5a40ed97630b6eaa5b39f11d4a82545427ff7e8f
[gcc.git] / gcc / ada / sem_eval.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Util; use Exp_Util;
35 with Freeze; use Freeze;
36 with Lib; use Lib;
37 with Namet; use Namet;
38 with Nmake; use Nmake;
39 with Nlists; use Nlists;
40 with Opt; use Opt;
41 with Par_SCO; use Par_SCO;
42 with Rtsfind; use Rtsfind;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Cat; use Sem_Cat;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Res; use Sem_Res;
49 with Sem_Util; use Sem_Util;
50 with Sem_Type; use Sem_Type;
51 with Sem_Warn; use Sem_Warn;
52 with Sinfo; use Sinfo;
53 with Snames; use Snames;
54 with Stand; use Stand;
55 with Stringt; use Stringt;
56 with Tbuild; use Tbuild;
57
58 package body Sem_Eval is
59
60 -----------------------------------------
61 -- Handling of Compile Time Evaluation --
62 -----------------------------------------
63
64 -- The compile time evaluation of expressions is distributed over several
65 -- Eval_xxx procedures. These procedures are called immediately after
66 -- a subexpression is resolved and is therefore accomplished in a bottom
67 -- up fashion. The flags are synthesized using the following approach.
68
69 -- Is_Static_Expression is determined by following the detailed rules
70 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
71 -- flag of the operands in many cases.
72
73 -- Raises_Constraint_Error is set if any of the operands have the flag
74 -- set or if an attempt to compute the value of the current expression
75 -- results in detection of a runtime constraint error.
76
77 -- As described in the spec, the requirement is that Is_Static_Expression
78 -- be accurately set, and in addition for nodes for which this flag is set,
79 -- Raises_Constraint_Error must also be set. Furthermore a node which has
80 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
81 -- requirement is that the expression value must be precomputed, and the
82 -- node is either a literal, or the name of a constant entity whose value
83 -- is a static expression.
84
85 -- The general approach is as follows. First compute Is_Static_Expression.
86 -- If the node is not static, then the flag is left off in the node and
87 -- we are all done. Otherwise for a static node, we test if any of the
88 -- operands will raise constraint error, and if so, propagate the flag
89 -- Raises_Constraint_Error to the result node and we are done (since the
90 -- error was already posted at a lower level).
91
92 -- For the case of a static node whose operands do not raise constraint
93 -- error, we attempt to evaluate the node. If this evaluation succeeds,
94 -- then the node is replaced by the result of this computation. If the
95 -- evaluation raises constraint error, then we rewrite the node with
96 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
97 -- to post appropriate error messages.
98
99 ----------------
100 -- Local Data --
101 ----------------
102
103 type Bits is array (Nat range <>) of Boolean;
104 -- Used to convert unsigned (modular) values for folding logical ops
105
106 -- The following declarations are used to maintain a cache of nodes that
107 -- have compile time known values. The cache is maintained only for
108 -- discrete types (the most common case), and is populated by calls to
109 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
110 -- since it is possible for the status to change (in particular it is
111 -- possible for a node to get replaced by a constraint error node).
112
113 CV_Bits : constant := 5;
114 -- Number of low order bits of Node_Id value used to reference entries
115 -- in the cache table.
116
117 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
118 -- Size of cache for compile time values
119
120 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
121
122 type CV_Entry is record
123 N : Node_Id;
124 V : Uint;
125 end record;
126
127 type Match_Result is (Match, No_Match, Non_Static);
128 -- Result returned from functions that test for a matching result. If the
129 -- operands are not OK_Static then Non_Static will be returned. Otherwise
130 -- Match/No_Match is returned depending on whether the match succeeds.
131
132 type CV_Cache_Array is array (CV_Range) of CV_Entry;
133
134 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
135 -- This is the actual cache, with entries consisting of node/value pairs,
136 -- and the impossible value Node_High_Bound used for unset entries.
137
138 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
139 -- Range membership may either be statically known to be in range or out
140 -- of range, or not statically known. Used for Test_In_Range below.
141
142 -----------------------
143 -- Local Subprograms --
144 -----------------------
145
146 function Choice_Matches
147 (Expr : Node_Id;
148 Choice : Node_Id) return Match_Result;
149 -- Determines whether given value Expr matches the given Choice. The Expr
150 -- can be of discrete, real, or string type and must be a compile time
151 -- known value (it is an error to make the call if these conditions are
152 -- not met). The choice can be a range, subtype name, subtype indication,
153 -- or expression. The returned result is Non_Static if Choice is not
154 -- OK_Static, otherwise either Match or No_Match is returned depending
155 -- on whether Choice matches Expr. This is used for case expression
156 -- alternatives, and also for membership tests. In each case, more
157 -- possibilities are tested than the syntax allows (e.g. membership allows
158 -- subtype indications and non-discrete types, and case allows an OTHERS
159 -- choice), but it does not matter, since we have already done a full
160 -- semantic and syntax check of the construct, so the extra possibilities
161 -- just will not arise for correct expressions.
162 --
163 -- Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
164 -- a reference to a type, one of whose bounds raises Constraint_Error, then
165 -- it also sets the Raises_Constraint_Error flag on the Choice itself.
166
167 function Choices_Match
168 (Expr : Node_Id;
169 Choices : List_Id) return Match_Result;
170 -- This function applies Choice_Matches to each element of Choices. If the
171 -- result is No_Match, then it continues and checks the next element. If
172 -- the result is Match or Non_Static, this result is immediately given
173 -- as the result without checking the rest of the list. Expr can be of
174 -- discrete, real, or string type and must be a compile time known value
175 -- (it is an error to make the call if these conditions are not met).
176
177 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
178 -- Check whether an arithmetic operation with universal operands which is a
179 -- rewritten function call with an explicit scope indication is ambiguous:
180 -- P."+" (1, 2) will be ambiguous if there is more than one visible numeric
181 -- type declared in P and the context does not impose a type on the result
182 -- (e.g. in the expression of a type conversion). If ambiguous, emit an
183 -- error and return Empty, else return the result type of the operator.
184
185 function From_Bits (B : Bits; T : Entity_Id) return Uint;
186 -- Converts a bit string of length B'Length to a Uint value to be used for
187 -- a target of type T, which is a modular type. This procedure includes the
188 -- necessary reduction by the modulus in the case of a nonbinary modulus
189 -- (for a binary modulus, the bit string is the right length any way so all
190 -- is well).
191
192 function Get_String_Val (N : Node_Id) return Node_Id;
193 -- Given a tree node for a folded string or character value, returns the
194 -- corresponding string literal or character literal (one of the two must
195 -- be available, or the operand would not have been marked as foldable in
196 -- the earlier analysis of the operation).
197
198 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean;
199 -- Given a choice (from a case expression or membership test), returns
200 -- True if the choice is static and does not raise a Constraint_Error.
201
202 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean;
203 -- Given a choice list (from a case expression or membership test), return
204 -- True if all choices are static in the sense of Is_OK_Static_Choice.
205
206 function Is_Static_Choice (Choice : Node_Id) return Boolean;
207 -- Given a choice (from a case expression or membership test), returns
208 -- True if the choice is static. No test is made for raising of constraint
209 -- error, so this function is used only for legality tests.
210
211 function Is_Static_Choice_List (Choices : List_Id) return Boolean;
212 -- Given a choice list (from a case expression or membership test), return
213 -- True if all choices are static in the sense of Is_Static_Choice.
214
215 function Is_Static_Range (N : Node_Id) return Boolean;
216 -- Determine if range is static, as defined in RM 4.9(26). The only allowed
217 -- argument is an N_Range node (but note that the semantic analysis of
218 -- equivalent range attribute references already turned them into the
219 -- equivalent range). This differs from Is_OK_Static_Range (which is what
220 -- must be used by clients) in that it does not care whether the bounds
221 -- raise Constraint_Error or not. Used for checking whether expressions are
222 -- static in the 4.9 sense (without worrying about exceptions).
223
224 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
225 -- Bits represents the number of bits in an integer value to be computed
226 -- (but the value has not been computed yet). If this value in Bits is
227 -- reasonable, a result of True is returned, with the implication that the
228 -- caller should go ahead and complete the calculation. If the value in
229 -- Bits is unreasonably large, then an error is posted on node N, and
230 -- False is returned (and the caller skips the proposed calculation).
231
232 procedure Out_Of_Range (N : Node_Id);
233 -- This procedure is called if it is determined that node N, which appears
234 -- in a non-static context, is a compile time known value which is outside
235 -- its range, i.e. the range of Etype. This is used in contexts where
236 -- this is an illegality if N is static, and should generate a warning
237 -- otherwise.
238
239 function Real_Or_String_Static_Predicate_Matches
240 (Val : Node_Id;
241 Typ : Entity_Id) return Boolean;
242 -- This is the function used to evaluate real or string static predicates.
243 -- Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
244 -- represents the value to be tested against the predicate. Typ is the
245 -- type with the predicate, from which the predicate expression can be
246 -- extracted. The result returned is True if the given value satisfies
247 -- the predicate.
248
249 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
250 -- N and Exp are nodes representing an expression, Exp is known to raise
251 -- CE. N is rewritten in term of Exp in the optimal way.
252
253 function String_Type_Len (Stype : Entity_Id) return Uint;
254 -- Given a string type, determines the length of the index type, or, if
255 -- this index type is non-static, the length of the base type of this index
256 -- type. Note that if the string type is itself static, then the index type
257 -- is static, so the second case applies only if the string type passed is
258 -- non-static.
259
260 function Test (Cond : Boolean) return Uint;
261 pragma Inline (Test);
262 -- This function simply returns the appropriate Boolean'Pos value
263 -- corresponding to the value of Cond as a universal integer. It is
264 -- used for producing the result of the static evaluation of the
265 -- logical operators
266
267 procedure Test_Expression_Is_Foldable
268 (N : Node_Id;
269 Op1 : Node_Id;
270 Stat : out Boolean;
271 Fold : out Boolean);
272 -- Tests to see if expression N whose single operand is Op1 is foldable,
273 -- i.e. the operand value is known at compile time. If the operation is
274 -- foldable, then Fold is True on return, and Stat indicates whether the
275 -- result is static (i.e. the operand was static). Note that it is quite
276 -- possible for Fold to be True, and Stat to be False, since there are
277 -- cases in which we know the value of an operand even though it is not
278 -- technically static (e.g. the static lower bound of a range whose upper
279 -- bound is non-static).
280 --
281 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes
282 -- a call to Check_Non_Static_Context on the operand. If Fold is False on
283 -- return, then all processing is complete, and the caller should return,
284 -- since there is nothing else to do.
285 --
286 -- If Stat is set True on return, then Is_Static_Expression is also set
287 -- true in node N. There are some cases where this is over-enthusiastic,
288 -- e.g. in the two operand case below, for string comparison, the result is
289 -- not static even though the two operands are static. In such cases, the
290 -- caller must reset the Is_Static_Expression flag in N.
291 --
292 -- If Fold and Stat are both set to False then this routine performs also
293 -- the following extra actions:
294 --
295 -- If either operand is Any_Type then propagate it to result to prevent
296 -- cascaded errors.
297 --
298 -- If some operand raises constraint error, then replace the node N
299 -- with the raise constraint error node. This replacement inherits the
300 -- Is_Static_Expression flag from the operands.
301
302 procedure Test_Expression_Is_Foldable
303 (N : Node_Id;
304 Op1 : Node_Id;
305 Op2 : Node_Id;
306 Stat : out Boolean;
307 Fold : out Boolean;
308 CRT_Safe : Boolean := False);
309 -- Same processing, except applies to an expression N with two operands
310 -- Op1 and Op2. The result is static only if both operands are static. If
311 -- CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
312 -- for the tests that the two operands are known at compile time. See
313 -- spec of this routine for further details.
314
315 function Test_In_Range
316 (N : Node_Id;
317 Typ : Entity_Id;
318 Assume_Valid : Boolean;
319 Fixed_Int : Boolean;
320 Int_Real : Boolean) return Range_Membership;
321 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
322 -- or Out_Of_Range if it can be guaranteed at compile time that expression
323 -- N is known to be in or out of range of the subtype Typ. If not compile
324 -- time known, Unknown is returned. See documentation of Is_In_Range for
325 -- complete description of parameters.
326
327 procedure To_Bits (U : Uint; B : out Bits);
328 -- Converts a Uint value to a bit string of length B'Length
329
330 -----------------------------------------------
331 -- Check_Expression_Against_Static_Predicate --
332 -----------------------------------------------
333
334 procedure Check_Expression_Against_Static_Predicate
335 (Expr : Node_Id;
336 Typ : Entity_Id)
337 is
338 begin
339 -- Nothing to do if expression is not known at compile time, or the
340 -- type has no static predicate set (will be the case for all non-scalar
341 -- types, so no need to make a special test for that).
342
343 if not (Has_Static_Predicate (Typ)
344 and then Compile_Time_Known_Value (Expr))
345 then
346 return;
347 end if;
348
349 -- Here we have a static predicate (note that it could have arisen from
350 -- an explicitly specified Dynamic_Predicate whose expression met the
351 -- rules for being predicate-static). If the expression is known at
352 -- compile time and obeys the predicate, then it is static and must be
353 -- labeled as such, which matters e.g. for case statements. The original
354 -- expression may be a type conversion of a variable with a known value,
355 -- which might otherwise not be marked static.
356
357 -- Case of real static predicate
358
359 if Is_Real_Type (Typ) then
360 if Real_Or_String_Static_Predicate_Matches
361 (Val => Make_Real_Literal (Sloc (Expr), Expr_Value_R (Expr)),
362 Typ => Typ)
363 then
364 Set_Is_Static_Expression (Expr);
365 return;
366 end if;
367
368 -- Case of string static predicate
369
370 elsif Is_String_Type (Typ) then
371 if Real_Or_String_Static_Predicate_Matches
372 (Val => Expr_Value_S (Expr), Typ => Typ)
373 then
374 Set_Is_Static_Expression (Expr);
375 return;
376 end if;
377
378 -- Case of discrete static predicate
379
380 else
381 pragma Assert (Is_Discrete_Type (Typ));
382
383 -- If static predicate matches, nothing to do
384
385 if Choices_Match (Expr, Static_Discrete_Predicate (Typ)) = Match then
386 Set_Is_Static_Expression (Expr);
387 return;
388 end if;
389 end if;
390
391 -- Here we know that the predicate will fail
392
393 -- Special case of static expression failing a predicate (other than one
394 -- that was explicitly specified with a Dynamic_Predicate aspect). This
395 -- is the case where the expression is no longer considered static.
396
397 if Is_Static_Expression (Expr)
398 and then not Has_Dynamic_Predicate_Aspect (Typ)
399 then
400 Error_Msg_NE
401 ("??static expression fails static predicate check on &",
402 Expr, Typ);
403 Error_Msg_N
404 ("\??expression is no longer considered static", Expr);
405 Set_Is_Static_Expression (Expr, False);
406
407 -- In all other cases, this is just a warning that a test will fail.
408 -- It does not matter if the expression is static or not, or if the
409 -- predicate comes from a dynamic predicate aspect or not.
410
411 else
412 Error_Msg_NE
413 ("??expression fails predicate check on &", Expr, Typ);
414 end if;
415 end Check_Expression_Against_Static_Predicate;
416
417 ------------------------------
418 -- Check_Non_Static_Context --
419 ------------------------------
420
421 procedure Check_Non_Static_Context (N : Node_Id) is
422 T : constant Entity_Id := Etype (N);
423 Checks_On : constant Boolean :=
424 not Index_Checks_Suppressed (T)
425 and not Range_Checks_Suppressed (T);
426
427 begin
428 -- Ignore cases of non-scalar types, error types, or universal real
429 -- types that have no usable bounds.
430
431 if T = Any_Type
432 or else not Is_Scalar_Type (T)
433 or else T = Universal_Fixed
434 or else T = Universal_Real
435 then
436 return;
437 end if;
438
439 -- At this stage we have a scalar type. If we have an expression that
440 -- raises CE, then we already issued a warning or error msg so there is
441 -- nothing more to be done in this routine.
442
443 if Raises_Constraint_Error (N) then
444 return;
445 end if;
446
447 -- Now we have a scalar type which is not marked as raising a constraint
448 -- error exception. The main purpose of this routine is to deal with
449 -- static expressions appearing in a non-static context. That means
450 -- that if we do not have a static expression then there is not much
451 -- to do. The one case that we deal with here is that if we have a
452 -- floating-point value that is out of range, then we post a warning
453 -- that an infinity will result.
454
455 if not Is_Static_Expression (N) then
456 if Is_Floating_Point_Type (T) then
457 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
458 Error_Msg_N
459 ("??float value out of range, infinity will be generated", N);
460
461 -- The literal may be the result of constant-folding of a non-
462 -- static subexpression of a larger expression (e.g. a conversion
463 -- of a non-static variable whose value happens to be known). At
464 -- this point we must reduce the value of the subexpression to a
465 -- machine number (RM 4.9 (38/2)).
466
467 elsif Nkind (N) = N_Real_Literal
468 and then Nkind (Parent (N)) in N_Subexpr
469 then
470 Rewrite (N, New_Copy (N));
471 Set_Realval
472 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
473 end if;
474 end if;
475
476 return;
477 end if;
478
479 -- Here we have the case of outer level static expression of scalar
480 -- type, where the processing of this procedure is needed.
481
482 -- For real types, this is where we convert the value to a machine
483 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
484 -- need to do this if the parent is a constant declaration, since in
485 -- other cases, gigi should do the necessary conversion correctly, but
486 -- experimentation shows that this is not the case on all machines, in
487 -- particular if we do not convert all literals to machine values in
488 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
489 -- and SGI/Irix.
490
491 -- This conversion is always done by GNATprove on real literals in
492 -- non-static expressions, by calling Check_Non_Static_Context from
493 -- gnat2why, as GNATprove cannot do the conversion later contrary
494 -- to gigi. The frontend computes the information about which
495 -- expressions are static, which is used by gnat2why to call
496 -- Check_Non_Static_Context on exactly those real literals that are
497 -- not subexpressions of static expressions.
498
499 if Nkind (N) = N_Real_Literal
500 and then not Is_Machine_Number (N)
501 and then not Is_Generic_Type (Etype (N))
502 and then Etype (N) /= Universal_Real
503 then
504 -- Check that value is in bounds before converting to machine
505 -- number, so as not to lose case where value overflows in the
506 -- least significant bit or less. See B490001.
507
508 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
509 Out_Of_Range (N);
510 return;
511 end if;
512
513 -- Note: we have to copy the node, to avoid problems with conformance
514 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
515
516 Rewrite (N, New_Copy (N));
517
518 if not Is_Floating_Point_Type (T) then
519 Set_Realval
520 (N, Corresponding_Integer_Value (N) * Small_Value (T));
521
522 elsif not UR_Is_Zero (Realval (N)) then
523
524 -- Note: even though RM 4.9(38) specifies biased rounding, this
525 -- has been modified by AI-100 in order to prevent confusing
526 -- differences in rounding between static and non-static
527 -- expressions. AI-100 specifies that the effect of such rounding
528 -- is implementation dependent, and in GNAT we round to nearest
529 -- even to match the run-time behavior. Note that this applies
530 -- to floating point literals, not fixed points ones, even though
531 -- their compiler representation is also as a universal real.
532
533 Set_Realval
534 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
535 Set_Is_Machine_Number (N);
536 end if;
537
538 end if;
539
540 -- Check for out of range universal integer. This is a non-static
541 -- context, so the integer value must be in range of the runtime
542 -- representation of universal integers.
543
544 -- We do this only within an expression, because that is the only
545 -- case in which non-static universal integer values can occur, and
546 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
547 -- called in contexts like the expression of a number declaration where
548 -- we certainly want to allow out of range values.
549
550 if Etype (N) = Universal_Integer
551 and then Nkind (N) = N_Integer_Literal
552 and then Nkind (Parent (N)) in N_Subexpr
553 and then
554 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
555 or else
556 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
557 then
558 Apply_Compile_Time_Constraint_Error
559 (N, "non-static universal integer value out of range<<",
560 CE_Range_Check_Failed);
561
562 -- Check out of range of base type
563
564 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
565 Out_Of_Range (N);
566
567 -- Give warning if outside subtype (where one or both of the bounds of
568 -- the subtype is static). This warning is omitted if the expression
569 -- appears in a range that could be null (warnings are handled elsewhere
570 -- for this case).
571
572 elsif T /= Base_Type (T) and then Nkind (Parent (N)) /= N_Range then
573 if Is_In_Range (N, T, Assume_Valid => True) then
574 null;
575
576 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
577 Apply_Compile_Time_Constraint_Error
578 (N, "value not in range of}<<", CE_Range_Check_Failed);
579
580 elsif Checks_On then
581 Enable_Range_Check (N);
582
583 else
584 Set_Do_Range_Check (N, False);
585 end if;
586 end if;
587 end Check_Non_Static_Context;
588
589 ---------------------------------
590 -- Check_String_Literal_Length --
591 ---------------------------------
592
593 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
594 begin
595 if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
596 if UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
597 then
598 Apply_Compile_Time_Constraint_Error
599 (N, "string length wrong for}??",
600 CE_Length_Check_Failed,
601 Ent => Ttype,
602 Typ => Ttype);
603 end if;
604 end if;
605 end Check_String_Literal_Length;
606
607 --------------------
608 -- Choice_Matches --
609 --------------------
610
611 function Choice_Matches
612 (Expr : Node_Id;
613 Choice : Node_Id) return Match_Result
614 is
615 Etyp : constant Entity_Id := Etype (Expr);
616 Val : Uint;
617 ValR : Ureal;
618 ValS : Node_Id;
619
620 begin
621 pragma Assert (Compile_Time_Known_Value (Expr));
622 pragma Assert (Is_Scalar_Type (Etyp) or else Is_String_Type (Etyp));
623
624 if not Is_OK_Static_Choice (Choice) then
625 Set_Raises_Constraint_Error (Choice);
626 return Non_Static;
627
628 -- When the choice denotes a subtype with a static predictate, check the
629 -- expression against the predicate values. Different procedures apply
630 -- to discrete and non-discrete types.
631
632 elsif (Nkind (Choice) = N_Subtype_Indication
633 or else (Is_Entity_Name (Choice)
634 and then Is_Type (Entity (Choice))))
635 and then Has_Predicates (Etype (Choice))
636 and then Has_Static_Predicate (Etype (Choice))
637 then
638 if Is_Discrete_Type (Etype (Choice)) then
639 return
640 Choices_Match
641 (Expr, Static_Discrete_Predicate (Etype (Choice)));
642
643 elsif Real_Or_String_Static_Predicate_Matches (Expr, Etype (Choice))
644 then
645 return Match;
646
647 else
648 return No_Match;
649 end if;
650
651 -- Discrete type case only
652
653 elsif Is_Discrete_Type (Etyp) then
654 Val := Expr_Value (Expr);
655
656 if Nkind (Choice) = N_Range then
657 if Val >= Expr_Value (Low_Bound (Choice))
658 and then
659 Val <= Expr_Value (High_Bound (Choice))
660 then
661 return Match;
662 else
663 return No_Match;
664 end if;
665
666 elsif Nkind (Choice) = N_Subtype_Indication
667 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
668 then
669 if Val >= Expr_Value (Type_Low_Bound (Etype (Choice)))
670 and then
671 Val <= Expr_Value (Type_High_Bound (Etype (Choice)))
672 then
673 return Match;
674 else
675 return No_Match;
676 end if;
677
678 elsif Nkind (Choice) = N_Others_Choice then
679 return Match;
680
681 else
682 if Val = Expr_Value (Choice) then
683 return Match;
684 else
685 return No_Match;
686 end if;
687 end if;
688
689 -- Real type case
690
691 elsif Is_Real_Type (Etyp) then
692 ValR := Expr_Value_R (Expr);
693
694 if Nkind (Choice) = N_Range then
695 if ValR >= Expr_Value_R (Low_Bound (Choice))
696 and then
697 ValR <= Expr_Value_R (High_Bound (Choice))
698 then
699 return Match;
700 else
701 return No_Match;
702 end if;
703
704 elsif Nkind (Choice) = N_Subtype_Indication
705 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
706 then
707 if ValR >= Expr_Value_R (Type_Low_Bound (Etype (Choice)))
708 and then
709 ValR <= Expr_Value_R (Type_High_Bound (Etype (Choice)))
710 then
711 return Match;
712 else
713 return No_Match;
714 end if;
715
716 else
717 if ValR = Expr_Value_R (Choice) then
718 return Match;
719 else
720 return No_Match;
721 end if;
722 end if;
723
724 -- String type cases
725
726 else
727 pragma Assert (Is_String_Type (Etyp));
728 ValS := Expr_Value_S (Expr);
729
730 if Nkind (Choice) = N_Subtype_Indication
731 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
732 then
733 if not Is_Constrained (Etype (Choice)) then
734 return Match;
735
736 else
737 declare
738 Typlen : constant Uint :=
739 String_Type_Len (Etype (Choice));
740 Strlen : constant Uint :=
741 UI_From_Int (String_Length (Strval (ValS)));
742 begin
743 if Typlen = Strlen then
744 return Match;
745 else
746 return No_Match;
747 end if;
748 end;
749 end if;
750
751 else
752 if String_Equal (Strval (ValS), Strval (Expr_Value_S (Choice)))
753 then
754 return Match;
755 else
756 return No_Match;
757 end if;
758 end if;
759 end if;
760 end Choice_Matches;
761
762 -------------------
763 -- Choices_Match --
764 -------------------
765
766 function Choices_Match
767 (Expr : Node_Id;
768 Choices : List_Id) return Match_Result
769 is
770 Choice : Node_Id;
771 Result : Match_Result;
772
773 begin
774 Choice := First (Choices);
775 while Present (Choice) loop
776 Result := Choice_Matches (Expr, Choice);
777
778 if Result /= No_Match then
779 return Result;
780 end if;
781
782 Next (Choice);
783 end loop;
784
785 return No_Match;
786 end Choices_Match;
787
788 --------------------------
789 -- Compile_Time_Compare --
790 --------------------------
791
792 function Compile_Time_Compare
793 (L, R : Node_Id;
794 Assume_Valid : Boolean) return Compare_Result
795 is
796 Discard : aliased Uint;
797 begin
798 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
799 end Compile_Time_Compare;
800
801 function Compile_Time_Compare
802 (L, R : Node_Id;
803 Diff : access Uint;
804 Assume_Valid : Boolean;
805 Rec : Boolean := False) return Compare_Result
806 is
807 Ltyp : Entity_Id := Etype (L);
808 Rtyp : Entity_Id := Etype (R);
809
810 Discard : aliased Uint;
811
812 procedure Compare_Decompose
813 (N : Node_Id;
814 R : out Node_Id;
815 V : out Uint);
816 -- This procedure decomposes the node N into an expression node and a
817 -- signed offset, so that the value of N is equal to the value of R plus
818 -- the value V (which may be negative). If no such decomposition is
819 -- possible, then on return R is a copy of N, and V is set to zero.
820
821 function Compare_Fixup (N : Node_Id) return Node_Id;
822 -- This function deals with replacing 'Last and 'First references with
823 -- their corresponding type bounds, which we then can compare. The
824 -- argument is the original node, the result is the identity, unless we
825 -- have a 'Last/'First reference in which case the value returned is the
826 -- appropriate type bound.
827
828 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
829 -- Even if the context does not assume that values are valid, some
830 -- simple cases can be recognized.
831
832 function Is_Same_Value (L, R : Node_Id) return Boolean;
833 -- Returns True iff L and R represent expressions that definitely have
834 -- identical (but not necessarily compile time known) values Indeed the
835 -- caller is expected to have already dealt with the cases of compile
836 -- time known values, so these are not tested here.
837
838 -----------------------
839 -- Compare_Decompose --
840 -----------------------
841
842 procedure Compare_Decompose
843 (N : Node_Id;
844 R : out Node_Id;
845 V : out Uint)
846 is
847 begin
848 if Nkind (N) = N_Op_Add
849 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
850 then
851 R := Left_Opnd (N);
852 V := Intval (Right_Opnd (N));
853 return;
854
855 elsif Nkind (N) = N_Op_Subtract
856 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
857 then
858 R := Left_Opnd (N);
859 V := UI_Negate (Intval (Right_Opnd (N)));
860 return;
861
862 elsif Nkind (N) = N_Attribute_Reference then
863 if Attribute_Name (N) = Name_Succ then
864 R := First (Expressions (N));
865 V := Uint_1;
866 return;
867
868 elsif Attribute_Name (N) = Name_Pred then
869 R := First (Expressions (N));
870 V := Uint_Minus_1;
871 return;
872 end if;
873 end if;
874
875 R := N;
876 V := Uint_0;
877 end Compare_Decompose;
878
879 -------------------
880 -- Compare_Fixup --
881 -------------------
882
883 function Compare_Fixup (N : Node_Id) return Node_Id is
884 Indx : Node_Id;
885 Xtyp : Entity_Id;
886 Subs : Nat;
887
888 begin
889 -- Fixup only required for First/Last attribute reference
890
891 if Nkind (N) = N_Attribute_Reference
892 and then Nam_In (Attribute_Name (N), Name_First, Name_Last)
893 then
894 Xtyp := Etype (Prefix (N));
895
896 -- If we have no type, then just abandon the attempt to do
897 -- a fixup, this is probably the result of some other error.
898
899 if No (Xtyp) then
900 return N;
901 end if;
902
903 -- Dereference an access type
904
905 if Is_Access_Type (Xtyp) then
906 Xtyp := Designated_Type (Xtyp);
907 end if;
908
909 -- If we don't have an array type at this stage, something is
910 -- peculiar, e.g. another error, and we abandon the attempt at
911 -- a fixup.
912
913 if not Is_Array_Type (Xtyp) then
914 return N;
915 end if;
916
917 -- Ignore unconstrained array, since bounds are not meaningful
918
919 if not Is_Constrained (Xtyp) then
920 return N;
921 end if;
922
923 if Ekind (Xtyp) = E_String_Literal_Subtype then
924 if Attribute_Name (N) = Name_First then
925 return String_Literal_Low_Bound (Xtyp);
926 else
927 return
928 Make_Integer_Literal (Sloc (N),
929 Intval => Intval (String_Literal_Low_Bound (Xtyp)) +
930 String_Literal_Length (Xtyp));
931 end if;
932 end if;
933
934 -- Find correct index type
935
936 Indx := First_Index (Xtyp);
937
938 if Present (Expressions (N)) then
939 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
940
941 for J in 2 .. Subs loop
942 Indx := Next_Index (Indx);
943 end loop;
944 end if;
945
946 Xtyp := Etype (Indx);
947
948 if Attribute_Name (N) = Name_First then
949 return Type_Low_Bound (Xtyp);
950 else
951 return Type_High_Bound (Xtyp);
952 end if;
953 end if;
954
955 return N;
956 end Compare_Fixup;
957
958 ----------------------------
959 -- Is_Known_Valid_Operand --
960 ----------------------------
961
962 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
963 begin
964 return (Is_Entity_Name (Opnd)
965 and then
966 (Is_Known_Valid (Entity (Opnd))
967 or else Ekind (Entity (Opnd)) = E_In_Parameter
968 or else
969 (Ekind (Entity (Opnd)) in Object_Kind
970 and then Present (Current_Value (Entity (Opnd))))))
971 or else Is_OK_Static_Expression (Opnd);
972 end Is_Known_Valid_Operand;
973
974 -------------------
975 -- Is_Same_Value --
976 -------------------
977
978 function Is_Same_Value (L, R : Node_Id) return Boolean is
979 Lf : constant Node_Id := Compare_Fixup (L);
980 Rf : constant Node_Id := Compare_Fixup (R);
981
982 function Is_Same_Subscript (L, R : List_Id) return Boolean;
983 -- L, R are the Expressions values from two attribute nodes for First
984 -- or Last attributes. Either may be set to No_List if no expressions
985 -- are present (indicating subscript 1). The result is True if both
986 -- expressions represent the same subscript (note one case is where
987 -- one subscript is missing and the other is explicitly set to 1).
988
989 -----------------------
990 -- Is_Same_Subscript --
991 -----------------------
992
993 function Is_Same_Subscript (L, R : List_Id) return Boolean is
994 begin
995 if L = No_List then
996 if R = No_List then
997 return True;
998 else
999 return Expr_Value (First (R)) = Uint_1;
1000 end if;
1001
1002 else
1003 if R = No_List then
1004 return Expr_Value (First (L)) = Uint_1;
1005 else
1006 return Expr_Value (First (L)) = Expr_Value (First (R));
1007 end if;
1008 end if;
1009 end Is_Same_Subscript;
1010
1011 -- Start of processing for Is_Same_Value
1012
1013 begin
1014 -- Values are the same if they refer to the same entity and the
1015 -- entity is non-volatile. This does not however apply to Float
1016 -- types, since we may have two NaN values and they should never
1017 -- compare equal.
1018
1019 -- If the entity is a discriminant, the two expressions may be bounds
1020 -- of components of objects of the same discriminated type. The
1021 -- values of the discriminants are not static, and therefore the
1022 -- result is unknown.
1023
1024 -- It would be better to comment individual branches of this test ???
1025
1026 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
1027 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
1028 and then Entity (Lf) = Entity (Rf)
1029 and then Ekind (Entity (Lf)) /= E_Discriminant
1030 and then Present (Entity (Lf))
1031 and then not Is_Floating_Point_Type (Etype (L))
1032 and then not Is_Volatile_Reference (L)
1033 and then not Is_Volatile_Reference (R)
1034 then
1035 return True;
1036
1037 -- Or if they are compile time known and identical
1038
1039 elsif Compile_Time_Known_Value (Lf)
1040 and then
1041 Compile_Time_Known_Value (Rf)
1042 and then Expr_Value (Lf) = Expr_Value (Rf)
1043 then
1044 return True;
1045
1046 -- False if Nkind of the two nodes is different for remaining cases
1047
1048 elsif Nkind (Lf) /= Nkind (Rf) then
1049 return False;
1050
1051 -- True if both 'First or 'Last values applying to the same entity
1052 -- (first and last don't change even if value does). Note that we
1053 -- need this even with the calls to Compare_Fixup, to handle the
1054 -- case of unconstrained array attributes where Compare_Fixup
1055 -- cannot find useful bounds.
1056
1057 elsif Nkind (Lf) = N_Attribute_Reference
1058 and then Attribute_Name (Lf) = Attribute_Name (Rf)
1059 and then Nam_In (Attribute_Name (Lf), Name_First, Name_Last)
1060 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
1061 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
1062 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
1063 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
1064 then
1065 return True;
1066
1067 -- True if the same selected component from the same record
1068
1069 elsif Nkind (Lf) = N_Selected_Component
1070 and then Selector_Name (Lf) = Selector_Name (Rf)
1071 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
1072 then
1073 return True;
1074
1075 -- True if the same unary operator applied to the same operand
1076
1077 elsif Nkind (Lf) in N_Unary_Op
1078 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1079 then
1080 return True;
1081
1082 -- True if the same binary operator applied to the same operands
1083
1084 elsif Nkind (Lf) in N_Binary_Op
1085 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
1086 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1087 then
1088 return True;
1089
1090 -- All other cases, we can't tell, so return False
1091
1092 else
1093 return False;
1094 end if;
1095 end Is_Same_Value;
1096
1097 -- Start of processing for Compile_Time_Compare
1098
1099 begin
1100 Diff.all := No_Uint;
1101
1102 -- In preanalysis mode, always return Unknown unless the expression
1103 -- is static. It is too early to be thinking we know the result of a
1104 -- comparison, save that judgment for the full analysis. This is
1105 -- particularly important in the case of pre and postconditions, which
1106 -- otherwise can be prematurely collapsed into having True or False
1107 -- conditions when this is inappropriate.
1108
1109 if not (Full_Analysis
1110 or else (Is_OK_Static_Expression (L)
1111 and then
1112 Is_OK_Static_Expression (R)))
1113 then
1114 return Unknown;
1115 end if;
1116
1117 -- If either operand could raise constraint error, then we cannot
1118 -- know the result at compile time (since CE may be raised).
1119
1120 if not (Cannot_Raise_Constraint_Error (L)
1121 and then
1122 Cannot_Raise_Constraint_Error (R))
1123 then
1124 return Unknown;
1125 end if;
1126
1127 -- Identical operands are most certainly equal
1128
1129 if L = R then
1130 return EQ;
1131 end if;
1132
1133 -- If expressions have no types, then do not attempt to determine if
1134 -- they are the same, since something funny is going on. One case in
1135 -- which this happens is during generic template analysis, when bounds
1136 -- are not fully analyzed.
1137
1138 if No (Ltyp) or else No (Rtyp) then
1139 return Unknown;
1140 end if;
1141
1142 -- These get reset to the base type for the case of entities where
1143 -- Is_Known_Valid is not set. This takes care of handling possible
1144 -- invalid representations using the value of the base type, in
1145 -- accordance with RM 13.9.1(10).
1146
1147 Ltyp := Underlying_Type (Ltyp);
1148 Rtyp := Underlying_Type (Rtyp);
1149
1150 -- Same rationale as above, but for Underlying_Type instead of Etype
1151
1152 if No (Ltyp) or else No (Rtyp) then
1153 return Unknown;
1154 end if;
1155
1156 -- We do not attempt comparisons for packed arrays represented as
1157 -- modular types, where the semantics of comparison is quite different.
1158
1159 if Is_Packed_Array_Impl_Type (Ltyp)
1160 and then Is_Modular_Integer_Type (Ltyp)
1161 then
1162 return Unknown;
1163
1164 -- For access types, the only time we know the result at compile time
1165 -- (apart from identical operands, which we handled already) is if we
1166 -- know one operand is null and the other is not, or both operands are
1167 -- known null.
1168
1169 elsif Is_Access_Type (Ltyp) then
1170 if Known_Null (L) then
1171 if Known_Null (R) then
1172 return EQ;
1173 elsif Known_Non_Null (R) then
1174 return NE;
1175 else
1176 return Unknown;
1177 end if;
1178
1179 elsif Known_Non_Null (L) and then Known_Null (R) then
1180 return NE;
1181
1182 else
1183 return Unknown;
1184 end if;
1185
1186 -- Case where comparison involves two compile time known values
1187
1188 elsif Compile_Time_Known_Value (L)
1189 and then
1190 Compile_Time_Known_Value (R)
1191 then
1192 -- For the floating-point case, we have to be a little careful, since
1193 -- at compile time we are dealing with universal exact values, but at
1194 -- runtime, these will be in non-exact target form. That's why the
1195 -- returned results are LE and GE below instead of LT and GT.
1196
1197 if Is_Floating_Point_Type (Ltyp)
1198 or else
1199 Is_Floating_Point_Type (Rtyp)
1200 then
1201 declare
1202 Lo : constant Ureal := Expr_Value_R (L);
1203 Hi : constant Ureal := Expr_Value_R (R);
1204 begin
1205 if Lo < Hi then
1206 return LE;
1207 elsif Lo = Hi then
1208 return EQ;
1209 else
1210 return GE;
1211 end if;
1212 end;
1213
1214 -- For string types, we have two string literals and we proceed to
1215 -- compare them using the Ada style dictionary string comparison.
1216
1217 elsif not Is_Scalar_Type (Ltyp) then
1218 declare
1219 Lstring : constant String_Id := Strval (Expr_Value_S (L));
1220 Rstring : constant String_Id := Strval (Expr_Value_S (R));
1221 Llen : constant Nat := String_Length (Lstring);
1222 Rlen : constant Nat := String_Length (Rstring);
1223
1224 begin
1225 for J in 1 .. Nat'Min (Llen, Rlen) loop
1226 declare
1227 LC : constant Char_Code := Get_String_Char (Lstring, J);
1228 RC : constant Char_Code := Get_String_Char (Rstring, J);
1229 begin
1230 if LC < RC then
1231 return LT;
1232 elsif LC > RC then
1233 return GT;
1234 end if;
1235 end;
1236 end loop;
1237
1238 if Llen < Rlen then
1239 return LT;
1240 elsif Llen > Rlen then
1241 return GT;
1242 else
1243 return EQ;
1244 end if;
1245 end;
1246
1247 -- For remaining scalar cases we know exactly (note that this does
1248 -- include the fixed-point case, where we know the run time integer
1249 -- values now).
1250
1251 else
1252 declare
1253 Lo : constant Uint := Expr_Value (L);
1254 Hi : constant Uint := Expr_Value (R);
1255 begin
1256 if Lo < Hi then
1257 Diff.all := Hi - Lo;
1258 return LT;
1259 elsif Lo = Hi then
1260 return EQ;
1261 else
1262 Diff.all := Lo - Hi;
1263 return GT;
1264 end if;
1265 end;
1266 end if;
1267
1268 -- Cases where at least one operand is not known at compile time
1269
1270 else
1271 -- Remaining checks apply only for discrete types
1272
1273 if not Is_Discrete_Type (Ltyp)
1274 or else
1275 not Is_Discrete_Type (Rtyp)
1276 then
1277 return Unknown;
1278 end if;
1279
1280 -- Defend against generic types, or actually any expressions that
1281 -- contain a reference to a generic type from within a generic
1282 -- template. We don't want to do any range analysis of such
1283 -- expressions for two reasons. First, the bounds of a generic type
1284 -- itself are junk and cannot be used for any kind of analysis.
1285 -- Second, we may have a case where the range at run time is indeed
1286 -- known, but we don't want to do compile time analysis in the
1287 -- template based on that range since in an instance the value may be
1288 -- static, and able to be elaborated without reference to the bounds
1289 -- of types involved. As an example, consider:
1290
1291 -- (F'Pos (F'Last) + 1) > Integer'Last
1292
1293 -- The expression on the left side of > is Universal_Integer and thus
1294 -- acquires the type Integer for evaluation at run time, and at run
1295 -- time it is true that this condition is always False, but within
1296 -- an instance F may be a type with a static range greater than the
1297 -- range of Integer, and the expression statically evaluates to True.
1298
1299 if References_Generic_Formal_Type (L)
1300 or else
1301 References_Generic_Formal_Type (R)
1302 then
1303 return Unknown;
1304 end if;
1305
1306 -- Replace types by base types for the case of values which are not
1307 -- known to have valid representations. This takes care of properly
1308 -- dealing with invalid representations.
1309
1310 if not Assume_Valid then
1311 if not (Is_Entity_Name (L)
1312 and then (Is_Known_Valid (Entity (L))
1313 or else Assume_No_Invalid_Values))
1314 then
1315 Ltyp := Underlying_Type (Base_Type (Ltyp));
1316 end if;
1317
1318 if not (Is_Entity_Name (R)
1319 and then (Is_Known_Valid (Entity (R))
1320 or else Assume_No_Invalid_Values))
1321 then
1322 Rtyp := Underlying_Type (Base_Type (Rtyp));
1323 end if;
1324 end if;
1325
1326 -- First attempt is to decompose the expressions to extract a
1327 -- constant offset resulting from the use of any of the forms:
1328
1329 -- expr + literal
1330 -- expr - literal
1331 -- typ'Succ (expr)
1332 -- typ'Pred (expr)
1333
1334 -- Then we see if the two expressions are the same value, and if so
1335 -- the result is obtained by comparing the offsets.
1336
1337 -- Note: the reason we do this test first is that it returns only
1338 -- decisive results (with diff set), where other tests, like the
1339 -- range test, may not be as so decisive. Consider for example
1340 -- J .. J + 1. This code can conclude LT with a difference of 1,
1341 -- even if the range of J is not known.
1342
1343 declare
1344 Lnode : Node_Id;
1345 Loffs : Uint;
1346 Rnode : Node_Id;
1347 Roffs : Uint;
1348
1349 begin
1350 Compare_Decompose (L, Lnode, Loffs);
1351 Compare_Decompose (R, Rnode, Roffs);
1352
1353 if Is_Same_Value (Lnode, Rnode) then
1354 if Loffs = Roffs then
1355 return EQ;
1356 end if;
1357
1358 -- When the offsets are not equal, we can go farther only if
1359 -- the types are not modular (e.g. X < X + 1 is False if X is
1360 -- the largest number).
1361
1362 if not Is_Modular_Integer_Type (Ltyp)
1363 and then not Is_Modular_Integer_Type (Rtyp)
1364 then
1365 if Loffs < Roffs then
1366 Diff.all := Roffs - Loffs;
1367 return LT;
1368 else
1369 Diff.all := Loffs - Roffs;
1370 return GT;
1371 end if;
1372 end if;
1373 end if;
1374 end;
1375
1376 -- Next, try range analysis and see if operand ranges are disjoint
1377
1378 declare
1379 LOK, ROK : Boolean;
1380 LLo, LHi : Uint;
1381 RLo, RHi : Uint;
1382
1383 Single : Boolean;
1384 -- True if each range is a single point
1385
1386 begin
1387 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1388 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1389
1390 if LOK and ROK then
1391 Single := (LLo = LHi) and then (RLo = RHi);
1392
1393 if LHi < RLo then
1394 if Single and Assume_Valid then
1395 Diff.all := RLo - LLo;
1396 end if;
1397
1398 return LT;
1399
1400 elsif RHi < LLo then
1401 if Single and Assume_Valid then
1402 Diff.all := LLo - RLo;
1403 end if;
1404
1405 return GT;
1406
1407 elsif Single and then LLo = RLo then
1408
1409 -- If the range includes a single literal and we can assume
1410 -- validity then the result is known even if an operand is
1411 -- not static.
1412
1413 if Assume_Valid then
1414 return EQ;
1415 else
1416 return Unknown;
1417 end if;
1418
1419 elsif LHi = RLo then
1420 return LE;
1421
1422 elsif RHi = LLo then
1423 return GE;
1424
1425 elsif not Is_Known_Valid_Operand (L)
1426 and then not Assume_Valid
1427 then
1428 if Is_Same_Value (L, R) then
1429 return EQ;
1430 else
1431 return Unknown;
1432 end if;
1433 end if;
1434
1435 -- If the range of either operand cannot be determined, nothing
1436 -- further can be inferred.
1437
1438 else
1439 return Unknown;
1440 end if;
1441 end;
1442
1443 -- Here is where we check for comparisons against maximum bounds of
1444 -- types, where we know that no value can be outside the bounds of
1445 -- the subtype. Note that this routine is allowed to assume that all
1446 -- expressions are within their subtype bounds. Callers wishing to
1447 -- deal with possibly invalid values must in any case take special
1448 -- steps (e.g. conversions to larger types) to avoid this kind of
1449 -- optimization, which is always considered to be valid. We do not
1450 -- attempt this optimization with generic types, since the type
1451 -- bounds may not be meaningful in this case.
1452
1453 -- We are in danger of an infinite recursion here. It does not seem
1454 -- useful to go more than one level deep, so the parameter Rec is
1455 -- used to protect ourselves against this infinite recursion.
1456
1457 if not Rec then
1458
1459 -- See if we can get a decisive check against one operand and a
1460 -- bound of the other operand (four possible tests here). Note
1461 -- that we avoid testing junk bounds of a generic type.
1462
1463 if not Is_Generic_Type (Rtyp) then
1464 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1465 Discard'Access,
1466 Assume_Valid, Rec => True)
1467 is
1468 when LT => return LT;
1469 when LE => return LE;
1470 when EQ => return LE;
1471 when others => null;
1472 end case;
1473
1474 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1475 Discard'Access,
1476 Assume_Valid, Rec => True)
1477 is
1478 when GT => return GT;
1479 when GE => return GE;
1480 when EQ => return GE;
1481 when others => null;
1482 end case;
1483 end if;
1484
1485 if not Is_Generic_Type (Ltyp) then
1486 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1487 Discard'Access,
1488 Assume_Valid, Rec => True)
1489 is
1490 when GT => return GT;
1491 when GE => return GE;
1492 when EQ => return GE;
1493 when others => null;
1494 end case;
1495
1496 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1497 Discard'Access,
1498 Assume_Valid, Rec => True)
1499 is
1500 when LT => return LT;
1501 when LE => return LE;
1502 when EQ => return LE;
1503 when others => null;
1504 end case;
1505 end if;
1506 end if;
1507
1508 -- Next attempt is to see if we have an entity compared with a
1509 -- compile time known value, where there is a current value
1510 -- conditional for the entity which can tell us the result.
1511
1512 declare
1513 Var : Node_Id;
1514 -- Entity variable (left operand)
1515
1516 Val : Uint;
1517 -- Value (right operand)
1518
1519 Inv : Boolean;
1520 -- If False, we have reversed the operands
1521
1522 Op : Node_Kind;
1523 -- Comparison operator kind from Get_Current_Value_Condition call
1524
1525 Opn : Node_Id;
1526 -- Value from Get_Current_Value_Condition call
1527
1528 Opv : Uint;
1529 -- Value of Opn
1530
1531 Result : Compare_Result;
1532 -- Known result before inversion
1533
1534 begin
1535 if Is_Entity_Name (L)
1536 and then Compile_Time_Known_Value (R)
1537 then
1538 Var := L;
1539 Val := Expr_Value (R);
1540 Inv := False;
1541
1542 elsif Is_Entity_Name (R)
1543 and then Compile_Time_Known_Value (L)
1544 then
1545 Var := R;
1546 Val := Expr_Value (L);
1547 Inv := True;
1548
1549 -- That was the last chance at finding a compile time result
1550
1551 else
1552 return Unknown;
1553 end if;
1554
1555 Get_Current_Value_Condition (Var, Op, Opn);
1556
1557 -- That was the last chance, so if we got nothing return
1558
1559 if No (Opn) then
1560 return Unknown;
1561 end if;
1562
1563 Opv := Expr_Value (Opn);
1564
1565 -- We got a comparison, so we might have something interesting
1566
1567 -- Convert LE to LT and GE to GT, just so we have fewer cases
1568
1569 if Op = N_Op_Le then
1570 Op := N_Op_Lt;
1571 Opv := Opv + 1;
1572
1573 elsif Op = N_Op_Ge then
1574 Op := N_Op_Gt;
1575 Opv := Opv - 1;
1576 end if;
1577
1578 -- Deal with equality case
1579
1580 if Op = N_Op_Eq then
1581 if Val = Opv then
1582 Result := EQ;
1583 elsif Opv < Val then
1584 Result := LT;
1585 else
1586 Result := GT;
1587 end if;
1588
1589 -- Deal with inequality case
1590
1591 elsif Op = N_Op_Ne then
1592 if Val = Opv then
1593 Result := NE;
1594 else
1595 return Unknown;
1596 end if;
1597
1598 -- Deal with greater than case
1599
1600 elsif Op = N_Op_Gt then
1601 if Opv >= Val then
1602 Result := GT;
1603 elsif Opv = Val - 1 then
1604 Result := GE;
1605 else
1606 return Unknown;
1607 end if;
1608
1609 -- Deal with less than case
1610
1611 else pragma Assert (Op = N_Op_Lt);
1612 if Opv <= Val then
1613 Result := LT;
1614 elsif Opv = Val + 1 then
1615 Result := LE;
1616 else
1617 return Unknown;
1618 end if;
1619 end if;
1620
1621 -- Deal with inverting result
1622
1623 if Inv then
1624 case Result is
1625 when GT => return LT;
1626 when GE => return LE;
1627 when LT => return GT;
1628 when LE => return GE;
1629 when others => return Result;
1630 end case;
1631 end if;
1632
1633 return Result;
1634 end;
1635 end if;
1636 end Compile_Time_Compare;
1637
1638 -------------------------------
1639 -- Compile_Time_Known_Bounds --
1640 -------------------------------
1641
1642 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1643 Indx : Node_Id;
1644 Typ : Entity_Id;
1645
1646 begin
1647 if T = Any_Composite or else not Is_Array_Type (T) then
1648 return False;
1649 end if;
1650
1651 Indx := First_Index (T);
1652 while Present (Indx) loop
1653 Typ := Underlying_Type (Etype (Indx));
1654
1655 -- Never look at junk bounds of a generic type
1656
1657 if Is_Generic_Type (Typ) then
1658 return False;
1659 end if;
1660
1661 -- Otherwise check bounds for compile time known
1662
1663 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1664 return False;
1665 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1666 return False;
1667 else
1668 Next_Index (Indx);
1669 end if;
1670 end loop;
1671
1672 return True;
1673 end Compile_Time_Known_Bounds;
1674
1675 ------------------------------
1676 -- Compile_Time_Known_Value --
1677 ------------------------------
1678
1679 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1680 K : constant Node_Kind := Nkind (Op);
1681 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
1682
1683 begin
1684 -- Never known at compile time if bad type or raises constraint error
1685 -- or empty (latter case occurs only as a result of a previous error).
1686
1687 if No (Op) then
1688 Check_Error_Detected;
1689 return False;
1690
1691 elsif Op = Error
1692 or else Etype (Op) = Any_Type
1693 or else Raises_Constraint_Error (Op)
1694 then
1695 return False;
1696 end if;
1697
1698 -- If we have an entity name, then see if it is the name of a constant
1699 -- and if so, test the corresponding constant value, or the name of
1700 -- an enumeration literal, which is always a constant.
1701
1702 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1703 declare
1704 E : constant Entity_Id := Entity (Op);
1705 V : Node_Id;
1706
1707 begin
1708 -- Never known at compile time if it is a packed array value.
1709 -- We might want to try to evaluate these at compile time one
1710 -- day, but we do not make that attempt now.
1711
1712 if Is_Packed_Array_Impl_Type (Etype (Op)) then
1713 return False;
1714 end if;
1715
1716 if Ekind (E) = E_Enumeration_Literal then
1717 return True;
1718
1719 elsif Ekind (E) = E_Constant then
1720 V := Constant_Value (E);
1721 return Present (V) and then Compile_Time_Known_Value (V);
1722 end if;
1723 end;
1724
1725 -- We have a value, see if it is compile time known
1726
1727 else
1728 -- Integer literals are worth storing in the cache
1729
1730 if K = N_Integer_Literal then
1731 CV_Ent.N := Op;
1732 CV_Ent.V := Intval (Op);
1733 return True;
1734
1735 -- Other literals and NULL are known at compile time
1736
1737 elsif
1738 Nkind_In (K, N_Character_Literal,
1739 N_Real_Literal,
1740 N_String_Literal,
1741 N_Null)
1742 then
1743 return True;
1744 end if;
1745 end if;
1746
1747 -- If we fall through, not known at compile time
1748
1749 return False;
1750
1751 -- If we get an exception while trying to do this test, then some error
1752 -- has occurred, and we simply say that the value is not known after all
1753
1754 exception
1755 when others =>
1756 return False;
1757 end Compile_Time_Known_Value;
1758
1759 --------------------------------------
1760 -- Compile_Time_Known_Value_Or_Aggr --
1761 --------------------------------------
1762
1763 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1764 begin
1765 -- If we have an entity name, then see if it is the name of a constant
1766 -- and if so, test the corresponding constant value, or the name of
1767 -- an enumeration literal, which is always a constant.
1768
1769 if Is_Entity_Name (Op) then
1770 declare
1771 E : constant Entity_Id := Entity (Op);
1772 V : Node_Id;
1773
1774 begin
1775 if Ekind (E) = E_Enumeration_Literal then
1776 return True;
1777
1778 elsif Ekind (E) /= E_Constant then
1779 return False;
1780
1781 else
1782 V := Constant_Value (E);
1783 return Present (V)
1784 and then Compile_Time_Known_Value_Or_Aggr (V);
1785 end if;
1786 end;
1787
1788 -- We have a value, see if it is compile time known
1789
1790 else
1791 if Compile_Time_Known_Value (Op) then
1792 return True;
1793
1794 elsif Nkind (Op) = N_Aggregate then
1795
1796 if Present (Expressions (Op)) then
1797 declare
1798 Expr : Node_Id;
1799 begin
1800 Expr := First (Expressions (Op));
1801 while Present (Expr) loop
1802 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1803 return False;
1804 else
1805 Next (Expr);
1806 end if;
1807 end loop;
1808 end;
1809 end if;
1810
1811 if Present (Component_Associations (Op)) then
1812 declare
1813 Cass : Node_Id;
1814
1815 begin
1816 Cass := First (Component_Associations (Op));
1817 while Present (Cass) loop
1818 if not
1819 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1820 then
1821 return False;
1822 end if;
1823
1824 Next (Cass);
1825 end loop;
1826 end;
1827 end if;
1828
1829 return True;
1830
1831 -- All other types of values are not known at compile time
1832
1833 else
1834 return False;
1835 end if;
1836
1837 end if;
1838 end Compile_Time_Known_Value_Or_Aggr;
1839
1840 ---------------------------------------
1841 -- CRT_Safe_Compile_Time_Known_Value --
1842 ---------------------------------------
1843
1844 function CRT_Safe_Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1845 begin
1846 if (Configurable_Run_Time_Mode or No_Run_Time_Mode)
1847 and then not Is_OK_Static_Expression (Op)
1848 then
1849 return False;
1850 else
1851 return Compile_Time_Known_Value (Op);
1852 end if;
1853 end CRT_Safe_Compile_Time_Known_Value;
1854
1855 -----------------
1856 -- Eval_Actual --
1857 -----------------
1858
1859 -- This is only called for actuals of functions that are not predefined
1860 -- operators (which have already been rewritten as operators at this
1861 -- stage), so the call can never be folded, and all that needs doing for
1862 -- the actual is to do the check for a non-static context.
1863
1864 procedure Eval_Actual (N : Node_Id) is
1865 begin
1866 Check_Non_Static_Context (N);
1867 end Eval_Actual;
1868
1869 --------------------
1870 -- Eval_Allocator --
1871 --------------------
1872
1873 -- Allocators are never static, so all we have to do is to do the
1874 -- check for a non-static context if an expression is present.
1875
1876 procedure Eval_Allocator (N : Node_Id) is
1877 Expr : constant Node_Id := Expression (N);
1878 begin
1879 if Nkind (Expr) = N_Qualified_Expression then
1880 Check_Non_Static_Context (Expression (Expr));
1881 end if;
1882 end Eval_Allocator;
1883
1884 ------------------------
1885 -- Eval_Arithmetic_Op --
1886 ------------------------
1887
1888 -- Arithmetic operations are static functions, so the result is static
1889 -- if both operands are static (RM 4.9(7), 4.9(20)).
1890
1891 procedure Eval_Arithmetic_Op (N : Node_Id) is
1892 Left : constant Node_Id := Left_Opnd (N);
1893 Right : constant Node_Id := Right_Opnd (N);
1894 Ltype : constant Entity_Id := Etype (Left);
1895 Rtype : constant Entity_Id := Etype (Right);
1896 Otype : Entity_Id := Empty;
1897 Stat : Boolean;
1898 Fold : Boolean;
1899
1900 begin
1901 -- If not foldable we are done
1902
1903 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1904
1905 if not Fold then
1906 return;
1907 end if;
1908
1909 -- Otherwise attempt to fold
1910
1911 if Is_Universal_Numeric_Type (Etype (Left))
1912 and then
1913 Is_Universal_Numeric_Type (Etype (Right))
1914 then
1915 Otype := Find_Universal_Operator_Type (N);
1916 end if;
1917
1918 -- Fold for cases where both operands are of integer type
1919
1920 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1921 declare
1922 Left_Int : constant Uint := Expr_Value (Left);
1923 Right_Int : constant Uint := Expr_Value (Right);
1924 Result : Uint;
1925
1926 begin
1927 case Nkind (N) is
1928 when N_Op_Add =>
1929 Result := Left_Int + Right_Int;
1930
1931 when N_Op_Subtract =>
1932 Result := Left_Int - Right_Int;
1933
1934 when N_Op_Multiply =>
1935 if OK_Bits
1936 (N, UI_From_Int
1937 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1938 then
1939 Result := Left_Int * Right_Int;
1940 else
1941 Result := Left_Int;
1942 end if;
1943
1944 when N_Op_Divide =>
1945
1946 -- The exception Constraint_Error is raised by integer
1947 -- division, rem and mod if the right operand is zero.
1948
1949 if Right_Int = 0 then
1950
1951 -- When SPARK_Mode is On, force a warning instead of
1952 -- an error in that case, as this likely corresponds
1953 -- to deactivated code.
1954
1955 Apply_Compile_Time_Constraint_Error
1956 (N, "division by zero", CE_Divide_By_Zero,
1957 Warn => not Stat or SPARK_Mode = On);
1958 Set_Raises_Constraint_Error (N);
1959 return;
1960
1961 -- Otherwise we can do the division
1962
1963 else
1964 Result := Left_Int / Right_Int;
1965 end if;
1966
1967 when N_Op_Mod =>
1968
1969 -- The exception Constraint_Error is raised by integer
1970 -- division, rem and mod if the right operand is zero.
1971
1972 if Right_Int = 0 then
1973
1974 -- When SPARK_Mode is On, force a warning instead of
1975 -- an error in that case, as this likely corresponds
1976 -- to deactivated code.
1977
1978 Apply_Compile_Time_Constraint_Error
1979 (N, "mod with zero divisor", CE_Divide_By_Zero,
1980 Warn => not Stat or SPARK_Mode = On);
1981 return;
1982
1983 else
1984 Result := Left_Int mod Right_Int;
1985 end if;
1986
1987 when N_Op_Rem =>
1988
1989 -- The exception Constraint_Error is raised by integer
1990 -- division, rem and mod if the right operand is zero.
1991
1992 if Right_Int = 0 then
1993
1994 -- When SPARK_Mode is On, force a warning instead of
1995 -- an error in that case, as this likely corresponds
1996 -- to deactivated code.
1997
1998 Apply_Compile_Time_Constraint_Error
1999 (N, "rem with zero divisor", CE_Divide_By_Zero,
2000 Warn => not Stat or SPARK_Mode = On);
2001 return;
2002
2003 else
2004 Result := Left_Int rem Right_Int;
2005 end if;
2006
2007 when others =>
2008 raise Program_Error;
2009 end case;
2010
2011 -- Adjust the result by the modulus if the type is a modular type
2012
2013 if Is_Modular_Integer_Type (Ltype) then
2014 Result := Result mod Modulus (Ltype);
2015
2016 -- For a signed integer type, check non-static overflow
2017
2018 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
2019 declare
2020 BT : constant Entity_Id := Base_Type (Ltype);
2021 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
2022 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
2023 begin
2024 if Result < Lo or else Result > Hi then
2025 Apply_Compile_Time_Constraint_Error
2026 (N, "value not in range of }??",
2027 CE_Overflow_Check_Failed,
2028 Ent => BT);
2029 return;
2030 end if;
2031 end;
2032 end if;
2033
2034 -- If we get here we can fold the result
2035
2036 Fold_Uint (N, Result, Stat);
2037 end;
2038
2039 -- Cases where at least one operand is a real. We handle the cases of
2040 -- both reals, or mixed/real integer cases (the latter happen only for
2041 -- divide and multiply, and the result is always real).
2042
2043 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
2044 declare
2045 Left_Real : Ureal;
2046 Right_Real : Ureal;
2047 Result : Ureal;
2048
2049 begin
2050 if Is_Real_Type (Ltype) then
2051 Left_Real := Expr_Value_R (Left);
2052 else
2053 Left_Real := UR_From_Uint (Expr_Value (Left));
2054 end if;
2055
2056 if Is_Real_Type (Rtype) then
2057 Right_Real := Expr_Value_R (Right);
2058 else
2059 Right_Real := UR_From_Uint (Expr_Value (Right));
2060 end if;
2061
2062 if Nkind (N) = N_Op_Add then
2063 Result := Left_Real + Right_Real;
2064
2065 elsif Nkind (N) = N_Op_Subtract then
2066 Result := Left_Real - Right_Real;
2067
2068 elsif Nkind (N) = N_Op_Multiply then
2069 Result := Left_Real * Right_Real;
2070
2071 else pragma Assert (Nkind (N) = N_Op_Divide);
2072 if UR_Is_Zero (Right_Real) then
2073 Apply_Compile_Time_Constraint_Error
2074 (N, "division by zero", CE_Divide_By_Zero);
2075 return;
2076 end if;
2077
2078 Result := Left_Real / Right_Real;
2079 end if;
2080
2081 Fold_Ureal (N, Result, Stat);
2082 end;
2083 end if;
2084
2085 -- If the operator was resolved to a specific type, make sure that type
2086 -- is frozen even if the expression is folded into a literal (which has
2087 -- a universal type).
2088
2089 if Present (Otype) then
2090 Freeze_Before (N, Otype);
2091 end if;
2092 end Eval_Arithmetic_Op;
2093
2094 ----------------------------
2095 -- Eval_Character_Literal --
2096 ----------------------------
2097
2098 -- Nothing to be done
2099
2100 procedure Eval_Character_Literal (N : Node_Id) is
2101 pragma Warnings (Off, N);
2102 begin
2103 null;
2104 end Eval_Character_Literal;
2105
2106 ---------------
2107 -- Eval_Call --
2108 ---------------
2109
2110 -- Static function calls are either calls to predefined operators
2111 -- with static arguments, or calls to functions that rename a literal.
2112 -- Only the latter case is handled here, predefined operators are
2113 -- constant-folded elsewhere.
2114
2115 -- If the function is itself inherited (see 7423-001) the literal of
2116 -- the parent type must be explicitly converted to the return type
2117 -- of the function.
2118
2119 procedure Eval_Call (N : Node_Id) is
2120 Loc : constant Source_Ptr := Sloc (N);
2121 Typ : constant Entity_Id := Etype (N);
2122 Lit : Entity_Id;
2123
2124 begin
2125 if Nkind (N) = N_Function_Call
2126 and then No (Parameter_Associations (N))
2127 and then Is_Entity_Name (Name (N))
2128 and then Present (Alias (Entity (Name (N))))
2129 and then Is_Enumeration_Type (Base_Type (Typ))
2130 then
2131 Lit := Ultimate_Alias (Entity (Name (N)));
2132
2133 if Ekind (Lit) = E_Enumeration_Literal then
2134 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
2135 Rewrite
2136 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
2137 else
2138 Rewrite (N, New_Occurrence_Of (Lit, Loc));
2139 end if;
2140
2141 Resolve (N, Typ);
2142 end if;
2143 end if;
2144 end Eval_Call;
2145
2146 --------------------------
2147 -- Eval_Case_Expression --
2148 --------------------------
2149
2150 -- A conditional expression is static if all its conditions and dependent
2151 -- expressions are static. Note that we do not care if the dependent
2152 -- expressions raise CE, except for the one that will be selected.
2153
2154 procedure Eval_Case_Expression (N : Node_Id) is
2155 Alt : Node_Id;
2156 Choice : Node_Id;
2157
2158 begin
2159 Set_Is_Static_Expression (N, False);
2160
2161 if Error_Posted (Expression (N))
2162 or else not Is_Static_Expression (Expression (N))
2163 then
2164 Check_Non_Static_Context (Expression (N));
2165 return;
2166 end if;
2167
2168 -- First loop, make sure all the alternatives are static expressions
2169 -- none of which raise Constraint_Error. We make the constraint error
2170 -- check because part of the legality condition for a correct static
2171 -- case expression is that the cases are covered, like any other case
2172 -- expression. And we can't do that if any of the conditions raise an
2173 -- exception, so we don't even try to evaluate if that is the case.
2174
2175 Alt := First (Alternatives (N));
2176 while Present (Alt) loop
2177
2178 -- The expression must be static, but we don't care at this stage
2179 -- if it raises Constraint_Error (the alternative might not match,
2180 -- in which case the expression is statically unevaluated anyway).
2181
2182 if not Is_Static_Expression (Expression (Alt)) then
2183 Check_Non_Static_Context (Expression (Alt));
2184 return;
2185 end if;
2186
2187 -- The choices of a case always have to be static, and cannot raise
2188 -- an exception. If this condition is not met, then the expression
2189 -- is plain illegal, so just abandon evaluation attempts. No need
2190 -- to check non-static context when we have something illegal anyway.
2191
2192 if not Is_OK_Static_Choice_List (Discrete_Choices (Alt)) then
2193 return;
2194 end if;
2195
2196 Next (Alt);
2197 end loop;
2198
2199 -- OK, if the above loop gets through it means that all choices are OK
2200 -- static (don't raise exceptions), so the whole case is static, and we
2201 -- can find the matching alternative.
2202
2203 Set_Is_Static_Expression (N);
2204
2205 -- Now to deal with propagating a possible constraint error
2206
2207 -- If the selecting expression raises CE, propagate and we are done
2208
2209 if Raises_Constraint_Error (Expression (N)) then
2210 Set_Raises_Constraint_Error (N);
2211
2212 -- Otherwise we need to check the alternatives to find the matching
2213 -- one. CE's in other than the matching one are not relevant. But we
2214 -- do need to check the matching one. Unlike the first loop, we do not
2215 -- have to go all the way through, when we find the matching one, quit.
2216
2217 else
2218 Alt := First (Alternatives (N));
2219 Search : loop
2220
2221 -- We must find a match among the alternatives. If not, this must
2222 -- be due to other errors, so just ignore, leaving as non-static.
2223
2224 if No (Alt) then
2225 Set_Is_Static_Expression (N, False);
2226 return;
2227 end if;
2228
2229 -- Otherwise loop through choices of this alternative
2230
2231 Choice := First (Discrete_Choices (Alt));
2232 while Present (Choice) loop
2233
2234 -- If we find a matching choice, then the Expression of this
2235 -- alternative replaces N (Raises_Constraint_Error flag is
2236 -- included, so we don't have to special case that).
2237
2238 if Choice_Matches (Expression (N), Choice) = Match then
2239 Rewrite (N, Relocate_Node (Expression (Alt)));
2240 return;
2241 end if;
2242
2243 Next (Choice);
2244 end loop;
2245
2246 Next (Alt);
2247 end loop Search;
2248 end if;
2249 end Eval_Case_Expression;
2250
2251 ------------------------
2252 -- Eval_Concatenation --
2253 ------------------------
2254
2255 -- Concatenation is a static function, so the result is static if both
2256 -- operands are static (RM 4.9(7), 4.9(21)).
2257
2258 procedure Eval_Concatenation (N : Node_Id) is
2259 Left : constant Node_Id := Left_Opnd (N);
2260 Right : constant Node_Id := Right_Opnd (N);
2261 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
2262 Stat : Boolean;
2263 Fold : Boolean;
2264
2265 begin
2266 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
2267 -- non-static context.
2268
2269 if Ada_Version = Ada_83
2270 and then Comes_From_Source (N)
2271 then
2272 Check_Non_Static_Context (Left);
2273 Check_Non_Static_Context (Right);
2274 return;
2275 end if;
2276
2277 -- If not foldable we are done. In principle concatenation that yields
2278 -- any string type is static (i.e. an array type of character types).
2279 -- However, character types can include enumeration literals, and
2280 -- concatenation in that case cannot be described by a literal, so we
2281 -- only consider the operation static if the result is an array of
2282 -- (a descendant of) a predefined character type.
2283
2284 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2285
2286 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
2287 Set_Is_Static_Expression (N, False);
2288 return;
2289 end if;
2290
2291 -- Compile time string concatenation
2292
2293 -- ??? Note that operands that are aggregates can be marked as static,
2294 -- so we should attempt at a later stage to fold concatenations with
2295 -- such aggregates.
2296
2297 declare
2298 Left_Str : constant Node_Id := Get_String_Val (Left);
2299 Left_Len : Nat;
2300 Right_Str : constant Node_Id := Get_String_Val (Right);
2301 Folded_Val : String_Id;
2302
2303 begin
2304 -- Establish new string literal, and store left operand. We make
2305 -- sure to use the special Start_String that takes an operand if
2306 -- the left operand is a string literal. Since this is optimized
2307 -- in the case where that is the most recently created string
2308 -- literal, we ensure efficient time/space behavior for the
2309 -- case of a concatenation of a series of string literals.
2310
2311 if Nkind (Left_Str) = N_String_Literal then
2312 Left_Len := String_Length (Strval (Left_Str));
2313
2314 -- If the left operand is the empty string, and the right operand
2315 -- is a string literal (the case of "" & "..."), the result is the
2316 -- value of the right operand. This optimization is important when
2317 -- Is_Folded_In_Parser, to avoid copying an enormous right
2318 -- operand.
2319
2320 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
2321 Folded_Val := Strval (Right_Str);
2322 else
2323 Start_String (Strval (Left_Str));
2324 end if;
2325
2326 else
2327 Start_String;
2328 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
2329 Left_Len := 1;
2330 end if;
2331
2332 -- Now append the characters of the right operand, unless we
2333 -- optimized the "" & "..." case above.
2334
2335 if Nkind (Right_Str) = N_String_Literal then
2336 if Left_Len /= 0 then
2337 Store_String_Chars (Strval (Right_Str));
2338 Folded_Val := End_String;
2339 end if;
2340 else
2341 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
2342 Folded_Val := End_String;
2343 end if;
2344
2345 Set_Is_Static_Expression (N, Stat);
2346
2347 -- If left operand is the empty string, the result is the
2348 -- right operand, including its bounds if anomalous.
2349
2350 if Left_Len = 0
2351 and then Is_Array_Type (Etype (Right))
2352 and then Etype (Right) /= Any_String
2353 then
2354 Set_Etype (N, Etype (Right));
2355 end if;
2356
2357 Fold_Str (N, Folded_Val, Static => Stat);
2358 end;
2359 end Eval_Concatenation;
2360
2361 ----------------------
2362 -- Eval_Entity_Name --
2363 ----------------------
2364
2365 -- This procedure is used for identifiers and expanded names other than
2366 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
2367 -- static if they denote a static constant (RM 4.9(6)) or if the name
2368 -- denotes an enumeration literal (RM 4.9(22)).
2369
2370 procedure Eval_Entity_Name (N : Node_Id) is
2371 Def_Id : constant Entity_Id := Entity (N);
2372 Val : Node_Id;
2373
2374 begin
2375 -- Enumeration literals are always considered to be constants
2376 -- and cannot raise constraint error (RM 4.9(22)).
2377
2378 if Ekind (Def_Id) = E_Enumeration_Literal then
2379 Set_Is_Static_Expression (N);
2380 return;
2381
2382 -- A name is static if it denotes a static constant (RM 4.9(5)), and
2383 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
2384 -- it does not violate 10.2.1(8) here, since this is not a variable.
2385
2386 elsif Ekind (Def_Id) = E_Constant then
2387
2388 -- Deferred constants must always be treated as nonstatic outside the
2389 -- scope of their full view.
2390
2391 if Present (Full_View (Def_Id))
2392 and then not In_Open_Scopes (Scope (Def_Id))
2393 then
2394 Val := Empty;
2395 else
2396 Val := Constant_Value (Def_Id);
2397 end if;
2398
2399 if Present (Val) then
2400 Set_Is_Static_Expression
2401 (N, Is_Static_Expression (Val)
2402 and then Is_Static_Subtype (Etype (Def_Id)));
2403 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
2404
2405 if not Is_Static_Expression (N)
2406 and then not Is_Generic_Type (Etype (N))
2407 then
2408 Validate_Static_Object_Name (N);
2409 end if;
2410
2411 -- Mark constant condition in SCOs
2412
2413 if Generate_SCO
2414 and then Comes_From_Source (N)
2415 and then Is_Boolean_Type (Etype (Def_Id))
2416 and then Compile_Time_Known_Value (N)
2417 then
2418 Set_SCO_Condition (N, Expr_Value_E (N) = Standard_True);
2419 end if;
2420
2421 return;
2422 end if;
2423 end if;
2424
2425 -- Fall through if the name is not static
2426
2427 Validate_Static_Object_Name (N);
2428 end Eval_Entity_Name;
2429
2430 ------------------------
2431 -- Eval_If_Expression --
2432 ------------------------
2433
2434 -- We can fold to a static expression if the condition and both dependent
2435 -- expressions are static. Otherwise, the only required processing is to do
2436 -- the check for non-static context for the then and else expressions.
2437
2438 procedure Eval_If_Expression (N : Node_Id) is
2439 Condition : constant Node_Id := First (Expressions (N));
2440 Then_Expr : constant Node_Id := Next (Condition);
2441 Else_Expr : constant Node_Id := Next (Then_Expr);
2442 Result : Node_Id;
2443 Non_Result : Node_Id;
2444
2445 Rstat : constant Boolean :=
2446 Is_Static_Expression (Condition)
2447 and then
2448 Is_Static_Expression (Then_Expr)
2449 and then
2450 Is_Static_Expression (Else_Expr);
2451 -- True if result is static
2452
2453 begin
2454 -- If result not static, nothing to do, otherwise set static result
2455
2456 if not Rstat then
2457 return;
2458 else
2459 Set_Is_Static_Expression (N);
2460 end if;
2461
2462 -- If any operand is Any_Type, just propagate to result and do not try
2463 -- to fold, this prevents cascaded errors.
2464
2465 if Etype (Condition) = Any_Type or else
2466 Etype (Then_Expr) = Any_Type or else
2467 Etype (Else_Expr) = Any_Type
2468 then
2469 Set_Etype (N, Any_Type);
2470 Set_Is_Static_Expression (N, False);
2471 return;
2472 end if;
2473
2474 -- If condition raises constraint error then we have already signaled
2475 -- an error, and we just propagate to the result and do not fold.
2476
2477 if Raises_Constraint_Error (Condition) then
2478 Set_Raises_Constraint_Error (N);
2479 return;
2480 end if;
2481
2482 -- Static case where we can fold. Note that we don't try to fold cases
2483 -- where the condition is known at compile time, but the result is
2484 -- non-static. This avoids possible cases of infinite recursion where
2485 -- the expander puts in a redundant test and we remove it. Instead we
2486 -- deal with these cases in the expander.
2487
2488 -- Select result operand
2489
2490 if Is_True (Expr_Value (Condition)) then
2491 Result := Then_Expr;
2492 Non_Result := Else_Expr;
2493 else
2494 Result := Else_Expr;
2495 Non_Result := Then_Expr;
2496 end if;
2497
2498 -- Note that it does not matter if the non-result operand raises a
2499 -- Constraint_Error, but if the result raises constraint error then we
2500 -- replace the node with a raise constraint error. This will properly
2501 -- propagate Raises_Constraint_Error since this flag is set in Result.
2502
2503 if Raises_Constraint_Error (Result) then
2504 Rewrite_In_Raise_CE (N, Result);
2505 Check_Non_Static_Context (Non_Result);
2506
2507 -- Otherwise the result operand replaces the original node
2508
2509 else
2510 Rewrite (N, Relocate_Node (Result));
2511 Set_Is_Static_Expression (N);
2512 end if;
2513 end Eval_If_Expression;
2514
2515 ----------------------------
2516 -- Eval_Indexed_Component --
2517 ----------------------------
2518
2519 -- Indexed components are never static, so we need to perform the check
2520 -- for non-static context on the index values. Then, we check if the
2521 -- value can be obtained at compile time, even though it is non-static.
2522
2523 procedure Eval_Indexed_Component (N : Node_Id) is
2524 Expr : Node_Id;
2525
2526 begin
2527 -- Check for non-static context on index values
2528
2529 Expr := First (Expressions (N));
2530 while Present (Expr) loop
2531 Check_Non_Static_Context (Expr);
2532 Next (Expr);
2533 end loop;
2534
2535 -- If the indexed component appears in an object renaming declaration
2536 -- then we do not want to try to evaluate it, since in this case we
2537 -- need the identity of the array element.
2538
2539 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2540 return;
2541
2542 -- Similarly if the indexed component appears as the prefix of an
2543 -- attribute we don't want to evaluate it, because at least for
2544 -- some cases of attributes we need the identify (e.g. Access, Size)
2545
2546 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2547 return;
2548 end if;
2549
2550 -- Note: there are other cases, such as the left side of an assignment,
2551 -- or an OUT parameter for a call, where the replacement results in the
2552 -- illegal use of a constant, But these cases are illegal in the first
2553 -- place, so the replacement, though silly, is harmless.
2554
2555 -- Now see if this is a constant array reference
2556
2557 if List_Length (Expressions (N)) = 1
2558 and then Is_Entity_Name (Prefix (N))
2559 and then Ekind (Entity (Prefix (N))) = E_Constant
2560 and then Present (Constant_Value (Entity (Prefix (N))))
2561 then
2562 declare
2563 Loc : constant Source_Ptr := Sloc (N);
2564 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2565 Sub : constant Node_Id := First (Expressions (N));
2566
2567 Atyp : Entity_Id;
2568 -- Type of array
2569
2570 Lin : Nat;
2571 -- Linear one's origin subscript value for array reference
2572
2573 Lbd : Node_Id;
2574 -- Lower bound of the first array index
2575
2576 Elm : Node_Id;
2577 -- Value from constant array
2578
2579 begin
2580 Atyp := Etype (Arr);
2581
2582 if Is_Access_Type (Atyp) then
2583 Atyp := Designated_Type (Atyp);
2584 end if;
2585
2586 -- If we have an array type (we should have but perhaps there are
2587 -- error cases where this is not the case), then see if we can do
2588 -- a constant evaluation of the array reference.
2589
2590 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
2591 if Ekind (Atyp) = E_String_Literal_Subtype then
2592 Lbd := String_Literal_Low_Bound (Atyp);
2593 else
2594 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2595 end if;
2596
2597 if Compile_Time_Known_Value (Sub)
2598 and then Nkind (Arr) = N_Aggregate
2599 and then Compile_Time_Known_Value (Lbd)
2600 and then Is_Discrete_Type (Component_Type (Atyp))
2601 then
2602 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2603
2604 if List_Length (Expressions (Arr)) >= Lin then
2605 Elm := Pick (Expressions (Arr), Lin);
2606
2607 -- If the resulting expression is compile time known,
2608 -- then we can rewrite the indexed component with this
2609 -- value, being sure to mark the result as non-static.
2610 -- We also reset the Sloc, in case this generates an
2611 -- error later on (e.g. 136'Access).
2612
2613 if Compile_Time_Known_Value (Elm) then
2614 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2615 Set_Is_Static_Expression (N, False);
2616 Set_Sloc (N, Loc);
2617 end if;
2618 end if;
2619
2620 -- We can also constant-fold if the prefix is a string literal.
2621 -- This will be useful in an instantiation or an inlining.
2622
2623 elsif Compile_Time_Known_Value (Sub)
2624 and then Nkind (Arr) = N_String_Literal
2625 and then Compile_Time_Known_Value (Lbd)
2626 and then Expr_Value (Lbd) = 1
2627 and then Expr_Value (Sub) <=
2628 String_Literal_Length (Etype (Arr))
2629 then
2630 declare
2631 C : constant Char_Code :=
2632 Get_String_Char (Strval (Arr),
2633 UI_To_Int (Expr_Value (Sub)));
2634 begin
2635 Set_Character_Literal_Name (C);
2636
2637 Elm :=
2638 Make_Character_Literal (Loc,
2639 Chars => Name_Find,
2640 Char_Literal_Value => UI_From_CC (C));
2641 Set_Etype (Elm, Component_Type (Atyp));
2642 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2643 Set_Is_Static_Expression (N, False);
2644 end;
2645 end if;
2646 end if;
2647 end;
2648 end if;
2649 end Eval_Indexed_Component;
2650
2651 --------------------------
2652 -- Eval_Integer_Literal --
2653 --------------------------
2654
2655 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2656 -- as static by the analyzer. The reason we did it that early is to allow
2657 -- the possibility of turning off the Is_Static_Expression flag after
2658 -- analysis, but before resolution, when integer literals are generated in
2659 -- the expander that do not correspond to static expressions.
2660
2661 procedure Eval_Integer_Literal (N : Node_Id) is
2662 T : constant Entity_Id := Etype (N);
2663
2664 function In_Any_Integer_Context return Boolean;
2665 -- If the literal is resolved with a specific type in a context where
2666 -- the expected type is Any_Integer, there are no range checks on the
2667 -- literal. By the time the literal is evaluated, it carries the type
2668 -- imposed by the enclosing expression, and we must recover the context
2669 -- to determine that Any_Integer is meant.
2670
2671 ----------------------------
2672 -- In_Any_Integer_Context --
2673 ----------------------------
2674
2675 function In_Any_Integer_Context return Boolean is
2676 Par : constant Node_Id := Parent (N);
2677 K : constant Node_Kind := Nkind (Par);
2678
2679 begin
2680 -- Any_Integer also appears in digits specifications for real types,
2681 -- but those have bounds smaller that those of any integer base type,
2682 -- so we can safely ignore these cases.
2683
2684 return Nkind_In (K, N_Number_Declaration,
2685 N_Attribute_Reference,
2686 N_Attribute_Definition_Clause,
2687 N_Modular_Type_Definition,
2688 N_Signed_Integer_Type_Definition);
2689 end In_Any_Integer_Context;
2690
2691 -- Start of processing for Eval_Integer_Literal
2692
2693 begin
2694
2695 -- If the literal appears in a non-expression context, then it is
2696 -- certainly appearing in a non-static context, so check it. This is
2697 -- actually a redundant check, since Check_Non_Static_Context would
2698 -- check it, but it seems worthwhile to optimize out the call.
2699
2700 -- An exception is made for a literal in an if or case expression
2701
2702 if (Nkind_In (Parent (N), N_If_Expression, N_Case_Expression_Alternative)
2703 or else Nkind (Parent (N)) not in N_Subexpr)
2704 and then not In_Any_Integer_Context
2705 then
2706 Check_Non_Static_Context (N);
2707 end if;
2708
2709 -- Modular integer literals must be in their base range
2710
2711 if Is_Modular_Integer_Type (T)
2712 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
2713 then
2714 Out_Of_Range (N);
2715 end if;
2716 end Eval_Integer_Literal;
2717
2718 ---------------------
2719 -- Eval_Logical_Op --
2720 ---------------------
2721
2722 -- Logical operations are static functions, so the result is potentially
2723 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2724
2725 procedure Eval_Logical_Op (N : Node_Id) is
2726 Left : constant Node_Id := Left_Opnd (N);
2727 Right : constant Node_Id := Right_Opnd (N);
2728 Stat : Boolean;
2729 Fold : Boolean;
2730
2731 begin
2732 -- If not foldable we are done
2733
2734 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2735
2736 if not Fold then
2737 return;
2738 end if;
2739
2740 -- Compile time evaluation of logical operation
2741
2742 declare
2743 Left_Int : constant Uint := Expr_Value (Left);
2744 Right_Int : constant Uint := Expr_Value (Right);
2745
2746 begin
2747 if Is_Modular_Integer_Type (Etype (N)) then
2748 declare
2749 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2750 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2751
2752 begin
2753 To_Bits (Left_Int, Left_Bits);
2754 To_Bits (Right_Int, Right_Bits);
2755
2756 -- Note: should really be able to use array ops instead of
2757 -- these loops, but they weren't working at the time ???
2758
2759 if Nkind (N) = N_Op_And then
2760 for J in Left_Bits'Range loop
2761 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2762 end loop;
2763
2764 elsif Nkind (N) = N_Op_Or then
2765 for J in Left_Bits'Range loop
2766 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2767 end loop;
2768
2769 else
2770 pragma Assert (Nkind (N) = N_Op_Xor);
2771
2772 for J in Left_Bits'Range loop
2773 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2774 end loop;
2775 end if;
2776
2777 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
2778 end;
2779
2780 else
2781 pragma Assert (Is_Boolean_Type (Etype (N)));
2782
2783 if Nkind (N) = N_Op_And then
2784 Fold_Uint (N,
2785 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
2786
2787 elsif Nkind (N) = N_Op_Or then
2788 Fold_Uint (N,
2789 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
2790
2791 else
2792 pragma Assert (Nkind (N) = N_Op_Xor);
2793 Fold_Uint (N,
2794 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
2795 end if;
2796 end if;
2797 end;
2798 end Eval_Logical_Op;
2799
2800 ------------------------
2801 -- Eval_Membership_Op --
2802 ------------------------
2803
2804 -- A membership test is potentially static if the expression is static, and
2805 -- the range is a potentially static range, or is a subtype mark denoting a
2806 -- static subtype (RM 4.9(12)).
2807
2808 procedure Eval_Membership_Op (N : Node_Id) is
2809 Alts : constant List_Id := Alternatives (N);
2810 Choice : constant Node_Id := Right_Opnd (N);
2811 Expr : constant Node_Id := Left_Opnd (N);
2812 Result : Match_Result;
2813
2814 begin
2815 -- Ignore if error in either operand, except to make sure that Any_Type
2816 -- is properly propagated to avoid junk cascaded errors.
2817
2818 if Etype (Expr) = Any_Type
2819 or else (Present (Choice) and then Etype (Choice) = Any_Type)
2820 then
2821 Set_Etype (N, Any_Type);
2822 return;
2823 end if;
2824
2825 -- If left operand non-static, then nothing to do
2826
2827 if not Is_Static_Expression (Expr) then
2828 return;
2829 end if;
2830
2831 -- If choice is non-static, left operand is in non-static context
2832
2833 if (Present (Choice) and then not Is_Static_Choice (Choice))
2834 or else (Present (Alts) and then not Is_Static_Choice_List (Alts))
2835 then
2836 Check_Non_Static_Context (Expr);
2837 return;
2838 end if;
2839
2840 -- Otherwise we definitely have a static expression
2841
2842 Set_Is_Static_Expression (N);
2843
2844 -- If left operand raises constraint error, propagate and we are done
2845
2846 if Raises_Constraint_Error (Expr) then
2847 Set_Raises_Constraint_Error (N, True);
2848
2849 -- See if we match
2850
2851 else
2852 if Present (Choice) then
2853 Result := Choice_Matches (Expr, Choice);
2854 else
2855 Result := Choices_Match (Expr, Alts);
2856 end if;
2857
2858 -- If result is Non_Static, it means that we raise Constraint_Error,
2859 -- since we already tested that the operands were themselves static.
2860
2861 if Result = Non_Static then
2862 Set_Raises_Constraint_Error (N);
2863
2864 -- Otherwise we have our result (flipped if NOT IN case)
2865
2866 else
2867 Fold_Uint
2868 (N, Test ((Result = Match) xor (Nkind (N) = N_Not_In)), True);
2869 Warn_On_Known_Condition (N);
2870 end if;
2871 end if;
2872 end Eval_Membership_Op;
2873
2874 ------------------------
2875 -- Eval_Named_Integer --
2876 ------------------------
2877
2878 procedure Eval_Named_Integer (N : Node_Id) is
2879 begin
2880 Fold_Uint (N,
2881 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
2882 end Eval_Named_Integer;
2883
2884 ---------------------
2885 -- Eval_Named_Real --
2886 ---------------------
2887
2888 procedure Eval_Named_Real (N : Node_Id) is
2889 begin
2890 Fold_Ureal (N,
2891 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
2892 end Eval_Named_Real;
2893
2894 -------------------
2895 -- Eval_Op_Expon --
2896 -------------------
2897
2898 -- Exponentiation is a static functions, so the result is potentially
2899 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2900
2901 procedure Eval_Op_Expon (N : Node_Id) is
2902 Left : constant Node_Id := Left_Opnd (N);
2903 Right : constant Node_Id := Right_Opnd (N);
2904 Stat : Boolean;
2905 Fold : Boolean;
2906
2907 begin
2908 -- If not foldable we are done
2909
2910 Test_Expression_Is_Foldable
2911 (N, Left, Right, Stat, Fold, CRT_Safe => True);
2912
2913 -- Return if not foldable
2914
2915 if not Fold then
2916 return;
2917 end if;
2918
2919 if Configurable_Run_Time_Mode and not Stat then
2920 return;
2921 end if;
2922
2923 -- Fold exponentiation operation
2924
2925 declare
2926 Right_Int : constant Uint := Expr_Value (Right);
2927
2928 begin
2929 -- Integer case
2930
2931 if Is_Integer_Type (Etype (Left)) then
2932 declare
2933 Left_Int : constant Uint := Expr_Value (Left);
2934 Result : Uint;
2935
2936 begin
2937 -- Exponentiation of an integer raises Constraint_Error for a
2938 -- negative exponent (RM 4.5.6).
2939
2940 if Right_Int < 0 then
2941 Apply_Compile_Time_Constraint_Error
2942 (N, "integer exponent negative", CE_Range_Check_Failed,
2943 Warn => not Stat);
2944 return;
2945
2946 else
2947 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2948 Result := Left_Int ** Right_Int;
2949 else
2950 Result := Left_Int;
2951 end if;
2952
2953 if Is_Modular_Integer_Type (Etype (N)) then
2954 Result := Result mod Modulus (Etype (N));
2955 end if;
2956
2957 Fold_Uint (N, Result, Stat);
2958 end if;
2959 end;
2960
2961 -- Real case
2962
2963 else
2964 declare
2965 Left_Real : constant Ureal := Expr_Value_R (Left);
2966
2967 begin
2968 -- Cannot have a zero base with a negative exponent
2969
2970 if UR_Is_Zero (Left_Real) then
2971
2972 if Right_Int < 0 then
2973 Apply_Compile_Time_Constraint_Error
2974 (N, "zero ** negative integer", CE_Range_Check_Failed,
2975 Warn => not Stat);
2976 return;
2977 else
2978 Fold_Ureal (N, Ureal_0, Stat);
2979 end if;
2980
2981 else
2982 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
2983 end if;
2984 end;
2985 end if;
2986 end;
2987 end Eval_Op_Expon;
2988
2989 -----------------
2990 -- Eval_Op_Not --
2991 -----------------
2992
2993 -- The not operation is a static functions, so the result is potentially
2994 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2995
2996 procedure Eval_Op_Not (N : Node_Id) is
2997 Right : constant Node_Id := Right_Opnd (N);
2998 Stat : Boolean;
2999 Fold : Boolean;
3000
3001 begin
3002 -- If not foldable we are done
3003
3004 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3005
3006 if not Fold then
3007 return;
3008 end if;
3009
3010 -- Fold not operation
3011
3012 declare
3013 Rint : constant Uint := Expr_Value (Right);
3014 Typ : constant Entity_Id := Etype (N);
3015
3016 begin
3017 -- Negation is equivalent to subtracting from the modulus minus one.
3018 -- For a binary modulus this is equivalent to the ones-complement of
3019 -- the original value. For a nonbinary modulus this is an arbitrary
3020 -- but consistent definition.
3021
3022 if Is_Modular_Integer_Type (Typ) then
3023 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
3024 else pragma Assert (Is_Boolean_Type (Typ));
3025 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
3026 end if;
3027
3028 Set_Is_Static_Expression (N, Stat);
3029 end;
3030 end Eval_Op_Not;
3031
3032 -------------------------------
3033 -- Eval_Qualified_Expression --
3034 -------------------------------
3035
3036 -- A qualified expression is potentially static if its subtype mark denotes
3037 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
3038
3039 procedure Eval_Qualified_Expression (N : Node_Id) is
3040 Operand : constant Node_Id := Expression (N);
3041 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
3042
3043 Stat : Boolean;
3044 Fold : Boolean;
3045 Hex : Boolean;
3046
3047 begin
3048 -- Can only fold if target is string or scalar and subtype is static.
3049 -- Also, do not fold if our parent is an allocator (this is because the
3050 -- qualified expression is really part of the syntactic structure of an
3051 -- allocator, and we do not want to end up with something that
3052 -- corresponds to "new 1" where the 1 is the result of folding a
3053 -- qualified expression).
3054
3055 if not Is_Static_Subtype (Target_Type)
3056 or else Nkind (Parent (N)) = N_Allocator
3057 then
3058 Check_Non_Static_Context (Operand);
3059
3060 -- If operand is known to raise constraint_error, set the flag on the
3061 -- expression so it does not get optimized away.
3062
3063 if Nkind (Operand) = N_Raise_Constraint_Error then
3064 Set_Raises_Constraint_Error (N);
3065 end if;
3066
3067 return;
3068 end if;
3069
3070 -- If not foldable we are done
3071
3072 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3073
3074 if not Fold then
3075 return;
3076
3077 -- Don't try fold if target type has constraint error bounds
3078
3079 elsif not Is_OK_Static_Subtype (Target_Type) then
3080 Set_Raises_Constraint_Error (N);
3081 return;
3082 end if;
3083
3084 -- Here we will fold, save Print_In_Hex indication
3085
3086 Hex := Nkind (Operand) = N_Integer_Literal
3087 and then Print_In_Hex (Operand);
3088
3089 -- Fold the result of qualification
3090
3091 if Is_Discrete_Type (Target_Type) then
3092 Fold_Uint (N, Expr_Value (Operand), Stat);
3093
3094 -- Preserve Print_In_Hex indication
3095
3096 if Hex and then Nkind (N) = N_Integer_Literal then
3097 Set_Print_In_Hex (N);
3098 end if;
3099
3100 elsif Is_Real_Type (Target_Type) then
3101 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
3102
3103 else
3104 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
3105
3106 if not Stat then
3107 Set_Is_Static_Expression (N, False);
3108 else
3109 Check_String_Literal_Length (N, Target_Type);
3110 end if;
3111
3112 return;
3113 end if;
3114
3115 -- The expression may be foldable but not static
3116
3117 Set_Is_Static_Expression (N, Stat);
3118
3119 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3120 Out_Of_Range (N);
3121 end if;
3122 end Eval_Qualified_Expression;
3123
3124 -----------------------
3125 -- Eval_Real_Literal --
3126 -----------------------
3127
3128 -- Numeric literals are static (RM 4.9(1)), and have already been marked
3129 -- as static by the analyzer. The reason we did it that early is to allow
3130 -- the possibility of turning off the Is_Static_Expression flag after
3131 -- analysis, but before resolution, when integer literals are generated
3132 -- in the expander that do not correspond to static expressions.
3133
3134 procedure Eval_Real_Literal (N : Node_Id) is
3135 PK : constant Node_Kind := Nkind (Parent (N));
3136
3137 begin
3138 -- If the literal appears in a non-expression context and not as part of
3139 -- a number declaration, then it is appearing in a non-static context,
3140 -- so check it.
3141
3142 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
3143 Check_Non_Static_Context (N);
3144 end if;
3145 end Eval_Real_Literal;
3146
3147 ------------------------
3148 -- Eval_Relational_Op --
3149 ------------------------
3150
3151 -- Relational operations are static functions, so the result is static if
3152 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
3153 -- the result is never static, even if the operands are.
3154
3155 -- However, for internally generated nodes, we allow string equality and
3156 -- inequality to be static. This is because we rewrite A in "ABC" as an
3157 -- equality test A = "ABC", and the former is definitely static.
3158
3159 procedure Eval_Relational_Op (N : Node_Id) is
3160 Left : constant Node_Id := Left_Opnd (N);
3161 Right : constant Node_Id := Right_Opnd (N);
3162
3163 procedure Decompose_Expr
3164 (Expr : Node_Id;
3165 Ent : out Entity_Id;
3166 Kind : out Character;
3167 Cons : out Uint;
3168 Orig : Boolean := True);
3169 -- Given expression Expr, see if it is of the form X [+/- K]. If so, Ent
3170 -- is set to the entity in X, Kind is 'F','L','E' for 'First or 'Last or
3171 -- simple entity, and Cons is the value of K. If the expression is not
3172 -- of the required form, Ent is set to Empty.
3173 --
3174 -- Orig indicates whether Expr is the original expression to consider,
3175 -- or if we are handling a subexpression (e.g. recursive call to
3176 -- Decompose_Expr).
3177
3178 procedure Fold_General_Op (Is_Static : Boolean);
3179 -- Attempt to fold arbitrary relational operator N. Flag Is_Static must
3180 -- be set when the operator denotes a static expression.
3181
3182 procedure Fold_Static_Real_Op;
3183 -- Attempt to fold static real type relational operator N
3184
3185 function Static_Length (Expr : Node_Id) return Uint;
3186 -- If Expr is an expression for a constrained array whose length is
3187 -- known at compile time, return the non-negative length, otherwise
3188 -- return -1.
3189
3190 --------------------
3191 -- Decompose_Expr --
3192 --------------------
3193
3194 procedure Decompose_Expr
3195 (Expr : Node_Id;
3196 Ent : out Entity_Id;
3197 Kind : out Character;
3198 Cons : out Uint;
3199 Orig : Boolean := True)
3200 is
3201 Exp : Node_Id;
3202
3203 begin
3204 -- Assume that the expression does not meet the expected form
3205
3206 Cons := No_Uint;
3207 Ent := Empty;
3208 Kind := '?';
3209
3210 if Nkind (Expr) = N_Op_Add
3211 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3212 then
3213 Exp := Left_Opnd (Expr);
3214 Cons := Expr_Value (Right_Opnd (Expr));
3215
3216 elsif Nkind (Expr) = N_Op_Subtract
3217 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3218 then
3219 Exp := Left_Opnd (Expr);
3220 Cons := -Expr_Value (Right_Opnd (Expr));
3221
3222 -- If the bound is a constant created to remove side effects, recover
3223 -- the original expression to see if it has one of the recognizable
3224 -- forms.
3225
3226 elsif Nkind (Expr) = N_Identifier
3227 and then not Comes_From_Source (Entity (Expr))
3228 and then Ekind (Entity (Expr)) = E_Constant
3229 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
3230 then
3231 Exp := Expression (Parent (Entity (Expr)));
3232 Decompose_Expr (Exp, Ent, Kind, Cons, Orig => False);
3233
3234 -- If original expression includes an entity, create a reference
3235 -- to it for use below.
3236
3237 if Present (Ent) then
3238 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
3239 else
3240 return;
3241 end if;
3242
3243 else
3244 -- Only consider the case of X + 0 for a full expression, and
3245 -- not when recursing, otherwise we may end up with evaluating
3246 -- expressions not known at compile time to 0.
3247
3248 if Orig then
3249 Exp := Expr;
3250 Cons := Uint_0;
3251 else
3252 return;
3253 end if;
3254 end if;
3255
3256 -- At this stage Exp is set to the potential X
3257
3258 if Nkind (Exp) = N_Attribute_Reference then
3259 if Attribute_Name (Exp) = Name_First then
3260 Kind := 'F';
3261 elsif Attribute_Name (Exp) = Name_Last then
3262 Kind := 'L';
3263 else
3264 return;
3265 end if;
3266
3267 Exp := Prefix (Exp);
3268
3269 else
3270 Kind := 'E';
3271 end if;
3272
3273 if Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
3274 Ent := Entity (Exp);
3275 end if;
3276 end Decompose_Expr;
3277
3278 ---------------------
3279 -- Fold_General_Op --
3280 ---------------------
3281
3282 procedure Fold_General_Op (Is_Static : Boolean) is
3283 CR : constant Compare_Result :=
3284 Compile_Time_Compare (Left, Right, Assume_Valid => False);
3285
3286 Result : Boolean;
3287
3288 begin
3289 if CR = Unknown then
3290 return;
3291 end if;
3292
3293 case Nkind (N) is
3294 when N_Op_Eq =>
3295 if CR = EQ then
3296 Result := True;
3297 elsif CR = NE or else CR = GT or else CR = LT then
3298 Result := False;
3299 else
3300 return;
3301 end if;
3302
3303 when N_Op_Ge =>
3304 if CR = GT or else CR = EQ or else CR = GE then
3305 Result := True;
3306 elsif CR = LT then
3307 Result := False;
3308 else
3309 return;
3310 end if;
3311
3312 when N_Op_Gt =>
3313 if CR = GT then
3314 Result := True;
3315 elsif CR = EQ or else CR = LT or else CR = LE then
3316 Result := False;
3317 else
3318 return;
3319 end if;
3320
3321 when N_Op_Le =>
3322 if CR = LT or else CR = EQ or else CR = LE then
3323 Result := True;
3324 elsif CR = GT then
3325 Result := False;
3326 else
3327 return;
3328 end if;
3329
3330 when N_Op_Lt =>
3331 if CR = LT then
3332 Result := True;
3333 elsif CR = EQ or else CR = GT or else CR = GE then
3334 Result := False;
3335 else
3336 return;
3337 end if;
3338
3339 when N_Op_Ne =>
3340 if CR = NE or else CR = GT or else CR = LT then
3341 Result := True;
3342 elsif CR = EQ then
3343 Result := False;
3344 else
3345 return;
3346 end if;
3347
3348 when others =>
3349 raise Program_Error;
3350 end case;
3351
3352 -- Determine the potential outcome of the relation assuming the
3353 -- operands are valid and emit a warning when the relation yields
3354 -- True or False only in the presence of invalid values.
3355
3356 Warn_On_Constant_Valid_Condition (N);
3357
3358 Fold_Uint (N, Test (Result), Is_Static);
3359 end Fold_General_Op;
3360
3361 -------------------------
3362 -- Fold_Static_Real_Op --
3363 -------------------------
3364
3365 procedure Fold_Static_Real_Op is
3366 Left_Real : constant Ureal := Expr_Value_R (Left);
3367 Right_Real : constant Ureal := Expr_Value_R (Right);
3368 Result : Boolean;
3369
3370 begin
3371 case Nkind (N) is
3372 when N_Op_Eq => Result := (Left_Real = Right_Real);
3373 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3374 when N_Op_Gt => Result := (Left_Real > Right_Real);
3375 when N_Op_Le => Result := (Left_Real <= Right_Real);
3376 when N_Op_Lt => Result := (Left_Real < Right_Real);
3377 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3378 when others => raise Program_Error;
3379 end case;
3380
3381 Fold_Uint (N, Test (Result), True);
3382 end Fold_Static_Real_Op;
3383
3384 -------------------
3385 -- Static_Length --
3386 -------------------
3387
3388 function Static_Length (Expr : Node_Id) return Uint is
3389 Cons1 : Uint;
3390 Cons2 : Uint;
3391 Ent1 : Entity_Id;
3392 Ent2 : Entity_Id;
3393 Kind1 : Character;
3394 Kind2 : Character;
3395 Typ : Entity_Id;
3396
3397 begin
3398 -- First easy case string literal
3399
3400 if Nkind (Expr) = N_String_Literal then
3401 return UI_From_Int (String_Length (Strval (Expr)));
3402
3403 -- Second easy case, not constrained subtype, so no length
3404
3405 elsif not Is_Constrained (Etype (Expr)) then
3406 return Uint_Minus_1;
3407 end if;
3408
3409 -- General case
3410
3411 Typ := Etype (First_Index (Etype (Expr)));
3412
3413 -- The simple case, both bounds are known at compile time
3414
3415 if Is_Discrete_Type (Typ)
3416 and then Compile_Time_Known_Value (Type_Low_Bound (Typ))
3417 and then Compile_Time_Known_Value (Type_High_Bound (Typ))
3418 then
3419 return
3420 UI_Max (Uint_0, Expr_Value (Type_High_Bound (Typ)) -
3421 Expr_Value (Type_Low_Bound (Typ)) + 1);
3422 end if;
3423
3424 -- A more complex case, where the bounds are of the form X [+/- K1]
3425 -- .. X [+/- K2]), where X is an expression that is either A'First or
3426 -- A'Last (with A an entity name), or X is an entity name, and the
3427 -- two X's are the same and K1 and K2 are known at compile time, in
3428 -- this case, the length can also be computed at compile time, even
3429 -- though the bounds are not known. A common case of this is e.g.
3430 -- (X'First .. X'First+5).
3431
3432 Decompose_Expr
3433 (Original_Node (Type_Low_Bound (Typ)), Ent1, Kind1, Cons1);
3434 Decompose_Expr
3435 (Original_Node (Type_High_Bound (Typ)), Ent2, Kind2, Cons2);
3436
3437 if Present (Ent1) and then Ent1 = Ent2 and then Kind1 = Kind2 then
3438 return Cons2 - Cons1 + 1;
3439 else
3440 return Uint_Minus_1;
3441 end if;
3442 end Static_Length;
3443
3444 -- Local variables
3445
3446 Left_Typ : constant Entity_Id := Etype (Left);
3447 Right_Typ : constant Entity_Id := Etype (Right);
3448 Fold : Boolean;
3449 Left_Len : Uint;
3450 Op_Typ : Entity_Id := Empty;
3451 Right_Len : Uint;
3452
3453 Is_Static_Expression : Boolean;
3454
3455 -- Start of processing for Eval_Relational_Op
3456
3457 begin
3458 -- One special case to deal with first. If we can tell that the result
3459 -- will be false because the lengths of one or more index subtypes are
3460 -- compile-time known and different, then we can replace the entire
3461 -- result by False. We only do this for one-dimensional arrays, because
3462 -- the case of multidimensional arrays is rare and too much trouble. If
3463 -- one of the operands is an illegal aggregate, its type might still be
3464 -- an arbitrary composite type, so nothing to do.
3465
3466 if Is_Array_Type (Left_Typ)
3467 and then Left_Typ /= Any_Composite
3468 and then Number_Dimensions (Left_Typ) = 1
3469 and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3470 then
3471 if Raises_Constraint_Error (Left)
3472 or else
3473 Raises_Constraint_Error (Right)
3474 then
3475 return;
3476
3477 -- OK, we have the case where we may be able to do this fold
3478
3479 else
3480 Left_Len := Static_Length (Left);
3481 Right_Len := Static_Length (Right);
3482
3483 if Left_Len /= Uint_Minus_1
3484 and then Right_Len /= Uint_Minus_1
3485 and then Left_Len /= Right_Len
3486 then
3487 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
3488 Warn_On_Known_Condition (N);
3489 return;
3490 end if;
3491 end if;
3492
3493 -- General case
3494
3495 else
3496 -- Initialize the value of Is_Static_Expression. The value of Fold
3497 -- returned by Test_Expression_Is_Foldable is not needed since, even
3498 -- when some operand is a variable, we can still perform the static
3499 -- evaluation of the expression in some cases (for example, for a
3500 -- variable of a subtype of Integer we statically know that any value
3501 -- stored in such variable is smaller than Integer'Last).
3502
3503 Test_Expression_Is_Foldable
3504 (N, Left, Right, Is_Static_Expression, Fold);
3505
3506 -- Only comparisons of scalars can give static results. A comparison
3507 -- of strings never yields a static result, even if both operands are
3508 -- static strings, except that as noted above, we allow equality and
3509 -- inequality for strings.
3510
3511 if Is_String_Type (Left_Typ)
3512 and then not Comes_From_Source (N)
3513 and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3514 then
3515 null;
3516
3517 elsif not Is_Scalar_Type (Left_Typ) then
3518 Is_Static_Expression := False;
3519 Set_Is_Static_Expression (N, False);
3520 end if;
3521
3522 -- For operators on universal numeric types called as functions with
3523 -- an explicit scope, determine appropriate specific numeric type,
3524 -- and diagnose possible ambiguity.
3525
3526 if Is_Universal_Numeric_Type (Left_Typ)
3527 and then
3528 Is_Universal_Numeric_Type (Right_Typ)
3529 then
3530 Op_Typ := Find_Universal_Operator_Type (N);
3531 end if;
3532
3533 -- Attempt to fold the relational operator
3534
3535 if Is_Static_Expression and then Is_Real_Type (Left_Typ) then
3536 Fold_Static_Real_Op;
3537 else
3538 Fold_General_Op (Is_Static_Expression);
3539 end if;
3540 end if;
3541
3542 -- For the case of a folded relational operator on a specific numeric
3543 -- type, freeze the operand type now.
3544
3545 if Present (Op_Typ) then
3546 Freeze_Before (N, Op_Typ);
3547 end if;
3548
3549 Warn_On_Known_Condition (N);
3550 end Eval_Relational_Op;
3551
3552 ----------------
3553 -- Eval_Shift --
3554 ----------------
3555
3556 -- Shift operations are intrinsic operations that can never be static, so
3557 -- the only processing required is to perform the required check for a non
3558 -- static context for the two operands.
3559
3560 -- Actually we could do some compile time evaluation here some time ???
3561
3562 procedure Eval_Shift (N : Node_Id) is
3563 begin
3564 Check_Non_Static_Context (Left_Opnd (N));
3565 Check_Non_Static_Context (Right_Opnd (N));
3566 end Eval_Shift;
3567
3568 ------------------------
3569 -- Eval_Short_Circuit --
3570 ------------------------
3571
3572 -- A short circuit operation is potentially static if both operands are
3573 -- potentially static (RM 4.9 (13)).
3574
3575 procedure Eval_Short_Circuit (N : Node_Id) is
3576 Kind : constant Node_Kind := Nkind (N);
3577 Left : constant Node_Id := Left_Opnd (N);
3578 Right : constant Node_Id := Right_Opnd (N);
3579 Left_Int : Uint;
3580
3581 Rstat : constant Boolean :=
3582 Is_Static_Expression (Left)
3583 and then
3584 Is_Static_Expression (Right);
3585
3586 begin
3587 -- Short circuit operations are never static in Ada 83
3588
3589 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3590 Check_Non_Static_Context (Left);
3591 Check_Non_Static_Context (Right);
3592 return;
3593 end if;
3594
3595 -- Now look at the operands, we can't quite use the normal call to
3596 -- Test_Expression_Is_Foldable here because short circuit operations
3597 -- are a special case, they can still be foldable, even if the right
3598 -- operand raises constraint error.
3599
3600 -- If either operand is Any_Type, just propagate to result and do not
3601 -- try to fold, this prevents cascaded errors.
3602
3603 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3604 Set_Etype (N, Any_Type);
3605 return;
3606
3607 -- If left operand raises constraint error, then replace node N with
3608 -- the raise constraint error node, and we are obviously not foldable.
3609 -- Is_Static_Expression is set from the two operands in the normal way,
3610 -- and we check the right operand if it is in a non-static context.
3611
3612 elsif Raises_Constraint_Error (Left) then
3613 if not Rstat then
3614 Check_Non_Static_Context (Right);
3615 end if;
3616
3617 Rewrite_In_Raise_CE (N, Left);
3618 Set_Is_Static_Expression (N, Rstat);
3619 return;
3620
3621 -- If the result is not static, then we won't in any case fold
3622
3623 elsif not Rstat then
3624 Check_Non_Static_Context (Left);
3625 Check_Non_Static_Context (Right);
3626 return;
3627 end if;
3628
3629 -- Here the result is static, note that, unlike the normal processing
3630 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3631 -- the right operand raises constraint error, that's because it is not
3632 -- significant if the left operand is decisive.
3633
3634 Set_Is_Static_Expression (N);
3635
3636 -- It does not matter if the right operand raises constraint error if
3637 -- it will not be evaluated. So deal specially with the cases where
3638 -- the right operand is not evaluated. Note that we will fold these
3639 -- cases even if the right operand is non-static, which is fine, but
3640 -- of course in these cases the result is not potentially static.
3641
3642 Left_Int := Expr_Value (Left);
3643
3644 if (Kind = N_And_Then and then Is_False (Left_Int))
3645 or else
3646 (Kind = N_Or_Else and then Is_True (Left_Int))
3647 then
3648 Fold_Uint (N, Left_Int, Rstat);
3649 return;
3650 end if;
3651
3652 -- If first operand not decisive, then it does matter if the right
3653 -- operand raises constraint error, since it will be evaluated, so
3654 -- we simply replace the node with the right operand. Note that this
3655 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3656 -- (both are set to True in Right).
3657
3658 if Raises_Constraint_Error (Right) then
3659 Rewrite_In_Raise_CE (N, Right);
3660 Check_Non_Static_Context (Left);
3661 return;
3662 end if;
3663
3664 -- Otherwise the result depends on the right operand
3665
3666 Fold_Uint (N, Expr_Value (Right), Rstat);
3667 return;
3668 end Eval_Short_Circuit;
3669
3670 ----------------
3671 -- Eval_Slice --
3672 ----------------
3673
3674 -- Slices can never be static, so the only processing required is to check
3675 -- for non-static context if an explicit range is given.
3676
3677 procedure Eval_Slice (N : Node_Id) is
3678 Drange : constant Node_Id := Discrete_Range (N);
3679
3680 begin
3681 if Nkind (Drange) = N_Range then
3682 Check_Non_Static_Context (Low_Bound (Drange));
3683 Check_Non_Static_Context (High_Bound (Drange));
3684 end if;
3685
3686 -- A slice of the form A (subtype), when the subtype is the index of
3687 -- the type of A, is redundant, the slice can be replaced with A, and
3688 -- this is worth a warning.
3689
3690 if Is_Entity_Name (Prefix (N)) then
3691 declare
3692 E : constant Entity_Id := Entity (Prefix (N));
3693 T : constant Entity_Id := Etype (E);
3694
3695 begin
3696 if Ekind (E) = E_Constant
3697 and then Is_Array_Type (T)
3698 and then Is_Entity_Name (Drange)
3699 then
3700 if Is_Entity_Name (Original_Node (First_Index (T)))
3701 and then Entity (Original_Node (First_Index (T)))
3702 = Entity (Drange)
3703 then
3704 if Warn_On_Redundant_Constructs then
3705 Error_Msg_N ("redundant slice denotes whole array?r?", N);
3706 end if;
3707
3708 -- The following might be a useful optimization???
3709
3710 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3711 end if;
3712 end if;
3713 end;
3714 end if;
3715 end Eval_Slice;
3716
3717 -------------------------
3718 -- Eval_String_Literal --
3719 -------------------------
3720
3721 procedure Eval_String_Literal (N : Node_Id) is
3722 Typ : constant Entity_Id := Etype (N);
3723 Bas : constant Entity_Id := Base_Type (Typ);
3724 Xtp : Entity_Id;
3725 Len : Nat;
3726 Lo : Node_Id;
3727
3728 begin
3729 -- Nothing to do if error type (handles cases like default expressions
3730 -- or generics where we have not yet fully resolved the type).
3731
3732 if Bas = Any_Type or else Bas = Any_String then
3733 return;
3734 end if;
3735
3736 -- String literals are static if the subtype is static (RM 4.9(2)), so
3737 -- reset the static expression flag (it was set unconditionally in
3738 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3739 -- the subtype is static by looking at the lower bound.
3740
3741 if Ekind (Typ) = E_String_Literal_Subtype then
3742 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3743 Set_Is_Static_Expression (N, False);
3744 return;
3745 end if;
3746
3747 -- Here if Etype of string literal is normal Etype (not yet possible,
3748 -- but may be possible in future).
3749
3750 elsif not Is_OK_Static_Expression
3751 (Type_Low_Bound (Etype (First_Index (Typ))))
3752 then
3753 Set_Is_Static_Expression (N, False);
3754 return;
3755 end if;
3756
3757 -- If original node was a type conversion, then result if non-static
3758
3759 if Nkind (Original_Node (N)) = N_Type_Conversion then
3760 Set_Is_Static_Expression (N, False);
3761 return;
3762 end if;
3763
3764 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3765 -- if its bounds are outside the index base type and this index type is
3766 -- static. This can happen in only two ways. Either the string literal
3767 -- is too long, or it is null, and the lower bound is type'First. Either
3768 -- way it is the upper bound that is out of range of the index type.
3769
3770 if Ada_Version >= Ada_95 then
3771 if Is_Standard_String_Type (Bas) then
3772 Xtp := Standard_Positive;
3773 else
3774 Xtp := Etype (First_Index (Bas));
3775 end if;
3776
3777 if Ekind (Typ) = E_String_Literal_Subtype then
3778 Lo := String_Literal_Low_Bound (Typ);
3779 else
3780 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3781 end if;
3782
3783 -- Check for string too long
3784
3785 Len := String_Length (Strval (N));
3786
3787 if UI_From_Int (Len) > String_Type_Len (Bas) then
3788
3789 -- Issue message. Note that this message is a warning if the
3790 -- string literal is not marked as static (happens in some cases
3791 -- of folding strings known at compile time, but not static).
3792 -- Furthermore in such cases, we reword the message, since there
3793 -- is no string literal in the source program.
3794
3795 if Is_Static_Expression (N) then
3796 Apply_Compile_Time_Constraint_Error
3797 (N, "string literal too long for}", CE_Length_Check_Failed,
3798 Ent => Bas,
3799 Typ => First_Subtype (Bas));
3800 else
3801 Apply_Compile_Time_Constraint_Error
3802 (N, "string value too long for}", CE_Length_Check_Failed,
3803 Ent => Bas,
3804 Typ => First_Subtype (Bas),
3805 Warn => True);
3806 end if;
3807
3808 -- Test for null string not allowed
3809
3810 elsif Len = 0
3811 and then not Is_Generic_Type (Xtp)
3812 and then
3813 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
3814 then
3815 -- Same specialization of message
3816
3817 if Is_Static_Expression (N) then
3818 Apply_Compile_Time_Constraint_Error
3819 (N, "null string literal not allowed for}",
3820 CE_Length_Check_Failed,
3821 Ent => Bas,
3822 Typ => First_Subtype (Bas));
3823 else
3824 Apply_Compile_Time_Constraint_Error
3825 (N, "null string value not allowed for}",
3826 CE_Length_Check_Failed,
3827 Ent => Bas,
3828 Typ => First_Subtype (Bas),
3829 Warn => True);
3830 end if;
3831 end if;
3832 end if;
3833 end Eval_String_Literal;
3834
3835 --------------------------
3836 -- Eval_Type_Conversion --
3837 --------------------------
3838
3839 -- A type conversion is potentially static if its subtype mark is for a
3840 -- static scalar subtype, and its operand expression is potentially static
3841 -- (RM 4.9(10)).
3842
3843 procedure Eval_Type_Conversion (N : Node_Id) is
3844 Operand : constant Node_Id := Expression (N);
3845 Source_Type : constant Entity_Id := Etype (Operand);
3846 Target_Type : constant Entity_Id := Etype (N);
3847
3848 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3849 -- Returns true if type T is an integer type, or if it is a fixed-point
3850 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3851 -- on the conversion node).
3852
3853 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3854 -- Returns true if type T is a floating-point type, or if it is a
3855 -- fixed-point type that is not to be treated as an integer (i.e. the
3856 -- flag Conversion_OK is not set on the conversion node).
3857
3858 ------------------------------
3859 -- To_Be_Treated_As_Integer --
3860 ------------------------------
3861
3862 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3863 begin
3864 return
3865 Is_Integer_Type (T)
3866 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3867 end To_Be_Treated_As_Integer;
3868
3869 ---------------------------
3870 -- To_Be_Treated_As_Real --
3871 ---------------------------
3872
3873 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3874 begin
3875 return
3876 Is_Floating_Point_Type (T)
3877 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3878 end To_Be_Treated_As_Real;
3879
3880 -- Local variables
3881
3882 Fold : Boolean;
3883 Stat : Boolean;
3884
3885 -- Start of processing for Eval_Type_Conversion
3886
3887 begin
3888 -- Cannot fold if target type is non-static or if semantic error
3889
3890 if not Is_Static_Subtype (Target_Type) then
3891 Check_Non_Static_Context (Operand);
3892 return;
3893 elsif Error_Posted (N) then
3894 return;
3895 end if;
3896
3897 -- If not foldable we are done
3898
3899 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3900
3901 if not Fold then
3902 return;
3903
3904 -- Don't try fold if target type has constraint error bounds
3905
3906 elsif not Is_OK_Static_Subtype (Target_Type) then
3907 Set_Raises_Constraint_Error (N);
3908 return;
3909 end if;
3910
3911 -- Remaining processing depends on operand types. Note that in the
3912 -- following type test, fixed-point counts as real unless the flag
3913 -- Conversion_OK is set, in which case it counts as integer.
3914
3915 -- Fold conversion, case of string type. The result is not static
3916
3917 if Is_String_Type (Target_Type) then
3918 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
3919 return;
3920
3921 -- Fold conversion, case of integer target type
3922
3923 elsif To_Be_Treated_As_Integer (Target_Type) then
3924 declare
3925 Result : Uint;
3926
3927 begin
3928 -- Integer to integer conversion
3929
3930 if To_Be_Treated_As_Integer (Source_Type) then
3931 Result := Expr_Value (Operand);
3932
3933 -- Real to integer conversion
3934
3935 else
3936 Result := UR_To_Uint (Expr_Value_R (Operand));
3937 end if;
3938
3939 -- If fixed-point type (Conversion_OK must be set), then the
3940 -- result is logically an integer, but we must replace the
3941 -- conversion with the corresponding real literal, since the
3942 -- type from a semantic point of view is still fixed-point.
3943
3944 if Is_Fixed_Point_Type (Target_Type) then
3945 Fold_Ureal
3946 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
3947
3948 -- Otherwise result is integer literal
3949
3950 else
3951 Fold_Uint (N, Result, Stat);
3952 end if;
3953 end;
3954
3955 -- Fold conversion, case of real target type
3956
3957 elsif To_Be_Treated_As_Real (Target_Type) then
3958 declare
3959 Result : Ureal;
3960
3961 begin
3962 if To_Be_Treated_As_Real (Source_Type) then
3963 Result := Expr_Value_R (Operand);
3964 else
3965 Result := UR_From_Uint (Expr_Value (Operand));
3966 end if;
3967
3968 Fold_Ureal (N, Result, Stat);
3969 end;
3970
3971 -- Enumeration types
3972
3973 else
3974 Fold_Uint (N, Expr_Value (Operand), Stat);
3975 end if;
3976
3977 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3978 Out_Of_Range (N);
3979 end if;
3980
3981 end Eval_Type_Conversion;
3982
3983 -------------------
3984 -- Eval_Unary_Op --
3985 -------------------
3986
3987 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
3988 -- are potentially static if the operand is potentially static (RM 4.9(7)).
3989
3990 procedure Eval_Unary_Op (N : Node_Id) is
3991 Right : constant Node_Id := Right_Opnd (N);
3992 Otype : Entity_Id := Empty;
3993 Stat : Boolean;
3994 Fold : Boolean;
3995
3996 begin
3997 -- If not foldable we are done
3998
3999 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
4000
4001 if not Fold then
4002 return;
4003 end if;
4004
4005 if Etype (Right) = Universal_Integer
4006 or else
4007 Etype (Right) = Universal_Real
4008 then
4009 Otype := Find_Universal_Operator_Type (N);
4010 end if;
4011
4012 -- Fold for integer case
4013
4014 if Is_Integer_Type (Etype (N)) then
4015 declare
4016 Rint : constant Uint := Expr_Value (Right);
4017 Result : Uint;
4018
4019 begin
4020 -- In the case of modular unary plus and abs there is no need
4021 -- to adjust the result of the operation since if the original
4022 -- operand was in bounds the result will be in the bounds of the
4023 -- modular type. However, in the case of modular unary minus the
4024 -- result may go out of the bounds of the modular type and needs
4025 -- adjustment.
4026
4027 if Nkind (N) = N_Op_Plus then
4028 Result := Rint;
4029
4030 elsif Nkind (N) = N_Op_Minus then
4031 if Is_Modular_Integer_Type (Etype (N)) then
4032 Result := (-Rint) mod Modulus (Etype (N));
4033 else
4034 Result := (-Rint);
4035 end if;
4036
4037 else
4038 pragma Assert (Nkind (N) = N_Op_Abs);
4039 Result := abs Rint;
4040 end if;
4041
4042 Fold_Uint (N, Result, Stat);
4043 end;
4044
4045 -- Fold for real case
4046
4047 elsif Is_Real_Type (Etype (N)) then
4048 declare
4049 Rreal : constant Ureal := Expr_Value_R (Right);
4050 Result : Ureal;
4051
4052 begin
4053 if Nkind (N) = N_Op_Plus then
4054 Result := Rreal;
4055 elsif Nkind (N) = N_Op_Minus then
4056 Result := UR_Negate (Rreal);
4057 else
4058 pragma Assert (Nkind (N) = N_Op_Abs);
4059 Result := abs Rreal;
4060 end if;
4061
4062 Fold_Ureal (N, Result, Stat);
4063 end;
4064 end if;
4065
4066 -- If the operator was resolved to a specific type, make sure that type
4067 -- is frozen even if the expression is folded into a literal (which has
4068 -- a universal type).
4069
4070 if Present (Otype) then
4071 Freeze_Before (N, Otype);
4072 end if;
4073 end Eval_Unary_Op;
4074
4075 -------------------------------
4076 -- Eval_Unchecked_Conversion --
4077 -------------------------------
4078
4079 -- Unchecked conversions can never be static, so the only required
4080 -- processing is to check for a non-static context for the operand.
4081
4082 procedure Eval_Unchecked_Conversion (N : Node_Id) is
4083 begin
4084 Check_Non_Static_Context (Expression (N));
4085 end Eval_Unchecked_Conversion;
4086
4087 --------------------
4088 -- Expr_Rep_Value --
4089 --------------------
4090
4091 function Expr_Rep_Value (N : Node_Id) return Uint is
4092 Kind : constant Node_Kind := Nkind (N);
4093 Ent : Entity_Id;
4094
4095 begin
4096 if Is_Entity_Name (N) then
4097 Ent := Entity (N);
4098
4099 -- An enumeration literal that was either in the source or created
4100 -- as a result of static evaluation.
4101
4102 if Ekind (Ent) = E_Enumeration_Literal then
4103 return Enumeration_Rep (Ent);
4104
4105 -- A user defined static constant
4106
4107 else
4108 pragma Assert (Ekind (Ent) = E_Constant);
4109 return Expr_Rep_Value (Constant_Value (Ent));
4110 end if;
4111
4112 -- An integer literal that was either in the source or created as a
4113 -- result of static evaluation.
4114
4115 elsif Kind = N_Integer_Literal then
4116 return Intval (N);
4117
4118 -- A real literal for a fixed-point type. This must be the fixed-point
4119 -- case, either the literal is of a fixed-point type, or it is a bound
4120 -- of a fixed-point type, with type universal real. In either case we
4121 -- obtain the desired value from Corresponding_Integer_Value.
4122
4123 elsif Kind = N_Real_Literal then
4124 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4125 return Corresponding_Integer_Value (N);
4126
4127 -- Otherwise must be character literal
4128
4129 else
4130 pragma Assert (Kind = N_Character_Literal);
4131 Ent := Entity (N);
4132
4133 -- Since Character literals of type Standard.Character don't have any
4134 -- defining character literals built for them, they do not have their
4135 -- Entity set, so just use their Char code. Otherwise for user-
4136 -- defined character literals use their Pos value as usual which is
4137 -- the same as the Rep value.
4138
4139 if No (Ent) then
4140 return Char_Literal_Value (N);
4141 else
4142 return Enumeration_Rep (Ent);
4143 end if;
4144 end if;
4145 end Expr_Rep_Value;
4146
4147 ----------------
4148 -- Expr_Value --
4149 ----------------
4150
4151 function Expr_Value (N : Node_Id) return Uint is
4152 Kind : constant Node_Kind := Nkind (N);
4153 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
4154 Ent : Entity_Id;
4155 Val : Uint;
4156
4157 begin
4158 -- If already in cache, then we know it's compile time known and we can
4159 -- return the value that was previously stored in the cache since
4160 -- compile time known values cannot change.
4161
4162 if CV_Ent.N = N then
4163 return CV_Ent.V;
4164 end if;
4165
4166 -- Otherwise proceed to test value
4167
4168 if Is_Entity_Name (N) then
4169 Ent := Entity (N);
4170
4171 -- An enumeration literal that was either in the source or created as
4172 -- a result of static evaluation.
4173
4174 if Ekind (Ent) = E_Enumeration_Literal then
4175 Val := Enumeration_Pos (Ent);
4176
4177 -- A user defined static constant
4178
4179 else
4180 pragma Assert (Ekind (Ent) = E_Constant);
4181 Val := Expr_Value (Constant_Value (Ent));
4182 end if;
4183
4184 -- An integer literal that was either in the source or created as a
4185 -- result of static evaluation.
4186
4187 elsif Kind = N_Integer_Literal then
4188 Val := Intval (N);
4189
4190 -- A real literal for a fixed-point type. This must be the fixed-point
4191 -- case, either the literal is of a fixed-point type, or it is a bound
4192 -- of a fixed-point type, with type universal real. In either case we
4193 -- obtain the desired value from Corresponding_Integer_Value.
4194
4195 elsif Kind = N_Real_Literal then
4196 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4197 Val := Corresponding_Integer_Value (N);
4198
4199 -- Otherwise must be character literal
4200
4201 else
4202 pragma Assert (Kind = N_Character_Literal);
4203 Ent := Entity (N);
4204
4205 -- Since Character literals of type Standard.Character don't
4206 -- have any defining character literals built for them, they
4207 -- do not have their Entity set, so just use their Char
4208 -- code. Otherwise for user-defined character literals use
4209 -- their Pos value as usual.
4210
4211 if No (Ent) then
4212 Val := Char_Literal_Value (N);
4213 else
4214 Val := Enumeration_Pos (Ent);
4215 end if;
4216 end if;
4217
4218 -- Come here with Val set to value to be returned, set cache
4219
4220 CV_Ent.N := N;
4221 CV_Ent.V := Val;
4222 return Val;
4223 end Expr_Value;
4224
4225 ------------------
4226 -- Expr_Value_E --
4227 ------------------
4228
4229 function Expr_Value_E (N : Node_Id) return Entity_Id is
4230 Ent : constant Entity_Id := Entity (N);
4231 begin
4232 if Ekind (Ent) = E_Enumeration_Literal then
4233 return Ent;
4234 else
4235 pragma Assert (Ekind (Ent) = E_Constant);
4236 return Expr_Value_E (Constant_Value (Ent));
4237 end if;
4238 end Expr_Value_E;
4239
4240 ------------------
4241 -- Expr_Value_R --
4242 ------------------
4243
4244 function Expr_Value_R (N : Node_Id) return Ureal is
4245 Kind : constant Node_Kind := Nkind (N);
4246 Ent : Entity_Id;
4247
4248 begin
4249 if Kind = N_Real_Literal then
4250 return Realval (N);
4251
4252 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
4253 Ent := Entity (N);
4254 pragma Assert (Ekind (Ent) = E_Constant);
4255 return Expr_Value_R (Constant_Value (Ent));
4256
4257 elsif Kind = N_Integer_Literal then
4258 return UR_From_Uint (Expr_Value (N));
4259
4260 -- Here, we have a node that cannot be interpreted as a compile time
4261 -- constant. That is definitely an error.
4262
4263 else
4264 raise Program_Error;
4265 end if;
4266 end Expr_Value_R;
4267
4268 ------------------
4269 -- Expr_Value_S --
4270 ------------------
4271
4272 function Expr_Value_S (N : Node_Id) return Node_Id is
4273 begin
4274 if Nkind (N) = N_String_Literal then
4275 return N;
4276 else
4277 pragma Assert (Ekind (Entity (N)) = E_Constant);
4278 return Expr_Value_S (Constant_Value (Entity (N)));
4279 end if;
4280 end Expr_Value_S;
4281
4282 ----------------------------------
4283 -- Find_Universal_Operator_Type --
4284 ----------------------------------
4285
4286 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
4287 PN : constant Node_Id := Parent (N);
4288 Call : constant Node_Id := Original_Node (N);
4289 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
4290
4291 Is_Fix : constant Boolean :=
4292 Nkind (N) in N_Binary_Op
4293 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
4294 -- A mixed-mode operation in this context indicates the presence of
4295 -- fixed-point type in the designated package.
4296
4297 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
4298 -- Case where N is a relational (or membership) operator (else it is an
4299 -- arithmetic one).
4300
4301 In_Membership : constant Boolean :=
4302 Nkind (PN) in N_Membership_Test
4303 and then
4304 Nkind (Right_Opnd (PN)) = N_Range
4305 and then
4306 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
4307 and then
4308 Is_Universal_Numeric_Type
4309 (Etype (Low_Bound (Right_Opnd (PN))))
4310 and then
4311 Is_Universal_Numeric_Type
4312 (Etype (High_Bound (Right_Opnd (PN))));
4313 -- Case where N is part of a membership test with a universal range
4314
4315 E : Entity_Id;
4316 Pack : Entity_Id;
4317 Typ1 : Entity_Id := Empty;
4318 Priv_E : Entity_Id;
4319
4320 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
4321 -- Check whether one operand is a mixed-mode operation that requires the
4322 -- presence of a fixed-point type. Given that all operands are universal
4323 -- and have been constant-folded, retrieve the original function call.
4324
4325 ---------------------------
4326 -- Is_Mixed_Mode_Operand --
4327 ---------------------------
4328
4329 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
4330 Onod : constant Node_Id := Original_Node (Op);
4331 begin
4332 return Nkind (Onod) = N_Function_Call
4333 and then Present (Next_Actual (First_Actual (Onod)))
4334 and then Etype (First_Actual (Onod)) /=
4335 Etype (Next_Actual (First_Actual (Onod)));
4336 end Is_Mixed_Mode_Operand;
4337
4338 -- Start of processing for Find_Universal_Operator_Type
4339
4340 begin
4341 if Nkind (Call) /= N_Function_Call
4342 or else Nkind (Name (Call)) /= N_Expanded_Name
4343 then
4344 return Empty;
4345
4346 -- There are several cases where the context does not imply the type of
4347 -- the operands:
4348 -- - the universal expression appears in a type conversion;
4349 -- - the expression is a relational operator applied to universal
4350 -- operands;
4351 -- - the expression is a membership test with a universal operand
4352 -- and a range with universal bounds.
4353
4354 elsif Nkind (Parent (N)) = N_Type_Conversion
4355 or else Is_Relational
4356 or else In_Membership
4357 then
4358 Pack := Entity (Prefix (Name (Call)));
4359
4360 -- If the prefix is a package declared elsewhere, iterate over its
4361 -- visible entities, otherwise iterate over all declarations in the
4362 -- designated scope.
4363
4364 if Ekind (Pack) = E_Package
4365 and then not In_Open_Scopes (Pack)
4366 then
4367 Priv_E := First_Private_Entity (Pack);
4368 else
4369 Priv_E := Empty;
4370 end if;
4371
4372 Typ1 := Empty;
4373 E := First_Entity (Pack);
4374 while Present (E) and then E /= Priv_E loop
4375 if Is_Numeric_Type (E)
4376 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4377 and then Comes_From_Source (E)
4378 and then Is_Integer_Type (E) = Is_Int
4379 and then (Nkind (N) in N_Unary_Op
4380 or else Is_Relational
4381 or else Is_Fixed_Point_Type (E) = Is_Fix)
4382 then
4383 if No (Typ1) then
4384 Typ1 := E;
4385
4386 -- Before emitting an error, check for the presence of a
4387 -- mixed-mode operation that specifies a fixed point type.
4388
4389 elsif Is_Relational
4390 and then
4391 (Is_Mixed_Mode_Operand (Left_Opnd (N))
4392 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
4393 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4394
4395 then
4396 if Is_Fixed_Point_Type (E) then
4397 Typ1 := E;
4398 end if;
4399
4400 else
4401 -- More than one type of the proper class declared in P
4402
4403 Error_Msg_N ("ambiguous operation", N);
4404 Error_Msg_Sloc := Sloc (Typ1);
4405 Error_Msg_N ("\possible interpretation (inherited)#", N);
4406 Error_Msg_Sloc := Sloc (E);
4407 Error_Msg_N ("\possible interpretation (inherited)#", N);
4408 return Empty;
4409 end if;
4410 end if;
4411
4412 Next_Entity (E);
4413 end loop;
4414 end if;
4415
4416 return Typ1;
4417 end Find_Universal_Operator_Type;
4418
4419 --------------------------
4420 -- Flag_Non_Static_Expr --
4421 --------------------------
4422
4423 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4424 begin
4425 if Error_Posted (Expr) and then not All_Errors_Mode then
4426 return;
4427 else
4428 Error_Msg_F (Msg, Expr);
4429 Why_Not_Static (Expr);
4430 end if;
4431 end Flag_Non_Static_Expr;
4432
4433 --------------
4434 -- Fold_Str --
4435 --------------
4436
4437 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
4438 Loc : constant Source_Ptr := Sloc (N);
4439 Typ : constant Entity_Id := Etype (N);
4440
4441 begin
4442 if Raises_Constraint_Error (N) then
4443 Set_Is_Static_Expression (N, Static);
4444 return;
4445 end if;
4446
4447 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
4448
4449 -- We now have the literal with the right value, both the actual type
4450 -- and the expected type of this literal are taken from the expression
4451 -- that was evaluated. So now we do the Analyze and Resolve.
4452
4453 -- Note that we have to reset Is_Static_Expression both after the
4454 -- analyze step (because Resolve will evaluate the literal, which
4455 -- will cause semantic errors if it is marked as static), and after
4456 -- the Resolve step (since Resolve in some cases resets this flag).
4457
4458 Analyze (N);
4459 Set_Is_Static_Expression (N, Static);
4460 Set_Etype (N, Typ);
4461 Resolve (N);
4462 Set_Is_Static_Expression (N, Static);
4463 end Fold_Str;
4464
4465 ---------------
4466 -- Fold_Uint --
4467 ---------------
4468
4469 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
4470 Loc : constant Source_Ptr := Sloc (N);
4471 Typ : Entity_Id := Etype (N);
4472 Ent : Entity_Id;
4473
4474 begin
4475 if Raises_Constraint_Error (N) then
4476 Set_Is_Static_Expression (N, Static);
4477 return;
4478 end if;
4479
4480 -- If we are folding a named number, retain the entity in the literal,
4481 -- for ASIS use.
4482
4483 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Integer then
4484 Ent := Entity (N);
4485 else
4486 Ent := Empty;
4487 end if;
4488
4489 if Is_Private_Type (Typ) then
4490 Typ := Full_View (Typ);
4491 end if;
4492
4493 -- For a result of type integer, substitute an N_Integer_Literal node
4494 -- for the result of the compile time evaluation of the expression.
4495 -- For ASIS use, set a link to the original named number when not in
4496 -- a generic context.
4497
4498 if Is_Integer_Type (Typ) then
4499 Rewrite (N, Make_Integer_Literal (Loc, Val));
4500 Set_Original_Entity (N, Ent);
4501
4502 -- Otherwise we have an enumeration type, and we substitute either
4503 -- an N_Identifier or N_Character_Literal to represent the enumeration
4504 -- literal corresponding to the given value, which must always be in
4505 -- range, because appropriate tests have already been made for this.
4506
4507 else pragma Assert (Is_Enumeration_Type (Typ));
4508 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4509 end if;
4510
4511 -- We now have the literal with the right value, both the actual type
4512 -- and the expected type of this literal are taken from the expression
4513 -- that was evaluated. So now we do the Analyze and Resolve.
4514
4515 -- Note that we have to reset Is_Static_Expression both after the
4516 -- analyze step (because Resolve will evaluate the literal, which
4517 -- will cause semantic errors if it is marked as static), and after
4518 -- the Resolve step (since Resolve in some cases sets this flag).
4519
4520 Analyze (N);
4521 Set_Is_Static_Expression (N, Static);
4522 Set_Etype (N, Typ);
4523 Resolve (N);
4524 Set_Is_Static_Expression (N, Static);
4525 end Fold_Uint;
4526
4527 ----------------
4528 -- Fold_Ureal --
4529 ----------------
4530
4531 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
4532 Loc : constant Source_Ptr := Sloc (N);
4533 Typ : constant Entity_Id := Etype (N);
4534 Ent : Entity_Id;
4535
4536 begin
4537 if Raises_Constraint_Error (N) then
4538 Set_Is_Static_Expression (N, Static);
4539 return;
4540 end if;
4541
4542 -- If we are folding a named number, retain the entity in the literal,
4543 -- for ASIS use.
4544
4545 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Real then
4546 Ent := Entity (N);
4547 else
4548 Ent := Empty;
4549 end if;
4550
4551 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
4552
4553 -- Set link to original named number, for ASIS use
4554
4555 Set_Original_Entity (N, Ent);
4556
4557 -- We now have the literal with the right value, both the actual type
4558 -- and the expected type of this literal are taken from the expression
4559 -- that was evaluated. So now we do the Analyze and Resolve.
4560
4561 -- Note that we have to reset Is_Static_Expression both after the
4562 -- analyze step (because Resolve will evaluate the literal, which
4563 -- will cause semantic errors if it is marked as static), and after
4564 -- the Resolve step (since Resolve in some cases sets this flag).
4565
4566 Analyze (N);
4567 Set_Is_Static_Expression (N, Static);
4568 Set_Etype (N, Typ);
4569 Resolve (N);
4570 Set_Is_Static_Expression (N, Static);
4571 end Fold_Ureal;
4572
4573 ---------------
4574 -- From_Bits --
4575 ---------------
4576
4577 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4578 V : Uint := Uint_0;
4579
4580 begin
4581 for J in 0 .. B'Last loop
4582 if B (J) then
4583 V := V + 2 ** J;
4584 end if;
4585 end loop;
4586
4587 if Non_Binary_Modulus (T) then
4588 V := V mod Modulus (T);
4589 end if;
4590
4591 return V;
4592 end From_Bits;
4593
4594 --------------------
4595 -- Get_String_Val --
4596 --------------------
4597
4598 function Get_String_Val (N : Node_Id) return Node_Id is
4599 begin
4600 if Nkind_In (N, N_String_Literal, N_Character_Literal) then
4601 return N;
4602 else
4603 pragma Assert (Is_Entity_Name (N));
4604 return Get_String_Val (Constant_Value (Entity (N)));
4605 end if;
4606 end Get_String_Val;
4607
4608 ----------------
4609 -- Initialize --
4610 ----------------
4611
4612 procedure Initialize is
4613 begin
4614 CV_Cache := (others => (Node_High_Bound, Uint_0));
4615 end Initialize;
4616
4617 --------------------
4618 -- In_Subrange_Of --
4619 --------------------
4620
4621 function In_Subrange_Of
4622 (T1 : Entity_Id;
4623 T2 : Entity_Id;
4624 Fixed_Int : Boolean := False) return Boolean
4625 is
4626 L1 : Node_Id;
4627 H1 : Node_Id;
4628
4629 L2 : Node_Id;
4630 H2 : Node_Id;
4631
4632 begin
4633 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4634 return True;
4635
4636 -- Never in range if both types are not scalar. Don't know if this can
4637 -- actually happen, but just in case.
4638
4639 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
4640 return False;
4641
4642 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4643 -- definitely not compatible with T2.
4644
4645 elsif Is_Floating_Point_Type (T1)
4646 and then Has_Infinities (T1)
4647 and then Is_Floating_Point_Type (T2)
4648 and then not Has_Infinities (T2)
4649 then
4650 return False;
4651
4652 else
4653 L1 := Type_Low_Bound (T1);
4654 H1 := Type_High_Bound (T1);
4655
4656 L2 := Type_Low_Bound (T2);
4657 H2 := Type_High_Bound (T2);
4658
4659 -- Check bounds to see if comparison possible at compile time
4660
4661 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
4662 and then
4663 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
4664 then
4665 return True;
4666 end if;
4667
4668 -- If bounds not comparable at compile time, then the bounds of T2
4669 -- must be compile time known or we cannot answer the query.
4670
4671 if not Compile_Time_Known_Value (L2)
4672 or else not Compile_Time_Known_Value (H2)
4673 then
4674 return False;
4675 end if;
4676
4677 -- If the bounds of T1 are know at compile time then use these
4678 -- ones, otherwise use the bounds of the base type (which are of
4679 -- course always static).
4680
4681 if not Compile_Time_Known_Value (L1) then
4682 L1 := Type_Low_Bound (Base_Type (T1));
4683 end if;
4684
4685 if not Compile_Time_Known_Value (H1) then
4686 H1 := Type_High_Bound (Base_Type (T1));
4687 end if;
4688
4689 -- Fixed point types should be considered as such only if
4690 -- flag Fixed_Int is set to False.
4691
4692 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4693 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4694 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4695 then
4696 return
4697 Expr_Value_R (L2) <= Expr_Value_R (L1)
4698 and then
4699 Expr_Value_R (H2) >= Expr_Value_R (H1);
4700
4701 else
4702 return
4703 Expr_Value (L2) <= Expr_Value (L1)
4704 and then
4705 Expr_Value (H2) >= Expr_Value (H1);
4706
4707 end if;
4708 end if;
4709
4710 -- If any exception occurs, it means that we have some bug in the compiler
4711 -- possibly triggered by a previous error, or by some unforeseen peculiar
4712 -- occurrence. However, this is only an optimization attempt, so there is
4713 -- really no point in crashing the compiler. Instead we just decide, too
4714 -- bad, we can't figure out the answer in this case after all.
4715
4716 exception
4717 when others =>
4718
4719 -- Debug flag K disables this behavior (useful for debugging)
4720
4721 if Debug_Flag_K then
4722 raise;
4723 else
4724 return False;
4725 end if;
4726 end In_Subrange_Of;
4727
4728 -----------------
4729 -- Is_In_Range --
4730 -----------------
4731
4732 function Is_In_Range
4733 (N : Node_Id;
4734 Typ : Entity_Id;
4735 Assume_Valid : Boolean := False;
4736 Fixed_Int : Boolean := False;
4737 Int_Real : Boolean := False) return Boolean
4738 is
4739 begin
4740 return
4741 Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) = In_Range;
4742 end Is_In_Range;
4743
4744 -------------------
4745 -- Is_Null_Range --
4746 -------------------
4747
4748 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4749 Typ : constant Entity_Id := Etype (Lo);
4750
4751 begin
4752 if not Compile_Time_Known_Value (Lo)
4753 or else not Compile_Time_Known_Value (Hi)
4754 then
4755 return False;
4756 end if;
4757
4758 if Is_Discrete_Type (Typ) then
4759 return Expr_Value (Lo) > Expr_Value (Hi);
4760 else pragma Assert (Is_Real_Type (Typ));
4761 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4762 end if;
4763 end Is_Null_Range;
4764
4765 -------------------------
4766 -- Is_OK_Static_Choice --
4767 -------------------------
4768
4769 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean is
4770 begin
4771 -- Check various possibilities for choice
4772
4773 -- Note: for membership tests, we test more cases than are possible
4774 -- (in particular subtype indication), but it doesn't matter because
4775 -- it just won't occur (we have already done a syntax check).
4776
4777 if Nkind (Choice) = N_Others_Choice then
4778 return True;
4779
4780 elsif Nkind (Choice) = N_Range then
4781 return Is_OK_Static_Range (Choice);
4782
4783 elsif Nkind (Choice) = N_Subtype_Indication
4784 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
4785 then
4786 return Is_OK_Static_Subtype (Etype (Choice));
4787
4788 else
4789 return Is_OK_Static_Expression (Choice);
4790 end if;
4791 end Is_OK_Static_Choice;
4792
4793 ------------------------------
4794 -- Is_OK_Static_Choice_List --
4795 ------------------------------
4796
4797 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean is
4798 Choice : Node_Id;
4799
4800 begin
4801 if not Is_Static_Choice_List (Choices) then
4802 return False;
4803 end if;
4804
4805 Choice := First (Choices);
4806 while Present (Choice) loop
4807 if not Is_OK_Static_Choice (Choice) then
4808 Set_Raises_Constraint_Error (Choice);
4809 return False;
4810 end if;
4811
4812 Next (Choice);
4813 end loop;
4814
4815 return True;
4816 end Is_OK_Static_Choice_List;
4817
4818 -----------------------------
4819 -- Is_OK_Static_Expression --
4820 -----------------------------
4821
4822 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4823 begin
4824 return Is_Static_Expression (N) and then not Raises_Constraint_Error (N);
4825 end Is_OK_Static_Expression;
4826
4827 ------------------------
4828 -- Is_OK_Static_Range --
4829 ------------------------
4830
4831 -- A static range is a range whose bounds are static expressions, or a
4832 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4833 -- We have already converted range attribute references, so we get the
4834 -- "or" part of this rule without needing a special test.
4835
4836 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4837 begin
4838 return Is_OK_Static_Expression (Low_Bound (N))
4839 and then Is_OK_Static_Expression (High_Bound (N));
4840 end Is_OK_Static_Range;
4841
4842 --------------------------
4843 -- Is_OK_Static_Subtype --
4844 --------------------------
4845
4846 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4847 -- neither bound raises constraint error when evaluated.
4848
4849 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4850 Base_T : constant Entity_Id := Base_Type (Typ);
4851 Anc_Subt : Entity_Id;
4852
4853 begin
4854 -- First a quick check on the non static subtype flag. As described
4855 -- in further detail in Einfo, this flag is not decisive in all cases,
4856 -- but if it is set, then the subtype is definitely non-static.
4857
4858 if Is_Non_Static_Subtype (Typ) then
4859 return False;
4860 end if;
4861
4862 Anc_Subt := Ancestor_Subtype (Typ);
4863
4864 if Anc_Subt = Empty then
4865 Anc_Subt := Base_T;
4866 end if;
4867
4868 if Is_Generic_Type (Root_Type (Base_T))
4869 or else Is_Generic_Actual_Type (Base_T)
4870 then
4871 return False;
4872
4873 elsif Has_Dynamic_Predicate_Aspect (Typ) then
4874 return False;
4875
4876 -- String types
4877
4878 elsif Is_String_Type (Typ) then
4879 return
4880 Ekind (Typ) = E_String_Literal_Subtype
4881 or else
4882 (Is_OK_Static_Subtype (Component_Type (Typ))
4883 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4884
4885 -- Scalar types
4886
4887 elsif Is_Scalar_Type (Typ) then
4888 if Base_T = Typ then
4889 return True;
4890
4891 else
4892 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4893 -- Get_Type_{Low,High}_Bound.
4894
4895 return Is_OK_Static_Subtype (Anc_Subt)
4896 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4897 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4898 end if;
4899
4900 -- Types other than string and scalar types are never static
4901
4902 else
4903 return False;
4904 end if;
4905 end Is_OK_Static_Subtype;
4906
4907 ---------------------
4908 -- Is_Out_Of_Range --
4909 ---------------------
4910
4911 function Is_Out_Of_Range
4912 (N : Node_Id;
4913 Typ : Entity_Id;
4914 Assume_Valid : Boolean := False;
4915 Fixed_Int : Boolean := False;
4916 Int_Real : Boolean := False) return Boolean
4917 is
4918 begin
4919 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) =
4920 Out_Of_Range;
4921 end Is_Out_Of_Range;
4922
4923 ----------------------
4924 -- Is_Static_Choice --
4925 ----------------------
4926
4927 function Is_Static_Choice (Choice : Node_Id) return Boolean is
4928 begin
4929 -- Check various possibilities for choice
4930
4931 -- Note: for membership tests, we test more cases than are possible
4932 -- (in particular subtype indication), but it doesn't matter because
4933 -- it just won't occur (we have already done a syntax check).
4934
4935 if Nkind (Choice) = N_Others_Choice then
4936 return True;
4937
4938 elsif Nkind (Choice) = N_Range then
4939 return Is_Static_Range (Choice);
4940
4941 elsif Nkind (Choice) = N_Subtype_Indication
4942 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
4943 then
4944 return Is_Static_Subtype (Etype (Choice));
4945
4946 else
4947 return Is_Static_Expression (Choice);
4948 end if;
4949 end Is_Static_Choice;
4950
4951 ---------------------------
4952 -- Is_Static_Choice_List --
4953 ---------------------------
4954
4955 function Is_Static_Choice_List (Choices : List_Id) return Boolean is
4956 Choice : Node_Id;
4957
4958 begin
4959 Choice := First (Choices);
4960 while Present (Choice) loop
4961 if not Is_Static_Choice (Choice) then
4962 return False;
4963 end if;
4964
4965 Next (Choice);
4966 end loop;
4967
4968 return True;
4969 end Is_Static_Choice_List;
4970
4971 ---------------------
4972 -- Is_Static_Range --
4973 ---------------------
4974
4975 -- A static range is a range whose bounds are static expressions, or a
4976 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4977 -- We have already converted range attribute references, so we get the
4978 -- "or" part of this rule without needing a special test.
4979
4980 function Is_Static_Range (N : Node_Id) return Boolean is
4981 begin
4982 return Is_Static_Expression (Low_Bound (N))
4983 and then
4984 Is_Static_Expression (High_Bound (N));
4985 end Is_Static_Range;
4986
4987 -----------------------
4988 -- Is_Static_Subtype --
4989 -----------------------
4990
4991 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
4992
4993 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4994 Base_T : constant Entity_Id := Base_Type (Typ);
4995 Anc_Subt : Entity_Id;
4996
4997 begin
4998 -- First a quick check on the non static subtype flag. As described
4999 -- in further detail in Einfo, this flag is not decisive in all cases,
5000 -- but if it is set, then the subtype is definitely non-static.
5001
5002 if Is_Non_Static_Subtype (Typ) then
5003 return False;
5004 end if;
5005
5006 Anc_Subt := Ancestor_Subtype (Typ);
5007
5008 if Anc_Subt = Empty then
5009 Anc_Subt := Base_T;
5010 end if;
5011
5012 if Is_Generic_Type (Root_Type (Base_T))
5013 or else Is_Generic_Actual_Type (Base_T)
5014 then
5015 return False;
5016
5017 -- If there is a dynamic predicate for the type (declared or inherited)
5018 -- the expression is not static.
5019
5020 elsif Has_Dynamic_Predicate_Aspect (Typ)
5021 or else (Is_Derived_Type (Typ)
5022 and then Has_Aspect (Typ, Aspect_Dynamic_Predicate))
5023 then
5024 return False;
5025
5026 -- String types
5027
5028 elsif Is_String_Type (Typ) then
5029 return
5030 Ekind (Typ) = E_String_Literal_Subtype
5031 or else (Is_Static_Subtype (Component_Type (Typ))
5032 and then Is_Static_Subtype (Etype (First_Index (Typ))));
5033
5034 -- Scalar types
5035
5036 elsif Is_Scalar_Type (Typ) then
5037 if Base_T = Typ then
5038 return True;
5039
5040 else
5041 return Is_Static_Subtype (Anc_Subt)
5042 and then Is_Static_Expression (Type_Low_Bound (Typ))
5043 and then Is_Static_Expression (Type_High_Bound (Typ));
5044 end if;
5045
5046 -- Types other than string and scalar types are never static
5047
5048 else
5049 return False;
5050 end if;
5051 end Is_Static_Subtype;
5052
5053 -------------------------------
5054 -- Is_Statically_Unevaluated --
5055 -------------------------------
5056
5057 function Is_Statically_Unevaluated (Expr : Node_Id) return Boolean is
5058 function Check_Case_Expr_Alternative
5059 (CEA : Node_Id) return Match_Result;
5060 -- We have a message emanating from the Expression of a case expression
5061 -- alternative. We examine this alternative, as follows:
5062 --
5063 -- If the selecting expression of the parent case is non-static, or
5064 -- if any of the discrete choices of the given case alternative are
5065 -- non-static or raise Constraint_Error, return Non_Static.
5066 --
5067 -- Otherwise check if the selecting expression matches any of the given
5068 -- discrete choices. If so, the alternative is executed and we return
5069 -- Match, otherwise, the alternative can never be executed, and so we
5070 -- return No_Match.
5071
5072 ---------------------------------
5073 -- Check_Case_Expr_Alternative --
5074 ---------------------------------
5075
5076 function Check_Case_Expr_Alternative
5077 (CEA : Node_Id) return Match_Result
5078 is
5079 Case_Exp : constant Node_Id := Parent (CEA);
5080 Choice : Node_Id;
5081 Prev_CEA : Node_Id;
5082
5083 begin
5084 pragma Assert (Nkind (Case_Exp) = N_Case_Expression);
5085
5086 -- Check that selecting expression is static
5087
5088 if not Is_OK_Static_Expression (Expression (Case_Exp)) then
5089 return Non_Static;
5090 end if;
5091
5092 if not Is_OK_Static_Choice_List (Discrete_Choices (CEA)) then
5093 return Non_Static;
5094 end if;
5095
5096 -- All choices are now known to be static. Now see if alternative
5097 -- matches one of the choices.
5098
5099 Choice := First (Discrete_Choices (CEA));
5100 while Present (Choice) loop
5101
5102 -- Check various possibilities for choice, returning Match if we
5103 -- find the selecting value matches any of the choices. Note that
5104 -- we know we are the last choice, so we don't have to keep going.
5105
5106 if Nkind (Choice) = N_Others_Choice then
5107
5108 -- Others choice is a bit annoying, it matches if none of the
5109 -- previous alternatives matches (note that we know we are the
5110 -- last alternative in this case, so we can just go backwards
5111 -- from us to see if any previous one matches).
5112
5113 Prev_CEA := Prev (CEA);
5114 while Present (Prev_CEA) loop
5115 if Check_Case_Expr_Alternative (Prev_CEA) = Match then
5116 return No_Match;
5117 end if;
5118
5119 Prev (Prev_CEA);
5120 end loop;
5121
5122 return Match;
5123
5124 -- Else we have a normal static choice
5125
5126 elsif Choice_Matches (Expression (Case_Exp), Choice) = Match then
5127 return Match;
5128 end if;
5129
5130 -- If we fall through, it means that the discrete choice did not
5131 -- match the selecting expression, so continue.
5132
5133 Next (Choice);
5134 end loop;
5135
5136 -- If we get through that loop then all choices were static, and none
5137 -- of them matched the selecting expression. So return No_Match.
5138
5139 return No_Match;
5140 end Check_Case_Expr_Alternative;
5141
5142 -- Local variables
5143
5144 P : Node_Id;
5145 OldP : Node_Id;
5146 Choice : Node_Id;
5147
5148 -- Start of processing for Is_Statically_Unevaluated
5149
5150 begin
5151 -- The (32.x) references here are from RM section 4.9
5152
5153 -- (32.1) An expression is statically unevaluated if it is part of ...
5154
5155 -- This means we have to climb the tree looking for one of the cases
5156
5157 P := Expr;
5158 loop
5159 OldP := P;
5160 P := Parent (P);
5161
5162 -- (32.2) The right operand of a static short-circuit control form
5163 -- whose value is determined by its left operand.
5164
5165 -- AND THEN with False as left operand
5166
5167 if Nkind (P) = N_And_Then
5168 and then Compile_Time_Known_Value (Left_Opnd (P))
5169 and then Is_False (Expr_Value (Left_Opnd (P)))
5170 then
5171 return True;
5172
5173 -- OR ELSE with True as left operand
5174
5175 elsif Nkind (P) = N_Or_Else
5176 and then Compile_Time_Known_Value (Left_Opnd (P))
5177 and then Is_True (Expr_Value (Left_Opnd (P)))
5178 then
5179 return True;
5180
5181 -- (32.3) A dependent_expression of an if_expression whose associated
5182 -- condition is static and equals False.
5183
5184 elsif Nkind (P) = N_If_Expression then
5185 declare
5186 Cond : constant Node_Id := First (Expressions (P));
5187 Texp : constant Node_Id := Next (Cond);
5188 Fexp : constant Node_Id := Next (Texp);
5189
5190 begin
5191 if Compile_Time_Known_Value (Cond) then
5192
5193 -- Condition is True and we are in the right operand
5194
5195 if Is_True (Expr_Value (Cond)) and then OldP = Fexp then
5196 return True;
5197
5198 -- Condition is False and we are in the left operand
5199
5200 elsif Is_False (Expr_Value (Cond)) and then OldP = Texp then
5201 return True;
5202 end if;
5203 end if;
5204 end;
5205
5206 -- (32.4) A condition or dependent_expression of an if_expression
5207 -- where the condition corresponding to at least one preceding
5208 -- dependent_expression of the if_expression is static and equals
5209 -- True.
5210
5211 -- This refers to cases like
5212
5213 -- (if True then 1 elsif 1/0=2 then 2 else 3)
5214
5215 -- But we expand elsif's out anyway, so the above looks like:
5216
5217 -- (if True then 1 else (if 1/0=2 then 2 else 3))
5218
5219 -- So for us this is caught by the above check for the 32.3 case.
5220
5221 -- (32.5) A dependent_expression of a case_expression whose
5222 -- selecting_expression is static and whose value is not covered
5223 -- by the corresponding discrete_choice_list.
5224
5225 elsif Nkind (P) = N_Case_Expression_Alternative then
5226
5227 -- First, we have to be in the expression to suppress messages.
5228 -- If we are within one of the choices, we want the message.
5229
5230 if OldP = Expression (P) then
5231
5232 -- Statically unevaluated if alternative does not match
5233
5234 if Check_Case_Expr_Alternative (P) = No_Match then
5235 return True;
5236 end if;
5237 end if;
5238
5239 -- (32.6) A choice_expression (or a simple_expression of a range
5240 -- that occurs as a membership_choice of a membership_choice_list)
5241 -- of a static membership test that is preceded in the enclosing
5242 -- membership_choice_list by another item whose individual
5243 -- membership test (see (RM 4.5.2)) statically yields True.
5244
5245 elsif Nkind (P) in N_Membership_Test then
5246
5247 -- Only possibly unevaluated if simple expression is static
5248
5249 if not Is_OK_Static_Expression (Left_Opnd (P)) then
5250 null;
5251
5252 -- All members of the choice list must be static
5253
5254 elsif (Present (Right_Opnd (P))
5255 and then not Is_OK_Static_Choice (Right_Opnd (P)))
5256 or else (Present (Alternatives (P))
5257 and then
5258 not Is_OK_Static_Choice_List (Alternatives (P)))
5259 then
5260 null;
5261
5262 -- If expression is the one and only alternative, then it is
5263 -- definitely not statically unevaluated, so we only have to
5264 -- test the case where there are alternatives present.
5265
5266 elsif Present (Alternatives (P)) then
5267
5268 -- Look for previous matching Choice
5269
5270 Choice := First (Alternatives (P));
5271 while Present (Choice) loop
5272
5273 -- If we reached us and no previous choices matched, this
5274 -- is not the case where we are statically unevaluated.
5275
5276 exit when OldP = Choice;
5277
5278 -- If a previous choice matches, then that is the case where
5279 -- we know our choice is statically unevaluated.
5280
5281 if Choice_Matches (Left_Opnd (P), Choice) = Match then
5282 return True;
5283 end if;
5284
5285 Next (Choice);
5286 end loop;
5287
5288 -- If we fall through the loop, we were not one of the choices,
5289 -- we must have been the expression, so that is not covered by
5290 -- this rule, and we keep going.
5291
5292 null;
5293 end if;
5294 end if;
5295
5296 -- OK, not statically unevaluated at this level, see if we should
5297 -- keep climbing to look for a higher level reason.
5298
5299 -- Special case for component association in aggregates, where
5300 -- we want to keep climbing up to the parent aggregate.
5301
5302 if Nkind (P) = N_Component_Association
5303 and then Nkind (Parent (P)) = N_Aggregate
5304 then
5305 null;
5306
5307 -- All done if not still within subexpression
5308
5309 else
5310 exit when Nkind (P) not in N_Subexpr;
5311 end if;
5312 end loop;
5313
5314 -- If we fall through the loop, not one of the cases covered!
5315
5316 return False;
5317 end Is_Statically_Unevaluated;
5318
5319 --------------------
5320 -- Not_Null_Range --
5321 --------------------
5322
5323 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
5324 Typ : constant Entity_Id := Etype (Lo);
5325
5326 begin
5327 if not Compile_Time_Known_Value (Lo)
5328 or else not Compile_Time_Known_Value (Hi)
5329 then
5330 return False;
5331 end if;
5332
5333 if Is_Discrete_Type (Typ) then
5334 return Expr_Value (Lo) <= Expr_Value (Hi);
5335 else pragma Assert (Is_Real_Type (Typ));
5336 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
5337 end if;
5338 end Not_Null_Range;
5339
5340 -------------
5341 -- OK_Bits --
5342 -------------
5343
5344 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
5345 begin
5346 -- We allow a maximum of 500,000 bits which seems a reasonable limit
5347
5348 if Bits < 500_000 then
5349 return True;
5350
5351 -- Error if this maximum is exceeded
5352
5353 else
5354 Error_Msg_N ("static value too large, capacity exceeded", N);
5355 return False;
5356 end if;
5357 end OK_Bits;
5358
5359 ------------------
5360 -- Out_Of_Range --
5361 ------------------
5362
5363 procedure Out_Of_Range (N : Node_Id) is
5364 begin
5365 -- If we have the static expression case, then this is an illegality
5366 -- in Ada 95 mode, except that in an instance, we never generate an
5367 -- error (if the error is legitimate, it was already diagnosed in the
5368 -- template).
5369
5370 if Is_Static_Expression (N)
5371 and then not In_Instance
5372 and then not In_Inlined_Body
5373 and then Ada_Version >= Ada_95
5374 then
5375 -- No message if we are statically unevaluated
5376
5377 if Is_Statically_Unevaluated (N) then
5378 null;
5379
5380 -- The expression to compute the length of a packed array is attached
5381 -- to the array type itself, and deserves a separate message.
5382
5383 elsif Nkind (Parent (N)) = N_Defining_Identifier
5384 and then Is_Array_Type (Parent (N))
5385 and then Present (Packed_Array_Impl_Type (Parent (N)))
5386 and then Present (First_Rep_Item (Parent (N)))
5387 then
5388 Error_Msg_N
5389 ("length of packed array must not exceed Integer''Last",
5390 First_Rep_Item (Parent (N)));
5391 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
5392
5393 -- All cases except the special array case
5394
5395 else
5396 Apply_Compile_Time_Constraint_Error
5397 (N, "value not in range of}", CE_Range_Check_Failed);
5398 end if;
5399
5400 -- Here we generate a warning for the Ada 83 case, or when we are in an
5401 -- instance, or when we have a non-static expression case.
5402
5403 else
5404 Apply_Compile_Time_Constraint_Error
5405 (N, "value not in range of}??", CE_Range_Check_Failed);
5406 end if;
5407 end Out_Of_Range;
5408
5409 ----------------------
5410 -- Predicates_Match --
5411 ----------------------
5412
5413 function Predicates_Match (T1, T2 : Entity_Id) return Boolean is
5414 Pred1 : Node_Id;
5415 Pred2 : Node_Id;
5416
5417 begin
5418 if Ada_Version < Ada_2012 then
5419 return True;
5420
5421 -- Both types must have predicates or lack them
5422
5423 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
5424 return False;
5425
5426 -- Check matching predicates
5427
5428 else
5429 Pred1 :=
5430 Get_Rep_Item
5431 (T1, Name_Static_Predicate, Check_Parents => False);
5432 Pred2 :=
5433 Get_Rep_Item
5434 (T2, Name_Static_Predicate, Check_Parents => False);
5435
5436 -- Subtypes statically match if the predicate comes from the
5437 -- same declaration, which can only happen if one is a subtype
5438 -- of the other and has no explicit predicate.
5439
5440 -- Suppress warnings on order of actuals, which is otherwise
5441 -- triggered by one of the two calls below.
5442
5443 pragma Warnings (Off);
5444 return Pred1 = Pred2
5445 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
5446 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
5447 pragma Warnings (On);
5448 end if;
5449 end Predicates_Match;
5450
5451 ---------------------------------------------
5452 -- Real_Or_String_Static_Predicate_Matches --
5453 ---------------------------------------------
5454
5455 function Real_Or_String_Static_Predicate_Matches
5456 (Val : Node_Id;
5457 Typ : Entity_Id) return Boolean
5458 is
5459 Expr : constant Node_Id := Static_Real_Or_String_Predicate (Typ);
5460 -- The predicate expression from the type
5461
5462 Pfun : constant Entity_Id := Predicate_Function (Typ);
5463 -- The entity for the predicate function
5464
5465 Ent_Name : constant Name_Id := Chars (First_Formal (Pfun));
5466 -- The name of the formal of the predicate function. Occurrences of the
5467 -- type name in Expr have been rewritten as references to this formal,
5468 -- and it has a unique name, so we can identify references by this name.
5469
5470 Copy : Node_Id;
5471 -- Copy of the predicate function tree
5472
5473 function Process (N : Node_Id) return Traverse_Result;
5474 -- Function used to process nodes during the traversal in which we will
5475 -- find occurrences of the entity name, and replace such occurrences
5476 -- by a real literal with the value to be tested.
5477
5478 procedure Traverse is new Traverse_Proc (Process);
5479 -- The actual traversal procedure
5480
5481 -------------
5482 -- Process --
5483 -------------
5484
5485 function Process (N : Node_Id) return Traverse_Result is
5486 begin
5487 if Nkind (N) = N_Identifier and then Chars (N) = Ent_Name then
5488 declare
5489 Nod : constant Node_Id := New_Copy (Val);
5490 begin
5491 Set_Sloc (Nod, Sloc (N));
5492 Rewrite (N, Nod);
5493 return Skip;
5494 end;
5495
5496 -- The predicate function may contain string-comparison operations
5497 -- that have been converted into calls to run-time array-comparison
5498 -- routines. To evaluate the predicate statically, we recover the
5499 -- original comparison operation and replace the occurrence of the
5500 -- formal by the static string value. The actuals of the generated
5501 -- call are of the form X'Address.
5502
5503 elsif Nkind (N) in N_Op_Compare
5504 and then Nkind (Left_Opnd (N)) = N_Function_Call
5505 then
5506 declare
5507 C : constant Node_Id := Left_Opnd (N);
5508 F : constant Node_Id := First (Parameter_Associations (C));
5509 L : constant Node_Id := Prefix (F);
5510 R : constant Node_Id := Prefix (Next (F));
5511
5512 begin
5513 -- If an operand is an entity name, it is the formal of the
5514 -- predicate function, so replace it with the string value.
5515 -- It may be either operand in the call. The other operand
5516 -- is a static string from the original predicate.
5517
5518 if Is_Entity_Name (L) then
5519 Rewrite (Left_Opnd (N), New_Copy (Val));
5520 Rewrite (Right_Opnd (N), New_Copy (R));
5521
5522 else
5523 Rewrite (Left_Opnd (N), New_Copy (L));
5524 Rewrite (Right_Opnd (N), New_Copy (Val));
5525 end if;
5526
5527 return Skip;
5528 end;
5529
5530 else
5531 return OK;
5532 end if;
5533 end Process;
5534
5535 -- Start of processing for Real_Or_String_Static_Predicate_Matches
5536
5537 begin
5538 -- First deal with special case of inherited predicate, where the
5539 -- predicate expression looks like:
5540
5541 -- xxPredicate (typ (Ent)) and then Expr
5542
5543 -- where Expr is the predicate expression for this level, and the
5544 -- left operand is the call to evaluate the inherited predicate.
5545
5546 if Nkind (Expr) = N_And_Then
5547 and then Nkind (Left_Opnd (Expr)) = N_Function_Call
5548 and then Is_Predicate_Function (Entity (Name (Left_Opnd (Expr))))
5549 then
5550 -- OK we have the inherited case, so make a call to evaluate the
5551 -- inherited predicate. If that fails, so do we!
5552
5553 if not
5554 Real_Or_String_Static_Predicate_Matches
5555 (Val => Val,
5556 Typ => Etype (First_Formal (Entity (Name (Left_Opnd (Expr))))))
5557 then
5558 return False;
5559 end if;
5560
5561 -- Use the right operand for the continued processing
5562
5563 Copy := Copy_Separate_Tree (Right_Opnd (Expr));
5564
5565 -- Case where call to predicate function appears on its own (this means
5566 -- that the predicate at this level is just inherited from the parent).
5567
5568 elsif Nkind (Expr) = N_Function_Call then
5569 declare
5570 Typ : constant Entity_Id :=
5571 Etype (First_Formal (Entity (Name (Expr))));
5572
5573 begin
5574 -- If the inherited predicate is dynamic, just ignore it. We can't
5575 -- go trying to evaluate a dynamic predicate as a static one!
5576
5577 if Has_Dynamic_Predicate_Aspect (Typ) then
5578 return True;
5579
5580 -- Otherwise inherited predicate is static, check for match
5581
5582 else
5583 return Real_Or_String_Static_Predicate_Matches (Val, Typ);
5584 end if;
5585 end;
5586
5587 -- If not just an inherited predicate, copy whole expression
5588
5589 else
5590 Copy := Copy_Separate_Tree (Expr);
5591 end if;
5592
5593 -- Now we replace occurrences of the entity by the value
5594
5595 Traverse (Copy);
5596
5597 -- And analyze the resulting static expression to see if it is True
5598
5599 Analyze_And_Resolve (Copy, Standard_Boolean);
5600 return Is_True (Expr_Value (Copy));
5601 end Real_Or_String_Static_Predicate_Matches;
5602
5603 -------------------------
5604 -- Rewrite_In_Raise_CE --
5605 -------------------------
5606
5607 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
5608 Typ : constant Entity_Id := Etype (N);
5609 Stat : constant Boolean := Is_Static_Expression (N);
5610
5611 begin
5612 -- If we want to raise CE in the condition of a N_Raise_CE node, we
5613 -- can just clear the condition if the reason is appropriate. We do
5614 -- not do this operation if the parent has a reason other than range
5615 -- check failed, because otherwise we would change the reason.
5616
5617 if Present (Parent (N))
5618 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
5619 and then Reason (Parent (N)) =
5620 UI_From_Int (RT_Exception_Code'Pos (CE_Range_Check_Failed))
5621 then
5622 Set_Condition (Parent (N), Empty);
5623
5624 -- Else build an explicit N_Raise_CE
5625
5626 else
5627 Rewrite (N,
5628 Make_Raise_Constraint_Error (Sloc (Exp),
5629 Reason => CE_Range_Check_Failed));
5630 Set_Raises_Constraint_Error (N);
5631 Set_Etype (N, Typ);
5632 end if;
5633
5634 -- Set proper flags in result
5635
5636 Set_Raises_Constraint_Error (N, True);
5637 Set_Is_Static_Expression (N, Stat);
5638 end Rewrite_In_Raise_CE;
5639
5640 ---------------------
5641 -- String_Type_Len --
5642 ---------------------
5643
5644 function String_Type_Len (Stype : Entity_Id) return Uint is
5645 NT : constant Entity_Id := Etype (First_Index (Stype));
5646 T : Entity_Id;
5647
5648 begin
5649 if Is_OK_Static_Subtype (NT) then
5650 T := NT;
5651 else
5652 T := Base_Type (NT);
5653 end if;
5654
5655 return Expr_Value (Type_High_Bound (T)) -
5656 Expr_Value (Type_Low_Bound (T)) + 1;
5657 end String_Type_Len;
5658
5659 ------------------------------------
5660 -- Subtypes_Statically_Compatible --
5661 ------------------------------------
5662
5663 function Subtypes_Statically_Compatible
5664 (T1 : Entity_Id;
5665 T2 : Entity_Id;
5666 Formal_Derived_Matching : Boolean := False) return Boolean
5667 is
5668 begin
5669 -- Scalar types
5670
5671 if Is_Scalar_Type (T1) then
5672
5673 -- Definitely compatible if we match
5674
5675 if Subtypes_Statically_Match (T1, T2) then
5676 return True;
5677
5678 -- If either subtype is nonstatic then they're not compatible
5679
5680 elsif not Is_OK_Static_Subtype (T1)
5681 or else
5682 not Is_OK_Static_Subtype (T2)
5683 then
5684 return False;
5685
5686 -- Base types must match, but we don't check that (should we???) but
5687 -- we do at least check that both types are real, or both types are
5688 -- not real.
5689
5690 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
5691 return False;
5692
5693 -- Here we check the bounds
5694
5695 else
5696 declare
5697 LB1 : constant Node_Id := Type_Low_Bound (T1);
5698 HB1 : constant Node_Id := Type_High_Bound (T1);
5699 LB2 : constant Node_Id := Type_Low_Bound (T2);
5700 HB2 : constant Node_Id := Type_High_Bound (T2);
5701
5702 begin
5703 if Is_Real_Type (T1) then
5704 return
5705 Expr_Value_R (LB1) > Expr_Value_R (HB1)
5706 or else
5707 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
5708 and then Expr_Value_R (HB1) <= Expr_Value_R (HB2));
5709
5710 else
5711 return
5712 Expr_Value (LB1) > Expr_Value (HB1)
5713 or else
5714 (Expr_Value (LB2) <= Expr_Value (LB1)
5715 and then Expr_Value (HB1) <= Expr_Value (HB2));
5716 end if;
5717 end;
5718 end if;
5719
5720 -- Access types
5721
5722 elsif Is_Access_Type (T1) then
5723 return
5724 (not Is_Constrained (T2)
5725 or else Subtypes_Statically_Match
5726 (Designated_Type (T1), Designated_Type (T2)))
5727 and then not (Can_Never_Be_Null (T2)
5728 and then not Can_Never_Be_Null (T1));
5729
5730 -- All other cases
5731
5732 else
5733 return
5734 (Is_Composite_Type (T1) and then not Is_Constrained (T2))
5735 or else Subtypes_Statically_Match
5736 (T1, T2, Formal_Derived_Matching);
5737 end if;
5738 end Subtypes_Statically_Compatible;
5739
5740 -------------------------------
5741 -- Subtypes_Statically_Match --
5742 -------------------------------
5743
5744 -- Subtypes statically match if they have statically matching constraints
5745 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
5746 -- they are the same identical constraint, or if they are static and the
5747 -- values match (RM 4.9.1(1)).
5748
5749 -- In addition, in GNAT, the object size (Esize) values of the types must
5750 -- match if they are set (unless checking an actual for a formal derived
5751 -- type). The use of 'Object_Size can cause this to be false even if the
5752 -- types would otherwise match in the RM sense.
5753
5754 function Subtypes_Statically_Match
5755 (T1 : Entity_Id;
5756 T2 : Entity_Id;
5757 Formal_Derived_Matching : Boolean := False) return Boolean
5758 is
5759 begin
5760 -- A type always statically matches itself
5761
5762 if T1 = T2 then
5763 return True;
5764
5765 -- No match if sizes different (from use of 'Object_Size). This test
5766 -- is excluded if Formal_Derived_Matching is True, as the base types
5767 -- can be different in that case and typically have different sizes
5768 -- (and Esizes can be set when Frontend_Layout_On_Target is True).
5769
5770 elsif not Formal_Derived_Matching
5771 and then Known_Static_Esize (T1)
5772 and then Known_Static_Esize (T2)
5773 and then Esize (T1) /= Esize (T2)
5774 then
5775 return False;
5776
5777 -- No match if predicates do not match
5778
5779 elsif not Predicates_Match (T1, T2) then
5780 return False;
5781
5782 -- Scalar types
5783
5784 elsif Is_Scalar_Type (T1) then
5785
5786 -- Base types must be the same
5787
5788 if Base_Type (T1) /= Base_Type (T2) then
5789 return False;
5790 end if;
5791
5792 -- A constrained numeric subtype never matches an unconstrained
5793 -- subtype, i.e. both types must be constrained or unconstrained.
5794
5795 -- To understand the requirement for this test, see RM 4.9.1(1).
5796 -- As is made clear in RM 3.5.4(11), type Integer, for example is
5797 -- a constrained subtype with constraint bounds matching the bounds
5798 -- of its corresponding unconstrained base type. In this situation,
5799 -- Integer and Integer'Base do not statically match, even though
5800 -- they have the same bounds.
5801
5802 -- We only apply this test to types in Standard and types that appear
5803 -- in user programs. That way, we do not have to be too careful about
5804 -- setting Is_Constrained right for Itypes.
5805
5806 if Is_Numeric_Type (T1)
5807 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5808 and then (Scope (T1) = Standard_Standard
5809 or else Comes_From_Source (T1))
5810 and then (Scope (T2) = Standard_Standard
5811 or else Comes_From_Source (T2))
5812 then
5813 return False;
5814
5815 -- A generic scalar type does not statically match its base type
5816 -- (AI-311). In this case we make sure that the formals, which are
5817 -- first subtypes of their bases, are constrained.
5818
5819 elsif Is_Generic_Type (T1)
5820 and then Is_Generic_Type (T2)
5821 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5822 then
5823 return False;
5824 end if;
5825
5826 -- If there was an error in either range, then just assume the types
5827 -- statically match to avoid further junk errors.
5828
5829 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
5830 or else Error_Posted (Scalar_Range (T1))
5831 or else Error_Posted (Scalar_Range (T2))
5832 then
5833 return True;
5834 end if;
5835
5836 -- Otherwise both types have bounds that can be compared
5837
5838 declare
5839 LB1 : constant Node_Id := Type_Low_Bound (T1);
5840 HB1 : constant Node_Id := Type_High_Bound (T1);
5841 LB2 : constant Node_Id := Type_Low_Bound (T2);
5842 HB2 : constant Node_Id := Type_High_Bound (T2);
5843
5844 begin
5845 -- If the bounds are the same tree node, then match (common case)
5846
5847 if LB1 = LB2 and then HB1 = HB2 then
5848 return True;
5849
5850 -- Otherwise bounds must be static and identical value
5851
5852 else
5853 if not Is_OK_Static_Subtype (T1)
5854 or else
5855 not Is_OK_Static_Subtype (T2)
5856 then
5857 return False;
5858
5859 elsif Is_Real_Type (T1) then
5860 return
5861 Expr_Value_R (LB1) = Expr_Value_R (LB2)
5862 and then
5863 Expr_Value_R (HB1) = Expr_Value_R (HB2);
5864
5865 else
5866 return
5867 Expr_Value (LB1) = Expr_Value (LB2)
5868 and then
5869 Expr_Value (HB1) = Expr_Value (HB2);
5870 end if;
5871 end if;
5872 end;
5873
5874 -- Type with discriminants
5875
5876 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
5877
5878 -- Because of view exchanges in multiple instantiations, conformance
5879 -- checking might try to match a partial view of a type with no
5880 -- discriminants with a full view that has defaulted discriminants.
5881 -- In such a case, use the discriminant constraint of the full view,
5882 -- which must exist because we know that the two subtypes have the
5883 -- same base type.
5884
5885 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
5886 -- A generic actual type is declared through a subtype declaration
5887 -- and may have an inconsistent indication of the presence of
5888 -- discriminants, so check the type it renames.
5889
5890 if Is_Generic_Actual_Type (T1)
5891 and then not Has_Discriminants (Etype (T1))
5892 and then not Has_Discriminants (T2)
5893 then
5894 return True;
5895
5896 elsif In_Instance then
5897 if Is_Private_Type (T2)
5898 and then Present (Full_View (T2))
5899 and then Has_Discriminants (Full_View (T2))
5900 then
5901 return Subtypes_Statically_Match (T1, Full_View (T2));
5902
5903 elsif Is_Private_Type (T1)
5904 and then Present (Full_View (T1))
5905 and then Has_Discriminants (Full_View (T1))
5906 then
5907 return Subtypes_Statically_Match (Full_View (T1), T2);
5908
5909 else
5910 return False;
5911 end if;
5912 else
5913 return False;
5914 end if;
5915 end if;
5916
5917 declare
5918 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
5919 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
5920
5921 DA1 : Elmt_Id;
5922 DA2 : Elmt_Id;
5923
5924 begin
5925 if DL1 = DL2 then
5926 return True;
5927 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
5928 return False;
5929 end if;
5930
5931 -- Now loop through the discriminant constraints
5932
5933 -- Note: the guard here seems necessary, since it is possible at
5934 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
5935
5936 if Present (DL1) and then Present (DL2) then
5937 DA1 := First_Elmt (DL1);
5938 DA2 := First_Elmt (DL2);
5939 while Present (DA1) loop
5940 declare
5941 Expr1 : constant Node_Id := Node (DA1);
5942 Expr2 : constant Node_Id := Node (DA2);
5943
5944 begin
5945 if not Is_OK_Static_Expression (Expr1)
5946 or else not Is_OK_Static_Expression (Expr2)
5947 then
5948 return False;
5949
5950 -- If either expression raised a constraint error,
5951 -- consider the expressions as matching, since this
5952 -- helps to prevent cascading errors.
5953
5954 elsif Raises_Constraint_Error (Expr1)
5955 or else Raises_Constraint_Error (Expr2)
5956 then
5957 null;
5958
5959 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
5960 return False;
5961 end if;
5962 end;
5963
5964 Next_Elmt (DA1);
5965 Next_Elmt (DA2);
5966 end loop;
5967 end if;
5968 end;
5969
5970 return True;
5971
5972 -- A definite type does not match an indefinite or classwide type.
5973 -- However, a generic type with unknown discriminants may be
5974 -- instantiated with a type with no discriminants, and conformance
5975 -- checking on an inherited operation may compare the actual with the
5976 -- subtype that renames it in the instance.
5977
5978 elsif Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
5979 then
5980 return
5981 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
5982
5983 -- Array type
5984
5985 elsif Is_Array_Type (T1) then
5986
5987 -- If either subtype is unconstrained then both must be, and if both
5988 -- are unconstrained then no further checking is needed.
5989
5990 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
5991 return not (Is_Constrained (T1) or else Is_Constrained (T2));
5992 end if;
5993
5994 -- Both subtypes are constrained, so check that the index subtypes
5995 -- statically match.
5996
5997 declare
5998 Index1 : Node_Id := First_Index (T1);
5999 Index2 : Node_Id := First_Index (T2);
6000
6001 begin
6002 while Present (Index1) loop
6003 if not
6004 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
6005 then
6006 return False;
6007 end if;
6008
6009 Next_Index (Index1);
6010 Next_Index (Index2);
6011 end loop;
6012
6013 return True;
6014 end;
6015
6016 elsif Is_Access_Type (T1) then
6017 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
6018 return False;
6019
6020 elsif Ekind_In (T1, E_Access_Subprogram_Type,
6021 E_Anonymous_Access_Subprogram_Type)
6022 then
6023 return
6024 Subtype_Conformant
6025 (Designated_Type (T1),
6026 Designated_Type (T2));
6027 else
6028 return
6029 Subtypes_Statically_Match
6030 (Designated_Type (T1),
6031 Designated_Type (T2))
6032 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
6033 end if;
6034
6035 -- All other types definitely match
6036
6037 else
6038 return True;
6039 end if;
6040 end Subtypes_Statically_Match;
6041
6042 ----------
6043 -- Test --
6044 ----------
6045
6046 function Test (Cond : Boolean) return Uint is
6047 begin
6048 if Cond then
6049 return Uint_1;
6050 else
6051 return Uint_0;
6052 end if;
6053 end Test;
6054
6055 ---------------------
6056 -- Test_Comparison --
6057 ---------------------
6058
6059 procedure Test_Comparison
6060 (Op : Node_Id;
6061 Assume_Valid : Boolean;
6062 True_Result : out Boolean;
6063 False_Result : out Boolean)
6064 is
6065 Left : constant Node_Id := Left_Opnd (Op);
6066 Left_Typ : constant Entity_Id := Etype (Left);
6067 Orig_Op : constant Node_Id := Original_Node (Op);
6068
6069 procedure Replacement_Warning (Msg : String);
6070 -- Emit a warning on a comparison that can be replaced by '='
6071
6072 -------------------------
6073 -- Replacement_Warning --
6074 -------------------------
6075
6076 procedure Replacement_Warning (Msg : String) is
6077 begin
6078 if Constant_Condition_Warnings
6079 and then Comes_From_Source (Orig_Op)
6080 and then Is_Integer_Type (Left_Typ)
6081 and then not Error_Posted (Op)
6082 and then not Has_Warnings_Off (Left_Typ)
6083 and then not In_Instance
6084 then
6085 Error_Msg_N (Msg, Op);
6086 end if;
6087 end Replacement_Warning;
6088
6089 -- Local variables
6090
6091 Res : constant Compare_Result :=
6092 Compile_Time_Compare (Left, Right_Opnd (Op), Assume_Valid);
6093
6094 -- Start of processing for Test_Comparison
6095
6096 begin
6097 case N_Op_Compare (Nkind (Op)) is
6098 when N_Op_Eq =>
6099 True_Result := Res = EQ;
6100 False_Result := Res = LT or else Res = GT or else Res = NE;
6101
6102 when N_Op_Ge =>
6103 True_Result := Res in Compare_GE;
6104 False_Result := Res = LT;
6105
6106 if Res = LE and then Nkind (Orig_Op) = N_Op_Ge then
6107 Replacement_Warning
6108 ("can never be greater than, could replace by ""'=""?c?");
6109 end if;
6110
6111 when N_Op_Gt =>
6112 True_Result := Res = GT;
6113 False_Result := Res in Compare_LE;
6114
6115 when N_Op_Le =>
6116 True_Result := Res in Compare_LE;
6117 False_Result := Res = GT;
6118
6119 if Res = GE and then Nkind (Orig_Op) = N_Op_Le then
6120 Replacement_Warning
6121 ("can never be less than, could replace by ""'=""?c?");
6122 end if;
6123
6124 when N_Op_Lt =>
6125 True_Result := Res = LT;
6126 False_Result := Res in Compare_GE;
6127
6128 when N_Op_Ne =>
6129 True_Result := Res = NE or else Res = GT or else Res = LT;
6130 False_Result := Res = EQ;
6131 end case;
6132 end Test_Comparison;
6133
6134 ---------------------------------
6135 -- Test_Expression_Is_Foldable --
6136 ---------------------------------
6137
6138 -- One operand case
6139
6140 procedure Test_Expression_Is_Foldable
6141 (N : Node_Id;
6142 Op1 : Node_Id;
6143 Stat : out Boolean;
6144 Fold : out Boolean)
6145 is
6146 begin
6147 Stat := False;
6148 Fold := False;
6149
6150 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6151 return;
6152 end if;
6153
6154 -- If operand is Any_Type, just propagate to result and do not
6155 -- try to fold, this prevents cascaded errors.
6156
6157 if Etype (Op1) = Any_Type then
6158 Set_Etype (N, Any_Type);
6159 return;
6160
6161 -- If operand raises constraint error, then replace node N with the
6162 -- raise constraint error node, and we are obviously not foldable.
6163 -- Note that this replacement inherits the Is_Static_Expression flag
6164 -- from the operand.
6165
6166 elsif Raises_Constraint_Error (Op1) then
6167 Rewrite_In_Raise_CE (N, Op1);
6168 return;
6169
6170 -- If the operand is not static, then the result is not static, and
6171 -- all we have to do is to check the operand since it is now known
6172 -- to appear in a non-static context.
6173
6174 elsif not Is_Static_Expression (Op1) then
6175 Check_Non_Static_Context (Op1);
6176 Fold := Compile_Time_Known_Value (Op1);
6177 return;
6178
6179 -- An expression of a formal modular type is not foldable because
6180 -- the modulus is unknown.
6181
6182 elsif Is_Modular_Integer_Type (Etype (Op1))
6183 and then Is_Generic_Type (Etype (Op1))
6184 then
6185 Check_Non_Static_Context (Op1);
6186 return;
6187
6188 -- Here we have the case of an operand whose type is OK, which is
6189 -- static, and which does not raise constraint error, we can fold.
6190
6191 else
6192 Set_Is_Static_Expression (N);
6193 Fold := True;
6194 Stat := True;
6195 end if;
6196 end Test_Expression_Is_Foldable;
6197
6198 -- Two operand case
6199
6200 procedure Test_Expression_Is_Foldable
6201 (N : Node_Id;
6202 Op1 : Node_Id;
6203 Op2 : Node_Id;
6204 Stat : out Boolean;
6205 Fold : out Boolean;
6206 CRT_Safe : Boolean := False)
6207 is
6208 Rstat : constant Boolean := Is_Static_Expression (Op1)
6209 and then
6210 Is_Static_Expression (Op2);
6211
6212 begin
6213 Stat := False;
6214 Fold := False;
6215
6216 -- Inhibit folding if -gnatd.f flag set
6217
6218 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6219 return;
6220 end if;
6221
6222 -- If either operand is Any_Type, just propagate to result and
6223 -- do not try to fold, this prevents cascaded errors.
6224
6225 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
6226 Set_Etype (N, Any_Type);
6227 return;
6228
6229 -- If left operand raises constraint error, then replace node N with the
6230 -- Raise_Constraint_Error node, and we are obviously not foldable.
6231 -- Is_Static_Expression is set from the two operands in the normal way,
6232 -- and we check the right operand if it is in a non-static context.
6233
6234 elsif Raises_Constraint_Error (Op1) then
6235 if not Rstat then
6236 Check_Non_Static_Context (Op2);
6237 end if;
6238
6239 Rewrite_In_Raise_CE (N, Op1);
6240 Set_Is_Static_Expression (N, Rstat);
6241 return;
6242
6243 -- Similar processing for the case of the right operand. Note that we
6244 -- don't use this routine for the short-circuit case, so we do not have
6245 -- to worry about that special case here.
6246
6247 elsif Raises_Constraint_Error (Op2) then
6248 if not Rstat then
6249 Check_Non_Static_Context (Op1);
6250 end if;
6251
6252 Rewrite_In_Raise_CE (N, Op2);
6253 Set_Is_Static_Expression (N, Rstat);
6254 return;
6255
6256 -- Exclude expressions of a generic modular type, as above
6257
6258 elsif Is_Modular_Integer_Type (Etype (Op1))
6259 and then Is_Generic_Type (Etype (Op1))
6260 then
6261 Check_Non_Static_Context (Op1);
6262 return;
6263
6264 -- If result is not static, then check non-static contexts on operands
6265 -- since one of them may be static and the other one may not be static.
6266
6267 elsif not Rstat then
6268 Check_Non_Static_Context (Op1);
6269 Check_Non_Static_Context (Op2);
6270
6271 if CRT_Safe then
6272 Fold := CRT_Safe_Compile_Time_Known_Value (Op1)
6273 and then CRT_Safe_Compile_Time_Known_Value (Op2);
6274 else
6275 Fold := Compile_Time_Known_Value (Op1)
6276 and then Compile_Time_Known_Value (Op2);
6277 end if;
6278
6279 return;
6280
6281 -- Else result is static and foldable. Both operands are static, and
6282 -- neither raises constraint error, so we can definitely fold.
6283
6284 else
6285 Set_Is_Static_Expression (N);
6286 Fold := True;
6287 Stat := True;
6288 return;
6289 end if;
6290 end Test_Expression_Is_Foldable;
6291
6292 -------------------
6293 -- Test_In_Range --
6294 -------------------
6295
6296 function Test_In_Range
6297 (N : Node_Id;
6298 Typ : Entity_Id;
6299 Assume_Valid : Boolean;
6300 Fixed_Int : Boolean;
6301 Int_Real : Boolean) return Range_Membership
6302 is
6303 Val : Uint;
6304 Valr : Ureal;
6305
6306 pragma Warnings (Off, Assume_Valid);
6307 -- For now Assume_Valid is unreferenced since the current implementation
6308 -- always returns Unknown if N is not a compile time known value, but we
6309 -- keep the parameter to allow for future enhancements in which we try
6310 -- to get the information in the variable case as well.
6311
6312 begin
6313 -- If an error was posted on expression, then return Unknown, we do not
6314 -- want cascaded errors based on some false analysis of a junk node.
6315
6316 if Error_Posted (N) then
6317 return Unknown;
6318
6319 -- Expression that raises constraint error is an odd case. We certainly
6320 -- do not want to consider it to be in range. It might make sense to
6321 -- consider it always out of range, but this causes incorrect error
6322 -- messages about static expressions out of range. So we just return
6323 -- Unknown, which is always safe.
6324
6325 elsif Raises_Constraint_Error (N) then
6326 return Unknown;
6327
6328 -- Universal types have no range limits, so always in range
6329
6330 elsif Typ = Universal_Integer or else Typ = Universal_Real then
6331 return In_Range;
6332
6333 -- Never known if not scalar type. Don't know if this can actually
6334 -- happen, but our spec allows it, so we must check.
6335
6336 elsif not Is_Scalar_Type (Typ) then
6337 return Unknown;
6338
6339 -- Never known if this is a generic type, since the bounds of generic
6340 -- types are junk. Note that if we only checked for static expressions
6341 -- (instead of compile time known values) below, we would not need this
6342 -- check, because values of a generic type can never be static, but they
6343 -- can be known at compile time.
6344
6345 elsif Is_Generic_Type (Typ) then
6346 return Unknown;
6347
6348 -- Case of a known compile time value, where we can check if it is in
6349 -- the bounds of the given type.
6350
6351 elsif Compile_Time_Known_Value (N) then
6352 declare
6353 Lo : Node_Id;
6354 Hi : Node_Id;
6355
6356 LB_Known : Boolean;
6357 HB_Known : Boolean;
6358
6359 begin
6360 Lo := Type_Low_Bound (Typ);
6361 Hi := Type_High_Bound (Typ);
6362
6363 LB_Known := Compile_Time_Known_Value (Lo);
6364 HB_Known := Compile_Time_Known_Value (Hi);
6365
6366 -- Fixed point types should be considered as such only if flag
6367 -- Fixed_Int is set to False.
6368
6369 if Is_Floating_Point_Type (Typ)
6370 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
6371 or else Int_Real
6372 then
6373 Valr := Expr_Value_R (N);
6374
6375 if LB_Known and HB_Known then
6376 if Valr >= Expr_Value_R (Lo)
6377 and then
6378 Valr <= Expr_Value_R (Hi)
6379 then
6380 return In_Range;
6381 else
6382 return Out_Of_Range;
6383 end if;
6384
6385 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
6386 or else
6387 (HB_Known and then Valr > Expr_Value_R (Hi))
6388 then
6389 return Out_Of_Range;
6390
6391 else
6392 return Unknown;
6393 end if;
6394
6395 else
6396 Val := Expr_Value (N);
6397
6398 if LB_Known and HB_Known then
6399 if Val >= Expr_Value (Lo) and then Val <= Expr_Value (Hi)
6400 then
6401 return In_Range;
6402 else
6403 return Out_Of_Range;
6404 end if;
6405
6406 elsif (LB_Known and then Val < Expr_Value (Lo))
6407 or else
6408 (HB_Known and then Val > Expr_Value (Hi))
6409 then
6410 return Out_Of_Range;
6411
6412 else
6413 return Unknown;
6414 end if;
6415 end if;
6416 end;
6417
6418 -- Here for value not known at compile time. Case of expression subtype
6419 -- is Typ or is a subtype of Typ, and we can assume expression is valid.
6420 -- In this case we know it is in range without knowing its value.
6421
6422 elsif Assume_Valid
6423 and then (Etype (N) = Typ or else Is_Subtype_Of (Etype (N), Typ))
6424 then
6425 return In_Range;
6426
6427 -- Another special case. For signed integer types, if the target type
6428 -- has Is_Known_Valid set, and the source type does not have a larger
6429 -- size, then the source value must be in range. We exclude biased
6430 -- types, because they bizarrely can generate out of range values.
6431
6432 elsif Is_Signed_Integer_Type (Etype (N))
6433 and then Is_Known_Valid (Typ)
6434 and then Esize (Etype (N)) <= Esize (Typ)
6435 and then not Has_Biased_Representation (Etype (N))
6436 then
6437 return In_Range;
6438
6439 -- For all other cases, result is unknown
6440
6441 else
6442 return Unknown;
6443 end if;
6444 end Test_In_Range;
6445
6446 --------------
6447 -- To_Bits --
6448 --------------
6449
6450 procedure To_Bits (U : Uint; B : out Bits) is
6451 begin
6452 for J in 0 .. B'Last loop
6453 B (J) := (U / (2 ** J)) mod 2 /= 0;
6454 end loop;
6455 end To_Bits;
6456
6457 --------------------
6458 -- Why_Not_Static --
6459 --------------------
6460
6461 procedure Why_Not_Static (Expr : Node_Id) is
6462 N : constant Node_Id := Original_Node (Expr);
6463 Typ : Entity_Id := Empty;
6464 E : Entity_Id;
6465 Alt : Node_Id;
6466 Exp : Node_Id;
6467
6468 procedure Why_Not_Static_List (L : List_Id);
6469 -- A version that can be called on a list of expressions. Finds all
6470 -- non-static violations in any element of the list.
6471
6472 -------------------------
6473 -- Why_Not_Static_List --
6474 -------------------------
6475
6476 procedure Why_Not_Static_List (L : List_Id) is
6477 N : Node_Id;
6478 begin
6479 if Is_Non_Empty_List (L) then
6480 N := First (L);
6481 while Present (N) loop
6482 Why_Not_Static (N);
6483 Next (N);
6484 end loop;
6485 end if;
6486 end Why_Not_Static_List;
6487
6488 -- Start of processing for Why_Not_Static
6489
6490 begin
6491 -- Ignore call on error or empty node
6492
6493 if No (Expr) or else Nkind (Expr) = N_Error then
6494 return;
6495 end if;
6496
6497 -- Preprocessing for sub expressions
6498
6499 if Nkind (Expr) in N_Subexpr then
6500
6501 -- Nothing to do if expression is static
6502
6503 if Is_OK_Static_Expression (Expr) then
6504 return;
6505 end if;
6506
6507 -- Test for constraint error raised
6508
6509 if Raises_Constraint_Error (Expr) then
6510
6511 -- Special case membership to find out which piece to flag
6512
6513 if Nkind (N) in N_Membership_Test then
6514 if Raises_Constraint_Error (Left_Opnd (N)) then
6515 Why_Not_Static (Left_Opnd (N));
6516 return;
6517
6518 elsif Present (Right_Opnd (N))
6519 and then Raises_Constraint_Error (Right_Opnd (N))
6520 then
6521 Why_Not_Static (Right_Opnd (N));
6522 return;
6523
6524 else
6525 pragma Assert (Present (Alternatives (N)));
6526
6527 Alt := First (Alternatives (N));
6528 while Present (Alt) loop
6529 if Raises_Constraint_Error (Alt) then
6530 Why_Not_Static (Alt);
6531 return;
6532 else
6533 Next (Alt);
6534 end if;
6535 end loop;
6536 end if;
6537
6538 -- Special case a range to find out which bound to flag
6539
6540 elsif Nkind (N) = N_Range then
6541 if Raises_Constraint_Error (Low_Bound (N)) then
6542 Why_Not_Static (Low_Bound (N));
6543 return;
6544
6545 elsif Raises_Constraint_Error (High_Bound (N)) then
6546 Why_Not_Static (High_Bound (N));
6547 return;
6548 end if;
6549
6550 -- Special case attribute to see which part to flag
6551
6552 elsif Nkind (N) = N_Attribute_Reference then
6553 if Raises_Constraint_Error (Prefix (N)) then
6554 Why_Not_Static (Prefix (N));
6555 return;
6556 end if;
6557
6558 if Present (Expressions (N)) then
6559 Exp := First (Expressions (N));
6560 while Present (Exp) loop
6561 if Raises_Constraint_Error (Exp) then
6562 Why_Not_Static (Exp);
6563 return;
6564 end if;
6565
6566 Next (Exp);
6567 end loop;
6568 end if;
6569
6570 -- Special case a subtype name
6571
6572 elsif Is_Entity_Name (Expr) and then Is_Type (Entity (Expr)) then
6573 Error_Msg_NE
6574 ("!& is not a static subtype (RM 4.9(26))", N, Entity (Expr));
6575 return;
6576 end if;
6577
6578 -- End of special cases
6579
6580 Error_Msg_N
6581 ("!expression raises exception, cannot be static (RM 4.9(34))",
6582 N);
6583 return;
6584 end if;
6585
6586 -- If no type, then something is pretty wrong, so ignore
6587
6588 Typ := Etype (Expr);
6589
6590 if No (Typ) then
6591 return;
6592 end if;
6593
6594 -- Type must be scalar or string type (but allow Bignum, since this
6595 -- is really a scalar type from our point of view in this diagnosis).
6596
6597 if not Is_Scalar_Type (Typ)
6598 and then not Is_String_Type (Typ)
6599 and then not Is_RTE (Typ, RE_Bignum)
6600 then
6601 Error_Msg_N
6602 ("!static expression must have scalar or string type " &
6603 "(RM 4.9(2))", N);
6604 return;
6605 end if;
6606 end if;
6607
6608 -- If we got through those checks, test particular node kind
6609
6610 case Nkind (N) is
6611
6612 -- Entity name
6613
6614 when N_Expanded_Name
6615 | N_Identifier
6616 | N_Operator_Symbol
6617 =>
6618 E := Entity (N);
6619
6620 if Is_Named_Number (E) then
6621 null;
6622
6623 elsif Ekind (E) = E_Constant then
6624
6625 -- One case we can give a metter message is when we have a
6626 -- string literal created by concatenating an aggregate with
6627 -- an others expression.
6628
6629 Entity_Case : declare
6630 CV : constant Node_Id := Constant_Value (E);
6631 CO : constant Node_Id := Original_Node (CV);
6632
6633 function Is_Aggregate (N : Node_Id) return Boolean;
6634 -- See if node N came from an others aggregate, if so
6635 -- return True and set Error_Msg_Sloc to aggregate.
6636
6637 ------------------
6638 -- Is_Aggregate --
6639 ------------------
6640
6641 function Is_Aggregate (N : Node_Id) return Boolean is
6642 begin
6643 if Nkind (Original_Node (N)) = N_Aggregate then
6644 Error_Msg_Sloc := Sloc (Original_Node (N));
6645 return True;
6646
6647 elsif Is_Entity_Name (N)
6648 and then Ekind (Entity (N)) = E_Constant
6649 and then
6650 Nkind (Original_Node (Constant_Value (Entity (N)))) =
6651 N_Aggregate
6652 then
6653 Error_Msg_Sloc :=
6654 Sloc (Original_Node (Constant_Value (Entity (N))));
6655 return True;
6656
6657 else
6658 return False;
6659 end if;
6660 end Is_Aggregate;
6661
6662 -- Start of processing for Entity_Case
6663
6664 begin
6665 if Is_Aggregate (CV)
6666 or else (Nkind (CO) = N_Op_Concat
6667 and then (Is_Aggregate (Left_Opnd (CO))
6668 or else
6669 Is_Aggregate (Right_Opnd (CO))))
6670 then
6671 Error_Msg_N ("!aggregate (#) is never static", N);
6672
6673 elsif No (CV) or else not Is_Static_Expression (CV) then
6674 Error_Msg_NE
6675 ("!& is not a static constant (RM 4.9(5))", N, E);
6676 end if;
6677 end Entity_Case;
6678
6679 elsif Is_Type (E) then
6680 Error_Msg_NE
6681 ("!& is not a static subtype (RM 4.9(26))", N, E);
6682
6683 else
6684 Error_Msg_NE
6685 ("!& is not static constant or named number "
6686 & "(RM 4.9(5))", N, E);
6687 end if;
6688
6689 -- Binary operator
6690
6691 when N_Binary_Op
6692 | N_Membership_Test
6693 | N_Short_Circuit
6694 =>
6695 if Nkind (N) in N_Op_Shift then
6696 Error_Msg_N
6697 ("!shift functions are never static (RM 4.9(6,18))", N);
6698 else
6699 Why_Not_Static (Left_Opnd (N));
6700 Why_Not_Static (Right_Opnd (N));
6701 end if;
6702
6703 -- Unary operator
6704
6705 when N_Unary_Op =>
6706 Why_Not_Static (Right_Opnd (N));
6707
6708 -- Attribute reference
6709
6710 when N_Attribute_Reference =>
6711 Why_Not_Static_List (Expressions (N));
6712
6713 E := Etype (Prefix (N));
6714
6715 if E = Standard_Void_Type then
6716 return;
6717 end if;
6718
6719 -- Special case non-scalar'Size since this is a common error
6720
6721 if Attribute_Name (N) = Name_Size then
6722 Error_Msg_N
6723 ("!size attribute is only static for static scalar type "
6724 & "(RM 4.9(7,8))", N);
6725
6726 -- Flag array cases
6727
6728 elsif Is_Array_Type (E) then
6729 if not Nam_In (Attribute_Name (N), Name_First,
6730 Name_Last,
6731 Name_Length)
6732 then
6733 Error_Msg_N
6734 ("!static array attribute must be Length, First, or Last "
6735 & "(RM 4.9(8))", N);
6736
6737 -- Since we know the expression is not-static (we already
6738 -- tested for this, must mean array is not static).
6739
6740 else
6741 Error_Msg_N
6742 ("!prefix is non-static array (RM 4.9(8))", Prefix (N));
6743 end if;
6744
6745 return;
6746
6747 -- Special case generic types, since again this is a common source
6748 -- of confusion.
6749
6750 elsif Is_Generic_Actual_Type (E) or else Is_Generic_Type (E) then
6751 Error_Msg_N
6752 ("!attribute of generic type is never static "
6753 & "(RM 4.9(7,8))", N);
6754
6755 elsif Is_OK_Static_Subtype (E) then
6756 null;
6757
6758 elsif Is_Scalar_Type (E) then
6759 Error_Msg_N
6760 ("!prefix type for attribute is not static scalar subtype "
6761 & "(RM 4.9(7))", N);
6762
6763 else
6764 Error_Msg_N
6765 ("!static attribute must apply to array/scalar type "
6766 & "(RM 4.9(7,8))", N);
6767 end if;
6768
6769 -- String literal
6770
6771 when N_String_Literal =>
6772 Error_Msg_N
6773 ("!subtype of string literal is non-static (RM 4.9(4))", N);
6774
6775 -- Explicit dereference
6776
6777 when N_Explicit_Dereference =>
6778 Error_Msg_N
6779 ("!explicit dereference is never static (RM 4.9)", N);
6780
6781 -- Function call
6782
6783 when N_Function_Call =>
6784 Why_Not_Static_List (Parameter_Associations (N));
6785
6786 -- Complain about non-static function call unless we have Bignum
6787 -- which means that the underlying expression is really some
6788 -- scalar arithmetic operation.
6789
6790 if not Is_RTE (Typ, RE_Bignum) then
6791 Error_Msg_N ("!non-static function call (RM 4.9(6,18))", N);
6792 end if;
6793
6794 -- Parameter assocation (test actual parameter)
6795
6796 when N_Parameter_Association =>
6797 Why_Not_Static (Explicit_Actual_Parameter (N));
6798
6799 -- Indexed component
6800
6801 when N_Indexed_Component =>
6802 Error_Msg_N ("!indexed component is never static (RM 4.9)", N);
6803
6804 -- Procedure call
6805
6806 when N_Procedure_Call_Statement =>
6807 Error_Msg_N ("!procedure call is never static (RM 4.9)", N);
6808
6809 -- Qualified expression (test expression)
6810
6811 when N_Qualified_Expression =>
6812 Why_Not_Static (Expression (N));
6813
6814 -- Aggregate
6815
6816 when N_Aggregate
6817 | N_Extension_Aggregate
6818 =>
6819 Error_Msg_N ("!an aggregate is never static (RM 4.9)", N);
6820
6821 -- Range
6822
6823 when N_Range =>
6824 Why_Not_Static (Low_Bound (N));
6825 Why_Not_Static (High_Bound (N));
6826
6827 -- Range constraint, test range expression
6828
6829 when N_Range_Constraint =>
6830 Why_Not_Static (Range_Expression (N));
6831
6832 -- Subtype indication, test constraint
6833
6834 when N_Subtype_Indication =>
6835 Why_Not_Static (Constraint (N));
6836
6837 -- Selected component
6838
6839 when N_Selected_Component =>
6840 Error_Msg_N ("!selected component is never static (RM 4.9)", N);
6841
6842 -- Slice
6843
6844 when N_Slice =>
6845 Error_Msg_N ("!slice is never static (RM 4.9)", N);
6846
6847 when N_Type_Conversion =>
6848 Why_Not_Static (Expression (N));
6849
6850 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
6851 or else not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
6852 then
6853 Error_Msg_N
6854 ("!static conversion requires static scalar subtype result "
6855 & "(RM 4.9(9))", N);
6856 end if;
6857
6858 -- Unchecked type conversion
6859
6860 when N_Unchecked_Type_Conversion =>
6861 Error_Msg_N
6862 ("!unchecked type conversion is never static (RM 4.9)", N);
6863
6864 -- All other cases, no reason to give
6865
6866 when others =>
6867 null;
6868 end case;
6869 end Why_Not_Static;
6870
6871 end Sem_Eval;