13612aa3bf53cf553e9eca512f0ad6afc73ac5ad
[gcc.git] / gcc / ada / sem_res.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
83
84 package body Sem_Res is
85
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
89
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
96
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
98
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
102
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
108
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
113
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
119
120 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
121 -- N is the node for a logical operator. If the operator is predefined, and
122 -- the root type of the operands is Standard.Boolean, then a check is made
123 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
124 -- the style check for Style_Check_Boolean_And_Or.
125
126 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
127 -- N is either an indexed component or a selected component. This function
128 -- returns true if the prefix refers to an object that has an address
129 -- clause (the case in which we may want to issue a warning).
130
131 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
132 -- Determine whether E is an access type declared by an access declaration,
133 -- and not an (anonymous) allocator type.
134
135 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
136 -- Utility to check whether the entity for an operator is a predefined
137 -- operator, in which case the expression is left as an operator in the
138 -- tree (else it is rewritten into a call). An instance of an intrinsic
139 -- conversion operation may be given an operator name, but is not treated
140 -- like an operator. Note that an operator that is an imported back-end
141 -- builtin has convention Intrinsic, but is expected to be rewritten into
142 -- a call, so such an operator is not treated as predefined by this
143 -- predicate.
144
145 procedure Preanalyze_And_Resolve
146 (N : Node_Id;
147 T : Entity_Id;
148 With_Freezing : Boolean);
149 -- Subsidiary of public versions of Preanalyze_And_Resolve.
150
151 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
152 -- If a default expression in entry call N depends on the discriminants
153 -- of the task, it must be replaced with a reference to the discriminant
154 -- of the task being called.
155
156 procedure Resolve_Op_Concat_Arg
157 (N : Node_Id;
158 Arg : Node_Id;
159 Typ : Entity_Id;
160 Is_Comp : Boolean);
161 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
162 -- concatenation operator. The operand is either of the array type or of
163 -- the component type. If the operand is an aggregate, and the component
164 -- type is composite, this is ambiguous if component type has aggregates.
165
166 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
167 -- Does the first part of the work of Resolve_Op_Concat
168
169 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
170 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
171 -- has been resolved. See Resolve_Op_Concat for details.
172
173 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
209
210 function Operator_Kind
211 (Op_Name : Name_Id;
212 Is_Binary : Boolean) return Node_Kind;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
215
216 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
220
221 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
227
228 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
233
234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235 -- Ditto, for arithmetic unary operators
236
237 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
238 -- If an operator node resolves to a call to a user-defined operator,
239 -- rewrite the node as a function call.
240
241 procedure Make_Call_Into_Operator
242 (N : Node_Id;
243 Typ : Entity_Id;
244 Op_Id : Entity_Id);
245 -- Inverse transformation: if an operator is given in functional notation,
246 -- then after resolving the node, transform into an operator node, so that
247 -- operands are resolved properly. Recall that predefined operators do not
248 -- have a full signature and special resolution rules apply.
249
250 procedure Rewrite_Renamed_Operator
251 (N : Node_Id;
252 Op : Entity_Id;
253 Typ : Entity_Id);
254 -- An operator can rename another, e.g. in an instantiation. In that
255 -- case, the proper operator node must be constructed and resolved.
256
257 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
258 -- The String_Literal_Subtype is built for all strings that are not
259 -- operands of a static concatenation operation. If the argument is not
260 -- a N_String_Literal node, then the call has no effect.
261
262 procedure Set_Slice_Subtype (N : Node_Id);
263 -- Build subtype of array type, with the range specified by the slice
264
265 procedure Simplify_Type_Conversion (N : Node_Id);
266 -- Called after N has been resolved and evaluated, but before range checks
267 -- have been applied. Currently simplifies a combination of floating-point
268 -- to integer conversion and Rounding or Truncation attribute.
269
270 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
271 -- A universal_fixed expression in an universal context is unambiguous if
272 -- there is only one applicable fixed point type. Determining whether there
273 -- is only one requires a search over all visible entities, and happens
274 -- only in very pathological cases (see 6115-006).
275
276 -------------------------
277 -- Ambiguous_Character --
278 -------------------------
279
280 procedure Ambiguous_Character (C : Node_Id) is
281 E : Entity_Id;
282
283 begin
284 if Nkind (C) = N_Character_Literal then
285 Error_Msg_N ("ambiguous character literal", C);
286
287 -- First the ones in Standard
288
289 Error_Msg_N ("\\possible interpretation: Character!", C);
290 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
291
292 -- Include Wide_Wide_Character in Ada 2005 mode
293
294 if Ada_Version >= Ada_2005 then
295 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
296 end if;
297
298 -- Now any other types that match
299
300 E := Current_Entity (C);
301 while Present (E) loop
302 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
303 E := Homonym (E);
304 end loop;
305 end if;
306 end Ambiguous_Character;
307
308 -------------------------
309 -- Analyze_And_Resolve --
310 -------------------------
311
312 procedure Analyze_And_Resolve (N : Node_Id) is
313 begin
314 Analyze (N);
315 Resolve (N);
316 end Analyze_And_Resolve;
317
318 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
319 begin
320 Analyze (N);
321 Resolve (N, Typ);
322 end Analyze_And_Resolve;
323
324 -- Versions with check(s) suppressed
325
326 procedure Analyze_And_Resolve
327 (N : Node_Id;
328 Typ : Entity_Id;
329 Suppress : Check_Id)
330 is
331 Scop : constant Entity_Id := Current_Scope;
332
333 begin
334 if Suppress = All_Checks then
335 declare
336 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
337 begin
338 Scope_Suppress.Suppress := (others => True);
339 Analyze_And_Resolve (N, Typ);
340 Scope_Suppress.Suppress := Sva;
341 end;
342
343 else
344 declare
345 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
346 begin
347 Scope_Suppress.Suppress (Suppress) := True;
348 Analyze_And_Resolve (N, Typ);
349 Scope_Suppress.Suppress (Suppress) := Svg;
350 end;
351 end if;
352
353 if Current_Scope /= Scop
354 and then Scope_Is_Transient
355 then
356 -- This can only happen if a transient scope was created for an inner
357 -- expression, which will be removed upon completion of the analysis
358 -- of an enclosing construct. The transient scope must have the
359 -- suppress status of the enclosing environment, not of this Analyze
360 -- call.
361
362 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
363 Scope_Suppress;
364 end if;
365 end Analyze_And_Resolve;
366
367 procedure Analyze_And_Resolve
368 (N : Node_Id;
369 Suppress : Check_Id)
370 is
371 Scop : constant Entity_Id := Current_Scope;
372
373 begin
374 if Suppress = All_Checks then
375 declare
376 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
377 begin
378 Scope_Suppress.Suppress := (others => True);
379 Analyze_And_Resolve (N);
380 Scope_Suppress.Suppress := Sva;
381 end;
382
383 else
384 declare
385 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
386 begin
387 Scope_Suppress.Suppress (Suppress) := True;
388 Analyze_And_Resolve (N);
389 Scope_Suppress.Suppress (Suppress) := Svg;
390 end;
391 end if;
392
393 if Current_Scope /= Scop and then Scope_Is_Transient then
394 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
395 Scope_Suppress;
396 end if;
397 end Analyze_And_Resolve;
398
399 ----------------------------
400 -- Check_Discriminant_Use --
401 ----------------------------
402
403 procedure Check_Discriminant_Use (N : Node_Id) is
404 PN : constant Node_Id := Parent (N);
405 Disc : constant Entity_Id := Entity (N);
406 P : Node_Id;
407 D : Node_Id;
408
409 begin
410 -- Any use in a spec-expression is legal
411
412 if In_Spec_Expression then
413 null;
414
415 elsif Nkind (PN) = N_Range then
416
417 -- Discriminant cannot be used to constrain a scalar type
418
419 P := Parent (PN);
420
421 if Nkind (P) = N_Range_Constraint
422 and then Nkind (Parent (P)) = N_Subtype_Indication
423 and then Nkind (Parent (Parent (P))) = N_Component_Definition
424 then
425 Error_Msg_N ("discriminant cannot constrain scalar type", N);
426
427 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
428
429 -- The following check catches the unusual case where a
430 -- discriminant appears within an index constraint that is part
431 -- of a larger expression within a constraint on a component,
432 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
433 -- check case of record components, and note that a similar check
434 -- should also apply in the case of discriminant constraints
435 -- below. ???
436
437 -- Note that the check for N_Subtype_Declaration below is to
438 -- detect the valid use of discriminants in the constraints of a
439 -- subtype declaration when this subtype declaration appears
440 -- inside the scope of a record type (which is syntactically
441 -- illegal, but which may be created as part of derived type
442 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
443 -- for more info.
444
445 if Ekind (Current_Scope) = E_Record_Type
446 and then Scope (Disc) = Current_Scope
447 and then not
448 (Nkind (Parent (P)) = N_Subtype_Indication
449 and then
450 Nkind_In (Parent (Parent (P)), N_Component_Definition,
451 N_Subtype_Declaration)
452 and then Paren_Count (N) = 0)
453 then
454 Error_Msg_N
455 ("discriminant must appear alone in component constraint", N);
456 return;
457 end if;
458
459 -- Detect a common error:
460
461 -- type R (D : Positive := 100) is record
462 -- Name : String (1 .. D);
463 -- end record;
464
465 -- The default value causes an object of type R to be allocated
466 -- with room for Positive'Last characters. The RM does not mandate
467 -- the allocation of the maximum size, but that is what GNAT does
468 -- so we should warn the programmer that there is a problem.
469
470 Check_Large : declare
471 SI : Node_Id;
472 T : Entity_Id;
473 TB : Node_Id;
474 CB : Entity_Id;
475
476 function Large_Storage_Type (T : Entity_Id) return Boolean;
477 -- Return True if type T has a large enough range that any
478 -- array whose index type covered the whole range of the type
479 -- would likely raise Storage_Error.
480
481 ------------------------
482 -- Large_Storage_Type --
483 ------------------------
484
485 function Large_Storage_Type (T : Entity_Id) return Boolean is
486 begin
487 -- The type is considered large if its bounds are known at
488 -- compile time and if it requires at least as many bits as
489 -- a Positive to store the possible values.
490
491 return Compile_Time_Known_Value (Type_Low_Bound (T))
492 and then Compile_Time_Known_Value (Type_High_Bound (T))
493 and then
494 Minimum_Size (T, Biased => True) >=
495 RM_Size (Standard_Positive);
496 end Large_Storage_Type;
497
498 -- Start of processing for Check_Large
499
500 begin
501 -- Check that the Disc has a large range
502
503 if not Large_Storage_Type (Etype (Disc)) then
504 goto No_Danger;
505 end if;
506
507 -- If the enclosing type is limited, we allocate only the
508 -- default value, not the maximum, and there is no need for
509 -- a warning.
510
511 if Is_Limited_Type (Scope (Disc)) then
512 goto No_Danger;
513 end if;
514
515 -- Check that it is the high bound
516
517 if N /= High_Bound (PN)
518 or else No (Discriminant_Default_Value (Disc))
519 then
520 goto No_Danger;
521 end if;
522
523 -- Check the array allows a large range at this bound. First
524 -- find the array
525
526 SI := Parent (P);
527
528 if Nkind (SI) /= N_Subtype_Indication then
529 goto No_Danger;
530 end if;
531
532 T := Entity (Subtype_Mark (SI));
533
534 if not Is_Array_Type (T) then
535 goto No_Danger;
536 end if;
537
538 -- Next, find the dimension
539
540 TB := First_Index (T);
541 CB := First (Constraints (P));
542 while True
543 and then Present (TB)
544 and then Present (CB)
545 and then CB /= PN
546 loop
547 Next_Index (TB);
548 Next (CB);
549 end loop;
550
551 if CB /= PN then
552 goto No_Danger;
553 end if;
554
555 -- Now, check the dimension has a large range
556
557 if not Large_Storage_Type (Etype (TB)) then
558 goto No_Danger;
559 end if;
560
561 -- Warn about the danger
562
563 Error_Msg_N
564 ("??creation of & object may raise Storage_Error!",
565 Scope (Disc));
566
567 <<No_Danger>>
568 null;
569
570 end Check_Large;
571 end if;
572
573 -- Legal case is in index or discriminant constraint
574
575 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
576 N_Discriminant_Association)
577 then
578 if Paren_Count (N) > 0 then
579 Error_Msg_N
580 ("discriminant in constraint must appear alone", N);
581
582 elsif Nkind (N) = N_Expanded_Name
583 and then Comes_From_Source (N)
584 then
585 Error_Msg_N
586 ("discriminant must appear alone as a direct name", N);
587 end if;
588
589 return;
590
591 -- Otherwise, context is an expression. It should not be within (i.e. a
592 -- subexpression of) a constraint for a component.
593
594 else
595 D := PN;
596 P := Parent (PN);
597 while not Nkind_In (P, N_Component_Declaration,
598 N_Subtype_Indication,
599 N_Entry_Declaration)
600 loop
601 D := P;
602 P := Parent (P);
603 exit when No (P);
604 end loop;
605
606 -- If the discriminant is used in an expression that is a bound of a
607 -- scalar type, an Itype is created and the bounds are attached to
608 -- its range, not to the original subtype indication. Such use is of
609 -- course a double fault.
610
611 if (Nkind (P) = N_Subtype_Indication
612 and then Nkind_In (Parent (P), N_Component_Definition,
613 N_Derived_Type_Definition)
614 and then D = Constraint (P))
615
616 -- The constraint itself may be given by a subtype indication,
617 -- rather than by a more common discrete range.
618
619 or else (Nkind (P) = N_Subtype_Indication
620 and then
621 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
622 or else Nkind (P) = N_Entry_Declaration
623 or else Nkind (D) = N_Defining_Identifier
624 then
625 Error_Msg_N
626 ("discriminant in constraint must appear alone", N);
627 end if;
628 end if;
629 end Check_Discriminant_Use;
630
631 --------------------------------
632 -- Check_For_Visible_Operator --
633 --------------------------------
634
635 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
636 begin
637 if Is_Invisible_Operator (N, T) then
638 Error_Msg_NE -- CODEFIX
639 ("operator for} is not directly visible!", N, First_Subtype (T));
640 Error_Msg_N -- CODEFIX
641 ("use clause would make operation legal!", N);
642 end if;
643 end Check_For_Visible_Operator;
644
645 ----------------------------------
646 -- Check_Fully_Declared_Prefix --
647 ----------------------------------
648
649 procedure Check_Fully_Declared_Prefix
650 (Typ : Entity_Id;
651 Pref : Node_Id)
652 is
653 begin
654 -- Check that the designated type of the prefix of a dereference is
655 -- not an incomplete type. This cannot be done unconditionally, because
656 -- dereferences of private types are legal in default expressions. This
657 -- case is taken care of in Check_Fully_Declared, called below. There
658 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
659
660 -- This consideration also applies to similar checks for allocators,
661 -- qualified expressions, and type conversions.
662
663 -- An additional exception concerns other per-object expressions that
664 -- are not directly related to component declarations, in particular
665 -- representation pragmas for tasks. These will be per-object
666 -- expressions if they depend on discriminants or some global entity.
667 -- If the task has access discriminants, the designated type may be
668 -- incomplete at the point the expression is resolved. This resolution
669 -- takes place within the body of the initialization procedure, where
670 -- the discriminant is replaced by its discriminal.
671
672 if Is_Entity_Name (Pref)
673 and then Ekind (Entity (Pref)) = E_In_Parameter
674 then
675 null;
676
677 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
678 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
679 -- Analyze_Object_Renaming, and Freeze_Entity.
680
681 elsif Ada_Version >= Ada_2005
682 and then Is_Entity_Name (Pref)
683 and then Is_Access_Type (Etype (Pref))
684 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
685 E_Incomplete_Type
686 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
687 then
688 null;
689 else
690 Check_Fully_Declared (Typ, Parent (Pref));
691 end if;
692 end Check_Fully_Declared_Prefix;
693
694 ------------------------------
695 -- Check_Infinite_Recursion --
696 ------------------------------
697
698 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
699 P : Node_Id;
700 C : Node_Id;
701
702 function Same_Argument_List return Boolean;
703 -- Check whether list of actuals is identical to list of formals of
704 -- called function (which is also the enclosing scope).
705
706 ------------------------
707 -- Same_Argument_List --
708 ------------------------
709
710 function Same_Argument_List return Boolean is
711 A : Node_Id;
712 F : Entity_Id;
713 Subp : Entity_Id;
714
715 begin
716 if not Is_Entity_Name (Name (N)) then
717 return False;
718 else
719 Subp := Entity (Name (N));
720 end if;
721
722 F := First_Formal (Subp);
723 A := First_Actual (N);
724 while Present (F) and then Present (A) loop
725 if not Is_Entity_Name (A) or else Entity (A) /= F then
726 return False;
727 end if;
728
729 Next_Actual (A);
730 Next_Formal (F);
731 end loop;
732
733 return True;
734 end Same_Argument_List;
735
736 -- Start of processing for Check_Infinite_Recursion
737
738 begin
739 -- Special case, if this is a procedure call and is a call to the
740 -- current procedure with the same argument list, then this is for
741 -- sure an infinite recursion and we insert a call to raise SE.
742
743 if Is_List_Member (N)
744 and then List_Length (List_Containing (N)) = 1
745 and then Same_Argument_List
746 then
747 declare
748 P : constant Node_Id := Parent (N);
749 begin
750 if Nkind (P) = N_Handled_Sequence_Of_Statements
751 and then Nkind (Parent (P)) = N_Subprogram_Body
752 and then Is_Empty_List (Declarations (Parent (P)))
753 then
754 Error_Msg_Warn := SPARK_Mode /= On;
755 Error_Msg_N ("!infinite recursion<<", N);
756 Error_Msg_N ("\!Storage_Error [<<", N);
757 Insert_Action (N,
758 Make_Raise_Storage_Error (Sloc (N),
759 Reason => SE_Infinite_Recursion));
760 return True;
761 end if;
762 end;
763 end if;
764
765 -- If not that special case, search up tree, quitting if we reach a
766 -- construct (e.g. a conditional) that tells us that this is not a
767 -- case for an infinite recursion warning.
768
769 C := N;
770 loop
771 P := Parent (C);
772
773 -- If no parent, then we were not inside a subprogram, this can for
774 -- example happen when processing certain pragmas in a spec. Just
775 -- return False in this case.
776
777 if No (P) then
778 return False;
779 end if;
780
781 -- Done if we get to subprogram body, this is definitely an infinite
782 -- recursion case if we did not find anything to stop us.
783
784 exit when Nkind (P) = N_Subprogram_Body;
785
786 -- If appearing in conditional, result is false
787
788 if Nkind_In (P, N_Or_Else,
789 N_And_Then,
790 N_Case_Expression,
791 N_Case_Statement,
792 N_If_Expression,
793 N_If_Statement)
794 then
795 return False;
796
797 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
798 and then C /= First (Statements (P))
799 then
800 -- If the call is the expression of a return statement and the
801 -- actuals are identical to the formals, it's worth a warning.
802 -- However, we skip this if there is an immediately preceding
803 -- raise statement, since the call is never executed.
804
805 -- Furthermore, this corresponds to a common idiom:
806
807 -- function F (L : Thing) return Boolean is
808 -- begin
809 -- raise Program_Error;
810 -- return F (L);
811 -- end F;
812
813 -- for generating a stub function
814
815 if Nkind (Parent (N)) = N_Simple_Return_Statement
816 and then Same_Argument_List
817 then
818 exit when not Is_List_Member (Parent (N));
819
820 -- OK, return statement is in a statement list, look for raise
821
822 declare
823 Nod : Node_Id;
824
825 begin
826 -- Skip past N_Freeze_Entity nodes generated by expansion
827
828 Nod := Prev (Parent (N));
829 while Present (Nod)
830 and then Nkind (Nod) = N_Freeze_Entity
831 loop
832 Prev (Nod);
833 end loop;
834
835 -- If no raise statement, give warning. We look at the
836 -- original node, because in the case of "raise ... with
837 -- ...", the node has been transformed into a call.
838
839 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
840 and then
841 (Nkind (Nod) not in N_Raise_xxx_Error
842 or else Present (Condition (Nod)));
843 end;
844 end if;
845
846 return False;
847
848 else
849 C := P;
850 end if;
851 end loop;
852
853 Error_Msg_Warn := SPARK_Mode /= On;
854 Error_Msg_N ("!possible infinite recursion<<", N);
855 Error_Msg_N ("\!??Storage_Error ]<<", N);
856
857 return True;
858 end Check_Infinite_Recursion;
859
860 ---------------------------------------
861 -- Check_No_Direct_Boolean_Operators --
862 ---------------------------------------
863
864 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
865 begin
866 if Scope (Entity (N)) = Standard_Standard
867 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
868 then
869 -- Restriction only applies to original source code
870
871 if Comes_From_Source (N) then
872 Check_Restriction (No_Direct_Boolean_Operators, N);
873 end if;
874 end if;
875
876 -- Do style check (but skip if in instance, error is on template)
877
878 if Style_Check then
879 if not In_Instance then
880 Check_Boolean_Operator (N);
881 end if;
882 end if;
883 end Check_No_Direct_Boolean_Operators;
884
885 ------------------------------
886 -- Check_Parameterless_Call --
887 ------------------------------
888
889 procedure Check_Parameterless_Call (N : Node_Id) is
890 Nam : Node_Id;
891
892 function Prefix_Is_Access_Subp return Boolean;
893 -- If the prefix is of an access_to_subprogram type, the node must be
894 -- rewritten as a call. Ditto if the prefix is overloaded and all its
895 -- interpretations are access to subprograms.
896
897 ---------------------------
898 -- Prefix_Is_Access_Subp --
899 ---------------------------
900
901 function Prefix_Is_Access_Subp return Boolean is
902 I : Interp_Index;
903 It : Interp;
904
905 begin
906 -- If the context is an attribute reference that can apply to
907 -- functions, this is never a parameterless call (RM 4.1.4(6)).
908
909 if Nkind (Parent (N)) = N_Attribute_Reference
910 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
911 Name_Code_Address,
912 Name_Access)
913 then
914 return False;
915 end if;
916
917 if not Is_Overloaded (N) then
918 return
919 Ekind (Etype (N)) = E_Subprogram_Type
920 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
921 else
922 Get_First_Interp (N, I, It);
923 while Present (It.Typ) loop
924 if Ekind (It.Typ) /= E_Subprogram_Type
925 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
926 then
927 return False;
928 end if;
929
930 Get_Next_Interp (I, It);
931 end loop;
932
933 return True;
934 end if;
935 end Prefix_Is_Access_Subp;
936
937 -- Start of processing for Check_Parameterless_Call
938
939 begin
940 -- Defend against junk stuff if errors already detected
941
942 if Total_Errors_Detected /= 0 then
943 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
944 return;
945 elsif Nkind (N) in N_Has_Chars
946 and then not Is_Valid_Name (Chars (N))
947 then
948 return;
949 end if;
950
951 Require_Entity (N);
952 end if;
953
954 -- If the context expects a value, and the name is a procedure, this is
955 -- most likely a missing 'Access. Don't try to resolve the parameterless
956 -- call, error will be caught when the outer call is analyzed.
957
958 if Is_Entity_Name (N)
959 and then Ekind (Entity (N)) = E_Procedure
960 and then not Is_Overloaded (N)
961 and then
962 Nkind_In (Parent (N), N_Parameter_Association,
963 N_Function_Call,
964 N_Procedure_Call_Statement)
965 then
966 return;
967 end if;
968
969 -- Rewrite as call if overloadable entity that is (or could be, in the
970 -- overloaded case) a function call. If we know for sure that the entity
971 -- is an enumeration literal, we do not rewrite it.
972
973 -- If the entity is the name of an operator, it cannot be a call because
974 -- operators cannot have default parameters. In this case, this must be
975 -- a string whose contents coincide with an operator name. Set the kind
976 -- of the node appropriately.
977
978 if (Is_Entity_Name (N)
979 and then Nkind (N) /= N_Operator_Symbol
980 and then Is_Overloadable (Entity (N))
981 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
982 or else Is_Overloaded (N)))
983
984 -- Rewrite as call if it is an explicit dereference of an expression of
985 -- a subprogram access type, and the subprogram type is not that of a
986 -- procedure or entry.
987
988 or else
989 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
990
991 -- Rewrite as call if it is a selected component which is a function,
992 -- this is the case of a call to a protected function (which may be
993 -- overloaded with other protected operations).
994
995 or else
996 (Nkind (N) = N_Selected_Component
997 and then (Ekind (Entity (Selector_Name (N))) = E_Function
998 or else
999 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1000 E_Procedure)
1001 and then Is_Overloaded (Selector_Name (N)))))
1002
1003 -- If one of the above three conditions is met, rewrite as call. Apply
1004 -- the rewriting only once.
1005
1006 then
1007 if Nkind (Parent (N)) /= N_Function_Call
1008 or else N /= Name (Parent (N))
1009 then
1010
1011 -- This may be a prefixed call that was not fully analyzed, e.g.
1012 -- an actual in an instance.
1013
1014 if Ada_Version >= Ada_2005
1015 and then Nkind (N) = N_Selected_Component
1016 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1017 then
1018 Analyze_Selected_Component (N);
1019
1020 if Nkind (N) /= N_Selected_Component then
1021 return;
1022 end if;
1023 end if;
1024
1025 -- The node is the name of the parameterless call. Preserve its
1026 -- descendants, which may be complex expressions.
1027
1028 Nam := Relocate_Node (N);
1029
1030 -- If overloaded, overload set belongs to new copy
1031
1032 Save_Interps (N, Nam);
1033
1034 -- Change node to parameterless function call (note that the
1035 -- Parameter_Associations associations field is left set to Empty,
1036 -- its normal default value since there are no parameters)
1037
1038 Change_Node (N, N_Function_Call);
1039 Set_Name (N, Nam);
1040 Set_Sloc (N, Sloc (Nam));
1041 Analyze_Call (N);
1042 end if;
1043
1044 elsif Nkind (N) = N_Parameter_Association then
1045 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1046
1047 elsif Nkind (N) = N_Operator_Symbol then
1048 Change_Operator_Symbol_To_String_Literal (N);
1049 Set_Is_Overloaded (N, False);
1050 Set_Etype (N, Any_String);
1051 end if;
1052 end Check_Parameterless_Call;
1053
1054 --------------------------------
1055 -- Is_Atomic_Ref_With_Address --
1056 --------------------------------
1057
1058 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1059 Pref : constant Node_Id := Prefix (N);
1060
1061 begin
1062 if not Is_Entity_Name (Pref) then
1063 return False;
1064
1065 else
1066 declare
1067 Pent : constant Entity_Id := Entity (Pref);
1068 Ptyp : constant Entity_Id := Etype (Pent);
1069 begin
1070 return not Is_Access_Type (Ptyp)
1071 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1072 and then Present (Address_Clause (Pent));
1073 end;
1074 end if;
1075 end Is_Atomic_Ref_With_Address;
1076
1077 -----------------------------
1078 -- Is_Definite_Access_Type --
1079 -----------------------------
1080
1081 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1082 Btyp : constant Entity_Id := Base_Type (E);
1083 begin
1084 return Ekind (Btyp) = E_Access_Type
1085 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1086 and then Comes_From_Source (Btyp));
1087 end Is_Definite_Access_Type;
1088
1089 ----------------------
1090 -- Is_Predefined_Op --
1091 ----------------------
1092
1093 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1094 begin
1095 -- Predefined operators are intrinsic subprograms
1096
1097 if not Is_Intrinsic_Subprogram (Nam) then
1098 return False;
1099 end if;
1100
1101 -- A call to a back-end builtin is never a predefined operator
1102
1103 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1104 return False;
1105 end if;
1106
1107 return not Is_Generic_Instance (Nam)
1108 and then Chars (Nam) in Any_Operator_Name
1109 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1110 end Is_Predefined_Op;
1111
1112 -----------------------------
1113 -- Make_Call_Into_Operator --
1114 -----------------------------
1115
1116 procedure Make_Call_Into_Operator
1117 (N : Node_Id;
1118 Typ : Entity_Id;
1119 Op_Id : Entity_Id)
1120 is
1121 Op_Name : constant Name_Id := Chars (Op_Id);
1122 Act1 : Node_Id := First_Actual (N);
1123 Act2 : Node_Id := Next_Actual (Act1);
1124 Error : Boolean := False;
1125 Func : constant Entity_Id := Entity (Name (N));
1126 Is_Binary : constant Boolean := Present (Act2);
1127 Op_Node : Node_Id;
1128 Opnd_Type : Entity_Id := Empty;
1129 Orig_Type : Entity_Id := Empty;
1130 Pack : Entity_Id;
1131
1132 type Kind_Test is access function (E : Entity_Id) return Boolean;
1133
1134 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1135 -- If the operand is not universal, and the operator is given by an
1136 -- expanded name, verify that the operand has an interpretation with a
1137 -- type defined in the given scope of the operator.
1138
1139 function Type_In_P (Test : Kind_Test) return Entity_Id;
1140 -- Find a type of the given class in package Pack that contains the
1141 -- operator.
1142
1143 ---------------------------
1144 -- Operand_Type_In_Scope --
1145 ---------------------------
1146
1147 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1148 Nod : constant Node_Id := Right_Opnd (Op_Node);
1149 I : Interp_Index;
1150 It : Interp;
1151
1152 begin
1153 if not Is_Overloaded (Nod) then
1154 return Scope (Base_Type (Etype (Nod))) = S;
1155
1156 else
1157 Get_First_Interp (Nod, I, It);
1158 while Present (It.Typ) loop
1159 if Scope (Base_Type (It.Typ)) = S then
1160 return True;
1161 end if;
1162
1163 Get_Next_Interp (I, It);
1164 end loop;
1165
1166 return False;
1167 end if;
1168 end Operand_Type_In_Scope;
1169
1170 ---------------
1171 -- Type_In_P --
1172 ---------------
1173
1174 function Type_In_P (Test : Kind_Test) return Entity_Id is
1175 E : Entity_Id;
1176
1177 function In_Decl return Boolean;
1178 -- Verify that node is not part of the type declaration for the
1179 -- candidate type, which would otherwise be invisible.
1180
1181 -------------
1182 -- In_Decl --
1183 -------------
1184
1185 function In_Decl return Boolean is
1186 Decl_Node : constant Node_Id := Parent (E);
1187 N2 : Node_Id;
1188
1189 begin
1190 N2 := N;
1191
1192 if Etype (E) = Any_Type then
1193 return True;
1194
1195 elsif No (Decl_Node) then
1196 return False;
1197
1198 else
1199 while Present (N2)
1200 and then Nkind (N2) /= N_Compilation_Unit
1201 loop
1202 if N2 = Decl_Node then
1203 return True;
1204 else
1205 N2 := Parent (N2);
1206 end if;
1207 end loop;
1208
1209 return False;
1210 end if;
1211 end In_Decl;
1212
1213 -- Start of processing for Type_In_P
1214
1215 begin
1216 -- If the context type is declared in the prefix package, this is the
1217 -- desired base type.
1218
1219 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1220 return Base_Type (Typ);
1221
1222 else
1223 E := First_Entity (Pack);
1224 while Present (E) loop
1225 if Test (E) and then not In_Decl then
1226 return E;
1227 end if;
1228
1229 Next_Entity (E);
1230 end loop;
1231
1232 return Empty;
1233 end if;
1234 end Type_In_P;
1235
1236 -- Start of processing for Make_Call_Into_Operator
1237
1238 begin
1239 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1240
1241 -- Ensure that the corresponding operator has the same parent as the
1242 -- original call. This guarantees that parent traversals performed by
1243 -- the ABE mechanism succeed.
1244
1245 Set_Parent (Op_Node, Parent (N));
1246
1247 -- Binary operator
1248
1249 if Is_Binary then
1250 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1251 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1252 Save_Interps (Act1, Left_Opnd (Op_Node));
1253 Save_Interps (Act2, Right_Opnd (Op_Node));
1254 Act1 := Left_Opnd (Op_Node);
1255 Act2 := Right_Opnd (Op_Node);
1256
1257 -- Unary operator
1258
1259 else
1260 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1261 Save_Interps (Act1, Right_Opnd (Op_Node));
1262 Act1 := Right_Opnd (Op_Node);
1263 end if;
1264
1265 -- If the operator is denoted by an expanded name, and the prefix is
1266 -- not Standard, but the operator is a predefined one whose scope is
1267 -- Standard, then this is an implicit_operator, inserted as an
1268 -- interpretation by the procedure of the same name. This procedure
1269 -- overestimates the presence of implicit operators, because it does
1270 -- not examine the type of the operands. Verify now that the operand
1271 -- type appears in the given scope. If right operand is universal,
1272 -- check the other operand. In the case of concatenation, either
1273 -- argument can be the component type, so check the type of the result.
1274 -- If both arguments are literals, look for a type of the right kind
1275 -- defined in the given scope. This elaborate nonsense is brought to
1276 -- you courtesy of b33302a. The type itself must be frozen, so we must
1277 -- find the type of the proper class in the given scope.
1278
1279 -- A final wrinkle is the multiplication operator for fixed point types,
1280 -- which is defined in Standard only, and not in the scope of the
1281 -- fixed point type itself.
1282
1283 if Nkind (Name (N)) = N_Expanded_Name then
1284 Pack := Entity (Prefix (Name (N)));
1285
1286 -- If this is a package renaming, get renamed entity, which will be
1287 -- the scope of the operands if operaton is type-correct.
1288
1289 if Present (Renamed_Entity (Pack)) then
1290 Pack := Renamed_Entity (Pack);
1291 end if;
1292
1293 -- If the entity being called is defined in the given package, it is
1294 -- a renaming of a predefined operator, and known to be legal.
1295
1296 if Scope (Entity (Name (N))) = Pack
1297 and then Pack /= Standard_Standard
1298 then
1299 null;
1300
1301 -- Visibility does not need to be checked in an instance: if the
1302 -- operator was not visible in the generic it has been diagnosed
1303 -- already, else there is an implicit copy of it in the instance.
1304
1305 elsif In_Instance then
1306 null;
1307
1308 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1309 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1310 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1311 then
1312 if Pack /= Standard_Standard then
1313 Error := True;
1314 end if;
1315
1316 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1317 -- available.
1318
1319 elsif Ada_Version >= Ada_2005
1320 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1321 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1322 then
1323 null;
1324
1325 else
1326 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1327
1328 if Op_Name = Name_Op_Concat then
1329 Opnd_Type := Base_Type (Typ);
1330
1331 elsif (Scope (Opnd_Type) = Standard_Standard
1332 and then Is_Binary)
1333 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1334 and then Is_Binary
1335 and then not Comes_From_Source (Opnd_Type))
1336 then
1337 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1338 end if;
1339
1340 if Scope (Opnd_Type) = Standard_Standard then
1341
1342 -- Verify that the scope contains a type that corresponds to
1343 -- the given literal. Optimize the case where Pack is Standard.
1344
1345 if Pack /= Standard_Standard then
1346 if Opnd_Type = Universal_Integer then
1347 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1348
1349 elsif Opnd_Type = Universal_Real then
1350 Orig_Type := Type_In_P (Is_Real_Type'Access);
1351
1352 elsif Opnd_Type = Any_String then
1353 Orig_Type := Type_In_P (Is_String_Type'Access);
1354
1355 elsif Opnd_Type = Any_Access then
1356 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1357
1358 elsif Opnd_Type = Any_Composite then
1359 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1360
1361 if Present (Orig_Type) then
1362 if Has_Private_Component (Orig_Type) then
1363 Orig_Type := Empty;
1364 else
1365 Set_Etype (Act1, Orig_Type);
1366
1367 if Is_Binary then
1368 Set_Etype (Act2, Orig_Type);
1369 end if;
1370 end if;
1371 end if;
1372
1373 else
1374 Orig_Type := Empty;
1375 end if;
1376
1377 Error := No (Orig_Type);
1378 end if;
1379
1380 elsif Ekind (Opnd_Type) = E_Allocator_Type
1381 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1382 then
1383 Error := True;
1384
1385 -- If the type is defined elsewhere, and the operator is not
1386 -- defined in the given scope (by a renaming declaration, e.g.)
1387 -- then this is an error as well. If an extension of System is
1388 -- present, and the type may be defined there, Pack must be
1389 -- System itself.
1390
1391 elsif Scope (Opnd_Type) /= Pack
1392 and then Scope (Op_Id) /= Pack
1393 and then (No (System_Aux_Id)
1394 or else Scope (Opnd_Type) /= System_Aux_Id
1395 or else Pack /= Scope (System_Aux_Id))
1396 then
1397 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1398 Error := True;
1399 else
1400 Error := not Operand_Type_In_Scope (Pack);
1401 end if;
1402
1403 elsif Pack = Standard_Standard
1404 and then not Operand_Type_In_Scope (Standard_Standard)
1405 then
1406 Error := True;
1407 end if;
1408 end if;
1409
1410 if Error then
1411 Error_Msg_Node_2 := Pack;
1412 Error_Msg_NE
1413 ("& not declared in&", N, Selector_Name (Name (N)));
1414 Set_Etype (N, Any_Type);
1415 return;
1416
1417 -- Detect a mismatch between the context type and the result type
1418 -- in the named package, which is otherwise not detected if the
1419 -- operands are universal. Check is only needed if source entity is
1420 -- an operator, not a function that renames an operator.
1421
1422 elsif Nkind (Parent (N)) /= N_Type_Conversion
1423 and then Ekind (Entity (Name (N))) = E_Operator
1424 and then Is_Numeric_Type (Typ)
1425 and then not Is_Universal_Numeric_Type (Typ)
1426 and then Scope (Base_Type (Typ)) /= Pack
1427 and then not In_Instance
1428 then
1429 if Is_Fixed_Point_Type (Typ)
1430 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1431 then
1432 -- Already checked above
1433
1434 null;
1435
1436 -- Operator may be defined in an extension of System
1437
1438 elsif Present (System_Aux_Id)
1439 and then Present (Opnd_Type)
1440 and then Scope (Opnd_Type) = System_Aux_Id
1441 then
1442 null;
1443
1444 else
1445 -- Could we use Wrong_Type here??? (this would require setting
1446 -- Etype (N) to the actual type found where Typ was expected).
1447
1448 Error_Msg_NE ("expect }", N, Typ);
1449 end if;
1450 end if;
1451 end if;
1452
1453 Set_Chars (Op_Node, Op_Name);
1454
1455 if not Is_Private_Type (Etype (N)) then
1456 Set_Etype (Op_Node, Base_Type (Etype (N)));
1457 else
1458 Set_Etype (Op_Node, Etype (N));
1459 end if;
1460
1461 -- If this is a call to a function that renames a predefined equality,
1462 -- the renaming declaration provides a type that must be used to
1463 -- resolve the operands. This must be done now because resolution of
1464 -- the equality node will not resolve any remaining ambiguity, and it
1465 -- assumes that the first operand is not overloaded.
1466
1467 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1468 and then Ekind (Func) = E_Function
1469 and then Is_Overloaded (Act1)
1470 then
1471 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1472 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1473 end if;
1474
1475 Set_Entity (Op_Node, Op_Id);
1476 Generate_Reference (Op_Id, N, ' ');
1477
1478 -- Do rewrite setting Comes_From_Source on the result if the original
1479 -- call came from source. Although it is not strictly the case that the
1480 -- operator as such comes from the source, logically it corresponds
1481 -- exactly to the function call in the source, so it should be marked
1482 -- this way (e.g. to make sure that validity checks work fine).
1483
1484 declare
1485 CS : constant Boolean := Comes_From_Source (N);
1486 begin
1487 Rewrite (N, Op_Node);
1488 Set_Comes_From_Source (N, CS);
1489 end;
1490
1491 -- If this is an arithmetic operator and the result type is private,
1492 -- the operands and the result must be wrapped in conversion to
1493 -- expose the underlying numeric type and expand the proper checks,
1494 -- e.g. on division.
1495
1496 if Is_Private_Type (Typ) then
1497 case Nkind (N) is
1498 when N_Op_Add
1499 | N_Op_Divide
1500 | N_Op_Expon
1501 | N_Op_Mod
1502 | N_Op_Multiply
1503 | N_Op_Rem
1504 | N_Op_Subtract
1505 =>
1506 Resolve_Intrinsic_Operator (N, Typ);
1507
1508 when N_Op_Abs
1509 | N_Op_Minus
1510 | N_Op_Plus
1511 =>
1512 Resolve_Intrinsic_Unary_Operator (N, Typ);
1513
1514 when others =>
1515 Resolve (N, Typ);
1516 end case;
1517 else
1518 Resolve (N, Typ);
1519 end if;
1520
1521 -- If in ASIS_Mode, propagate operand types to original actuals of
1522 -- function call, which would otherwise not be fully resolved. If
1523 -- the call has already been constant-folded, nothing to do. We
1524 -- relocate the operand nodes rather than copy them, to preserve
1525 -- original_node pointers, given that the operands themselves may
1526 -- have been rewritten. If the call was itself a rewriting of an
1527 -- operator node, nothing to do.
1528
1529 if ASIS_Mode
1530 and then Nkind (N) in N_Op
1531 and then Nkind (Original_Node (N)) = N_Function_Call
1532 then
1533 declare
1534 L : Node_Id;
1535 R : constant Node_Id := Right_Opnd (N);
1536
1537 Old_First : constant Node_Id :=
1538 First (Parameter_Associations (Original_Node (N)));
1539 Old_Sec : Node_Id;
1540
1541 begin
1542 if Is_Binary then
1543 L := Left_Opnd (N);
1544 Old_Sec := Next (Old_First);
1545
1546 -- If the original call has named associations, replace the
1547 -- explicit actual parameter in the association with the proper
1548 -- resolved operand.
1549
1550 if Nkind (Old_First) = N_Parameter_Association then
1551 if Chars (Selector_Name (Old_First)) =
1552 Chars (First_Entity (Op_Id))
1553 then
1554 Rewrite (Explicit_Actual_Parameter (Old_First),
1555 Relocate_Node (L));
1556 else
1557 Rewrite (Explicit_Actual_Parameter (Old_First),
1558 Relocate_Node (R));
1559 end if;
1560
1561 else
1562 Rewrite (Old_First, Relocate_Node (L));
1563 end if;
1564
1565 if Nkind (Old_Sec) = N_Parameter_Association then
1566 if Chars (Selector_Name (Old_Sec)) =
1567 Chars (First_Entity (Op_Id))
1568 then
1569 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1570 Relocate_Node (L));
1571 else
1572 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1573 Relocate_Node (R));
1574 end if;
1575
1576 else
1577 Rewrite (Old_Sec, Relocate_Node (R));
1578 end if;
1579
1580 else
1581 if Nkind (Old_First) = N_Parameter_Association then
1582 Rewrite (Explicit_Actual_Parameter (Old_First),
1583 Relocate_Node (R));
1584 else
1585 Rewrite (Old_First, Relocate_Node (R));
1586 end if;
1587 end if;
1588 end;
1589
1590 Set_Parent (Original_Node (N), Parent (N));
1591 end if;
1592 end Make_Call_Into_Operator;
1593
1594 -------------------
1595 -- Operator_Kind --
1596 -------------------
1597
1598 function Operator_Kind
1599 (Op_Name : Name_Id;
1600 Is_Binary : Boolean) return Node_Kind
1601 is
1602 Kind : Node_Kind;
1603
1604 begin
1605 -- Use CASE statement or array???
1606
1607 if Is_Binary then
1608 if Op_Name = Name_Op_And then
1609 Kind := N_Op_And;
1610 elsif Op_Name = Name_Op_Or then
1611 Kind := N_Op_Or;
1612 elsif Op_Name = Name_Op_Xor then
1613 Kind := N_Op_Xor;
1614 elsif Op_Name = Name_Op_Eq then
1615 Kind := N_Op_Eq;
1616 elsif Op_Name = Name_Op_Ne then
1617 Kind := N_Op_Ne;
1618 elsif Op_Name = Name_Op_Lt then
1619 Kind := N_Op_Lt;
1620 elsif Op_Name = Name_Op_Le then
1621 Kind := N_Op_Le;
1622 elsif Op_Name = Name_Op_Gt then
1623 Kind := N_Op_Gt;
1624 elsif Op_Name = Name_Op_Ge then
1625 Kind := N_Op_Ge;
1626 elsif Op_Name = Name_Op_Add then
1627 Kind := N_Op_Add;
1628 elsif Op_Name = Name_Op_Subtract then
1629 Kind := N_Op_Subtract;
1630 elsif Op_Name = Name_Op_Concat then
1631 Kind := N_Op_Concat;
1632 elsif Op_Name = Name_Op_Multiply then
1633 Kind := N_Op_Multiply;
1634 elsif Op_Name = Name_Op_Divide then
1635 Kind := N_Op_Divide;
1636 elsif Op_Name = Name_Op_Mod then
1637 Kind := N_Op_Mod;
1638 elsif Op_Name = Name_Op_Rem then
1639 Kind := N_Op_Rem;
1640 elsif Op_Name = Name_Op_Expon then
1641 Kind := N_Op_Expon;
1642 else
1643 raise Program_Error;
1644 end if;
1645
1646 -- Unary operators
1647
1648 else
1649 if Op_Name = Name_Op_Add then
1650 Kind := N_Op_Plus;
1651 elsif Op_Name = Name_Op_Subtract then
1652 Kind := N_Op_Minus;
1653 elsif Op_Name = Name_Op_Abs then
1654 Kind := N_Op_Abs;
1655 elsif Op_Name = Name_Op_Not then
1656 Kind := N_Op_Not;
1657 else
1658 raise Program_Error;
1659 end if;
1660 end if;
1661
1662 return Kind;
1663 end Operator_Kind;
1664
1665 ----------------------------
1666 -- Preanalyze_And_Resolve --
1667 ----------------------------
1668
1669 procedure Preanalyze_And_Resolve
1670 (N : Node_Id;
1671 T : Entity_Id;
1672 With_Freezing : Boolean)
1673 is
1674 Save_Full_Analysis : constant Boolean := Full_Analysis;
1675 Save_Must_Not_Freeze : constant Boolean := Must_Not_Freeze (N);
1676 Save_Preanalysis_Count : constant Nat :=
1677 Inside_Preanalysis_Without_Freezing;
1678 begin
1679 pragma Assert (Nkind (N) in N_Subexpr);
1680
1681 if not With_Freezing then
1682 Set_Must_Not_Freeze (N);
1683 Inside_Preanalysis_Without_Freezing :=
1684 Inside_Preanalysis_Without_Freezing + 1;
1685 end if;
1686
1687 Full_Analysis := False;
1688 Expander_Mode_Save_And_Set (False);
1689
1690 -- Normally, we suppress all checks for this preanalysis. There is no
1691 -- point in processing them now, since they will be applied properly
1692 -- and in the proper location when the default expressions reanalyzed
1693 -- and reexpanded later on. We will also have more information at that
1694 -- point for possible suppression of individual checks.
1695
1696 -- However, in SPARK mode, most expansion is suppressed, and this
1697 -- later reanalysis and reexpansion may not occur. SPARK mode does
1698 -- require the setting of checking flags for proof purposes, so we
1699 -- do the SPARK preanalysis without suppressing checks.
1700
1701 -- This special handling for SPARK mode is required for example in the
1702 -- case of Ada 2012 constructs such as quantified expressions, which are
1703 -- expanded in two separate steps.
1704
1705 if GNATprove_Mode then
1706 Analyze_And_Resolve (N, T);
1707 else
1708 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1709 end if;
1710
1711 Expander_Mode_Restore;
1712 Full_Analysis := Save_Full_Analysis;
1713 Set_Must_Not_Freeze (N, Save_Must_Not_Freeze);
1714
1715 if not With_Freezing then
1716 Inside_Preanalysis_Without_Freezing :=
1717 Inside_Preanalysis_Without_Freezing - 1;
1718 end if;
1719
1720 pragma Assert
1721 (Inside_Preanalysis_Without_Freezing = Save_Preanalysis_Count);
1722 end Preanalyze_And_Resolve;
1723
1724 ----------------------------
1725 -- Preanalyze_And_Resolve --
1726 ----------------------------
1727
1728 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1729 begin
1730 Preanalyze_And_Resolve (N, T, With_Freezing => False);
1731 end Preanalyze_And_Resolve;
1732
1733 -- Version without context type
1734
1735 procedure Preanalyze_And_Resolve (N : Node_Id) is
1736 Save_Full_Analysis : constant Boolean := Full_Analysis;
1737
1738 begin
1739 Full_Analysis := False;
1740 Expander_Mode_Save_And_Set (False);
1741
1742 Analyze (N);
1743 Resolve (N, Etype (N), Suppress => All_Checks);
1744
1745 Expander_Mode_Restore;
1746 Full_Analysis := Save_Full_Analysis;
1747 end Preanalyze_And_Resolve;
1748
1749 ------------------------------------------
1750 -- Preanalyze_With_Freezing_And_Resolve --
1751 ------------------------------------------
1752
1753 procedure Preanalyze_With_Freezing_And_Resolve
1754 (N : Node_Id;
1755 T : Entity_Id)
1756 is
1757 begin
1758 Preanalyze_And_Resolve (N, T, With_Freezing => True);
1759 end Preanalyze_With_Freezing_And_Resolve;
1760
1761 ----------------------------------
1762 -- Replace_Actual_Discriminants --
1763 ----------------------------------
1764
1765 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1766 Loc : constant Source_Ptr := Sloc (N);
1767 Tsk : Node_Id := Empty;
1768
1769 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1770 -- Comment needed???
1771
1772 -------------------
1773 -- Process_Discr --
1774 -------------------
1775
1776 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1777 Ent : Entity_Id;
1778
1779 begin
1780 if Nkind (Nod) = N_Identifier then
1781 Ent := Entity (Nod);
1782
1783 if Present (Ent)
1784 and then Ekind (Ent) = E_Discriminant
1785 then
1786 Rewrite (Nod,
1787 Make_Selected_Component (Loc,
1788 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1789 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1790
1791 Set_Etype (Nod, Etype (Ent));
1792 end if;
1793
1794 end if;
1795
1796 return OK;
1797 end Process_Discr;
1798
1799 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1800
1801 -- Start of processing for Replace_Actual_Discriminants
1802
1803 begin
1804 if Expander_Active then
1805 null;
1806
1807 -- Allow the replacement of concurrent discriminants in GNATprove even
1808 -- though this is a light expansion activity. Note that generic units
1809 -- are not modified.
1810
1811 elsif GNATprove_Mode and not Inside_A_Generic then
1812 null;
1813
1814 else
1815 return;
1816 end if;
1817
1818 if Nkind (Name (N)) = N_Selected_Component then
1819 Tsk := Prefix (Name (N));
1820
1821 elsif Nkind (Name (N)) = N_Indexed_Component then
1822 Tsk := Prefix (Prefix (Name (N)));
1823 end if;
1824
1825 if Present (Tsk) then
1826 Replace_Discrs (Default);
1827 end if;
1828 end Replace_Actual_Discriminants;
1829
1830 -------------
1831 -- Resolve --
1832 -------------
1833
1834 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1835 Ambiguous : Boolean := False;
1836 Ctx_Type : Entity_Id := Typ;
1837 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1838 Err_Type : Entity_Id := Empty;
1839 Found : Boolean := False;
1840 From_Lib : Boolean;
1841 I : Interp_Index;
1842 I1 : Interp_Index := 0; -- prevent junk warning
1843 It : Interp;
1844 It1 : Interp;
1845 Seen : Entity_Id := Empty; -- prevent junk warning
1846
1847 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1848 -- Determine whether a node comes from a predefined library unit or
1849 -- Standard.
1850
1851 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1852 -- Try and fix up a literal so that it matches its expected type. New
1853 -- literals are manufactured if necessary to avoid cascaded errors.
1854
1855 procedure Report_Ambiguous_Argument;
1856 -- Additional diagnostics when an ambiguous call has an ambiguous
1857 -- argument (typically a controlling actual).
1858
1859 procedure Resolution_Failed;
1860 -- Called when attempt at resolving current expression fails
1861
1862 ------------------------------------
1863 -- Comes_From_Predefined_Lib_Unit --
1864 -------------------------------------
1865
1866 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1867 begin
1868 return
1869 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1870 end Comes_From_Predefined_Lib_Unit;
1871
1872 --------------------
1873 -- Patch_Up_Value --
1874 --------------------
1875
1876 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1877 begin
1878 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1879 Rewrite (N,
1880 Make_Real_Literal (Sloc (N),
1881 Realval => UR_From_Uint (Intval (N))));
1882 Set_Etype (N, Universal_Real);
1883 Set_Is_Static_Expression (N);
1884
1885 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1886 Rewrite (N,
1887 Make_Integer_Literal (Sloc (N),
1888 Intval => UR_To_Uint (Realval (N))));
1889 Set_Etype (N, Universal_Integer);
1890 Set_Is_Static_Expression (N);
1891
1892 elsif Nkind (N) = N_String_Literal
1893 and then Is_Character_Type (Typ)
1894 then
1895 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1896 Rewrite (N,
1897 Make_Character_Literal (Sloc (N),
1898 Chars => Name_Find,
1899 Char_Literal_Value =>
1900 UI_From_Int (Character'Pos ('A'))));
1901 Set_Etype (N, Any_Character);
1902 Set_Is_Static_Expression (N);
1903
1904 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1905 Rewrite (N,
1906 Make_String_Literal (Sloc (N),
1907 Strval => End_String));
1908
1909 elsif Nkind (N) = N_Range then
1910 Patch_Up_Value (Low_Bound (N), Typ);
1911 Patch_Up_Value (High_Bound (N), Typ);
1912 end if;
1913 end Patch_Up_Value;
1914
1915 -------------------------------
1916 -- Report_Ambiguous_Argument --
1917 -------------------------------
1918
1919 procedure Report_Ambiguous_Argument is
1920 Arg : constant Node_Id := First (Parameter_Associations (N));
1921 I : Interp_Index;
1922 It : Interp;
1923
1924 begin
1925 if Nkind (Arg) = N_Function_Call
1926 and then Is_Entity_Name (Name (Arg))
1927 and then Is_Overloaded (Name (Arg))
1928 then
1929 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1930
1931 -- Could use comments on what is going on here???
1932
1933 Get_First_Interp (Name (Arg), I, It);
1934 while Present (It.Nam) loop
1935 Error_Msg_Sloc := Sloc (It.Nam);
1936
1937 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1938 Error_Msg_N ("interpretation (inherited) #!", Arg);
1939 else
1940 Error_Msg_N ("interpretation #!", Arg);
1941 end if;
1942
1943 Get_Next_Interp (I, It);
1944 end loop;
1945 end if;
1946 end Report_Ambiguous_Argument;
1947
1948 -----------------------
1949 -- Resolution_Failed --
1950 -----------------------
1951
1952 procedure Resolution_Failed is
1953 begin
1954 Patch_Up_Value (N, Typ);
1955
1956 -- Set the type to the desired one to minimize cascaded errors. Note
1957 -- that this is an approximation and does not work in all cases.
1958
1959 Set_Etype (N, Typ);
1960
1961 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1962 Set_Is_Overloaded (N, False);
1963
1964 -- The caller will return without calling the expander, so we need
1965 -- to set the analyzed flag. Note that it is fine to set Analyzed
1966 -- to True even if we are in the middle of a shallow analysis,
1967 -- (see the spec of sem for more details) since this is an error
1968 -- situation anyway, and there is no point in repeating the
1969 -- analysis later (indeed it won't work to repeat it later, since
1970 -- we haven't got a clear resolution of which entity is being
1971 -- referenced.)
1972
1973 Set_Analyzed (N, True);
1974 return;
1975 end Resolution_Failed;
1976
1977 -- Start of processing for Resolve
1978
1979 begin
1980 if N = Error then
1981 return;
1982 end if;
1983
1984 -- Access attribute on remote subprogram cannot be used for a non-remote
1985 -- access-to-subprogram type.
1986
1987 if Nkind (N) = N_Attribute_Reference
1988 and then Nam_In (Attribute_Name (N), Name_Access,
1989 Name_Unrestricted_Access,
1990 Name_Unchecked_Access)
1991 and then Comes_From_Source (N)
1992 and then Is_Entity_Name (Prefix (N))
1993 and then Is_Subprogram (Entity (Prefix (N)))
1994 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1995 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1996 then
1997 Error_Msg_N
1998 ("prefix must statically denote a non-remote subprogram", N);
1999 end if;
2000
2001 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2002
2003 -- If the context is a Remote_Access_To_Subprogram, access attributes
2004 -- must be resolved with the corresponding fat pointer. There is no need
2005 -- to check for the attribute name since the return type of an
2006 -- attribute is never a remote type.
2007
2008 if Nkind (N) = N_Attribute_Reference
2009 and then Comes_From_Source (N)
2010 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2011 then
2012 declare
2013 Attr : constant Attribute_Id :=
2014 Get_Attribute_Id (Attribute_Name (N));
2015 Pref : constant Node_Id := Prefix (N);
2016 Decl : Node_Id;
2017 Spec : Node_Id;
2018 Is_Remote : Boolean := True;
2019
2020 begin
2021 -- Check that Typ is a remote access-to-subprogram type
2022
2023 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2024
2025 -- Prefix (N) must statically denote a remote subprogram
2026 -- declared in a package specification.
2027
2028 if Attr = Attribute_Access or else
2029 Attr = Attribute_Unchecked_Access or else
2030 Attr = Attribute_Unrestricted_Access
2031 then
2032 Decl := Unit_Declaration_Node (Entity (Pref));
2033
2034 if Nkind (Decl) = N_Subprogram_Body then
2035 Spec := Corresponding_Spec (Decl);
2036
2037 if Present (Spec) then
2038 Decl := Unit_Declaration_Node (Spec);
2039 end if;
2040 end if;
2041
2042 Spec := Parent (Decl);
2043
2044 if not Is_Entity_Name (Prefix (N))
2045 or else Nkind (Spec) /= N_Package_Specification
2046 or else
2047 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2048 then
2049 Is_Remote := False;
2050 Error_Msg_N
2051 ("prefix must statically denote a remote subprogram ",
2052 N);
2053 end if;
2054
2055 -- If we are generating code in distributed mode, perform
2056 -- semantic checks against corresponding remote entities.
2057
2058 if Expander_Active
2059 and then Get_PCS_Name /= Name_No_DSA
2060 then
2061 Check_Subtype_Conformant
2062 (New_Id => Entity (Prefix (N)),
2063 Old_Id => Designated_Type
2064 (Corresponding_Remote_Type (Typ)),
2065 Err_Loc => N);
2066
2067 if Is_Remote then
2068 Process_Remote_AST_Attribute (N, Typ);
2069 end if;
2070 end if;
2071 end if;
2072 end if;
2073 end;
2074 end if;
2075
2076 Debug_A_Entry ("resolving ", N);
2077
2078 if Debug_Flag_V then
2079 Write_Overloads (N);
2080 end if;
2081
2082 if Comes_From_Source (N) then
2083 if Is_Fixed_Point_Type (Typ) then
2084 Check_Restriction (No_Fixed_Point, N);
2085
2086 elsif Is_Floating_Point_Type (Typ)
2087 and then Typ /= Universal_Real
2088 and then Typ /= Any_Real
2089 then
2090 Check_Restriction (No_Floating_Point, N);
2091 end if;
2092 end if;
2093
2094 -- Return if already analyzed
2095
2096 if Analyzed (N) then
2097 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2098 Analyze_Dimension (N);
2099 return;
2100
2101 -- Any case of Any_Type as the Etype value means that we had a
2102 -- previous error.
2103
2104 elsif Etype (N) = Any_Type then
2105 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2106 return;
2107 end if;
2108
2109 Check_Parameterless_Call (N);
2110
2111 -- The resolution of an Expression_With_Actions is determined by
2112 -- its Expression.
2113
2114 if Nkind (N) = N_Expression_With_Actions then
2115 Resolve (Expression (N), Typ);
2116
2117 Found := True;
2118 Expr_Type := Etype (Expression (N));
2119
2120 -- If not overloaded, then we know the type, and all that needs doing
2121 -- is to check that this type is compatible with the context.
2122
2123 elsif not Is_Overloaded (N) then
2124 Found := Covers (Typ, Etype (N));
2125 Expr_Type := Etype (N);
2126
2127 -- In the overloaded case, we must select the interpretation that
2128 -- is compatible with the context (i.e. the type passed to Resolve)
2129
2130 else
2131 -- Loop through possible interpretations
2132
2133 Get_First_Interp (N, I, It);
2134 Interp_Loop : while Present (It.Typ) loop
2135 if Debug_Flag_V then
2136 Write_Str ("Interp: ");
2137 Write_Interp (It);
2138 end if;
2139
2140 -- We are only interested in interpretations that are compatible
2141 -- with the expected type, any other interpretations are ignored.
2142
2143 if not Covers (Typ, It.Typ) then
2144 if Debug_Flag_V then
2145 Write_Str (" interpretation incompatible with context");
2146 Write_Eol;
2147 end if;
2148
2149 else
2150 -- Skip the current interpretation if it is disabled by an
2151 -- abstract operator. This action is performed only when the
2152 -- type against which we are resolving is the same as the
2153 -- type of the interpretation.
2154
2155 if Ada_Version >= Ada_2005
2156 and then It.Typ = Typ
2157 and then Typ /= Universal_Integer
2158 and then Typ /= Universal_Real
2159 and then Present (It.Abstract_Op)
2160 then
2161 if Debug_Flag_V then
2162 Write_Line ("Skip.");
2163 end if;
2164
2165 goto Continue;
2166 end if;
2167
2168 -- First matching interpretation
2169
2170 if not Found then
2171 Found := True;
2172 I1 := I;
2173 Seen := It.Nam;
2174 Expr_Type := It.Typ;
2175
2176 -- Matching interpretation that is not the first, maybe an
2177 -- error, but there are some cases where preference rules are
2178 -- used to choose between the two possibilities. These and
2179 -- some more obscure cases are handled in Disambiguate.
2180
2181 else
2182 -- If the current statement is part of a predefined library
2183 -- unit, then all interpretations which come from user level
2184 -- packages should not be considered. Check previous and
2185 -- current one.
2186
2187 if From_Lib then
2188 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2189 goto Continue;
2190
2191 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2192
2193 -- Previous interpretation must be discarded
2194
2195 I1 := I;
2196 Seen := It.Nam;
2197 Expr_Type := It.Typ;
2198 Set_Entity (N, Seen);
2199 goto Continue;
2200 end if;
2201 end if;
2202
2203 -- Otherwise apply further disambiguation steps
2204
2205 Error_Msg_Sloc := Sloc (Seen);
2206 It1 := Disambiguate (N, I1, I, Typ);
2207
2208 -- Disambiguation has succeeded. Skip the remaining
2209 -- interpretations.
2210
2211 if It1 /= No_Interp then
2212 Seen := It1.Nam;
2213 Expr_Type := It1.Typ;
2214
2215 while Present (It.Typ) loop
2216 Get_Next_Interp (I, It);
2217 end loop;
2218
2219 else
2220 -- Before we issue an ambiguity complaint, check for the
2221 -- case of a subprogram call where at least one of the
2222 -- arguments is Any_Type, and if so suppress the message,
2223 -- since it is a cascaded error. This can also happen for
2224 -- a generalized indexing operation.
2225
2226 if Nkind (N) in N_Subprogram_Call
2227 or else (Nkind (N) = N_Indexed_Component
2228 and then Present (Generalized_Indexing (N)))
2229 then
2230 declare
2231 A : Node_Id;
2232 E : Node_Id;
2233
2234 begin
2235 if Nkind (N) = N_Indexed_Component then
2236 Rewrite (N, Generalized_Indexing (N));
2237 end if;
2238
2239 A := First_Actual (N);
2240 while Present (A) loop
2241 E := A;
2242
2243 if Nkind (E) = N_Parameter_Association then
2244 E := Explicit_Actual_Parameter (E);
2245 end if;
2246
2247 if Etype (E) = Any_Type then
2248 if Debug_Flag_V then
2249 Write_Str ("Any_Type in call");
2250 Write_Eol;
2251 end if;
2252
2253 exit Interp_Loop;
2254 end if;
2255
2256 Next_Actual (A);
2257 end loop;
2258 end;
2259
2260 elsif Nkind (N) in N_Binary_Op
2261 and then (Etype (Left_Opnd (N)) = Any_Type
2262 or else Etype (Right_Opnd (N)) = Any_Type)
2263 then
2264 exit Interp_Loop;
2265
2266 elsif Nkind (N) in N_Unary_Op
2267 and then Etype (Right_Opnd (N)) = Any_Type
2268 then
2269 exit Interp_Loop;
2270 end if;
2271
2272 -- Not that special case, so issue message using the flag
2273 -- Ambiguous to control printing of the header message
2274 -- only at the start of an ambiguous set.
2275
2276 if not Ambiguous then
2277 if Nkind (N) = N_Function_Call
2278 and then Nkind (Name (N)) = N_Explicit_Dereference
2279 then
2280 Error_Msg_N
2281 ("ambiguous expression (cannot resolve indirect "
2282 & "call)!", N);
2283 else
2284 Error_Msg_NE -- CODEFIX
2285 ("ambiguous expression (cannot resolve&)!",
2286 N, It.Nam);
2287 end if;
2288
2289 Ambiguous := True;
2290
2291 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2292 Error_Msg_N
2293 ("\\possible interpretation (inherited)#!", N);
2294 else
2295 Error_Msg_N -- CODEFIX
2296 ("\\possible interpretation#!", N);
2297 end if;
2298
2299 if Nkind (N) in N_Subprogram_Call
2300 and then Present (Parameter_Associations (N))
2301 then
2302 Report_Ambiguous_Argument;
2303 end if;
2304 end if;
2305
2306 Error_Msg_Sloc := Sloc (It.Nam);
2307
2308 -- By default, the error message refers to the candidate
2309 -- interpretation. But if it is a predefined operator, it
2310 -- is implicitly declared at the declaration of the type
2311 -- of the operand. Recover the sloc of that declaration
2312 -- for the error message.
2313
2314 if Nkind (N) in N_Op
2315 and then Scope (It.Nam) = Standard_Standard
2316 and then not Is_Overloaded (Right_Opnd (N))
2317 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2318 Standard_Standard
2319 then
2320 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2321
2322 if Comes_From_Source (Err_Type)
2323 and then Present (Parent (Err_Type))
2324 then
2325 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2326 end if;
2327
2328 elsif Nkind (N) in N_Binary_Op
2329 and then Scope (It.Nam) = Standard_Standard
2330 and then not Is_Overloaded (Left_Opnd (N))
2331 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2332 Standard_Standard
2333 then
2334 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2335
2336 if Comes_From_Source (Err_Type)
2337 and then Present (Parent (Err_Type))
2338 then
2339 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2340 end if;
2341
2342 -- If this is an indirect call, use the subprogram_type
2343 -- in the message, to have a meaningful location. Also
2344 -- indicate if this is an inherited operation, created
2345 -- by a type declaration.
2346
2347 elsif Nkind (N) = N_Function_Call
2348 and then Nkind (Name (N)) = N_Explicit_Dereference
2349 and then Is_Type (It.Nam)
2350 then
2351 Err_Type := It.Nam;
2352 Error_Msg_Sloc :=
2353 Sloc (Associated_Node_For_Itype (Err_Type));
2354 else
2355 Err_Type := Empty;
2356 end if;
2357
2358 if Nkind (N) in N_Op
2359 and then Scope (It.Nam) = Standard_Standard
2360 and then Present (Err_Type)
2361 then
2362 -- Special-case the message for universal_fixed
2363 -- operators, which are not declared with the type
2364 -- of the operand, but appear forever in Standard.
2365
2366 if It.Typ = Universal_Fixed
2367 and then Scope (It.Nam) = Standard_Standard
2368 then
2369 Error_Msg_N
2370 ("\\possible interpretation as universal_fixed "
2371 & "operation (RM 4.5.5 (19))", N);
2372 else
2373 Error_Msg_N
2374 ("\\possible interpretation (predefined)#!", N);
2375 end if;
2376
2377 elsif
2378 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2379 then
2380 Error_Msg_N
2381 ("\\possible interpretation (inherited)#!", N);
2382 else
2383 Error_Msg_N -- CODEFIX
2384 ("\\possible interpretation#!", N);
2385 end if;
2386
2387 end if;
2388 end if;
2389
2390 -- We have a matching interpretation, Expr_Type is the type
2391 -- from this interpretation, and Seen is the entity.
2392
2393 -- For an operator, just set the entity name. The type will be
2394 -- set by the specific operator resolution routine.
2395
2396 if Nkind (N) in N_Op then
2397 Set_Entity (N, Seen);
2398 Generate_Reference (Seen, N);
2399
2400 elsif Nkind_In (N, N_Case_Expression,
2401 N_Character_Literal,
2402 N_Delta_Aggregate,
2403 N_If_Expression)
2404 then
2405 Set_Etype (N, Expr_Type);
2406
2407 -- AI05-0139-2: Expression is overloaded because type has
2408 -- implicit dereference. If type matches context, no implicit
2409 -- dereference is involved. If the expression is an entity,
2410 -- generate a reference to it, as this is not done for an
2411 -- overloaded construct during analysis.
2412
2413 elsif Has_Implicit_Dereference (Expr_Type) then
2414 Set_Etype (N, Expr_Type);
2415 Set_Is_Overloaded (N, False);
2416
2417 if Is_Entity_Name (N) then
2418 Generate_Reference (Entity (N), N);
2419 end if;
2420
2421 exit Interp_Loop;
2422
2423 elsif Is_Overloaded (N)
2424 and then Present (It.Nam)
2425 and then Ekind (It.Nam) = E_Discriminant
2426 and then Has_Implicit_Dereference (It.Nam)
2427 then
2428 -- If the node is a general indexing, the dereference is
2429 -- is inserted when resolving the rewritten form, else
2430 -- insert it now.
2431
2432 if Nkind (N) /= N_Indexed_Component
2433 or else No (Generalized_Indexing (N))
2434 then
2435 Build_Explicit_Dereference (N, It.Nam);
2436 end if;
2437
2438 -- For an explicit dereference, attribute reference, range,
2439 -- short-circuit form (which is not an operator node), or call
2440 -- with a name that is an explicit dereference, there is
2441 -- nothing to be done at this point.
2442
2443 elsif Nkind_In (N, N_Attribute_Reference,
2444 N_And_Then,
2445 N_Explicit_Dereference,
2446 N_Identifier,
2447 N_Indexed_Component,
2448 N_Or_Else,
2449 N_Range,
2450 N_Selected_Component,
2451 N_Slice)
2452 or else Nkind (Name (N)) = N_Explicit_Dereference
2453 then
2454 null;
2455
2456 -- For procedure or function calls, set the type of the name,
2457 -- and also the entity pointer for the prefix.
2458
2459 elsif Nkind (N) in N_Subprogram_Call
2460 and then Is_Entity_Name (Name (N))
2461 then
2462 Set_Etype (Name (N), Expr_Type);
2463 Set_Entity (Name (N), Seen);
2464 Generate_Reference (Seen, Name (N));
2465
2466 elsif Nkind (N) = N_Function_Call
2467 and then Nkind (Name (N)) = N_Selected_Component
2468 then
2469 Set_Etype (Name (N), Expr_Type);
2470 Set_Entity (Selector_Name (Name (N)), Seen);
2471 Generate_Reference (Seen, Selector_Name (Name (N)));
2472
2473 -- For all other cases, just set the type of the Name
2474
2475 else
2476 Set_Etype (Name (N), Expr_Type);
2477 end if;
2478
2479 end if;
2480
2481 <<Continue>>
2482
2483 -- Move to next interpretation
2484
2485 exit Interp_Loop when No (It.Typ);
2486
2487 Get_Next_Interp (I, It);
2488 end loop Interp_Loop;
2489 end if;
2490
2491 -- At this stage Found indicates whether or not an acceptable
2492 -- interpretation exists. If not, then we have an error, except that if
2493 -- the context is Any_Type as a result of some other error, then we
2494 -- suppress the error report.
2495
2496 if not Found then
2497 if Typ /= Any_Type then
2498
2499 -- If type we are looking for is Void, then this is the procedure
2500 -- call case, and the error is simply that what we gave is not a
2501 -- procedure name (we think of procedure calls as expressions with
2502 -- types internally, but the user doesn't think of them this way).
2503
2504 if Typ = Standard_Void_Type then
2505
2506 -- Special case message if function used as a procedure
2507
2508 if Nkind (N) = N_Procedure_Call_Statement
2509 and then Is_Entity_Name (Name (N))
2510 and then Ekind (Entity (Name (N))) = E_Function
2511 then
2512 Error_Msg_NE
2513 ("cannot use call to function & as a statement",
2514 Name (N), Entity (Name (N)));
2515 Error_Msg_N
2516 ("\return value of a function call cannot be ignored",
2517 Name (N));
2518
2519 -- Otherwise give general message (not clear what cases this
2520 -- covers, but no harm in providing for them).
2521
2522 else
2523 Error_Msg_N ("expect procedure name in procedure call", N);
2524 end if;
2525
2526 Found := True;
2527
2528 -- Otherwise we do have a subexpression with the wrong type
2529
2530 -- Check for the case of an allocator which uses an access type
2531 -- instead of the designated type. This is a common error and we
2532 -- specialize the message, posting an error on the operand of the
2533 -- allocator, complaining that we expected the designated type of
2534 -- the allocator.
2535
2536 elsif Nkind (N) = N_Allocator
2537 and then Is_Access_Type (Typ)
2538 and then Is_Access_Type (Etype (N))
2539 and then Designated_Type (Etype (N)) = Typ
2540 then
2541 Wrong_Type (Expression (N), Designated_Type (Typ));
2542 Found := True;
2543
2544 -- Check for view mismatch on Null in instances, for which the
2545 -- view-swapping mechanism has no identifier.
2546
2547 elsif (In_Instance or else In_Inlined_Body)
2548 and then (Nkind (N) = N_Null)
2549 and then Is_Private_Type (Typ)
2550 and then Is_Access_Type (Full_View (Typ))
2551 then
2552 Resolve (N, Full_View (Typ));
2553 Set_Etype (N, Typ);
2554 return;
2555
2556 -- Check for an aggregate. Sometimes we can get bogus aggregates
2557 -- from misuse of parentheses, and we are about to complain about
2558 -- the aggregate without even looking inside it.
2559
2560 -- Instead, if we have an aggregate of type Any_Composite, then
2561 -- analyze and resolve the component fields, and then only issue
2562 -- another message if we get no errors doing this (otherwise
2563 -- assume that the errors in the aggregate caused the problem).
2564
2565 elsif Nkind (N) = N_Aggregate
2566 and then Etype (N) = Any_Composite
2567 then
2568 -- Disable expansion in any case. If there is a type mismatch
2569 -- it may be fatal to try to expand the aggregate. The flag
2570 -- would otherwise be set to false when the error is posted.
2571
2572 Expander_Active := False;
2573
2574 declare
2575 procedure Check_Aggr (Aggr : Node_Id);
2576 -- Check one aggregate, and set Found to True if we have a
2577 -- definite error in any of its elements
2578
2579 procedure Check_Elmt (Aelmt : Node_Id);
2580 -- Check one element of aggregate and set Found to True if
2581 -- we definitely have an error in the element.
2582
2583 ----------------
2584 -- Check_Aggr --
2585 ----------------
2586
2587 procedure Check_Aggr (Aggr : Node_Id) is
2588 Elmt : Node_Id;
2589
2590 begin
2591 if Present (Expressions (Aggr)) then
2592 Elmt := First (Expressions (Aggr));
2593 while Present (Elmt) loop
2594 Check_Elmt (Elmt);
2595 Next (Elmt);
2596 end loop;
2597 end if;
2598
2599 if Present (Component_Associations (Aggr)) then
2600 Elmt := First (Component_Associations (Aggr));
2601 while Present (Elmt) loop
2602
2603 -- If this is a default-initialized component, then
2604 -- there is nothing to check. The box will be
2605 -- replaced by the appropriate call during late
2606 -- expansion.
2607
2608 if Nkind (Elmt) /= N_Iterated_Component_Association
2609 and then not Box_Present (Elmt)
2610 then
2611 Check_Elmt (Expression (Elmt));
2612 end if;
2613
2614 Next (Elmt);
2615 end loop;
2616 end if;
2617 end Check_Aggr;
2618
2619 ----------------
2620 -- Check_Elmt --
2621 ----------------
2622
2623 procedure Check_Elmt (Aelmt : Node_Id) is
2624 begin
2625 -- If we have a nested aggregate, go inside it (to
2626 -- attempt a naked analyze-resolve of the aggregate can
2627 -- cause undesirable cascaded errors). Do not resolve
2628 -- expression if it needs a type from context, as for
2629 -- integer * fixed expression.
2630
2631 if Nkind (Aelmt) = N_Aggregate then
2632 Check_Aggr (Aelmt);
2633
2634 else
2635 Analyze (Aelmt);
2636
2637 if not Is_Overloaded (Aelmt)
2638 and then Etype (Aelmt) /= Any_Fixed
2639 then
2640 Resolve (Aelmt);
2641 end if;
2642
2643 if Etype (Aelmt) = Any_Type then
2644 Found := True;
2645 end if;
2646 end if;
2647 end Check_Elmt;
2648
2649 begin
2650 Check_Aggr (N);
2651 end;
2652 end if;
2653
2654 -- Looks like we have a type error, but check for special case
2655 -- of Address wanted, integer found, with the configuration pragma
2656 -- Allow_Integer_Address active. If we have this case, introduce
2657 -- an unchecked conversion to allow the integer expression to be
2658 -- treated as an Address. The reverse case of integer wanted,
2659 -- Address found, is treated in an analogous manner.
2660
2661 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2662 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2663 Analyze_And_Resolve (N, Typ);
2664 return;
2665
2666 -- Under relaxed RM semantics silently replace occurrences of null
2667 -- by System.Address_Null.
2668
2669 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2670 Replace_Null_By_Null_Address (N);
2671 Analyze_And_Resolve (N, Typ);
2672 return;
2673 end if;
2674
2675 -- That special Allow_Integer_Address check did not apply, so we
2676 -- have a real type error. If an error message was issued already,
2677 -- Found got reset to True, so if it's still False, issue standard
2678 -- Wrong_Type message.
2679
2680 if not Found then
2681 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2682 declare
2683 Subp_Name : Node_Id;
2684
2685 begin
2686 if Is_Entity_Name (Name (N)) then
2687 Subp_Name := Name (N);
2688
2689 elsif Nkind (Name (N)) = N_Selected_Component then
2690
2691 -- Protected operation: retrieve operation name
2692
2693 Subp_Name := Selector_Name (Name (N));
2694
2695 else
2696 raise Program_Error;
2697 end if;
2698
2699 Error_Msg_Node_2 := Typ;
2700 Error_Msg_NE
2701 ("no visible interpretation of& matches expected type&",
2702 N, Subp_Name);
2703 end;
2704
2705 if All_Errors_Mode then
2706 declare
2707 Index : Interp_Index;
2708 It : Interp;
2709
2710 begin
2711 Error_Msg_N ("\\possible interpretations:", N);
2712
2713 Get_First_Interp (Name (N), Index, It);
2714 while Present (It.Nam) loop
2715 Error_Msg_Sloc := Sloc (It.Nam);
2716 Error_Msg_Node_2 := It.Nam;
2717 Error_Msg_NE
2718 ("\\ type& for & declared#", N, It.Typ);
2719 Get_Next_Interp (Index, It);
2720 end loop;
2721 end;
2722
2723 else
2724 Error_Msg_N ("\use -gnatf for details", N);
2725 end if;
2726
2727 else
2728 Wrong_Type (N, Typ);
2729 end if;
2730 end if;
2731 end if;
2732
2733 Resolution_Failed;
2734 return;
2735
2736 -- Test if we have more than one interpretation for the context
2737
2738 elsif Ambiguous then
2739 Resolution_Failed;
2740 return;
2741
2742 -- Only one intepretation
2743
2744 else
2745 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2746 -- the "+" on T is abstract, and the operands are of universal type,
2747 -- the above code will have (incorrectly) resolved the "+" to the
2748 -- universal one in Standard. Therefore check for this case and give
2749 -- an error. We can't do this earlier, because it would cause legal
2750 -- cases to get errors (when some other type has an abstract "+").
2751
2752 if Ada_Version >= Ada_2005
2753 and then Nkind (N) in N_Op
2754 and then Is_Overloaded (N)
2755 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2756 then
2757 Get_First_Interp (N, I, It);
2758 while Present (It.Typ) loop
2759 if Present (It.Abstract_Op) and then
2760 Etype (It.Abstract_Op) = Typ
2761 then
2762 Error_Msg_NE
2763 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2764 return;
2765 end if;
2766
2767 Get_Next_Interp (I, It);
2768 end loop;
2769 end if;
2770
2771 -- Here we have an acceptable interpretation for the context
2772
2773 -- Propagate type information and normalize tree for various
2774 -- predefined operations. If the context only imposes a class of
2775 -- types, rather than a specific type, propagate the actual type
2776 -- downward.
2777
2778 if Typ = Any_Integer or else
2779 Typ = Any_Boolean or else
2780 Typ = Any_Modular or else
2781 Typ = Any_Real or else
2782 Typ = Any_Discrete
2783 then
2784 Ctx_Type := Expr_Type;
2785
2786 -- Any_Fixed is legal in a real context only if a specific fixed-
2787 -- point type is imposed. If Norman Cohen can be confused by this,
2788 -- it deserves a separate message.
2789
2790 if Typ = Any_Real
2791 and then Expr_Type = Any_Fixed
2792 then
2793 Error_Msg_N ("illegal context for mixed mode operation", N);
2794 Set_Etype (N, Universal_Real);
2795 Ctx_Type := Universal_Real;
2796 end if;
2797 end if;
2798
2799 -- A user-defined operator is transformed into a function call at
2800 -- this point, so that further processing knows that operators are
2801 -- really operators (i.e. are predefined operators). User-defined
2802 -- operators that are intrinsic are just renamings of the predefined
2803 -- ones, and need not be turned into calls either, but if they rename
2804 -- a different operator, we must transform the node accordingly.
2805 -- Instantiations of Unchecked_Conversion are intrinsic but are
2806 -- treated as functions, even if given an operator designator.
2807
2808 if Nkind (N) in N_Op
2809 and then Present (Entity (N))
2810 and then Ekind (Entity (N)) /= E_Operator
2811 then
2812 if not Is_Predefined_Op (Entity (N)) then
2813 Rewrite_Operator_As_Call (N, Entity (N));
2814
2815 elsif Present (Alias (Entity (N)))
2816 and then
2817 Nkind (Parent (Parent (Entity (N)))) =
2818 N_Subprogram_Renaming_Declaration
2819 then
2820 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2821
2822 -- If the node is rewritten, it will be fully resolved in
2823 -- Rewrite_Renamed_Operator.
2824
2825 if Analyzed (N) then
2826 return;
2827 end if;
2828 end if;
2829 end if;
2830
2831 case N_Subexpr'(Nkind (N)) is
2832 when N_Aggregate =>
2833 Resolve_Aggregate (N, Ctx_Type);
2834
2835 when N_Allocator =>
2836 Resolve_Allocator (N, Ctx_Type);
2837
2838 when N_Short_Circuit =>
2839 Resolve_Short_Circuit (N, Ctx_Type);
2840
2841 when N_Attribute_Reference =>
2842 Resolve_Attribute (N, Ctx_Type);
2843
2844 when N_Case_Expression =>
2845 Resolve_Case_Expression (N, Ctx_Type);
2846
2847 when N_Character_Literal =>
2848 Resolve_Character_Literal (N, Ctx_Type);
2849
2850 when N_Delta_Aggregate =>
2851 Resolve_Delta_Aggregate (N, Ctx_Type);
2852
2853 when N_Expanded_Name =>
2854 Resolve_Entity_Name (N, Ctx_Type);
2855
2856 when N_Explicit_Dereference =>
2857 Resolve_Explicit_Dereference (N, Ctx_Type);
2858
2859 when N_Expression_With_Actions =>
2860 Resolve_Expression_With_Actions (N, Ctx_Type);
2861
2862 when N_Extension_Aggregate =>
2863 Resolve_Extension_Aggregate (N, Ctx_Type);
2864
2865 when N_Function_Call =>
2866 Resolve_Call (N, Ctx_Type);
2867
2868 when N_Identifier =>
2869 Resolve_Entity_Name (N, Ctx_Type);
2870
2871 when N_If_Expression =>
2872 Resolve_If_Expression (N, Ctx_Type);
2873
2874 when N_Indexed_Component =>
2875 Resolve_Indexed_Component (N, Ctx_Type);
2876
2877 when N_Integer_Literal =>
2878 Resolve_Integer_Literal (N, Ctx_Type);
2879
2880 when N_Membership_Test =>
2881 Resolve_Membership_Op (N, Ctx_Type);
2882
2883 when N_Null =>
2884 Resolve_Null (N, Ctx_Type);
2885
2886 when N_Op_And
2887 | N_Op_Or
2888 | N_Op_Xor
2889 =>
2890 Resolve_Logical_Op (N, Ctx_Type);
2891
2892 when N_Op_Eq
2893 | N_Op_Ne
2894 =>
2895 Resolve_Equality_Op (N, Ctx_Type);
2896
2897 when N_Op_Ge
2898 | N_Op_Gt
2899 | N_Op_Le
2900 | N_Op_Lt
2901 =>
2902 Resolve_Comparison_Op (N, Ctx_Type);
2903
2904 when N_Op_Not =>
2905 Resolve_Op_Not (N, Ctx_Type);
2906
2907 when N_Op_Add
2908 | N_Op_Divide
2909 | N_Op_Mod
2910 | N_Op_Multiply
2911 | N_Op_Rem
2912 | N_Op_Subtract
2913 =>
2914 Resolve_Arithmetic_Op (N, Ctx_Type);
2915
2916 when N_Op_Concat =>
2917 Resolve_Op_Concat (N, Ctx_Type);
2918
2919 when N_Op_Expon =>
2920 Resolve_Op_Expon (N, Ctx_Type);
2921
2922 when N_Op_Abs
2923 | N_Op_Minus
2924 | N_Op_Plus
2925 =>
2926 Resolve_Unary_Op (N, Ctx_Type);
2927
2928 when N_Op_Shift =>
2929 Resolve_Shift (N, Ctx_Type);
2930
2931 when N_Procedure_Call_Statement =>
2932 Resolve_Call (N, Ctx_Type);
2933
2934 when N_Operator_Symbol =>
2935 Resolve_Operator_Symbol (N, Ctx_Type);
2936
2937 when N_Qualified_Expression =>
2938 Resolve_Qualified_Expression (N, Ctx_Type);
2939
2940 -- Why is the following null, needs a comment ???
2941
2942 when N_Quantified_Expression =>
2943 null;
2944
2945 when N_Raise_Expression =>
2946 Resolve_Raise_Expression (N, Ctx_Type);
2947
2948 when N_Raise_xxx_Error =>
2949 Set_Etype (N, Ctx_Type);
2950
2951 when N_Range =>
2952 Resolve_Range (N, Ctx_Type);
2953
2954 when N_Real_Literal =>
2955 Resolve_Real_Literal (N, Ctx_Type);
2956
2957 when N_Reference =>
2958 Resolve_Reference (N, Ctx_Type);
2959
2960 when N_Selected_Component =>
2961 Resolve_Selected_Component (N, Ctx_Type);
2962
2963 when N_Slice =>
2964 Resolve_Slice (N, Ctx_Type);
2965
2966 when N_String_Literal =>
2967 Resolve_String_Literal (N, Ctx_Type);
2968
2969 when N_Target_Name =>
2970 Resolve_Target_Name (N, Ctx_Type);
2971
2972 when N_Type_Conversion =>
2973 Resolve_Type_Conversion (N, Ctx_Type);
2974
2975 when N_Unchecked_Expression =>
2976 Resolve_Unchecked_Expression (N, Ctx_Type);
2977
2978 when N_Unchecked_Type_Conversion =>
2979 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2980 end case;
2981
2982 -- Mark relevant use-type and use-package clauses as effective using
2983 -- the original node because constant folding may have occured and
2984 -- removed references that need to be examined.
2985
2986 if Nkind (Original_Node (N)) in N_Op then
2987 Mark_Use_Clauses (Original_Node (N));
2988 end if;
2989
2990 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2991 -- expression of an anonymous access type that occurs in the context
2992 -- of a named general access type, except when the expression is that
2993 -- of a membership test. This ensures proper legality checking in
2994 -- terms of allowed conversions (expressions that would be illegal to
2995 -- convert implicitly are allowed in membership tests).
2996
2997 if Ada_Version >= Ada_2012
2998 and then Ekind (Ctx_Type) = E_General_Access_Type
2999 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3000 and then Nkind (Parent (N)) not in N_Membership_Test
3001 then
3002 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3003 Analyze_And_Resolve (N, Ctx_Type);
3004 end if;
3005
3006 -- If the subexpression was replaced by a non-subexpression, then
3007 -- all we do is to expand it. The only legitimate case we know of
3008 -- is converting procedure call statement to entry call statements,
3009 -- but there may be others, so we are making this test general.
3010
3011 if Nkind (N) not in N_Subexpr then
3012 Debug_A_Exit ("resolving ", N, " (done)");
3013 Expand (N);
3014 return;
3015 end if;
3016
3017 -- The expression is definitely NOT overloaded at this point, so
3018 -- we reset the Is_Overloaded flag to avoid any confusion when
3019 -- reanalyzing the node.
3020
3021 Set_Is_Overloaded (N, False);
3022
3023 -- Freeze expression type, entity if it is a name, and designated
3024 -- type if it is an allocator (RM 13.14(10,11,13)).
3025
3026 -- Now that the resolution of the type of the node is complete, and
3027 -- we did not detect an error, we can expand this node. We skip the
3028 -- expand call if we are in a default expression, see section
3029 -- "Handling of Default Expressions" in Sem spec.
3030
3031 Debug_A_Exit ("resolving ", N, " (done)");
3032
3033 -- We unconditionally freeze the expression, even if we are in
3034 -- default expression mode (the Freeze_Expression routine tests this
3035 -- flag and only freezes static types if it is set).
3036
3037 -- Ada 2012 (AI05-177): The declaration of an expression function
3038 -- does not cause freezing, but we never reach here in that case.
3039 -- Here we are resolving the corresponding expanded body, so we do
3040 -- need to perform normal freezing.
3041
3042 -- As elsewhere we do not emit freeze node within a generic. We make
3043 -- an exception for entities that are expressions, only to detect
3044 -- misuses of deferred constants and preserve the output of various
3045 -- tests.
3046
3047 if not Inside_A_Generic or else Is_Entity_Name (N) then
3048 Freeze_Expression (N);
3049 end if;
3050
3051 -- Now we can do the expansion
3052
3053 Expand (N);
3054 end if;
3055 end Resolve;
3056
3057 -------------
3058 -- Resolve --
3059 -------------
3060
3061 -- Version with check(s) suppressed
3062
3063 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3064 begin
3065 if Suppress = All_Checks then
3066 declare
3067 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3068 begin
3069 Scope_Suppress.Suppress := (others => True);
3070 Resolve (N, Typ);
3071 Scope_Suppress.Suppress := Sva;
3072 end;
3073
3074 else
3075 declare
3076 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3077 begin
3078 Scope_Suppress.Suppress (Suppress) := True;
3079 Resolve (N, Typ);
3080 Scope_Suppress.Suppress (Suppress) := Svg;
3081 end;
3082 end if;
3083 end Resolve;
3084
3085 -------------
3086 -- Resolve --
3087 -------------
3088
3089 -- Version with implicit type
3090
3091 procedure Resolve (N : Node_Id) is
3092 begin
3093 Resolve (N, Etype (N));
3094 end Resolve;
3095
3096 ---------------------
3097 -- Resolve_Actuals --
3098 ---------------------
3099
3100 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3101 Loc : constant Source_Ptr := Sloc (N);
3102 A : Node_Id;
3103 A_Id : Entity_Id;
3104 A_Typ : Entity_Id := Empty; -- init to avoid warning
3105 F : Entity_Id;
3106 F_Typ : Entity_Id;
3107 Prev : Node_Id := Empty;
3108 Orig_A : Node_Id;
3109 Real_F : Entity_Id := Empty; -- init to avoid warning
3110
3111 Real_Subp : Entity_Id;
3112 -- If the subprogram being called is an inherited operation for
3113 -- a formal derived type in an instance, Real_Subp is the subprogram
3114 -- that will be called. It may have different formal names than the
3115 -- operation of the formal in the generic, so after actual is resolved
3116 -- the name of the actual in a named association must carry the name
3117 -- of the actual of the subprogram being called.
3118
3119 procedure Check_Aliased_Parameter;
3120 -- Check rules on aliased parameters and related accessibility rules
3121 -- in (RM 3.10.2 (10.2-10.4)).
3122
3123 procedure Check_Argument_Order;
3124 -- Performs a check for the case where the actuals are all simple
3125 -- identifiers that correspond to the formal names, but in the wrong
3126 -- order, which is considered suspicious and cause for a warning.
3127
3128 procedure Check_Prefixed_Call;
3129 -- If the original node is an overloaded call in prefix notation,
3130 -- insert an 'Access or a dereference as needed over the first actual.
3131 -- Try_Object_Operation has already verified that there is a valid
3132 -- interpretation, but the form of the actual can only be determined
3133 -- once the primitive operation is identified.
3134
3135 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3136 -- Emit an error concerning the illegal usage of an effectively volatile
3137 -- object in interfering context (SPARK RM 7.13(12)).
3138
3139 procedure Insert_Default;
3140 -- If the actual is missing in a call, insert in the actuals list
3141 -- an instance of the default expression. The insertion is always
3142 -- a named association.
3143
3144 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3145 -- Check whether T1 and T2, or their full views, are derived from a
3146 -- common type. Used to enforce the restrictions on array conversions
3147 -- of AI95-00246.
3148
3149 function Static_Concatenation (N : Node_Id) return Boolean;
3150 -- Predicate to determine whether an actual that is a concatenation
3151 -- will be evaluated statically and does not need a transient scope.
3152 -- This must be determined before the actual is resolved and expanded
3153 -- because if needed the transient scope must be introduced earlier.
3154
3155 -----------------------------
3156 -- Check_Aliased_Parameter --
3157 -----------------------------
3158
3159 procedure Check_Aliased_Parameter is
3160 Nominal_Subt : Entity_Id;
3161
3162 begin
3163 if Is_Aliased (F) then
3164 if Is_Tagged_Type (A_Typ) then
3165 null;
3166
3167 elsif Is_Aliased_View (A) then
3168 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3169 Nominal_Subt := Base_Type (A_Typ);
3170 else
3171 Nominal_Subt := A_Typ;
3172 end if;
3173
3174 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3175 null;
3176
3177 -- In a generic body assume the worst for generic formals:
3178 -- they can have a constrained partial view (AI05-041).
3179
3180 elsif Has_Discriminants (F_Typ)
3181 and then not Is_Constrained (F_Typ)
3182 and then not Has_Constrained_Partial_View (F_Typ)
3183 and then not Is_Generic_Type (F_Typ)
3184 then
3185 null;
3186
3187 else
3188 Error_Msg_NE ("untagged actual does not match "
3189 & "aliased formal&", A, F);
3190 end if;
3191
3192 else
3193 Error_Msg_NE ("actual for aliased formal& must be "
3194 & "aliased object", A, F);
3195 end if;
3196
3197 if Ekind (Nam) = E_Procedure then
3198 null;
3199
3200 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3201 if Nkind (Parent (N)) = N_Type_Conversion
3202 and then Type_Access_Level (Etype (Parent (N))) <
3203 Object_Access_Level (A)
3204 then
3205 Error_Msg_N ("aliased actual has wrong accessibility", A);
3206 end if;
3207
3208 elsif Nkind (Parent (N)) = N_Qualified_Expression
3209 and then Nkind (Parent (Parent (N))) = N_Allocator
3210 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3211 Object_Access_Level (A)
3212 then
3213 Error_Msg_N
3214 ("aliased actual in allocator has wrong accessibility", A);
3215 end if;
3216 end if;
3217 end Check_Aliased_Parameter;
3218
3219 --------------------------
3220 -- Check_Argument_Order --
3221 --------------------------
3222
3223 procedure Check_Argument_Order is
3224 begin
3225 -- Nothing to do if no parameters, or original node is neither a
3226 -- function call nor a procedure call statement (happens in the
3227 -- operator-transformed-to-function call case), or the call does
3228 -- not come from source, or this warning is off.
3229
3230 if not Warn_On_Parameter_Order
3231 or else No (Parameter_Associations (N))
3232 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3233 or else not Comes_From_Source (N)
3234 then
3235 return;
3236 end if;
3237
3238 declare
3239 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3240
3241 begin
3242 -- Nothing to do if only one parameter
3243
3244 if Nargs < 2 then
3245 return;
3246 end if;
3247
3248 -- Here if at least two arguments
3249
3250 declare
3251 Actuals : array (1 .. Nargs) of Node_Id;
3252 Actual : Node_Id;
3253 Formal : Node_Id;
3254
3255 Wrong_Order : Boolean := False;
3256 -- Set True if an out of order case is found
3257
3258 begin
3259 -- Collect identifier names of actuals, fail if any actual is
3260 -- not a simple identifier, and record max length of name.
3261
3262 Actual := First (Parameter_Associations (N));
3263 for J in Actuals'Range loop
3264 if Nkind (Actual) /= N_Identifier then
3265 return;
3266 else
3267 Actuals (J) := Actual;
3268 Next (Actual);
3269 end if;
3270 end loop;
3271
3272 -- If we got this far, all actuals are identifiers and the list
3273 -- of their names is stored in the Actuals array.
3274
3275 Formal := First_Formal (Nam);
3276 for J in Actuals'Range loop
3277
3278 -- If we ran out of formals, that's odd, probably an error
3279 -- which will be detected elsewhere, but abandon the search.
3280
3281 if No (Formal) then
3282 return;
3283 end if;
3284
3285 -- If name matches and is in order OK
3286
3287 if Chars (Formal) = Chars (Actuals (J)) then
3288 null;
3289
3290 else
3291 -- If no match, see if it is elsewhere in list and if so
3292 -- flag potential wrong order if type is compatible.
3293
3294 for K in Actuals'Range loop
3295 if Chars (Formal) = Chars (Actuals (K))
3296 and then
3297 Has_Compatible_Type (Actuals (K), Etype (Formal))
3298 then
3299 Wrong_Order := True;
3300 goto Continue;
3301 end if;
3302 end loop;
3303
3304 -- No match
3305
3306 return;
3307 end if;
3308
3309 <<Continue>> Next_Formal (Formal);
3310 end loop;
3311
3312 -- If Formals left over, also probably an error, skip warning
3313
3314 if Present (Formal) then
3315 return;
3316 end if;
3317
3318 -- Here we give the warning if something was out of order
3319
3320 if Wrong_Order then
3321 Error_Msg_N
3322 ("?P?actuals for this call may be in wrong order", N);
3323 end if;
3324 end;
3325 end;
3326 end Check_Argument_Order;
3327
3328 -------------------------
3329 -- Check_Prefixed_Call --
3330 -------------------------
3331
3332 procedure Check_Prefixed_Call is
3333 Act : constant Node_Id := First_Actual (N);
3334 A_Type : constant Entity_Id := Etype (Act);
3335 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3336 Orig : constant Node_Id := Original_Node (N);
3337 New_A : Node_Id;
3338
3339 begin
3340 -- Check whether the call is a prefixed call, with or without
3341 -- additional actuals.
3342
3343 if Nkind (Orig) = N_Selected_Component
3344 or else
3345 (Nkind (Orig) = N_Indexed_Component
3346 and then Nkind (Prefix (Orig)) = N_Selected_Component
3347 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3348 and then Is_Entity_Name (Act)
3349 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3350 then
3351 if Is_Access_Type (A_Type)
3352 and then not Is_Access_Type (F_Type)
3353 then
3354 -- Introduce dereference on object in prefix
3355
3356 New_A :=
3357 Make_Explicit_Dereference (Sloc (Act),
3358 Prefix => Relocate_Node (Act));
3359 Rewrite (Act, New_A);
3360 Analyze (Act);
3361
3362 elsif Is_Access_Type (F_Type)
3363 and then not Is_Access_Type (A_Type)
3364 then
3365 -- Introduce an implicit 'Access in prefix
3366
3367 if not Is_Aliased_View (Act) then
3368 Error_Msg_NE
3369 ("object in prefixed call to& must be aliased "
3370 & "(RM 4.1.3 (13 1/2))",
3371 Prefix (Act), Nam);
3372 end if;
3373
3374 Rewrite (Act,
3375 Make_Attribute_Reference (Loc,
3376 Attribute_Name => Name_Access,
3377 Prefix => Relocate_Node (Act)));
3378 end if;
3379
3380 Analyze (Act);
3381 end if;
3382 end Check_Prefixed_Call;
3383
3384 ---------------------------------------
3385 -- Flag_Effectively_Volatile_Objects --
3386 ---------------------------------------
3387
3388 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3389 function Flag_Object (N : Node_Id) return Traverse_Result;
3390 -- Determine whether arbitrary node N denotes an effectively volatile
3391 -- object and if it does, emit an error.
3392
3393 -----------------
3394 -- Flag_Object --
3395 -----------------
3396
3397 function Flag_Object (N : Node_Id) return Traverse_Result is
3398 Id : Entity_Id;
3399
3400 begin
3401 -- Do not consider nested function calls because they have already
3402 -- been processed during their own resolution.
3403
3404 if Nkind (N) = N_Function_Call then
3405 return Skip;
3406
3407 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3408 Id := Entity (N);
3409
3410 if Is_Object (Id)
3411 and then Is_Effectively_Volatile (Id)
3412 and then (Async_Writers_Enabled (Id)
3413 or else Effective_Reads_Enabled (Id))
3414 then
3415 Error_Msg_N
3416 ("volatile object cannot appear in this context (SPARK "
3417 & "RM 7.1.3(11))", N);
3418 return Skip;
3419 end if;
3420 end if;
3421
3422 return OK;
3423 end Flag_Object;
3424
3425 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3426
3427 -- Start of processing for Flag_Effectively_Volatile_Objects
3428
3429 begin
3430 Flag_Objects (Expr);
3431 end Flag_Effectively_Volatile_Objects;
3432
3433 --------------------
3434 -- Insert_Default --
3435 --------------------
3436
3437 procedure Insert_Default is
3438 Actval : Node_Id;
3439 Assoc : Node_Id;
3440
3441 begin
3442 -- Missing argument in call, nothing to insert
3443
3444 if No (Default_Value (F)) then
3445 return;
3446
3447 else
3448 -- Note that we do a full New_Copy_Tree, so that any associated
3449 -- Itypes are properly copied. This may not be needed any more,
3450 -- but it does no harm as a safety measure. Defaults of a generic
3451 -- formal may be out of bounds of the corresponding actual (see
3452 -- cc1311b) and an additional check may be required.
3453
3454 Actval :=
3455 New_Copy_Tree
3456 (Default_Value (F),
3457 New_Scope => Current_Scope,
3458 New_Sloc => Loc);
3459
3460 -- Propagate dimension information, if any.
3461
3462 Copy_Dimensions (Default_Value (F), Actval);
3463
3464 if Is_Concurrent_Type (Scope (Nam))
3465 and then Has_Discriminants (Scope (Nam))
3466 then
3467 Replace_Actual_Discriminants (N, Actval);
3468 end if;
3469
3470 if Is_Overloadable (Nam)
3471 and then Present (Alias (Nam))
3472 then
3473 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3474 and then not Is_Tagged_Type (Etype (F))
3475 then
3476 -- If default is a real literal, do not introduce a
3477 -- conversion whose effect may depend on the run-time
3478 -- size of universal real.
3479
3480 if Nkind (Actval) = N_Real_Literal then
3481 Set_Etype (Actval, Base_Type (Etype (F)));
3482 else
3483 Actval := Unchecked_Convert_To (Etype (F), Actval);
3484 end if;
3485 end if;
3486
3487 if Is_Scalar_Type (Etype (F)) then
3488 Enable_Range_Check (Actval);
3489 end if;
3490
3491 Set_Parent (Actval, N);
3492
3493 -- Resolve aggregates with their base type, to avoid scope
3494 -- anomalies: the subtype was first built in the subprogram
3495 -- declaration, and the current call may be nested.
3496
3497 if Nkind (Actval) = N_Aggregate then
3498 Analyze_And_Resolve (Actval, Etype (F));
3499 else
3500 Analyze_And_Resolve (Actval, Etype (Actval));
3501 end if;
3502
3503 else
3504 Set_Parent (Actval, N);
3505
3506 -- See note above concerning aggregates
3507
3508 if Nkind (Actval) = N_Aggregate
3509 and then Has_Discriminants (Etype (Actval))
3510 then
3511 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3512
3513 -- Resolve entities with their own type, which may differ from
3514 -- the type of a reference in a generic context (the view
3515 -- swapping mechanism did not anticipate the re-analysis of
3516 -- default values in calls).
3517
3518 elsif Is_Entity_Name (Actval) then
3519 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3520
3521 else
3522 Analyze_And_Resolve (Actval, Etype (Actval));
3523 end if;
3524 end if;
3525
3526 -- If default is a tag indeterminate function call, propagate tag
3527 -- to obtain proper dispatching.
3528
3529 if Is_Controlling_Formal (F)
3530 and then Nkind (Default_Value (F)) = N_Function_Call
3531 then
3532 Set_Is_Controlling_Actual (Actval);
3533 end if;
3534 end if;
3535
3536 -- If the default expression raises constraint error, then just
3537 -- silently replace it with an N_Raise_Constraint_Error node, since
3538 -- we already gave the warning on the subprogram spec. If node is
3539 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3540 -- the warnings removal machinery.
3541
3542 if Raises_Constraint_Error (Actval)
3543 and then Nkind (Actval) /= N_Raise_Constraint_Error
3544 then
3545 Rewrite (Actval,
3546 Make_Raise_Constraint_Error (Loc,
3547 Reason => CE_Range_Check_Failed));
3548
3549 Set_Raises_Constraint_Error (Actval);
3550 Set_Etype (Actval, Etype (F));
3551 end if;
3552
3553 Assoc :=
3554 Make_Parameter_Association (Loc,
3555 Explicit_Actual_Parameter => Actval,
3556 Selector_Name => Make_Identifier (Loc, Chars (F)));
3557
3558 -- Case of insertion is first named actual
3559
3560 if No (Prev)
3561 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3562 then
3563 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3564 Set_First_Named_Actual (N, Actval);
3565
3566 if No (Prev) then
3567 if No (Parameter_Associations (N)) then
3568 Set_Parameter_Associations (N, New_List (Assoc));
3569 else
3570 Append (Assoc, Parameter_Associations (N));
3571 end if;
3572
3573 else
3574 Insert_After (Prev, Assoc);
3575 end if;
3576
3577 -- Case of insertion is not first named actual
3578
3579 else
3580 Set_Next_Named_Actual
3581 (Assoc, Next_Named_Actual (Parent (Prev)));
3582 Set_Next_Named_Actual (Parent (Prev), Actval);
3583 Append (Assoc, Parameter_Associations (N));
3584 end if;
3585
3586 Mark_Rewrite_Insertion (Assoc);
3587 Mark_Rewrite_Insertion (Actval);
3588
3589 Prev := Actval;
3590 end Insert_Default;
3591
3592 -------------------
3593 -- Same_Ancestor --
3594 -------------------
3595
3596 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3597 FT1 : Entity_Id := T1;
3598 FT2 : Entity_Id := T2;
3599
3600 begin
3601 if Is_Private_Type (T1)
3602 and then Present (Full_View (T1))
3603 then
3604 FT1 := Full_View (T1);
3605 end if;
3606
3607 if Is_Private_Type (T2)
3608 and then Present (Full_View (T2))
3609 then
3610 FT2 := Full_View (T2);
3611 end if;
3612
3613 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3614 end Same_Ancestor;
3615
3616 --------------------------
3617 -- Static_Concatenation --
3618 --------------------------
3619
3620 function Static_Concatenation (N : Node_Id) return Boolean is
3621 begin
3622 case Nkind (N) is
3623 when N_String_Literal =>
3624 return True;
3625
3626 when N_Op_Concat =>
3627
3628 -- Concatenation is static when both operands are static and
3629 -- the concatenation operator is a predefined one.
3630
3631 return Scope (Entity (N)) = Standard_Standard
3632 and then
3633 Static_Concatenation (Left_Opnd (N))
3634 and then
3635 Static_Concatenation (Right_Opnd (N));
3636
3637 when others =>
3638 if Is_Entity_Name (N) then
3639 declare
3640 Ent : constant Entity_Id := Entity (N);
3641 begin
3642 return Ekind (Ent) = E_Constant
3643 and then Present (Constant_Value (Ent))
3644 and then
3645 Is_OK_Static_Expression (Constant_Value (Ent));
3646 end;
3647
3648 else
3649 return False;
3650 end if;
3651 end case;
3652 end Static_Concatenation;
3653
3654 -- Start of processing for Resolve_Actuals
3655
3656 begin
3657 Check_Argument_Order;
3658
3659 if Is_Overloadable (Nam)
3660 and then Is_Inherited_Operation (Nam)
3661 and then In_Instance
3662 and then Present (Alias (Nam))
3663 and then Present (Overridden_Operation (Alias (Nam)))
3664 then
3665 Real_Subp := Alias (Nam);
3666 else
3667 Real_Subp := Empty;
3668 end if;
3669
3670 if Present (First_Actual (N)) then
3671 Check_Prefixed_Call;
3672 end if;
3673
3674 A := First_Actual (N);
3675 F := First_Formal (Nam);
3676
3677 if Present (Real_Subp) then
3678 Real_F := First_Formal (Real_Subp);
3679 end if;
3680
3681 while Present (F) loop
3682 if No (A) and then Needs_No_Actuals (Nam) then
3683 null;
3684
3685 -- If we have an error in any actual or formal, indicated by a type
3686 -- of Any_Type, then abandon resolution attempt, and set result type
3687 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3688 -- type is imposed from context.
3689
3690 elsif (Present (A) and then Etype (A) = Any_Type)
3691 or else Etype (F) = Any_Type
3692 then
3693 if Nkind (A) /= N_Raise_Expression then
3694 Set_Etype (N, Any_Type);
3695 return;
3696 end if;
3697 end if;
3698
3699 -- Case where actual is present
3700
3701 -- If the actual is an entity, generate a reference to it now. We
3702 -- do this before the actual is resolved, because a formal of some
3703 -- protected subprogram, or a task discriminant, will be rewritten
3704 -- during expansion, and the source entity reference may be lost.
3705
3706 if Present (A)
3707 and then Is_Entity_Name (A)
3708 and then Comes_From_Source (A)
3709 then
3710 -- Annotate the tree by creating a variable reference marker when
3711 -- the actual denotes a variable reference, in case the reference
3712 -- is folded or optimized away. The variable reference marker is
3713 -- automatically saved for later examination by the ABE Processing
3714 -- phase. The status of the reference is set as follows:
3715
3716 -- status mode
3717 -- read IN, IN OUT
3718 -- write IN OUT, OUT
3719
3720 if Needs_Variable_Reference_Marker
3721 (N => A,
3722 Calls_OK => True)
3723 then
3724 Build_Variable_Reference_Marker
3725 (N => A,
3726 Read => Ekind (F) /= E_Out_Parameter,
3727 Write => Ekind (F) /= E_In_Parameter);
3728 end if;
3729
3730 Orig_A := Entity (A);
3731
3732 if Present (Orig_A) then
3733 if Is_Formal (Orig_A)
3734 and then Ekind (F) /= E_In_Parameter
3735 then
3736 Generate_Reference (Orig_A, A, 'm');
3737
3738 elsif not Is_Overloaded (A) then
3739 if Ekind (F) /= E_Out_Parameter then
3740 Generate_Reference (Orig_A, A);
3741
3742 -- RM 6.4.1(12): For an out parameter that is passed by
3743 -- copy, the formal parameter object is created, and:
3744
3745 -- * For an access type, the formal parameter is initialized
3746 -- from the value of the actual, without checking that the
3747 -- value satisfies any constraint, any predicate, or any
3748 -- exclusion of the null value.
3749
3750 -- * For a scalar type that has the Default_Value aspect
3751 -- specified, the formal parameter is initialized from the
3752 -- value of the actual, without checking that the value
3753 -- satisfies any constraint or any predicate.
3754 -- I do not understand why this case is included??? this is
3755 -- not a case where an OUT parameter is treated as IN OUT.
3756
3757 -- * For a composite type with discriminants or that has
3758 -- implicit initial values for any subcomponents, the
3759 -- behavior is as for an in out parameter passed by copy.
3760
3761 -- Hence for these cases we generate the read reference now
3762 -- (the write reference will be generated later by
3763 -- Note_Possible_Modification).
3764
3765 elsif Is_By_Copy_Type (Etype (F))
3766 and then
3767 (Is_Access_Type (Etype (F))
3768 or else
3769 (Is_Scalar_Type (Etype (F))
3770 and then
3771 Present (Default_Aspect_Value (Etype (F))))
3772 or else
3773 (Is_Composite_Type (Etype (F))
3774 and then (Has_Discriminants (Etype (F))
3775 or else Is_Partially_Initialized_Type
3776 (Etype (F)))))
3777 then
3778 Generate_Reference (Orig_A, A);
3779 end if;
3780 end if;
3781 end if;
3782 end if;
3783
3784 if Present (A)
3785 and then (Nkind (Parent (A)) /= N_Parameter_Association
3786 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3787 then
3788 -- If style checking mode on, check match of formal name
3789
3790 if Style_Check then
3791 if Nkind (Parent (A)) = N_Parameter_Association then
3792 Check_Identifier (Selector_Name (Parent (A)), F);
3793 end if;
3794 end if;
3795
3796 -- If the formal is Out or In_Out, do not resolve and expand the
3797 -- conversion, because it is subsequently expanded into explicit
3798 -- temporaries and assignments. However, the object of the
3799 -- conversion can be resolved. An exception is the case of tagged
3800 -- type conversion with a class-wide actual. In that case we want
3801 -- the tag check to occur and no temporary will be needed (no
3802 -- representation change can occur) and the parameter is passed by
3803 -- reference, so we go ahead and resolve the type conversion.
3804 -- Another exception is the case of reference to component or
3805 -- subcomponent of a bit-packed array, in which case we want to
3806 -- defer expansion to the point the in and out assignments are
3807 -- performed.
3808
3809 if Ekind (F) /= E_In_Parameter
3810 and then Nkind (A) = N_Type_Conversion
3811 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3812 then
3813 if Ekind (F) = E_In_Out_Parameter
3814 and then Is_Array_Type (Etype (F))
3815 then
3816 -- In a view conversion, the conversion must be legal in
3817 -- both directions, and thus both component types must be
3818 -- aliased, or neither (4.6 (8)).
3819
3820 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3821 -- the privacy requirement should not apply to generic
3822 -- types, and should be checked in an instance. ARG query
3823 -- is in order ???
3824
3825 if Has_Aliased_Components (Etype (Expression (A))) /=
3826 Has_Aliased_Components (Etype (F))
3827 then
3828 Error_Msg_N
3829 ("both component types in a view conversion must be"
3830 & " aliased, or neither", A);
3831
3832 -- Comment here??? what set of cases???
3833
3834 elsif
3835 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3836 then
3837 -- Check view conv between unrelated by ref array types
3838
3839 if Is_By_Reference_Type (Etype (F))
3840 or else Is_By_Reference_Type (Etype (Expression (A)))
3841 then
3842 Error_Msg_N
3843 ("view conversion between unrelated by reference "
3844 & "array types not allowed (\'A'I-00246)", A);
3845
3846 -- In Ada 2005 mode, check view conversion component
3847 -- type cannot be private, tagged, or volatile. Note
3848 -- that we only apply this to source conversions. The
3849 -- generated code can contain conversions which are
3850 -- not subject to this test, and we cannot extract the
3851 -- component type in such cases since it is not present.
3852
3853 elsif Comes_From_Source (A)
3854 and then Ada_Version >= Ada_2005
3855 then
3856 declare
3857 Comp_Type : constant Entity_Id :=
3858 Component_Type
3859 (Etype (Expression (A)));
3860 begin
3861 if (Is_Private_Type (Comp_Type)
3862 and then not Is_Generic_Type (Comp_Type))
3863 or else Is_Tagged_Type (Comp_Type)
3864 or else Is_Volatile (Comp_Type)
3865 then
3866 Error_Msg_N
3867 ("component type of a view conversion cannot"
3868 & " be private, tagged, or volatile"
3869 & " (RM 4.6 (24))",
3870 Expression (A));
3871 end if;
3872 end;
3873 end if;
3874 end if;
3875 end if;
3876
3877 -- Resolve expression if conversion is all OK
3878
3879 if (Conversion_OK (A)
3880 or else Valid_Conversion (A, Etype (A), Expression (A)))
3881 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3882 then
3883 Resolve (Expression (A));
3884 end if;
3885
3886 -- If the actual is a function call that returns a limited
3887 -- unconstrained object that needs finalization, create a
3888 -- transient scope for it, so that it can receive the proper
3889 -- finalization list.
3890
3891 elsif Expander_Active
3892 and then Nkind (A) = N_Function_Call
3893 and then Is_Limited_Record (Etype (F))
3894 and then not Is_Constrained (Etype (F))
3895 and then (Needs_Finalization (Etype (F))
3896 or else Has_Task (Etype (F)))
3897 then
3898 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3899 Resolve (A, Etype (F));
3900
3901 -- A small optimization: if one of the actuals is a concatenation
3902 -- create a block around a procedure call to recover stack space.
3903 -- This alleviates stack usage when several procedure calls in
3904 -- the same statement list use concatenation. We do not perform
3905 -- this wrapping for code statements, where the argument is a
3906 -- static string, and we want to preserve warnings involving
3907 -- sequences of such statements.
3908
3909 elsif Expander_Active
3910 and then Nkind (A) = N_Op_Concat
3911 and then Nkind (N) = N_Procedure_Call_Statement
3912 and then not (Is_Intrinsic_Subprogram (Nam)
3913 and then Chars (Nam) = Name_Asm)
3914 and then not Static_Concatenation (A)
3915 then
3916 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3917 Resolve (A, Etype (F));
3918
3919 else
3920 if Nkind (A) = N_Type_Conversion
3921 and then Is_Array_Type (Etype (F))
3922 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3923 and then
3924 (Is_Limited_Type (Etype (F))
3925 or else Is_Limited_Type (Etype (Expression (A))))
3926 then
3927 Error_Msg_N
3928 ("conversion between unrelated limited array types not "
3929 & "allowed ('A'I-00246)", A);
3930
3931 if Is_Limited_Type (Etype (F)) then
3932 Explain_Limited_Type (Etype (F), A);
3933 end if;
3934
3935 if Is_Limited_Type (Etype (Expression (A))) then
3936 Explain_Limited_Type (Etype (Expression (A)), A);
3937 end if;
3938 end if;
3939
3940 -- (Ada 2005: AI-251): If the actual is an allocator whose
3941 -- directly designated type is a class-wide interface, we build
3942 -- an anonymous access type to use it as the type of the
3943 -- allocator. Later, when the subprogram call is expanded, if
3944 -- the interface has a secondary dispatch table the expander
3945 -- will add a type conversion to force the correct displacement
3946 -- of the pointer.
3947
3948 if Nkind (A) = N_Allocator then
3949 declare
3950 DDT : constant Entity_Id :=
3951 Directly_Designated_Type (Base_Type (Etype (F)));
3952
3953 New_Itype : Entity_Id;
3954
3955 begin
3956 if Is_Class_Wide_Type (DDT)
3957 and then Is_Interface (DDT)
3958 then
3959 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3960 Set_Etype (New_Itype, Etype (A));
3961 Set_Directly_Designated_Type
3962 (New_Itype, Directly_Designated_Type (Etype (A)));
3963 Set_Etype (A, New_Itype);
3964 end if;
3965
3966 -- Ada 2005, AI-162:If the actual is an allocator, the
3967 -- innermost enclosing statement is the master of the
3968 -- created object. This needs to be done with expansion
3969 -- enabled only, otherwise the transient scope will not
3970 -- be removed in the expansion of the wrapped construct.
3971
3972 if Expander_Active
3973 and then (Needs_Finalization (DDT)
3974 or else Has_Task (DDT))
3975 then
3976 Establish_Transient_Scope
3977 (A, Manage_Sec_Stack => False);
3978 end if;
3979 end;
3980
3981 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3982 Check_Restriction (No_Access_Parameter_Allocators, A);
3983 end if;
3984 end if;
3985
3986 -- (Ada 2005): The call may be to a primitive operation of a
3987 -- tagged synchronized type, declared outside of the type. In
3988 -- this case the controlling actual must be converted to its
3989 -- corresponding record type, which is the formal type. The
3990 -- actual may be a subtype, either because of a constraint or
3991 -- because it is a generic actual, so use base type to locate
3992 -- concurrent type.
3993
3994 F_Typ := Base_Type (Etype (F));
3995
3996 if Is_Tagged_Type (F_Typ)
3997 and then (Is_Concurrent_Type (F_Typ)
3998 or else Is_Concurrent_Record_Type (F_Typ))
3999 then
4000 -- If the actual is overloaded, look for an interpretation
4001 -- that has a synchronized type.
4002
4003 if not Is_Overloaded (A) then
4004 A_Typ := Base_Type (Etype (A));
4005
4006 else
4007 declare
4008 Index : Interp_Index;
4009 It : Interp;
4010
4011 begin
4012 Get_First_Interp (A, Index, It);
4013 while Present (It.Typ) loop
4014 if Is_Concurrent_Type (It.Typ)
4015 or else Is_Concurrent_Record_Type (It.Typ)
4016 then
4017 A_Typ := Base_Type (It.Typ);
4018 exit;
4019 end if;
4020
4021 Get_Next_Interp (Index, It);
4022 end loop;
4023 end;
4024 end if;
4025
4026 declare
4027 Full_A_Typ : Entity_Id;
4028
4029 begin
4030 if Present (Full_View (A_Typ)) then
4031 Full_A_Typ := Base_Type (Full_View (A_Typ));
4032 else
4033 Full_A_Typ := A_Typ;
4034 end if;
4035
4036 -- Tagged synchronized type (case 1): the actual is a
4037 -- concurrent type.
4038
4039 if Is_Concurrent_Type (A_Typ)
4040 and then Corresponding_Record_Type (A_Typ) = F_Typ
4041 then
4042 Rewrite (A,
4043 Unchecked_Convert_To
4044 (Corresponding_Record_Type (A_Typ), A));
4045 Resolve (A, Etype (F));
4046
4047 -- Tagged synchronized type (case 2): the formal is a
4048 -- concurrent type.
4049
4050 elsif Ekind (Full_A_Typ) = E_Record_Type
4051 and then Present
4052 (Corresponding_Concurrent_Type (Full_A_Typ))
4053 and then Is_Concurrent_Type (F_Typ)
4054 and then Present (Corresponding_Record_Type (F_Typ))
4055 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4056 then
4057 Resolve (A, Corresponding_Record_Type (F_Typ));
4058
4059 -- Common case
4060
4061 else
4062 Resolve (A, Etype (F));
4063 end if;
4064 end;
4065
4066 -- Not a synchronized operation
4067
4068 else
4069 Resolve (A, Etype (F));
4070 end if;
4071 end if;
4072
4073 A_Typ := Etype (A);
4074 F_Typ := Etype (F);
4075
4076 -- An actual cannot be an untagged formal incomplete type
4077
4078 if Ekind (A_Typ) = E_Incomplete_Type
4079 and then not Is_Tagged_Type (A_Typ)
4080 and then Is_Generic_Type (A_Typ)
4081 then
4082 Error_Msg_N
4083 ("invalid use of untagged formal incomplete type", A);
4084 end if;
4085
4086 if Comes_From_Source (Original_Node (N))
4087 and then Nkind_In (Original_Node (N), N_Function_Call,
4088 N_Procedure_Call_Statement)
4089 then
4090 -- In formal mode, check that actual parameters matching
4091 -- formals of tagged types are objects (or ancestor type
4092 -- conversions of objects), not general expressions.
4093
4094 if Is_Actual_Tagged_Parameter (A) then
4095 if Is_SPARK_05_Object_Reference (A) then
4096 null;
4097
4098 elsif Nkind (A) = N_Type_Conversion then
4099 declare
4100 Operand : constant Node_Id := Expression (A);
4101 Operand_Typ : constant Entity_Id := Etype (Operand);
4102 Target_Typ : constant Entity_Id := A_Typ;
4103
4104 begin
4105 if not Is_SPARK_05_Object_Reference (Operand) then
4106 Check_SPARK_05_Restriction
4107 ("object required", Operand);
4108
4109 -- In formal mode, the only view conversions are those
4110 -- involving ancestor conversion of an extended type.
4111
4112 elsif not
4113 (Is_Tagged_Type (Target_Typ)
4114 and then not Is_Class_Wide_Type (Target_Typ)
4115 and then Is_Tagged_Type (Operand_Typ)
4116 and then not Is_Class_Wide_Type (Operand_Typ)
4117 and then Is_Ancestor (Target_Typ, Operand_Typ))
4118 then
4119 if Ekind_In
4120 (F, E_Out_Parameter, E_In_Out_Parameter)
4121 then
4122 Check_SPARK_05_Restriction
4123 ("ancestor conversion is the only permitted "
4124 & "view conversion", A);
4125 else
4126 Check_SPARK_05_Restriction
4127 ("ancestor conversion required", A);
4128 end if;
4129
4130 else
4131 null;
4132 end if;
4133 end;
4134
4135 else
4136 Check_SPARK_05_Restriction ("object required", A);
4137 end if;
4138
4139 -- In formal mode, the only view conversions are those
4140 -- involving ancestor conversion of an extended type.
4141
4142 elsif Nkind (A) = N_Type_Conversion
4143 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4144 then
4145 Check_SPARK_05_Restriction
4146 ("ancestor conversion is the only permitted view "
4147 & "conversion", A);
4148 end if;
4149 end if;
4150
4151 -- has warnings suppressed, then we reset Never_Set_In_Source for
4152 -- the calling entity. The reason for this is to catch cases like
4153 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4154 -- uses trickery to modify an IN parameter.
4155
4156 if Ekind (F) = E_In_Parameter
4157 and then Is_Entity_Name (A)
4158 and then Present (Entity (A))
4159 and then Ekind (Entity (A)) = E_Variable
4160 and then Has_Warnings_Off (F_Typ)
4161 then
4162 Set_Never_Set_In_Source (Entity (A), False);
4163 end if;
4164
4165 -- Perform error checks for IN and IN OUT parameters
4166
4167 if Ekind (F) /= E_Out_Parameter then
4168
4169 -- Check unset reference. For scalar parameters, it is clearly
4170 -- wrong to pass an uninitialized value as either an IN or
4171 -- IN-OUT parameter. For composites, it is also clearly an
4172 -- error to pass a completely uninitialized value as an IN
4173 -- parameter, but the case of IN OUT is trickier. We prefer
4174 -- not to give a warning here. For example, suppose there is
4175 -- a routine that sets some component of a record to False.
4176 -- It is perfectly reasonable to make this IN-OUT and allow
4177 -- either initialized or uninitialized records to be passed
4178 -- in this case.
4179
4180 -- For partially initialized composite values, we also avoid
4181 -- warnings, since it is quite likely that we are passing a
4182 -- partially initialized value and only the initialized fields
4183 -- will in fact be read in the subprogram.
4184
4185 if Is_Scalar_Type (A_Typ)
4186 or else (Ekind (F) = E_In_Parameter
4187 and then not Is_Partially_Initialized_Type (A_Typ))
4188 then
4189 Check_Unset_Reference (A);
4190 end if;
4191
4192 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4193 -- actual to a nested call, since this constitutes a reading of
4194 -- the parameter, which is not allowed.
4195
4196 if Ada_Version = Ada_83
4197 and then Is_Entity_Name (A)
4198 and then Ekind (Entity (A)) = E_Out_Parameter
4199 then
4200 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4201 end if;
4202 end if;
4203
4204 -- In -gnatd.q mode, forget that a given array is constant when
4205 -- it is passed as an IN parameter to a foreign-convention
4206 -- subprogram. This is in case the subprogram evilly modifies the
4207 -- object. Of course, correct code would use IN OUT.
4208
4209 if Debug_Flag_Dot_Q
4210 and then Ekind (F) = E_In_Parameter
4211 and then Has_Foreign_Convention (Nam)
4212 and then Is_Array_Type (F_Typ)
4213 and then Nkind (A) in N_Has_Entity
4214 and then Present (Entity (A))
4215 then
4216 Set_Is_True_Constant (Entity (A), False);
4217 end if;
4218
4219 -- Case of OUT or IN OUT parameter
4220
4221 if Ekind (F) /= E_In_Parameter then
4222
4223 -- For an Out parameter, check for useless assignment. Note
4224 -- that we can't set Last_Assignment this early, because we may
4225 -- kill current values in Resolve_Call, and that call would
4226 -- clobber the Last_Assignment field.
4227
4228 -- Note: call Warn_On_Useless_Assignment before doing the check
4229 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4230 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4231 -- reflects the last assignment, not this one.
4232
4233 if Ekind (F) = E_Out_Parameter then
4234 if Warn_On_Modified_As_Out_Parameter (F)
4235 and then Is_Entity_Name (A)
4236 and then Present (Entity (A))
4237 and then Comes_From_Source (N)
4238 then
4239 Warn_On_Useless_Assignment (Entity (A), A);
4240 end if;
4241 end if;
4242
4243 -- Validate the form of the actual. Note that the call to
4244 -- Is_OK_Variable_For_Out_Formal generates the required
4245 -- reference in this case.
4246
4247 -- A call to an initialization procedure for an aggregate
4248 -- component may initialize a nested component of a constant
4249 -- designated object. In this context the object is variable.
4250
4251 if not Is_OK_Variable_For_Out_Formal (A)
4252 and then not Is_Init_Proc (Nam)
4253 then
4254 Error_Msg_NE ("actual for& must be a variable", A, F);
4255
4256 if Is_Subprogram (Current_Scope) then
4257 if Is_Invariant_Procedure (Current_Scope)
4258 or else Is_Partial_Invariant_Procedure (Current_Scope)
4259 then
4260 Error_Msg_N
4261 ("function used in invariant cannot modify its "
4262 & "argument", F);
4263
4264 elsif Is_Predicate_Function (Current_Scope) then
4265 Error_Msg_N
4266 ("function used in predicate cannot modify its "
4267 & "argument", F);
4268 end if;
4269 end if;
4270 end if;
4271
4272 -- What's the following about???
4273
4274 if Is_Entity_Name (A) then
4275 Kill_Checks (Entity (A));
4276 else
4277 Kill_All_Checks;
4278 end if;
4279 end if;
4280
4281 if Etype (A) = Any_Type then
4282 Set_Etype (N, Any_Type);
4283 return;
4284 end if;
4285
4286 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4287
4288 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4289
4290 -- Apply predicate tests except in certain special cases. Note
4291 -- that it might be more consistent to apply these only when
4292 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4293 -- for the outbound predicate tests ??? In any case indicate
4294 -- the function being called, for better warnings if the call
4295 -- leads to an infinite recursion.
4296
4297 if Predicate_Tests_On_Arguments (Nam) then
4298 Apply_Predicate_Check (A, F_Typ, Nam);
4299 end if;
4300
4301 -- Apply required constraint checks
4302
4303 -- Gigi looks at the check flag and uses the appropriate types.
4304 -- For now since one flag is used there is an optimization
4305 -- which might not be done in the IN OUT case since Gigi does
4306 -- not do any analysis. More thought required about this ???
4307
4308 -- In fact is this comment obsolete??? doesn't the expander now
4309 -- generate all these tests anyway???
4310
4311 if Is_Scalar_Type (Etype (A)) then
4312 Apply_Scalar_Range_Check (A, F_Typ);
4313
4314 elsif Is_Array_Type (Etype (A)) then
4315 Apply_Length_Check (A, F_Typ);
4316
4317 elsif Is_Record_Type (F_Typ)
4318 and then Has_Discriminants (F_Typ)
4319 and then Is_Constrained (F_Typ)
4320 and then (not Is_Derived_Type (F_Typ)
4321 or else Comes_From_Source (Nam))
4322 then
4323 Apply_Discriminant_Check (A, F_Typ);
4324
4325 -- For view conversions of a discriminated object, apply
4326 -- check to object itself, the conversion alreay has the
4327 -- proper type.
4328
4329 if Nkind (A) = N_Type_Conversion
4330 and then Is_Constrained (Etype (Expression (A)))
4331 then
4332 Apply_Discriminant_Check (Expression (A), F_Typ);
4333 end if;
4334
4335 elsif Is_Access_Type (F_Typ)
4336 and then Is_Array_Type (Designated_Type (F_Typ))
4337 and then Is_Constrained (Designated_Type (F_Typ))
4338 then
4339 Apply_Length_Check (A, F_Typ);
4340
4341 elsif Is_Access_Type (F_Typ)
4342 and then Has_Discriminants (Designated_Type (F_Typ))
4343 and then Is_Constrained (Designated_Type (F_Typ))
4344 then
4345 Apply_Discriminant_Check (A, F_Typ);
4346
4347 else
4348 Apply_Range_Check (A, F_Typ);
4349 end if;
4350
4351 -- Ada 2005 (AI-231): Note that the controlling parameter case
4352 -- already existed in Ada 95, which is partially checked
4353 -- elsewhere (see Checks), and we don't want the warning
4354 -- message to differ.
4355
4356 if Is_Access_Type (F_Typ)
4357 and then Can_Never_Be_Null (F_Typ)
4358 and then Known_Null (A)
4359 then
4360 if Is_Controlling_Formal (F) then
4361 Apply_Compile_Time_Constraint_Error
4362 (N => A,
4363 Msg => "null value not allowed here??",
4364 Reason => CE_Access_Check_Failed);
4365
4366 elsif Ada_Version >= Ada_2005 then
4367 Apply_Compile_Time_Constraint_Error
4368 (N => A,
4369 Msg => "(Ada 2005) null not allowed in "
4370 & "null-excluding formal??",
4371 Reason => CE_Null_Not_Allowed);
4372 end if;
4373 end if;
4374 end if;
4375
4376 -- Checks for OUT parameters and IN OUT parameters
4377
4378 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4379
4380 -- If there is a type conversion, make sure the return value
4381 -- meets the constraints of the variable before the conversion.
4382
4383 if Nkind (A) = N_Type_Conversion then
4384 if Is_Scalar_Type (A_Typ) then
4385 Apply_Scalar_Range_Check
4386 (Expression (A), Etype (Expression (A)), A_Typ);
4387
4388 -- In addition, the returned value of the parameter must
4389 -- satisfy the bounds of the object type (see comment
4390 -- below).
4391
4392 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4393
4394 else
4395 Apply_Range_Check
4396 (Expression (A), Etype (Expression (A)), A_Typ);
4397 end if;
4398
4399 -- If no conversion, apply scalar range checks and length check
4400 -- based on the subtype of the actual (NOT that of the formal).
4401 -- This indicates that the check takes place on return from the
4402 -- call. During expansion the required constraint checks are
4403 -- inserted. In GNATprove mode, in the absence of expansion,
4404 -- the flag indicates that the returned value is valid.
4405
4406 else
4407 if Is_Scalar_Type (F_Typ) then
4408 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4409
4410 elsif Is_Array_Type (F_Typ)
4411 and then Ekind (F) = E_Out_Parameter
4412 then
4413 Apply_Length_Check (A, F_Typ);
4414 else
4415 Apply_Range_Check (A, A_Typ, F_Typ);
4416 end if;
4417 end if;
4418
4419 -- Note: we do not apply the predicate checks for the case of
4420 -- OUT and IN OUT parameters. They are instead applied in the
4421 -- Expand_Actuals routine in Exp_Ch6.
4422 end if;
4423
4424 -- An actual associated with an access parameter is implicitly
4425 -- converted to the anonymous access type of the formal and must
4426 -- satisfy the legality checks for access conversions.
4427
4428 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4429 if not Valid_Conversion (A, F_Typ, A) then
4430 Error_Msg_N
4431 ("invalid implicit conversion for access parameter", A);
4432 end if;
4433
4434 -- If the actual is an access selected component of a variable,
4435 -- the call may modify its designated object. It is reasonable
4436 -- to treat this as a potential modification of the enclosing
4437 -- record, to prevent spurious warnings that it should be
4438 -- declared as a constant, because intuitively programmers
4439 -- regard the designated subcomponent as part of the record.
4440
4441 if Nkind (A) = N_Selected_Component
4442 and then Is_Entity_Name (Prefix (A))
4443 and then not Is_Constant_Object (Entity (Prefix (A)))
4444 then
4445 Note_Possible_Modification (A, Sure => False);
4446 end if;
4447 end if;
4448
4449 -- Check bad case of atomic/volatile argument (RM C.6(12))
4450
4451 if Is_By_Reference_Type (Etype (F))
4452 and then Comes_From_Source (N)
4453 then
4454 if Is_Atomic_Object (A)
4455 and then not Is_Atomic (Etype (F))
4456 then
4457 Error_Msg_NE
4458 ("cannot pass atomic argument to non-atomic formal&",
4459 A, F);
4460
4461 elsif Is_Volatile_Object (A)
4462 and then not Is_Volatile (Etype (F))
4463 then
4464 Error_Msg_NE
4465 ("cannot pass volatile argument to non-volatile formal&",
4466 A, F);
4467 end if;
4468 end if;
4469
4470 -- Check that subprograms don't have improper controlling
4471 -- arguments (RM 3.9.2 (9)).
4472
4473 -- A primitive operation may have an access parameter of an
4474 -- incomplete tagged type, but a dispatching call is illegal
4475 -- if the type is still incomplete.
4476
4477 if Is_Controlling_Formal (F) then
4478 Set_Is_Controlling_Actual (A);
4479
4480 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4481 declare
4482 Desig : constant Entity_Id := Designated_Type (Etype (F));
4483 begin
4484 if Ekind (Desig) = E_Incomplete_Type
4485 and then No (Full_View (Desig))
4486 and then No (Non_Limited_View (Desig))
4487 then
4488 Error_Msg_NE
4489 ("premature use of incomplete type& "
4490 & "in dispatching call", A, Desig);
4491 end if;
4492 end;
4493 end if;
4494
4495 elsif Nkind (A) = N_Explicit_Dereference then
4496 Validate_Remote_Access_To_Class_Wide_Type (A);
4497 end if;
4498
4499 -- Apply legality rule 3.9.2 (9/1)
4500
4501 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4502 and then not Is_Class_Wide_Type (F_Typ)
4503 and then not Is_Controlling_Formal (F)
4504 and then not In_Instance
4505 then
4506 Error_Msg_N ("class-wide argument not allowed here!", A);
4507
4508 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4509 Error_Msg_Node_2 := F_Typ;
4510 Error_Msg_NE
4511 ("& is not a dispatching operation of &!", A, Nam);
4512 end if;
4513
4514 -- Apply the checks described in 3.10.2(27): if the context is a
4515 -- specific access-to-object, the actual cannot be class-wide.
4516 -- Use base type to exclude access_to_subprogram cases.
4517
4518 elsif Is_Access_Type (A_Typ)
4519 and then Is_Access_Type (F_Typ)
4520 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4521 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4522 or else (Nkind (A) = N_Attribute_Reference
4523 and then
4524 Is_Class_Wide_Type (Etype (Prefix (A)))))
4525 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4526 and then not Is_Controlling_Formal (F)
4527
4528 -- Disable these checks for call to imported C++ subprograms
4529
4530 and then not
4531 (Is_Entity_Name (Name (N))
4532 and then Is_Imported (Entity (Name (N)))
4533 and then Convention (Entity (Name (N))) = Convention_CPP)
4534 then
4535 Error_Msg_N
4536 ("access to class-wide argument not allowed here!", A);
4537
4538 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4539 Error_Msg_Node_2 := Designated_Type (F_Typ);
4540 Error_Msg_NE
4541 ("& is not a dispatching operation of &!", A, Nam);
4542 end if;
4543 end if;
4544
4545 Check_Aliased_Parameter;
4546
4547 Eval_Actual (A);
4548
4549 -- If it is a named association, treat the selector_name as a
4550 -- proper identifier, and mark the corresponding entity.
4551
4552 if Nkind (Parent (A)) = N_Parameter_Association
4553
4554 -- Ignore reference in SPARK mode, as it refers to an entity not
4555 -- in scope at the point of reference, so the reference should
4556 -- be ignored for computing effects of subprograms.
4557
4558 and then not GNATprove_Mode
4559 then
4560 -- If subprogram is overridden, use name of formal that
4561 -- is being called.
4562
4563 if Present (Real_Subp) then
4564 Set_Entity (Selector_Name (Parent (A)), Real_F);
4565 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4566
4567 else
4568 Set_Entity (Selector_Name (Parent (A)), F);
4569 Generate_Reference (F, Selector_Name (Parent (A)));
4570 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4571 Generate_Reference (F_Typ, N, ' ');
4572 end if;
4573 end if;
4574
4575 Prev := A;
4576
4577 if Ekind (F) /= E_Out_Parameter then
4578 Check_Unset_Reference (A);
4579 end if;
4580
4581 -- The following checks are only relevant when SPARK_Mode is on as
4582 -- they are not standard Ada legality rule. Internally generated
4583 -- temporaries are ignored.
4584
4585 if SPARK_Mode = On and then Comes_From_Source (A) then
4586
4587 -- An effectively volatile object may act as an actual when the
4588 -- corresponding formal is of a non-scalar effectively volatile
4589 -- type (SPARK RM 7.1.3(11)).
4590
4591 if not Is_Scalar_Type (Etype (F))
4592 and then Is_Effectively_Volatile (Etype (F))
4593 then
4594 null;
4595
4596 -- An effectively volatile object may act as an actual in a
4597 -- call to an instance of Unchecked_Conversion.
4598 -- (SPARK RM 7.1.3(11)).
4599
4600 elsif Is_Unchecked_Conversion_Instance (Nam) then
4601 null;
4602
4603 -- The actual denotes an object
4604
4605 elsif Is_Effectively_Volatile_Object (A) then
4606 Error_Msg_N
4607 ("volatile object cannot act as actual in a call (SPARK "
4608 & "RM 7.1.3(11))", A);
4609
4610 -- Otherwise the actual denotes an expression. Inspect the
4611 -- expression and flag each effectively volatile object with
4612 -- enabled property Async_Writers or Effective_Reads as illegal
4613 -- because it apprears within an interfering context. Note that
4614 -- this is usually done in Resolve_Entity_Name, but when the
4615 -- effectively volatile object appears as an actual in a call,
4616 -- the call must be resolved first.
4617
4618 else
4619 Flag_Effectively_Volatile_Objects (A);
4620 end if;
4621
4622 -- An effectively volatile variable cannot act as an actual
4623 -- parameter in a procedure call when the variable has enabled
4624 -- property Effective_Reads and the corresponding formal is of
4625 -- mode IN (SPARK RM 7.1.3(10)).
4626
4627 if Ekind (Nam) = E_Procedure
4628 and then Ekind (F) = E_In_Parameter
4629 and then Is_Entity_Name (A)
4630 then
4631 A_Id := Entity (A);
4632
4633 if Ekind (A_Id) = E_Variable
4634 and then Is_Effectively_Volatile (Etype (A_Id))
4635 and then Effective_Reads_Enabled (A_Id)
4636 then
4637 Error_Msg_NE
4638 ("effectively volatile variable & cannot appear as "
4639 & "actual in procedure call", A, A_Id);
4640
4641 Error_Msg_Name_1 := Name_Effective_Reads;
4642 Error_Msg_N ("\\variable has enabled property %", A);
4643 Error_Msg_N ("\\corresponding formal has mode IN", A);
4644 end if;
4645 end if;
4646 end if;
4647
4648 -- A formal parameter of a specific tagged type whose related
4649 -- subprogram is subject to pragma Extensions_Visible with value
4650 -- "False" cannot act as an actual in a subprogram with value
4651 -- "True" (SPARK RM 6.1.7(3)).
4652
4653 if Is_EVF_Expression (A)
4654 and then Extensions_Visible_Status (Nam) =
4655 Extensions_Visible_True
4656 then
4657 Error_Msg_N
4658 ("formal parameter cannot act as actual parameter when "
4659 & "Extensions_Visible is False", A);
4660 Error_Msg_NE
4661 ("\subprogram & has Extensions_Visible True", A, Nam);
4662 end if;
4663
4664 -- The actual parameter of a Ghost subprogram whose formal is of
4665 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4666
4667 if Comes_From_Source (Nam)
4668 and then Is_Ghost_Entity (Nam)
4669 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4670 and then Is_Entity_Name (A)
4671 and then Present (Entity (A))
4672 and then not Is_Ghost_Entity (Entity (A))
4673 then
4674 Error_Msg_NE
4675 ("non-ghost variable & cannot appear as actual in call to "
4676 & "ghost procedure", A, Entity (A));
4677
4678 if Ekind (F) = E_In_Out_Parameter then
4679 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4680 else
4681 Error_Msg_N ("\corresponding formal has mode OUT", A);
4682 end if;
4683 end if;
4684
4685 Next_Actual (A);
4686
4687 -- Case where actual is not present
4688
4689 else
4690 Insert_Default;
4691 end if;
4692
4693 Next_Formal (F);
4694
4695 if Present (Real_Subp) then
4696 Next_Formal (Real_F);
4697 end if;
4698 end loop;
4699 end Resolve_Actuals;
4700
4701 -----------------------
4702 -- Resolve_Allocator --
4703 -----------------------
4704
4705 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4706 Desig_T : constant Entity_Id := Designated_Type (Typ);
4707 E : constant Node_Id := Expression (N);
4708 Subtyp : Entity_Id;
4709 Discrim : Entity_Id;
4710 Constr : Node_Id;
4711 Aggr : Node_Id;
4712 Assoc : Node_Id := Empty;
4713 Disc_Exp : Node_Id;
4714
4715 procedure Check_Allocator_Discrim_Accessibility
4716 (Disc_Exp : Node_Id;
4717 Alloc_Typ : Entity_Id);
4718 -- Check that accessibility level associated with an access discriminant
4719 -- initialized in an allocator by the expression Disc_Exp is not deeper
4720 -- than the level of the allocator type Alloc_Typ. An error message is
4721 -- issued if this condition is violated. Specialized checks are done for
4722 -- the cases of a constraint expression which is an access attribute or
4723 -- an access discriminant.
4724
4725 function In_Dispatching_Context return Boolean;
4726 -- If the allocator is an actual in a call, it is allowed to be class-
4727 -- wide when the context is not because it is a controlling actual.
4728
4729 -------------------------------------------
4730 -- Check_Allocator_Discrim_Accessibility --
4731 -------------------------------------------
4732
4733 procedure Check_Allocator_Discrim_Accessibility
4734 (Disc_Exp : Node_Id;
4735 Alloc_Typ : Entity_Id)
4736 is
4737 begin
4738 if Type_Access_Level (Etype (Disc_Exp)) >
4739 Deepest_Type_Access_Level (Alloc_Typ)
4740 then
4741 Error_Msg_N
4742 ("operand type has deeper level than allocator type", Disc_Exp);
4743
4744 -- When the expression is an Access attribute the level of the prefix
4745 -- object must not be deeper than that of the allocator's type.
4746
4747 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4748 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4749 Attribute_Access
4750 and then Object_Access_Level (Prefix (Disc_Exp)) >
4751 Deepest_Type_Access_Level (Alloc_Typ)
4752 then
4753 Error_Msg_N
4754 ("prefix of attribute has deeper level than allocator type",
4755 Disc_Exp);
4756
4757 -- When the expression is an access discriminant the check is against
4758 -- the level of the prefix object.
4759
4760 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4761 and then Nkind (Disc_Exp) = N_Selected_Component
4762 and then Object_Access_Level (Prefix (Disc_Exp)) >
4763 Deepest_Type_Access_Level (Alloc_Typ)
4764 then
4765 Error_Msg_N
4766 ("access discriminant has deeper level than allocator type",
4767 Disc_Exp);
4768
4769 -- All other cases are legal
4770
4771 else
4772 null;
4773 end if;
4774 end Check_Allocator_Discrim_Accessibility;
4775
4776 ----------------------------
4777 -- In_Dispatching_Context --
4778 ----------------------------
4779
4780 function In_Dispatching_Context return Boolean is
4781 Par : constant Node_Id := Parent (N);
4782
4783 begin
4784 return Nkind (Par) in N_Subprogram_Call
4785 and then Is_Entity_Name (Name (Par))
4786 and then Is_Dispatching_Operation (Entity (Name (Par)));
4787 end In_Dispatching_Context;
4788
4789 -- Start of processing for Resolve_Allocator
4790
4791 begin
4792 -- Replace general access with specific type
4793
4794 if Ekind (Etype (N)) = E_Allocator_Type then
4795 Set_Etype (N, Base_Type (Typ));
4796 end if;
4797
4798 if Is_Abstract_Type (Typ) then
4799 Error_Msg_N ("type of allocator cannot be abstract", N);
4800 end if;
4801
4802 -- For qualified expression, resolve the expression using the given
4803 -- subtype (nothing to do for type mark, subtype indication)
4804
4805 if Nkind (E) = N_Qualified_Expression then
4806 if Is_Class_Wide_Type (Etype (E))
4807 and then not Is_Class_Wide_Type (Desig_T)
4808 and then not In_Dispatching_Context
4809 then
4810 Error_Msg_N
4811 ("class-wide allocator not allowed for this access type", N);
4812 end if;
4813
4814 Resolve (Expression (E), Etype (E));
4815 Check_Non_Static_Context (Expression (E));
4816 Check_Unset_Reference (Expression (E));
4817
4818 -- Allocators generated by the build-in-place expansion mechanism
4819 -- are explicitly marked as coming from source but do not need to be
4820 -- checked for limited initialization. To exclude this case, ensure
4821 -- that the parent of the allocator is a source node.
4822 -- The return statement constructed for an Expression_Function does
4823 -- not come from source but requires a limited check.
4824
4825 if Is_Limited_Type (Etype (E))
4826 and then Comes_From_Source (N)
4827 and then
4828 (Comes_From_Source (Parent (N))
4829 or else
4830 (Ekind (Current_Scope) = E_Function
4831 and then Nkind (Original_Node (Unit_Declaration_Node
4832 (Current_Scope))) = N_Expression_Function))
4833 and then not In_Instance_Body
4834 then
4835 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4836 if Nkind (Parent (N)) = N_Assignment_Statement then
4837 Error_Msg_N
4838 ("illegal expression for initialized allocator of a "
4839 & "limited type (RM 7.5 (2.7/2))", N);
4840 else
4841 Error_Msg_N
4842 ("initialization not allowed for limited types", N);
4843 end if;
4844
4845 Explain_Limited_Type (Etype (E), N);
4846 end if;
4847 end if;
4848
4849 -- A qualified expression requires an exact match of the type. Class-
4850 -- wide matching is not allowed.
4851
4852 if (Is_Class_Wide_Type (Etype (Expression (E)))
4853 or else Is_Class_Wide_Type (Etype (E)))
4854 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4855 then
4856 Wrong_Type (Expression (E), Etype (E));
4857 end if;
4858
4859 -- Calls to build-in-place functions are not currently supported in
4860 -- allocators for access types associated with a simple storage pool.
4861 -- Supporting such allocators may require passing additional implicit
4862 -- parameters to build-in-place functions (or a significant revision
4863 -- of the current b-i-p implementation to unify the handling for
4864 -- multiple kinds of storage pools). ???
4865
4866 if Is_Limited_View (Desig_T)
4867 and then Nkind (Expression (E)) = N_Function_Call
4868 then
4869 declare
4870 Pool : constant Entity_Id :=
4871 Associated_Storage_Pool (Root_Type (Typ));
4872 begin
4873 if Present (Pool)
4874 and then
4875 Present (Get_Rep_Pragma
4876 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4877 then
4878 Error_Msg_N
4879 ("limited function calls not yet supported in simple "
4880 & "storage pool allocators", Expression (E));
4881 end if;
4882 end;
4883 end if;
4884
4885 -- A special accessibility check is needed for allocators that
4886 -- constrain access discriminants. The level of the type of the
4887 -- expression used to constrain an access discriminant cannot be
4888 -- deeper than the type of the allocator (in contrast to access
4889 -- parameters, where the level of the actual can be arbitrary).
4890
4891 -- We can't use Valid_Conversion to perform this check because in
4892 -- general the type of the allocator is unrelated to the type of
4893 -- the access discriminant.
4894
4895 if Ekind (Typ) /= E_Anonymous_Access_Type
4896 or else Is_Local_Anonymous_Access (Typ)
4897 then
4898 Subtyp := Entity (Subtype_Mark (E));
4899
4900 Aggr := Original_Node (Expression (E));
4901
4902 if Has_Discriminants (Subtyp)
4903 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4904 then
4905 Discrim := First_Discriminant (Base_Type (Subtyp));
4906
4907 -- Get the first component expression of the aggregate
4908
4909 if Present (Expressions (Aggr)) then
4910 Disc_Exp := First (Expressions (Aggr));
4911
4912 elsif Present (Component_Associations (Aggr)) then
4913 Assoc := First (Component_Associations (Aggr));
4914
4915 if Present (Assoc) then
4916 Disc_Exp := Expression (Assoc);
4917 else
4918 Disc_Exp := Empty;
4919 end if;
4920
4921 else
4922 Disc_Exp := Empty;
4923 end if;
4924
4925 while Present (Discrim) and then Present (Disc_Exp) loop
4926 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4927 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4928 end if;
4929
4930 Next_Discriminant (Discrim);
4931
4932 if Present (Discrim) then
4933 if Present (Assoc) then
4934 Next (Assoc);
4935 Disc_Exp := Expression (Assoc);
4936
4937 elsif Present (Next (Disc_Exp)) then
4938 Next (Disc_Exp);
4939
4940 else
4941 Assoc := First (Component_Associations (Aggr));
4942
4943 if Present (Assoc) then
4944 Disc_Exp := Expression (Assoc);
4945 else
4946 Disc_Exp := Empty;
4947 end if;
4948 end if;
4949 end if;
4950 end loop;
4951 end if;
4952 end if;
4953
4954 -- For a subtype mark or subtype indication, freeze the subtype
4955
4956 else
4957 Freeze_Expression (E);
4958
4959 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4960 Error_Msg_N
4961 ("initialization required for access-to-constant allocator", N);
4962 end if;
4963
4964 -- A special accessibility check is needed for allocators that
4965 -- constrain access discriminants. The level of the type of the
4966 -- expression used to constrain an access discriminant cannot be
4967 -- deeper than the type of the allocator (in contrast to access
4968 -- parameters, where the level of the actual can be arbitrary).
4969 -- We can't use Valid_Conversion to perform this check because
4970 -- in general the type of the allocator is unrelated to the type
4971 -- of the access discriminant.
4972
4973 if Nkind (Original_Node (E)) = N_Subtype_Indication
4974 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4975 or else Is_Local_Anonymous_Access (Typ))
4976 then
4977 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4978
4979 if Has_Discriminants (Subtyp) then
4980 Discrim := First_Discriminant (Base_Type (Subtyp));
4981 Constr := First (Constraints (Constraint (Original_Node (E))));
4982 while Present (Discrim) and then Present (Constr) loop
4983 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4984 if Nkind (Constr) = N_Discriminant_Association then
4985 Disc_Exp := Original_Node (Expression (Constr));
4986 else
4987 Disc_Exp := Original_Node (Constr);
4988 end if;
4989
4990 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4991 end if;
4992
4993 Next_Discriminant (Discrim);
4994 Next (Constr);
4995 end loop;
4996 end if;
4997 end if;
4998 end if;
4999
5000 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5001 -- check that the level of the type of the created object is not deeper
5002 -- than the level of the allocator's access type, since extensions can
5003 -- now occur at deeper levels than their ancestor types. This is a
5004 -- static accessibility level check; a run-time check is also needed in
5005 -- the case of an initialized allocator with a class-wide argument (see
5006 -- Expand_Allocator_Expression).
5007
5008 if Ada_Version >= Ada_2005
5009 and then Is_Class_Wide_Type (Desig_T)
5010 then
5011 declare
5012 Exp_Typ : Entity_Id;
5013
5014 begin
5015 if Nkind (E) = N_Qualified_Expression then
5016 Exp_Typ := Etype (E);
5017 elsif Nkind (E) = N_Subtype_Indication then
5018 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5019 else
5020 Exp_Typ := Entity (E);
5021 end if;
5022
5023 if Type_Access_Level (Exp_Typ) >
5024 Deepest_Type_Access_Level (Typ)
5025 then
5026 if In_Instance_Body then
5027 Error_Msg_Warn := SPARK_Mode /= On;
5028 Error_Msg_N
5029 ("type in allocator has deeper level than designated "
5030 & "class-wide type<<", E);
5031 Error_Msg_N ("\Program_Error [<<", E);
5032
5033 Rewrite (N,
5034 Make_Raise_Program_Error (Sloc (N),
5035 Reason => PE_Accessibility_Check_Failed));
5036 Set_Etype (N, Typ);
5037
5038 -- Do not apply Ada 2005 accessibility checks on a class-wide
5039 -- allocator if the type given in the allocator is a formal
5040 -- type. A run-time check will be performed in the instance.
5041
5042 elsif not Is_Generic_Type (Exp_Typ) then
5043 Error_Msg_N
5044 ("type in allocator has deeper level than designated "
5045 & "class-wide type", E);
5046 end if;
5047 end if;
5048 end;
5049 end if;
5050
5051 -- Check for allocation from an empty storage pool. But do not complain
5052 -- if it's a return statement for a build-in-place function, because the
5053 -- allocator is there just in case the caller uses an allocator. If the
5054 -- caller does use an allocator, it will be caught at the call site.
5055
5056 if No_Pool_Assigned (Typ)
5057 and then not Alloc_For_BIP_Return (N)
5058 then
5059 Error_Msg_N ("allocation from empty storage pool!", N);
5060
5061 -- If the context is an unchecked conversion, as may happen within an
5062 -- inlined subprogram, the allocator is being resolved with its own
5063 -- anonymous type. In that case, if the target type has a specific
5064 -- storage pool, it must be inherited explicitly by the allocator type.
5065
5066 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5067 and then No (Associated_Storage_Pool (Typ))
5068 then
5069 Set_Associated_Storage_Pool
5070 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5071 end if;
5072
5073 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5074 Check_Restriction (No_Anonymous_Allocators, N);
5075 end if;
5076
5077 -- Check that an allocator with task parts isn't for a nested access
5078 -- type when restriction No_Task_Hierarchy applies.
5079
5080 if not Is_Library_Level_Entity (Base_Type (Typ))
5081 and then Has_Task (Base_Type (Desig_T))
5082 then
5083 Check_Restriction (No_Task_Hierarchy, N);
5084 end if;
5085
5086 -- An illegal allocator may be rewritten as a raise Program_Error
5087 -- statement.
5088
5089 if Nkind (N) = N_Allocator then
5090
5091 -- Avoid coextension processing for an allocator that is the
5092 -- expansion of a build-in-place function call.
5093
5094 if Nkind (Original_Node (N)) = N_Allocator
5095 and then Nkind (Expression (Original_Node (N))) =
5096 N_Qualified_Expression
5097 and then Nkind (Expression (Expression (Original_Node (N)))) =
5098 N_Function_Call
5099 and then Is_Expanded_Build_In_Place_Call
5100 (Expression (Expression (Original_Node (N))))
5101 then
5102 null; -- b-i-p function call case
5103
5104 else
5105 -- An anonymous access discriminant is the definition of a
5106 -- coextension.
5107
5108 if Ekind (Typ) = E_Anonymous_Access_Type
5109 and then Nkind (Associated_Node_For_Itype (Typ)) =
5110 N_Discriminant_Specification
5111 then
5112 declare
5113 Discr : constant Entity_Id :=
5114 Defining_Identifier (Associated_Node_For_Itype (Typ));
5115
5116 begin
5117 Check_Restriction (No_Coextensions, N);
5118
5119 -- Ada 2012 AI05-0052: If the designated type of the
5120 -- allocator is limited, then the allocator shall not
5121 -- be used to define the value of an access discriminant
5122 -- unless the discriminated type is immutably limited.
5123
5124 if Ada_Version >= Ada_2012
5125 and then Is_Limited_Type (Desig_T)
5126 and then not Is_Limited_View (Scope (Discr))
5127 then
5128 Error_Msg_N
5129 ("only immutably limited types can have anonymous "
5130 & "access discriminants designating a limited type",
5131 N);
5132 end if;
5133 end;
5134
5135 -- Avoid marking an allocator as a dynamic coextension if it is
5136 -- within a static construct.
5137
5138 if not Is_Static_Coextension (N) then
5139 Set_Is_Dynamic_Coextension (N);
5140
5141 -- Finalization and deallocation of coextensions utilizes an
5142 -- approximate implementation which does not directly adhere
5143 -- to the semantic rules. Warn on potential issues involving
5144 -- coextensions.
5145
5146 if Is_Controlled (Desig_T) then
5147 Error_Msg_N
5148 ("??coextension will not be finalized when its "
5149 & "associated owner is deallocated or finalized", N);
5150 else
5151 Error_Msg_N
5152 ("??coextension will not be deallocated when its "
5153 & "associated owner is deallocated", N);
5154 end if;
5155 end if;
5156
5157 -- Cleanup for potential static coextensions
5158
5159 else
5160 Set_Is_Dynamic_Coextension (N, False);
5161 Set_Is_Static_Coextension (N, False);
5162
5163 -- Anonymous access-to-controlled objects are not finalized on
5164 -- time because this involves run-time ownership and currently
5165 -- this property is not available. In rare cases the object may
5166 -- not be finalized at all. Warn on potential issues involving
5167 -- anonymous access-to-controlled objects.
5168
5169 if Ekind (Typ) = E_Anonymous_Access_Type
5170 and then Is_Controlled_Active (Desig_T)
5171 then
5172 Error_Msg_N
5173 ("??object designated by anonymous access object might "
5174 & "not be finalized until its enclosing library unit "
5175 & "goes out of scope", N);
5176 Error_Msg_N ("\use named access type instead", N);
5177 end if;
5178 end if;
5179 end if;
5180 end if;
5181
5182 -- Report a simple error: if the designated object is a local task,
5183 -- its body has not been seen yet, and its activation will fail an
5184 -- elaboration check.
5185
5186 if Is_Task_Type (Desig_T)
5187 and then Scope (Base_Type (Desig_T)) = Current_Scope
5188 and then Is_Compilation_Unit (Current_Scope)
5189 and then Ekind (Current_Scope) = E_Package
5190 and then not In_Package_Body (Current_Scope)
5191 then
5192 Error_Msg_Warn := SPARK_Mode /= On;
5193 Error_Msg_N ("cannot activate task before body seen<<", N);
5194 Error_Msg_N ("\Program_Error [<<", N);
5195 end if;
5196
5197 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5198 -- type with a task component on a subpool. This action must raise
5199 -- Program_Error at runtime.
5200
5201 if Ada_Version >= Ada_2012
5202 and then Nkind (N) = N_Allocator
5203 and then Present (Subpool_Handle_Name (N))
5204 and then Has_Task (Desig_T)
5205 then
5206 Error_Msg_Warn := SPARK_Mode /= On;
5207 Error_Msg_N ("cannot allocate task on subpool<<", N);
5208 Error_Msg_N ("\Program_Error [<<", N);
5209
5210 Rewrite (N,
5211 Make_Raise_Program_Error (Sloc (N),
5212 Reason => PE_Explicit_Raise));
5213 Set_Etype (N, Typ);
5214 end if;
5215 end Resolve_Allocator;
5216
5217 ---------------------------
5218 -- Resolve_Arithmetic_Op --
5219 ---------------------------
5220
5221 -- Used for resolving all arithmetic operators except exponentiation
5222
5223 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5224 L : constant Node_Id := Left_Opnd (N);
5225 R : constant Node_Id := Right_Opnd (N);
5226 TL : constant Entity_Id := Base_Type (Etype (L));
5227 TR : constant Entity_Id := Base_Type (Etype (R));
5228 T : Entity_Id;
5229 Rop : Node_Id;
5230
5231 B_Typ : constant Entity_Id := Base_Type (Typ);
5232 -- We do the resolution using the base type, because intermediate values
5233 -- in expressions always are of the base type, not a subtype of it.
5234
5235 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5236 -- Returns True if N is in a context that expects "any real type"
5237
5238 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5239 -- Return True iff given type is Integer or universal real/integer
5240
5241 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5242 -- Choose type of integer literal in fixed-point operation to conform
5243 -- to available fixed-point type. T is the type of the other operand,
5244 -- which is needed to determine the expected type of N.
5245
5246 procedure Set_Operand_Type (N : Node_Id);
5247 -- Set operand type to T if universal
5248
5249 -------------------------------
5250 -- Expected_Type_Is_Any_Real --
5251 -------------------------------
5252
5253 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5254 begin
5255 -- N is the expression after "delta" in a fixed_point_definition;
5256 -- see RM-3.5.9(6):
5257
5258 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5259 N_Decimal_Fixed_Point_Definition,
5260
5261 -- N is one of the bounds in a real_range_specification;
5262 -- see RM-3.5.7(5):
5263
5264 N_Real_Range_Specification,
5265
5266 -- N is the expression of a delta_constraint;
5267 -- see RM-J.3(3):
5268
5269 N_Delta_Constraint);
5270 end Expected_Type_Is_Any_Real;
5271
5272 -----------------------------
5273 -- Is_Integer_Or_Universal --
5274 -----------------------------
5275
5276 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5277 T : Entity_Id;
5278 Index : Interp_Index;
5279 It : Interp;
5280
5281 begin
5282 if not Is_Overloaded (N) then
5283 T := Etype (N);
5284 return Base_Type (T) = Base_Type (Standard_Integer)
5285 or else T = Universal_Integer
5286 or else T = Universal_Real;
5287 else
5288 Get_First_Interp (N, Index, It);
5289 while Present (It.Typ) loop
5290 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5291 or else It.Typ = Universal_Integer
5292 or else It.Typ = Universal_Real
5293 then
5294 return True;
5295 end if;
5296
5297 Get_Next_Interp (Index, It);
5298 end loop;
5299 end if;
5300
5301 return False;
5302 end Is_Integer_Or_Universal;
5303
5304 ----------------------------
5305 -- Set_Mixed_Mode_Operand --
5306 ----------------------------
5307
5308 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5309 Index : Interp_Index;
5310 It : Interp;
5311
5312 begin
5313 if Universal_Interpretation (N) = Universal_Integer then
5314
5315 -- A universal integer literal is resolved as standard integer
5316 -- except in the case of a fixed-point result, where we leave it
5317 -- as universal (to be handled by Exp_Fixd later on)
5318
5319 if Is_Fixed_Point_Type (T) then
5320 Resolve (N, Universal_Integer);
5321 else
5322 Resolve (N, Standard_Integer);
5323 end if;
5324
5325 elsif Universal_Interpretation (N) = Universal_Real
5326 and then (T = Base_Type (Standard_Integer)
5327 or else T = Universal_Integer
5328 or else T = Universal_Real)
5329 then
5330 -- A universal real can appear in a fixed-type context. We resolve
5331 -- the literal with that context, even though this might raise an
5332 -- exception prematurely (the other operand may be zero).
5333
5334 Resolve (N, B_Typ);
5335
5336 elsif Etype (N) = Base_Type (Standard_Integer)
5337 and then T = Universal_Real
5338 and then Is_Overloaded (N)
5339 then
5340 -- Integer arg in mixed-mode operation. Resolve with universal
5341 -- type, in case preference rule must be applied.
5342
5343 Resolve (N, Universal_Integer);
5344
5345 elsif Etype (N) = T and then B_Typ /= Universal_Fixed then
5346
5347 -- If the operand is part of a fixed multiplication operation,
5348 -- a conversion will be applied to each operand, so resolve it
5349 -- with its own type.
5350
5351 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
5352 Resolve (N);
5353
5354 else
5355 -- Not a mixed-mode operation, resolve with context
5356
5357 Resolve (N, B_Typ);
5358 end if;
5359
5360 elsif Etype (N) = Any_Fixed then
5361
5362 -- N may itself be a mixed-mode operation, so use context type
5363
5364 Resolve (N, B_Typ);
5365
5366 elsif Is_Fixed_Point_Type (T)
5367 and then B_Typ = Universal_Fixed
5368 and then Is_Overloaded (N)
5369 then
5370 -- Must be (fixed * fixed) operation, operand must have one
5371 -- compatible interpretation.
5372
5373 Resolve (N, Any_Fixed);
5374
5375 elsif Is_Fixed_Point_Type (B_Typ)
5376 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5377 and then Is_Overloaded (N)
5378 then
5379 -- C * F(X) in a fixed context, where C is a real literal or a
5380 -- fixed-point expression. F must have either a fixed type
5381 -- interpretation or an integer interpretation, but not both.
5382
5383 Get_First_Interp (N, Index, It);
5384 while Present (It.Typ) loop
5385 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5386 if Analyzed (N) then
5387 Error_Msg_N ("ambiguous operand in fixed operation", N);
5388 else
5389 Resolve (N, Standard_Integer);
5390 end if;
5391
5392 elsif Is_Fixed_Point_Type (It.Typ) then
5393 if Analyzed (N) then
5394 Error_Msg_N ("ambiguous operand in fixed operation", N);
5395 else
5396 Resolve (N, It.Typ);
5397 end if;
5398 end if;
5399
5400 Get_Next_Interp (Index, It);
5401 end loop;
5402
5403 -- Reanalyze the literal with the fixed type of the context. If
5404 -- context is Universal_Fixed, we are within a conversion, leave
5405 -- the literal as a universal real because there is no usable
5406 -- fixed type, and the target of the conversion plays no role in
5407 -- the resolution.
5408
5409 declare
5410 Op2 : Node_Id;
5411 T2 : Entity_Id;
5412
5413 begin
5414 if N = L then
5415 Op2 := R;
5416 else
5417 Op2 := L;
5418 end if;
5419
5420 if B_Typ = Universal_Fixed
5421 and then Nkind (Op2) = N_Real_Literal
5422 then
5423 T2 := Universal_Real;
5424 else
5425 T2 := B_Typ;
5426 end if;
5427
5428 Set_Analyzed (Op2, False);
5429 Resolve (Op2, T2);
5430 end;
5431
5432 -- A universal real conditional expression can appear in a fixed-type
5433 -- context and must be resolved with that context to facilitate the
5434 -- code generation in the back end.
5435
5436 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5437 and then Etype (N) = Universal_Real
5438 and then Is_Fixed_Point_Type (B_Typ)
5439 then
5440 Resolve (N, B_Typ);
5441
5442 else
5443 Resolve (N);
5444 end if;
5445 end Set_Mixed_Mode_Operand;
5446
5447 ----------------------
5448 -- Set_Operand_Type --
5449 ----------------------
5450
5451 procedure Set_Operand_Type (N : Node_Id) is
5452 begin
5453 if Etype (N) = Universal_Integer
5454 or else Etype (N) = Universal_Real
5455 then
5456 Set_Etype (N, T);
5457 end if;
5458 end Set_Operand_Type;
5459
5460 -- Start of processing for Resolve_Arithmetic_Op
5461
5462 begin
5463 if Comes_From_Source (N)
5464 and then Ekind (Entity (N)) = E_Function
5465 and then Is_Imported (Entity (N))
5466 and then Is_Intrinsic_Subprogram (Entity (N))
5467 then
5468 Resolve_Intrinsic_Operator (N, Typ);
5469 return;
5470
5471 -- Special-case for mixed-mode universal expressions or fixed point type
5472 -- operation: each argument is resolved separately. The same treatment
5473 -- is required if one of the operands of a fixed point operation is
5474 -- universal real, since in this case we don't do a conversion to a
5475 -- specific fixed-point type (instead the expander handles the case).
5476
5477 -- Set the type of the node to its universal interpretation because
5478 -- legality checks on an exponentiation operand need the context.
5479
5480 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5481 and then Present (Universal_Interpretation (L))
5482 and then Present (Universal_Interpretation (R))
5483 then
5484 Set_Etype (N, B_Typ);
5485 Resolve (L, Universal_Interpretation (L));
5486 Resolve (R, Universal_Interpretation (R));
5487
5488 elsif (B_Typ = Universal_Real
5489 or else Etype (N) = Universal_Fixed
5490 or else (Etype (N) = Any_Fixed
5491 and then Is_Fixed_Point_Type (B_Typ))
5492 or else (Is_Fixed_Point_Type (B_Typ)
5493 and then (Is_Integer_Or_Universal (L)
5494 or else
5495 Is_Integer_Or_Universal (R))))
5496 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5497 then
5498 if TL = Universal_Integer or else TR = Universal_Integer then
5499 Check_For_Visible_Operator (N, B_Typ);
5500 end if;
5501
5502 -- If context is a fixed type and one operand is integer, the other
5503 -- is resolved with the type of the context.
5504
5505 if Is_Fixed_Point_Type (B_Typ)
5506 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5507 or else TL = Universal_Integer)
5508 then
5509 Resolve (R, B_Typ);
5510 Resolve (L, TL);
5511
5512 elsif Is_Fixed_Point_Type (B_Typ)
5513 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5514 or else TR = Universal_Integer)
5515 then
5516 Resolve (L, B_Typ);
5517 Resolve (R, TR);
5518
5519 -- If both operands are universal and the context is a floating
5520 -- point type, the operands are resolved to the type of the context.
5521
5522 elsif Is_Floating_Point_Type (B_Typ) then
5523 Resolve (L, B_Typ);
5524 Resolve (R, B_Typ);
5525
5526 else
5527 Set_Mixed_Mode_Operand (L, TR);
5528 Set_Mixed_Mode_Operand (R, TL);
5529 end if;
5530
5531 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5532 -- multiplying operators from being used when the expected type is
5533 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5534 -- some cases where the expected type is actually Any_Real;
5535 -- Expected_Type_Is_Any_Real takes care of that case.
5536
5537 if Etype (N) = Universal_Fixed
5538 or else Etype (N) = Any_Fixed
5539 then
5540 if B_Typ = Universal_Fixed
5541 and then not Expected_Type_Is_Any_Real (N)
5542 and then not Nkind_In (Parent (N), N_Type_Conversion,
5543 N_Unchecked_Type_Conversion)
5544 then
5545 Error_Msg_N ("type cannot be determined from context!", N);
5546 Error_Msg_N ("\explicit conversion to result type required", N);
5547
5548 Set_Etype (L, Any_Type);
5549 Set_Etype (R, Any_Type);
5550
5551 else
5552 if Ada_Version = Ada_83
5553 and then Etype (N) = Universal_Fixed
5554 and then not
5555 Nkind_In (Parent (N), N_Type_Conversion,
5556 N_Unchecked_Type_Conversion)
5557 then
5558 Error_Msg_N
5559 ("(Ada 83) fixed-point operation needs explicit "
5560 & "conversion", N);
5561 end if;
5562
5563 -- The expected type is "any real type" in contexts like
5564
5565 -- type T is delta <universal_fixed-expression> ...
5566
5567 -- in which case we need to set the type to Universal_Real
5568 -- so that static expression evaluation will work properly.
5569
5570 if Expected_Type_Is_Any_Real (N) then
5571 Set_Etype (N, Universal_Real);
5572 else
5573 Set_Etype (N, B_Typ);
5574 end if;
5575 end if;
5576
5577 elsif Is_Fixed_Point_Type (B_Typ)
5578 and then (Is_Integer_Or_Universal (L)
5579 or else Nkind (L) = N_Real_Literal
5580 or else Nkind (R) = N_Real_Literal
5581 or else Is_Integer_Or_Universal (R))
5582 then
5583 Set_Etype (N, B_Typ);
5584
5585 elsif Etype (N) = Any_Fixed then
5586
5587 -- If no previous errors, this is only possible if one operand is
5588 -- overloaded and the context is universal. Resolve as such.
5589
5590 Set_Etype (N, B_Typ);
5591 end if;
5592
5593 else
5594 if (TL = Universal_Integer or else TL = Universal_Real)
5595 and then
5596 (TR = Universal_Integer or else TR = Universal_Real)
5597 then
5598 Check_For_Visible_Operator (N, B_Typ);
5599 end if;
5600
5601 -- If the context is Universal_Fixed and the operands are also
5602 -- universal fixed, this is an error, unless there is only one
5603 -- applicable fixed_point type (usually Duration).
5604
5605 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5606 T := Unique_Fixed_Point_Type (N);
5607
5608 if T = Any_Type then
5609 Set_Etype (N, T);
5610 return;
5611 else
5612 Resolve (L, T);
5613 Resolve (R, T);
5614 end if;
5615
5616 else
5617 Resolve (L, B_Typ);
5618 Resolve (R, B_Typ);
5619 end if;
5620
5621 -- If one of the arguments was resolved to a non-universal type.
5622 -- label the result of the operation itself with the same type.
5623 -- Do the same for the universal argument, if any.
5624
5625 T := Intersect_Types (L, R);
5626 Set_Etype (N, Base_Type (T));
5627 Set_Operand_Type (L);
5628 Set_Operand_Type (R);
5629 end if;
5630
5631 Generate_Operator_Reference (N, Typ);
5632 Analyze_Dimension (N);
5633 Eval_Arithmetic_Op (N);
5634
5635 -- In SPARK, a multiplication or division with operands of fixed point
5636 -- types must be qualified or explicitly converted to identify the
5637 -- result type.
5638
5639 if (Is_Fixed_Point_Type (Etype (L))
5640 or else Is_Fixed_Point_Type (Etype (R)))
5641 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5642 and then
5643 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5644 then
5645 Check_SPARK_05_Restriction
5646 ("operation should be qualified or explicitly converted", N);
5647 end if;
5648
5649 -- Set overflow and division checking bit
5650
5651 if Nkind (N) in N_Op then
5652 if not Overflow_Checks_Suppressed (Etype (N)) then
5653 Enable_Overflow_Check (N);
5654 end if;
5655
5656 -- Give warning if explicit division by zero
5657
5658 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5659 and then not Division_Checks_Suppressed (Etype (N))
5660 then
5661 Rop := Right_Opnd (N);
5662
5663 if Compile_Time_Known_Value (Rop)
5664 and then ((Is_Integer_Type (Etype (Rop))
5665 and then Expr_Value (Rop) = Uint_0)
5666 or else
5667 (Is_Real_Type (Etype (Rop))
5668 and then Expr_Value_R (Rop) = Ureal_0))
5669 then
5670 -- Specialize the warning message according to the operation.
5671 -- When SPARK_Mode is On, force a warning instead of an error
5672 -- in that case, as this likely corresponds to deactivated
5673 -- code. The following warnings are for the case
5674
5675 case Nkind (N) is
5676 when N_Op_Divide =>
5677
5678 -- For division, we have two cases, for float division
5679 -- of an unconstrained float type, on a machine where
5680 -- Machine_Overflows is false, we don't get an exception
5681 -- at run-time, but rather an infinity or Nan. The Nan
5682 -- case is pretty obscure, so just warn about infinities.
5683
5684 if Is_Floating_Point_Type (Typ)
5685 and then not Is_Constrained (Typ)
5686 and then not Machine_Overflows_On_Target
5687 then
5688 Error_Msg_N
5689 ("float division by zero, may generate "
5690 & "'+'/'- infinity??", Right_Opnd (N));
5691
5692 -- For all other cases, we get a Constraint_Error
5693
5694 else
5695 Apply_Compile_Time_Constraint_Error
5696 (N, "division by zero??", CE_Divide_By_Zero,
5697 Loc => Sloc (Right_Opnd (N)),
5698 Warn => SPARK_Mode = On);
5699 end if;
5700
5701 when N_Op_Rem =>
5702 Apply_Compile_Time_Constraint_Error
5703 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5704 Loc => Sloc (Right_Opnd (N)),
5705 Warn => SPARK_Mode = On);
5706
5707 when N_Op_Mod =>
5708 Apply_Compile_Time_Constraint_Error
5709 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5710 Loc => Sloc (Right_Opnd (N)),
5711 Warn => SPARK_Mode = On);
5712
5713 -- Division by zero can only happen with division, rem,
5714 -- and mod operations.
5715
5716 when others =>
5717 raise Program_Error;
5718 end case;
5719
5720 -- In GNATprove mode, we enable the division check so that
5721 -- GNATprove will issue a message if it cannot be proved.
5722
5723 if GNATprove_Mode then
5724 Activate_Division_Check (N);
5725 end if;
5726
5727 -- Otherwise just set the flag to check at run time
5728
5729 else
5730 Activate_Division_Check (N);
5731 end if;
5732 end if;
5733
5734 -- If Restriction No_Implicit_Conditionals is active, then it is
5735 -- violated if either operand can be negative for mod, or for rem
5736 -- if both operands can be negative.
5737
5738 if Restriction_Check_Required (No_Implicit_Conditionals)
5739 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5740 then
5741 declare
5742 Lo : Uint;
5743 Hi : Uint;
5744 OK : Boolean;
5745
5746 LNeg : Boolean;
5747 RNeg : Boolean;
5748 -- Set if corresponding operand might be negative
5749
5750 begin
5751 Determine_Range
5752 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5753 LNeg := (not OK) or else Lo < 0;
5754
5755 Determine_Range
5756 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5757 RNeg := (not OK) or else Lo < 0;
5758
5759 -- Check if we will be generating conditionals. There are two
5760 -- cases where that can happen, first for REM, the only case
5761 -- is largest negative integer mod -1, where the division can
5762 -- overflow, but we still have to give the right result. The
5763 -- front end generates a test for this annoying case. Here we
5764 -- just test if both operands can be negative (that's what the
5765 -- expander does, so we match its logic here).
5766
5767 -- The second case is mod where either operand can be negative.
5768 -- In this case, the back end has to generate additional tests.
5769
5770 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5771 or else
5772 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5773 then
5774 Check_Restriction (No_Implicit_Conditionals, N);
5775 end if;
5776 end;
5777 end if;
5778 end if;
5779
5780 Check_Unset_Reference (L);
5781 Check_Unset_Reference (R);
5782 end Resolve_Arithmetic_Op;
5783
5784 ------------------
5785 -- Resolve_Call --
5786 ------------------
5787
5788 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5789 function Same_Or_Aliased_Subprograms
5790 (S : Entity_Id;
5791 E : Entity_Id) return Boolean;
5792 -- Returns True if the subprogram entity S is the same as E or else
5793 -- S is an alias of E.
5794
5795 ---------------------------------
5796 -- Same_Or_Aliased_Subprograms --
5797 ---------------------------------
5798
5799 function Same_Or_Aliased_Subprograms
5800 (S : Entity_Id;
5801 E : Entity_Id) return Boolean
5802 is
5803 Subp_Alias : constant Entity_Id := Alias (S);
5804 begin
5805 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5806 end Same_Or_Aliased_Subprograms;
5807
5808 -- Local variables
5809
5810 Loc : constant Source_Ptr := Sloc (N);
5811 Subp : constant Node_Id := Name (N);
5812 Body_Id : Entity_Id;
5813 I : Interp_Index;
5814 It : Interp;
5815 Nam : Entity_Id;
5816 Nam_Decl : Node_Id;
5817 Nam_UA : Entity_Id;
5818 Norm_OK : Boolean;
5819 Rtype : Entity_Id;
5820 Scop : Entity_Id;
5821
5822 -- Start of processing for Resolve_Call
5823
5824 begin
5825 -- Preserve relevant elaboration-related attributes of the context which
5826 -- are no longer available or very expensive to recompute once analysis,
5827 -- resolution, and expansion are over.
5828
5829 Mark_Elaboration_Attributes
5830 (N_Id => N,
5831 Checks => True,
5832 Modes => True,
5833 Warnings => True);
5834
5835 -- The context imposes a unique interpretation with type Typ on a
5836 -- procedure or function call. Find the entity of the subprogram that
5837 -- yields the expected type, and propagate the corresponding formal
5838 -- constraints on the actuals. The caller has established that an
5839 -- interpretation exists, and emitted an error if not unique.
5840
5841 -- First deal with the case of a call to an access-to-subprogram,
5842 -- dereference made explicit in Analyze_Call.
5843
5844 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5845 if not Is_Overloaded (Subp) then
5846 Nam := Etype (Subp);
5847
5848 else
5849 -- Find the interpretation whose type (a subprogram type) has a
5850 -- return type that is compatible with the context. Analysis of
5851 -- the node has established that one exists.
5852
5853 Nam := Empty;
5854
5855 Get_First_Interp (Subp, I, It);
5856 while Present (It.Typ) loop
5857 if Covers (Typ, Etype (It.Typ)) then
5858 Nam := It.Typ;
5859 exit;
5860 end if;
5861
5862 Get_Next_Interp (I, It);
5863 end loop;
5864
5865 if No (Nam) then
5866 raise Program_Error;
5867 end if;
5868 end if;
5869
5870 -- If the prefix is not an entity, then resolve it
5871
5872 if not Is_Entity_Name (Subp) then
5873 Resolve (Subp, Nam);
5874 end if;
5875
5876 -- For an indirect call, we always invalidate checks, since we do not
5877 -- know whether the subprogram is local or global. Yes we could do
5878 -- better here, e.g. by knowing that there are no local subprograms,
5879 -- but it does not seem worth the effort. Similarly, we kill all
5880 -- knowledge of current constant values.
5881
5882 Kill_Current_Values;
5883
5884 -- If this is a procedure call which is really an entry call, do
5885 -- the conversion of the procedure call to an entry call. Protected
5886 -- operations use the same circuitry because the name in the call
5887 -- can be an arbitrary expression with special resolution rules.
5888
5889 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5890 or else (Is_Entity_Name (Subp)
5891 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5892 then
5893 Resolve_Entry_Call (N, Typ);
5894
5895 if Legacy_Elaboration_Checks then
5896 Check_Elab_Call (N);
5897 end if;
5898
5899 -- Annotate the tree by creating a call marker in case the original
5900 -- call is transformed by expansion. The call marker is automatically
5901 -- saved for later examination by the ABE Processing phase.
5902
5903 Build_Call_Marker (N);
5904
5905 -- Kill checks and constant values, as above for indirect case
5906 -- Who knows what happens when another task is activated?
5907
5908 Kill_Current_Values;
5909 return;
5910
5911 -- Normal subprogram call with name established in Resolve
5912
5913 elsif not (Is_Type (Entity (Subp))) then
5914 Nam := Entity (Subp);
5915 Set_Entity_With_Checks (Subp, Nam);
5916
5917 -- Otherwise we must have the case of an overloaded call
5918
5919 else
5920 pragma Assert (Is_Overloaded (Subp));
5921
5922 -- Initialize Nam to prevent warning (we know it will be assigned
5923 -- in the loop below, but the compiler does not know that).
5924
5925 Nam := Empty;
5926
5927 Get_First_Interp (Subp, I, It);
5928 while Present (It.Typ) loop
5929 if Covers (Typ, It.Typ) then
5930 Nam := It.Nam;
5931 Set_Entity_With_Checks (Subp, Nam);
5932 exit;
5933 end if;
5934
5935 Get_Next_Interp (I, It);
5936 end loop;
5937 end if;
5938
5939 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5940 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5941 and then Nkind (Subp) /= N_Explicit_Dereference
5942 and then Present (Parameter_Associations (N))
5943 then
5944 -- The prefix is a parameterless function call that returns an access
5945 -- to subprogram. If parameters are present in the current call, add
5946 -- add an explicit dereference. We use the base type here because
5947 -- within an instance these may be subtypes.
5948
5949 -- The dereference is added either in Analyze_Call or here. Should
5950 -- be consolidated ???
5951
5952 Set_Is_Overloaded (Subp, False);
5953 Set_Etype (Subp, Etype (Nam));
5954 Insert_Explicit_Dereference (Subp);
5955 Nam := Designated_Type (Etype (Nam));
5956 Resolve (Subp, Nam);
5957 end if;
5958
5959 -- Check that a call to Current_Task does not occur in an entry body
5960
5961 if Is_RTE (Nam, RE_Current_Task) then
5962 declare
5963 P : Node_Id;
5964
5965 begin
5966 P := N;
5967 loop
5968 P := Parent (P);
5969
5970 -- Exclude calls that occur within the default of a formal
5971 -- parameter of the entry, since those are evaluated outside
5972 -- of the body.
5973
5974 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5975
5976 if Nkind (P) = N_Entry_Body
5977 or else (Nkind (P) = N_Subprogram_Body
5978 and then Is_Entry_Barrier_Function (P))
5979 then
5980 Rtype := Etype (N);
5981 Error_Msg_Warn := SPARK_Mode /= On;
5982 Error_Msg_NE
5983 ("& should not be used in entry body (RM C.7(17))<<",
5984 N, Nam);
5985 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5986 Rewrite (N,
5987 Make_Raise_Program_Error (Loc,
5988 Reason => PE_Current_Task_In_Entry_Body));
5989 Set_Etype (N, Rtype);
5990 return;
5991 end if;
5992 end loop;
5993 end;
5994 end if;
5995
5996 -- Check that a procedure call does not occur in the context of the
5997 -- entry call statement of a conditional or timed entry call. Note that
5998 -- the case of a call to a subprogram renaming of an entry will also be
5999 -- rejected. The test for N not being an N_Entry_Call_Statement is
6000 -- defensive, covering the possibility that the processing of entry
6001 -- calls might reach this point due to later modifications of the code
6002 -- above.
6003
6004 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6005 and then Nkind (N) /= N_Entry_Call_Statement
6006 and then Entry_Call_Statement (Parent (N)) = N
6007 then
6008 if Ada_Version < Ada_2005 then
6009 Error_Msg_N ("entry call required in select statement", N);
6010
6011 -- Ada 2005 (AI-345): If a procedure_call_statement is used
6012 -- for a procedure_or_entry_call, the procedure_name or
6013 -- procedure_prefix of the procedure_call_statement shall denote
6014 -- an entry renamed by a procedure, or (a view of) a primitive
6015 -- subprogram of a limited interface whose first parameter is
6016 -- a controlling parameter.
6017
6018 elsif Nkind (N) = N_Procedure_Call_Statement
6019 and then not Is_Renamed_Entry (Nam)
6020 and then not Is_Controlling_Limited_Procedure (Nam)
6021 then
6022 Error_Msg_N
6023 ("entry call or dispatching primitive of interface required", N);
6024 end if;
6025 end if;
6026
6027 -- If the SPARK_05 restriction is active, we are not allowed
6028 -- to have a call to a subprogram before we see its completion.
6029
6030 if not Has_Completion (Nam)
6031 and then Restriction_Check_Required (SPARK_05)
6032
6033 -- Don't flag strange internal calls
6034
6035 and then Comes_From_Source (N)
6036 and then Comes_From_Source (Nam)
6037
6038 -- Only flag calls in extended main source
6039
6040 and then In_Extended_Main_Source_Unit (Nam)
6041 and then In_Extended_Main_Source_Unit (N)
6042
6043 -- Exclude enumeration literals from this processing
6044
6045 and then Ekind (Nam) /= E_Enumeration_Literal
6046 then
6047 Check_SPARK_05_Restriction
6048 ("call to subprogram cannot appear before its body", N);
6049 end if;
6050
6051 -- Check that this is not a call to a protected procedure or entry from
6052 -- within a protected function.
6053
6054 Check_Internal_Protected_Use (N, Nam);
6055
6056 -- Freeze the subprogram name if not in a spec-expression. Note that
6057 -- we freeze procedure calls as well as function calls. Procedure calls
6058 -- are not frozen according to the rules (RM 13.14(14)) because it is
6059 -- impossible to have a procedure call to a non-frozen procedure in
6060 -- pure Ada, but in the code that we generate in the expander, this
6061 -- rule needs extending because we can generate procedure calls that
6062 -- need freezing.
6063
6064 -- In Ada 2012, expression functions may be called within pre/post
6065 -- conditions of subsequent functions or expression functions. Such
6066 -- calls do not freeze when they appear within generated bodies,
6067 -- (including the body of another expression function) which would
6068 -- place the freeze node in the wrong scope. An expression function
6069 -- is frozen in the usual fashion, by the appearance of a real body,
6070 -- or at the end of a declarative part. However an implcit call to
6071 -- an expression function may appear when it is part of a default
6072 -- expression in a call to an initialiation procedure, and must be
6073 -- frozen now, even if the body is inserted at a later point.
6074
6075 if Is_Entity_Name (Subp)
6076 and then not In_Spec_Expression
6077 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6078 and then
6079 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6080 or else Scope (Entity (Subp)) = Current_Scope)
6081 then
6082 if Is_Expression_Function (Entity (Subp)) then
6083
6084 -- Force freeze of expression function in call.
6085
6086 Set_Comes_From_Source (Subp, True);
6087 Set_Must_Not_Freeze (Subp, False);
6088 end if;
6089
6090 Freeze_Expression (Subp);
6091 end if;
6092
6093 -- For a predefined operator, the type of the result is the type imposed
6094 -- by context, except for a predefined operation on universal fixed.
6095 -- Otherwise The type of the call is the type returned by the subprogram
6096 -- being called.
6097
6098 if Is_Predefined_Op (Nam) then
6099 if Etype (N) /= Universal_Fixed then
6100 Set_Etype (N, Typ);
6101 end if;
6102
6103 -- If the subprogram returns an array type, and the context requires the
6104 -- component type of that array type, the node is really an indexing of
6105 -- the parameterless call. Resolve as such. A pathological case occurs
6106 -- when the type of the component is an access to the array type. In
6107 -- this case the call is truly ambiguous. If the call is to an intrinsic
6108 -- subprogram, it can't be an indexed component. This check is necessary
6109 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6110 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6111 -- pointers to the same array), the compiler gets confused and does an
6112 -- infinite recursion.
6113
6114 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6115 and then
6116 ((Is_Array_Type (Etype (Nam))
6117 and then Covers (Typ, Component_Type (Etype (Nam))))
6118 or else
6119 (Is_Access_Type (Etype (Nam))
6120 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6121 and then
6122 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6123 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6124 then
6125 declare
6126 Index_Node : Node_Id;
6127 New_Subp : Node_Id;
6128 Ret_Type : constant Entity_Id := Etype (Nam);
6129
6130 begin
6131 if Is_Access_Type (Ret_Type)
6132 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6133 then
6134 Error_Msg_N
6135 ("cannot disambiguate function call and indexing", N);
6136 else
6137 New_Subp := Relocate_Node (Subp);
6138
6139 -- The called entity may be an explicit dereference, in which
6140 -- case there is no entity to set.
6141
6142 if Nkind (New_Subp) /= N_Explicit_Dereference then
6143 Set_Entity (Subp, Nam);
6144 end if;
6145
6146 if (Is_Array_Type (Ret_Type)
6147 and then Component_Type (Ret_Type) /= Any_Type)
6148 or else
6149 (Is_Access_Type (Ret_Type)
6150 and then
6151 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6152 then
6153 if Needs_No_Actuals (Nam) then
6154
6155 -- Indexed call to a parameterless function
6156
6157 Index_Node :=
6158 Make_Indexed_Component (Loc,
6159 Prefix =>
6160 Make_Function_Call (Loc, Name => New_Subp),
6161 Expressions => Parameter_Associations (N));
6162 else
6163 -- An Ada 2005 prefixed call to a primitive operation
6164 -- whose first parameter is the prefix. This prefix was
6165 -- prepended to the parameter list, which is actually a
6166 -- list of indexes. Remove the prefix in order to build
6167 -- the proper indexed component.
6168
6169 Index_Node :=
6170 Make_Indexed_Component (Loc,
6171 Prefix =>
6172 Make_Function_Call (Loc,
6173 Name => New_Subp,
6174 Parameter_Associations =>
6175 New_List
6176 (Remove_Head (Parameter_Associations (N)))),
6177 Expressions => Parameter_Associations (N));
6178 end if;
6179
6180 -- Preserve the parenthesis count of the node
6181
6182 Set_Paren_Count (Index_Node, Paren_Count (N));
6183
6184 -- Since we are correcting a node classification error made
6185 -- by the parser, we call Replace rather than Rewrite.
6186
6187 Replace (N, Index_Node);
6188
6189 Set_Etype (Prefix (N), Ret_Type);
6190 Set_Etype (N, Typ);
6191 Resolve_Indexed_Component (N, Typ);
6192
6193 if Legacy_Elaboration_Checks then
6194 Check_Elab_Call (Prefix (N));
6195 end if;
6196
6197 -- Annotate the tree by creating a call marker in case
6198 -- the original call is transformed by expansion. The call
6199 -- marker is automatically saved for later examination by
6200 -- the ABE Processing phase.
6201
6202 Build_Call_Marker (Prefix (N));
6203 end if;
6204 end if;
6205
6206 return;
6207 end;
6208
6209 else
6210 -- If the called function is not declared in the main unit and it
6211 -- returns the limited view of type then use the available view (as
6212 -- is done in Try_Object_Operation) to prevent back-end confusion;
6213 -- for the function entity itself. The call must appear in a context
6214 -- where the nonlimited view is available. If the function entity is
6215 -- in the extended main unit then no action is needed, because the
6216 -- back end handles this case. In either case the type of the call
6217 -- is the nonlimited view.
6218
6219 if From_Limited_With (Etype (Nam))
6220 and then Present (Available_View (Etype (Nam)))
6221 then
6222 Set_Etype (N, Available_View (Etype (Nam)));
6223
6224 if not In_Extended_Main_Code_Unit (Nam) then
6225 Set_Etype (Nam, Available_View (Etype (Nam)));
6226 end if;
6227
6228 else
6229 Set_Etype (N, Etype (Nam));
6230 end if;
6231 end if;
6232
6233 -- In the case where the call is to an overloaded subprogram, Analyze
6234 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6235 -- such a case Normalize_Actuals needs to be called once more to order
6236 -- the actuals correctly. Otherwise the call will have the ordering
6237 -- given by the last overloaded subprogram whether this is the correct
6238 -- one being called or not.
6239
6240 if Is_Overloaded (Subp) then
6241 Normalize_Actuals (N, Nam, False, Norm_OK);
6242 pragma Assert (Norm_OK);
6243 end if;
6244
6245 -- In any case, call is fully resolved now. Reset Overload flag, to
6246 -- prevent subsequent overload resolution if node is analyzed again
6247
6248 Set_Is_Overloaded (Subp, False);
6249 Set_Is_Overloaded (N, False);
6250
6251 -- A Ghost entity must appear in a specific context
6252
6253 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6254 Check_Ghost_Context (Nam, N);
6255 end if;
6256
6257 -- If we are calling the current subprogram from immediately within its
6258 -- body, then that is the case where we can sometimes detect cases of
6259 -- infinite recursion statically. Do not try this in case restriction
6260 -- No_Recursion is in effect anyway, and do it only for source calls.
6261
6262 if Comes_From_Source (N) then
6263 Scop := Current_Scope;
6264
6265 -- Check violation of SPARK_05 restriction which does not permit
6266 -- a subprogram body to contain a call to the subprogram directly.
6267
6268 if Restriction_Check_Required (SPARK_05)
6269 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6270 then
6271 Check_SPARK_05_Restriction
6272 ("subprogram may not contain direct call to itself", N);
6273 end if;
6274
6275 -- Issue warning for possible infinite recursion in the absence
6276 -- of the No_Recursion restriction.
6277
6278 if Same_Or_Aliased_Subprograms (Nam, Scop)
6279 and then not Restriction_Active (No_Recursion)
6280 and then Check_Infinite_Recursion (N)
6281 then
6282 -- Here we detected and flagged an infinite recursion, so we do
6283 -- not need to test the case below for further warnings. Also we
6284 -- are all done if we now have a raise SE node.
6285
6286 if Nkind (N) = N_Raise_Storage_Error then
6287 return;
6288 end if;
6289
6290 -- If call is to immediately containing subprogram, then check for
6291 -- the case of a possible run-time detectable infinite recursion.
6292
6293 else
6294 Scope_Loop : while Scop /= Standard_Standard loop
6295 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6296
6297 -- Although in general case, recursion is not statically
6298 -- checkable, the case of calling an immediately containing
6299 -- subprogram is easy to catch.
6300
6301 Check_Restriction (No_Recursion, N);
6302
6303 -- If the recursive call is to a parameterless subprogram,
6304 -- then even if we can't statically detect infinite
6305 -- recursion, this is pretty suspicious, and we output a
6306 -- warning. Furthermore, we will try later to detect some
6307 -- cases here at run time by expanding checking code (see
6308 -- Detect_Infinite_Recursion in package Exp_Ch6).
6309
6310 -- If the recursive call is within a handler, do not emit a
6311 -- warning, because this is a common idiom: loop until input
6312 -- is correct, catch illegal input in handler and restart.
6313
6314 if No (First_Formal (Nam))
6315 and then Etype (Nam) = Standard_Void_Type
6316 and then not Error_Posted (N)
6317 and then Nkind (Parent (N)) /= N_Exception_Handler
6318 then
6319 -- For the case of a procedure call. We give the message
6320 -- only if the call is the first statement in a sequence
6321 -- of statements, or if all previous statements are
6322 -- simple assignments. This is simply a heuristic to
6323 -- decrease false positives, without losing too many good
6324 -- warnings. The idea is that these previous statements
6325 -- may affect global variables the procedure depends on.
6326 -- We also exclude raise statements, that may arise from
6327 -- constraint checks and are probably unrelated to the
6328 -- intended control flow.
6329
6330 if Nkind (N) = N_Procedure_Call_Statement
6331 and then Is_List_Member (N)
6332 then
6333 declare
6334 P : Node_Id;
6335 begin
6336 P := Prev (N);
6337 while Present (P) loop
6338 if not Nkind_In (P, N_Assignment_Statement,
6339 N_Raise_Constraint_Error)
6340 then
6341 exit Scope_Loop;
6342 end if;
6343
6344 Prev (P);
6345 end loop;
6346 end;
6347 end if;
6348
6349 -- Do not give warning if we are in a conditional context
6350
6351 declare
6352 K : constant Node_Kind := Nkind (Parent (N));
6353 begin
6354 if (K = N_Loop_Statement
6355 and then Present (Iteration_Scheme (Parent (N))))
6356 or else K = N_If_Statement
6357 or else K = N_Elsif_Part
6358 or else K = N_Case_Statement_Alternative
6359 then
6360 exit Scope_Loop;
6361 end if;
6362 end;
6363
6364 -- Here warning is to be issued
6365
6366 Set_Has_Recursive_Call (Nam);
6367 Error_Msg_Warn := SPARK_Mode /= On;
6368 Error_Msg_N ("possible infinite recursion<<!", N);
6369 Error_Msg_N ("\Storage_Error ]<<!", N);
6370 end if;
6371
6372 exit Scope_Loop;
6373 end if;
6374
6375 Scop := Scope (Scop);
6376 end loop Scope_Loop;
6377 end if;
6378 end if;
6379
6380 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6381
6382 Check_Obsolescent_2005_Entity (Nam, Subp);
6383
6384 -- If subprogram name is a predefined operator, it was given in
6385 -- functional notation. Replace call node with operator node, so
6386 -- that actuals can be resolved appropriately.
6387
6388 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6389 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6390 return;
6391
6392 elsif Present (Alias (Nam))
6393 and then Is_Predefined_Op (Alias (Nam))
6394 then
6395 Resolve_Actuals (N, Nam);
6396 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6397 return;
6398 end if;
6399
6400 -- Create a transient scope if the resulting type requires it
6401
6402 -- There are several notable exceptions:
6403
6404 -- a) In init procs, the transient scope overhead is not needed, and is
6405 -- even incorrect when the call is a nested initialization call for a
6406 -- component whose expansion may generate adjust calls. However, if the
6407 -- call is some other procedure call within an initialization procedure
6408 -- (for example a call to Create_Task in the init_proc of the task
6409 -- run-time record) a transient scope must be created around this call.
6410
6411 -- b) Enumeration literal pseudo-calls need no transient scope
6412
6413 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6414 -- functions) do not use the secondary stack even though the return
6415 -- type may be unconstrained.
6416
6417 -- d) Calls to a build-in-place function, since such functions may
6418 -- allocate their result directly in a target object, and cases where
6419 -- the result does get allocated in the secondary stack are checked for
6420 -- within the specialized Exp_Ch6 procedures for expanding those
6421 -- build-in-place calls.
6422
6423 -- e) Calls to inlinable expression functions do not use the secondary
6424 -- stack (since the call will be replaced by its returned object).
6425
6426 -- f) If the subprogram is marked Inline_Always, then even if it returns
6427 -- an unconstrained type the call does not require use of the secondary
6428 -- stack. However, inlining will only take place if the body to inline
6429 -- is already present. It may not be available if e.g. the subprogram is
6430 -- declared in a child instance.
6431
6432 if Is_Inlined (Nam)
6433 and then Has_Pragma_Inline (Nam)
6434 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6435 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6436 then
6437 null;
6438
6439 elsif Ekind (Nam) = E_Enumeration_Literal
6440 or else Is_Build_In_Place_Function (Nam)
6441 or else Is_Intrinsic_Subprogram (Nam)
6442 or else Is_Inlinable_Expression_Function (Nam)
6443 then
6444 null;
6445
6446 elsif Expander_Active
6447 and then Ekind_In (Nam, E_Function, E_Subprogram_Type)
6448 and then Requires_Transient_Scope (Etype (Nam))
6449 then
6450 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6451
6452 -- If the call appears within the bounds of a loop, it will be
6453 -- rewritten and reanalyzed, nothing left to do here.
6454
6455 if Nkind (N) /= N_Function_Call then
6456 return;
6457 end if;
6458 end if;
6459
6460 -- A protected function cannot be called within the definition of the
6461 -- enclosing protected type, unless it is part of a pre/postcondition
6462 -- on another protected operation. This may appear in the entry wrapper
6463 -- created for an entry with preconditions.
6464
6465 if Is_Protected_Type (Scope (Nam))
6466 and then In_Open_Scopes (Scope (Nam))
6467 and then not Has_Completion (Scope (Nam))
6468 and then not In_Spec_Expression
6469 and then not Is_Entry_Wrapper (Current_Scope)
6470 then
6471 Error_Msg_NE
6472 ("& cannot be called before end of protected definition", N, Nam);
6473 end if;
6474
6475 -- Propagate interpretation to actuals, and add default expressions
6476 -- where needed.
6477
6478 if Present (First_Formal (Nam)) then
6479 Resolve_Actuals (N, Nam);
6480
6481 -- Overloaded literals are rewritten as function calls, for purpose of
6482 -- resolution. After resolution, we can replace the call with the
6483 -- literal itself.
6484
6485 elsif Ekind (Nam) = E_Enumeration_Literal then
6486 Copy_Node (Subp, N);
6487 Resolve_Entity_Name (N, Typ);
6488
6489 -- Avoid validation, since it is a static function call
6490
6491 Generate_Reference (Nam, Subp);
6492 return;
6493 end if;
6494
6495 -- If the subprogram is not global, then kill all saved values and
6496 -- checks. This is a bit conservative, since in many cases we could do
6497 -- better, but it is not worth the effort. Similarly, we kill constant
6498 -- values. However we do not need to do this for internal entities
6499 -- (unless they are inherited user-defined subprograms), since they
6500 -- are not in the business of molesting local values.
6501
6502 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6503 -- kill all checks and values for calls to global subprograms. This
6504 -- takes care of the case where an access to a local subprogram is
6505 -- taken, and could be passed directly or indirectly and then called
6506 -- from almost any context.
6507
6508 -- Note: we do not do this step till after resolving the actuals. That
6509 -- way we still take advantage of the current value information while
6510 -- scanning the actuals.
6511
6512 -- We suppress killing values if we are processing the nodes associated
6513 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6514 -- type kills all the values as part of analyzing the code that
6515 -- initializes the dispatch tables.
6516
6517 if Inside_Freezing_Actions = 0
6518 and then (not Is_Library_Level_Entity (Nam)
6519 or else Suppress_Value_Tracking_On_Call
6520 (Nearest_Dynamic_Scope (Current_Scope)))
6521 and then (Comes_From_Source (Nam)
6522 or else (Present (Alias (Nam))
6523 and then Comes_From_Source (Alias (Nam))))
6524 then
6525 Kill_Current_Values;
6526 end if;
6527
6528 -- If we are warning about unread OUT parameters, this is the place to
6529 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6530 -- after the above call to Kill_Current_Values (since that call clears
6531 -- the Last_Assignment field of all local variables).
6532
6533 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6534 and then Comes_From_Source (N)
6535 and then In_Extended_Main_Source_Unit (N)
6536 then
6537 declare
6538 F : Entity_Id;
6539 A : Node_Id;
6540
6541 begin
6542 F := First_Formal (Nam);
6543 A := First_Actual (N);
6544 while Present (F) and then Present (A) loop
6545 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6546 and then Warn_On_Modified_As_Out_Parameter (F)
6547 and then Is_Entity_Name (A)
6548 and then Present (Entity (A))
6549 and then Comes_From_Source (N)
6550 and then Safe_To_Capture_Value (N, Entity (A))
6551 then
6552 Set_Last_Assignment (Entity (A), A);
6553 end if;
6554
6555 Next_Formal (F);
6556 Next_Actual (A);
6557 end loop;
6558 end;
6559 end if;
6560
6561 -- If the subprogram is a primitive operation, check whether or not
6562 -- it is a correct dispatching call.
6563
6564 if Is_Overloadable (Nam)
6565 and then Is_Dispatching_Operation (Nam)
6566 then
6567 Check_Dispatching_Call (N);
6568
6569 elsif Ekind (Nam) /= E_Subprogram_Type
6570 and then Is_Abstract_Subprogram (Nam)
6571 and then not In_Instance
6572 then
6573 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6574 end if;
6575
6576 -- If this is a dispatching call, generate the appropriate reference,
6577 -- for better source navigation in GPS.
6578
6579 if Is_Overloadable (Nam)
6580 and then Present (Controlling_Argument (N))
6581 then
6582 Generate_Reference (Nam, Subp, 'R');
6583
6584 -- Normal case, not a dispatching call: generate a call reference
6585
6586 else
6587 Generate_Reference (Nam, Subp, 's');
6588 end if;
6589
6590 if Is_Intrinsic_Subprogram (Nam) then
6591 Check_Intrinsic_Call (N);
6592 end if;
6593
6594 -- Check for violation of restriction No_Specific_Termination_Handlers
6595 -- and warn on a potentially blocking call to Abort_Task.
6596
6597 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6598 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6599 or else
6600 Is_RTE (Nam, RE_Specific_Handler))
6601 then
6602 Check_Restriction (No_Specific_Termination_Handlers, N);
6603
6604 elsif Is_RTE (Nam, RE_Abort_Task) then
6605 Check_Potentially_Blocking_Operation (N);
6606 end if;
6607
6608 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6609 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6610 -- need to check the second argument to determine whether it is an
6611 -- absolute or relative timing event.
6612
6613 if Restriction_Check_Required (No_Relative_Delay)
6614 and then Is_RTE (Nam, RE_Set_Handler)
6615 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6616 then
6617 Check_Restriction (No_Relative_Delay, N);
6618 end if;
6619
6620 -- Issue an error for a call to an eliminated subprogram. This routine
6621 -- will not perform the check if the call appears within a default
6622 -- expression.
6623
6624 Check_For_Eliminated_Subprogram (Subp, Nam);
6625
6626 -- In formal mode, the primitive operations of a tagged type or type
6627 -- extension do not include functions that return the tagged type.
6628
6629 if Nkind (N) = N_Function_Call
6630 and then Is_Tagged_Type (Etype (N))
6631 and then Is_Entity_Name (Name (N))
6632 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6633 then
6634 Check_SPARK_05_Restriction ("function not inherited", N);
6635 end if;
6636
6637 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6638 -- class-wide and the call dispatches on result in a context that does
6639 -- not provide a tag, the call raises Program_Error.
6640
6641 if Nkind (N) = N_Function_Call
6642 and then In_Instance
6643 and then Is_Generic_Actual_Type (Typ)
6644 and then Is_Class_Wide_Type (Typ)
6645 and then Has_Controlling_Result (Nam)
6646 and then Nkind (Parent (N)) = N_Object_Declaration
6647 then
6648 -- Verify that none of the formals are controlling
6649
6650 declare
6651 Call_OK : Boolean := False;
6652 F : Entity_Id;
6653
6654 begin
6655 F := First_Formal (Nam);
6656 while Present (F) loop
6657 if Is_Controlling_Formal (F) then
6658 Call_OK := True;
6659 exit;
6660 end if;
6661
6662 Next_Formal (F);
6663 end loop;
6664
6665 if not Call_OK then
6666 Error_Msg_Warn := SPARK_Mode /= On;
6667 Error_Msg_N ("!cannot determine tag of result<<", N);
6668 Error_Msg_N ("\Program_Error [<<!", N);
6669 Insert_Action (N,
6670 Make_Raise_Program_Error (Sloc (N),
6671 Reason => PE_Explicit_Raise));
6672 end if;
6673 end;
6674 end if;
6675
6676 -- Check for calling a function with OUT or IN OUT parameter when the
6677 -- calling context (us right now) is not Ada 2012, so does not allow
6678 -- OUT or IN OUT parameters in function calls. Functions declared in
6679 -- a predefined unit are OK, as they may be called indirectly from a
6680 -- user-declared instantiation.
6681
6682 if Ada_Version < Ada_2012
6683 and then Ekind (Nam) = E_Function
6684 and then Has_Out_Or_In_Out_Parameter (Nam)
6685 and then not In_Predefined_Unit (Nam)
6686 then
6687 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6688 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6689 end if;
6690
6691 -- Check the dimensions of the actuals in the call. For function calls,
6692 -- propagate the dimensions from the returned type to N.
6693
6694 Analyze_Dimension_Call (N, Nam);
6695
6696 -- All done, evaluate call and deal with elaboration issues
6697
6698 Eval_Call (N);
6699
6700 if Legacy_Elaboration_Checks then
6701 Check_Elab_Call (N);
6702 end if;
6703
6704 -- Annotate the tree by creating a call marker in case the original call
6705 -- is transformed by expansion. The call marker is automatically saved
6706 -- for later examination by the ABE Processing phase.
6707
6708 Build_Call_Marker (N);
6709
6710 -- In GNATprove mode, expansion is disabled, but we want to inline some
6711 -- subprograms to facilitate formal verification. Indirect calls through
6712 -- a subprogram type or within a generic cannot be inlined. Inlining is
6713 -- performed only for calls subject to SPARK_Mode on.
6714
6715 if GNATprove_Mode
6716 and then SPARK_Mode = On
6717 and then Is_Overloadable (Nam)
6718 and then not Inside_A_Generic
6719 then
6720 Nam_UA := Ultimate_Alias (Nam);
6721 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6722
6723 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6724 Body_Id := Corresponding_Body (Nam_Decl);
6725
6726 -- Nothing to do if the subprogram is not eligible for inlining in
6727 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6728
6729 if not Is_Inlined_Always (Nam_UA)
6730 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6731 or else Debug_Flag_M
6732 then
6733 null;
6734
6735 -- Calls cannot be inlined inside assertions, as GNATprove treats
6736 -- assertions as logic expressions. Only issue a message when the
6737 -- body has been seen, otherwise this leads to spurious messages
6738 -- on expression functions.
6739
6740 elsif In_Assertion_Expr /= 0 then
6741 if Present (Body_Id) then
6742 Cannot_Inline
6743 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6744 end if;
6745
6746 -- Calls cannot be inlined inside default expressions
6747
6748 elsif In_Default_Expr then
6749 Cannot_Inline
6750 ("cannot inline & (in default expression)?", N, Nam_UA);
6751
6752 -- Inlining should not be performed during preanalysis
6753
6754 elsif Full_Analysis then
6755
6756 -- Do not inline calls inside expression functions or functions
6757 -- generated by the front end for subtype predicates, as this
6758 -- would prevent interpreting them as logical formulas in
6759 -- GNATprove. Only issue a message when the body has been seen,
6760 -- otherwise this leads to spurious messages on callees that
6761 -- are themselves expression functions.
6762
6763 if Present (Current_Subprogram)
6764 and then
6765 (Is_Expression_Function_Or_Completion (Current_Subprogram)
6766 or else Is_Predicate_Function (Current_Subprogram)
6767 or else Is_Invariant_Procedure (Current_Subprogram)
6768 or else Is_DIC_Procedure (Current_Subprogram))
6769 then
6770 if Present (Body_Id)
6771 and then Present (Body_To_Inline (Nam_Decl))
6772 then
6773 if Is_Predicate_Function (Current_Subprogram) then
6774 Cannot_Inline
6775 ("cannot inline & (inside predicate)?",
6776 N, Nam_UA);
6777
6778 elsif Is_Invariant_Procedure (Current_Subprogram) then
6779 Cannot_Inline
6780 ("cannot inline & (inside invariant)?",
6781 N, Nam_UA);
6782
6783 elsif Is_DIC_Procedure (Current_Subprogram) then
6784 Cannot_Inline
6785 ("cannot inline & (inside Default_Initial_Condition)?",
6786 N, Nam_UA);
6787
6788 else
6789 Cannot_Inline
6790 ("cannot inline & (inside expression function)?",
6791 N, Nam_UA);
6792 end if;
6793 end if;
6794
6795 -- With the one-pass inlining technique, a call cannot be
6796 -- inlined if the corresponding body has not been seen yet.
6797
6798 elsif No (Body_Id) then
6799 Cannot_Inline
6800 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6801
6802 -- Nothing to do if there is no body to inline, indicating that
6803 -- the subprogram is not suitable for inlining in GNATprove
6804 -- mode.
6805
6806 elsif No (Body_To_Inline (Nam_Decl)) then
6807 null;
6808
6809 -- Calls cannot be inlined inside potentially unevaluated
6810 -- expressions, as this would create complex actions inside
6811 -- expressions, that are not handled by GNATprove.
6812
6813 elsif Is_Potentially_Unevaluated (N) then
6814 Cannot_Inline
6815 ("cannot inline & (in potentially unevaluated context)?",
6816 N, Nam_UA);
6817
6818 -- Do not inline calls which would possibly lead to missing a
6819 -- type conversion check on an input parameter.
6820
6821 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6822 Cannot_Inline
6823 ("cannot inline & (possible check on input parameters)?",
6824 N, Nam_UA);
6825
6826 -- Otherwise, inline the call
6827
6828 else
6829 Expand_Inlined_Call (N, Nam_UA, Nam);
6830 end if;
6831 end if;
6832 end if;
6833 end if;
6834
6835 Mark_Use_Clauses (Subp);
6836
6837 Warn_On_Overlapping_Actuals (Nam, N);
6838 end Resolve_Call;
6839
6840 -----------------------------
6841 -- Resolve_Case_Expression --
6842 -----------------------------
6843
6844 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6845 Alt : Node_Id;
6846 Alt_Expr : Node_Id;
6847 Alt_Typ : Entity_Id;
6848 Is_Dyn : Boolean;
6849
6850 begin
6851 Alt := First (Alternatives (N));
6852 while Present (Alt) loop
6853 Alt_Expr := Expression (Alt);
6854
6855 if Error_Posted (Alt_Expr) then
6856 return;
6857 end if;
6858
6859 Resolve (Alt_Expr, Typ);
6860 Alt_Typ := Etype (Alt_Expr);
6861
6862 -- When the expression is of a scalar subtype different from the
6863 -- result subtype, then insert a conversion to ensure the generation
6864 -- of a constraint check.
6865
6866 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6867 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6868 Analyze_And_Resolve (Alt_Expr, Typ);
6869 end if;
6870
6871 Next (Alt);
6872 end loop;
6873
6874 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6875 -- dynamically tagged must be known statically.
6876
6877 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6878 Alt := First (Alternatives (N));
6879 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6880
6881 while Present (Alt) loop
6882 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6883 Error_Msg_N
6884 ("all or none of the dependent expressions can be "
6885 & "dynamically tagged", N);
6886 end if;
6887
6888 Next (Alt);
6889 end loop;
6890 end if;
6891
6892 Set_Etype (N, Typ);
6893 Eval_Case_Expression (N);
6894 Analyze_Dimension (N);
6895 end Resolve_Case_Expression;
6896
6897 -------------------------------
6898 -- Resolve_Character_Literal --
6899 -------------------------------
6900
6901 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6902 B_Typ : constant Entity_Id := Base_Type (Typ);
6903 C : Entity_Id;
6904
6905 begin
6906 -- Verify that the character does belong to the type of the context
6907
6908 Set_Etype (N, B_Typ);
6909 Eval_Character_Literal (N);
6910
6911 -- Wide_Wide_Character literals must always be defined, since the set
6912 -- of wide wide character literals is complete, i.e. if a character
6913 -- literal is accepted by the parser, then it is OK for wide wide
6914 -- character (out of range character literals are rejected).
6915
6916 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6917 return;
6918
6919 -- Always accept character literal for type Any_Character, which
6920 -- occurs in error situations and in comparisons of literals, both
6921 -- of which should accept all literals.
6922
6923 elsif B_Typ = Any_Character then
6924 return;
6925
6926 -- For Standard.Character or a type derived from it, check that the
6927 -- literal is in range.
6928
6929 elsif Root_Type (B_Typ) = Standard_Character then
6930 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6931 return;
6932 end if;
6933
6934 -- For Standard.Wide_Character or a type derived from it, check that the
6935 -- literal is in range.
6936
6937 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6938 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6939 return;
6940 end if;
6941
6942 -- If the entity is already set, this has already been resolved in a
6943 -- generic context, or comes from expansion. Nothing else to do.
6944
6945 elsif Present (Entity (N)) then
6946 return;
6947
6948 -- Otherwise we have a user defined character type, and we can use the
6949 -- standard visibility mechanisms to locate the referenced entity.
6950
6951 else
6952 C := Current_Entity (N);
6953 while Present (C) loop
6954 if Etype (C) = B_Typ then
6955 Set_Entity_With_Checks (N, C);
6956 Generate_Reference (C, N);
6957 return;
6958 end if;
6959
6960 C := Homonym (C);
6961 end loop;
6962 end if;
6963
6964 -- If we fall through, then the literal does not match any of the
6965 -- entries of the enumeration type. This isn't just a constraint error
6966 -- situation, it is an illegality (see RM 4.2).
6967
6968 Error_Msg_NE
6969 ("character not defined for }", N, First_Subtype (B_Typ));
6970 end Resolve_Character_Literal;
6971
6972 ---------------------------
6973 -- Resolve_Comparison_Op --
6974 ---------------------------
6975
6976 -- Context requires a boolean type, and plays no role in resolution.
6977 -- Processing identical to that for equality operators. The result type is
6978 -- the base type, which matters when pathological subtypes of booleans with
6979 -- limited ranges are used.
6980
6981 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6982 L : constant Node_Id := Left_Opnd (N);
6983 R : constant Node_Id := Right_Opnd (N);
6984 T : Entity_Id;
6985
6986 begin
6987 -- If this is an intrinsic operation which is not predefined, use the
6988 -- types of its declared arguments to resolve the possibly overloaded
6989 -- operands. Otherwise the operands are unambiguous and specify the
6990 -- expected type.
6991
6992 if Scope (Entity (N)) /= Standard_Standard then
6993 T := Etype (First_Entity (Entity (N)));
6994
6995 else
6996 T := Find_Unique_Type (L, R);
6997
6998 if T = Any_Fixed then
6999 T := Unique_Fixed_Point_Type (L);
7000 end if;
7001 end if;
7002
7003 Set_Etype (N, Base_Type (Typ));
7004 Generate_Reference (T, N, ' ');
7005
7006 -- Skip remaining processing if already set to Any_Type
7007
7008 if T = Any_Type then
7009 return;
7010 end if;
7011
7012 -- Deal with other error cases
7013
7014 if T = Any_String or else
7015 T = Any_Composite or else
7016 T = Any_Character
7017 then
7018 if T = Any_Character then
7019 Ambiguous_Character (L);
7020 else
7021 Error_Msg_N ("ambiguous operands for comparison", N);
7022 end if;
7023
7024 Set_Etype (N, Any_Type);
7025 return;
7026 end if;
7027
7028 -- Resolve the operands if types OK
7029
7030 Resolve (L, T);
7031 Resolve (R, T);
7032 Check_Unset_Reference (L);
7033 Check_Unset_Reference (R);
7034 Generate_Operator_Reference (N, T);
7035 Check_Low_Bound_Tested (N);
7036
7037 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
7038 -- types or array types except String.
7039
7040 if Is_Boolean_Type (T) then
7041 Check_SPARK_05_Restriction
7042 ("comparison is not defined on Boolean type", N);
7043
7044 elsif Is_Array_Type (T)
7045 and then Base_Type (T) /= Standard_String
7046 then
7047 Check_SPARK_05_Restriction
7048 ("comparison is not defined on array types other than String", N);
7049 end if;
7050
7051 -- Check comparison on unordered enumeration
7052
7053 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
7054 Error_Msg_Sloc := Sloc (Etype (L));
7055 Error_Msg_NE
7056 ("comparison on unordered enumeration type& declared#?U?",
7057 N, Etype (L));
7058 end if;
7059
7060 Analyze_Dimension (N);
7061
7062 -- Evaluate the relation (note we do this after the above check since
7063 -- this Eval call may change N to True/False. Skip this evaluation
7064 -- inside assertions, in order to keep assertions as written by users
7065 -- for tools that rely on these, e.g. GNATprove for loop invariants.
7066 -- Except evaluation is still performed even inside assertions for
7067 -- comparisons between values of universal type, which are useless
7068 -- for static analysis tools, and not supported even by GNATprove.
7069
7070 if In_Assertion_Expr = 0
7071 or else (Is_Universal_Numeric_Type (Etype (L))
7072 and then
7073 Is_Universal_Numeric_Type (Etype (R)))
7074 then
7075 Eval_Relational_Op (N);
7076 end if;
7077 end Resolve_Comparison_Op;
7078
7079 -----------------------------------------
7080 -- Resolve_Discrete_Subtype_Indication --
7081 -----------------------------------------
7082
7083 procedure Resolve_Discrete_Subtype_Indication
7084 (N : Node_Id;
7085 Typ : Entity_Id)
7086 is
7087 R : Node_Id;
7088 S : Entity_Id;
7089
7090 begin
7091 Analyze (Subtype_Mark (N));
7092 S := Entity (Subtype_Mark (N));
7093
7094 if Nkind (Constraint (N)) /= N_Range_Constraint then
7095 Error_Msg_N ("expect range constraint for discrete type", N);
7096 Set_Etype (N, Any_Type);
7097
7098 else
7099 R := Range_Expression (Constraint (N));
7100
7101 if R = Error then
7102 return;
7103 end if;
7104
7105 Analyze (R);
7106
7107 if Base_Type (S) /= Base_Type (Typ) then
7108 Error_Msg_NE
7109 ("expect subtype of }", N, First_Subtype (Typ));
7110
7111 -- Rewrite the constraint as a range of Typ
7112 -- to allow compilation to proceed further.
7113
7114 Set_Etype (N, Typ);
7115 Rewrite (Low_Bound (R),
7116 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7117 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7118 Attribute_Name => Name_First));
7119 Rewrite (High_Bound (R),
7120 Make_Attribute_Reference (Sloc (High_Bound (R)),
7121 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7122 Attribute_Name => Name_First));
7123
7124 else
7125 Resolve (R, Typ);
7126 Set_Etype (N, Etype (R));
7127
7128 -- Additionally, we must check that the bounds are compatible
7129 -- with the given subtype, which might be different from the
7130 -- type of the context.
7131
7132 Apply_Range_Check (R, S);
7133
7134 -- ??? If the above check statically detects a Constraint_Error
7135 -- it replaces the offending bound(s) of the range R with a
7136 -- Constraint_Error node. When the itype which uses these bounds
7137 -- is frozen the resulting call to Duplicate_Subexpr generates
7138 -- a new temporary for the bounds.
7139
7140 -- Unfortunately there are other itypes that are also made depend
7141 -- on these bounds, so when Duplicate_Subexpr is called they get
7142 -- a forward reference to the newly created temporaries and Gigi
7143 -- aborts on such forward references. This is probably sign of a
7144 -- more fundamental problem somewhere else in either the order of
7145 -- itype freezing or the way certain itypes are constructed.
7146
7147 -- To get around this problem we call Remove_Side_Effects right
7148 -- away if either bounds of R are a Constraint_Error.
7149
7150 declare
7151 L : constant Node_Id := Low_Bound (R);
7152 H : constant Node_Id := High_Bound (R);
7153
7154 begin
7155 if Nkind (L) = N_Raise_Constraint_Error then
7156 Remove_Side_Effects (L);
7157 end if;
7158
7159 if Nkind (H) = N_Raise_Constraint_Error then
7160 Remove_Side_Effects (H);
7161 end if;
7162 end;
7163
7164 Check_Unset_Reference (Low_Bound (R));
7165 Check_Unset_Reference (High_Bound (R));
7166 end if;
7167 end if;
7168 end Resolve_Discrete_Subtype_Indication;
7169
7170 -------------------------
7171 -- Resolve_Entity_Name --
7172 -------------------------
7173
7174 -- Used to resolve identifiers and expanded names
7175
7176 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7177 function Is_Assignment_Or_Object_Expression
7178 (Context : Node_Id;
7179 Expr : Node_Id) return Boolean;
7180 -- Determine whether node Context denotes an assignment statement or an
7181 -- object declaration whose expression is node Expr.
7182
7183 ----------------------------------------
7184 -- Is_Assignment_Or_Object_Expression --
7185 ----------------------------------------
7186
7187 function Is_Assignment_Or_Object_Expression
7188 (Context : Node_Id;
7189 Expr : Node_Id) return Boolean
7190 is
7191 begin
7192 if Nkind_In (Context, N_Assignment_Statement,
7193 N_Object_Declaration)
7194 and then Expression (Context) = Expr
7195 then
7196 return True;
7197
7198 -- Check whether a construct that yields a name is the expression of
7199 -- an assignment statement or an object declaration.
7200
7201 elsif (Nkind_In (Context, N_Attribute_Reference,
7202 N_Explicit_Dereference,
7203 N_Indexed_Component,
7204 N_Selected_Component,
7205 N_Slice)
7206 and then Prefix (Context) = Expr)
7207 or else
7208 (Nkind_In (Context, N_Type_Conversion,
7209 N_Unchecked_Type_Conversion)
7210 and then Expression (Context) = Expr)
7211 then
7212 return
7213 Is_Assignment_Or_Object_Expression
7214 (Context => Parent (Context),
7215 Expr => Context);
7216
7217 -- Otherwise the context is not an assignment statement or an object
7218 -- declaration.
7219
7220 else
7221 return False;
7222 end if;
7223 end Is_Assignment_Or_Object_Expression;
7224
7225 -- Local variables
7226
7227 E : constant Entity_Id := Entity (N);
7228 Par : Node_Id;
7229
7230 -- Start of processing for Resolve_Entity_Name
7231
7232 begin
7233 -- If garbage from errors, set to Any_Type and return
7234
7235 if No (E) and then Total_Errors_Detected /= 0 then
7236 Set_Etype (N, Any_Type);
7237 return;
7238 end if;
7239
7240 -- Replace named numbers by corresponding literals. Note that this is
7241 -- the one case where Resolve_Entity_Name must reset the Etype, since
7242 -- it is currently marked as universal.
7243
7244 if Ekind (E) = E_Named_Integer then
7245 Set_Etype (N, Typ);
7246 Eval_Named_Integer (N);
7247
7248 elsif Ekind (E) = E_Named_Real then
7249 Set_Etype (N, Typ);
7250 Eval_Named_Real (N);
7251
7252 -- For enumeration literals, we need to make sure that a proper style
7253 -- check is done, since such literals are overloaded, and thus we did
7254 -- not do a style check during the first phase of analysis.
7255
7256 elsif Ekind (E) = E_Enumeration_Literal then
7257 Set_Entity_With_Checks (N, E);
7258 Eval_Entity_Name (N);
7259
7260 -- Case of (sub)type name appearing in a context where an expression
7261 -- is expected. This is legal if occurrence is a current instance.
7262 -- See RM 8.6 (17/3).
7263
7264 elsif Is_Type (E) then
7265 if Is_Current_Instance (N) then
7266 null;
7267
7268 -- Any other use is an error
7269
7270 else
7271 Error_Msg_N
7272 ("invalid use of subtype mark in expression or call", N);
7273 end if;
7274
7275 -- Check discriminant use if entity is discriminant in current scope,
7276 -- i.e. discriminant of record or concurrent type currently being
7277 -- analyzed. Uses in corresponding body are unrestricted.
7278
7279 elsif Ekind (E) = E_Discriminant
7280 and then Scope (E) = Current_Scope
7281 and then not Has_Completion (Current_Scope)
7282 then
7283 Check_Discriminant_Use (N);
7284
7285 -- A parameterless generic function cannot appear in a context that
7286 -- requires resolution.
7287
7288 elsif Ekind (E) = E_Generic_Function then
7289 Error_Msg_N ("illegal use of generic function", N);
7290
7291 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7292 -- array types (i.e. bounds and length) are legal.
7293
7294 elsif Ekind (E) = E_Out_Parameter
7295 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7296 or else Is_Scalar_Type (Etype (E)))
7297
7298 and then (Nkind (Parent (N)) in N_Op
7299 or else Nkind (Parent (N)) = N_Explicit_Dereference
7300 or else Is_Assignment_Or_Object_Expression
7301 (Context => Parent (N),
7302 Expr => N))
7303 then
7304 if Ada_Version = Ada_83 then
7305 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7306 end if;
7307
7308 -- In all other cases, just do the possible static evaluation
7309
7310 else
7311 -- A deferred constant that appears in an expression must have a
7312 -- completion, unless it has been removed by in-place expansion of
7313 -- an aggregate. A constant that is a renaming does not need
7314 -- initialization.
7315
7316 if Ekind (E) = E_Constant
7317 and then Comes_From_Source (E)
7318 and then No (Constant_Value (E))
7319 and then Is_Frozen (Etype (E))
7320 and then not In_Spec_Expression
7321 and then not Is_Imported (E)
7322 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7323 then
7324 if No_Initialization (Parent (E))
7325 or else (Present (Full_View (E))
7326 and then No_Initialization (Parent (Full_View (E))))
7327 then
7328 null;
7329 else
7330 Error_Msg_N
7331 ("deferred constant is frozen before completion", N);
7332 end if;
7333 end if;
7334
7335 Eval_Entity_Name (N);
7336 end if;
7337
7338 Par := Parent (N);
7339
7340 -- When the entity appears in a parameter association, retrieve the
7341 -- related subprogram call.
7342
7343 if Nkind (Par) = N_Parameter_Association then
7344 Par := Parent (Par);
7345 end if;
7346
7347 if Comes_From_Source (N) then
7348
7349 -- The following checks are only relevant when SPARK_Mode is on as
7350 -- they are not standard Ada legality rules.
7351
7352 if SPARK_Mode = On then
7353
7354 -- An effectively volatile object subject to enabled properties
7355 -- Async_Writers or Effective_Reads must appear in non-interfering
7356 -- context (SPARK RM 7.1.3(12)).
7357
7358 if Is_Object (E)
7359 and then Is_Effectively_Volatile (E)
7360 and then (Async_Writers_Enabled (E)
7361 or else Effective_Reads_Enabled (E))
7362 and then not Is_OK_Volatile_Context (Par, N)
7363 then
7364 SPARK_Msg_N
7365 ("volatile object cannot appear in this context "
7366 & "(SPARK RM 7.1.3(12))", N);
7367 end if;
7368
7369 -- Check for possible elaboration issues with respect to reads of
7370 -- variables. The act of renaming the variable is not considered a
7371 -- read as it simply establishes an alias.
7372
7373 if Legacy_Elaboration_Checks
7374 and then Ekind (E) = E_Variable
7375 and then Dynamic_Elaboration_Checks
7376 and then Nkind (Par) /= N_Object_Renaming_Declaration
7377 then
7378 Check_Elab_Call (N);
7379 end if;
7380 end if;
7381
7382 -- The variable may eventually become a constituent of a single
7383 -- protected/task type. Record the reference now and verify its
7384 -- legality when analyzing the contract of the variable
7385 -- (SPARK RM 9.3).
7386
7387 if Ekind (E) = E_Variable then
7388 Record_Possible_Part_Of_Reference (E, N);
7389 end if;
7390
7391 -- A Ghost entity must appear in a specific context
7392
7393 if Is_Ghost_Entity (E) then
7394 Check_Ghost_Context (E, N);
7395 end if;
7396 end if;
7397
7398 -- We may be resolving an entity within expanded code, so a reference to
7399 -- an entity should be ignored when calculating effective use clauses to
7400 -- avoid inappropriate marking.
7401
7402 if Comes_From_Source (N) then
7403 Mark_Use_Clauses (E);
7404 end if;
7405 end Resolve_Entity_Name;
7406
7407 -------------------
7408 -- Resolve_Entry --
7409 -------------------
7410
7411 procedure Resolve_Entry (Entry_Name : Node_Id) is
7412 Loc : constant Source_Ptr := Sloc (Entry_Name);
7413 Nam : Entity_Id;
7414 New_N : Node_Id;
7415 S : Entity_Id;
7416 Tsk : Entity_Id;
7417 E_Name : Node_Id;
7418 Index : Node_Id;
7419
7420 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7421 -- If the bounds of the entry family being called depend on task
7422 -- discriminants, build a new index subtype where a discriminant is
7423 -- replaced with the value of the discriminant of the target task.
7424 -- The target task is the prefix of the entry name in the call.
7425
7426 -----------------------
7427 -- Actual_Index_Type --
7428 -----------------------
7429
7430 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7431 Typ : constant Entity_Id := Entry_Index_Type (E);
7432 Tsk : constant Entity_Id := Scope (E);
7433 Lo : constant Node_Id := Type_Low_Bound (Typ);
7434 Hi : constant Node_Id := Type_High_Bound (Typ);
7435 New_T : Entity_Id;
7436
7437 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7438 -- If the bound is given by a discriminant, replace with a reference
7439 -- to the discriminant of the same name in the target task. If the
7440 -- entry name is the target of a requeue statement and the entry is
7441 -- in the current protected object, the bound to be used is the
7442 -- discriminal of the object (see Apply_Range_Checks for details of
7443 -- the transformation).
7444
7445 -----------------------------
7446 -- Actual_Discriminant_Ref --
7447 -----------------------------
7448
7449 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7450 Typ : constant Entity_Id := Etype (Bound);
7451 Ref : Node_Id;
7452
7453 begin
7454 Remove_Side_Effects (Bound);
7455
7456 if not Is_Entity_Name (Bound)
7457 or else Ekind (Entity (Bound)) /= E_Discriminant
7458 then
7459 return Bound;
7460
7461 elsif Is_Protected_Type (Tsk)
7462 and then In_Open_Scopes (Tsk)
7463 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7464 then
7465 -- Note: here Bound denotes a discriminant of the corresponding
7466 -- record type tskV, whose discriminal is a formal of the
7467 -- init-proc tskVIP. What we want is the body discriminal,
7468 -- which is associated to the discriminant of the original
7469 -- concurrent type tsk.
7470
7471 return New_Occurrence_Of
7472 (Find_Body_Discriminal (Entity (Bound)), Loc);
7473
7474 else
7475 Ref :=
7476 Make_Selected_Component (Loc,
7477 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7478 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7479 Analyze (Ref);
7480 Resolve (Ref, Typ);
7481 return Ref;
7482 end if;
7483 end Actual_Discriminant_Ref;
7484
7485 -- Start of processing for Actual_Index_Type
7486
7487 begin
7488 if not Has_Discriminants (Tsk)
7489 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7490 then
7491 return Entry_Index_Type (E);
7492
7493 else
7494 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7495 Set_Etype (New_T, Base_Type (Typ));
7496 Set_Size_Info (New_T, Typ);
7497 Set_RM_Size (New_T, RM_Size (Typ));
7498 Set_Scalar_Range (New_T,
7499 Make_Range (Sloc (Entry_Name),
7500 Low_Bound => Actual_Discriminant_Ref (Lo),
7501 High_Bound => Actual_Discriminant_Ref (Hi)));
7502
7503 return New_T;
7504 end if;
7505 end Actual_Index_Type;
7506
7507 -- Start of processing for Resolve_Entry
7508
7509 begin
7510 -- Find name of entry being called, and resolve prefix of name with its
7511 -- own type. The prefix can be overloaded, and the name and signature of
7512 -- the entry must be taken into account.
7513
7514 if Nkind (Entry_Name) = N_Indexed_Component then
7515
7516 -- Case of dealing with entry family within the current tasks
7517
7518 E_Name := Prefix (Entry_Name);
7519
7520 else
7521 E_Name := Entry_Name;
7522 end if;
7523
7524 if Is_Entity_Name (E_Name) then
7525
7526 -- Entry call to an entry (or entry family) in the current task. This
7527 -- is legal even though the task will deadlock. Rewrite as call to
7528 -- current task.
7529
7530 -- This can also be a call to an entry in an enclosing task. If this
7531 -- is a single task, we have to retrieve its name, because the scope
7532 -- of the entry is the task type, not the object. If the enclosing
7533 -- task is a task type, the identity of the task is given by its own
7534 -- self variable.
7535
7536 -- Finally this can be a requeue on an entry of the same task or
7537 -- protected object.
7538
7539 S := Scope (Entity (E_Name));
7540
7541 for J in reverse 0 .. Scope_Stack.Last loop
7542 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7543 and then not Comes_From_Source (S)
7544 then
7545 -- S is an enclosing task or protected object. The concurrent
7546 -- declaration has been converted into a type declaration, and
7547 -- the object itself has an object declaration that follows
7548 -- the type in the same declarative part.
7549
7550 Tsk := Next_Entity (S);
7551 while Etype (Tsk) /= S loop
7552 Next_Entity (Tsk);
7553 end loop;
7554
7555 S := Tsk;
7556 exit;
7557
7558 elsif S = Scope_Stack.Table (J).Entity then
7559
7560 -- Call to current task. Will be transformed into call to Self
7561
7562 exit;
7563
7564 end if;
7565 end loop;
7566
7567 New_N :=
7568 Make_Selected_Component (Loc,
7569 Prefix => New_Occurrence_Of (S, Loc),
7570 Selector_Name =>
7571 New_Occurrence_Of (Entity (E_Name), Loc));
7572 Rewrite (E_Name, New_N);
7573 Analyze (E_Name);
7574
7575 elsif Nkind (Entry_Name) = N_Selected_Component
7576 and then Is_Overloaded (Prefix (Entry_Name))
7577 then
7578 -- Use the entry name (which must be unique at this point) to find
7579 -- the prefix that returns the corresponding task/protected type.
7580
7581 declare
7582 Pref : constant Node_Id := Prefix (Entry_Name);
7583 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7584 I : Interp_Index;
7585 It : Interp;
7586
7587 begin
7588 Get_First_Interp (Pref, I, It);
7589 while Present (It.Typ) loop
7590 if Scope (Ent) = It.Typ then
7591 Set_Etype (Pref, It.Typ);
7592 exit;
7593 end if;
7594
7595 Get_Next_Interp (I, It);
7596 end loop;
7597 end;
7598 end if;
7599
7600 if Nkind (Entry_Name) = N_Selected_Component then
7601 Resolve (Prefix (Entry_Name));
7602
7603 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7604 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7605 Resolve (Prefix (Prefix (Entry_Name)));
7606 Index := First (Expressions (Entry_Name));
7607 Resolve (Index, Entry_Index_Type (Nam));
7608
7609 -- Generate a reference for the index when it denotes an entity
7610
7611 if Is_Entity_Name (Index) then
7612 Generate_Reference (Entity (Index), Nam);
7613 end if;
7614
7615 -- Up to this point the expression could have been the actual in a
7616 -- simple entry call, and be given by a named association.
7617
7618 if Nkind (Index) = N_Parameter_Association then
7619 Error_Msg_N ("expect expression for entry index", Index);
7620 else
7621 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7622 end if;
7623 end if;
7624 end Resolve_Entry;
7625
7626 ------------------------
7627 -- Resolve_Entry_Call --
7628 ------------------------
7629
7630 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7631 Entry_Name : constant Node_Id := Name (N);
7632 Loc : constant Source_Ptr := Sloc (Entry_Name);
7633
7634 Nam : Entity_Id;
7635 Norm_OK : Boolean;
7636 Obj : Node_Id;
7637 Was_Over : Boolean;
7638
7639 begin
7640 -- We kill all checks here, because it does not seem worth the effort to
7641 -- do anything better, an entry call is a big operation.
7642
7643 Kill_All_Checks;
7644
7645 -- Processing of the name is similar for entry calls and protected
7646 -- operation calls. Once the entity is determined, we can complete
7647 -- the resolution of the actuals.
7648
7649 -- The selector may be overloaded, in the case of a protected object
7650 -- with overloaded functions. The type of the context is used for
7651 -- resolution.
7652
7653 if Nkind (Entry_Name) = N_Selected_Component
7654 and then Is_Overloaded (Selector_Name (Entry_Name))
7655 and then Typ /= Standard_Void_Type
7656 then
7657 declare
7658 I : Interp_Index;
7659 It : Interp;
7660
7661 begin
7662 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7663 while Present (It.Typ) loop
7664 if Covers (Typ, It.Typ) then
7665 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7666 Set_Etype (Entry_Name, It.Typ);
7667
7668 Generate_Reference (It.Typ, N, ' ');
7669 end if;
7670
7671 Get_Next_Interp (I, It);
7672 end loop;
7673 end;
7674 end if;
7675
7676 Resolve_Entry (Entry_Name);
7677
7678 if Nkind (Entry_Name) = N_Selected_Component then
7679
7680 -- Simple entry or protected operation call
7681
7682 Nam := Entity (Selector_Name (Entry_Name));
7683 Obj := Prefix (Entry_Name);
7684
7685 if Is_Subprogram (Nam) then
7686 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7687 end if;
7688
7689 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7690
7691 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7692
7693 -- Call to member of entry family
7694
7695 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7696 Obj := Prefix (Prefix (Entry_Name));
7697 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7698 end if;
7699
7700 -- We cannot in general check the maximum depth of protected entry calls
7701 -- at compile time. But we can tell that any protected entry call at all
7702 -- violates a specified nesting depth of zero.
7703
7704 if Is_Protected_Type (Scope (Nam)) then
7705 Check_Restriction (Max_Entry_Queue_Length, N);
7706 end if;
7707
7708 -- Use context type to disambiguate a protected function that can be
7709 -- called without actuals and that returns an array type, and where the
7710 -- argument list may be an indexing of the returned value.
7711
7712 if Ekind (Nam) = E_Function
7713 and then Needs_No_Actuals (Nam)
7714 and then Present (Parameter_Associations (N))
7715 and then
7716 ((Is_Array_Type (Etype (Nam))
7717 and then Covers (Typ, Component_Type (Etype (Nam))))
7718
7719 or else (Is_Access_Type (Etype (Nam))
7720 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7721 and then
7722 Covers
7723 (Typ,
7724 Component_Type (Designated_Type (Etype (Nam))))))
7725 then
7726 declare
7727 Index_Node : Node_Id;
7728
7729 begin
7730 Index_Node :=
7731 Make_Indexed_Component (Loc,
7732 Prefix =>
7733 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7734 Expressions => Parameter_Associations (N));
7735
7736 -- Since we are correcting a node classification error made by the
7737 -- parser, we call Replace rather than Rewrite.
7738
7739 Replace (N, Index_Node);
7740 Set_Etype (Prefix (N), Etype (Nam));
7741 Set_Etype (N, Typ);
7742 Resolve_Indexed_Component (N, Typ);
7743 return;
7744 end;
7745 end if;
7746
7747 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7748 and then Present (Contract_Wrapper (Nam))
7749 and then Current_Scope /= Contract_Wrapper (Nam)
7750 then
7751 -- Note the entity being called before rewriting the call, so that
7752 -- it appears used at this point.
7753
7754 Generate_Reference (Nam, Entry_Name, 'r');
7755
7756 -- Rewrite as call to the precondition wrapper, adding the task
7757 -- object to the list of actuals. If the call is to a member of an
7758 -- entry family, include the index as well.
7759
7760 declare
7761 New_Call : Node_Id;
7762 New_Actuals : List_Id;
7763
7764 begin
7765 New_Actuals := New_List (Obj);
7766
7767 if Nkind (Entry_Name) = N_Indexed_Component then
7768 Append_To (New_Actuals,
7769 New_Copy_Tree (First (Expressions (Entry_Name))));
7770 end if;
7771
7772 Append_List (Parameter_Associations (N), New_Actuals);
7773 New_Call :=
7774 Make_Procedure_Call_Statement (Loc,
7775 Name =>
7776 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7777 Parameter_Associations => New_Actuals);
7778 Rewrite (N, New_Call);
7779
7780 -- Preanalyze and resolve new call. Current procedure is called
7781 -- from Resolve_Call, after which expansion will take place.
7782
7783 Preanalyze_And_Resolve (N);
7784 return;
7785 end;
7786 end if;
7787
7788 -- The operation name may have been overloaded. Order the actuals
7789 -- according to the formals of the resolved entity, and set the return
7790 -- type to that of the operation.
7791
7792 if Was_Over then
7793 Normalize_Actuals (N, Nam, False, Norm_OK);
7794 pragma Assert (Norm_OK);
7795 Set_Etype (N, Etype (Nam));
7796
7797 -- Reset the Is_Overloaded flag, since resolution is now completed
7798
7799 -- Simple entry call
7800
7801 if Nkind (Entry_Name) = N_Selected_Component then
7802 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7803
7804 -- Call to a member of an entry family
7805
7806 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7807 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7808 end if;
7809 end if;
7810
7811 Resolve_Actuals (N, Nam);
7812 Check_Internal_Protected_Use (N, Nam);
7813
7814 -- Create a call reference to the entry
7815
7816 Generate_Reference (Nam, Entry_Name, 's');
7817
7818 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7819 Check_Potentially_Blocking_Operation (N);
7820 end if;
7821
7822 -- Verify that a procedure call cannot masquerade as an entry
7823 -- call where an entry call is expected.
7824
7825 if Ekind (Nam) = E_Procedure then
7826 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7827 and then N = Entry_Call_Statement (Parent (N))
7828 then
7829 Error_Msg_N ("entry call required in select statement", N);
7830
7831 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7832 and then N = Triggering_Statement (Parent (N))
7833 then
7834 Error_Msg_N ("triggering statement cannot be procedure call", N);
7835
7836 elsif Ekind (Scope (Nam)) = E_Task_Type
7837 and then not In_Open_Scopes (Scope (Nam))
7838 then
7839 Error_Msg_N ("task has no entry with this name", Entry_Name);
7840 end if;
7841 end if;
7842
7843 -- After resolution, entry calls and protected procedure calls are
7844 -- changed into entry calls, for expansion. The structure of the node
7845 -- does not change, so it can safely be done in place. Protected
7846 -- function calls must keep their structure because they are
7847 -- subexpressions.
7848
7849 if Ekind (Nam) /= E_Function then
7850
7851 -- A protected operation that is not a function may modify the
7852 -- corresponding object, and cannot apply to a constant. If this
7853 -- is an internal call, the prefix is the type itself.
7854
7855 if Is_Protected_Type (Scope (Nam))
7856 and then not Is_Variable (Obj)
7857 and then (not Is_Entity_Name (Obj)
7858 or else not Is_Type (Entity (Obj)))
7859 then
7860 Error_Msg_N
7861 ("prefix of protected procedure or entry call must be variable",
7862 Entry_Name);
7863 end if;
7864
7865 declare
7866 Entry_Call : Node_Id;
7867
7868 begin
7869 Entry_Call :=
7870 Make_Entry_Call_Statement (Loc,
7871 Name => Entry_Name,
7872 Parameter_Associations => Parameter_Associations (N));
7873
7874 -- Inherit relevant attributes from the original call
7875
7876 Set_First_Named_Actual
7877 (Entry_Call, First_Named_Actual (N));
7878
7879 Set_Is_Elaboration_Checks_OK_Node
7880 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7881
7882 Set_Is_Elaboration_Warnings_OK_Node
7883 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7884
7885 Set_Is_SPARK_Mode_On_Node
7886 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7887
7888 Rewrite (N, Entry_Call);
7889 Set_Analyzed (N, True);
7890 end;
7891
7892 -- Protected functions can return on the secondary stack, in which case
7893 -- we must trigger the transient scope mechanism.
7894
7895 elsif Expander_Active
7896 and then Requires_Transient_Scope (Etype (Nam))
7897 then
7898 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
7899 end if;
7900 end Resolve_Entry_Call;
7901
7902 -------------------------
7903 -- Resolve_Equality_Op --
7904 -------------------------
7905
7906 -- Both arguments must have the same type, and the boolean context does
7907 -- not participate in the resolution. The first pass verifies that the
7908 -- interpretation is not ambiguous, and the type of the left argument is
7909 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7910 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7911 -- though they carry a single (universal) type. Diagnose this case here.
7912
7913 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7914 L : constant Node_Id := Left_Opnd (N);
7915 R : constant Node_Id := Right_Opnd (N);
7916 T : Entity_Id := Find_Unique_Type (L, R);
7917
7918 procedure Check_If_Expression (Cond : Node_Id);
7919 -- The resolution rule for if expressions requires that each such must
7920 -- have a unique type. This means that if several dependent expressions
7921 -- are of a non-null anonymous access type, and the context does not
7922 -- impose an expected type (as can be the case in an equality operation)
7923 -- the expression must be rejected.
7924
7925 procedure Explain_Redundancy (N : Node_Id);
7926 -- Attempt to explain the nature of a redundant comparison with True. If
7927 -- the expression N is too complex, this routine issues a general error
7928 -- message.
7929
7930 function Find_Unique_Access_Type return Entity_Id;
7931 -- In the case of allocators and access attributes, the context must
7932 -- provide an indication of the specific access type to be used. If
7933 -- one operand is of such a "generic" access type, check whether there
7934 -- is a specific visible access type that has the same designated type.
7935 -- This is semantically dubious, and of no interest to any real code,
7936 -- but c48008a makes it all worthwhile.
7937
7938 -------------------------
7939 -- Check_If_Expression --
7940 -------------------------
7941
7942 procedure Check_If_Expression (Cond : Node_Id) is
7943 Then_Expr : Node_Id;
7944 Else_Expr : Node_Id;
7945
7946 begin
7947 if Nkind (Cond) = N_If_Expression then
7948 Then_Expr := Next (First (Expressions (Cond)));
7949 Else_Expr := Next (Then_Expr);
7950
7951 if Nkind (Then_Expr) /= N_Null
7952 and then Nkind (Else_Expr) /= N_Null
7953 then
7954 Error_Msg_N ("cannot determine type of if expression", Cond);
7955 end if;
7956 end if;
7957 end Check_If_Expression;
7958
7959 ------------------------
7960 -- Explain_Redundancy --
7961 ------------------------
7962
7963 procedure Explain_Redundancy (N : Node_Id) is
7964 Error : Name_Id;
7965 Val : Node_Id;
7966 Val_Id : Entity_Id;
7967
7968 begin
7969 Val := N;
7970
7971 -- Strip the operand down to an entity
7972
7973 loop
7974 if Nkind (Val) = N_Selected_Component then
7975 Val := Selector_Name (Val);
7976 else
7977 exit;
7978 end if;
7979 end loop;
7980
7981 -- The construct denotes an entity
7982
7983 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7984 Val_Id := Entity (Val);
7985
7986 -- Do not generate an error message when the comparison is done
7987 -- against the enumeration literal Standard.True.
7988
7989 if Ekind (Val_Id) /= E_Enumeration_Literal then
7990
7991 -- Build a customized error message
7992
7993 Name_Len := 0;
7994 Add_Str_To_Name_Buffer ("?r?");
7995
7996 if Ekind (Val_Id) = E_Component then
7997 Add_Str_To_Name_Buffer ("component ");
7998
7999 elsif Ekind (Val_Id) = E_Constant then
8000 Add_Str_To_Name_Buffer ("constant ");
8001
8002 elsif Ekind (Val_Id) = E_Discriminant then
8003 Add_Str_To_Name_Buffer ("discriminant ");
8004
8005 elsif Is_Formal (Val_Id) then
8006 Add_Str_To_Name_Buffer ("parameter ");
8007
8008 elsif Ekind (Val_Id) = E_Variable then
8009 Add_Str_To_Name_Buffer ("variable ");
8010 end if;
8011
8012 Add_Str_To_Name_Buffer ("& is always True!");
8013 Error := Name_Find;
8014
8015 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
8016 end if;
8017
8018 -- The construct is too complex to disect, issue a general message
8019
8020 else
8021 Error_Msg_N ("?r?expression is always True!", Val);
8022 end if;
8023 end Explain_Redundancy;
8024
8025 -----------------------------
8026 -- Find_Unique_Access_Type --
8027 -----------------------------
8028
8029 function Find_Unique_Access_Type return Entity_Id is
8030 Acc : Entity_Id;
8031 E : Entity_Id;
8032 S : Entity_Id;
8033
8034 begin
8035 if Ekind_In (Etype (R), E_Allocator_Type,
8036 E_Access_Attribute_Type)
8037 then
8038 Acc := Designated_Type (Etype (R));
8039
8040 elsif Ekind_In (Etype (L), E_Allocator_Type,
8041 E_Access_Attribute_Type)
8042 then
8043 Acc := Designated_Type (Etype (L));
8044 else
8045 return Empty;
8046 end if;
8047
8048 S := Current_Scope;
8049 while S /= Standard_Standard loop
8050 E := First_Entity (S);
8051 while Present (E) loop
8052 if Is_Type (E)
8053 and then Is_Access_Type (E)
8054 and then Ekind (E) /= E_Allocator_Type
8055 and then Designated_Type (E) = Base_Type (Acc)
8056 then
8057 return E;
8058 end if;
8059
8060 Next_Entity (E);
8061 end loop;
8062
8063 S := Scope (S);
8064 end loop;
8065
8066 return Empty;
8067 end Find_Unique_Access_Type;
8068
8069 -- Start of processing for Resolve_Equality_Op
8070
8071 begin
8072 Set_Etype (N, Base_Type (Typ));
8073 Generate_Reference (T, N, ' ');
8074
8075 if T = Any_Fixed then
8076 T := Unique_Fixed_Point_Type (L);
8077 end if;
8078
8079 if T /= Any_Type then
8080 if T = Any_String or else
8081 T = Any_Composite or else
8082 T = Any_Character
8083 then
8084 if T = Any_Character then
8085 Ambiguous_Character (L);
8086 else
8087 Error_Msg_N ("ambiguous operands for equality", N);
8088 end if;
8089
8090 Set_Etype (N, Any_Type);
8091 return;
8092
8093 elsif T = Any_Access
8094 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
8095 then
8096 T := Find_Unique_Access_Type;
8097
8098 if No (T) then
8099 Error_Msg_N ("ambiguous operands for equality", N);
8100 Set_Etype (N, Any_Type);
8101 return;
8102 end if;
8103
8104 -- If expressions must have a single type, and if the context does
8105 -- not impose one the dependent expressions cannot be anonymous
8106 -- access types.
8107
8108 -- Why no similar processing for case expressions???
8109
8110 elsif Ada_Version >= Ada_2012
8111 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8112 E_Anonymous_Access_Subprogram_Type)
8113 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8114 E_Anonymous_Access_Subprogram_Type)
8115 then
8116 Check_If_Expression (L);
8117 Check_If_Expression (R);
8118 end if;
8119
8120 Resolve (L, T);
8121 Resolve (R, T);
8122
8123 -- In SPARK, equality operators = and /= for array types other than
8124 -- String are only defined when, for each index position, the
8125 -- operands have equal static bounds.
8126
8127 if Is_Array_Type (T) then
8128
8129 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8130 -- operation if not needed.
8131
8132 if Restriction_Check_Required (SPARK_05)
8133 and then Base_Type (T) /= Standard_String
8134 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8135 and then Etype (L) /= Any_Composite -- or else L in error
8136 and then Etype (R) /= Any_Composite -- or else R in error
8137 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8138 then
8139 Check_SPARK_05_Restriction
8140 ("array types should have matching static bounds", N);
8141 end if;
8142 end if;
8143
8144 -- If the unique type is a class-wide type then it will be expanded
8145 -- into a dispatching call to the predefined primitive. Therefore we
8146 -- check here for potential violation of such restriction.
8147
8148 if Is_Class_Wide_Type (T) then
8149 Check_Restriction (No_Dispatching_Calls, N);
8150 end if;
8151
8152 -- Only warn for redundant equality comparison to True for objects
8153 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8154 -- other expressions, it may be a matter of preference to write
8155 -- "Expr = True" or "Expr".
8156
8157 if Warn_On_Redundant_Constructs
8158 and then Comes_From_Source (N)
8159 and then Comes_From_Source (R)
8160 and then Is_Entity_Name (R)
8161 and then Entity (R) = Standard_True
8162 and then
8163 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8164 or else
8165 Nkind (L) in N_Op)
8166 then
8167 Error_Msg_N -- CODEFIX
8168 ("?r?comparison with True is redundant!", N);
8169 Explain_Redundancy (Original_Node (R));
8170 end if;
8171
8172 Check_Unset_Reference (L);
8173 Check_Unset_Reference (R);
8174 Generate_Operator_Reference (N, T);
8175 Check_Low_Bound_Tested (N);
8176
8177 -- If this is an inequality, it may be the implicit inequality
8178 -- created for a user-defined operation, in which case the corres-
8179 -- ponding equality operation is not intrinsic, and the operation
8180 -- cannot be constant-folded. Else fold.
8181
8182 if Nkind (N) = N_Op_Eq
8183 or else Comes_From_Source (Entity (N))
8184 or else Ekind (Entity (N)) = E_Operator
8185 or else Is_Intrinsic_Subprogram
8186 (Corresponding_Equality (Entity (N)))
8187 then
8188 Analyze_Dimension (N);
8189 Eval_Relational_Op (N);
8190
8191 elsif Nkind (N) = N_Op_Ne
8192 and then Is_Abstract_Subprogram (Entity (N))
8193 then
8194 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8195 end if;
8196
8197 -- Ada 2005: If one operand is an anonymous access type, convert the
8198 -- other operand to it, to ensure that the underlying types match in
8199 -- the back-end. Same for access_to_subprogram, and the conversion
8200 -- verifies that the types are subtype conformant.
8201
8202 -- We apply the same conversion in the case one of the operands is a
8203 -- private subtype of the type of the other.
8204
8205 -- Why the Expander_Active test here ???
8206
8207 if Expander_Active
8208 and then
8209 (Ekind_In (T, E_Anonymous_Access_Type,
8210 E_Anonymous_Access_Subprogram_Type)
8211 or else Is_Private_Type (T))
8212 then
8213 if Etype (L) /= T then
8214 Rewrite (L,
8215 Make_Unchecked_Type_Conversion (Sloc (L),
8216 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8217 Expression => Relocate_Node (L)));
8218 Analyze_And_Resolve (L, T);
8219 end if;
8220
8221 if (Etype (R)) /= T then
8222 Rewrite (R,
8223 Make_Unchecked_Type_Conversion (Sloc (R),
8224 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8225 Expression => Relocate_Node (R)));
8226 Analyze_And_Resolve (R, T);
8227 end if;
8228 end if;
8229 end if;
8230 end Resolve_Equality_Op;
8231
8232 ----------------------------------
8233 -- Resolve_Explicit_Dereference --
8234 ----------------------------------
8235
8236 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8237 Loc : constant Source_Ptr := Sloc (N);
8238 New_N : Node_Id;
8239 P : constant Node_Id := Prefix (N);
8240
8241 P_Typ : Entity_Id;
8242 -- The candidate prefix type, if overloaded
8243
8244 I : Interp_Index;
8245 It : Interp;
8246
8247 begin
8248 Check_Fully_Declared_Prefix (Typ, P);
8249 P_Typ := Empty;
8250
8251 -- A useful optimization: check whether the dereference denotes an
8252 -- element of a container, and if so rewrite it as a call to the
8253 -- corresponding Element function.
8254
8255 -- Disabled for now, on advice of ARG. A more restricted form of the
8256 -- predicate might be acceptable ???
8257
8258 -- if Is_Container_Element (N) then
8259 -- return;
8260 -- end if;
8261
8262 if Is_Overloaded (P) then
8263
8264 -- Use the context type to select the prefix that has the correct
8265 -- designated type. Keep the first match, which will be the inner-
8266 -- most.
8267
8268 Get_First_Interp (P, I, It);
8269
8270 while Present (It.Typ) loop
8271 if Is_Access_Type (It.Typ)
8272 and then Covers (Typ, Designated_Type (It.Typ))
8273 then
8274 if No (P_Typ) then
8275 P_Typ := It.Typ;
8276 end if;
8277
8278 -- Remove access types that do not match, but preserve access
8279 -- to subprogram interpretations, in case a further dereference
8280 -- is needed (see below).
8281
8282 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8283 Remove_Interp (I);
8284 end if;
8285
8286 Get_Next_Interp (I, It);
8287 end loop;
8288
8289 if Present (P_Typ) then
8290 Resolve (P, P_Typ);
8291 Set_Etype (N, Designated_Type (P_Typ));
8292
8293 else
8294 -- If no interpretation covers the designated type of the prefix,
8295 -- this is the pathological case where not all implementations of
8296 -- the prefix allow the interpretation of the node as a call. Now
8297 -- that the expected type is known, Remove other interpretations
8298 -- from prefix, rewrite it as a call, and resolve again, so that
8299 -- the proper call node is generated.
8300
8301 Get_First_Interp (P, I, It);
8302 while Present (It.Typ) loop
8303 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8304 Remove_Interp (I);
8305 end if;
8306
8307 Get_Next_Interp (I, It);
8308 end loop;
8309
8310 New_N :=
8311 Make_Function_Call (Loc,
8312 Name =>
8313 Make_Explicit_Dereference (Loc,
8314 Prefix => P),
8315 Parameter_Associations => New_List);
8316
8317 Save_Interps (N, New_N);
8318 Rewrite (N, New_N);
8319 Analyze_And_Resolve (N, Typ);
8320 return;
8321 end if;
8322
8323 -- If not overloaded, resolve P with its own type
8324
8325 else
8326 Resolve (P);
8327 end if;
8328
8329 -- If the prefix might be null, add an access check
8330
8331 if Is_Access_Type (Etype (P))
8332 and then not Can_Never_Be_Null (Etype (P))
8333 then
8334 Apply_Access_Check (N);
8335 end if;
8336
8337 -- If the designated type is a packed unconstrained array type, and the
8338 -- explicit dereference is not in the context of an attribute reference,
8339 -- then we must compute and set the actual subtype, since it is needed
8340 -- by Gigi. The reason we exclude the attribute case is that this is
8341 -- handled fine by Gigi, and in fact we use such attributes to build the
8342 -- actual subtype. We also exclude generated code (which builds actual
8343 -- subtypes directly if they are needed).
8344
8345 if Is_Array_Type (Etype (N))
8346 and then Is_Packed (Etype (N))
8347 and then not Is_Constrained (Etype (N))
8348 and then Nkind (Parent (N)) /= N_Attribute_Reference
8349 and then Comes_From_Source (N)
8350 then
8351 Set_Etype (N, Get_Actual_Subtype (N));
8352 end if;
8353
8354 Analyze_Dimension (N);
8355
8356 -- Note: No Eval processing is required for an explicit dereference,
8357 -- because such a name can never be static.
8358
8359 end Resolve_Explicit_Dereference;
8360
8361 -------------------------------------
8362 -- Resolve_Expression_With_Actions --
8363 -------------------------------------
8364
8365 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8366 begin
8367 Set_Etype (N, Typ);
8368
8369 -- If N has no actions, and its expression has been constant folded,
8370 -- then rewrite N as just its expression. Note, we can't do this in
8371 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8372 -- Expression (N) to be expanded again.
8373
8374 if Is_Empty_List (Actions (N))
8375 and then Compile_Time_Known_Value (Expression (N))
8376 then
8377 Rewrite (N, Expression (N));
8378 end if;
8379 end Resolve_Expression_With_Actions;
8380
8381 ----------------------------------
8382 -- Resolve_Generalized_Indexing --
8383 ----------------------------------
8384
8385 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8386 Indexing : constant Node_Id := Generalized_Indexing (N);
8387 Call : Node_Id;
8388 Indexes : List_Id;
8389 Pref : Node_Id;
8390
8391 begin
8392 -- In ASIS mode, propagate the information about the indexes back to
8393 -- to the original indexing node. The generalized indexing is either
8394 -- a function call, or a dereference of one. The actuals include the
8395 -- prefix of the original node, which is the container expression.
8396
8397 if ASIS_Mode then
8398 Resolve (Indexing, Typ);
8399 Set_Etype (N, Etype (Indexing));
8400 Set_Is_Overloaded (N, False);
8401
8402 Call := Indexing;
8403 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8404 loop
8405 Call := Prefix (Call);
8406 end loop;
8407
8408 if Nkind (Call) = N_Function_Call then
8409 Indexes := New_Copy_List (Parameter_Associations (Call));
8410 Pref := Remove_Head (Indexes);
8411 Set_Expressions (N, Indexes);
8412
8413 -- If expression is to be reanalyzed, reset Generalized_Indexing
8414 -- to recreate call node, as is the case when the expression is
8415 -- part of an expression function.
8416
8417 if In_Spec_Expression then
8418 Set_Generalized_Indexing (N, Empty);
8419 end if;
8420
8421 Set_Prefix (N, Pref);
8422 end if;
8423
8424 else
8425 Rewrite (N, Indexing);
8426 Resolve (N, Typ);
8427 end if;
8428 end Resolve_Generalized_Indexing;
8429
8430 ---------------------------
8431 -- Resolve_If_Expression --
8432 ---------------------------
8433
8434 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8435 Condition : constant Node_Id := First (Expressions (N));
8436 Then_Expr : Node_Id;
8437 Else_Expr : Node_Id;
8438 Else_Typ : Entity_Id;
8439 Then_Typ : Entity_Id;
8440
8441 begin
8442 -- Defend against malformed expressions
8443
8444 if No (Condition) then
8445 return;
8446 end if;
8447
8448 Then_Expr := Next (Condition);
8449
8450 if No (Then_Expr) then
8451 return;
8452 end if;
8453
8454 Else_Expr := Next (Then_Expr);
8455
8456 Resolve (Condition, Any_Boolean);
8457 Resolve (Then_Expr, Typ);
8458 Then_Typ := Etype (Then_Expr);
8459
8460 -- When the "then" expression is of a scalar subtype different from the
8461 -- result subtype, then insert a conversion to ensure the generation of
8462 -- a constraint check. The same is done for the else part below, again
8463 -- comparing subtypes rather than base types.
8464
8465 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8466 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8467 Analyze_And_Resolve (Then_Expr, Typ);
8468 end if;
8469
8470 -- If ELSE expression present, just resolve using the determined type
8471 -- If type is universal, resolve to any member of the class.
8472
8473 if Present (Else_Expr) then
8474 if Typ = Universal_Integer then
8475 Resolve (Else_Expr, Any_Integer);
8476
8477 elsif Typ = Universal_Real then
8478 Resolve (Else_Expr, Any_Real);
8479
8480 else
8481 Resolve (Else_Expr, Typ);
8482 end if;
8483
8484 Else_Typ := Etype (Else_Expr);
8485
8486 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8487 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8488 Analyze_And_Resolve (Else_Expr, Typ);
8489
8490 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8491 -- dynamically tagged must be known statically.
8492
8493 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8494 if Is_Dynamically_Tagged (Then_Expr) /=
8495 Is_Dynamically_Tagged (Else_Expr)
8496 then
8497 Error_Msg_N ("all or none of the dependent expressions "
8498 & "can be dynamically tagged", N);
8499 end if;
8500 end if;
8501
8502 -- If no ELSE expression is present, root type must be Standard.Boolean
8503 -- and we provide a Standard.True result converted to the appropriate
8504 -- Boolean type (in case it is a derived boolean type).
8505
8506 elsif Root_Type (Typ) = Standard_Boolean then
8507 Else_Expr :=
8508 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8509 Analyze_And_Resolve (Else_Expr, Typ);
8510 Append_To (Expressions (N), Else_Expr);
8511
8512 else
8513 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8514 Append_To (Expressions (N), Error);
8515 end if;
8516
8517 Set_Etype (N, Typ);
8518
8519 if not Error_Posted (N) then
8520 Eval_If_Expression (N);
8521 end if;
8522
8523 Analyze_Dimension (N);
8524 end Resolve_If_Expression;
8525
8526 -------------------------------
8527 -- Resolve_Indexed_Component --
8528 -------------------------------
8529
8530 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8531 Name : constant Node_Id := Prefix (N);
8532 Expr : Node_Id;
8533 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8534 Index : Node_Id;
8535
8536 begin
8537 if Present (Generalized_Indexing (N)) then
8538 Resolve_Generalized_Indexing (N, Typ);
8539 return;
8540 end if;
8541
8542 if Is_Overloaded (Name) then
8543
8544 -- Use the context type to select the prefix that yields the correct
8545 -- component type.
8546
8547 declare
8548 I : Interp_Index;
8549 It : Interp;
8550 I1 : Interp_Index := 0;
8551 P : constant Node_Id := Prefix (N);
8552 Found : Boolean := False;
8553
8554 begin
8555 Get_First_Interp (P, I, It);
8556 while Present (It.Typ) loop
8557 if (Is_Array_Type (It.Typ)
8558 and then Covers (Typ, Component_Type (It.Typ)))
8559 or else (Is_Access_Type (It.Typ)
8560 and then Is_Array_Type (Designated_Type (It.Typ))
8561 and then
8562 Covers
8563 (Typ,
8564 Component_Type (Designated_Type (It.Typ))))
8565 then
8566 if Found then
8567 It := Disambiguate (P, I1, I, Any_Type);
8568
8569 if It = No_Interp then
8570 Error_Msg_N ("ambiguous prefix for indexing", N);
8571 Set_Etype (N, Typ);
8572 return;
8573
8574 else
8575 Found := True;
8576 Array_Type := It.Typ;
8577 I1 := I;
8578 end if;
8579
8580 else
8581 Found := True;
8582 Array_Type := It.Typ;
8583 I1 := I;
8584 end if;
8585 end if;
8586
8587 Get_Next_Interp (I, It);
8588 end loop;
8589 end;
8590
8591 else
8592 Array_Type := Etype (Name);
8593 end if;
8594
8595 Resolve (Name, Array_Type);
8596 Array_Type := Get_Actual_Subtype_If_Available (Name);
8597
8598 -- If prefix is access type, dereference to get real array type.
8599 -- Note: we do not apply an access check because the expander always
8600 -- introduces an explicit dereference, and the check will happen there.
8601
8602 if Is_Access_Type (Array_Type) then
8603 Array_Type := Designated_Type (Array_Type);
8604 end if;
8605
8606 -- If name was overloaded, set component type correctly now
8607 -- If a misplaced call to an entry family (which has no index types)
8608 -- return. Error will be diagnosed from calling context.
8609
8610 if Is_Array_Type (Array_Type) then
8611 Set_Etype (N, Component_Type (Array_Type));
8612 else
8613 return;
8614 end if;
8615
8616 Index := First_Index (Array_Type);
8617 Expr := First (Expressions (N));
8618
8619 -- The prefix may have resolved to a string literal, in which case its
8620 -- etype has a special representation. This is only possible currently
8621 -- if the prefix is a static concatenation, written in functional
8622 -- notation.
8623
8624 if Ekind (Array_Type) = E_String_Literal_Subtype then
8625 Resolve (Expr, Standard_Positive);
8626
8627 else
8628 while Present (Index) and Present (Expr) loop
8629 Resolve (Expr, Etype (Index));
8630 Check_Unset_Reference (Expr);
8631
8632 if Is_Scalar_Type (Etype (Expr)) then
8633 Apply_Scalar_Range_Check (Expr, Etype (Index));
8634 else
8635 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8636 end if;
8637
8638 Next_Index (Index);
8639 Next (Expr);
8640 end loop;
8641 end if;
8642
8643 Analyze_Dimension (N);
8644
8645 -- Do not generate the warning on suspicious index if we are analyzing
8646 -- package Ada.Tags; otherwise we will report the warning with the
8647 -- Prims_Ptr field of the dispatch table.
8648
8649 if Scope (Etype (Prefix (N))) = Standard_Standard
8650 or else not
8651 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8652 Ada_Tags)
8653 then
8654 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8655 Eval_Indexed_Component (N);
8656 end if;
8657
8658 -- If the array type is atomic, and the component is not atomic, then
8659 -- this is worth a warning, since we have a situation where the access
8660 -- to the component may cause extra read/writes of the atomic array
8661 -- object, or partial word accesses, which could be unexpected.
8662
8663 if Nkind (N) = N_Indexed_Component
8664 and then Is_Atomic_Ref_With_Address (N)
8665 and then not (Has_Atomic_Components (Array_Type)
8666 or else (Is_Entity_Name (Prefix (N))
8667 and then Has_Atomic_Components
8668 (Entity (Prefix (N)))))
8669 and then not Is_Atomic (Component_Type (Array_Type))
8670 then
8671 Error_Msg_N
8672 ("??access to non-atomic component of atomic array", Prefix (N));
8673 Error_Msg_N
8674 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8675 end if;
8676 end Resolve_Indexed_Component;
8677
8678 -----------------------------
8679 -- Resolve_Integer_Literal --
8680 -----------------------------
8681
8682 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8683 begin
8684 Set_Etype (N, Typ);
8685 Eval_Integer_Literal (N);
8686 end Resolve_Integer_Literal;
8687
8688 --------------------------------
8689 -- Resolve_Intrinsic_Operator --
8690 --------------------------------
8691
8692 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8693 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8694 Op : Entity_Id;
8695 Arg1 : Node_Id;
8696 Arg2 : Node_Id;
8697
8698 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8699 -- If the operand is a literal, it cannot be the expression in a
8700 -- conversion. Use a qualified expression instead.
8701
8702 ---------------------
8703 -- Convert_Operand --
8704 ---------------------
8705
8706 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8707 Loc : constant Source_Ptr := Sloc (Opnd);
8708 Res : Node_Id;
8709
8710 begin
8711 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8712 Res :=
8713 Make_Qualified_Expression (Loc,
8714 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8715 Expression => Relocate_Node (Opnd));
8716 Analyze (Res);
8717
8718 else
8719 Res := Unchecked_Convert_To (Btyp, Opnd);
8720 end if;
8721
8722 return Res;
8723 end Convert_Operand;
8724
8725 -- Start of processing for Resolve_Intrinsic_Operator
8726
8727 begin
8728 -- We must preserve the original entity in a generic setting, so that
8729 -- the legality of the operation can be verified in an instance.
8730
8731 if not Expander_Active then
8732 return;
8733 end if;
8734
8735 Op := Entity (N);
8736 while Scope (Op) /= Standard_Standard loop
8737 Op := Homonym (Op);
8738 pragma Assert (Present (Op));
8739 end loop;
8740
8741 Set_Entity (N, Op);
8742 Set_Is_Overloaded (N, False);
8743
8744 -- If the result or operand types are private, rewrite with unchecked
8745 -- conversions on the operands and the result, to expose the proper
8746 -- underlying numeric type.
8747
8748 if Is_Private_Type (Typ)
8749 or else Is_Private_Type (Etype (Left_Opnd (N)))
8750 or else Is_Private_Type (Etype (Right_Opnd (N)))
8751 then
8752 Arg1 := Convert_Operand (Left_Opnd (N));
8753
8754 if Nkind (N) = N_Op_Expon then
8755 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8756 else
8757 Arg2 := Convert_Operand (Right_Opnd (N));
8758 end if;
8759
8760 if Nkind (Arg1) = N_Type_Conversion then
8761 Save_Interps (Left_Opnd (N), Expression (Arg1));
8762 end if;
8763
8764 if Nkind (Arg2) = N_Type_Conversion then
8765 Save_Interps (Right_Opnd (N), Expression (Arg2));
8766 end if;
8767
8768 Set_Left_Opnd (N, Arg1);
8769 Set_Right_Opnd (N, Arg2);
8770
8771 Set_Etype (N, Btyp);
8772 Rewrite (N, Unchecked_Convert_To (Typ, N));
8773 Resolve (N, Typ);
8774
8775 elsif Typ /= Etype (Left_Opnd (N))
8776 or else Typ /= Etype (Right_Opnd (N))
8777 then
8778 -- Add explicit conversion where needed, and save interpretations in
8779 -- case operands are overloaded.
8780
8781 Arg1 := Convert_To (Typ, Left_Opnd (N));
8782 Arg2 := Convert_To (Typ, Right_Opnd (N));
8783
8784 if Nkind (Arg1) = N_Type_Conversion then
8785 Save_Interps (Left_Opnd (N), Expression (Arg1));
8786 else
8787 Save_Interps (Left_Opnd (N), Arg1);
8788 end if;
8789
8790 if Nkind (Arg2) = N_Type_Conversion then
8791 Save_Interps (Right_Opnd (N), Expression (Arg2));
8792 else
8793 Save_Interps (Right_Opnd (N), Arg2);
8794 end if;
8795
8796 Rewrite (Left_Opnd (N), Arg1);
8797 Rewrite (Right_Opnd (N), Arg2);
8798 Analyze (Arg1);
8799 Analyze (Arg2);
8800 Resolve_Arithmetic_Op (N, Typ);
8801
8802 else
8803 Resolve_Arithmetic_Op (N, Typ);
8804 end if;
8805 end Resolve_Intrinsic_Operator;
8806
8807 --------------------------------------
8808 -- Resolve_Intrinsic_Unary_Operator --
8809 --------------------------------------
8810
8811 procedure Resolve_Intrinsic_Unary_Operator
8812 (N : Node_Id;
8813 Typ : Entity_Id)
8814 is
8815 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8816 Op : Entity_Id;
8817 Arg2 : Node_Id;
8818
8819 begin
8820 Op := Entity (N);
8821 while Scope (Op) /= Standard_Standard loop
8822 Op := Homonym (Op);
8823 pragma Assert (Present (Op));
8824 end loop;
8825
8826 Set_Entity (N, Op);
8827
8828 if Is_Private_Type (Typ) then
8829 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8830 Save_Interps (Right_Opnd (N), Expression (Arg2));
8831
8832 Set_Right_Opnd (N, Arg2);
8833
8834 Set_Etype (N, Btyp);
8835 Rewrite (N, Unchecked_Convert_To (Typ, N));
8836 Resolve (N, Typ);
8837
8838 else
8839 Resolve_Unary_Op (N, Typ);
8840 end if;
8841 end Resolve_Intrinsic_Unary_Operator;
8842
8843 ------------------------
8844 -- Resolve_Logical_Op --
8845 ------------------------
8846
8847 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8848 B_Typ : Entity_Id;
8849
8850 begin
8851 Check_No_Direct_Boolean_Operators (N);
8852
8853 -- Predefined operations on scalar types yield the base type. On the
8854 -- other hand, logical operations on arrays yield the type of the
8855 -- arguments (and the context).
8856
8857 if Is_Array_Type (Typ) then
8858 B_Typ := Typ;
8859 else
8860 B_Typ := Base_Type (Typ);
8861 end if;
8862
8863 -- The following test is required because the operands of the operation
8864 -- may be literals, in which case the resulting type appears to be
8865 -- compatible with a signed integer type, when in fact it is compatible
8866 -- only with modular types. If the context itself is universal, the
8867 -- operation is illegal.
8868
8869 if not Valid_Boolean_Arg (Typ) then
8870 Error_Msg_N ("invalid context for logical operation", N);
8871 Set_Etype (N, Any_Type);
8872 return;
8873
8874 elsif Typ = Any_Modular then
8875 Error_Msg_N
8876 ("no modular type available in this context", N);
8877 Set_Etype (N, Any_Type);
8878 return;
8879
8880 elsif Is_Modular_Integer_Type (Typ)
8881 and then Etype (Left_Opnd (N)) = Universal_Integer
8882 and then Etype (Right_Opnd (N)) = Universal_Integer
8883 then
8884 Check_For_Visible_Operator (N, B_Typ);
8885 end if;
8886
8887 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8888 -- is active and the result type is standard Boolean (do not mess with
8889 -- ops that return a nonstandard Boolean type, because something strange
8890 -- is going on).
8891
8892 -- Note: you might expect this replacement to be done during expansion,
8893 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8894 -- is used, no part of the right operand of an "and" or "or" operator
8895 -- should be executed if the left operand would short-circuit the
8896 -- evaluation of the corresponding "and then" or "or else". If we left
8897 -- the replacement to expansion time, then run-time checks associated
8898 -- with such operands would be evaluated unconditionally, due to being
8899 -- before the condition prior to the rewriting as short-circuit forms
8900 -- during expansion.
8901
8902 if Short_Circuit_And_Or
8903 and then B_Typ = Standard_Boolean
8904 and then Nkind_In (N, N_Op_And, N_Op_Or)
8905 then
8906 -- Mark the corresponding putative SCO operator as truly a logical
8907 -- (and short-circuit) operator.
8908
8909 if Generate_SCO and then Comes_From_Source (N) then
8910 Set_SCO_Logical_Operator (N);
8911 end if;
8912
8913 if Nkind (N) = N_Op_And then
8914 Rewrite (N,
8915 Make_And_Then (Sloc (N),
8916 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8917 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8918 Analyze_And_Resolve (N, B_Typ);
8919
8920 -- Case of OR changed to OR ELSE
8921
8922 else
8923 Rewrite (N,
8924 Make_Or_Else (Sloc (N),
8925 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8926 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8927 Analyze_And_Resolve (N, B_Typ);
8928 end if;
8929
8930 -- Return now, since analysis of the rewritten ops will take care of
8931 -- other reference bookkeeping and expression folding.
8932
8933 return;
8934 end if;
8935
8936 Resolve (Left_Opnd (N), B_Typ);
8937 Resolve (Right_Opnd (N), B_Typ);
8938
8939 Check_Unset_Reference (Left_Opnd (N));
8940 Check_Unset_Reference (Right_Opnd (N));
8941
8942 Set_Etype (N, B_Typ);
8943 Generate_Operator_Reference (N, B_Typ);
8944 Eval_Logical_Op (N);
8945
8946 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8947 -- only when both operands have same static lower and higher bounds. Of
8948 -- course the types have to match, so only check if operands are
8949 -- compatible and the node itself has no errors.
8950
8951 if Is_Array_Type (B_Typ)
8952 and then Nkind (N) in N_Binary_Op
8953 then
8954 declare
8955 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8956 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8957
8958 begin
8959 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8960 -- operation if not needed.
8961
8962 if Restriction_Check_Required (SPARK_05)
8963 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8964 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8965 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8966 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8967 then
8968 Check_SPARK_05_Restriction
8969 ("array types should have matching static bounds", N);
8970 end if;
8971 end;
8972 end if;
8973 end Resolve_Logical_Op;
8974
8975 ---------------------------
8976 -- Resolve_Membership_Op --
8977 ---------------------------
8978
8979 -- The context can only be a boolean type, and does not determine the
8980 -- arguments. Arguments should be unambiguous, but the preference rule for
8981 -- universal types applies.
8982
8983 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8984 pragma Warnings (Off, Typ);
8985
8986 L : constant Node_Id := Left_Opnd (N);
8987 R : constant Node_Id := Right_Opnd (N);
8988 T : Entity_Id;
8989
8990 procedure Resolve_Set_Membership;
8991 -- Analysis has determined a unique type for the left operand. Use it to
8992 -- resolve the disjuncts.
8993
8994 ----------------------------
8995 -- Resolve_Set_Membership --
8996 ----------------------------
8997
8998 procedure Resolve_Set_Membership is
8999 Alt : Node_Id;
9000 Ltyp : Entity_Id;
9001
9002 begin
9003 -- If the left operand is overloaded, find type compatible with not
9004 -- overloaded alternative of the right operand.
9005
9006 if Is_Overloaded (L) then
9007 Ltyp := Empty;
9008 Alt := First (Alternatives (N));
9009 while Present (Alt) loop
9010 if not Is_Overloaded (Alt) then
9011 Ltyp := Intersect_Types (L, Alt);
9012 exit;
9013 else
9014 Next (Alt);
9015 end if;
9016 end loop;
9017
9018 -- Unclear how to resolve expression if all alternatives are also
9019 -- overloaded.
9020
9021 if No (Ltyp) then
9022 Error_Msg_N ("ambiguous expression", N);
9023 end if;
9024
9025 else
9026 Ltyp := Etype (L);
9027 end if;
9028
9029 Resolve (L, Ltyp);
9030
9031 Alt := First (Alternatives (N));
9032 while Present (Alt) loop
9033
9034 -- Alternative is an expression, a range
9035 -- or a subtype mark.
9036
9037 if not Is_Entity_Name (Alt)
9038 or else not Is_Type (Entity (Alt))
9039 then
9040 Resolve (Alt, Ltyp);
9041 end if;
9042
9043 Next (Alt);
9044 end loop;
9045
9046 -- Check for duplicates for discrete case
9047
9048 if Is_Discrete_Type (Ltyp) then
9049 declare
9050 type Ent is record
9051 Alt : Node_Id;
9052 Val : Uint;
9053 end record;
9054
9055 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
9056 Nalts : Nat;
9057
9058 begin
9059 -- Loop checking duplicates. This is quadratic, but giant sets
9060 -- are unlikely in this context so it's a reasonable choice.
9061
9062 Nalts := 0;
9063 Alt := First (Alternatives (N));
9064 while Present (Alt) loop
9065 if Is_OK_Static_Expression (Alt)
9066 and then (Nkind_In (Alt, N_Integer_Literal,
9067 N_Character_Literal)
9068 or else Nkind (Alt) in N_Has_Entity)
9069 then
9070 Nalts := Nalts + 1;
9071 Alts (Nalts) := (Alt, Expr_Value (Alt));
9072
9073 for J in 1 .. Nalts - 1 loop
9074 if Alts (J).Val = Alts (Nalts).Val then
9075 Error_Msg_Sloc := Sloc (Alts (J).Alt);
9076 Error_Msg_N ("duplicate of value given#??", Alt);
9077 end if;
9078 end loop;
9079 end if;
9080
9081 Alt := Next (Alt);
9082 end loop;
9083 end;
9084 end if;
9085
9086 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
9087 -- limited types, evaluation of a membership test uses the predefined
9088 -- equality for the type. This may be confusing to users, and the
9089 -- following warning appears useful for the most common case.
9090
9091 if Is_Scalar_Type (Ltyp)
9092 and then Present (Get_User_Defined_Eq (Ltyp))
9093 then
9094 Error_Msg_NE
9095 ("membership test on& uses predefined equality?", N, Ltyp);
9096 Error_Msg_N
9097 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
9098 end if;
9099 end Resolve_Set_Membership;
9100
9101 -- Start of processing for Resolve_Membership_Op
9102
9103 begin
9104 if L = Error or else R = Error then
9105 return;
9106 end if;
9107
9108 if Present (Alternatives (N)) then
9109 Resolve_Set_Membership;
9110 goto SM_Exit;
9111
9112 elsif not Is_Overloaded (R)
9113 and then
9114 (Etype (R) = Universal_Integer
9115 or else
9116 Etype (R) = Universal_Real)
9117 and then Is_Overloaded (L)
9118 then
9119 T := Etype (R);
9120
9121 -- Ada 2005 (AI-251): Support the following case:
9122
9123 -- type I is interface;
9124 -- type T is tagged ...
9125
9126 -- function Test (O : I'Class) is
9127 -- begin
9128 -- return O in T'Class.
9129 -- end Test;
9130
9131 -- In this case we have nothing else to do. The membership test will be
9132 -- done at run time.
9133
9134 elsif Ada_Version >= Ada_2005
9135 and then Is_Class_Wide_Type (Etype (L))
9136 and then Is_Interface (Etype (L))
9137 and then not Is_Interface (Etype (R))
9138 then
9139 return;
9140 else
9141 T := Intersect_Types (L, R);
9142 end if;
9143
9144 -- If mixed-mode operations are present and operands are all literal,
9145 -- the only interpretation involves Duration, which is probably not
9146 -- the intention of the programmer.
9147
9148 if T = Any_Fixed then
9149 T := Unique_Fixed_Point_Type (N);
9150
9151 if T = Any_Type then
9152 return;
9153 end if;
9154 end if;
9155
9156 Resolve (L, T);
9157 Check_Unset_Reference (L);
9158
9159 if Nkind (R) = N_Range
9160 and then not Is_Scalar_Type (T)
9161 then
9162 Error_Msg_N ("scalar type required for range", R);
9163 end if;
9164
9165 if Is_Entity_Name (R) then
9166 Freeze_Expression (R);
9167 else
9168 Resolve (R, T);
9169 Check_Unset_Reference (R);
9170 end if;
9171
9172 -- Here after resolving membership operation
9173
9174 <<SM_Exit>>
9175
9176 Eval_Membership_Op (N);
9177 end Resolve_Membership_Op;
9178
9179 ------------------
9180 -- Resolve_Null --
9181 ------------------
9182
9183 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9184 Loc : constant Source_Ptr := Sloc (N);
9185
9186 begin
9187 -- Handle restriction against anonymous null access values This
9188 -- restriction can be turned off using -gnatdj.
9189
9190 -- Ada 2005 (AI-231): Remove restriction
9191
9192 if Ada_Version < Ada_2005
9193 and then not Debug_Flag_J
9194 and then Ekind (Typ) = E_Anonymous_Access_Type
9195 and then Comes_From_Source (N)
9196 then
9197 -- In the common case of a call which uses an explicitly null value
9198 -- for an access parameter, give specialized error message.
9199
9200 if Nkind (Parent (N)) in N_Subprogram_Call then
9201 Error_Msg_N
9202 ("null is not allowed as argument for an access parameter", N);
9203
9204 -- Standard message for all other cases (are there any?)
9205
9206 else
9207 Error_Msg_N
9208 ("null cannot be of an anonymous access type", N);
9209 end if;
9210 end if;
9211
9212 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9213 -- assignment to a null-excluding object.
9214
9215 if Ada_Version >= Ada_2005
9216 and then Can_Never_Be_Null (Typ)
9217 and then Nkind (Parent (N)) = N_Assignment_Statement
9218 then
9219 if Inside_Init_Proc then
9220
9221 -- Decide whether to generate an if_statement around our
9222 -- null-excluding check to avoid them on certain internal object
9223 -- declarations by looking at the type the current Init_Proc
9224 -- belongs to.
9225
9226 -- Generate:
9227 -- if T1b_skip_null_excluding_check then
9228 -- [constraint_error "access check failed"]
9229 -- end if;
9230
9231 if Needs_Conditional_Null_Excluding_Check
9232 (Etype (First_Formal (Enclosing_Init_Proc)))
9233 then
9234 Insert_Action (N,
9235 Make_If_Statement (Loc,
9236 Condition =>
9237 Make_Identifier (Loc,
9238 New_External_Name
9239 (Chars (Typ), "_skip_null_excluding_check")),
9240 Then_Statements =>
9241 New_List (
9242 Make_Raise_Constraint_Error (Loc,
9243 Reason => CE_Access_Check_Failed))));
9244
9245 -- Otherwise, simply create the check
9246
9247 else
9248 Insert_Action (N,
9249 Make_Raise_Constraint_Error (Loc,
9250 Reason => CE_Access_Check_Failed));
9251 end if;
9252 else
9253 Insert_Action
9254 (Compile_Time_Constraint_Error (N,
9255 "(Ada 2005) null not allowed in null-excluding objects??"),
9256 Make_Raise_Constraint_Error (Loc,
9257 Reason => CE_Access_Check_Failed));
9258 end if;
9259 end if;
9260
9261 -- In a distributed context, null for a remote access to subprogram may
9262 -- need to be replaced with a special record aggregate. In this case,
9263 -- return after having done the transformation.
9264
9265 if (Ekind (Typ) = E_Record_Type
9266 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9267 and then Remote_AST_Null_Value (N, Typ)
9268 then
9269 return;
9270 end if;
9271
9272 -- The null literal takes its type from the context
9273
9274 Set_Etype (N, Typ);
9275 end Resolve_Null;
9276
9277 -----------------------
9278 -- Resolve_Op_Concat --
9279 -----------------------
9280
9281 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9282
9283 -- We wish to avoid deep recursion, because concatenations are often
9284 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9285 -- operands nonrecursively until we find something that is not a simple
9286 -- concatenation (A in this case). We resolve that, and then walk back
9287 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9288 -- to do the rest of the work at each level. The Parent pointers allow
9289 -- us to avoid recursion, and thus avoid running out of memory. See also
9290 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9291
9292 NN : Node_Id := N;
9293 Op1 : Node_Id;
9294
9295 begin
9296 -- The following code is equivalent to:
9297
9298 -- Resolve_Op_Concat_First (NN, Typ);
9299 -- Resolve_Op_Concat_Arg (N, ...);
9300 -- Resolve_Op_Concat_Rest (N, Typ);
9301
9302 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9303 -- operand is a concatenation.
9304
9305 -- Walk down left operands
9306
9307 loop
9308 Resolve_Op_Concat_First (NN, Typ);
9309 Op1 := Left_Opnd (NN);
9310 exit when not (Nkind (Op1) = N_Op_Concat
9311 and then not Is_Array_Type (Component_Type (Typ))
9312 and then Entity (Op1) = Entity (NN));
9313 NN := Op1;
9314 end loop;
9315
9316 -- Now (given the above example) NN is A&B and Op1 is A
9317
9318 -- First resolve Op1 ...
9319
9320 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9321
9322 -- ... then walk NN back up until we reach N (where we started), calling
9323 -- Resolve_Op_Concat_Rest along the way.
9324
9325 loop
9326 Resolve_Op_Concat_Rest (NN, Typ);
9327 exit when NN = N;
9328 NN := Parent (NN);
9329 end loop;
9330
9331 if Base_Type (Etype (N)) /= Standard_String then
9332 Check_SPARK_05_Restriction
9333 ("result of concatenation should have type String", N);
9334 end if;
9335 end Resolve_Op_Concat;
9336
9337 ---------------------------
9338 -- Resolve_Op_Concat_Arg --
9339 ---------------------------
9340
9341 procedure Resolve_Op_Concat_Arg
9342 (N : Node_Id;
9343 Arg : Node_Id;
9344 Typ : Entity_Id;
9345 Is_Comp : Boolean)
9346 is
9347 Btyp : constant Entity_Id := Base_Type (Typ);
9348 Ctyp : constant Entity_Id := Component_Type (Typ);
9349
9350 begin
9351 if In_Instance then
9352 if Is_Comp
9353 or else (not Is_Overloaded (Arg)
9354 and then Etype (Arg) /= Any_Composite
9355 and then Covers (Ctyp, Etype (Arg)))
9356 then
9357 Resolve (Arg, Ctyp);
9358 else
9359 Resolve (Arg, Btyp);
9360 end if;
9361
9362 -- If both Array & Array and Array & Component are visible, there is a
9363 -- potential ambiguity that must be reported.
9364
9365 elsif Has_Compatible_Type (Arg, Ctyp) then
9366 if Nkind (Arg) = N_Aggregate
9367 and then Is_Composite_Type (Ctyp)
9368 then
9369 if Is_Private_Type (Ctyp) then
9370 Resolve (Arg, Btyp);
9371
9372 -- If the operation is user-defined and not overloaded use its
9373 -- profile. The operation may be a renaming, in which case it has
9374 -- been rewritten, and we want the original profile.
9375
9376 elsif not Is_Overloaded (N)
9377 and then Comes_From_Source (Entity (Original_Node (N)))
9378 and then Ekind (Entity (Original_Node (N))) = E_Function
9379 then
9380 Resolve (Arg,
9381 Etype
9382 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9383 return;
9384
9385 -- Otherwise an aggregate may match both the array type and the
9386 -- component type.
9387
9388 else
9389 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9390 Set_Etype (Arg, Any_Type);
9391 end if;
9392
9393 else
9394 if Is_Overloaded (Arg)
9395 and then Has_Compatible_Type (Arg, Typ)
9396 and then Etype (Arg) /= Any_Type
9397 then
9398 declare
9399 I : Interp_Index;
9400 It : Interp;
9401 Func : Entity_Id;
9402
9403 begin
9404 Get_First_Interp (Arg, I, It);
9405 Func := It.Nam;
9406 Get_Next_Interp (I, It);
9407
9408 -- Special-case the error message when the overloading is
9409 -- caused by a function that yields an array and can be
9410 -- called without parameters.
9411
9412 if It.Nam = Func then
9413 Error_Msg_Sloc := Sloc (Func);
9414 Error_Msg_N ("ambiguous call to function#", Arg);
9415 Error_Msg_NE
9416 ("\\interpretation as call yields&", Arg, Typ);
9417 Error_Msg_NE
9418 ("\\interpretation as indexing of call yields&",
9419 Arg, Component_Type (Typ));
9420
9421 else
9422 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9423
9424 Get_First_Interp (Arg, I, It);
9425 while Present (It.Nam) loop
9426 Error_Msg_Sloc := Sloc (It.Nam);
9427
9428 if Base_Type (It.Typ) = Btyp
9429 or else
9430 Base_Type (It.Typ) = Base_Type (Ctyp)
9431 then
9432 Error_Msg_N -- CODEFIX
9433 ("\\possible interpretation#", Arg);
9434 end if;
9435
9436 Get_Next_Interp (I, It);
9437 end loop;
9438 end if;
9439 end;
9440 end if;
9441
9442 Resolve (Arg, Component_Type (Typ));
9443
9444 if Nkind (Arg) = N_String_Literal then
9445 Set_Etype (Arg, Component_Type (Typ));
9446 end if;
9447
9448 if Arg = Left_Opnd (N) then
9449 Set_Is_Component_Left_Opnd (N);
9450 else
9451 Set_Is_Component_Right_Opnd (N);
9452 end if;
9453 end if;
9454
9455 else
9456 Resolve (Arg, Btyp);
9457 end if;
9458
9459 -- Concatenation is restricted in SPARK: each operand must be either a
9460 -- string literal, the name of a string constant, a static character or
9461 -- string expression, or another concatenation. Arg cannot be a
9462 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9463 -- separately on each final operand, past concatenation operations.
9464
9465 if Is_Character_Type (Etype (Arg)) then
9466 if not Is_OK_Static_Expression (Arg) then
9467 Check_SPARK_05_Restriction
9468 ("character operand for concatenation should be static", Arg);
9469 end if;
9470
9471 elsif Is_String_Type (Etype (Arg)) then
9472 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9473 and then Is_Constant_Object (Entity (Arg)))
9474 and then not Is_OK_Static_Expression (Arg)
9475 then
9476 Check_SPARK_05_Restriction
9477 ("string operand for concatenation should be static", Arg);
9478 end if;
9479
9480 -- Do not issue error on an operand that is neither a character nor a
9481 -- string, as the error is issued in Resolve_Op_Concat.
9482
9483 else
9484 null;
9485 end if;
9486
9487 Check_Unset_Reference (Arg);
9488 end Resolve_Op_Concat_Arg;
9489
9490 -----------------------------
9491 -- Resolve_Op_Concat_First --
9492 -----------------------------
9493
9494 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9495 Btyp : constant Entity_Id := Base_Type (Typ);
9496 Op1 : constant Node_Id := Left_Opnd (N);
9497 Op2 : constant Node_Id := Right_Opnd (N);
9498
9499 begin
9500 -- The parser folds an enormous sequence of concatenations of string
9501 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9502 -- in the right operand. If the expression resolves to a predefined "&"
9503 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9504 -- we give an error. See P_Simple_Expression in Par.Ch4.
9505
9506 if Nkind (Op2) = N_String_Literal
9507 and then Is_Folded_In_Parser (Op2)
9508 and then Ekind (Entity (N)) = E_Function
9509 then
9510 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9511 and then String_Length (Strval (Op1)) = 0);
9512 Error_Msg_N ("too many user-defined concatenations", N);
9513 return;
9514 end if;
9515
9516 Set_Etype (N, Btyp);
9517
9518 if Is_Limited_Composite (Btyp) then
9519 Error_Msg_N ("concatenation not available for limited array", N);
9520 Explain_Limited_Type (Btyp, N);
9521 end if;
9522 end Resolve_Op_Concat_First;
9523
9524 ----------------------------
9525 -- Resolve_Op_Concat_Rest --
9526 ----------------------------
9527
9528 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9529 Op1 : constant Node_Id := Left_Opnd (N);
9530 Op2 : constant Node_Id := Right_Opnd (N);
9531
9532 begin
9533 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9534
9535 Generate_Operator_Reference (N, Typ);
9536
9537 if Is_String_Type (Typ) then
9538 Eval_Concatenation (N);
9539 end if;
9540
9541 -- If this is not a static concatenation, but the result is a string
9542 -- type (and not an array of strings) ensure that static string operands
9543 -- have their subtypes properly constructed.
9544
9545 if Nkind (N) /= N_String_Literal
9546 and then Is_Character_Type (Component_Type (Typ))
9547 then
9548 Set_String_Literal_Subtype (Op1, Typ);
9549 Set_String_Literal_Subtype (Op2, Typ);
9550 end if;
9551 end Resolve_Op_Concat_Rest;
9552
9553 ----------------------
9554 -- Resolve_Op_Expon --
9555 ----------------------
9556
9557 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9558 B_Typ : constant Entity_Id := Base_Type (Typ);
9559
9560 begin
9561 -- Catch attempts to do fixed-point exponentiation with universal
9562 -- operands, which is a case where the illegality is not caught during
9563 -- normal operator analysis. This is not done in preanalysis mode
9564 -- since the tree is not fully decorated during preanalysis.
9565
9566 if Full_Analysis then
9567 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9568 Error_Msg_N ("exponentiation not available for fixed point", N);
9569 return;
9570
9571 elsif Nkind (Parent (N)) in N_Op
9572 and then Present (Etype (Parent (N)))
9573 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9574 and then Etype (N) = Universal_Real
9575 and then Comes_From_Source (N)
9576 then
9577 Error_Msg_N ("exponentiation not available for fixed point", N);
9578 return;
9579 end if;
9580 end if;
9581
9582 if Comes_From_Source (N)
9583 and then Ekind (Entity (N)) = E_Function
9584 and then Is_Imported (Entity (N))
9585 and then Is_Intrinsic_Subprogram (Entity (N))
9586 then
9587 Resolve_Intrinsic_Operator (N, Typ);
9588 return;
9589 end if;
9590
9591 if Etype (Left_Opnd (N)) = Universal_Integer
9592 or else Etype (Left_Opnd (N)) = Universal_Real
9593 then
9594 Check_For_Visible_Operator (N, B_Typ);
9595 end if;
9596
9597 -- We do the resolution using the base type, because intermediate values
9598 -- in expressions are always of the base type, not a subtype of it.
9599
9600 Resolve (Left_Opnd (N), B_Typ);
9601 Resolve (Right_Opnd (N), Standard_Integer);
9602
9603 -- For integer types, right argument must be in Natural range
9604
9605 if Is_Integer_Type (Typ) then
9606 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9607 end if;
9608
9609 Check_Unset_Reference (Left_Opnd (N));
9610 Check_Unset_Reference (Right_Opnd (N));
9611
9612 Set_Etype (N, B_Typ);
9613 Generate_Operator_Reference (N, B_Typ);
9614
9615 Analyze_Dimension (N);
9616
9617 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9618 -- Evaluate the exponentiation operator for dimensioned type
9619
9620 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9621 else
9622 Eval_Op_Expon (N);
9623 end if;
9624
9625 -- Set overflow checking bit. Much cleverer code needed here eventually
9626 -- and perhaps the Resolve routines should be separated for the various
9627 -- arithmetic operations, since they will need different processing. ???
9628
9629 if Nkind (N) in N_Op then
9630 if not Overflow_Checks_Suppressed (Etype (N)) then
9631 Enable_Overflow_Check (N);
9632 end if;
9633 end if;
9634 end Resolve_Op_Expon;
9635
9636 --------------------
9637 -- Resolve_Op_Not --
9638 --------------------
9639
9640 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9641 B_Typ : Entity_Id;
9642
9643 function Parent_Is_Boolean return Boolean;
9644 -- This function determines if the parent node is a boolean operator or
9645 -- operation (comparison op, membership test, or short circuit form) and
9646 -- the not in question is the left operand of this operation. Note that
9647 -- if the not is in parens, then false is returned.
9648
9649 -----------------------
9650 -- Parent_Is_Boolean --
9651 -----------------------
9652
9653 function Parent_Is_Boolean return Boolean is
9654 begin
9655 if Paren_Count (N) /= 0 then
9656 return False;
9657
9658 else
9659 case Nkind (Parent (N)) is
9660 when N_And_Then
9661 | N_In
9662 | N_Not_In
9663 | N_Op_And
9664 | N_Op_Eq
9665 | N_Op_Ge
9666 | N_Op_Gt
9667 | N_Op_Le
9668 | N_Op_Lt
9669 | N_Op_Ne
9670 | N_Op_Or
9671 | N_Op_Xor
9672 | N_Or_Else
9673 =>
9674 return Left_Opnd (Parent (N)) = N;
9675
9676 when others =>
9677 return False;
9678 end case;
9679 end if;
9680 end Parent_Is_Boolean;
9681
9682 -- Start of processing for Resolve_Op_Not
9683
9684 begin
9685 -- Predefined operations on scalar types yield the base type. On the
9686 -- other hand, logical operations on arrays yield the type of the
9687 -- arguments (and the context).
9688
9689 if Is_Array_Type (Typ) then
9690 B_Typ := Typ;
9691 else
9692 B_Typ := Base_Type (Typ);
9693 end if;
9694
9695 -- Straightforward case of incorrect arguments
9696
9697 if not Valid_Boolean_Arg (Typ) then
9698 Error_Msg_N ("invalid operand type for operator&", N);
9699 Set_Etype (N, Any_Type);
9700 return;
9701
9702 -- Special case of probable missing parens
9703
9704 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9705 if Parent_Is_Boolean then
9706 Error_Msg_N
9707 ("operand of not must be enclosed in parentheses",
9708 Right_Opnd (N));
9709 else
9710 Error_Msg_N
9711 ("no modular type available in this context", N);
9712 end if;
9713
9714 Set_Etype (N, Any_Type);
9715 return;
9716
9717 -- OK resolution of NOT
9718
9719 else
9720 -- Warn if non-boolean types involved. This is a case like not a < b
9721 -- where a and b are modular, where we will get (not a) < b and most
9722 -- likely not (a < b) was intended.
9723
9724 if Warn_On_Questionable_Missing_Parens
9725 and then not Is_Boolean_Type (Typ)
9726 and then Parent_Is_Boolean
9727 then
9728 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9729 end if;
9730
9731 -- Warn on double negation if checking redundant constructs
9732
9733 if Warn_On_Redundant_Constructs
9734 and then Comes_From_Source (N)
9735 and then Comes_From_Source (Right_Opnd (N))
9736 and then Root_Type (Typ) = Standard_Boolean
9737 and then Nkind (Right_Opnd (N)) = N_Op_Not
9738 then
9739 Error_Msg_N ("redundant double negation?r?", N);
9740 end if;
9741
9742 -- Complete resolution and evaluation of NOT
9743
9744 Resolve (Right_Opnd (N), B_Typ);
9745 Check_Unset_Reference (Right_Opnd (N));
9746 Set_Etype (N, B_Typ);
9747 Generate_Operator_Reference (N, B_Typ);
9748 Eval_Op_Not (N);
9749 end if;
9750 end Resolve_Op_Not;
9751
9752 -----------------------------
9753 -- Resolve_Operator_Symbol --
9754 -----------------------------
9755
9756 -- Nothing to be done, all resolved already
9757
9758 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9759 pragma Warnings (Off, N);
9760 pragma Warnings (Off, Typ);
9761
9762 begin
9763 null;
9764 end Resolve_Operator_Symbol;
9765
9766 ----------------------------------
9767 -- Resolve_Qualified_Expression --
9768 ----------------------------------
9769
9770 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9771 pragma Warnings (Off, Typ);
9772
9773 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9774 Expr : constant Node_Id := Expression (N);
9775
9776 begin
9777 Resolve (Expr, Target_Typ);
9778
9779 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9780 -- operation if not needed.
9781
9782 if Restriction_Check_Required (SPARK_05)
9783 and then Is_Array_Type (Target_Typ)
9784 and then Is_Array_Type (Etype (Expr))
9785 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9786 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9787 then
9788 Check_SPARK_05_Restriction
9789 ("array types should have matching static bounds", N);
9790 end if;
9791
9792 -- A qualified expression requires an exact match of the type, class-
9793 -- wide matching is not allowed. However, if the qualifying type is
9794 -- specific and the expression has a class-wide type, it may still be
9795 -- okay, since it can be the result of the expansion of a call to a
9796 -- dispatching function, so we also have to check class-wideness of the
9797 -- type of the expression's original node.
9798
9799 if (Is_Class_Wide_Type (Target_Typ)
9800 or else
9801 (Is_Class_Wide_Type (Etype (Expr))
9802 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9803 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9804 then
9805 Wrong_Type (Expr, Target_Typ);
9806 end if;
9807
9808 -- If the target type is unconstrained, then we reset the type of the
9809 -- result from the type of the expression. For other cases, the actual
9810 -- subtype of the expression is the target type.
9811
9812 if Is_Composite_Type (Target_Typ)
9813 and then not Is_Constrained (Target_Typ)
9814 then
9815 Set_Etype (N, Etype (Expr));
9816 end if;
9817
9818 Analyze_Dimension (N);
9819 Eval_Qualified_Expression (N);
9820
9821 -- If we still have a qualified expression after the static evaluation,
9822 -- then apply a scalar range check if needed. The reason that we do this
9823 -- after the Eval call is that otherwise, the application of the range
9824 -- check may convert an illegal static expression and result in warning
9825 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9826
9827 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9828 Apply_Scalar_Range_Check (Expr, Typ);
9829 end if;
9830
9831 -- Finally, check whether a predicate applies to the target type. This
9832 -- comes from AI12-0100. As for type conversions, check the enclosing
9833 -- context to prevent an infinite expansion.
9834
9835 if Has_Predicates (Target_Typ) then
9836 if Nkind (Parent (N)) = N_Function_Call
9837 and then Present (Name (Parent (N)))
9838 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9839 or else
9840 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9841 then
9842 null;
9843
9844 -- In the case of a qualified expression in an allocator, the check
9845 -- is applied when expanding the allocator, so avoid redundant check.
9846
9847 elsif Nkind (N) = N_Qualified_Expression
9848 and then Nkind (Parent (N)) /= N_Allocator
9849 then
9850 Apply_Predicate_Check (N, Target_Typ);
9851 end if;
9852 end if;
9853 end Resolve_Qualified_Expression;
9854
9855 ------------------------------
9856 -- Resolve_Raise_Expression --
9857 ------------------------------
9858
9859 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9860 begin
9861 if Typ = Raise_Type then
9862 Error_Msg_N ("cannot find unique type for raise expression", N);
9863 Set_Etype (N, Any_Type);
9864 else
9865 Set_Etype (N, Typ);
9866 end if;
9867 end Resolve_Raise_Expression;
9868
9869 -------------------
9870 -- Resolve_Range --
9871 -------------------
9872
9873 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9874 L : constant Node_Id := Low_Bound (N);
9875 H : constant Node_Id := High_Bound (N);
9876
9877 function First_Last_Ref return Boolean;
9878 -- Returns True if N is of the form X'First .. X'Last where X is the
9879 -- same entity for both attributes.
9880
9881 --------------------
9882 -- First_Last_Ref --
9883 --------------------
9884
9885 function First_Last_Ref return Boolean is
9886 Lorig : constant Node_Id := Original_Node (L);
9887 Horig : constant Node_Id := Original_Node (H);
9888
9889 begin
9890 if Nkind (Lorig) = N_Attribute_Reference
9891 and then Nkind (Horig) = N_Attribute_Reference
9892 and then Attribute_Name (Lorig) = Name_First
9893 and then Attribute_Name (Horig) = Name_Last
9894 then
9895 declare
9896 PL : constant Node_Id := Prefix (Lorig);
9897 PH : constant Node_Id := Prefix (Horig);
9898 begin
9899 if Is_Entity_Name (PL)
9900 and then Is_Entity_Name (PH)
9901 and then Entity (PL) = Entity (PH)
9902 then
9903 return True;
9904 end if;
9905 end;
9906 end if;
9907
9908 return False;
9909 end First_Last_Ref;
9910
9911 -- Start of processing for Resolve_Range
9912
9913 begin
9914 Set_Etype (N, Typ);
9915
9916 -- The lower bound should be in Typ. The higher bound can be in Typ's
9917 -- base type if the range is null. It may still be invalid if it is
9918 -- higher than the lower bound. This is checked later in the context in
9919 -- which the range appears.
9920
9921 Resolve (L, Typ);
9922 Resolve (H, Base_Type (Typ));
9923
9924 -- Reanalyze the lower bound after both bounds have been analyzed, so
9925 -- that the range is known to be static or not by now. This may trigger
9926 -- more compile-time evaluation, which is useful for static analysis
9927 -- with GNATprove. This is not needed for compilation or static analysis
9928 -- with CodePeer, as full expansion does that evaluation then.
9929
9930 if GNATprove_Mode then
9931 Set_Analyzed (L, False);
9932 Resolve (L, Typ);
9933 end if;
9934
9935 -- Check for inappropriate range on unordered enumeration type
9936
9937 if Bad_Unordered_Enumeration_Reference (N, Typ)
9938
9939 -- Exclude X'First .. X'Last if X is the same entity for both
9940
9941 and then not First_Last_Ref
9942 then
9943 Error_Msg_Sloc := Sloc (Typ);
9944 Error_Msg_NE
9945 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9946 end if;
9947
9948 Check_Unset_Reference (L);
9949 Check_Unset_Reference (H);
9950
9951 -- We have to check the bounds for being within the base range as
9952 -- required for a non-static context. Normally this is automatic and
9953 -- done as part of evaluating expressions, but the N_Range node is an
9954 -- exception, since in GNAT we consider this node to be a subexpression,
9955 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9956 -- this, but that would put the test on the main evaluation path for
9957 -- expressions.
9958
9959 Check_Non_Static_Context (L);
9960 Check_Non_Static_Context (H);
9961
9962 -- Check for an ambiguous range over character literals. This will
9963 -- happen with a membership test involving only literals.
9964
9965 if Typ = Any_Character then
9966 Ambiguous_Character (L);
9967 Set_Etype (N, Any_Type);
9968 return;
9969 end if;
9970
9971 -- If bounds are static, constant-fold them, so size computations are
9972 -- identical between front-end and back-end. Do not perform this
9973 -- transformation while analyzing generic units, as type information
9974 -- would be lost when reanalyzing the constant node in the instance.
9975
9976 if Is_Discrete_Type (Typ) and then Expander_Active then
9977 if Is_OK_Static_Expression (L) then
9978 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9979 end if;
9980
9981 if Is_OK_Static_Expression (H) then
9982 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9983 end if;
9984 end if;
9985 end Resolve_Range;
9986
9987 --------------------------
9988 -- Resolve_Real_Literal --
9989 --------------------------
9990
9991 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9992 Actual_Typ : constant Entity_Id := Etype (N);
9993
9994 begin
9995 -- Special processing for fixed-point literals to make sure that the
9996 -- value is an exact multiple of small where this is required. We skip
9997 -- this for the universal real case, and also for generic types.
9998
9999 if Is_Fixed_Point_Type (Typ)
10000 and then Typ /= Universal_Fixed
10001 and then Typ /= Any_Fixed
10002 and then not Is_Generic_Type (Typ)
10003 then
10004 declare
10005 Val : constant Ureal := Realval (N);
10006 Cintr : constant Ureal := Val / Small_Value (Typ);
10007 Cint : constant Uint := UR_Trunc (Cintr);
10008 Den : constant Uint := Norm_Den (Cintr);
10009 Stat : Boolean;
10010
10011 begin
10012 -- Case of literal is not an exact multiple of the Small
10013
10014 if Den /= 1 then
10015
10016 -- For a source program literal for a decimal fixed-point type,
10017 -- this is statically illegal (RM 4.9(36)).
10018
10019 if Is_Decimal_Fixed_Point_Type (Typ)
10020 and then Actual_Typ = Universal_Real
10021 and then Comes_From_Source (N)
10022 then
10023 Error_Msg_N ("value has extraneous low order digits", N);
10024 end if;
10025
10026 -- Generate a warning if literal from source
10027
10028 if Is_OK_Static_Expression (N)
10029 and then Warn_On_Bad_Fixed_Value
10030 then
10031 Error_Msg_N
10032 ("?b?static fixed-point value is not a multiple of Small!",
10033 N);
10034 end if;
10035
10036 -- Replace literal by a value that is the exact representation
10037 -- of a value of the type, i.e. a multiple of the small value,
10038 -- by truncation, since Machine_Rounds is false for all GNAT
10039 -- fixed-point types (RM 4.9(38)).
10040
10041 Stat := Is_OK_Static_Expression (N);
10042 Rewrite (N,
10043 Make_Real_Literal (Sloc (N),
10044 Realval => Small_Value (Typ) * Cint));
10045
10046 Set_Is_Static_Expression (N, Stat);
10047 end if;
10048
10049 -- In all cases, set the corresponding integer field
10050
10051 Set_Corresponding_Integer_Value (N, Cint);
10052 end;
10053 end if;
10054
10055 -- Now replace the actual type by the expected type as usual
10056
10057 Set_Etype (N, Typ);
10058 Eval_Real_Literal (N);
10059 end Resolve_Real_Literal;
10060
10061 -----------------------
10062 -- Resolve_Reference --
10063 -----------------------
10064
10065 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
10066 P : constant Node_Id := Prefix (N);
10067
10068 begin
10069 -- Replace general access with specific type
10070
10071 if Ekind (Etype (N)) = E_Allocator_Type then
10072 Set_Etype (N, Base_Type (Typ));
10073 end if;
10074
10075 Resolve (P, Designated_Type (Etype (N)));
10076
10077 -- If we are taking the reference of a volatile entity, then treat it as
10078 -- a potential modification of this entity. This is too conservative,
10079 -- but necessary because remove side effects can cause transformations
10080 -- of normal assignments into reference sequences that otherwise fail to
10081 -- notice the modification.
10082
10083 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
10084 Note_Possible_Modification (P, Sure => False);
10085 end if;
10086 end Resolve_Reference;
10087
10088 --------------------------------
10089 -- Resolve_Selected_Component --
10090 --------------------------------
10091
10092 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
10093 Comp : Entity_Id;
10094 Comp1 : Entity_Id := Empty; -- prevent junk warning
10095 P : constant Node_Id := Prefix (N);
10096 S : constant Node_Id := Selector_Name (N);
10097 T : Entity_Id := Etype (P);
10098 I : Interp_Index;
10099 I1 : Interp_Index := 0; -- prevent junk warning
10100 It : Interp;
10101 It1 : Interp;
10102 Found : Boolean;
10103
10104 function Init_Component return Boolean;
10105 -- Check whether this is the initialization of a component within an
10106 -- init proc (by assignment or call to another init proc). If true,
10107 -- there is no need for a discriminant check.
10108
10109 --------------------
10110 -- Init_Component --
10111 --------------------
10112
10113 function Init_Component return Boolean is
10114 begin
10115 return Inside_Init_Proc
10116 and then Nkind (Prefix (N)) = N_Identifier
10117 and then Chars (Prefix (N)) = Name_uInit
10118 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10119 end Init_Component;
10120
10121 -- Start of processing for Resolve_Selected_Component
10122
10123 begin
10124 if Is_Overloaded (P) then
10125
10126 -- Use the context type to select the prefix that has a selector
10127 -- of the correct name and type.
10128
10129 Found := False;
10130 Get_First_Interp (P, I, It);
10131
10132 Search : while Present (It.Typ) loop
10133 if Is_Access_Type (It.Typ) then
10134 T := Designated_Type (It.Typ);
10135 else
10136 T := It.Typ;
10137 end if;
10138
10139 -- Locate selected component. For a private prefix the selector
10140 -- can denote a discriminant.
10141
10142 if Is_Record_Type (T) or else Is_Private_Type (T) then
10143
10144 -- The visible components of a class-wide type are those of
10145 -- the root type.
10146
10147 if Is_Class_Wide_Type (T) then
10148 T := Etype (T);
10149 end if;
10150
10151 Comp := First_Entity (T);
10152 while Present (Comp) loop
10153 if Chars (Comp) = Chars (S)
10154 and then Covers (Typ, Etype (Comp))
10155 then
10156 if not Found then
10157 Found := True;
10158 I1 := I;
10159 It1 := It;
10160 Comp1 := Comp;
10161
10162 else
10163 It := Disambiguate (P, I1, I, Any_Type);
10164
10165 if It = No_Interp then
10166 Error_Msg_N
10167 ("ambiguous prefix for selected component", N);
10168 Set_Etype (N, Typ);
10169 return;
10170
10171 else
10172 It1 := It;
10173
10174 -- There may be an implicit dereference. Retrieve
10175 -- designated record type.
10176
10177 if Is_Access_Type (It1.Typ) then
10178 T := Designated_Type (It1.Typ);
10179 else
10180 T := It1.Typ;
10181 end if;
10182
10183 if Scope (Comp1) /= T then
10184
10185 -- Resolution chooses the new interpretation.
10186 -- Find the component with the right name.
10187
10188 Comp1 := First_Entity (T);
10189 while Present (Comp1)
10190 and then Chars (Comp1) /= Chars (S)
10191 loop
10192 Comp1 := Next_Entity (Comp1);
10193 end loop;
10194 end if;
10195
10196 exit Search;
10197 end if;
10198 end if;
10199 end if;
10200
10201 Comp := Next_Entity (Comp);
10202 end loop;
10203 end if;
10204
10205 Get_Next_Interp (I, It);
10206 end loop Search;
10207
10208 -- There must be a legal interpretation at this point
10209
10210 pragma Assert (Found);
10211 Resolve (P, It1.Typ);
10212 Set_Etype (N, Typ);
10213 Set_Entity_With_Checks (S, Comp1);
10214
10215 -- The type of the context and that of the component are
10216 -- compatible and in general identical, but if they are anonymous
10217 -- access-to-subprogram types, the relevant type is that of the
10218 -- component. This matters in Unnest_Subprograms mode, where the
10219 -- relevant context is the one in which the type is declared, not
10220 -- the point of use. This determines what activation record to use.
10221
10222 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
10223 Set_Etype (N, Etype (Comp1));
10224 end if;
10225
10226 else
10227 -- Resolve prefix with its type
10228
10229 Resolve (P, T);
10230 end if;
10231
10232 -- Generate cross-reference. We needed to wait until full overloading
10233 -- resolution was complete to do this, since otherwise we can't tell if
10234 -- we are an lvalue or not.
10235
10236 if May_Be_Lvalue (N) then
10237 Generate_Reference (Entity (S), S, 'm');
10238 else
10239 Generate_Reference (Entity (S), S, 'r');
10240 end if;
10241
10242 -- If prefix is an access type, the node will be transformed into an
10243 -- explicit dereference during expansion. The type of the node is the
10244 -- designated type of that of the prefix.
10245
10246 if Is_Access_Type (Etype (P)) then
10247 T := Designated_Type (Etype (P));
10248 Check_Fully_Declared_Prefix (T, P);
10249 else
10250 T := Etype (P);
10251 end if;
10252
10253 -- Set flag for expander if discriminant check required on a component
10254 -- appearing within a variant.
10255
10256 if Has_Discriminants (T)
10257 and then Ekind (Entity (S)) = E_Component
10258 and then Present (Original_Record_Component (Entity (S)))
10259 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10260 and then
10261 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10262 and then not Discriminant_Checks_Suppressed (T)
10263 and then not Init_Component
10264 then
10265 Set_Do_Discriminant_Check (N);
10266 end if;
10267
10268 if Ekind (Entity (S)) = E_Void then
10269 Error_Msg_N ("premature use of component", S);
10270 end if;
10271
10272 -- If the prefix is a record conversion, this may be a renamed
10273 -- discriminant whose bounds differ from those of the original
10274 -- one, so we must ensure that a range check is performed.
10275
10276 if Nkind (P) = N_Type_Conversion
10277 and then Ekind (Entity (S)) = E_Discriminant
10278 and then Is_Discrete_Type (Typ)
10279 then
10280 Set_Etype (N, Base_Type (Typ));
10281 end if;
10282
10283 -- Note: No Eval processing is required, because the prefix is of a
10284 -- record type, or protected type, and neither can possibly be static.
10285
10286 -- If the record type is atomic, and the component is non-atomic, then
10287 -- this is worth a warning, since we have a situation where the access
10288 -- to the component may cause extra read/writes of the atomic array
10289 -- object, or partial word accesses, both of which may be unexpected.
10290
10291 if Nkind (N) = N_Selected_Component
10292 and then Is_Atomic_Ref_With_Address (N)
10293 and then not Is_Atomic (Entity (S))
10294 and then not Is_Atomic (Etype (Entity (S)))
10295 then
10296 Error_Msg_N
10297 ("??access to non-atomic component of atomic record",
10298 Prefix (N));
10299 Error_Msg_N
10300 ("\??may cause unexpected accesses to atomic object",
10301 Prefix (N));
10302 end if;
10303
10304 Analyze_Dimension (N);
10305 end Resolve_Selected_Component;
10306
10307 -------------------
10308 -- Resolve_Shift --
10309 -------------------
10310
10311 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10312 B_Typ : constant Entity_Id := Base_Type (Typ);
10313 L : constant Node_Id := Left_Opnd (N);
10314 R : constant Node_Id := Right_Opnd (N);
10315
10316 begin
10317 -- We do the resolution using the base type, because intermediate values
10318 -- in expressions always are of the base type, not a subtype of it.
10319
10320 Resolve (L, B_Typ);
10321 Resolve (R, Standard_Natural);
10322
10323 Check_Unset_Reference (L);
10324 Check_Unset_Reference (R);
10325
10326 Set_Etype (N, B_Typ);
10327 Generate_Operator_Reference (N, B_Typ);
10328 Eval_Shift (N);
10329 end Resolve_Shift;
10330
10331 ---------------------------
10332 -- Resolve_Short_Circuit --
10333 ---------------------------
10334
10335 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10336 B_Typ : constant Entity_Id := Base_Type (Typ);
10337 L : constant Node_Id := Left_Opnd (N);
10338 R : constant Node_Id := Right_Opnd (N);
10339
10340 begin
10341 -- Ensure all actions associated with the left operand (e.g.
10342 -- finalization of transient objects) are fully evaluated locally within
10343 -- an expression with actions. This is particularly helpful for coverage
10344 -- analysis. However this should not happen in generics or if option
10345 -- Minimize_Expression_With_Actions is set.
10346
10347 if Expander_Active and not Minimize_Expression_With_Actions then
10348 declare
10349 Reloc_L : constant Node_Id := Relocate_Node (L);
10350 begin
10351 Save_Interps (Old_N => L, New_N => Reloc_L);
10352
10353 Rewrite (L,
10354 Make_Expression_With_Actions (Sloc (L),
10355 Actions => New_List,
10356 Expression => Reloc_L));
10357
10358 -- Set Comes_From_Source on L to preserve warnings for unset
10359 -- reference.
10360
10361 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10362 end;
10363 end if;
10364
10365 Resolve (L, B_Typ);
10366 Resolve (R, B_Typ);
10367
10368 -- Check for issuing warning for always False assert/check, this happens
10369 -- when assertions are turned off, in which case the pragma Assert/Check
10370 -- was transformed into:
10371
10372 -- if False and then <condition> then ...
10373
10374 -- and we detect this pattern
10375
10376 if Warn_On_Assertion_Failure
10377 and then Is_Entity_Name (R)
10378 and then Entity (R) = Standard_False
10379 and then Nkind (Parent (N)) = N_If_Statement
10380 and then Nkind (N) = N_And_Then
10381 and then Is_Entity_Name (L)
10382 and then Entity (L) = Standard_False
10383 then
10384 declare
10385 Orig : constant Node_Id := Original_Node (Parent (N));
10386
10387 begin
10388 -- Special handling of Asssert pragma
10389
10390 if Nkind (Orig) = N_Pragma
10391 and then Pragma_Name (Orig) = Name_Assert
10392 then
10393 declare
10394 Expr : constant Node_Id :=
10395 Original_Node
10396 (Expression
10397 (First (Pragma_Argument_Associations (Orig))));
10398
10399 begin
10400 -- Don't warn if original condition is explicit False,
10401 -- since obviously the failure is expected in this case.
10402
10403 if Is_Entity_Name (Expr)
10404 and then Entity (Expr) = Standard_False
10405 then
10406 null;
10407
10408 -- Issue warning. We do not want the deletion of the
10409 -- IF/AND-THEN to take this message with it. We achieve this
10410 -- by making sure that the expanded code points to the Sloc
10411 -- of the expression, not the original pragma.
10412
10413 else
10414 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10415 -- The source location of the expression is not usually
10416 -- the best choice here. For example, it gets located on
10417 -- the last AND keyword in a chain of boolean expressiond
10418 -- AND'ed together. It is best to put the message on the
10419 -- first character of the assertion, which is the effect
10420 -- of the First_Node call here.
10421
10422 Error_Msg_F
10423 ("?A?assertion would fail at run time!",
10424 Expression
10425 (First (Pragma_Argument_Associations (Orig))));
10426 end if;
10427 end;
10428
10429 -- Similar processing for Check pragma
10430
10431 elsif Nkind (Orig) = N_Pragma
10432 and then Pragma_Name (Orig) = Name_Check
10433 then
10434 -- Don't want to warn if original condition is explicit False
10435
10436 declare
10437 Expr : constant Node_Id :=
10438 Original_Node
10439 (Expression
10440 (Next (First (Pragma_Argument_Associations (Orig)))));
10441 begin
10442 if Is_Entity_Name (Expr)
10443 and then Entity (Expr) = Standard_False
10444 then
10445 null;
10446
10447 -- Post warning
10448
10449 else
10450 -- Again use Error_Msg_F rather than Error_Msg_N, see
10451 -- comment above for an explanation of why we do this.
10452
10453 Error_Msg_F
10454 ("?A?check would fail at run time!",
10455 Expression
10456 (Last (Pragma_Argument_Associations (Orig))));
10457 end if;
10458 end;
10459 end if;
10460 end;
10461 end if;
10462
10463 -- Continue with processing of short circuit
10464
10465 Check_Unset_Reference (L);
10466 Check_Unset_Reference (R);
10467
10468 Set_Etype (N, B_Typ);
10469 Eval_Short_Circuit (N);
10470 end Resolve_Short_Circuit;
10471
10472 -------------------
10473 -- Resolve_Slice --
10474 -------------------
10475
10476 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10477 Drange : constant Node_Id := Discrete_Range (N);
10478 Name : constant Node_Id := Prefix (N);
10479 Array_Type : Entity_Id := Empty;
10480 Dexpr : Node_Id := Empty;
10481 Index_Type : Entity_Id;
10482
10483 begin
10484 if Is_Overloaded (Name) then
10485
10486 -- Use the context type to select the prefix that yields the correct
10487 -- array type.
10488
10489 declare
10490 I : Interp_Index;
10491 I1 : Interp_Index := 0;
10492 It : Interp;
10493 P : constant Node_Id := Prefix (N);
10494 Found : Boolean := False;
10495
10496 begin
10497 Get_First_Interp (P, I, It);
10498 while Present (It.Typ) loop
10499 if (Is_Array_Type (It.Typ)
10500 and then Covers (Typ, It.Typ))
10501 or else (Is_Access_Type (It.Typ)
10502 and then Is_Array_Type (Designated_Type (It.Typ))
10503 and then Covers (Typ, Designated_Type (It.Typ)))
10504 then
10505 if Found then
10506 It := Disambiguate (P, I1, I, Any_Type);
10507
10508 if It = No_Interp then
10509 Error_Msg_N ("ambiguous prefix for slicing", N);
10510 Set_Etype (N, Typ);
10511 return;
10512 else
10513 Found := True;
10514 Array_Type := It.Typ;
10515 I1 := I;
10516 end if;
10517 else
10518 Found := True;
10519 Array_Type := It.Typ;
10520 I1 := I;
10521 end if;
10522 end if;
10523
10524 Get_Next_Interp (I, It);
10525 end loop;
10526 end;
10527
10528 else
10529 Array_Type := Etype (Name);
10530 end if;
10531
10532 Resolve (Name, Array_Type);
10533
10534 if Is_Access_Type (Array_Type) then
10535 Apply_Access_Check (N);
10536 Array_Type := Designated_Type (Array_Type);
10537
10538 -- If the prefix is an access to an unconstrained array, we must use
10539 -- the actual subtype of the object to perform the index checks. The
10540 -- object denoted by the prefix is implicit in the node, so we build
10541 -- an explicit representation for it in order to compute the actual
10542 -- subtype.
10543
10544 if not Is_Constrained (Array_Type) then
10545 Remove_Side_Effects (Prefix (N));
10546
10547 declare
10548 Obj : constant Node_Id :=
10549 Make_Explicit_Dereference (Sloc (N),
10550 Prefix => New_Copy_Tree (Prefix (N)));
10551 begin
10552 Set_Etype (Obj, Array_Type);
10553 Set_Parent (Obj, Parent (N));
10554 Array_Type := Get_Actual_Subtype (Obj);
10555 end;
10556 end if;
10557
10558 elsif Is_Entity_Name (Name)
10559 or else Nkind (Name) = N_Explicit_Dereference
10560 or else (Nkind (Name) = N_Function_Call
10561 and then not Is_Constrained (Etype (Name)))
10562 then
10563 Array_Type := Get_Actual_Subtype (Name);
10564
10565 -- If the name is a selected component that depends on discriminants,
10566 -- build an actual subtype for it. This can happen only when the name
10567 -- itself is overloaded; otherwise the actual subtype is created when
10568 -- the selected component is analyzed.
10569
10570 elsif Nkind (Name) = N_Selected_Component
10571 and then Full_Analysis
10572 and then Depends_On_Discriminant (First_Index (Array_Type))
10573 then
10574 declare
10575 Act_Decl : constant Node_Id :=
10576 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10577 begin
10578 Insert_Action (N, Act_Decl);
10579 Array_Type := Defining_Identifier (Act_Decl);
10580 end;
10581
10582 -- Maybe this should just be "else", instead of checking for the
10583 -- specific case of slice??? This is needed for the case where the
10584 -- prefix is an Image attribute, which gets expanded to a slice, and so
10585 -- has a constrained subtype which we want to use for the slice range
10586 -- check applied below (the range check won't get done if the
10587 -- unconstrained subtype of the 'Image is used).
10588
10589 elsif Nkind (Name) = N_Slice then
10590 Array_Type := Etype (Name);
10591 end if;
10592
10593 -- Obtain the type of the array index
10594
10595 if Ekind (Array_Type) = E_String_Literal_Subtype then
10596 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10597 else
10598 Index_Type := Etype (First_Index (Array_Type));
10599 end if;
10600
10601 -- If name was overloaded, set slice type correctly now
10602
10603 Set_Etype (N, Array_Type);
10604
10605 -- Handle the generation of a range check that compares the array index
10606 -- against the discrete_range. The check is not applied to internally
10607 -- built nodes associated with the expansion of dispatch tables. Check
10608 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10609 -- the unit.
10610
10611 if Tagged_Type_Expansion
10612 and then RTU_Loaded (Ada_Tags)
10613 and then Nkind (Prefix (N)) = N_Selected_Component
10614 and then Present (Entity (Selector_Name (Prefix (N))))
10615 and then Entity (Selector_Name (Prefix (N))) =
10616 RTE_Record_Component (RE_Prims_Ptr)
10617 then
10618 null;
10619
10620 -- The discrete_range is specified by a subtype indication. Create a
10621 -- shallow copy and inherit the type, parent and source location from
10622 -- the discrete_range. This ensures that the range check is inserted
10623 -- relative to the slice and that the runtime exception points to the
10624 -- proper construct.
10625
10626 elsif Is_Entity_Name (Drange) then
10627 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10628
10629 Set_Etype (Dexpr, Etype (Drange));
10630 Set_Parent (Dexpr, Parent (Drange));
10631 Set_Sloc (Dexpr, Sloc (Drange));
10632
10633 -- The discrete_range is a regular range. Resolve the bounds and remove
10634 -- their side effects.
10635
10636 else
10637 Resolve (Drange, Base_Type (Index_Type));
10638
10639 if Nkind (Drange) = N_Range then
10640 Force_Evaluation (Low_Bound (Drange));
10641 Force_Evaluation (High_Bound (Drange));
10642
10643 Dexpr := Drange;
10644 end if;
10645 end if;
10646
10647 if Present (Dexpr) then
10648 Apply_Range_Check (Dexpr, Index_Type);
10649 end if;
10650
10651 Set_Slice_Subtype (N);
10652
10653 -- Check bad use of type with predicates
10654
10655 declare
10656 Subt : Entity_Id;
10657
10658 begin
10659 if Nkind (Drange) = N_Subtype_Indication
10660 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10661 then
10662 Subt := Entity (Subtype_Mark (Drange));
10663 else
10664 Subt := Etype (Drange);
10665 end if;
10666
10667 if Has_Predicates (Subt) then
10668 Bad_Predicated_Subtype_Use
10669 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10670 end if;
10671 end;
10672
10673 -- Otherwise here is where we check suspicious indexes
10674
10675 if Nkind (Drange) = N_Range then
10676 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10677 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10678 end if;
10679
10680 Analyze_Dimension (N);
10681 Eval_Slice (N);
10682 end Resolve_Slice;
10683
10684 ----------------------------
10685 -- Resolve_String_Literal --
10686 ----------------------------
10687
10688 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10689 C_Typ : constant Entity_Id := Component_Type (Typ);
10690 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10691 Loc : constant Source_Ptr := Sloc (N);
10692 Str : constant String_Id := Strval (N);
10693 Strlen : constant Nat := String_Length (Str);
10694 Subtype_Id : Entity_Id;
10695 Need_Check : Boolean;
10696
10697 begin
10698 -- For a string appearing in a concatenation, defer creation of the
10699 -- string_literal_subtype until the end of the resolution of the
10700 -- concatenation, because the literal may be constant-folded away. This
10701 -- is a useful optimization for long concatenation expressions.
10702
10703 -- If the string is an aggregate built for a single character (which
10704 -- happens in a non-static context) or a is null string to which special
10705 -- checks may apply, we build the subtype. Wide strings must also get a
10706 -- string subtype if they come from a one character aggregate. Strings
10707 -- generated by attributes might be static, but it is often hard to
10708 -- determine whether the enclosing context is static, so we generate
10709 -- subtypes for them as well, thus losing some rarer optimizations ???
10710 -- Same for strings that come from a static conversion.
10711
10712 Need_Check :=
10713 (Strlen = 0 and then Typ /= Standard_String)
10714 or else Nkind (Parent (N)) /= N_Op_Concat
10715 or else (N /= Left_Opnd (Parent (N))
10716 and then N /= Right_Opnd (Parent (N)))
10717 or else ((Typ = Standard_Wide_String
10718 or else Typ = Standard_Wide_Wide_String)
10719 and then Nkind (Original_Node (N)) /= N_String_Literal);
10720
10721 -- If the resolving type is itself a string literal subtype, we can just
10722 -- reuse it, since there is no point in creating another.
10723
10724 if Ekind (Typ) = E_String_Literal_Subtype then
10725 Subtype_Id := Typ;
10726
10727 elsif Nkind (Parent (N)) = N_Op_Concat
10728 and then not Need_Check
10729 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10730 N_Attribute_Reference,
10731 N_Qualified_Expression,
10732 N_Type_Conversion)
10733 then
10734 Subtype_Id := Typ;
10735
10736 -- Do not generate a string literal subtype for the default expression
10737 -- of a formal parameter in GNATprove mode. This is because the string
10738 -- subtype is associated with the freezing actions of the subprogram,
10739 -- however freezing is disabled in GNATprove mode and as a result the
10740 -- subtype is unavailable.
10741
10742 elsif GNATprove_Mode
10743 and then Nkind (Parent (N)) = N_Parameter_Specification
10744 then
10745 Subtype_Id := Typ;
10746
10747 -- Otherwise we must create a string literal subtype. Note that the
10748 -- whole idea of string literal subtypes is simply to avoid the need
10749 -- for building a full fledged array subtype for each literal.
10750
10751 else
10752 Set_String_Literal_Subtype (N, Typ);
10753 Subtype_Id := Etype (N);
10754 end if;
10755
10756 if Nkind (Parent (N)) /= N_Op_Concat
10757 or else Need_Check
10758 then
10759 Set_Etype (N, Subtype_Id);
10760 Eval_String_Literal (N);
10761 end if;
10762
10763 if Is_Limited_Composite (Typ)
10764 or else Is_Private_Composite (Typ)
10765 then
10766 Error_Msg_N ("string literal not available for private array", N);
10767 Set_Etype (N, Any_Type);
10768 return;
10769 end if;
10770
10771 -- The validity of a null string has been checked in the call to
10772 -- Eval_String_Literal.
10773
10774 if Strlen = 0 then
10775 return;
10776
10777 -- Always accept string literal with component type Any_Character, which
10778 -- occurs in error situations and in comparisons of literals, both of
10779 -- which should accept all literals.
10780
10781 elsif R_Typ = Any_Character then
10782 return;
10783
10784 -- If the type is bit-packed, then we always transform the string
10785 -- literal into a full fledged aggregate.
10786
10787 elsif Is_Bit_Packed_Array (Typ) then
10788 null;
10789
10790 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10791
10792 else
10793 -- For Standard.Wide_Wide_String, or any other type whose component
10794 -- type is Standard.Wide_Wide_Character, we know that all the
10795 -- characters in the string must be acceptable, since the parser
10796 -- accepted the characters as valid character literals.
10797
10798 if R_Typ = Standard_Wide_Wide_Character then
10799 null;
10800
10801 -- For the case of Standard.String, or any other type whose component
10802 -- type is Standard.Character, we must make sure that there are no
10803 -- wide characters in the string, i.e. that it is entirely composed
10804 -- of characters in range of type Character.
10805
10806 -- If the string literal is the result of a static concatenation, the
10807 -- test has already been performed on the components, and need not be
10808 -- repeated.
10809
10810 elsif R_Typ = Standard_Character
10811 and then Nkind (Original_Node (N)) /= N_Op_Concat
10812 then
10813 for J in 1 .. Strlen loop
10814 if not In_Character_Range (Get_String_Char (Str, J)) then
10815
10816 -- If we are out of range, post error. This is one of the
10817 -- very few places that we place the flag in the middle of
10818 -- a token, right under the offending wide character. Not
10819 -- quite clear if this is right wrt wide character encoding
10820 -- sequences, but it's only an error message.
10821
10822 Error_Msg
10823 ("literal out of range of type Standard.Character",
10824 Source_Ptr (Int (Loc) + J));
10825 return;
10826 end if;
10827 end loop;
10828
10829 -- For the case of Standard.Wide_String, or any other type whose
10830 -- component type is Standard.Wide_Character, we must make sure that
10831 -- there are no wide characters in the string, i.e. that it is
10832 -- entirely composed of characters in range of type Wide_Character.
10833
10834 -- If the string literal is the result of a static concatenation,
10835 -- the test has already been performed on the components, and need
10836 -- not be repeated.
10837
10838 elsif R_Typ = Standard_Wide_Character
10839 and then Nkind (Original_Node (N)) /= N_Op_Concat
10840 then
10841 for J in 1 .. Strlen loop
10842 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10843
10844 -- If we are out of range, post error. This is one of the
10845 -- very few places that we place the flag in the middle of
10846 -- a token, right under the offending wide character.
10847
10848 -- This is not quite right, because characters in general
10849 -- will take more than one character position ???
10850
10851 Error_Msg
10852 ("literal out of range of type Standard.Wide_Character",
10853 Source_Ptr (Int (Loc) + J));
10854 return;
10855 end if;
10856 end loop;
10857
10858 -- If the root type is not a standard character, then we will convert
10859 -- the string into an aggregate and will let the aggregate code do
10860 -- the checking. Standard Wide_Wide_Character is also OK here.
10861
10862 else
10863 null;
10864 end if;
10865
10866 -- See if the component type of the array corresponding to the string
10867 -- has compile time known bounds. If yes we can directly check
10868 -- whether the evaluation of the string will raise constraint error.
10869 -- Otherwise we need to transform the string literal into the
10870 -- corresponding character aggregate and let the aggregate code do
10871 -- the checking. We use the same transformation if the component
10872 -- type has a static predicate, which will be applied to each
10873 -- character when the aggregate is resolved.
10874
10875 if Is_Standard_Character_Type (R_Typ) then
10876
10877 -- Check for the case of full range, where we are definitely OK
10878
10879 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10880 return;
10881 end if;
10882
10883 -- Here the range is not the complete base type range, so check
10884
10885 declare
10886 Comp_Typ_Lo : constant Node_Id :=
10887 Type_Low_Bound (Component_Type (Typ));
10888 Comp_Typ_Hi : constant Node_Id :=
10889 Type_High_Bound (Component_Type (Typ));
10890
10891 Char_Val : Uint;
10892
10893 begin
10894 if Compile_Time_Known_Value (Comp_Typ_Lo)
10895 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10896 then
10897 for J in 1 .. Strlen loop
10898 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10899
10900 if Char_Val < Expr_Value (Comp_Typ_Lo)
10901 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10902 then
10903 Apply_Compile_Time_Constraint_Error
10904 (N, "character out of range??",
10905 CE_Range_Check_Failed,
10906 Loc => Source_Ptr (Int (Loc) + J));
10907 end if;
10908 end loop;
10909
10910 if not Has_Static_Predicate (C_Typ) then
10911 return;
10912 end if;
10913 end if;
10914 end;
10915 end if;
10916 end if;
10917
10918 -- If we got here we meed to transform the string literal into the
10919 -- equivalent qualified positional array aggregate. This is rather
10920 -- heavy artillery for this situation, but it is hard work to avoid.
10921
10922 declare
10923 Lits : constant List_Id := New_List;
10924 P : Source_Ptr := Loc + 1;
10925 C : Char_Code;
10926
10927 begin
10928 -- Build the character literals, we give them source locations that
10929 -- correspond to the string positions, which is a bit tricky given
10930 -- the possible presence of wide character escape sequences.
10931
10932 for J in 1 .. Strlen loop
10933 C := Get_String_Char (Str, J);
10934 Set_Character_Literal_Name (C);
10935
10936 Append_To (Lits,
10937 Make_Character_Literal (P,
10938 Chars => Name_Find,
10939 Char_Literal_Value => UI_From_CC (C)));
10940
10941 if In_Character_Range (C) then
10942 P := P + 1;
10943
10944 -- Should we have a call to Skip_Wide here ???
10945
10946 -- ??? else
10947 -- Skip_Wide (P);
10948
10949 end if;
10950 end loop;
10951
10952 Rewrite (N,
10953 Make_Qualified_Expression (Loc,
10954 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10955 Expression =>
10956 Make_Aggregate (Loc, Expressions => Lits)));
10957
10958 Analyze_And_Resolve (N, Typ);
10959 end;
10960 end Resolve_String_Literal;
10961
10962 -------------------------
10963 -- Resolve_Target_Name --
10964 -------------------------
10965
10966 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10967 begin
10968 Set_Etype (N, Typ);
10969 end Resolve_Target_Name;
10970
10971 -----------------------------
10972 -- Resolve_Type_Conversion --
10973 -----------------------------
10974
10975 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10976 Conv_OK : constant Boolean := Conversion_OK (N);
10977 Operand : constant Node_Id := Expression (N);
10978 Operand_Typ : constant Entity_Id := Etype (Operand);
10979 Target_Typ : constant Entity_Id := Etype (N);
10980 Rop : Node_Id;
10981 Orig_N : Node_Id;
10982 Orig_T : Node_Id;
10983
10984 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10985 -- Set to False to suppress cases where we want to suppress the test
10986 -- for redundancy to avoid possible false positives on this warning.
10987
10988 begin
10989 if not Conv_OK
10990 and then not Valid_Conversion (N, Target_Typ, Operand)
10991 then
10992 return;
10993 end if;
10994
10995 -- If the Operand Etype is Universal_Fixed, then the conversion is
10996 -- never redundant. We need this check because by the time we have
10997 -- finished the rather complex transformation, the conversion looks
10998 -- redundant when it is not.
10999
11000 if Operand_Typ = Universal_Fixed then
11001 Test_Redundant := False;
11002
11003 -- If the operand is marked as Any_Fixed, then special processing is
11004 -- required. This is also a case where we suppress the test for a
11005 -- redundant conversion, since most certainly it is not redundant.
11006
11007 elsif Operand_Typ = Any_Fixed then
11008 Test_Redundant := False;
11009
11010 -- Mixed-mode operation involving a literal. Context must be a fixed
11011 -- type which is applied to the literal subsequently.
11012
11013 -- Multiplication and division involving two fixed type operands must
11014 -- yield a universal real because the result is computed in arbitrary
11015 -- precision.
11016
11017 if Is_Fixed_Point_Type (Typ)
11018 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
11019 and then Etype (Left_Opnd (Operand)) = Any_Fixed
11020 and then Etype (Right_Opnd (Operand)) = Any_Fixed
11021 then
11022 Set_Etype (Operand, Universal_Real);
11023
11024 elsif Is_Numeric_Type (Typ)
11025 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
11026 and then (Etype (Right_Opnd (Operand)) = Universal_Real
11027 or else
11028 Etype (Left_Opnd (Operand)) = Universal_Real)
11029 then
11030 -- Return if expression is ambiguous
11031
11032 if Unique_Fixed_Point_Type (N) = Any_Type then
11033 return;
11034
11035 -- If nothing else, the available fixed type is Duration
11036
11037 else
11038 Set_Etype (Operand, Standard_Duration);
11039 end if;
11040
11041 -- Resolve the real operand with largest available precision
11042
11043 if Etype (Right_Opnd (Operand)) = Universal_Real then
11044 Rop := New_Copy_Tree (Right_Opnd (Operand));
11045 else
11046 Rop := New_Copy_Tree (Left_Opnd (Operand));
11047 end if;
11048
11049 Resolve (Rop, Universal_Real);
11050
11051 -- If the operand is a literal (it could be a non-static and
11052 -- illegal exponentiation) check whether the use of Duration
11053 -- is potentially inaccurate.
11054
11055 if Nkind (Rop) = N_Real_Literal
11056 and then Realval (Rop) /= Ureal_0
11057 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
11058 then
11059 Error_Msg_N
11060 ("??universal real operand can only "
11061 & "be interpreted as Duration!", Rop);
11062 Error_Msg_N
11063 ("\??precision will be lost in the conversion!", Rop);
11064 end if;
11065
11066 elsif Is_Numeric_Type (Typ)
11067 and then Nkind (Operand) in N_Op
11068 and then Unique_Fixed_Point_Type (N) /= Any_Type
11069 then
11070 Set_Etype (Operand, Standard_Duration);
11071
11072 else
11073 Error_Msg_N ("invalid context for mixed mode operation", N);
11074 Set_Etype (Operand, Any_Type);
11075 return;
11076 end if;
11077 end if;
11078
11079 Resolve (Operand);
11080
11081 -- In SPARK, a type conversion between array types should be restricted
11082 -- to types which have matching static bounds.
11083
11084 -- Protect call to Matching_Static_Array_Bounds to avoid costly
11085 -- operation if not needed.
11086
11087 if Restriction_Check_Required (SPARK_05)
11088 and then Is_Array_Type (Target_Typ)
11089 and then Is_Array_Type (Operand_Typ)
11090 and then Operand_Typ /= Any_Composite -- or else Operand in error
11091 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
11092 then
11093 Check_SPARK_05_Restriction
11094 ("array types should have matching static bounds", N);
11095 end if;
11096
11097 -- In formal mode, the operand of an ancestor type conversion must be an
11098 -- object (not an expression).
11099
11100 if Is_Tagged_Type (Target_Typ)
11101 and then not Is_Class_Wide_Type (Target_Typ)
11102 and then Is_Tagged_Type (Operand_Typ)
11103 and then not Is_Class_Wide_Type (Operand_Typ)
11104 and then Is_Ancestor (Target_Typ, Operand_Typ)
11105 and then not Is_SPARK_05_Object_Reference (Operand)
11106 then
11107 Check_SPARK_05_Restriction ("object required", Operand);
11108 end if;
11109
11110 Analyze_Dimension (N);
11111
11112 -- Note: we do the Eval_Type_Conversion call before applying the
11113 -- required checks for a subtype conversion. This is important, since
11114 -- both are prepared under certain circumstances to change the type
11115 -- conversion to a constraint error node, but in the case of
11116 -- Eval_Type_Conversion this may reflect an illegality in the static
11117 -- case, and we would miss the illegality (getting only a warning
11118 -- message), if we applied the type conversion checks first.
11119
11120 Eval_Type_Conversion (N);
11121
11122 -- Even when evaluation is not possible, we may be able to simplify the
11123 -- conversion or its expression. This needs to be done before applying
11124 -- checks, since otherwise the checks may use the original expression
11125 -- and defeat the simplifications. This is specifically the case for
11126 -- elimination of the floating-point Truncation attribute in
11127 -- float-to-int conversions.
11128
11129 Simplify_Type_Conversion (N);
11130
11131 -- If after evaluation we still have a type conversion, then we may need
11132 -- to apply checks required for a subtype conversion.
11133
11134 -- Skip these type conversion checks if universal fixed operands
11135 -- operands involved, since range checks are handled separately for
11136 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
11137
11138 if Nkind (N) = N_Type_Conversion
11139 and then not Is_Generic_Type (Root_Type (Target_Typ))
11140 and then Target_Typ /= Universal_Fixed
11141 and then Operand_Typ /= Universal_Fixed
11142 then
11143 Apply_Type_Conversion_Checks (N);
11144 end if;
11145
11146 -- Issue warning for conversion of simple object to its own type. We
11147 -- have to test the original nodes, since they may have been rewritten
11148 -- by various optimizations.
11149
11150 Orig_N := Original_Node (N);
11151
11152 -- Here we test for a redundant conversion if the warning mode is
11153 -- active (and was not locally reset), and we have a type conversion
11154 -- from source not appearing in a generic instance.
11155
11156 if Test_Redundant
11157 and then Nkind (Orig_N) = N_Type_Conversion
11158 and then Comes_From_Source (Orig_N)
11159 and then not In_Instance
11160 then
11161 Orig_N := Original_Node (Expression (Orig_N));
11162 Orig_T := Target_Typ;
11163
11164 -- If the node is part of a larger expression, the Target_Type
11165 -- may not be the original type of the node if the context is a
11166 -- condition. Recover original type to see if conversion is needed.
11167
11168 if Is_Boolean_Type (Orig_T)
11169 and then Nkind (Parent (N)) in N_Op
11170 then
11171 Orig_T := Etype (Parent (N));
11172 end if;
11173
11174 -- If we have an entity name, then give the warning if the entity
11175 -- is the right type, or if it is a loop parameter covered by the
11176 -- original type (that's needed because loop parameters have an
11177 -- odd subtype coming from the bounds).
11178
11179 if (Is_Entity_Name (Orig_N)
11180 and then
11181 (Etype (Entity (Orig_N)) = Orig_T
11182 or else
11183 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11184 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11185
11186 -- If not an entity, then type of expression must match
11187
11188 or else Etype (Orig_N) = Orig_T
11189 then
11190 -- One more check, do not give warning if the analyzed conversion
11191 -- has an expression with non-static bounds, and the bounds of the
11192 -- target are static. This avoids junk warnings in cases where the
11193 -- conversion is necessary to establish staticness, for example in
11194 -- a case statement.
11195
11196 if not Is_OK_Static_Subtype (Operand_Typ)
11197 and then Is_OK_Static_Subtype (Target_Typ)
11198 then
11199 null;
11200
11201 -- Finally, if this type conversion occurs in a context requiring
11202 -- a prefix, and the expression is a qualified expression then the
11203 -- type conversion is not redundant, since a qualified expression
11204 -- is not a prefix, whereas a type conversion is. For example, "X
11205 -- := T'(Funx(...)).Y;" is illegal because a selected component
11206 -- requires a prefix, but a type conversion makes it legal: "X :=
11207 -- T(T'(Funx(...))).Y;"
11208
11209 -- In Ada 2012, a qualified expression is a name, so this idiom is
11210 -- no longer needed, but we still suppress the warning because it
11211 -- seems unfriendly for warnings to pop up when you switch to the
11212 -- newer language version.
11213
11214 elsif Nkind (Orig_N) = N_Qualified_Expression
11215 and then Nkind_In (Parent (N), N_Attribute_Reference,
11216 N_Indexed_Component,
11217 N_Selected_Component,
11218 N_Slice,
11219 N_Explicit_Dereference)
11220 then
11221 null;
11222
11223 -- Never warn on conversion to Long_Long_Integer'Base since
11224 -- that is most likely an artifact of the extended overflow
11225 -- checking and comes from complex expanded code.
11226
11227 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11228 null;
11229
11230 -- Here we give the redundant conversion warning. If it is an
11231 -- entity, give the name of the entity in the message. If not,
11232 -- just mention the expression.
11233
11234 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11235
11236 else
11237 if Is_Entity_Name (Orig_N) then
11238 Error_Msg_Node_2 := Orig_T;
11239 Error_Msg_NE -- CODEFIX
11240 ("??redundant conversion, & is of type &!",
11241 N, Entity (Orig_N));
11242 else
11243 Error_Msg_NE
11244 ("??redundant conversion, expression is of type&!",
11245 N, Orig_T);
11246 end if;
11247 end if;
11248 end if;
11249 end if;
11250
11251 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11252 -- No need to perform any interface conversion if the type of the
11253 -- expression coincides with the target type.
11254
11255 if Ada_Version >= Ada_2005
11256 and then Expander_Active
11257 and then Operand_Typ /= Target_Typ
11258 then
11259 declare
11260 Opnd : Entity_Id := Operand_Typ;
11261 Target : Entity_Id := Target_Typ;
11262
11263 begin
11264 -- If the type of the operand is a limited view, use nonlimited
11265 -- view when available. If it is a class-wide type, recover the
11266 -- class-wide type of the nonlimited view.
11267
11268 if From_Limited_With (Opnd)
11269 and then Has_Non_Limited_View (Opnd)
11270 then
11271 Opnd := Non_Limited_View (Opnd);
11272 Set_Etype (Expression (N), Opnd);
11273 end if;
11274
11275 if Is_Access_Type (Opnd) then
11276 Opnd := Designated_Type (Opnd);
11277 end if;
11278
11279 if Is_Access_Type (Target_Typ) then
11280 Target := Designated_Type (Target);
11281 end if;
11282
11283 if Opnd = Target then
11284 null;
11285
11286 -- Conversion from interface type
11287
11288 elsif Is_Interface (Opnd) then
11289
11290 -- Ada 2005 (AI-217): Handle entities from limited views
11291
11292 if From_Limited_With (Opnd) then
11293 Error_Msg_Qual_Level := 99;
11294 Error_Msg_NE -- CODEFIX
11295 ("missing WITH clause on package &", N,
11296 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11297 Error_Msg_N
11298 ("type conversions require visibility of the full view",
11299 N);
11300
11301 elsif From_Limited_With (Target)
11302 and then not
11303 (Is_Access_Type (Target_Typ)
11304 and then Present (Non_Limited_View (Etype (Target))))
11305 then
11306 Error_Msg_Qual_Level := 99;
11307 Error_Msg_NE -- CODEFIX
11308 ("missing WITH clause on package &", N,
11309 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11310 Error_Msg_N
11311 ("type conversions require visibility of the full view",
11312 N);
11313
11314 else
11315 Expand_Interface_Conversion (N);
11316 end if;
11317
11318 -- Conversion to interface type
11319
11320 elsif Is_Interface (Target) then
11321
11322 -- Handle subtypes
11323
11324 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11325 Opnd := Etype (Opnd);
11326 end if;
11327
11328 if Is_Class_Wide_Type (Opnd)
11329 or else Interface_Present_In_Ancestor
11330 (Typ => Opnd,
11331 Iface => Target)
11332 then
11333 Expand_Interface_Conversion (N);
11334 else
11335 Error_Msg_Name_1 := Chars (Etype (Target));
11336 Error_Msg_Name_2 := Chars (Opnd);
11337 Error_Msg_N
11338 ("wrong interface conversion (% is not a progenitor "
11339 & "of %)", N);
11340 end if;
11341 end if;
11342 end;
11343 end if;
11344
11345 -- Ada 2012: once the type conversion is resolved, check whether the
11346 -- operand statisfies the static predicate of the target type.
11347
11348 if Has_Predicates (Target_Typ) then
11349 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11350 end if;
11351
11352 -- If at this stage we have a real to integer conversion, make sure that
11353 -- the Do_Range_Check flag is set, because such conversions in general
11354 -- need a range check. We only need this if expansion is off.
11355 -- In GNATprove mode, we only do that when converting from fixed-point
11356 -- (as floating-point to integer conversions are now handled in
11357 -- GNATprove mode).
11358
11359 if Nkind (N) = N_Type_Conversion
11360 and then not Expander_Active
11361 and then Is_Integer_Type (Target_Typ)
11362 and then (Is_Fixed_Point_Type (Operand_Typ)
11363 or else (not GNATprove_Mode
11364 and then Is_Floating_Point_Type (Operand_Typ)))
11365 then
11366 Set_Do_Range_Check (Operand);
11367 end if;
11368
11369 -- Generating C code a type conversion of an access to constrained
11370 -- array type to access to unconstrained array type involves building
11371 -- a fat pointer which in general cannot be generated on the fly. We
11372 -- remove side effects in order to store the result of the conversion
11373 -- into a temporary.
11374
11375 if Modify_Tree_For_C
11376 and then Nkind (N) = N_Type_Conversion
11377 and then Nkind (Parent (N)) /= N_Object_Declaration
11378 and then Is_Access_Type (Etype (N))
11379 and then Is_Array_Type (Designated_Type (Etype (N)))
11380 and then not Is_Constrained (Designated_Type (Etype (N)))
11381 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11382 then
11383 Remove_Side_Effects (N);
11384 end if;
11385 end Resolve_Type_Conversion;
11386
11387 ----------------------
11388 -- Resolve_Unary_Op --
11389 ----------------------
11390
11391 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11392 B_Typ : constant Entity_Id := Base_Type (Typ);
11393 R : constant Node_Id := Right_Opnd (N);
11394 OK : Boolean;
11395 Lo : Uint;
11396 Hi : Uint;
11397
11398 begin
11399 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11400 Error_Msg_Name_1 := Chars (Typ);
11401 Check_SPARK_05_Restriction
11402 ("unary operator not defined for modular type%", N);
11403 end if;
11404
11405 -- Deal with intrinsic unary operators
11406
11407 if Comes_From_Source (N)
11408 and then Ekind (Entity (N)) = E_Function
11409 and then Is_Imported (Entity (N))
11410 and then Is_Intrinsic_Subprogram (Entity (N))
11411 then
11412 Resolve_Intrinsic_Unary_Operator (N, Typ);
11413 return;
11414 end if;
11415
11416 -- Deal with universal cases
11417
11418 if Etype (R) = Universal_Integer
11419 or else
11420 Etype (R) = Universal_Real
11421 then
11422 Check_For_Visible_Operator (N, B_Typ);
11423 end if;
11424
11425 Set_Etype (N, B_Typ);
11426 Resolve (R, B_Typ);
11427
11428 -- Generate warning for expressions like abs (x mod 2)
11429
11430 if Warn_On_Redundant_Constructs
11431 and then Nkind (N) = N_Op_Abs
11432 then
11433 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11434
11435 if OK and then Hi >= Lo and then Lo >= 0 then
11436 Error_Msg_N -- CODEFIX
11437 ("?r?abs applied to known non-negative value has no effect", N);
11438 end if;
11439 end if;
11440
11441 -- Deal with reference generation
11442
11443 Check_Unset_Reference (R);
11444 Generate_Operator_Reference (N, B_Typ);
11445 Analyze_Dimension (N);
11446 Eval_Unary_Op (N);
11447
11448 -- Set overflow checking bit. Much cleverer code needed here eventually
11449 -- and perhaps the Resolve routines should be separated for the various
11450 -- arithmetic operations, since they will need different processing ???
11451
11452 if Nkind (N) in N_Op then
11453 if not Overflow_Checks_Suppressed (Etype (N)) then
11454 Enable_Overflow_Check (N);
11455 end if;
11456 end if;
11457
11458 -- Generate warning for expressions like -5 mod 3 for integers. No need
11459 -- to worry in the floating-point case, since parens do not affect the
11460 -- result so there is no point in giving in a warning.
11461
11462 declare
11463 Norig : constant Node_Id := Original_Node (N);
11464 Rorig : Node_Id;
11465 Val : Uint;
11466 HB : Uint;
11467 LB : Uint;
11468 Lval : Uint;
11469 Opnd : Node_Id;
11470
11471 begin
11472 if Warn_On_Questionable_Missing_Parens
11473 and then Comes_From_Source (Norig)
11474 and then Is_Integer_Type (Typ)
11475 and then Nkind (Norig) = N_Op_Minus
11476 then
11477 Rorig := Original_Node (Right_Opnd (Norig));
11478
11479 -- We are looking for cases where the right operand is not
11480 -- parenthesized, and is a binary operator, multiply, divide, or
11481 -- mod. These are the cases where the grouping can affect results.
11482
11483 if Paren_Count (Rorig) = 0
11484 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11485 then
11486 -- For mod, we always give the warning, since the value is
11487 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11488 -- -(5 mod 315)). But for the other cases, the only concern is
11489 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11490 -- overflows, but (-2) * 64 does not). So we try to give the
11491 -- message only when overflow is possible.
11492
11493 if Nkind (Rorig) /= N_Op_Mod
11494 and then Compile_Time_Known_Value (R)
11495 then
11496 Val := Expr_Value (R);
11497
11498 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11499 HB := Expr_Value (Type_High_Bound (Typ));
11500 else
11501 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11502 end if;
11503
11504 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11505 LB := Expr_Value (Type_Low_Bound (Typ));
11506 else
11507 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11508 end if;
11509
11510 -- Note that the test below is deliberately excluding the
11511 -- largest negative number, since that is a potentially
11512 -- troublesome case (e.g. -2 * x, where the result is the
11513 -- largest negative integer has an overflow with 2 * x).
11514
11515 if Val > LB and then Val <= HB then
11516 return;
11517 end if;
11518 end if;
11519
11520 -- For the multiplication case, the only case we have to worry
11521 -- about is when (-a)*b is exactly the largest negative number
11522 -- so that -(a*b) can cause overflow. This can only happen if
11523 -- a is a power of 2, and more generally if any operand is a
11524 -- constant that is not a power of 2, then the parentheses
11525 -- cannot affect whether overflow occurs. We only bother to
11526 -- test the left most operand
11527
11528 -- Loop looking at left operands for one that has known value
11529
11530 Opnd := Rorig;
11531 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11532 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11533 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11534
11535 -- Operand value of 0 or 1 skips warning
11536
11537 if Lval <= 1 then
11538 return;
11539
11540 -- Otherwise check power of 2, if power of 2, warn, if
11541 -- anything else, skip warning.
11542
11543 else
11544 while Lval /= 2 loop
11545 if Lval mod 2 = 1 then
11546 return;
11547 else
11548 Lval := Lval / 2;
11549 end if;
11550 end loop;
11551
11552 exit Opnd_Loop;
11553 end if;
11554 end if;
11555
11556 -- Keep looking at left operands
11557
11558 Opnd := Left_Opnd (Opnd);
11559 end loop Opnd_Loop;
11560
11561 -- For rem or "/" we can only have a problematic situation
11562 -- if the divisor has a value of minus one or one. Otherwise
11563 -- overflow is impossible (divisor > 1) or we have a case of
11564 -- division by zero in any case.
11565
11566 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11567 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11568 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11569 then
11570 return;
11571 end if;
11572
11573 -- If we fall through warning should be issued
11574
11575 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11576
11577 Error_Msg_N
11578 ("??unary minus expression should be parenthesized here!", N);
11579 end if;
11580 end if;
11581 end;
11582 end Resolve_Unary_Op;
11583
11584 ----------------------------------
11585 -- Resolve_Unchecked_Expression --
11586 ----------------------------------
11587
11588 procedure Resolve_Unchecked_Expression
11589 (N : Node_Id;
11590 Typ : Entity_Id)
11591 is
11592 begin
11593 Resolve (Expression (N), Typ, Suppress => All_Checks);
11594 Set_Etype (N, Typ);
11595 end Resolve_Unchecked_Expression;
11596
11597 ---------------------------------------
11598 -- Resolve_Unchecked_Type_Conversion --
11599 ---------------------------------------
11600
11601 procedure Resolve_Unchecked_Type_Conversion
11602 (N : Node_Id;
11603 Typ : Entity_Id)
11604 is
11605 pragma Warnings (Off, Typ);
11606
11607 Operand : constant Node_Id := Expression (N);
11608 Opnd_Type : constant Entity_Id := Etype (Operand);
11609
11610 begin
11611 -- Resolve operand using its own type
11612
11613 Resolve (Operand, Opnd_Type);
11614
11615 -- In an inlined context, the unchecked conversion may be applied
11616 -- to a literal, in which case its type is the type of the context.
11617 -- (In other contexts conversions cannot apply to literals).
11618
11619 if In_Inlined_Body
11620 and then (Opnd_Type = Any_Character or else
11621 Opnd_Type = Any_Integer or else
11622 Opnd_Type = Any_Real)
11623 then
11624 Set_Etype (Operand, Typ);
11625 end if;
11626
11627 Analyze_Dimension (N);
11628 Eval_Unchecked_Conversion (N);
11629 end Resolve_Unchecked_Type_Conversion;
11630
11631 ------------------------------
11632 -- Rewrite_Operator_As_Call --
11633 ------------------------------
11634
11635 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11636 Loc : constant Source_Ptr := Sloc (N);
11637 Actuals : constant List_Id := New_List;
11638 New_N : Node_Id;
11639
11640 begin
11641 if Nkind (N) in N_Binary_Op then
11642 Append (Left_Opnd (N), Actuals);
11643 end if;
11644
11645 Append (Right_Opnd (N), Actuals);
11646
11647 New_N :=
11648 Make_Function_Call (Sloc => Loc,
11649 Name => New_Occurrence_Of (Nam, Loc),
11650 Parameter_Associations => Actuals);
11651
11652 Preserve_Comes_From_Source (New_N, N);
11653 Preserve_Comes_From_Source (Name (New_N), N);
11654 Rewrite (N, New_N);
11655 Set_Etype (N, Etype (Nam));
11656 end Rewrite_Operator_As_Call;
11657
11658 ------------------------------
11659 -- Rewrite_Renamed_Operator --
11660 ------------------------------
11661
11662 procedure Rewrite_Renamed_Operator
11663 (N : Node_Id;
11664 Op : Entity_Id;
11665 Typ : Entity_Id)
11666 is
11667 Nam : constant Name_Id := Chars (Op);
11668 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11669 Op_Node : Node_Id;
11670
11671 begin
11672 -- Do not perform this transformation within a pre/postcondition,
11673 -- because the expression will be reanalyzed, and the transformation
11674 -- might affect the visibility of the operator, e.g. in an instance.
11675 -- Note that fully analyzed and expanded pre/postconditions appear as
11676 -- pragma Check equivalents.
11677
11678 if In_Pre_Post_Condition (N) then
11679 return;
11680 end if;
11681
11682 -- Likewise when an expression function is being preanalyzed, since the
11683 -- expression will be reanalyzed as part of the generated body.
11684
11685 if In_Spec_Expression then
11686 declare
11687 S : constant Entity_Id := Current_Scope_No_Loops;
11688 begin
11689 if Ekind (S) = E_Function
11690 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11691 N_Expression_Function
11692 then
11693 return;
11694 end if;
11695 end;
11696 end if;
11697
11698 -- Rewrite the operator node using the real operator, not its renaming.
11699 -- Exclude user-defined intrinsic operations of the same name, which are
11700 -- treated separately and rewritten as calls.
11701
11702 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11703 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11704 Set_Chars (Op_Node, Nam);
11705 Set_Etype (Op_Node, Etype (N));
11706 Set_Entity (Op_Node, Op);
11707 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11708
11709 -- Indicate that both the original entity and its renaming are
11710 -- referenced at this point.
11711
11712 Generate_Reference (Entity (N), N);
11713 Generate_Reference (Op, N);
11714
11715 if Is_Binary then
11716 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11717 end if;
11718
11719 Rewrite (N, Op_Node);
11720
11721 -- If the context type is private, add the appropriate conversions so
11722 -- that the operator is applied to the full view. This is done in the
11723 -- routines that resolve intrinsic operators.
11724
11725 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11726 case Nkind (N) is
11727 when N_Op_Add
11728 | N_Op_Divide
11729 | N_Op_Expon
11730 | N_Op_Mod
11731 | N_Op_Multiply
11732 | N_Op_Rem
11733 | N_Op_Subtract
11734 =>
11735 Resolve_Intrinsic_Operator (N, Typ);
11736
11737 when N_Op_Abs
11738 | N_Op_Minus
11739 | N_Op_Plus
11740 =>
11741 Resolve_Intrinsic_Unary_Operator (N, Typ);
11742
11743 when others =>
11744 Resolve (N, Typ);
11745 end case;
11746 end if;
11747
11748 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11749
11750 -- Operator renames a user-defined operator of the same name. Use the
11751 -- original operator in the node, which is the one Gigi knows about.
11752
11753 Set_Entity (N, Op);
11754 Set_Is_Overloaded (N, False);
11755 end if;
11756 end Rewrite_Renamed_Operator;
11757
11758 -----------------------
11759 -- Set_Slice_Subtype --
11760 -----------------------
11761
11762 -- Build an implicit subtype declaration to represent the type delivered by
11763 -- the slice. This is an abbreviated version of an array subtype. We define
11764 -- an index subtype for the slice, using either the subtype name or the
11765 -- discrete range of the slice. To be consistent with index usage elsewhere
11766 -- we create a list header to hold the single index. This list is not
11767 -- otherwise attached to the syntax tree.
11768
11769 procedure Set_Slice_Subtype (N : Node_Id) is
11770 Loc : constant Source_Ptr := Sloc (N);
11771 Index_List : constant List_Id := New_List;
11772 Index : Node_Id;
11773 Index_Subtype : Entity_Id;
11774 Index_Type : Entity_Id;
11775 Slice_Subtype : Entity_Id;
11776 Drange : constant Node_Id := Discrete_Range (N);
11777
11778 begin
11779 Index_Type := Base_Type (Etype (Drange));
11780
11781 if Is_Entity_Name (Drange) then
11782 Index_Subtype := Entity (Drange);
11783
11784 else
11785 -- We force the evaluation of a range. This is definitely needed in
11786 -- the renamed case, and seems safer to do unconditionally. Note in
11787 -- any case that since we will create and insert an Itype referring
11788 -- to this range, we must make sure any side effect removal actions
11789 -- are inserted before the Itype definition.
11790
11791 if Nkind (Drange) = N_Range then
11792 Force_Evaluation (Low_Bound (Drange));
11793 Force_Evaluation (High_Bound (Drange));
11794
11795 -- If the discrete range is given by a subtype indication, the
11796 -- type of the slice is the base of the subtype mark.
11797
11798 elsif Nkind (Drange) = N_Subtype_Indication then
11799 declare
11800 R : constant Node_Id := Range_Expression (Constraint (Drange));
11801 begin
11802 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11803 Force_Evaluation (Low_Bound (R));
11804 Force_Evaluation (High_Bound (R));
11805 end;
11806 end if;
11807
11808 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11809
11810 -- Take a new copy of Drange (where bounds have been rewritten to
11811 -- reference side-effect-free names). Using a separate tree ensures
11812 -- that further expansion (e.g. while rewriting a slice assignment
11813 -- into a FOR loop) does not attempt to remove side effects on the
11814 -- bounds again (which would cause the bounds in the index subtype
11815 -- definition to refer to temporaries before they are defined) (the
11816 -- reason is that some names are considered side effect free here
11817 -- for the subtype, but not in the context of a loop iteration
11818 -- scheme).
11819
11820 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11821 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11822 Set_Etype (Index_Subtype, Index_Type);
11823 Set_Size_Info (Index_Subtype, Index_Type);
11824 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11825 end if;
11826
11827 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11828
11829 Index := New_Occurrence_Of (Index_Subtype, Loc);
11830 Set_Etype (Index, Index_Subtype);
11831 Append (Index, Index_List);
11832
11833 Set_First_Index (Slice_Subtype, Index);
11834 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11835 Set_Is_Constrained (Slice_Subtype, True);
11836
11837 Check_Compile_Time_Size (Slice_Subtype);
11838
11839 -- The Etype of the existing Slice node is reset to this slice subtype.
11840 -- Its bounds are obtained from its first index.
11841
11842 Set_Etype (N, Slice_Subtype);
11843
11844 -- For bit-packed slice subtypes, freeze immediately (except in the case
11845 -- of being in a "spec expression" where we never freeze when we first
11846 -- see the expression).
11847
11848 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11849 Freeze_Itype (Slice_Subtype, N);
11850
11851 -- For all other cases insert an itype reference in the slice's actions
11852 -- so that the itype is frozen at the proper place in the tree (i.e. at
11853 -- the point where actions for the slice are analyzed). Note that this
11854 -- is different from freezing the itype immediately, which might be
11855 -- premature (e.g. if the slice is within a transient scope). This needs
11856 -- to be done only if expansion is enabled.
11857
11858 elsif Expander_Active then
11859 Ensure_Defined (Typ => Slice_Subtype, N => N);
11860 end if;
11861 end Set_Slice_Subtype;
11862
11863 --------------------------------
11864 -- Set_String_Literal_Subtype --
11865 --------------------------------
11866
11867 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11868 Loc : constant Source_Ptr := Sloc (N);
11869 Low_Bound : constant Node_Id :=
11870 Type_Low_Bound (Etype (First_Index (Typ)));
11871 Subtype_Id : Entity_Id;
11872
11873 begin
11874 if Nkind (N) /= N_String_Literal then
11875 return;
11876 end if;
11877
11878 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11879 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11880 (String_Length (Strval (N))));
11881 Set_Etype (Subtype_Id, Base_Type (Typ));
11882 Set_Is_Constrained (Subtype_Id);
11883 Set_Etype (N, Subtype_Id);
11884
11885 -- The low bound is set from the low bound of the corresponding index
11886 -- type. Note that we do not store the high bound in the string literal
11887 -- subtype, but it can be deduced if necessary from the length and the
11888 -- low bound.
11889
11890 if Is_OK_Static_Expression (Low_Bound) then
11891 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11892
11893 -- If the lower bound is not static we create a range for the string
11894 -- literal, using the index type and the known length of the literal.
11895 -- The index type is not necessarily Positive, so the upper bound is
11896 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11897
11898 else
11899 declare
11900 Index_List : constant List_Id := New_List;
11901 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11902 High_Bound : constant Node_Id :=
11903 Make_Attribute_Reference (Loc,
11904 Attribute_Name => Name_Val,
11905 Prefix =>
11906 New_Occurrence_Of (Index_Type, Loc),
11907 Expressions => New_List (
11908 Make_Op_Add (Loc,
11909 Left_Opnd =>
11910 Make_Attribute_Reference (Loc,
11911 Attribute_Name => Name_Pos,
11912 Prefix =>
11913 New_Occurrence_Of (Index_Type, Loc),
11914 Expressions =>
11915 New_List (New_Copy_Tree (Low_Bound))),
11916 Right_Opnd =>
11917 Make_Integer_Literal (Loc,
11918 String_Length (Strval (N)) - 1))));
11919
11920 Array_Subtype : Entity_Id;
11921 Drange : Node_Id;
11922 Index : Node_Id;
11923 Index_Subtype : Entity_Id;
11924
11925 begin
11926 if Is_Integer_Type (Index_Type) then
11927 Set_String_Literal_Low_Bound
11928 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11929
11930 else
11931 -- If the index type is an enumeration type, build bounds
11932 -- expression with attributes.
11933
11934 Set_String_Literal_Low_Bound
11935 (Subtype_Id,
11936 Make_Attribute_Reference (Loc,
11937 Attribute_Name => Name_First,
11938 Prefix =>
11939 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11940 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11941 end if;
11942
11943 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11944
11945 -- Build bona fide subtype for the string, and wrap it in an
11946 -- unchecked conversion, because the back end expects the
11947 -- String_Literal_Subtype to have a static lower bound.
11948
11949 Index_Subtype :=
11950 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11951 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11952 Set_Scalar_Range (Index_Subtype, Drange);
11953 Set_Parent (Drange, N);
11954 Analyze_And_Resolve (Drange, Index_Type);
11955
11956 -- In this context, the Index_Type may already have a constraint,
11957 -- so use common base type on string subtype. The base type may
11958 -- be used when generating attributes of the string, for example
11959 -- in the context of a slice assignment.
11960
11961 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11962 Set_Size_Info (Index_Subtype, Index_Type);
11963 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11964
11965 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11966
11967 Index := New_Occurrence_Of (Index_Subtype, Loc);
11968 Set_Etype (Index, Index_Subtype);
11969 Append (Index, Index_List);
11970
11971 Set_First_Index (Array_Subtype, Index);
11972 Set_Etype (Array_Subtype, Base_Type (Typ));
11973 Set_Is_Constrained (Array_Subtype, True);
11974
11975 Rewrite (N,
11976 Make_Unchecked_Type_Conversion (Loc,
11977 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11978 Expression => Relocate_Node (N)));
11979 Set_Etype (N, Array_Subtype);
11980 end;
11981 end if;
11982 end Set_String_Literal_Subtype;
11983
11984 ------------------------------
11985 -- Simplify_Type_Conversion --
11986 ------------------------------
11987
11988 procedure Simplify_Type_Conversion (N : Node_Id) is
11989 begin
11990 if Nkind (N) = N_Type_Conversion then
11991 declare
11992 Operand : constant Node_Id := Expression (N);
11993 Target_Typ : constant Entity_Id := Etype (N);
11994 Opnd_Typ : constant Entity_Id := Etype (Operand);
11995
11996 begin
11997 -- Special processing if the conversion is the expression of a
11998 -- Rounding or Truncation attribute reference. In this case we
11999 -- replace:
12000
12001 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
12002
12003 -- by
12004
12005 -- ityp (x)
12006
12007 -- with the Float_Truncate flag set to False or True respectively,
12008 -- which is more efficient.
12009
12010 if Is_Floating_Point_Type (Opnd_Typ)
12011 and then
12012 (Is_Integer_Type (Target_Typ)
12013 or else (Is_Fixed_Point_Type (Target_Typ)
12014 and then Conversion_OK (N)))
12015 and then Nkind (Operand) = N_Attribute_Reference
12016 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
12017 Name_Truncation)
12018 then
12019 declare
12020 Truncate : constant Boolean :=
12021 Attribute_Name (Operand) = Name_Truncation;
12022 begin
12023 Rewrite (Operand,
12024 Relocate_Node (First (Expressions (Operand))));
12025 Set_Float_Truncate (N, Truncate);
12026 end;
12027 end if;
12028 end;
12029 end if;
12030 end Simplify_Type_Conversion;
12031
12032 -----------------------------
12033 -- Unique_Fixed_Point_Type --
12034 -----------------------------
12035
12036 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
12037 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
12038 -- Give error messages for true ambiguity. Messages are posted on node
12039 -- N, and entities T1, T2 are the possible interpretations.
12040
12041 -----------------------
12042 -- Fixed_Point_Error --
12043 -----------------------
12044
12045 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
12046 begin
12047 Error_Msg_N ("ambiguous universal_fixed_expression", N);
12048 Error_Msg_NE ("\\possible interpretation as}", N, T1);
12049 Error_Msg_NE ("\\possible interpretation as}", N, T2);
12050 end Fixed_Point_Error;
12051
12052 -- Local variables
12053
12054 ErrN : Node_Id;
12055 Item : Node_Id;
12056 Scop : Entity_Id;
12057 T1 : Entity_Id;
12058 T2 : Entity_Id;
12059
12060 -- Start of processing for Unique_Fixed_Point_Type
12061
12062 begin
12063 -- The operations on Duration are visible, so Duration is always a
12064 -- possible interpretation.
12065
12066 T1 := Standard_Duration;
12067
12068 -- Look for fixed-point types in enclosing scopes
12069
12070 Scop := Current_Scope;
12071 while Scop /= Standard_Standard loop
12072 T2 := First_Entity (Scop);
12073 while Present (T2) loop
12074 if Is_Fixed_Point_Type (T2)
12075 and then Current_Entity (T2) = T2
12076 and then Scope (Base_Type (T2)) = Scop
12077 then
12078 if Present (T1) then
12079 Fixed_Point_Error (T1, T2);
12080 return Any_Type;
12081 else
12082 T1 := T2;
12083 end if;
12084 end if;
12085
12086 Next_Entity (T2);
12087 end loop;
12088
12089 Scop := Scope (Scop);
12090 end loop;
12091
12092 -- Look for visible fixed type declarations in the context
12093
12094 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
12095 while Present (Item) loop
12096 if Nkind (Item) = N_With_Clause then
12097 Scop := Entity (Name (Item));
12098 T2 := First_Entity (Scop);
12099 while Present (T2) loop
12100 if Is_Fixed_Point_Type (T2)
12101 and then Scope (Base_Type (T2)) = Scop
12102 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
12103 then
12104 if Present (T1) then
12105 Fixed_Point_Error (T1, T2);
12106 return Any_Type;
12107 else
12108 T1 := T2;
12109 end if;
12110 end if;
12111
12112 Next_Entity (T2);
12113 end loop;
12114 end if;
12115
12116 Next (Item);
12117 end loop;
12118
12119 if Nkind (N) = N_Real_Literal then
12120 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
12121
12122 else
12123 -- When the context is a type conversion, issue the warning on the
12124 -- expression of the conversion because it is the actual operation.
12125
12126 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
12127 ErrN := Expression (N);
12128 else
12129 ErrN := N;
12130 end if;
12131
12132 Error_Msg_NE
12133 ("??universal_fixed expression interpreted as }!", ErrN, T1);
12134 end if;
12135
12136 return T1;
12137 end Unique_Fixed_Point_Type;
12138
12139 ----------------------
12140 -- Valid_Conversion --
12141 ----------------------
12142
12143 function Valid_Conversion
12144 (N : Node_Id;
12145 Target : Entity_Id;
12146 Operand : Node_Id;
12147 Report_Errs : Boolean := True) return Boolean
12148 is
12149 Target_Type : constant Entity_Id := Base_Type (Target);
12150 Opnd_Type : Entity_Id := Etype (Operand);
12151 Inc_Ancestor : Entity_Id;
12152
12153 function Conversion_Check
12154 (Valid : Boolean;
12155 Msg : String) return Boolean;
12156 -- Little routine to post Msg if Valid is False, returns Valid value
12157
12158 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12159 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12160
12161 procedure Conversion_Error_NE
12162 (Msg : String;
12163 N : Node_Or_Entity_Id;
12164 E : Node_Or_Entity_Id);
12165 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12166
12167 function In_Instance_Code return Boolean;
12168 -- Return True if expression is within an instance but is not in one of
12169 -- the actuals of the instantiation. Type conversions within an instance
12170 -- are not rechecked because type visbility may lead to spurious errors,
12171 -- but conversions in an actual for a formal object must be checked.
12172
12173 function Valid_Tagged_Conversion
12174 (Target_Type : Entity_Id;
12175 Opnd_Type : Entity_Id) return Boolean;
12176 -- Specifically test for validity of tagged conversions
12177
12178 function Valid_Array_Conversion return Boolean;
12179 -- Check index and component conformance, and accessibility levels if
12180 -- the component types are anonymous access types (Ada 2005).
12181
12182 ----------------------
12183 -- Conversion_Check --
12184 ----------------------
12185
12186 function Conversion_Check
12187 (Valid : Boolean;
12188 Msg : String) return Boolean
12189 is
12190 begin
12191 if not Valid
12192
12193 -- A generic unit has already been analyzed and we have verified
12194 -- that a particular conversion is OK in that context. Since the
12195 -- instance is reanalyzed without relying on the relationships
12196 -- established during the analysis of the generic, it is possible
12197 -- to end up with inconsistent views of private types. Do not emit
12198 -- the error message in such cases. The rest of the machinery in
12199 -- Valid_Conversion still ensures the proper compatibility of
12200 -- target and operand types.
12201
12202 and then not In_Instance_Code
12203 then
12204 Conversion_Error_N (Msg, Operand);
12205 end if;
12206
12207 return Valid;
12208 end Conversion_Check;
12209
12210 ------------------------
12211 -- Conversion_Error_N --
12212 ------------------------
12213
12214 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12215 begin
12216 if Report_Errs then
12217 Error_Msg_N (Msg, N);
12218 end if;
12219 end Conversion_Error_N;
12220
12221 -------------------------
12222 -- Conversion_Error_NE --
12223 -------------------------
12224
12225 procedure Conversion_Error_NE
12226 (Msg : String;
12227 N : Node_Or_Entity_Id;
12228 E : Node_Or_Entity_Id)
12229 is
12230 begin
12231 if Report_Errs then
12232 Error_Msg_NE (Msg, N, E);
12233 end if;
12234 end Conversion_Error_NE;
12235
12236 ----------------------
12237 -- In_Instance_Code --
12238 ----------------------
12239
12240 function In_Instance_Code return Boolean is
12241 Par : Node_Id;
12242
12243 begin
12244 if not In_Instance then
12245 return False;
12246
12247 else
12248 Par := Parent (N);
12249 while Present (Par) loop
12250
12251 -- The expression is part of an actual object if it appears in
12252 -- the generated object declaration in the instance.
12253
12254 if Nkind (Par) = N_Object_Declaration
12255 and then Present (Corresponding_Generic_Association (Par))
12256 then
12257 return False;
12258
12259 else
12260 exit when
12261 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12262 or else Nkind (Par) in N_Subprogram_Call
12263 or else Nkind (Par) in N_Declaration;
12264 end if;
12265
12266 Par := Parent (Par);
12267 end loop;
12268
12269 -- Otherwise the expression appears within the instantiated unit
12270
12271 return True;
12272 end if;
12273 end In_Instance_Code;
12274
12275 ----------------------------
12276 -- Valid_Array_Conversion --
12277 ----------------------------
12278
12279 function Valid_Array_Conversion return Boolean is
12280 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12281 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12282
12283 Opnd_Index : Node_Id;
12284 Opnd_Index_Type : Entity_Id;
12285
12286 Target_Comp_Type : constant Entity_Id :=
12287 Component_Type (Target_Type);
12288 Target_Comp_Base : constant Entity_Id :=
12289 Base_Type (Target_Comp_Type);
12290
12291 Target_Index : Node_Id;
12292 Target_Index_Type : Entity_Id;
12293
12294 begin
12295 -- Error if wrong number of dimensions
12296
12297 if
12298 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12299 then
12300 Conversion_Error_N
12301 ("incompatible number of dimensions for conversion", Operand);
12302 return False;
12303
12304 -- Number of dimensions matches
12305
12306 else
12307 -- Loop through indexes of the two arrays
12308
12309 Target_Index := First_Index (Target_Type);
12310 Opnd_Index := First_Index (Opnd_Type);
12311 while Present (Target_Index) and then Present (Opnd_Index) loop
12312 Target_Index_Type := Etype (Target_Index);
12313 Opnd_Index_Type := Etype (Opnd_Index);
12314
12315 -- Error if index types are incompatible
12316
12317 if not (Is_Integer_Type (Target_Index_Type)
12318 and then Is_Integer_Type (Opnd_Index_Type))
12319 and then (Root_Type (Target_Index_Type)
12320 /= Root_Type (Opnd_Index_Type))
12321 then
12322 Conversion_Error_N
12323 ("incompatible index types for array conversion",
12324 Operand);
12325 return False;
12326 end if;
12327
12328 Next_Index (Target_Index);
12329 Next_Index (Opnd_Index);
12330 end loop;
12331
12332 -- If component types have same base type, all set
12333
12334 if Target_Comp_Base = Opnd_Comp_Base then
12335 null;
12336
12337 -- Here if base types of components are not the same. The only
12338 -- time this is allowed is if we have anonymous access types.
12339
12340 -- The conversion of arrays of anonymous access types can lead
12341 -- to dangling pointers. AI-392 formalizes the accessibility
12342 -- checks that must be applied to such conversions to prevent
12343 -- out-of-scope references.
12344
12345 elsif Ekind_In
12346 (Target_Comp_Base, E_Anonymous_Access_Type,
12347 E_Anonymous_Access_Subprogram_Type)
12348 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12349 and then
12350 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12351 then
12352 if Type_Access_Level (Target_Type) <
12353 Deepest_Type_Access_Level (Opnd_Type)
12354 then
12355 if In_Instance_Body then
12356 Error_Msg_Warn := SPARK_Mode /= On;
12357 Conversion_Error_N
12358 ("source array type has deeper accessibility "
12359 & "level than target<<", Operand);
12360 Conversion_Error_N ("\Program_Error [<<", Operand);
12361 Rewrite (N,
12362 Make_Raise_Program_Error (Sloc (N),
12363 Reason => PE_Accessibility_Check_Failed));
12364 Set_Etype (N, Target_Type);
12365 return False;
12366
12367 -- Conversion not allowed because of accessibility levels
12368
12369 else
12370 Conversion_Error_N
12371 ("source array type has deeper accessibility "
12372 & "level than target", Operand);
12373 return False;
12374 end if;
12375
12376 else
12377 null;
12378 end if;
12379
12380 -- All other cases where component base types do not match
12381
12382 else
12383 Conversion_Error_N
12384 ("incompatible component types for array conversion",
12385 Operand);
12386 return False;
12387 end if;
12388
12389 -- Check that component subtypes statically match. For numeric
12390 -- types this means that both must be either constrained or
12391 -- unconstrained. For enumeration types the bounds must match.
12392 -- All of this is checked in Subtypes_Statically_Match.
12393
12394 if not Subtypes_Statically_Match
12395 (Target_Comp_Type, Opnd_Comp_Type)
12396 then
12397 Conversion_Error_N
12398 ("component subtypes must statically match", Operand);
12399 return False;
12400 end if;
12401 end if;
12402
12403 return True;
12404 end Valid_Array_Conversion;
12405
12406 -----------------------------
12407 -- Valid_Tagged_Conversion --
12408 -----------------------------
12409
12410 function Valid_Tagged_Conversion
12411 (Target_Type : Entity_Id;
12412 Opnd_Type : Entity_Id) return Boolean
12413 is
12414 begin
12415 -- Upward conversions are allowed (RM 4.6(22))
12416
12417 if Covers (Target_Type, Opnd_Type)
12418 or else Is_Ancestor (Target_Type, Opnd_Type)
12419 then
12420 return True;
12421
12422 -- Downward conversion are allowed if the operand is class-wide
12423 -- (RM 4.6(23)).
12424
12425 elsif Is_Class_Wide_Type (Opnd_Type)
12426 and then Covers (Opnd_Type, Target_Type)
12427 then
12428 return True;
12429
12430 elsif Covers (Opnd_Type, Target_Type)
12431 or else Is_Ancestor (Opnd_Type, Target_Type)
12432 then
12433 return
12434 Conversion_Check (False,
12435 "downward conversion of tagged objects not allowed");
12436
12437 -- Ada 2005 (AI-251): The conversion to/from interface types is
12438 -- always valid. The types involved may be class-wide (sub)types.
12439
12440 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12441 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12442 then
12443 return True;
12444
12445 -- If the operand is a class-wide type obtained through a limited_
12446 -- with clause, and the context includes the nonlimited view, use
12447 -- it to determine whether the conversion is legal.
12448
12449 elsif Is_Class_Wide_Type (Opnd_Type)
12450 and then From_Limited_With (Opnd_Type)
12451 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12452 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12453 then
12454 return True;
12455
12456 elsif Is_Access_Type (Opnd_Type)
12457 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12458 then
12459 return True;
12460
12461 else
12462 Conversion_Error_NE
12463 ("invalid tagged conversion, not compatible with}",
12464 N, First_Subtype (Opnd_Type));
12465 return False;
12466 end if;
12467 end Valid_Tagged_Conversion;
12468
12469 -- Start of processing for Valid_Conversion
12470
12471 begin
12472 Check_Parameterless_Call (Operand);
12473
12474 if Is_Overloaded (Operand) then
12475 declare
12476 I : Interp_Index;
12477 I1 : Interp_Index;
12478 It : Interp;
12479 It1 : Interp;
12480 N1 : Entity_Id;
12481 T1 : Entity_Id;
12482
12483 begin
12484 -- Remove procedure calls, which syntactically cannot appear in
12485 -- this context, but which cannot be removed by type checking,
12486 -- because the context does not impose a type.
12487
12488 -- The node may be labelled overloaded, but still contain only one
12489 -- interpretation because others were discarded earlier. If this
12490 -- is the case, retain the single interpretation if legal.
12491
12492 Get_First_Interp (Operand, I, It);
12493 Opnd_Type := It.Typ;
12494 Get_Next_Interp (I, It);
12495
12496 if Present (It.Typ)
12497 and then Opnd_Type /= Standard_Void_Type
12498 then
12499 -- More than one candidate interpretation is available
12500
12501 Get_First_Interp (Operand, I, It);
12502 while Present (It.Typ) loop
12503 if It.Typ = Standard_Void_Type then
12504 Remove_Interp (I);
12505 end if;
12506
12507 -- When compiling for a system where Address is of a visible
12508 -- integer type, spurious ambiguities can be produced when
12509 -- arithmetic operations have a literal operand and return
12510 -- System.Address or a descendant of it. These ambiguities
12511 -- are usually resolved by the context, but for conversions
12512 -- there is no context type and the removal of the spurious
12513 -- operations must be done explicitly here.
12514
12515 if not Address_Is_Private
12516 and then Is_Descendant_Of_Address (It.Typ)
12517 then
12518 Remove_Interp (I);
12519 end if;
12520
12521 Get_Next_Interp (I, It);
12522 end loop;
12523 end if;
12524
12525 Get_First_Interp (Operand, I, It);
12526 I1 := I;
12527 It1 := It;
12528
12529 if No (It.Typ) then
12530 Conversion_Error_N ("illegal operand in conversion", Operand);
12531 return False;
12532 end if;
12533
12534 Get_Next_Interp (I, It);
12535
12536 if Present (It.Typ) then
12537 N1 := It1.Nam;
12538 T1 := It1.Typ;
12539 It1 := Disambiguate (Operand, I1, I, Any_Type);
12540
12541 if It1 = No_Interp then
12542 Conversion_Error_N
12543 ("ambiguous operand in conversion", Operand);
12544
12545 -- If the interpretation involves a standard operator, use
12546 -- the location of the type, which may be user-defined.
12547
12548 if Sloc (It.Nam) = Standard_Location then
12549 Error_Msg_Sloc := Sloc (It.Typ);
12550 else
12551 Error_Msg_Sloc := Sloc (It.Nam);
12552 end if;
12553
12554 Conversion_Error_N -- CODEFIX
12555 ("\\possible interpretation#!", Operand);
12556
12557 if Sloc (N1) = Standard_Location then
12558 Error_Msg_Sloc := Sloc (T1);
12559 else
12560 Error_Msg_Sloc := Sloc (N1);
12561 end if;
12562
12563 Conversion_Error_N -- CODEFIX
12564 ("\\possible interpretation#!", Operand);
12565
12566 return False;
12567 end if;
12568 end if;
12569
12570 Set_Etype (Operand, It1.Typ);
12571 Opnd_Type := It1.Typ;
12572 end;
12573 end if;
12574
12575 -- Deal with conversion of integer type to address if the pragma
12576 -- Allow_Integer_Address is in effect. We convert the conversion to
12577 -- an unchecked conversion in this case and we are all done.
12578
12579 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12580 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12581 Analyze_And_Resolve (N, Target_Type);
12582 return True;
12583 end if;
12584
12585 -- If we are within a child unit, check whether the type of the
12586 -- expression has an ancestor in a parent unit, in which case it
12587 -- belongs to its derivation class even if the ancestor is private.
12588 -- See RM 7.3.1 (5.2/3).
12589
12590 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12591
12592 -- Numeric types
12593
12594 if Is_Numeric_Type (Target_Type) then
12595
12596 -- A universal fixed expression can be converted to any numeric type
12597
12598 if Opnd_Type = Universal_Fixed then
12599 return True;
12600
12601 -- Also no need to check when in an instance or inlined body, because
12602 -- the legality has been established when the template was analyzed.
12603 -- Furthermore, numeric conversions may occur where only a private
12604 -- view of the operand type is visible at the instantiation point.
12605 -- This results in a spurious error if we check that the operand type
12606 -- is a numeric type.
12607
12608 -- Note: in a previous version of this unit, the following tests were
12609 -- applied only for generated code (Comes_From_Source set to False),
12610 -- but in fact the test is required for source code as well, since
12611 -- this situation can arise in source code.
12612
12613 elsif In_Instance_Code or else In_Inlined_Body then
12614 return True;
12615
12616 -- Otherwise we need the conversion check
12617
12618 else
12619 return Conversion_Check
12620 (Is_Numeric_Type (Opnd_Type)
12621 or else
12622 (Present (Inc_Ancestor)
12623 and then Is_Numeric_Type (Inc_Ancestor)),
12624 "illegal operand for numeric conversion");
12625 end if;
12626
12627 -- Array types
12628
12629 elsif Is_Array_Type (Target_Type) then
12630 if not Is_Array_Type (Opnd_Type)
12631 or else Opnd_Type = Any_Composite
12632 or else Opnd_Type = Any_String
12633 then
12634 Conversion_Error_N
12635 ("illegal operand for array conversion", Operand);
12636 return False;
12637
12638 else
12639 return Valid_Array_Conversion;
12640 end if;
12641
12642 -- Ada 2005 (AI-251): Internally generated conversions of access to
12643 -- interface types added to force the displacement of the pointer to
12644 -- reference the corresponding dispatch table.
12645
12646 elsif not Comes_From_Source (N)
12647 and then Is_Access_Type (Target_Type)
12648 and then Is_Interface (Designated_Type (Target_Type))
12649 then
12650 return True;
12651
12652 -- Ada 2005 (AI-251): Anonymous access types where target references an
12653 -- interface type.
12654
12655 elsif Is_Access_Type (Opnd_Type)
12656 and then Ekind_In (Target_Type, E_General_Access_Type,
12657 E_Anonymous_Access_Type)
12658 and then Is_Interface (Directly_Designated_Type (Target_Type))
12659 then
12660 -- Check the static accessibility rule of 4.6(17). Note that the
12661 -- check is not enforced when within an instance body, since the
12662 -- RM requires such cases to be caught at run time.
12663
12664 -- If the operand is a rewriting of an allocator no check is needed
12665 -- because there are no accessibility issues.
12666
12667 if Nkind (Original_Node (N)) = N_Allocator then
12668 null;
12669
12670 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12671 if Type_Access_Level (Opnd_Type) >
12672 Deepest_Type_Access_Level (Target_Type)
12673 then
12674 -- In an instance, this is a run-time check, but one we know
12675 -- will fail, so generate an appropriate warning. The raise
12676 -- will be generated by Expand_N_Type_Conversion.
12677
12678 if In_Instance_Body then
12679 Error_Msg_Warn := SPARK_Mode /= On;
12680 Conversion_Error_N
12681 ("cannot convert local pointer to non-local access type<<",
12682 Operand);
12683 Conversion_Error_N ("\Program_Error [<<", Operand);
12684
12685 else
12686 Conversion_Error_N
12687 ("cannot convert local pointer to non-local access type",
12688 Operand);
12689 return False;
12690 end if;
12691
12692 -- Special accessibility checks are needed in the case of access
12693 -- discriminants declared for a limited type.
12694
12695 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12696 and then not Is_Local_Anonymous_Access (Opnd_Type)
12697 then
12698 -- When the operand is a selected access discriminant the check
12699 -- needs to be made against the level of the object denoted by
12700 -- the prefix of the selected name (Object_Access_Level handles
12701 -- checking the prefix of the operand for this case).
12702
12703 if Nkind (Operand) = N_Selected_Component
12704 and then Object_Access_Level (Operand) >
12705 Deepest_Type_Access_Level (Target_Type)
12706 then
12707 -- In an instance, this is a run-time check, but one we know
12708 -- will fail, so generate an appropriate warning. The raise
12709 -- will be generated by Expand_N_Type_Conversion.
12710
12711 if In_Instance_Body then
12712 Error_Msg_Warn := SPARK_Mode /= On;
12713 Conversion_Error_N
12714 ("cannot convert access discriminant to non-local "
12715 & "access type<<", Operand);
12716 Conversion_Error_N ("\Program_Error [<<", Operand);
12717
12718 -- Real error if not in instance body
12719
12720 else
12721 Conversion_Error_N
12722 ("cannot convert access discriminant to non-local "
12723 & "access type", Operand);
12724 return False;
12725 end if;
12726 end if;
12727
12728 -- The case of a reference to an access discriminant from
12729 -- within a limited type declaration (which will appear as
12730 -- a discriminal) is always illegal because the level of the
12731 -- discriminant is considered to be deeper than any (nameable)
12732 -- access type.
12733
12734 if Is_Entity_Name (Operand)
12735 and then not Is_Local_Anonymous_Access (Opnd_Type)
12736 and then
12737 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12738 and then Present (Discriminal_Link (Entity (Operand)))
12739 then
12740 Conversion_Error_N
12741 ("discriminant has deeper accessibility level than target",
12742 Operand);
12743 return False;
12744 end if;
12745 end if;
12746 end if;
12747
12748 return True;
12749
12750 -- General and anonymous access types
12751
12752 elsif Ekind_In (Target_Type, E_General_Access_Type,
12753 E_Anonymous_Access_Type)
12754 and then
12755 Conversion_Check
12756 (Is_Access_Type (Opnd_Type)
12757 and then not
12758 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12759 E_Access_Protected_Subprogram_Type),
12760 "must be an access-to-object type")
12761 then
12762 if Is_Access_Constant (Opnd_Type)
12763 and then not Is_Access_Constant (Target_Type)
12764 then
12765 Conversion_Error_N
12766 ("access-to-constant operand type not allowed", Operand);
12767 return False;
12768 end if;
12769
12770 -- Check the static accessibility rule of 4.6(17). Note that the
12771 -- check is not enforced when within an instance body, since the RM
12772 -- requires such cases to be caught at run time.
12773
12774 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12775 or else Is_Local_Anonymous_Access (Target_Type)
12776 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12777 N_Object_Declaration
12778 then
12779 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12780 -- conversions from an anonymous access type to a named general
12781 -- access type. Such conversions are not allowed in the case of
12782 -- access parameters and stand-alone objects of an anonymous
12783 -- access type. The implicit conversion case is recognized by
12784 -- testing that Comes_From_Source is False and that it's been
12785 -- rewritten. The Comes_From_Source test isn't sufficient because
12786 -- nodes in inlined calls to predefined library routines can have
12787 -- Comes_From_Source set to False. (Is there a better way to test
12788 -- for implicit conversions???)
12789
12790 if Ada_Version >= Ada_2012
12791 and then not Comes_From_Source (N)
12792 and then Is_Rewrite_Substitution (N)
12793 and then Ekind (Target_Type) = E_General_Access_Type
12794 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12795 then
12796 if Is_Itype (Opnd_Type) then
12797
12798 -- Implicit conversions aren't allowed for objects of an
12799 -- anonymous access type, since such objects have nonstatic
12800 -- levels in Ada 2012.
12801
12802 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12803 N_Object_Declaration
12804 then
12805 Conversion_Error_N
12806 ("implicit conversion of stand-alone anonymous "
12807 & "access object not allowed", Operand);
12808 return False;
12809
12810 -- Implicit conversions aren't allowed for anonymous access
12811 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12812 -- is done to exclude anonymous access results.
12813
12814 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12815 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12816 N_Function_Specification,
12817 N_Procedure_Specification)
12818 then
12819 Conversion_Error_N
12820 ("implicit conversion of anonymous access formal "
12821 & "not allowed", Operand);
12822 return False;
12823
12824 -- This is a case where there's an enclosing object whose
12825 -- to which the "statically deeper than" relationship does
12826 -- not apply (such as an access discriminant selected from
12827 -- a dereference of an access parameter).
12828
12829 elsif Object_Access_Level (Operand)
12830 = Scope_Depth (Standard_Standard)
12831 then
12832 Conversion_Error_N
12833 ("implicit conversion of anonymous access value "
12834 & "not allowed", Operand);
12835 return False;
12836
12837 -- In other cases, the level of the operand's type must be
12838 -- statically less deep than that of the target type, else
12839 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12840
12841 elsif Type_Access_Level (Opnd_Type) >
12842 Deepest_Type_Access_Level (Target_Type)
12843 then
12844 Conversion_Error_N
12845 ("implicit conversion of anonymous access value "
12846 & "violates accessibility", Operand);
12847 return False;
12848 end if;
12849 end if;
12850
12851 elsif Type_Access_Level (Opnd_Type) >
12852 Deepest_Type_Access_Level (Target_Type)
12853 then
12854 -- In an instance, this is a run-time check, but one we know
12855 -- will fail, so generate an appropriate warning. The raise
12856 -- will be generated by Expand_N_Type_Conversion.
12857
12858 if In_Instance_Body then
12859 Error_Msg_Warn := SPARK_Mode /= On;
12860 Conversion_Error_N
12861 ("cannot convert local pointer to non-local access type<<",
12862 Operand);
12863 Conversion_Error_N ("\Program_Error [<<", Operand);
12864
12865 -- If not in an instance body, this is a real error
12866
12867 else
12868 -- Avoid generation of spurious error message
12869
12870 if not Error_Posted (N) then
12871 Conversion_Error_N
12872 ("cannot convert local pointer to non-local access type",
12873 Operand);
12874 end if;
12875
12876 return False;
12877 end if;
12878
12879 -- Special accessibility checks are needed in the case of access
12880 -- discriminants declared for a limited type.
12881
12882 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12883 and then not Is_Local_Anonymous_Access (Opnd_Type)
12884 then
12885 -- When the operand is a selected access discriminant the check
12886 -- needs to be made against the level of the object denoted by
12887 -- the prefix of the selected name (Object_Access_Level handles
12888 -- checking the prefix of the operand for this case).
12889
12890 if Nkind (Operand) = N_Selected_Component
12891 and then Object_Access_Level (Operand) >
12892 Deepest_Type_Access_Level (Target_Type)
12893 then
12894 -- In an instance, this is a run-time check, but one we know
12895 -- will fail, so generate an appropriate warning. The raise
12896 -- will be generated by Expand_N_Type_Conversion.
12897
12898 if In_Instance_Body then
12899 Error_Msg_Warn := SPARK_Mode /= On;
12900 Conversion_Error_N
12901 ("cannot convert access discriminant to non-local "
12902 & "access type<<", Operand);
12903 Conversion_Error_N ("\Program_Error [<<", Operand);
12904
12905 -- If not in an instance body, this is a real error
12906
12907 else
12908 Conversion_Error_N
12909 ("cannot convert access discriminant to non-local "
12910 & "access type", Operand);
12911 return False;
12912 end if;
12913 end if;
12914
12915 -- The case of a reference to an access discriminant from
12916 -- within a limited type declaration (which will appear as
12917 -- a discriminal) is always illegal because the level of the
12918 -- discriminant is considered to be deeper than any (nameable)
12919 -- access type.
12920
12921 if Is_Entity_Name (Operand)
12922 and then
12923 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12924 and then Present (Discriminal_Link (Entity (Operand)))
12925 then
12926 Conversion_Error_N
12927 ("discriminant has deeper accessibility level than target",
12928 Operand);
12929 return False;
12930 end if;
12931 end if;
12932 end if;
12933
12934 -- In the presence of limited_with clauses we have to use nonlimited
12935 -- views, if available.
12936
12937 Check_Limited : declare
12938 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12939 -- Helper function to handle limited views
12940
12941 --------------------------
12942 -- Full_Designated_Type --
12943 --------------------------
12944
12945 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12946 Desig : constant Entity_Id := Designated_Type (T);
12947
12948 begin
12949 -- Handle the limited view of a type
12950
12951 if From_Limited_With (Desig)
12952 and then Has_Non_Limited_View (Desig)
12953 then
12954 return Available_View (Desig);
12955 else
12956 return Desig;
12957 end if;
12958 end Full_Designated_Type;
12959
12960 -- Local Declarations
12961
12962 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12963 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12964
12965 Same_Base : constant Boolean :=
12966 Base_Type (Target) = Base_Type (Opnd);
12967
12968 -- Start of processing for Check_Limited
12969
12970 begin
12971 if Is_Tagged_Type (Target) then
12972 return Valid_Tagged_Conversion (Target, Opnd);
12973
12974 else
12975 if not Same_Base then
12976 Conversion_Error_NE
12977 ("target designated type not compatible with }",
12978 N, Base_Type (Opnd));
12979 return False;
12980
12981 -- Ada 2005 AI-384: legality rule is symmetric in both
12982 -- designated types. The conversion is legal (with possible
12983 -- constraint check) if either designated type is
12984 -- unconstrained.
12985
12986 elsif Subtypes_Statically_Match (Target, Opnd)
12987 or else
12988 (Has_Discriminants (Target)
12989 and then
12990 (not Is_Constrained (Opnd)
12991 or else not Is_Constrained (Target)))
12992 then
12993 -- Special case, if Value_Size has been used to make the
12994 -- sizes different, the conversion is not allowed even
12995 -- though the subtypes statically match.
12996
12997 if Known_Static_RM_Size (Target)
12998 and then Known_Static_RM_Size (Opnd)
12999 and then RM_Size (Target) /= RM_Size (Opnd)
13000 then
13001 Conversion_Error_NE
13002 ("target designated subtype not compatible with }",
13003 N, Opnd);
13004 Conversion_Error_NE
13005 ("\because sizes of the two designated subtypes differ",
13006 N, Opnd);
13007 return False;
13008
13009 -- Normal case where conversion is allowed
13010
13011 else
13012 return True;
13013 end if;
13014
13015 else
13016 Error_Msg_NE
13017 ("target designated subtype not compatible with }",
13018 N, Opnd);
13019 return False;
13020 end if;
13021 end if;
13022 end Check_Limited;
13023
13024 -- Access to subprogram types. If the operand is an access parameter,
13025 -- the type has a deeper accessibility that any master, and cannot be
13026 -- assigned. We must make an exception if the conversion is part of an
13027 -- assignment and the target is the return object of an extended return
13028 -- statement, because in that case the accessibility check takes place
13029 -- after the return.
13030
13031 elsif Is_Access_Subprogram_Type (Target_Type)
13032
13033 -- Note: this test of Opnd_Type is there to prevent entering this
13034 -- branch in the case of a remote access to subprogram type, which
13035 -- is internally represented as an E_Record_Type.
13036
13037 and then Is_Access_Type (Opnd_Type)
13038 then
13039 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
13040 and then Is_Entity_Name (Operand)
13041 and then Ekind (Entity (Operand)) = E_In_Parameter
13042 and then
13043 (Nkind (Parent (N)) /= N_Assignment_Statement
13044 or else not Is_Entity_Name (Name (Parent (N)))
13045 or else not Is_Return_Object (Entity (Name (Parent (N)))))
13046 then
13047 Conversion_Error_N
13048 ("illegal attempt to store anonymous access to subprogram",
13049 Operand);
13050 Conversion_Error_N
13051 ("\value has deeper accessibility than any master "
13052 & "(RM 3.10.2 (13))",
13053 Operand);
13054
13055 Error_Msg_NE
13056 ("\use named access type for& instead of access parameter",
13057 Operand, Entity (Operand));
13058 end if;
13059
13060 -- Check that the designated types are subtype conformant
13061
13062 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
13063 Old_Id => Designated_Type (Opnd_Type),
13064 Err_Loc => N);
13065
13066 -- Check the static accessibility rule of 4.6(20)
13067
13068 if Type_Access_Level (Opnd_Type) >
13069 Deepest_Type_Access_Level (Target_Type)
13070 then
13071 Conversion_Error_N
13072 ("operand type has deeper accessibility level than target",
13073 Operand);
13074
13075 -- Check that if the operand type is declared in a generic body,
13076 -- then the target type must be declared within that same body
13077 -- (enforces last sentence of 4.6(20)).
13078
13079 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
13080 declare
13081 O_Gen : constant Node_Id :=
13082 Enclosing_Generic_Body (Opnd_Type);
13083
13084 T_Gen : Node_Id;
13085
13086 begin
13087 T_Gen := Enclosing_Generic_Body (Target_Type);
13088 while Present (T_Gen) and then T_Gen /= O_Gen loop
13089 T_Gen := Enclosing_Generic_Body (T_Gen);
13090 end loop;
13091
13092 if T_Gen /= O_Gen then
13093 Conversion_Error_N
13094 ("target type must be declared in same generic body "
13095 & "as operand type", N);
13096 end if;
13097 end;
13098 end if;
13099
13100 return True;
13101
13102 -- Remote access to subprogram types
13103
13104 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
13105 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
13106 then
13107 -- It is valid to convert from one RAS type to another provided
13108 -- that their specification statically match.
13109
13110 -- Note: at this point, remote access to subprogram types have been
13111 -- expanded to their E_Record_Type representation, and we need to
13112 -- go back to the original access type definition using the
13113 -- Corresponding_Remote_Type attribute in order to check that the
13114 -- designated profiles match.
13115
13116 pragma Assert (Ekind (Target_Type) = E_Record_Type);
13117 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
13118
13119 Check_Subtype_Conformant
13120 (New_Id =>
13121 Designated_Type (Corresponding_Remote_Type (Target_Type)),
13122 Old_Id =>
13123 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
13124 Err_Loc =>
13125 N);
13126 return True;
13127
13128 -- If it was legal in the generic, it's legal in the instance
13129
13130 elsif In_Instance_Body then
13131 return True;
13132
13133 -- If both are tagged types, check legality of view conversions
13134
13135 elsif Is_Tagged_Type (Target_Type)
13136 and then
13137 Is_Tagged_Type (Opnd_Type)
13138 then
13139 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
13140
13141 -- Types derived from the same root type are convertible
13142
13143 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
13144 return True;
13145
13146 -- In an instance or an inlined body, there may be inconsistent views of
13147 -- the same type, or of types derived from a common root.
13148
13149 elsif (In_Instance or In_Inlined_Body)
13150 and then
13151 Root_Type (Underlying_Type (Target_Type)) =
13152 Root_Type (Underlying_Type (Opnd_Type))
13153 then
13154 return True;
13155
13156 -- Special check for common access type error case
13157
13158 elsif Ekind (Target_Type) = E_Access_Type
13159 and then Is_Access_Type (Opnd_Type)
13160 then
13161 Conversion_Error_N ("target type must be general access type!", N);
13162 Conversion_Error_NE -- CODEFIX
13163 ("add ALL to }!", N, Target_Type);
13164 return False;
13165
13166 -- Here we have a real conversion error
13167
13168 else
13169 -- Check for missing regular with_clause when only a limited view of
13170 -- target is available.
13171
13172 if From_Limited_With (Opnd_Type) and then In_Package_Body then
13173 Conversion_Error_NE
13174 ("invalid conversion, not compatible with limited view of }",
13175 N, Opnd_Type);
13176 Conversion_Error_NE
13177 ("\add with_clause for& to current unit!", N, Scope (Opnd_Type));
13178
13179 elsif Is_Access_Type (Opnd_Type)
13180 and then From_Limited_With (Designated_Type (Opnd_Type))
13181 and then In_Package_Body
13182 then
13183 Conversion_Error_NE
13184 ("invalid conversion, not compatible with }", N, Opnd_Type);
13185 Conversion_Error_NE
13186 ("\add with_clause for& to current unit!",
13187 N, Scope (Designated_Type (Opnd_Type)));
13188
13189 else
13190 Conversion_Error_NE
13191 ("invalid conversion, not compatible with }", N, Opnd_Type);
13192 end if;
13193
13194 return False;
13195 end if;
13196 end Valid_Conversion;
13197
13198 end Sem_Res;