 then
8633 Error_Msg_N
8634 ("\move declaration to package spec<<", Eq_Op);
8635 else
8636 Error_Msg_N
8637 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8638 end if;
8639
8640 -- Otherwise try to find the freezing point for better message.
8641
8642 else
8643 Obj_Decl := Next (Parent (Typ));
8644 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8645 if Nkind (Obj_Decl) = N_Object_Declaration
8646 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8647 then
8648 -- Freezing point, output warnings
8649
8650 if Ada_Version >= Ada_2012 then
8651 Error_Msg_NE
8652 ("type& is frozen by declaration??", Obj_Decl, Typ);
8653 Error_Msg_N
8654 ("\an equality operator cannot be declared after "
8655 & "this point??",
8656 Obj_Decl);
8657 else
8658 Error_Msg_NE
8659 ("type& is frozen by declaration (Ada 2012)?y?",
8660 Obj_Decl, Typ);
8661 Error_Msg_N
8662 ("\an equality operator cannot be declared after "
8663 & "this point (Ada 2012)?y?",
8664 Obj_Decl);
8665 end if;
8666
8667 exit;
8668
8669 -- If we reach generated code for subprogram declaration
8670 -- or body, it is the body that froze the type and the
8671 -- declaration is legal.
8672
8673 elsif Sloc (Obj_Decl) = Sloc (Decl) then
8674 return;
8675 end if;
8676
8677 Next (Obj_Decl);
8678 end loop;
8679 end if;
8680 end if;
8681
8682 -- Here if type is not frozen yet. It is illegal to have a primitive
8683 -- equality declared in the private part if the type is visible.
8684
8685 elsif not In_Same_List (Parent (Typ), Decl)
8686 and then not Is_Limited_Type (Typ)
8687 then
8688 -- Shouldn't we give an RM reference here???
8689
8690 if Ada_Version >= Ada_2012 then
8691 Error_Msg_N
8692 ("equality operator appears too late<<", Eq_Op);
8693 else
8694 Error_Msg_N
8695 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8696 end if;
8697
8698 -- No error detected
8699
8700 else
8701 return;
8702 end if;
8703 end Check_Untagged_Equality;
8704
8705 -----------------------------
8706 -- Find_Corresponding_Spec --
8707 -----------------------------
8708
8709 function Find_Corresponding_Spec
8710 (N : Node_Id;
8711 Post_Error : Boolean := True) return Entity_Id
8712 is
8713 Spec : constant Node_Id := Specification (N);
8714 Designator : constant Entity_Id := Defining_Entity (Spec);
8715
8716 E : Entity_Id;
8717
8718 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8719 -- Even if fully conformant, a body may depend on a generic actual when
8720 -- the spec does not, or vice versa, in which case they were distinct
8721 -- entities in the generic.
8722
8723 -------------------------------
8724 -- Different_Generic_Profile --
8725 -------------------------------
8726
8727 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8728 F1, F2 : Entity_Id;
8729
8730 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8731 -- Check that the types of corresponding formals have the same
8732 -- generic actual if any. We have to account for subtypes of a
8733 -- generic formal, declared between a spec and a body, which may
8734 -- appear distinct in an instance but matched in the generic, and
8735 -- the subtype may be used either in the spec or the body of the
8736 -- subprogram being checked.
8737
8738 -------------------------
8739 -- Same_Generic_Actual --
8740 -------------------------
8741
8742 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8743
8744 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8745 -- Predicate to check whether S1 is a subtype of S2 in the source
8746 -- of the instance.
8747
8748 -------------------------
8749 -- Is_Declared_Subtype --
8750 -------------------------
8751
8752 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8753 begin
8754 return Comes_From_Source (Parent (S1))
8755 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8756 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8757 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8758 end Is_Declared_Subtype;
8759
8760 -- Start of processing for Same_Generic_Actual
8761
8762 begin
8763 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8764 or else Is_Declared_Subtype (T1, T2)
8765 or else Is_Declared_Subtype (T2, T1);
8766 end Same_Generic_Actual;
8767
8768 -- Start of processing for Different_Generic_Profile
8769
8770 begin
8771 if not In_Instance then
8772 return False;
8773
8774 elsif Ekind (E) = E_Function
8775 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8776 then
8777 return True;
8778 end if;
8779
8780 F1 := First_Formal (Designator);
8781 F2 := First_Formal (E);
8782 while Present (F1) loop
8783 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8784 return True;
8785 end if;
8786
8787 Next_Formal (F1);
8788 Next_Formal (F2);
8789 end loop;
8790
8791 return False;
8792 end Different_Generic_Profile;
8793
8794 -- Start of processing for Find_Corresponding_Spec
8795
8796 begin
8797 E := Current_Entity (Designator);
8798 while Present (E) loop
8799
8800 -- We are looking for a matching spec. It must have the same scope,
8801 -- and the same name, and either be type conformant, or be the case
8802 -- of a library procedure spec and its body (which belong to one
8803 -- another regardless of whether they are type conformant or not).
8804
8805 if Scope (E) = Current_Scope then
8806 if Current_Scope = Standard_Standard
8807 or else (Ekind (E) = Ekind (Designator)
8808 and then Type_Conformant (E, Designator))
8809 then
8810 -- Within an instantiation, we know that spec and body are
8811 -- subtype conformant, because they were subtype conformant in
8812 -- the generic. We choose the subtype-conformant entity here as
8813 -- well, to resolve spurious ambiguities in the instance that
8814 -- were not present in the generic (i.e. when two different
8815 -- types are given the same actual). If we are looking for a
8816 -- spec to match a body, full conformance is expected.
8817
8818 if In_Instance then
8819
8820 -- Inherit the convention and "ghostness" of the matching
8821 -- spec to ensure proper full and subtype conformance.
8822
8823 Set_Convention (Designator, Convention (E));
8824
8825 -- Skip past subprogram bodies and subprogram renamings that
8826 -- may appear to have a matching spec, but that aren't fully
8827 -- conformant with it. That can occur in cases where an
8828 -- actual type causes unrelated homographs in the instance.
8829
8830 if Nkind_In (N, N_Subprogram_Body,
8831 N_Subprogram_Renaming_Declaration)
8832 and then Present (Homonym (E))
8833 and then not Fully_Conformant (Designator, E)
8834 then
8835 goto Next_Entity;
8836
8837 elsif not Subtype_Conformant (Designator, E) then
8838 goto Next_Entity;
8839
8840 elsif Different_Generic_Profile (E) then
8841 goto Next_Entity;
8842 end if;
8843 end if;
8844
8845 -- Ada 2012 (AI05-0165): For internally generated bodies of
8846 -- null procedures locate the internally generated spec. We
8847 -- enforce mode conformance since a tagged type may inherit
8848 -- from interfaces several null primitives which differ only
8849 -- in the mode of the formals.
8850
8851 if not (Comes_From_Source (E))
8852 and then Is_Null_Procedure (E)
8853 and then not Mode_Conformant (Designator, E)
8854 then
8855 null;
8856
8857 -- For null procedures coming from source that are completions,
8858 -- analysis of the generated body will establish the link.
8859
8860 elsif Comes_From_Source (E)
8861 and then Nkind (Spec) = N_Procedure_Specification
8862 and then Null_Present (Spec)
8863 then
8864 return E;
8865
8866 -- Expression functions can be completions, but cannot be
8867 -- completed by an explicit body.
8868
8869 elsif Comes_From_Source (E)
8870 and then Comes_From_Source (N)
8871 and then Nkind (N) = N_Subprogram_Body
8872 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8873 N_Expression_Function
8874 then
8875 Error_Msg_Sloc := Sloc (E);
8876 Error_Msg_N ("body conflicts with expression function#", N);
8877 return Empty;
8878
8879 elsif not Has_Completion (E) then
8880 if Nkind (N) /= N_Subprogram_Body_Stub then
8881 Set_Corresponding_Spec (N, E);
8882 end if;
8883
8884 Set_Has_Completion (E);
8885 return E;
8886
8887 elsif Nkind (Parent (N)) = N_Subunit then
8888
8889 -- If this is the proper body of a subunit, the completion
8890 -- flag is set when analyzing the stub.
8891
8892 return E;
8893
8894 -- If E is an internal function with a controlling result that
8895 -- was created for an operation inherited by a null extension,
8896 -- it may be overridden by a body without a previous spec (one
8897 -- more reason why these should be shunned). In that case we
8898 -- remove the generated body if present, because the current
8899 -- one is the explicit overriding.
8900
8901 elsif Ekind (E) = E_Function
8902 and then Ada_Version >= Ada_2005
8903 and then not Comes_From_Source (E)
8904 and then Has_Controlling_Result (E)
8905 and then Is_Null_Extension (Etype (E))
8906 and then Comes_From_Source (Spec)
8907 then
8908 Set_Has_Completion (E, False);
8909
8910 if Expander_Active
8911 and then Nkind (Parent (E)) = N_Function_Specification
8912 then
8913 Remove
8914 (Unit_Declaration_Node
8915 (Corresponding_Body (Unit_Declaration_Node (E))));
8916
8917 return E;
8918
8919 -- If expansion is disabled, or if the wrapper function has
8920 -- not been generated yet, this a late body overriding an
8921 -- inherited operation, or it is an overriding by some other
8922 -- declaration before the controlling result is frozen. In
8923 -- either case this is a declaration of a new entity.
8924
8925 else
8926 return Empty;
8927 end if;
8928
8929 -- If the body already exists, then this is an error unless
8930 -- the previous declaration is the implicit declaration of a
8931 -- derived subprogram. It is also legal for an instance to
8932 -- contain type conformant overloadable declarations (but the
8933 -- generic declaration may not), per 8.3(26/2).
8934
8935 elsif No (Alias (E))
8936 and then not Is_Intrinsic_Subprogram (E)
8937 and then not In_Instance
8938 and then Post_Error
8939 then
8940 Error_Msg_Sloc := Sloc (E);
8941
8942 if Is_Imported (E) then
8943 Error_Msg_NE
8944 ("body not allowed for imported subprogram & declared#",
8945 N, E);
8946 else
8947 Error_Msg_NE ("duplicate body for & declared#", N, E);
8948 end if;
8949 end if;
8950
8951 -- Child units cannot be overloaded, so a conformance mismatch
8952 -- between body and a previous spec is an error.
8953
8954 elsif Is_Child_Unit (E)
8955 and then
8956 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8957 and then
8958 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8959 N_Compilation_Unit
8960 and then Post_Error
8961 then
8962 Error_Msg_N
8963 ("body of child unit does not match previous declaration", N);
8964 end if;
8965 end if;
8966
8967 <<Next_Entity>>
8968 E := Homonym (E);
8969 end loop;
8970
8971 -- On exit, we know that no previous declaration of subprogram exists
8972
8973 return Empty;
8974 end Find_Corresponding_Spec;
8975
8976 ----------------------
8977 -- Fully_Conformant --
8978 ----------------------
8979
8980 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8981 Result : Boolean;
8982 begin
8983 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8984 return Result;
8985 end Fully_Conformant;
8986
8987 ----------------------------------
8988 -- Fully_Conformant_Expressions --
8989 ----------------------------------
8990
8991 function Fully_Conformant_Expressions
8992 (Given_E1 : Node_Id;
8993 Given_E2 : Node_Id;
8994 Report : Boolean := False) return Boolean
8995 is
8996 E1 : constant Node_Id := Original_Node (Given_E1);
8997 E2 : constant Node_Id := Original_Node (Given_E2);
8998 -- We always test conformance on original nodes, since it is possible
8999 -- for analysis and/or expansion to make things look as though they
9000 -- conform when they do not, e.g. by converting 1+2 into 3.
9001
9002 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean;
9003 -- ???
9004
9005 function FCL (L1 : List_Id; L2 : List_Id) return Boolean;
9006 -- Compare elements of two lists for conformance. Elements have to be
9007 -- conformant, and actuals inserted as default parameters do not match
9008 -- explicit actuals with the same value.
9009
9010 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean;
9011 -- Compare an operator node with a function call
9012
9013 ---------
9014 -- FCE --
9015 ---------
9016
9017 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean is
9018 begin
9019 return Fully_Conformant_Expressions (Given_E1, Given_E2, Report);
9020 end FCE;
9021
9022 ---------
9023 -- FCL --
9024 ---------
9025
9026 function FCL (L1 : List_Id; L2 : List_Id) return Boolean is
9027 N1 : Node_Id;
9028 N2 : Node_Id;
9029
9030 begin
9031 if L1 = No_List then
9032 N1 := Empty;
9033 else
9034 N1 := First (L1);
9035 end if;
9036
9037 if L2 = No_List then
9038 N2 := Empty;
9039 else
9040 N2 := First (L2);
9041 end if;
9042
9043 -- Compare two lists, skipping rewrite insertions (we want to compare
9044 -- the original trees, not the expanded versions).
9045
9046 loop
9047 if Is_Rewrite_Insertion (N1) then
9048 Next (N1);
9049 elsif Is_Rewrite_Insertion (N2) then
9050 Next (N2);
9051 elsif No (N1) then
9052 return No (N2);
9053 elsif No (N2) then
9054 return False;
9055 elsif not FCE (N1, N2) then
9056 return False;
9057 else
9058 Next (N1);
9059 Next (N2);
9060 end if;
9061 end loop;
9062 end FCL;
9063
9064 ---------
9065 -- FCO --
9066 ---------
9067
9068 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean is
9069 Actuals : constant List_Id := Parameter_Associations (Call_Node);
9070 Act : Node_Id;
9071
9072 begin
9073 if No (Actuals)
9074 or else Entity (Op_Node) /= Entity (Name (Call_Node))
9075 then
9076 return False;
9077
9078 else
9079 Act := First (Actuals);
9080
9081 if Nkind (Op_Node) in N_Binary_Op then
9082 if not FCE (Left_Opnd (Op_Node), Act) then
9083 return False;
9084 end if;
9085
9086 Next (Act);
9087 end if;
9088
9089 return Present (Act)
9090 and then FCE (Right_Opnd (Op_Node), Act)
9091 and then No (Next (Act));
9092 end if;
9093 end FCO;
9094
9095 -- Local variables
9096
9097 Result : Boolean;
9098
9099 -- Start of processing for Fully_Conformant_Expressions
9100
9101 begin
9102 Result := True;
9103
9104 -- Nonconformant if paren count does not match. Note: if some idiot
9105 -- complains that we don't do this right for more than 3 levels of
9106 -- parentheses, they will be treated with the respect they deserve.
9107
9108 if Paren_Count (E1) /= Paren_Count (E2) then
9109 return False;
9110
9111 -- If same entities are referenced, then they are conformant even if
9112 -- they have different forms (RM 8.3.1(19-20)).
9113
9114 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
9115 if Present (Entity (E1)) then
9116 Result := Entity (E1) = Entity (E2)
9117
9118 -- One may be a discriminant that has been replaced by the
9119 -- corresponding discriminal.
9120
9121 or else
9122 (Chars (Entity (E1)) = Chars (Entity (E2))
9123 and then Ekind (Entity (E1)) = E_Discriminant
9124 and then Ekind (Entity (E2)) = E_In_Parameter)
9125
9126 -- The discriminant of a protected type is transformed into
9127 -- a local constant and then into a parameter of a protected
9128 -- operation.
9129
9130 or else
9131 (Ekind (Entity (E1)) = E_Constant
9132 and then Ekind (Entity (E2)) = E_In_Parameter
9133 and then Present (Discriminal_Link (Entity (E1)))
9134 and then Discriminal_Link (Entity (E1)) =
9135 Discriminal_Link (Entity (E2)))
9136
9137 -- AI12-050: The loop variables of quantified expressions match
9138 -- if they have the same identifier, even though they may have
9139 -- different entities.
9140
9141 or else
9142 (Chars (Entity (E1)) = Chars (Entity (E2))
9143 and then Ekind (Entity (E1)) = E_Loop_Parameter
9144 and then Ekind (Entity (E2)) = E_Loop_Parameter)
9145
9146 -- A call to an instantiation of Unchecked_Conversion is
9147 -- rewritten with the name of the generated function created for
9148 -- the instance, and this must be special-cased.
9149
9150 or else
9151 (Ekind (Entity (E1)) = E_Function
9152 and then Is_Intrinsic_Subprogram (Entity (E1))
9153 and then Is_Generic_Instance (Entity (E1))
9154 and then Entity (E2) = Alias (Entity (E1)));
9155 if Report and not Result then
9156 Error_Msg_Sloc :=
9157 Text_Ptr'Max (Sloc (Entity (E1)), Sloc (Entity (E2)));
9158 Error_Msg_NE
9159 ("Meaning of& differs because of declaration#", E1, E2);
9160 end if;
9161
9162 return Result;
9163
9164 elsif Nkind (E1) = N_Expanded_Name
9165 and then Nkind (E2) = N_Expanded_Name
9166 and then Nkind (Selector_Name (E1)) = N_Character_Literal
9167 and then Nkind (Selector_Name (E2)) = N_Character_Literal
9168 then
9169 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9170
9171 else
9172 -- Identifiers in component associations don't always have
9173 -- entities, but their names must conform.
9174
9175 return Nkind (E1) = N_Identifier
9176 and then Nkind (E2) = N_Identifier
9177 and then Chars (E1) = Chars (E2);
9178 end if;
9179
9180 elsif Nkind (E1) = N_Character_Literal
9181 and then Nkind (E2) = N_Expanded_Name
9182 then
9183 return Nkind (Selector_Name (E2)) = N_Character_Literal
9184 and then Chars (E1) = Chars (Selector_Name (E2));
9185
9186 elsif Nkind (E2) = N_Character_Literal
9187 and then Nkind (E1) = N_Expanded_Name
9188 then
9189 return Nkind (Selector_Name (E1)) = N_Character_Literal
9190 and then Chars (E2) = Chars (Selector_Name (E1));
9191
9192 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9193 return FCO (E1, E2);
9194
9195 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9196 return FCO (E2, E1);
9197
9198 -- Otherwise we must have the same syntactic entity
9199
9200 elsif Nkind (E1) /= Nkind (E2) then
9201 return False;
9202
9203 -- At this point, we specialize by node type
9204
9205 else
9206 case Nkind (E1) is
9207 when N_Aggregate =>
9208 return
9209 FCL (Expressions (E1), Expressions (E2))
9210 and then
9211 FCL (Component_Associations (E1),
9212 Component_Associations (E2));
9213
9214 when N_Allocator =>
9215 if Nkind (Expression (E1)) = N_Qualified_Expression
9216 or else
9217 Nkind (Expression (E2)) = N_Qualified_Expression
9218 then
9219 return FCE (Expression (E1), Expression (E2));
9220
9221 -- Check that the subtype marks and any constraints
9222 -- are conformant
9223
9224 else
9225 declare
9226 Indic1 : constant Node_Id := Expression (E1);
9227 Indic2 : constant Node_Id := Expression (E2);
9228 Elt1 : Node_Id;
9229 Elt2 : Node_Id;
9230
9231 begin
9232 if Nkind (Indic1) /= N_Subtype_Indication then
9233 return
9234 Nkind (Indic2) /= N_Subtype_Indication
9235 and then Entity (Indic1) = Entity (Indic2);
9236
9237 elsif Nkind (Indic2) /= N_Subtype_Indication then
9238 return
9239 Nkind (Indic1) /= N_Subtype_Indication
9240 and then Entity (Indic1) = Entity (Indic2);
9241
9242 else
9243 if Entity (Subtype_Mark (Indic1)) /=
9244 Entity (Subtype_Mark (Indic2))
9245 then
9246 return False;
9247 end if;
9248
9249 Elt1 := First (Constraints (Constraint (Indic1)));
9250 Elt2 := First (Constraints (Constraint (Indic2)));
9251 while Present (Elt1) and then Present (Elt2) loop
9252 if not FCE (Elt1, Elt2) then
9253 return False;
9254 end if;
9255
9256 Next (Elt1);
9257 Next (Elt2);
9258 end loop;
9259
9260 return True;
9261 end if;
9262 end;
9263 end if;
9264
9265 when N_Attribute_Reference =>
9266 return
9267 Attribute_Name (E1) = Attribute_Name (E2)
9268 and then FCL (Expressions (E1), Expressions (E2));
9269
9270 when N_Binary_Op =>
9271 return
9272 Entity (E1) = Entity (E2)
9273 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9274 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9275
9276 when N_Membership_Test
9277 | N_Short_Circuit
9278 =>
9279 return
9280 FCE (Left_Opnd (E1), Left_Opnd (E2))
9281 and then
9282 FCE (Right_Opnd (E1), Right_Opnd (E2));
9283
9284 when N_Case_Expression =>
9285 declare
9286 Alt1 : Node_Id;
9287 Alt2 : Node_Id;
9288
9289 begin
9290 if not FCE (Expression (E1), Expression (E2)) then
9291 return False;
9292
9293 else
9294 Alt1 := First (Alternatives (E1));
9295 Alt2 := First (Alternatives (E2));
9296 loop
9297 if Present (Alt1) /= Present (Alt2) then
9298 return False;
9299 elsif No (Alt1) then
9300 return True;
9301 end if;
9302
9303 if not FCE (Expression (Alt1), Expression (Alt2))
9304 or else not FCL (Discrete_Choices (Alt1),
9305 Discrete_Choices (Alt2))
9306 then
9307 return False;
9308 end if;
9309
9310 Next (Alt1);
9311 Next (Alt2);
9312 end loop;
9313 end if;
9314 end;
9315
9316 when N_Character_Literal =>
9317 return
9318 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9319
9320 when N_Component_Association =>
9321 return
9322 FCL (Choices (E1), Choices (E2))
9323 and then
9324 FCE (Expression (E1), Expression (E2));
9325
9326 when N_Explicit_Dereference =>
9327 return
9328 FCE (Prefix (E1), Prefix (E2));
9329
9330 when N_Extension_Aggregate =>
9331 return
9332 FCL (Expressions (E1), Expressions (E2))
9333 and then Null_Record_Present (E1) =
9334 Null_Record_Present (E2)
9335 and then FCL (Component_Associations (E1),
9336 Component_Associations (E2));
9337
9338 when N_Function_Call =>
9339 return
9340 FCE (Name (E1), Name (E2))
9341 and then
9342 FCL (Parameter_Associations (E1),
9343 Parameter_Associations (E2));
9344
9345 when N_If_Expression =>
9346 return
9347 FCL (Expressions (E1), Expressions (E2));
9348
9349 when N_Indexed_Component =>
9350 return
9351 FCE (Prefix (E1), Prefix (E2))
9352 and then
9353 FCL (Expressions (E1), Expressions (E2));
9354
9355 when N_Integer_Literal =>
9356 return (Intval (E1) = Intval (E2));
9357
9358 when N_Null =>
9359 return True;
9360
9361 when N_Operator_Symbol =>
9362 return
9363 Chars (E1) = Chars (E2);
9364
9365 when N_Others_Choice =>
9366 return True;
9367
9368 when N_Parameter_Association =>
9369 return
9370 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9371 and then FCE (Explicit_Actual_Parameter (E1),
9372 Explicit_Actual_Parameter (E2));
9373
9374 when N_Qualified_Expression
9375 | N_Type_Conversion
9376 | N_Unchecked_Type_Conversion
9377 =>
9378 return
9379 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9380 and then
9381 FCE (Expression (E1), Expression (E2));
9382
9383 when N_Quantified_Expression =>
9384 if not FCE (Condition (E1), Condition (E2)) then
9385 return False;
9386 end if;
9387
9388 if Present (Loop_Parameter_Specification (E1))
9389 and then Present (Loop_Parameter_Specification (E2))
9390 then
9391 declare
9392 L1 : constant Node_Id :=
9393 Loop_Parameter_Specification (E1);
9394 L2 : constant Node_Id :=
9395 Loop_Parameter_Specification (E2);
9396
9397 begin
9398 return
9399 Reverse_Present (L1) = Reverse_Present (L2)
9400 and then
9401 FCE (Defining_Identifier (L1),
9402 Defining_Identifier (L2))
9403 and then
9404 FCE (Discrete_Subtype_Definition (L1),
9405 Discrete_Subtype_Definition (L2));
9406 end;
9407
9408 elsif Present (Iterator_Specification (E1))
9409 and then Present (Iterator_Specification (E2))
9410 then
9411 declare
9412 I1 : constant Node_Id := Iterator_Specification (E1);
9413 I2 : constant Node_Id := Iterator_Specification (E2);
9414
9415 begin
9416 return
9417 FCE (Defining_Identifier (I1),
9418 Defining_Identifier (I2))
9419 and then
9420 Of_Present (I1) = Of_Present (I2)
9421 and then
9422 Reverse_Present (I1) = Reverse_Present (I2)
9423 and then FCE (Name (I1), Name (I2))
9424 and then FCE (Subtype_Indication (I1),
9425 Subtype_Indication (I2));
9426 end;
9427
9428 -- The quantified expressions used different specifications to
9429 -- walk their respective ranges.
9430
9431 else
9432 return False;
9433 end if;
9434
9435 when N_Range =>
9436 return
9437 FCE (Low_Bound (E1), Low_Bound (E2))
9438 and then
9439 FCE (High_Bound (E1), High_Bound (E2));
9440
9441 when N_Real_Literal =>
9442 return (Realval (E1) = Realval (E2));
9443
9444 when N_Selected_Component =>
9445 return
9446 FCE (Prefix (E1), Prefix (E2))
9447 and then
9448 FCE (Selector_Name (E1), Selector_Name (E2));
9449
9450 when N_Slice =>
9451 return
9452 FCE (Prefix (E1), Prefix (E2))
9453 and then
9454 FCE (Discrete_Range (E1), Discrete_Range (E2));
9455
9456 when N_String_Literal =>
9457 declare
9458 S1 : constant String_Id := Strval (E1);
9459 S2 : constant String_Id := Strval (E2);
9460 L1 : constant Nat := String_Length (S1);
9461 L2 : constant Nat := String_Length (S2);
9462
9463 begin
9464 if L1 /= L2 then
9465 return False;
9466
9467 else
9468 for J in 1 .. L1 loop
9469 if Get_String_Char (S1, J) /=
9470 Get_String_Char (S2, J)
9471 then
9472 return False;
9473 end if;
9474 end loop;
9475
9476 return True;
9477 end if;
9478 end;
9479
9480 when N_Unary_Op =>
9481 return
9482 Entity (E1) = Entity (E2)
9483 and then
9484 FCE (Right_Opnd (E1), Right_Opnd (E2));
9485
9486 -- All other node types cannot appear in this context. Strictly
9487 -- we should raise a fatal internal error. Instead we just ignore
9488 -- the nodes. This means that if anyone makes a mistake in the
9489 -- expander and mucks an expression tree irretrievably, the result
9490 -- will be a failure to detect a (probably very obscure) case
9491 -- of non-conformance, which is better than bombing on some
9492 -- case where two expressions do in fact conform.
9493
9494 when others =>
9495 return True;
9496 end case;
9497 end if;
9498 end Fully_Conformant_Expressions;
9499
9500 ----------------------------------------
9501 -- Fully_Conformant_Discrete_Subtypes --
9502 ----------------------------------------
9503
9504 function Fully_Conformant_Discrete_Subtypes
9505 (Given_S1 : Node_Id;
9506 Given_S2 : Node_Id) return Boolean
9507 is
9508 S1 : constant Node_Id := Original_Node (Given_S1);
9509 S2 : constant Node_Id := Original_Node (Given_S2);
9510
9511 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9512 -- Special-case for a bound given by a discriminant, which in the body
9513 -- is replaced with the discriminal of the enclosing type.
9514
9515 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9516 -- Check both bounds
9517
9518 -----------------------
9519 -- Conforming_Bounds --
9520 -----------------------
9521
9522 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9523 begin
9524 if Is_Entity_Name (B1)
9525 and then Is_Entity_Name (B2)
9526 and then Ekind (Entity (B1)) = E_Discriminant
9527 then
9528 return Chars (B1) = Chars (B2);
9529
9530 else
9531 return Fully_Conformant_Expressions (B1, B2);
9532 end if;
9533 end Conforming_Bounds;
9534
9535 -----------------------
9536 -- Conforming_Ranges --
9537 -----------------------
9538
9539 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9540 begin
9541 return
9542 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9543 and then
9544 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9545 end Conforming_Ranges;
9546
9547 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9548
9549 begin
9550 if Nkind (S1) /= Nkind (S2) then
9551 return False;
9552
9553 elsif Is_Entity_Name (S1) then
9554 return Entity (S1) = Entity (S2);
9555
9556 elsif Nkind (S1) = N_Range then
9557 return Conforming_Ranges (S1, S2);
9558
9559 elsif Nkind (S1) = N_Subtype_Indication then
9560 return
9561 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9562 and then
9563 Conforming_Ranges
9564 (Range_Expression (Constraint (S1)),
9565 Range_Expression (Constraint (S2)));
9566 else
9567 return True;
9568 end if;
9569 end Fully_Conformant_Discrete_Subtypes;
9570
9571 --------------------
9572 -- Install_Entity --
9573 --------------------
9574
9575 procedure Install_Entity (E : Entity_Id) is
9576 Prev : constant Entity_Id := Current_Entity (E);
9577 begin
9578 Set_Is_Immediately_Visible (E);
9579 Set_Current_Entity (E);
9580 Set_Homonym (E, Prev);
9581 end Install_Entity;
9582
9583 ---------------------
9584 -- Install_Formals --
9585 ---------------------
9586
9587 procedure Install_Formals (Id : Entity_Id) is
9588 F : Entity_Id;
9589 begin
9590 F := First_Formal (Id);
9591 while Present (F) loop
9592 Install_Entity (F);
9593 Next_Formal (F);
9594 end loop;
9595 end Install_Formals;
9596
9597 -----------------------------
9598 -- Is_Interface_Conformant --
9599 -----------------------------
9600
9601 function Is_Interface_Conformant
9602 (Tagged_Type : Entity_Id;
9603 Iface_Prim : Entity_Id;
9604 Prim : Entity_Id) return Boolean
9605 is
9606 -- The operation may in fact be an inherited (implicit) operation
9607 -- rather than the original interface primitive, so retrieve the
9608 -- ultimate ancestor.
9609
9610 Iface : constant Entity_Id :=
9611 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9612 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9613
9614 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9615 -- Return the controlling formal of Prim
9616
9617 ------------------------
9618 -- Controlling_Formal --
9619 ------------------------
9620
9621 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9622 E : Entity_Id;
9623
9624 begin
9625 E := First_Entity (Prim);
9626 while Present (E) loop
9627 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9628 return E;
9629 end if;
9630
9631 Next_Entity (E);
9632 end loop;
9633
9634 return Empty;
9635 end Controlling_Formal;
9636
9637 -- Local variables
9638
9639 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9640 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9641
9642 -- Start of processing for Is_Interface_Conformant
9643
9644 begin
9645 pragma Assert (Is_Subprogram (Iface_Prim)
9646 and then Is_Subprogram (Prim)
9647 and then Is_Dispatching_Operation (Iface_Prim)
9648 and then Is_Dispatching_Operation (Prim));
9649
9650 pragma Assert (Is_Interface (Iface)
9651 or else (Present (Alias (Iface_Prim))
9652 and then
9653 Is_Interface
9654 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9655
9656 if Prim = Iface_Prim
9657 or else not Is_Subprogram (Prim)
9658 or else Ekind (Prim) /= Ekind (Iface_Prim)
9659 or else not Is_Dispatching_Operation (Prim)
9660 or else Scope (Prim) /= Scope (Tagged_Type)
9661 or else No (Typ)
9662 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9663 or else not Primitive_Names_Match (Iface_Prim, Prim)
9664 then
9665 return False;
9666
9667 -- The mode of the controlling formals must match
9668
9669 elsif Present (Iface_Ctrl_F)
9670 and then Present (Prim_Ctrl_F)
9671 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9672 then
9673 return False;
9674
9675 -- Case of a procedure, or a function whose result type matches the
9676 -- result type of the interface primitive, or a function that has no
9677 -- controlling result (I or access I).
9678
9679 elsif Ekind (Iface_Prim) = E_Procedure
9680 or else Etype (Prim) = Etype (Iface_Prim)
9681 or else not Has_Controlling_Result (Prim)
9682 then
9683 return Type_Conformant
9684 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9685
9686 -- Case of a function returning an interface, or an access to one. Check
9687 -- that the return types correspond.
9688
9689 elsif Implements_Interface (Typ, Iface) then
9690 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9691 /=
9692 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9693 then
9694 return False;
9695 else
9696 return
9697 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9698 Skip_Controlling_Formals => True);
9699 end if;
9700
9701 else
9702 return False;
9703 end if;
9704 end Is_Interface_Conformant;
9705
9706 ---------------------------------
9707 -- Is_Non_Overriding_Operation --
9708 ---------------------------------
9709
9710 function Is_Non_Overriding_Operation
9711 (Prev_E : Entity_Id;
9712 New_E : Entity_Id) return Boolean
9713 is
9714 Formal : Entity_Id;
9715 F_Typ : Entity_Id;
9716 G_Typ : Entity_Id := Empty;
9717
9718 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9719 -- If F_Type is a derived type associated with a generic actual subtype,
9720 -- then return its Generic_Parent_Type attribute, else return Empty.
9721
9722 function Types_Correspond
9723 (P_Type : Entity_Id;
9724 N_Type : Entity_Id) return Boolean;
9725 -- Returns true if and only if the types (or designated types in the
9726 -- case of anonymous access types) are the same or N_Type is derived
9727 -- directly or indirectly from P_Type.
9728
9729 -----------------------------
9730 -- Get_Generic_Parent_Type --
9731 -----------------------------
9732
9733 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9734 G_Typ : Entity_Id;
9735 Defn : Node_Id;
9736 Indic : Node_Id;
9737
9738 begin
9739 if Is_Derived_Type (F_Typ)
9740 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9741 then
9742 -- The tree must be traversed to determine the parent subtype in
9743 -- the generic unit, which unfortunately isn't always available
9744 -- via semantic attributes. ??? (Note: The use of Original_Node
9745 -- is needed for cases where a full derived type has been
9746 -- rewritten.)
9747
9748 -- If the parent type is a scalar type, the derivation creates
9749 -- an anonymous base type for it, and the source type is its
9750 -- first subtype.
9751
9752 if Is_Scalar_Type (F_Typ)
9753 and then not Comes_From_Source (F_Typ)
9754 then
9755 Defn :=
9756 Type_Definition
9757 (Original_Node (Parent (First_Subtype (F_Typ))));
9758 else
9759 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9760 end if;
9761 if Nkind (Defn) = N_Derived_Type_Definition then
9762 Indic := Subtype_Indication (Defn);
9763
9764 if Nkind (Indic) = N_Subtype_Indication then
9765 G_Typ := Entity (Subtype_Mark (Indic));
9766 else
9767 G_Typ := Entity (Indic);
9768 end if;
9769
9770 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9771 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9772 then
9773 return Generic_Parent_Type (Parent (G_Typ));
9774 end if;
9775 end if;
9776 end if;
9777
9778 return Empty;
9779 end Get_Generic_Parent_Type;
9780
9781 ----------------------
9782 -- Types_Correspond --
9783 ----------------------
9784
9785 function Types_Correspond
9786 (P_Type : Entity_Id;
9787 N_Type : Entity_Id) return Boolean
9788 is
9789 Prev_Type : Entity_Id := Base_Type (P_Type);
9790 New_Type : Entity_Id := Base_Type (N_Type);
9791
9792 begin
9793 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9794 Prev_Type := Designated_Type (Prev_Type);
9795 end if;
9796
9797 if Ekind (New_Type) = E_Anonymous_Access_Type then
9798 New_Type := Designated_Type (New_Type);
9799 end if;
9800
9801 if Prev_Type = New_Type then
9802 return True;
9803
9804 elsif not Is_Class_Wide_Type (New_Type) then
9805 while Etype (New_Type) /= New_Type loop
9806 New_Type := Etype (New_Type);
9807
9808 if New_Type = Prev_Type then
9809 return True;
9810 end if;
9811 end loop;
9812 end if;
9813 return False;
9814 end Types_Correspond;
9815
9816 -- Start of processing for Is_Non_Overriding_Operation
9817
9818 begin
9819 -- In the case where both operations are implicit derived subprograms
9820 -- then neither overrides the other. This can only occur in certain
9821 -- obscure cases (e.g., derivation from homographs created in a generic
9822 -- instantiation).
9823
9824 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9825 return True;
9826
9827 elsif Ekind (Current_Scope) = E_Package
9828 and then Is_Generic_Instance (Current_Scope)
9829 and then In_Private_Part (Current_Scope)
9830 and then Comes_From_Source (New_E)
9831 then
9832 -- We examine the formals and result type of the inherited operation,
9833 -- to determine whether their type is derived from (the instance of)
9834 -- a generic type. The first such formal or result type is the one
9835 -- tested.
9836
9837 Formal := First_Formal (Prev_E);
9838 F_Typ := Empty;
9839 while Present (Formal) loop
9840 F_Typ := Base_Type (Etype (Formal));
9841
9842 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9843 F_Typ := Designated_Type (F_Typ);
9844 end if;
9845
9846 G_Typ := Get_Generic_Parent_Type (F_Typ);
9847 exit when Present (G_Typ);
9848
9849 Next_Formal (Formal);
9850 end loop;
9851
9852 -- If the function dispatches on result check the result type
9853
9854 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9855 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9856 end if;
9857
9858 if No (G_Typ) then
9859 return False;
9860 end if;
9861
9862 -- If the generic type is a private type, then the original operation
9863 -- was not overriding in the generic, because there was no primitive
9864 -- operation to override.
9865
9866 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9867 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9868 N_Formal_Private_Type_Definition
9869 then
9870 return True;
9871
9872 -- The generic parent type is the ancestor of a formal derived
9873 -- type declaration. We need to check whether it has a primitive
9874 -- operation that should be overridden by New_E in the generic.
9875
9876 else
9877 declare
9878 P_Formal : Entity_Id;
9879 N_Formal : Entity_Id;
9880 P_Typ : Entity_Id;
9881 N_Typ : Entity_Id;
9882 P_Prim : Entity_Id;
9883 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9884
9885 begin
9886 while Present (Prim_Elt) loop
9887 P_Prim := Node (Prim_Elt);
9888
9889 if Chars (P_Prim) = Chars (New_E)
9890 and then Ekind (P_Prim) = Ekind (New_E)
9891 then
9892 P_Formal := First_Formal (P_Prim);
9893 N_Formal := First_Formal (New_E);
9894 while Present (P_Formal) and then Present (N_Formal) loop
9895 P_Typ := Etype (P_Formal);
9896 N_Typ := Etype (N_Formal);
9897
9898 if not Types_Correspond (P_Typ, N_Typ) then
9899 exit;
9900 end if;
9901
9902 Next_Entity (P_Formal);
9903 Next_Entity (N_Formal);
9904 end loop;
9905
9906 -- Found a matching primitive operation belonging to the
9907 -- formal ancestor type, so the new subprogram is
9908 -- overriding.
9909
9910 if No (P_Formal)
9911 and then No (N_Formal)
9912 and then (Ekind (New_E) /= E_Function
9913 or else
9914 Types_Correspond
9915 (Etype (P_Prim), Etype (New_E)))
9916 then
9917 return False;
9918 end if;
9919 end if;
9920
9921 Next_Elmt (Prim_Elt);
9922 end loop;
9923
9924 -- If no match found, then the new subprogram does not override
9925 -- in the generic (nor in the instance).
9926
9927 -- If the type in question is not abstract, and the subprogram
9928 -- is, this will be an error if the new operation is in the
9929 -- private part of the instance. Emit a warning now, which will
9930 -- make the subsequent error message easier to understand.
9931
9932 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9933 and then Is_Abstract_Subprogram (Prev_E)
9934 and then In_Private_Part (Current_Scope)
9935 then
9936 Error_Msg_Node_2 := F_Typ;
9937 Error_Msg_NE
9938 ("private operation& in generic unit does not override "
9939 & "any primitive operation of& (RM 12.3 (18))??",
9940 New_E, New_E);
9941 end if;
9942
9943 return True;
9944 end;
9945 end if;
9946 else
9947 return False;
9948 end if;
9949 end Is_Non_Overriding_Operation;
9950
9951 -------------------------------------
9952 -- List_Inherited_Pre_Post_Aspects --
9953 -------------------------------------
9954
9955 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9956 begin
9957 if Opt.List_Inherited_Aspects
9958 and then Is_Subprogram_Or_Generic_Subprogram (E)
9959 then
9960 declare
9961 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9962 Items : Node_Id;
9963 Prag : Node_Id;
9964
9965 begin
9966 for Index in Subps'Range loop
9967 Items := Contract (Subps (Index));
9968
9969 if Present (Items) then
9970 Prag := Pre_Post_Conditions (Items);
9971 while Present (Prag) loop
9972 Error_Msg_Sloc := Sloc (Prag);
9973
9974 if Class_Present (Prag)
9975 and then not Split_PPC (Prag)
9976 then
9977 if Pragma_Name (Prag) = Name_Precondition then
9978 Error_Msg_N
9979 ("info: & inherits `Pre''Class` aspect from "
9980 & "#?L?", E);
9981 else
9982 Error_Msg_N
9983 ("info: & inherits `Post''Class` aspect from "
9984 & "#?L?", E);
9985 end if;
9986 end if;
9987
9988 Prag := Next_Pragma (Prag);
9989 end loop;
9990 end if;
9991 end loop;
9992 end;
9993 end if;
9994 end List_Inherited_Pre_Post_Aspects;
9995
9996 ------------------------------
9997 -- Make_Inequality_Operator --
9998 ------------------------------
9999
10000 -- S is the defining identifier of an equality operator. We build a
10001 -- subprogram declaration with the right signature. This operation is
10002 -- intrinsic, because it is always expanded as the negation of the
10003 -- call to the equality function.
10004
10005 procedure Make_Inequality_Operator (S : Entity_Id) is
10006 Loc : constant Source_Ptr := Sloc (S);
10007 Decl : Node_Id;
10008 Formals : List_Id;
10009 Op_Name : Entity_Id;
10010
10011 FF : constant Entity_Id := First_Formal (S);
10012 NF : constant Entity_Id := Next_Formal (FF);
10013
10014 begin
10015 -- Check that equality was properly defined, ignore call if not
10016
10017 if No (NF) then
10018 return;
10019 end if;
10020
10021 declare
10022 A : constant Entity_Id :=
10023 Make_Defining_Identifier (Sloc (FF),
10024 Chars => Chars (FF));
10025
10026 B : constant Entity_Id :=
10027 Make_Defining_Identifier (Sloc (NF),
10028 Chars => Chars (NF));
10029
10030 begin
10031 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
10032
10033 Formals := New_List (
10034 Make_Parameter_Specification (Loc,
10035 Defining_Identifier => A,
10036 Parameter_Type =>
10037 New_Occurrence_Of (Etype (First_Formal (S)),
10038 Sloc (Etype (First_Formal (S))))),
10039
10040 Make_Parameter_Specification (Loc,
10041 Defining_Identifier => B,
10042 Parameter_Type =>
10043 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
10044 Sloc (Etype (Next_Formal (First_Formal (S)))))));
10045
10046 Decl :=
10047 Make_Subprogram_Declaration (Loc,
10048 Specification =>
10049 Make_Function_Specification (Loc,
10050 Defining_Unit_Name => Op_Name,
10051 Parameter_Specifications => Formals,
10052 Result_Definition =>
10053 New_Occurrence_Of (Standard_Boolean, Loc)));
10054
10055 -- Insert inequality right after equality if it is explicit or after
10056 -- the derived type when implicit. These entities are created only
10057 -- for visibility purposes, and eventually replaced in the course
10058 -- of expansion, so they do not need to be attached to the tree and
10059 -- seen by the back-end. Keeping them internal also avoids spurious
10060 -- freezing problems. The declaration is inserted in the tree for
10061 -- analysis, and removed afterwards. If the equality operator comes
10062 -- from an explicit declaration, attach the inequality immediately
10063 -- after. Else the equality is inherited from a derived type
10064 -- declaration, so insert inequality after that declaration.
10065
10066 if No (Alias (S)) then
10067 Insert_After (Unit_Declaration_Node (S), Decl);
10068 elsif Is_List_Member (Parent (S)) then
10069 Insert_After (Parent (S), Decl);
10070 else
10071 Insert_After (Parent (Etype (First_Formal (S))), Decl);
10072 end if;
10073
10074 Mark_Rewrite_Insertion (Decl);
10075 Set_Is_Intrinsic_Subprogram (Op_Name);
10076 Analyze (Decl);
10077 Remove (Decl);
10078 Set_Has_Completion (Op_Name);
10079 Set_Corresponding_Equality (Op_Name, S);
10080 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
10081 end;
10082 end Make_Inequality_Operator;
10083
10084 ----------------------
10085 -- May_Need_Actuals --
10086 ----------------------
10087
10088 procedure May_Need_Actuals (Fun : Entity_Id) is
10089 F : Entity_Id;
10090 B : Boolean;
10091
10092 begin
10093 F := First_Formal (Fun);
10094 B := True;
10095 while Present (F) loop
10096 if No (Default_Value (F)) then
10097 B := False;
10098 exit;
10099 end if;
10100
10101 Next_Formal (F);
10102 end loop;
10103
10104 Set_Needs_No_Actuals (Fun, B);
10105 end May_Need_Actuals;
10106
10107 ---------------------
10108 -- Mode_Conformant --
10109 ---------------------
10110
10111 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
10112 Result : Boolean;
10113 begin
10114 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
10115 return Result;
10116 end Mode_Conformant;
10117
10118 ---------------------------
10119 -- New_Overloaded_Entity --
10120 ---------------------------
10121
10122 procedure New_Overloaded_Entity
10123 (S : Entity_Id;
10124 Derived_Type : Entity_Id := Empty)
10125 is
10126 Overridden_Subp : Entity_Id := Empty;
10127 -- Set if the current scope has an operation that is type-conformant
10128 -- with S, and becomes hidden by S.
10129
10130 Is_Primitive_Subp : Boolean;
10131 -- Set to True if the new subprogram is primitive
10132
10133 E : Entity_Id;
10134 -- Entity that S overrides
10135
10136 procedure Check_For_Primitive_Subprogram
10137 (Is_Primitive : out Boolean;
10138 Is_Overriding : Boolean := False);
10139 -- If the subprogram being analyzed is a primitive operation of the type
10140 -- of a formal or result, set the Has_Primitive_Operations flag on the
10141 -- type, and set Is_Primitive to True (otherwise set to False). Set the
10142 -- corresponding flag on the entity itself for later use.
10143
10144 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
10145 -- True if a) E is a subprogram whose first formal is a concurrent type
10146 -- defined in the scope of E that has some entry or subprogram whose
10147 -- profile matches E, or b) E is an internally built dispatching
10148 -- subprogram of a protected type and there is a matching subprogram
10149 -- defined in the enclosing scope of the protected type, or c) E is
10150 -- an entry of a synchronized type and a matching procedure has been
10151 -- previously defined in the enclosing scope of the synchronized type.
10152
10153 function Is_Private_Declaration (E : Entity_Id) return Boolean;
10154 -- Check that E is declared in the private part of the current package,
10155 -- or in the package body, where it may hide a previous declaration.
10156 -- We can't use In_Private_Part by itself because this flag is also
10157 -- set when freezing entities, so we must examine the place of the
10158 -- declaration in the tree, and recognize wrapper packages as well.
10159
10160 function Is_Overriding_Alias
10161 (Old_E : Entity_Id;
10162 New_E : Entity_Id) return Boolean;
10163 -- Check whether new subprogram and old subprogram are both inherited
10164 -- from subprograms that have distinct dispatch table entries. This can
10165 -- occur with derivations from instances with accidental homonyms. The
10166 -- function is conservative given that the converse is only true within
10167 -- instances that contain accidental overloadings.
10168
10169 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10170 -- Report conflict between entities S and E
10171
10172 ------------------------------------
10173 -- Check_For_Primitive_Subprogram --
10174 ------------------------------------
10175
10176 procedure Check_For_Primitive_Subprogram
10177 (Is_Primitive : out Boolean;
10178 Is_Overriding : Boolean := False)
10179 is
10180 Formal : Entity_Id;
10181 F_Typ : Entity_Id;
10182 B_Typ : Entity_Id;
10183
10184 function Visible_Part_Type (T : Entity_Id) return Boolean;
10185 -- Returns true if T is declared in the visible part of the current
10186 -- package scope; otherwise returns false. Assumes that T is declared
10187 -- in a package.
10188
10189 procedure Check_Private_Overriding (T : Entity_Id);
10190 -- Checks that if a primitive abstract subprogram of a visible
10191 -- abstract type is declared in a private part, then it must override
10192 -- an abstract subprogram declared in the visible part. Also checks
10193 -- that if a primitive function with a controlling result is declared
10194 -- in a private part, then it must override a function declared in
10195 -- the visible part.
10196
10197 ------------------------------
10198 -- Check_Private_Overriding --
10199 ------------------------------
10200
10201 procedure Check_Private_Overriding (T : Entity_Id) is
10202 function Overrides_Private_Part_Op return Boolean;
10203 -- This detects the special case where the overriding subprogram
10204 -- is overriding a subprogram that was declared in the same
10205 -- private part. That case is illegal by 3.9.3(10).
10206
10207 function Overrides_Visible_Function
10208 (Partial_View : Entity_Id) return Boolean;
10209 -- True if S overrides a function in the visible part. The
10210 -- overridden function could be explicitly or implicitly declared.
10211
10212 -------------------------------
10213 -- Overrides_Private_Part_Op --
10214 -------------------------------
10215
10216 function Overrides_Private_Part_Op return Boolean is
10217 Over_Decl : constant Node_Id :=
10218 Unit_Declaration_Node (Overridden_Operation (S));
10219 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10220
10221 begin
10222 pragma Assert (Is_Overriding);
10223 pragma Assert
10224 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10225 pragma Assert
10226 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10227
10228 return In_Same_List (Over_Decl, Subp_Decl);
10229 end Overrides_Private_Part_Op;
10230
10231 --------------------------------
10232 -- Overrides_Visible_Function --
10233 --------------------------------
10234
10235 function Overrides_Visible_Function
10236 (Partial_View : Entity_Id) return Boolean
10237 is
10238 begin
10239 if not Is_Overriding or else not Has_Homonym (S) then
10240 return False;
10241 end if;
10242
10243 if not Present (Partial_View) then
10244 return True;
10245 end if;
10246
10247 -- Search through all the homonyms H of S in the current
10248 -- package spec, and return True if we find one that matches.
10249 -- Note that Parent (H) will be the declaration of the
10250 -- partial view of T for a match.
10251
10252 declare
10253 H : Entity_Id := S;
10254 begin
10255 loop
10256 H := Homonym (H);
10257 exit when not Present (H) or else Scope (H) /= Scope (S);
10258
10259 if Nkind_In
10260 (Parent (H),
10261 N_Private_Extension_Declaration,
10262 N_Private_Type_Declaration)
10263 and then Defining_Identifier (Parent (H)) = Partial_View
10264 then
10265 return True;
10266 end if;
10267 end loop;
10268 end;
10269
10270 return False;
10271 end Overrides_Visible_Function;
10272
10273 -- Start of processing for Check_Private_Overriding
10274
10275 begin
10276 if Is_Package_Or_Generic_Package (Current_Scope)
10277 and then In_Private_Part (Current_Scope)
10278 and then Visible_Part_Type (T)
10279 and then not In_Instance
10280 then
10281 if Is_Abstract_Type (T)
10282 and then Is_Abstract_Subprogram (S)
10283 and then (not Is_Overriding
10284 or else not Is_Abstract_Subprogram (E)
10285 or else Overrides_Private_Part_Op)
10286 then
10287 Error_Msg_N
10288 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10289 S);
10290
10291 elsif Ekind (S) = E_Function then
10292 declare
10293 Partial_View : constant Entity_Id :=
10294 Incomplete_Or_Partial_View (T);
10295
10296 begin
10297 if not Overrides_Visible_Function (Partial_View) then
10298
10299 -- Here, S is "function ... return T;" declared in
10300 -- the private part, not overriding some visible
10301 -- operation. That's illegal in the tagged case
10302 -- (but not if the private type is untagged).
10303
10304 if ((Present (Partial_View)
10305 and then Is_Tagged_Type (Partial_View))
10306 or else (not Present (Partial_View)
10307 and then Is_Tagged_Type (T)))
10308 and then T = Base_Type (Etype (S))
10309 then
10310 Error_Msg_N
10311 ("private function with tagged result must"
10312 & " override visible-part function", S);
10313 Error_Msg_N
10314 ("\move subprogram to the visible part"
10315 & " (RM 3.9.3(10))", S);
10316
10317 -- AI05-0073: extend this test to the case of a
10318 -- function with a controlling access result.
10319
10320 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10321 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10322 and then
10323 not Is_Class_Wide_Type
10324 (Designated_Type (Etype (S)))
10325 and then Ada_Version >= Ada_2012
10326 then
10327 Error_Msg_N
10328 ("private function with controlling access "
10329 & "result must override visible-part function",
10330 S);
10331 Error_Msg_N
10332 ("\move subprogram to the visible part"
10333 & " (RM 3.9.3(10))", S);
10334 end if;
10335 end if;
10336 end;
10337 end if;
10338 end if;
10339 end Check_Private_Overriding;
10340
10341 -----------------------
10342 -- Visible_Part_Type --
10343 -----------------------
10344
10345 function Visible_Part_Type (T : Entity_Id) return Boolean is
10346 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10347
10348 begin
10349 -- If the entity is a private type, then it must be declared in a
10350 -- visible part.
10351
10352 if Ekind (T) in Private_Kind then
10353 return True;
10354
10355 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10356 return True;
10357
10358 elsif Is_List_Member (Declaration_Node (T))
10359 and then List_Containing (Declaration_Node (T)) =
10360 Visible_Declarations (Specification (P))
10361 then
10362 return True;
10363
10364 else
10365 return False;
10366 end if;
10367 end Visible_Part_Type;
10368
10369 -- Start of processing for Check_For_Primitive_Subprogram
10370
10371 begin
10372 Is_Primitive := False;
10373
10374 if not Comes_From_Source (S) then
10375 null;
10376
10377 -- If subprogram is at library level, it is not primitive operation
10378
10379 elsif Current_Scope = Standard_Standard then
10380 null;
10381
10382 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10383 and then not In_Package_Body (Current_Scope))
10384 or else Is_Overriding
10385 then
10386 -- For function, check return type
10387
10388 if Ekind (S) = E_Function then
10389 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10390 F_Typ := Designated_Type (Etype (S));
10391 else
10392 F_Typ := Etype (S);
10393 end if;
10394
10395 B_Typ := Base_Type (F_Typ);
10396
10397 if Scope (B_Typ) = Current_Scope
10398 and then not Is_Class_Wide_Type (B_Typ)
10399 and then not Is_Generic_Type (B_Typ)
10400 then
10401 Is_Primitive := True;
10402 Set_Has_Primitive_Operations (B_Typ);
10403 Set_Is_Primitive (S);
10404 Check_Private_Overriding (B_Typ);
10405
10406 -- The Ghost policy in effect at the point of declaration
10407 -- or a tagged type and a primitive operation must match
10408 -- (SPARK RM 6.9(16)).
10409
10410 Check_Ghost_Primitive (S, B_Typ);
10411 end if;
10412 end if;
10413
10414 -- For all subprograms, check formals
10415
10416 Formal := First_Formal (S);
10417 while Present (Formal) loop
10418 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10419 F_Typ := Designated_Type (Etype (Formal));
10420 else
10421 F_Typ := Etype (Formal);
10422 end if;
10423
10424 B_Typ := Base_Type (F_Typ);
10425
10426 if Ekind (B_Typ) = E_Access_Subtype then
10427 B_Typ := Base_Type (B_Typ);
10428 end if;
10429
10430 if Scope (B_Typ) = Current_Scope
10431 and then not Is_Class_Wide_Type (B_Typ)
10432 and then not Is_Generic_Type (B_Typ)
10433 then
10434 Is_Primitive := True;
10435 Set_Is_Primitive (S);
10436 Set_Has_Primitive_Operations (B_Typ);
10437 Check_Private_Overriding (B_Typ);
10438
10439 -- The Ghost policy in effect at the point of declaration
10440 -- of a tagged type and a primitive operation must match
10441 -- (SPARK RM 6.9(16)).
10442
10443 Check_Ghost_Primitive (S, B_Typ);
10444 end if;
10445
10446 Next_Formal (Formal);
10447 end loop;
10448
10449 -- Special case: An equality function can be redefined for a type
10450 -- occurring in a declarative part, and won't otherwise be treated as
10451 -- a primitive because it doesn't occur in a package spec and doesn't
10452 -- override an inherited subprogram. It's important that we mark it
10453 -- primitive so it can be returned by Collect_Primitive_Operations
10454 -- and be used in composing the equality operation of later types
10455 -- that have a component of the type.
10456
10457 elsif Chars (S) = Name_Op_Eq
10458 and then Etype (S) = Standard_Boolean
10459 then
10460 B_Typ := Base_Type (Etype (First_Formal (S)));
10461
10462 if Scope (B_Typ) = Current_Scope
10463 and then
10464 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10465 and then not Is_Limited_Type (B_Typ)
10466 then
10467 Is_Primitive := True;
10468 Set_Is_Primitive (S);
10469 Set_Has_Primitive_Operations (B_Typ);
10470 Check_Private_Overriding (B_Typ);
10471
10472 -- The Ghost policy in effect at the point of declaration of a
10473 -- tagged type and a primitive operation must match
10474 -- (SPARK RM 6.9(16)).
10475
10476 Check_Ghost_Primitive (S, B_Typ);
10477 end if;
10478 end if;
10479 end Check_For_Primitive_Subprogram;
10480
10481 --------------------------------------
10482 -- Has_Matching_Entry_Or_Subprogram --
10483 --------------------------------------
10484
10485 function Has_Matching_Entry_Or_Subprogram
10486 (E : Entity_Id) return Boolean
10487 is
10488 function Check_Conforming_Parameters
10489 (E1_Param : Node_Id;
10490 E2_Param : Node_Id) return Boolean;
10491 -- Starting from the given parameters, check that all the parameters
10492 -- of two entries or subprograms are subtype conformant. Used to skip
10493 -- the check on the controlling argument.
10494
10495 function Matching_Entry_Or_Subprogram
10496 (Conc_Typ : Entity_Id;
10497 Subp : Entity_Id) return Entity_Id;
10498 -- Return the first entry or subprogram of the given concurrent type
10499 -- whose name matches the name of Subp and has a profile conformant
10500 -- with Subp; return Empty if not found.
10501
10502 function Matching_Dispatching_Subprogram
10503 (Conc_Typ : Entity_Id;
10504 Ent : Entity_Id) return Entity_Id;
10505 -- Return the first dispatching primitive of Conc_Type defined in the
10506 -- enclosing scope of Conc_Type (i.e. before the full definition of
10507 -- this concurrent type) whose name matches the entry Ent and has a
10508 -- profile conformant with the profile of the corresponding (not yet
10509 -- built) dispatching primitive of Ent; return Empty if not found.
10510
10511 function Matching_Original_Protected_Subprogram
10512 (Prot_Typ : Entity_Id;
10513 Subp : Entity_Id) return Entity_Id;
10514 -- Return the first subprogram defined in the enclosing scope of
10515 -- Prot_Typ (before the full definition of this protected type)
10516 -- whose name matches the original name of Subp and has a profile
10517 -- conformant with the profile of Subp; return Empty if not found.
10518
10519 ---------------------------------
10520 -- Check_Conforming_Parameters --
10521 ---------------------------------
10522
10523 function Check_Conforming_Parameters
10524 (E1_Param : Node_Id;
10525 E2_Param : Node_Id) return Boolean
10526 is
10527 Param_E1 : Node_Id := E1_Param;
10528 Param_E2 : Node_Id := E2_Param;
10529
10530 begin
10531 while Present (Param_E1) and then Present (Param_E2) loop
10532 if Ekind (Defining_Identifier (Param_E1)) /=
10533 Ekind (Defining_Identifier (Param_E2))
10534 or else not
10535 Conforming_Types
10536 (Find_Parameter_Type (Param_E1),
10537 Find_Parameter_Type (Param_E2),
10538 Subtype_Conformant)
10539 then
10540 return False;
10541 end if;
10542
10543 Next (Param_E1);
10544 Next (Param_E2);
10545 end loop;
10546
10547 -- The candidate is not valid if one of the two lists contains
10548 -- more parameters than the other
10549
10550 return No (Param_E1) and then No (Param_E2);
10551 end Check_Conforming_Parameters;
10552
10553 ----------------------------------
10554 -- Matching_Entry_Or_Subprogram --
10555 ----------------------------------
10556
10557 function Matching_Entry_Or_Subprogram
10558 (Conc_Typ : Entity_Id;
10559 Subp : Entity_Id) return Entity_Id
10560 is
10561 E : Entity_Id;
10562
10563 begin
10564 E := First_Entity (Conc_Typ);
10565 while Present (E) loop
10566 if Chars (Subp) = Chars (E)
10567 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10568 and then
10569 Check_Conforming_Parameters
10570 (First (Parameter_Specifications (Parent (E))),
10571 Next (First (Parameter_Specifications (Parent (Subp)))))
10572 then
10573 return E;
10574 end if;
10575
10576 Next_Entity (E);
10577 end loop;
10578
10579 return Empty;
10580 end Matching_Entry_Or_Subprogram;
10581
10582 -------------------------------------
10583 -- Matching_Dispatching_Subprogram --
10584 -------------------------------------
10585
10586 function Matching_Dispatching_Subprogram
10587 (Conc_Typ : Entity_Id;
10588 Ent : Entity_Id) return Entity_Id
10589 is
10590 E : Entity_Id;
10591
10592 begin
10593 -- Search for entities in the enclosing scope of this synchonized
10594 -- type.
10595
10596 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10597 Push_Scope (Scope (Conc_Typ));
10598 E := Current_Entity_In_Scope (Ent);
10599 Pop_Scope;
10600
10601 while Present (E) loop
10602 if Scope (E) = Scope (Conc_Typ)
10603 and then Comes_From_Source (E)
10604 and then Ekind (E) = E_Procedure
10605 and then Present (First_Entity (E))
10606 and then Is_Controlling_Formal (First_Entity (E))
10607 and then Etype (First_Entity (E)) = Conc_Typ
10608 and then
10609 Check_Conforming_Parameters
10610 (First (Parameter_Specifications (Parent (Ent))),
10611 Next (First (Parameter_Specifications (Parent (E)))))
10612 then
10613 return E;
10614 end if;
10615
10616 E := Homonym (E);
10617 end loop;
10618
10619 return Empty;
10620 end Matching_Dispatching_Subprogram;
10621
10622 --------------------------------------------
10623 -- Matching_Original_Protected_Subprogram --
10624 --------------------------------------------
10625
10626 function Matching_Original_Protected_Subprogram
10627 (Prot_Typ : Entity_Id;
10628 Subp : Entity_Id) return Entity_Id
10629 is
10630 ICF : constant Boolean :=
10631 Is_Controlling_Formal (First_Entity (Subp));
10632 E : Entity_Id;
10633
10634 begin
10635 -- Temporarily decorate the first parameter of Subp as controlling
10636 -- formal, required to invoke Subtype_Conformant.
10637
10638 Set_Is_Controlling_Formal (First_Entity (Subp));
10639
10640 E :=
10641 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10642
10643 while Present (E) loop
10644 if Scope (E) = Scope (Prot_Typ)
10645 and then Comes_From_Source (E)
10646 and then Ekind (Subp) = Ekind (E)
10647 and then Present (First_Entity (E))
10648 and then Is_Controlling_Formal (First_Entity (E))
10649 and then Etype (First_Entity (E)) = Prot_Typ
10650 and then Subtype_Conformant (Subp, E,
10651 Skip_Controlling_Formals => True)
10652 then
10653 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10654 return E;
10655 end if;
10656
10657 E := Homonym (E);
10658 end loop;
10659
10660 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10661
10662 return Empty;
10663 end Matching_Original_Protected_Subprogram;
10664
10665 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10666
10667 begin
10668 -- Case 1: E is a subprogram whose first formal is a concurrent type
10669 -- defined in the scope of E that has an entry or subprogram whose
10670 -- profile matches E.
10671
10672 if Comes_From_Source (E)
10673 and then Is_Subprogram (E)
10674 and then Present (First_Entity (E))
10675 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10676 then
10677 if Scope (E) =
10678 Scope (Corresponding_Concurrent_Type
10679 (Etype (First_Entity (E))))
10680 and then
10681 Present
10682 (Matching_Entry_Or_Subprogram
10683 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10684 Subp => E))
10685 then
10686 Report_Conflict (E,
10687 Matching_Entry_Or_Subprogram
10688 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10689 Subp => E));
10690 return True;
10691 end if;
10692
10693 -- Case 2: E is an internally built dispatching subprogram of a
10694 -- protected type and there is a subprogram defined in the enclosing
10695 -- scope of the protected type that has the original name of E and
10696 -- its profile is conformant with the profile of E. We check the
10697 -- name of the original protected subprogram associated with E since
10698 -- the expander builds dispatching primitives of protected functions
10699 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10700
10701 elsif not Comes_From_Source (E)
10702 and then Is_Subprogram (E)
10703 and then Present (First_Entity (E))
10704 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10705 and then Present (Original_Protected_Subprogram (E))
10706 and then
10707 Present
10708 (Matching_Original_Protected_Subprogram
10709 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10710 Subp => E))
10711 then
10712 Report_Conflict (E,
10713 Matching_Original_Protected_Subprogram
10714 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10715 Subp => E));
10716 return True;
10717
10718 -- Case 3: E is an entry of a synchronized type and a matching
10719 -- procedure has been previously defined in the enclosing scope
10720 -- of the synchronized type.
10721
10722 elsif Comes_From_Source (E)
10723 and then Ekind (E) = E_Entry
10724 and then
10725 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10726 then
10727 Report_Conflict (E,
10728 Matching_Dispatching_Subprogram (Current_Scope, E));
10729 return True;
10730 end if;
10731
10732 return False;
10733 end Has_Matching_Entry_Or_Subprogram;
10734
10735 ----------------------------
10736 -- Is_Private_Declaration --
10737 ----------------------------
10738
10739 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10740 Decl : constant Node_Id := Unit_Declaration_Node (E);
10741 Priv_Decls : List_Id;
10742
10743 begin
10744 if Is_Package_Or_Generic_Package (Current_Scope)
10745 and then In_Private_Part (Current_Scope)
10746 then
10747 Priv_Decls :=
10748 Private_Declarations (Package_Specification (Current_Scope));
10749
10750 return In_Package_Body (Current_Scope)
10751 or else
10752 (Is_List_Member (Decl)
10753 and then List_Containing (Decl) = Priv_Decls)
10754 or else (Nkind (Parent (Decl)) = N_Package_Specification
10755 and then not
10756 Is_Compilation_Unit
10757 (Defining_Entity (Parent (Decl)))
10758 and then List_Containing (Parent (Parent (Decl))) =
10759 Priv_Decls);
10760 else
10761 return False;
10762 end if;
10763 end Is_Private_Declaration;
10764
10765 --------------------------
10766 -- Is_Overriding_Alias --
10767 --------------------------
10768
10769 function Is_Overriding_Alias
10770 (Old_E : Entity_Id;
10771 New_E : Entity_Id) return Boolean
10772 is
10773 AO : constant Entity_Id := Alias (Old_E);
10774 AN : constant Entity_Id := Alias (New_E);
10775
10776 begin
10777 return Scope (AO) /= Scope (AN)
10778 or else No (DTC_Entity (AO))
10779 or else No (DTC_Entity (AN))
10780 or else DT_Position (AO) = DT_Position (AN);
10781 end Is_Overriding_Alias;
10782
10783 ---------------------
10784 -- Report_Conflict --
10785 ---------------------
10786
10787 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10788 begin
10789 Error_Msg_Sloc := Sloc (E);
10790
10791 -- Generate message, with useful additional warning if in generic
10792
10793 if Is_Generic_Unit (E) then
10794 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10795 Error_Msg_N ("\& conflicts with declaration#", S);
10796 else
10797 Error_Msg_N ("& conflicts with declaration#", S);
10798 end if;
10799 end Report_Conflict;
10800
10801 -- Start of processing for New_Overloaded_Entity
10802
10803 begin
10804 -- We need to look for an entity that S may override. This must be a
10805 -- homonym in the current scope, so we look for the first homonym of
10806 -- S in the current scope as the starting point for the search.
10807
10808 E := Current_Entity_In_Scope (S);
10809
10810 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10811 -- They are directly added to the list of primitive operations of
10812 -- Derived_Type, unless this is a rederivation in the private part
10813 -- of an operation that was already derived in the visible part of
10814 -- the current package.
10815
10816 if Ada_Version >= Ada_2005
10817 and then Present (Derived_Type)
10818 and then Present (Alias (S))
10819 and then Is_Dispatching_Operation (Alias (S))
10820 and then Present (Find_Dispatching_Type (Alias (S)))
10821 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10822 then
10823 -- For private types, when the full-view is processed we propagate to
10824 -- the full view the non-overridden entities whose attribute "alias"
10825 -- references an interface primitive. These entities were added by
10826 -- Derive_Subprograms to ensure that interface primitives are
10827 -- covered.
10828
10829 -- Inside_Freeze_Actions is non zero when S corresponds with an
10830 -- internal entity that links an interface primitive with its
10831 -- covering primitive through attribute Interface_Alias (see
10832 -- Add_Internal_Interface_Entities).
10833
10834 if Inside_Freezing_Actions = 0
10835 and then Is_Package_Or_Generic_Package (Current_Scope)
10836 and then In_Private_Part (Current_Scope)
10837 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10838 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10839 and then Full_View (Defining_Identifier (Parent (E)))
10840 = Defining_Identifier (Parent (S))
10841 and then Alias (E) = Alias (S)
10842 then
10843 Check_Operation_From_Private_View (S, E);
10844 Set_Is_Dispatching_Operation (S);
10845
10846 -- Common case
10847
10848 else
10849 Enter_Overloaded_Entity (S);
10850 Check_Dispatching_Operation (S, Empty);
10851 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10852 end if;
10853
10854 return;
10855 end if;
10856
10857 -- For synchronized types check conflicts of this entity with previously
10858 -- defined entities.
10859
10860 if Ada_Version >= Ada_2005
10861 and then Has_Matching_Entry_Or_Subprogram (S)
10862 then
10863 return;
10864 end if;
10865
10866 -- If there is no homonym then this is definitely not overriding
10867
10868 if No (E) then
10869 Enter_Overloaded_Entity (S);
10870 Check_Dispatching_Operation (S, Empty);
10871 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10872
10873 -- If subprogram has an explicit declaration, check whether it has an
10874 -- overriding indicator.
10875
10876 if Comes_From_Source (S) then
10877 Check_Synchronized_Overriding (S, Overridden_Subp);
10878
10879 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10880 -- it may have overridden some hidden inherited primitive. Update
10881 -- Overridden_Subp to avoid spurious errors when checking the
10882 -- overriding indicator.
10883
10884 if Ada_Version >= Ada_2012
10885 and then No (Overridden_Subp)
10886 and then Is_Dispatching_Operation (S)
10887 and then Present (Overridden_Operation (S))
10888 then
10889 Overridden_Subp := Overridden_Operation (S);
10890 end if;
10891
10892 Check_Overriding_Indicator
10893 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10894
10895 -- The Ghost policy in effect at the point of declaration of a
10896 -- parent subprogram and an overriding subprogram must match
10897 -- (SPARK RM 6.9(17)).
10898
10899 Check_Ghost_Overriding (S, Overridden_Subp);
10900 end if;
10901
10902 -- If there is a homonym that is not overloadable, then we have an
10903 -- error, except for the special cases checked explicitly below.
10904
10905 elsif not Is_Overloadable (E) then
10906
10907 -- Check for spurious conflict produced by a subprogram that has the
10908 -- same name as that of the enclosing generic package. The conflict
10909 -- occurs within an instance, between the subprogram and the renaming
10910 -- declaration for the package. After the subprogram, the package
10911 -- renaming declaration becomes hidden.
10912
10913 if Ekind (E) = E_Package
10914 and then Present (Renamed_Object (E))
10915 and then Renamed_Object (E) = Current_Scope
10916 and then Nkind (Parent (Renamed_Object (E))) =
10917 N_Package_Specification
10918 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10919 then
10920 Set_Is_Hidden (E);
10921 Set_Is_Immediately_Visible (E, False);
10922 Enter_Overloaded_Entity (S);
10923 Set_Homonym (S, Homonym (E));
10924 Check_Dispatching_Operation (S, Empty);
10925 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10926
10927 -- If the subprogram is implicit it is hidden by the previous
10928 -- declaration. However if it is dispatching, it must appear in the
10929 -- dispatch table anyway, because it can be dispatched to even if it
10930 -- cannot be called directly.
10931
10932 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10933 Set_Scope (S, Current_Scope);
10934
10935 if Is_Dispatching_Operation (Alias (S)) then
10936 Check_Dispatching_Operation (S, Empty);
10937 end if;
10938
10939 return;
10940
10941 else
10942 Report_Conflict (S, E);
10943 return;
10944 end if;
10945
10946 -- E exists and is overloadable
10947
10948 else
10949 Check_Synchronized_Overriding (S, Overridden_Subp);
10950
10951 -- Loop through E and its homonyms to determine if any of them is
10952 -- the candidate for overriding by S.
10953
10954 while Present (E) loop
10955
10956 -- Definitely not interesting if not in the current scope
10957
10958 if Scope (E) /= Current_Scope then
10959 null;
10960
10961 -- A function can overload the name of an abstract state. The
10962 -- state can be viewed as a function with a profile that cannot
10963 -- be matched by anything.
10964
10965 elsif Ekind (S) = E_Function
10966 and then Ekind (E) = E_Abstract_State
10967 then
10968 Enter_Overloaded_Entity (S);
10969 return;
10970
10971 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10972 -- procedures locate the internally generated spec. We enforce
10973 -- mode conformance since a tagged type may inherit from
10974 -- interfaces several null primitives which differ only in
10975 -- the mode of the formals.
10976
10977 elsif not Comes_From_Source (S)
10978 and then Is_Null_Procedure (S)
10979 and then not Mode_Conformant (E, S)
10980 then
10981 null;
10982
10983 -- Check if we have type conformance
10984
10985 elsif Type_Conformant (E, S) then
10986
10987 -- If the old and new entities have the same profile and one
10988 -- is not the body of the other, then this is an error, unless
10989 -- one of them is implicitly declared.
10990
10991 -- There are some cases when both can be implicit, for example
10992 -- when both a literal and a function that overrides it are
10993 -- inherited in a derivation, or when an inherited operation
10994 -- of a tagged full type overrides the inherited operation of
10995 -- a private extension. Ada 83 had a special rule for the
10996 -- literal case. In Ada 95, the later implicit operation hides
10997 -- the former, and the literal is always the former. In the
10998 -- odd case where both are derived operations declared at the
10999 -- same point, both operations should be declared, and in that
11000 -- case we bypass the following test and proceed to the next
11001 -- part. This can only occur for certain obscure cases in
11002 -- instances, when an operation on a type derived from a formal
11003 -- private type does not override a homograph inherited from
11004 -- the actual. In subsequent derivations of such a type, the
11005 -- DT positions of these operations remain distinct, if they
11006 -- have been set.
11007
11008 if Present (Alias (S))
11009 and then (No (Alias (E))
11010 or else Comes_From_Source (E)
11011 or else Is_Abstract_Subprogram (S)
11012 or else
11013 (Is_Dispatching_Operation (E)
11014 and then Is_Overriding_Alias (E, S)))
11015 and then Ekind (E) /= E_Enumeration_Literal
11016 then
11017 -- When an derived operation is overloaded it may be due to
11018 -- the fact that the full view of a private extension
11019 -- re-inherits. It has to be dealt with.
11020
11021 if Is_Package_Or_Generic_Package (Current_Scope)
11022 and then In_Private_Part (Current_Scope)
11023 then
11024 Check_Operation_From_Private_View (S, E);
11025 end if;
11026
11027 -- In any case the implicit operation remains hidden by the
11028 -- existing declaration, which is overriding. Indicate that
11029 -- E overrides the operation from which S is inherited.
11030
11031 if Present (Alias (S)) then
11032 Set_Overridden_Operation (E, Alias (S));
11033 Inherit_Subprogram_Contract (E, Alias (S));
11034
11035 else
11036 Set_Overridden_Operation (E, S);
11037 Inherit_Subprogram_Contract (E, S);
11038 end if;
11039
11040 if Comes_From_Source (E) then
11041 Check_Overriding_Indicator (E, S, Is_Primitive => False);
11042
11043 -- The Ghost policy in effect at the point of declaration
11044 -- of a parent subprogram and an overriding subprogram
11045 -- must match (SPARK RM 6.9(17)).
11046
11047 Check_Ghost_Overriding (E, S);
11048 end if;
11049
11050 return;
11051
11052 -- Within an instance, the renaming declarations for actual
11053 -- subprograms may become ambiguous, but they do not hide each
11054 -- other.
11055
11056 elsif Ekind (E) /= E_Entry
11057 and then not Comes_From_Source (E)
11058 and then not Is_Generic_Instance (E)
11059 and then (Present (Alias (E))
11060 or else Is_Intrinsic_Subprogram (E))
11061 and then (not In_Instance
11062 or else No (Parent (E))
11063 or else Nkind (Unit_Declaration_Node (E)) /=
11064 N_Subprogram_Renaming_Declaration)
11065 then
11066 -- A subprogram child unit is not allowed to override an
11067 -- inherited subprogram (10.1.1(20)).
11068
11069 if Is_Child_Unit (S) then
11070 Error_Msg_N
11071 ("child unit overrides inherited subprogram in parent",
11072 S);
11073 return;
11074 end if;
11075
11076 if Is_Non_Overriding_Operation (E, S) then
11077 Enter_Overloaded_Entity (S);
11078
11079 if No (Derived_Type)
11080 or else Is_Tagged_Type (Derived_Type)
11081 then
11082 Check_Dispatching_Operation (S, Empty);
11083 end if;
11084
11085 return;
11086 end if;
11087
11088 -- E is a derived operation or an internal operator which
11089 -- is being overridden. Remove E from further visibility.
11090 -- Furthermore, if E is a dispatching operation, it must be
11091 -- replaced in the list of primitive operations of its type
11092 -- (see Override_Dispatching_Operation).
11093
11094 Overridden_Subp := E;
11095
11096 -- It is possible for E to be in the current scope and
11097 -- yet not in the entity chain. This can only occur in a
11098 -- generic context where E is an implicit concatenation
11099 -- in the formal part, because in a generic body the
11100 -- entity chain starts with the formals.
11101
11102 -- In GNATprove mode, a wrapper for an operation with
11103 -- axiomatization may be a homonym of another declaration
11104 -- for an actual subprogram (needs refinement ???).
11105
11106 if No (Prev_Entity (E)) then
11107 if In_Instance
11108 and then GNATprove_Mode
11109 and then
11110 Nkind (Original_Node (Unit_Declaration_Node (S))) =
11111 N_Subprogram_Renaming_Declaration
11112 then
11113 return;
11114 else
11115 pragma Assert (Chars (E) = Name_Op_Concat);
11116 null;
11117 end if;
11118 end if;
11119
11120 -- E must be removed both from the entity_list of the
11121 -- current scope, and from the visibility chain.
11122
11123 if Debug_Flag_E then
11124 Write_Str ("Override implicit operation ");
11125 Write_Int (Int (E));
11126 Write_Eol;
11127 end if;
11128
11129 -- If E is a predefined concatenation, it stands for four
11130 -- different operations. As a result, a single explicit
11131 -- declaration does not hide it. In a possible ambiguous
11132 -- situation, Disambiguate chooses the user-defined op,
11133 -- so it is correct to retain the previous internal one.
11134
11135 if Chars (E) /= Name_Op_Concat
11136 or else Ekind (E) /= E_Operator
11137 then
11138 -- For nondispatching derived operations that are
11139 -- overridden by a subprogram declared in the private
11140 -- part of a package, we retain the derived subprogram
11141 -- but mark it as not immediately visible. If the
11142 -- derived operation was declared in the visible part
11143 -- then this ensures that it will still be visible
11144 -- outside the package with the proper signature
11145 -- (calls from outside must also be directed to this
11146 -- version rather than the overriding one, unlike the
11147 -- dispatching case). Calls from inside the package
11148 -- will still resolve to the overriding subprogram
11149 -- since the derived one is marked as not visible
11150 -- within the package.
11151
11152 -- If the private operation is dispatching, we achieve
11153 -- the overriding by keeping the implicit operation
11154 -- but setting its alias to be the overriding one. In
11155 -- this fashion the proper body is executed in all
11156 -- cases, but the original signature is used outside
11157 -- of the package.
11158
11159 -- If the overriding is not in the private part, we
11160 -- remove the implicit operation altogether.
11161
11162 if Is_Private_Declaration (S) then
11163 if not Is_Dispatching_Operation (E) then
11164 Set_Is_Immediately_Visible (E, False);
11165 else
11166 -- Work done in Override_Dispatching_Operation, so
11167 -- nothing else needs to be done here.
11168
11169 null;
11170 end if;
11171
11172 else
11173 Remove_Entity_And_Homonym (E);
11174 end if;
11175 end if;
11176
11177 Enter_Overloaded_Entity (S);
11178
11179 -- For entities generated by Derive_Subprograms the
11180 -- overridden operation is the inherited primitive
11181 -- (which is available through the attribute alias).
11182
11183 if not (Comes_From_Source (E))
11184 and then Is_Dispatching_Operation (E)
11185 and then Find_Dispatching_Type (E) =
11186 Find_Dispatching_Type (S)
11187 and then Present (Alias (E))
11188 and then Comes_From_Source (Alias (E))
11189 then
11190 Set_Overridden_Operation (S, Alias (E));
11191 Inherit_Subprogram_Contract (S, Alias (E));
11192
11193 -- Normal case of setting entity as overridden
11194
11195 -- Note: Static_Initialization and Overridden_Operation
11196 -- attributes use the same field in subprogram entities.
11197 -- Static_Initialization is only defined for internal
11198 -- initialization procedures, where Overridden_Operation
11199 -- is irrelevant. Therefore the setting of this attribute
11200 -- must check whether the target is an init_proc.
11201
11202 elsif not Is_Init_Proc (S) then
11203 Set_Overridden_Operation (S, E);
11204 Inherit_Subprogram_Contract (S, E);
11205 end if;
11206
11207 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11208
11209 -- The Ghost policy in effect at the point of declaration
11210 -- of a parent subprogram and an overriding subprogram
11211 -- must match (SPARK RM 6.9(17)).
11212
11213 Check_Ghost_Overriding (S, E);
11214
11215 -- If S is a user-defined subprogram or a null procedure
11216 -- expanded to override an inherited null procedure, or a
11217 -- predefined dispatching primitive then indicate that E
11218 -- overrides the operation from which S is inherited.
11219
11220 if Comes_From_Source (S)
11221 or else
11222 (Present (Parent (S))
11223 and then Nkind (Parent (S)) = N_Procedure_Specification
11224 and then Null_Present (Parent (S)))
11225 or else
11226 (Present (Alias (E))
11227 and then
11228 Is_Predefined_Dispatching_Operation (Alias (E)))
11229 then
11230 if Present (Alias (E)) then
11231 Set_Overridden_Operation (S, Alias (E));
11232 Inherit_Subprogram_Contract (S, Alias (E));
11233 end if;
11234 end if;
11235
11236 if Is_Dispatching_Operation (E) then
11237
11238 -- An overriding dispatching subprogram inherits the
11239 -- convention of the overridden subprogram (AI-117).
11240
11241 Set_Convention (S, Convention (E));
11242 Check_Dispatching_Operation (S, E);
11243
11244 else
11245 Check_Dispatching_Operation (S, Empty);
11246 end if;
11247
11248 Check_For_Primitive_Subprogram
11249 (Is_Primitive_Subp, Is_Overriding => True);
11250 goto Check_Inequality;
11251
11252 -- Apparent redeclarations in instances can occur when two
11253 -- formal types get the same actual type. The subprograms in
11254 -- in the instance are legal, even if not callable from the
11255 -- outside. Calls from within are disambiguated elsewhere.
11256 -- For dispatching operations in the visible part, the usual
11257 -- rules apply, and operations with the same profile are not
11258 -- legal (B830001).
11259
11260 elsif (In_Instance_Visible_Part
11261 and then not Is_Dispatching_Operation (E))
11262 or else In_Instance_Not_Visible
11263 then
11264 null;
11265
11266 -- Here we have a real error (identical profile)
11267
11268 else
11269 Error_Msg_Sloc := Sloc (E);
11270
11271 -- Avoid cascaded errors if the entity appears in
11272 -- subsequent calls.
11273
11274 Set_Scope (S, Current_Scope);
11275
11276 -- Generate error, with extra useful warning for the case
11277 -- of a generic instance with no completion.
11278
11279 if Is_Generic_Instance (S)
11280 and then not Has_Completion (E)
11281 then
11282 Error_Msg_N
11283 ("instantiation cannot provide body for&", S);
11284 Error_Msg_N ("\& conflicts with declaration#", S);
11285 else
11286 Error_Msg_N ("& conflicts with declaration#", S);
11287 end if;
11288
11289 return;
11290 end if;
11291
11292 else
11293 -- If one subprogram has an access parameter and the other
11294 -- a parameter of an access type, calls to either might be
11295 -- ambiguous. Verify that parameters match except for the
11296 -- access parameter.
11297
11298 if May_Hide_Profile then
11299 declare
11300 F1 : Entity_Id;
11301 F2 : Entity_Id;
11302
11303 begin
11304 F1 := First_Formal (S);
11305 F2 := First_Formal (E);
11306 while Present (F1) and then Present (F2) loop
11307 if Is_Access_Type (Etype (F1)) then
11308 if not Is_Access_Type (Etype (F2))
11309 or else not Conforming_Types
11310 (Designated_Type (Etype (F1)),
11311 Designated_Type (Etype (F2)),
11312 Type_Conformant)
11313 then
11314 May_Hide_Profile := False;
11315 end if;
11316
11317 elsif
11318 not Conforming_Types
11319 (Etype (F1), Etype (F2), Type_Conformant)
11320 then
11321 May_Hide_Profile := False;
11322 end if;
11323
11324 Next_Formal (F1);
11325 Next_Formal (F2);
11326 end loop;
11327
11328 if May_Hide_Profile
11329 and then No (F1)
11330 and then No (F2)
11331 then
11332 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11333 end if;
11334 end;
11335 end if;
11336 end if;
11337
11338 E := Homonym (E);
11339 end loop;
11340
11341 -- On exit, we know that S is a new entity
11342
11343 Enter_Overloaded_Entity (S);
11344 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11345 Check_Overriding_Indicator
11346 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11347
11348 -- The Ghost policy in effect at the point of declaration of a parent
11349 -- subprogram and an overriding subprogram must match
11350 -- (SPARK RM 6.9(17)).
11351
11352 Check_Ghost_Overriding (S, Overridden_Subp);
11353
11354 -- Overloading is not allowed in SPARK, except for operators
11355
11356 if Nkind (S) /= N_Defining_Operator_Symbol then
11357 Error_Msg_Sloc := Sloc (Homonym (S));
11358 Check_SPARK_05_Restriction
11359 ("overloading not allowed with entity#", S);
11360 end if;
11361
11362 -- If S is a derived operation for an untagged type then by
11363 -- definition it's not a dispatching operation (even if the parent
11364 -- operation was dispatching), so Check_Dispatching_Operation is not
11365 -- called in that case.
11366
11367 if No (Derived_Type)
11368 or else Is_Tagged_Type (Derived_Type)
11369 then
11370 Check_Dispatching_Operation (S, Empty);
11371 end if;
11372 end if;
11373
11374 -- If this is a user-defined equality operator that is not a derived
11375 -- subprogram, create the corresponding inequality. If the operation is
11376 -- dispatching, the expansion is done elsewhere, and we do not create
11377 -- an explicit inequality operation.
11378
11379 <<Check_Inequality>>
11380 if Chars (S) = Name_Op_Eq
11381 and then Etype (S) = Standard_Boolean
11382 and then Present (Parent (S))
11383 and then not Is_Dispatching_Operation (S)
11384 then
11385 Make_Inequality_Operator (S);
11386 Check_Untagged_Equality (S);
11387 end if;
11388 end New_Overloaded_Entity;
11389
11390 ----------------------------------
11391 -- Preanalyze_Formal_Expression --
11392 ----------------------------------
11393
11394 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
11395 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
11396 begin
11397 In_Spec_Expression := True;
11398 Preanalyze_With_Freezing_And_Resolve (N, T);
11399 In_Spec_Expression := Save_In_Spec_Expression;
11400 end Preanalyze_Formal_Expression;
11401
11402 ---------------------
11403 -- Process_Formals --
11404 ---------------------
11405
11406 procedure Process_Formals
11407 (T : List_Id;
11408 Related_Nod : Node_Id)
11409 is
11410 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11411 -- Determine whether an access type designates a type coming from a
11412 -- limited view.
11413
11414 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11415 -- Check whether the default has a class-wide type. After analysis the
11416 -- default has the type of the formal, so we must also check explicitly
11417 -- for an access attribute.
11418
11419 ----------------------------------
11420 -- Designates_From_Limited_With --
11421 ----------------------------------
11422
11423 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11424 Desig : Entity_Id := Typ;
11425
11426 begin
11427 if Is_Access_Type (Desig) then
11428 Desig := Directly_Designated_Type (Desig);
11429 end if;
11430
11431 if Is_Class_Wide_Type (Desig) then
11432 Desig := Root_Type (Desig);
11433 end if;
11434
11435 return
11436 Ekind (Desig) = E_Incomplete_Type
11437 and then From_Limited_With (Desig);
11438 end Designates_From_Limited_With;
11439
11440 ---------------------------
11441 -- Is_Class_Wide_Default --
11442 ---------------------------
11443
11444 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11445 begin
11446 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11447 or else (Nkind (D) = N_Attribute_Reference
11448 and then Attribute_Name (D) = Name_Access
11449 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11450 end Is_Class_Wide_Default;
11451
11452 -- Local variables
11453
11454 Context : constant Node_Id := Parent (Parent (T));
11455 Default : Node_Id;
11456 Formal : Entity_Id;
11457 Formal_Type : Entity_Id;
11458 Param_Spec : Node_Id;
11459 Ptype : Entity_Id;
11460
11461 Num_Out_Params : Nat := 0;
11462 First_Out_Param : Entity_Id := Empty;
11463 -- Used for setting Is_Only_Out_Parameter
11464
11465 -- Start of processing for Process_Formals
11466
11467 begin
11468 -- In order to prevent premature use of the formals in the same formal
11469 -- part, the Ekind is left undefined until all default expressions are
11470 -- analyzed. The Ekind is established in a separate loop at the end.
11471
11472 Param_Spec := First (T);
11473 while Present (Param_Spec) loop
11474 Formal := Defining_Identifier (Param_Spec);
11475 Set_Never_Set_In_Source (Formal, True);
11476 Enter_Name (Formal);
11477
11478 -- Case of ordinary parameters
11479
11480 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11481 Find_Type (Parameter_Type (Param_Spec));
11482 Ptype := Parameter_Type (Param_Spec);
11483
11484 if Ptype = Error then
11485 goto Continue;
11486 end if;
11487
11488 -- Protect against malformed parameter types
11489
11490 if Nkind (Ptype) not in N_Has_Entity then
11491 Formal_Type := Any_Type;
11492 else
11493 Formal_Type := Entity (Ptype);
11494 end if;
11495
11496 if Is_Incomplete_Type (Formal_Type)
11497 or else
11498 (Is_Class_Wide_Type (Formal_Type)
11499 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11500 then
11501 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11502 -- primitive operations, as long as their completion is
11503 -- in the same declarative part. If in the private part
11504 -- this means that the type cannot be a Taft-amendment type.
11505 -- Check is done on package exit. For access to subprograms,
11506 -- the use is legal for Taft-amendment types.
11507
11508 -- Ada 2012: tagged incomplete types are allowed as generic
11509 -- formal types. They do not introduce dependencies and the
11510 -- corresponding generic subprogram does not have a delayed
11511 -- freeze, because it does not need a freeze node. However,
11512 -- it is still the case that untagged incomplete types cannot
11513 -- be Taft-amendment types and must be completed in private
11514 -- part, so the subprogram must appear in the list of private
11515 -- dependents of the type.
11516
11517 if Is_Tagged_Type (Formal_Type)
11518 or else (Ada_Version >= Ada_2012
11519 and then not From_Limited_With (Formal_Type)
11520 and then not Is_Generic_Type (Formal_Type))
11521 then
11522 if Ekind (Scope (Current_Scope)) = E_Package
11523 and then not Is_Generic_Type (Formal_Type)
11524 and then not Is_Class_Wide_Type (Formal_Type)
11525 then
11526 if not Nkind_In
11527 (Parent (T), N_Access_Function_Definition,
11528 N_Access_Procedure_Definition)
11529 then
11530 Append_Elmt (Current_Scope,
11531 Private_Dependents (Base_Type (Formal_Type)));
11532
11533 -- Freezing is delayed to ensure that Register_Prim
11534 -- will get called for this operation, which is needed
11535 -- in cases where static dispatch tables aren't built.
11536 -- (Note that the same is done for controlling access
11537 -- parameter cases in function Access_Definition.)
11538
11539 if not Is_Thunk (Current_Scope) then
11540 Set_Has_Delayed_Freeze (Current_Scope);
11541 end if;
11542 end if;
11543 end if;
11544
11545 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11546 N_Access_Procedure_Definition)
11547 then
11548 -- AI05-0151: Tagged incomplete types are allowed in all
11549 -- formal parts. Untagged incomplete types are not allowed
11550 -- in bodies. Limited views of either kind are not allowed
11551 -- if there is no place at which the non-limited view can
11552 -- become available.
11553
11554 -- Incomplete formal untagged types are not allowed in
11555 -- subprogram bodies (but are legal in their declarations).
11556 -- This excludes bodies created for null procedures, which
11557 -- are basic declarations.
11558
11559 if Is_Generic_Type (Formal_Type)
11560 and then not Is_Tagged_Type (Formal_Type)
11561 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11562 then
11563 Error_Msg_N
11564 ("invalid use of formal incomplete type", Param_Spec);
11565
11566 elsif Ada_Version >= Ada_2012 then
11567 if Is_Tagged_Type (Formal_Type)
11568 and then (not From_Limited_With (Formal_Type)
11569 or else not In_Package_Body)
11570 then
11571 null;
11572
11573 elsif Nkind_In (Context, N_Accept_Statement,
11574 N_Accept_Alternative,
11575 N_Entry_Body)
11576 or else (Nkind (Context) = N_Subprogram_Body
11577 and then Comes_From_Source (Context))
11578 then
11579 Error_Msg_NE
11580 ("invalid use of untagged incomplete type &",
11581 Ptype, Formal_Type);
11582 end if;
11583
11584 else
11585 Error_Msg_NE
11586 ("invalid use of incomplete type&",
11587 Param_Spec, Formal_Type);
11588
11589 -- Further checks on the legality of incomplete types
11590 -- in formal parts are delayed until the freeze point
11591 -- of the enclosing subprogram or access to subprogram.
11592 end if;
11593 end if;
11594
11595 elsif Ekind (Formal_Type) = E_Void then
11596 Error_Msg_NE
11597 ("premature use of&",
11598 Parameter_Type (Param_Spec), Formal_Type);
11599 end if;
11600
11601 -- Ada 2012 (AI-142): Handle aliased parameters
11602
11603 if Ada_Version >= Ada_2012
11604 and then Aliased_Present (Param_Spec)
11605 then
11606 Set_Is_Aliased (Formal);
11607 end if;
11608
11609 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11610 -- declaration corresponding to the null-excluding type of the
11611 -- formal in the enclosing scope. Finally, replace the parameter
11612 -- type of the formal with the internal subtype.
11613
11614 if Ada_Version >= Ada_2005
11615 and then Null_Exclusion_Present (Param_Spec)
11616 then
11617 if not Is_Access_Type (Formal_Type) then
11618 Error_Msg_N
11619 ("`NOT NULL` allowed only for an access type", Param_Spec);
11620
11621 else
11622 if Can_Never_Be_Null (Formal_Type)
11623 and then Comes_From_Source (Related_Nod)
11624 then
11625 Error_Msg_NE
11626 ("`NOT NULL` not allowed (& already excludes null)",
11627 Param_Spec, Formal_Type);
11628 end if;
11629
11630 Formal_Type :=
11631 Create_Null_Excluding_Itype
11632 (T => Formal_Type,
11633 Related_Nod => Related_Nod,
11634 Scope_Id => Scope (Current_Scope));
11635
11636 -- If the designated type of the itype is an itype that is
11637 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11638 -- on the access subtype, to prevent order-of-elaboration
11639 -- issues in the backend.
11640
11641 -- Example:
11642 -- type T is access procedure;
11643 -- procedure Op (O : not null T);
11644
11645 if Is_Itype (Directly_Designated_Type (Formal_Type))
11646 and then
11647 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11648 then
11649 Set_Has_Delayed_Freeze (Formal_Type);
11650 end if;
11651 end if;
11652 end if;
11653
11654 -- An access formal type
11655
11656 else
11657 Formal_Type :=
11658 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11659
11660 -- No need to continue if we already notified errors
11661
11662 if not Present (Formal_Type) then
11663 return;
11664 end if;
11665
11666 -- Ada 2005 (AI-254)
11667
11668 declare
11669 AD : constant Node_Id :=
11670 Access_To_Subprogram_Definition
11671 (Parameter_Type (Param_Spec));
11672 begin
11673 if Present (AD) and then Protected_Present (AD) then
11674 Formal_Type :=
11675 Replace_Anonymous_Access_To_Protected_Subprogram
11676 (Param_Spec);
11677 end if;
11678 end;
11679 end if;
11680
11681 Set_Etype (Formal, Formal_Type);
11682
11683 -- Deal with default expression if present
11684
11685 Default := Expression (Param_Spec);
11686
11687 if Present (Default) then
11688 Check_SPARK_05_Restriction
11689 ("default expression is not allowed", Default);
11690
11691 if Out_Present (Param_Spec) then
11692 Error_Msg_N
11693 ("default initialization only allowed for IN parameters",
11694 Param_Spec);
11695 end if;
11696
11697 -- Do the special preanalysis of the expression (see section on
11698 -- "Handling of Default Expressions" in the spec of package Sem).
11699
11700 Preanalyze_Formal_Expression (Default, Formal_Type);
11701
11702 -- An access to constant cannot be the default for
11703 -- an access parameter that is an access to variable.
11704
11705 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11706 and then not Is_Access_Constant (Formal_Type)
11707 and then Is_Access_Type (Etype (Default))
11708 and then Is_Access_Constant (Etype (Default))
11709 then
11710 Error_Msg_N
11711 ("formal that is access to variable cannot be initialized "
11712 & "with an access-to-constant expression", Default);
11713 end if;
11714
11715 -- Check that the designated type of an access parameter's default
11716 -- is not a class-wide type unless the parameter's designated type
11717 -- is also class-wide.
11718
11719 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11720 and then not Designates_From_Limited_With (Formal_Type)
11721 and then Is_Class_Wide_Default (Default)
11722 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11723 then
11724 Error_Msg_N
11725 ("access to class-wide expression not allowed here", Default);
11726 end if;
11727
11728 -- Check incorrect use of dynamically tagged expressions
11729
11730 if Is_Tagged_Type (Formal_Type) then
11731 Check_Dynamically_Tagged_Expression
11732 (Expr => Default,
11733 Typ => Formal_Type,
11734 Related_Nod => Default);
11735 end if;
11736 end if;
11737
11738 -- Ada 2005 (AI-231): Static checks
11739
11740 if Ada_Version >= Ada_2005
11741 and then Is_Access_Type (Etype (Formal))
11742 and then Can_Never_Be_Null (Etype (Formal))
11743 then
11744 Null_Exclusion_Static_Checks (Param_Spec);
11745 end if;
11746
11747 -- The following checks are relevant only when SPARK_Mode is on as
11748 -- these are not standard Ada legality rules.
11749
11750 if SPARK_Mode = On then
11751 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11752
11753 -- A function cannot have a parameter of mode IN OUT or OUT
11754 -- (SPARK RM 6.1).
11755
11756 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11757 Error_Msg_N
11758 ("function cannot have parameter of mode `OUT` or "
11759 & "`IN OUT`", Formal);
11760 end if;
11761
11762 -- A procedure cannot have an effectively volatile formal
11763 -- parameter of mode IN because it behaves as a constant
11764 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11765
11766 elsif Ekind (Scope (Formal)) = E_Procedure
11767 and then Ekind (Formal) = E_In_Parameter
11768 and then Is_Effectively_Volatile (Formal)
11769 then
11770 Error_Msg_N
11771 ("formal parameter of mode `IN` cannot be volatile", Formal);
11772 end if;
11773 end if;
11774
11775 <<Continue>>
11776 Next (Param_Spec);
11777 end loop;
11778
11779 -- If this is the formal part of a function specification, analyze the
11780 -- subtype mark in the context where the formals are visible but not
11781 -- yet usable, and may hide outer homographs.
11782
11783 if Nkind (Related_Nod) = N_Function_Specification then
11784 Analyze_Return_Type (Related_Nod);
11785 end if;
11786
11787 -- Now set the kind (mode) of each formal
11788
11789 Param_Spec := First (T);
11790 while Present (Param_Spec) loop
11791 Formal := Defining_Identifier (Param_Spec);
11792 Set_Formal_Mode (Formal);
11793
11794 if Ekind (Formal) = E_In_Parameter then
11795 Set_Default_Value (Formal, Expression (Param_Spec));
11796
11797 if Present (Expression (Param_Spec)) then
11798 Default := Expression (Param_Spec);
11799
11800 if Is_Scalar_Type (Etype (Default)) then
11801 if Nkind (Parameter_Type (Param_Spec)) /=
11802 N_Access_Definition
11803 then
11804 Formal_Type := Entity (Parameter_Type (Param_Spec));
11805 else
11806 Formal_Type :=
11807 Access_Definition
11808 (Related_Nod, Parameter_Type (Param_Spec));
11809 end if;
11810
11811 Apply_Scalar_Range_Check (Default, Formal_Type);
11812 end if;
11813 end if;
11814
11815 elsif Ekind (Formal) = E_Out_Parameter then
11816 Num_Out_Params := Num_Out_Params + 1;
11817
11818 if Num_Out_Params = 1 then
11819 First_Out_Param := Formal;
11820 end if;
11821
11822 elsif Ekind (Formal) = E_In_Out_Parameter then
11823 Num_Out_Params := Num_Out_Params + 1;
11824 end if;
11825
11826 -- Skip remaining processing if formal type was in error
11827
11828 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11829 goto Next_Parameter;
11830 end if;
11831
11832 -- Force call by reference if aliased
11833
11834 declare
11835 Conv : constant Convention_Id := Convention (Etype (Formal));
11836 begin
11837 if Is_Aliased (Formal) then
11838 Set_Mechanism (Formal, By_Reference);
11839
11840 -- Warn if user asked this to be passed by copy
11841
11842 if Conv = Convention_Ada_Pass_By_Copy then
11843 Error_Msg_N
11844 ("cannot pass aliased parameter & by copy??", Formal);
11845 end if;
11846
11847 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11848
11849 elsif Conv = Convention_Ada_Pass_By_Copy then
11850 Set_Mechanism (Formal, By_Copy);
11851
11852 elsif Conv = Convention_Ada_Pass_By_Reference then
11853 Set_Mechanism (Formal, By_Reference);
11854 end if;
11855 end;
11856
11857 <<Next_Parameter>>
11858 Next (Param_Spec);
11859 end loop;
11860
11861 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11862 Set_Is_Only_Out_Parameter (First_Out_Param);
11863 end if;
11864 end Process_Formals;
11865
11866 ----------------------------
11867 -- Reference_Body_Formals --
11868 ----------------------------
11869
11870 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11871 Fs : Entity_Id;
11872 Fb : Entity_Id;
11873
11874 begin
11875 if Error_Posted (Spec) then
11876 return;
11877 end if;
11878
11879 -- Iterate over both lists. They may be of different lengths if the two
11880 -- specs are not conformant.
11881
11882 Fs := First_Formal (Spec);
11883 Fb := First_Formal (Bod);
11884 while Present (Fs) and then Present (Fb) loop
11885 Generate_Reference (Fs, Fb, 'b');
11886
11887 if Style_Check then
11888 Style.Check_Identifier (Fb, Fs);
11889 end if;
11890
11891 Set_Spec_Entity (Fb, Fs);
11892 Set_Referenced (Fs, False);
11893 Next_Formal (Fs);
11894 Next_Formal (Fb);
11895 end loop;
11896 end Reference_Body_Formals;
11897
11898 -------------------------
11899 -- Set_Actual_Subtypes --
11900 -------------------------
11901
11902 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11903 Decl : Node_Id;
11904 Formal : Entity_Id;
11905 T : Entity_Id;
11906 First_Stmt : Node_Id := Empty;
11907 AS_Needed : Boolean;
11908
11909 begin
11910 -- If this is an empty initialization procedure, no need to create
11911 -- actual subtypes (small optimization).
11912
11913 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11914 return;
11915
11916 -- Within a predicate function we do not want to generate local
11917 -- subtypes that may generate nested predicate functions.
11918
11919 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11920 return;
11921 end if;
11922
11923 -- The subtype declarations may freeze the formals. The body generated
11924 -- for an expression function is not a freeze point, so do not emit
11925 -- these declarations (small loss of efficiency in rare cases).
11926
11927 if Nkind (N) = N_Subprogram_Body
11928 and then Was_Expression_Function (N)
11929 then
11930 return;
11931 end if;
11932
11933 Formal := First_Formal (Subp);
11934 while Present (Formal) loop
11935 T := Etype (Formal);
11936
11937 -- We never need an actual subtype for a constrained formal
11938
11939 if Is_Constrained (T) then
11940 AS_Needed := False;
11941
11942 -- If we have unknown discriminants, then we do not need an actual
11943 -- subtype, or more accurately we cannot figure it out. Note that
11944 -- all class-wide types have unknown discriminants.
11945
11946 elsif Has_Unknown_Discriminants (T) then
11947 AS_Needed := False;
11948
11949 -- At this stage we have an unconstrained type that may need an
11950 -- actual subtype. For sure the actual subtype is needed if we have
11951 -- an unconstrained array type. However, in an instance, the type
11952 -- may appear as a subtype of the full view, while the actual is
11953 -- in fact private (in which case no actual subtype is needed) so
11954 -- check the kind of the base type.
11955
11956 elsif Is_Array_Type (Base_Type (T)) then
11957 AS_Needed := True;
11958
11959 -- The only other case needing an actual subtype is an unconstrained
11960 -- record type which is an IN parameter (we cannot generate actual
11961 -- subtypes for the OUT or IN OUT case, since an assignment can
11962 -- change the discriminant values. However we exclude the case of
11963 -- initialization procedures, since discriminants are handled very
11964 -- specially in this context, see the section entitled "Handling of
11965 -- Discriminants" in Einfo.
11966
11967 -- We also exclude the case of Discrim_SO_Functions (functions used
11968 -- in front-end layout mode for size/offset values), since in such
11969 -- functions only discriminants are referenced, and not only are such
11970 -- subtypes not needed, but they cannot always be generated, because
11971 -- of order of elaboration issues.
11972
11973 elsif Is_Record_Type (T)
11974 and then Ekind (Formal) = E_In_Parameter
11975 and then Chars (Formal) /= Name_uInit
11976 and then not Is_Unchecked_Union (T)
11977 and then not Is_Discrim_SO_Function (Subp)
11978 then
11979 AS_Needed := True;
11980
11981 -- All other cases do not need an actual subtype
11982
11983 else
11984 AS_Needed := False;
11985 end if;
11986
11987 -- Generate actual subtypes for unconstrained arrays and
11988 -- unconstrained discriminated records.
11989
11990 if AS_Needed then
11991 if Nkind (N) = N_Accept_Statement then
11992
11993 -- If expansion is active, the formal is replaced by a local
11994 -- variable that renames the corresponding entry of the
11995 -- parameter block, and it is this local variable that may
11996 -- require an actual subtype.
11997
11998 if Expander_Active then
11999 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
12000 else
12001 Decl := Build_Actual_Subtype (T, Formal);
12002 end if;
12003
12004 if Present (Handled_Statement_Sequence (N)) then
12005 First_Stmt :=
12006 First (Statements (Handled_Statement_Sequence (N)));
12007 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
12008 Mark_Rewrite_Insertion (Decl);
12009 else
12010 -- If the accept statement has no body, there will be no
12011 -- reference to the actuals, so no need to compute actual
12012 -- subtypes.
12013
12014 return;
12015 end if;
12016
12017 else
12018 Decl := Build_Actual_Subtype (T, Formal);
12019 Prepend (Decl, Declarations (N));
12020 Mark_Rewrite_Insertion (Decl);
12021 end if;
12022
12023 -- The declaration uses the bounds of an existing object, and
12024 -- therefore needs no constraint checks.
12025
12026 Analyze (Decl, Suppress => All_Checks);
12027 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
12028
12029 -- We need to freeze manually the generated type when it is
12030 -- inserted anywhere else than in a declarative part.
12031
12032 if Present (First_Stmt) then
12033 Insert_List_Before_And_Analyze (First_Stmt,
12034 Freeze_Entity (Defining_Identifier (Decl), N));
12035
12036 -- Ditto if the type has a dynamic predicate, because the
12037 -- generated function will mention the actual subtype. The
12038 -- predicate may come from an explicit aspect of be inherited.
12039
12040 elsif Has_Predicates (T) then
12041 Insert_List_After_And_Analyze (Decl,
12042 Freeze_Entity (Defining_Identifier (Decl), N));
12043 end if;
12044
12045 if Nkind (N) = N_Accept_Statement
12046 and then Expander_Active
12047 then
12048 Set_Actual_Subtype (Renamed_Object (Formal),
12049 Defining_Identifier (Decl));
12050 else
12051 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
12052 end if;
12053 end if;
12054
12055 Next_Formal (Formal);
12056 end loop;
12057 end Set_Actual_Subtypes;
12058
12059 ---------------------
12060 -- Set_Formal_Mode --
12061 ---------------------
12062
12063 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
12064 Spec : constant Node_Id := Parent (Formal_Id);
12065 Id : constant Entity_Id := Scope (Formal_Id);
12066
12067 begin
12068 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
12069 -- since we ensure that corresponding actuals are always valid at the
12070 -- point of the call.
12071
12072 if Out_Present (Spec) then
12073 if Ekind_In (Id, E_Entry, E_Entry_Family)
12074 or else Is_Subprogram_Or_Generic_Subprogram (Id)
12075 then
12076 Set_Has_Out_Or_In_Out_Parameter (Id, True);
12077 end if;
12078
12079 if Ekind_In (Id, E_Function, E_Generic_Function) then
12080
12081 -- [IN] OUT parameters allowed for functions in Ada 2012
12082
12083 if Ada_Version >= Ada_2012 then
12084
12085 -- Even in Ada 2012 operators can only have IN parameters
12086
12087 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
12088 Error_Msg_N ("operators can only have IN parameters", Spec);
12089 end if;
12090
12091 if In_Present (Spec) then
12092 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12093 else
12094 Set_Ekind (Formal_Id, E_Out_Parameter);
12095 end if;
12096
12097 -- But not in earlier versions of Ada
12098
12099 else
12100 Error_Msg_N ("functions can only have IN parameters", Spec);
12101 Set_Ekind (Formal_Id, E_In_Parameter);
12102 end if;
12103
12104 elsif In_Present (Spec) then
12105 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12106
12107 else
12108 Set_Ekind (Formal_Id, E_Out_Parameter);
12109 Set_Never_Set_In_Source (Formal_Id, True);
12110 Set_Is_True_Constant (Formal_Id, False);
12111 Set_Current_Value (Formal_Id, Empty);
12112 end if;
12113
12114 else
12115 Set_Ekind (Formal_Id, E_In_Parameter);
12116 end if;
12117
12118 -- Set Is_Known_Non_Null for access parameters since the language
12119 -- guarantees that access parameters are always non-null. We also set
12120 -- Can_Never_Be_Null, since there is no way to change the value.
12121
12122 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
12123
12124 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
12125 -- null; In Ada 2005, only if then null_exclusion is explicit.
12126
12127 if Ada_Version < Ada_2005
12128 or else Can_Never_Be_Null (Etype (Formal_Id))
12129 then
12130 Set_Is_Known_Non_Null (Formal_Id);
12131 Set_Can_Never_Be_Null (Formal_Id);
12132 end if;
12133
12134 -- Ada 2005 (AI-231): Null-exclusion access subtype
12135
12136 elsif Is_Access_Type (Etype (Formal_Id))
12137 and then Can_Never_Be_Null (Etype (Formal_Id))
12138 then
12139 Set_Is_Known_Non_Null (Formal_Id);
12140
12141 -- We can also set Can_Never_Be_Null (thus preventing some junk
12142 -- access checks) for the case of an IN parameter, which cannot
12143 -- be changed, or for an IN OUT parameter, which can be changed but
12144 -- not to a null value. But for an OUT parameter, the initial value
12145 -- passed in can be null, so we can't set this flag in that case.
12146
12147 if Ekind (Formal_Id) /= E_Out_Parameter then
12148 Set_Can_Never_Be_Null (Formal_Id);
12149 end if;
12150 end if;
12151
12152 Set_Mechanism (Formal_Id, Default_Mechanism);
12153 Set_Formal_Validity (Formal_Id);
12154 end Set_Formal_Mode;
12155
12156 -------------------------
12157 -- Set_Formal_Validity --
12158 -------------------------
12159
12160 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12161 begin
12162 -- If no validity checking, then we cannot assume anything about the
12163 -- validity of parameters, since we do not know there is any checking
12164 -- of the validity on the call side.
12165
12166 if not Validity_Checks_On then
12167 return;
12168
12169 -- If validity checking for parameters is enabled, this means we are
12170 -- not supposed to make any assumptions about argument values.
12171
12172 elsif Validity_Check_Parameters then
12173 return;
12174
12175 -- If we are checking in parameters, we will assume that the caller is
12176 -- also checking parameters, so we can assume the parameter is valid.
12177
12178 elsif Ekind (Formal_Id) = E_In_Parameter
12179 and then Validity_Check_In_Params
12180 then
12181 Set_Is_Known_Valid (Formal_Id, True);
12182
12183 -- Similar treatment for IN OUT parameters
12184
12185 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12186 and then Validity_Check_In_Out_Params
12187 then
12188 Set_Is_Known_Valid (Formal_Id, True);
12189 end if;
12190 end Set_Formal_Validity;
12191
12192 ------------------------
12193 -- Subtype_Conformant --
12194 ------------------------
12195
12196 function Subtype_Conformant
12197 (New_Id : Entity_Id;
12198 Old_Id : Entity_Id;
12199 Skip_Controlling_Formals : Boolean := False) return Boolean
12200 is
12201 Result : Boolean;
12202 begin
12203 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12204 Skip_Controlling_Formals => Skip_Controlling_Formals);
12205 return Result;
12206 end Subtype_Conformant;
12207
12208 ---------------------
12209 -- Type_Conformant --
12210 ---------------------
12211
12212 function Type_Conformant
12213 (New_Id : Entity_Id;
12214 Old_Id : Entity_Id;
12215 Skip_Controlling_Formals : Boolean := False) return Boolean
12216 is
12217 Result : Boolean;
12218 begin
12219 May_Hide_Profile := False;
12220 Check_Conformance
12221 (New_Id, Old_Id, Type_Conformant, False, Result,
12222 Skip_Controlling_Formals => Skip_Controlling_Formals);
12223 return Result;
12224 end Type_Conformant;
12225
12226 -------------------------------
12227 -- Valid_Operator_Definition --
12228 -------------------------------
12229
12230 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12231 N : Integer := 0;
12232 F : Entity_Id;
12233 Id : constant Name_Id := Chars (Designator);
12234 N_OK : Boolean;
12235
12236 begin
12237 F := First_Formal (Designator);
12238 while Present (F) loop
12239 N := N + 1;
12240
12241 if Present (Default_Value (F)) then
12242 Error_Msg_N
12243 ("default values not allowed for operator parameters",
12244 Parent (F));
12245
12246 -- For function instantiations that are operators, we must check
12247 -- separately that the corresponding generic only has in-parameters.
12248 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12249 -- an error could not arise in earlier versions of the language.
12250
12251 elsif Ekind (F) /= E_In_Parameter then
12252 Error_Msg_N ("operators can only have IN parameters", F);
12253 end if;
12254
12255 Next_Formal (F);
12256 end loop;
12257
12258 -- Verify that user-defined operators have proper number of arguments
12259 -- First case of operators which can only be unary
12260
12261 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12262 N_OK := (N = 1);
12263
12264 -- Case of operators which can be unary or binary
12265
12266 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12267 N_OK := (N in 1 .. 2);
12268
12269 -- All other operators can only be binary
12270
12271 else
12272 N_OK := (N = 2);
12273 end if;
12274
12275 if not N_OK then
12276 Error_Msg_N
12277 ("incorrect number of arguments for operator", Designator);
12278 end if;
12279
12280 if Id = Name_Op_Ne
12281 and then Base_Type (Etype (Designator)) = Standard_Boolean
12282 and then not Is_Intrinsic_Subprogram (Designator)
12283 then
12284 Error_Msg_N
12285 ("explicit definition of inequality not allowed", Designator);
12286 end if;
12287 end Valid_Operator_Definition;
12288
12289 end Sem_Ch6;