s-rident.ads: Add various missing Ada 2012 restrictions...
[gcc.git] / gcc / ada / sem_res.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Itypes; use Itypes;
41 with Lib; use Lib;
42 with Lib.Xref; use Lib.Xref;
43 with Namet; use Namet;
44 with Nmake; use Nmake;
45 with Nlists; use Nlists;
46 with Opt; use Opt;
47 with Output; use Output;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Aggr; use Sem_Aggr;
54 with Sem_Attr; use Sem_Attr;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch4; use Sem_Ch4;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Dim; use Sem_Dim;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Dist; use Sem_Dist;
63 with Sem_Elim; use Sem_Elim;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Intr; use Sem_Intr;
67 with Sem_Util; use Sem_Util;
68 with Targparm; use Targparm;
69 with Sem_Type; use Sem_Type;
70 with Sem_Warn; use Sem_Warn;
71 with Sinfo; use Sinfo;
72 with Sinfo.CN; use Sinfo.CN;
73 with Snames; use Snames;
74 with Stand; use Stand;
75 with Stringt; use Stringt;
76 with Style; use Style;
77 with Tbuild; use Tbuild;
78 with Uintp; use Uintp;
79 with Urealp; use Urealp;
80
81 package body Sem_Res is
82
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
86
87 -- Second pass (top-down) type checking and overload resolution procedures
88 -- Typ is the type required by context. These procedures propagate the type
89 -- information recursively to the descendants of N. If the node is not
90 -- overloaded, its Etype is established in the first pass. If overloaded,
91 -- the Resolve routines set the correct type. For arith. operators, the
92 -- Etype is the base type of the context.
93
94 -- Note that Resolve_Attribute is separated off in Sem_Attr
95
96 function Bad_Unordered_Enumeration_Reference
97 (N : Node_Id;
98 T : Entity_Id) return Boolean;
99 -- Node N contains a potentially dubious reference to type T, either an
100 -- explicit comparison, or an explicit range. This function returns True
101 -- if the type T is an enumeration type for which No pragma Order has been
102 -- given, and the reference N is not in the same extended source unit as
103 -- the declaration of T.
104
105 procedure Check_Discriminant_Use (N : Node_Id);
106 -- Enforce the restrictions on the use of discriminants when constraining
107 -- a component of a discriminated type (record or concurrent type).
108
109 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
110 -- Given a node for an operator associated with type T, check that
111 -- the operator is visible. Operators all of whose operands are
112 -- universal must be checked for visibility during resolution
113 -- because their type is not determinable based on their operands.
114
115 procedure Check_Fully_Declared_Prefix
116 (Typ : Entity_Id;
117 Pref : Node_Id);
118 -- Check that the type of the prefix of a dereference is not incomplete
119
120 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
121 -- Given a call node, N, which is known to occur immediately within the
122 -- subprogram being called, determines whether it is a detectable case of
123 -- an infinite recursion, and if so, outputs appropriate messages. Returns
124 -- True if an infinite recursion is detected, and False otherwise.
125
126 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
127 -- If the type of the object being initialized uses the secondary stack
128 -- directly or indirectly, create a transient scope for the call to the
129 -- init proc. This is because we do not create transient scopes for the
130 -- initialization of individual components within the init proc itself.
131 -- Could be optimized away perhaps?
132
133 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
134 -- N is the node for a logical operator. If the operator is predefined, and
135 -- the root type of the operands is Standard.Boolean, then a check is made
136 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
137 -- the style check for Style_Check_Boolean_And_Or.
138
139 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
142
143 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
151 -- predicate.
152
153 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
157
158 procedure Resolve_Op_Concat_Arg
159 (N : Node_Id;
160 Arg : Node_Id;
161 Typ : Entity_Id;
162 Is_Comp : Boolean);
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
167
168 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
169 -- Does the first part of the work of Resolve_Op_Concat
170
171 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
174
175 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
209
210 function Operator_Kind
211 (Op_Name : Name_Id;
212 Is_Binary : Boolean) return Node_Kind;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
215
216 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
220
221 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
227
228 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
233
234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235 -- Ditto, for unary operators (arithmetic ones and "not" on signed
236 -- integer types for VMS).
237
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
241
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so
248 -- that operands are resolved properly. Recall that predefined operators
249 -- do not have a full signature and special resolution rules apply.
250
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
257
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is
261 -- not a N_String_Literal node, then the call has no effect.
262
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
265
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Truncation attribute.
270
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
276
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
280
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
283
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
287
288 -- First the ones in Standard
289
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
292
293 -- Include Wide_Wide_Character in Ada 2005 mode
294
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
298
299 -- Now any other types that match
300
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
308
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
312
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
318
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
324
325 -- Versions with check(s) suppressed
326
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
331 is
332 Scop : constant Entity_Id := Current_Scope;
333
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
343
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
353
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
362
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
367
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
371 is
372 Scop : constant Entity_Id := Current_Scope;
373
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
383
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
393
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
399
400 ----------------------------------------
401 -- Bad_Unordered_Enumeration_Reference --
402 ----------------------------------------
403
404 function Bad_Unordered_Enumeration_Reference
405 (N : Node_Id;
406 T : Entity_Id) return Boolean
407 is
408 begin
409 return Is_Enumeration_Type (T)
410 and then Comes_From_Source (N)
411 and then Warn_On_Unordered_Enumeration_Type
412 and then not Has_Pragma_Ordered (T)
413 and then not In_Same_Extended_Unit (N, T);
414 end Bad_Unordered_Enumeration_Reference;
415
416 ----------------------------
417 -- Check_Discriminant_Use --
418 ----------------------------
419
420 procedure Check_Discriminant_Use (N : Node_Id) is
421 PN : constant Node_Id := Parent (N);
422 Disc : constant Entity_Id := Entity (N);
423 P : Node_Id;
424 D : Node_Id;
425
426 begin
427 -- Any use in a spec-expression is legal
428
429 if In_Spec_Expression then
430 null;
431
432 elsif Nkind (PN) = N_Range then
433
434 -- Discriminant cannot be used to constrain a scalar type
435
436 P := Parent (PN);
437
438 if Nkind (P) = N_Range_Constraint
439 and then Nkind (Parent (P)) = N_Subtype_Indication
440 and then Nkind (Parent (Parent (P))) = N_Component_Definition
441 then
442 Error_Msg_N ("discriminant cannot constrain scalar type", N);
443
444 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
445
446 -- The following check catches the unusual case where a
447 -- discriminant appears within an index constraint that is part of
448 -- a larger expression within a constraint on a component, e.g. "C
449 -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
450 -- of record components, and note that a similar check should also
451 -- apply in the case of discriminant constraints below. ???
452
453 -- Note that the check for N_Subtype_Declaration below is to
454 -- detect the valid use of discriminants in the constraints of a
455 -- subtype declaration when this subtype declaration appears
456 -- inside the scope of a record type (which is syntactically
457 -- illegal, but which may be created as part of derived type
458 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
459 -- for more info.
460
461 if Ekind (Current_Scope) = E_Record_Type
462 and then Scope (Disc) = Current_Scope
463 and then not
464 (Nkind (Parent (P)) = N_Subtype_Indication
465 and then
466 Nkind_In (Parent (Parent (P)), N_Component_Definition,
467 N_Subtype_Declaration)
468 and then Paren_Count (N) = 0)
469 then
470 Error_Msg_N
471 ("discriminant must appear alone in component constraint", N);
472 return;
473 end if;
474
475 -- Detect a common error:
476
477 -- type R (D : Positive := 100) is record
478 -- Name : String (1 .. D);
479 -- end record;
480
481 -- The default value causes an object of type R to be allocated
482 -- with room for Positive'Last characters. The RM does not mandate
483 -- the allocation of the maximum size, but that is what GNAT does
484 -- so we should warn the programmer that there is a problem.
485
486 Check_Large : declare
487 SI : Node_Id;
488 T : Entity_Id;
489 TB : Node_Id;
490 CB : Entity_Id;
491
492 function Large_Storage_Type (T : Entity_Id) return Boolean;
493 -- Return True if type T has a large enough range that any
494 -- array whose index type covered the whole range of the type
495 -- would likely raise Storage_Error.
496
497 ------------------------
498 -- Large_Storage_Type --
499 ------------------------
500
501 function Large_Storage_Type (T : Entity_Id) return Boolean is
502 begin
503 -- The type is considered large if its bounds are known at
504 -- compile time and if it requires at least as many bits as
505 -- a Positive to store the possible values.
506
507 return Compile_Time_Known_Value (Type_Low_Bound (T))
508 and then Compile_Time_Known_Value (Type_High_Bound (T))
509 and then
510 Minimum_Size (T, Biased => True) >=
511 RM_Size (Standard_Positive);
512 end Large_Storage_Type;
513
514 -- Start of processing for Check_Large
515
516 begin
517 -- Check that the Disc has a large range
518
519 if not Large_Storage_Type (Etype (Disc)) then
520 goto No_Danger;
521 end if;
522
523 -- If the enclosing type is limited, we allocate only the
524 -- default value, not the maximum, and there is no need for
525 -- a warning.
526
527 if Is_Limited_Type (Scope (Disc)) then
528 goto No_Danger;
529 end if;
530
531 -- Check that it is the high bound
532
533 if N /= High_Bound (PN)
534 or else No (Discriminant_Default_Value (Disc))
535 then
536 goto No_Danger;
537 end if;
538
539 -- Check the array allows a large range at this bound. First
540 -- find the array
541
542 SI := Parent (P);
543
544 if Nkind (SI) /= N_Subtype_Indication then
545 goto No_Danger;
546 end if;
547
548 T := Entity (Subtype_Mark (SI));
549
550 if not Is_Array_Type (T) then
551 goto No_Danger;
552 end if;
553
554 -- Next, find the dimension
555
556 TB := First_Index (T);
557 CB := First (Constraints (P));
558 while True
559 and then Present (TB)
560 and then Present (CB)
561 and then CB /= PN
562 loop
563 Next_Index (TB);
564 Next (CB);
565 end loop;
566
567 if CB /= PN then
568 goto No_Danger;
569 end if;
570
571 -- Now, check the dimension has a large range
572
573 if not Large_Storage_Type (Etype (TB)) then
574 goto No_Danger;
575 end if;
576
577 -- Warn about the danger
578
579 Error_Msg_N
580 ("??creation of & object may raise Storage_Error!",
581 Scope (Disc));
582
583 <<No_Danger>>
584 null;
585
586 end Check_Large;
587 end if;
588
589 -- Legal case is in index or discriminant constraint
590
591 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
592 N_Discriminant_Association)
593 then
594 if Paren_Count (N) > 0 then
595 Error_Msg_N
596 ("discriminant in constraint must appear alone", N);
597
598 elsif Nkind (N) = N_Expanded_Name
599 and then Comes_From_Source (N)
600 then
601 Error_Msg_N
602 ("discriminant must appear alone as a direct name", N);
603 end if;
604
605 return;
606
607 -- Otherwise, context is an expression. It should not be within (i.e. a
608 -- subexpression of) a constraint for a component.
609
610 else
611 D := PN;
612 P := Parent (PN);
613 while not Nkind_In (P, N_Component_Declaration,
614 N_Subtype_Indication,
615 N_Entry_Declaration)
616 loop
617 D := P;
618 P := Parent (P);
619 exit when No (P);
620 end loop;
621
622 -- If the discriminant is used in an expression that is a bound of a
623 -- scalar type, an Itype is created and the bounds are attached to
624 -- its range, not to the original subtype indication. Such use is of
625 -- course a double fault.
626
627 if (Nkind (P) = N_Subtype_Indication
628 and then Nkind_In (Parent (P), N_Component_Definition,
629 N_Derived_Type_Definition)
630 and then D = Constraint (P))
631
632 -- The constraint itself may be given by a subtype indication,
633 -- rather than by a more common discrete range.
634
635 or else (Nkind (P) = N_Subtype_Indication
636 and then
637 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
638 or else Nkind (P) = N_Entry_Declaration
639 or else Nkind (D) = N_Defining_Identifier
640 then
641 Error_Msg_N
642 ("discriminant in constraint must appear alone", N);
643 end if;
644 end if;
645 end Check_Discriminant_Use;
646
647 --------------------------------
648 -- Check_For_Visible_Operator --
649 --------------------------------
650
651 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
652 begin
653 if Is_Invisible_Operator (N, T) then
654 Error_Msg_NE -- CODEFIX
655 ("operator for} is not directly visible!", N, First_Subtype (T));
656 Error_Msg_N -- CODEFIX
657 ("use clause would make operation legal!", N);
658 end if;
659 end Check_For_Visible_Operator;
660
661 ----------------------------------
662 -- Check_Fully_Declared_Prefix --
663 ----------------------------------
664
665 procedure Check_Fully_Declared_Prefix
666 (Typ : Entity_Id;
667 Pref : Node_Id)
668 is
669 begin
670 -- Check that the designated type of the prefix of a dereference is
671 -- not an incomplete type. This cannot be done unconditionally, because
672 -- dereferences of private types are legal in default expressions. This
673 -- case is taken care of in Check_Fully_Declared, called below. There
674 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
675
676 -- This consideration also applies to similar checks for allocators,
677 -- qualified expressions, and type conversions.
678
679 -- An additional exception concerns other per-object expressions that
680 -- are not directly related to component declarations, in particular
681 -- representation pragmas for tasks. These will be per-object
682 -- expressions if they depend on discriminants or some global entity.
683 -- If the task has access discriminants, the designated type may be
684 -- incomplete at the point the expression is resolved. This resolution
685 -- takes place within the body of the initialization procedure, where
686 -- the discriminant is replaced by its discriminal.
687
688 if Is_Entity_Name (Pref)
689 and then Ekind (Entity (Pref)) = E_In_Parameter
690 then
691 null;
692
693 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
694 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
695 -- Analyze_Object_Renaming, and Freeze_Entity.
696
697 elsif Ada_Version >= Ada_2005
698 and then Is_Entity_Name (Pref)
699 and then Is_Access_Type (Etype (Pref))
700 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
701 E_Incomplete_Type
702 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
703 then
704 null;
705 else
706 Check_Fully_Declared (Typ, Parent (Pref));
707 end if;
708 end Check_Fully_Declared_Prefix;
709
710 ------------------------------
711 -- Check_Infinite_Recursion --
712 ------------------------------
713
714 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
715 P : Node_Id;
716 C : Node_Id;
717
718 function Same_Argument_List return Boolean;
719 -- Check whether list of actuals is identical to list of formals of
720 -- called function (which is also the enclosing scope).
721
722 ------------------------
723 -- Same_Argument_List --
724 ------------------------
725
726 function Same_Argument_List return Boolean is
727 A : Node_Id;
728 F : Entity_Id;
729 Subp : Entity_Id;
730
731 begin
732 if not Is_Entity_Name (Name (N)) then
733 return False;
734 else
735 Subp := Entity (Name (N));
736 end if;
737
738 F := First_Formal (Subp);
739 A := First_Actual (N);
740 while Present (F) and then Present (A) loop
741 if not Is_Entity_Name (A)
742 or else Entity (A) /= F
743 then
744 return False;
745 end if;
746
747 Next_Actual (A);
748 Next_Formal (F);
749 end loop;
750
751 return True;
752 end Same_Argument_List;
753
754 -- Start of processing for Check_Infinite_Recursion
755
756 begin
757 -- Special case, if this is a procedure call and is a call to the
758 -- current procedure with the same argument list, then this is for
759 -- sure an infinite recursion and we insert a call to raise SE.
760
761 if Is_List_Member (N)
762 and then List_Length (List_Containing (N)) = 1
763 and then Same_Argument_List
764 then
765 declare
766 P : constant Node_Id := Parent (N);
767 begin
768 if Nkind (P) = N_Handled_Sequence_Of_Statements
769 and then Nkind (Parent (P)) = N_Subprogram_Body
770 and then Is_Empty_List (Declarations (Parent (P)))
771 then
772 Error_Msg_N ("!??infinite recursion", N);
773 Error_Msg_N ("\!??Storage_Error will be raised at run time", N);
774 Insert_Action (N,
775 Make_Raise_Storage_Error (Sloc (N),
776 Reason => SE_Infinite_Recursion));
777 return True;
778 end if;
779 end;
780 end if;
781
782 -- If not that special case, search up tree, quitting if we reach a
783 -- construct (e.g. a conditional) that tells us that this is not a
784 -- case for an infinite recursion warning.
785
786 C := N;
787 loop
788 P := Parent (C);
789
790 -- If no parent, then we were not inside a subprogram, this can for
791 -- example happen when processing certain pragmas in a spec. Just
792 -- return False in this case.
793
794 if No (P) then
795 return False;
796 end if;
797
798 -- Done if we get to subprogram body, this is definitely an infinite
799 -- recursion case if we did not find anything to stop us.
800
801 exit when Nkind (P) = N_Subprogram_Body;
802
803 -- If appearing in conditional, result is false
804
805 if Nkind_In (P, N_Or_Else,
806 N_And_Then,
807 N_Case_Expression,
808 N_Case_Statement,
809 N_If_Expression,
810 N_If_Statement)
811 then
812 return False;
813
814 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
815 and then C /= First (Statements (P))
816 then
817 -- If the call is the expression of a return statement and the
818 -- actuals are identical to the formals, it's worth a warning.
819 -- However, we skip this if there is an immediately preceding
820 -- raise statement, since the call is never executed.
821
822 -- Furthermore, this corresponds to a common idiom:
823
824 -- function F (L : Thing) return Boolean is
825 -- begin
826 -- raise Program_Error;
827 -- return F (L);
828 -- end F;
829
830 -- for generating a stub function
831
832 if Nkind (Parent (N)) = N_Simple_Return_Statement
833 and then Same_Argument_List
834 then
835 exit when not Is_List_Member (Parent (N));
836
837 -- OK, return statement is in a statement list, look for raise
838
839 declare
840 Nod : Node_Id;
841
842 begin
843 -- Skip past N_Freeze_Entity nodes generated by expansion
844
845 Nod := Prev (Parent (N));
846 while Present (Nod)
847 and then Nkind (Nod) = N_Freeze_Entity
848 loop
849 Prev (Nod);
850 end loop;
851
852 -- If no raise statement, give warning. We look at the
853 -- original node, because in the case of "raise ... with
854 -- ...", the node has been transformed into a call.
855
856 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
857 and then
858 (Nkind (Nod) not in N_Raise_xxx_Error
859 or else Present (Condition (Nod)));
860 end;
861 end if;
862
863 return False;
864
865 else
866 C := P;
867 end if;
868 end loop;
869
870 Error_Msg_N ("!??possible infinite recursion", N);
871 Error_Msg_N ("\!??Storage_Error may be raised at run time", N);
872
873 return True;
874 end Check_Infinite_Recursion;
875
876 -------------------------------
877 -- Check_Initialization_Call --
878 -------------------------------
879
880 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
881 Typ : constant Entity_Id := Etype (First_Formal (Nam));
882
883 function Uses_SS (T : Entity_Id) return Boolean;
884 -- Check whether the creation of an object of the type will involve
885 -- use of the secondary stack. If T is a record type, this is true
886 -- if the expression for some component uses the secondary stack, e.g.
887 -- through a call to a function that returns an unconstrained value.
888 -- False if T is controlled, because cleanups occur elsewhere.
889
890 -------------
891 -- Uses_SS --
892 -------------
893
894 function Uses_SS (T : Entity_Id) return Boolean is
895 Comp : Entity_Id;
896 Expr : Node_Id;
897 Full_Type : Entity_Id := Underlying_Type (T);
898
899 begin
900 -- Normally we want to use the underlying type, but if it's not set
901 -- then continue with T.
902
903 if not Present (Full_Type) then
904 Full_Type := T;
905 end if;
906
907 if Is_Controlled (Full_Type) then
908 return False;
909
910 elsif Is_Array_Type (Full_Type) then
911 return Uses_SS (Component_Type (Full_Type));
912
913 elsif Is_Record_Type (Full_Type) then
914 Comp := First_Component (Full_Type);
915 while Present (Comp) loop
916 if Ekind (Comp) = E_Component
917 and then Nkind (Parent (Comp)) = N_Component_Declaration
918 then
919 -- The expression for a dynamic component may be rewritten
920 -- as a dereference, so retrieve original node.
921
922 Expr := Original_Node (Expression (Parent (Comp)));
923
924 -- Return True if the expression is a call to a function
925 -- (including an attribute function such as Image, or a
926 -- user-defined operator) with a result that requires a
927 -- transient scope.
928
929 if (Nkind (Expr) = N_Function_Call
930 or else Nkind (Expr) in N_Op
931 or else (Nkind (Expr) = N_Attribute_Reference
932 and then Present (Expressions (Expr))))
933 and then Requires_Transient_Scope (Etype (Expr))
934 then
935 return True;
936
937 elsif Uses_SS (Etype (Comp)) then
938 return True;
939 end if;
940 end if;
941
942 Next_Component (Comp);
943 end loop;
944
945 return False;
946
947 else
948 return False;
949 end if;
950 end Uses_SS;
951
952 -- Start of processing for Check_Initialization_Call
953
954 begin
955 -- Establish a transient scope if the type needs it
956
957 if Uses_SS (Typ) then
958 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
959 end if;
960 end Check_Initialization_Call;
961
962 ---------------------------------------
963 -- Check_No_Direct_Boolean_Operators --
964 ---------------------------------------
965
966 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
967 begin
968 if Scope (Entity (N)) = Standard_Standard
969 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
970 then
971 -- Restriction only applies to original source code
972
973 if Comes_From_Source (N) then
974 Check_Restriction (No_Direct_Boolean_Operators, N);
975 end if;
976 end if;
977
978 if Style_Check then
979 Check_Boolean_Operator (N);
980 end if;
981 end Check_No_Direct_Boolean_Operators;
982
983 ------------------------------
984 -- Check_Parameterless_Call --
985 ------------------------------
986
987 procedure Check_Parameterless_Call (N : Node_Id) is
988 Nam : Node_Id;
989
990 function Prefix_Is_Access_Subp return Boolean;
991 -- If the prefix is of an access_to_subprogram type, the node must be
992 -- rewritten as a call. Ditto if the prefix is overloaded and all its
993 -- interpretations are access to subprograms.
994
995 ---------------------------
996 -- Prefix_Is_Access_Subp --
997 ---------------------------
998
999 function Prefix_Is_Access_Subp return Boolean is
1000 I : Interp_Index;
1001 It : Interp;
1002
1003 begin
1004 -- If the context is an attribute reference that can apply to
1005 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1006
1007 if Nkind (Parent (N)) = N_Attribute_Reference
1008 and then (Attribute_Name (Parent (N)) = Name_Address or else
1009 Attribute_Name (Parent (N)) = Name_Code_Address or else
1010 Attribute_Name (Parent (N)) = Name_Access)
1011 then
1012 return False;
1013 end if;
1014
1015 if not Is_Overloaded (N) then
1016 return
1017 Ekind (Etype (N)) = E_Subprogram_Type
1018 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1019 else
1020 Get_First_Interp (N, I, It);
1021 while Present (It.Typ) loop
1022 if Ekind (It.Typ) /= E_Subprogram_Type
1023 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1024 then
1025 return False;
1026 end if;
1027
1028 Get_Next_Interp (I, It);
1029 end loop;
1030
1031 return True;
1032 end if;
1033 end Prefix_Is_Access_Subp;
1034
1035 -- Start of processing for Check_Parameterless_Call
1036
1037 begin
1038 -- Defend against junk stuff if errors already detected
1039
1040 if Total_Errors_Detected /= 0 then
1041 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1042 return;
1043 elsif Nkind (N) in N_Has_Chars
1044 and then Chars (N) in Error_Name_Or_No_Name
1045 then
1046 return;
1047 end if;
1048
1049 Require_Entity (N);
1050 end if;
1051
1052 -- If the context expects a value, and the name is a procedure, this is
1053 -- most likely a missing 'Access. Don't try to resolve the parameterless
1054 -- call, error will be caught when the outer call is analyzed.
1055
1056 if Is_Entity_Name (N)
1057 and then Ekind (Entity (N)) = E_Procedure
1058 and then not Is_Overloaded (N)
1059 and then
1060 Nkind_In (Parent (N), N_Parameter_Association,
1061 N_Function_Call,
1062 N_Procedure_Call_Statement)
1063 then
1064 return;
1065 end if;
1066
1067 -- Rewrite as call if overloadable entity that is (or could be, in the
1068 -- overloaded case) a function call. If we know for sure that the entity
1069 -- is an enumeration literal, we do not rewrite it.
1070
1071 -- If the entity is the name of an operator, it cannot be a call because
1072 -- operators cannot have default parameters. In this case, this must be
1073 -- a string whose contents coincide with an operator name. Set the kind
1074 -- of the node appropriately.
1075
1076 if (Is_Entity_Name (N)
1077 and then Nkind (N) /= N_Operator_Symbol
1078 and then Is_Overloadable (Entity (N))
1079 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1080 or else Is_Overloaded (N)))
1081
1082 -- Rewrite as call if it is an explicit dereference of an expression of
1083 -- a subprogram access type, and the subprogram type is not that of a
1084 -- procedure or entry.
1085
1086 or else
1087 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1088
1089 -- Rewrite as call if it is a selected component which is a function,
1090 -- this is the case of a call to a protected function (which may be
1091 -- overloaded with other protected operations).
1092
1093 or else
1094 (Nkind (N) = N_Selected_Component
1095 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1096 or else
1097 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1098 E_Procedure)
1099 and then Is_Overloaded (Selector_Name (N)))))
1100
1101 -- If one of the above three conditions is met, rewrite as call. Apply
1102 -- the rewriting only once.
1103
1104 then
1105 if Nkind (Parent (N)) /= N_Function_Call
1106 or else N /= Name (Parent (N))
1107 then
1108
1109 -- This may be a prefixed call that was not fully analyzed, e.g.
1110 -- an actual in an instance.
1111
1112 if Ada_Version >= Ada_2005
1113 and then Nkind (N) = N_Selected_Component
1114 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1115 then
1116 Analyze_Selected_Component (N);
1117
1118 if Nkind (N) /= N_Selected_Component then
1119 return;
1120 end if;
1121 end if;
1122
1123 Nam := New_Copy (N);
1124
1125 -- If overloaded, overload set belongs to new copy
1126
1127 Save_Interps (N, Nam);
1128
1129 -- Change node to parameterless function call (note that the
1130 -- Parameter_Associations associations field is left set to Empty,
1131 -- its normal default value since there are no parameters)
1132
1133 Change_Node (N, N_Function_Call);
1134 Set_Name (N, Nam);
1135 Set_Sloc (N, Sloc (Nam));
1136 Analyze_Call (N);
1137 end if;
1138
1139 elsif Nkind (N) = N_Parameter_Association then
1140 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1141
1142 elsif Nkind (N) = N_Operator_Symbol then
1143 Change_Operator_Symbol_To_String_Literal (N);
1144 Set_Is_Overloaded (N, False);
1145 Set_Etype (N, Any_String);
1146 end if;
1147 end Check_Parameterless_Call;
1148
1149 -----------------------------
1150 -- Is_Definite_Access_Type --
1151 -----------------------------
1152
1153 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1154 Btyp : constant Entity_Id := Base_Type (E);
1155 begin
1156 return Ekind (Btyp) = E_Access_Type
1157 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1158 and then Comes_From_Source (Btyp));
1159 end Is_Definite_Access_Type;
1160
1161 ----------------------
1162 -- Is_Predefined_Op --
1163 ----------------------
1164
1165 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1166 begin
1167 -- Predefined operators are intrinsic subprograms
1168
1169 if not Is_Intrinsic_Subprogram (Nam) then
1170 return False;
1171 end if;
1172
1173 -- A call to a back-end builtin is never a predefined operator
1174
1175 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1176 return False;
1177 end if;
1178
1179 return not Is_Generic_Instance (Nam)
1180 and then Chars (Nam) in Any_Operator_Name
1181 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1182 end Is_Predefined_Op;
1183
1184 -----------------------------
1185 -- Make_Call_Into_Operator --
1186 -----------------------------
1187
1188 procedure Make_Call_Into_Operator
1189 (N : Node_Id;
1190 Typ : Entity_Id;
1191 Op_Id : Entity_Id)
1192 is
1193 Op_Name : constant Name_Id := Chars (Op_Id);
1194 Act1 : Node_Id := First_Actual (N);
1195 Act2 : Node_Id := Next_Actual (Act1);
1196 Error : Boolean := False;
1197 Func : constant Entity_Id := Entity (Name (N));
1198 Is_Binary : constant Boolean := Present (Act2);
1199 Op_Node : Node_Id;
1200 Opnd_Type : Entity_Id;
1201 Orig_Type : Entity_Id := Empty;
1202 Pack : Entity_Id;
1203
1204 type Kind_Test is access function (E : Entity_Id) return Boolean;
1205
1206 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1207 -- If the operand is not universal, and the operator is given by an
1208 -- expanded name, verify that the operand has an interpretation with a
1209 -- type defined in the given scope of the operator.
1210
1211 function Type_In_P (Test : Kind_Test) return Entity_Id;
1212 -- Find a type of the given class in package Pack that contains the
1213 -- operator.
1214
1215 ---------------------------
1216 -- Operand_Type_In_Scope --
1217 ---------------------------
1218
1219 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1220 Nod : constant Node_Id := Right_Opnd (Op_Node);
1221 I : Interp_Index;
1222 It : Interp;
1223
1224 begin
1225 if not Is_Overloaded (Nod) then
1226 return Scope (Base_Type (Etype (Nod))) = S;
1227
1228 else
1229 Get_First_Interp (Nod, I, It);
1230 while Present (It.Typ) loop
1231 if Scope (Base_Type (It.Typ)) = S then
1232 return True;
1233 end if;
1234
1235 Get_Next_Interp (I, It);
1236 end loop;
1237
1238 return False;
1239 end if;
1240 end Operand_Type_In_Scope;
1241
1242 ---------------
1243 -- Type_In_P --
1244 ---------------
1245
1246 function Type_In_P (Test : Kind_Test) return Entity_Id is
1247 E : Entity_Id;
1248
1249 function In_Decl return Boolean;
1250 -- Verify that node is not part of the type declaration for the
1251 -- candidate type, which would otherwise be invisible.
1252
1253 -------------
1254 -- In_Decl --
1255 -------------
1256
1257 function In_Decl return Boolean is
1258 Decl_Node : constant Node_Id := Parent (E);
1259 N2 : Node_Id;
1260
1261 begin
1262 N2 := N;
1263
1264 if Etype (E) = Any_Type then
1265 return True;
1266
1267 elsif No (Decl_Node) then
1268 return False;
1269
1270 else
1271 while Present (N2)
1272 and then Nkind (N2) /= N_Compilation_Unit
1273 loop
1274 if N2 = Decl_Node then
1275 return True;
1276 else
1277 N2 := Parent (N2);
1278 end if;
1279 end loop;
1280
1281 return False;
1282 end if;
1283 end In_Decl;
1284
1285 -- Start of processing for Type_In_P
1286
1287 begin
1288 -- If the context type is declared in the prefix package, this is the
1289 -- desired base type.
1290
1291 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1292 return Base_Type (Typ);
1293
1294 else
1295 E := First_Entity (Pack);
1296 while Present (E) loop
1297 if Test (E)
1298 and then not In_Decl
1299 then
1300 return E;
1301 end if;
1302
1303 Next_Entity (E);
1304 end loop;
1305
1306 return Empty;
1307 end if;
1308 end Type_In_P;
1309
1310 -- Start of processing for Make_Call_Into_Operator
1311
1312 begin
1313 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1314
1315 -- Binary operator
1316
1317 if Is_Binary then
1318 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1319 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1320 Save_Interps (Act1, Left_Opnd (Op_Node));
1321 Save_Interps (Act2, Right_Opnd (Op_Node));
1322 Act1 := Left_Opnd (Op_Node);
1323 Act2 := Right_Opnd (Op_Node);
1324
1325 -- Unary operator
1326
1327 else
1328 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1329 Save_Interps (Act1, Right_Opnd (Op_Node));
1330 Act1 := Right_Opnd (Op_Node);
1331 end if;
1332
1333 -- If the operator is denoted by an expanded name, and the prefix is
1334 -- not Standard, but the operator is a predefined one whose scope is
1335 -- Standard, then this is an implicit_operator, inserted as an
1336 -- interpretation by the procedure of the same name. This procedure
1337 -- overestimates the presence of implicit operators, because it does
1338 -- not examine the type of the operands. Verify now that the operand
1339 -- type appears in the given scope. If right operand is universal,
1340 -- check the other operand. In the case of concatenation, either
1341 -- argument can be the component type, so check the type of the result.
1342 -- If both arguments are literals, look for a type of the right kind
1343 -- defined in the given scope. This elaborate nonsense is brought to
1344 -- you courtesy of b33302a. The type itself must be frozen, so we must
1345 -- find the type of the proper class in the given scope.
1346
1347 -- A final wrinkle is the multiplication operator for fixed point types,
1348 -- which is defined in Standard only, and not in the scope of the
1349 -- fixed point type itself.
1350
1351 if Nkind (Name (N)) = N_Expanded_Name then
1352 Pack := Entity (Prefix (Name (N)));
1353
1354 -- If this is a package renaming, get renamed entity, which will be
1355 -- the scope of the operands if operaton is type-correct.
1356
1357 if Present (Renamed_Entity (Pack)) then
1358 Pack := Renamed_Entity (Pack);
1359 end if;
1360
1361 -- If the entity being called is defined in the given package, it is
1362 -- a renaming of a predefined operator, and known to be legal.
1363
1364 if Scope (Entity (Name (N))) = Pack
1365 and then Pack /= Standard_Standard
1366 then
1367 null;
1368
1369 -- Visibility does not need to be checked in an instance: if the
1370 -- operator was not visible in the generic it has been diagnosed
1371 -- already, else there is an implicit copy of it in the instance.
1372
1373 elsif In_Instance then
1374 null;
1375
1376 elsif (Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide)
1377 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1378 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1379 then
1380 if Pack /= Standard_Standard then
1381 Error := True;
1382 end if;
1383
1384 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1385 -- available.
1386
1387 elsif Ada_Version >= Ada_2005
1388 and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1389 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1390 then
1391 null;
1392
1393 else
1394 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1395
1396 if Op_Name = Name_Op_Concat then
1397 Opnd_Type := Base_Type (Typ);
1398
1399 elsif (Scope (Opnd_Type) = Standard_Standard
1400 and then Is_Binary)
1401 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1402 and then Is_Binary
1403 and then not Comes_From_Source (Opnd_Type))
1404 then
1405 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1406 end if;
1407
1408 if Scope (Opnd_Type) = Standard_Standard then
1409
1410 -- Verify that the scope contains a type that corresponds to
1411 -- the given literal. Optimize the case where Pack is Standard.
1412
1413 if Pack /= Standard_Standard then
1414
1415 if Opnd_Type = Universal_Integer then
1416 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1417
1418 elsif Opnd_Type = Universal_Real then
1419 Orig_Type := Type_In_P (Is_Real_Type'Access);
1420
1421 elsif Opnd_Type = Any_String then
1422 Orig_Type := Type_In_P (Is_String_Type'Access);
1423
1424 elsif Opnd_Type = Any_Access then
1425 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1426
1427 elsif Opnd_Type = Any_Composite then
1428 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1429
1430 if Present (Orig_Type) then
1431 if Has_Private_Component (Orig_Type) then
1432 Orig_Type := Empty;
1433 else
1434 Set_Etype (Act1, Orig_Type);
1435
1436 if Is_Binary then
1437 Set_Etype (Act2, Orig_Type);
1438 end if;
1439 end if;
1440 end if;
1441
1442 else
1443 Orig_Type := Empty;
1444 end if;
1445
1446 Error := No (Orig_Type);
1447 end if;
1448
1449 elsif Ekind (Opnd_Type) = E_Allocator_Type
1450 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1451 then
1452 Error := True;
1453
1454 -- If the type is defined elsewhere, and the operator is not
1455 -- defined in the given scope (by a renaming declaration, e.g.)
1456 -- then this is an error as well. If an extension of System is
1457 -- present, and the type may be defined there, Pack must be
1458 -- System itself.
1459
1460 elsif Scope (Opnd_Type) /= Pack
1461 and then Scope (Op_Id) /= Pack
1462 and then (No (System_Aux_Id)
1463 or else Scope (Opnd_Type) /= System_Aux_Id
1464 or else Pack /= Scope (System_Aux_Id))
1465 then
1466 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1467 Error := True;
1468 else
1469 Error := not Operand_Type_In_Scope (Pack);
1470 end if;
1471
1472 elsif Pack = Standard_Standard
1473 and then not Operand_Type_In_Scope (Standard_Standard)
1474 then
1475 Error := True;
1476 end if;
1477 end if;
1478
1479 if Error then
1480 Error_Msg_Node_2 := Pack;
1481 Error_Msg_NE
1482 ("& not declared in&", N, Selector_Name (Name (N)));
1483 Set_Etype (N, Any_Type);
1484 return;
1485
1486 -- Detect a mismatch between the context type and the result type
1487 -- in the named package, which is otherwise not detected if the
1488 -- operands are universal. Check is only needed if source entity is
1489 -- an operator, not a function that renames an operator.
1490
1491 elsif Nkind (Parent (N)) /= N_Type_Conversion
1492 and then Ekind (Entity (Name (N))) = E_Operator
1493 and then Is_Numeric_Type (Typ)
1494 and then not Is_Universal_Numeric_Type (Typ)
1495 and then Scope (Base_Type (Typ)) /= Pack
1496 and then not In_Instance
1497 then
1498 if Is_Fixed_Point_Type (Typ)
1499 and then (Op_Name = Name_Op_Multiply
1500 or else
1501 Op_Name = Name_Op_Divide)
1502 then
1503 -- Already checked above
1504
1505 null;
1506
1507 -- Operator may be defined in an extension of System
1508
1509 elsif Present (System_Aux_Id)
1510 and then Scope (Opnd_Type) = System_Aux_Id
1511 then
1512 null;
1513
1514 else
1515 -- Could we use Wrong_Type here??? (this would require setting
1516 -- Etype (N) to the actual type found where Typ was expected).
1517
1518 Error_Msg_NE ("expect }", N, Typ);
1519 end if;
1520 end if;
1521 end if;
1522
1523 Set_Chars (Op_Node, Op_Name);
1524
1525 if not Is_Private_Type (Etype (N)) then
1526 Set_Etype (Op_Node, Base_Type (Etype (N)));
1527 else
1528 Set_Etype (Op_Node, Etype (N));
1529 end if;
1530
1531 -- If this is a call to a function that renames a predefined equality,
1532 -- the renaming declaration provides a type that must be used to
1533 -- resolve the operands. This must be done now because resolution of
1534 -- the equality node will not resolve any remaining ambiguity, and it
1535 -- assumes that the first operand is not overloaded.
1536
1537 if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1538 and then Ekind (Func) = E_Function
1539 and then Is_Overloaded (Act1)
1540 then
1541 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1542 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1543 end if;
1544
1545 Set_Entity (Op_Node, Op_Id);
1546 Generate_Reference (Op_Id, N, ' ');
1547
1548 -- Do rewrite setting Comes_From_Source on the result if the original
1549 -- call came from source. Although it is not strictly the case that the
1550 -- operator as such comes from the source, logically it corresponds
1551 -- exactly to the function call in the source, so it should be marked
1552 -- this way (e.g. to make sure that validity checks work fine).
1553
1554 declare
1555 CS : constant Boolean := Comes_From_Source (N);
1556 begin
1557 Rewrite (N, Op_Node);
1558 Set_Comes_From_Source (N, CS);
1559 end;
1560
1561 -- If this is an arithmetic operator and the result type is private,
1562 -- the operands and the result must be wrapped in conversion to
1563 -- expose the underlying numeric type and expand the proper checks,
1564 -- e.g. on division.
1565
1566 if Is_Private_Type (Typ) then
1567 case Nkind (N) is
1568 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1569 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1570 Resolve_Intrinsic_Operator (N, Typ);
1571
1572 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1573 Resolve_Intrinsic_Unary_Operator (N, Typ);
1574
1575 when others =>
1576 Resolve (N, Typ);
1577 end case;
1578 else
1579 Resolve (N, Typ);
1580 end if;
1581 end Make_Call_Into_Operator;
1582
1583 -------------------
1584 -- Operator_Kind --
1585 -------------------
1586
1587 function Operator_Kind
1588 (Op_Name : Name_Id;
1589 Is_Binary : Boolean) return Node_Kind
1590 is
1591 Kind : Node_Kind;
1592
1593 begin
1594 -- Use CASE statement or array???
1595
1596 if Is_Binary then
1597 if Op_Name = Name_Op_And then
1598 Kind := N_Op_And;
1599 elsif Op_Name = Name_Op_Or then
1600 Kind := N_Op_Or;
1601 elsif Op_Name = Name_Op_Xor then
1602 Kind := N_Op_Xor;
1603 elsif Op_Name = Name_Op_Eq then
1604 Kind := N_Op_Eq;
1605 elsif Op_Name = Name_Op_Ne then
1606 Kind := N_Op_Ne;
1607 elsif Op_Name = Name_Op_Lt then
1608 Kind := N_Op_Lt;
1609 elsif Op_Name = Name_Op_Le then
1610 Kind := N_Op_Le;
1611 elsif Op_Name = Name_Op_Gt then
1612 Kind := N_Op_Gt;
1613 elsif Op_Name = Name_Op_Ge then
1614 Kind := N_Op_Ge;
1615 elsif Op_Name = Name_Op_Add then
1616 Kind := N_Op_Add;
1617 elsif Op_Name = Name_Op_Subtract then
1618 Kind := N_Op_Subtract;
1619 elsif Op_Name = Name_Op_Concat then
1620 Kind := N_Op_Concat;
1621 elsif Op_Name = Name_Op_Multiply then
1622 Kind := N_Op_Multiply;
1623 elsif Op_Name = Name_Op_Divide then
1624 Kind := N_Op_Divide;
1625 elsif Op_Name = Name_Op_Mod then
1626 Kind := N_Op_Mod;
1627 elsif Op_Name = Name_Op_Rem then
1628 Kind := N_Op_Rem;
1629 elsif Op_Name = Name_Op_Expon then
1630 Kind := N_Op_Expon;
1631 else
1632 raise Program_Error;
1633 end if;
1634
1635 -- Unary operators
1636
1637 else
1638 if Op_Name = Name_Op_Add then
1639 Kind := N_Op_Plus;
1640 elsif Op_Name = Name_Op_Subtract then
1641 Kind := N_Op_Minus;
1642 elsif Op_Name = Name_Op_Abs then
1643 Kind := N_Op_Abs;
1644 elsif Op_Name = Name_Op_Not then
1645 Kind := N_Op_Not;
1646 else
1647 raise Program_Error;
1648 end if;
1649 end if;
1650
1651 return Kind;
1652 end Operator_Kind;
1653
1654 ----------------------------
1655 -- Preanalyze_And_Resolve --
1656 ----------------------------
1657
1658 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1659 Save_Full_Analysis : constant Boolean := Full_Analysis;
1660
1661 begin
1662 Full_Analysis := False;
1663 Expander_Mode_Save_And_Set (False);
1664
1665 -- Normally, we suppress all checks for this preanalysis. There is no
1666 -- point in processing them now, since they will be applied properly
1667 -- and in the proper location when the default expressions reanalyzed
1668 -- and reexpanded later on. We will also have more information at that
1669 -- point for possible suppression of individual checks.
1670
1671 -- However, in Alfa mode, most expansion is suppressed, and this
1672 -- later reanalysis and reexpansion may not occur. Alfa mode does
1673 -- require the setting of checking flags for proof purposes, so we
1674 -- do the Alfa preanalysis without suppressing checks.
1675
1676 -- This special handling for Alfa mode is required for example in the
1677 -- case of Ada 2012 constructs such as quantified expressions, which are
1678 -- expanded in two separate steps.
1679
1680 if Alfa_Mode then
1681 Analyze_And_Resolve (N, T);
1682 else
1683 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1684 end if;
1685
1686 Expander_Mode_Restore;
1687 Full_Analysis := Save_Full_Analysis;
1688 end Preanalyze_And_Resolve;
1689
1690 -- Version without context type
1691
1692 procedure Preanalyze_And_Resolve (N : Node_Id) is
1693 Save_Full_Analysis : constant Boolean := Full_Analysis;
1694
1695 begin
1696 Full_Analysis := False;
1697 Expander_Mode_Save_And_Set (False);
1698
1699 Analyze (N);
1700 Resolve (N, Etype (N), Suppress => All_Checks);
1701
1702 Expander_Mode_Restore;
1703 Full_Analysis := Save_Full_Analysis;
1704 end Preanalyze_And_Resolve;
1705
1706 ----------------------------------
1707 -- Replace_Actual_Discriminants --
1708 ----------------------------------
1709
1710 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1711 Loc : constant Source_Ptr := Sloc (N);
1712 Tsk : Node_Id := Empty;
1713
1714 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1715 -- Comment needed???
1716
1717 -------------------
1718 -- Process_Discr --
1719 -------------------
1720
1721 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1722 Ent : Entity_Id;
1723
1724 begin
1725 if Nkind (Nod) = N_Identifier then
1726 Ent := Entity (Nod);
1727
1728 if Present (Ent)
1729 and then Ekind (Ent) = E_Discriminant
1730 then
1731 Rewrite (Nod,
1732 Make_Selected_Component (Loc,
1733 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1734 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1735
1736 Set_Etype (Nod, Etype (Ent));
1737 end if;
1738
1739 end if;
1740
1741 return OK;
1742 end Process_Discr;
1743
1744 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1745
1746 -- Start of processing for Replace_Actual_Discriminants
1747
1748 begin
1749 if not Full_Expander_Active then
1750 return;
1751 end if;
1752
1753 if Nkind (Name (N)) = N_Selected_Component then
1754 Tsk := Prefix (Name (N));
1755
1756 elsif Nkind (Name (N)) = N_Indexed_Component then
1757 Tsk := Prefix (Prefix (Name (N)));
1758 end if;
1759
1760 if No (Tsk) then
1761 return;
1762 else
1763 Replace_Discrs (Default);
1764 end if;
1765 end Replace_Actual_Discriminants;
1766
1767 -------------
1768 -- Resolve --
1769 -------------
1770
1771 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1772 Ambiguous : Boolean := False;
1773 Ctx_Type : Entity_Id := Typ;
1774 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1775 Err_Type : Entity_Id := Empty;
1776 Found : Boolean := False;
1777 From_Lib : Boolean;
1778 I : Interp_Index;
1779 I1 : Interp_Index := 0; -- prevent junk warning
1780 It : Interp;
1781 It1 : Interp;
1782 Seen : Entity_Id := Empty; -- prevent junk warning
1783
1784 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1785 -- Determine whether a node comes from a predefined library unit or
1786 -- Standard.
1787
1788 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1789 -- Try and fix up a literal so that it matches its expected type. New
1790 -- literals are manufactured if necessary to avoid cascaded errors.
1791
1792 function Proper_Current_Scope return Entity_Id;
1793 -- Return the current scope. Skip loop scopes created for the purpose of
1794 -- quantified expression analysis since those do not appear in the tree.
1795
1796 procedure Report_Ambiguous_Argument;
1797 -- Additional diagnostics when an ambiguous call has an ambiguous
1798 -- argument (typically a controlling actual).
1799
1800 procedure Resolution_Failed;
1801 -- Called when attempt at resolving current expression fails
1802
1803 ------------------------------------
1804 -- Comes_From_Predefined_Lib_Unit --
1805 -------------------------------------
1806
1807 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1808 begin
1809 return
1810 Sloc (Nod) = Standard_Location
1811 or else Is_Predefined_File_Name
1812 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1813 end Comes_From_Predefined_Lib_Unit;
1814
1815 --------------------
1816 -- Patch_Up_Value --
1817 --------------------
1818
1819 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1820 begin
1821 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1822 Rewrite (N,
1823 Make_Real_Literal (Sloc (N),
1824 Realval => UR_From_Uint (Intval (N))));
1825 Set_Etype (N, Universal_Real);
1826 Set_Is_Static_Expression (N);
1827
1828 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1829 Rewrite (N,
1830 Make_Integer_Literal (Sloc (N),
1831 Intval => UR_To_Uint (Realval (N))));
1832 Set_Etype (N, Universal_Integer);
1833 Set_Is_Static_Expression (N);
1834
1835 elsif Nkind (N) = N_String_Literal
1836 and then Is_Character_Type (Typ)
1837 then
1838 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1839 Rewrite (N,
1840 Make_Character_Literal (Sloc (N),
1841 Chars => Name_Find,
1842 Char_Literal_Value =>
1843 UI_From_Int (Character'Pos ('A'))));
1844 Set_Etype (N, Any_Character);
1845 Set_Is_Static_Expression (N);
1846
1847 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1848 Rewrite (N,
1849 Make_String_Literal (Sloc (N),
1850 Strval => End_String));
1851
1852 elsif Nkind (N) = N_Range then
1853 Patch_Up_Value (Low_Bound (N), Typ);
1854 Patch_Up_Value (High_Bound (N), Typ);
1855 end if;
1856 end Patch_Up_Value;
1857
1858 --------------------------
1859 -- Proper_Current_Scope --
1860 --------------------------
1861
1862 function Proper_Current_Scope return Entity_Id is
1863 S : Entity_Id := Current_Scope;
1864
1865 begin
1866 while Present (S) loop
1867
1868 -- Skip a loop scope created for quantified expression analysis
1869
1870 if Ekind (S) = E_Loop
1871 and then Nkind (Parent (S)) = N_Quantified_Expression
1872 then
1873 S := Scope (S);
1874 else
1875 exit;
1876 end if;
1877 end loop;
1878
1879 return S;
1880 end Proper_Current_Scope;
1881
1882 -------------------------------
1883 -- Report_Ambiguous_Argument --
1884 -------------------------------
1885
1886 procedure Report_Ambiguous_Argument is
1887 Arg : constant Node_Id := First (Parameter_Associations (N));
1888 I : Interp_Index;
1889 It : Interp;
1890
1891 begin
1892 if Nkind (Arg) = N_Function_Call
1893 and then Is_Entity_Name (Name (Arg))
1894 and then Is_Overloaded (Name (Arg))
1895 then
1896 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1897
1898 -- Could use comments on what is going on here???
1899
1900 Get_First_Interp (Name (Arg), I, It);
1901 while Present (It.Nam) loop
1902 Error_Msg_Sloc := Sloc (It.Nam);
1903
1904 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1905 Error_Msg_N ("interpretation (inherited) #!", Arg);
1906 else
1907 Error_Msg_N ("interpretation #!", Arg);
1908 end if;
1909
1910 Get_Next_Interp (I, It);
1911 end loop;
1912 end if;
1913 end Report_Ambiguous_Argument;
1914
1915 -----------------------
1916 -- Resolution_Failed --
1917 -----------------------
1918
1919 procedure Resolution_Failed is
1920 begin
1921 Patch_Up_Value (N, Typ);
1922 Set_Etype (N, Typ);
1923 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1924 Set_Is_Overloaded (N, False);
1925
1926 -- The caller will return without calling the expander, so we need
1927 -- to set the analyzed flag. Note that it is fine to set Analyzed
1928 -- to True even if we are in the middle of a shallow analysis,
1929 -- (see the spec of sem for more details) since this is an error
1930 -- situation anyway, and there is no point in repeating the
1931 -- analysis later (indeed it won't work to repeat it later, since
1932 -- we haven't got a clear resolution of which entity is being
1933 -- referenced.)
1934
1935 Set_Analyzed (N, True);
1936 return;
1937 end Resolution_Failed;
1938
1939 -- Start of processing for Resolve
1940
1941 begin
1942 if N = Error then
1943 return;
1944 end if;
1945
1946 -- Access attribute on remote subprogram cannot be used for a non-remote
1947 -- access-to-subprogram type.
1948
1949 if Nkind (N) = N_Attribute_Reference
1950 and then (Attribute_Name (N) = Name_Access or else
1951 Attribute_Name (N) = Name_Unrestricted_Access or else
1952 Attribute_Name (N) = Name_Unchecked_Access)
1953 and then Comes_From_Source (N)
1954 and then Is_Entity_Name (Prefix (N))
1955 and then Is_Subprogram (Entity (Prefix (N)))
1956 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1957 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1958 then
1959 Error_Msg_N
1960 ("prefix must statically denote a non-remote subprogram", N);
1961 end if;
1962
1963 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1964
1965 -- If the context is a Remote_Access_To_Subprogram, access attributes
1966 -- must be resolved with the corresponding fat pointer. There is no need
1967 -- to check for the attribute name since the return type of an
1968 -- attribute is never a remote type.
1969
1970 if Nkind (N) = N_Attribute_Reference
1971 and then Comes_From_Source (N)
1972 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
1973 then
1974 declare
1975 Attr : constant Attribute_Id :=
1976 Get_Attribute_Id (Attribute_Name (N));
1977 Pref : constant Node_Id := Prefix (N);
1978 Decl : Node_Id;
1979 Spec : Node_Id;
1980 Is_Remote : Boolean := True;
1981
1982 begin
1983 -- Check that Typ is a remote access-to-subprogram type
1984
1985 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1986
1987 -- Prefix (N) must statically denote a remote subprogram
1988 -- declared in a package specification.
1989
1990 if Attr = Attribute_Access or else
1991 Attr = Attribute_Unchecked_Access or else
1992 Attr = Attribute_Unrestricted_Access
1993 then
1994 Decl := Unit_Declaration_Node (Entity (Pref));
1995
1996 if Nkind (Decl) = N_Subprogram_Body then
1997 Spec := Corresponding_Spec (Decl);
1998
1999 if not No (Spec) then
2000 Decl := Unit_Declaration_Node (Spec);
2001 end if;
2002 end if;
2003
2004 Spec := Parent (Decl);
2005
2006 if not Is_Entity_Name (Prefix (N))
2007 or else Nkind (Spec) /= N_Package_Specification
2008 or else
2009 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2010 then
2011 Is_Remote := False;
2012 Error_Msg_N
2013 ("prefix must statically denote a remote subprogram ",
2014 N);
2015 end if;
2016
2017 -- If we are generating code in distributed mode, perform
2018 -- semantic checks against corresponding remote entities.
2019
2020 if Full_Expander_Active
2021 and then Get_PCS_Name /= Name_No_DSA
2022 then
2023 Check_Subtype_Conformant
2024 (New_Id => Entity (Prefix (N)),
2025 Old_Id => Designated_Type
2026 (Corresponding_Remote_Type (Typ)),
2027 Err_Loc => N);
2028
2029 if Is_Remote then
2030 Process_Remote_AST_Attribute (N, Typ);
2031 end if;
2032 end if;
2033 end if;
2034 end if;
2035 end;
2036 end if;
2037
2038 Debug_A_Entry ("resolving ", N);
2039
2040 if Debug_Flag_V then
2041 Write_Overloads (N);
2042 end if;
2043
2044 if Comes_From_Source (N) then
2045 if Is_Fixed_Point_Type (Typ) then
2046 Check_Restriction (No_Fixed_Point, N);
2047
2048 elsif Is_Floating_Point_Type (Typ)
2049 and then Typ /= Universal_Real
2050 and then Typ /= Any_Real
2051 then
2052 Check_Restriction (No_Floating_Point, N);
2053 end if;
2054 end if;
2055
2056 -- Return if already analyzed
2057
2058 if Analyzed (N) then
2059 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2060 Analyze_Dimension (N);
2061 return;
2062
2063 -- A Raise_Expression takes its type from context. The Etype was set
2064 -- to Any_Type, reflecting the fact that the expression itself does
2065 -- not specify any possible interpretation. So we set the type to the
2066 -- resolution type here and now. We need to do this before Resolve sees
2067 -- the Any_Type value.
2068
2069 elsif Nkind (N) = N_Raise_Expression then
2070 Set_Etype (N, Typ);
2071
2072 -- Any other case of Any_Type as the Etype value means that we had
2073 -- a previous error.
2074
2075 elsif Etype (N) = Any_Type then
2076 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2077 return;
2078 end if;
2079
2080 Check_Parameterless_Call (N);
2081
2082 -- If not overloaded, then we know the type, and all that needs doing
2083 -- is to check that this type is compatible with the context.
2084
2085 if not Is_Overloaded (N) then
2086 Found := Covers (Typ, Etype (N));
2087 Expr_Type := Etype (N);
2088
2089 -- In the overloaded case, we must select the interpretation that
2090 -- is compatible with the context (i.e. the type passed to Resolve)
2091
2092 else
2093 -- Loop through possible interpretations
2094
2095 Get_First_Interp (N, I, It);
2096 Interp_Loop : while Present (It.Typ) loop
2097
2098 if Debug_Flag_V then
2099 Write_Str ("Interp: ");
2100 Write_Interp (It);
2101 end if;
2102
2103 -- We are only interested in interpretations that are compatible
2104 -- with the expected type, any other interpretations are ignored.
2105
2106 if not Covers (Typ, It.Typ) then
2107 if Debug_Flag_V then
2108 Write_Str (" interpretation incompatible with context");
2109 Write_Eol;
2110 end if;
2111
2112 else
2113 -- Skip the current interpretation if it is disabled by an
2114 -- abstract operator. This action is performed only when the
2115 -- type against which we are resolving is the same as the
2116 -- type of the interpretation.
2117
2118 if Ada_Version >= Ada_2005
2119 and then It.Typ = Typ
2120 and then Typ /= Universal_Integer
2121 and then Typ /= Universal_Real
2122 and then Present (It.Abstract_Op)
2123 then
2124 if Debug_Flag_V then
2125 Write_Line ("Skip.");
2126 end if;
2127
2128 goto Continue;
2129 end if;
2130
2131 -- First matching interpretation
2132
2133 if not Found then
2134 Found := True;
2135 I1 := I;
2136 Seen := It.Nam;
2137 Expr_Type := It.Typ;
2138
2139 -- Matching interpretation that is not the first, maybe an
2140 -- error, but there are some cases where preference rules are
2141 -- used to choose between the two possibilities. These and
2142 -- some more obscure cases are handled in Disambiguate.
2143
2144 else
2145 -- If the current statement is part of a predefined library
2146 -- unit, then all interpretations which come from user level
2147 -- packages should not be considered.
2148
2149 if From_Lib
2150 and then not Comes_From_Predefined_Lib_Unit (It.Nam)
2151 then
2152 goto Continue;
2153 end if;
2154
2155 Error_Msg_Sloc := Sloc (Seen);
2156 It1 := Disambiguate (N, I1, I, Typ);
2157
2158 -- Disambiguation has succeeded. Skip the remaining
2159 -- interpretations.
2160
2161 if It1 /= No_Interp then
2162 Seen := It1.Nam;
2163 Expr_Type := It1.Typ;
2164
2165 while Present (It.Typ) loop
2166 Get_Next_Interp (I, It);
2167 end loop;
2168
2169 else
2170 -- Before we issue an ambiguity complaint, check for
2171 -- the case of a subprogram call where at least one
2172 -- of the arguments is Any_Type, and if so, suppress
2173 -- the message, since it is a cascaded error.
2174
2175 if Nkind (N) in N_Subprogram_Call then
2176 declare
2177 A : Node_Id;
2178 E : Node_Id;
2179
2180 begin
2181 A := First_Actual (N);
2182 while Present (A) loop
2183 E := A;
2184
2185 if Nkind (E) = N_Parameter_Association then
2186 E := Explicit_Actual_Parameter (E);
2187 end if;
2188
2189 if Etype (E) = Any_Type then
2190 if Debug_Flag_V then
2191 Write_Str ("Any_Type in call");
2192 Write_Eol;
2193 end if;
2194
2195 exit Interp_Loop;
2196 end if;
2197
2198 Next_Actual (A);
2199 end loop;
2200 end;
2201
2202 elsif Nkind (N) in N_Binary_Op
2203 and then (Etype (Left_Opnd (N)) = Any_Type
2204 or else Etype (Right_Opnd (N)) = Any_Type)
2205 then
2206 exit Interp_Loop;
2207
2208 elsif Nkind (N) in N_Unary_Op
2209 and then Etype (Right_Opnd (N)) = Any_Type
2210 then
2211 exit Interp_Loop;
2212 end if;
2213
2214 -- Not that special case, so issue message using the
2215 -- flag Ambiguous to control printing of the header
2216 -- message only at the start of an ambiguous set.
2217
2218 if not Ambiguous then
2219 if Nkind (N) = N_Function_Call
2220 and then Nkind (Name (N)) = N_Explicit_Dereference
2221 then
2222 Error_Msg_N
2223 ("ambiguous expression "
2224 & "(cannot resolve indirect call)!", N);
2225 else
2226 Error_Msg_NE -- CODEFIX
2227 ("ambiguous expression (cannot resolve&)!",
2228 N, It.Nam);
2229 end if;
2230
2231 Ambiguous := True;
2232
2233 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2234 Error_Msg_N
2235 ("\\possible interpretation (inherited)#!", N);
2236 else
2237 Error_Msg_N -- CODEFIX
2238 ("\\possible interpretation#!", N);
2239 end if;
2240
2241 if Nkind (N) in N_Subprogram_Call
2242 and then Present (Parameter_Associations (N))
2243 then
2244 Report_Ambiguous_Argument;
2245 end if;
2246 end if;
2247
2248 Error_Msg_Sloc := Sloc (It.Nam);
2249
2250 -- By default, the error message refers to the candidate
2251 -- interpretation. But if it is a predefined operator, it
2252 -- is implicitly declared at the declaration of the type
2253 -- of the operand. Recover the sloc of that declaration
2254 -- for the error message.
2255
2256 if Nkind (N) in N_Op
2257 and then Scope (It.Nam) = Standard_Standard
2258 and then not Is_Overloaded (Right_Opnd (N))
2259 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2260 Standard_Standard
2261 then
2262 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2263
2264 if Comes_From_Source (Err_Type)
2265 and then Present (Parent (Err_Type))
2266 then
2267 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2268 end if;
2269
2270 elsif Nkind (N) in N_Binary_Op
2271 and then Scope (It.Nam) = Standard_Standard
2272 and then not Is_Overloaded (Left_Opnd (N))
2273 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2274 Standard_Standard
2275 then
2276 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2277
2278 if Comes_From_Source (Err_Type)
2279 and then Present (Parent (Err_Type))
2280 then
2281 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2282 end if;
2283
2284 -- If this is an indirect call, use the subprogram_type
2285 -- in the message, to have a meaningful location. Also
2286 -- indicate if this is an inherited operation, created
2287 -- by a type declaration.
2288
2289 elsif Nkind (N) = N_Function_Call
2290 and then Nkind (Name (N)) = N_Explicit_Dereference
2291 and then Is_Type (It.Nam)
2292 then
2293 Err_Type := It.Nam;
2294 Error_Msg_Sloc :=
2295 Sloc (Associated_Node_For_Itype (Err_Type));
2296 else
2297 Err_Type := Empty;
2298 end if;
2299
2300 if Nkind (N) in N_Op
2301 and then Scope (It.Nam) = Standard_Standard
2302 and then Present (Err_Type)
2303 then
2304 -- Special-case the message for universal_fixed
2305 -- operators, which are not declared with the type
2306 -- of the operand, but appear forever in Standard.
2307
2308 if It.Typ = Universal_Fixed
2309 and then Scope (It.Nam) = Standard_Standard
2310 then
2311 Error_Msg_N
2312 ("\\possible interpretation as universal_fixed "
2313 & "operation (RM 4.5.5 (19))", N);
2314 else
2315 Error_Msg_N
2316 ("\\possible interpretation (predefined)#!", N);
2317 end if;
2318
2319 elsif
2320 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2321 then
2322 Error_Msg_N
2323 ("\\possible interpretation (inherited)#!", N);
2324 else
2325 Error_Msg_N -- CODEFIX
2326 ("\\possible interpretation#!", N);
2327 end if;
2328
2329 end if;
2330 end if;
2331
2332 -- We have a matching interpretation, Expr_Type is the type
2333 -- from this interpretation, and Seen is the entity.
2334
2335 -- For an operator, just set the entity name. The type will be
2336 -- set by the specific operator resolution routine.
2337
2338 if Nkind (N) in N_Op then
2339 Set_Entity (N, Seen);
2340 Generate_Reference (Seen, N);
2341
2342 elsif Nkind (N) = N_Case_Expression then
2343 Set_Etype (N, Expr_Type);
2344
2345 elsif Nkind (N) = N_Character_Literal then
2346 Set_Etype (N, Expr_Type);
2347
2348 elsif Nkind (N) = N_If_Expression then
2349 Set_Etype (N, Expr_Type);
2350
2351 -- AI05-0139-2: Expression is overloaded because type has
2352 -- implicit dereference. If type matches context, no implicit
2353 -- dereference is involved.
2354
2355 elsif Has_Implicit_Dereference (Expr_Type) then
2356 Set_Etype (N, Expr_Type);
2357 Set_Is_Overloaded (N, False);
2358 exit Interp_Loop;
2359
2360 elsif Is_Overloaded (N)
2361 and then Present (It.Nam)
2362 and then Ekind (It.Nam) = E_Discriminant
2363 and then Has_Implicit_Dereference (It.Nam)
2364 then
2365 Build_Explicit_Dereference (N, It.Nam);
2366
2367 -- For an explicit dereference, attribute reference, range,
2368 -- short-circuit form (which is not an operator node), or call
2369 -- with a name that is an explicit dereference, there is
2370 -- nothing to be done at this point.
2371
2372 elsif Nkind_In (N, N_Explicit_Dereference,
2373 N_Attribute_Reference,
2374 N_And_Then,
2375 N_Indexed_Component,
2376 N_Or_Else,
2377 N_Range,
2378 N_Selected_Component,
2379 N_Slice)
2380 or else Nkind (Name (N)) = N_Explicit_Dereference
2381 then
2382 null;
2383
2384 -- For procedure or function calls, set the type of the name,
2385 -- and also the entity pointer for the prefix.
2386
2387 elsif Nkind (N) in N_Subprogram_Call
2388 and then Is_Entity_Name (Name (N))
2389 then
2390 Set_Etype (Name (N), Expr_Type);
2391 Set_Entity (Name (N), Seen);
2392 Generate_Reference (Seen, Name (N));
2393
2394 elsif Nkind (N) = N_Function_Call
2395 and then Nkind (Name (N)) = N_Selected_Component
2396 then
2397 Set_Etype (Name (N), Expr_Type);
2398 Set_Entity (Selector_Name (Name (N)), Seen);
2399 Generate_Reference (Seen, Selector_Name (Name (N)));
2400
2401 -- For all other cases, just set the type of the Name
2402
2403 else
2404 Set_Etype (Name (N), Expr_Type);
2405 end if;
2406
2407 end if;
2408
2409 <<Continue>>
2410
2411 -- Move to next interpretation
2412
2413 exit Interp_Loop when No (It.Typ);
2414
2415 Get_Next_Interp (I, It);
2416 end loop Interp_Loop;
2417 end if;
2418
2419 -- At this stage Found indicates whether or not an acceptable
2420 -- interpretation exists. If not, then we have an error, except that if
2421 -- the context is Any_Type as a result of some other error, then we
2422 -- suppress the error report.
2423
2424 if not Found then
2425 if Typ /= Any_Type then
2426
2427 -- If type we are looking for is Void, then this is the procedure
2428 -- call case, and the error is simply that what we gave is not a
2429 -- procedure name (we think of procedure calls as expressions with
2430 -- types internally, but the user doesn't think of them this way!)
2431
2432 if Typ = Standard_Void_Type then
2433
2434 -- Special case message if function used as a procedure
2435
2436 if Nkind (N) = N_Procedure_Call_Statement
2437 and then Is_Entity_Name (Name (N))
2438 and then Ekind (Entity (Name (N))) = E_Function
2439 then
2440 Error_Msg_NE
2441 ("cannot use function & in a procedure call",
2442 Name (N), Entity (Name (N)));
2443
2444 -- Otherwise give general message (not clear what cases this
2445 -- covers, but no harm in providing for them!)
2446
2447 else
2448 Error_Msg_N ("expect procedure name in procedure call", N);
2449 end if;
2450
2451 Found := True;
2452
2453 -- Otherwise we do have a subexpression with the wrong type
2454
2455 -- Check for the case of an allocator which uses an access type
2456 -- instead of the designated type. This is a common error and we
2457 -- specialize the message, posting an error on the operand of the
2458 -- allocator, complaining that we expected the designated type of
2459 -- the allocator.
2460
2461 elsif Nkind (N) = N_Allocator
2462 and then Ekind (Typ) in Access_Kind
2463 and then Ekind (Etype (N)) in Access_Kind
2464 and then Designated_Type (Etype (N)) = Typ
2465 then
2466 Wrong_Type (Expression (N), Designated_Type (Typ));
2467 Found := True;
2468
2469 -- Check for view mismatch on Null in instances, for which the
2470 -- view-swapping mechanism has no identifier.
2471
2472 elsif (In_Instance or else In_Inlined_Body)
2473 and then (Nkind (N) = N_Null)
2474 and then Is_Private_Type (Typ)
2475 and then Is_Access_Type (Full_View (Typ))
2476 then
2477 Resolve (N, Full_View (Typ));
2478 Set_Etype (N, Typ);
2479 return;
2480
2481 -- Check for an aggregate. Sometimes we can get bogus aggregates
2482 -- from misuse of parentheses, and we are about to complain about
2483 -- the aggregate without even looking inside it.
2484
2485 -- Instead, if we have an aggregate of type Any_Composite, then
2486 -- analyze and resolve the component fields, and then only issue
2487 -- another message if we get no errors doing this (otherwise
2488 -- assume that the errors in the aggregate caused the problem).
2489
2490 elsif Nkind (N) = N_Aggregate
2491 and then Etype (N) = Any_Composite
2492 then
2493 -- Disable expansion in any case. If there is a type mismatch
2494 -- it may be fatal to try to expand the aggregate. The flag
2495 -- would otherwise be set to false when the error is posted.
2496
2497 Expander_Active := False;
2498
2499 declare
2500 procedure Check_Aggr (Aggr : Node_Id);
2501 -- Check one aggregate, and set Found to True if we have a
2502 -- definite error in any of its elements
2503
2504 procedure Check_Elmt (Aelmt : Node_Id);
2505 -- Check one element of aggregate and set Found to True if
2506 -- we definitely have an error in the element.
2507
2508 ----------------
2509 -- Check_Aggr --
2510 ----------------
2511
2512 procedure Check_Aggr (Aggr : Node_Id) is
2513 Elmt : Node_Id;
2514
2515 begin
2516 if Present (Expressions (Aggr)) then
2517 Elmt := First (Expressions (Aggr));
2518 while Present (Elmt) loop
2519 Check_Elmt (Elmt);
2520 Next (Elmt);
2521 end loop;
2522 end if;
2523
2524 if Present (Component_Associations (Aggr)) then
2525 Elmt := First (Component_Associations (Aggr));
2526 while Present (Elmt) loop
2527
2528 -- If this is a default-initialized component, then
2529 -- there is nothing to check. The box will be
2530 -- replaced by the appropriate call during late
2531 -- expansion.
2532
2533 if not Box_Present (Elmt) then
2534 Check_Elmt (Expression (Elmt));
2535 end if;
2536
2537 Next (Elmt);
2538 end loop;
2539 end if;
2540 end Check_Aggr;
2541
2542 ----------------
2543 -- Check_Elmt --
2544 ----------------
2545
2546 procedure Check_Elmt (Aelmt : Node_Id) is
2547 begin
2548 -- If we have a nested aggregate, go inside it (to
2549 -- attempt a naked analyze-resolve of the aggregate can
2550 -- cause undesirable cascaded errors). Do not resolve
2551 -- expression if it needs a type from context, as for
2552 -- integer * fixed expression.
2553
2554 if Nkind (Aelmt) = N_Aggregate then
2555 Check_Aggr (Aelmt);
2556
2557 else
2558 Analyze (Aelmt);
2559
2560 if not Is_Overloaded (Aelmt)
2561 and then Etype (Aelmt) /= Any_Fixed
2562 then
2563 Resolve (Aelmt);
2564 end if;
2565
2566 if Etype (Aelmt) = Any_Type then
2567 Found := True;
2568 end if;
2569 end if;
2570 end Check_Elmt;
2571
2572 begin
2573 Check_Aggr (N);
2574 end;
2575 end if;
2576
2577 -- If an error message was issued already, Found got reset to
2578 -- True, so if it is still False, issue standard Wrong_Type msg.
2579
2580 if not Found then
2581 if Is_Overloaded (N)
2582 and then Nkind (N) = N_Function_Call
2583 then
2584 declare
2585 Subp_Name : Node_Id;
2586 begin
2587 if Is_Entity_Name (Name (N)) then
2588 Subp_Name := Name (N);
2589
2590 elsif Nkind (Name (N)) = N_Selected_Component then
2591
2592 -- Protected operation: retrieve operation name
2593
2594 Subp_Name := Selector_Name (Name (N));
2595
2596 else
2597 raise Program_Error;
2598 end if;
2599
2600 Error_Msg_Node_2 := Typ;
2601 Error_Msg_NE
2602 ("no visible interpretation of& "
2603 & "matches expected type&", N, Subp_Name);
2604 end;
2605
2606 if All_Errors_Mode then
2607 declare
2608 Index : Interp_Index;
2609 It : Interp;
2610
2611 begin
2612 Error_Msg_N ("\\possible interpretations:", N);
2613
2614 Get_First_Interp (Name (N), Index, It);
2615 while Present (It.Nam) loop
2616 Error_Msg_Sloc := Sloc (It.Nam);
2617 Error_Msg_Node_2 := It.Nam;
2618 Error_Msg_NE
2619 ("\\ type& for & declared#", N, It.Typ);
2620 Get_Next_Interp (Index, It);
2621 end loop;
2622 end;
2623
2624 else
2625 Error_Msg_N ("\use -gnatf for details", N);
2626 end if;
2627
2628 else
2629 Wrong_Type (N, Typ);
2630 end if;
2631 end if;
2632 end if;
2633
2634 Resolution_Failed;
2635 return;
2636
2637 -- Test if we have more than one interpretation for the context
2638
2639 elsif Ambiguous then
2640 Resolution_Failed;
2641 return;
2642
2643 -- Only one intepretation
2644
2645 else
2646 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2647 -- the "+" on T is abstract, and the operands are of universal type,
2648 -- the above code will have (incorrectly) resolved the "+" to the
2649 -- universal one in Standard. Therefore check for this case and give
2650 -- an error. We can't do this earlier, because it would cause legal
2651 -- cases to get errors (when some other type has an abstract "+").
2652
2653 if Ada_Version >= Ada_2005
2654 and then Nkind (N) in N_Op
2655 and then Is_Overloaded (N)
2656 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2657 then
2658 Get_First_Interp (N, I, It);
2659 while Present (It.Typ) loop
2660 if Present (It.Abstract_Op) and then
2661 Etype (It.Abstract_Op) = Typ
2662 then
2663 Error_Msg_NE
2664 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2665 return;
2666 end if;
2667
2668 Get_Next_Interp (I, It);
2669 end loop;
2670 end if;
2671
2672 -- Here we have an acceptable interpretation for the context
2673
2674 -- Propagate type information and normalize tree for various
2675 -- predefined operations. If the context only imposes a class of
2676 -- types, rather than a specific type, propagate the actual type
2677 -- downward.
2678
2679 if Typ = Any_Integer or else
2680 Typ = Any_Boolean or else
2681 Typ = Any_Modular or else
2682 Typ = Any_Real or else
2683 Typ = Any_Discrete
2684 then
2685 Ctx_Type := Expr_Type;
2686
2687 -- Any_Fixed is legal in a real context only if a specific fixed-
2688 -- point type is imposed. If Norman Cohen can be confused by this,
2689 -- it deserves a separate message.
2690
2691 if Typ = Any_Real
2692 and then Expr_Type = Any_Fixed
2693 then
2694 Error_Msg_N ("illegal context for mixed mode operation", N);
2695 Set_Etype (N, Universal_Real);
2696 Ctx_Type := Universal_Real;
2697 end if;
2698 end if;
2699
2700 -- A user-defined operator is transformed into a function call at
2701 -- this point, so that further processing knows that operators are
2702 -- really operators (i.e. are predefined operators). User-defined
2703 -- operators that are intrinsic are just renamings of the predefined
2704 -- ones, and need not be turned into calls either, but if they rename
2705 -- a different operator, we must transform the node accordingly.
2706 -- Instantiations of Unchecked_Conversion are intrinsic but are
2707 -- treated as functions, even if given an operator designator.
2708
2709 if Nkind (N) in N_Op
2710 and then Present (Entity (N))
2711 and then Ekind (Entity (N)) /= E_Operator
2712 then
2713
2714 if not Is_Predefined_Op (Entity (N)) then
2715 Rewrite_Operator_As_Call (N, Entity (N));
2716
2717 elsif Present (Alias (Entity (N)))
2718 and then
2719 Nkind (Parent (Parent (Entity (N)))) =
2720 N_Subprogram_Renaming_Declaration
2721 then
2722 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2723
2724 -- If the node is rewritten, it will be fully resolved in
2725 -- Rewrite_Renamed_Operator.
2726
2727 if Analyzed (N) then
2728 return;
2729 end if;
2730 end if;
2731 end if;
2732
2733 case N_Subexpr'(Nkind (N)) is
2734
2735 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2736
2737 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2738
2739 when N_Short_Circuit
2740 => Resolve_Short_Circuit (N, Ctx_Type);
2741
2742 when N_Attribute_Reference
2743 => Resolve_Attribute (N, Ctx_Type);
2744
2745 when N_Case_Expression
2746 => Resolve_Case_Expression (N, Ctx_Type);
2747
2748 when N_Character_Literal
2749 => Resolve_Character_Literal (N, Ctx_Type);
2750
2751 when N_Expanded_Name
2752 => Resolve_Entity_Name (N, Ctx_Type);
2753
2754 when N_Explicit_Dereference
2755 => Resolve_Explicit_Dereference (N, Ctx_Type);
2756
2757 when N_Expression_With_Actions
2758 => Resolve_Expression_With_Actions (N, Ctx_Type);
2759
2760 when N_Extension_Aggregate
2761 => Resolve_Extension_Aggregate (N, Ctx_Type);
2762
2763 when N_Function_Call
2764 => Resolve_Call (N, Ctx_Type);
2765
2766 when N_Identifier
2767 => Resolve_Entity_Name (N, Ctx_Type);
2768
2769 when N_If_Expression
2770 => Resolve_If_Expression (N, Ctx_Type);
2771
2772 when N_Indexed_Component
2773 => Resolve_Indexed_Component (N, Ctx_Type);
2774
2775 when N_Integer_Literal
2776 => Resolve_Integer_Literal (N, Ctx_Type);
2777
2778 when N_Membership_Test
2779 => Resolve_Membership_Op (N, Ctx_Type);
2780
2781 when N_Null => Resolve_Null (N, Ctx_Type);
2782
2783 when N_Op_And | N_Op_Or | N_Op_Xor
2784 => Resolve_Logical_Op (N, Ctx_Type);
2785
2786 when N_Op_Eq | N_Op_Ne
2787 => Resolve_Equality_Op (N, Ctx_Type);
2788
2789 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2790 => Resolve_Comparison_Op (N, Ctx_Type);
2791
2792 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2793
2794 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2795 N_Op_Divide | N_Op_Mod | N_Op_Rem
2796
2797 => Resolve_Arithmetic_Op (N, Ctx_Type);
2798
2799 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2800
2801 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2802
2803 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2804 => Resolve_Unary_Op (N, Ctx_Type);
2805
2806 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2807
2808 when N_Procedure_Call_Statement
2809 => Resolve_Call (N, Ctx_Type);
2810
2811 when N_Operator_Symbol
2812 => Resolve_Operator_Symbol (N, Ctx_Type);
2813
2814 when N_Qualified_Expression
2815 => Resolve_Qualified_Expression (N, Ctx_Type);
2816
2817 -- Why is the following null, needs a comment ???
2818
2819 when N_Quantified_Expression
2820 => null;
2821
2822 -- Nothing to do for Raise_Expression, since we took care of
2823 -- setting the Etype earlier, and no other processing is needed.
2824
2825 when N_Raise_Expression
2826 => null;
2827
2828 when N_Raise_xxx_Error
2829 => Set_Etype (N, Ctx_Type);
2830
2831 when N_Range => Resolve_Range (N, Ctx_Type);
2832
2833 when N_Real_Literal
2834 => Resolve_Real_Literal (N, Ctx_Type);
2835
2836 when N_Reference => Resolve_Reference (N, Ctx_Type);
2837
2838 when N_Selected_Component
2839 => Resolve_Selected_Component (N, Ctx_Type);
2840
2841 when N_Slice => Resolve_Slice (N, Ctx_Type);
2842
2843 when N_String_Literal
2844 => Resolve_String_Literal (N, Ctx_Type);
2845
2846 when N_Subprogram_Info
2847 => Resolve_Subprogram_Info (N, Ctx_Type);
2848
2849 when N_Type_Conversion
2850 => Resolve_Type_Conversion (N, Ctx_Type);
2851
2852 when N_Unchecked_Expression =>
2853 Resolve_Unchecked_Expression (N, Ctx_Type);
2854
2855 when N_Unchecked_Type_Conversion =>
2856 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2857 end case;
2858
2859 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2860 -- expression of an anonymous access type that occurs in the context
2861 -- of a named general access type, except when the expression is that
2862 -- of a membership test. This ensures proper legality checking in
2863 -- terms of allowed conversions (expressions that would be illegal to
2864 -- convert implicitly are allowed in membership tests).
2865
2866 if Ada_Version >= Ada_2012
2867 and then Ekind (Ctx_Type) = E_General_Access_Type
2868 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2869 and then Nkind (Parent (N)) not in N_Membership_Test
2870 then
2871 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2872 Analyze_And_Resolve (N, Ctx_Type);
2873 end if;
2874
2875 -- If the subexpression was replaced by a non-subexpression, then
2876 -- all we do is to expand it. The only legitimate case we know of
2877 -- is converting procedure call statement to entry call statements,
2878 -- but there may be others, so we are making this test general.
2879
2880 if Nkind (N) not in N_Subexpr then
2881 Debug_A_Exit ("resolving ", N, " (done)");
2882 Expand (N);
2883 return;
2884 end if;
2885
2886 -- The expression is definitely NOT overloaded at this point, so
2887 -- we reset the Is_Overloaded flag to avoid any confusion when
2888 -- reanalyzing the node.
2889
2890 Set_Is_Overloaded (N, False);
2891
2892 -- Freeze expression type, entity if it is a name, and designated
2893 -- type if it is an allocator (RM 13.14(10,11,13)).
2894
2895 -- Now that the resolution of the type of the node is complete, and
2896 -- we did not detect an error, we can expand this node. We skip the
2897 -- expand call if we are in a default expression, see section
2898 -- "Handling of Default Expressions" in Sem spec.
2899
2900 Debug_A_Exit ("resolving ", N, " (done)");
2901
2902 -- We unconditionally freeze the expression, even if we are in
2903 -- default expression mode (the Freeze_Expression routine tests this
2904 -- flag and only freezes static types if it is set).
2905
2906 -- Ada 2012 (AI05-177): Expression functions do not freeze. Only
2907 -- their use (in an expanded call) freezes.
2908
2909 if Ekind (Proper_Current_Scope) /= E_Function
2910 or else Nkind (Original_Node (Unit_Declaration_Node
2911 (Proper_Current_Scope))) /= N_Expression_Function
2912 then
2913 Freeze_Expression (N);
2914 end if;
2915
2916 -- Now we can do the expansion
2917
2918 Expand (N);
2919 end if;
2920 end Resolve;
2921
2922 -------------
2923 -- Resolve --
2924 -------------
2925
2926 -- Version with check(s) suppressed
2927
2928 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2929 begin
2930 if Suppress = All_Checks then
2931 declare
2932 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
2933 begin
2934 Scope_Suppress.Suppress := (others => True);
2935 Resolve (N, Typ);
2936 Scope_Suppress.Suppress := Sva;
2937 end;
2938
2939 else
2940 declare
2941 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
2942 begin
2943 Scope_Suppress.Suppress (Suppress) := True;
2944 Resolve (N, Typ);
2945 Scope_Suppress.Suppress (Suppress) := Svg;
2946 end;
2947 end if;
2948 end Resolve;
2949
2950 -------------
2951 -- Resolve --
2952 -------------
2953
2954 -- Version with implicit type
2955
2956 procedure Resolve (N : Node_Id) is
2957 begin
2958 Resolve (N, Etype (N));
2959 end Resolve;
2960
2961 ---------------------
2962 -- Resolve_Actuals --
2963 ---------------------
2964
2965 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2966 Loc : constant Source_Ptr := Sloc (N);
2967 A : Node_Id;
2968 F : Entity_Id;
2969 A_Typ : Entity_Id;
2970 F_Typ : Entity_Id;
2971 Prev : Node_Id := Empty;
2972 Orig_A : Node_Id;
2973
2974 procedure Check_Argument_Order;
2975 -- Performs a check for the case where the actuals are all simple
2976 -- identifiers that correspond to the formal names, but in the wrong
2977 -- order, which is considered suspicious and cause for a warning.
2978
2979 procedure Check_Prefixed_Call;
2980 -- If the original node is an overloaded call in prefix notation,
2981 -- insert an 'Access or a dereference as needed over the first actual.
2982 -- Try_Object_Operation has already verified that there is a valid
2983 -- interpretation, but the form of the actual can only be determined
2984 -- once the primitive operation is identified.
2985
2986 procedure Insert_Default;
2987 -- If the actual is missing in a call, insert in the actuals list
2988 -- an instance of the default expression. The insertion is always
2989 -- a named association.
2990
2991 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
2992 -- Check whether T1 and T2, or their full views, are derived from a
2993 -- common type. Used to enforce the restrictions on array conversions
2994 -- of AI95-00246.
2995
2996 function Static_Concatenation (N : Node_Id) return Boolean;
2997 -- Predicate to determine whether an actual that is a concatenation
2998 -- will be evaluated statically and does not need a transient scope.
2999 -- This must be determined before the actual is resolved and expanded
3000 -- because if needed the transient scope must be introduced earlier.
3001
3002 --------------------------
3003 -- Check_Argument_Order --
3004 --------------------------
3005
3006 procedure Check_Argument_Order is
3007 begin
3008 -- Nothing to do if no parameters, or original node is neither a
3009 -- function call nor a procedure call statement (happens in the
3010 -- operator-transformed-to-function call case), or the call does
3011 -- not come from source, or this warning is off.
3012
3013 if not Warn_On_Parameter_Order
3014 or else No (Parameter_Associations (N))
3015 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3016 or else not Comes_From_Source (N)
3017 then
3018 return;
3019 end if;
3020
3021 declare
3022 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3023
3024 begin
3025 -- Nothing to do if only one parameter
3026
3027 if Nargs < 2 then
3028 return;
3029 end if;
3030
3031 -- Here if at least two arguments
3032
3033 declare
3034 Actuals : array (1 .. Nargs) of Node_Id;
3035 Actual : Node_Id;
3036 Formal : Node_Id;
3037
3038 Wrong_Order : Boolean := False;
3039 -- Set True if an out of order case is found
3040
3041 begin
3042 -- Collect identifier names of actuals, fail if any actual is
3043 -- not a simple identifier, and record max length of name.
3044
3045 Actual := First (Parameter_Associations (N));
3046 for J in Actuals'Range loop
3047 if Nkind (Actual) /= N_Identifier then
3048 return;
3049 else
3050 Actuals (J) := Actual;
3051 Next (Actual);
3052 end if;
3053 end loop;
3054
3055 -- If we got this far, all actuals are identifiers and the list
3056 -- of their names is stored in the Actuals array.
3057
3058 Formal := First_Formal (Nam);
3059 for J in Actuals'Range loop
3060
3061 -- If we ran out of formals, that's odd, probably an error
3062 -- which will be detected elsewhere, but abandon the search.
3063
3064 if No (Formal) then
3065 return;
3066 end if;
3067
3068 -- If name matches and is in order OK
3069
3070 if Chars (Formal) = Chars (Actuals (J)) then
3071 null;
3072
3073 else
3074 -- If no match, see if it is elsewhere in list and if so
3075 -- flag potential wrong order if type is compatible.
3076
3077 for K in Actuals'Range loop
3078 if Chars (Formal) = Chars (Actuals (K))
3079 and then
3080 Has_Compatible_Type (Actuals (K), Etype (Formal))
3081 then
3082 Wrong_Order := True;
3083 goto Continue;
3084 end if;
3085 end loop;
3086
3087 -- No match
3088
3089 return;
3090 end if;
3091
3092 <<Continue>> Next_Formal (Formal);
3093 end loop;
3094
3095 -- If Formals left over, also probably an error, skip warning
3096
3097 if Present (Formal) then
3098 return;
3099 end if;
3100
3101 -- Here we give the warning if something was out of order
3102
3103 if Wrong_Order then
3104 Error_Msg_N
3105 ("?P?actuals for this call may be in wrong order", N);
3106 end if;
3107 end;
3108 end;
3109 end Check_Argument_Order;
3110
3111 -------------------------
3112 -- Check_Prefixed_Call --
3113 -------------------------
3114
3115 procedure Check_Prefixed_Call is
3116 Act : constant Node_Id := First_Actual (N);
3117 A_Type : constant Entity_Id := Etype (Act);
3118 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3119 Orig : constant Node_Id := Original_Node (N);
3120 New_A : Node_Id;
3121
3122 begin
3123 -- Check whether the call is a prefixed call, with or without
3124 -- additional actuals.
3125
3126 if Nkind (Orig) = N_Selected_Component
3127 or else
3128 (Nkind (Orig) = N_Indexed_Component
3129 and then Nkind (Prefix (Orig)) = N_Selected_Component
3130 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3131 and then Is_Entity_Name (Act)
3132 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3133 then
3134 if Is_Access_Type (A_Type)
3135 and then not Is_Access_Type (F_Type)
3136 then
3137 -- Introduce dereference on object in prefix
3138
3139 New_A :=
3140 Make_Explicit_Dereference (Sloc (Act),
3141 Prefix => Relocate_Node (Act));
3142 Rewrite (Act, New_A);
3143 Analyze (Act);
3144
3145 elsif Is_Access_Type (F_Type)
3146 and then not Is_Access_Type (A_Type)
3147 then
3148 -- Introduce an implicit 'Access in prefix
3149
3150 if not Is_Aliased_View (Act) then
3151 Error_Msg_NE
3152 ("object in prefixed call to& must be aliased"
3153 & " (RM-2005 4.3.1 (13))",
3154 Prefix (Act), Nam);
3155 end if;
3156
3157 Rewrite (Act,
3158 Make_Attribute_Reference (Loc,
3159 Attribute_Name => Name_Access,
3160 Prefix => Relocate_Node (Act)));
3161 end if;
3162
3163 Analyze (Act);
3164 end if;
3165 end Check_Prefixed_Call;
3166
3167 --------------------
3168 -- Insert_Default --
3169 --------------------
3170
3171 procedure Insert_Default is
3172 Actval : Node_Id;
3173 Assoc : Node_Id;
3174
3175 begin
3176 -- Missing argument in call, nothing to insert
3177
3178 if No (Default_Value (F)) then
3179 return;
3180
3181 else
3182 -- Note that we do a full New_Copy_Tree, so that any associated
3183 -- Itypes are properly copied. This may not be needed any more,
3184 -- but it does no harm as a safety measure! Defaults of a generic
3185 -- formal may be out of bounds of the corresponding actual (see
3186 -- cc1311b) and an additional check may be required.
3187
3188 Actval :=
3189 New_Copy_Tree
3190 (Default_Value (F),
3191 New_Scope => Current_Scope,
3192 New_Sloc => Loc);
3193
3194 if Is_Concurrent_Type (Scope (Nam))
3195 and then Has_Discriminants (Scope (Nam))
3196 then
3197 Replace_Actual_Discriminants (N, Actval);
3198 end if;
3199
3200 if Is_Overloadable (Nam)
3201 and then Present (Alias (Nam))
3202 then
3203 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3204 and then not Is_Tagged_Type (Etype (F))
3205 then
3206 -- If default is a real literal, do not introduce a
3207 -- conversion whose effect may depend on the run-time
3208 -- size of universal real.
3209
3210 if Nkind (Actval) = N_Real_Literal then
3211 Set_Etype (Actval, Base_Type (Etype (F)));
3212 else
3213 Actval := Unchecked_Convert_To (Etype (F), Actval);
3214 end if;
3215 end if;
3216
3217 if Is_Scalar_Type (Etype (F)) then
3218 Enable_Range_Check (Actval);
3219 end if;
3220
3221 Set_Parent (Actval, N);
3222
3223 -- Resolve aggregates with their base type, to avoid scope
3224 -- anomalies: the subtype was first built in the subprogram
3225 -- declaration, and the current call may be nested.
3226
3227 if Nkind (Actval) = N_Aggregate then
3228 Analyze_And_Resolve (Actval, Etype (F));
3229 else
3230 Analyze_And_Resolve (Actval, Etype (Actval));
3231 end if;
3232
3233 else
3234 Set_Parent (Actval, N);
3235
3236 -- See note above concerning aggregates
3237
3238 if Nkind (Actval) = N_Aggregate
3239 and then Has_Discriminants (Etype (Actval))
3240 then
3241 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3242
3243 -- Resolve entities with their own type, which may differ from
3244 -- the type of a reference in a generic context (the view
3245 -- swapping mechanism did not anticipate the re-analysis of
3246 -- default values in calls).
3247
3248 elsif Is_Entity_Name (Actval) then
3249 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3250
3251 else
3252 Analyze_And_Resolve (Actval, Etype (Actval));
3253 end if;
3254 end if;
3255
3256 -- If default is a tag indeterminate function call, propagate tag
3257 -- to obtain proper dispatching.
3258
3259 if Is_Controlling_Formal (F)
3260 and then Nkind (Default_Value (F)) = N_Function_Call
3261 then
3262 Set_Is_Controlling_Actual (Actval);
3263 end if;
3264
3265 end if;
3266
3267 -- If the default expression raises constraint error, then just
3268 -- silently replace it with an N_Raise_Constraint_Error node, since
3269 -- we already gave the warning on the subprogram spec. If node is
3270 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3271 -- the warnings removal machinery.
3272
3273 if Raises_Constraint_Error (Actval)
3274 and then Nkind (Actval) /= N_Raise_Constraint_Error
3275 then
3276 Rewrite (Actval,
3277 Make_Raise_Constraint_Error (Loc,
3278 Reason => CE_Range_Check_Failed));
3279 Set_Raises_Constraint_Error (Actval);
3280 Set_Etype (Actval, Etype (F));
3281 end if;
3282
3283 Assoc :=
3284 Make_Parameter_Association (Loc,
3285 Explicit_Actual_Parameter => Actval,
3286 Selector_Name => Make_Identifier (Loc, Chars (F)));
3287
3288 -- Case of insertion is first named actual
3289
3290 if No (Prev) or else
3291 Nkind (Parent (Prev)) /= N_Parameter_Association
3292 then
3293 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3294 Set_First_Named_Actual (N, Actval);
3295
3296 if No (Prev) then
3297 if No (Parameter_Associations (N)) then
3298 Set_Parameter_Associations (N, New_List (Assoc));
3299 else
3300 Append (Assoc, Parameter_Associations (N));
3301 end if;
3302
3303 else
3304 Insert_After (Prev, Assoc);
3305 end if;
3306
3307 -- Case of insertion is not first named actual
3308
3309 else
3310 Set_Next_Named_Actual
3311 (Assoc, Next_Named_Actual (Parent (Prev)));
3312 Set_Next_Named_Actual (Parent (Prev), Actval);
3313 Append (Assoc, Parameter_Associations (N));
3314 end if;
3315
3316 Mark_Rewrite_Insertion (Assoc);
3317 Mark_Rewrite_Insertion (Actval);
3318
3319 Prev := Actval;
3320 end Insert_Default;
3321
3322 -------------------
3323 -- Same_Ancestor --
3324 -------------------
3325
3326 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3327 FT1 : Entity_Id := T1;
3328 FT2 : Entity_Id := T2;
3329
3330 begin
3331 if Is_Private_Type (T1)
3332 and then Present (Full_View (T1))
3333 then
3334 FT1 := Full_View (T1);
3335 end if;
3336
3337 if Is_Private_Type (T2)
3338 and then Present (Full_View (T2))
3339 then
3340 FT2 := Full_View (T2);
3341 end if;
3342
3343 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3344 end Same_Ancestor;
3345
3346 --------------------------
3347 -- Static_Concatenation --
3348 --------------------------
3349
3350 function Static_Concatenation (N : Node_Id) return Boolean is
3351 begin
3352 case Nkind (N) is
3353 when N_String_Literal =>
3354 return True;
3355
3356 when N_Op_Concat =>
3357
3358 -- Concatenation is static when both operands are static and
3359 -- the concatenation operator is a predefined one.
3360
3361 return Scope (Entity (N)) = Standard_Standard
3362 and then
3363 Static_Concatenation (Left_Opnd (N))
3364 and then
3365 Static_Concatenation (Right_Opnd (N));
3366
3367 when others =>
3368 if Is_Entity_Name (N) then
3369 declare
3370 Ent : constant Entity_Id := Entity (N);
3371 begin
3372 return Ekind (Ent) = E_Constant
3373 and then Present (Constant_Value (Ent))
3374 and then
3375 Is_Static_Expression (Constant_Value (Ent));
3376 end;
3377
3378 else
3379 return False;
3380 end if;
3381 end case;
3382 end Static_Concatenation;
3383
3384 -- Start of processing for Resolve_Actuals
3385
3386 begin
3387 Check_Argument_Order;
3388 Check_Function_Writable_Actuals (N);
3389
3390 if Present (First_Actual (N)) then
3391 Check_Prefixed_Call;
3392 end if;
3393
3394 A := First_Actual (N);
3395 F := First_Formal (Nam);
3396 while Present (F) loop
3397 if No (A) and then Needs_No_Actuals (Nam) then
3398 null;
3399
3400 -- If we have an error in any actual or formal, indicated by a type
3401 -- of Any_Type, then abandon resolution attempt, and set result type
3402 -- to Any_Type.
3403
3404 elsif (Present (A) and then Etype (A) = Any_Type)
3405 or else Etype (F) = Any_Type
3406 then
3407 Set_Etype (N, Any_Type);
3408 return;
3409 end if;
3410
3411 -- Case where actual is present
3412
3413 -- If the actual is an entity, generate a reference to it now. We
3414 -- do this before the actual is resolved, because a formal of some
3415 -- protected subprogram, or a task discriminant, will be rewritten
3416 -- during expansion, and the source entity reference may be lost.
3417
3418 if Present (A)
3419 and then Is_Entity_Name (A)
3420 and then Comes_From_Source (N)
3421 then
3422 Orig_A := Entity (A);
3423
3424 if Present (Orig_A) then
3425 if Is_Formal (Orig_A)
3426 and then Ekind (F) /= E_In_Parameter
3427 then
3428 Generate_Reference (Orig_A, A, 'm');
3429
3430 elsif not Is_Overloaded (A) then
3431 if Ekind (F) /= E_Out_Parameter then
3432 Generate_Reference (Orig_A, A);
3433
3434 -- RM 6.4.1(12): For an out parameter that is passed by
3435 -- copy, the formal parameter object is created, and:
3436
3437 -- * For an access type, the formal parameter is initialized
3438 -- from the value of the actual, without checking that the
3439 -- value satisfies any constraint, any predicate, or any
3440 -- exclusion of the null value.
3441
3442 -- * For a scalar type that has the Default_Value aspect
3443 -- specified, the formal parameter is initialized from the
3444 -- value of the actual, without checking that the value
3445 -- satisfies any constraint or any predicate.
3446 -- I do not understand why this case is included??? this is
3447 -- not a case where an OUT parameter is treated as IN OUT.
3448
3449 -- * For a composite type with discriminants or that has
3450 -- implicit initial values for any subcomponents, the
3451 -- behavior is as for an in out parameter passed by copy.
3452
3453 -- Hence for these cases we generate the read reference now
3454 -- (the write reference will be generated later by
3455 -- Note_Possible_Modification).
3456
3457 elsif Is_By_Copy_Type (Etype (F))
3458 and then
3459 (Is_Access_Type (Etype (F))
3460 or else
3461 (Is_Scalar_Type (Etype (F))
3462 and then
3463 Present (Default_Aspect_Value (Etype (F))))
3464 or else
3465 (Is_Composite_Type (Etype (F))
3466 and then (Has_Discriminants (Etype (F))
3467 or else Is_Partially_Initialized_Type
3468 (Etype (F)))))
3469 then
3470 Generate_Reference (Orig_A, A);
3471 end if;
3472 end if;
3473 end if;
3474 end if;
3475
3476 if Present (A)
3477 and then (Nkind (Parent (A)) /= N_Parameter_Association
3478 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3479 then
3480 -- If style checking mode on, check match of formal name
3481
3482 if Style_Check then
3483 if Nkind (Parent (A)) = N_Parameter_Association then
3484 Check_Identifier (Selector_Name (Parent (A)), F);
3485 end if;
3486 end if;
3487
3488 -- If the formal is Out or In_Out, do not resolve and expand the
3489 -- conversion, because it is subsequently expanded into explicit
3490 -- temporaries and assignments. However, the object of the
3491 -- conversion can be resolved. An exception is the case of tagged
3492 -- type conversion with a class-wide actual. In that case we want
3493 -- the tag check to occur and no temporary will be needed (no
3494 -- representation change can occur) and the parameter is passed by
3495 -- reference, so we go ahead and resolve the type conversion.
3496 -- Another exception is the case of reference to component or
3497 -- subcomponent of a bit-packed array, in which case we want to
3498 -- defer expansion to the point the in and out assignments are
3499 -- performed.
3500
3501 if Ekind (F) /= E_In_Parameter
3502 and then Nkind (A) = N_Type_Conversion
3503 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3504 then
3505 if Ekind (F) = E_In_Out_Parameter
3506 and then Is_Array_Type (Etype (F))
3507 then
3508 -- In a view conversion, the conversion must be legal in
3509 -- both directions, and thus both component types must be
3510 -- aliased, or neither (4.6 (8)).
3511
3512 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3513 -- the privacy requirement should not apply to generic
3514 -- types, and should be checked in an instance. ARG query
3515 -- is in order ???
3516
3517 if Has_Aliased_Components (Etype (Expression (A))) /=
3518 Has_Aliased_Components (Etype (F))
3519 then
3520 Error_Msg_N
3521 ("both component types in a view conversion must be"
3522 & " aliased, or neither", A);
3523
3524 -- Comment here??? what set of cases???
3525
3526 elsif
3527 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3528 then
3529 -- Check view conv between unrelated by ref array types
3530
3531 if Is_By_Reference_Type (Etype (F))
3532 or else Is_By_Reference_Type (Etype (Expression (A)))
3533 then
3534 Error_Msg_N
3535 ("view conversion between unrelated by reference "
3536 & "array types not allowed (\'A'I-00246)", A);
3537
3538 -- In Ada 2005 mode, check view conversion component
3539 -- type cannot be private, tagged, or volatile. Note
3540 -- that we only apply this to source conversions. The
3541 -- generated code can contain conversions which are
3542 -- not subject to this test, and we cannot extract the
3543 -- component type in such cases since it is not present.
3544
3545 elsif Comes_From_Source (A)
3546 and then Ada_Version >= Ada_2005
3547 then
3548 declare
3549 Comp_Type : constant Entity_Id :=
3550 Component_Type
3551 (Etype (Expression (A)));
3552 begin
3553 if (Is_Private_Type (Comp_Type)
3554 and then not Is_Generic_Type (Comp_Type))
3555 or else Is_Tagged_Type (Comp_Type)
3556 or else Is_Volatile (Comp_Type)
3557 then
3558 Error_Msg_N
3559 ("component type of a view conversion cannot"
3560 & " be private, tagged, or volatile"
3561 & " (RM 4.6 (24))",
3562 Expression (A));
3563 end if;
3564 end;
3565 end if;
3566 end if;
3567 end if;
3568
3569 -- Resolve expression if conversion is all OK
3570
3571 if (Conversion_OK (A)
3572 or else Valid_Conversion (A, Etype (A), Expression (A)))
3573 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3574 then
3575 Resolve (Expression (A));
3576 end if;
3577
3578 -- If the actual is a function call that returns a limited
3579 -- unconstrained object that needs finalization, create a
3580 -- transient scope for it, so that it can receive the proper
3581 -- finalization list.
3582
3583 elsif Nkind (A) = N_Function_Call
3584 and then Is_Limited_Record (Etype (F))
3585 and then not Is_Constrained (Etype (F))
3586 and then Full_Expander_Active
3587 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3588 then
3589 Establish_Transient_Scope (A, False);
3590 Resolve (A, Etype (F));
3591
3592 -- A small optimization: if one of the actuals is a concatenation
3593 -- create a block around a procedure call to recover stack space.
3594 -- This alleviates stack usage when several procedure calls in
3595 -- the same statement list use concatenation. We do not perform
3596 -- this wrapping for code statements, where the argument is a
3597 -- static string, and we want to preserve warnings involving
3598 -- sequences of such statements.
3599
3600 elsif Nkind (A) = N_Op_Concat
3601 and then Nkind (N) = N_Procedure_Call_Statement
3602 and then Full_Expander_Active
3603 and then
3604 not (Is_Intrinsic_Subprogram (Nam)
3605 and then Chars (Nam) = Name_Asm)
3606 and then not Static_Concatenation (A)
3607 then
3608 Establish_Transient_Scope (A, False);
3609 Resolve (A, Etype (F));
3610
3611 else
3612 if Nkind (A) = N_Type_Conversion
3613 and then Is_Array_Type (Etype (F))
3614 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3615 and then
3616 (Is_Limited_Type (Etype (F))
3617 or else Is_Limited_Type (Etype (Expression (A))))
3618 then
3619 Error_Msg_N
3620 ("conversion between unrelated limited array types "
3621 & "not allowed (\A\I-00246)", A);
3622
3623 if Is_Limited_Type (Etype (F)) then
3624 Explain_Limited_Type (Etype (F), A);
3625 end if;
3626
3627 if Is_Limited_Type (Etype (Expression (A))) then
3628 Explain_Limited_Type (Etype (Expression (A)), A);
3629 end if;
3630 end if;
3631
3632 -- (Ada 2005: AI-251): If the actual is an allocator whose
3633 -- directly designated type is a class-wide interface, we build
3634 -- an anonymous access type to use it as the type of the
3635 -- allocator. Later, when the subprogram call is expanded, if
3636 -- the interface has a secondary dispatch table the expander
3637 -- will add a type conversion to force the correct displacement
3638 -- of the pointer.
3639
3640 if Nkind (A) = N_Allocator then
3641 declare
3642 DDT : constant Entity_Id :=
3643 Directly_Designated_Type (Base_Type (Etype (F)));
3644
3645 New_Itype : Entity_Id;
3646
3647 begin
3648 if Is_Class_Wide_Type (DDT)
3649 and then Is_Interface (DDT)
3650 then
3651 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3652 Set_Etype (New_Itype, Etype (A));
3653 Set_Directly_Designated_Type (New_Itype,
3654 Directly_Designated_Type (Etype (A)));
3655 Set_Etype (A, New_Itype);
3656 end if;
3657
3658 -- Ada 2005, AI-162:If the actual is an allocator, the
3659 -- innermost enclosing statement is the master of the
3660 -- created object. This needs to be done with expansion
3661 -- enabled only, otherwise the transient scope will not
3662 -- be removed in the expansion of the wrapped construct.
3663
3664 if (Is_Controlled (DDT) or else Has_Task (DDT))
3665 and then Full_Expander_Active
3666 then
3667 Establish_Transient_Scope (A, False);
3668 end if;
3669 end;
3670
3671 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3672 Check_Restriction (No_Access_Parameter_Allocators, A);
3673 end if;
3674 end if;
3675
3676 -- (Ada 2005): The call may be to a primitive operation of
3677 -- a tagged synchronized type, declared outside of the type.
3678 -- In this case the controlling actual must be converted to
3679 -- its corresponding record type, which is the formal type.
3680 -- The actual may be a subtype, either because of a constraint
3681 -- or because it is a generic actual, so use base type to
3682 -- locate concurrent type.
3683
3684 F_Typ := Base_Type (Etype (F));
3685
3686 if Is_Tagged_Type (F_Typ)
3687 and then (Is_Concurrent_Type (F_Typ)
3688 or else Is_Concurrent_Record_Type (F_Typ))
3689 then
3690 -- If the actual is overloaded, look for an interpretation
3691 -- that has a synchronized type.
3692
3693 if not Is_Overloaded (A) then
3694 A_Typ := Base_Type (Etype (A));
3695
3696 else
3697 declare
3698 Index : Interp_Index;
3699 It : Interp;
3700
3701 begin
3702 Get_First_Interp (A, Index, It);
3703 while Present (It.Typ) loop
3704 if Is_Concurrent_Type (It.Typ)
3705 or else Is_Concurrent_Record_Type (It.Typ)
3706 then
3707 A_Typ := Base_Type (It.Typ);
3708 exit;
3709 end if;
3710
3711 Get_Next_Interp (Index, It);
3712 end loop;
3713 end;
3714 end if;
3715
3716 declare
3717 Full_A_Typ : Entity_Id;
3718
3719 begin
3720 if Present (Full_View (A_Typ)) then
3721 Full_A_Typ := Base_Type (Full_View (A_Typ));
3722 else
3723 Full_A_Typ := A_Typ;
3724 end if;
3725
3726 -- Tagged synchronized type (case 1): the actual is a
3727 -- concurrent type.
3728
3729 if Is_Concurrent_Type (A_Typ)
3730 and then Corresponding_Record_Type (A_Typ) = F_Typ
3731 then
3732 Rewrite (A,
3733 Unchecked_Convert_To
3734 (Corresponding_Record_Type (A_Typ), A));
3735 Resolve (A, Etype (F));
3736
3737 -- Tagged synchronized type (case 2): the formal is a
3738 -- concurrent type.
3739
3740 elsif Ekind (Full_A_Typ) = E_Record_Type
3741 and then Present
3742 (Corresponding_Concurrent_Type (Full_A_Typ))
3743 and then Is_Concurrent_Type (F_Typ)
3744 and then Present (Corresponding_Record_Type (F_Typ))
3745 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3746 then
3747 Resolve (A, Corresponding_Record_Type (F_Typ));
3748
3749 -- Common case
3750
3751 else
3752 Resolve (A, Etype (F));
3753 end if;
3754 end;
3755 else
3756
3757 -- not a synchronized operation.
3758
3759 Resolve (A, Etype (F));
3760 end if;
3761 end if;
3762
3763 A_Typ := Etype (A);
3764 F_Typ := Etype (F);
3765
3766 if Comes_From_Source (Original_Node (N))
3767 and then Nkind_In (Original_Node (N), N_Function_Call,
3768 N_Procedure_Call_Statement)
3769 then
3770 -- In formal mode, check that actual parameters matching
3771 -- formals of tagged types are objects (or ancestor type
3772 -- conversions of objects), not general expressions.
3773
3774 if Is_Actual_Tagged_Parameter (A) then
3775 if Is_SPARK_Object_Reference (A) then
3776 null;
3777
3778 elsif Nkind (A) = N_Type_Conversion then
3779 declare
3780 Operand : constant Node_Id := Expression (A);
3781 Operand_Typ : constant Entity_Id := Etype (Operand);
3782 Target_Typ : constant Entity_Id := A_Typ;
3783
3784 begin
3785 if not Is_SPARK_Object_Reference (Operand) then
3786 Check_SPARK_Restriction
3787 ("object required", Operand);
3788
3789 -- In formal mode, the only view conversions are those
3790 -- involving ancestor conversion of an extended type.
3791
3792 elsif not
3793 (Is_Tagged_Type (Target_Typ)
3794 and then not Is_Class_Wide_Type (Target_Typ)
3795 and then Is_Tagged_Type (Operand_Typ)
3796 and then not Is_Class_Wide_Type (Operand_Typ)
3797 and then Is_Ancestor (Target_Typ, Operand_Typ))
3798 then
3799 if Ekind_In
3800 (F, E_Out_Parameter, E_In_Out_Parameter)
3801 then
3802 Check_SPARK_Restriction
3803 ("ancestor conversion is the only permitted "
3804 & "view conversion", A);
3805 else
3806 Check_SPARK_Restriction
3807 ("ancestor conversion required", A);
3808 end if;
3809
3810 else
3811 null;
3812 end if;
3813 end;
3814
3815 else
3816 Check_SPARK_Restriction ("object required", A);
3817 end if;
3818
3819 -- In formal mode, the only view conversions are those
3820 -- involving ancestor conversion of an extended type.
3821
3822 elsif Nkind (A) = N_Type_Conversion
3823 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
3824 then
3825 Check_SPARK_Restriction
3826 ("ancestor conversion is the only permitted view "
3827 & "conversion", A);
3828 end if;
3829 end if;
3830
3831 -- has warnings suppressed, then we reset Never_Set_In_Source for
3832 -- the calling entity. The reason for this is to catch cases like
3833 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3834 -- uses trickery to modify an IN parameter.
3835
3836 if Ekind (F) = E_In_Parameter
3837 and then Is_Entity_Name (A)
3838 and then Present (Entity (A))
3839 and then Ekind (Entity (A)) = E_Variable
3840 and then Has_Warnings_Off (F_Typ)
3841 then
3842 Set_Never_Set_In_Source (Entity (A), False);
3843 end if;
3844
3845 -- Perform error checks for IN and IN OUT parameters
3846
3847 if Ekind (F) /= E_Out_Parameter then
3848
3849 -- Check unset reference. For scalar parameters, it is clearly
3850 -- wrong to pass an uninitialized value as either an IN or
3851 -- IN-OUT parameter. For composites, it is also clearly an
3852 -- error to pass a completely uninitialized value as an IN
3853 -- parameter, but the case of IN OUT is trickier. We prefer
3854 -- not to give a warning here. For example, suppose there is
3855 -- a routine that sets some component of a record to False.
3856 -- It is perfectly reasonable to make this IN-OUT and allow
3857 -- either initialized or uninitialized records to be passed
3858 -- in this case.
3859
3860 -- For partially initialized composite values, we also avoid
3861 -- warnings, since it is quite likely that we are passing a
3862 -- partially initialized value and only the initialized fields
3863 -- will in fact be read in the subprogram.
3864
3865 if Is_Scalar_Type (A_Typ)
3866 or else (Ekind (F) = E_In_Parameter
3867 and then not Is_Partially_Initialized_Type (A_Typ))
3868 then
3869 Check_Unset_Reference (A);
3870 end if;
3871
3872 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3873 -- actual to a nested call, since this is case of reading an
3874 -- out parameter, which is not allowed.
3875
3876 if Ada_Version = Ada_83
3877 and then Is_Entity_Name (A)
3878 and then Ekind (Entity (A)) = E_Out_Parameter
3879 then
3880 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
3881 end if;
3882 end if;
3883
3884 -- Case of OUT or IN OUT parameter
3885
3886 if Ekind (F) /= E_In_Parameter then
3887
3888 -- For an Out parameter, check for useless assignment. Note
3889 -- that we can't set Last_Assignment this early, because we may
3890 -- kill current values in Resolve_Call, and that call would
3891 -- clobber the Last_Assignment field.
3892
3893 -- Note: call Warn_On_Useless_Assignment before doing the check
3894 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3895 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3896 -- reflects the last assignment, not this one!
3897
3898 if Ekind (F) = E_Out_Parameter then
3899 if Warn_On_Modified_As_Out_Parameter (F)
3900 and then Is_Entity_Name (A)
3901 and then Present (Entity (A))
3902 and then Comes_From_Source (N)
3903 then
3904 Warn_On_Useless_Assignment (Entity (A), A);
3905 end if;
3906 end if;
3907
3908 -- Validate the form of the actual. Note that the call to
3909 -- Is_OK_Variable_For_Out_Formal generates the required
3910 -- reference in this case.
3911
3912 -- A call to an initialization procedure for an aggregate
3913 -- component may initialize a nested component of a constant
3914 -- designated object. In this context the object is variable.
3915
3916 if not Is_OK_Variable_For_Out_Formal (A)
3917 and then not Is_Init_Proc (Nam)
3918 then
3919 Error_Msg_NE ("actual for& must be a variable", A, F);
3920 end if;
3921
3922 -- What's the following about???
3923
3924 if Is_Entity_Name (A) then
3925 Kill_Checks (Entity (A));
3926 else
3927 Kill_All_Checks;
3928 end if;
3929 end if;
3930
3931 if Etype (A) = Any_Type then
3932 Set_Etype (N, Any_Type);
3933 return;
3934 end if;
3935
3936 -- Apply appropriate range checks for in, out, and in-out
3937 -- parameters. Out and in-out parameters also need a separate
3938 -- check, if there is a type conversion, to make sure the return
3939 -- value meets the constraints of the variable before the
3940 -- conversion.
3941
3942 -- Gigi looks at the check flag and uses the appropriate types.
3943 -- For now since one flag is used there is an optimization which
3944 -- might not be done in the In Out case since Gigi does not do
3945 -- any analysis. More thought required about this ???
3946
3947 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
3948
3949 -- Apply predicate checks, unless this is a call to the
3950 -- predicate check function itself, which would cause an
3951 -- infinite recursion.
3952
3953 if not (Ekind (Nam) = E_Function
3954 and then (Is_Predicate_Function (Nam)
3955 or else
3956 Is_Predicate_Function_M (Nam)))
3957 then
3958 Apply_Predicate_Check (A, F_Typ);
3959 end if;
3960
3961 -- Apply required constraint checks
3962
3963 if Is_Scalar_Type (Etype (A)) then
3964 Apply_Scalar_Range_Check (A, F_Typ);
3965
3966 elsif Is_Array_Type (Etype (A)) then
3967 Apply_Length_Check (A, F_Typ);
3968
3969 elsif Is_Record_Type (F_Typ)
3970 and then Has_Discriminants (F_Typ)
3971 and then Is_Constrained (F_Typ)
3972 and then (not Is_Derived_Type (F_Typ)
3973 or else Comes_From_Source (Nam))
3974 then
3975 Apply_Discriminant_Check (A, F_Typ);
3976
3977 elsif Is_Access_Type (F_Typ)
3978 and then Is_Array_Type (Designated_Type (F_Typ))
3979 and then Is_Constrained (Designated_Type (F_Typ))
3980 then
3981 Apply_Length_Check (A, F_Typ);
3982
3983 elsif Is_Access_Type (F_Typ)
3984 and then Has_Discriminants (Designated_Type (F_Typ))
3985 and then Is_Constrained (Designated_Type (F_Typ))
3986 then
3987 Apply_Discriminant_Check (A, F_Typ);
3988
3989 else
3990 Apply_Range_Check (A, F_Typ);
3991 end if;
3992
3993 -- Ada 2005 (AI-231): Note that the controlling parameter case
3994 -- already existed in Ada 95, which is partially checked
3995 -- elsewhere (see Checks), and we don't want the warning
3996 -- message to differ.
3997
3998 if Is_Access_Type (F_Typ)
3999 and then Can_Never_Be_Null (F_Typ)
4000 and then Known_Null (A)
4001 then
4002 if Is_Controlling_Formal (F) then
4003 Apply_Compile_Time_Constraint_Error
4004 (N => A,
4005 Msg => "null value not allowed here??",
4006 Reason => CE_Access_Check_Failed);
4007
4008 elsif Ada_Version >= Ada_2005 then
4009 Apply_Compile_Time_Constraint_Error
4010 (N => A,
4011 Msg => "(Ada 2005) null not allowed in "
4012 & "null-excluding formal??",
4013 Reason => CE_Null_Not_Allowed);
4014 end if;
4015 end if;
4016 end if;
4017
4018 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4019 if Nkind (A) = N_Type_Conversion then
4020 if Is_Scalar_Type (A_Typ) then
4021 Apply_Scalar_Range_Check
4022 (Expression (A), Etype (Expression (A)), A_Typ);
4023 else
4024 Apply_Range_Check
4025 (Expression (A), Etype (Expression (A)), A_Typ);
4026 end if;
4027
4028 else
4029 if Is_Scalar_Type (F_Typ) then
4030 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4031 elsif Is_Array_Type (F_Typ)
4032 and then Ekind (F) = E_Out_Parameter
4033 then
4034 Apply_Length_Check (A, F_Typ);
4035 else
4036 Apply_Range_Check (A, A_Typ, F_Typ);
4037 end if;
4038 end if;
4039 end if;
4040
4041 -- An actual associated with an access parameter is implicitly
4042 -- converted to the anonymous access type of the formal and must
4043 -- satisfy the legality checks for access conversions.
4044
4045 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4046 if not Valid_Conversion (A, F_Typ, A) then
4047 Error_Msg_N
4048 ("invalid implicit conversion for access parameter", A);
4049 end if;
4050
4051 -- If the actual is an access selected component of a variable,
4052 -- the call may modify its designated object. It is reasonable
4053 -- to treat this as a potential modification of the enclosing
4054 -- record, to prevent spurious warnings that it should be
4055 -- declared as a constant, because intuitively programmers
4056 -- regard the designated subcomponent as part of the record.
4057
4058 if Nkind (A) = N_Selected_Component
4059 and then Is_Entity_Name (Prefix (A))
4060 and then not Is_Constant_Object (Entity (Prefix (A)))
4061 then
4062 Note_Possible_Modification (A, Sure => False);
4063 end if;
4064 end if;
4065
4066 -- Check bad case of atomic/volatile argument (RM C.6(12))
4067
4068 if Is_By_Reference_Type (Etype (F))
4069 and then Comes_From_Source (N)
4070 then
4071 if Is_Atomic_Object (A)
4072 and then not Is_Atomic (Etype (F))
4073 then
4074 Error_Msg_NE
4075 ("cannot pass atomic argument to non-atomic formal&",
4076 A, F);
4077
4078 elsif Is_Volatile_Object (A)
4079 and then not Is_Volatile (Etype (F))
4080 then
4081 Error_Msg_NE
4082 ("cannot pass volatile argument to non-volatile formal&",
4083 A, F);
4084 end if;
4085 end if;
4086
4087 -- Check that subprograms don't have improper controlling
4088 -- arguments (RM 3.9.2 (9)).
4089
4090 -- A primitive operation may have an access parameter of an
4091 -- incomplete tagged type, but a dispatching call is illegal
4092 -- if the type is still incomplete.
4093
4094 if Is_Controlling_Formal (F) then
4095 Set_Is_Controlling_Actual (A);
4096
4097 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4098 declare
4099 Desig : constant Entity_Id := Designated_Type (Etype (F));
4100 begin
4101 if Ekind (Desig) = E_Incomplete_Type
4102 and then No (Full_View (Desig))
4103 and then No (Non_Limited_View (Desig))
4104 then
4105 Error_Msg_NE
4106 ("premature use of incomplete type& "
4107 & "in dispatching call", A, Desig);
4108 end if;
4109 end;
4110 end if;
4111
4112 elsif Nkind (A) = N_Explicit_Dereference then
4113 Validate_Remote_Access_To_Class_Wide_Type (A);
4114 end if;
4115
4116 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4117 and then not Is_Class_Wide_Type (F_Typ)
4118 and then not Is_Controlling_Formal (F)
4119 then
4120 Error_Msg_N ("class-wide argument not allowed here!", A);
4121
4122 if Is_Subprogram (Nam)
4123 and then Comes_From_Source (Nam)
4124 then
4125 Error_Msg_Node_2 := F_Typ;
4126 Error_Msg_NE
4127 ("& is not a dispatching operation of &!", A, Nam);
4128 end if;
4129
4130 -- Apply the checks described in 3.10.2(27): if the context is a
4131 -- specific access-to-object, the actual cannot be class-wide.
4132 -- Use base type to exclude access_to_subprogram cases.
4133
4134 elsif Is_Access_Type (A_Typ)
4135 and then Is_Access_Type (F_Typ)
4136 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4137 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4138 or else (Nkind (A) = N_Attribute_Reference
4139 and then
4140 Is_Class_Wide_Type (Etype (Prefix (A)))))
4141 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4142 and then not Is_Controlling_Formal (F)
4143
4144 -- Disable these checks for call to imported C++ subprograms
4145
4146 and then not
4147 (Is_Entity_Name (Name (N))
4148 and then Is_Imported (Entity (Name (N)))
4149 and then Convention (Entity (Name (N))) = Convention_CPP)
4150 then
4151 Error_Msg_N
4152 ("access to class-wide argument not allowed here!", A);
4153
4154 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4155 Error_Msg_Node_2 := Designated_Type (F_Typ);
4156 Error_Msg_NE
4157 ("& is not a dispatching operation of &!", A, Nam);
4158 end if;
4159 end if;
4160
4161 Eval_Actual (A);
4162
4163 -- If it is a named association, treat the selector_name as a
4164 -- proper identifier, and mark the corresponding entity. Ignore
4165 -- this reference in Alfa mode, as it refers to an entity not in
4166 -- scope at the point of reference, so the reference should be
4167 -- ignored for computing effects of subprograms.
4168
4169 if Nkind (Parent (A)) = N_Parameter_Association
4170 and then not Alfa_Mode
4171 then
4172 Set_Entity (Selector_Name (Parent (A)), F);
4173 Generate_Reference (F, Selector_Name (Parent (A)));
4174 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4175 Generate_Reference (F_Typ, N, ' ');
4176 end if;
4177
4178 Prev := A;
4179
4180 if Ekind (F) /= E_Out_Parameter then
4181 Check_Unset_Reference (A);
4182 end if;
4183
4184 Next_Actual (A);
4185
4186 -- Case where actual is not present
4187
4188 else
4189 Insert_Default;
4190 end if;
4191
4192 Next_Formal (F);
4193 end loop;
4194 end Resolve_Actuals;
4195
4196 -----------------------
4197 -- Resolve_Allocator --
4198 -----------------------
4199
4200 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4201 Desig_T : constant Entity_Id := Designated_Type (Typ);
4202 E : constant Node_Id := Expression (N);
4203 Subtyp : Entity_Id;
4204 Discrim : Entity_Id;
4205 Constr : Node_Id;
4206 Aggr : Node_Id;
4207 Assoc : Node_Id := Empty;
4208 Disc_Exp : Node_Id;
4209
4210 procedure Check_Allocator_Discrim_Accessibility
4211 (Disc_Exp : Node_Id;
4212 Alloc_Typ : Entity_Id);
4213 -- Check that accessibility level associated with an access discriminant
4214 -- initialized in an allocator by the expression Disc_Exp is not deeper
4215 -- than the level of the allocator type Alloc_Typ. An error message is
4216 -- issued if this condition is violated. Specialized checks are done for
4217 -- the cases of a constraint expression which is an access attribute or
4218 -- an access discriminant.
4219
4220 function In_Dispatching_Context return Boolean;
4221 -- If the allocator is an actual in a call, it is allowed to be class-
4222 -- wide when the context is not because it is a controlling actual.
4223
4224 -------------------------------------------
4225 -- Check_Allocator_Discrim_Accessibility --
4226 -------------------------------------------
4227
4228 procedure Check_Allocator_Discrim_Accessibility
4229 (Disc_Exp : Node_Id;
4230 Alloc_Typ : Entity_Id)
4231 is
4232 begin
4233 if Type_Access_Level (Etype (Disc_Exp)) >
4234 Deepest_Type_Access_Level (Alloc_Typ)
4235 then
4236 Error_Msg_N
4237 ("operand type has deeper level than allocator type", Disc_Exp);
4238
4239 -- When the expression is an Access attribute the level of the prefix
4240 -- object must not be deeper than that of the allocator's type.
4241
4242 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4243 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4244 Attribute_Access
4245 and then Object_Access_Level (Prefix (Disc_Exp)) >
4246 Deepest_Type_Access_Level (Alloc_Typ)
4247 then
4248 Error_Msg_N
4249 ("prefix of attribute has deeper level than allocator type",
4250 Disc_Exp);
4251
4252 -- When the expression is an access discriminant the check is against
4253 -- the level of the prefix object.
4254
4255 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4256 and then Nkind (Disc_Exp) = N_Selected_Component
4257 and then Object_Access_Level (Prefix (Disc_Exp)) >
4258 Deepest_Type_Access_Level (Alloc_Typ)
4259 then
4260 Error_Msg_N
4261 ("access discriminant has deeper level than allocator type",
4262 Disc_Exp);
4263
4264 -- All other cases are legal
4265
4266 else
4267 null;
4268 end if;
4269 end Check_Allocator_Discrim_Accessibility;
4270
4271 ----------------------------
4272 -- In_Dispatching_Context --
4273 ----------------------------
4274
4275 function In_Dispatching_Context return Boolean is
4276 Par : constant Node_Id := Parent (N);
4277
4278 begin
4279 return Nkind (Par) in N_Subprogram_Call
4280 and then Is_Entity_Name (Name (Par))
4281 and then Is_Dispatching_Operation (Entity (Name (Par)));
4282 end In_Dispatching_Context;
4283
4284 -- Start of processing for Resolve_Allocator
4285
4286 begin
4287 -- Replace general access with specific type
4288
4289 if Ekind (Etype (N)) = E_Allocator_Type then
4290 Set_Etype (N, Base_Type (Typ));
4291 end if;
4292
4293 if Is_Abstract_Type (Typ) then
4294 Error_Msg_N ("type of allocator cannot be abstract", N);
4295 end if;
4296
4297 -- For qualified expression, resolve the expression using the
4298 -- given subtype (nothing to do for type mark, subtype indication)
4299
4300 if Nkind (E) = N_Qualified_Expression then
4301 if Is_Class_Wide_Type (Etype (E))
4302 and then not Is_Class_Wide_Type (Desig_T)
4303 and then not In_Dispatching_Context
4304 then
4305 Error_Msg_N
4306 ("class-wide allocator not allowed for this access type", N);
4307 end if;
4308
4309 Resolve (Expression (E), Etype (E));
4310 Check_Unset_Reference (Expression (E));
4311
4312 -- A qualified expression requires an exact match of the type,
4313 -- class-wide matching is not allowed.
4314
4315 if (Is_Class_Wide_Type (Etype (Expression (E)))
4316 or else Is_Class_Wide_Type (Etype (E)))
4317 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4318 then
4319 Wrong_Type (Expression (E), Etype (E));
4320 end if;
4321
4322 -- Calls to build-in-place functions are not currently supported in
4323 -- allocators for access types associated with a simple storage pool.
4324 -- Supporting such allocators may require passing additional implicit
4325 -- parameters to build-in-place functions (or a significant revision
4326 -- of the current b-i-p implementation to unify the handling for
4327 -- multiple kinds of storage pools). ???
4328
4329 if Is_Immutably_Limited_Type (Desig_T)
4330 and then Nkind (Expression (E)) = N_Function_Call
4331 then
4332 declare
4333 Pool : constant Entity_Id :=
4334 Associated_Storage_Pool (Root_Type (Typ));
4335 begin
4336 if Present (Pool)
4337 and then
4338 Present (Get_Rep_Pragma
4339 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4340 then
4341 Error_Msg_N
4342 ("limited function calls not yet supported in simple "
4343 & "storage pool allocators", Expression (E));
4344 end if;
4345 end;
4346 end if;
4347
4348 -- A special accessibility check is needed for allocators that
4349 -- constrain access discriminants. The level of the type of the
4350 -- expression used to constrain an access discriminant cannot be
4351 -- deeper than the type of the allocator (in contrast to access
4352 -- parameters, where the level of the actual can be arbitrary).
4353
4354 -- We can't use Valid_Conversion to perform this check because
4355 -- in general the type of the allocator is unrelated to the type
4356 -- of the access discriminant.
4357
4358 if Ekind (Typ) /= E_Anonymous_Access_Type
4359 or else Is_Local_Anonymous_Access (Typ)
4360 then
4361 Subtyp := Entity (Subtype_Mark (E));
4362
4363 Aggr := Original_Node (Expression (E));
4364
4365 if Has_Discriminants (Subtyp)
4366 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4367 then
4368 Discrim := First_Discriminant (Base_Type (Subtyp));
4369
4370 -- Get the first component expression of the aggregate
4371
4372 if Present (Expressions (Aggr)) then
4373 Disc_Exp := First (Expressions (Aggr));
4374
4375 elsif Present (Component_Associations (Aggr)) then
4376 Assoc := First (Component_Associations (Aggr));
4377
4378 if Present (Assoc) then
4379 Disc_Exp := Expression (Assoc);
4380 else
4381 Disc_Exp := Empty;
4382 end if;
4383
4384 else
4385 Disc_Exp := Empty;
4386 end if;
4387
4388 while Present (Discrim) and then Present (Disc_Exp) loop
4389 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4390 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4391 end if;
4392
4393 Next_Discriminant (Discrim);
4394
4395 if Present (Discrim) then
4396 if Present (Assoc) then
4397 Next (Assoc);
4398 Disc_Exp := Expression (Assoc);
4399
4400 elsif Present (Next (Disc_Exp)) then
4401 Next (Disc_Exp);
4402
4403 else
4404 Assoc := First (Component_Associations (Aggr));
4405
4406 if Present (Assoc) then
4407 Disc_Exp := Expression (Assoc);
4408 else
4409 Disc_Exp := Empty;
4410 end if;
4411 end if;
4412 end if;
4413 end loop;
4414 end if;
4415 end if;
4416
4417 -- For a subtype mark or subtype indication, freeze the subtype
4418
4419 else
4420 Freeze_Expression (E);
4421
4422 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4423 Error_Msg_N
4424 ("initialization required for access-to-constant allocator", N);
4425 end if;
4426
4427 -- A special accessibility check is needed for allocators that
4428 -- constrain access discriminants. The level of the type of the
4429 -- expression used to constrain an access discriminant cannot be
4430 -- deeper than the type of the allocator (in contrast to access
4431 -- parameters, where the level of the actual can be arbitrary).
4432 -- We can't use Valid_Conversion to perform this check because
4433 -- in general the type of the allocator is unrelated to the type
4434 -- of the access discriminant.
4435
4436 if Nkind (Original_Node (E)) = N_Subtype_Indication
4437 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4438 or else Is_Local_Anonymous_Access (Typ))
4439 then
4440 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4441
4442 if Has_Discriminants (Subtyp) then
4443 Discrim := First_Discriminant (Base_Type (Subtyp));
4444 Constr := First (Constraints (Constraint (Original_Node (E))));
4445 while Present (Discrim) and then Present (Constr) loop
4446 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4447 if Nkind (Constr) = N_Discriminant_Association then
4448 Disc_Exp := Original_Node (Expression (Constr));
4449 else
4450 Disc_Exp := Original_Node (Constr);
4451 end if;
4452
4453 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4454 end if;
4455
4456 Next_Discriminant (Discrim);
4457 Next (Constr);
4458 end loop;
4459 end if;
4460 end if;
4461 end if;
4462
4463 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4464 -- check that the level of the type of the created object is not deeper
4465 -- than the level of the allocator's access type, since extensions can
4466 -- now occur at deeper levels than their ancestor types. This is a
4467 -- static accessibility level check; a run-time check is also needed in
4468 -- the case of an initialized allocator with a class-wide argument (see
4469 -- Expand_Allocator_Expression).
4470
4471 if Ada_Version >= Ada_2005
4472 and then Is_Class_Wide_Type (Desig_T)
4473 then
4474 declare
4475 Exp_Typ : Entity_Id;
4476
4477 begin
4478 if Nkind (E) = N_Qualified_Expression then
4479 Exp_Typ := Etype (E);
4480 elsif Nkind (E) = N_Subtype_Indication then
4481 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4482 else
4483 Exp_Typ := Entity (E);
4484 end if;
4485
4486 if Type_Access_Level (Exp_Typ) >
4487 Deepest_Type_Access_Level (Typ)
4488 then
4489 if In_Instance_Body then
4490 Error_Msg_N
4491 ("??type in allocator has deeper level than "
4492 & "designated class-wide type", E);
4493 Error_Msg_N
4494 ("\??Program_Error will be raised at run time", E);
4495 Rewrite (N,
4496 Make_Raise_Program_Error (Sloc (N),
4497 Reason => PE_Accessibility_Check_Failed));
4498 Set_Etype (N, Typ);
4499
4500 -- Do not apply Ada 2005 accessibility checks on a class-wide
4501 -- allocator if the type given in the allocator is a formal
4502 -- type. A run-time check will be performed in the instance.
4503
4504 elsif not Is_Generic_Type (Exp_Typ) then
4505 Error_Msg_N ("type in allocator has deeper level than "
4506 & "designated class-wide type", E);
4507 end if;
4508 end if;
4509 end;
4510 end if;
4511
4512 -- Check for allocation from an empty storage pool
4513
4514 if No_Pool_Assigned (Typ) then
4515 Error_Msg_N ("allocation from empty storage pool!", N);
4516
4517 -- If the context is an unchecked conversion, as may happen within an
4518 -- inlined subprogram, the allocator is being resolved with its own
4519 -- anonymous type. In that case, if the target type has a specific
4520 -- storage pool, it must be inherited explicitly by the allocator type.
4521
4522 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4523 and then No (Associated_Storage_Pool (Typ))
4524 then
4525 Set_Associated_Storage_Pool
4526 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4527 end if;
4528
4529 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4530 Check_Restriction (No_Anonymous_Allocators, N);
4531 end if;
4532
4533 -- Check that an allocator with task parts isn't for a nested access
4534 -- type when restriction No_Task_Hierarchy applies.
4535
4536 if not Is_Library_Level_Entity (Base_Type (Typ))
4537 and then Has_Task (Base_Type (Desig_T))
4538 then
4539 Check_Restriction (No_Task_Hierarchy, N);
4540 end if;
4541
4542 -- An erroneous allocator may be rewritten as a raise Program_Error
4543 -- statement.
4544
4545 if Nkind (N) = N_Allocator then
4546
4547 -- An anonymous access discriminant is the definition of a
4548 -- coextension.
4549
4550 if Ekind (Typ) = E_Anonymous_Access_Type
4551 and then Nkind (Associated_Node_For_Itype (Typ)) =
4552 N_Discriminant_Specification
4553 then
4554 declare
4555 Discr : constant Entity_Id :=
4556 Defining_Identifier (Associated_Node_For_Itype (Typ));
4557
4558 begin
4559 Check_Restriction (No_Coextensions, N);
4560
4561 -- Ada 2012 AI05-0052: If the designated type of the allocator
4562 -- is limited, then the allocator shall not be used to define
4563 -- the value of an access discriminant unless the discriminated
4564 -- type is immutably limited.
4565
4566 if Ada_Version >= Ada_2012
4567 and then Is_Limited_Type (Desig_T)
4568 and then not Is_Immutably_Limited_Type (Scope (Discr))
4569 then
4570 Error_Msg_N
4571 ("only immutably limited types can have anonymous "
4572 & "access discriminants designating a limited type", N);
4573 end if;
4574 end;
4575
4576 -- Avoid marking an allocator as a dynamic coextension if it is
4577 -- within a static construct.
4578
4579 if not Is_Static_Coextension (N) then
4580 Set_Is_Dynamic_Coextension (N);
4581 end if;
4582
4583 -- Cleanup for potential static coextensions
4584
4585 else
4586 Set_Is_Dynamic_Coextension (N, False);
4587 Set_Is_Static_Coextension (N, False);
4588 end if;
4589 end if;
4590
4591 -- Report a simple error: if the designated object is a local task,
4592 -- its body has not been seen yet, and its activation will fail an
4593 -- elaboration check.
4594
4595 if Is_Task_Type (Desig_T)
4596 and then Scope (Base_Type (Desig_T)) = Current_Scope
4597 and then Is_Compilation_Unit (Current_Scope)
4598 and then Ekind (Current_Scope) = E_Package
4599 and then not In_Package_Body (Current_Scope)
4600 then
4601 Error_Msg_N ("??cannot activate task before body seen", N);
4602 Error_Msg_N ("\??Program_Error will be raised at run time", N);
4603 end if;
4604
4605 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4606 -- type with a task component on a subpool. This action must raise
4607 -- Program_Error at runtime.
4608
4609 if Ada_Version >= Ada_2012
4610 and then Nkind (N) = N_Allocator
4611 and then Present (Subpool_Handle_Name (N))
4612 and then Has_Task (Desig_T)
4613 then
4614 Error_Msg_N ("??cannot allocate task on subpool", N);
4615 Error_Msg_N ("\??Program_Error will be raised at run time", N);
4616
4617 Rewrite (N,
4618 Make_Raise_Program_Error (Sloc (N),
4619 Reason => PE_Explicit_Raise));
4620 Set_Etype (N, Typ);
4621 end if;
4622 end Resolve_Allocator;
4623
4624 ---------------------------
4625 -- Resolve_Arithmetic_Op --
4626 ---------------------------
4627
4628 -- Used for resolving all arithmetic operators except exponentiation
4629
4630 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
4631 L : constant Node_Id := Left_Opnd (N);
4632 R : constant Node_Id := Right_Opnd (N);
4633 TL : constant Entity_Id := Base_Type (Etype (L));
4634 TR : constant Entity_Id := Base_Type (Etype (R));
4635 T : Entity_Id;
4636 Rop : Node_Id;
4637
4638 B_Typ : constant Entity_Id := Base_Type (Typ);
4639 -- We do the resolution using the base type, because intermediate values
4640 -- in expressions always are of the base type, not a subtype of it.
4641
4642 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
4643 -- Returns True if N is in a context that expects "any real type"
4644
4645 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
4646 -- Return True iff given type is Integer or universal real/integer
4647
4648 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
4649 -- Choose type of integer literal in fixed-point operation to conform
4650 -- to available fixed-point type. T is the type of the other operand,
4651 -- which is needed to determine the expected type of N.
4652
4653 procedure Set_Operand_Type (N : Node_Id);
4654 -- Set operand type to T if universal
4655
4656 -------------------------------
4657 -- Expected_Type_Is_Any_Real --
4658 -------------------------------
4659
4660 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
4661 begin
4662 -- N is the expression after "delta" in a fixed_point_definition;
4663 -- see RM-3.5.9(6):
4664
4665 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
4666 N_Decimal_Fixed_Point_Definition,
4667
4668 -- N is one of the bounds in a real_range_specification;
4669 -- see RM-3.5.7(5):
4670
4671 N_Real_Range_Specification,
4672
4673 -- N is the expression of a delta_constraint;
4674 -- see RM-J.3(3):
4675
4676 N_Delta_Constraint);
4677 end Expected_Type_Is_Any_Real;
4678
4679 -----------------------------
4680 -- Is_Integer_Or_Universal --
4681 -----------------------------
4682
4683 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
4684 T : Entity_Id;
4685 Index : Interp_Index;
4686 It : Interp;
4687
4688 begin
4689 if not Is_Overloaded (N) then
4690 T := Etype (N);
4691 return Base_Type (T) = Base_Type (Standard_Integer)
4692 or else T = Universal_Integer
4693 or else T = Universal_Real;
4694 else
4695 Get_First_Interp (N, Index, It);
4696 while Present (It.Typ) loop
4697 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
4698 or else It.Typ = Universal_Integer
4699 or else It.Typ = Universal_Real
4700 then
4701 return True;
4702 end if;
4703
4704 Get_Next_Interp (Index, It);
4705 end loop;
4706 end if;
4707
4708 return False;
4709 end Is_Integer_Or_Universal;
4710
4711 ----------------------------
4712 -- Set_Mixed_Mode_Operand --
4713 ----------------------------
4714
4715 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
4716 Index : Interp_Index;
4717 It : Interp;
4718
4719 begin
4720 if Universal_Interpretation (N) = Universal_Integer then
4721
4722 -- A universal integer literal is resolved as standard integer
4723 -- except in the case of a fixed-point result, where we leave it
4724 -- as universal (to be handled by Exp_Fixd later on)
4725
4726 if Is_Fixed_Point_Type (T) then
4727 Resolve (N, Universal_Integer);
4728 else
4729 Resolve (N, Standard_Integer);
4730 end if;
4731
4732 elsif Universal_Interpretation (N) = Universal_Real
4733 and then (T = Base_Type (Standard_Integer)
4734 or else T = Universal_Integer
4735 or else T = Universal_Real)
4736 then
4737 -- A universal real can appear in a fixed-type context. We resolve
4738 -- the literal with that context, even though this might raise an
4739 -- exception prematurely (the other operand may be zero).
4740
4741 Resolve (N, B_Typ);
4742
4743 elsif Etype (N) = Base_Type (Standard_Integer)
4744 and then T = Universal_Real
4745 and then Is_Overloaded (N)
4746 then
4747 -- Integer arg in mixed-mode operation. Resolve with universal
4748 -- type, in case preference rule must be applied.
4749
4750 Resolve (N, Universal_Integer);
4751
4752 elsif Etype (N) = T
4753 and then B_Typ /= Universal_Fixed
4754 then
4755 -- Not a mixed-mode operation, resolve with context
4756
4757 Resolve (N, B_Typ);
4758
4759 elsif Etype (N) = Any_Fixed then
4760
4761 -- N may itself be a mixed-mode operation, so use context type
4762
4763 Resolve (N, B_Typ);
4764
4765 elsif Is_Fixed_Point_Type (T)
4766 and then B_Typ = Universal_Fixed
4767 and then Is_Overloaded (N)
4768 then
4769 -- Must be (fixed * fixed) operation, operand must have one
4770 -- compatible interpretation.
4771
4772 Resolve (N, Any_Fixed);
4773
4774 elsif Is_Fixed_Point_Type (B_Typ)
4775 and then (T = Universal_Real
4776 or else Is_Fixed_Point_Type (T))
4777 and then Is_Overloaded (N)
4778 then
4779 -- C * F(X) in a fixed context, where C is a real literal or a
4780 -- fixed-point expression. F must have either a fixed type
4781 -- interpretation or an integer interpretation, but not both.
4782
4783 Get_First_Interp (N, Index, It);
4784 while Present (It.Typ) loop
4785 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
4786 if Analyzed (N) then
4787 Error_Msg_N ("ambiguous operand in fixed operation", N);
4788 else
4789 Resolve (N, Standard_Integer);
4790 end if;
4791
4792 elsif Is_Fixed_Point_Type (It.Typ) then
4793 if Analyzed (N) then
4794 Error_Msg_N ("ambiguous operand in fixed operation", N);
4795 else
4796 Resolve (N, It.Typ);
4797 end if;
4798 end if;
4799
4800 Get_Next_Interp (Index, It);
4801 end loop;
4802
4803 -- Reanalyze the literal with the fixed type of the context. If
4804 -- context is Universal_Fixed, we are within a conversion, leave
4805 -- the literal as a universal real because there is no usable
4806 -- fixed type, and the target of the conversion plays no role in
4807 -- the resolution.
4808
4809 declare
4810 Op2 : Node_Id;
4811 T2 : Entity_Id;
4812
4813 begin
4814 if N = L then
4815 Op2 := R;
4816 else
4817 Op2 := L;
4818 end if;
4819
4820 if B_Typ = Universal_Fixed
4821 and then Nkind (Op2) = N_Real_Literal
4822 then
4823 T2 := Universal_Real;
4824 else
4825 T2 := B_Typ;
4826 end if;
4827
4828 Set_Analyzed (Op2, False);
4829 Resolve (Op2, T2);
4830 end;
4831
4832 else
4833 Resolve (N);
4834 end if;
4835 end Set_Mixed_Mode_Operand;
4836
4837 ----------------------
4838 -- Set_Operand_Type --
4839 ----------------------
4840
4841 procedure Set_Operand_Type (N : Node_Id) is
4842 begin
4843 if Etype (N) = Universal_Integer
4844 or else Etype (N) = Universal_Real
4845 then
4846 Set_Etype (N, T);
4847 end if;
4848 end Set_Operand_Type;
4849
4850 -- Start of processing for Resolve_Arithmetic_Op
4851
4852 begin
4853 if Comes_From_Source (N)
4854 and then Ekind (Entity (N)) = E_Function
4855 and then Is_Imported (Entity (N))
4856 and then Is_Intrinsic_Subprogram (Entity (N))
4857 then
4858 Resolve_Intrinsic_Operator (N, Typ);
4859 return;
4860
4861 -- Special-case for mixed-mode universal expressions or fixed point type
4862 -- operation: each argument is resolved separately. The same treatment
4863 -- is required if one of the operands of a fixed point operation is
4864 -- universal real, since in this case we don't do a conversion to a
4865 -- specific fixed-point type (instead the expander handles the case).
4866
4867 -- Set the type of the node to its universal interpretation because
4868 -- legality checks on an exponentiation operand need the context.
4869
4870 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
4871 and then Present (Universal_Interpretation (L))
4872 and then Present (Universal_Interpretation (R))
4873 then
4874 Set_Etype (N, B_Typ);
4875 Resolve (L, Universal_Interpretation (L));
4876 Resolve (R, Universal_Interpretation (R));
4877
4878 elsif (B_Typ = Universal_Real
4879 or else Etype (N) = Universal_Fixed
4880 or else (Etype (N) = Any_Fixed
4881 and then Is_Fixed_Point_Type (B_Typ))
4882 or else (Is_Fixed_Point_Type (B_Typ)
4883 and then (Is_Integer_Or_Universal (L)
4884 or else
4885 Is_Integer_Or_Universal (R))))
4886 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
4887 then
4888 if TL = Universal_Integer or else TR = Universal_Integer then
4889 Check_For_Visible_Operator (N, B_Typ);
4890 end if;
4891
4892 -- If context is a fixed type and one operand is integer, the other
4893 -- is resolved with the type of the context.
4894
4895 if Is_Fixed_Point_Type (B_Typ)
4896 and then (Base_Type (TL) = Base_Type (Standard_Integer)
4897 or else TL = Universal_Integer)
4898 then
4899 Resolve (R, B_Typ);
4900 Resolve (L, TL);
4901
4902 elsif Is_Fixed_Point_Type (B_Typ)
4903 and then (Base_Type (TR) = Base_Type (Standard_Integer)
4904 or else TR = Universal_Integer)
4905 then
4906 Resolve (L, B_Typ);
4907 Resolve (R, TR);
4908
4909 else
4910 Set_Mixed_Mode_Operand (L, TR);
4911 Set_Mixed_Mode_Operand (R, TL);
4912 end if;
4913
4914 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
4915 -- multiplying operators from being used when the expected type is
4916 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
4917 -- some cases where the expected type is actually Any_Real;
4918 -- Expected_Type_Is_Any_Real takes care of that case.
4919
4920 if Etype (N) = Universal_Fixed
4921 or else Etype (N) = Any_Fixed
4922 then
4923 if B_Typ = Universal_Fixed
4924 and then not Expected_Type_Is_Any_Real (N)
4925 and then not Nkind_In (Parent (N), N_Type_Conversion,
4926 N_Unchecked_Type_Conversion)
4927 then
4928 Error_Msg_N ("type cannot be determined from context!", N);
4929 Error_Msg_N ("\explicit conversion to result type required", N);
4930
4931 Set_Etype (L, Any_Type);
4932 Set_Etype (R, Any_Type);
4933
4934 else
4935 if Ada_Version = Ada_83
4936 and then Etype (N) = Universal_Fixed
4937 and then not
4938 Nkind_In (Parent (N), N_Type_Conversion,
4939 N_Unchecked_Type_Conversion)
4940 then
4941 Error_Msg_N
4942 ("(Ada 83) fixed-point operation "
4943 & "needs explicit conversion", N);
4944 end if;
4945
4946 -- The expected type is "any real type" in contexts like
4947
4948 -- type T is delta <universal_fixed-expression> ...
4949
4950 -- in which case we need to set the type to Universal_Real
4951 -- so that static expression evaluation will work properly.
4952
4953 if Expected_Type_Is_Any_Real (N) then
4954 Set_Etype (N, Universal_Real);
4955 else
4956 Set_Etype (N, B_Typ);
4957 end if;
4958 end if;
4959
4960 elsif Is_Fixed_Point_Type (B_Typ)
4961 and then (Is_Integer_Or_Universal (L)
4962 or else Nkind (L) = N_Real_Literal
4963 or else Nkind (R) = N_Real_Literal
4964 or else Is_Integer_Or_Universal (R))
4965 then
4966 Set_Etype (N, B_Typ);
4967
4968 elsif Etype (N) = Any_Fixed then
4969
4970 -- If no previous errors, this is only possible if one operand is
4971 -- overloaded and the context is universal. Resolve as such.
4972
4973 Set_Etype (N, B_Typ);
4974 end if;
4975
4976 else
4977 if (TL = Universal_Integer or else TL = Universal_Real)
4978 and then
4979 (TR = Universal_Integer or else TR = Universal_Real)
4980 then
4981 Check_For_Visible_Operator (N, B_Typ);
4982 end if;
4983
4984 -- If the context is Universal_Fixed and the operands are also
4985 -- universal fixed, this is an error, unless there is only one
4986 -- applicable fixed_point type (usually Duration).
4987
4988 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
4989 T := Unique_Fixed_Point_Type (N);
4990
4991 if T = Any_Type then
4992 Set_Etype (N, T);
4993 return;
4994 else
4995 Resolve (L, T);
4996 Resolve (R, T);
4997 end if;
4998
4999 else
5000 Resolve (L, B_Typ);
5001 Resolve (R, B_Typ);
5002 end if;
5003
5004 -- If one of the arguments was resolved to a non-universal type.
5005 -- label the result of the operation itself with the same type.
5006 -- Do the same for the universal argument, if any.
5007
5008 T := Intersect_Types (L, R);
5009 Set_Etype (N, Base_Type (T));
5010 Set_Operand_Type (L);
5011 Set_Operand_Type (R);
5012 end if;
5013
5014 Generate_Operator_Reference (N, Typ);
5015 Analyze_Dimension (N);
5016 Eval_Arithmetic_Op (N);
5017
5018 -- In SPARK, a multiplication or division with operands of fixed point
5019 -- types shall be qualified or explicitly converted to identify the
5020 -- result type.
5021
5022 if (Is_Fixed_Point_Type (Etype (L))
5023 or else Is_Fixed_Point_Type (Etype (R)))
5024 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5025 and then
5026 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5027 then
5028 Check_SPARK_Restriction
5029 ("operation should be qualified or explicitly converted", N);
5030 end if;
5031
5032 -- Set overflow and division checking bit
5033
5034 if Nkind (N) in N_Op then
5035 if not Overflow_Checks_Suppressed (Etype (N)) then
5036 Enable_Overflow_Check (N);
5037 end if;
5038
5039 -- Give warning if explicit division by zero
5040
5041 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5042 and then not Division_Checks_Suppressed (Etype (N))
5043 then
5044 Rop := Right_Opnd (N);
5045
5046 if Compile_Time_Known_Value (Rop)
5047 and then ((Is_Integer_Type (Etype (Rop))
5048 and then Expr_Value (Rop) = Uint_0)
5049 or else
5050 (Is_Real_Type (Etype (Rop))
5051 and then Expr_Value_R (Rop) = Ureal_0))
5052 then
5053 -- Specialize the warning message according to the operation.
5054 -- The following warnings are for the case
5055
5056 case Nkind (N) is
5057 when N_Op_Divide =>
5058
5059 -- For division, we have two cases, for float division
5060 -- of an unconstrained float type, on a machine where
5061 -- Machine_Overflows is false, we don't get an exception
5062 -- at run-time, but rather an infinity or Nan. The Nan
5063 -- case is pretty obscure, so just warn about infinities.
5064
5065 if Is_Floating_Point_Type (Typ)
5066 and then not Is_Constrained (Typ)
5067 and then not Machine_Overflows_On_Target
5068 then
5069 Error_Msg_N
5070 ("float division by zero, may generate "
5071 & "'+'/'- infinity??", Right_Opnd (N));
5072
5073 -- For all other cases, we get a Constraint_Error
5074
5075 else
5076 Apply_Compile_Time_Constraint_Error
5077 (N, "division by zero??", CE_Divide_By_Zero,
5078 Loc => Sloc (Right_Opnd (N)));
5079 end if;
5080
5081 when N_Op_Rem =>
5082 Apply_Compile_Time_Constraint_Error
5083 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5084 Loc => Sloc (Right_Opnd (N)));
5085
5086 when N_Op_Mod =>
5087 Apply_Compile_Time_Constraint_Error
5088 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5089 Loc => Sloc (Right_Opnd (N)));
5090
5091 -- Division by zero can only happen with division, rem,
5092 -- and mod operations.
5093
5094 when others =>
5095 raise Program_Error;
5096 end case;
5097
5098 -- Otherwise just set the flag to check at run time
5099
5100 else
5101 Activate_Division_Check (N);
5102 end if;
5103 end if;
5104
5105 -- If Restriction No_Implicit_Conditionals is active, then it is
5106 -- violated if either operand can be negative for mod, or for rem
5107 -- if both operands can be negative.
5108
5109 if Restriction_Check_Required (No_Implicit_Conditionals)
5110 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5111 then
5112 declare
5113 Lo : Uint;
5114 Hi : Uint;
5115 OK : Boolean;
5116
5117 LNeg : Boolean;
5118 RNeg : Boolean;
5119 -- Set if corresponding operand might be negative
5120
5121 begin
5122 Determine_Range
5123 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5124 LNeg := (not OK) or else Lo < 0;
5125
5126 Determine_Range
5127 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5128 RNeg := (not OK) or else Lo < 0;
5129
5130 -- Check if we will be generating conditionals. There are two
5131 -- cases where that can happen, first for REM, the only case
5132 -- is largest negative integer mod -1, where the division can
5133 -- overflow, but we still have to give the right result. The
5134 -- front end generates a test for this annoying case. Here we
5135 -- just test if both operands can be negative (that's what the
5136 -- expander does, so we match its logic here).
5137
5138 -- The second case is mod where either operand can be negative.
5139 -- In this case, the back end has to generate additional tests.
5140
5141 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5142 or else
5143 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5144 then
5145 Check_Restriction (No_Implicit_Conditionals, N);
5146 end if;
5147 end;
5148 end if;
5149 end if;
5150
5151 Check_Unset_Reference (L);
5152 Check_Unset_Reference (R);
5153 Check_Function_Writable_Actuals (N);
5154 end Resolve_Arithmetic_Op;
5155
5156 ------------------
5157 -- Resolve_Call --
5158 ------------------
5159
5160 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5161 Loc : constant Source_Ptr := Sloc (N);
5162 Subp : constant Node_Id := Name (N);
5163 Nam : Entity_Id;
5164 I : Interp_Index;
5165 It : Interp;
5166 Norm_OK : Boolean;
5167 Scop : Entity_Id;
5168 Rtype : Entity_Id;
5169
5170 function Same_Or_Aliased_Subprograms
5171 (S : Entity_Id;
5172 E : Entity_Id) return Boolean;
5173 -- Returns True if the subprogram entity S is the same as E or else
5174 -- S is an alias of E.
5175
5176 ---------------------------------
5177 -- Same_Or_Aliased_Subprograms --
5178 ---------------------------------
5179
5180 function Same_Or_Aliased_Subprograms
5181 (S : Entity_Id;
5182 E : Entity_Id) return Boolean
5183 is
5184 Subp_Alias : constant Entity_Id := Alias (S);
5185 begin
5186 return S = E
5187 or else (Present (Subp_Alias) and then Subp_Alias = E);
5188 end Same_Or_Aliased_Subprograms;
5189
5190 -- Start of processing for Resolve_Call
5191
5192 begin
5193 -- The context imposes a unique interpretation with type Typ on a
5194 -- procedure or function call. Find the entity of the subprogram that
5195 -- yields the expected type, and propagate the corresponding formal
5196 -- constraints on the actuals. The caller has established that an
5197 -- interpretation exists, and emitted an error if not unique.
5198
5199 -- First deal with the case of a call to an access-to-subprogram,
5200 -- dereference made explicit in Analyze_Call.
5201
5202 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5203 if not Is_Overloaded (Subp) then
5204 Nam := Etype (Subp);
5205
5206 else
5207 -- Find the interpretation whose type (a subprogram type) has a
5208 -- return type that is compatible with the context. Analysis of
5209 -- the node has established that one exists.
5210
5211 Nam := Empty;
5212
5213 Get_First_Interp (Subp, I, It);
5214 while Present (It.Typ) loop
5215 if Covers (Typ, Etype (It.Typ)) then
5216 Nam := It.Typ;
5217 exit;
5218 end if;
5219
5220 Get_Next_Interp (I, It);
5221 end loop;
5222
5223 if No (Nam) then
5224 raise Program_Error;
5225 end if;
5226 end if;
5227
5228 -- If the prefix is not an entity, then resolve it
5229
5230 if not Is_Entity_Name (Subp) then
5231 Resolve (Subp, Nam);
5232 end if;
5233
5234 -- For an indirect call, we always invalidate checks, since we do not
5235 -- know whether the subprogram is local or global. Yes we could do
5236 -- better here, e.g. by knowing that there are no local subprograms,
5237 -- but it does not seem worth the effort. Similarly, we kill all
5238 -- knowledge of current constant values.
5239
5240 Kill_Current_Values;
5241
5242 -- If this is a procedure call which is really an entry call, do
5243 -- the conversion of the procedure call to an entry call. Protected
5244 -- operations use the same circuitry because the name in the call
5245 -- can be an arbitrary expression with special resolution rules.
5246
5247 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5248 or else (Is_Entity_Name (Subp)
5249 and then Ekind (Entity (Subp)) = E_Entry)
5250 then
5251 Resolve_Entry_Call (N, Typ);
5252 Check_Elab_Call (N);
5253
5254 -- Kill checks and constant values, as above for indirect case
5255 -- Who knows what happens when another task is activated?
5256
5257 Kill_Current_Values;
5258 return;
5259
5260 -- Normal subprogram call with name established in Resolve
5261
5262 elsif not (Is_Type (Entity (Subp))) then
5263 Nam := Entity (Subp);
5264 Set_Entity_With_Style_Check (Subp, Nam);
5265
5266 -- Otherwise we must have the case of an overloaded call
5267
5268 else
5269 pragma Assert (Is_Overloaded (Subp));
5270
5271 -- Initialize Nam to prevent warning (we know it will be assigned
5272 -- in the loop below, but the compiler does not know that).
5273
5274 Nam := Empty;
5275
5276 Get_First_Interp (Subp, I, It);
5277 while Present (It.Typ) loop
5278 if Covers (Typ, It.Typ) then
5279 Nam := It.Nam;
5280 Set_Entity_With_Style_Check (Subp, Nam);
5281 exit;
5282 end if;
5283
5284 Get_Next_Interp (I, It);
5285 end loop;
5286 end if;
5287
5288 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5289 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5290 and then Nkind (Subp) /= N_Explicit_Dereference
5291 and then Present (Parameter_Associations (N))
5292 then
5293 -- The prefix is a parameterless function call that returns an access
5294 -- to subprogram. If parameters are present in the current call, add
5295 -- add an explicit dereference. We use the base type here because
5296 -- within an instance these may be subtypes.
5297
5298 -- The dereference is added either in Analyze_Call or here. Should
5299 -- be consolidated ???
5300
5301 Set_Is_Overloaded (Subp, False);
5302 Set_Etype (Subp, Etype (Nam));
5303 Insert_Explicit_Dereference (Subp);
5304 Nam := Designated_Type (Etype (Nam));
5305 Resolve (Subp, Nam);
5306 end if;
5307
5308 -- Check that a call to Current_Task does not occur in an entry body
5309
5310 if Is_RTE (Nam, RE_Current_Task) then
5311 declare
5312 P : Node_Id;
5313
5314 begin
5315 P := N;
5316 loop
5317 P := Parent (P);
5318
5319 -- Exclude calls that occur within the default of a formal
5320 -- parameter of the entry, since those are evaluated outside
5321 -- of the body.
5322
5323 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5324
5325 if Nkind (P) = N_Entry_Body
5326 or else (Nkind (P) = N_Subprogram_Body
5327 and then Is_Entry_Barrier_Function (P))
5328 then
5329 Rtype := Etype (N);
5330 Error_Msg_NE
5331 ("??& should not be used in entry body (RM C.7(17))",
5332 N, Nam);
5333 Error_Msg_NE
5334 ("\Program_Error will be raised at run time??", N, Nam);
5335 Rewrite (N,
5336 Make_Raise_Program_Error (Loc,
5337 Reason => PE_Current_Task_In_Entry_Body));
5338 Set_Etype (N, Rtype);
5339 return;
5340 end if;
5341 end loop;
5342 end;
5343 end if;
5344
5345 -- Check that a procedure call does not occur in the context of the
5346 -- entry call statement of a conditional or timed entry call. Note that
5347 -- the case of a call to a subprogram renaming of an entry will also be
5348 -- rejected. The test for N not being an N_Entry_Call_Statement is
5349 -- defensive, covering the possibility that the processing of entry
5350 -- calls might reach this point due to later modifications of the code
5351 -- above.
5352
5353 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5354 and then Nkind (N) /= N_Entry_Call_Statement
5355 and then Entry_Call_Statement (Parent (N)) = N
5356 then
5357 if Ada_Version < Ada_2005 then
5358 Error_Msg_N ("entry call required in select statement", N);
5359
5360 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5361 -- for a procedure_or_entry_call, the procedure_name or
5362 -- procedure_prefix of the procedure_call_statement shall denote
5363 -- an entry renamed by a procedure, or (a view of) a primitive
5364 -- subprogram of a limited interface whose first parameter is
5365 -- a controlling parameter.
5366
5367 elsif Nkind (N) = N_Procedure_Call_Statement
5368 and then not Is_Renamed_Entry (Nam)
5369 and then not Is_Controlling_Limited_Procedure (Nam)
5370 then
5371 Error_Msg_N
5372 ("entry call or dispatching primitive of interface required", N);
5373 end if;
5374 end if;
5375
5376 -- Check that this is not a call to a protected procedure or entry from
5377 -- within a protected function.
5378
5379 Check_Internal_Protected_Use (N, Nam);
5380
5381 -- Freeze the subprogram name if not in a spec-expression. Note that we
5382 -- freeze procedure calls as well as function calls. Procedure calls are
5383 -- not frozen according to the rules (RM 13.14(14)) because it is
5384 -- impossible to have a procedure call to a non-frozen procedure in pure
5385 -- Ada, but in the code that we generate in the expander, this rule
5386 -- needs extending because we can generate procedure calls that need
5387 -- freezing.
5388
5389 -- In Ada 2012, expression functions may be called within pre/post
5390 -- conditions of subsequent functions or expression functions. Such
5391 -- calls do not freeze when they appear within generated bodies, which
5392 -- would place the freeze node in the wrong scope. An expression
5393 -- function is frozen in the usual fashion, by the appearance of a real
5394 -- body, or at the end of a declarative part.
5395
5396 if Is_Entity_Name (Subp) and then not In_Spec_Expression
5397 and then
5398 (not Is_Expression_Function (Entity (Subp))
5399 or else Scope (Entity (Subp)) = Current_Scope)
5400 then
5401 Freeze_Expression (Subp);
5402 end if;
5403
5404 -- For a predefined operator, the type of the result is the type imposed
5405 -- by context, except for a predefined operation on universal fixed.
5406 -- Otherwise The type of the call is the type returned by the subprogram
5407 -- being called.
5408
5409 if Is_Predefined_Op (Nam) then
5410 if Etype (N) /= Universal_Fixed then
5411 Set_Etype (N, Typ);
5412 end if;
5413
5414 -- If the subprogram returns an array type, and the context requires the
5415 -- component type of that array type, the node is really an indexing of
5416 -- the parameterless call. Resolve as such. A pathological case occurs
5417 -- when the type of the component is an access to the array type. In
5418 -- this case the call is truly ambiguous.
5419
5420 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5421 and then
5422 ((Is_Array_Type (Etype (Nam))
5423 and then Covers (Typ, Component_Type (Etype (Nam))))
5424 or else (Is_Access_Type (Etype (Nam))
5425 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5426 and then
5427 Covers
5428 (Typ,
5429 Component_Type (Designated_Type (Etype (Nam))))))
5430 then
5431 declare
5432 Index_Node : Node_Id;
5433 New_Subp : Node_Id;
5434 Ret_Type : constant Entity_Id := Etype (Nam);
5435
5436 begin
5437 if Is_Access_Type (Ret_Type)
5438 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5439 then
5440 Error_Msg_N
5441 ("cannot disambiguate function call and indexing", N);
5442 else
5443 New_Subp := Relocate_Node (Subp);
5444 Set_Entity (Subp, Nam);
5445
5446 if (Is_Array_Type (Ret_Type)
5447 and then Component_Type (Ret_Type) /= Any_Type)
5448 or else
5449 (Is_Access_Type (Ret_Type)
5450 and then
5451 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5452 then
5453 if Needs_No_Actuals (Nam) then
5454
5455 -- Indexed call to a parameterless function
5456
5457 Index_Node :=
5458 Make_Indexed_Component (Loc,
5459 Prefix =>
5460 Make_Function_Call (Loc,
5461 Name => New_Subp),
5462 Expressions => Parameter_Associations (N));
5463 else
5464 -- An Ada 2005 prefixed call to a primitive operation
5465 -- whose first parameter is the prefix. This prefix was
5466 -- prepended to the parameter list, which is actually a
5467 -- list of indexes. Remove the prefix in order to build
5468 -- the proper indexed component.
5469
5470 Index_Node :=
5471 Make_Indexed_Component (Loc,
5472 Prefix =>
5473 Make_Function_Call (Loc,
5474 Name => New_Subp,
5475 Parameter_Associations =>
5476 New_List
5477 (Remove_Head (Parameter_Associations (N)))),
5478 Expressions => Parameter_Associations (N));
5479 end if;
5480
5481 -- Preserve the parenthesis count of the node
5482
5483 Set_Paren_Count (Index_Node, Paren_Count (N));
5484
5485 -- Since we are correcting a node classification error made
5486 -- by the parser, we call Replace rather than Rewrite.
5487
5488 Replace (N, Index_Node);
5489
5490 Set_Etype (Prefix (N), Ret_Type);
5491 Set_Etype (N, Typ);
5492 Resolve_Indexed_Component (N, Typ);
5493 Check_Elab_Call (Prefix (N));
5494 end if;
5495 end if;
5496
5497 return;
5498 end;
5499
5500 else
5501 Set_Etype (N, Etype (Nam));
5502 end if;
5503
5504 -- In the case where the call is to an overloaded subprogram, Analyze
5505 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5506 -- such a case Normalize_Actuals needs to be called once more to order
5507 -- the actuals correctly. Otherwise the call will have the ordering
5508 -- given by the last overloaded subprogram whether this is the correct
5509 -- one being called or not.
5510
5511 if Is_Overloaded (Subp) then
5512 Normalize_Actuals (N, Nam, False, Norm_OK);
5513 pragma Assert (Norm_OK);
5514 end if;
5515
5516 -- In any case, call is fully resolved now. Reset Overload flag, to
5517 -- prevent subsequent overload resolution if node is analyzed again
5518
5519 Set_Is_Overloaded (Subp, False);
5520 Set_Is_Overloaded (N, False);
5521
5522 -- If we are calling the current subprogram from immediately within its
5523 -- body, then that is the case where we can sometimes detect cases of
5524 -- infinite recursion statically. Do not try this in case restriction
5525 -- No_Recursion is in effect anyway, and do it only for source calls.
5526
5527 if Comes_From_Source (N) then
5528 Scop := Current_Scope;
5529
5530 -- Issue warning for possible infinite recursion in the absence
5531 -- of the No_Recursion restriction.
5532
5533 if Same_Or_Aliased_Subprograms (Nam, Scop)
5534 and then not Restriction_Active (No_Recursion)
5535 and then Check_Infinite_Recursion (N)
5536 then
5537 -- Here we detected and flagged an infinite recursion, so we do
5538 -- not need to test the case below for further warnings. Also we
5539 -- are all done if we now have a raise SE node.
5540
5541 if Nkind (N) = N_Raise_Storage_Error then
5542 return;
5543 end if;
5544
5545 -- If call is to immediately containing subprogram, then check for
5546 -- the case of a possible run-time detectable infinite recursion.
5547
5548 else
5549 Scope_Loop : while Scop /= Standard_Standard loop
5550 if Same_Or_Aliased_Subprograms (Nam, Scop) then
5551
5552 -- Although in general case, recursion is not statically
5553 -- checkable, the case of calling an immediately containing
5554 -- subprogram is easy to catch.
5555
5556 Check_Restriction (No_Recursion, N);
5557
5558 -- If the recursive call is to a parameterless subprogram,
5559 -- then even if we can't statically detect infinite
5560 -- recursion, this is pretty suspicious, and we output a
5561 -- warning. Furthermore, we will try later to detect some
5562 -- cases here at run time by expanding checking code (see
5563 -- Detect_Infinite_Recursion in package Exp_Ch6).
5564
5565 -- If the recursive call is within a handler, do not emit a
5566 -- warning, because this is a common idiom: loop until input
5567 -- is correct, catch illegal input in handler and restart.
5568
5569 if No (First_Formal (Nam))
5570 and then Etype (Nam) = Standard_Void_Type
5571 and then not Error_Posted (N)
5572 and then Nkind (Parent (N)) /= N_Exception_Handler
5573 then
5574 -- For the case of a procedure call. We give the message
5575 -- only if the call is the first statement in a sequence
5576 -- of statements, or if all previous statements are
5577 -- simple assignments. This is simply a heuristic to
5578 -- decrease false positives, without losing too many good
5579 -- warnings. The idea is that these previous statements
5580 -- may affect global variables the procedure depends on.
5581 -- We also exclude raise statements, that may arise from
5582 -- constraint checks and are probably unrelated to the
5583 -- intended control flow.
5584
5585 if Nkind (N) = N_Procedure_Call_Statement
5586 and then Is_List_Member (N)
5587 then
5588 declare
5589 P : Node_Id;
5590 begin
5591 P := Prev (N);
5592 while Present (P) loop
5593 if not Nkind_In (P,
5594 N_Assignment_Statement,
5595 N_Raise_Constraint_Error)
5596 then
5597 exit Scope_Loop;
5598 end if;
5599
5600 Prev (P);
5601 end loop;
5602 end;
5603 end if;
5604
5605 -- Do not give warning if we are in a conditional context
5606
5607 declare
5608 K : constant Node_Kind := Nkind (Parent (N));
5609 begin
5610 if (K = N_Loop_Statement
5611 and then Present (Iteration_Scheme (Parent (N))))
5612 or else K = N_If_Statement
5613 or else K = N_Elsif_Part
5614 or else K = N_Case_Statement_Alternative
5615 then
5616 exit Scope_Loop;
5617 end if;
5618 end;
5619
5620 -- Here warning is to be issued
5621
5622 Set_Has_Recursive_Call (Nam);
5623 Error_Msg_N
5624 ("??possible infinite recursion!", N);
5625 Error_Msg_N
5626 ("\??Storage_Error may be raised at run time!", N);
5627 end if;
5628
5629 exit Scope_Loop;
5630 end if;
5631
5632 Scop := Scope (Scop);
5633 end loop Scope_Loop;
5634 end if;
5635 end if;
5636
5637 -- Check obsolescent reference to Ada.Characters.Handling subprogram
5638
5639 Check_Obsolescent_2005_Entity (Nam, Subp);
5640
5641 -- If subprogram name is a predefined operator, it was given in
5642 -- functional notation. Replace call node with operator node, so
5643 -- that actuals can be resolved appropriately.
5644
5645 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
5646 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
5647 return;
5648
5649 elsif Present (Alias (Nam))
5650 and then Is_Predefined_Op (Alias (Nam))
5651 then
5652 Resolve_Actuals (N, Nam);
5653 Make_Call_Into_Operator (N, Typ, Alias (Nam));
5654 return;
5655 end if;
5656
5657 -- Create a transient scope if the resulting type requires it
5658
5659 -- There are several notable exceptions:
5660
5661 -- a) In init procs, the transient scope overhead is not needed, and is
5662 -- even incorrect when the call is a nested initialization call for a
5663 -- component whose expansion may generate adjust calls. However, if the
5664 -- call is some other procedure call within an initialization procedure
5665 -- (for example a call to Create_Task in the init_proc of the task
5666 -- run-time record) a transient scope must be created around this call.
5667
5668 -- b) Enumeration literal pseudo-calls need no transient scope
5669
5670 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
5671 -- functions) do not use the secondary stack even though the return
5672 -- type may be unconstrained.
5673
5674 -- d) Calls to a build-in-place function, since such functions may
5675 -- allocate their result directly in a target object, and cases where
5676 -- the result does get allocated in the secondary stack are checked for
5677 -- within the specialized Exp_Ch6 procedures for expanding those
5678 -- build-in-place calls.
5679
5680 -- e) If the subprogram is marked Inline_Always, then even if it returns
5681 -- an unconstrained type the call does not require use of the secondary
5682 -- stack. However, inlining will only take place if the body to inline
5683 -- is already present. It may not be available if e.g. the subprogram is
5684 -- declared in a child instance.
5685
5686 -- If this is an initialization call for a type whose construction
5687 -- uses the secondary stack, and it is not a nested call to initialize
5688 -- a component, we do need to create a transient scope for it. We
5689 -- check for this by traversing the type in Check_Initialization_Call.
5690
5691 if Is_Inlined (Nam)
5692 and then Has_Pragma_Inline_Always (Nam)
5693 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5694 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5695 and then not Debug_Flag_Dot_K
5696 then
5697 null;
5698
5699 elsif Is_Inlined (Nam)
5700 and then Has_Pragma_Inline (Nam)
5701 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5702 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5703 and then Debug_Flag_Dot_K
5704 then
5705 null;
5706
5707 elsif Ekind (Nam) = E_Enumeration_Literal
5708 or else Is_Build_In_Place_Function (Nam)
5709 or else Is_Intrinsic_Subprogram (Nam)
5710 then
5711 null;
5712
5713 elsif Full_Expander_Active
5714 and then Is_Type (Etype (Nam))
5715 and then Requires_Transient_Scope (Etype (Nam))
5716 and then
5717 (not Within_Init_Proc
5718 or else
5719 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
5720 then
5721 Establish_Transient_Scope (N, Sec_Stack => True);
5722
5723 -- If the call appears within the bounds of a loop, it will
5724 -- be rewritten and reanalyzed, nothing left to do here.
5725
5726 if Nkind (N) /= N_Function_Call then
5727 return;
5728 end if;
5729
5730 elsif Is_Init_Proc (Nam)
5731 and then not Within_Init_Proc
5732 then
5733 Check_Initialization_Call (N, Nam);
5734 end if;
5735
5736 -- A protected function cannot be called within the definition of the
5737 -- enclosing protected type.
5738
5739 if Is_Protected_Type (Scope (Nam))
5740 and then In_Open_Scopes (Scope (Nam))
5741 and then not Has_Completion (Scope (Nam))
5742 then
5743 Error_Msg_NE
5744 ("& cannot be called before end of protected definition", N, Nam);
5745 end if;
5746
5747 -- Propagate interpretation to actuals, and add default expressions
5748 -- where needed.
5749
5750 if Present (First_Formal (Nam)) then
5751 Resolve_Actuals (N, Nam);
5752
5753 -- Overloaded literals are rewritten as function calls, for purpose of
5754 -- resolution. After resolution, we can replace the call with the
5755 -- literal itself.
5756
5757 elsif Ekind (Nam) = E_Enumeration_Literal then
5758 Copy_Node (Subp, N);
5759 Resolve_Entity_Name (N, Typ);
5760
5761 -- Avoid validation, since it is a static function call
5762
5763 Generate_Reference (Nam, Subp);
5764 return;
5765 end if;
5766
5767 -- If the subprogram is not global, then kill all saved values and
5768 -- checks. This is a bit conservative, since in many cases we could do
5769 -- better, but it is not worth the effort. Similarly, we kill constant
5770 -- values. However we do not need to do this for internal entities
5771 -- (unless they are inherited user-defined subprograms), since they
5772 -- are not in the business of molesting local values.
5773
5774 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5775 -- kill all checks and values for calls to global subprograms. This
5776 -- takes care of the case where an access to a local subprogram is
5777 -- taken, and could be passed directly or indirectly and then called
5778 -- from almost any context.
5779
5780 -- Note: we do not do this step till after resolving the actuals. That
5781 -- way we still take advantage of the current value information while
5782 -- scanning the actuals.
5783
5784 -- We suppress killing values if we are processing the nodes associated
5785 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5786 -- type kills all the values as part of analyzing the code that
5787 -- initializes the dispatch tables.
5788
5789 if Inside_Freezing_Actions = 0
5790 and then (not Is_Library_Level_Entity (Nam)
5791 or else Suppress_Value_Tracking_On_Call
5792 (Nearest_Dynamic_Scope (Current_Scope)))
5793 and then (Comes_From_Source (Nam)
5794 or else (Present (Alias (Nam))
5795 and then Comes_From_Source (Alias (Nam))))
5796 then
5797 Kill_Current_Values;
5798 end if;
5799
5800 -- If we are warning about unread OUT parameters, this is the place to
5801 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5802 -- after the above call to Kill_Current_Values (since that call clears
5803 -- the Last_Assignment field of all local variables).
5804
5805 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
5806 and then Comes_From_Source (N)
5807 and then In_Extended_Main_Source_Unit (N)
5808 then
5809 declare
5810 F : Entity_Id;
5811 A : Node_Id;
5812
5813 begin
5814 F := First_Formal (Nam);
5815 A := First_Actual (N);
5816 while Present (F) and then Present (A) loop
5817 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
5818 and then Warn_On_Modified_As_Out_Parameter (F)
5819 and then Is_Entity_Name (A)
5820 and then Present (Entity (A))
5821 and then Comes_From_Source (N)
5822 and then Safe_To_Capture_Value (N, Entity (A))
5823 then
5824 Set_Last_Assignment (Entity (A), A);
5825 end if;
5826
5827 Next_Formal (F);
5828 Next_Actual (A);
5829 end loop;
5830 end;
5831 end if;
5832
5833 -- If the subprogram is a primitive operation, check whether or not
5834 -- it is a correct dispatching call.
5835
5836 if Is_Overloadable (Nam)
5837 and then Is_Dispatching_Operation (Nam)
5838 then
5839 Check_Dispatching_Call (N);
5840
5841 elsif Ekind (Nam) /= E_Subprogram_Type
5842 and then Is_Abstract_Subprogram (Nam)
5843 and then not In_Instance
5844 then
5845 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
5846 end if;
5847
5848 -- If this is a dispatching call, generate the appropriate reference,
5849 -- for better source navigation in GPS.
5850
5851 if Is_Overloadable (Nam)
5852 and then Present (Controlling_Argument (N))
5853 then
5854 Generate_Reference (Nam, Subp, 'R');
5855
5856 -- Normal case, not a dispatching call: generate a call reference
5857
5858 else
5859 Generate_Reference (Nam, Subp, 's');
5860 end if;
5861
5862 if Is_Intrinsic_Subprogram (Nam) then
5863 Check_Intrinsic_Call (N);
5864 end if;
5865
5866 -- Check for violation of restriction No_Specific_Termination_Handlers
5867 -- and warn on a potentially blocking call to Abort_Task.
5868
5869 if Restriction_Check_Required (No_Specific_Termination_Handlers)
5870 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
5871 or else
5872 Is_RTE (Nam, RE_Specific_Handler))
5873 then
5874 Check_Restriction (No_Specific_Termination_Handlers, N);
5875
5876 elsif Is_RTE (Nam, RE_Abort_Task) then
5877 Check_Potentially_Blocking_Operation (N);
5878 end if;
5879
5880 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
5881 -- timing event violates restriction No_Relative_Delay (AI-0211). We
5882 -- need to check the second argument to determine whether it is an
5883 -- absolute or relative timing event.
5884
5885 if Restriction_Check_Required (No_Relative_Delay)
5886 and then Is_RTE (Nam, RE_Set_Handler)
5887 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
5888 then
5889 Check_Restriction (No_Relative_Delay, N);
5890 end if;
5891
5892 -- Issue an error for a call to an eliminated subprogram. This routine
5893 -- will not perform the check if the call appears within a default
5894 -- expression.
5895
5896 Check_For_Eliminated_Subprogram (Subp, Nam);
5897
5898 -- In formal mode, the primitive operations of a tagged type or type
5899 -- extension do not include functions that return the tagged type.
5900
5901 -- Commented out as the call to Is_Inherited_Operation_For_Type may
5902 -- cause an error because the type entity of the parent node of
5903 -- Entity (Name (N) may not be set. ???
5904 -- So why not just add a guard ???
5905
5906 -- if Nkind (N) = N_Function_Call
5907 -- and then Is_Tagged_Type (Etype (N))
5908 -- and then Is_Entity_Name (Name (N))
5909 -- and then Is_Inherited_Operation_For_Type
5910 -- (Entity (Name (N)), Etype (N))
5911 -- then
5912 -- Check_SPARK_Restriction ("function not inherited", N);
5913 -- end if;
5914
5915 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
5916 -- class-wide and the call dispatches on result in a context that does
5917 -- not provide a tag, the call raises Program_Error.
5918
5919 if Nkind (N) = N_Function_Call
5920 and then In_Instance
5921 and then Is_Generic_Actual_Type (Typ)
5922 and then Is_Class_Wide_Type (Typ)
5923 and then Has_Controlling_Result (Nam)
5924 and then Nkind (Parent (N)) = N_Object_Declaration
5925 then
5926 -- Verify that none of the formals are controlling
5927
5928 declare
5929 Call_OK : Boolean := False;
5930 F : Entity_Id;
5931
5932 begin
5933 F := First_Formal (Nam);
5934 while Present (F) loop
5935 if Is_Controlling_Formal (F) then
5936 Call_OK := True;
5937 exit;
5938 end if;
5939
5940 Next_Formal (F);
5941 end loop;
5942
5943 if not Call_OK then
5944 Error_Msg_N ("!?? cannot determine tag of result", N);
5945 Error_Msg_N ("!?? Program_Error will be raised", N);
5946 Insert_Action (N,
5947 Make_Raise_Program_Error (Sloc (N),
5948 Reason => PE_Explicit_Raise));
5949 end if;
5950 end;
5951 end if;
5952
5953 -- Check the dimensions of the actuals in the call. For function calls,
5954 -- propagate the dimensions from the returned type to N.
5955
5956 Analyze_Dimension_Call (N, Nam);
5957
5958 -- All done, evaluate call and deal with elaboration issues
5959
5960 Eval_Call (N);
5961 Check_Elab_Call (N);
5962 Warn_On_Overlapping_Actuals (Nam, N);
5963 end Resolve_Call;
5964
5965 -----------------------------
5966 -- Resolve_Case_Expression --
5967 -----------------------------
5968
5969 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
5970 Alt : Node_Id;
5971
5972 begin
5973 Alt := First (Alternatives (N));
5974 while Present (Alt) loop
5975 Resolve (Expression (Alt), Typ);
5976 Next (Alt);
5977 end loop;
5978
5979 Set_Etype (N, Typ);
5980 Eval_Case_Expression (N);
5981 end Resolve_Case_Expression;
5982
5983 -------------------------------
5984 -- Resolve_Character_Literal --
5985 -------------------------------
5986
5987 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
5988 B_Typ : constant Entity_Id := Base_Type (Typ);
5989 C : Entity_Id;
5990
5991 begin
5992 -- Verify that the character does belong to the type of the context
5993
5994 Set_Etype (N, B_Typ);
5995 Eval_Character_Literal (N);
5996
5997 -- Wide_Wide_Character literals must always be defined, since the set
5998 -- of wide wide character literals is complete, i.e. if a character
5999 -- literal is accepted by the parser, then it is OK for wide wide
6000 -- character (out of range character literals are rejected).
6001
6002 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6003 return;
6004
6005 -- Always accept character literal for type Any_Character, which
6006 -- occurs in error situations and in comparisons of literals, both
6007 -- of which should accept all literals.
6008
6009 elsif B_Typ = Any_Character then
6010 return;
6011
6012 -- For Standard.Character or a type derived from it, check that the
6013 -- literal is in range.
6014
6015 elsif Root_Type (B_Typ) = Standard_Character then
6016 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6017 return;
6018 end if;
6019
6020 -- For Standard.Wide_Character or a type derived from it, check that the
6021 -- literal is in range.
6022
6023 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6024 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6025 return;
6026 end if;
6027
6028 -- For Standard.Wide_Wide_Character or a type derived from it, we
6029 -- know the literal is in range, since the parser checked!
6030
6031 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6032 return;
6033
6034 -- If the entity is already set, this has already been resolved in a
6035 -- generic context, or comes from expansion. Nothing else to do.
6036
6037 elsif Present (Entity (N)) then
6038 return;
6039
6040 -- Otherwise we have a user defined character type, and we can use the
6041 -- standard visibility mechanisms to locate the referenced entity.
6042
6043 else
6044 C := Current_Entity (N);
6045 while Present (C) loop
6046 if Etype (C) = B_Typ then
6047 Set_Entity_With_Style_Check (N, C);
6048 Generate_Reference (C, N);
6049 return;
6050 end if;
6051
6052 C := Homonym (C);
6053 end loop;
6054 end if;
6055
6056 -- If we fall through, then the literal does not match any of the
6057 -- entries of the enumeration type. This isn't just a constraint error
6058 -- situation, it is an illegality (see RM 4.2).
6059
6060 Error_Msg_NE
6061 ("character not defined for }", N, First_Subtype (B_Typ));
6062 end Resolve_Character_Literal;
6063
6064 ---------------------------
6065 -- Resolve_Comparison_Op --
6066 ---------------------------
6067
6068 -- Context requires a boolean type, and plays no role in resolution.
6069 -- Processing identical to that for equality operators. The result type is
6070 -- the base type, which matters when pathological subtypes of booleans with
6071 -- limited ranges are used.
6072
6073 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6074 L : constant Node_Id := Left_Opnd (N);
6075 R : constant Node_Id := Right_Opnd (N);
6076 T : Entity_Id;
6077
6078 begin
6079 -- If this is an intrinsic operation which is not predefined, use the
6080 -- types of its declared arguments to resolve the possibly overloaded
6081 -- operands. Otherwise the operands are unambiguous and specify the
6082 -- expected type.
6083
6084 if Scope (Entity (N)) /= Standard_Standard then
6085 T := Etype (First_Entity (Entity (N)));
6086
6087 else
6088 T := Find_Unique_Type (L, R);
6089
6090 if T = Any_Fixed then
6091 T := Unique_Fixed_Point_Type (L);
6092 end if;
6093 end if;
6094
6095 Set_Etype (N, Base_Type (Typ));
6096 Generate_Reference (T, N, ' ');
6097
6098 -- Skip remaining processing if already set to Any_Type
6099
6100 if T = Any_Type then
6101 return;
6102 end if;
6103
6104 -- Deal with other error cases
6105
6106 if T = Any_String or else
6107 T = Any_Composite or else
6108 T = Any_Character
6109 then
6110 if T = Any_Character then
6111 Ambiguous_Character (L);
6112 else
6113 Error_Msg_N ("ambiguous operands for comparison", N);
6114 end if;
6115
6116 Set_Etype (N, Any_Type);
6117 return;
6118 end if;
6119
6120 -- Resolve the operands if types OK
6121
6122 Resolve (L, T);
6123 Resolve (R, T);
6124 Check_Unset_Reference (L);
6125 Check_Unset_Reference (R);
6126 Generate_Operator_Reference (N, T);
6127 Check_Low_Bound_Tested (N);
6128
6129 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6130 -- types or array types except String.
6131
6132 if Is_Boolean_Type (T) then
6133 Check_SPARK_Restriction
6134 ("comparison is not defined on Boolean type", N);
6135
6136 elsif Is_Array_Type (T)
6137 and then Base_Type (T) /= Standard_String
6138 then
6139 Check_SPARK_Restriction
6140 ("comparison is not defined on array types other than String", N);
6141 end if;
6142
6143 -- Check comparison on unordered enumeration
6144
6145 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6146 Error_Msg_N ("comparison on unordered enumeration type?U?", N);
6147 end if;
6148
6149 -- Evaluate the relation (note we do this after the above check since
6150 -- this Eval call may change N to True/False.
6151
6152 Analyze_Dimension (N);
6153 Eval_Relational_Op (N);
6154 end Resolve_Comparison_Op;
6155
6156 -----------------------------------------
6157 -- Resolve_Discrete_Subtype_Indication --
6158 -----------------------------------------
6159
6160 procedure Resolve_Discrete_Subtype_Indication
6161 (N : Node_Id;
6162 Typ : Entity_Id)
6163 is
6164 R : Node_Id;
6165 S : Entity_Id;
6166
6167 begin
6168 Analyze (Subtype_Mark (N));
6169 S := Entity (Subtype_Mark (N));
6170
6171 if Nkind (Constraint (N)) /= N_Range_Constraint then
6172 Error_Msg_N ("expect range constraint for discrete type", N);
6173 Set_Etype (N, Any_Type);
6174
6175 else
6176 R := Range_Expression (Constraint (N));
6177
6178 if R = Error then
6179 return;
6180 end if;
6181
6182 Analyze (R);
6183
6184 if Base_Type (S) /= Base_Type (Typ) then
6185 Error_Msg_NE
6186 ("expect subtype of }", N, First_Subtype (Typ));
6187
6188 -- Rewrite the constraint as a range of Typ
6189 -- to allow compilation to proceed further.
6190
6191 Set_Etype (N, Typ);
6192 Rewrite (Low_Bound (R),
6193 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6194 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6195 Attribute_Name => Name_First));
6196 Rewrite (High_Bound (R),
6197 Make_Attribute_Reference (Sloc (High_Bound (R)),
6198 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6199 Attribute_Name => Name_First));
6200
6201 else
6202 Resolve (R, Typ);
6203 Set_Etype (N, Etype (R));
6204
6205 -- Additionally, we must check that the bounds are compatible
6206 -- with the given subtype, which might be different from the
6207 -- type of the context.
6208
6209 Apply_Range_Check (R, S);
6210
6211 -- ??? If the above check statically detects a Constraint_Error
6212 -- it replaces the offending bound(s) of the range R with a
6213 -- Constraint_Error node. When the itype which uses these bounds
6214 -- is frozen the resulting call to Duplicate_Subexpr generates
6215 -- a new temporary for the bounds.
6216
6217 -- Unfortunately there are other itypes that are also made depend
6218 -- on these bounds, so when Duplicate_Subexpr is called they get
6219 -- a forward reference to the newly created temporaries and Gigi
6220 -- aborts on such forward references. This is probably sign of a
6221 -- more fundamental problem somewhere else in either the order of
6222 -- itype freezing or the way certain itypes are constructed.
6223
6224 -- To get around this problem we call Remove_Side_Effects right
6225 -- away if either bounds of R are a Constraint_Error.
6226
6227 declare
6228 L : constant Node_Id := Low_Bound (R);
6229 H : constant Node_Id := High_Bound (R);
6230
6231 begin
6232 if Nkind (L) = N_Raise_Constraint_Error then
6233 Remove_Side_Effects (L);
6234 end if;
6235
6236 if Nkind (H) = N_Raise_Constraint_Error then
6237 Remove_Side_Effects (H);
6238 end if;
6239 end;
6240
6241 Check_Unset_Reference (Low_Bound (R));
6242 Check_Unset_Reference (High_Bound (R));
6243 end if;
6244 end if;
6245 end Resolve_Discrete_Subtype_Indication;
6246
6247 -------------------------
6248 -- Resolve_Entity_Name --
6249 -------------------------
6250
6251 -- Used to resolve identifiers and expanded names
6252
6253 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6254 E : constant Entity_Id := Entity (N);
6255
6256 begin
6257 -- If garbage from errors, set to Any_Type and return
6258
6259 if No (E) and then Total_Errors_Detected /= 0 then
6260 Set_Etype (N, Any_Type);
6261 return;
6262 end if;
6263
6264 -- Replace named numbers by corresponding literals. Note that this is
6265 -- the one case where Resolve_Entity_Name must reset the Etype, since
6266 -- it is currently marked as universal.
6267
6268 if Ekind (E) = E_Named_Integer then
6269 Set_Etype (N, Typ);
6270 Eval_Named_Integer (N);
6271
6272 elsif Ekind (E) = E_Named_Real then
6273 Set_Etype (N, Typ);
6274 Eval_Named_Real (N);
6275
6276 -- For enumeration literals, we need to make sure that a proper style
6277 -- check is done, since such literals are overloaded, and thus we did
6278 -- not do a style check during the first phase of analysis.
6279
6280 elsif Ekind (E) = E_Enumeration_Literal then
6281 Set_Entity_With_Style_Check (N, E);
6282 Eval_Entity_Name (N);
6283
6284 -- Case of subtype name appearing as an operand in expression
6285
6286 elsif Is_Type (E) then
6287
6288 -- Allow use of subtype if it is a concurrent type where we are
6289 -- currently inside the body. This will eventually be expanded into a
6290 -- call to Self (for tasks) or _object (for protected objects). Any
6291 -- other use of a subtype is invalid.
6292
6293 if Is_Concurrent_Type (E)
6294 and then In_Open_Scopes (E)
6295 then
6296 null;
6297
6298 -- Any other use is an error
6299
6300 else
6301 Error_Msg_N
6302 ("invalid use of subtype mark in expression or call", N);
6303 end if;
6304
6305 -- Check discriminant use if entity is discriminant in current scope,
6306 -- i.e. discriminant of record or concurrent type currently being
6307 -- analyzed. Uses in corresponding body are unrestricted.
6308
6309 elsif Ekind (E) = E_Discriminant
6310 and then Scope (E) = Current_Scope
6311 and then not Has_Completion (Current_Scope)
6312 then
6313 Check_Discriminant_Use (N);
6314
6315 -- A parameterless generic function cannot appear in a context that
6316 -- requires resolution.
6317
6318 elsif Ekind (E) = E_Generic_Function then
6319 Error_Msg_N ("illegal use of generic function", N);
6320
6321 elsif Ekind (E) = E_Out_Parameter
6322 and then Ada_Version = Ada_83
6323 and then (Nkind (Parent (N)) in N_Op
6324 or else (Nkind (Parent (N)) = N_Assignment_Statement
6325 and then N = Expression (Parent (N)))
6326 or else Nkind (Parent (N)) = N_Explicit_Dereference)
6327 then
6328 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
6329
6330 -- In all other cases, just do the possible static evaluation
6331
6332 else
6333 -- A deferred constant that appears in an expression must have a
6334 -- completion, unless it has been removed by in-place expansion of
6335 -- an aggregate.
6336
6337 if Ekind (E) = E_Constant
6338 and then Comes_From_Source (E)
6339 and then No (Constant_Value (E))
6340 and then Is_Frozen (Etype (E))
6341 and then not In_Spec_Expression
6342 and then not Is_Imported (E)
6343 then
6344 if No_Initialization (Parent (E))
6345 or else (Present (Full_View (E))
6346 and then No_Initialization (Parent (Full_View (E))))
6347 then
6348 null;
6349 else
6350 Error_Msg_N (
6351 "deferred constant is frozen before completion", N);
6352 end if;
6353 end if;
6354
6355 Eval_Entity_Name (N);
6356 end if;
6357 end Resolve_Entity_Name;
6358
6359 -------------------
6360 -- Resolve_Entry --
6361 -------------------
6362
6363 procedure Resolve_Entry (Entry_Name : Node_Id) is
6364 Loc : constant Source_Ptr := Sloc (Entry_Name);
6365 Nam : Entity_Id;
6366 New_N : Node_Id;
6367 S : Entity_Id;
6368 Tsk : Entity_Id;
6369 E_Name : Node_Id;
6370 Index : Node_Id;
6371
6372 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
6373 -- If the bounds of the entry family being called depend on task
6374 -- discriminants, build a new index subtype where a discriminant is
6375 -- replaced with the value of the discriminant of the target task.
6376 -- The target task is the prefix of the entry name in the call.
6377
6378 -----------------------
6379 -- Actual_Index_Type --
6380 -----------------------
6381
6382 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
6383 Typ : constant Entity_Id := Entry_Index_Type (E);
6384 Tsk : constant Entity_Id := Scope (E);
6385 Lo : constant Node_Id := Type_Low_Bound (Typ);
6386 Hi : constant Node_Id := Type_High_Bound (Typ);
6387 New_T : Entity_Id;
6388
6389 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
6390 -- If the bound is given by a discriminant, replace with a reference
6391 -- to the discriminant of the same name in the target task. If the
6392 -- entry name is the target of a requeue statement and the entry is
6393 -- in the current protected object, the bound to be used is the
6394 -- discriminal of the object (see Apply_Range_Checks for details of
6395 -- the transformation).
6396
6397 -----------------------------
6398 -- Actual_Discriminant_Ref --
6399 -----------------------------
6400
6401 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
6402 Typ : constant Entity_Id := Etype (Bound);
6403 Ref : Node_Id;
6404
6405 begin
6406 Remove_Side_Effects (Bound);
6407
6408 if not Is_Entity_Name (Bound)
6409 or else Ekind (Entity (Bound)) /= E_Discriminant
6410 then
6411 return Bound;
6412
6413 elsif Is_Protected_Type (Tsk)
6414 and then In_Open_Scopes (Tsk)
6415 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
6416 then
6417 -- Note: here Bound denotes a discriminant of the corresponding
6418 -- record type tskV, whose discriminal is a formal of the
6419 -- init-proc tskVIP. What we want is the body discriminal,
6420 -- which is associated to the discriminant of the original
6421 -- concurrent type tsk.
6422
6423 return New_Occurrence_Of
6424 (Find_Body_Discriminal (Entity (Bound)), Loc);
6425
6426 else
6427 Ref :=
6428 Make_Selected_Component (Loc,
6429 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
6430 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
6431 Analyze (Ref);
6432 Resolve (Ref, Typ);
6433 return Ref;
6434 end if;
6435 end Actual_Discriminant_Ref;
6436
6437 -- Start of processing for Actual_Index_Type
6438
6439 begin
6440 if not Has_Discriminants (Tsk)
6441 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
6442 then
6443 return Entry_Index_Type (E);
6444
6445 else
6446 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
6447 Set_Etype (New_T, Base_Type (Typ));
6448 Set_Size_Info (New_T, Typ);
6449 Set_RM_Size (New_T, RM_Size (Typ));
6450 Set_Scalar_Range (New_T,
6451 Make_Range (Sloc (Entry_Name),
6452 Low_Bound => Actual_Discriminant_Ref (Lo),
6453 High_Bound => Actual_Discriminant_Ref (Hi)));
6454
6455 return New_T;
6456 end if;
6457 end Actual_Index_Type;
6458
6459 -- Start of processing of Resolve_Entry
6460
6461 begin
6462 -- Find name of entry being called, and resolve prefix of name with its
6463 -- own type. The prefix can be overloaded, and the name and signature of
6464 -- the entry must be taken into account.
6465
6466 if Nkind (Entry_Name) = N_Indexed_Component then
6467
6468 -- Case of dealing with entry family within the current tasks
6469
6470 E_Name := Prefix (Entry_Name);
6471
6472 else
6473 E_Name := Entry_Name;
6474 end if;
6475
6476 if Is_Entity_Name (E_Name) then
6477
6478 -- Entry call to an entry (or entry family) in the current task. This
6479 -- is legal even though the task will deadlock. Rewrite as call to
6480 -- current task.
6481
6482 -- This can also be a call to an entry in an enclosing task. If this
6483 -- is a single task, we have to retrieve its name, because the scope
6484 -- of the entry is the task type, not the object. If the enclosing
6485 -- task is a task type, the identity of the task is given by its own
6486 -- self variable.
6487
6488 -- Finally this can be a requeue on an entry of the same task or
6489 -- protected object.
6490
6491 S := Scope (Entity (E_Name));
6492
6493 for J in reverse 0 .. Scope_Stack.Last loop
6494 if Is_Task_Type (Scope_Stack.Table (J).Entity)
6495 and then not Comes_From_Source (S)
6496 then
6497 -- S is an enclosing task or protected object. The concurrent
6498 -- declaration has been converted into a type declaration, and
6499 -- the object itself has an object declaration that follows
6500 -- the type in the same declarative part.
6501
6502 Tsk := Next_Entity (S);
6503 while Etype (Tsk) /= S loop
6504 Next_Entity (Tsk);
6505 end loop;
6506
6507 S := Tsk;
6508 exit;
6509
6510 elsif S = Scope_Stack.Table (J).Entity then
6511
6512 -- Call to current task. Will be transformed into call to Self
6513
6514 exit;
6515
6516 end if;
6517 end loop;
6518
6519 New_N :=
6520 Make_Selected_Component (Loc,
6521 Prefix => New_Occurrence_Of (S, Loc),
6522 Selector_Name =>
6523 New_Occurrence_Of (Entity (E_Name), Loc));
6524 Rewrite (E_Name, New_N);
6525 Analyze (E_Name);
6526
6527 elsif Nkind (Entry_Name) = N_Selected_Component
6528 and then Is_Overloaded (Prefix (Entry_Name))
6529 then
6530 -- Use the entry name (which must be unique at this point) to find
6531 -- the prefix that returns the corresponding task/protected type.
6532
6533 declare
6534 Pref : constant Node_Id := Prefix (Entry_Name);
6535 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
6536 I : Interp_Index;
6537 It : Interp;
6538
6539 begin
6540 Get_First_Interp (Pref, I, It);
6541 while Present (It.Typ) loop
6542 if Scope (Ent) = It.Typ then
6543 Set_Etype (Pref, It.Typ);
6544 exit;
6545 end if;
6546
6547 Get_Next_Interp (I, It);
6548 end loop;
6549 end;
6550 end if;
6551
6552 if Nkind (Entry_Name) = N_Selected_Component then
6553 Resolve (Prefix (Entry_Name));
6554
6555 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6556 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6557 Resolve (Prefix (Prefix (Entry_Name)));
6558 Index := First (Expressions (Entry_Name));
6559 Resolve (Index, Entry_Index_Type (Nam));
6560
6561 -- Up to this point the expression could have been the actual in a
6562 -- simple entry call, and be given by a named association.
6563
6564 if Nkind (Index) = N_Parameter_Association then
6565 Error_Msg_N ("expect expression for entry index", Index);
6566 else
6567 Apply_Range_Check (Index, Actual_Index_Type (Nam));
6568 end if;
6569 end if;
6570 end Resolve_Entry;
6571
6572 ------------------------
6573 -- Resolve_Entry_Call --
6574 ------------------------
6575
6576 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
6577 Entry_Name : constant Node_Id := Name (N);
6578 Loc : constant Source_Ptr := Sloc (Entry_Name);
6579 Actuals : List_Id;
6580 First_Named : Node_Id;
6581 Nam : Entity_Id;
6582 Norm_OK : Boolean;
6583 Obj : Node_Id;
6584 Was_Over : Boolean;
6585
6586 begin
6587 -- We kill all checks here, because it does not seem worth the effort to
6588 -- do anything better, an entry call is a big operation.
6589
6590 Kill_All_Checks;
6591
6592 -- Processing of the name is similar for entry calls and protected
6593 -- operation calls. Once the entity is determined, we can complete
6594 -- the resolution of the actuals.
6595
6596 -- The selector may be overloaded, in the case of a protected object
6597 -- with overloaded functions. The type of the context is used for
6598 -- resolution.
6599
6600 if Nkind (Entry_Name) = N_Selected_Component
6601 and then Is_Overloaded (Selector_Name (Entry_Name))
6602 and then Typ /= Standard_Void_Type
6603 then
6604 declare
6605 I : Interp_Index;
6606 It : Interp;
6607
6608 begin
6609 Get_First_Interp (Selector_Name (Entry_Name), I, It);
6610 while Present (It.Typ) loop
6611 if Covers (Typ, It.Typ) then
6612 Set_Entity (Selector_Name (Entry_Name), It.Nam);
6613 Set_Etype (Entry_Name, It.Typ);
6614
6615 Generate_Reference (It.Typ, N, ' ');
6616 end if;
6617
6618 Get_Next_Interp (I, It);
6619 end loop;
6620 end;
6621 end if;
6622
6623 Resolve_Entry (Entry_Name);
6624
6625 if Nkind (Entry_Name) = N_Selected_Component then
6626
6627 -- Simple entry call
6628
6629 Nam := Entity (Selector_Name (Entry_Name));
6630 Obj := Prefix (Entry_Name);
6631 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
6632
6633 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6634
6635 -- Call to member of entry family
6636
6637 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6638 Obj := Prefix (Prefix (Entry_Name));
6639 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
6640 end if;
6641
6642 -- We cannot in general check the maximum depth of protected entry calls
6643 -- at compile time. But we can tell that any protected entry call at all
6644 -- violates a specified nesting depth of zero.
6645
6646 if Is_Protected_Type (Scope (Nam)) then
6647 Check_Restriction (Max_Entry_Queue_Length, N);
6648 end if;
6649
6650 -- Use context type to disambiguate a protected function that can be
6651 -- called without actuals and that returns an array type, and where the
6652 -- argument list may be an indexing of the returned value.
6653
6654 if Ekind (Nam) = E_Function
6655 and then Needs_No_Actuals (Nam)
6656 and then Present (Parameter_Associations (N))
6657 and then
6658 ((Is_Array_Type (Etype (Nam))
6659 and then Covers (Typ, Component_Type (Etype (Nam))))
6660
6661 or else (Is_Access_Type (Etype (Nam))
6662 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6663 and then
6664 Covers
6665 (Typ,
6666 Component_Type (Designated_Type (Etype (Nam))))))
6667 then
6668 declare
6669 Index_Node : Node_Id;
6670
6671 begin
6672 Index_Node :=
6673 Make_Indexed_Component (Loc,
6674 Prefix =>
6675 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
6676 Expressions => Parameter_Associations (N));
6677
6678 -- Since we are correcting a node classification error made by the
6679 -- parser, we call Replace rather than Rewrite.
6680
6681 Replace (N, Index_Node);
6682 Set_Etype (Prefix (N), Etype (Nam));
6683 Set_Etype (N, Typ);
6684 Resolve_Indexed_Component (N, Typ);
6685 return;
6686 end;
6687 end if;
6688
6689 if Ekind_In (Nam, E_Entry, E_Entry_Family)
6690 and then Present (PPC_Wrapper (Nam))
6691 and then Current_Scope /= PPC_Wrapper (Nam)
6692 then
6693 -- Rewrite as call to the precondition wrapper, adding the task
6694 -- object to the list of actuals. If the call is to a member of an
6695 -- entry family, include the index as well.
6696
6697 declare
6698 New_Call : Node_Id;
6699 New_Actuals : List_Id;
6700
6701 begin
6702 New_Actuals := New_List (Obj);
6703
6704 if Nkind (Entry_Name) = N_Indexed_Component then
6705 Append_To (New_Actuals,
6706 New_Copy_Tree (First (Expressions (Entry_Name))));
6707 end if;
6708
6709 Append_List (Parameter_Associations (N), New_Actuals);
6710 New_Call :=
6711 Make_Procedure_Call_Statement (Loc,
6712 Name =>
6713 New_Occurrence_Of (PPC_Wrapper (Nam), Loc),
6714 Parameter_Associations => New_Actuals);
6715 Rewrite (N, New_Call);
6716 Analyze_And_Resolve (N);
6717 return;
6718 end;
6719 end if;
6720
6721 -- The operation name may have been overloaded. Order the actuals
6722 -- according to the formals of the resolved entity, and set the return
6723 -- type to that of the operation.
6724
6725 if Was_Over then
6726 Normalize_Actuals (N, Nam, False, Norm_OK);
6727 pragma Assert (Norm_OK);
6728 Set_Etype (N, Etype (Nam));
6729 end if;
6730
6731 Resolve_Actuals (N, Nam);
6732 Check_Internal_Protected_Use (N, Nam);
6733
6734 -- Create a call reference to the entry
6735
6736 Generate_Reference (Nam, Entry_Name, 's');
6737
6738 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
6739 Check_Potentially_Blocking_Operation (N);
6740 end if;
6741
6742 -- Verify that a procedure call cannot masquerade as an entry
6743 -- call where an entry call is expected.
6744
6745 if Ekind (Nam) = E_Procedure then
6746 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6747 and then N = Entry_Call_Statement (Parent (N))
6748 then
6749 Error_Msg_N ("entry call required in select statement", N);
6750
6751 elsif Nkind (Parent (N)) = N_Triggering_Alternative
6752 and then N = Triggering_Statement (Parent (N))
6753 then
6754 Error_Msg_N ("triggering statement cannot be procedure call", N);
6755
6756 elsif Ekind (Scope (Nam)) = E_Task_Type
6757 and then not In_Open_Scopes (Scope (Nam))
6758 then
6759 Error_Msg_N ("task has no entry with this name", Entry_Name);
6760 end if;
6761 end if;
6762
6763 -- After resolution, entry calls and protected procedure calls are
6764 -- changed into entry calls, for expansion. The structure of the node
6765 -- does not change, so it can safely be done in place. Protected
6766 -- function calls must keep their structure because they are
6767 -- subexpressions.
6768
6769 if Ekind (Nam) /= E_Function then
6770
6771 -- A protected operation that is not a function may modify the
6772 -- corresponding object, and cannot apply to a constant. If this
6773 -- is an internal call, the prefix is the type itself.
6774
6775 if Is_Protected_Type (Scope (Nam))
6776 and then not Is_Variable (Obj)
6777 and then (not Is_Entity_Name (Obj)
6778 or else not Is_Type (Entity (Obj)))
6779 then
6780 Error_Msg_N
6781 ("prefix of protected procedure or entry call must be variable",
6782 Entry_Name);
6783 end if;
6784
6785 Actuals := Parameter_Associations (N);
6786 First_Named := First_Named_Actual (N);
6787
6788 Rewrite (N,
6789 Make_Entry_Call_Statement (Loc,
6790 Name => Entry_Name,
6791 Parameter_Associations => Actuals));
6792
6793 Set_First_Named_Actual (N, First_Named);
6794 Set_Analyzed (N, True);
6795
6796 -- Protected functions can return on the secondary stack, in which
6797 -- case we must trigger the transient scope mechanism.
6798
6799 elsif Full_Expander_Active
6800 and then Requires_Transient_Scope (Etype (Nam))
6801 then
6802 Establish_Transient_Scope (N, Sec_Stack => True);
6803 end if;
6804 end Resolve_Entry_Call;
6805
6806 -------------------------
6807 -- Resolve_Equality_Op --
6808 -------------------------
6809
6810 -- Both arguments must have the same type, and the boolean context does
6811 -- not participate in the resolution. The first pass verifies that the
6812 -- interpretation is not ambiguous, and the type of the left argument is
6813 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
6814 -- are strings or aggregates, allocators, or Null, they are ambiguous even
6815 -- though they carry a single (universal) type. Diagnose this case here.
6816
6817 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
6818 L : constant Node_Id := Left_Opnd (N);
6819 R : constant Node_Id := Right_Opnd (N);
6820 T : Entity_Id := Find_Unique_Type (L, R);
6821
6822 procedure Check_If_Expression (Cond : Node_Id);
6823 -- The resolution rule for if expressions requires that each such must
6824 -- have a unique type. This means that if several dependent expressions
6825 -- are of a non-null anonymous access type, and the context does not
6826 -- impose an expected type (as can be the case in an equality operation)
6827 -- the expression must be rejected.
6828
6829 function Find_Unique_Access_Type return Entity_Id;
6830 -- In the case of allocators and access attributes, the context must
6831 -- provide an indication of the specific access type to be used. If
6832 -- one operand is of such a "generic" access type, check whether there
6833 -- is a specific visible access type that has the same designated type.
6834 -- This is semantically dubious, and of no interest to any real code,
6835 -- but c48008a makes it all worthwhile.
6836
6837 -------------------------
6838 -- Check_If_Expression --
6839 -------------------------
6840
6841 procedure Check_If_Expression (Cond : Node_Id) is
6842 Then_Expr : Node_Id;
6843 Else_Expr : Node_Id;
6844
6845 begin
6846 if Nkind (Cond) = N_If_Expression then
6847 Then_Expr := Next (First (Expressions (Cond)));
6848 Else_Expr := Next (Then_Expr);
6849
6850 if Nkind (Then_Expr) /= N_Null
6851 and then Nkind (Else_Expr) /= N_Null
6852 then
6853 Error_Msg_N ("cannot determine type of if expression", Cond);
6854 end if;
6855 end if;
6856 end Check_If_Expression;
6857
6858 -----------------------------
6859 -- Find_Unique_Access_Type --
6860 -----------------------------
6861
6862 function Find_Unique_Access_Type return Entity_Id is
6863 Acc : Entity_Id;
6864 E : Entity_Id;
6865 S : Entity_Id;
6866
6867 begin
6868 if Ekind_In (Etype (R), E_Allocator_Type,
6869 E_Access_Attribute_Type)
6870 then
6871 Acc := Designated_Type (Etype (R));
6872
6873 elsif Ekind_In (Etype (L), E_Allocator_Type,
6874 E_Access_Attribute_Type)
6875 then
6876 Acc := Designated_Type (Etype (L));
6877 else
6878 return Empty;
6879 end if;
6880
6881 S := Current_Scope;
6882 while S /= Standard_Standard loop
6883 E := First_Entity (S);
6884 while Present (E) loop
6885 if Is_Type (E)
6886 and then Is_Access_Type (E)
6887 and then Ekind (E) /= E_Allocator_Type
6888 and then Designated_Type (E) = Base_Type (Acc)
6889 then
6890 return E;
6891 end if;
6892
6893 Next_Entity (E);
6894 end loop;
6895
6896 S := Scope (S);
6897 end loop;
6898
6899 return Empty;
6900 end Find_Unique_Access_Type;
6901
6902 -- Start of processing for Resolve_Equality_Op
6903
6904 begin
6905 Set_Etype (N, Base_Type (Typ));
6906 Generate_Reference (T, N, ' ');
6907
6908 if T = Any_Fixed then
6909 T := Unique_Fixed_Point_Type (L);
6910 end if;
6911
6912 if T /= Any_Type then
6913 if T = Any_String or else
6914 T = Any_Composite or else
6915 T = Any_Character
6916 then
6917 if T = Any_Character then
6918 Ambiguous_Character (L);
6919 else
6920 Error_Msg_N ("ambiguous operands for equality", N);
6921 end if;
6922
6923 Set_Etype (N, Any_Type);
6924 return;
6925
6926 elsif T = Any_Access
6927 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
6928 then
6929 T := Find_Unique_Access_Type;
6930
6931 if No (T) then
6932 Error_Msg_N ("ambiguous operands for equality", N);
6933 Set_Etype (N, Any_Type);
6934 return;
6935 end if;
6936
6937 -- If expressions must have a single type, and if the context does
6938 -- not impose one the dependent expressions cannot be anonymous
6939 -- access types.
6940
6941 -- Why no similar processing for case expressions???
6942
6943 elsif Ada_Version >= Ada_2012
6944 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
6945 E_Anonymous_Access_Subprogram_Type)
6946 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
6947 E_Anonymous_Access_Subprogram_Type)
6948 then
6949 Check_If_Expression (L);
6950 Check_If_Expression (R);
6951 end if;
6952
6953 Resolve (L, T);
6954 Resolve (R, T);
6955
6956 -- In SPARK, equality operators = and /= for array types other than
6957 -- String are only defined when, for each index position, the
6958 -- operands have equal static bounds.
6959
6960 if Is_Array_Type (T) then
6961
6962 -- Protect call to Matching_Static_Array_Bounds to avoid costly
6963 -- operation if not needed.
6964
6965 if Restriction_Check_Required (SPARK)
6966 and then Base_Type (T) /= Standard_String
6967 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6968 and then Etype (L) /= Any_Composite -- or else L in error
6969 and then Etype (R) /= Any_Composite -- or else R in error
6970 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
6971 then
6972 Check_SPARK_Restriction
6973 ("array types should have matching static bounds", N);
6974 end if;
6975 end if;
6976
6977 -- If the unique type is a class-wide type then it will be expanded
6978 -- into a dispatching call to the predefined primitive. Therefore we
6979 -- check here for potential violation of such restriction.
6980
6981 if Is_Class_Wide_Type (T) then
6982 Check_Restriction (No_Dispatching_Calls, N);
6983 end if;
6984
6985 if Warn_On_Redundant_Constructs
6986 and then Comes_From_Source (N)
6987 and then Is_Entity_Name (R)
6988 and then Entity (R) = Standard_True
6989 and then Comes_From_Source (R)
6990 then
6991 Error_Msg_N -- CODEFIX
6992 ("?r?comparison with True is redundant!", R);
6993 end if;
6994
6995 Check_Unset_Reference (L);
6996 Check_Unset_Reference (R);
6997 Generate_Operator_Reference (N, T);
6998 Check_Low_Bound_Tested (N);
6999
7000 -- If this is an inequality, it may be the implicit inequality
7001 -- created for a user-defined operation, in which case the corres-
7002 -- ponding equality operation is not intrinsic, and the operation
7003 -- cannot be constant-folded. Else fold.
7004
7005 if Nkind (N) = N_Op_Eq
7006 or else Comes_From_Source (Entity (N))
7007 or else Ekind (Entity (N)) = E_Operator
7008 or else Is_Intrinsic_Subprogram
7009 (Corresponding_Equality (Entity (N)))
7010 then
7011 Analyze_Dimension (N);
7012 Eval_Relational_Op (N);
7013
7014 elsif Nkind (N) = N_Op_Ne
7015 and then Is_Abstract_Subprogram (Entity (N))
7016 then
7017 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7018 end if;
7019
7020 -- Ada 2005: If one operand is an anonymous access type, convert the
7021 -- other operand to it, to ensure that the underlying types match in
7022 -- the back-end. Same for access_to_subprogram, and the conversion
7023 -- verifies that the types are subtype conformant.
7024
7025 -- We apply the same conversion in the case one of the operands is a
7026 -- private subtype of the type of the other.
7027
7028 -- Why the Expander_Active test here ???
7029
7030 if Full_Expander_Active
7031 and then
7032 (Ekind_In (T, E_Anonymous_Access_Type,
7033 E_Anonymous_Access_Subprogram_Type)
7034 or else Is_Private_Type (T))
7035 then
7036 if Etype (L) /= T then
7037 Rewrite (L,
7038 Make_Unchecked_Type_Conversion (Sloc (L),
7039 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7040 Expression => Relocate_Node (L)));
7041 Analyze_And_Resolve (L, T);
7042 end if;
7043
7044 if (Etype (R)) /= T then
7045 Rewrite (R,
7046 Make_Unchecked_Type_Conversion (Sloc (R),
7047 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7048 Expression => Relocate_Node (R)));
7049 Analyze_And_Resolve (R, T);
7050 end if;
7051 end if;
7052 end if;
7053 end Resolve_Equality_Op;
7054
7055 ----------------------------------
7056 -- Resolve_Explicit_Dereference --
7057 ----------------------------------
7058
7059 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7060 Loc : constant Source_Ptr := Sloc (N);
7061 New_N : Node_Id;
7062 P : constant Node_Id := Prefix (N);
7063
7064 P_Typ : Entity_Id;
7065 -- The candidate prefix type, if overloaded
7066
7067 I : Interp_Index;
7068 It : Interp;
7069
7070 begin
7071 Check_Fully_Declared_Prefix (Typ, P);
7072 P_Typ := Empty;
7073
7074 if Is_Overloaded (P) then
7075
7076 -- Use the context type to select the prefix that has the correct
7077 -- designated type. Keep the first match, which will be the inner-
7078 -- most.
7079
7080 Get_First_Interp (P, I, It);
7081
7082 while Present (It.Typ) loop
7083 if Is_Access_Type (It.Typ)
7084 and then Covers (Typ, Designated_Type (It.Typ))
7085 then
7086 if No (P_Typ) then
7087 P_Typ := It.Typ;
7088 end if;
7089
7090 -- Remove access types that do not match, but preserve access
7091 -- to subprogram interpretations, in case a further dereference
7092 -- is needed (see below).
7093
7094 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7095 Remove_Interp (I);
7096 end if;
7097
7098 Get_Next_Interp (I, It);
7099 end loop;
7100
7101 if Present (P_Typ) then
7102 Resolve (P, P_Typ);
7103 Set_Etype (N, Designated_Type (P_Typ));
7104
7105 else
7106 -- If no interpretation covers the designated type of the prefix,
7107 -- this is the pathological case where not all implementations of
7108 -- the prefix allow the interpretation of the node as a call. Now
7109 -- that the expected type is known, Remove other interpretations
7110 -- from prefix, rewrite it as a call, and resolve again, so that
7111 -- the proper call node is generated.
7112
7113 Get_First_Interp (P, I, It);
7114 while Present (It.Typ) loop
7115 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
7116 Remove_Interp (I);
7117 end if;
7118
7119 Get_Next_Interp (I, It);
7120 end loop;
7121
7122 New_N :=
7123 Make_Function_Call (Loc,
7124 Name =>
7125 Make_Explicit_Dereference (Loc,
7126 Prefix => P),
7127 Parameter_Associations => New_List);
7128
7129 Save_Interps (N, New_N);
7130 Rewrite (N, New_N);
7131 Analyze_And_Resolve (N, Typ);
7132 return;
7133 end if;
7134
7135 -- If not overloaded, resolve P with its own type
7136
7137 else
7138 Resolve (P);
7139 end if;
7140
7141 if Is_Access_Type (Etype (P)) then
7142 Apply_Access_Check (N);
7143 end if;
7144
7145 -- If the designated type is a packed unconstrained array type, and the
7146 -- explicit dereference is not in the context of an attribute reference,
7147 -- then we must compute and set the actual subtype, since it is needed
7148 -- by Gigi. The reason we exclude the attribute case is that this is
7149 -- handled fine by Gigi, and in fact we use such attributes to build the
7150 -- actual subtype. We also exclude generated code (which builds actual
7151 -- subtypes directly if they are needed).
7152
7153 if Is_Array_Type (Etype (N))
7154 and then Is_Packed (Etype (N))
7155 and then not Is_Constrained (Etype (N))
7156 and then Nkind (Parent (N)) /= N_Attribute_Reference
7157 and then Comes_From_Source (N)
7158 then
7159 Set_Etype (N, Get_Actual_Subtype (N));
7160 end if;
7161
7162 -- Note: No Eval processing is required for an explicit dereference,
7163 -- because such a name can never be static.
7164
7165 end Resolve_Explicit_Dereference;
7166
7167 -------------------------------------
7168 -- Resolve_Expression_With_Actions --
7169 -------------------------------------
7170
7171 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
7172 begin
7173 Set_Etype (N, Typ);
7174 end Resolve_Expression_With_Actions;
7175
7176 ---------------------------
7177 -- Resolve_If_Expression --
7178 ---------------------------
7179
7180 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
7181 Condition : constant Node_Id := First (Expressions (N));
7182 Then_Expr : constant Node_Id := Next (Condition);
7183 Else_Expr : Node_Id := Next (Then_Expr);
7184 Else_Typ : Entity_Id;
7185 Then_Typ : Entity_Id;
7186
7187 begin
7188 Resolve (Condition, Any_Boolean);
7189 Resolve (Then_Expr, Typ);
7190 Then_Typ := Etype (Then_Expr);
7191
7192 -- When the "then" expression is of a scalar subtype different from the
7193 -- result subtype, then insert a conversion to ensure the generation of
7194 -- a constraint check. The same is done for the else part below, again
7195 -- comparing subtypes rather than base types.
7196
7197 if Is_Scalar_Type (Then_Typ)
7198 and then Then_Typ /= Typ
7199 then
7200 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
7201 Analyze_And_Resolve (Then_Expr, Typ);
7202 end if;
7203
7204 -- If ELSE expression present, just resolve using the determined type
7205
7206 if Present (Else_Expr) then
7207 Resolve (Else_Expr, Typ);
7208 Else_Typ := Etype (Else_Expr);
7209
7210 if Is_Scalar_Type (Else_Typ)
7211 and then Else_Typ /= Typ
7212 then
7213 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
7214 Analyze_And_Resolve (Else_Expr, Typ);
7215 end if;
7216
7217 -- If no ELSE expression is present, root type must be Standard.Boolean
7218 -- and we provide a Standard.True result converted to the appropriate
7219 -- Boolean type (in case it is a derived boolean type).
7220
7221 elsif Root_Type (Typ) = Standard_Boolean then
7222 Else_Expr :=
7223 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
7224 Analyze_And_Resolve (Else_Expr, Typ);
7225 Append_To (Expressions (N), Else_Expr);
7226
7227 else
7228 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
7229 Append_To (Expressions (N), Error);
7230 end if;
7231
7232 Set_Etype (N, Typ);
7233 Eval_If_Expression (N);
7234 end Resolve_If_Expression;
7235
7236 -------------------------------
7237 -- Resolve_Indexed_Component --
7238 -------------------------------
7239
7240 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
7241 Name : constant Node_Id := Prefix (N);
7242 Expr : Node_Id;
7243 Array_Type : Entity_Id := Empty; -- to prevent junk warning
7244 Index : Node_Id;
7245
7246 begin
7247 if Is_Overloaded (Name) then
7248
7249 -- Use the context type to select the prefix that yields the correct
7250 -- component type.
7251
7252 declare
7253 I : Interp_Index;
7254 It : Interp;
7255 I1 : Interp_Index := 0;
7256 P : constant Node_Id := Prefix (N);
7257 Found : Boolean := False;
7258
7259 begin
7260 Get_First_Interp (P, I, It);
7261 while Present (It.Typ) loop
7262 if (Is_Array_Type (It.Typ)
7263 and then Covers (Typ, Component_Type (It.Typ)))
7264 or else (Is_Access_Type (It.Typ)
7265 and then Is_Array_Type (Designated_Type (It.Typ))
7266 and then
7267 Covers
7268 (Typ,
7269 Component_Type (Designated_Type (It.Typ))))
7270 then
7271 if Found then
7272 It := Disambiguate (P, I1, I, Any_Type);
7273
7274 if It = No_Interp then
7275 Error_Msg_N ("ambiguous prefix for indexing", N);
7276 Set_Etype (N, Typ);
7277 return;
7278
7279 else
7280 Found := True;
7281 Array_Type := It.Typ;
7282 I1 := I;
7283 end if;
7284
7285 else
7286 Found := True;
7287 Array_Type := It.Typ;
7288 I1 := I;
7289 end if;
7290 end if;
7291
7292 Get_Next_Interp (I, It);
7293 end loop;
7294 end;
7295
7296 else
7297 Array_Type := Etype (Name);
7298 end if;
7299
7300 Resolve (Name, Array_Type);
7301 Array_Type := Get_Actual_Subtype_If_Available (Name);
7302
7303 -- If prefix is access type, dereference to get real array type.
7304 -- Note: we do not apply an access check because the expander always
7305 -- introduces an explicit dereference, and the check will happen there.
7306
7307 if Is_Access_Type (Array_Type) then
7308 Array_Type := Designated_Type (Array_Type);
7309 end if;
7310
7311 -- If name was overloaded, set component type correctly now
7312 -- If a misplaced call to an entry family (which has no index types)
7313 -- return. Error will be diagnosed from calling context.
7314
7315 if Is_Array_Type (Array_Type) then
7316 Set_Etype (N, Component_Type (Array_Type));
7317 else
7318 return;
7319 end if;
7320
7321 Index := First_Index (Array_Type);
7322 Expr := First (Expressions (N));
7323
7324 -- The prefix may have resolved to a string literal, in which case its
7325 -- etype has a special representation. This is only possible currently
7326 -- if the prefix is a static concatenation, written in functional
7327 -- notation.
7328
7329 if Ekind (Array_Type) = E_String_Literal_Subtype then
7330 Resolve (Expr, Standard_Positive);
7331
7332 else
7333 while Present (Index) and Present (Expr) loop
7334 Resolve (Expr, Etype (Index));
7335 Check_Unset_Reference (Expr);
7336
7337 if Is_Scalar_Type (Etype (Expr)) then
7338 Apply_Scalar_Range_Check (Expr, Etype (Index));
7339 else
7340 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
7341 end if;
7342
7343 Next_Index (Index);
7344 Next (Expr);
7345 end loop;
7346 end if;
7347
7348 Analyze_Dimension (N);
7349
7350 -- Do not generate the warning on suspicious index if we are analyzing
7351 -- package Ada.Tags; otherwise we will report the warning with the
7352 -- Prims_Ptr field of the dispatch table.
7353
7354 if Scope (Etype (Prefix (N))) = Standard_Standard
7355 or else not
7356 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
7357 Ada_Tags)
7358 then
7359 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
7360 Eval_Indexed_Component (N);
7361 end if;
7362
7363 -- If the array type is atomic, and is packed, and we are in a left side
7364 -- context, then this is worth a warning, since we have a situation
7365 -- where the access to the component may cause extra read/writes of
7366 -- the atomic array object, which could be considered unexpected.
7367
7368 if Nkind (N) = N_Indexed_Component
7369 and then (Is_Atomic (Array_Type)
7370 or else (Is_Entity_Name (Prefix (N))
7371 and then Is_Atomic (Entity (Prefix (N)))))
7372 and then Is_Bit_Packed_Array (Array_Type)
7373 and then Is_LHS (N)
7374 then
7375 Error_Msg_N ("??assignment to component of packed atomic array",
7376 Prefix (N));
7377 Error_Msg_N ("??\may cause unexpected accesses to atomic object",
7378 Prefix (N));
7379 end if;
7380 end Resolve_Indexed_Component;
7381
7382 -----------------------------
7383 -- Resolve_Integer_Literal --
7384 -----------------------------
7385
7386 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
7387 begin
7388 Set_Etype (N, Typ);
7389 Eval_Integer_Literal (N);
7390 end Resolve_Integer_Literal;
7391
7392 --------------------------------
7393 -- Resolve_Intrinsic_Operator --
7394 --------------------------------
7395
7396 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
7397 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
7398 Op : Entity_Id;
7399 Orig_Op : constant Entity_Id := Entity (N);
7400 Arg1 : Node_Id;
7401 Arg2 : Node_Id;
7402
7403 function Convert_Operand (Opnd : Node_Id) return Node_Id;
7404 -- If the operand is a literal, it cannot be the expression in a
7405 -- conversion. Use a qualified expression instead.
7406
7407 function Convert_Operand (Opnd : Node_Id) return Node_Id is
7408 Loc : constant Source_Ptr := Sloc (Opnd);
7409 Res : Node_Id;
7410 begin
7411 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
7412 Res :=
7413 Make_Qualified_Expression (Loc,
7414 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
7415 Expression => Relocate_Node (Opnd));
7416 Analyze (Res);
7417
7418 else
7419 Res := Unchecked_Convert_To (Btyp, Opnd);
7420 end if;
7421
7422 return Res;
7423 end Convert_Operand;
7424
7425 -- Start of processing for Resolve_Intrinsic_Operator
7426
7427 begin
7428 -- We must preserve the original entity in a generic setting, so that
7429 -- the legality of the operation can be verified in an instance.
7430
7431 if not Full_Expander_Active then
7432 return;
7433 end if;
7434
7435 Op := Entity (N);
7436 while Scope (Op) /= Standard_Standard loop
7437 Op := Homonym (Op);
7438 pragma Assert (Present (Op));
7439 end loop;
7440
7441 Set_Entity (N, Op);
7442 Set_Is_Overloaded (N, False);
7443
7444 -- If the result or operand types are private, rewrite with unchecked
7445 -- conversions on the operands and the result, to expose the proper
7446 -- underlying numeric type.
7447
7448 if Is_Private_Type (Typ)
7449 or else Is_Private_Type (Etype (Left_Opnd (N)))
7450 or else Is_Private_Type (Etype (Right_Opnd (N)))
7451 then
7452 Arg1 := Convert_Operand (Left_Opnd (N));
7453 -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
7454 -- What on earth is this commented out fragment of code???
7455
7456 if Nkind (N) = N_Op_Expon then
7457 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
7458 else
7459 Arg2 := Convert_Operand (Right_Opnd (N));
7460 end if;
7461
7462 if Nkind (Arg1) = N_Type_Conversion then
7463 Save_Interps (Left_Opnd (N), Expression (Arg1));
7464 end if;
7465
7466 if Nkind (Arg2) = N_Type_Conversion then
7467 Save_Interps (Right_Opnd (N), Expression (Arg2));
7468 end if;
7469
7470 Set_Left_Opnd (N, Arg1);
7471 Set_Right_Opnd (N, Arg2);
7472
7473 Set_Etype (N, Btyp);
7474 Rewrite (N, Unchecked_Convert_To (Typ, N));
7475 Resolve (N, Typ);
7476
7477 elsif Typ /= Etype (Left_Opnd (N))
7478 or else Typ /= Etype (Right_Opnd (N))
7479 then
7480 -- Add explicit conversion where needed, and save interpretations in
7481 -- case operands are overloaded. If the context is a VMS operation,
7482 -- assert that the conversion is legal (the operands have the proper
7483 -- types to select the VMS intrinsic). Note that in rare cases the
7484 -- VMS operators may be visible, but the default System is being used
7485 -- and Address is a private type.
7486
7487 Arg1 := Convert_To (Typ, Left_Opnd (N));
7488 Arg2 := Convert_To (Typ, Right_Opnd (N));
7489
7490 if Nkind (Arg1) = N_Type_Conversion then
7491 Save_Interps (Left_Opnd (N), Expression (Arg1));
7492
7493 if Is_VMS_Operator (Orig_Op) then
7494 Set_Conversion_OK (Arg1);
7495 end if;
7496 else
7497 Save_Interps (Left_Opnd (N), Arg1);
7498 end if;
7499
7500 if Nkind (Arg2) = N_Type_Conversion then
7501 Save_Interps (Right_Opnd (N), Expression (Arg2));
7502
7503 if Is_VMS_Operator (Orig_Op) then
7504 Set_Conversion_OK (Arg2);
7505 end if;
7506 else
7507 Save_Interps (Right_Opnd (N), Arg2);
7508 end if;
7509
7510 Rewrite (Left_Opnd (N), Arg1);
7511 Rewrite (Right_Opnd (N), Arg2);
7512 Analyze (Arg1);
7513 Analyze (Arg2);
7514 Resolve_Arithmetic_Op (N, Typ);
7515
7516 else
7517 Resolve_Arithmetic_Op (N, Typ);
7518 end if;
7519 end Resolve_Intrinsic_Operator;
7520
7521 --------------------------------------
7522 -- Resolve_Intrinsic_Unary_Operator --
7523 --------------------------------------
7524
7525 procedure Resolve_Intrinsic_Unary_Operator
7526 (N : Node_Id;
7527 Typ : Entity_Id)
7528 is
7529 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
7530 Op : Entity_Id;
7531 Arg2 : Node_Id;
7532
7533 begin
7534 Op := Entity (N);
7535 while Scope (Op) /= Standard_Standard loop
7536 Op := Homonym (Op);
7537 pragma Assert (Present (Op));
7538 end loop;
7539
7540 Set_Entity (N, Op);
7541
7542 if Is_Private_Type (Typ) then
7543 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
7544 Save_Interps (Right_Opnd (N), Expression (Arg2));
7545
7546 Set_Right_Opnd (N, Arg2);
7547
7548 Set_Etype (N, Btyp);
7549 Rewrite (N, Unchecked_Convert_To (Typ, N));
7550 Resolve (N, Typ);
7551
7552 else
7553 Resolve_Unary_Op (N, Typ);
7554 end if;
7555 end Resolve_Intrinsic_Unary_Operator;
7556
7557 ------------------------
7558 -- Resolve_Logical_Op --
7559 ------------------------
7560
7561 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
7562 B_Typ : Entity_Id;
7563
7564 begin
7565 Check_No_Direct_Boolean_Operators (N);
7566
7567 -- Predefined operations on scalar types yield the base type. On the
7568 -- other hand, logical operations on arrays yield the type of the
7569 -- arguments (and the context).
7570
7571 if Is_Array_Type (Typ) then
7572 B_Typ := Typ;
7573 else
7574 B_Typ := Base_Type (Typ);
7575 end if;
7576
7577 -- OK if this is a VMS-specific intrinsic operation
7578
7579 if Is_VMS_Operator (Entity (N)) then
7580 null;
7581
7582 -- The following test is required because the operands of the operation
7583 -- may be literals, in which case the resulting type appears to be
7584 -- compatible with a signed integer type, when in fact it is compatible
7585 -- only with modular types. If the context itself is universal, the
7586 -- operation is illegal.
7587
7588 elsif not Valid_Boolean_Arg (Typ) then
7589 Error_Msg_N ("invalid context for logical operation", N);
7590 Set_Etype (N, Any_Type);
7591 return;
7592
7593 elsif Typ = Any_Modular then
7594 Error_Msg_N
7595 ("no modular type available in this context", N);
7596 Set_Etype (N, Any_Type);
7597 return;
7598
7599 elsif Is_Modular_Integer_Type (Typ)
7600 and then Etype (Left_Opnd (N)) = Universal_Integer
7601 and then Etype (Right_Opnd (N)) = Universal_Integer
7602 then
7603 Check_For_Visible_Operator (N, B_Typ);
7604 end if;
7605
7606 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
7607 -- is active and the result type is standard Boolean (do not mess with
7608 -- ops that return a nonstandard Boolean type, because something strange
7609 -- is going on).
7610
7611 -- Note: you might expect this replacement to be done during expansion,
7612 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
7613 -- is used, no part of the right operand of an "and" or "or" operator
7614 -- should be executed if the left operand would short-circuit the
7615 -- evaluation of the corresponding "and then" or "or else". If we left
7616 -- the replacement to expansion time, then run-time checks associated
7617 -- with such operands would be evaluated unconditionally, due to being
7618 -- before the condition prior to the rewriting as short-circuit forms
7619 -- during expansion.
7620
7621 if Short_Circuit_And_Or
7622 and then B_Typ = Standard_Boolean
7623 and then Nkind_In (N, N_Op_And, N_Op_Or)
7624 then
7625 if Nkind (N) = N_Op_And then
7626 Rewrite (N,
7627 Make_And_Then (Sloc (N),
7628 Left_Opnd => Relocate_Node (Left_Opnd (N)),
7629 Right_Opnd => Relocate_Node (Right_Opnd (N))));
7630 Analyze_And_Resolve (N, B_Typ);
7631
7632 -- Case of OR changed to OR ELSE
7633
7634 else
7635 Rewrite (N,
7636 Make_Or_Else (Sloc (N),
7637 Left_Opnd => Relocate_Node (Left_Opnd (N)),
7638 Right_Opnd => Relocate_Node (Right_Opnd (N))));
7639 Analyze_And_Resolve (N, B_Typ);
7640 end if;
7641
7642 -- Return now, since analysis of the rewritten ops will take care of
7643 -- other reference bookkeeping and expression folding.
7644
7645 return;
7646 end if;
7647
7648 Resolve (Left_Opnd (N), B_Typ);
7649 Resolve (Right_Opnd (N), B_Typ);
7650
7651 Check_Unset_Reference (Left_Opnd (N));
7652 Check_Unset_Reference (Right_Opnd (N));
7653
7654 Set_Etype (N, B_Typ);
7655 Generate_Operator_Reference (N, B_Typ);
7656 Eval_Logical_Op (N);
7657
7658 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
7659 -- only when both operands have same static lower and higher bounds. Of
7660 -- course the types have to match, so only check if operands are
7661 -- compatible and the node itself has no errors.
7662
7663 if Is_Array_Type (B_Typ)
7664 and then Nkind (N) in N_Binary_Op
7665 then
7666 declare
7667 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
7668 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
7669
7670 begin
7671 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7672 -- operation if not needed.
7673
7674 if Restriction_Check_Required (SPARK)
7675 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
7676 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
7677 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
7678 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
7679 then
7680 Check_SPARK_Restriction
7681 ("array types should have matching static bounds", N);
7682 end if;
7683 end;
7684 end if;
7685
7686 Check_Function_Writable_Actuals (N);
7687 end Resolve_Logical_Op;
7688
7689 ---------------------------
7690 -- Resolve_Membership_Op --
7691 ---------------------------
7692
7693 -- The context can only be a boolean type, and does not determine the
7694 -- arguments. Arguments should be unambiguous, but the preference rule for
7695 -- universal types applies.
7696
7697 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
7698 pragma Warnings (Off, Typ);
7699
7700 L : constant Node_Id := Left_Opnd (N);
7701 R : constant Node_Id := Right_Opnd (N);
7702 T : Entity_Id;
7703
7704 procedure Resolve_Set_Membership;
7705 -- Analysis has determined a unique type for the left operand. Use it to
7706 -- resolve the disjuncts.
7707
7708 ----------------------------
7709 -- Resolve_Set_Membership --
7710 ----------------------------
7711
7712 procedure Resolve_Set_Membership is
7713 Alt : Node_Id;
7714 Ltyp : constant Entity_Id := Etype (L);
7715
7716 begin
7717 Resolve (L, Ltyp);
7718
7719 Alt := First (Alternatives (N));
7720 while Present (Alt) loop
7721
7722 -- Alternative is an expression, a range
7723 -- or a subtype mark.
7724
7725 if not Is_Entity_Name (Alt)
7726 or else not Is_Type (Entity (Alt))
7727 then
7728 Resolve (Alt, Ltyp);
7729 end if;
7730
7731 Next (Alt);
7732 end loop;
7733
7734 -- Check for duplicates for discrete case
7735
7736 if Is_Discrete_Type (Ltyp) then
7737 declare
7738 type Ent is record
7739 Alt : Node_Id;
7740 Val : Uint;
7741 end record;
7742
7743 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
7744 Nalts : Nat;
7745
7746 begin
7747 -- Loop checking duplicates. This is quadratic, but giant sets
7748 -- are unlikely in this context so it's a reasonable choice.
7749
7750 Nalts := 0;
7751 Alt := First (Alternatives (N));
7752 while Present (Alt) loop
7753 if Is_Static_Expression (Alt)
7754 and then (Nkind_In (Alt, N_Integer_Literal,
7755 N_Character_Literal)
7756 or else Nkind (Alt) in N_Has_Entity)
7757 then
7758 Nalts := Nalts + 1;
7759 Alts (Nalts) := (Alt, Expr_Value (Alt));
7760
7761 for J in 1 .. Nalts - 1 loop
7762 if Alts (J).Val = Alts (Nalts).Val then
7763 Error_Msg_Sloc := Sloc (Alts (J).Alt);
7764 Error_Msg_N ("duplicate of value given#??", Alt);
7765 end if;
7766 end loop;
7767 end if;
7768
7769 Alt := Next (Alt);
7770 end loop;
7771 end;
7772 end if;
7773 end Resolve_Set_Membership;
7774
7775 -- Start of processing for Resolve_Membership_Op
7776
7777 begin
7778 if L = Error or else R = Error then
7779 return;
7780 end if;
7781
7782 if Present (Alternatives (N)) then
7783 Resolve_Set_Membership;
7784 Check_Function_Writable_Actuals (N);
7785 return;
7786
7787 elsif not Is_Overloaded (R)
7788 and then
7789 (Etype (R) = Universal_Integer
7790 or else
7791 Etype (R) = Universal_Real)
7792 and then Is_Overloaded (L)
7793 then
7794 T := Etype (R);
7795
7796 -- Ada 2005 (AI-251): Support the following case:
7797
7798 -- type I is interface;
7799 -- type T is tagged ...
7800
7801 -- function Test (O : I'Class) is
7802 -- begin
7803 -- return O in T'Class.
7804 -- end Test;
7805
7806 -- In this case we have nothing else to do. The membership test will be
7807 -- done at run time.
7808
7809 elsif Ada_Version >= Ada_2005
7810 and then Is_Class_Wide_Type (Etype (L))
7811 and then Is_Interface (Etype (L))
7812 and then Is_Class_Wide_Type (Etype (R))
7813 and then not Is_Interface (Etype (R))
7814 then
7815 return;
7816 else
7817 T := Intersect_Types (L, R);
7818 end if;
7819
7820 -- If mixed-mode operations are present and operands are all literal,
7821 -- the only interpretation involves Duration, which is probably not
7822 -- the intention of the programmer.
7823
7824 if T = Any_Fixed then
7825 T := Unique_Fixed_Point_Type (N);
7826
7827 if T = Any_Type then
7828 return;
7829 end if;
7830 end if;
7831
7832 Resolve (L, T);
7833 Check_Unset_Reference (L);
7834
7835 if Nkind (R) = N_Range
7836 and then not Is_Scalar_Type (T)
7837 then
7838 Error_Msg_N ("scalar type required for range", R);
7839 end if;
7840
7841 if Is_Entity_Name (R) then
7842 Freeze_Expression (R);
7843 else
7844 Resolve (R, T);
7845 Check_Unset_Reference (R);
7846 end if;
7847
7848 Eval_Membership_Op (N);
7849 Check_Function_Writable_Actuals (N);
7850 end Resolve_Membership_Op;
7851
7852 ------------------
7853 -- Resolve_Null --
7854 ------------------
7855
7856 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
7857 Loc : constant Source_Ptr := Sloc (N);
7858
7859 begin
7860 -- Handle restriction against anonymous null access values This
7861 -- restriction can be turned off using -gnatdj.
7862
7863 -- Ada 2005 (AI-231): Remove restriction
7864
7865 if Ada_Version < Ada_2005
7866 and then not Debug_Flag_J
7867 and then Ekind (Typ) = E_Anonymous_Access_Type
7868 and then Comes_From_Source (N)
7869 then
7870 -- In the common case of a call which uses an explicitly null value
7871 -- for an access parameter, give specialized error message.
7872
7873 if Nkind (Parent (N)) in N_Subprogram_Call then
7874 Error_Msg_N
7875 ("null is not allowed as argument for an access parameter", N);
7876
7877 -- Standard message for all other cases (are there any?)
7878
7879 else
7880 Error_Msg_N
7881 ("null cannot be of an anonymous access type", N);
7882 end if;
7883 end if;
7884
7885 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
7886 -- assignment to a null-excluding object
7887
7888 if Ada_Version >= Ada_2005
7889 and then Can_Never_Be_Null (Typ)
7890 and then Nkind (Parent (N)) = N_Assignment_Statement
7891 then
7892 if not Inside_Init_Proc then
7893 Insert_Action
7894 (Compile_Time_Constraint_Error (N,
7895 "(Ada 2005) null not allowed in null-excluding objects??"),
7896 Make_Raise_Constraint_Error (Loc,
7897 Reason => CE_Access_Check_Failed));
7898 else
7899 Insert_Action (N,
7900 Make_Raise_Constraint_Error (Loc,
7901 Reason => CE_Access_Check_Failed));
7902 end if;
7903 end if;
7904
7905 -- In a distributed context, null for a remote access to subprogram may
7906 -- need to be replaced with a special record aggregate. In this case,
7907 -- return after having done the transformation.
7908
7909 if (Ekind (Typ) = E_Record_Type
7910 or else Is_Remote_Access_To_Subprogram_Type (Typ))
7911 and then Remote_AST_Null_Value (N, Typ)
7912 then
7913 return;
7914 end if;
7915
7916 -- The null literal takes its type from the context
7917
7918 Set_Etype (N, Typ);
7919 end Resolve_Null;
7920
7921 -----------------------
7922 -- Resolve_Op_Concat --
7923 -----------------------
7924
7925 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
7926
7927 -- We wish to avoid deep recursion, because concatenations are often
7928 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
7929 -- operands nonrecursively until we find something that is not a simple
7930 -- concatenation (A in this case). We resolve that, and then walk back
7931 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
7932 -- to do the rest of the work at each level. The Parent pointers allow
7933 -- us to avoid recursion, and thus avoid running out of memory. See also
7934 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
7935
7936 NN : Node_Id := N;
7937 Op1 : Node_Id;
7938
7939 begin
7940 -- The following code is equivalent to:
7941
7942 -- Resolve_Op_Concat_First (NN, Typ);
7943 -- Resolve_Op_Concat_Arg (N, ...);
7944 -- Resolve_Op_Concat_Rest (N, Typ);
7945
7946 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
7947 -- operand is a concatenation.
7948
7949 -- Walk down left operands
7950
7951 loop
7952 Resolve_Op_Concat_First (NN, Typ);
7953 Op1 := Left_Opnd (NN);
7954 exit when not (Nkind (Op1) = N_Op_Concat
7955 and then not Is_Array_Type (Component_Type (Typ))
7956 and then Entity (Op1) = Entity (NN));
7957 NN := Op1;
7958 end loop;
7959
7960 -- Now (given the above example) NN is A&B and Op1 is A
7961
7962 -- First resolve Op1 ...
7963
7964 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
7965
7966 -- ... then walk NN back up until we reach N (where we started), calling
7967 -- Resolve_Op_Concat_Rest along the way.
7968
7969 loop
7970 Resolve_Op_Concat_Rest (NN, Typ);
7971 exit when NN = N;
7972 NN := Parent (NN);
7973 end loop;
7974
7975 if Base_Type (Etype (N)) /= Standard_String then
7976 Check_SPARK_Restriction
7977 ("result of concatenation should have type String", N);
7978 end if;
7979 end Resolve_Op_Concat;
7980
7981 ---------------------------
7982 -- Resolve_Op_Concat_Arg --
7983 ---------------------------
7984
7985 procedure Resolve_Op_Concat_Arg
7986 (N : Node_Id;
7987 Arg : Node_Id;
7988 Typ : Entity_Id;
7989 Is_Comp : Boolean)
7990 is
7991 Btyp : constant Entity_Id := Base_Type (Typ);
7992 Ctyp : constant Entity_Id := Component_Type (Typ);
7993
7994 begin
7995 if In_Instance then
7996 if Is_Comp
7997 or else (not Is_Overloaded (Arg)
7998 and then Etype (Arg) /= Any_Composite
7999 and then Covers (Ctyp, Etype (Arg)))
8000 then
8001 Resolve (Arg, Ctyp);
8002 else
8003 Resolve (Arg, Btyp);
8004 end if;
8005
8006 -- If both Array & Array and Array & Component are visible, there is a
8007 -- potential ambiguity that must be reported.
8008
8009 elsif Has_Compatible_Type (Arg, Ctyp) then
8010 if Nkind (Arg) = N_Aggregate
8011 and then Is_Composite_Type (Ctyp)
8012 then
8013 if Is_Private_Type (Ctyp) then
8014 Resolve (Arg, Btyp);
8015
8016 -- If the operation is user-defined and not overloaded use its
8017 -- profile. The operation may be a renaming, in which case it has
8018 -- been rewritten, and we want the original profile.
8019
8020 elsif not Is_Overloaded (N)
8021 and then Comes_From_Source (Entity (Original_Node (N)))
8022 and then Ekind (Entity (Original_Node (N))) = E_Function
8023 then
8024 Resolve (Arg,
8025 Etype
8026 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
8027 return;
8028
8029 -- Otherwise an aggregate may match both the array type and the
8030 -- component type.
8031
8032 else
8033 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
8034 Set_Etype (Arg, Any_Type);
8035 end if;
8036
8037 else
8038 if Is_Overloaded (Arg)
8039 and then Has_Compatible_Type (Arg, Typ)
8040 and then Etype (Arg) /= Any_Type
8041 then
8042 declare
8043 I : Interp_Index;
8044 It : Interp;
8045 Func : Entity_Id;
8046
8047 begin
8048 Get_First_Interp (Arg, I, It);
8049 Func := It.Nam;
8050 Get_Next_Interp (I, It);
8051
8052 -- Special-case the error message when the overloading is
8053 -- caused by a function that yields an array and can be
8054 -- called without parameters.
8055
8056 if It.Nam = Func then
8057 Error_Msg_Sloc := Sloc (Func);
8058 Error_Msg_N ("ambiguous call to function#", Arg);
8059 Error_Msg_NE
8060 ("\\interpretation as call yields&", Arg, Typ);
8061 Error_Msg_NE
8062 ("\\interpretation as indexing of call yields&",
8063 Arg, Component_Type (Typ));
8064
8065 else
8066 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
8067
8068 Get_First_Interp (Arg, I, It);
8069 while Present (It.Nam) loop
8070 Error_Msg_Sloc := Sloc (It.Nam);
8071
8072 if Base_Type (It.Typ) = Btyp
8073 or else
8074 Base_Type (It.Typ) = Base_Type (Ctyp)
8075 then
8076 Error_Msg_N -- CODEFIX
8077 ("\\possible interpretation#", Arg);
8078 end if;
8079
8080 Get_Next_Interp (I, It);
8081 end loop;
8082 end if;
8083 end;
8084 end if;
8085
8086 Resolve (Arg, Component_Type (Typ));
8087
8088 if Nkind (Arg) = N_String_Literal then
8089 Set_Etype (Arg, Component_Type (Typ));
8090 end if;
8091
8092 if Arg = Left_Opnd (N) then
8093 Set_Is_Component_Left_Opnd (N);
8094 else
8095 Set_Is_Component_Right_Opnd (N);
8096 end if;
8097 end if;
8098
8099 else
8100 Resolve (Arg, Btyp);
8101 end if;
8102
8103 -- Concatenation is restricted in SPARK: each operand must be either a
8104 -- string literal, the name of a string constant, a static character or
8105 -- string expression, or another concatenation. Arg cannot be a
8106 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
8107 -- separately on each final operand, past concatenation operations.
8108
8109 if Is_Character_Type (Etype (Arg)) then
8110 if not Is_Static_Expression (Arg) then
8111 Check_SPARK_Restriction
8112 ("character operand for concatenation should be static", Arg);
8113 end if;
8114
8115 elsif Is_String_Type (Etype (Arg)) then
8116 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
8117 and then Is_Constant_Object (Entity (Arg)))
8118 and then not Is_Static_Expression (Arg)
8119 then
8120 Check_SPARK_Restriction
8121 ("string operand for concatenation should be static", Arg);
8122 end if;
8123
8124 -- Do not issue error on an operand that is neither a character nor a
8125 -- string, as the error is issued in Resolve_Op_Concat.
8126
8127 else
8128 null;
8129 end if;
8130
8131 Check_Unset_Reference (Arg);
8132 end Resolve_Op_Concat_Arg;
8133
8134 -----------------------------
8135 -- Resolve_Op_Concat_First --
8136 -----------------------------
8137
8138 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
8139 Btyp : constant Entity_Id := Base_Type (Typ);
8140 Op1 : constant Node_Id := Left_Opnd (N);
8141 Op2 : constant Node_Id := Right_Opnd (N);
8142
8143 begin
8144 -- The parser folds an enormous sequence of concatenations of string
8145 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
8146 -- in the right operand. If the expression resolves to a predefined "&"
8147 -- operator, all is well. Otherwise, the parser's folding is wrong, so
8148 -- we give an error. See P_Simple_Expression in Par.Ch4.
8149
8150 if Nkind (Op2) = N_String_Literal
8151 and then Is_Folded_In_Parser (Op2)
8152 and then Ekind (Entity (N)) = E_Function
8153 then
8154 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
8155 and then String_Length (Strval (Op1)) = 0);
8156 Error_Msg_N ("too many user-defined concatenations", N);
8157 return;
8158 end if;
8159
8160 Set_Etype (N, Btyp);
8161
8162 if Is_Limited_Composite (Btyp) then
8163 Error_Msg_N ("concatenation not available for limited array", N);
8164 Explain_Limited_Type (Btyp, N);
8165 end if;
8166 end Resolve_Op_Concat_First;
8167
8168 ----------------------------
8169 -- Resolve_Op_Concat_Rest --
8170 ----------------------------
8171
8172 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
8173 Op1 : constant Node_Id := Left_Opnd (N);
8174 Op2 : constant Node_Id := Right_Opnd (N);
8175
8176 begin
8177 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
8178
8179 Generate_Operator_Reference (N, Typ);
8180
8181 if Is_String_Type (Typ) then
8182 Eval_Concatenation (N);
8183 end if;
8184
8185 -- If this is not a static concatenation, but the result is a string
8186 -- type (and not an array of strings) ensure that static string operands
8187 -- have their subtypes properly constructed.
8188
8189 if Nkind (N) /= N_String_Literal
8190 and then Is_Character_Type (Component_Type (Typ))
8191 then
8192 Set_String_Literal_Subtype (Op1, Typ);
8193 Set_String_Literal_Subtype (Op2, Typ);
8194 end if;
8195 end Resolve_Op_Concat_Rest;
8196
8197 ----------------------
8198 -- Resolve_Op_Expon --
8199 ----------------------
8200
8201 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
8202 B_Typ : constant Entity_Id := Base_Type (Typ);
8203
8204 begin
8205 -- Catch attempts to do fixed-point exponentiation with universal
8206 -- operands, which is a case where the illegality is not caught during
8207 -- normal operator analysis.
8208
8209 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
8210 Error_Msg_N ("exponentiation not available for fixed point", N);
8211 return;
8212
8213 elsif Nkind (Parent (N)) in N_Op
8214 and then Is_Fixed_Point_Type (Etype (Parent (N)))
8215 and then Etype (N) = Universal_Real
8216 and then Comes_From_Source (N)
8217 then
8218 Error_Msg_N ("exponentiation not available for fixed point", N);
8219 return;
8220 end if;
8221
8222 if Comes_From_Source (N)
8223 and then Ekind (Entity (N)) = E_Function
8224 and then Is_Imported (Entity (N))
8225 and then Is_Intrinsic_Subprogram (Entity (N))
8226 then
8227 Resolve_Intrinsic_Operator (N, Typ);
8228 return;
8229 end if;
8230
8231 if Etype (Left_Opnd (N)) = Universal_Integer
8232 or else Etype (Left_Opnd (N)) = Universal_Real
8233 then
8234 Check_For_Visible_Operator (N, B_Typ);
8235 end if;
8236
8237 -- We do the resolution using the base type, because intermediate values
8238 -- in expressions always are of the base type, not a subtype of it.
8239
8240 Resolve (Left_Opnd (N), B_Typ);
8241 Resolve (Right_Opnd (N), Standard_Integer);
8242
8243 Check_Unset_Reference (Left_Opnd (N));
8244 Check_Unset_Reference (Right_Opnd (N));
8245
8246 Set_Etype (N, B_Typ);
8247 Generate_Operator_Reference (N, B_Typ);
8248
8249 Analyze_Dimension (N);
8250
8251 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
8252 -- Evaluate the exponentiation operator for dimensioned type
8253
8254 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
8255 else
8256 Eval_Op_Expon (N);
8257 end if;
8258
8259 -- Set overflow checking bit. Much cleverer code needed here eventually
8260 -- and perhaps the Resolve routines should be separated for the various
8261 -- arithmetic operations, since they will need different processing. ???
8262
8263 if Nkind (N) in N_Op then
8264 if not Overflow_Checks_Suppressed (Etype (N)) then
8265 Enable_Overflow_Check (N);
8266 end if;
8267 end if;
8268 end Resolve_Op_Expon;
8269
8270 --------------------
8271 -- Resolve_Op_Not --
8272 --------------------
8273
8274 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
8275 B_Typ : Entity_Id;
8276
8277 function Parent_Is_Boolean return Boolean;
8278 -- This function determines if the parent node is a boolean operator or
8279 -- operation (comparison op, membership test, or short circuit form) and
8280 -- the not in question is the left operand of this operation. Note that
8281 -- if the not is in parens, then false is returned.
8282
8283 -----------------------
8284 -- Parent_Is_Boolean --
8285 -----------------------
8286
8287 function Parent_Is_Boolean return Boolean is
8288 begin
8289 if Paren_Count (N) /= 0 then
8290 return False;
8291
8292 else
8293 case Nkind (Parent (N)) is
8294 when N_Op_And |
8295 N_Op_Eq |
8296 N_Op_Ge |
8297 N_Op_Gt |
8298 N_Op_Le |
8299 N_Op_Lt |
8300 N_Op_Ne |
8301 N_Op_Or |
8302 N_Op_Xor |
8303 N_In |
8304 N_Not_In |
8305 N_And_Then |
8306 N_Or_Else =>
8307
8308 return Left_Opnd (Parent (N)) = N;
8309
8310 when others =>
8311 return False;
8312 end case;
8313 end if;
8314 end Parent_Is_Boolean;
8315
8316 -- Start of processing for Resolve_Op_Not
8317
8318 begin
8319 -- Predefined operations on scalar types yield the base type. On the
8320 -- other hand, logical operations on arrays yield the type of the
8321 -- arguments (and the context).
8322
8323 if Is_Array_Type (Typ) then
8324 B_Typ := Typ;
8325 else
8326 B_Typ := Base_Type (Typ);
8327 end if;
8328
8329 if Is_VMS_Operator (Entity (N)) then
8330 null;
8331
8332 -- Straightforward case of incorrect arguments
8333
8334 elsif not Valid_Boolean_Arg (Typ) then
8335 Error_Msg_N ("invalid operand type for operator&", N);
8336 Set_Etype (N, Any_Type);
8337 return;
8338
8339 -- Special case of probable missing parens
8340
8341 elsif Typ = Universal_Integer or else Typ = Any_Modular then
8342 if Parent_Is_Boolean then
8343 Error_Msg_N
8344 ("operand of not must be enclosed in parentheses",
8345 Right_Opnd (N));
8346 else
8347 Error_Msg_N
8348 ("no modular type available in this context", N);
8349 end if;
8350
8351 Set_Etype (N, Any_Type);
8352 return;
8353
8354 -- OK resolution of NOT
8355
8356 else
8357 -- Warn if non-boolean types involved. This is a case like not a < b
8358 -- where a and b are modular, where we will get (not a) < b and most
8359 -- likely not (a < b) was intended.
8360
8361 if Warn_On_Questionable_Missing_Parens
8362 and then not Is_Boolean_Type (Typ)
8363 and then Parent_Is_Boolean
8364 then
8365 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
8366 end if;
8367
8368 -- Warn on double negation if checking redundant constructs
8369
8370 if Warn_On_Redundant_Constructs
8371 and then Comes_From_Source (N)
8372 and then Comes_From_Source (Right_Opnd (N))
8373 and then Root_Type (Typ) = Standard_Boolean
8374 and then Nkind (Right_Opnd (N)) = N_Op_Not
8375 then
8376 Error_Msg_N ("redundant double negation?r?", N);
8377 end if;
8378
8379 -- Complete resolution and evaluation of NOT
8380
8381 Resolve (Right_Opnd (N), B_Typ);
8382 Check_Unset_Reference (Right_Opnd (N));
8383 Set_Etype (N, B_Typ);
8384 Generate_Operator_Reference (N, B_Typ);
8385 Eval_Op_Not (N);
8386 end if;
8387 end Resolve_Op_Not;
8388
8389 -----------------------------
8390 -- Resolve_Operator_Symbol --
8391 -----------------------------
8392
8393 -- Nothing to be done, all resolved already
8394
8395 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
8396 pragma Warnings (Off, N);
8397 pragma Warnings (Off, Typ);
8398
8399 begin
8400 null;
8401 end Resolve_Operator_Symbol;
8402
8403 ----------------------------------
8404 -- Resolve_Qualified_Expression --
8405 ----------------------------------
8406
8407 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
8408 pragma Warnings (Off, Typ);
8409
8410 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
8411 Expr : constant Node_Id := Expression (N);
8412
8413 begin
8414 Resolve (Expr, Target_Typ);
8415
8416 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8417 -- operation if not needed.
8418
8419 if Restriction_Check_Required (SPARK)
8420 and then Is_Array_Type (Target_Typ)
8421 and then Is_Array_Type (Etype (Expr))
8422 and then Etype (Expr) /= Any_Composite -- or else Expr in error
8423 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
8424 then
8425 Check_SPARK_Restriction
8426 ("array types should have matching static bounds", N);
8427 end if;
8428
8429 -- A qualified expression requires an exact match of the type, class-
8430 -- wide matching is not allowed. However, if the qualifying type is
8431 -- specific and the expression has a class-wide type, it may still be
8432 -- okay, since it can be the result of the expansion of a call to a
8433 -- dispatching function, so we also have to check class-wideness of the
8434 -- type of the expression's original node.
8435
8436 if (Is_Class_Wide_Type (Target_Typ)
8437 or else
8438 (Is_Class_Wide_Type (Etype (Expr))
8439 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
8440 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
8441 then
8442 Wrong_Type (Expr, Target_Typ);
8443 end if;
8444
8445 -- If the target type is unconstrained, then we reset the type of the
8446 -- result from the type of the expression. For other cases, the actual
8447 -- subtype of the expression is the target type.
8448
8449 if Is_Composite_Type (Target_Typ)
8450 and then not Is_Constrained (Target_Typ)
8451 then
8452 Set_Etype (N, Etype (Expr));
8453 end if;
8454
8455 Analyze_Dimension (N);
8456 Eval_Qualified_Expression (N);
8457 end Resolve_Qualified_Expression;
8458
8459 -------------------
8460 -- Resolve_Range --
8461 -------------------
8462
8463 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
8464 L : constant Node_Id := Low_Bound (N);
8465 H : constant Node_Id := High_Bound (N);
8466
8467 function First_Last_Ref return Boolean;
8468 -- Returns True if N is of the form X'First .. X'Last where X is the
8469 -- same entity for both attributes.
8470
8471 --------------------
8472 -- First_Last_Ref --
8473 --------------------
8474
8475 function First_Last_Ref return Boolean is
8476 Lorig : constant Node_Id := Original_Node (L);
8477 Horig : constant Node_Id := Original_Node (H);
8478
8479 begin
8480 if Nkind (Lorig) = N_Attribute_Reference
8481 and then Nkind (Horig) = N_Attribute_Reference
8482 and then Attribute_Name (Lorig) = Name_First
8483 and then Attribute_Name (Horig) = Name_Last
8484 then
8485 declare
8486 PL : constant Node_Id := Prefix (Lorig);
8487 PH : constant Node_Id := Prefix (Horig);
8488 begin
8489 if Is_Entity_Name (PL)
8490 and then Is_Entity_Name (PH)
8491 and then Entity (PL) = Entity (PH)
8492 then
8493 return True;
8494 end if;
8495 end;
8496 end if;
8497
8498 return False;
8499 end First_Last_Ref;
8500
8501 -- Start of processing for Resolve_Range
8502
8503 begin
8504 Set_Etype (N, Typ);
8505 Resolve (L, Typ);
8506 Resolve (H, Typ);
8507
8508 -- Check for inappropriate range on unordered enumeration type
8509
8510 if Bad_Unordered_Enumeration_Reference (N, Typ)
8511
8512 -- Exclude X'First .. X'Last if X is the same entity for both
8513
8514 and then not First_Last_Ref
8515 then
8516 Error_Msg ("subrange of unordered enumeration type?U?", Sloc (N));
8517 end if;
8518
8519 Check_Unset_Reference (L);
8520 Check_Unset_Reference (H);
8521
8522 -- We have to check the bounds for being within the base range as
8523 -- required for a non-static context. Normally this is automatic and
8524 -- done as part of evaluating expressions, but the N_Range node is an
8525 -- exception, since in GNAT we consider this node to be a subexpression,
8526 -- even though in Ada it is not. The circuit in Sem_Eval could check for
8527 -- this, but that would put the test on the main evaluation path for
8528 -- expressions.
8529
8530 Check_Non_Static_Context (L);
8531 Check_Non_Static_Context (H);
8532
8533 -- Check for an ambiguous range over character literals. This will
8534 -- happen with a membership test involving only literals.
8535
8536 if Typ = Any_Character then
8537 Ambiguous_Character (L);
8538 Set_Etype (N, Any_Type);
8539 return;
8540 end if;
8541
8542 -- If bounds are static, constant-fold them, so size computations are
8543 -- identical between front-end and back-end. Do not perform this
8544 -- transformation while analyzing generic units, as type information
8545 -- would be lost when reanalyzing the constant node in the instance.
8546
8547 if Is_Discrete_Type (Typ) and then Full_Expander_Active then
8548 if Is_OK_Static_Expression (L) then
8549 Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
8550 end if;
8551
8552 if Is_OK_Static_Expression (H) then
8553 Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
8554 end if;
8555 end if;
8556 end Resolve_Range;
8557
8558 --------------------------
8559 -- Resolve_Real_Literal --
8560 --------------------------
8561
8562 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
8563 Actual_Typ : constant Entity_Id := Etype (N);
8564
8565 begin
8566 -- Special processing for fixed-point literals to make sure that the
8567 -- value is an exact multiple of small where this is required. We skip
8568 -- this for the universal real case, and also for generic types.
8569
8570 if Is_Fixed_Point_Type (Typ)
8571 and then Typ /= Universal_Fixed
8572 and then Typ /= Any_Fixed
8573 and then not Is_Generic_Type (Typ)
8574 then
8575 declare
8576 Val : constant Ureal := Realval (N);
8577 Cintr : constant Ureal := Val / Small_Value (Typ);
8578 Cint : constant Uint := UR_Trunc (Cintr);
8579 Den : constant Uint := Norm_Den (Cintr);
8580 Stat : Boolean;
8581
8582 begin
8583 -- Case of literal is not an exact multiple of the Small
8584
8585 if Den /= 1 then
8586
8587 -- For a source program literal for a decimal fixed-point type,
8588 -- this is statically illegal (RM 4.9(36)).
8589
8590 if Is_Decimal_Fixed_Point_Type (Typ)
8591 and then Actual_Typ = Universal_Real
8592 and then Comes_From_Source (N)
8593 then
8594 Error_Msg_N ("value has extraneous low order digits", N);
8595 end if;
8596
8597 -- Generate a warning if literal from source
8598
8599 if Is_Static_Expression (N)
8600 and then Warn_On_Bad_Fixed_Value
8601 then
8602 Error_Msg_N
8603 ("?b?static fixed-point value is not a multiple of Small!",
8604 N);
8605 end if;
8606
8607 -- Replace literal by a value that is the exact representation
8608 -- of a value of the type, i.e. a multiple of the small value,
8609 -- by truncation, since Machine_Rounds is false for all GNAT
8610 -- fixed-point types (RM 4.9(38)).
8611
8612 Stat := Is_Static_Expression (N);
8613 Rewrite (N,
8614 Make_Real_Literal (Sloc (N),
8615 Realval => Small_Value (Typ) * Cint));
8616
8617 Set_Is_Static_Expression (N, Stat);
8618 end if;
8619
8620 -- In all cases, set the corresponding integer field
8621
8622 Set_Corresponding_Integer_Value (N, Cint);
8623 end;
8624 end if;
8625
8626 -- Now replace the actual type by the expected type as usual
8627
8628 Set_Etype (N, Typ);
8629 Eval_Real_Literal (N);
8630 end Resolve_Real_Literal;
8631
8632 -----------------------
8633 -- Resolve_Reference --
8634 -----------------------
8635
8636 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
8637 P : constant Node_Id := Prefix (N);
8638
8639 begin
8640 -- Replace general access with specific type
8641
8642 if Ekind (Etype (N)) = E_Allocator_Type then
8643 Set_Etype (N, Base_Type (Typ));
8644 end if;
8645
8646 Resolve (P, Designated_Type (Etype (N)));
8647
8648 -- If we are taking the reference of a volatile entity, then treat it as
8649 -- a potential modification of this entity. This is too conservative,
8650 -- but necessary because remove side effects can cause transformations
8651 -- of normal assignments into reference sequences that otherwise fail to
8652 -- notice the modification.
8653
8654 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
8655 Note_Possible_Modification (P, Sure => False);
8656 end if;
8657 end Resolve_Reference;
8658
8659 --------------------------------
8660 -- Resolve_Selected_Component --
8661 --------------------------------
8662
8663 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
8664 Comp : Entity_Id;
8665 Comp1 : Entity_Id := Empty; -- prevent junk warning
8666 P : constant Node_Id := Prefix (N);
8667 S : constant Node_Id := Selector_Name (N);
8668 T : Entity_Id := Etype (P);
8669 I : Interp_Index;
8670 I1 : Interp_Index := 0; -- prevent junk warning
8671 It : Interp;
8672 It1 : Interp;
8673 Found : Boolean;
8674
8675 function Init_Component return Boolean;
8676 -- Check whether this is the initialization of a component within an
8677 -- init proc (by assignment or call to another init proc). If true,
8678 -- there is no need for a discriminant check.
8679
8680 --------------------
8681 -- Init_Component --
8682 --------------------
8683
8684 function Init_Component return Boolean is
8685 begin
8686 return Inside_Init_Proc
8687 and then Nkind (Prefix (N)) = N_Identifier
8688 and then Chars (Prefix (N)) = Name_uInit
8689 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
8690 end Init_Component;
8691
8692 -- Start of processing for Resolve_Selected_Component
8693
8694 begin
8695 if Is_Overloaded (P) then
8696
8697 -- Use the context type to select the prefix that has a selector
8698 -- of the correct name and type.
8699
8700 Found := False;
8701 Get_First_Interp (P, I, It);
8702
8703 Search : while Present (It.Typ) loop
8704 if Is_Access_Type (It.Typ) then
8705 T := Designated_Type (It.Typ);
8706 else
8707 T := It.Typ;
8708 end if;
8709
8710 -- Locate selected component. For a private prefix the selector
8711 -- can denote a discriminant.
8712
8713 if Is_Record_Type (T) or else Is_Private_Type (T) then
8714
8715 -- The visible components of a class-wide type are those of
8716 -- the root type.
8717
8718 if Is_Class_Wide_Type (T) then
8719 T := Etype (T);
8720 end if;
8721
8722 Comp := First_Entity (T);
8723 while Present (Comp) loop
8724 if Chars (Comp) = Chars (S)
8725 and then Covers (Etype (Comp), Typ)
8726 then
8727 if not Found then
8728 Found := True;
8729 I1 := I;
8730 It1 := It;
8731 Comp1 := Comp;
8732
8733 else
8734 It := Disambiguate (P, I1, I, Any_Type);
8735
8736 if It = No_Interp then
8737 Error_Msg_N
8738 ("ambiguous prefix for selected component", N);
8739 Set_Etype (N, Typ);
8740 return;
8741
8742 else
8743 It1 := It;
8744
8745 -- There may be an implicit dereference. Retrieve
8746 -- designated record type.
8747
8748 if Is_Access_Type (It1.Typ) then
8749 T := Designated_Type (It1.Typ);
8750 else
8751 T := It1.Typ;
8752 end if;
8753
8754 if Scope (Comp1) /= T then
8755
8756 -- Resolution chooses the new interpretation.
8757 -- Find the component with the right name.
8758
8759 Comp1 := First_Entity (T);
8760 while Present (Comp1)
8761 and then Chars (Comp1) /= Chars (S)
8762 loop
8763 Comp1 := Next_Entity (Comp1);
8764 end loop;
8765 end if;
8766
8767 exit Search;
8768 end if;
8769 end if;
8770 end if;
8771
8772 Comp := Next_Entity (Comp);
8773 end loop;
8774 end if;
8775
8776 Get_Next_Interp (I, It);
8777 end loop Search;
8778
8779 Resolve (P, It1.Typ);
8780 Set_Etype (N, Typ);
8781 Set_Entity_With_Style_Check (S, Comp1);
8782
8783 else
8784 -- Resolve prefix with its type
8785
8786 Resolve (P, T);
8787 end if;
8788
8789 -- Generate cross-reference. We needed to wait until full overloading
8790 -- resolution was complete to do this, since otherwise we can't tell if
8791 -- we are an lvalue or not.
8792
8793 if May_Be_Lvalue (N) then
8794 Generate_Reference (Entity (S), S, 'm');
8795 else
8796 Generate_Reference (Entity (S), S, 'r');
8797 end if;
8798
8799 -- If prefix is an access type, the node will be transformed into an
8800 -- explicit dereference during expansion. The type of the node is the
8801 -- designated type of that of the prefix.
8802
8803 if Is_Access_Type (Etype (P)) then
8804 T := Designated_Type (Etype (P));
8805 Check_Fully_Declared_Prefix (T, P);
8806 else
8807 T := Etype (P);
8808 end if;
8809
8810 if Has_Discriminants (T)
8811 and then Ekind_In (Entity (S), E_Component, E_Discriminant)
8812 and then Present (Original_Record_Component (Entity (S)))
8813 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
8814 and then not Discriminant_Checks_Suppressed (T)
8815 and then not Init_Component
8816 then
8817 Set_Do_Discriminant_Check (N);
8818 end if;
8819
8820 if Ekind (Entity (S)) = E_Void then
8821 Error_Msg_N ("premature use of component", S);
8822 end if;
8823
8824 -- If the prefix is a record conversion, this may be a renamed
8825 -- discriminant whose bounds differ from those of the original
8826 -- one, so we must ensure that a range check is performed.
8827
8828 if Nkind (P) = N_Type_Conversion
8829 and then Ekind (Entity (S)) = E_Discriminant
8830 and then Is_Discrete_Type (Typ)
8831 then
8832 Set_Etype (N, Base_Type (Typ));
8833 end if;
8834
8835 -- Note: No Eval processing is required, because the prefix is of a
8836 -- record type, or protected type, and neither can possibly be static.
8837
8838 -- If the array type is atomic, and is packed, and we are in a left side
8839 -- context, then this is worth a warning, since we have a situation
8840 -- where the access to the component may cause extra read/writes of the
8841 -- atomic array object, which could be considered unexpected.
8842
8843 if Nkind (N) = N_Selected_Component
8844 and then (Is_Atomic (T)
8845 or else (Is_Entity_Name (Prefix (N))
8846 and then Is_Atomic (Entity (Prefix (N)))))
8847 and then Is_Packed (T)
8848 and then Is_LHS (N)
8849 then
8850 Error_Msg_N
8851 ("??assignment to component of packed atomic record", Prefix (N));
8852 Error_Msg_N
8853 ("\??may cause unexpected accesses to atomic object", Prefix (N));
8854 end if;
8855
8856 Analyze_Dimension (N);
8857 end Resolve_Selected_Component;
8858
8859 -------------------
8860 -- Resolve_Shift --
8861 -------------------
8862
8863 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
8864 B_Typ : constant Entity_Id := Base_Type (Typ);
8865 L : constant Node_Id := Left_Opnd (N);
8866 R : constant Node_Id := Right_Opnd (N);
8867
8868 begin
8869 -- We do the resolution using the base type, because intermediate values
8870 -- in expressions always are of the base type, not a subtype of it.
8871
8872 Resolve (L, B_Typ);
8873 Resolve (R, Standard_Natural);
8874
8875 Check_Unset_Reference (L);
8876 Check_Unset_Reference (R);
8877
8878 Set_Etype (N, B_Typ);
8879 Generate_Operator_Reference (N, B_Typ);
8880 Eval_Shift (N);
8881 end Resolve_Shift;
8882
8883 ---------------------------
8884 -- Resolve_Short_Circuit --
8885 ---------------------------
8886
8887 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
8888 B_Typ : constant Entity_Id := Base_Type (Typ);
8889 L : constant Node_Id := Left_Opnd (N);
8890 R : constant Node_Id := Right_Opnd (N);
8891
8892 begin
8893 Resolve (L, B_Typ);
8894 Resolve (R, B_Typ);
8895
8896 -- Check for issuing warning for always False assert/check, this happens
8897 -- when assertions are turned off, in which case the pragma Assert/Check
8898 -- was transformed into:
8899
8900 -- if False and then <condition> then ...
8901
8902 -- and we detect this pattern
8903
8904 if Warn_On_Assertion_Failure
8905 and then Is_Entity_Name (R)
8906 and then Entity (R) = Standard_False
8907 and then Nkind (Parent (N)) = N_If_Statement
8908 and then Nkind (N) = N_And_Then
8909 and then Is_Entity_Name (L)
8910 and then Entity (L) = Standard_False
8911 then
8912 declare
8913 Orig : constant Node_Id := Original_Node (Parent (N));
8914
8915 begin
8916 if Nkind (Orig) = N_Pragma
8917 and then Pragma_Name (Orig) = Name_Assert
8918 then
8919 -- Don't want to warn if original condition is explicit False
8920
8921 declare
8922 Expr : constant Node_Id :=
8923 Original_Node
8924 (Expression
8925 (First (Pragma_Argument_Associations (Orig))));
8926 begin
8927 if Is_Entity_Name (Expr)
8928 and then Entity (Expr) = Standard_False
8929 then
8930 null;
8931 else
8932 -- Issue warning. We do not want the deletion of the
8933 -- IF/AND-THEN to take this message with it. We achieve
8934 -- this by making sure that the expanded code points to
8935 -- the Sloc of the expression, not the original pragma.
8936
8937 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
8938 -- The source location of the expression is not usually
8939 -- the best choice here. For example, it gets located on
8940 -- the last AND keyword in a chain of boolean expressiond
8941 -- AND'ed together. It is best to put the message on the
8942 -- first character of the assertion, which is the effect
8943 -- of the First_Node call here.
8944
8945 Error_Msg_F
8946 ("?A?assertion would fail at run time!",
8947 Expression
8948 (First (Pragma_Argument_Associations (Orig))));
8949 end if;
8950 end;
8951
8952 -- Similar processing for Check pragma
8953
8954 elsif Nkind (Orig) = N_Pragma
8955 and then Pragma_Name (Orig) = Name_Check
8956 then
8957 -- Don't want to warn if original condition is explicit False
8958
8959 declare
8960 Expr : constant Node_Id :=
8961 Original_Node
8962 (Expression
8963 (Next (First (Pragma_Argument_Associations (Orig)))));
8964 begin
8965 if Is_Entity_Name (Expr)
8966 and then Entity (Expr) = Standard_False
8967 then
8968 null;
8969
8970 -- Post warning
8971
8972 else
8973 -- Again use Error_Msg_F rather than Error_Msg_N, see
8974 -- comment above for an explanation of why we do this.
8975
8976 Error_Msg_F
8977 ("?A?check would fail at run time!",
8978 Expression
8979 (Last (Pragma_Argument_Associations (Orig))));
8980 end if;
8981 end;
8982 end if;
8983 end;
8984 end if;
8985
8986 -- Continue with processing of short circuit
8987
8988 Check_Unset_Reference (L);
8989 Check_Unset_Reference (R);
8990
8991 Set_Etype (N, B_Typ);
8992 Eval_Short_Circuit (N);
8993 end Resolve_Short_Circuit;
8994
8995 -------------------
8996 -- Resolve_Slice --
8997 -------------------
8998
8999 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
9000 Drange : constant Node_Id := Discrete_Range (N);
9001 Name : constant Node_Id := Prefix (N);
9002 Array_Type : Entity_Id := Empty;
9003 Index_Type : Entity_Id;
9004
9005 begin
9006 if Is_Overloaded (Name) then
9007
9008 -- Use the context type to select the prefix that yields the correct
9009 -- array type.
9010
9011 declare
9012 I : Interp_Index;
9013 I1 : Interp_Index := 0;
9014 It : Interp;
9015 P : constant Node_Id := Prefix (N);
9016 Found : Boolean := False;
9017
9018 begin
9019 Get_First_Interp (P, I, It);
9020 while Present (It.Typ) loop
9021 if (Is_Array_Type (It.Typ)
9022 and then Covers (Typ, It.Typ))
9023 or else (Is_Access_Type (It.Typ)
9024 and then Is_Array_Type (Designated_Type (It.Typ))
9025 and then Covers (Typ, Designated_Type (It.Typ)))
9026 then
9027 if Found then
9028 It := Disambiguate (P, I1, I, Any_Type);
9029
9030 if It = No_Interp then
9031 Error_Msg_N ("ambiguous prefix for slicing", N);
9032 Set_Etype (N, Typ);
9033 return;
9034 else
9035 Found := True;
9036 Array_Type := It.Typ;
9037 I1 := I;
9038 end if;
9039 else
9040 Found := True;
9041 Array_Type := It.Typ;
9042 I1 := I;
9043 end if;
9044 end if;
9045
9046 Get_Next_Interp (I, It);
9047 end loop;
9048 end;
9049
9050 else
9051 Array_Type := Etype (Name);
9052 end if;
9053
9054 Resolve (Name, Array_Type);
9055
9056 if Is_Access_Type (Array_Type) then
9057 Apply_Access_Check (N);
9058 Array_Type := Designated_Type (Array_Type);
9059
9060 -- If the prefix is an access to an unconstrained array, we must use
9061 -- the actual subtype of the object to perform the index checks. The
9062 -- object denoted by the prefix is implicit in the node, so we build
9063 -- an explicit representation for it in order to compute the actual
9064 -- subtype.
9065
9066 if not Is_Constrained (Array_Type) then
9067 Remove_Side_Effects (Prefix (N));
9068
9069 declare
9070 Obj : constant Node_Id :=
9071 Make_Explicit_Dereference (Sloc (N),
9072 Prefix => New_Copy_Tree (Prefix (N)));
9073 begin
9074 Set_Etype (Obj, Array_Type);
9075 Set_Parent (Obj, Parent (N));
9076 Array_Type := Get_Actual_Subtype (Obj);
9077 end;
9078 end if;
9079
9080 elsif Is_Entity_Name (Name)
9081 or else Nkind (Name) = N_Explicit_Dereference
9082 or else (Nkind (Name) = N_Function_Call
9083 and then not Is_Constrained (Etype (Name)))
9084 then
9085 Array_Type := Get_Actual_Subtype (Name);
9086
9087 -- If the name is a selected component that depends on discriminants,
9088 -- build an actual subtype for it. This can happen only when the name
9089 -- itself is overloaded; otherwise the actual subtype is created when
9090 -- the selected component is analyzed.
9091
9092 elsif Nkind (Name) = N_Selected_Component
9093 and then Full_Analysis
9094 and then Depends_On_Discriminant (First_Index (Array_Type))
9095 then
9096 declare
9097 Act_Decl : constant Node_Id :=
9098 Build_Actual_Subtype_Of_Component (Array_Type, Name);
9099 begin
9100 Insert_Action (N, Act_Decl);
9101 Array_Type := Defining_Identifier (Act_Decl);
9102 end;
9103
9104 -- Maybe this should just be "else", instead of checking for the
9105 -- specific case of slice??? This is needed for the case where the
9106 -- prefix is an Image attribute, which gets expanded to a slice, and so
9107 -- has a constrained subtype which we want to use for the slice range
9108 -- check applied below (the range check won't get done if the
9109 -- unconstrained subtype of the 'Image is used).
9110
9111 elsif Nkind (Name) = N_Slice then
9112 Array_Type := Etype (Name);
9113 end if;
9114
9115 -- If name was overloaded, set slice type correctly now
9116
9117 Set_Etype (N, Array_Type);
9118
9119 -- If the range is specified by a subtype mark, no resolution is
9120 -- necessary. Else resolve the bounds, and apply needed checks.
9121
9122 if not Is_Entity_Name (Drange) then
9123 if Ekind (Array_Type) = E_String_Literal_Subtype then
9124 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
9125 else
9126 Index_Type := Etype (First_Index (Array_Type));
9127 end if;
9128
9129 Resolve (Drange, Base_Type (Index_Type));
9130
9131 if Nkind (Drange) = N_Range then
9132
9133 -- Ensure that side effects in the bounds are properly handled
9134
9135 Force_Evaluation (Low_Bound (Drange));
9136 Force_Evaluation (High_Bound (Drange));
9137
9138 -- Do not apply the range check to nodes associated with the
9139 -- frontend expansion of the dispatch table. We first check
9140 -- if Ada.Tags is already loaded to avoid the addition of an
9141 -- undesired dependence on such run-time unit.
9142
9143 if not Tagged_Type_Expansion
9144 or else not
9145 (RTU_Loaded (Ada_Tags)
9146 and then Nkind (Prefix (N)) = N_Selected_Component
9147 and then Present (Entity (Selector_Name (Prefix (N))))
9148 and then Entity (Selector_Name (Prefix (N))) =
9149 RTE_Record_Component (RE_Prims_Ptr))
9150 then
9151 Apply_Range_Check (Drange, Index_Type);
9152 end if;
9153 end if;
9154 end if;
9155
9156 Set_Slice_Subtype (N);
9157
9158 -- Check bad use of type with predicates
9159
9160 if Has_Predicates (Etype (Drange)) then
9161 Bad_Predicated_Subtype_Use
9162 ("subtype& has predicate, not allowed in slice",
9163 Drange, Etype (Drange));
9164
9165 -- Otherwise here is where we check suspicious indexes
9166
9167 elsif Nkind (Drange) = N_Range then
9168 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
9169 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
9170 end if;
9171
9172 Analyze_Dimension (N);
9173 Eval_Slice (N);
9174 end Resolve_Slice;
9175
9176 ----------------------------
9177 -- Resolve_String_Literal --
9178 ----------------------------
9179
9180 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
9181 C_Typ : constant Entity_Id := Component_Type (Typ);
9182 R_Typ : constant Entity_Id := Root_Type (C_Typ);
9183 Loc : constant Source_Ptr := Sloc (N);
9184 Str : constant String_Id := Strval (N);
9185 Strlen : constant Nat := String_Length (Str);
9186 Subtype_Id : Entity_Id;
9187 Need_Check : Boolean;
9188
9189 begin
9190 -- For a string appearing in a concatenation, defer creation of the
9191 -- string_literal_subtype until the end of the resolution of the
9192 -- concatenation, because the literal may be constant-folded away. This
9193 -- is a useful optimization for long concatenation expressions.
9194
9195 -- If the string is an aggregate built for a single character (which
9196 -- happens in a non-static context) or a is null string to which special
9197 -- checks may apply, we build the subtype. Wide strings must also get a
9198 -- string subtype if they come from a one character aggregate. Strings
9199 -- generated by attributes might be static, but it is often hard to
9200 -- determine whether the enclosing context is static, so we generate
9201 -- subtypes for them as well, thus losing some rarer optimizations ???
9202 -- Same for strings that come from a static conversion.
9203
9204 Need_Check :=
9205 (Strlen = 0 and then Typ /= Standard_String)
9206 or else Nkind (Parent (N)) /= N_Op_Concat
9207 or else (N /= Left_Opnd (Parent (N))
9208 and then N /= Right_Opnd (Parent (N)))
9209 or else ((Typ = Standard_Wide_String
9210 or else Typ = Standard_Wide_Wide_String)
9211 and then Nkind (Original_Node (N)) /= N_String_Literal);
9212
9213 -- If the resolving type is itself a string literal subtype, we can just
9214 -- reuse it, since there is no point in creating another.
9215
9216 if Ekind (Typ) = E_String_Literal_Subtype then
9217 Subtype_Id := Typ;
9218
9219 elsif Nkind (Parent (N)) = N_Op_Concat
9220 and then not Need_Check
9221 and then not Nkind_In (Original_Node (N), N_Character_Literal,
9222 N_Attribute_Reference,
9223 N_Qualified_Expression,
9224 N_Type_Conversion)
9225 then
9226 Subtype_Id := Typ;
9227
9228 -- Otherwise we must create a string literal subtype. Note that the
9229 -- whole idea of string literal subtypes is simply to avoid the need
9230 -- for building a full fledged array subtype for each literal.
9231
9232 else
9233 Set_String_Literal_Subtype (N, Typ);
9234 Subtype_Id := Etype (N);
9235 end if;
9236
9237 if Nkind (Parent (N)) /= N_Op_Concat
9238 or else Need_Check
9239 then
9240 Set_Etype (N, Subtype_Id);
9241 Eval_String_Literal (N);
9242 end if;
9243
9244 if Is_Limited_Composite (Typ)
9245 or else Is_Private_Composite (Typ)
9246 then
9247 Error_Msg_N ("string literal not available for private array", N);
9248 Set_Etype (N, Any_Type);
9249 return;
9250 end if;
9251
9252 -- The validity of a null string has been checked in the call to
9253 -- Eval_String_Literal.
9254
9255 if Strlen = 0 then
9256 return;
9257
9258 -- Always accept string literal with component type Any_Character, which
9259 -- occurs in error situations and in comparisons of literals, both of
9260 -- which should accept all literals.
9261
9262 elsif R_Typ = Any_Character then
9263 return;
9264
9265 -- If the type is bit-packed, then we always transform the string
9266 -- literal into a full fledged aggregate.
9267
9268 elsif Is_Bit_Packed_Array (Typ) then
9269 null;
9270
9271 -- Deal with cases of Wide_Wide_String, Wide_String, and String
9272
9273 else
9274 -- For Standard.Wide_Wide_String, or any other type whose component
9275 -- type is Standard.Wide_Wide_Character, we know that all the
9276 -- characters in the string must be acceptable, since the parser
9277 -- accepted the characters as valid character literals.
9278
9279 if R_Typ = Standard_Wide_Wide_Character then
9280 null;
9281
9282 -- For the case of Standard.String, or any other type whose component
9283 -- type is Standard.Character, we must make sure that there are no
9284 -- wide characters in the string, i.e. that it is entirely composed
9285 -- of characters in range of type Character.
9286
9287 -- If the string literal is the result of a static concatenation, the
9288 -- test has already been performed on the components, and need not be
9289 -- repeated.
9290
9291 elsif R_Typ = Standard_Character
9292 and then Nkind (Original_Node (N)) /= N_Op_Concat
9293 then
9294 for J in 1 .. Strlen loop
9295 if not In_Character_Range (Get_String_Char (Str, J)) then
9296
9297 -- If we are out of range, post error. This is one of the
9298 -- very few places that we place the flag in the middle of
9299 -- a token, right under the offending wide character. Not
9300 -- quite clear if this is right wrt wide character encoding
9301 -- sequences, but it's only an error message!
9302
9303 Error_Msg
9304 ("literal out of range of type Standard.Character",
9305 Source_Ptr (Int (Loc) + J));
9306 return;
9307 end if;
9308 end loop;
9309
9310 -- For the case of Standard.Wide_String, or any other type whose
9311 -- component type is Standard.Wide_Character, we must make sure that
9312 -- there are no wide characters in the string, i.e. that it is
9313 -- entirely composed of characters in range of type Wide_Character.
9314
9315 -- If the string literal is the result of a static concatenation,
9316 -- the test has already been performed on the components, and need
9317 -- not be repeated.
9318
9319 elsif R_Typ = Standard_Wide_Character
9320 and then Nkind (Original_Node (N)) /= N_Op_Concat
9321 then
9322 for J in 1 .. Strlen loop
9323 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
9324
9325 -- If we are out of range, post error. This is one of the
9326 -- very few places that we place the flag in the middle of
9327 -- a token, right under the offending wide character.
9328
9329 -- This is not quite right, because characters in general
9330 -- will take more than one character position ???
9331
9332 Error_Msg
9333 ("literal out of range of type Standard.Wide_Character",
9334 Source_Ptr (Int (Loc) + J));
9335 return;
9336 end if;
9337 end loop;
9338
9339 -- If the root type is not a standard character, then we will convert
9340 -- the string into an aggregate and will let the aggregate code do
9341 -- the checking. Standard Wide_Wide_Character is also OK here.
9342
9343 else
9344 null;
9345 end if;
9346
9347 -- See if the component type of the array corresponding to the string
9348 -- has compile time known bounds. If yes we can directly check
9349 -- whether the evaluation of the string will raise constraint error.
9350 -- Otherwise we need to transform the string literal into the
9351 -- corresponding character aggregate and let the aggregate code do
9352 -- the checking.
9353
9354 if Is_Standard_Character_Type (R_Typ) then
9355
9356 -- Check for the case of full range, where we are definitely OK
9357
9358 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
9359 return;
9360 end if;
9361
9362 -- Here the range is not the complete base type range, so check
9363
9364 declare
9365 Comp_Typ_Lo : constant Node_Id :=
9366 Type_Low_Bound (Component_Type (Typ));
9367 Comp_Typ_Hi : constant Node_Id :=
9368 Type_High_Bound (Component_Type (Typ));
9369
9370 Char_Val : Uint;
9371
9372 begin
9373 if Compile_Time_Known_Value (Comp_Typ_Lo)
9374 and then Compile_Time_Known_Value (Comp_Typ_Hi)
9375 then
9376 for J in 1 .. Strlen loop
9377 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
9378
9379 if Char_Val < Expr_Value (Comp_Typ_Lo)
9380 or else Char_Val > Expr_Value (Comp_Typ_Hi)
9381 then
9382 Apply_Compile_Time_Constraint_Error
9383 (N, "character out of range??",
9384 CE_Range_Check_Failed,
9385 Loc => Source_Ptr (Int (Loc) + J));
9386 end if;
9387 end loop;
9388
9389 return;
9390 end if;
9391 end;
9392 end if;
9393 end if;
9394
9395 -- If we got here we meed to transform the string literal into the
9396 -- equivalent qualified positional array aggregate. This is rather
9397 -- heavy artillery for this situation, but it is hard work to avoid.
9398
9399 declare
9400 Lits : constant List_Id := New_List;
9401 P : Source_Ptr := Loc + 1;
9402 C : Char_Code;
9403
9404 begin
9405 -- Build the character literals, we give them source locations that
9406 -- correspond to the string positions, which is a bit tricky given
9407 -- the possible presence of wide character escape sequences.
9408
9409 for J in 1 .. Strlen loop
9410 C := Get_String_Char (Str, J);
9411 Set_Character_Literal_Name (C);
9412
9413 Append_To (Lits,
9414 Make_Character_Literal (P,
9415 Chars => Name_Find,
9416 Char_Literal_Value => UI_From_CC (C)));
9417
9418 if In_Character_Range (C) then
9419 P := P + 1;
9420
9421 -- Should we have a call to Skip_Wide here ???
9422
9423 -- ??? else
9424 -- Skip_Wide (P);
9425
9426 end if;
9427 end loop;
9428
9429 Rewrite (N,
9430 Make_Qualified_Expression (Loc,
9431 Subtype_Mark => New_Reference_To (Typ, Loc),
9432 Expression =>
9433 Make_Aggregate (Loc, Expressions => Lits)));
9434
9435 Analyze_And_Resolve (N, Typ);
9436 end;
9437 end Resolve_String_Literal;
9438
9439 -----------------------------
9440 -- Resolve_Subprogram_Info --
9441 -----------------------------
9442
9443 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
9444 begin
9445 Set_Etype (N, Typ);
9446 end Resolve_Subprogram_Info;
9447
9448 -----------------------------
9449 -- Resolve_Type_Conversion --
9450 -----------------------------
9451
9452 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
9453 Conv_OK : constant Boolean := Conversion_OK (N);
9454 Operand : constant Node_Id := Expression (N);
9455 Operand_Typ : constant Entity_Id := Etype (Operand);
9456 Target_Typ : constant Entity_Id := Etype (N);
9457 Rop : Node_Id;
9458 Orig_N : Node_Id;
9459 Orig_T : Node_Id;
9460
9461 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
9462 -- Set to False to suppress cases where we want to suppress the test
9463 -- for redundancy to avoid possible false positives on this warning.
9464
9465 begin
9466 if not Conv_OK
9467 and then not Valid_Conversion (N, Target_Typ, Operand)
9468 then
9469 return;
9470 end if;
9471
9472 -- If the Operand Etype is Universal_Fixed, then the conversion is
9473 -- never redundant. We need this check because by the time we have
9474 -- finished the rather complex transformation, the conversion looks
9475 -- redundant when it is not.
9476
9477 if Operand_Typ = Universal_Fixed then
9478 Test_Redundant := False;
9479
9480 -- If the operand is marked as Any_Fixed, then special processing is
9481 -- required. This is also a case where we suppress the test for a
9482 -- redundant conversion, since most certainly it is not redundant.
9483
9484 elsif Operand_Typ = Any_Fixed then
9485 Test_Redundant := False;
9486
9487 -- Mixed-mode operation involving a literal. Context must be a fixed
9488 -- type which is applied to the literal subsequently.
9489
9490 if Is_Fixed_Point_Type (Typ) then
9491 Set_Etype (Operand, Universal_Real);
9492
9493 elsif Is_Numeric_Type (Typ)
9494 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
9495 and then (Etype (Right_Opnd (Operand)) = Universal_Real
9496 or else
9497 Etype (Left_Opnd (Operand)) = Universal_Real)
9498 then
9499 -- Return if expression is ambiguous
9500
9501 if Unique_Fixed_Point_Type (N) = Any_Type then
9502 return;
9503
9504 -- If nothing else, the available fixed type is Duration
9505
9506 else
9507 Set_Etype (Operand, Standard_Duration);
9508 end if;
9509
9510 -- Resolve the real operand with largest available precision
9511
9512 if Etype (Right_Opnd (Operand)) = Universal_Real then
9513 Rop := New_Copy_Tree (Right_Opnd (Operand));
9514 else
9515 Rop := New_Copy_Tree (Left_Opnd (Operand));
9516 end if;
9517
9518 Resolve (Rop, Universal_Real);
9519
9520 -- If the operand is a literal (it could be a non-static and
9521 -- illegal exponentiation) check whether the use of Duration
9522 -- is potentially inaccurate.
9523
9524 if Nkind (Rop) = N_Real_Literal
9525 and then Realval (Rop) /= Ureal_0
9526 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
9527 then
9528 Error_Msg_N
9529 ("??universal real operand can only "
9530 & "be interpreted as Duration!", Rop);
9531 Error_Msg_N
9532 ("\??precision will be lost in the conversion!", Rop);
9533 end if;
9534
9535 elsif Is_Numeric_Type (Typ)
9536 and then Nkind (Operand) in N_Op
9537 and then Unique_Fixed_Point_Type (N) /= Any_Type
9538 then
9539 Set_Etype (Operand, Standard_Duration);
9540
9541 else
9542 Error_Msg_N ("invalid context for mixed mode operation", N);
9543 Set_Etype (Operand, Any_Type);
9544 return;
9545 end if;
9546 end if;
9547
9548 Resolve (Operand);
9549
9550 -- In SPARK, a type conversion between array types should be restricted
9551 -- to types which have matching static bounds.
9552
9553 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9554 -- operation if not needed.
9555
9556 if Restriction_Check_Required (SPARK)
9557 and then Is_Array_Type (Target_Typ)
9558 and then Is_Array_Type (Operand_Typ)
9559 and then Operand_Typ /= Any_Composite -- or else Operand in error
9560 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
9561 then
9562 Check_SPARK_Restriction
9563 ("array types should have matching static bounds", N);
9564 end if;
9565
9566 -- In formal mode, the operand of an ancestor type conversion must be an
9567 -- object (not an expression).
9568
9569 if Is_Tagged_Type (Target_Typ)
9570 and then not Is_Class_Wide_Type (Target_Typ)
9571 and then Is_Tagged_Type (Operand_Typ)
9572 and then not Is_Class_Wide_Type (Operand_Typ)
9573 and then Is_Ancestor (Target_Typ, Operand_Typ)
9574 and then not Is_SPARK_Object_Reference (Operand)
9575 then
9576 Check_SPARK_Restriction ("object required", Operand);
9577 end if;
9578
9579 Analyze_Dimension (N);
9580
9581 -- Note: we do the Eval_Type_Conversion call before applying the
9582 -- required checks for a subtype conversion. This is important, since
9583 -- both are prepared under certain circumstances to change the type
9584 -- conversion to a constraint error node, but in the case of
9585 -- Eval_Type_Conversion this may reflect an illegality in the static
9586 -- case, and we would miss the illegality (getting only a warning
9587 -- message), if we applied the type conversion checks first.
9588
9589 Eval_Type_Conversion (N);
9590
9591 -- Even when evaluation is not possible, we may be able to simplify the
9592 -- conversion or its expression. This needs to be done before applying
9593 -- checks, since otherwise the checks may use the original expression
9594 -- and defeat the simplifications. This is specifically the case for
9595 -- elimination of the floating-point Truncation attribute in
9596 -- float-to-int conversions.
9597
9598 Simplify_Type_Conversion (N);
9599
9600 -- If after evaluation we still have a type conversion, then we may need
9601 -- to apply checks required for a subtype conversion.
9602
9603 -- Skip these type conversion checks if universal fixed operands
9604 -- operands involved, since range checks are handled separately for
9605 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
9606
9607 if Nkind (N) = N_Type_Conversion
9608 and then not Is_Generic_Type (Root_Type (Target_Typ))
9609 and then Target_Typ /= Universal_Fixed
9610 and then Operand_Typ /= Universal_Fixed
9611 then
9612 Apply_Type_Conversion_Checks (N);
9613 end if;
9614
9615 -- Issue warning for conversion of simple object to its own type. We
9616 -- have to test the original nodes, since they may have been rewritten
9617 -- by various optimizations.
9618
9619 Orig_N := Original_Node (N);
9620
9621 -- Here we test for a redundant conversion if the warning mode is
9622 -- active (and was not locally reset), and we have a type conversion
9623 -- from source not appearing in a generic instance.
9624
9625 if Test_Redundant
9626 and then Nkind (Orig_N) = N_Type_Conversion
9627 and then Comes_From_Source (Orig_N)
9628 and then not In_Instance
9629 then
9630 Orig_N := Original_Node (Expression (Orig_N));
9631 Orig_T := Target_Typ;
9632
9633 -- If the node is part of a larger expression, the Target_Type
9634 -- may not be the original type of the node if the context is a
9635 -- condition. Recover original type to see if conversion is needed.
9636
9637 if Is_Boolean_Type (Orig_T)
9638 and then Nkind (Parent (N)) in N_Op
9639 then
9640 Orig_T := Etype (Parent (N));
9641 end if;
9642
9643 -- If we have an entity name, then give the warning if the entity
9644 -- is the right type, or if it is a loop parameter covered by the
9645 -- original type (that's needed because loop parameters have an
9646 -- odd subtype coming from the bounds).
9647
9648 if (Is_Entity_Name (Orig_N)
9649 and then
9650 (Etype (Entity (Orig_N)) = Orig_T
9651 or else
9652 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
9653 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
9654
9655 -- If not an entity, then type of expression must match
9656
9657 or else Etype (Orig_N) = Orig_T
9658 then
9659 -- One more check, do not give warning if the analyzed conversion
9660 -- has an expression with non-static bounds, and the bounds of the
9661 -- target are static. This avoids junk warnings in cases where the
9662 -- conversion is necessary to establish staticness, for example in
9663 -- a case statement.
9664
9665 if not Is_OK_Static_Subtype (Operand_Typ)
9666 and then Is_OK_Static_Subtype (Target_Typ)
9667 then
9668 null;
9669
9670 -- Finally, if this type conversion occurs in a context requiring
9671 -- a prefix, and the expression is a qualified expression then the
9672 -- type conversion is not redundant, since a qualified expression
9673 -- is not a prefix, whereas a type conversion is. For example, "X
9674 -- := T'(Funx(...)).Y;" is illegal because a selected component
9675 -- requires a prefix, but a type conversion makes it legal: "X :=
9676 -- T(T'(Funx(...))).Y;"
9677
9678 -- In Ada 2012, a qualified expression is a name, so this idiom is
9679 -- no longer needed, but we still suppress the warning because it
9680 -- seems unfriendly for warnings to pop up when you switch to the
9681 -- newer language version.
9682
9683 elsif Nkind (Orig_N) = N_Qualified_Expression
9684 and then Nkind_In (Parent (N), N_Attribute_Reference,
9685 N_Indexed_Component,
9686 N_Selected_Component,
9687 N_Slice,
9688 N_Explicit_Dereference)
9689 then
9690 null;
9691
9692 -- Never warn on conversion to Long_Long_Integer'Base since
9693 -- that is most likely an artifact of the extended overflow
9694 -- checking and comes from complex expanded code.
9695
9696 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
9697 null;
9698
9699 -- Here we give the redundant conversion warning. If it is an
9700 -- entity, give the name of the entity in the message. If not,
9701 -- just mention the expression.
9702
9703 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
9704
9705 else
9706 if Is_Entity_Name (Orig_N) then
9707 Error_Msg_Node_2 := Orig_T;
9708 Error_Msg_NE -- CODEFIX
9709 ("??redundant conversion, & is of type &!",
9710 N, Entity (Orig_N));
9711 else
9712 Error_Msg_NE
9713 ("??redundant conversion, expression is of type&!",
9714 N, Orig_T);
9715 end if;
9716 end if;
9717 end if;
9718 end if;
9719
9720 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
9721 -- No need to perform any interface conversion if the type of the
9722 -- expression coincides with the target type.
9723
9724 if Ada_Version >= Ada_2005
9725 and then Full_Expander_Active
9726 and then Operand_Typ /= Target_Typ
9727 then
9728 declare
9729 Opnd : Entity_Id := Operand_Typ;
9730 Target : Entity_Id := Target_Typ;
9731
9732 begin
9733 if Is_Access_Type (Opnd) then
9734 Opnd := Designated_Type (Opnd);
9735 end if;
9736
9737 if Is_Access_Type (Target_Typ) then
9738 Target := Designated_Type (Target);
9739 end if;
9740
9741 if Opnd = Target then
9742 null;
9743
9744 -- Conversion from interface type
9745
9746 elsif Is_Interface (Opnd) then
9747
9748 -- Ada 2005 (AI-217): Handle entities from limited views
9749
9750 if From_With_Type (Opnd) then
9751 Error_Msg_Qual_Level := 99;
9752 Error_Msg_NE -- CODEFIX
9753 ("missing WITH clause on package &", N,
9754 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
9755 Error_Msg_N
9756 ("type conversions require visibility of the full view",
9757 N);
9758
9759 elsif From_With_Type (Target)
9760 and then not
9761 (Is_Access_Type (Target_Typ)
9762 and then Present (Non_Limited_View (Etype (Target))))
9763 then
9764 Error_Msg_Qual_Level := 99;
9765 Error_Msg_NE -- CODEFIX
9766 ("missing WITH clause on package &", N,
9767 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
9768 Error_Msg_N
9769 ("type conversions require visibility of the full view",
9770 N);
9771
9772 else
9773 Expand_Interface_Conversion (N);
9774 end if;
9775
9776 -- Conversion to interface type
9777
9778 elsif Is_Interface (Target) then
9779
9780 -- Handle subtypes
9781
9782 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
9783 Opnd := Etype (Opnd);
9784 end if;
9785
9786 if Is_Class_Wide_Type (Opnd)
9787 or else Interface_Present_In_Ancestor
9788 (Typ => Opnd,
9789 Iface => Target)
9790 then
9791 Expand_Interface_Conversion (N);
9792 else
9793 Error_Msg_Name_1 := Chars (Etype (Target));
9794 Error_Msg_Name_2 := Chars (Opnd);
9795 Error_Msg_N
9796 ("wrong interface conversion (% is not a progenitor "
9797 & "of %)", N);
9798 end if;
9799 end if;
9800 end;
9801 end if;
9802
9803 -- Ada 2012: if target type has predicates, the result requires a
9804 -- predicate check. If the context is a call to another predicate
9805 -- check we must prevent infinite recursion.
9806
9807 if Has_Predicates (Target_Typ) then
9808 if Nkind (Parent (N)) = N_Function_Call
9809 and then Present (Name (Parent (N)))
9810 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9811 or else
9812 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9813 then
9814 null;
9815
9816 else
9817 Apply_Predicate_Check (N, Target_Typ);
9818 end if;
9819 end if;
9820 end Resolve_Type_Conversion;
9821
9822 ----------------------
9823 -- Resolve_Unary_Op --
9824 ----------------------
9825
9826 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
9827 B_Typ : constant Entity_Id := Base_Type (Typ);
9828 R : constant Node_Id := Right_Opnd (N);
9829 OK : Boolean;
9830 Lo : Uint;
9831 Hi : Uint;
9832
9833 begin
9834 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
9835 Error_Msg_Name_1 := Chars (Typ);
9836 Check_SPARK_Restriction
9837 ("unary operator not defined for modular type%", N);
9838 end if;
9839
9840 -- Deal with intrinsic unary operators
9841
9842 if Comes_From_Source (N)
9843 and then Ekind (Entity (N)) = E_Function
9844 and then Is_Imported (Entity (N))
9845 and then Is_Intrinsic_Subprogram (Entity (N))
9846 then
9847 Resolve_Intrinsic_Unary_Operator (N, Typ);
9848 return;
9849 end if;
9850
9851 -- Deal with universal cases
9852
9853 if Etype (R) = Universal_Integer
9854 or else
9855 Etype (R) = Universal_Real
9856 then
9857 Check_For_Visible_Operator (N, B_Typ);
9858 end if;
9859
9860 Set_Etype (N, B_Typ);
9861 Resolve (R, B_Typ);
9862
9863 -- Generate warning for expressions like abs (x mod 2)
9864
9865 if Warn_On_Redundant_Constructs
9866 and then Nkind (N) = N_Op_Abs
9867 then
9868 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
9869
9870 if OK and then Hi >= Lo and then Lo >= 0 then
9871 Error_Msg_N -- CODEFIX
9872 ("?r?abs applied to known non-negative value has no effect", N);
9873 end if;
9874 end if;
9875
9876 -- Deal with reference generation
9877
9878 Check_Unset_Reference (R);
9879 Generate_Operator_Reference (N, B_Typ);
9880 Analyze_Dimension (N);
9881 Eval_Unary_Op (N);
9882
9883 -- Set overflow checking bit. Much cleverer code needed here eventually
9884 -- and perhaps the Resolve routines should be separated for the various
9885 -- arithmetic operations, since they will need different processing ???
9886
9887 if Nkind (N) in N_Op then
9888 if not Overflow_Checks_Suppressed (Etype (N)) then
9889 Enable_Overflow_Check (N);
9890 end if;
9891 end if;
9892
9893 -- Generate warning for expressions like -5 mod 3 for integers. No need
9894 -- to worry in the floating-point case, since parens do not affect the
9895 -- result so there is no point in giving in a warning.
9896
9897 declare
9898 Norig : constant Node_Id := Original_Node (N);
9899 Rorig : Node_Id;
9900 Val : Uint;
9901 HB : Uint;
9902 LB : Uint;
9903 Lval : Uint;
9904 Opnd : Node_Id;
9905
9906 begin
9907 if Warn_On_Questionable_Missing_Parens
9908 and then Comes_From_Source (Norig)
9909 and then Is_Integer_Type (Typ)
9910 and then Nkind (Norig) = N_Op_Minus
9911 then
9912 Rorig := Original_Node (Right_Opnd (Norig));
9913
9914 -- We are looking for cases where the right operand is not
9915 -- parenthesized, and is a binary operator, multiply, divide, or
9916 -- mod. These are the cases where the grouping can affect results.
9917
9918 if Paren_Count (Rorig) = 0
9919 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
9920 then
9921 -- For mod, we always give the warning, since the value is
9922 -- affected by the parenthesization (e.g. (-5) mod 315 /=
9923 -- -(5 mod 315)). But for the other cases, the only concern is
9924 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
9925 -- overflows, but (-2) * 64 does not). So we try to give the
9926 -- message only when overflow is possible.
9927
9928 if Nkind (Rorig) /= N_Op_Mod
9929 and then Compile_Time_Known_Value (R)
9930 then
9931 Val := Expr_Value (R);
9932
9933 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
9934 HB := Expr_Value (Type_High_Bound (Typ));
9935 else
9936 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
9937 end if;
9938
9939 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
9940 LB := Expr_Value (Type_Low_Bound (Typ));
9941 else
9942 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
9943 end if;
9944
9945 -- Note that the test below is deliberately excluding the
9946 -- largest negative number, since that is a potentially
9947 -- troublesome case (e.g. -2 * x, where the result is the
9948 -- largest negative integer has an overflow with 2 * x).
9949
9950 if Val > LB and then Val <= HB then
9951 return;
9952 end if;
9953 end if;
9954
9955 -- For the multiplication case, the only case we have to worry
9956 -- about is when (-a)*b is exactly the largest negative number
9957 -- so that -(a*b) can cause overflow. This can only happen if
9958 -- a is a power of 2, and more generally if any operand is a
9959 -- constant that is not a power of 2, then the parentheses
9960 -- cannot affect whether overflow occurs. We only bother to
9961 -- test the left most operand
9962
9963 -- Loop looking at left operands for one that has known value
9964
9965 Opnd := Rorig;
9966 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
9967 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
9968 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
9969
9970 -- Operand value of 0 or 1 skips warning
9971
9972 if Lval <= 1 then
9973 return;
9974
9975 -- Otherwise check power of 2, if power of 2, warn, if
9976 -- anything else, skip warning.
9977
9978 else
9979 while Lval /= 2 loop
9980 if Lval mod 2 = 1 then
9981 return;
9982 else
9983 Lval := Lval / 2;
9984 end if;
9985 end loop;
9986
9987 exit Opnd_Loop;
9988 end if;
9989 end if;
9990
9991 -- Keep looking at left operands
9992
9993 Opnd := Left_Opnd (Opnd);
9994 end loop Opnd_Loop;
9995
9996 -- For rem or "/" we can only have a problematic situation
9997 -- if the divisor has a value of minus one or one. Otherwise
9998 -- overflow is impossible (divisor > 1) or we have a case of
9999 -- division by zero in any case.
10000
10001 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
10002 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
10003 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
10004 then
10005 return;
10006 end if;
10007
10008 -- If we fall through warning should be issued
10009
10010 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
10011
10012 Error_Msg_N
10013 ("??unary minus expression should be parenthesized here!", N);
10014 end if;
10015 end if;
10016 end;
10017 end Resolve_Unary_Op;
10018
10019 ----------------------------------
10020 -- Resolve_Unchecked_Expression --
10021 ----------------------------------
10022
10023 procedure Resolve_Unchecked_Expression
10024 (N : Node_Id;
10025 Typ : Entity_Id)
10026 is
10027 begin
10028 Resolve (Expression (N), Typ, Suppress => All_Checks);
10029 Set_Etype (N, Typ);
10030 end Resolve_Unchecked_Expression;
10031
10032 ---------------------------------------
10033 -- Resolve_Unchecked_Type_Conversion --
10034 ---------------------------------------
10035
10036 procedure Resolve_Unchecked_Type_Conversion
10037 (N : Node_Id;
10038 Typ : Entity_Id)
10039 is
10040 pragma Warnings (Off, Typ);
10041
10042 Operand : constant Node_Id := Expression (N);
10043 Opnd_Type : constant Entity_Id := Etype (Operand);
10044
10045 begin
10046 -- Resolve operand using its own type
10047
10048 Resolve (Operand, Opnd_Type);
10049 Analyze_Dimension (N);
10050 Eval_Unchecked_Conversion (N);
10051 end Resolve_Unchecked_Type_Conversion;
10052
10053 ------------------------------
10054 -- Rewrite_Operator_As_Call --
10055 ------------------------------
10056
10057 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
10058 Loc : constant Source_Ptr := Sloc (N);
10059 Actuals : constant List_Id := New_List;
10060 New_N : Node_Id;
10061
10062 begin
10063 if Nkind (N) in N_Binary_Op then
10064 Append (Left_Opnd (N), Actuals);
10065 end if;
10066
10067 Append (Right_Opnd (N), Actuals);
10068
10069 New_N :=
10070 Make_Function_Call (Sloc => Loc,
10071 Name => New_Occurrence_Of (Nam, Loc),
10072 Parameter_Associations => Actuals);
10073
10074 Preserve_Comes_From_Source (New_N, N);
10075 Preserve_Comes_From_Source (Name (New_N), N);
10076 Rewrite (N, New_N);
10077 Set_Etype (N, Etype (Nam));
10078 end Rewrite_Operator_As_Call;
10079
10080 ------------------------------
10081 -- Rewrite_Renamed_Operator --
10082 ------------------------------
10083
10084 procedure Rewrite_Renamed_Operator
10085 (N : Node_Id;
10086 Op : Entity_Id;
10087 Typ : Entity_Id)
10088 is
10089 Nam : constant Name_Id := Chars (Op);
10090 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
10091 Op_Node : Node_Id;
10092
10093 begin
10094 -- Rewrite the operator node using the real operator, not its renaming.
10095 -- Exclude user-defined intrinsic operations of the same name, which are
10096 -- treated separately and rewritten as calls.
10097
10098 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
10099 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
10100 Set_Chars (Op_Node, Nam);
10101 Set_Etype (Op_Node, Etype (N));
10102 Set_Entity (Op_Node, Op);
10103 Set_Right_Opnd (Op_Node, Right_Opnd (N));
10104
10105 -- Indicate that both the original entity and its renaming are
10106 -- referenced at this point.
10107
10108 Generate_Reference (Entity (N), N);
10109 Generate_Reference (Op, N);
10110
10111 if Is_Binary then
10112 Set_Left_Opnd (Op_Node, Left_Opnd (N));
10113 end if;
10114
10115 Rewrite (N, Op_Node);
10116
10117 -- If the context type is private, add the appropriate conversions so
10118 -- that the operator is applied to the full view. This is done in the
10119 -- routines that resolve intrinsic operators.
10120
10121 if Is_Intrinsic_Subprogram (Op)
10122 and then Is_Private_Type (Typ)
10123 then
10124 case Nkind (N) is
10125 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
10126 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
10127 Resolve_Intrinsic_Operator (N, Typ);
10128
10129 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
10130 Resolve_Intrinsic_Unary_Operator (N, Typ);
10131
10132 when others =>
10133 Resolve (N, Typ);
10134 end case;
10135 end if;
10136
10137 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
10138
10139 -- Operator renames a user-defined operator of the same name. Use the
10140 -- original operator in the node, which is the one Gigi knows about.
10141
10142 Set_Entity (N, Op);
10143 Set_Is_Overloaded (N, False);
10144 end if;
10145 end Rewrite_Renamed_Operator;
10146
10147 -----------------------
10148 -- Set_Slice_Subtype --
10149 -----------------------
10150
10151 -- Build an implicit subtype declaration to represent the type delivered by
10152 -- the slice. This is an abbreviated version of an array subtype. We define
10153 -- an index subtype for the slice, using either the subtype name or the
10154 -- discrete range of the slice. To be consistent with index usage elsewhere
10155 -- we create a list header to hold the single index. This list is not
10156 -- otherwise attached to the syntax tree.
10157
10158 procedure Set_Slice_Subtype (N : Node_Id) is
10159 Loc : constant Source_Ptr := Sloc (N);
10160 Index_List : constant List_Id := New_List;
10161 Index : Node_Id;
10162 Index_Subtype : Entity_Id;
10163 Index_Type : Entity_Id;
10164 Slice_Subtype : Entity_Id;
10165 Drange : constant Node_Id := Discrete_Range (N);
10166
10167 begin
10168 if Is_Entity_Name (Drange) then
10169 Index_Subtype := Entity (Drange);
10170
10171 else
10172 -- We force the evaluation of a range. This is definitely needed in
10173 -- the renamed case, and seems safer to do unconditionally. Note in
10174 -- any case that since we will create and insert an Itype referring
10175 -- to this range, we must make sure any side effect removal actions
10176 -- are inserted before the Itype definition.
10177
10178 if Nkind (Drange) = N_Range then
10179 Force_Evaluation (Low_Bound (Drange));
10180 Force_Evaluation (High_Bound (Drange));
10181 end if;
10182
10183 Index_Type := Base_Type (Etype (Drange));
10184
10185 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
10186
10187 -- Take a new copy of Drange (where bounds have been rewritten to
10188 -- reference side-effect-free names). Using a separate tree ensures
10189 -- that further expansion (e.g. while rewriting a slice assignment
10190 -- into a FOR loop) does not attempt to remove side effects on the
10191 -- bounds again (which would cause the bounds in the index subtype
10192 -- definition to refer to temporaries before they are defined) (the
10193 -- reason is that some names are considered side effect free here
10194 -- for the subtype, but not in the context of a loop iteration
10195 -- scheme).
10196
10197 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
10198 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
10199 Set_Etype (Index_Subtype, Index_Type);
10200 Set_Size_Info (Index_Subtype, Index_Type);
10201 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
10202 end if;
10203
10204 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
10205
10206 Index := New_Occurrence_Of (Index_Subtype, Loc);
10207 Set_Etype (Index, Index_Subtype);
10208 Append (Index, Index_List);
10209
10210 Set_First_Index (Slice_Subtype, Index);
10211 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
10212 Set_Is_Constrained (Slice_Subtype, True);
10213
10214 Check_Compile_Time_Size (Slice_Subtype);
10215
10216 -- The Etype of the existing Slice node is reset to this slice subtype.
10217 -- Its bounds are obtained from its first index.
10218
10219 Set_Etype (N, Slice_Subtype);
10220
10221 -- For packed slice subtypes, freeze immediately (except in the case of
10222 -- being in a "spec expression" where we never freeze when we first see
10223 -- the expression).
10224
10225 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
10226 Freeze_Itype (Slice_Subtype, N);
10227
10228 -- For all other cases insert an itype reference in the slice's actions
10229 -- so that the itype is frozen at the proper place in the tree (i.e. at
10230 -- the point where actions for the slice are analyzed). Note that this
10231 -- is different from freezing the itype immediately, which might be
10232 -- premature (e.g. if the slice is within a transient scope). This needs
10233 -- to be done only if expansion is enabled.
10234
10235 elsif Full_Expander_Active then
10236 Ensure_Defined (Typ => Slice_Subtype, N => N);
10237 end if;
10238 end Set_Slice_Subtype;
10239
10240 --------------------------------
10241 -- Set_String_Literal_Subtype --
10242 --------------------------------
10243
10244 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
10245 Loc : constant Source_Ptr := Sloc (N);
10246 Low_Bound : constant Node_Id :=
10247 Type_Low_Bound (Etype (First_Index (Typ)));
10248 Subtype_Id : Entity_Id;
10249
10250 begin
10251 if Nkind (N) /= N_String_Literal then
10252 return;
10253 end if;
10254
10255 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
10256 Set_String_Literal_Length (Subtype_Id, UI_From_Int
10257 (String_Length (Strval (N))));
10258 Set_Etype (Subtype_Id, Base_Type (Typ));
10259 Set_Is_Constrained (Subtype_Id);
10260 Set_Etype (N, Subtype_Id);
10261
10262 -- The low bound is set from the low bound of the corresponding index
10263 -- type. Note that we do not store the high bound in the string literal
10264 -- subtype, but it can be deduced if necessary from the length and the
10265 -- low bound.
10266
10267 if Is_OK_Static_Expression (Low_Bound) then
10268 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
10269
10270 -- If the lower bound is not static we create a range for the string
10271 -- literal, using the index type and the known length of the literal.
10272 -- The index type is not necessarily Positive, so the upper bound is
10273 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
10274
10275 else
10276 declare
10277 Index_List : constant List_Id := New_List;
10278 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
10279 High_Bound : constant Node_Id :=
10280 Make_Attribute_Reference (Loc,
10281 Attribute_Name => Name_Val,
10282 Prefix =>
10283 New_Occurrence_Of (Index_Type, Loc),
10284 Expressions => New_List (
10285 Make_Op_Add (Loc,
10286 Left_Opnd =>
10287 Make_Attribute_Reference (Loc,
10288 Attribute_Name => Name_Pos,
10289 Prefix =>
10290 New_Occurrence_Of (Index_Type, Loc),
10291 Expressions =>
10292 New_List (New_Copy_Tree (Low_Bound))),
10293 Right_Opnd =>
10294 Make_Integer_Literal (Loc,
10295 String_Length (Strval (N)) - 1))));
10296
10297 Array_Subtype : Entity_Id;
10298 Drange : Node_Id;
10299 Index : Node_Id;
10300 Index_Subtype : Entity_Id;
10301
10302 begin
10303 if Is_Integer_Type (Index_Type) then
10304 Set_String_Literal_Low_Bound
10305 (Subtype_Id, Make_Integer_Literal (Loc, 1));
10306
10307 else
10308 -- If the index type is an enumeration type, build bounds
10309 -- expression with attributes.
10310
10311 Set_String_Literal_Low_Bound
10312 (Subtype_Id,
10313 Make_Attribute_Reference (Loc,
10314 Attribute_Name => Name_First,
10315 Prefix =>
10316 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
10317 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
10318 end if;
10319
10320 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
10321
10322 -- Build bona fide subtype for the string, and wrap it in an
10323 -- unchecked conversion, because the backend expects the
10324 -- String_Literal_Subtype to have a static lower bound.
10325
10326 Index_Subtype :=
10327 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
10328 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
10329 Set_Scalar_Range (Index_Subtype, Drange);
10330 Set_Parent (Drange, N);
10331 Analyze_And_Resolve (Drange, Index_Type);
10332
10333 -- In the context, the Index_Type may already have a constraint,
10334 -- so use common base type on string subtype. The base type may
10335 -- be used when generating attributes of the string, for example
10336 -- in the context of a slice assignment.
10337
10338 Set_Etype (Index_Subtype, Base_Type (Index_Type));
10339 Set_Size_Info (Index_Subtype, Index_Type);
10340 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
10341
10342 Array_Subtype := Create_Itype (E_Array_Subtype, N);
10343
10344 Index := New_Occurrence_Of (Index_Subtype, Loc);
10345 Set_Etype (Index, Index_Subtype);
10346 Append (Index, Index_List);
10347
10348 Set_First_Index (Array_Subtype, Index);
10349 Set_Etype (Array_Subtype, Base_Type (Typ));
10350 Set_Is_Constrained (Array_Subtype, True);
10351
10352 Rewrite (N,
10353 Make_Unchecked_Type_Conversion (Loc,
10354 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
10355 Expression => Relocate_Node (N)));
10356 Set_Etype (N, Array_Subtype);
10357 end;
10358 end if;
10359 end Set_String_Literal_Subtype;
10360
10361 ------------------------------
10362 -- Simplify_Type_Conversion --
10363 ------------------------------
10364
10365 procedure Simplify_Type_Conversion (N : Node_Id) is
10366 begin
10367 if Nkind (N) = N_Type_Conversion then
10368 declare
10369 Operand : constant Node_Id := Expression (N);
10370 Target_Typ : constant Entity_Id := Etype (N);
10371 Opnd_Typ : constant Entity_Id := Etype (Operand);
10372
10373 begin
10374 if Is_Floating_Point_Type (Opnd_Typ)
10375 and then
10376 (Is_Integer_Type (Target_Typ)
10377 or else (Is_Fixed_Point_Type (Target_Typ)
10378 and then Conversion_OK (N)))
10379 and then Nkind (Operand) = N_Attribute_Reference
10380 and then Attribute_Name (Operand) = Name_Truncation
10381
10382 -- Special processing required if the conversion is the expression
10383 -- of a Truncation attribute reference. In this case we replace:
10384
10385 -- ityp (ftyp'Truncation (x))
10386
10387 -- by
10388
10389 -- ityp (x)
10390
10391 -- with the Float_Truncate flag set, which is more efficient.
10392
10393 then
10394 Rewrite (Operand,
10395 Relocate_Node (First (Expressions (Operand))));
10396 Set_Float_Truncate (N, True);
10397 end if;
10398 end;
10399 end if;
10400 end Simplify_Type_Conversion;
10401
10402 -----------------------------
10403 -- Unique_Fixed_Point_Type --
10404 -----------------------------
10405
10406 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
10407 T1 : Entity_Id := Empty;
10408 T2 : Entity_Id;
10409 Item : Node_Id;
10410 Scop : Entity_Id;
10411
10412 procedure Fixed_Point_Error;
10413 -- Give error messages for true ambiguity. Messages are posted on node
10414 -- N, and entities T1, T2 are the possible interpretations.
10415
10416 -----------------------
10417 -- Fixed_Point_Error --
10418 -----------------------
10419
10420 procedure Fixed_Point_Error is
10421 begin
10422 Error_Msg_N ("ambiguous universal_fixed_expression", N);
10423 Error_Msg_NE ("\\possible interpretation as}", N, T1);
10424 Error_Msg_NE ("\\possible interpretation as}", N, T2);
10425 end Fixed_Point_Error;
10426
10427 -- Start of processing for Unique_Fixed_Point_Type
10428
10429 begin
10430 -- The operations on Duration are visible, so Duration is always a
10431 -- possible interpretation.
10432
10433 T1 := Standard_Duration;
10434
10435 -- Look for fixed-point types in enclosing scopes
10436
10437 Scop := Current_Scope;
10438 while Scop /= Standard_Standard loop
10439 T2 := First_Entity (Scop);
10440 while Present (T2) loop
10441 if Is_Fixed_Point_Type (T2)
10442 and then Current_Entity (T2) = T2
10443 and then Scope (Base_Type (T2)) = Scop
10444 then
10445 if Present (T1) then
10446 Fixed_Point_Error;
10447 return Any_Type;
10448 else
10449 T1 := T2;
10450 end if;
10451 end if;
10452
10453 Next_Entity (T2);
10454 end loop;
10455
10456 Scop := Scope (Scop);
10457 end loop;
10458
10459 -- Look for visible fixed type declarations in the context
10460
10461 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
10462 while Present (Item) loop
10463 if Nkind (Item) = N_With_Clause then
10464 Scop := Entity (Name (Item));
10465 T2 := First_Entity (Scop);
10466 while Present (T2) loop
10467 if Is_Fixed_Point_Type (T2)
10468 and then Scope (Base_Type (T2)) = Scop
10469 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
10470 then
10471 if Present (T1) then
10472 Fixed_Point_Error;
10473 return Any_Type;
10474 else
10475 T1 := T2;
10476 end if;
10477 end if;
10478
10479 Next_Entity (T2);
10480 end loop;
10481 end if;
10482
10483 Next (Item);
10484 end loop;
10485
10486 if Nkind (N) = N_Real_Literal then
10487 Error_Msg_NE
10488 ("??real literal interpreted as }!", N, T1);
10489 else
10490 Error_Msg_NE
10491 ("??universal_fixed expression interpreted as }!", N, T1);
10492 end if;
10493
10494 return T1;
10495 end Unique_Fixed_Point_Type;
10496
10497 ----------------------
10498 -- Valid_Conversion --
10499 ----------------------
10500
10501 function Valid_Conversion
10502 (N : Node_Id;
10503 Target : Entity_Id;
10504 Operand : Node_Id;
10505 Report_Errs : Boolean := True) return Boolean
10506 is
10507 Target_Type : constant Entity_Id := Base_Type (Target);
10508 Opnd_Type : Entity_Id := Etype (Operand);
10509 Inc_Ancestor : Entity_Id;
10510
10511 function Conversion_Check
10512 (Valid : Boolean;
10513 Msg : String) return Boolean;
10514 -- Little routine to post Msg if Valid is False, returns Valid value
10515
10516 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
10517 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
10518
10519 procedure Conversion_Error_NE
10520 (Msg : String;
10521 N : Node_Or_Entity_Id;
10522 E : Node_Or_Entity_Id);
10523 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
10524
10525 function Valid_Tagged_Conversion
10526 (Target_Type : Entity_Id;
10527 Opnd_Type : Entity_Id) return Boolean;
10528 -- Specifically test for validity of tagged conversions
10529
10530 function Valid_Array_Conversion return Boolean;
10531 -- Check index and component conformance, and accessibility levels if
10532 -- the component types are anonymous access types (Ada 2005).
10533
10534 ----------------------
10535 -- Conversion_Check --
10536 ----------------------
10537
10538 function Conversion_Check
10539 (Valid : Boolean;
10540 Msg : String) return Boolean
10541 is
10542 begin
10543 if not Valid
10544
10545 -- A generic unit has already been analyzed and we have verified
10546 -- that a particular conversion is OK in that context. Since the
10547 -- instance is reanalyzed without relying on the relationships
10548 -- established during the analysis of the generic, it is possible
10549 -- to end up with inconsistent views of private types. Do not emit
10550 -- the error message in such cases. The rest of the machinery in
10551 -- Valid_Conversion still ensures the proper compatibility of
10552 -- target and operand types.
10553
10554 and then not In_Instance
10555 then
10556 Conversion_Error_N (Msg, Operand);
10557 end if;
10558
10559 return Valid;
10560 end Conversion_Check;
10561
10562 ------------------------
10563 -- Conversion_Error_N --
10564 ------------------------
10565
10566 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
10567 begin
10568 if Report_Errs then
10569 Error_Msg_N (Msg, N);
10570 end if;
10571 end Conversion_Error_N;
10572
10573 -------------------------
10574 -- Conversion_Error_NE --
10575 -------------------------
10576
10577 procedure Conversion_Error_NE
10578 (Msg : String;
10579 N : Node_Or_Entity_Id;
10580 E : Node_Or_Entity_Id)
10581 is
10582 begin
10583 if Report_Errs then
10584 Error_Msg_NE (Msg, N, E);
10585 end if;
10586 end Conversion_Error_NE;
10587
10588 ----------------------------
10589 -- Valid_Array_Conversion --
10590 ----------------------------
10591
10592 function Valid_Array_Conversion return Boolean
10593 is
10594 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
10595 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
10596
10597 Opnd_Index : Node_Id;
10598 Opnd_Index_Type : Entity_Id;
10599
10600 Target_Comp_Type : constant Entity_Id :=
10601 Component_Type (Target_Type);
10602 Target_Comp_Base : constant Entity_Id :=
10603 Base_Type (Target_Comp_Type);
10604
10605 Target_Index : Node_Id;
10606 Target_Index_Type : Entity_Id;
10607
10608 begin
10609 -- Error if wrong number of dimensions
10610
10611 if
10612 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
10613 then
10614 Conversion_Error_N
10615 ("incompatible number of dimensions for conversion", Operand);
10616 return False;
10617
10618 -- Number of dimensions matches
10619
10620 else
10621 -- Loop through indexes of the two arrays
10622
10623 Target_Index := First_Index (Target_Type);
10624 Opnd_Index := First_Index (Opnd_Type);
10625 while Present (Target_Index) and then Present (Opnd_Index) loop
10626 Target_Index_Type := Etype (Target_Index);
10627 Opnd_Index_Type := Etype (Opnd_Index);
10628
10629 -- Error if index types are incompatible
10630
10631 if not (Is_Integer_Type (Target_Index_Type)
10632 and then Is_Integer_Type (Opnd_Index_Type))
10633 and then (Root_Type (Target_Index_Type)
10634 /= Root_Type (Opnd_Index_Type))
10635 then
10636 Conversion_Error_N
10637 ("incompatible index types for array conversion",
10638 Operand);
10639 return False;
10640 end if;
10641
10642 Next_Index (Target_Index);
10643 Next_Index (Opnd_Index);
10644 end loop;
10645
10646 -- If component types have same base type, all set
10647
10648 if Target_Comp_Base = Opnd_Comp_Base then
10649 null;
10650
10651 -- Here if base types of components are not the same. The only
10652 -- time this is allowed is if we have anonymous access types.
10653
10654 -- The conversion of arrays of anonymous access types can lead
10655 -- to dangling pointers. AI-392 formalizes the accessibility
10656 -- checks that must be applied to such conversions to prevent
10657 -- out-of-scope references.
10658
10659 elsif Ekind_In
10660 (Target_Comp_Base, E_Anonymous_Access_Type,
10661 E_Anonymous_Access_Subprogram_Type)
10662 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
10663 and then
10664 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
10665 then
10666 if Type_Access_Level (Target_Type) <
10667 Deepest_Type_Access_Level (Opnd_Type)
10668 then
10669 if In_Instance_Body then
10670 Conversion_Error_N
10671 ("??source array type has deeper accessibility "
10672 & "level than target", Operand);
10673 Conversion_Error_N
10674 ("\??Program_Error will be raised at run time",
10675 Operand);
10676 Rewrite (N,
10677 Make_Raise_Program_Error (Sloc (N),
10678 Reason => PE_Accessibility_Check_Failed));
10679 Set_Etype (N, Target_Type);
10680 return False;
10681
10682 -- Conversion not allowed because of accessibility levels
10683
10684 else
10685 Conversion_Error_N
10686 ("source array type has deeper accessibility "
10687 & "level than target", Operand);
10688 return False;
10689 end if;
10690
10691 else
10692 null;
10693 end if;
10694
10695 -- All other cases where component base types do not match
10696
10697 else
10698 Conversion_Error_N
10699 ("incompatible component types for array conversion",
10700 Operand);
10701 return False;
10702 end if;
10703
10704 -- Check that component subtypes statically match. For numeric
10705 -- types this means that both must be either constrained or
10706 -- unconstrained. For enumeration types the bounds must match.
10707 -- All of this is checked in Subtypes_Statically_Match.
10708
10709 if not Subtypes_Statically_Match
10710 (Target_Comp_Type, Opnd_Comp_Type)
10711 then
10712 Conversion_Error_N
10713 ("component subtypes must statically match", Operand);
10714 return False;
10715 end if;
10716 end if;
10717
10718 return True;
10719 end Valid_Array_Conversion;
10720
10721 -----------------------------
10722 -- Valid_Tagged_Conversion --
10723 -----------------------------
10724
10725 function Valid_Tagged_Conversion
10726 (Target_Type : Entity_Id;
10727 Opnd_Type : Entity_Id) return Boolean
10728 is
10729 begin
10730 -- Upward conversions are allowed (RM 4.6(22))
10731
10732 if Covers (Target_Type, Opnd_Type)
10733 or else Is_Ancestor (Target_Type, Opnd_Type)
10734 then
10735 return True;
10736
10737 -- Downward conversion are allowed if the operand is class-wide
10738 -- (RM 4.6(23)).
10739
10740 elsif Is_Class_Wide_Type (Opnd_Type)
10741 and then Covers (Opnd_Type, Target_Type)
10742 then
10743 return True;
10744
10745 elsif Covers (Opnd_Type, Target_Type)
10746 or else Is_Ancestor (Opnd_Type, Target_Type)
10747 then
10748 return
10749 Conversion_Check (False,
10750 "downward conversion of tagged objects not allowed");
10751
10752 -- Ada 2005 (AI-251): The conversion to/from interface types is
10753 -- always valid
10754
10755 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
10756 return True;
10757
10758 -- If the operand is a class-wide type obtained through a limited_
10759 -- with clause, and the context includes the non-limited view, use
10760 -- it to determine whether the conversion is legal.
10761
10762 elsif Is_Class_Wide_Type (Opnd_Type)
10763 and then From_With_Type (Opnd_Type)
10764 and then Present (Non_Limited_View (Etype (Opnd_Type)))
10765 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
10766 then
10767 return True;
10768
10769 elsif Is_Access_Type (Opnd_Type)
10770 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
10771 then
10772 return True;
10773
10774 else
10775 Conversion_Error_NE
10776 ("invalid tagged conversion, not compatible with}",
10777 N, First_Subtype (Opnd_Type));
10778 return False;
10779 end if;
10780 end Valid_Tagged_Conversion;
10781
10782 -- Start of processing for Valid_Conversion
10783
10784 begin
10785 Check_Parameterless_Call (Operand);
10786
10787 if Is_Overloaded (Operand) then
10788 declare
10789 I : Interp_Index;
10790 I1 : Interp_Index;
10791 It : Interp;
10792 It1 : Interp;
10793 N1 : Entity_Id;
10794 T1 : Entity_Id;
10795
10796 begin
10797 -- Remove procedure calls, which syntactically cannot appear in
10798 -- this context, but which cannot be removed by type checking,
10799 -- because the context does not impose a type.
10800
10801 -- When compiling for VMS, spurious ambiguities can be produced
10802 -- when arithmetic operations have a literal operand and return
10803 -- System.Address or a descendant of it. These ambiguities are
10804 -- otherwise resolved by the context, but for conversions there
10805 -- is no context type and the removal of the spurious operations
10806 -- must be done explicitly here.
10807
10808 -- The node may be labelled overloaded, but still contain only one
10809 -- interpretation because others were discarded earlier. If this
10810 -- is the case, retain the single interpretation if legal.
10811
10812 Get_First_Interp (Operand, I, It);
10813 Opnd_Type := It.Typ;
10814 Get_Next_Interp (I, It);
10815
10816 if Present (It.Typ)
10817 and then Opnd_Type /= Standard_Void_Type
10818 then
10819 -- More than one candidate interpretation is available
10820
10821 Get_First_Interp (Operand, I, It);
10822 while Present (It.Typ) loop
10823 if It.Typ = Standard_Void_Type then
10824 Remove_Interp (I);
10825 end if;
10826
10827 if Present (System_Aux_Id)
10828 and then Is_Descendent_Of_Address (It.Typ)
10829 then
10830 Remove_Interp (I);
10831 end if;
10832
10833 Get_Next_Interp (I, It);
10834 end loop;
10835 end if;
10836
10837 Get_First_Interp (Operand, I, It);
10838 I1 := I;
10839 It1 := It;
10840
10841 if No (It.Typ) then
10842 Conversion_Error_N ("illegal operand in conversion", Operand);
10843 return False;
10844 end if;
10845
10846 Get_Next_Interp (I, It);
10847
10848 if Present (It.Typ) then
10849 N1 := It1.Nam;
10850 T1 := It1.Typ;
10851 It1 := Disambiguate (Operand, I1, I, Any_Type);
10852
10853 if It1 = No_Interp then
10854 Conversion_Error_N
10855 ("ambiguous operand in conversion", Operand);
10856
10857 -- If the interpretation involves a standard operator, use
10858 -- the location of the type, which may be user-defined.
10859
10860 if Sloc (It.Nam) = Standard_Location then
10861 Error_Msg_Sloc := Sloc (It.Typ);
10862 else
10863 Error_Msg_Sloc := Sloc (It.Nam);
10864 end if;
10865
10866 Conversion_Error_N -- CODEFIX
10867 ("\\possible interpretation#!", Operand);
10868
10869 if Sloc (N1) = Standard_Location then
10870 Error_Msg_Sloc := Sloc (T1);
10871 else
10872 Error_Msg_Sloc := Sloc (N1);
10873 end if;
10874
10875 Conversion_Error_N -- CODEFIX
10876 ("\\possible interpretation#!", Operand);
10877
10878 return False;
10879 end if;
10880 end if;
10881
10882 Set_Etype (Operand, It1.Typ);
10883 Opnd_Type := It1.Typ;
10884 end;
10885 end if;
10886
10887 -- If we are within a child unit, check whether the type of the
10888 -- expression has an ancestor in a parent unit, in which case it
10889 -- belongs to its derivation class even if the ancestor is private.
10890 -- See RM 7.3.1 (5.2/3).
10891
10892 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
10893
10894 -- Numeric types
10895
10896 if Is_Numeric_Type (Target_Type) then
10897
10898 -- A universal fixed expression can be converted to any numeric type
10899
10900 if Opnd_Type = Universal_Fixed then
10901 return True;
10902
10903 -- Also no need to check when in an instance or inlined body, because
10904 -- the legality has been established when the template was analyzed.
10905 -- Furthermore, numeric conversions may occur where only a private
10906 -- view of the operand type is visible at the instantiation point.
10907 -- This results in a spurious error if we check that the operand type
10908 -- is a numeric type.
10909
10910 -- Note: in a previous version of this unit, the following tests were
10911 -- applied only for generated code (Comes_From_Source set to False),
10912 -- but in fact the test is required for source code as well, since
10913 -- this situation can arise in source code.
10914
10915 elsif In_Instance or else In_Inlined_Body then
10916 return True;
10917
10918 -- Otherwise we need the conversion check
10919
10920 else
10921 return Conversion_Check
10922 (Is_Numeric_Type (Opnd_Type)
10923 or else
10924 (Present (Inc_Ancestor)
10925 and then Is_Numeric_Type (Inc_Ancestor)),
10926 "illegal operand for numeric conversion");
10927 end if;
10928
10929 -- Array types
10930
10931 elsif Is_Array_Type (Target_Type) then
10932 if not Is_Array_Type (Opnd_Type)
10933 or else Opnd_Type = Any_Composite
10934 or else Opnd_Type = Any_String
10935 then
10936 Conversion_Error_N
10937 ("illegal operand for array conversion", Operand);
10938 return False;
10939
10940 else
10941 return Valid_Array_Conversion;
10942 end if;
10943
10944 -- Ada 2005 (AI-251): Anonymous access types where target references an
10945 -- interface type.
10946
10947 elsif Ekind_In (Target_Type, E_General_Access_Type,
10948 E_Anonymous_Access_Type)
10949 and then Is_Interface (Directly_Designated_Type (Target_Type))
10950 then
10951 -- Check the static accessibility rule of 4.6(17). Note that the
10952 -- check is not enforced when within an instance body, since the
10953 -- RM requires such cases to be caught at run time.
10954
10955 -- If the operand is a rewriting of an allocator no check is needed
10956 -- because there are no accessibility issues.
10957
10958 if Nkind (Original_Node (N)) = N_Allocator then
10959 null;
10960
10961 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
10962 if Type_Access_Level (Opnd_Type) >
10963 Deepest_Type_Access_Level (Target_Type)
10964 then
10965 -- In an instance, this is a run-time check, but one we know
10966 -- will fail, so generate an appropriate warning. The raise
10967 -- will be generated by Expand_N_Type_Conversion.
10968
10969 if In_Instance_Body then
10970 Conversion_Error_N
10971 ("??cannot convert local pointer to non-local access type",
10972 Operand);
10973 Conversion_Error_N
10974 ("\??Program_Error will be raised at run time", Operand);
10975
10976 else
10977 Conversion_Error_N
10978 ("cannot convert local pointer to non-local access type",
10979 Operand);
10980 return False;
10981 end if;
10982
10983 -- Special accessibility checks are needed in the case of access
10984 -- discriminants declared for a limited type.
10985
10986 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
10987 and then not Is_Local_Anonymous_Access (Opnd_Type)
10988 then
10989 -- When the operand is a selected access discriminant the check
10990 -- needs to be made against the level of the object denoted by
10991 -- the prefix of the selected name (Object_Access_Level handles
10992 -- checking the prefix of the operand for this case).
10993
10994 if Nkind (Operand) = N_Selected_Component
10995 and then Object_Access_Level (Operand) >
10996 Deepest_Type_Access_Level (Target_Type)
10997 then
10998 -- In an instance, this is a run-time check, but one we know
10999 -- will fail, so generate an appropriate warning. The raise
11000 -- will be generated by Expand_N_Type_Conversion.
11001
11002 if In_Instance_Body then
11003 Conversion_Error_N
11004 ("??cannot convert access discriminant to non-local "
11005 & "access type", Operand);
11006 Conversion_Error_N
11007 ("\??Program_Error will be raised at run time",
11008 Operand);
11009 else
11010 Conversion_Error_N
11011 ("cannot convert access discriminant to non-local "
11012 & "access type", Operand);
11013 return False;
11014 end if;
11015 end if;
11016
11017 -- The case of a reference to an access discriminant from
11018 -- within a limited type declaration (which will appear as
11019 -- a discriminal) is always illegal because the level of the
11020 -- discriminant is considered to be deeper than any (nameable)
11021 -- access type.
11022
11023 if Is_Entity_Name (Operand)
11024 and then not Is_Local_Anonymous_Access (Opnd_Type)
11025 and then
11026 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
11027 and then Present (Discriminal_Link (Entity (Operand)))
11028 then
11029 Conversion_Error_N
11030 ("discriminant has deeper accessibility level than target",
11031 Operand);
11032 return False;
11033 end if;
11034 end if;
11035 end if;
11036
11037 return True;
11038
11039 -- General and anonymous access types
11040
11041 elsif Ekind_In (Target_Type, E_General_Access_Type,
11042 E_Anonymous_Access_Type)
11043 and then
11044 Conversion_Check
11045 (Is_Access_Type (Opnd_Type)
11046 and then not
11047 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
11048 E_Access_Protected_Subprogram_Type),
11049 "must be an access-to-object type")
11050 then
11051 if Is_Access_Constant (Opnd_Type)
11052 and then not Is_Access_Constant (Target_Type)
11053 then
11054 Conversion_Error_N
11055 ("access-to-constant operand type not allowed", Operand);
11056 return False;
11057 end if;
11058
11059 -- Check the static accessibility rule of 4.6(17). Note that the
11060 -- check is not enforced when within an instance body, since the RM
11061 -- requires such cases to be caught at run time.
11062
11063 if Ekind (Target_Type) /= E_Anonymous_Access_Type
11064 or else Is_Local_Anonymous_Access (Target_Type)
11065 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
11066 N_Object_Declaration
11067 then
11068 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
11069 -- conversions from an anonymous access type to a named general
11070 -- access type. Such conversions are not allowed in the case of
11071 -- access parameters and stand-alone objects of an anonymous
11072 -- access type. The implicit conversion case is recognized by
11073 -- testing that Comes_From_Source is False and that it's been
11074 -- rewritten. The Comes_From_Source test isn't sufficient because
11075 -- nodes in inlined calls to predefined library routines can have
11076 -- Comes_From_Source set to False. (Is there a better way to test
11077 -- for implicit conversions???)
11078
11079 if Ada_Version >= Ada_2012
11080 and then not Comes_From_Source (N)
11081 and then N /= Original_Node (N)
11082 and then Ekind (Target_Type) = E_General_Access_Type
11083 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
11084 then
11085 if Is_Itype (Opnd_Type) then
11086
11087 -- Implicit conversions aren't allowed for objects of an
11088 -- anonymous access type, since such objects have nonstatic
11089 -- levels in Ada 2012.
11090
11091 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
11092 N_Object_Declaration
11093 then
11094 Conversion_Error_N
11095 ("implicit conversion of stand-alone anonymous "
11096 & "access object not allowed", Operand);
11097 return False;
11098
11099 -- Implicit conversions aren't allowed for anonymous access
11100 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
11101 -- is done to exclude anonymous access results.
11102
11103 elsif not Is_Local_Anonymous_Access (Opnd_Type)
11104 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
11105 N_Function_Specification,
11106 N_Procedure_Specification)
11107 then
11108 Conversion_Error_N
11109 ("implicit conversion of anonymous access formal "
11110 & "not allowed", Operand);
11111 return False;
11112
11113 -- This is a case where there's an enclosing object whose
11114 -- to which the "statically deeper than" relationship does
11115 -- not apply (such as an access discriminant selected from
11116 -- a dereference of an access parameter).
11117
11118 elsif Object_Access_Level (Operand)
11119 = Scope_Depth (Standard_Standard)
11120 then
11121 Conversion_Error_N
11122 ("implicit conversion of anonymous access value "
11123 & "not allowed", Operand);
11124 return False;
11125
11126 -- In other cases, the level of the operand's type must be
11127 -- statically less deep than that of the target type, else
11128 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
11129
11130 elsif Type_Access_Level (Opnd_Type) >
11131 Deepest_Type_Access_Level (Target_Type)
11132 then
11133 Conversion_Error_N
11134 ("implicit conversion of anonymous access value "
11135 & "violates accessibility", Operand);
11136 return False;
11137 end if;
11138 end if;
11139
11140 elsif Type_Access_Level (Opnd_Type) >
11141 Deepest_Type_Access_Level (Target_Type)
11142 then
11143 -- In an instance, this is a run-time check, but one we know
11144 -- will fail, so generate an appropriate warning. The raise
11145 -- will be generated by Expand_N_Type_Conversion.
11146
11147 if In_Instance_Body then
11148 Conversion_Error_N
11149 ("??cannot convert local pointer to non-local access type",
11150 Operand);
11151 Conversion_Error_N
11152 ("\??Program_Error will be raised at run time", Operand);
11153
11154 else
11155 -- Avoid generation of spurious error message
11156
11157 if not Error_Posted (N) then
11158 Conversion_Error_N
11159 ("cannot convert local pointer to non-local access type",
11160 Operand);
11161 end if;
11162
11163 return False;
11164 end if;
11165
11166 -- Special accessibility checks are needed in the case of access
11167 -- discriminants declared for a limited type.
11168
11169 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
11170 and then not Is_Local_Anonymous_Access (Opnd_Type)
11171 then
11172 -- When the operand is a selected access discriminant the check
11173 -- needs to be made against the level of the object denoted by
11174 -- the prefix of the selected name (Object_Access_Level handles
11175 -- checking the prefix of the operand for this case).
11176
11177 if Nkind (Operand) = N_Selected_Component
11178 and then Object_Access_Level (Operand) >
11179 Deepest_Type_Access_Level (Target_Type)
11180 then
11181 -- In an instance, this is a run-time check, but one we know
11182 -- will fail, so generate an appropriate warning. The raise
11183 -- will be generated by Expand_N_Type_Conversion.
11184
11185 if In_Instance_Body then
11186 Conversion_Error_N
11187 ("??cannot convert access discriminant to non-local "
11188 & "access type", Operand);
11189 Conversion_Error_N
11190 ("\??Program_Error will be raised at run time",
11191 Operand);
11192
11193 else
11194 Conversion_Error_N
11195 ("cannot convert access discriminant to non-local "
11196 & "access type", Operand);
11197 return False;
11198 end if;
11199 end if;
11200
11201 -- The case of a reference to an access discriminant from
11202 -- within a limited type declaration (which will appear as
11203 -- a discriminal) is always illegal because the level of the
11204 -- discriminant is considered to be deeper than any (nameable)
11205 -- access type.
11206
11207 if Is_Entity_Name (Operand)
11208 and then
11209 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
11210 and then Present (Discriminal_Link (Entity (Operand)))
11211 then
11212 Conversion_Error_N
11213 ("discriminant has deeper accessibility level than target",
11214 Operand);
11215 return False;
11216 end if;
11217 end if;
11218 end if;
11219
11220 -- In the presence of limited_with clauses we have to use non-limited
11221 -- views, if available.
11222
11223 Check_Limited : declare
11224 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
11225 -- Helper function to handle limited views
11226
11227 --------------------------
11228 -- Full_Designated_Type --
11229 --------------------------
11230
11231 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
11232 Desig : constant Entity_Id := Designated_Type (T);
11233
11234 begin
11235 -- Handle the limited view of a type
11236
11237 if Is_Incomplete_Type (Desig)
11238 and then From_With_Type (Desig)
11239 and then Present (Non_Limited_View (Desig))
11240 then
11241 return Available_View (Desig);
11242 else
11243 return Desig;
11244 end if;
11245 end Full_Designated_Type;
11246
11247 -- Local Declarations
11248
11249 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
11250 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
11251
11252 Same_Base : constant Boolean :=
11253 Base_Type (Target) = Base_Type (Opnd);
11254
11255 -- Start of processing for Check_Limited
11256
11257 begin
11258 if Is_Tagged_Type (Target) then
11259 return Valid_Tagged_Conversion (Target, Opnd);
11260
11261 else
11262 if not Same_Base then
11263 Conversion_Error_NE
11264 ("target designated type not compatible with }",
11265 N, Base_Type (Opnd));
11266 return False;
11267
11268 -- Ada 2005 AI-384: legality rule is symmetric in both
11269 -- designated types. The conversion is legal (with possible
11270 -- constraint check) if either designated type is
11271 -- unconstrained.
11272
11273 elsif Subtypes_Statically_Match (Target, Opnd)
11274 or else
11275 (Has_Discriminants (Target)
11276 and then
11277 (not Is_Constrained (Opnd)
11278 or else not Is_Constrained (Target)))
11279 then
11280 -- Special case, if Value_Size has been used to make the
11281 -- sizes different, the conversion is not allowed even
11282 -- though the subtypes statically match.
11283
11284 if Known_Static_RM_Size (Target)
11285 and then Known_Static_RM_Size (Opnd)
11286 and then RM_Size (Target) /= RM_Size (Opnd)
11287 then
11288 Conversion_Error_NE
11289 ("target designated subtype not compatible with }",
11290 N, Opnd);
11291 Conversion_Error_NE
11292 ("\because sizes of the two designated subtypes differ",
11293 N, Opnd);
11294 return False;
11295
11296 -- Normal case where conversion is allowed
11297
11298 else
11299 return True;
11300 end if;
11301
11302 else
11303 Error_Msg_NE
11304 ("target designated subtype not compatible with }",
11305 N, Opnd);
11306 return False;
11307 end if;
11308 end if;
11309 end Check_Limited;
11310
11311 -- Access to subprogram types. If the operand is an access parameter,
11312 -- the type has a deeper accessibility that any master, and cannot be
11313 -- assigned. We must make an exception if the conversion is part of an
11314 -- assignment and the target is the return object of an extended return
11315 -- statement, because in that case the accessibility check takes place
11316 -- after the return.
11317
11318 elsif Is_Access_Subprogram_Type (Target_Type)
11319 and then No (Corresponding_Remote_Type (Opnd_Type))
11320 then
11321 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
11322 and then Is_Entity_Name (Operand)
11323 and then Ekind (Entity (Operand)) = E_In_Parameter
11324 and then
11325 (Nkind (Parent (N)) /= N_Assignment_Statement
11326 or else not Is_Entity_Name (Name (Parent (N)))
11327 or else not Is_Return_Object (Entity (Name (Parent (N)))))
11328 then
11329 Conversion_Error_N
11330 ("illegal attempt to store anonymous access to subprogram",
11331 Operand);
11332 Conversion_Error_N
11333 ("\value has deeper accessibility than any master "
11334 & "(RM 3.10.2 (13))",
11335 Operand);
11336
11337 Error_Msg_NE
11338 ("\use named access type for& instead of access parameter",
11339 Operand, Entity (Operand));
11340 end if;
11341
11342 -- Check that the designated types are subtype conformant
11343
11344 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
11345 Old_Id => Designated_Type (Opnd_Type),
11346 Err_Loc => N);
11347
11348 -- Check the static accessibility rule of 4.6(20)
11349
11350 if Type_Access_Level (Opnd_Type) >
11351 Deepest_Type_Access_Level (Target_Type)
11352 then
11353 Conversion_Error_N
11354 ("operand type has deeper accessibility level than target",
11355 Operand);
11356
11357 -- Check that if the operand type is declared in a generic body,
11358 -- then the target type must be declared within that same body
11359 -- (enforces last sentence of 4.6(20)).
11360
11361 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
11362 declare
11363 O_Gen : constant Node_Id :=
11364 Enclosing_Generic_Body (Opnd_Type);
11365
11366 T_Gen : Node_Id;
11367
11368 begin
11369 T_Gen := Enclosing_Generic_Body (Target_Type);
11370 while Present (T_Gen) and then T_Gen /= O_Gen loop
11371 T_Gen := Enclosing_Generic_Body (T_Gen);
11372 end loop;
11373
11374 if T_Gen /= O_Gen then
11375 Conversion_Error_N
11376 ("target type must be declared in same generic body "
11377 & "as operand type", N);
11378 end if;
11379 end;
11380 end if;
11381
11382 return True;
11383
11384 -- Remote subprogram access types
11385
11386 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
11387 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
11388 then
11389 -- It is valid to convert from one RAS type to another provided
11390 -- that their specification statically match.
11391
11392 Check_Subtype_Conformant
11393 (New_Id =>
11394 Designated_Type (Corresponding_Remote_Type (Target_Type)),
11395 Old_Id =>
11396 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
11397 Err_Loc =>
11398 N);
11399 return True;
11400
11401 -- If it was legal in the generic, it's legal in the instance
11402
11403 elsif In_Instance_Body then
11404 return True;
11405
11406 -- If both are tagged types, check legality of view conversions
11407
11408 elsif Is_Tagged_Type (Target_Type)
11409 and then
11410 Is_Tagged_Type (Opnd_Type)
11411 then
11412 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
11413
11414 -- Types derived from the same root type are convertible
11415
11416 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
11417 return True;
11418
11419 -- In an instance or an inlined body, there may be inconsistent views of
11420 -- the same type, or of types derived from a common root.
11421
11422 elsif (In_Instance or In_Inlined_Body)
11423 and then
11424 Root_Type (Underlying_Type (Target_Type)) =
11425 Root_Type (Underlying_Type (Opnd_Type))
11426 then
11427 return True;
11428
11429 -- Special check for common access type error case
11430
11431 elsif Ekind (Target_Type) = E_Access_Type
11432 and then Is_Access_Type (Opnd_Type)
11433 then
11434 Conversion_Error_N ("target type must be general access type!", N);
11435 Conversion_Error_NE -- CODEFIX
11436 ("add ALL to }!", N, Target_Type);
11437 return False;
11438
11439 else
11440 Conversion_Error_NE
11441 ("invalid conversion, not compatible with }", N, Opnd_Type);
11442 return False;
11443 end if;
11444 end Valid_Conversion;
11445
11446 end Sem_Res;