[multiple changes]
[gcc.git] / gcc / ada / sem_res.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Itypes; use Itypes;
41 with Lib; use Lib;
42 with Lib.Xref; use Lib.Xref;
43 with Namet; use Namet;
44 with Nmake; use Nmake;
45 with Nlists; use Nlists;
46 with Opt; use Opt;
47 with Output; use Output;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Aggr; use Sem_Aggr;
54 with Sem_Attr; use Sem_Attr;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch4; use Sem_Ch4;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Disp; use Sem_Disp;
61 with Sem_Dist; use Sem_Dist;
62 with Sem_Elim; use Sem_Elim;
63 with Sem_Elab; use Sem_Elab;
64 with Sem_Eval; use Sem_Eval;
65 with Sem_Intr; use Sem_Intr;
66 with Sem_Util; use Sem_Util;
67 with Targparm; use Targparm;
68 with Sem_Type; use Sem_Type;
69 with Sem_Warn; use Sem_Warn;
70 with Sinfo; use Sinfo;
71 with Sinfo.CN; use Sinfo.CN;
72 with Snames; use Snames;
73 with Stand; use Stand;
74 with Stringt; use Stringt;
75 with Style; use Style;
76 with Tbuild; use Tbuild;
77 with Uintp; use Uintp;
78 with Urealp; use Urealp;
79
80 package body Sem_Res is
81
82 -----------------------
83 -- Local Subprograms --
84 -----------------------
85
86 -- Second pass (top-down) type checking and overload resolution procedures
87 -- Typ is the type required by context. These procedures propagate the type
88 -- information recursively to the descendants of N. If the node is not
89 -- overloaded, its Etype is established in the first pass. If overloaded,
90 -- the Resolve routines set the correct type. For arith. operators, the
91 -- Etype is the base type of the context.
92
93 -- Note that Resolve_Attribute is separated off in Sem_Attr
94
95 function Bad_Unordered_Enumeration_Reference
96 (N : Node_Id;
97 T : Entity_Id) return Boolean;
98 -- Node N contains a potentially dubious reference to type T, either an
99 -- explicit comparison, or an explicit range. This function returns True
100 -- if the type T is an enumeration type for which No pragma Order has been
101 -- given, and the reference N is not in the same extended source unit as
102 -- the declaration of T.
103
104 procedure Check_Discriminant_Use (N : Node_Id);
105 -- Enforce the restrictions on the use of discriminants when constraining
106 -- a component of a discriminated type (record or concurrent type).
107
108 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
109 -- Given a node for an operator associated with type T, check that
110 -- the operator is visible. Operators all of whose operands are
111 -- universal must be checked for visibility during resolution
112 -- because their type is not determinable based on their operands.
113
114 procedure Check_Fully_Declared_Prefix
115 (Typ : Entity_Id;
116 Pref : Node_Id);
117 -- Check that the type of the prefix of a dereference is not incomplete
118
119 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
120 -- Given a call node, N, which is known to occur immediately within the
121 -- subprogram being called, determines whether it is a detectable case of
122 -- an infinite recursion, and if so, outputs appropriate messages. Returns
123 -- True if an infinite recursion is detected, and False otherwise.
124
125 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
126 -- If the type of the object being initialized uses the secondary stack
127 -- directly or indirectly, create a transient scope for the call to the
128 -- init proc. This is because we do not create transient scopes for the
129 -- initialization of individual components within the init proc itself.
130 -- Could be optimized away perhaps?
131
132 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
133 -- N is the node for a logical operator. If the operator is predefined, and
134 -- the root type of the operands is Standard.Boolean, then a check is made
135 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
136 -- the style check for Style_Check_Boolean_And_Or.
137
138 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
141
142 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
150 -- predicate.
151
152 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
156
157 procedure Resolve_Op_Concat_Arg
158 (N : Node_Id;
159 Arg : Node_Id;
160 Typ : Entity_Id;
161 Is_Comp : Boolean);
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
166
167 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168 -- Does the first part of the work of Resolve_Op_Concat
169
170 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
173
174 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Quantified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
209
210 function Operator_Kind
211 (Op_Name : Name_Id;
212 Is_Binary : Boolean) return Node_Kind;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
215
216 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
220
221 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
227
228 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
233
234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235 -- Ditto, for unary operators (arithmetic ones and "not" on signed
236 -- integer types for VMS).
237
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
241
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so
248 -- that operands are resolved properly. Recall that predefined operators
249 -- do not have a full signature and special resolution rules apply.
250
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
257
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is
261 -- not a N_String_Literal node, then the call has no effect.
262
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
265
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Truncation attribute.
270
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
276
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
280
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
283
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
287
288 -- First the ones in Standard
289
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
292
293 -- Include Wide_Wide_Character in Ada 2005 mode
294
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
298
299 -- Now any other types that match
300
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
308
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
312
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
318
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
324
325 -- Version withs check(s) suppressed
326
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
331 is
332 Scop : constant Entity_Id := Current_Scope;
333
334 begin
335 if Suppress = All_Checks then
336 declare
337 Svg : constant Suppress_Array := Scope_Suppress;
338 begin
339 Scope_Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress := Svg;
342 end;
343
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress (Suppress);
347
348 begin
349 Scope_Suppress (Suppress) := True;
350 Analyze_And_Resolve (N, Typ);
351 Scope_Suppress (Suppress) := Svg;
352 end;
353 end if;
354
355 if Current_Scope /= Scop
356 and then Scope_Is_Transient
357 then
358 -- This can only happen if a transient scope was created for an inner
359 -- expression, which will be removed upon completion of the analysis
360 -- of an enclosing construct. The transient scope must have the
361 -- suppress status of the enclosing environment, not of this Analyze
362 -- call.
363
364 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
365 Scope_Suppress;
366 end if;
367 end Analyze_And_Resolve;
368
369 procedure Analyze_And_Resolve
370 (N : Node_Id;
371 Suppress : Check_Id)
372 is
373 Scop : constant Entity_Id := Current_Scope;
374
375 begin
376 if Suppress = All_Checks then
377 declare
378 Svg : constant Suppress_Array := Scope_Suppress;
379 begin
380 Scope_Suppress := (others => True);
381 Analyze_And_Resolve (N);
382 Scope_Suppress := Svg;
383 end;
384
385 else
386 declare
387 Svg : constant Boolean := Scope_Suppress (Suppress);
388
389 begin
390 Scope_Suppress (Suppress) := True;
391 Analyze_And_Resolve (N);
392 Scope_Suppress (Suppress) := Svg;
393 end;
394 end if;
395
396 if Current_Scope /= Scop
397 and then Scope_Is_Transient
398 then
399 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
400 Scope_Suppress;
401 end if;
402 end Analyze_And_Resolve;
403
404 ----------------------------------------
405 -- Bad_Unordered_Enumeration_Reference --
406 ----------------------------------------
407
408 function Bad_Unordered_Enumeration_Reference
409 (N : Node_Id;
410 T : Entity_Id) return Boolean
411 is
412 begin
413 return Is_Enumeration_Type (T)
414 and then Comes_From_Source (N)
415 and then Warn_On_Unordered_Enumeration_Type
416 and then not Has_Pragma_Ordered (T)
417 and then not In_Same_Extended_Unit (N, T);
418 end Bad_Unordered_Enumeration_Reference;
419
420 ----------------------------
421 -- Check_Discriminant_Use --
422 ----------------------------
423
424 procedure Check_Discriminant_Use (N : Node_Id) is
425 PN : constant Node_Id := Parent (N);
426 Disc : constant Entity_Id := Entity (N);
427 P : Node_Id;
428 D : Node_Id;
429
430 begin
431 -- Any use in a spec-expression is legal
432
433 if In_Spec_Expression then
434 null;
435
436 elsif Nkind (PN) = N_Range then
437
438 -- Discriminant cannot be used to constrain a scalar type
439
440 P := Parent (PN);
441
442 if Nkind (P) = N_Range_Constraint
443 and then Nkind (Parent (P)) = N_Subtype_Indication
444 and then Nkind (Parent (Parent (P))) = N_Component_Definition
445 then
446 Error_Msg_N ("discriminant cannot constrain scalar type", N);
447
448 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
449
450 -- The following check catches the unusual case where a
451 -- discriminant appears within an index constraint that is part of
452 -- a larger expression within a constraint on a component, e.g. "C
453 -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
454 -- of record components, and note that a similar check should also
455 -- apply in the case of discriminant constraints below. ???
456
457 -- Note that the check for N_Subtype_Declaration below is to
458 -- detect the valid use of discriminants in the constraints of a
459 -- subtype declaration when this subtype declaration appears
460 -- inside the scope of a record type (which is syntactically
461 -- illegal, but which may be created as part of derived type
462 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
463 -- for more info.
464
465 if Ekind (Current_Scope) = E_Record_Type
466 and then Scope (Disc) = Current_Scope
467 and then not
468 (Nkind (Parent (P)) = N_Subtype_Indication
469 and then
470 Nkind_In (Parent (Parent (P)), N_Component_Definition,
471 N_Subtype_Declaration)
472 and then Paren_Count (N) = 0)
473 then
474 Error_Msg_N
475 ("discriminant must appear alone in component constraint", N);
476 return;
477 end if;
478
479 -- Detect a common error:
480
481 -- type R (D : Positive := 100) is record
482 -- Name : String (1 .. D);
483 -- end record;
484
485 -- The default value causes an object of type R to be allocated
486 -- with room for Positive'Last characters. The RM does not mandate
487 -- the allocation of the maximum size, but that is what GNAT does
488 -- so we should warn the programmer that there is a problem.
489
490 Check_Large : declare
491 SI : Node_Id;
492 T : Entity_Id;
493 TB : Node_Id;
494 CB : Entity_Id;
495
496 function Large_Storage_Type (T : Entity_Id) return Boolean;
497 -- Return True if type T has a large enough range that any
498 -- array whose index type covered the whole range of the type
499 -- would likely raise Storage_Error.
500
501 ------------------------
502 -- Large_Storage_Type --
503 ------------------------
504
505 function Large_Storage_Type (T : Entity_Id) return Boolean is
506 begin
507 -- The type is considered large if its bounds are known at
508 -- compile time and if it requires at least as many bits as
509 -- a Positive to store the possible values.
510
511 return Compile_Time_Known_Value (Type_Low_Bound (T))
512 and then Compile_Time_Known_Value (Type_High_Bound (T))
513 and then
514 Minimum_Size (T, Biased => True) >=
515 RM_Size (Standard_Positive);
516 end Large_Storage_Type;
517
518 -- Start of processing for Check_Large
519
520 begin
521 -- Check that the Disc has a large range
522
523 if not Large_Storage_Type (Etype (Disc)) then
524 goto No_Danger;
525 end if;
526
527 -- If the enclosing type is limited, we allocate only the
528 -- default value, not the maximum, and there is no need for
529 -- a warning.
530
531 if Is_Limited_Type (Scope (Disc)) then
532 goto No_Danger;
533 end if;
534
535 -- Check that it is the high bound
536
537 if N /= High_Bound (PN)
538 or else No (Discriminant_Default_Value (Disc))
539 then
540 goto No_Danger;
541 end if;
542
543 -- Check the array allows a large range at this bound. First
544 -- find the array
545
546 SI := Parent (P);
547
548 if Nkind (SI) /= N_Subtype_Indication then
549 goto No_Danger;
550 end if;
551
552 T := Entity (Subtype_Mark (SI));
553
554 if not Is_Array_Type (T) then
555 goto No_Danger;
556 end if;
557
558 -- Next, find the dimension
559
560 TB := First_Index (T);
561 CB := First (Constraints (P));
562 while True
563 and then Present (TB)
564 and then Present (CB)
565 and then CB /= PN
566 loop
567 Next_Index (TB);
568 Next (CB);
569 end loop;
570
571 if CB /= PN then
572 goto No_Danger;
573 end if;
574
575 -- Now, check the dimension has a large range
576
577 if not Large_Storage_Type (Etype (TB)) then
578 goto No_Danger;
579 end if;
580
581 -- Warn about the danger
582
583 Error_Msg_N
584 ("?creation of & object may raise Storage_Error!",
585 Scope (Disc));
586
587 <<No_Danger>>
588 null;
589
590 end Check_Large;
591 end if;
592
593 -- Legal case is in index or discriminant constraint
594
595 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
596 N_Discriminant_Association)
597 then
598 if Paren_Count (N) > 0 then
599 Error_Msg_N
600 ("discriminant in constraint must appear alone", N);
601
602 elsif Nkind (N) = N_Expanded_Name
603 and then Comes_From_Source (N)
604 then
605 Error_Msg_N
606 ("discriminant must appear alone as a direct name", N);
607 end if;
608
609 return;
610
611 -- Otherwise, context is an expression. It should not be within (i.e. a
612 -- subexpression of) a constraint for a component.
613
614 else
615 D := PN;
616 P := Parent (PN);
617 while not Nkind_In (P, N_Component_Declaration,
618 N_Subtype_Indication,
619 N_Entry_Declaration)
620 loop
621 D := P;
622 P := Parent (P);
623 exit when No (P);
624 end loop;
625
626 -- If the discriminant is used in an expression that is a bound of a
627 -- scalar type, an Itype is created and the bounds are attached to
628 -- its range, not to the original subtype indication. Such use is of
629 -- course a double fault.
630
631 if (Nkind (P) = N_Subtype_Indication
632 and then Nkind_In (Parent (P), N_Component_Definition,
633 N_Derived_Type_Definition)
634 and then D = Constraint (P))
635
636 -- The constraint itself may be given by a subtype indication,
637 -- rather than by a more common discrete range.
638
639 or else (Nkind (P) = N_Subtype_Indication
640 and then
641 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
642 or else Nkind (P) = N_Entry_Declaration
643 or else Nkind (D) = N_Defining_Identifier
644 then
645 Error_Msg_N
646 ("discriminant in constraint must appear alone", N);
647 end if;
648 end if;
649 end Check_Discriminant_Use;
650
651 --------------------------------
652 -- Check_For_Visible_Operator --
653 --------------------------------
654
655 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
656 begin
657 if Is_Invisible_Operator (N, T) then
658 Error_Msg_NE -- CODEFIX
659 ("operator for} is not directly visible!", N, First_Subtype (T));
660 Error_Msg_N -- CODEFIX
661 ("use clause would make operation legal!", N);
662 end if;
663 end Check_For_Visible_Operator;
664
665 ----------------------------------
666 -- Check_Fully_Declared_Prefix --
667 ----------------------------------
668
669 procedure Check_Fully_Declared_Prefix
670 (Typ : Entity_Id;
671 Pref : Node_Id)
672 is
673 begin
674 -- Check that the designated type of the prefix of a dereference is
675 -- not an incomplete type. This cannot be done unconditionally, because
676 -- dereferences of private types are legal in default expressions. This
677 -- case is taken care of in Check_Fully_Declared, called below. There
678 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
679
680 -- This consideration also applies to similar checks for allocators,
681 -- qualified expressions, and type conversions.
682
683 -- An additional exception concerns other per-object expressions that
684 -- are not directly related to component declarations, in particular
685 -- representation pragmas for tasks. These will be per-object
686 -- expressions if they depend on discriminants or some global entity.
687 -- If the task has access discriminants, the designated type may be
688 -- incomplete at the point the expression is resolved. This resolution
689 -- takes place within the body of the initialization procedure, where
690 -- the discriminant is replaced by its discriminal.
691
692 if Is_Entity_Name (Pref)
693 and then Ekind (Entity (Pref)) = E_In_Parameter
694 then
695 null;
696
697 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
698 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
699 -- Analyze_Object_Renaming, and Freeze_Entity.
700
701 elsif Ada_Version >= Ada_2005
702 and then Is_Entity_Name (Pref)
703 and then Is_Access_Type (Etype (Pref))
704 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
705 E_Incomplete_Type
706 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
707 then
708 null;
709 else
710 Check_Fully_Declared (Typ, Parent (Pref));
711 end if;
712 end Check_Fully_Declared_Prefix;
713
714 ------------------------------
715 -- Check_Infinite_Recursion --
716 ------------------------------
717
718 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
719 P : Node_Id;
720 C : Node_Id;
721
722 function Same_Argument_List return Boolean;
723 -- Check whether list of actuals is identical to list of formals of
724 -- called function (which is also the enclosing scope).
725
726 ------------------------
727 -- Same_Argument_List --
728 ------------------------
729
730 function Same_Argument_List return Boolean is
731 A : Node_Id;
732 F : Entity_Id;
733 Subp : Entity_Id;
734
735 begin
736 if not Is_Entity_Name (Name (N)) then
737 return False;
738 else
739 Subp := Entity (Name (N));
740 end if;
741
742 F := First_Formal (Subp);
743 A := First_Actual (N);
744 while Present (F) and then Present (A) loop
745 if not Is_Entity_Name (A)
746 or else Entity (A) /= F
747 then
748 return False;
749 end if;
750
751 Next_Actual (A);
752 Next_Formal (F);
753 end loop;
754
755 return True;
756 end Same_Argument_List;
757
758 -- Start of processing for Check_Infinite_Recursion
759
760 begin
761 -- Special case, if this is a procedure call and is a call to the
762 -- current procedure with the same argument list, then this is for
763 -- sure an infinite recursion and we insert a call to raise SE.
764
765 if Is_List_Member (N)
766 and then List_Length (List_Containing (N)) = 1
767 and then Same_Argument_List
768 then
769 declare
770 P : constant Node_Id := Parent (N);
771 begin
772 if Nkind (P) = N_Handled_Sequence_Of_Statements
773 and then Nkind (Parent (P)) = N_Subprogram_Body
774 and then Is_Empty_List (Declarations (Parent (P)))
775 then
776 Error_Msg_N ("!?infinite recursion", N);
777 Error_Msg_N ("\!?Storage_Error will be raised at run time", N);
778 Insert_Action (N,
779 Make_Raise_Storage_Error (Sloc (N),
780 Reason => SE_Infinite_Recursion));
781 return True;
782 end if;
783 end;
784 end if;
785
786 -- If not that special case, search up tree, quitting if we reach a
787 -- construct (e.g. a conditional) that tells us that this is not a
788 -- case for an infinite recursion warning.
789
790 C := N;
791 loop
792 P := Parent (C);
793
794 -- If no parent, then we were not inside a subprogram, this can for
795 -- example happen when processing certain pragmas in a spec. Just
796 -- return False in this case.
797
798 if No (P) then
799 return False;
800 end if;
801
802 -- Done if we get to subprogram body, this is definitely an infinite
803 -- recursion case if we did not find anything to stop us.
804
805 exit when Nkind (P) = N_Subprogram_Body;
806
807 -- If appearing in conditional, result is false
808
809 if Nkind_In (P, N_Or_Else,
810 N_And_Then,
811 N_Case_Expression,
812 N_Case_Statement,
813 N_Conditional_Expression,
814 N_If_Statement)
815 then
816 return False;
817
818 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
819 and then C /= First (Statements (P))
820 then
821 -- If the call is the expression of a return statement and the
822 -- actuals are identical to the formals, it's worth a warning.
823 -- However, we skip this if there is an immediately preceding
824 -- raise statement, since the call is never executed.
825
826 -- Furthermore, this corresponds to a common idiom:
827
828 -- function F (L : Thing) return Boolean is
829 -- begin
830 -- raise Program_Error;
831 -- return F (L);
832 -- end F;
833
834 -- for generating a stub function
835
836 if Nkind (Parent (N)) = N_Simple_Return_Statement
837 and then Same_Argument_List
838 then
839 exit when not Is_List_Member (Parent (N));
840
841 -- OK, return statement is in a statement list, look for raise
842
843 declare
844 Nod : Node_Id;
845
846 begin
847 -- Skip past N_Freeze_Entity nodes generated by expansion
848
849 Nod := Prev (Parent (N));
850 while Present (Nod)
851 and then Nkind (Nod) = N_Freeze_Entity
852 loop
853 Prev (Nod);
854 end loop;
855
856 -- If no raise statement, give warning
857
858 exit when Nkind (Nod) /= N_Raise_Statement
859 and then
860 (Nkind (Nod) not in N_Raise_xxx_Error
861 or else Present (Condition (Nod)));
862 end;
863 end if;
864
865 return False;
866
867 else
868 C := P;
869 end if;
870 end loop;
871
872 Error_Msg_N ("!?possible infinite recursion", N);
873 Error_Msg_N ("\!?Storage_Error may be raised at run time", N);
874
875 return True;
876 end Check_Infinite_Recursion;
877
878 -------------------------------
879 -- Check_Initialization_Call --
880 -------------------------------
881
882 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
883 Typ : constant Entity_Id := Etype (First_Formal (Nam));
884
885 function Uses_SS (T : Entity_Id) return Boolean;
886 -- Check whether the creation of an object of the type will involve
887 -- use of the secondary stack. If T is a record type, this is true
888 -- if the expression for some component uses the secondary stack, e.g.
889 -- through a call to a function that returns an unconstrained value.
890 -- False if T is controlled, because cleanups occur elsewhere.
891
892 -------------
893 -- Uses_SS --
894 -------------
895
896 function Uses_SS (T : Entity_Id) return Boolean is
897 Comp : Entity_Id;
898 Expr : Node_Id;
899 Full_Type : Entity_Id := Underlying_Type (T);
900
901 begin
902 -- Normally we want to use the underlying type, but if it's not set
903 -- then continue with T.
904
905 if not Present (Full_Type) then
906 Full_Type := T;
907 end if;
908
909 if Is_Controlled (Full_Type) then
910 return False;
911
912 elsif Is_Array_Type (Full_Type) then
913 return Uses_SS (Component_Type (Full_Type));
914
915 elsif Is_Record_Type (Full_Type) then
916 Comp := First_Component (Full_Type);
917 while Present (Comp) loop
918 if Ekind (Comp) = E_Component
919 and then Nkind (Parent (Comp)) = N_Component_Declaration
920 then
921 -- The expression for a dynamic component may be rewritten
922 -- as a dereference, so retrieve original node.
923
924 Expr := Original_Node (Expression (Parent (Comp)));
925
926 -- Return True if the expression is a call to a function
927 -- (including an attribute function such as Image, or a
928 -- user-defined operator) with a result that requires a
929 -- transient scope.
930
931 if (Nkind (Expr) = N_Function_Call
932 or else Nkind (Expr) in N_Op
933 or else (Nkind (Expr) = N_Attribute_Reference
934 and then Present (Expressions (Expr))))
935 and then Requires_Transient_Scope (Etype (Expr))
936 then
937 return True;
938
939 elsif Uses_SS (Etype (Comp)) then
940 return True;
941 end if;
942 end if;
943
944 Next_Component (Comp);
945 end loop;
946
947 return False;
948
949 else
950 return False;
951 end if;
952 end Uses_SS;
953
954 -- Start of processing for Check_Initialization_Call
955
956 begin
957 -- Establish a transient scope if the type needs it
958
959 if Uses_SS (Typ) then
960 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
961 end if;
962 end Check_Initialization_Call;
963
964 ---------------------------------------
965 -- Check_No_Direct_Boolean_Operators --
966 ---------------------------------------
967
968 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
969 begin
970 if Scope (Entity (N)) = Standard_Standard
971 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
972 then
973 -- Restriction only applies to original source code
974
975 if Comes_From_Source (N) then
976 Check_Restriction (No_Direct_Boolean_Operators, N);
977 end if;
978 end if;
979
980 if Style_Check then
981 Check_Boolean_Operator (N);
982 end if;
983 end Check_No_Direct_Boolean_Operators;
984
985 ------------------------------
986 -- Check_Parameterless_Call --
987 ------------------------------
988
989 procedure Check_Parameterless_Call (N : Node_Id) is
990 Nam : Node_Id;
991
992 function Prefix_Is_Access_Subp return Boolean;
993 -- If the prefix is of an access_to_subprogram type, the node must be
994 -- rewritten as a call. Ditto if the prefix is overloaded and all its
995 -- interpretations are access to subprograms.
996
997 ---------------------------
998 -- Prefix_Is_Access_Subp --
999 ---------------------------
1000
1001 function Prefix_Is_Access_Subp return Boolean is
1002 I : Interp_Index;
1003 It : Interp;
1004
1005 begin
1006 -- If the context is an attribute reference that can apply to
1007 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1008
1009 if Nkind (Parent (N)) = N_Attribute_Reference
1010 and then (Attribute_Name (Parent (N)) = Name_Address or else
1011 Attribute_Name (Parent (N)) = Name_Code_Address or else
1012 Attribute_Name (Parent (N)) = Name_Access)
1013 then
1014 return False;
1015 end if;
1016
1017 if not Is_Overloaded (N) then
1018 return
1019 Ekind (Etype (N)) = E_Subprogram_Type
1020 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1021 else
1022 Get_First_Interp (N, I, It);
1023 while Present (It.Typ) loop
1024 if Ekind (It.Typ) /= E_Subprogram_Type
1025 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1026 then
1027 return False;
1028 end if;
1029
1030 Get_Next_Interp (I, It);
1031 end loop;
1032
1033 return True;
1034 end if;
1035 end Prefix_Is_Access_Subp;
1036
1037 -- Start of processing for Check_Parameterless_Call
1038
1039 begin
1040 -- Defend against junk stuff if errors already detected
1041
1042 if Total_Errors_Detected /= 0 then
1043 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1044 return;
1045 elsif Nkind (N) in N_Has_Chars
1046 and then Chars (N) in Error_Name_Or_No_Name
1047 then
1048 return;
1049 end if;
1050
1051 Require_Entity (N);
1052 end if;
1053
1054 -- If the context expects a value, and the name is a procedure, this is
1055 -- most likely a missing 'Access. Don't try to resolve the parameterless
1056 -- call, error will be caught when the outer call is analyzed.
1057
1058 if Is_Entity_Name (N)
1059 and then Ekind (Entity (N)) = E_Procedure
1060 and then not Is_Overloaded (N)
1061 and then
1062 Nkind_In (Parent (N), N_Parameter_Association,
1063 N_Function_Call,
1064 N_Procedure_Call_Statement)
1065 then
1066 return;
1067 end if;
1068
1069 -- Rewrite as call if overloadable entity that is (or could be, in the
1070 -- overloaded case) a function call. If we know for sure that the entity
1071 -- is an enumeration literal, we do not rewrite it.
1072
1073 -- If the entity is the name of an operator, it cannot be a call because
1074 -- operators cannot have default parameters. In this case, this must be
1075 -- a string whose contents coincide with an operator name. Set the kind
1076 -- of the node appropriately.
1077
1078 if (Is_Entity_Name (N)
1079 and then Nkind (N) /= N_Operator_Symbol
1080 and then Is_Overloadable (Entity (N))
1081 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1082 or else Is_Overloaded (N)))
1083
1084 -- Rewrite as call if it is an explicit dereference of an expression of
1085 -- a subprogram access type, and the subprogram type is not that of a
1086 -- procedure or entry.
1087
1088 or else
1089 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1090
1091 -- Rewrite as call if it is a selected component which is a function,
1092 -- this is the case of a call to a protected function (which may be
1093 -- overloaded with other protected operations).
1094
1095 or else
1096 (Nkind (N) = N_Selected_Component
1097 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1098 or else
1099 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1100 E_Procedure)
1101 and then Is_Overloaded (Selector_Name (N)))))
1102
1103 -- If one of the above three conditions is met, rewrite as call. Apply
1104 -- the rewriting only once.
1105
1106 then
1107 if Nkind (Parent (N)) /= N_Function_Call
1108 or else N /= Name (Parent (N))
1109 then
1110
1111 -- This may be a prefixed call that was not fully analyzed, e.g.
1112 -- an actual in an instance.
1113
1114 if Ada_Version >= Ada_2005
1115 and then Nkind (N) = N_Selected_Component
1116 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1117 then
1118 Analyze_Selected_Component (N);
1119
1120 if Nkind (N) /= N_Selected_Component then
1121 return;
1122 end if;
1123 end if;
1124
1125 Nam := New_Copy (N);
1126
1127 -- If overloaded, overload set belongs to new copy
1128
1129 Save_Interps (N, Nam);
1130
1131 -- Change node to parameterless function call (note that the
1132 -- Parameter_Associations associations field is left set to Empty,
1133 -- its normal default value since there are no parameters)
1134
1135 Change_Node (N, N_Function_Call);
1136 Set_Name (N, Nam);
1137 Set_Sloc (N, Sloc (Nam));
1138 Analyze_Call (N);
1139 end if;
1140
1141 elsif Nkind (N) = N_Parameter_Association then
1142 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1143
1144 elsif Nkind (N) = N_Operator_Symbol then
1145 Change_Operator_Symbol_To_String_Literal (N);
1146 Set_Is_Overloaded (N, False);
1147 Set_Etype (N, Any_String);
1148 end if;
1149 end Check_Parameterless_Call;
1150
1151 -----------------------------
1152 -- Is_Definite_Access_Type --
1153 -----------------------------
1154
1155 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1156 Btyp : constant Entity_Id := Base_Type (E);
1157 begin
1158 return Ekind (Btyp) = E_Access_Type
1159 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1160 and then Comes_From_Source (Btyp));
1161 end Is_Definite_Access_Type;
1162
1163 ----------------------
1164 -- Is_Predefined_Op --
1165 ----------------------
1166
1167 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1168 begin
1169 -- Predefined operators are intrinsic subprograms
1170
1171 if not Is_Intrinsic_Subprogram (Nam) then
1172 return False;
1173 end if;
1174
1175 -- A call to a back-end builtin is never a predefined operator
1176
1177 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1178 return False;
1179 end if;
1180
1181 return not Is_Generic_Instance (Nam)
1182 and then Chars (Nam) in Any_Operator_Name
1183 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1184 end Is_Predefined_Op;
1185
1186 -----------------------------
1187 -- Make_Call_Into_Operator --
1188 -----------------------------
1189
1190 procedure Make_Call_Into_Operator
1191 (N : Node_Id;
1192 Typ : Entity_Id;
1193 Op_Id : Entity_Id)
1194 is
1195 Op_Name : constant Name_Id := Chars (Op_Id);
1196 Act1 : Node_Id := First_Actual (N);
1197 Act2 : Node_Id := Next_Actual (Act1);
1198 Error : Boolean := False;
1199 Func : constant Entity_Id := Entity (Name (N));
1200 Is_Binary : constant Boolean := Present (Act2);
1201 Op_Node : Node_Id;
1202 Opnd_Type : Entity_Id;
1203 Orig_Type : Entity_Id := Empty;
1204 Pack : Entity_Id;
1205
1206 type Kind_Test is access function (E : Entity_Id) return Boolean;
1207
1208 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1209 -- If the operand is not universal, and the operator is given by an
1210 -- expanded name, verify that the operand has an interpretation with a
1211 -- type defined in the given scope of the operator.
1212
1213 function Type_In_P (Test : Kind_Test) return Entity_Id;
1214 -- Find a type of the given class in package Pack that contains the
1215 -- operator.
1216
1217 ---------------------------
1218 -- Operand_Type_In_Scope --
1219 ---------------------------
1220
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1222 Nod : constant Node_Id := Right_Opnd (Op_Node);
1223 I : Interp_Index;
1224 It : Interp;
1225
1226 begin
1227 if not Is_Overloaded (Nod) then
1228 return Scope (Base_Type (Etype (Nod))) = S;
1229
1230 else
1231 Get_First_Interp (Nod, I, It);
1232 while Present (It.Typ) loop
1233 if Scope (Base_Type (It.Typ)) = S then
1234 return True;
1235 end if;
1236
1237 Get_Next_Interp (I, It);
1238 end loop;
1239
1240 return False;
1241 end if;
1242 end Operand_Type_In_Scope;
1243
1244 ---------------
1245 -- Type_In_P --
1246 ---------------
1247
1248 function Type_In_P (Test : Kind_Test) return Entity_Id is
1249 E : Entity_Id;
1250
1251 function In_Decl return Boolean;
1252 -- Verify that node is not part of the type declaration for the
1253 -- candidate type, which would otherwise be invisible.
1254
1255 -------------
1256 -- In_Decl --
1257 -------------
1258
1259 function In_Decl return Boolean is
1260 Decl_Node : constant Node_Id := Parent (E);
1261 N2 : Node_Id;
1262
1263 begin
1264 N2 := N;
1265
1266 if Etype (E) = Any_Type then
1267 return True;
1268
1269 elsif No (Decl_Node) then
1270 return False;
1271
1272 else
1273 while Present (N2)
1274 and then Nkind (N2) /= N_Compilation_Unit
1275 loop
1276 if N2 = Decl_Node then
1277 return True;
1278 else
1279 N2 := Parent (N2);
1280 end if;
1281 end loop;
1282
1283 return False;
1284 end if;
1285 end In_Decl;
1286
1287 -- Start of processing for Type_In_P
1288
1289 begin
1290 -- If the context type is declared in the prefix package, this is the
1291 -- desired base type.
1292
1293 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1294 return Base_Type (Typ);
1295
1296 else
1297 E := First_Entity (Pack);
1298 while Present (E) loop
1299 if Test (E)
1300 and then not In_Decl
1301 then
1302 return E;
1303 end if;
1304
1305 Next_Entity (E);
1306 end loop;
1307
1308 return Empty;
1309 end if;
1310 end Type_In_P;
1311
1312 -- Start of processing for Make_Call_Into_Operator
1313
1314 begin
1315 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1316
1317 -- Binary operator
1318
1319 if Is_Binary then
1320 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1321 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1322 Save_Interps (Act1, Left_Opnd (Op_Node));
1323 Save_Interps (Act2, Right_Opnd (Op_Node));
1324 Act1 := Left_Opnd (Op_Node);
1325 Act2 := Right_Opnd (Op_Node);
1326
1327 -- Unary operator
1328
1329 else
1330 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1331 Save_Interps (Act1, Right_Opnd (Op_Node));
1332 Act1 := Right_Opnd (Op_Node);
1333 end if;
1334
1335 -- If the operator is denoted by an expanded name, and the prefix is
1336 -- not Standard, but the operator is a predefined one whose scope is
1337 -- Standard, then this is an implicit_operator, inserted as an
1338 -- interpretation by the procedure of the same name. This procedure
1339 -- overestimates the presence of implicit operators, because it does
1340 -- not examine the type of the operands. Verify now that the operand
1341 -- type appears in the given scope. If right operand is universal,
1342 -- check the other operand. In the case of concatenation, either
1343 -- argument can be the component type, so check the type of the result.
1344 -- If both arguments are literals, look for a type of the right kind
1345 -- defined in the given scope. This elaborate nonsense is brought to
1346 -- you courtesy of b33302a. The type itself must be frozen, so we must
1347 -- find the type of the proper class in the given scope.
1348
1349 -- A final wrinkle is the multiplication operator for fixed point types,
1350 -- which is defined in Standard only, and not in the scope of the
1351 -- fixed point type itself.
1352
1353 if Nkind (Name (N)) = N_Expanded_Name then
1354 Pack := Entity (Prefix (Name (N)));
1355
1356 -- If the entity being called is defined in the given package, it is
1357 -- a renaming of a predefined operator, and known to be legal.
1358
1359 if Scope (Entity (Name (N))) = Pack
1360 and then Pack /= Standard_Standard
1361 then
1362 null;
1363
1364 -- Visibility does not need to be checked in an instance: if the
1365 -- operator was not visible in the generic it has been diagnosed
1366 -- already, else there is an implicit copy of it in the instance.
1367
1368 elsif In_Instance then
1369 null;
1370
1371 elsif (Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide)
1372 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1373 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1374 then
1375 if Pack /= Standard_Standard then
1376 Error := True;
1377 end if;
1378
1379 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1380 -- available.
1381
1382 elsif Ada_Version >= Ada_2005
1383 and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1384 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1385 then
1386 null;
1387
1388 else
1389 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1390
1391 if Op_Name = Name_Op_Concat then
1392 Opnd_Type := Base_Type (Typ);
1393
1394 elsif (Scope (Opnd_Type) = Standard_Standard
1395 and then Is_Binary)
1396 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1397 and then Is_Binary
1398 and then not Comes_From_Source (Opnd_Type))
1399 then
1400 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1401 end if;
1402
1403 if Scope (Opnd_Type) = Standard_Standard then
1404
1405 -- Verify that the scope contains a type that corresponds to
1406 -- the given literal. Optimize the case where Pack is Standard.
1407
1408 if Pack /= Standard_Standard then
1409
1410 if Opnd_Type = Universal_Integer then
1411 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1412
1413 elsif Opnd_Type = Universal_Real then
1414 Orig_Type := Type_In_P (Is_Real_Type'Access);
1415
1416 elsif Opnd_Type = Any_String then
1417 Orig_Type := Type_In_P (Is_String_Type'Access);
1418
1419 elsif Opnd_Type = Any_Access then
1420 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1421
1422 elsif Opnd_Type = Any_Composite then
1423 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1424
1425 if Present (Orig_Type) then
1426 if Has_Private_Component (Orig_Type) then
1427 Orig_Type := Empty;
1428 else
1429 Set_Etype (Act1, Orig_Type);
1430
1431 if Is_Binary then
1432 Set_Etype (Act2, Orig_Type);
1433 end if;
1434 end if;
1435 end if;
1436
1437 else
1438 Orig_Type := Empty;
1439 end if;
1440
1441 Error := No (Orig_Type);
1442 end if;
1443
1444 elsif Ekind (Opnd_Type) = E_Allocator_Type
1445 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1446 then
1447 Error := True;
1448
1449 -- If the type is defined elsewhere, and the operator is not
1450 -- defined in the given scope (by a renaming declaration, e.g.)
1451 -- then this is an error as well. If an extension of System is
1452 -- present, and the type may be defined there, Pack must be
1453 -- System itself.
1454
1455 elsif Scope (Opnd_Type) /= Pack
1456 and then Scope (Op_Id) /= Pack
1457 and then (No (System_Aux_Id)
1458 or else Scope (Opnd_Type) /= System_Aux_Id
1459 or else Pack /= Scope (System_Aux_Id))
1460 then
1461 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1462 Error := True;
1463 else
1464 Error := not Operand_Type_In_Scope (Pack);
1465 end if;
1466
1467 elsif Pack = Standard_Standard
1468 and then not Operand_Type_In_Scope (Standard_Standard)
1469 then
1470 Error := True;
1471 end if;
1472 end if;
1473
1474 if Error then
1475 Error_Msg_Node_2 := Pack;
1476 Error_Msg_NE
1477 ("& not declared in&", N, Selector_Name (Name (N)));
1478 Set_Etype (N, Any_Type);
1479 return;
1480
1481 -- Detect a mismatch between the context type and the result type
1482 -- in the named package, which is otherwise not detected if the
1483 -- operands are universal. Check is only needed if source entity is
1484 -- an operator, not a function that renames an operator.
1485
1486 elsif Nkind (Parent (N)) /= N_Type_Conversion
1487 and then Ekind (Entity (Name (N))) = E_Operator
1488 and then Is_Numeric_Type (Typ)
1489 and then not Is_Universal_Numeric_Type (Typ)
1490 and then Scope (Base_Type (Typ)) /= Pack
1491 and then not In_Instance
1492 then
1493 if Is_Fixed_Point_Type (Typ)
1494 and then (Op_Name = Name_Op_Multiply
1495 or else
1496 Op_Name = Name_Op_Divide)
1497 then
1498 -- Already checked above
1499
1500 null;
1501
1502 -- Operator may be defined in an extension of System
1503
1504 elsif Present (System_Aux_Id)
1505 and then Scope (Opnd_Type) = System_Aux_Id
1506 then
1507 null;
1508
1509 else
1510 -- Could we use Wrong_Type here??? (this would require setting
1511 -- Etype (N) to the actual type found where Typ was expected).
1512
1513 Error_Msg_NE ("expect }", N, Typ);
1514 end if;
1515 end if;
1516 end if;
1517
1518 Set_Chars (Op_Node, Op_Name);
1519
1520 if not Is_Private_Type (Etype (N)) then
1521 Set_Etype (Op_Node, Base_Type (Etype (N)));
1522 else
1523 Set_Etype (Op_Node, Etype (N));
1524 end if;
1525
1526 -- If this is a call to a function that renames a predefined equality,
1527 -- the renaming declaration provides a type that must be used to
1528 -- resolve the operands. This must be done now because resolution of
1529 -- the equality node will not resolve any remaining ambiguity, and it
1530 -- assumes that the first operand is not overloaded.
1531
1532 if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1533 and then Ekind (Func) = E_Function
1534 and then Is_Overloaded (Act1)
1535 then
1536 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1537 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1538 end if;
1539
1540 Set_Entity (Op_Node, Op_Id);
1541 Generate_Reference (Op_Id, N, ' ');
1542
1543 -- Do rewrite setting Comes_From_Source on the result if the original
1544 -- call came from source. Although it is not strictly the case that the
1545 -- operator as such comes from the source, logically it corresponds
1546 -- exactly to the function call in the source, so it should be marked
1547 -- this way (e.g. to make sure that validity checks work fine).
1548
1549 declare
1550 CS : constant Boolean := Comes_From_Source (N);
1551 begin
1552 Rewrite (N, Op_Node);
1553 Set_Comes_From_Source (N, CS);
1554 end;
1555
1556 -- If this is an arithmetic operator and the result type is private,
1557 -- the operands and the result must be wrapped in conversion to
1558 -- expose the underlying numeric type and expand the proper checks,
1559 -- e.g. on division.
1560
1561 if Is_Private_Type (Typ) then
1562 case Nkind (N) is
1563 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1564 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1565 Resolve_Intrinsic_Operator (N, Typ);
1566
1567 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1568 Resolve_Intrinsic_Unary_Operator (N, Typ);
1569
1570 when others =>
1571 Resolve (N, Typ);
1572 end case;
1573 else
1574 Resolve (N, Typ);
1575 end if;
1576 end Make_Call_Into_Operator;
1577
1578 -------------------
1579 -- Operator_Kind --
1580 -------------------
1581
1582 function Operator_Kind
1583 (Op_Name : Name_Id;
1584 Is_Binary : Boolean) return Node_Kind
1585 is
1586 Kind : Node_Kind;
1587
1588 begin
1589 -- Use CASE statement or array???
1590
1591 if Is_Binary then
1592 if Op_Name = Name_Op_And then
1593 Kind := N_Op_And;
1594 elsif Op_Name = Name_Op_Or then
1595 Kind := N_Op_Or;
1596 elsif Op_Name = Name_Op_Xor then
1597 Kind := N_Op_Xor;
1598 elsif Op_Name = Name_Op_Eq then
1599 Kind := N_Op_Eq;
1600 elsif Op_Name = Name_Op_Ne then
1601 Kind := N_Op_Ne;
1602 elsif Op_Name = Name_Op_Lt then
1603 Kind := N_Op_Lt;
1604 elsif Op_Name = Name_Op_Le then
1605 Kind := N_Op_Le;
1606 elsif Op_Name = Name_Op_Gt then
1607 Kind := N_Op_Gt;
1608 elsif Op_Name = Name_Op_Ge then
1609 Kind := N_Op_Ge;
1610 elsif Op_Name = Name_Op_Add then
1611 Kind := N_Op_Add;
1612 elsif Op_Name = Name_Op_Subtract then
1613 Kind := N_Op_Subtract;
1614 elsif Op_Name = Name_Op_Concat then
1615 Kind := N_Op_Concat;
1616 elsif Op_Name = Name_Op_Multiply then
1617 Kind := N_Op_Multiply;
1618 elsif Op_Name = Name_Op_Divide then
1619 Kind := N_Op_Divide;
1620 elsif Op_Name = Name_Op_Mod then
1621 Kind := N_Op_Mod;
1622 elsif Op_Name = Name_Op_Rem then
1623 Kind := N_Op_Rem;
1624 elsif Op_Name = Name_Op_Expon then
1625 Kind := N_Op_Expon;
1626 else
1627 raise Program_Error;
1628 end if;
1629
1630 -- Unary operators
1631
1632 else
1633 if Op_Name = Name_Op_Add then
1634 Kind := N_Op_Plus;
1635 elsif Op_Name = Name_Op_Subtract then
1636 Kind := N_Op_Minus;
1637 elsif Op_Name = Name_Op_Abs then
1638 Kind := N_Op_Abs;
1639 elsif Op_Name = Name_Op_Not then
1640 Kind := N_Op_Not;
1641 else
1642 raise Program_Error;
1643 end if;
1644 end if;
1645
1646 return Kind;
1647 end Operator_Kind;
1648
1649 ----------------------------
1650 -- Preanalyze_And_Resolve --
1651 ----------------------------
1652
1653 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1654 Save_Full_Analysis : constant Boolean := Full_Analysis;
1655
1656 begin
1657 Full_Analysis := False;
1658 Expander_Mode_Save_And_Set (False);
1659
1660 -- We suppress all checks for this analysis, since the checks will
1661 -- be applied properly, and in the right location, when the default
1662 -- expression is reanalyzed and reexpanded later on.
1663
1664 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1665
1666 Expander_Mode_Restore;
1667 Full_Analysis := Save_Full_Analysis;
1668 end Preanalyze_And_Resolve;
1669
1670 -- Version without context type
1671
1672 procedure Preanalyze_And_Resolve (N : Node_Id) is
1673 Save_Full_Analysis : constant Boolean := Full_Analysis;
1674
1675 begin
1676 Full_Analysis := False;
1677 Expander_Mode_Save_And_Set (False);
1678
1679 Analyze (N);
1680 Resolve (N, Etype (N), Suppress => All_Checks);
1681
1682 Expander_Mode_Restore;
1683 Full_Analysis := Save_Full_Analysis;
1684 end Preanalyze_And_Resolve;
1685
1686 ----------------------------------
1687 -- Replace_Actual_Discriminants --
1688 ----------------------------------
1689
1690 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1691 Loc : constant Source_Ptr := Sloc (N);
1692 Tsk : Node_Id := Empty;
1693
1694 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1695 -- Comment needed???
1696
1697 -------------------
1698 -- Process_Discr --
1699 -------------------
1700
1701 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1702 Ent : Entity_Id;
1703
1704 begin
1705 if Nkind (Nod) = N_Identifier then
1706 Ent := Entity (Nod);
1707
1708 if Present (Ent)
1709 and then Ekind (Ent) = E_Discriminant
1710 then
1711 Rewrite (Nod,
1712 Make_Selected_Component (Loc,
1713 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1714 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1715
1716 Set_Etype (Nod, Etype (Ent));
1717 end if;
1718
1719 end if;
1720
1721 return OK;
1722 end Process_Discr;
1723
1724 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1725
1726 -- Start of processing for Replace_Actual_Discriminants
1727
1728 begin
1729 if not Full_Expander_Active then
1730 return;
1731 end if;
1732
1733 if Nkind (Name (N)) = N_Selected_Component then
1734 Tsk := Prefix (Name (N));
1735
1736 elsif Nkind (Name (N)) = N_Indexed_Component then
1737 Tsk := Prefix (Prefix (Name (N)));
1738 end if;
1739
1740 if No (Tsk) then
1741 return;
1742 else
1743 Replace_Discrs (Default);
1744 end if;
1745 end Replace_Actual_Discriminants;
1746
1747 -------------
1748 -- Resolve --
1749 -------------
1750
1751 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1752 Ambiguous : Boolean := False;
1753 Ctx_Type : Entity_Id := Typ;
1754 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1755 Err_Type : Entity_Id := Empty;
1756 Found : Boolean := False;
1757 From_Lib : Boolean;
1758 I : Interp_Index;
1759 I1 : Interp_Index := 0; -- prevent junk warning
1760 It : Interp;
1761 It1 : Interp;
1762 Seen : Entity_Id := Empty; -- prevent junk warning
1763
1764 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1765 -- Determine whether a node comes from a predefined library unit or
1766 -- Standard.
1767
1768 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1769 -- Try and fix up a literal so that it matches its expected type. New
1770 -- literals are manufactured if necessary to avoid cascaded errors.
1771
1772 procedure Report_Ambiguous_Argument;
1773 -- Additional diagnostics when an ambiguous call has an ambiguous
1774 -- argument (typically a controlling actual).
1775
1776 procedure Resolution_Failed;
1777 -- Called when attempt at resolving current expression fails
1778
1779 ------------------------------------
1780 -- Comes_From_Predefined_Lib_Unit --
1781 -------------------------------------
1782
1783 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1784 begin
1785 return
1786 Sloc (Nod) = Standard_Location
1787 or else Is_Predefined_File_Name
1788 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1789 end Comes_From_Predefined_Lib_Unit;
1790
1791 --------------------
1792 -- Patch_Up_Value --
1793 --------------------
1794
1795 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1796 begin
1797 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1798 Rewrite (N,
1799 Make_Real_Literal (Sloc (N),
1800 Realval => UR_From_Uint (Intval (N))));
1801 Set_Etype (N, Universal_Real);
1802 Set_Is_Static_Expression (N);
1803
1804 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1805 Rewrite (N,
1806 Make_Integer_Literal (Sloc (N),
1807 Intval => UR_To_Uint (Realval (N))));
1808 Set_Etype (N, Universal_Integer);
1809 Set_Is_Static_Expression (N);
1810
1811 elsif Nkind (N) = N_String_Literal
1812 and then Is_Character_Type (Typ)
1813 then
1814 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1815 Rewrite (N,
1816 Make_Character_Literal (Sloc (N),
1817 Chars => Name_Find,
1818 Char_Literal_Value =>
1819 UI_From_Int (Character'Pos ('A'))));
1820 Set_Etype (N, Any_Character);
1821 Set_Is_Static_Expression (N);
1822
1823 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1824 Rewrite (N,
1825 Make_String_Literal (Sloc (N),
1826 Strval => End_String));
1827
1828 elsif Nkind (N) = N_Range then
1829 Patch_Up_Value (Low_Bound (N), Typ);
1830 Patch_Up_Value (High_Bound (N), Typ);
1831 end if;
1832 end Patch_Up_Value;
1833
1834 -------------------------------
1835 -- Report_Ambiguous_Argument --
1836 -------------------------------
1837
1838 procedure Report_Ambiguous_Argument is
1839 Arg : constant Node_Id := First (Parameter_Associations (N));
1840 I : Interp_Index;
1841 It : Interp;
1842
1843 begin
1844 if Nkind (Arg) = N_Function_Call
1845 and then Is_Entity_Name (Name (Arg))
1846 and then Is_Overloaded (Name (Arg))
1847 then
1848 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1849
1850 -- Could use comments on what is going on here???
1851
1852 Get_First_Interp (Name (Arg), I, It);
1853 while Present (It.Nam) loop
1854 Error_Msg_Sloc := Sloc (It.Nam);
1855
1856 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1857 Error_Msg_N ("interpretation (inherited) #!", Arg);
1858 else
1859 Error_Msg_N ("interpretation #!", Arg);
1860 end if;
1861
1862 Get_Next_Interp (I, It);
1863 end loop;
1864 end if;
1865 end Report_Ambiguous_Argument;
1866
1867 -----------------------
1868 -- Resolution_Failed --
1869 -----------------------
1870
1871 procedure Resolution_Failed is
1872 begin
1873 Patch_Up_Value (N, Typ);
1874 Set_Etype (N, Typ);
1875 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1876 Set_Is_Overloaded (N, False);
1877
1878 -- The caller will return without calling the expander, so we need
1879 -- to set the analyzed flag. Note that it is fine to set Analyzed
1880 -- to True even if we are in the middle of a shallow analysis,
1881 -- (see the spec of sem for more details) since this is an error
1882 -- situation anyway, and there is no point in repeating the
1883 -- analysis later (indeed it won't work to repeat it later, since
1884 -- we haven't got a clear resolution of which entity is being
1885 -- referenced.)
1886
1887 Set_Analyzed (N, True);
1888 return;
1889 end Resolution_Failed;
1890
1891 -- Start of processing for Resolve
1892
1893 begin
1894 if N = Error then
1895 return;
1896 end if;
1897
1898 -- Access attribute on remote subprogram cannot be used for a non-remote
1899 -- access-to-subprogram type.
1900
1901 if Nkind (N) = N_Attribute_Reference
1902 and then (Attribute_Name (N) = Name_Access or else
1903 Attribute_Name (N) = Name_Unrestricted_Access or else
1904 Attribute_Name (N) = Name_Unchecked_Access)
1905 and then Comes_From_Source (N)
1906 and then Is_Entity_Name (Prefix (N))
1907 and then Is_Subprogram (Entity (Prefix (N)))
1908 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1909 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1910 then
1911 Error_Msg_N
1912 ("prefix must statically denote a non-remote subprogram", N);
1913 end if;
1914
1915 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1916
1917 -- If the context is a Remote_Access_To_Subprogram, access attributes
1918 -- must be resolved with the corresponding fat pointer. There is no need
1919 -- to check for the attribute name since the return type of an
1920 -- attribute is never a remote type.
1921
1922 if Nkind (N) = N_Attribute_Reference
1923 and then Comes_From_Source (N)
1924 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
1925 then
1926 declare
1927 Attr : constant Attribute_Id :=
1928 Get_Attribute_Id (Attribute_Name (N));
1929 Pref : constant Node_Id := Prefix (N);
1930 Decl : Node_Id;
1931 Spec : Node_Id;
1932 Is_Remote : Boolean := True;
1933
1934 begin
1935 -- Check that Typ is a remote access-to-subprogram type
1936
1937 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1938
1939 -- Prefix (N) must statically denote a remote subprogram
1940 -- declared in a package specification.
1941
1942 if Attr = Attribute_Access then
1943 Decl := Unit_Declaration_Node (Entity (Pref));
1944
1945 if Nkind (Decl) = N_Subprogram_Body then
1946 Spec := Corresponding_Spec (Decl);
1947
1948 if not No (Spec) then
1949 Decl := Unit_Declaration_Node (Spec);
1950 end if;
1951 end if;
1952
1953 Spec := Parent (Decl);
1954
1955 if not Is_Entity_Name (Prefix (N))
1956 or else Nkind (Spec) /= N_Package_Specification
1957 or else
1958 not Is_Remote_Call_Interface (Defining_Entity (Spec))
1959 then
1960 Is_Remote := False;
1961 Error_Msg_N
1962 ("prefix must statically denote a remote subprogram ",
1963 N);
1964 end if;
1965 end if;
1966
1967 -- If we are generating code for a distributed program.
1968 -- perform semantic checks against the corresponding
1969 -- remote entities.
1970
1971 if (Attr = Attribute_Access or else
1972 Attr = Attribute_Unchecked_Access or else
1973 Attr = Attribute_Unrestricted_Access)
1974 and then Full_Expander_Active
1975 and then Get_PCS_Name /= Name_No_DSA
1976 then
1977 Check_Subtype_Conformant
1978 (New_Id => Entity (Prefix (N)),
1979 Old_Id => Designated_Type
1980 (Corresponding_Remote_Type (Typ)),
1981 Err_Loc => N);
1982
1983 if Is_Remote then
1984 Process_Remote_AST_Attribute (N, Typ);
1985 end if;
1986 end if;
1987 end if;
1988 end;
1989 end if;
1990
1991 Debug_A_Entry ("resolving ", N);
1992
1993 if Comes_From_Source (N) then
1994 if Is_Fixed_Point_Type (Typ) then
1995 Check_Restriction (No_Fixed_Point, N);
1996
1997 elsif Is_Floating_Point_Type (Typ)
1998 and then Typ /= Universal_Real
1999 and then Typ /= Any_Real
2000 then
2001 Check_Restriction (No_Floating_Point, N);
2002 end if;
2003 end if;
2004
2005 -- Return if already analyzed
2006
2007 if Analyzed (N) then
2008 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2009 return;
2010
2011 -- Return if type = Any_Type (previous error encountered)
2012
2013 elsif Etype (N) = Any_Type then
2014 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2015 return;
2016 end if;
2017
2018 Check_Parameterless_Call (N);
2019
2020 -- If not overloaded, then we know the type, and all that needs doing
2021 -- is to check that this type is compatible with the context.
2022
2023 if not Is_Overloaded (N) then
2024 Found := Covers (Typ, Etype (N));
2025 Expr_Type := Etype (N);
2026
2027 -- In the overloaded case, we must select the interpretation that
2028 -- is compatible with the context (i.e. the type passed to Resolve)
2029
2030 else
2031 -- Loop through possible interpretations
2032
2033 Get_First_Interp (N, I, It);
2034 Interp_Loop : while Present (It.Typ) loop
2035
2036 -- We are only interested in interpretations that are compatible
2037 -- with the expected type, any other interpretations are ignored.
2038
2039 if not Covers (Typ, It.Typ) then
2040 if Debug_Flag_V then
2041 Write_Str (" interpretation incompatible with context");
2042 Write_Eol;
2043 end if;
2044
2045 else
2046 -- Skip the current interpretation if it is disabled by an
2047 -- abstract operator. This action is performed only when the
2048 -- type against which we are resolving is the same as the
2049 -- type of the interpretation.
2050
2051 if Ada_Version >= Ada_2005
2052 and then It.Typ = Typ
2053 and then Typ /= Universal_Integer
2054 and then Typ /= Universal_Real
2055 and then Present (It.Abstract_Op)
2056 then
2057 goto Continue;
2058 end if;
2059
2060 -- First matching interpretation
2061
2062 if not Found then
2063 Found := True;
2064 I1 := I;
2065 Seen := It.Nam;
2066 Expr_Type := It.Typ;
2067
2068 -- Matching interpretation that is not the first, maybe an
2069 -- error, but there are some cases where preference rules are
2070 -- used to choose between the two possibilities. These and
2071 -- some more obscure cases are handled in Disambiguate.
2072
2073 else
2074 -- If the current statement is part of a predefined library
2075 -- unit, then all interpretations which come from user level
2076 -- packages should not be considered.
2077
2078 if From_Lib
2079 and then not Comes_From_Predefined_Lib_Unit (It.Nam)
2080 then
2081 goto Continue;
2082 end if;
2083
2084 Error_Msg_Sloc := Sloc (Seen);
2085 It1 := Disambiguate (N, I1, I, Typ);
2086
2087 -- Disambiguation has succeeded. Skip the remaining
2088 -- interpretations.
2089
2090 if It1 /= No_Interp then
2091 Seen := It1.Nam;
2092 Expr_Type := It1.Typ;
2093
2094 while Present (It.Typ) loop
2095 Get_Next_Interp (I, It);
2096 end loop;
2097
2098 else
2099 -- Before we issue an ambiguity complaint, check for
2100 -- the case of a subprogram call where at least one
2101 -- of the arguments is Any_Type, and if so, suppress
2102 -- the message, since it is a cascaded error.
2103
2104 if Nkind_In (N, N_Function_Call,
2105 N_Procedure_Call_Statement)
2106 then
2107 declare
2108 A : Node_Id;
2109 E : Node_Id;
2110
2111 begin
2112 A := First_Actual (N);
2113 while Present (A) loop
2114 E := A;
2115
2116 if Nkind (E) = N_Parameter_Association then
2117 E := Explicit_Actual_Parameter (E);
2118 end if;
2119
2120 if Etype (E) = Any_Type then
2121 if Debug_Flag_V then
2122 Write_Str ("Any_Type in call");
2123 Write_Eol;
2124 end if;
2125
2126 exit Interp_Loop;
2127 end if;
2128
2129 Next_Actual (A);
2130 end loop;
2131 end;
2132
2133 elsif Nkind (N) in N_Binary_Op
2134 and then (Etype (Left_Opnd (N)) = Any_Type
2135 or else Etype (Right_Opnd (N)) = Any_Type)
2136 then
2137 exit Interp_Loop;
2138
2139 elsif Nkind (N) in N_Unary_Op
2140 and then Etype (Right_Opnd (N)) = Any_Type
2141 then
2142 exit Interp_Loop;
2143 end if;
2144
2145 -- Not that special case, so issue message using the
2146 -- flag Ambiguous to control printing of the header
2147 -- message only at the start of an ambiguous set.
2148
2149 if not Ambiguous then
2150 if Nkind (N) = N_Function_Call
2151 and then Nkind (Name (N)) = N_Explicit_Dereference
2152 then
2153 Error_Msg_N
2154 ("ambiguous expression "
2155 & "(cannot resolve indirect call)!", N);
2156 else
2157 Error_Msg_NE -- CODEFIX
2158 ("ambiguous expression (cannot resolve&)!",
2159 N, It.Nam);
2160 end if;
2161
2162 Ambiguous := True;
2163
2164 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2165 Error_Msg_N
2166 ("\\possible interpretation (inherited)#!", N);
2167 else
2168 Error_Msg_N -- CODEFIX
2169 ("\\possible interpretation#!", N);
2170 end if;
2171
2172 if Nkind_In
2173 (N, N_Procedure_Call_Statement, N_Function_Call)
2174 and then Present (Parameter_Associations (N))
2175 then
2176 Report_Ambiguous_Argument;
2177 end if;
2178 end if;
2179
2180 Error_Msg_Sloc := Sloc (It.Nam);
2181
2182 -- By default, the error message refers to the candidate
2183 -- interpretation. But if it is a predefined operator, it
2184 -- is implicitly declared at the declaration of the type
2185 -- of the operand. Recover the sloc of that declaration
2186 -- for the error message.
2187
2188 if Nkind (N) in N_Op
2189 and then Scope (It.Nam) = Standard_Standard
2190 and then not Is_Overloaded (Right_Opnd (N))
2191 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2192 Standard_Standard
2193 then
2194 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2195
2196 if Comes_From_Source (Err_Type)
2197 and then Present (Parent (Err_Type))
2198 then
2199 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2200 end if;
2201
2202 elsif Nkind (N) in N_Binary_Op
2203 and then Scope (It.Nam) = Standard_Standard
2204 and then not Is_Overloaded (Left_Opnd (N))
2205 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2206 Standard_Standard
2207 then
2208 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2209
2210 if Comes_From_Source (Err_Type)
2211 and then Present (Parent (Err_Type))
2212 then
2213 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2214 end if;
2215
2216 -- If this is an indirect call, use the subprogram_type
2217 -- in the message, to have a meaningful location. Also
2218 -- indicate if this is an inherited operation, created
2219 -- by a type declaration.
2220
2221 elsif Nkind (N) = N_Function_Call
2222 and then Nkind (Name (N)) = N_Explicit_Dereference
2223 and then Is_Type (It.Nam)
2224 then
2225 Err_Type := It.Nam;
2226 Error_Msg_Sloc :=
2227 Sloc (Associated_Node_For_Itype (Err_Type));
2228 else
2229 Err_Type := Empty;
2230 end if;
2231
2232 if Nkind (N) in N_Op
2233 and then Scope (It.Nam) = Standard_Standard
2234 and then Present (Err_Type)
2235 then
2236 -- Special-case the message for universal_fixed
2237 -- operators, which are not declared with the type
2238 -- of the operand, but appear forever in Standard.
2239
2240 if It.Typ = Universal_Fixed
2241 and then Scope (It.Nam) = Standard_Standard
2242 then
2243 Error_Msg_N
2244 ("\\possible interpretation as " &
2245 "universal_fixed operation " &
2246 "(RM 4.5.5 (19))", N);
2247 else
2248 Error_Msg_N
2249 ("\\possible interpretation (predefined)#!", N);
2250 end if;
2251
2252 elsif
2253 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2254 then
2255 Error_Msg_N
2256 ("\\possible interpretation (inherited)#!", N);
2257 else
2258 Error_Msg_N -- CODEFIX
2259 ("\\possible interpretation#!", N);
2260 end if;
2261
2262 end if;
2263 end if;
2264
2265 -- We have a matching interpretation, Expr_Type is the type
2266 -- from this interpretation, and Seen is the entity.
2267
2268 -- For an operator, just set the entity name. The type will be
2269 -- set by the specific operator resolution routine.
2270
2271 if Nkind (N) in N_Op then
2272 Set_Entity (N, Seen);
2273 Generate_Reference (Seen, N);
2274
2275 elsif Nkind (N) = N_Case_Expression then
2276 Set_Etype (N, Expr_Type);
2277
2278 elsif Nkind (N) = N_Character_Literal then
2279 Set_Etype (N, Expr_Type);
2280
2281 elsif Nkind (N) = N_Conditional_Expression then
2282 Set_Etype (N, Expr_Type);
2283
2284 -- AI05-0139-2: Expression is overloaded because type has
2285 -- implicit dereference. If type matches context, no implicit
2286 -- dereference is involved.
2287
2288 elsif Has_Implicit_Dereference (Expr_Type) then
2289 Set_Etype (N, Expr_Type);
2290 Set_Is_Overloaded (N, False);
2291 exit Interp_Loop;
2292
2293 elsif Is_Overloaded (N)
2294 and then Present (It.Nam)
2295 and then Ekind (It.Nam) = E_Discriminant
2296 and then Has_Implicit_Dereference (It.Nam)
2297 then
2298 Build_Explicit_Dereference (N, It.Nam);
2299
2300 -- For an explicit dereference, attribute reference, range,
2301 -- short-circuit form (which is not an operator node), or call
2302 -- with a name that is an explicit dereference, there is
2303 -- nothing to be done at this point.
2304
2305 elsif Nkind_In (N, N_Explicit_Dereference,
2306 N_Attribute_Reference,
2307 N_And_Then,
2308 N_Indexed_Component,
2309 N_Or_Else,
2310 N_Range,
2311 N_Selected_Component,
2312 N_Slice)
2313 or else Nkind (Name (N)) = N_Explicit_Dereference
2314 then
2315 null;
2316
2317 -- For procedure or function calls, set the type of the name,
2318 -- and also the entity pointer for the prefix.
2319
2320 elsif Nkind_In (N, N_Procedure_Call_Statement, N_Function_Call)
2321 and then Is_Entity_Name (Name (N))
2322 then
2323 Set_Etype (Name (N), Expr_Type);
2324 Set_Entity (Name (N), Seen);
2325 Generate_Reference (Seen, Name (N));
2326
2327 elsif Nkind (N) = N_Function_Call
2328 and then Nkind (Name (N)) = N_Selected_Component
2329 then
2330 Set_Etype (Name (N), Expr_Type);
2331 Set_Entity (Selector_Name (Name (N)), Seen);
2332 Generate_Reference (Seen, Selector_Name (Name (N)));
2333
2334 -- For all other cases, just set the type of the Name
2335
2336 else
2337 Set_Etype (Name (N), Expr_Type);
2338 end if;
2339
2340 end if;
2341
2342 <<Continue>>
2343
2344 -- Move to next interpretation
2345
2346 exit Interp_Loop when No (It.Typ);
2347
2348 Get_Next_Interp (I, It);
2349 end loop Interp_Loop;
2350 end if;
2351
2352 -- At this stage Found indicates whether or not an acceptable
2353 -- interpretation exists. If not, then we have an error, except that if
2354 -- the context is Any_Type as a result of some other error, then we
2355 -- suppress the error report.
2356
2357 if not Found then
2358 if Typ /= Any_Type then
2359
2360 -- If type we are looking for is Void, then this is the procedure
2361 -- call case, and the error is simply that what we gave is not a
2362 -- procedure name (we think of procedure calls as expressions with
2363 -- types internally, but the user doesn't think of them this way!)
2364
2365 if Typ = Standard_Void_Type then
2366
2367 -- Special case message if function used as a procedure
2368
2369 if Nkind (N) = N_Procedure_Call_Statement
2370 and then Is_Entity_Name (Name (N))
2371 and then Ekind (Entity (Name (N))) = E_Function
2372 then
2373 Error_Msg_NE
2374 ("cannot use function & in a procedure call",
2375 Name (N), Entity (Name (N)));
2376
2377 -- Otherwise give general message (not clear what cases this
2378 -- covers, but no harm in providing for them!)
2379
2380 else
2381 Error_Msg_N ("expect procedure name in procedure call", N);
2382 end if;
2383
2384 Found := True;
2385
2386 -- Otherwise we do have a subexpression with the wrong type
2387
2388 -- Check for the case of an allocator which uses an access type
2389 -- instead of the designated type. This is a common error and we
2390 -- specialize the message, posting an error on the operand of the
2391 -- allocator, complaining that we expected the designated type of
2392 -- the allocator.
2393
2394 elsif Nkind (N) = N_Allocator
2395 and then Ekind (Typ) in Access_Kind
2396 and then Ekind (Etype (N)) in Access_Kind
2397 and then Designated_Type (Etype (N)) = Typ
2398 then
2399 Wrong_Type (Expression (N), Designated_Type (Typ));
2400 Found := True;
2401
2402 -- Check for view mismatch on Null in instances, for which the
2403 -- view-swapping mechanism has no identifier.
2404
2405 elsif (In_Instance or else In_Inlined_Body)
2406 and then (Nkind (N) = N_Null)
2407 and then Is_Private_Type (Typ)
2408 and then Is_Access_Type (Full_View (Typ))
2409 then
2410 Resolve (N, Full_View (Typ));
2411 Set_Etype (N, Typ);
2412 return;
2413
2414 -- Check for an aggregate. Sometimes we can get bogus aggregates
2415 -- from misuse of parentheses, and we are about to complain about
2416 -- the aggregate without even looking inside it.
2417
2418 -- Instead, if we have an aggregate of type Any_Composite, then
2419 -- analyze and resolve the component fields, and then only issue
2420 -- another message if we get no errors doing this (otherwise
2421 -- assume that the errors in the aggregate caused the problem).
2422
2423 elsif Nkind (N) = N_Aggregate
2424 and then Etype (N) = Any_Composite
2425 then
2426 -- Disable expansion in any case. If there is a type mismatch
2427 -- it may be fatal to try to expand the aggregate. The flag
2428 -- would otherwise be set to false when the error is posted.
2429
2430 Expander_Active := False;
2431
2432 declare
2433 procedure Check_Aggr (Aggr : Node_Id);
2434 -- Check one aggregate, and set Found to True if we have a
2435 -- definite error in any of its elements
2436
2437 procedure Check_Elmt (Aelmt : Node_Id);
2438 -- Check one element of aggregate and set Found to True if
2439 -- we definitely have an error in the element.
2440
2441 ----------------
2442 -- Check_Aggr --
2443 ----------------
2444
2445 procedure Check_Aggr (Aggr : Node_Id) is
2446 Elmt : Node_Id;
2447
2448 begin
2449 if Present (Expressions (Aggr)) then
2450 Elmt := First (Expressions (Aggr));
2451 while Present (Elmt) loop
2452 Check_Elmt (Elmt);
2453 Next (Elmt);
2454 end loop;
2455 end if;
2456
2457 if Present (Component_Associations (Aggr)) then
2458 Elmt := First (Component_Associations (Aggr));
2459 while Present (Elmt) loop
2460
2461 -- If this is a default-initialized component, then
2462 -- there is nothing to check. The box will be
2463 -- replaced by the appropriate call during late
2464 -- expansion.
2465
2466 if not Box_Present (Elmt) then
2467 Check_Elmt (Expression (Elmt));
2468 end if;
2469
2470 Next (Elmt);
2471 end loop;
2472 end if;
2473 end Check_Aggr;
2474
2475 ----------------
2476 -- Check_Elmt --
2477 ----------------
2478
2479 procedure Check_Elmt (Aelmt : Node_Id) is
2480 begin
2481 -- If we have a nested aggregate, go inside it (to
2482 -- attempt a naked analyze-resolve of the aggregate can
2483 -- cause undesirable cascaded errors). Do not resolve
2484 -- expression if it needs a type from context, as for
2485 -- integer * fixed expression.
2486
2487 if Nkind (Aelmt) = N_Aggregate then
2488 Check_Aggr (Aelmt);
2489
2490 else
2491 Analyze (Aelmt);
2492
2493 if not Is_Overloaded (Aelmt)
2494 and then Etype (Aelmt) /= Any_Fixed
2495 then
2496 Resolve (Aelmt);
2497 end if;
2498
2499 if Etype (Aelmt) = Any_Type then
2500 Found := True;
2501 end if;
2502 end if;
2503 end Check_Elmt;
2504
2505 begin
2506 Check_Aggr (N);
2507 end;
2508 end if;
2509
2510 -- If an error message was issued already, Found got reset to
2511 -- True, so if it is still False, issue standard Wrong_Type msg.
2512
2513 if not Found then
2514 if Is_Overloaded (N)
2515 and then Nkind (N) = N_Function_Call
2516 then
2517 declare
2518 Subp_Name : Node_Id;
2519 begin
2520 if Is_Entity_Name (Name (N)) then
2521 Subp_Name := Name (N);
2522
2523 elsif Nkind (Name (N)) = N_Selected_Component then
2524
2525 -- Protected operation: retrieve operation name
2526
2527 Subp_Name := Selector_Name (Name (N));
2528
2529 else
2530 raise Program_Error;
2531 end if;
2532
2533 Error_Msg_Node_2 := Typ;
2534 Error_Msg_NE ("no visible interpretation of&" &
2535 " matches expected type&", N, Subp_Name);
2536 end;
2537
2538 if All_Errors_Mode then
2539 declare
2540 Index : Interp_Index;
2541 It : Interp;
2542
2543 begin
2544 Error_Msg_N ("\\possible interpretations:", N);
2545
2546 Get_First_Interp (Name (N), Index, It);
2547 while Present (It.Nam) loop
2548 Error_Msg_Sloc := Sloc (It.Nam);
2549 Error_Msg_Node_2 := It.Nam;
2550 Error_Msg_NE
2551 ("\\ type& for & declared#", N, It.Typ);
2552 Get_Next_Interp (Index, It);
2553 end loop;
2554 end;
2555
2556 else
2557 Error_Msg_N ("\use -gnatf for details", N);
2558 end if;
2559
2560 else
2561 Wrong_Type (N, Typ);
2562 end if;
2563 end if;
2564 end if;
2565
2566 Resolution_Failed;
2567 return;
2568
2569 -- Test if we have more than one interpretation for the context
2570
2571 elsif Ambiguous then
2572 Resolution_Failed;
2573 return;
2574
2575 -- Here we have an acceptable interpretation for the context
2576
2577 else
2578 -- Propagate type information and normalize tree for various
2579 -- predefined operations. If the context only imposes a class of
2580 -- types, rather than a specific type, propagate the actual type
2581 -- downward.
2582
2583 if Typ = Any_Integer or else
2584 Typ = Any_Boolean or else
2585 Typ = Any_Modular or else
2586 Typ = Any_Real or else
2587 Typ = Any_Discrete
2588 then
2589 Ctx_Type := Expr_Type;
2590
2591 -- Any_Fixed is legal in a real context only if a specific fixed-
2592 -- point type is imposed. If Norman Cohen can be confused by this,
2593 -- it deserves a separate message.
2594
2595 if Typ = Any_Real
2596 and then Expr_Type = Any_Fixed
2597 then
2598 Error_Msg_N ("illegal context for mixed mode operation", N);
2599 Set_Etype (N, Universal_Real);
2600 Ctx_Type := Universal_Real;
2601 end if;
2602 end if;
2603
2604 -- A user-defined operator is transformed into a function call at
2605 -- this point, so that further processing knows that operators are
2606 -- really operators (i.e. are predefined operators). User-defined
2607 -- operators that are intrinsic are just renamings of the predefined
2608 -- ones, and need not be turned into calls either, but if they rename
2609 -- a different operator, we must transform the node accordingly.
2610 -- Instantiations of Unchecked_Conversion are intrinsic but are
2611 -- treated as functions, even if given an operator designator.
2612
2613 if Nkind (N) in N_Op
2614 and then Present (Entity (N))
2615 and then Ekind (Entity (N)) /= E_Operator
2616 then
2617
2618 if not Is_Predefined_Op (Entity (N)) then
2619 Rewrite_Operator_As_Call (N, Entity (N));
2620
2621 elsif Present (Alias (Entity (N)))
2622 and then
2623 Nkind (Parent (Parent (Entity (N)))) =
2624 N_Subprogram_Renaming_Declaration
2625 then
2626 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2627
2628 -- If the node is rewritten, it will be fully resolved in
2629 -- Rewrite_Renamed_Operator.
2630
2631 if Analyzed (N) then
2632 return;
2633 end if;
2634 end if;
2635 end if;
2636
2637 case N_Subexpr'(Nkind (N)) is
2638
2639 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2640
2641 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2642
2643 when N_Short_Circuit
2644 => Resolve_Short_Circuit (N, Ctx_Type);
2645
2646 when N_Attribute_Reference
2647 => Resolve_Attribute (N, Ctx_Type);
2648
2649 when N_Case_Expression
2650 => Resolve_Case_Expression (N, Ctx_Type);
2651
2652 when N_Character_Literal
2653 => Resolve_Character_Literal (N, Ctx_Type);
2654
2655 when N_Conditional_Expression
2656 => Resolve_Conditional_Expression (N, Ctx_Type);
2657
2658 when N_Expanded_Name
2659 => Resolve_Entity_Name (N, Ctx_Type);
2660
2661 when N_Explicit_Dereference
2662 => Resolve_Explicit_Dereference (N, Ctx_Type);
2663
2664 when N_Expression_With_Actions
2665 => Resolve_Expression_With_Actions (N, Ctx_Type);
2666
2667 when N_Extension_Aggregate
2668 => Resolve_Extension_Aggregate (N, Ctx_Type);
2669
2670 when N_Function_Call
2671 => Resolve_Call (N, Ctx_Type);
2672
2673 when N_Identifier
2674 => Resolve_Entity_Name (N, Ctx_Type);
2675
2676 when N_Indexed_Component
2677 => Resolve_Indexed_Component (N, Ctx_Type);
2678
2679 when N_Integer_Literal
2680 => Resolve_Integer_Literal (N, Ctx_Type);
2681
2682 when N_Membership_Test
2683 => Resolve_Membership_Op (N, Ctx_Type);
2684
2685 when N_Null => Resolve_Null (N, Ctx_Type);
2686
2687 when N_Op_And | N_Op_Or | N_Op_Xor
2688 => Resolve_Logical_Op (N, Ctx_Type);
2689
2690 when N_Op_Eq | N_Op_Ne
2691 => Resolve_Equality_Op (N, Ctx_Type);
2692
2693 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2694 => Resolve_Comparison_Op (N, Ctx_Type);
2695
2696 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2697
2698 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2699 N_Op_Divide | N_Op_Mod | N_Op_Rem
2700
2701 => Resolve_Arithmetic_Op (N, Ctx_Type);
2702
2703 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2704
2705 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2706
2707 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2708 => Resolve_Unary_Op (N, Ctx_Type);
2709
2710 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2711
2712 when N_Procedure_Call_Statement
2713 => Resolve_Call (N, Ctx_Type);
2714
2715 when N_Operator_Symbol
2716 => Resolve_Operator_Symbol (N, Ctx_Type);
2717
2718 when N_Qualified_Expression
2719 => Resolve_Qualified_Expression (N, Ctx_Type);
2720
2721 when N_Quantified_Expression
2722 => Resolve_Quantified_Expression (N, Ctx_Type);
2723
2724 when N_Raise_xxx_Error
2725 => Set_Etype (N, Ctx_Type);
2726
2727 when N_Range => Resolve_Range (N, Ctx_Type);
2728
2729 when N_Real_Literal
2730 => Resolve_Real_Literal (N, Ctx_Type);
2731
2732 when N_Reference => Resolve_Reference (N, Ctx_Type);
2733
2734 when N_Selected_Component
2735 => Resolve_Selected_Component (N, Ctx_Type);
2736
2737 when N_Slice => Resolve_Slice (N, Ctx_Type);
2738
2739 when N_String_Literal
2740 => Resolve_String_Literal (N, Ctx_Type);
2741
2742 when N_Subprogram_Info
2743 => Resolve_Subprogram_Info (N, Ctx_Type);
2744
2745 when N_Type_Conversion
2746 => Resolve_Type_Conversion (N, Ctx_Type);
2747
2748 when N_Unchecked_Expression =>
2749 Resolve_Unchecked_Expression (N, Ctx_Type);
2750
2751 when N_Unchecked_Type_Conversion =>
2752 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2753 end case;
2754
2755 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2756 -- expression of an anonymous access type that occurs in the context
2757 -- of a named general access type, except when the expression is that
2758 -- of a membership test. This ensures proper legality checking in
2759 -- terms of allowed conversions (expressions that would be illegal to
2760 -- convert implicitly are allowed in membership tests).
2761
2762 if Ada_Version >= Ada_2012
2763 and then Ekind (Ctx_Type) = E_General_Access_Type
2764 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2765 and then Nkind (Parent (N)) not in N_Membership_Test
2766 then
2767 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2768 Analyze_And_Resolve (N, Ctx_Type);
2769 end if;
2770
2771 -- If the subexpression was replaced by a non-subexpression, then
2772 -- all we do is to expand it. The only legitimate case we know of
2773 -- is converting procedure call statement to entry call statements,
2774 -- but there may be others, so we are making this test general.
2775
2776 if Nkind (N) not in N_Subexpr then
2777 Debug_A_Exit ("resolving ", N, " (done)");
2778 Expand (N);
2779 return;
2780 end if;
2781
2782 -- AI05-144-2: Check dangerous order dependence within an expression
2783 -- that is not a subexpression. Exclude RHS of an assignment, because
2784 -- both sides may have side-effects and the check must be performed
2785 -- over the statement.
2786
2787 if Nkind (Parent (N)) not in N_Subexpr
2788 and then Nkind (Parent (N)) /= N_Assignment_Statement
2789 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2790 then
2791 Check_Order_Dependence;
2792 end if;
2793
2794 -- The expression is definitely NOT overloaded at this point, so
2795 -- we reset the Is_Overloaded flag to avoid any confusion when
2796 -- reanalyzing the node.
2797
2798 Set_Is_Overloaded (N, False);
2799
2800 -- Freeze expression type, entity if it is a name, and designated
2801 -- type if it is an allocator (RM 13.14(10,11,13)).
2802
2803 -- Now that the resolution of the type of the node is complete, and
2804 -- we did not detect an error, we can expand this node. We skip the
2805 -- expand call if we are in a default expression, see section
2806 -- "Handling of Default Expressions" in Sem spec.
2807
2808 Debug_A_Exit ("resolving ", N, " (done)");
2809
2810 -- We unconditionally freeze the expression, even if we are in
2811 -- default expression mode (the Freeze_Expression routine tests this
2812 -- flag and only freezes static types if it is set).
2813
2814 -- AI05-177 (Ada2012): Expression functions do not freeze. Only
2815 -- their use (in an expanded call) freezes.
2816
2817 if Ekind (Current_Scope) /= E_Function
2818 or else
2819 Nkind (Original_Node (Unit_Declaration_Node (Current_Scope))) /=
2820 N_Expression_Function
2821 then
2822 Freeze_Expression (N);
2823 end if;
2824
2825 -- Now we can do the expansion
2826
2827 Expand (N);
2828 end if;
2829 end Resolve;
2830
2831 -------------
2832 -- Resolve --
2833 -------------
2834
2835 -- Version with check(s) suppressed
2836
2837 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2838 begin
2839 if Suppress = All_Checks then
2840 declare
2841 Svg : constant Suppress_Array := Scope_Suppress;
2842 begin
2843 Scope_Suppress := (others => True);
2844 Resolve (N, Typ);
2845 Scope_Suppress := Svg;
2846 end;
2847
2848 else
2849 declare
2850 Svg : constant Boolean := Scope_Suppress (Suppress);
2851 begin
2852 Scope_Suppress (Suppress) := True;
2853 Resolve (N, Typ);
2854 Scope_Suppress (Suppress) := Svg;
2855 end;
2856 end if;
2857 end Resolve;
2858
2859 -------------
2860 -- Resolve --
2861 -------------
2862
2863 -- Version with implicit type
2864
2865 procedure Resolve (N : Node_Id) is
2866 begin
2867 Resolve (N, Etype (N));
2868 end Resolve;
2869
2870 ---------------------
2871 -- Resolve_Actuals --
2872 ---------------------
2873
2874 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2875 Loc : constant Source_Ptr := Sloc (N);
2876 A : Node_Id;
2877 F : Entity_Id;
2878 A_Typ : Entity_Id;
2879 F_Typ : Entity_Id;
2880 Prev : Node_Id := Empty;
2881 Orig_A : Node_Id;
2882
2883 procedure Check_Argument_Order;
2884 -- Performs a check for the case where the actuals are all simple
2885 -- identifiers that correspond to the formal names, but in the wrong
2886 -- order, which is considered suspicious and cause for a warning.
2887
2888 procedure Check_Prefixed_Call;
2889 -- If the original node is an overloaded call in prefix notation,
2890 -- insert an 'Access or a dereference as needed over the first actual.
2891 -- Try_Object_Operation has already verified that there is a valid
2892 -- interpretation, but the form of the actual can only be determined
2893 -- once the primitive operation is identified.
2894
2895 procedure Insert_Default;
2896 -- If the actual is missing in a call, insert in the actuals list
2897 -- an instance of the default expression. The insertion is always
2898 -- a named association.
2899
2900 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
2901 -- Check whether T1 and T2, or their full views, are derived from a
2902 -- common type. Used to enforce the restrictions on array conversions
2903 -- of AI95-00246.
2904
2905 function Static_Concatenation (N : Node_Id) return Boolean;
2906 -- Predicate to determine whether an actual that is a concatenation
2907 -- will be evaluated statically and does not need a transient scope.
2908 -- This must be determined before the actual is resolved and expanded
2909 -- because if needed the transient scope must be introduced earlier.
2910
2911 --------------------------
2912 -- Check_Argument_Order --
2913 --------------------------
2914
2915 procedure Check_Argument_Order is
2916 begin
2917 -- Nothing to do if no parameters, or original node is neither a
2918 -- function call nor a procedure call statement (happens in the
2919 -- operator-transformed-to-function call case), or the call does
2920 -- not come from source, or this warning is off.
2921
2922 if not Warn_On_Parameter_Order
2923 or else No (Parameter_Associations (N))
2924 or else not Nkind_In (Original_Node (N), N_Procedure_Call_Statement,
2925 N_Function_Call)
2926 or else not Comes_From_Source (N)
2927 then
2928 return;
2929 end if;
2930
2931 declare
2932 Nargs : constant Nat := List_Length (Parameter_Associations (N));
2933
2934 begin
2935 -- Nothing to do if only one parameter
2936
2937 if Nargs < 2 then
2938 return;
2939 end if;
2940
2941 -- Here if at least two arguments
2942
2943 declare
2944 Actuals : array (1 .. Nargs) of Node_Id;
2945 Actual : Node_Id;
2946 Formal : Node_Id;
2947
2948 Wrong_Order : Boolean := False;
2949 -- Set True if an out of order case is found
2950
2951 begin
2952 -- Collect identifier names of actuals, fail if any actual is
2953 -- not a simple identifier, and record max length of name.
2954
2955 Actual := First (Parameter_Associations (N));
2956 for J in Actuals'Range loop
2957 if Nkind (Actual) /= N_Identifier then
2958 return;
2959 else
2960 Actuals (J) := Actual;
2961 Next (Actual);
2962 end if;
2963 end loop;
2964
2965 -- If we got this far, all actuals are identifiers and the list
2966 -- of their names is stored in the Actuals array.
2967
2968 Formal := First_Formal (Nam);
2969 for J in Actuals'Range loop
2970
2971 -- If we ran out of formals, that's odd, probably an error
2972 -- which will be detected elsewhere, but abandon the search.
2973
2974 if No (Formal) then
2975 return;
2976 end if;
2977
2978 -- If name matches and is in order OK
2979
2980 if Chars (Formal) = Chars (Actuals (J)) then
2981 null;
2982
2983 else
2984 -- If no match, see if it is elsewhere in list and if so
2985 -- flag potential wrong order if type is compatible.
2986
2987 for K in Actuals'Range loop
2988 if Chars (Formal) = Chars (Actuals (K))
2989 and then
2990 Has_Compatible_Type (Actuals (K), Etype (Formal))
2991 then
2992 Wrong_Order := True;
2993 goto Continue;
2994 end if;
2995 end loop;
2996
2997 -- No match
2998
2999 return;
3000 end if;
3001
3002 <<Continue>> Next_Formal (Formal);
3003 end loop;
3004
3005 -- If Formals left over, also probably an error, skip warning
3006
3007 if Present (Formal) then
3008 return;
3009 end if;
3010
3011 -- Here we give the warning if something was out of order
3012
3013 if Wrong_Order then
3014 Error_Msg_N
3015 ("actuals for this call may be in wrong order?", N);
3016 end if;
3017 end;
3018 end;
3019 end Check_Argument_Order;
3020
3021 -------------------------
3022 -- Check_Prefixed_Call --
3023 -------------------------
3024
3025 procedure Check_Prefixed_Call is
3026 Act : constant Node_Id := First_Actual (N);
3027 A_Type : constant Entity_Id := Etype (Act);
3028 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3029 Orig : constant Node_Id := Original_Node (N);
3030 New_A : Node_Id;
3031
3032 begin
3033 -- Check whether the call is a prefixed call, with or without
3034 -- additional actuals.
3035
3036 if Nkind (Orig) = N_Selected_Component
3037 or else
3038 (Nkind (Orig) = N_Indexed_Component
3039 and then Nkind (Prefix (Orig)) = N_Selected_Component
3040 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3041 and then Is_Entity_Name (Act)
3042 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3043 then
3044 if Is_Access_Type (A_Type)
3045 and then not Is_Access_Type (F_Type)
3046 then
3047 -- Introduce dereference on object in prefix
3048
3049 New_A :=
3050 Make_Explicit_Dereference (Sloc (Act),
3051 Prefix => Relocate_Node (Act));
3052 Rewrite (Act, New_A);
3053 Analyze (Act);
3054
3055 elsif Is_Access_Type (F_Type)
3056 and then not Is_Access_Type (A_Type)
3057 then
3058 -- Introduce an implicit 'Access in prefix
3059
3060 if not Is_Aliased_View (Act) then
3061 Error_Msg_NE
3062 ("object in prefixed call to& must be aliased"
3063 & " (RM-2005 4.3.1 (13))",
3064 Prefix (Act), Nam);
3065 end if;
3066
3067 Rewrite (Act,
3068 Make_Attribute_Reference (Loc,
3069 Attribute_Name => Name_Access,
3070 Prefix => Relocate_Node (Act)));
3071 end if;
3072
3073 Analyze (Act);
3074 end if;
3075 end Check_Prefixed_Call;
3076
3077 --------------------
3078 -- Insert_Default --
3079 --------------------
3080
3081 procedure Insert_Default is
3082 Actval : Node_Id;
3083 Assoc : Node_Id;
3084
3085 begin
3086 -- Missing argument in call, nothing to insert
3087
3088 if No (Default_Value (F)) then
3089 return;
3090
3091 else
3092 -- Note that we do a full New_Copy_Tree, so that any associated
3093 -- Itypes are properly copied. This may not be needed any more,
3094 -- but it does no harm as a safety measure! Defaults of a generic
3095 -- formal may be out of bounds of the corresponding actual (see
3096 -- cc1311b) and an additional check may be required.
3097
3098 Actval :=
3099 New_Copy_Tree
3100 (Default_Value (F),
3101 New_Scope => Current_Scope,
3102 New_Sloc => Loc);
3103
3104 if Is_Concurrent_Type (Scope (Nam))
3105 and then Has_Discriminants (Scope (Nam))
3106 then
3107 Replace_Actual_Discriminants (N, Actval);
3108 end if;
3109
3110 if Is_Overloadable (Nam)
3111 and then Present (Alias (Nam))
3112 then
3113 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3114 and then not Is_Tagged_Type (Etype (F))
3115 then
3116 -- If default is a real literal, do not introduce a
3117 -- conversion whose effect may depend on the run-time
3118 -- size of universal real.
3119
3120 if Nkind (Actval) = N_Real_Literal then
3121 Set_Etype (Actval, Base_Type (Etype (F)));
3122 else
3123 Actval := Unchecked_Convert_To (Etype (F), Actval);
3124 end if;
3125 end if;
3126
3127 if Is_Scalar_Type (Etype (F)) then
3128 Enable_Range_Check (Actval);
3129 end if;
3130
3131 Set_Parent (Actval, N);
3132
3133 -- Resolve aggregates with their base type, to avoid scope
3134 -- anomalies: the subtype was first built in the subprogram
3135 -- declaration, and the current call may be nested.
3136
3137 if Nkind (Actval) = N_Aggregate then
3138 Analyze_And_Resolve (Actval, Etype (F));
3139 else
3140 Analyze_And_Resolve (Actval, Etype (Actval));
3141 end if;
3142
3143 else
3144 Set_Parent (Actval, N);
3145
3146 -- See note above concerning aggregates
3147
3148 if Nkind (Actval) = N_Aggregate
3149 and then Has_Discriminants (Etype (Actval))
3150 then
3151 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3152
3153 -- Resolve entities with their own type, which may differ from
3154 -- the type of a reference in a generic context (the view
3155 -- swapping mechanism did not anticipate the re-analysis of
3156 -- default values in calls).
3157
3158 elsif Is_Entity_Name (Actval) then
3159 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3160
3161 else
3162 Analyze_And_Resolve (Actval, Etype (Actval));
3163 end if;
3164 end if;
3165
3166 -- If default is a tag indeterminate function call, propagate tag
3167 -- to obtain proper dispatching.
3168
3169 if Is_Controlling_Formal (F)
3170 and then Nkind (Default_Value (F)) = N_Function_Call
3171 then
3172 Set_Is_Controlling_Actual (Actval);
3173 end if;
3174
3175 end if;
3176
3177 -- If the default expression raises constraint error, then just
3178 -- silently replace it with an N_Raise_Constraint_Error node, since
3179 -- we already gave the warning on the subprogram spec. If node is
3180 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3181 -- the warnings removal machinery.
3182
3183 if Raises_Constraint_Error (Actval)
3184 and then Nkind (Actval) /= N_Raise_Constraint_Error
3185 then
3186 Rewrite (Actval,
3187 Make_Raise_Constraint_Error (Loc,
3188 Reason => CE_Range_Check_Failed));
3189 Set_Raises_Constraint_Error (Actval);
3190 Set_Etype (Actval, Etype (F));
3191 end if;
3192
3193 Assoc :=
3194 Make_Parameter_Association (Loc,
3195 Explicit_Actual_Parameter => Actval,
3196 Selector_Name => Make_Identifier (Loc, Chars (F)));
3197
3198 -- Case of insertion is first named actual
3199
3200 if No (Prev) or else
3201 Nkind (Parent (Prev)) /= N_Parameter_Association
3202 then
3203 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3204 Set_First_Named_Actual (N, Actval);
3205
3206 if No (Prev) then
3207 if No (Parameter_Associations (N)) then
3208 Set_Parameter_Associations (N, New_List (Assoc));
3209 else
3210 Append (Assoc, Parameter_Associations (N));
3211 end if;
3212
3213 else
3214 Insert_After (Prev, Assoc);
3215 end if;
3216
3217 -- Case of insertion is not first named actual
3218
3219 else
3220 Set_Next_Named_Actual
3221 (Assoc, Next_Named_Actual (Parent (Prev)));
3222 Set_Next_Named_Actual (Parent (Prev), Actval);
3223 Append (Assoc, Parameter_Associations (N));
3224 end if;
3225
3226 Mark_Rewrite_Insertion (Assoc);
3227 Mark_Rewrite_Insertion (Actval);
3228
3229 Prev := Actval;
3230 end Insert_Default;
3231
3232 -------------------
3233 -- Same_Ancestor --
3234 -------------------
3235
3236 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3237 FT1 : Entity_Id := T1;
3238 FT2 : Entity_Id := T2;
3239
3240 begin
3241 if Is_Private_Type (T1)
3242 and then Present (Full_View (T1))
3243 then
3244 FT1 := Full_View (T1);
3245 end if;
3246
3247 if Is_Private_Type (T2)
3248 and then Present (Full_View (T2))
3249 then
3250 FT2 := Full_View (T2);
3251 end if;
3252
3253 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3254 end Same_Ancestor;
3255
3256 --------------------------
3257 -- Static_Concatenation --
3258 --------------------------
3259
3260 function Static_Concatenation (N : Node_Id) return Boolean is
3261 begin
3262 case Nkind (N) is
3263 when N_String_Literal =>
3264 return True;
3265
3266 when N_Op_Concat =>
3267
3268 -- Concatenation is static when both operands are static and
3269 -- the concatenation operator is a predefined one.
3270
3271 return Scope (Entity (N)) = Standard_Standard
3272 and then
3273 Static_Concatenation (Left_Opnd (N))
3274 and then
3275 Static_Concatenation (Right_Opnd (N));
3276
3277 when others =>
3278 if Is_Entity_Name (N) then
3279 declare
3280 Ent : constant Entity_Id := Entity (N);
3281 begin
3282 return Ekind (Ent) = E_Constant
3283 and then Present (Constant_Value (Ent))
3284 and then
3285 Is_Static_Expression (Constant_Value (Ent));
3286 end;
3287
3288 else
3289 return False;
3290 end if;
3291 end case;
3292 end Static_Concatenation;
3293
3294 -- Start of processing for Resolve_Actuals
3295
3296 begin
3297 Check_Argument_Order;
3298
3299 if Present (First_Actual (N)) then
3300 Check_Prefixed_Call;
3301 end if;
3302
3303 A := First_Actual (N);
3304 F := First_Formal (Nam);
3305 while Present (F) loop
3306 if No (A) and then Needs_No_Actuals (Nam) then
3307 null;
3308
3309 -- If we have an error in any actual or formal, indicated by a type
3310 -- of Any_Type, then abandon resolution attempt, and set result type
3311 -- to Any_Type.
3312
3313 elsif (Present (A) and then Etype (A) = Any_Type)
3314 or else Etype (F) = Any_Type
3315 then
3316 Set_Etype (N, Any_Type);
3317 return;
3318 end if;
3319
3320 -- Case where actual is present
3321
3322 -- If the actual is an entity, generate a reference to it now. We
3323 -- do this before the actual is resolved, because a formal of some
3324 -- protected subprogram, or a task discriminant, will be rewritten
3325 -- during expansion, and the source entity reference may be lost.
3326
3327 if Present (A)
3328 and then Is_Entity_Name (A)
3329 and then Comes_From_Source (N)
3330 then
3331 Orig_A := Entity (A);
3332
3333 if Present (Orig_A) then
3334 if Is_Formal (Orig_A)
3335 and then Ekind (F) /= E_In_Parameter
3336 then
3337 Generate_Reference (Orig_A, A, 'm');
3338
3339 elsif not Is_Overloaded (A) then
3340 Generate_Reference (Orig_A, A);
3341 end if;
3342 end if;
3343 end if;
3344
3345 if Present (A)
3346 and then (Nkind (Parent (A)) /= N_Parameter_Association
3347 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3348 then
3349 -- If style checking mode on, check match of formal name
3350
3351 if Style_Check then
3352 if Nkind (Parent (A)) = N_Parameter_Association then
3353 Check_Identifier (Selector_Name (Parent (A)), F);
3354 end if;
3355 end if;
3356
3357 -- If the formal is Out or In_Out, do not resolve and expand the
3358 -- conversion, because it is subsequently expanded into explicit
3359 -- temporaries and assignments. However, the object of the
3360 -- conversion can be resolved. An exception is the case of tagged
3361 -- type conversion with a class-wide actual. In that case we want
3362 -- the tag check to occur and no temporary will be needed (no
3363 -- representation change can occur) and the parameter is passed by
3364 -- reference, so we go ahead and resolve the type conversion.
3365 -- Another exception is the case of reference to component or
3366 -- subcomponent of a bit-packed array, in which case we want to
3367 -- defer expansion to the point the in and out assignments are
3368 -- performed.
3369
3370 if Ekind (F) /= E_In_Parameter
3371 and then Nkind (A) = N_Type_Conversion
3372 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3373 then
3374 if Ekind (F) = E_In_Out_Parameter
3375 and then Is_Array_Type (Etype (F))
3376 then
3377 -- In a view conversion, the conversion must be legal in
3378 -- both directions, and thus both component types must be
3379 -- aliased, or neither (4.6 (8)).
3380
3381 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3382 -- the privacy requirement should not apply to generic
3383 -- types, and should be checked in an instance. ARG query
3384 -- is in order ???
3385
3386 if Has_Aliased_Components (Etype (Expression (A))) /=
3387 Has_Aliased_Components (Etype (F))
3388 then
3389 Error_Msg_N
3390 ("both component types in a view conversion must be"
3391 & " aliased, or neither", A);
3392
3393 -- Comment here??? what set of cases???
3394
3395 elsif
3396 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3397 then
3398 -- Check view conv between unrelated by ref array types
3399
3400 if Is_By_Reference_Type (Etype (F))
3401 or else Is_By_Reference_Type (Etype (Expression (A)))
3402 then
3403 Error_Msg_N
3404 ("view conversion between unrelated by reference " &
3405 "array types not allowed (\'A'I-00246)", A);
3406
3407 -- In Ada 2005 mode, check view conversion component
3408 -- type cannot be private, tagged, or volatile. Note
3409 -- that we only apply this to source conversions. The
3410 -- generated code can contain conversions which are
3411 -- not subject to this test, and we cannot extract the
3412 -- component type in such cases since it is not present.
3413
3414 elsif Comes_From_Source (A)
3415 and then Ada_Version >= Ada_2005
3416 then
3417 declare
3418 Comp_Type : constant Entity_Id :=
3419 Component_Type
3420 (Etype (Expression (A)));
3421 begin
3422 if (Is_Private_Type (Comp_Type)
3423 and then not Is_Generic_Type (Comp_Type))
3424 or else Is_Tagged_Type (Comp_Type)
3425 or else Is_Volatile (Comp_Type)
3426 then
3427 Error_Msg_N
3428 ("component type of a view conversion cannot"
3429 & " be private, tagged, or volatile"
3430 & " (RM 4.6 (24))",
3431 Expression (A));
3432 end if;
3433 end;
3434 end if;
3435 end if;
3436 end if;
3437
3438 -- Resolve expression if conversion is all OK
3439
3440 if (Conversion_OK (A)
3441 or else Valid_Conversion (A, Etype (A), Expression (A)))
3442 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3443 then
3444 Resolve (Expression (A));
3445 end if;
3446
3447 -- If the actual is a function call that returns a limited
3448 -- unconstrained object that needs finalization, create a
3449 -- transient scope for it, so that it can receive the proper
3450 -- finalization list.
3451
3452 elsif Nkind (A) = N_Function_Call
3453 and then Is_Limited_Record (Etype (F))
3454 and then not Is_Constrained (Etype (F))
3455 and then Full_Expander_Active
3456 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3457 then
3458 Establish_Transient_Scope (A, False);
3459 Resolve (A, Etype (F));
3460
3461 -- A small optimization: if one of the actuals is a concatenation
3462 -- create a block around a procedure call to recover stack space.
3463 -- This alleviates stack usage when several procedure calls in
3464 -- the same statement list use concatenation. We do not perform
3465 -- this wrapping for code statements, where the argument is a
3466 -- static string, and we want to preserve warnings involving
3467 -- sequences of such statements.
3468
3469 elsif Nkind (A) = N_Op_Concat
3470 and then Nkind (N) = N_Procedure_Call_Statement
3471 and then Full_Expander_Active
3472 and then
3473 not (Is_Intrinsic_Subprogram (Nam)
3474 and then Chars (Nam) = Name_Asm)
3475 and then not Static_Concatenation (A)
3476 then
3477 Establish_Transient_Scope (A, False);
3478 Resolve (A, Etype (F));
3479
3480 else
3481 if Nkind (A) = N_Type_Conversion
3482 and then Is_Array_Type (Etype (F))
3483 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3484 and then
3485 (Is_Limited_Type (Etype (F))
3486 or else Is_Limited_Type (Etype (Expression (A))))
3487 then
3488 Error_Msg_N
3489 ("conversion between unrelated limited array types " &
3490 "not allowed (\A\I-00246)", A);
3491
3492 if Is_Limited_Type (Etype (F)) then
3493 Explain_Limited_Type (Etype (F), A);
3494 end if;
3495
3496 if Is_Limited_Type (Etype (Expression (A))) then
3497 Explain_Limited_Type (Etype (Expression (A)), A);
3498 end if;
3499 end if;
3500
3501 -- (Ada 2005: AI-251): If the actual is an allocator whose
3502 -- directly designated type is a class-wide interface, we build
3503 -- an anonymous access type to use it as the type of the
3504 -- allocator. Later, when the subprogram call is expanded, if
3505 -- the interface has a secondary dispatch table the expander
3506 -- will add a type conversion to force the correct displacement
3507 -- of the pointer.
3508
3509 if Nkind (A) = N_Allocator then
3510 declare
3511 DDT : constant Entity_Id :=
3512 Directly_Designated_Type (Base_Type (Etype (F)));
3513
3514 New_Itype : Entity_Id;
3515
3516 begin
3517 if Is_Class_Wide_Type (DDT)
3518 and then Is_Interface (DDT)
3519 then
3520 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3521 Set_Etype (New_Itype, Etype (A));
3522 Set_Directly_Designated_Type (New_Itype,
3523 Directly_Designated_Type (Etype (A)));
3524 Set_Etype (A, New_Itype);
3525 end if;
3526
3527 -- Ada 2005, AI-162:If the actual is an allocator, the
3528 -- innermost enclosing statement is the master of the
3529 -- created object. This needs to be done with expansion
3530 -- enabled only, otherwise the transient scope will not
3531 -- be removed in the expansion of the wrapped construct.
3532
3533 if (Is_Controlled (DDT) or else Has_Task (DDT))
3534 and then Full_Expander_Active
3535 then
3536 Establish_Transient_Scope (A, False);
3537 end if;
3538 end;
3539 end if;
3540
3541 -- (Ada 2005): The call may be to a primitive operation of
3542 -- a tagged synchronized type, declared outside of the type.
3543 -- In this case the controlling actual must be converted to
3544 -- its corresponding record type, which is the formal type.
3545 -- The actual may be a subtype, either because of a constraint
3546 -- or because it is a generic actual, so use base type to
3547 -- locate concurrent type.
3548
3549 F_Typ := Base_Type (Etype (F));
3550
3551 if Is_Tagged_Type (F_Typ)
3552 and then (Is_Concurrent_Type (F_Typ)
3553 or else Is_Concurrent_Record_Type (F_Typ))
3554 then
3555 -- If the actual is overloaded, look for an interpretation
3556 -- that has a synchronized type.
3557
3558 if not Is_Overloaded (A) then
3559 A_Typ := Base_Type (Etype (A));
3560
3561 else
3562 declare
3563 Index : Interp_Index;
3564 It : Interp;
3565
3566 begin
3567 Get_First_Interp (A, Index, It);
3568 while Present (It.Typ) loop
3569 if Is_Concurrent_Type (It.Typ)
3570 or else Is_Concurrent_Record_Type (It.Typ)
3571 then
3572 A_Typ := Base_Type (It.Typ);
3573 exit;
3574 end if;
3575
3576 Get_Next_Interp (Index, It);
3577 end loop;
3578 end;
3579 end if;
3580
3581 declare
3582 Full_A_Typ : Entity_Id;
3583
3584 begin
3585 if Present (Full_View (A_Typ)) then
3586 Full_A_Typ := Base_Type (Full_View (A_Typ));
3587 else
3588 Full_A_Typ := A_Typ;
3589 end if;
3590
3591 -- Tagged synchronized type (case 1): the actual is a
3592 -- concurrent type.
3593
3594 if Is_Concurrent_Type (A_Typ)
3595 and then Corresponding_Record_Type (A_Typ) = F_Typ
3596 then
3597 Rewrite (A,
3598 Unchecked_Convert_To
3599 (Corresponding_Record_Type (A_Typ), A));
3600 Resolve (A, Etype (F));
3601
3602 -- Tagged synchronized type (case 2): the formal is a
3603 -- concurrent type.
3604
3605 elsif Ekind (Full_A_Typ) = E_Record_Type
3606 and then Present
3607 (Corresponding_Concurrent_Type (Full_A_Typ))
3608 and then Is_Concurrent_Type (F_Typ)
3609 and then Present (Corresponding_Record_Type (F_Typ))
3610 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3611 then
3612 Resolve (A, Corresponding_Record_Type (F_Typ));
3613
3614 -- Common case
3615
3616 else
3617 Resolve (A, Etype (F));
3618 end if;
3619 end;
3620 else
3621
3622 -- not a synchronized operation.
3623
3624 Resolve (A, Etype (F));
3625 end if;
3626 end if;
3627
3628 A_Typ := Etype (A);
3629 F_Typ := Etype (F);
3630
3631 if Comes_From_Source (Original_Node (N))
3632 and then Nkind_In (Original_Node (N), N_Function_Call,
3633 N_Procedure_Call_Statement)
3634 then
3635 -- In formal mode, check that actual parameters matching
3636 -- formals of tagged types are objects (or ancestor type
3637 -- conversions of objects), not general expressions.
3638
3639 if Is_Actual_Tagged_Parameter (A) then
3640 if Is_SPARK_Object_Reference (A) then
3641 null;
3642
3643 elsif Nkind (A) = N_Type_Conversion then
3644 declare
3645 Operand : constant Node_Id := Expression (A);
3646 Operand_Typ : constant Entity_Id := Etype (Operand);
3647 Target_Typ : constant Entity_Id := A_Typ;
3648
3649 begin
3650 if not Is_SPARK_Object_Reference (Operand) then
3651 Check_SPARK_Restriction
3652 ("object required", Operand);
3653
3654 -- In formal mode, the only view conversions are those
3655 -- involving ancestor conversion of an extended type.
3656
3657 elsif not
3658 (Is_Tagged_Type (Target_Typ)
3659 and then not Is_Class_Wide_Type (Target_Typ)
3660 and then Is_Tagged_Type (Operand_Typ)
3661 and then not Is_Class_Wide_Type (Operand_Typ)
3662 and then Is_Ancestor (Target_Typ, Operand_Typ))
3663 then
3664 if Ekind_In
3665 (F, E_Out_Parameter, E_In_Out_Parameter)
3666 then
3667 Check_SPARK_Restriction
3668 ("ancestor conversion is the only permitted "
3669 & "view conversion", A);
3670 else
3671 Check_SPARK_Restriction
3672 ("ancestor conversion required", A);
3673 end if;
3674
3675 else
3676 null;
3677 end if;
3678 end;
3679
3680 else
3681 Check_SPARK_Restriction ("object required", A);
3682 end if;
3683
3684 -- In formal mode, the only view conversions are those
3685 -- involving ancestor conversion of an extended type.
3686
3687 elsif Nkind (A) = N_Type_Conversion
3688 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
3689 then
3690 Check_SPARK_Restriction
3691 ("ancestor conversion is the only permitted view "
3692 & "conversion", A);
3693 end if;
3694 end if;
3695
3696 -- Save actual for subsequent check on order dependence, and
3697 -- indicate whether actual is modifiable. For AI05-0144-2.
3698
3699 Save_Actual (A, Ekind (F) /= E_In_Parameter);
3700
3701 -- For mode IN, if actual is an entity, and the type of the formal
3702 -- has warnings suppressed, then we reset Never_Set_In_Source for
3703 -- the calling entity. The reason for this is to catch cases like
3704 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3705 -- uses trickery to modify an IN parameter.
3706
3707 if Ekind (F) = E_In_Parameter
3708 and then Is_Entity_Name (A)
3709 and then Present (Entity (A))
3710 and then Ekind (Entity (A)) = E_Variable
3711 and then Has_Warnings_Off (F_Typ)
3712 then
3713 Set_Never_Set_In_Source (Entity (A), False);
3714 end if;
3715
3716 -- Perform error checks for IN and IN OUT parameters
3717
3718 if Ekind (F) /= E_Out_Parameter then
3719
3720 -- Check unset reference. For scalar parameters, it is clearly
3721 -- wrong to pass an uninitialized value as either an IN or
3722 -- IN-OUT parameter. For composites, it is also clearly an
3723 -- error to pass a completely uninitialized value as an IN
3724 -- parameter, but the case of IN OUT is trickier. We prefer
3725 -- not to give a warning here. For example, suppose there is
3726 -- a routine that sets some component of a record to False.
3727 -- It is perfectly reasonable to make this IN-OUT and allow
3728 -- either initialized or uninitialized records to be passed
3729 -- in this case.
3730
3731 -- For partially initialized composite values, we also avoid
3732 -- warnings, since it is quite likely that we are passing a
3733 -- partially initialized value and only the initialized fields
3734 -- will in fact be read in the subprogram.
3735
3736 if Is_Scalar_Type (A_Typ)
3737 or else (Ekind (F) = E_In_Parameter
3738 and then not Is_Partially_Initialized_Type (A_Typ))
3739 then
3740 Check_Unset_Reference (A);
3741 end if;
3742
3743 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3744 -- actual to a nested call, since this is case of reading an
3745 -- out parameter, which is not allowed.
3746
3747 if Ada_Version = Ada_83
3748 and then Is_Entity_Name (A)
3749 and then Ekind (Entity (A)) = E_Out_Parameter
3750 then
3751 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
3752 end if;
3753 end if;
3754
3755 -- Case of OUT or IN OUT parameter
3756
3757 if Ekind (F) /= E_In_Parameter then
3758
3759 -- For an Out parameter, check for useless assignment. Note
3760 -- that we can't set Last_Assignment this early, because we may
3761 -- kill current values in Resolve_Call, and that call would
3762 -- clobber the Last_Assignment field.
3763
3764 -- Note: call Warn_On_Useless_Assignment before doing the check
3765 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3766 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3767 -- reflects the last assignment, not this one!
3768
3769 if Ekind (F) = E_Out_Parameter then
3770 if Warn_On_Modified_As_Out_Parameter (F)
3771 and then Is_Entity_Name (A)
3772 and then Present (Entity (A))
3773 and then Comes_From_Source (N)
3774 then
3775 Warn_On_Useless_Assignment (Entity (A), A);
3776 end if;
3777 end if;
3778
3779 -- Validate the form of the actual. Note that the call to
3780 -- Is_OK_Variable_For_Out_Formal generates the required
3781 -- reference in this case.
3782
3783 -- A call to an initialization procedure for an aggregate
3784 -- component may initialize a nested component of a constant
3785 -- designated object. In this context the object is variable.
3786
3787 if not Is_OK_Variable_For_Out_Formal (A)
3788 and then not Is_Init_Proc (Nam)
3789 then
3790 Error_Msg_NE ("actual for& must be a variable", A, F);
3791 end if;
3792
3793 -- What's the following about???
3794
3795 if Is_Entity_Name (A) then
3796 Kill_Checks (Entity (A));
3797 else
3798 Kill_All_Checks;
3799 end if;
3800 end if;
3801
3802 if Etype (A) = Any_Type then
3803 Set_Etype (N, Any_Type);
3804 return;
3805 end if;
3806
3807 -- Apply appropriate range checks for in, out, and in-out
3808 -- parameters. Out and in-out parameters also need a separate
3809 -- check, if there is a type conversion, to make sure the return
3810 -- value meets the constraints of the variable before the
3811 -- conversion.
3812
3813 -- Gigi looks at the check flag and uses the appropriate types.
3814 -- For now since one flag is used there is an optimization which
3815 -- might not be done in the In Out case since Gigi does not do
3816 -- any analysis. More thought required about this ???
3817
3818 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
3819
3820 -- Apply predicate checks, unless this is a call to the
3821 -- predicate check function itself, which would cause an
3822 -- infinite recursion.
3823
3824 if not (Ekind (Nam) = E_Function
3825 and then Has_Predicates (Nam))
3826 then
3827 Apply_Predicate_Check (A, F_Typ);
3828 end if;
3829
3830 -- Apply required constraint checks
3831
3832 if Is_Scalar_Type (Etype (A)) then
3833 Apply_Scalar_Range_Check (A, F_Typ);
3834
3835 elsif Is_Array_Type (Etype (A)) then
3836 Apply_Length_Check (A, F_Typ);
3837
3838 elsif Is_Record_Type (F_Typ)
3839 and then Has_Discriminants (F_Typ)
3840 and then Is_Constrained (F_Typ)
3841 and then (not Is_Derived_Type (F_Typ)
3842 or else Comes_From_Source (Nam))
3843 then
3844 Apply_Discriminant_Check (A, F_Typ);
3845
3846 elsif Is_Access_Type (F_Typ)
3847 and then Is_Array_Type (Designated_Type (F_Typ))
3848 and then Is_Constrained (Designated_Type (F_Typ))
3849 then
3850 Apply_Length_Check (A, F_Typ);
3851
3852 elsif Is_Access_Type (F_Typ)
3853 and then Has_Discriminants (Designated_Type (F_Typ))
3854 and then Is_Constrained (Designated_Type (F_Typ))
3855 then
3856 Apply_Discriminant_Check (A, F_Typ);
3857
3858 else
3859 Apply_Range_Check (A, F_Typ);
3860 end if;
3861
3862 -- Ada 2005 (AI-231): Note that the controlling parameter case
3863 -- already existed in Ada 95, which is partially checked
3864 -- elsewhere (see Checks), and we don't want the warning
3865 -- message to differ.
3866
3867 if Is_Access_Type (F_Typ)
3868 and then Can_Never_Be_Null (F_Typ)
3869 and then Known_Null (A)
3870 then
3871 if Is_Controlling_Formal (F) then
3872 Apply_Compile_Time_Constraint_Error
3873 (N => A,
3874 Msg => "null value not allowed here?",
3875 Reason => CE_Access_Check_Failed);
3876
3877 elsif Ada_Version >= Ada_2005 then
3878 Apply_Compile_Time_Constraint_Error
3879 (N => A,
3880 Msg => "(Ada 2005) null not allowed in "
3881 & "null-excluding formal?",
3882 Reason => CE_Null_Not_Allowed);
3883 end if;
3884 end if;
3885 end if;
3886
3887 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
3888 if Nkind (A) = N_Type_Conversion then
3889 if Is_Scalar_Type (A_Typ) then
3890 Apply_Scalar_Range_Check
3891 (Expression (A), Etype (Expression (A)), A_Typ);
3892 else
3893 Apply_Range_Check
3894 (Expression (A), Etype (Expression (A)), A_Typ);
3895 end if;
3896
3897 else
3898 if Is_Scalar_Type (F_Typ) then
3899 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
3900 elsif Is_Array_Type (F_Typ)
3901 and then Ekind (F) = E_Out_Parameter
3902 then
3903 Apply_Length_Check (A, F_Typ);
3904 else
3905 Apply_Range_Check (A, A_Typ, F_Typ);
3906 end if;
3907 end if;
3908 end if;
3909
3910 -- An actual associated with an access parameter is implicitly
3911 -- converted to the anonymous access type of the formal and must
3912 -- satisfy the legality checks for access conversions.
3913
3914 if Ekind (F_Typ) = E_Anonymous_Access_Type then
3915 if not Valid_Conversion (A, F_Typ, A) then
3916 Error_Msg_N
3917 ("invalid implicit conversion for access parameter", A);
3918 end if;
3919 end if;
3920
3921 -- Check bad case of atomic/volatile argument (RM C.6(12))
3922
3923 if Is_By_Reference_Type (Etype (F))
3924 and then Comes_From_Source (N)
3925 then
3926 if Is_Atomic_Object (A)
3927 and then not Is_Atomic (Etype (F))
3928 then
3929 Error_Msg_N
3930 ("cannot pass atomic argument to non-atomic formal",
3931 N);
3932
3933 elsif Is_Volatile_Object (A)
3934 and then not Is_Volatile (Etype (F))
3935 then
3936 Error_Msg_N
3937 ("cannot pass volatile argument to non-volatile formal",
3938 N);
3939 end if;
3940 end if;
3941
3942 -- Check that subprograms don't have improper controlling
3943 -- arguments (RM 3.9.2 (9)).
3944
3945 -- A primitive operation may have an access parameter of an
3946 -- incomplete tagged type, but a dispatching call is illegal
3947 -- if the type is still incomplete.
3948
3949 if Is_Controlling_Formal (F) then
3950 Set_Is_Controlling_Actual (A);
3951
3952 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3953 declare
3954 Desig : constant Entity_Id := Designated_Type (Etype (F));
3955 begin
3956 if Ekind (Desig) = E_Incomplete_Type
3957 and then No (Full_View (Desig))
3958 and then No (Non_Limited_View (Desig))
3959 then
3960 Error_Msg_NE
3961 ("premature use of incomplete type& " &
3962 "in dispatching call", A, Desig);
3963 end if;
3964 end;
3965 end if;
3966
3967 elsif Nkind (A) = N_Explicit_Dereference then
3968 Validate_Remote_Access_To_Class_Wide_Type (A);
3969 end if;
3970
3971 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
3972 and then not Is_Class_Wide_Type (F_Typ)
3973 and then not Is_Controlling_Formal (F)
3974 then
3975 Error_Msg_N ("class-wide argument not allowed here!", A);
3976
3977 if Is_Subprogram (Nam)
3978 and then Comes_From_Source (Nam)
3979 then
3980 Error_Msg_Node_2 := F_Typ;
3981 Error_Msg_NE
3982 ("& is not a dispatching operation of &!", A, Nam);
3983 end if;
3984
3985 -- Apply the checks described in 3.10.2(27): if the context is a
3986 -- specific access-to-object, the actual cannot be class-wide.
3987 -- Use base type to exclude access_to_subprogram cases.
3988
3989 elsif Is_Access_Type (A_Typ)
3990 and then Is_Access_Type (F_Typ)
3991 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
3992 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
3993 or else (Nkind (A) = N_Attribute_Reference
3994 and then
3995 Is_Class_Wide_Type (Etype (Prefix (A)))))
3996 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
3997 and then not Is_Controlling_Formal (F)
3998
3999 -- Disable these checks for call to imported C++ subprograms
4000
4001 and then not
4002 (Is_Entity_Name (Name (N))
4003 and then Is_Imported (Entity (Name (N)))
4004 and then Convention (Entity (Name (N))) = Convention_CPP)
4005 then
4006 Error_Msg_N
4007 ("access to class-wide argument not allowed here!", A);
4008
4009 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4010 Error_Msg_Node_2 := Designated_Type (F_Typ);
4011 Error_Msg_NE
4012 ("& is not a dispatching operation of &!", A, Nam);
4013 end if;
4014 end if;
4015
4016 Eval_Actual (A);
4017
4018 -- If it is a named association, treat the selector_name as a
4019 -- proper identifier, and mark the corresponding entity. Ignore
4020 -- this reference in Alfa mode, as it refers to an entity not in
4021 -- scope at the point of reference, so the reference should be
4022 -- ignored for computing effects of subprograms.
4023
4024 if Nkind (Parent (A)) = N_Parameter_Association
4025 and then not Alfa_Mode
4026 then
4027 Set_Entity (Selector_Name (Parent (A)), F);
4028 Generate_Reference (F, Selector_Name (Parent (A)));
4029 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4030 Generate_Reference (F_Typ, N, ' ');
4031 end if;
4032
4033 Prev := A;
4034
4035 if Ekind (F) /= E_Out_Parameter then
4036 Check_Unset_Reference (A);
4037 end if;
4038
4039 Next_Actual (A);
4040
4041 -- Case where actual is not present
4042
4043 else
4044 Insert_Default;
4045 end if;
4046
4047 Next_Formal (F);
4048 end loop;
4049 end Resolve_Actuals;
4050
4051 -----------------------
4052 -- Resolve_Allocator --
4053 -----------------------
4054
4055 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4056 Desig_T : constant Entity_Id := Designated_Type (Typ);
4057 E : constant Node_Id := Expression (N);
4058 Subtyp : Entity_Id;
4059 Discrim : Entity_Id;
4060 Constr : Node_Id;
4061 Aggr : Node_Id;
4062 Assoc : Node_Id := Empty;
4063 Disc_Exp : Node_Id;
4064
4065 procedure Check_Allocator_Discrim_Accessibility
4066 (Disc_Exp : Node_Id;
4067 Alloc_Typ : Entity_Id);
4068 -- Check that accessibility level associated with an access discriminant
4069 -- initialized in an allocator by the expression Disc_Exp is not deeper
4070 -- than the level of the allocator type Alloc_Typ. An error message is
4071 -- issued if this condition is violated. Specialized checks are done for
4072 -- the cases of a constraint expression which is an access attribute or
4073 -- an access discriminant.
4074
4075 function In_Dispatching_Context return Boolean;
4076 -- If the allocator is an actual in a call, it is allowed to be class-
4077 -- wide when the context is not because it is a controlling actual.
4078
4079 -------------------------------------------
4080 -- Check_Allocator_Discrim_Accessibility --
4081 -------------------------------------------
4082
4083 procedure Check_Allocator_Discrim_Accessibility
4084 (Disc_Exp : Node_Id;
4085 Alloc_Typ : Entity_Id)
4086 is
4087 begin
4088 if Type_Access_Level (Etype (Disc_Exp)) >
4089 Type_Access_Level (Alloc_Typ)
4090 then
4091 Error_Msg_N
4092 ("operand type has deeper level than allocator type", Disc_Exp);
4093
4094 -- When the expression is an Access attribute the level of the prefix
4095 -- object must not be deeper than that of the allocator's type.
4096
4097 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4098 and then Get_Attribute_Id (Attribute_Name (Disc_Exp))
4099 = Attribute_Access
4100 and then Object_Access_Level (Prefix (Disc_Exp))
4101 > Type_Access_Level (Alloc_Typ)
4102 then
4103 Error_Msg_N
4104 ("prefix of attribute has deeper level than allocator type",
4105 Disc_Exp);
4106
4107 -- When the expression is an access discriminant the check is against
4108 -- the level of the prefix object.
4109
4110 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4111 and then Nkind (Disc_Exp) = N_Selected_Component
4112 and then Object_Access_Level (Prefix (Disc_Exp))
4113 > Type_Access_Level (Alloc_Typ)
4114 then
4115 Error_Msg_N
4116 ("access discriminant has deeper level than allocator type",
4117 Disc_Exp);
4118
4119 -- All other cases are legal
4120
4121 else
4122 null;
4123 end if;
4124 end Check_Allocator_Discrim_Accessibility;
4125
4126 ----------------------------
4127 -- In_Dispatching_Context --
4128 ----------------------------
4129
4130 function In_Dispatching_Context return Boolean is
4131 Par : constant Node_Id := Parent (N);
4132
4133 begin
4134 return
4135 Nkind_In (Par, N_Function_Call,
4136 N_Procedure_Call_Statement)
4137 and then Is_Entity_Name (Name (Par))
4138 and then Is_Dispatching_Operation (Entity (Name (Par)));
4139 end In_Dispatching_Context;
4140
4141 -- Start of processing for Resolve_Allocator
4142
4143 begin
4144 -- Replace general access with specific type
4145
4146 if Ekind (Etype (N)) = E_Allocator_Type then
4147 Set_Etype (N, Base_Type (Typ));
4148 end if;
4149
4150 if Is_Abstract_Type (Typ) then
4151 Error_Msg_N ("type of allocator cannot be abstract", N);
4152 end if;
4153
4154 -- For qualified expression, resolve the expression using the
4155 -- given subtype (nothing to do for type mark, subtype indication)
4156
4157 if Nkind (E) = N_Qualified_Expression then
4158 if Is_Class_Wide_Type (Etype (E))
4159 and then not Is_Class_Wide_Type (Desig_T)
4160 and then not In_Dispatching_Context
4161 then
4162 Error_Msg_N
4163 ("class-wide allocator not allowed for this access type", N);
4164 end if;
4165
4166 Resolve (Expression (E), Etype (E));
4167 Check_Unset_Reference (Expression (E));
4168
4169 -- A qualified expression requires an exact match of the type,
4170 -- class-wide matching is not allowed.
4171
4172 if (Is_Class_Wide_Type (Etype (Expression (E)))
4173 or else Is_Class_Wide_Type (Etype (E)))
4174 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4175 then
4176 Wrong_Type (Expression (E), Etype (E));
4177 end if;
4178
4179 -- A special accessibility check is needed for allocators that
4180 -- constrain access discriminants. The level of the type of the
4181 -- expression used to constrain an access discriminant cannot be
4182 -- deeper than the type of the allocator (in contrast to access
4183 -- parameters, where the level of the actual can be arbitrary).
4184
4185 -- We can't use Valid_Conversion to perform this check because
4186 -- in general the type of the allocator is unrelated to the type
4187 -- of the access discriminant.
4188
4189 if Ekind (Typ) /= E_Anonymous_Access_Type
4190 or else Is_Local_Anonymous_Access (Typ)
4191 then
4192 Subtyp := Entity (Subtype_Mark (E));
4193
4194 Aggr := Original_Node (Expression (E));
4195
4196 if Has_Discriminants (Subtyp)
4197 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4198 then
4199 Discrim := First_Discriminant (Base_Type (Subtyp));
4200
4201 -- Get the first component expression of the aggregate
4202
4203 if Present (Expressions (Aggr)) then
4204 Disc_Exp := First (Expressions (Aggr));
4205
4206 elsif Present (Component_Associations (Aggr)) then
4207 Assoc := First (Component_Associations (Aggr));
4208
4209 if Present (Assoc) then
4210 Disc_Exp := Expression (Assoc);
4211 else
4212 Disc_Exp := Empty;
4213 end if;
4214
4215 else
4216 Disc_Exp := Empty;
4217 end if;
4218
4219 while Present (Discrim) and then Present (Disc_Exp) loop
4220 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4221 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4222 end if;
4223
4224 Next_Discriminant (Discrim);
4225
4226 if Present (Discrim) then
4227 if Present (Assoc) then
4228 Next (Assoc);
4229 Disc_Exp := Expression (Assoc);
4230
4231 elsif Present (Next (Disc_Exp)) then
4232 Next (Disc_Exp);
4233
4234 else
4235 Assoc := First (Component_Associations (Aggr));
4236
4237 if Present (Assoc) then
4238 Disc_Exp := Expression (Assoc);
4239 else
4240 Disc_Exp := Empty;
4241 end if;
4242 end if;
4243 end if;
4244 end loop;
4245 end if;
4246 end if;
4247
4248 -- For a subtype mark or subtype indication, freeze the subtype
4249
4250 else
4251 Freeze_Expression (E);
4252
4253 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4254 Error_Msg_N
4255 ("initialization required for access-to-constant allocator", N);
4256 end if;
4257
4258 -- A special accessibility check is needed for allocators that
4259 -- constrain access discriminants. The level of the type of the
4260 -- expression used to constrain an access discriminant cannot be
4261 -- deeper than the type of the allocator (in contrast to access
4262 -- parameters, where the level of the actual can be arbitrary).
4263 -- We can't use Valid_Conversion to perform this check because
4264 -- in general the type of the allocator is unrelated to the type
4265 -- of the access discriminant.
4266
4267 if Nkind (Original_Node (E)) = N_Subtype_Indication
4268 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4269 or else Is_Local_Anonymous_Access (Typ))
4270 then
4271 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4272
4273 if Has_Discriminants (Subtyp) then
4274 Discrim := First_Discriminant (Base_Type (Subtyp));
4275 Constr := First (Constraints (Constraint (Original_Node (E))));
4276 while Present (Discrim) and then Present (Constr) loop
4277 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4278 if Nkind (Constr) = N_Discriminant_Association then
4279 Disc_Exp := Original_Node (Expression (Constr));
4280 else
4281 Disc_Exp := Original_Node (Constr);
4282 end if;
4283
4284 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4285 end if;
4286
4287 Next_Discriminant (Discrim);
4288 Next (Constr);
4289 end loop;
4290 end if;
4291 end if;
4292 end if;
4293
4294 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4295 -- check that the level of the type of the created object is not deeper
4296 -- than the level of the allocator's access type, since extensions can
4297 -- now occur at deeper levels than their ancestor types. This is a
4298 -- static accessibility level check; a run-time check is also needed in
4299 -- the case of an initialized allocator with a class-wide argument (see
4300 -- Expand_Allocator_Expression).
4301
4302 if Ada_Version >= Ada_2005
4303 and then Is_Class_Wide_Type (Desig_T)
4304 then
4305 declare
4306 Exp_Typ : Entity_Id;
4307
4308 begin
4309 if Nkind (E) = N_Qualified_Expression then
4310 Exp_Typ := Etype (E);
4311 elsif Nkind (E) = N_Subtype_Indication then
4312 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4313 else
4314 Exp_Typ := Entity (E);
4315 end if;
4316
4317 if Type_Access_Level (Exp_Typ) > Type_Access_Level (Typ) then
4318 if In_Instance_Body then
4319 Error_Msg_N ("?type in allocator has deeper level than" &
4320 " designated class-wide type", E);
4321 Error_Msg_N ("\?Program_Error will be raised at run time",
4322 E);
4323 Rewrite (N,
4324 Make_Raise_Program_Error (Sloc (N),
4325 Reason => PE_Accessibility_Check_Failed));
4326 Set_Etype (N, Typ);
4327
4328 -- Do not apply Ada 2005 accessibility checks on a class-wide
4329 -- allocator if the type given in the allocator is a formal
4330 -- type. A run-time check will be performed in the instance.
4331
4332 elsif not Is_Generic_Type (Exp_Typ) then
4333 Error_Msg_N ("type in allocator has deeper level than" &
4334 " designated class-wide type", E);
4335 end if;
4336 end if;
4337 end;
4338 end if;
4339
4340 -- Check for allocation from an empty storage pool
4341
4342 if No_Pool_Assigned (Typ) then
4343 Error_Msg_N ("allocation from empty storage pool!", N);
4344
4345 -- If the context is an unchecked conversion, as may happen within an
4346 -- inlined subprogram, the allocator is being resolved with its own
4347 -- anonymous type. In that case, if the target type has a specific
4348 -- storage pool, it must be inherited explicitly by the allocator type.
4349
4350 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4351 and then No (Associated_Storage_Pool (Typ))
4352 then
4353 Set_Associated_Storage_Pool
4354 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4355 end if;
4356
4357 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4358 Check_Restriction (No_Anonymous_Allocators, N);
4359 end if;
4360
4361 -- Check that an allocator with task parts isn't for a nested access
4362 -- type when restriction No_Task_Hierarchy applies.
4363
4364 if not Is_Library_Level_Entity (Base_Type (Typ))
4365 and then Has_Task (Base_Type (Desig_T))
4366 then
4367 Check_Restriction (No_Task_Hierarchy, N);
4368 end if;
4369
4370 -- An erroneous allocator may be rewritten as a raise Program_Error
4371 -- statement.
4372
4373 if Nkind (N) = N_Allocator then
4374
4375 -- An anonymous access discriminant is the definition of a
4376 -- coextension.
4377
4378 if Ekind (Typ) = E_Anonymous_Access_Type
4379 and then Nkind (Associated_Node_For_Itype (Typ)) =
4380 N_Discriminant_Specification
4381 then
4382 declare
4383 Discr : constant Entity_Id :=
4384 Defining_Identifier (Associated_Node_For_Itype (Typ));
4385
4386 begin
4387 -- Ada 2012 AI05-0052: If the designated type of the allocator
4388 -- is limited, then the allocator shall not be used to define
4389 -- the value of an access discriminant unless the discriminated
4390 -- type is immutably limited.
4391
4392 if Ada_Version >= Ada_2012
4393 and then Is_Limited_Type (Desig_T)
4394 and then not Is_Immutably_Limited_Type (Scope (Discr))
4395 then
4396 Error_Msg_N
4397 ("only immutably limited types can have anonymous "
4398 & "access discriminants designating a limited type", N);
4399 end if;
4400 end;
4401
4402 -- Avoid marking an allocator as a dynamic coextension if it is
4403 -- within a static construct.
4404
4405 if not Is_Static_Coextension (N) then
4406 Set_Is_Dynamic_Coextension (N);
4407 end if;
4408
4409 -- Cleanup for potential static coextensions
4410
4411 else
4412 Set_Is_Dynamic_Coextension (N, False);
4413 Set_Is_Static_Coextension (N, False);
4414 end if;
4415 end if;
4416
4417 -- Report a simple error: if the designated object is a local task,
4418 -- its body has not been seen yet, and its activation will fail an
4419 -- elaboration check.
4420
4421 if Is_Task_Type (Desig_T)
4422 and then Scope (Base_Type (Desig_T)) = Current_Scope
4423 and then Is_Compilation_Unit (Current_Scope)
4424 and then Ekind (Current_Scope) = E_Package
4425 and then not In_Package_Body (Current_Scope)
4426 then
4427 Error_Msg_N ("cannot activate task before body seen?", N);
4428 Error_Msg_N ("\Program_Error will be raised at run time?", N);
4429 end if;
4430
4431 -- Ada 2012 (AI05-0111-3): Issue a warning whenever allocating a task
4432 -- or a type containing tasks on a subpool since the deallocation of
4433 -- the subpool may lead to undefined task behavior. Perform the check
4434 -- only when the allocator has not been converted into a Program_Error
4435 -- due to a previous error.
4436
4437 if Ada_Version >= Ada_2012
4438 and then Nkind (N) = N_Allocator
4439 and then Present (Subpool_Handle_Name (N))
4440 and then Has_Task (Desig_T)
4441 then
4442 Error_Msg_N ("?allocation of task on subpool may lead to " &
4443 "undefined behavior", N);
4444 end if;
4445 end Resolve_Allocator;
4446
4447 ---------------------------
4448 -- Resolve_Arithmetic_Op --
4449 ---------------------------
4450
4451 -- Used for resolving all arithmetic operators except exponentiation
4452
4453 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
4454 L : constant Node_Id := Left_Opnd (N);
4455 R : constant Node_Id := Right_Opnd (N);
4456 TL : constant Entity_Id := Base_Type (Etype (L));
4457 TR : constant Entity_Id := Base_Type (Etype (R));
4458 T : Entity_Id;
4459 Rop : Node_Id;
4460
4461 B_Typ : constant Entity_Id := Base_Type (Typ);
4462 -- We do the resolution using the base type, because intermediate values
4463 -- in expressions always are of the base type, not a subtype of it.
4464
4465 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
4466 -- Returns True if N is in a context that expects "any real type"
4467
4468 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
4469 -- Return True iff given type is Integer or universal real/integer
4470
4471 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
4472 -- Choose type of integer literal in fixed-point operation to conform
4473 -- to available fixed-point type. T is the type of the other operand,
4474 -- which is needed to determine the expected type of N.
4475
4476 procedure Set_Operand_Type (N : Node_Id);
4477 -- Set operand type to T if universal
4478
4479 -------------------------------
4480 -- Expected_Type_Is_Any_Real --
4481 -------------------------------
4482
4483 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
4484 begin
4485 -- N is the expression after "delta" in a fixed_point_definition;
4486 -- see RM-3.5.9(6):
4487
4488 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
4489 N_Decimal_Fixed_Point_Definition,
4490
4491 -- N is one of the bounds in a real_range_specification;
4492 -- see RM-3.5.7(5):
4493
4494 N_Real_Range_Specification,
4495
4496 -- N is the expression of a delta_constraint;
4497 -- see RM-J.3(3):
4498
4499 N_Delta_Constraint);
4500 end Expected_Type_Is_Any_Real;
4501
4502 -----------------------------
4503 -- Is_Integer_Or_Universal --
4504 -----------------------------
4505
4506 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
4507 T : Entity_Id;
4508 Index : Interp_Index;
4509 It : Interp;
4510
4511 begin
4512 if not Is_Overloaded (N) then
4513 T := Etype (N);
4514 return Base_Type (T) = Base_Type (Standard_Integer)
4515 or else T = Universal_Integer
4516 or else T = Universal_Real;
4517 else
4518 Get_First_Interp (N, Index, It);
4519 while Present (It.Typ) loop
4520 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
4521 or else It.Typ = Universal_Integer
4522 or else It.Typ = Universal_Real
4523 then
4524 return True;
4525 end if;
4526
4527 Get_Next_Interp (Index, It);
4528 end loop;
4529 end if;
4530
4531 return False;
4532 end Is_Integer_Or_Universal;
4533
4534 ----------------------------
4535 -- Set_Mixed_Mode_Operand --
4536 ----------------------------
4537
4538 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
4539 Index : Interp_Index;
4540 It : Interp;
4541
4542 begin
4543 if Universal_Interpretation (N) = Universal_Integer then
4544
4545 -- A universal integer literal is resolved as standard integer
4546 -- except in the case of a fixed-point result, where we leave it
4547 -- as universal (to be handled by Exp_Fixd later on)
4548
4549 if Is_Fixed_Point_Type (T) then
4550 Resolve (N, Universal_Integer);
4551 else
4552 Resolve (N, Standard_Integer);
4553 end if;
4554
4555 elsif Universal_Interpretation (N) = Universal_Real
4556 and then (T = Base_Type (Standard_Integer)
4557 or else T = Universal_Integer
4558 or else T = Universal_Real)
4559 then
4560 -- A universal real can appear in a fixed-type context. We resolve
4561 -- the literal with that context, even though this might raise an
4562 -- exception prematurely (the other operand may be zero).
4563
4564 Resolve (N, B_Typ);
4565
4566 elsif Etype (N) = Base_Type (Standard_Integer)
4567 and then T = Universal_Real
4568 and then Is_Overloaded (N)
4569 then
4570 -- Integer arg in mixed-mode operation. Resolve with universal
4571 -- type, in case preference rule must be applied.
4572
4573 Resolve (N, Universal_Integer);
4574
4575 elsif Etype (N) = T
4576 and then B_Typ /= Universal_Fixed
4577 then
4578 -- Not a mixed-mode operation, resolve with context
4579
4580 Resolve (N, B_Typ);
4581
4582 elsif Etype (N) = Any_Fixed then
4583
4584 -- N may itself be a mixed-mode operation, so use context type
4585
4586 Resolve (N, B_Typ);
4587
4588 elsif Is_Fixed_Point_Type (T)
4589 and then B_Typ = Universal_Fixed
4590 and then Is_Overloaded (N)
4591 then
4592 -- Must be (fixed * fixed) operation, operand must have one
4593 -- compatible interpretation.
4594
4595 Resolve (N, Any_Fixed);
4596
4597 elsif Is_Fixed_Point_Type (B_Typ)
4598 and then (T = Universal_Real
4599 or else Is_Fixed_Point_Type (T))
4600 and then Is_Overloaded (N)
4601 then
4602 -- C * F(X) in a fixed context, where C is a real literal or a
4603 -- fixed-point expression. F must have either a fixed type
4604 -- interpretation or an integer interpretation, but not both.
4605
4606 Get_First_Interp (N, Index, It);
4607 while Present (It.Typ) loop
4608 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
4609 if Analyzed (N) then
4610 Error_Msg_N ("ambiguous operand in fixed operation", N);
4611 else
4612 Resolve (N, Standard_Integer);
4613 end if;
4614
4615 elsif Is_Fixed_Point_Type (It.Typ) then
4616 if Analyzed (N) then
4617 Error_Msg_N ("ambiguous operand in fixed operation", N);
4618 else
4619 Resolve (N, It.Typ);
4620 end if;
4621 end if;
4622
4623 Get_Next_Interp (Index, It);
4624 end loop;
4625
4626 -- Reanalyze the literal with the fixed type of the context. If
4627 -- context is Universal_Fixed, we are within a conversion, leave
4628 -- the literal as a universal real because there is no usable
4629 -- fixed type, and the target of the conversion plays no role in
4630 -- the resolution.
4631
4632 declare
4633 Op2 : Node_Id;
4634 T2 : Entity_Id;
4635
4636 begin
4637 if N = L then
4638 Op2 := R;
4639 else
4640 Op2 := L;
4641 end if;
4642
4643 if B_Typ = Universal_Fixed
4644 and then Nkind (Op2) = N_Real_Literal
4645 then
4646 T2 := Universal_Real;
4647 else
4648 T2 := B_Typ;
4649 end if;
4650
4651 Set_Analyzed (Op2, False);
4652 Resolve (Op2, T2);
4653 end;
4654
4655 else
4656 Resolve (N);
4657 end if;
4658 end Set_Mixed_Mode_Operand;
4659
4660 ----------------------
4661 -- Set_Operand_Type --
4662 ----------------------
4663
4664 procedure Set_Operand_Type (N : Node_Id) is
4665 begin
4666 if Etype (N) = Universal_Integer
4667 or else Etype (N) = Universal_Real
4668 then
4669 Set_Etype (N, T);
4670 end if;
4671 end Set_Operand_Type;
4672
4673 -- Start of processing for Resolve_Arithmetic_Op
4674
4675 begin
4676 if Comes_From_Source (N)
4677 and then Ekind (Entity (N)) = E_Function
4678 and then Is_Imported (Entity (N))
4679 and then Is_Intrinsic_Subprogram (Entity (N))
4680 then
4681 Resolve_Intrinsic_Operator (N, Typ);
4682 return;
4683
4684 -- Special-case for mixed-mode universal expressions or fixed point type
4685 -- operation: each argument is resolved separately. The same treatment
4686 -- is required if one of the operands of a fixed point operation is
4687 -- universal real, since in this case we don't do a conversion to a
4688 -- specific fixed-point type (instead the expander handles the case).
4689
4690 -- Set the type of the node to its universal interpretation because
4691 -- legality checks on an exponentiation operand need the context.
4692
4693 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
4694 and then Present (Universal_Interpretation (L))
4695 and then Present (Universal_Interpretation (R))
4696 then
4697 Set_Etype (N, B_Typ);
4698 Resolve (L, Universal_Interpretation (L));
4699 Resolve (R, Universal_Interpretation (R));
4700
4701 elsif (B_Typ = Universal_Real
4702 or else Etype (N) = Universal_Fixed
4703 or else (Etype (N) = Any_Fixed
4704 and then Is_Fixed_Point_Type (B_Typ))
4705 or else (Is_Fixed_Point_Type (B_Typ)
4706 and then (Is_Integer_Or_Universal (L)
4707 or else
4708 Is_Integer_Or_Universal (R))))
4709 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
4710 then
4711 if TL = Universal_Integer or else TR = Universal_Integer then
4712 Check_For_Visible_Operator (N, B_Typ);
4713 end if;
4714
4715 -- If context is a fixed type and one operand is integer, the other
4716 -- is resolved with the type of the context.
4717
4718 if Is_Fixed_Point_Type (B_Typ)
4719 and then (Base_Type (TL) = Base_Type (Standard_Integer)
4720 or else TL = Universal_Integer)
4721 then
4722 Resolve (R, B_Typ);
4723 Resolve (L, TL);
4724
4725 elsif Is_Fixed_Point_Type (B_Typ)
4726 and then (Base_Type (TR) = Base_Type (Standard_Integer)
4727 or else TR = Universal_Integer)
4728 then
4729 Resolve (L, B_Typ);
4730 Resolve (R, TR);
4731
4732 else
4733 Set_Mixed_Mode_Operand (L, TR);
4734 Set_Mixed_Mode_Operand (R, TL);
4735 end if;
4736
4737 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
4738 -- multiplying operators from being used when the expected type is
4739 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
4740 -- some cases where the expected type is actually Any_Real;
4741 -- Expected_Type_Is_Any_Real takes care of that case.
4742
4743 if Etype (N) = Universal_Fixed
4744 or else Etype (N) = Any_Fixed
4745 then
4746 if B_Typ = Universal_Fixed
4747 and then not Expected_Type_Is_Any_Real (N)
4748 and then not Nkind_In (Parent (N), N_Type_Conversion,
4749 N_Unchecked_Type_Conversion)
4750 then
4751 Error_Msg_N ("type cannot be determined from context!", N);
4752 Error_Msg_N ("\explicit conversion to result type required", N);
4753
4754 Set_Etype (L, Any_Type);
4755 Set_Etype (R, Any_Type);
4756
4757 else
4758 if Ada_Version = Ada_83
4759 and then Etype (N) = Universal_Fixed
4760 and then not
4761 Nkind_In (Parent (N), N_Type_Conversion,
4762 N_Unchecked_Type_Conversion)
4763 then
4764 Error_Msg_N
4765 ("(Ada 83) fixed-point operation "
4766 & "needs explicit conversion", N);
4767 end if;
4768
4769 -- The expected type is "any real type" in contexts like
4770
4771 -- type T is delta <universal_fixed-expression> ...
4772
4773 -- in which case we need to set the type to Universal_Real
4774 -- so that static expression evaluation will work properly.
4775
4776 if Expected_Type_Is_Any_Real (N) then
4777 Set_Etype (N, Universal_Real);
4778 else
4779 Set_Etype (N, B_Typ);
4780 end if;
4781 end if;
4782
4783 elsif Is_Fixed_Point_Type (B_Typ)
4784 and then (Is_Integer_Or_Universal (L)
4785 or else Nkind (L) = N_Real_Literal
4786 or else Nkind (R) = N_Real_Literal
4787 or else Is_Integer_Or_Universal (R))
4788 then
4789 Set_Etype (N, B_Typ);
4790
4791 elsif Etype (N) = Any_Fixed then
4792
4793 -- If no previous errors, this is only possible if one operand is
4794 -- overloaded and the context is universal. Resolve as such.
4795
4796 Set_Etype (N, B_Typ);
4797 end if;
4798
4799 else
4800 if (TL = Universal_Integer or else TL = Universal_Real)
4801 and then
4802 (TR = Universal_Integer or else TR = Universal_Real)
4803 then
4804 Check_For_Visible_Operator (N, B_Typ);
4805 end if;
4806
4807 -- If the context is Universal_Fixed and the operands are also
4808 -- universal fixed, this is an error, unless there is only one
4809 -- applicable fixed_point type (usually Duration).
4810
4811 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
4812 T := Unique_Fixed_Point_Type (N);
4813
4814 if T = Any_Type then
4815 Set_Etype (N, T);
4816 return;
4817 else
4818 Resolve (L, T);
4819 Resolve (R, T);
4820 end if;
4821
4822 else
4823 Resolve (L, B_Typ);
4824 Resolve (R, B_Typ);
4825 end if;
4826
4827 -- If one of the arguments was resolved to a non-universal type.
4828 -- label the result of the operation itself with the same type.
4829 -- Do the same for the universal argument, if any.
4830
4831 T := Intersect_Types (L, R);
4832 Set_Etype (N, Base_Type (T));
4833 Set_Operand_Type (L);
4834 Set_Operand_Type (R);
4835 end if;
4836
4837 Generate_Operator_Reference (N, Typ);
4838 Eval_Arithmetic_Op (N);
4839
4840 -- In SPARK, a multiplication or division with operands of fixed point
4841 -- types shall be qualified or explicitly converted to identify the
4842 -- result type.
4843
4844 if (Is_Fixed_Point_Type (Etype (L))
4845 or else Is_Fixed_Point_Type (Etype (R)))
4846 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
4847 and then
4848 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
4849 then
4850 Check_SPARK_Restriction
4851 ("operation should be qualified or explicitly converted", N);
4852 end if;
4853
4854 -- Set overflow and division checking bit. Much cleverer code needed
4855 -- here eventually and perhaps the Resolve routines should be separated
4856 -- for the various arithmetic operations, since they will need
4857 -- different processing. ???
4858
4859 if Nkind (N) in N_Op then
4860 if not Overflow_Checks_Suppressed (Etype (N)) then
4861 Enable_Overflow_Check (N);
4862 end if;
4863
4864 -- Give warning if explicit division by zero
4865
4866 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
4867 and then not Division_Checks_Suppressed (Etype (N))
4868 then
4869 Rop := Right_Opnd (N);
4870
4871 if Compile_Time_Known_Value (Rop)
4872 and then ((Is_Integer_Type (Etype (Rop))
4873 and then Expr_Value (Rop) = Uint_0)
4874 or else
4875 (Is_Real_Type (Etype (Rop))
4876 and then Expr_Value_R (Rop) = Ureal_0))
4877 then
4878 -- Specialize the warning message according to the operation.
4879 -- The following warnings are for the case
4880
4881 case Nkind (N) is
4882 when N_Op_Divide =>
4883
4884 -- For division, we have two cases, for float division
4885 -- of an unconstrained float type, on a machine where
4886 -- Machine_Overflows is false, we don't get an exception
4887 -- at run-time, but rather an infinity or Nan. The Nan
4888 -- case is pretty obscure, so just warn about infinities.
4889
4890 if Is_Floating_Point_Type (Typ)
4891 and then not Is_Constrained (Typ)
4892 and then not Machine_Overflows_On_Target
4893 then
4894 Error_Msg_N
4895 ("float division by zero, " &
4896 "may generate '+'/'- infinity?", Right_Opnd (N));
4897
4898 -- For all other cases, we get a Constraint_Error
4899
4900 else
4901 Apply_Compile_Time_Constraint_Error
4902 (N, "division by zero?", CE_Divide_By_Zero,
4903 Loc => Sloc (Right_Opnd (N)));
4904 end if;
4905
4906 when N_Op_Rem =>
4907 Apply_Compile_Time_Constraint_Error
4908 (N, "rem with zero divisor?", CE_Divide_By_Zero,
4909 Loc => Sloc (Right_Opnd (N)));
4910
4911 when N_Op_Mod =>
4912 Apply_Compile_Time_Constraint_Error
4913 (N, "mod with zero divisor?", CE_Divide_By_Zero,
4914 Loc => Sloc (Right_Opnd (N)));
4915
4916 -- Division by zero can only happen with division, rem,
4917 -- and mod operations.
4918
4919 when others =>
4920 raise Program_Error;
4921 end case;
4922
4923 -- Otherwise just set the flag to check at run time
4924
4925 else
4926 Activate_Division_Check (N);
4927 end if;
4928 end if;
4929
4930 -- If Restriction No_Implicit_Conditionals is active, then it is
4931 -- violated if either operand can be negative for mod, or for rem
4932 -- if both operands can be negative.
4933
4934 if Restriction_Check_Required (No_Implicit_Conditionals)
4935 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
4936 then
4937 declare
4938 Lo : Uint;
4939 Hi : Uint;
4940 OK : Boolean;
4941
4942 LNeg : Boolean;
4943 RNeg : Boolean;
4944 -- Set if corresponding operand might be negative
4945
4946 begin
4947 Determine_Range
4948 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
4949 LNeg := (not OK) or else Lo < 0;
4950
4951 Determine_Range
4952 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
4953 RNeg := (not OK) or else Lo < 0;
4954
4955 -- Check if we will be generating conditionals. There are two
4956 -- cases where that can happen, first for REM, the only case
4957 -- is largest negative integer mod -1, where the division can
4958 -- overflow, but we still have to give the right result. The
4959 -- front end generates a test for this annoying case. Here we
4960 -- just test if both operands can be negative (that's what the
4961 -- expander does, so we match its logic here).
4962
4963 -- The second case is mod where either operand can be negative.
4964 -- In this case, the back end has to generate additional tests.
4965
4966 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
4967 or else
4968 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
4969 then
4970 Check_Restriction (No_Implicit_Conditionals, N);
4971 end if;
4972 end;
4973 end if;
4974 end if;
4975
4976 Check_Unset_Reference (L);
4977 Check_Unset_Reference (R);
4978 end Resolve_Arithmetic_Op;
4979
4980 ------------------
4981 -- Resolve_Call --
4982 ------------------
4983
4984 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
4985 Loc : constant Source_Ptr := Sloc (N);
4986 Subp : constant Node_Id := Name (N);
4987 Nam : Entity_Id;
4988 I : Interp_Index;
4989 It : Interp;
4990 Norm_OK : Boolean;
4991 Scop : Entity_Id;
4992 Rtype : Entity_Id;
4993
4994 function Same_Or_Aliased_Subprograms
4995 (S : Entity_Id;
4996 E : Entity_Id) return Boolean;
4997 -- Returns True if the subprogram entity S is the same as E or else
4998 -- S is an alias of E.
4999
5000 ---------------------------------
5001 -- Same_Or_Aliased_Subprograms --
5002 ---------------------------------
5003
5004 function Same_Or_Aliased_Subprograms
5005 (S : Entity_Id;
5006 E : Entity_Id) return Boolean
5007 is
5008 Subp_Alias : constant Entity_Id := Alias (S);
5009 begin
5010 return S = E
5011 or else (Present (Subp_Alias) and then Subp_Alias = E);
5012 end Same_Or_Aliased_Subprograms;
5013
5014 -- Start of processing for Resolve_Call
5015
5016 begin
5017 -- The context imposes a unique interpretation with type Typ on a
5018 -- procedure or function call. Find the entity of the subprogram that
5019 -- yields the expected type, and propagate the corresponding formal
5020 -- constraints on the actuals. The caller has established that an
5021 -- interpretation exists, and emitted an error if not unique.
5022
5023 -- First deal with the case of a call to an access-to-subprogram,
5024 -- dereference made explicit in Analyze_Call.
5025
5026 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5027 if not Is_Overloaded (Subp) then
5028 Nam := Etype (Subp);
5029
5030 else
5031 -- Find the interpretation whose type (a subprogram type) has a
5032 -- return type that is compatible with the context. Analysis of
5033 -- the node has established that one exists.
5034
5035 Nam := Empty;
5036
5037 Get_First_Interp (Subp, I, It);
5038 while Present (It.Typ) loop
5039 if Covers (Typ, Etype (It.Typ)) then
5040 Nam := It.Typ;
5041 exit;
5042 end if;
5043
5044 Get_Next_Interp (I, It);
5045 end loop;
5046
5047 if No (Nam) then
5048 raise Program_Error;
5049 end if;
5050 end if;
5051
5052 -- If the prefix is not an entity, then resolve it
5053
5054 if not Is_Entity_Name (Subp) then
5055 Resolve (Subp, Nam);
5056 end if;
5057
5058 -- For an indirect call, we always invalidate checks, since we do not
5059 -- know whether the subprogram is local or global. Yes we could do
5060 -- better here, e.g. by knowing that there are no local subprograms,
5061 -- but it does not seem worth the effort. Similarly, we kill all
5062 -- knowledge of current constant values.
5063
5064 Kill_Current_Values;
5065
5066 -- If this is a procedure call which is really an entry call, do
5067 -- the conversion of the procedure call to an entry call. Protected
5068 -- operations use the same circuitry because the name in the call
5069 -- can be an arbitrary expression with special resolution rules.
5070
5071 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5072 or else (Is_Entity_Name (Subp)
5073 and then Ekind (Entity (Subp)) = E_Entry)
5074 then
5075 Resolve_Entry_Call (N, Typ);
5076 Check_Elab_Call (N);
5077
5078 -- Kill checks and constant values, as above for indirect case
5079 -- Who knows what happens when another task is activated?
5080
5081 Kill_Current_Values;
5082 return;
5083
5084 -- Normal subprogram call with name established in Resolve
5085
5086 elsif not (Is_Type (Entity (Subp))) then
5087 Nam := Entity (Subp);
5088 Set_Entity_With_Style_Check (Subp, Nam);
5089
5090 -- Otherwise we must have the case of an overloaded call
5091
5092 else
5093 pragma Assert (Is_Overloaded (Subp));
5094
5095 -- Initialize Nam to prevent warning (we know it will be assigned
5096 -- in the loop below, but the compiler does not know that).
5097
5098 Nam := Empty;
5099
5100 Get_First_Interp (Subp, I, It);
5101 while Present (It.Typ) loop
5102 if Covers (Typ, It.Typ) then
5103 Nam := It.Nam;
5104 Set_Entity_With_Style_Check (Subp, Nam);
5105 exit;
5106 end if;
5107
5108 Get_Next_Interp (I, It);
5109 end loop;
5110 end if;
5111
5112 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5113 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5114 and then Nkind (Subp) /= N_Explicit_Dereference
5115 and then Present (Parameter_Associations (N))
5116 then
5117 -- The prefix is a parameterless function call that returns an access
5118 -- to subprogram. If parameters are present in the current call, add
5119 -- add an explicit dereference. We use the base type here because
5120 -- within an instance these may be subtypes.
5121
5122 -- The dereference is added either in Analyze_Call or here. Should
5123 -- be consolidated ???
5124
5125 Set_Is_Overloaded (Subp, False);
5126 Set_Etype (Subp, Etype (Nam));
5127 Insert_Explicit_Dereference (Subp);
5128 Nam := Designated_Type (Etype (Nam));
5129 Resolve (Subp, Nam);
5130 end if;
5131
5132 -- Check that a call to Current_Task does not occur in an entry body
5133
5134 if Is_RTE (Nam, RE_Current_Task) then
5135 declare
5136 P : Node_Id;
5137
5138 begin
5139 P := N;
5140 loop
5141 P := Parent (P);
5142
5143 -- Exclude calls that occur within the default of a formal
5144 -- parameter of the entry, since those are evaluated outside
5145 -- of the body.
5146
5147 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5148
5149 if Nkind (P) = N_Entry_Body
5150 or else (Nkind (P) = N_Subprogram_Body
5151 and then Is_Entry_Barrier_Function (P))
5152 then
5153 Rtype := Etype (N);
5154 Error_Msg_NE
5155 ("?& should not be used in entry body (RM C.7(17))",
5156 N, Nam);
5157 Error_Msg_NE
5158 ("\Program_Error will be raised at run time?", N, Nam);
5159 Rewrite (N,
5160 Make_Raise_Program_Error (Loc,
5161 Reason => PE_Current_Task_In_Entry_Body));
5162 Set_Etype (N, Rtype);
5163 return;
5164 end if;
5165 end loop;
5166 end;
5167 end if;
5168
5169 -- Check that a procedure call does not occur in the context of the
5170 -- entry call statement of a conditional or timed entry call. Note that
5171 -- the case of a call to a subprogram renaming of an entry will also be
5172 -- rejected. The test for N not being an N_Entry_Call_Statement is
5173 -- defensive, covering the possibility that the processing of entry
5174 -- calls might reach this point due to later modifications of the code
5175 -- above.
5176
5177 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5178 and then Nkind (N) /= N_Entry_Call_Statement
5179 and then Entry_Call_Statement (Parent (N)) = N
5180 then
5181 if Ada_Version < Ada_2005 then
5182 Error_Msg_N ("entry call required in select statement", N);
5183
5184 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5185 -- for a procedure_or_entry_call, the procedure_name or
5186 -- procedure_prefix of the procedure_call_statement shall denote
5187 -- an entry renamed by a procedure, or (a view of) a primitive
5188 -- subprogram of a limited interface whose first parameter is
5189 -- a controlling parameter.
5190
5191 elsif Nkind (N) = N_Procedure_Call_Statement
5192 and then not Is_Renamed_Entry (Nam)
5193 and then not Is_Controlling_Limited_Procedure (Nam)
5194 then
5195 Error_Msg_N
5196 ("entry call or dispatching primitive of interface required", N);
5197 end if;
5198 end if;
5199
5200 -- Check that this is not a call to a protected procedure or entry from
5201 -- within a protected function.
5202
5203 if Ekind (Current_Scope) = E_Function
5204 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
5205 and then Ekind (Nam) /= E_Function
5206 and then Scope (Nam) = Scope (Current_Scope)
5207 then
5208 Error_Msg_N ("within protected function, protected " &
5209 "object is constant", N);
5210 Error_Msg_N ("\cannot call operation that may modify it", N);
5211 end if;
5212
5213 -- Freeze the subprogram name if not in a spec-expression. Note that we
5214 -- freeze procedure calls as well as function calls. Procedure calls are
5215 -- not frozen according to the rules (RM 13.14(14)) because it is
5216 -- impossible to have a procedure call to a non-frozen procedure in pure
5217 -- Ada, but in the code that we generate in the expander, this rule
5218 -- needs extending because we can generate procedure calls that need
5219 -- freezing.
5220
5221 if Is_Entity_Name (Subp) and then not In_Spec_Expression then
5222 Freeze_Expression (Subp);
5223 end if;
5224
5225 -- For a predefined operator, the type of the result is the type imposed
5226 -- by context, except for a predefined operation on universal fixed.
5227 -- Otherwise The type of the call is the type returned by the subprogram
5228 -- being called.
5229
5230 if Is_Predefined_Op (Nam) then
5231 if Etype (N) /= Universal_Fixed then
5232 Set_Etype (N, Typ);
5233 end if;
5234
5235 -- If the subprogram returns an array type, and the context requires the
5236 -- component type of that array type, the node is really an indexing of
5237 -- the parameterless call. Resolve as such. A pathological case occurs
5238 -- when the type of the component is an access to the array type. In
5239 -- this case the call is truly ambiguous.
5240
5241 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5242 and then
5243 ((Is_Array_Type (Etype (Nam))
5244 and then Covers (Typ, Component_Type (Etype (Nam))))
5245 or else (Is_Access_Type (Etype (Nam))
5246 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5247 and then
5248 Covers
5249 (Typ,
5250 Component_Type (Designated_Type (Etype (Nam))))))
5251 then
5252 declare
5253 Index_Node : Node_Id;
5254 New_Subp : Node_Id;
5255 Ret_Type : constant Entity_Id := Etype (Nam);
5256
5257 begin
5258 if Is_Access_Type (Ret_Type)
5259 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5260 then
5261 Error_Msg_N
5262 ("cannot disambiguate function call and indexing", N);
5263 else
5264 New_Subp := Relocate_Node (Subp);
5265 Set_Entity (Subp, Nam);
5266
5267 if (Is_Array_Type (Ret_Type)
5268 and then Component_Type (Ret_Type) /= Any_Type)
5269 or else
5270 (Is_Access_Type (Ret_Type)
5271 and then
5272 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5273 then
5274 if Needs_No_Actuals (Nam) then
5275
5276 -- Indexed call to a parameterless function
5277
5278 Index_Node :=
5279 Make_Indexed_Component (Loc,
5280 Prefix =>
5281 Make_Function_Call (Loc,
5282 Name => New_Subp),
5283 Expressions => Parameter_Associations (N));
5284 else
5285 -- An Ada 2005 prefixed call to a primitive operation
5286 -- whose first parameter is the prefix. This prefix was
5287 -- prepended to the parameter list, which is actually a
5288 -- list of indexes. Remove the prefix in order to build
5289 -- the proper indexed component.
5290
5291 Index_Node :=
5292 Make_Indexed_Component (Loc,
5293 Prefix =>
5294 Make_Function_Call (Loc,
5295 Name => New_Subp,
5296 Parameter_Associations =>
5297 New_List
5298 (Remove_Head (Parameter_Associations (N)))),
5299 Expressions => Parameter_Associations (N));
5300 end if;
5301
5302 -- Preserve the parenthesis count of the node
5303
5304 Set_Paren_Count (Index_Node, Paren_Count (N));
5305
5306 -- Since we are correcting a node classification error made
5307 -- by the parser, we call Replace rather than Rewrite.
5308
5309 Replace (N, Index_Node);
5310
5311 Set_Etype (Prefix (N), Ret_Type);
5312 Set_Etype (N, Typ);
5313 Resolve_Indexed_Component (N, Typ);
5314 Check_Elab_Call (Prefix (N));
5315 end if;
5316 end if;
5317
5318 return;
5319 end;
5320
5321 else
5322 Set_Etype (N, Etype (Nam));
5323 end if;
5324
5325 -- In the case where the call is to an overloaded subprogram, Analyze
5326 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5327 -- such a case Normalize_Actuals needs to be called once more to order
5328 -- the actuals correctly. Otherwise the call will have the ordering
5329 -- given by the last overloaded subprogram whether this is the correct
5330 -- one being called or not.
5331
5332 if Is_Overloaded (Subp) then
5333 Normalize_Actuals (N, Nam, False, Norm_OK);
5334 pragma Assert (Norm_OK);
5335 end if;
5336
5337 -- In any case, call is fully resolved now. Reset Overload flag, to
5338 -- prevent subsequent overload resolution if node is analyzed again
5339
5340 Set_Is_Overloaded (Subp, False);
5341 Set_Is_Overloaded (N, False);
5342
5343 -- If we are calling the current subprogram from immediately within its
5344 -- body, then that is the case where we can sometimes detect cases of
5345 -- infinite recursion statically. Do not try this in case restriction
5346 -- No_Recursion is in effect anyway, and do it only for source calls.
5347
5348 if Comes_From_Source (N) then
5349 Scop := Current_Scope;
5350
5351 -- Issue warning for possible infinite recursion in the absence
5352 -- of the No_Recursion restriction.
5353
5354 if Same_Or_Aliased_Subprograms (Nam, Scop)
5355 and then not Restriction_Active (No_Recursion)
5356 and then Check_Infinite_Recursion (N)
5357 then
5358 -- Here we detected and flagged an infinite recursion, so we do
5359 -- not need to test the case below for further warnings. Also we
5360 -- are all done if we now have a raise SE node.
5361
5362 if Nkind (N) = N_Raise_Storage_Error then
5363 return;
5364 end if;
5365
5366 -- If call is to immediately containing subprogram, then check for
5367 -- the case of a possible run-time detectable infinite recursion.
5368
5369 else
5370 Scope_Loop : while Scop /= Standard_Standard loop
5371 if Same_Or_Aliased_Subprograms (Nam, Scop) then
5372
5373 -- Although in general case, recursion is not statically
5374 -- checkable, the case of calling an immediately containing
5375 -- subprogram is easy to catch.
5376
5377 Check_Restriction (No_Recursion, N);
5378
5379 -- If the recursive call is to a parameterless subprogram,
5380 -- then even if we can't statically detect infinite
5381 -- recursion, this is pretty suspicious, and we output a
5382 -- warning. Furthermore, we will try later to detect some
5383 -- cases here at run time by expanding checking code (see
5384 -- Detect_Infinite_Recursion in package Exp_Ch6).
5385
5386 -- If the recursive call is within a handler, do not emit a
5387 -- warning, because this is a common idiom: loop until input
5388 -- is correct, catch illegal input in handler and restart.
5389
5390 if No (First_Formal (Nam))
5391 and then Etype (Nam) = Standard_Void_Type
5392 and then not Error_Posted (N)
5393 and then Nkind (Parent (N)) /= N_Exception_Handler
5394 then
5395 -- For the case of a procedure call. We give the message
5396 -- only if the call is the first statement in a sequence
5397 -- of statements, or if all previous statements are
5398 -- simple assignments. This is simply a heuristic to
5399 -- decrease false positives, without losing too many good
5400 -- warnings. The idea is that these previous statements
5401 -- may affect global variables the procedure depends on.
5402 -- We also exclude raise statements, that may arise from
5403 -- constraint checks and are probably unrelated to the
5404 -- intended control flow.
5405
5406 if Nkind (N) = N_Procedure_Call_Statement
5407 and then Is_List_Member (N)
5408 then
5409 declare
5410 P : Node_Id;
5411 begin
5412 P := Prev (N);
5413 while Present (P) loop
5414 if not Nkind_In (P,
5415 N_Assignment_Statement,
5416 N_Raise_Constraint_Error)
5417 then
5418 exit Scope_Loop;
5419 end if;
5420
5421 Prev (P);
5422 end loop;
5423 end;
5424 end if;
5425
5426 -- Do not give warning if we are in a conditional context
5427
5428 declare
5429 K : constant Node_Kind := Nkind (Parent (N));
5430 begin
5431 if (K = N_Loop_Statement
5432 and then Present (Iteration_Scheme (Parent (N))))
5433 or else K = N_If_Statement
5434 or else K = N_Elsif_Part
5435 or else K = N_Case_Statement_Alternative
5436 then
5437 exit Scope_Loop;
5438 end if;
5439 end;
5440
5441 -- Here warning is to be issued
5442
5443 Set_Has_Recursive_Call (Nam);
5444 Error_Msg_N
5445 ("?possible infinite recursion!", N);
5446 Error_Msg_N
5447 ("\?Storage_Error may be raised at run time!", N);
5448 end if;
5449
5450 exit Scope_Loop;
5451 end if;
5452
5453 Scop := Scope (Scop);
5454 end loop Scope_Loop;
5455 end if;
5456 end if;
5457
5458 -- Check obsolescent reference to Ada.Characters.Handling subprogram
5459
5460 Check_Obsolescent_2005_Entity (Nam, Subp);
5461
5462 -- If subprogram name is a predefined operator, it was given in
5463 -- functional notation. Replace call node with operator node, so
5464 -- that actuals can be resolved appropriately.
5465
5466 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
5467 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
5468 return;
5469
5470 elsif Present (Alias (Nam))
5471 and then Is_Predefined_Op (Alias (Nam))
5472 then
5473 Resolve_Actuals (N, Nam);
5474 Make_Call_Into_Operator (N, Typ, Alias (Nam));
5475 return;
5476 end if;
5477
5478 -- Create a transient scope if the resulting type requires it
5479
5480 -- There are several notable exceptions:
5481
5482 -- a) In init procs, the transient scope overhead is not needed, and is
5483 -- even incorrect when the call is a nested initialization call for a
5484 -- component whose expansion may generate adjust calls. However, if the
5485 -- call is some other procedure call within an initialization procedure
5486 -- (for example a call to Create_Task in the init_proc of the task
5487 -- run-time record) a transient scope must be created around this call.
5488
5489 -- b) Enumeration literal pseudo-calls need no transient scope
5490
5491 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
5492 -- functions) do not use the secondary stack even though the return
5493 -- type may be unconstrained.
5494
5495 -- d) Calls to a build-in-place function, since such functions may
5496 -- allocate their result directly in a target object, and cases where
5497 -- the result does get allocated in the secondary stack are checked for
5498 -- within the specialized Exp_Ch6 procedures for expanding those
5499 -- build-in-place calls.
5500
5501 -- e) If the subprogram is marked Inline_Always, then even if it returns
5502 -- an unconstrained type the call does not require use of the secondary
5503 -- stack. However, inlining will only take place if the body to inline
5504 -- is already present. It may not be available if e.g. the subprogram is
5505 -- declared in a child instance.
5506
5507 -- If this is an initialization call for a type whose construction
5508 -- uses the secondary stack, and it is not a nested call to initialize
5509 -- a component, we do need to create a transient scope for it. We
5510 -- check for this by traversing the type in Check_Initialization_Call.
5511
5512 if Is_Inlined (Nam)
5513 and then Has_Pragma_Inline_Always (Nam)
5514 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5515 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5516 then
5517 null;
5518
5519 elsif Ekind (Nam) = E_Enumeration_Literal
5520 or else Is_Build_In_Place_Function (Nam)
5521 or else Is_Intrinsic_Subprogram (Nam)
5522 then
5523 null;
5524
5525 elsif Full_Expander_Active
5526 and then Is_Type (Etype (Nam))
5527 and then Requires_Transient_Scope (Etype (Nam))
5528 and then
5529 (not Within_Init_Proc
5530 or else
5531 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
5532 then
5533 Establish_Transient_Scope (N, Sec_Stack => True);
5534
5535 -- If the call appears within the bounds of a loop, it will
5536 -- be rewritten and reanalyzed, nothing left to do here.
5537
5538 if Nkind (N) /= N_Function_Call then
5539 return;
5540 end if;
5541
5542 elsif Is_Init_Proc (Nam)
5543 and then not Within_Init_Proc
5544 then
5545 Check_Initialization_Call (N, Nam);
5546 end if;
5547
5548 -- A protected function cannot be called within the definition of the
5549 -- enclosing protected type.
5550
5551 if Is_Protected_Type (Scope (Nam))
5552 and then In_Open_Scopes (Scope (Nam))
5553 and then not Has_Completion (Scope (Nam))
5554 then
5555 Error_Msg_NE
5556 ("& cannot be called before end of protected definition", N, Nam);
5557 end if;
5558
5559 -- Propagate interpretation to actuals, and add default expressions
5560 -- where needed.
5561
5562 if Present (First_Formal (Nam)) then
5563 Resolve_Actuals (N, Nam);
5564
5565 -- Overloaded literals are rewritten as function calls, for purpose of
5566 -- resolution. After resolution, we can replace the call with the
5567 -- literal itself.
5568
5569 elsif Ekind (Nam) = E_Enumeration_Literal then
5570 Copy_Node (Subp, N);
5571 Resolve_Entity_Name (N, Typ);
5572
5573 -- Avoid validation, since it is a static function call
5574
5575 Generate_Reference (Nam, Subp);
5576 return;
5577 end if;
5578
5579 -- If the subprogram is not global, then kill all saved values and
5580 -- checks. This is a bit conservative, since in many cases we could do
5581 -- better, but it is not worth the effort. Similarly, we kill constant
5582 -- values. However we do not need to do this for internal entities
5583 -- (unless they are inherited user-defined subprograms), since they
5584 -- are not in the business of molesting local values.
5585
5586 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5587 -- kill all checks and values for calls to global subprograms. This
5588 -- takes care of the case where an access to a local subprogram is
5589 -- taken, and could be passed directly or indirectly and then called
5590 -- from almost any context.
5591
5592 -- Note: we do not do this step till after resolving the actuals. That
5593 -- way we still take advantage of the current value information while
5594 -- scanning the actuals.
5595
5596 -- We suppress killing values if we are processing the nodes associated
5597 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5598 -- type kills all the values as part of analyzing the code that
5599 -- initializes the dispatch tables.
5600
5601 if Inside_Freezing_Actions = 0
5602 and then (not Is_Library_Level_Entity (Nam)
5603 or else Suppress_Value_Tracking_On_Call
5604 (Nearest_Dynamic_Scope (Current_Scope)))
5605 and then (Comes_From_Source (Nam)
5606 or else (Present (Alias (Nam))
5607 and then Comes_From_Source (Alias (Nam))))
5608 then
5609 Kill_Current_Values;
5610 end if;
5611
5612 -- If we are warning about unread OUT parameters, this is the place to
5613 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5614 -- after the above call to Kill_Current_Values (since that call clears
5615 -- the Last_Assignment field of all local variables).
5616
5617 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
5618 and then Comes_From_Source (N)
5619 and then In_Extended_Main_Source_Unit (N)
5620 then
5621 declare
5622 F : Entity_Id;
5623 A : Node_Id;
5624
5625 begin
5626 F := First_Formal (Nam);
5627 A := First_Actual (N);
5628 while Present (F) and then Present (A) loop
5629 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
5630 and then Warn_On_Modified_As_Out_Parameter (F)
5631 and then Is_Entity_Name (A)
5632 and then Present (Entity (A))
5633 and then Comes_From_Source (N)
5634 and then Safe_To_Capture_Value (N, Entity (A))
5635 then
5636 Set_Last_Assignment (Entity (A), A);
5637 end if;
5638
5639 Next_Formal (F);
5640 Next_Actual (A);
5641 end loop;
5642 end;
5643 end if;
5644
5645 -- If the subprogram is a primitive operation, check whether or not
5646 -- it is a correct dispatching call.
5647
5648 if Is_Overloadable (Nam)
5649 and then Is_Dispatching_Operation (Nam)
5650 then
5651 Check_Dispatching_Call (N);
5652
5653 elsif Ekind (Nam) /= E_Subprogram_Type
5654 and then Is_Abstract_Subprogram (Nam)
5655 and then not In_Instance
5656 then
5657 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
5658 end if;
5659
5660 -- If this is a dispatching call, generate the appropriate reference,
5661 -- for better source navigation in GPS.
5662
5663 if Is_Overloadable (Nam)
5664 and then Present (Controlling_Argument (N))
5665 then
5666 Generate_Reference (Nam, Subp, 'R');
5667
5668 -- Normal case, not a dispatching call: generate a call reference
5669
5670 else
5671 Generate_Reference (Nam, Subp, 's');
5672 end if;
5673
5674 if Is_Intrinsic_Subprogram (Nam) then
5675 Check_Intrinsic_Call (N);
5676 end if;
5677
5678 -- Check for violation of restriction No_Specific_Termination_Handlers
5679 -- and warn on a potentially blocking call to Abort_Task.
5680
5681 if Restriction_Check_Required (No_Specific_Termination_Handlers)
5682 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
5683 or else
5684 Is_RTE (Nam, RE_Specific_Handler))
5685 then
5686 Check_Restriction (No_Specific_Termination_Handlers, N);
5687
5688 elsif Is_RTE (Nam, RE_Abort_Task) then
5689 Check_Potentially_Blocking_Operation (N);
5690 end if;
5691
5692 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
5693 -- timing event violates restriction No_Relative_Delay (AI-0211). We
5694 -- need to check the second argument to determine whether it is an
5695 -- absolute or relative timing event.
5696
5697 if Restriction_Check_Required (No_Relative_Delay)
5698 and then Is_RTE (Nam, RE_Set_Handler)
5699 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
5700 then
5701 Check_Restriction (No_Relative_Delay, N);
5702 end if;
5703
5704 -- Issue an error for a call to an eliminated subprogram. We skip this
5705 -- in a spec expression, e.g. a call in a default parameter value, since
5706 -- we are not really doing a call at this time. That's important because
5707 -- the spec expression may itself belong to an eliminated subprogram.
5708
5709 if not In_Spec_Expression then
5710 Check_For_Eliminated_Subprogram (Subp, Nam);
5711 end if;
5712
5713 -- In formal mode, the primitive operations of a tagged type or type
5714 -- extension do not include functions that return the tagged type.
5715
5716 -- Commented out as the call to Is_Inherited_Operation_For_Type may
5717 -- cause an error because the type entity of the parent node of
5718 -- Entity (Name (N) may not be set. ???
5719 -- So why not just add a guard ???
5720
5721 -- if Nkind (N) = N_Function_Call
5722 -- and then Is_Tagged_Type (Etype (N))
5723 -- and then Is_Entity_Name (Name (N))
5724 -- and then Is_Inherited_Operation_For_Type
5725 -- (Entity (Name (N)), Etype (N))
5726 -- then
5727 -- Check_SPARK_Restriction ("function not inherited", N);
5728 -- end if;
5729
5730 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
5731 -- class-wide and the call dispatches on result in a context that does
5732 -- not provide a tag, the call raises Program_Error.
5733
5734 if Nkind (N) = N_Function_Call
5735 and then In_Instance
5736 and then Is_Generic_Actual_Type (Typ)
5737 and then Is_Class_Wide_Type (Typ)
5738 and then Has_Controlling_Result (Nam)
5739 and then Nkind (Parent (N)) = N_Object_Declaration
5740 then
5741 -- Verify that none of the formals are controlling
5742
5743 declare
5744 Call_OK : Boolean := False;
5745 F : Entity_Id;
5746
5747 begin
5748 F := First_Formal (Nam);
5749 while Present (F) loop
5750 if Is_Controlling_Formal (F) then
5751 Call_OK := True;
5752 exit;
5753 end if;
5754
5755 Next_Formal (F);
5756 end loop;
5757
5758 if not Call_OK then
5759 Error_Msg_N ("!? cannot determine tag of result", N);
5760 Error_Msg_N ("!? Program_Error will be raised", N);
5761 Insert_Action (N,
5762 Make_Raise_Program_Error (Sloc (N),
5763 Reason => PE_Explicit_Raise));
5764 end if;
5765 end;
5766 end if;
5767
5768 -- All done, evaluate call and deal with elaboration issues
5769
5770 Eval_Call (N);
5771 Check_Elab_Call (N);
5772 Warn_On_Overlapping_Actuals (Nam, N);
5773 end Resolve_Call;
5774
5775 -----------------------------
5776 -- Resolve_Case_Expression --
5777 -----------------------------
5778
5779 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
5780 Alt : Node_Id;
5781
5782 begin
5783 Alt := First (Alternatives (N));
5784 while Present (Alt) loop
5785 Resolve (Expression (Alt), Typ);
5786 Next (Alt);
5787 end loop;
5788
5789 Set_Etype (N, Typ);
5790 Eval_Case_Expression (N);
5791 end Resolve_Case_Expression;
5792
5793 -------------------------------
5794 -- Resolve_Character_Literal --
5795 -------------------------------
5796
5797 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
5798 B_Typ : constant Entity_Id := Base_Type (Typ);
5799 C : Entity_Id;
5800
5801 begin
5802 -- Verify that the character does belong to the type of the context
5803
5804 Set_Etype (N, B_Typ);
5805 Eval_Character_Literal (N);
5806
5807 -- Wide_Wide_Character literals must always be defined, since the set
5808 -- of wide wide character literals is complete, i.e. if a character
5809 -- literal is accepted by the parser, then it is OK for wide wide
5810 -- character (out of range character literals are rejected).
5811
5812 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
5813 return;
5814
5815 -- Always accept character literal for type Any_Character, which
5816 -- occurs in error situations and in comparisons of literals, both
5817 -- of which should accept all literals.
5818
5819 elsif B_Typ = Any_Character then
5820 return;
5821
5822 -- For Standard.Character or a type derived from it, check that the
5823 -- literal is in range.
5824
5825 elsif Root_Type (B_Typ) = Standard_Character then
5826 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5827 return;
5828 end if;
5829
5830 -- For Standard.Wide_Character or a type derived from it, check that the
5831 -- literal is in range.
5832
5833 elsif Root_Type (B_Typ) = Standard_Wide_Character then
5834 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5835 return;
5836 end if;
5837
5838 -- For Standard.Wide_Wide_Character or a type derived from it, we
5839 -- know the literal is in range, since the parser checked!
5840
5841 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
5842 return;
5843
5844 -- If the entity is already set, this has already been resolved in a
5845 -- generic context, or comes from expansion. Nothing else to do.
5846
5847 elsif Present (Entity (N)) then
5848 return;
5849
5850 -- Otherwise we have a user defined character type, and we can use the
5851 -- standard visibility mechanisms to locate the referenced entity.
5852
5853 else
5854 C := Current_Entity (N);
5855 while Present (C) loop
5856 if Etype (C) = B_Typ then
5857 Set_Entity_With_Style_Check (N, C);
5858 Generate_Reference (C, N);
5859 return;
5860 end if;
5861
5862 C := Homonym (C);
5863 end loop;
5864 end if;
5865
5866 -- If we fall through, then the literal does not match any of the
5867 -- entries of the enumeration type. This isn't just a constraint error
5868 -- situation, it is an illegality (see RM 4.2).
5869
5870 Error_Msg_NE
5871 ("character not defined for }", N, First_Subtype (B_Typ));
5872 end Resolve_Character_Literal;
5873
5874 ---------------------------
5875 -- Resolve_Comparison_Op --
5876 ---------------------------
5877
5878 -- Context requires a boolean type, and plays no role in resolution.
5879 -- Processing identical to that for equality operators. The result type is
5880 -- the base type, which matters when pathological subtypes of booleans with
5881 -- limited ranges are used.
5882
5883 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
5884 L : constant Node_Id := Left_Opnd (N);
5885 R : constant Node_Id := Right_Opnd (N);
5886 T : Entity_Id;
5887
5888 begin
5889 -- If this is an intrinsic operation which is not predefined, use the
5890 -- types of its declared arguments to resolve the possibly overloaded
5891 -- operands. Otherwise the operands are unambiguous and specify the
5892 -- expected type.
5893
5894 if Scope (Entity (N)) /= Standard_Standard then
5895 T := Etype (First_Entity (Entity (N)));
5896
5897 else
5898 T := Find_Unique_Type (L, R);
5899
5900 if T = Any_Fixed then
5901 T := Unique_Fixed_Point_Type (L);
5902 end if;
5903 end if;
5904
5905 Set_Etype (N, Base_Type (Typ));
5906 Generate_Reference (T, N, ' ');
5907
5908 -- Skip remaining processing if already set to Any_Type
5909
5910 if T = Any_Type then
5911 return;
5912 end if;
5913
5914 -- Deal with other error cases
5915
5916 if T = Any_String or else
5917 T = Any_Composite or else
5918 T = Any_Character
5919 then
5920 if T = Any_Character then
5921 Ambiguous_Character (L);
5922 else
5923 Error_Msg_N ("ambiguous operands for comparison", N);
5924 end if;
5925
5926 Set_Etype (N, Any_Type);
5927 return;
5928 end if;
5929
5930 -- Resolve the operands if types OK
5931
5932 Resolve (L, T);
5933 Resolve (R, T);
5934 Check_Unset_Reference (L);
5935 Check_Unset_Reference (R);
5936 Generate_Operator_Reference (N, T);
5937 Check_Low_Bound_Tested (N);
5938
5939 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
5940 -- types or array types except String.
5941
5942 if Is_Boolean_Type (T) then
5943 Check_SPARK_Restriction
5944 ("comparison is not defined on Boolean type", N);
5945
5946 elsif Is_Array_Type (T)
5947 and then Base_Type (T) /= Standard_String
5948 then
5949 Check_SPARK_Restriction
5950 ("comparison is not defined on array types other than String", N);
5951 end if;
5952
5953 -- Check comparison on unordered enumeration
5954
5955 if Comes_From_Source (N)
5956 and then Bad_Unordered_Enumeration_Reference (N, Etype (L))
5957 then
5958 Error_Msg_N ("comparison on unordered enumeration type?", N);
5959 end if;
5960
5961 -- Evaluate the relation (note we do this after the above check since
5962 -- this Eval call may change N to True/False.
5963
5964 Eval_Relational_Op (N);
5965 end Resolve_Comparison_Op;
5966
5967 ------------------------------------
5968 -- Resolve_Conditional_Expression --
5969 ------------------------------------
5970
5971 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id) is
5972 Condition : constant Node_Id := First (Expressions (N));
5973 Then_Expr : constant Node_Id := Next (Condition);
5974 Else_Expr : Node_Id := Next (Then_Expr);
5975
5976 begin
5977 Resolve (Condition, Any_Boolean);
5978 Resolve (Then_Expr, Typ);
5979
5980 -- If ELSE expression present, just resolve using the determined type
5981
5982 if Present (Else_Expr) then
5983 Resolve (Else_Expr, Typ);
5984
5985 -- If no ELSE expression is present, root type must be Standard.Boolean
5986 -- and we provide a Standard.True result converted to the appropriate
5987 -- Boolean type (in case it is a derived boolean type).
5988
5989 elsif Root_Type (Typ) = Standard_Boolean then
5990 Else_Expr :=
5991 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
5992 Analyze_And_Resolve (Else_Expr, Typ);
5993 Append_To (Expressions (N), Else_Expr);
5994
5995 else
5996 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
5997 Append_To (Expressions (N), Error);
5998 end if;
5999
6000 Set_Etype (N, Typ);
6001 Eval_Conditional_Expression (N);
6002 end Resolve_Conditional_Expression;
6003
6004 -----------------------------------------
6005 -- Resolve_Discrete_Subtype_Indication --
6006 -----------------------------------------
6007
6008 procedure Resolve_Discrete_Subtype_Indication
6009 (N : Node_Id;
6010 Typ : Entity_Id)
6011 is
6012 R : Node_Id;
6013 S : Entity_Id;
6014
6015 begin
6016 Analyze (Subtype_Mark (N));
6017 S := Entity (Subtype_Mark (N));
6018
6019 if Nkind (Constraint (N)) /= N_Range_Constraint then
6020 Error_Msg_N ("expect range constraint for discrete type", N);
6021 Set_Etype (N, Any_Type);
6022
6023 else
6024 R := Range_Expression (Constraint (N));
6025
6026 if R = Error then
6027 return;
6028 end if;
6029
6030 Analyze (R);
6031
6032 if Base_Type (S) /= Base_Type (Typ) then
6033 Error_Msg_NE
6034 ("expect subtype of }", N, First_Subtype (Typ));
6035
6036 -- Rewrite the constraint as a range of Typ
6037 -- to allow compilation to proceed further.
6038
6039 Set_Etype (N, Typ);
6040 Rewrite (Low_Bound (R),
6041 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6042 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6043 Attribute_Name => Name_First));
6044 Rewrite (High_Bound (R),
6045 Make_Attribute_Reference (Sloc (High_Bound (R)),
6046 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6047 Attribute_Name => Name_First));
6048
6049 else
6050 Resolve (R, Typ);
6051 Set_Etype (N, Etype (R));
6052
6053 -- Additionally, we must check that the bounds are compatible
6054 -- with the given subtype, which might be different from the
6055 -- type of the context.
6056
6057 Apply_Range_Check (R, S);
6058
6059 -- ??? If the above check statically detects a Constraint_Error
6060 -- it replaces the offending bound(s) of the range R with a
6061 -- Constraint_Error node. When the itype which uses these bounds
6062 -- is frozen the resulting call to Duplicate_Subexpr generates
6063 -- a new temporary for the bounds.
6064
6065 -- Unfortunately there are other itypes that are also made depend
6066 -- on these bounds, so when Duplicate_Subexpr is called they get
6067 -- a forward reference to the newly created temporaries and Gigi
6068 -- aborts on such forward references. This is probably sign of a
6069 -- more fundamental problem somewhere else in either the order of
6070 -- itype freezing or the way certain itypes are constructed.
6071
6072 -- To get around this problem we call Remove_Side_Effects right
6073 -- away if either bounds of R are a Constraint_Error.
6074
6075 declare
6076 L : constant Node_Id := Low_Bound (R);
6077 H : constant Node_Id := High_Bound (R);
6078
6079 begin
6080 if Nkind (L) = N_Raise_Constraint_Error then
6081 Remove_Side_Effects (L);
6082 end if;
6083
6084 if Nkind (H) = N_Raise_Constraint_Error then
6085 Remove_Side_Effects (H);
6086 end if;
6087 end;
6088
6089 Check_Unset_Reference (Low_Bound (R));
6090 Check_Unset_Reference (High_Bound (R));
6091 end if;
6092 end if;
6093 end Resolve_Discrete_Subtype_Indication;
6094
6095 -------------------------
6096 -- Resolve_Entity_Name --
6097 -------------------------
6098
6099 -- Used to resolve identifiers and expanded names
6100
6101 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6102 E : constant Entity_Id := Entity (N);
6103
6104 begin
6105 -- If garbage from errors, set to Any_Type and return
6106
6107 if No (E) and then Total_Errors_Detected /= 0 then
6108 Set_Etype (N, Any_Type);
6109 return;
6110 end if;
6111
6112 -- Replace named numbers by corresponding literals. Note that this is
6113 -- the one case where Resolve_Entity_Name must reset the Etype, since
6114 -- it is currently marked as universal.
6115
6116 if Ekind (E) = E_Named_Integer then
6117 Set_Etype (N, Typ);
6118 Eval_Named_Integer (N);
6119
6120 elsif Ekind (E) = E_Named_Real then
6121 Set_Etype (N, Typ);
6122 Eval_Named_Real (N);
6123
6124 -- For enumeration literals, we need to make sure that a proper style
6125 -- check is done, since such literals are overloaded, and thus we did
6126 -- not do a style check during the first phase of analysis.
6127
6128 elsif Ekind (E) = E_Enumeration_Literal then
6129 Set_Entity_With_Style_Check (N, E);
6130 Eval_Entity_Name (N);
6131
6132 -- Case of subtype name appearing as an operand in expression
6133
6134 elsif Is_Type (E) then
6135
6136 -- Allow use of subtype if it is a concurrent type where we are
6137 -- currently inside the body. This will eventually be expanded into a
6138 -- call to Self (for tasks) or _object (for protected objects). Any
6139 -- other use of a subtype is invalid.
6140
6141 if Is_Concurrent_Type (E)
6142 and then In_Open_Scopes (E)
6143 then
6144 null;
6145
6146 -- Any other use is an error
6147
6148 else
6149 Error_Msg_N
6150 ("invalid use of subtype mark in expression or call", N);
6151 end if;
6152
6153 -- Check discriminant use if entity is discriminant in current scope,
6154 -- i.e. discriminant of record or concurrent type currently being
6155 -- analyzed. Uses in corresponding body are unrestricted.
6156
6157 elsif Ekind (E) = E_Discriminant
6158 and then Scope (E) = Current_Scope
6159 and then not Has_Completion (Current_Scope)
6160 then
6161 Check_Discriminant_Use (N);
6162
6163 -- A parameterless generic function cannot appear in a context that
6164 -- requires resolution.
6165
6166 elsif Ekind (E) = E_Generic_Function then
6167 Error_Msg_N ("illegal use of generic function", N);
6168
6169 elsif Ekind (E) = E_Out_Parameter
6170 and then Ada_Version = Ada_83
6171 and then (Nkind (Parent (N)) in N_Op
6172 or else (Nkind (Parent (N)) = N_Assignment_Statement
6173 and then N = Expression (Parent (N)))
6174 or else Nkind (Parent (N)) = N_Explicit_Dereference)
6175 then
6176 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
6177
6178 -- In all other cases, just do the possible static evaluation
6179
6180 else
6181 -- A deferred constant that appears in an expression must have a
6182 -- completion, unless it has been removed by in-place expansion of
6183 -- an aggregate.
6184
6185 if Ekind (E) = E_Constant
6186 and then Comes_From_Source (E)
6187 and then No (Constant_Value (E))
6188 and then Is_Frozen (Etype (E))
6189 and then not In_Spec_Expression
6190 and then not Is_Imported (E)
6191 then
6192 if No_Initialization (Parent (E))
6193 or else (Present (Full_View (E))
6194 and then No_Initialization (Parent (Full_View (E))))
6195 then
6196 null;
6197 else
6198 Error_Msg_N (
6199 "deferred constant is frozen before completion", N);
6200 end if;
6201 end if;
6202
6203 Eval_Entity_Name (N);
6204 end if;
6205 end Resolve_Entity_Name;
6206
6207 -------------------
6208 -- Resolve_Entry --
6209 -------------------
6210
6211 procedure Resolve_Entry (Entry_Name : Node_Id) is
6212 Loc : constant Source_Ptr := Sloc (Entry_Name);
6213 Nam : Entity_Id;
6214 New_N : Node_Id;
6215 S : Entity_Id;
6216 Tsk : Entity_Id;
6217 E_Name : Node_Id;
6218 Index : Node_Id;
6219
6220 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
6221 -- If the bounds of the entry family being called depend on task
6222 -- discriminants, build a new index subtype where a discriminant is
6223 -- replaced with the value of the discriminant of the target task.
6224 -- The target task is the prefix of the entry name in the call.
6225
6226 -----------------------
6227 -- Actual_Index_Type --
6228 -----------------------
6229
6230 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
6231 Typ : constant Entity_Id := Entry_Index_Type (E);
6232 Tsk : constant Entity_Id := Scope (E);
6233 Lo : constant Node_Id := Type_Low_Bound (Typ);
6234 Hi : constant Node_Id := Type_High_Bound (Typ);
6235 New_T : Entity_Id;
6236
6237 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
6238 -- If the bound is given by a discriminant, replace with a reference
6239 -- to the discriminant of the same name in the target task. If the
6240 -- entry name is the target of a requeue statement and the entry is
6241 -- in the current protected object, the bound to be used is the
6242 -- discriminal of the object (see Apply_Range_Checks for details of
6243 -- the transformation).
6244
6245 -----------------------------
6246 -- Actual_Discriminant_Ref --
6247 -----------------------------
6248
6249 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
6250 Typ : constant Entity_Id := Etype (Bound);
6251 Ref : Node_Id;
6252
6253 begin
6254 Remove_Side_Effects (Bound);
6255
6256 if not Is_Entity_Name (Bound)
6257 or else Ekind (Entity (Bound)) /= E_Discriminant
6258 then
6259 return Bound;
6260
6261 elsif Is_Protected_Type (Tsk)
6262 and then In_Open_Scopes (Tsk)
6263 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
6264 then
6265 -- Note: here Bound denotes a discriminant of the corresponding
6266 -- record type tskV, whose discriminal is a formal of the
6267 -- init-proc tskVIP. What we want is the body discriminal,
6268 -- which is associated to the discriminant of the original
6269 -- concurrent type tsk.
6270
6271 return New_Occurrence_Of
6272 (Find_Body_Discriminal (Entity (Bound)), Loc);
6273
6274 else
6275 Ref :=
6276 Make_Selected_Component (Loc,
6277 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
6278 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
6279 Analyze (Ref);
6280 Resolve (Ref, Typ);
6281 return Ref;
6282 end if;
6283 end Actual_Discriminant_Ref;
6284
6285 -- Start of processing for Actual_Index_Type
6286
6287 begin
6288 if not Has_Discriminants (Tsk)
6289 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
6290 then
6291 return Entry_Index_Type (E);
6292
6293 else
6294 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
6295 Set_Etype (New_T, Base_Type (Typ));
6296 Set_Size_Info (New_T, Typ);
6297 Set_RM_Size (New_T, RM_Size (Typ));
6298 Set_Scalar_Range (New_T,
6299 Make_Range (Sloc (Entry_Name),
6300 Low_Bound => Actual_Discriminant_Ref (Lo),
6301 High_Bound => Actual_Discriminant_Ref (Hi)));
6302
6303 return New_T;
6304 end if;
6305 end Actual_Index_Type;
6306
6307 -- Start of processing of Resolve_Entry
6308
6309 begin
6310 -- Find name of entry being called, and resolve prefix of name with its
6311 -- own type. The prefix can be overloaded, and the name and signature of
6312 -- the entry must be taken into account.
6313
6314 if Nkind (Entry_Name) = N_Indexed_Component then
6315
6316 -- Case of dealing with entry family within the current tasks
6317
6318 E_Name := Prefix (Entry_Name);
6319
6320 else
6321 E_Name := Entry_Name;
6322 end if;
6323
6324 if Is_Entity_Name (E_Name) then
6325
6326 -- Entry call to an entry (or entry family) in the current task. This
6327 -- is legal even though the task will deadlock. Rewrite as call to
6328 -- current task.
6329
6330 -- This can also be a call to an entry in an enclosing task. If this
6331 -- is a single task, we have to retrieve its name, because the scope
6332 -- of the entry is the task type, not the object. If the enclosing
6333 -- task is a task type, the identity of the task is given by its own
6334 -- self variable.
6335
6336 -- Finally this can be a requeue on an entry of the same task or
6337 -- protected object.
6338
6339 S := Scope (Entity (E_Name));
6340
6341 for J in reverse 0 .. Scope_Stack.Last loop
6342 if Is_Task_Type (Scope_Stack.Table (J).Entity)
6343 and then not Comes_From_Source (S)
6344 then
6345 -- S is an enclosing task or protected object. The concurrent
6346 -- declaration has been converted into a type declaration, and
6347 -- the object itself has an object declaration that follows
6348 -- the type in the same declarative part.
6349
6350 Tsk := Next_Entity (S);
6351 while Etype (Tsk) /= S loop
6352 Next_Entity (Tsk);
6353 end loop;
6354
6355 S := Tsk;
6356 exit;
6357
6358 elsif S = Scope_Stack.Table (J).Entity then
6359
6360 -- Call to current task. Will be transformed into call to Self
6361
6362 exit;
6363
6364 end if;
6365 end loop;
6366
6367 New_N :=
6368 Make_Selected_Component (Loc,
6369 Prefix => New_Occurrence_Of (S, Loc),
6370 Selector_Name =>
6371 New_Occurrence_Of (Entity (E_Name), Loc));
6372 Rewrite (E_Name, New_N);
6373 Analyze (E_Name);
6374
6375 elsif Nkind (Entry_Name) = N_Selected_Component
6376 and then Is_Overloaded (Prefix (Entry_Name))
6377 then
6378 -- Use the entry name (which must be unique at this point) to find
6379 -- the prefix that returns the corresponding task/protected type.
6380
6381 declare
6382 Pref : constant Node_Id := Prefix (Entry_Name);
6383 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
6384 I : Interp_Index;
6385 It : Interp;
6386
6387 begin
6388 Get_First_Interp (Pref, I, It);
6389 while Present (It.Typ) loop
6390 if Scope (Ent) = It.Typ then
6391 Set_Etype (Pref, It.Typ);
6392 exit;
6393 end if;
6394
6395 Get_Next_Interp (I, It);
6396 end loop;
6397 end;
6398 end if;
6399
6400 if Nkind (Entry_Name) = N_Selected_Component then
6401 Resolve (Prefix (Entry_Name));
6402
6403 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6404 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6405 Resolve (Prefix (Prefix (Entry_Name)));
6406 Index := First (Expressions (Entry_Name));
6407 Resolve (Index, Entry_Index_Type (Nam));
6408
6409 -- Up to this point the expression could have been the actual in a
6410 -- simple entry call, and be given by a named association.
6411
6412 if Nkind (Index) = N_Parameter_Association then
6413 Error_Msg_N ("expect expression for entry index", Index);
6414 else
6415 Apply_Range_Check (Index, Actual_Index_Type (Nam));
6416 end if;
6417 end if;
6418 end Resolve_Entry;
6419
6420 ------------------------
6421 -- Resolve_Entry_Call --
6422 ------------------------
6423
6424 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
6425 Entry_Name : constant Node_Id := Name (N);
6426 Loc : constant Source_Ptr := Sloc (Entry_Name);
6427 Actuals : List_Id;
6428 First_Named : Node_Id;
6429 Nam : Entity_Id;
6430 Norm_OK : Boolean;
6431 Obj : Node_Id;
6432 Was_Over : Boolean;
6433
6434 begin
6435 -- We kill all checks here, because it does not seem worth the effort to
6436 -- do anything better, an entry call is a big operation.
6437
6438 Kill_All_Checks;
6439
6440 -- Processing of the name is similar for entry calls and protected
6441 -- operation calls. Once the entity is determined, we can complete
6442 -- the resolution of the actuals.
6443
6444 -- The selector may be overloaded, in the case of a protected object
6445 -- with overloaded functions. The type of the context is used for
6446 -- resolution.
6447
6448 if Nkind (Entry_Name) = N_Selected_Component
6449 and then Is_Overloaded (Selector_Name (Entry_Name))
6450 and then Typ /= Standard_Void_Type
6451 then
6452 declare
6453 I : Interp_Index;
6454 It : Interp;
6455
6456 begin
6457 Get_First_Interp (Selector_Name (Entry_Name), I, It);
6458 while Present (It.Typ) loop
6459 if Covers (Typ, It.Typ) then
6460 Set_Entity (Selector_Name (Entry_Name), It.Nam);
6461 Set_Etype (Entry_Name, It.Typ);
6462
6463 Generate_Reference (It.Typ, N, ' ');
6464 end if;
6465
6466 Get_Next_Interp (I, It);
6467 end loop;
6468 end;
6469 end if;
6470
6471 Resolve_Entry (Entry_Name);
6472
6473 if Nkind (Entry_Name) = N_Selected_Component then
6474
6475 -- Simple entry call
6476
6477 Nam := Entity (Selector_Name (Entry_Name));
6478 Obj := Prefix (Entry_Name);
6479 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
6480
6481 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6482
6483 -- Call to member of entry family
6484
6485 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6486 Obj := Prefix (Prefix (Entry_Name));
6487 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
6488 end if;
6489
6490 -- We cannot in general check the maximum depth of protected entry calls
6491 -- at compile time. But we can tell that any protected entry call at all
6492 -- violates a specified nesting depth of zero.
6493
6494 if Is_Protected_Type (Scope (Nam)) then
6495 Check_Restriction (Max_Entry_Queue_Length, N);
6496 end if;
6497
6498 -- Use context type to disambiguate a protected function that can be
6499 -- called without actuals and that returns an array type, and where the
6500 -- argument list may be an indexing of the returned value.
6501
6502 if Ekind (Nam) = E_Function
6503 and then Needs_No_Actuals (Nam)
6504 and then Present (Parameter_Associations (N))
6505 and then
6506 ((Is_Array_Type (Etype (Nam))
6507 and then Covers (Typ, Component_Type (Etype (Nam))))
6508
6509 or else (Is_Access_Type (Etype (Nam))
6510 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6511 and then
6512 Covers
6513 (Typ,
6514 Component_Type (Designated_Type (Etype (Nam))))))
6515 then
6516 declare
6517 Index_Node : Node_Id;
6518
6519 begin
6520 Index_Node :=
6521 Make_Indexed_Component (Loc,
6522 Prefix =>
6523 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
6524 Expressions => Parameter_Associations (N));
6525
6526 -- Since we are correcting a node classification error made by the
6527 -- parser, we call Replace rather than Rewrite.
6528
6529 Replace (N, Index_Node);
6530 Set_Etype (Prefix (N), Etype (Nam));
6531 Set_Etype (N, Typ);
6532 Resolve_Indexed_Component (N, Typ);
6533 return;
6534 end;
6535 end if;
6536
6537 if Ekind_In (Nam, E_Entry, E_Entry_Family)
6538 and then Present (PPC_Wrapper (Nam))
6539 and then Current_Scope /= PPC_Wrapper (Nam)
6540 then
6541 -- Rewrite as call to the precondition wrapper, adding the task
6542 -- object to the list of actuals. If the call is to a member of an
6543 -- entry family, include the index as well.
6544
6545 declare
6546 New_Call : Node_Id;
6547 New_Actuals : List_Id;
6548
6549 begin
6550 New_Actuals := New_List (Obj);
6551
6552 if Nkind (Entry_Name) = N_Indexed_Component then
6553 Append_To (New_Actuals,
6554 New_Copy_Tree (First (Expressions (Entry_Name))));
6555 end if;
6556
6557 Append_List (Parameter_Associations (N), New_Actuals);
6558 New_Call :=
6559 Make_Procedure_Call_Statement (Loc,
6560 Name =>
6561 New_Occurrence_Of (PPC_Wrapper (Nam), Loc),
6562 Parameter_Associations => New_Actuals);
6563 Rewrite (N, New_Call);
6564 Analyze_And_Resolve (N);
6565 return;
6566 end;
6567 end if;
6568
6569 -- The operation name may have been overloaded. Order the actuals
6570 -- according to the formals of the resolved entity, and set the return
6571 -- type to that of the operation.
6572
6573 if Was_Over then
6574 Normalize_Actuals (N, Nam, False, Norm_OK);
6575 pragma Assert (Norm_OK);
6576 Set_Etype (N, Etype (Nam));
6577 end if;
6578
6579 Resolve_Actuals (N, Nam);
6580
6581 -- Create a call reference to the entry
6582
6583 Generate_Reference (Nam, Entry_Name, 's');
6584
6585 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
6586 Check_Potentially_Blocking_Operation (N);
6587 end if;
6588
6589 -- Verify that a procedure call cannot masquerade as an entry
6590 -- call where an entry call is expected.
6591
6592 if Ekind (Nam) = E_Procedure then
6593 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6594 and then N = Entry_Call_Statement (Parent (N))
6595 then
6596 Error_Msg_N ("entry call required in select statement", N);
6597
6598 elsif Nkind (Parent (N)) = N_Triggering_Alternative
6599 and then N = Triggering_Statement (Parent (N))
6600 then
6601 Error_Msg_N ("triggering statement cannot be procedure call", N);
6602
6603 elsif Ekind (Scope (Nam)) = E_Task_Type
6604 and then not In_Open_Scopes (Scope (Nam))
6605 then
6606 Error_Msg_N ("task has no entry with this name", Entry_Name);
6607 end if;
6608 end if;
6609
6610 -- After resolution, entry calls and protected procedure calls are
6611 -- changed into entry calls, for expansion. The structure of the node
6612 -- does not change, so it can safely be done in place. Protected
6613 -- function calls must keep their structure because they are
6614 -- subexpressions.
6615
6616 if Ekind (Nam) /= E_Function then
6617
6618 -- A protected operation that is not a function may modify the
6619 -- corresponding object, and cannot apply to a constant. If this
6620 -- is an internal call, the prefix is the type itself.
6621
6622 if Is_Protected_Type (Scope (Nam))
6623 and then not Is_Variable (Obj)
6624 and then (not Is_Entity_Name (Obj)
6625 or else not Is_Type (Entity (Obj)))
6626 then
6627 Error_Msg_N
6628 ("prefix of protected procedure or entry call must be variable",
6629 Entry_Name);
6630 end if;
6631
6632 Actuals := Parameter_Associations (N);
6633 First_Named := First_Named_Actual (N);
6634
6635 Rewrite (N,
6636 Make_Entry_Call_Statement (Loc,
6637 Name => Entry_Name,
6638 Parameter_Associations => Actuals));
6639
6640 Set_First_Named_Actual (N, First_Named);
6641 Set_Analyzed (N, True);
6642
6643 -- Protected functions can return on the secondary stack, in which
6644 -- case we must trigger the transient scope mechanism.
6645
6646 elsif Full_Expander_Active
6647 and then Requires_Transient_Scope (Etype (Nam))
6648 then
6649 Establish_Transient_Scope (N, Sec_Stack => True);
6650 end if;
6651 end Resolve_Entry_Call;
6652
6653 -------------------------
6654 -- Resolve_Equality_Op --
6655 -------------------------
6656
6657 -- Both arguments must have the same type, and the boolean context does
6658 -- not participate in the resolution. The first pass verifies that the
6659 -- interpretation is not ambiguous, and the type of the left argument is
6660 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
6661 -- are strings or aggregates, allocators, or Null, they are ambiguous even
6662 -- though they carry a single (universal) type. Diagnose this case here.
6663
6664 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
6665 L : constant Node_Id := Left_Opnd (N);
6666 R : constant Node_Id := Right_Opnd (N);
6667 T : Entity_Id := Find_Unique_Type (L, R);
6668
6669 procedure Check_Conditional_Expression (Cond : Node_Id);
6670 -- The resolution rule for conditional expressions requires that each
6671 -- such must have a unique type. This means that if several dependent
6672 -- expressions are of a non-null anonymous access type, and the context
6673 -- does not impose an expected type (as can be the case in an equality
6674 -- operation) the expression must be rejected.
6675
6676 function Find_Unique_Access_Type return Entity_Id;
6677 -- In the case of allocators, make a last-ditch attempt to find a single
6678 -- access type with the right designated type. This is semantically
6679 -- dubious, and of no interest to any real code, but c48008a makes it
6680 -- all worthwhile.
6681
6682 ----------------------------------
6683 -- Check_Conditional_Expression --
6684 ----------------------------------
6685
6686 procedure Check_Conditional_Expression (Cond : Node_Id) is
6687 Then_Expr : Node_Id;
6688 Else_Expr : Node_Id;
6689
6690 begin
6691 if Nkind (Cond) = N_Conditional_Expression then
6692 Then_Expr := Next (First (Expressions (Cond)));
6693 Else_Expr := Next (Then_Expr);
6694
6695 if Nkind (Then_Expr) /= N_Null
6696 and then Nkind (Else_Expr) /= N_Null
6697 then
6698 Error_Msg_N
6699 ("cannot determine type of conditional expression", Cond);
6700 end if;
6701 end if;
6702 end Check_Conditional_Expression;
6703
6704 -----------------------------
6705 -- Find_Unique_Access_Type --
6706 -----------------------------
6707
6708 function Find_Unique_Access_Type return Entity_Id is
6709 Acc : Entity_Id;
6710 E : Entity_Id;
6711 S : Entity_Id;
6712
6713 begin
6714 if Ekind (Etype (R)) = E_Allocator_Type then
6715 Acc := Designated_Type (Etype (R));
6716 elsif Ekind (Etype (L)) = E_Allocator_Type then
6717 Acc := Designated_Type (Etype (L));
6718 else
6719 return Empty;
6720 end if;
6721
6722 S := Current_Scope;
6723 while S /= Standard_Standard loop
6724 E := First_Entity (S);
6725 while Present (E) loop
6726 if Is_Type (E)
6727 and then Is_Access_Type (E)
6728 and then Ekind (E) /= E_Allocator_Type
6729 and then Designated_Type (E) = Base_Type (Acc)
6730 then
6731 return E;
6732 end if;
6733
6734 Next_Entity (E);
6735 end loop;
6736
6737 S := Scope (S);
6738 end loop;
6739
6740 return Empty;
6741 end Find_Unique_Access_Type;
6742
6743 -- Start of processing for Resolve_Equality_Op
6744
6745 begin
6746 Set_Etype (N, Base_Type (Typ));
6747 Generate_Reference (T, N, ' ');
6748
6749 if T = Any_Fixed then
6750 T := Unique_Fixed_Point_Type (L);
6751 end if;
6752
6753 if T /= Any_Type then
6754 if T = Any_String or else
6755 T = Any_Composite or else
6756 T = Any_Character
6757 then
6758 if T = Any_Character then
6759 Ambiguous_Character (L);
6760 else
6761 Error_Msg_N ("ambiguous operands for equality", N);
6762 end if;
6763
6764 Set_Etype (N, Any_Type);
6765 return;
6766
6767 elsif T = Any_Access
6768 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
6769 then
6770 T := Find_Unique_Access_Type;
6771
6772 if No (T) then
6773 Error_Msg_N ("ambiguous operands for equality", N);
6774 Set_Etype (N, Any_Type);
6775 return;
6776 end if;
6777
6778 -- Conditional expressions must have a single type, and if the
6779 -- context does not impose one the dependent expressions cannot
6780 -- be anonymous access types.
6781
6782 elsif Ada_Version >= Ada_2012
6783 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
6784 E_Anonymous_Access_Subprogram_Type)
6785 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
6786 E_Anonymous_Access_Subprogram_Type)
6787 then
6788 Check_Conditional_Expression (L);
6789 Check_Conditional_Expression (R);
6790 end if;
6791
6792 Resolve (L, T);
6793 Resolve (R, T);
6794
6795 -- In SPARK, equality operators = and /= for array types other than
6796 -- String are only defined when, for each index position, the
6797 -- operands have equal static bounds.
6798
6799 if Is_Array_Type (T) then
6800 -- Protect call to Matching_Static_Array_Bounds to avoid costly
6801 -- operation if not needed.
6802
6803 if Restriction_Check_Required (SPARK)
6804 and then Base_Type (T) /= Standard_String
6805 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6806 and then Etype (L) /= Any_Composite -- or else L in error
6807 and then Etype (R) /= Any_Composite -- or else R in error
6808 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
6809 then
6810 Check_SPARK_Restriction
6811 ("array types should have matching static bounds", N);
6812 end if;
6813 end if;
6814
6815 -- If the unique type is a class-wide type then it will be expanded
6816 -- into a dispatching call to the predefined primitive. Therefore we
6817 -- check here for potential violation of such restriction.
6818
6819 if Is_Class_Wide_Type (T) then
6820 Check_Restriction (No_Dispatching_Calls, N);
6821 end if;
6822
6823 if Warn_On_Redundant_Constructs
6824 and then Comes_From_Source (N)
6825 and then Is_Entity_Name (R)
6826 and then Entity (R) = Standard_True
6827 and then Comes_From_Source (R)
6828 then
6829 Error_Msg_N -- CODEFIX
6830 ("?comparison with True is redundant!", R);
6831 end if;
6832
6833 Check_Unset_Reference (L);
6834 Check_Unset_Reference (R);
6835 Generate_Operator_Reference (N, T);
6836 Check_Low_Bound_Tested (N);
6837
6838 -- If this is an inequality, it may be the implicit inequality
6839 -- created for a user-defined operation, in which case the corres-
6840 -- ponding equality operation is not intrinsic, and the operation
6841 -- cannot be constant-folded. Else fold.
6842
6843 if Nkind (N) = N_Op_Eq
6844 or else Comes_From_Source (Entity (N))
6845 or else Ekind (Entity (N)) = E_Operator
6846 or else Is_Intrinsic_Subprogram
6847 (Corresponding_Equality (Entity (N)))
6848 then
6849 Eval_Relational_Op (N);
6850
6851 elsif Nkind (N) = N_Op_Ne
6852 and then Is_Abstract_Subprogram (Entity (N))
6853 then
6854 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
6855 end if;
6856
6857 -- Ada 2005: If one operand is an anonymous access type, convert the
6858 -- other operand to it, to ensure that the underlying types match in
6859 -- the back-end. Same for access_to_subprogram, and the conversion
6860 -- verifies that the types are subtype conformant.
6861
6862 -- We apply the same conversion in the case one of the operands is a
6863 -- private subtype of the type of the other.
6864
6865 -- Why the Expander_Active test here ???
6866
6867 if Full_Expander_Active
6868 and then
6869 (Ekind_In (T, E_Anonymous_Access_Type,
6870 E_Anonymous_Access_Subprogram_Type)
6871 or else Is_Private_Type (T))
6872 then
6873 if Etype (L) /= T then
6874 Rewrite (L,
6875 Make_Unchecked_Type_Conversion (Sloc (L),
6876 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
6877 Expression => Relocate_Node (L)));
6878 Analyze_And_Resolve (L, T);
6879 end if;
6880
6881 if (Etype (R)) /= T then
6882 Rewrite (R,
6883 Make_Unchecked_Type_Conversion (Sloc (R),
6884 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
6885 Expression => Relocate_Node (R)));
6886 Analyze_And_Resolve (R, T);
6887 end if;
6888 end if;
6889 end if;
6890 end Resolve_Equality_Op;
6891
6892 ----------------------------------
6893 -- Resolve_Explicit_Dereference --
6894 ----------------------------------
6895
6896 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
6897 Loc : constant Source_Ptr := Sloc (N);
6898 New_N : Node_Id;
6899 P : constant Node_Id := Prefix (N);
6900 I : Interp_Index;
6901 It : Interp;
6902
6903 begin
6904 Check_Fully_Declared_Prefix (Typ, P);
6905
6906 if Is_Overloaded (P) then
6907
6908 -- Use the context type to select the prefix that has the correct
6909 -- designated type.
6910
6911 Get_First_Interp (P, I, It);
6912 while Present (It.Typ) loop
6913 exit when Is_Access_Type (It.Typ)
6914 and then Covers (Typ, Designated_Type (It.Typ));
6915 Get_Next_Interp (I, It);
6916 end loop;
6917
6918 if Present (It.Typ) then
6919 Resolve (P, It.Typ);
6920 else
6921 -- If no interpretation covers the designated type of the prefix,
6922 -- this is the pathological case where not all implementations of
6923 -- the prefix allow the interpretation of the node as a call. Now
6924 -- that the expected type is known, Remove other interpretations
6925 -- from prefix, rewrite it as a call, and resolve again, so that
6926 -- the proper call node is generated.
6927
6928 Get_First_Interp (P, I, It);
6929 while Present (It.Typ) loop
6930 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
6931 Remove_Interp (I);
6932 end if;
6933
6934 Get_Next_Interp (I, It);
6935 end loop;
6936
6937 New_N :=
6938 Make_Function_Call (Loc,
6939 Name =>
6940 Make_Explicit_Dereference (Loc,
6941 Prefix => P),
6942 Parameter_Associations => New_List);
6943
6944 Save_Interps (N, New_N);
6945 Rewrite (N, New_N);
6946 Analyze_And_Resolve (N, Typ);
6947 return;
6948 end if;
6949
6950 Set_Etype (N, Designated_Type (It.Typ));
6951
6952 else
6953 Resolve (P);
6954 end if;
6955
6956 if Is_Access_Type (Etype (P)) then
6957 Apply_Access_Check (N);
6958 end if;
6959
6960 -- If the designated type is a packed unconstrained array type, and the
6961 -- explicit dereference is not in the context of an attribute reference,
6962 -- then we must compute and set the actual subtype, since it is needed
6963 -- by Gigi. The reason we exclude the attribute case is that this is
6964 -- handled fine by Gigi, and in fact we use such attributes to build the
6965 -- actual subtype. We also exclude generated code (which builds actual
6966 -- subtypes directly if they are needed).
6967
6968 if Is_Array_Type (Etype (N))
6969 and then Is_Packed (Etype (N))
6970 and then not Is_Constrained (Etype (N))
6971 and then Nkind (Parent (N)) /= N_Attribute_Reference
6972 and then Comes_From_Source (N)
6973 then
6974 Set_Etype (N, Get_Actual_Subtype (N));
6975 end if;
6976
6977 -- Note: No Eval processing is required for an explicit dereference,
6978 -- because such a name can never be static.
6979
6980 end Resolve_Explicit_Dereference;
6981
6982 -------------------------------------
6983 -- Resolve_Expression_With_Actions --
6984 -------------------------------------
6985
6986 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
6987 begin
6988 Set_Etype (N, Typ);
6989 end Resolve_Expression_With_Actions;
6990
6991 -------------------------------
6992 -- Resolve_Indexed_Component --
6993 -------------------------------
6994
6995 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
6996 Name : constant Node_Id := Prefix (N);
6997 Expr : Node_Id;
6998 Array_Type : Entity_Id := Empty; -- to prevent junk warning
6999 Index : Node_Id;
7000
7001 begin
7002 if Is_Overloaded (Name) then
7003
7004 -- Use the context type to select the prefix that yields the correct
7005 -- component type.
7006
7007 declare
7008 I : Interp_Index;
7009 It : Interp;
7010 I1 : Interp_Index := 0;
7011 P : constant Node_Id := Prefix (N);
7012 Found : Boolean := False;
7013
7014 begin
7015 Get_First_Interp (P, I, It);
7016 while Present (It.Typ) loop
7017 if (Is_Array_Type (It.Typ)
7018 and then Covers (Typ, Component_Type (It.Typ)))
7019 or else (Is_Access_Type (It.Typ)
7020 and then Is_Array_Type (Designated_Type (It.Typ))
7021 and then
7022 Covers
7023 (Typ,
7024 Component_Type (Designated_Type (It.Typ))))
7025 then
7026 if Found then
7027 It := Disambiguate (P, I1, I, Any_Type);
7028
7029 if It = No_Interp then
7030 Error_Msg_N ("ambiguous prefix for indexing", N);
7031 Set_Etype (N, Typ);
7032 return;
7033
7034 else
7035 Found := True;
7036 Array_Type := It.Typ;
7037 I1 := I;
7038 end if;
7039
7040 else
7041 Found := True;
7042 Array_Type := It.Typ;
7043 I1 := I;
7044 end if;
7045 end if;
7046
7047 Get_Next_Interp (I, It);
7048 end loop;
7049 end;
7050
7051 else
7052 Array_Type := Etype (Name);
7053 end if;
7054
7055 Resolve (Name, Array_Type);
7056 Array_Type := Get_Actual_Subtype_If_Available (Name);
7057
7058 -- If prefix is access type, dereference to get real array type.
7059 -- Note: we do not apply an access check because the expander always
7060 -- introduces an explicit dereference, and the check will happen there.
7061
7062 if Is_Access_Type (Array_Type) then
7063 Array_Type := Designated_Type (Array_Type);
7064 end if;
7065
7066 -- If name was overloaded, set component type correctly now
7067 -- If a misplaced call to an entry family (which has no index types)
7068 -- return. Error will be diagnosed from calling context.
7069
7070 if Is_Array_Type (Array_Type) then
7071 Set_Etype (N, Component_Type (Array_Type));
7072 else
7073 return;
7074 end if;
7075
7076 Index := First_Index (Array_Type);
7077 Expr := First (Expressions (N));
7078
7079 -- The prefix may have resolved to a string literal, in which case its
7080 -- etype has a special representation. This is only possible currently
7081 -- if the prefix is a static concatenation, written in functional
7082 -- notation.
7083
7084 if Ekind (Array_Type) = E_String_Literal_Subtype then
7085 Resolve (Expr, Standard_Positive);
7086
7087 else
7088 while Present (Index) and Present (Expr) loop
7089 Resolve (Expr, Etype (Index));
7090 Check_Unset_Reference (Expr);
7091
7092 if Is_Scalar_Type (Etype (Expr)) then
7093 Apply_Scalar_Range_Check (Expr, Etype (Index));
7094 else
7095 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
7096 end if;
7097
7098 Next_Index (Index);
7099 Next (Expr);
7100 end loop;
7101 end if;
7102
7103 -- Do not generate the warning on suspicious index if we are analyzing
7104 -- package Ada.Tags; otherwise we will report the warning with the
7105 -- Prims_Ptr field of the dispatch table.
7106
7107 if Scope (Etype (Prefix (N))) = Standard_Standard
7108 or else not
7109 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
7110 Ada_Tags)
7111 then
7112 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
7113 Eval_Indexed_Component (N);
7114 end if;
7115
7116 -- If the array type is atomic, and is packed, and we are in a left side
7117 -- context, then this is worth a warning, since we have a situation
7118 -- where the access to the component may cause extra read/writes of
7119 -- the atomic array object, which could be considered unexpected.
7120
7121 if Nkind (N) = N_Indexed_Component
7122 and then (Is_Atomic (Array_Type)
7123 or else (Is_Entity_Name (Prefix (N))
7124 and then Is_Atomic (Entity (Prefix (N)))))
7125 and then Is_Bit_Packed_Array (Array_Type)
7126 and then Is_LHS (N)
7127 then
7128 Error_Msg_N ("?assignment to component of packed atomic array",
7129 Prefix (N));
7130 Error_Msg_N ("?\may cause unexpected accesses to atomic object",
7131 Prefix (N));
7132 end if;
7133 end Resolve_Indexed_Component;
7134
7135 -----------------------------
7136 -- Resolve_Integer_Literal --
7137 -----------------------------
7138
7139 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
7140 begin
7141 Set_Etype (N, Typ);
7142 Eval_Integer_Literal (N);
7143 end Resolve_Integer_Literal;
7144
7145 --------------------------------
7146 -- Resolve_Intrinsic_Operator --
7147 --------------------------------
7148
7149 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
7150 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
7151 Op : Entity_Id;
7152 Orig_Op : constant Entity_Id := Entity (N);
7153 Arg1 : Node_Id;
7154 Arg2 : Node_Id;
7155
7156 function Convert_Operand (Opnd : Node_Id) return Node_Id;
7157 -- If the operand is a literal, it cannot be the expression in a
7158 -- conversion. Use a qualified expression instead.
7159
7160 function Convert_Operand (Opnd : Node_Id) return Node_Id is
7161 Loc : constant Source_Ptr := Sloc (Opnd);
7162 Res : Node_Id;
7163 begin
7164 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
7165 Res :=
7166 Make_Qualified_Expression (Loc,
7167 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
7168 Expression => Relocate_Node (Opnd));
7169 Analyze (Res);
7170
7171 else
7172 Res := Unchecked_Convert_To (Btyp, Opnd);
7173 end if;
7174
7175 return Res;
7176 end Convert_Operand;
7177
7178 -- Start of processing for Resolve_Intrinsic_Operator
7179
7180 begin
7181 -- We must preserve the original entity in a generic setting, so that
7182 -- the legality of the operation can be verified in an instance.
7183
7184 if not Full_Expander_Active then
7185 return;
7186 end if;
7187
7188 Op := Entity (N);
7189 while Scope (Op) /= Standard_Standard loop
7190 Op := Homonym (Op);
7191 pragma Assert (Present (Op));
7192 end loop;
7193
7194 Set_Entity (N, Op);
7195 Set_Is_Overloaded (N, False);
7196
7197 -- If the result or operand types are private, rewrite with unchecked
7198 -- conversions on the operands and the result, to expose the proper
7199 -- underlying numeric type.
7200
7201 if Is_Private_Type (Typ)
7202 or else Is_Private_Type (Etype (Left_Opnd (N)))
7203 or else Is_Private_Type (Etype (Right_Opnd (N)))
7204 then
7205 Arg1 := Convert_Operand (Left_Opnd (N));
7206 -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
7207 -- What on earth is this commented out fragment of code???
7208
7209 if Nkind (N) = N_Op_Expon then
7210 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
7211 else
7212 Arg2 := Convert_Operand (Right_Opnd (N));
7213 end if;
7214
7215 if Nkind (Arg1) = N_Type_Conversion then
7216 Save_Interps (Left_Opnd (N), Expression (Arg1));
7217 end if;
7218
7219 if Nkind (Arg2) = N_Type_Conversion then
7220 Save_Interps (Right_Opnd (N), Expression (Arg2));
7221 end if;
7222
7223 Set_Left_Opnd (N, Arg1);
7224 Set_Right_Opnd (N, Arg2);
7225
7226 Set_Etype (N, Btyp);
7227 Rewrite (N, Unchecked_Convert_To (Typ, N));
7228 Resolve (N, Typ);
7229
7230 elsif Typ /= Etype (Left_Opnd (N))
7231 or else Typ /= Etype (Right_Opnd (N))
7232 then
7233 -- Add explicit conversion where needed, and save interpretations in
7234 -- case operands are overloaded. If the context is a VMS operation,
7235 -- assert that the conversion is legal (the operands have the proper
7236 -- types to select the VMS intrinsic). Note that in rare cases the
7237 -- VMS operators may be visible, but the default System is being used
7238 -- and Address is a private type.
7239
7240 Arg1 := Convert_To (Typ, Left_Opnd (N));
7241 Arg2 := Convert_To (Typ, Right_Opnd (N));
7242
7243 if Nkind (Arg1) = N_Type_Conversion then
7244 Save_Interps (Left_Opnd (N), Expression (Arg1));
7245
7246 if Is_VMS_Operator (Orig_Op) then
7247 Set_Conversion_OK (Arg1);
7248 end if;
7249 else
7250 Save_Interps (Left_Opnd (N), Arg1);
7251 end if;
7252
7253 if Nkind (Arg2) = N_Type_Conversion then
7254 Save_Interps (Right_Opnd (N), Expression (Arg2));
7255
7256 if Is_VMS_Operator (Orig_Op) then
7257 Set_Conversion_OK (Arg2);
7258 end if;
7259 else
7260 Save_Interps (Right_Opnd (N), Arg2);
7261 end if;
7262
7263 Rewrite (Left_Opnd (N), Arg1);
7264 Rewrite (Right_Opnd (N), Arg2);
7265 Analyze (Arg1);
7266 Analyze (Arg2);
7267 Resolve_Arithmetic_Op (N, Typ);
7268
7269 else
7270 Resolve_Arithmetic_Op (N, Typ);
7271 end if;
7272 end Resolve_Intrinsic_Operator;
7273
7274 --------------------------------------
7275 -- Resolve_Intrinsic_Unary_Operator --
7276 --------------------------------------
7277
7278 procedure Resolve_Intrinsic_Unary_Operator
7279 (N : Node_Id;
7280 Typ : Entity_Id)
7281 is
7282 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
7283 Op : Entity_Id;
7284 Arg2 : Node_Id;
7285
7286 begin
7287 Op := Entity (N);
7288 while Scope (Op) /= Standard_Standard loop
7289 Op := Homonym (Op);
7290 pragma Assert (Present (Op));
7291 end loop;
7292
7293 Set_Entity (N, Op);
7294
7295 if Is_Private_Type (Typ) then
7296 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
7297 Save_Interps (Right_Opnd (N), Expression (Arg2));
7298
7299 Set_Right_Opnd (N, Arg2);
7300
7301 Set_Etype (N, Btyp);
7302 Rewrite (N, Unchecked_Convert_To (Typ, N));
7303 Resolve (N, Typ);
7304
7305 else
7306 Resolve_Unary_Op (N, Typ);
7307 end if;
7308 end Resolve_Intrinsic_Unary_Operator;
7309
7310 ------------------------
7311 -- Resolve_Logical_Op --
7312 ------------------------
7313
7314 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
7315 B_Typ : Entity_Id;
7316
7317 begin
7318 Check_No_Direct_Boolean_Operators (N);
7319
7320 -- Predefined operations on scalar types yield the base type. On the
7321 -- other hand, logical operations on arrays yield the type of the
7322 -- arguments (and the context).
7323
7324 if Is_Array_Type (Typ) then
7325 B_Typ := Typ;
7326 else
7327 B_Typ := Base_Type (Typ);
7328 end if;
7329
7330 -- OK if this is a VMS-specific intrinsic operation
7331
7332 if Is_VMS_Operator (Entity (N)) then
7333 null;
7334
7335 -- The following test is required because the operands of the operation
7336 -- may be literals, in which case the resulting type appears to be
7337 -- compatible with a signed integer type, when in fact it is compatible
7338 -- only with modular types. If the context itself is universal, the
7339 -- operation is illegal.
7340
7341 elsif not Valid_Boolean_Arg (Typ) then
7342 Error_Msg_N ("invalid context for logical operation", N);
7343 Set_Etype (N, Any_Type);
7344 return;
7345
7346 elsif Typ = Any_Modular then
7347 Error_Msg_N
7348 ("no modular type available in this context", N);
7349 Set_Etype (N, Any_Type);
7350 return;
7351
7352 elsif Is_Modular_Integer_Type (Typ)
7353 and then Etype (Left_Opnd (N)) = Universal_Integer
7354 and then Etype (Right_Opnd (N)) = Universal_Integer
7355 then
7356 Check_For_Visible_Operator (N, B_Typ);
7357 end if;
7358
7359 Resolve (Left_Opnd (N), B_Typ);
7360 Resolve (Right_Opnd (N), B_Typ);
7361
7362 Check_Unset_Reference (Left_Opnd (N));
7363 Check_Unset_Reference (Right_Opnd (N));
7364
7365 Set_Etype (N, B_Typ);
7366 Generate_Operator_Reference (N, B_Typ);
7367 Eval_Logical_Op (N);
7368
7369 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
7370 -- only when both operands have same static lower and higher bounds. Of
7371 -- course the types have to match, so only check if operands are
7372 -- compatible and the node itself has no errors.
7373
7374 if Is_Array_Type (B_Typ)
7375 and then Nkind (N) in N_Binary_Op
7376 then
7377 declare
7378 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
7379 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
7380
7381 begin
7382 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7383 -- operation if not needed.
7384
7385 if Restriction_Check_Required (SPARK)
7386 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
7387 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
7388 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
7389 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
7390 then
7391 Check_SPARK_Restriction
7392 ("array types should have matching static bounds", N);
7393 end if;
7394 end;
7395 end if;
7396 end Resolve_Logical_Op;
7397
7398 ---------------------------
7399 -- Resolve_Membership_Op --
7400 ---------------------------
7401
7402 -- The context can only be a boolean type, and does not determine the
7403 -- arguments. Arguments should be unambiguous, but the preference rule for
7404 -- universal types applies.
7405
7406 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
7407 pragma Warnings (Off, Typ);
7408
7409 L : constant Node_Id := Left_Opnd (N);
7410 R : constant Node_Id := Right_Opnd (N);
7411 T : Entity_Id;
7412
7413 procedure Resolve_Set_Membership;
7414 -- Analysis has determined a unique type for the left operand. Use it to
7415 -- resolve the disjuncts.
7416
7417 ----------------------------
7418 -- Resolve_Set_Membership --
7419 ----------------------------
7420
7421 procedure Resolve_Set_Membership is
7422 Alt : Node_Id;
7423
7424 begin
7425 Resolve (L, Etype (L));
7426
7427 Alt := First (Alternatives (N));
7428 while Present (Alt) loop
7429
7430 -- Alternative is an expression, a range
7431 -- or a subtype mark.
7432
7433 if not Is_Entity_Name (Alt)
7434 or else not Is_Type (Entity (Alt))
7435 then
7436 Resolve (Alt, Etype (L));
7437 end if;
7438
7439 Next (Alt);
7440 end loop;
7441 end Resolve_Set_Membership;
7442
7443 -- Start of processing for Resolve_Membership_Op
7444
7445 begin
7446 if L = Error or else R = Error then
7447 return;
7448 end if;
7449
7450 if Present (Alternatives (N)) then
7451 Resolve_Set_Membership;
7452 return;
7453
7454 elsif not Is_Overloaded (R)
7455 and then
7456 (Etype (R) = Universal_Integer
7457 or else
7458 Etype (R) = Universal_Real)
7459 and then Is_Overloaded (L)
7460 then
7461 T := Etype (R);
7462
7463 -- Ada 2005 (AI-251): Support the following case:
7464
7465 -- type I is interface;
7466 -- type T is tagged ...
7467
7468 -- function Test (O : I'Class) is
7469 -- begin
7470 -- return O in T'Class.
7471 -- end Test;
7472
7473 -- In this case we have nothing else to do. The membership test will be
7474 -- done at run time.
7475
7476 elsif Ada_Version >= Ada_2005
7477 and then Is_Class_Wide_Type (Etype (L))
7478 and then Is_Interface (Etype (L))
7479 and then Is_Class_Wide_Type (Etype (R))
7480 and then not Is_Interface (Etype (R))
7481 then
7482 return;
7483 else
7484 T := Intersect_Types (L, R);
7485 end if;
7486
7487 -- If mixed-mode operations are present and operands are all literal,
7488 -- the only interpretation involves Duration, which is probably not
7489 -- the intention of the programmer.
7490
7491 if T = Any_Fixed then
7492 T := Unique_Fixed_Point_Type (N);
7493
7494 if T = Any_Type then
7495 return;
7496 end if;
7497 end if;
7498
7499 Resolve (L, T);
7500 Check_Unset_Reference (L);
7501
7502 if Nkind (R) = N_Range
7503 and then not Is_Scalar_Type (T)
7504 then
7505 Error_Msg_N ("scalar type required for range", R);
7506 end if;
7507
7508 if Is_Entity_Name (R) then
7509 Freeze_Expression (R);
7510 else
7511 Resolve (R, T);
7512 Check_Unset_Reference (R);
7513 end if;
7514
7515 Eval_Membership_Op (N);
7516 end Resolve_Membership_Op;
7517
7518 ------------------
7519 -- Resolve_Null --
7520 ------------------
7521
7522 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
7523 Loc : constant Source_Ptr := Sloc (N);
7524
7525 begin
7526 -- Handle restriction against anonymous null access values This
7527 -- restriction can be turned off using -gnatdj.
7528
7529 -- Ada 2005 (AI-231): Remove restriction
7530
7531 if Ada_Version < Ada_2005
7532 and then not Debug_Flag_J
7533 and then Ekind (Typ) = E_Anonymous_Access_Type
7534 and then Comes_From_Source (N)
7535 then
7536 -- In the common case of a call which uses an explicitly null value
7537 -- for an access parameter, give specialized error message.
7538
7539 if Nkind_In (Parent (N), N_Procedure_Call_Statement,
7540 N_Function_Call)
7541 then
7542 Error_Msg_N
7543 ("null is not allowed as argument for an access parameter", N);
7544
7545 -- Standard message for all other cases (are there any?)
7546
7547 else
7548 Error_Msg_N
7549 ("null cannot be of an anonymous access type", N);
7550 end if;
7551 end if;
7552
7553 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
7554 -- assignment to a null-excluding object
7555
7556 if Ada_Version >= Ada_2005
7557 and then Can_Never_Be_Null (Typ)
7558 and then Nkind (Parent (N)) = N_Assignment_Statement
7559 then
7560 if not Inside_Init_Proc then
7561 Insert_Action
7562 (Compile_Time_Constraint_Error (N,
7563 "(Ada 2005) null not allowed in null-excluding objects?"),
7564 Make_Raise_Constraint_Error (Loc,
7565 Reason => CE_Access_Check_Failed));
7566 else
7567 Insert_Action (N,
7568 Make_Raise_Constraint_Error (Loc,
7569 Reason => CE_Access_Check_Failed));
7570 end if;
7571 end if;
7572
7573 -- In a distributed context, null for a remote access to subprogram may
7574 -- need to be replaced with a special record aggregate. In this case,
7575 -- return after having done the transformation.
7576
7577 if (Ekind (Typ) = E_Record_Type
7578 or else Is_Remote_Access_To_Subprogram_Type (Typ))
7579 and then Remote_AST_Null_Value (N, Typ)
7580 then
7581 return;
7582 end if;
7583
7584 -- The null literal takes its type from the context
7585
7586 Set_Etype (N, Typ);
7587 end Resolve_Null;
7588
7589 -----------------------
7590 -- Resolve_Op_Concat --
7591 -----------------------
7592
7593 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
7594
7595 -- We wish to avoid deep recursion, because concatenations are often
7596 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
7597 -- operands nonrecursively until we find something that is not a simple
7598 -- concatenation (A in this case). We resolve that, and then walk back
7599 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
7600 -- to do the rest of the work at each level. The Parent pointers allow
7601 -- us to avoid recursion, and thus avoid running out of memory. See also
7602 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
7603
7604 NN : Node_Id := N;
7605 Op1 : Node_Id;
7606
7607 begin
7608 -- The following code is equivalent to:
7609
7610 -- Resolve_Op_Concat_First (NN, Typ);
7611 -- Resolve_Op_Concat_Arg (N, ...);
7612 -- Resolve_Op_Concat_Rest (N, Typ);
7613
7614 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
7615 -- operand is a concatenation.
7616
7617 -- Walk down left operands
7618
7619 loop
7620 Resolve_Op_Concat_First (NN, Typ);
7621 Op1 := Left_Opnd (NN);
7622 exit when not (Nkind (Op1) = N_Op_Concat
7623 and then not Is_Array_Type (Component_Type (Typ))
7624 and then Entity (Op1) = Entity (NN));
7625 NN := Op1;
7626 end loop;
7627
7628 -- Now (given the above example) NN is A&B and Op1 is A
7629
7630 -- First resolve Op1 ...
7631
7632 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
7633
7634 -- ... then walk NN back up until we reach N (where we started), calling
7635 -- Resolve_Op_Concat_Rest along the way.
7636
7637 loop
7638 Resolve_Op_Concat_Rest (NN, Typ);
7639 exit when NN = N;
7640 NN := Parent (NN);
7641 end loop;
7642
7643 if Base_Type (Etype (N)) /= Standard_String then
7644 Check_SPARK_Restriction
7645 ("result of concatenation should have type String", N);
7646 end if;
7647 end Resolve_Op_Concat;
7648
7649 ---------------------------
7650 -- Resolve_Op_Concat_Arg --
7651 ---------------------------
7652
7653 procedure Resolve_Op_Concat_Arg
7654 (N : Node_Id;
7655 Arg : Node_Id;
7656 Typ : Entity_Id;
7657 Is_Comp : Boolean)
7658 is
7659 Btyp : constant Entity_Id := Base_Type (Typ);
7660 Ctyp : constant Entity_Id := Component_Type (Typ);
7661
7662 begin
7663 if In_Instance then
7664 if Is_Comp
7665 or else (not Is_Overloaded (Arg)
7666 and then Etype (Arg) /= Any_Composite
7667 and then Covers (Ctyp, Etype (Arg)))
7668 then
7669 Resolve (Arg, Ctyp);
7670 else
7671 Resolve (Arg, Btyp);
7672 end if;
7673
7674 -- If both Array & Array and Array & Component are visible, there is a
7675 -- potential ambiguity that must be reported.
7676
7677 elsif Has_Compatible_Type (Arg, Ctyp) then
7678 if Nkind (Arg) = N_Aggregate
7679 and then Is_Composite_Type (Ctyp)
7680 then
7681 if Is_Private_Type (Ctyp) then
7682 Resolve (Arg, Btyp);
7683
7684 -- If the operation is user-defined and not overloaded use its
7685 -- profile. The operation may be a renaming, in which case it has
7686 -- been rewritten, and we want the original profile.
7687
7688 elsif not Is_Overloaded (N)
7689 and then Comes_From_Source (Entity (Original_Node (N)))
7690 and then Ekind (Entity (Original_Node (N))) = E_Function
7691 then
7692 Resolve (Arg,
7693 Etype
7694 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
7695 return;
7696
7697 -- Otherwise an aggregate may match both the array type and the
7698 -- component type.
7699
7700 else
7701 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
7702 Set_Etype (Arg, Any_Type);
7703 end if;
7704
7705 else
7706 if Is_Overloaded (Arg)
7707 and then Has_Compatible_Type (Arg, Typ)
7708 and then Etype (Arg) /= Any_Type
7709 then
7710 declare
7711 I : Interp_Index;
7712 It : Interp;
7713 Func : Entity_Id;
7714
7715 begin
7716 Get_First_Interp (Arg, I, It);
7717 Func := It.Nam;
7718 Get_Next_Interp (I, It);
7719
7720 -- Special-case the error message when the overloading is
7721 -- caused by a function that yields an array and can be
7722 -- called without parameters.
7723
7724 if It.Nam = Func then
7725 Error_Msg_Sloc := Sloc (Func);
7726 Error_Msg_N ("ambiguous call to function#", Arg);
7727 Error_Msg_NE
7728 ("\\interpretation as call yields&", Arg, Typ);
7729 Error_Msg_NE
7730 ("\\interpretation as indexing of call yields&",
7731 Arg, Component_Type (Typ));
7732
7733 else
7734 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
7735
7736 Get_First_Interp (Arg, I, It);
7737 while Present (It.Nam) loop
7738 Error_Msg_Sloc := Sloc (It.Nam);
7739
7740 if Base_Type (It.Typ) = Btyp
7741 or else
7742 Base_Type (It.Typ) = Base_Type (Ctyp)
7743 then
7744 Error_Msg_N -- CODEFIX
7745 ("\\possible interpretation#", Arg);
7746 end if;
7747
7748 Get_Next_Interp (I, It);
7749 end loop;
7750 end if;
7751 end;
7752 end if;
7753
7754 Resolve (Arg, Component_Type (Typ));
7755
7756 if Nkind (Arg) = N_String_Literal then
7757 Set_Etype (Arg, Component_Type (Typ));
7758 end if;
7759
7760 if Arg = Left_Opnd (N) then
7761 Set_Is_Component_Left_Opnd (N);
7762 else
7763 Set_Is_Component_Right_Opnd (N);
7764 end if;
7765 end if;
7766
7767 else
7768 Resolve (Arg, Btyp);
7769 end if;
7770
7771 -- Concatenation is restricted in SPARK: each operand must be either a
7772 -- string literal, the name of a string constant, a static character or
7773 -- string expression, or another concatenation. Arg cannot be a
7774 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
7775 -- separately on each final operand, past concatenation operations.
7776
7777 if Is_Character_Type (Etype (Arg)) then
7778 if not Is_Static_Expression (Arg) then
7779 Check_SPARK_Restriction
7780 ("character operand for concatenation should be static", Arg);
7781 end if;
7782
7783 elsif Is_String_Type (Etype (Arg)) then
7784 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
7785 and then Is_Constant_Object (Entity (Arg)))
7786 and then not Is_Static_Expression (Arg)
7787 then
7788 Check_SPARK_Restriction
7789 ("string operand for concatenation should be static", Arg);
7790 end if;
7791
7792 -- Do not issue error on an operand that is neither a character nor a
7793 -- string, as the error is issued in Resolve_Op_Concat.
7794
7795 else
7796 null;
7797 end if;
7798
7799 Check_Unset_Reference (Arg);
7800 end Resolve_Op_Concat_Arg;
7801
7802 -----------------------------
7803 -- Resolve_Op_Concat_First --
7804 -----------------------------
7805
7806 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
7807 Btyp : constant Entity_Id := Base_Type (Typ);
7808 Op1 : constant Node_Id := Left_Opnd (N);
7809 Op2 : constant Node_Id := Right_Opnd (N);
7810
7811 begin
7812 -- The parser folds an enormous sequence of concatenations of string
7813 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
7814 -- in the right operand. If the expression resolves to a predefined "&"
7815 -- operator, all is well. Otherwise, the parser's folding is wrong, so
7816 -- we give an error. See P_Simple_Expression in Par.Ch4.
7817
7818 if Nkind (Op2) = N_String_Literal
7819 and then Is_Folded_In_Parser (Op2)
7820 and then Ekind (Entity (N)) = E_Function
7821 then
7822 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
7823 and then String_Length (Strval (Op1)) = 0);
7824 Error_Msg_N ("too many user-defined concatenations", N);
7825 return;
7826 end if;
7827
7828 Set_Etype (N, Btyp);
7829
7830 if Is_Limited_Composite (Btyp) then
7831 Error_Msg_N ("concatenation not available for limited array", N);
7832 Explain_Limited_Type (Btyp, N);
7833 end if;
7834 end Resolve_Op_Concat_First;
7835
7836 ----------------------------
7837 -- Resolve_Op_Concat_Rest --
7838 ----------------------------
7839
7840 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
7841 Op1 : constant Node_Id := Left_Opnd (N);
7842 Op2 : constant Node_Id := Right_Opnd (N);
7843
7844 begin
7845 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
7846
7847 Generate_Operator_Reference (N, Typ);
7848
7849 if Is_String_Type (Typ) then
7850 Eval_Concatenation (N);
7851 end if;
7852
7853 -- If this is not a static concatenation, but the result is a string
7854 -- type (and not an array of strings) ensure that static string operands
7855 -- have their subtypes properly constructed.
7856
7857 if Nkind (N) /= N_String_Literal
7858 and then Is_Character_Type (Component_Type (Typ))
7859 then
7860 Set_String_Literal_Subtype (Op1, Typ);
7861 Set_String_Literal_Subtype (Op2, Typ);
7862 end if;
7863 end Resolve_Op_Concat_Rest;
7864
7865 ----------------------
7866 -- Resolve_Op_Expon --
7867 ----------------------
7868
7869 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
7870 B_Typ : constant Entity_Id := Base_Type (Typ);
7871
7872 begin
7873 -- Catch attempts to do fixed-point exponentiation with universal
7874 -- operands, which is a case where the illegality is not caught during
7875 -- normal operator analysis.
7876
7877 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
7878 Error_Msg_N ("exponentiation not available for fixed point", N);
7879 return;
7880
7881 elsif Nkind (Parent (N)) in N_Op
7882 and then Is_Fixed_Point_Type (Etype (Parent (N)))
7883 and then Etype (N) = Universal_Real
7884 and then Comes_From_Source (N)
7885 then
7886 Error_Msg_N ("exponentiation not available for fixed point", N);
7887 return;
7888 end if;
7889
7890 if Comes_From_Source (N)
7891 and then Ekind (Entity (N)) = E_Function
7892 and then Is_Imported (Entity (N))
7893 and then Is_Intrinsic_Subprogram (Entity (N))
7894 then
7895 Resolve_Intrinsic_Operator (N, Typ);
7896 return;
7897 end if;
7898
7899 if Etype (Left_Opnd (N)) = Universal_Integer
7900 or else Etype (Left_Opnd (N)) = Universal_Real
7901 then
7902 Check_For_Visible_Operator (N, B_Typ);
7903 end if;
7904
7905 -- We do the resolution using the base type, because intermediate values
7906 -- in expressions always are of the base type, not a subtype of it.
7907
7908 Resolve (Left_Opnd (N), B_Typ);
7909 Resolve (Right_Opnd (N), Standard_Integer);
7910
7911 Check_Unset_Reference (Left_Opnd (N));
7912 Check_Unset_Reference (Right_Opnd (N));
7913
7914 Set_Etype (N, B_Typ);
7915 Generate_Operator_Reference (N, B_Typ);
7916 Eval_Op_Expon (N);
7917
7918 -- Set overflow checking bit. Much cleverer code needed here eventually
7919 -- and perhaps the Resolve routines should be separated for the various
7920 -- arithmetic operations, since they will need different processing. ???
7921
7922 if Nkind (N) in N_Op then
7923 if not Overflow_Checks_Suppressed (Etype (N)) then
7924 Enable_Overflow_Check (N);
7925 end if;
7926 end if;
7927 end Resolve_Op_Expon;
7928
7929 --------------------
7930 -- Resolve_Op_Not --
7931 --------------------
7932
7933 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
7934 B_Typ : Entity_Id;
7935
7936 function Parent_Is_Boolean return Boolean;
7937 -- This function determines if the parent node is a boolean operator or
7938 -- operation (comparison op, membership test, or short circuit form) and
7939 -- the not in question is the left operand of this operation. Note that
7940 -- if the not is in parens, then false is returned.
7941
7942 -----------------------
7943 -- Parent_Is_Boolean --
7944 -----------------------
7945
7946 function Parent_Is_Boolean return Boolean is
7947 begin
7948 if Paren_Count (N) /= 0 then
7949 return False;
7950
7951 else
7952 case Nkind (Parent (N)) is
7953 when N_Op_And |
7954 N_Op_Eq |
7955 N_Op_Ge |
7956 N_Op_Gt |
7957 N_Op_Le |
7958 N_Op_Lt |
7959 N_Op_Ne |
7960 N_Op_Or |
7961 N_Op_Xor |
7962 N_In |
7963 N_Not_In |
7964 N_And_Then |
7965 N_Or_Else =>
7966
7967 return Left_Opnd (Parent (N)) = N;
7968
7969 when others =>
7970 return False;
7971 end case;
7972 end if;
7973 end Parent_Is_Boolean;
7974
7975 -- Start of processing for Resolve_Op_Not
7976
7977 begin
7978 -- Predefined operations on scalar types yield the base type. On the
7979 -- other hand, logical operations on arrays yield the type of the
7980 -- arguments (and the context).
7981
7982 if Is_Array_Type (Typ) then
7983 B_Typ := Typ;
7984 else
7985 B_Typ := Base_Type (Typ);
7986 end if;
7987
7988 if Is_VMS_Operator (Entity (N)) then
7989 null;
7990
7991 -- Straightforward case of incorrect arguments
7992
7993 elsif not Valid_Boolean_Arg (Typ) then
7994 Error_Msg_N ("invalid operand type for operator&", N);
7995 Set_Etype (N, Any_Type);
7996 return;
7997
7998 -- Special case of probable missing parens
7999
8000 elsif Typ = Universal_Integer or else Typ = Any_Modular then
8001 if Parent_Is_Boolean then
8002 Error_Msg_N
8003 ("operand of not must be enclosed in parentheses",
8004 Right_Opnd (N));
8005 else
8006 Error_Msg_N
8007 ("no modular type available in this context", N);
8008 end if;
8009
8010 Set_Etype (N, Any_Type);
8011 return;
8012
8013 -- OK resolution of NOT
8014
8015 else
8016 -- Warn if non-boolean types involved. This is a case like not a < b
8017 -- where a and b are modular, where we will get (not a) < b and most
8018 -- likely not (a < b) was intended.
8019
8020 if Warn_On_Questionable_Missing_Parens
8021 and then not Is_Boolean_Type (Typ)
8022 and then Parent_Is_Boolean
8023 then
8024 Error_Msg_N ("?not expression should be parenthesized here!", N);
8025 end if;
8026
8027 -- Warn on double negation if checking redundant constructs
8028
8029 if Warn_On_Redundant_Constructs
8030 and then Comes_From_Source (N)
8031 and then Comes_From_Source (Right_Opnd (N))
8032 and then Root_Type (Typ) = Standard_Boolean
8033 and then Nkind (Right_Opnd (N)) = N_Op_Not
8034 then
8035 Error_Msg_N ("redundant double negation?", N);
8036 end if;
8037
8038 -- Complete resolution and evaluation of NOT
8039
8040 Resolve (Right_Opnd (N), B_Typ);
8041 Check_Unset_Reference (Right_Opnd (N));
8042 Set_Etype (N, B_Typ);
8043 Generate_Operator_Reference (N, B_Typ);
8044 Eval_Op_Not (N);
8045 end if;
8046 end Resolve_Op_Not;
8047
8048 -----------------------------
8049 -- Resolve_Operator_Symbol --
8050 -----------------------------
8051
8052 -- Nothing to be done, all resolved already
8053
8054 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
8055 pragma Warnings (Off, N);
8056 pragma Warnings (Off, Typ);
8057
8058 begin
8059 null;
8060 end Resolve_Operator_Symbol;
8061
8062 ----------------------------------
8063 -- Resolve_Qualified_Expression --
8064 ----------------------------------
8065
8066 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
8067 pragma Warnings (Off, Typ);
8068
8069 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
8070 Expr : constant Node_Id := Expression (N);
8071
8072 begin
8073 Resolve (Expr, Target_Typ);
8074
8075 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8076 -- operation if not needed.
8077
8078 if Restriction_Check_Required (SPARK)
8079 and then Is_Array_Type (Target_Typ)
8080 and then Is_Array_Type (Etype (Expr))
8081 and then Etype (Expr) /= Any_Composite -- or else Expr in error
8082 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
8083 then
8084 Check_SPARK_Restriction
8085 ("array types should have matching static bounds", N);
8086 end if;
8087
8088 -- A qualified expression requires an exact match of the type, class-
8089 -- wide matching is not allowed. However, if the qualifying type is
8090 -- specific and the expression has a class-wide type, it may still be
8091 -- okay, since it can be the result of the expansion of a call to a
8092 -- dispatching function, so we also have to check class-wideness of the
8093 -- type of the expression's original node.
8094
8095 if (Is_Class_Wide_Type (Target_Typ)
8096 or else
8097 (Is_Class_Wide_Type (Etype (Expr))
8098 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
8099 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
8100 then
8101 Wrong_Type (Expr, Target_Typ);
8102 end if;
8103
8104 -- If the target type is unconstrained, then we reset the type of the
8105 -- result from the type of the expression. For other cases, the actual
8106 -- subtype of the expression is the target type.
8107
8108 if Is_Composite_Type (Target_Typ)
8109 and then not Is_Constrained (Target_Typ)
8110 then
8111 Set_Etype (N, Etype (Expr));
8112 end if;
8113
8114 Eval_Qualified_Expression (N);
8115 end Resolve_Qualified_Expression;
8116
8117 -----------------------------------
8118 -- Resolve_Quantified_Expression --
8119 -----------------------------------
8120
8121 procedure Resolve_Quantified_Expression (N : Node_Id; Typ : Entity_Id) is
8122 begin
8123 if not Alfa_Mode then
8124
8125 -- If expansion is enabled, analysis is delayed until the expresssion
8126 -- is rewritten as a loop.
8127
8128 if Operating_Mode /= Check_Semantics then
8129 return;
8130 end if;
8131
8132 -- The loop structure is already resolved during its analysis, only
8133 -- the resolution of the condition needs to be done. Expansion is
8134 -- disabled so that checks and other generated code are inserted in
8135 -- the tree after expression has been rewritten as a loop.
8136
8137 Expander_Mode_Save_And_Set (False);
8138 Resolve (Condition (N), Typ);
8139 Expander_Mode_Restore;
8140
8141 -- In Alfa mode, we need normal expansion in order to properly introduce
8142 -- the necessary transient scopes.
8143
8144 else
8145 Resolve (Condition (N), Typ);
8146 end if;
8147 end Resolve_Quantified_Expression;
8148
8149 -------------------
8150 -- Resolve_Range --
8151 -------------------
8152
8153 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
8154 L : constant Node_Id := Low_Bound (N);
8155 H : constant Node_Id := High_Bound (N);
8156
8157 function First_Last_Ref return Boolean;
8158 -- Returns True if N is of the form X'First .. X'Last where X is the
8159 -- same entity for both attributes.
8160
8161 --------------------
8162 -- First_Last_Ref --
8163 --------------------
8164
8165 function First_Last_Ref return Boolean is
8166 Lorig : constant Node_Id := Original_Node (L);
8167 Horig : constant Node_Id := Original_Node (H);
8168
8169 begin
8170 if Nkind (Lorig) = N_Attribute_Reference
8171 and then Nkind (Horig) = N_Attribute_Reference
8172 and then Attribute_Name (Lorig) = Name_First
8173 and then Attribute_Name (Horig) = Name_Last
8174 then
8175 declare
8176 PL : constant Node_Id := Prefix (Lorig);
8177 PH : constant Node_Id := Prefix (Horig);
8178 begin
8179 if Is_Entity_Name (PL)
8180 and then Is_Entity_Name (PH)
8181 and then Entity (PL) = Entity (PH)
8182 then
8183 return True;
8184 end if;
8185 end;
8186 end if;
8187
8188 return False;
8189 end First_Last_Ref;
8190
8191 -- Start of processing for Resolve_Range
8192
8193 begin
8194 Set_Etype (N, Typ);
8195 Resolve (L, Typ);
8196 Resolve (H, Typ);
8197
8198 -- Check for inappropriate range on unordered enumeration type
8199
8200 if Bad_Unordered_Enumeration_Reference (N, Typ)
8201
8202 -- Exclude X'First .. X'Last if X is the same entity for both
8203
8204 and then not First_Last_Ref
8205 then
8206 Error_Msg ("subrange of unordered enumeration type?", Sloc (N));
8207 end if;
8208
8209 Check_Unset_Reference (L);
8210 Check_Unset_Reference (H);
8211
8212 -- We have to check the bounds for being within the base range as
8213 -- required for a non-static context. Normally this is automatic and
8214 -- done as part of evaluating expressions, but the N_Range node is an
8215 -- exception, since in GNAT we consider this node to be a subexpression,
8216 -- even though in Ada it is not. The circuit in Sem_Eval could check for
8217 -- this, but that would put the test on the main evaluation path for
8218 -- expressions.
8219
8220 Check_Non_Static_Context (L);
8221 Check_Non_Static_Context (H);
8222
8223 -- Check for an ambiguous range over character literals. This will
8224 -- happen with a membership test involving only literals.
8225
8226 if Typ = Any_Character then
8227 Ambiguous_Character (L);
8228 Set_Etype (N, Any_Type);
8229 return;
8230 end if;
8231
8232 -- If bounds are static, constant-fold them, so size computations are
8233 -- identical between front-end and back-end. Do not perform this
8234 -- transformation while analyzing generic units, as type information
8235 -- would be lost when reanalyzing the constant node in the instance.
8236
8237 if Is_Discrete_Type (Typ) and then Full_Expander_Active then
8238 if Is_OK_Static_Expression (L) then
8239 Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
8240 end if;
8241
8242 if Is_OK_Static_Expression (H) then
8243 Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
8244 end if;
8245 end if;
8246 end Resolve_Range;
8247
8248 --------------------------
8249 -- Resolve_Real_Literal --
8250 --------------------------
8251
8252 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
8253 Actual_Typ : constant Entity_Id := Etype (N);
8254
8255 begin
8256 -- Special processing for fixed-point literals to make sure that the
8257 -- value is an exact multiple of small where this is required. We skip
8258 -- this for the universal real case, and also for generic types.
8259
8260 if Is_Fixed_Point_Type (Typ)
8261 and then Typ /= Universal_Fixed
8262 and then Typ /= Any_Fixed
8263 and then not Is_Generic_Type (Typ)
8264 then
8265 declare
8266 Val : constant Ureal := Realval (N);
8267 Cintr : constant Ureal := Val / Small_Value (Typ);
8268 Cint : constant Uint := UR_Trunc (Cintr);
8269 Den : constant Uint := Norm_Den (Cintr);
8270 Stat : Boolean;
8271
8272 begin
8273 -- Case of literal is not an exact multiple of the Small
8274
8275 if Den /= 1 then
8276
8277 -- For a source program literal for a decimal fixed-point type,
8278 -- this is statically illegal (RM 4.9(36)).
8279
8280 if Is_Decimal_Fixed_Point_Type (Typ)
8281 and then Actual_Typ = Universal_Real
8282 and then Comes_From_Source (N)
8283 then
8284 Error_Msg_N ("value has extraneous low order digits", N);
8285 end if;
8286
8287 -- Generate a warning if literal from source
8288
8289 if Is_Static_Expression (N)
8290 and then Warn_On_Bad_Fixed_Value
8291 then
8292 Error_Msg_N
8293 ("?static fixed-point value is not a multiple of Small!",
8294 N);
8295 end if;
8296
8297 -- Replace literal by a value that is the exact representation
8298 -- of a value of the type, i.e. a multiple of the small value,
8299 -- by truncation, since Machine_Rounds is false for all GNAT
8300 -- fixed-point types (RM 4.9(38)).
8301
8302 Stat := Is_Static_Expression (N);
8303 Rewrite (N,
8304 Make_Real_Literal (Sloc (N),
8305 Realval => Small_Value (Typ) * Cint));
8306
8307 Set_Is_Static_Expression (N, Stat);
8308 end if;
8309
8310 -- In all cases, set the corresponding integer field
8311
8312 Set_Corresponding_Integer_Value (N, Cint);
8313 end;
8314 end if;
8315
8316 -- Now replace the actual type by the expected type as usual
8317
8318 Set_Etype (N, Typ);
8319 Eval_Real_Literal (N);
8320 end Resolve_Real_Literal;
8321
8322 -----------------------
8323 -- Resolve_Reference --
8324 -----------------------
8325
8326 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
8327 P : constant Node_Id := Prefix (N);
8328
8329 begin
8330 -- Replace general access with specific type
8331
8332 if Ekind (Etype (N)) = E_Allocator_Type then
8333 Set_Etype (N, Base_Type (Typ));
8334 end if;
8335
8336 Resolve (P, Designated_Type (Etype (N)));
8337
8338 -- If we are taking the reference of a volatile entity, then treat it as
8339 -- a potential modification of this entity. This is too conservative,
8340 -- but necessary because remove side effects can cause transformations
8341 -- of normal assignments into reference sequences that otherwise fail to
8342 -- notice the modification.
8343
8344 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
8345 Note_Possible_Modification (P, Sure => False);
8346 end if;
8347 end Resolve_Reference;
8348
8349 --------------------------------
8350 -- Resolve_Selected_Component --
8351 --------------------------------
8352
8353 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
8354 Comp : Entity_Id;
8355 Comp1 : Entity_Id := Empty; -- prevent junk warning
8356 P : constant Node_Id := Prefix (N);
8357 S : constant Node_Id := Selector_Name (N);
8358 T : Entity_Id := Etype (P);
8359 I : Interp_Index;
8360 I1 : Interp_Index := 0; -- prevent junk warning
8361 It : Interp;
8362 It1 : Interp;
8363 Found : Boolean;
8364
8365 function Init_Component return Boolean;
8366 -- Check whether this is the initialization of a component within an
8367 -- init proc (by assignment or call to another init proc). If true,
8368 -- there is no need for a discriminant check.
8369
8370 --------------------
8371 -- Init_Component --
8372 --------------------
8373
8374 function Init_Component return Boolean is
8375 begin
8376 return Inside_Init_Proc
8377 and then Nkind (Prefix (N)) = N_Identifier
8378 and then Chars (Prefix (N)) = Name_uInit
8379 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
8380 end Init_Component;
8381
8382 -- Start of processing for Resolve_Selected_Component
8383
8384 begin
8385 if Is_Overloaded (P) then
8386
8387 -- Use the context type to select the prefix that has a selector
8388 -- of the correct name and type.
8389
8390 Found := False;
8391 Get_First_Interp (P, I, It);
8392
8393 Search : while Present (It.Typ) loop
8394 if Is_Access_Type (It.Typ) then
8395 T := Designated_Type (It.Typ);
8396 else
8397 T := It.Typ;
8398 end if;
8399
8400 -- Locate selected component. For a private prefix the selector
8401 -- can denote a discriminant.
8402
8403 if Is_Record_Type (T) or else Is_Private_Type (T) then
8404
8405 -- The visible components of a class-wide type are those of
8406 -- the root type.
8407
8408 if Is_Class_Wide_Type (T) then
8409 T := Etype (T);
8410 end if;
8411
8412 Comp := First_Entity (T);
8413 while Present (Comp) loop
8414 if Chars (Comp) = Chars (S)
8415 and then Covers (Etype (Comp), Typ)
8416 then
8417 if not Found then
8418 Found := True;
8419 I1 := I;
8420 It1 := It;
8421 Comp1 := Comp;
8422
8423 else
8424 It := Disambiguate (P, I1, I, Any_Type);
8425
8426 if It = No_Interp then
8427 Error_Msg_N
8428 ("ambiguous prefix for selected component", N);
8429 Set_Etype (N, Typ);
8430 return;
8431
8432 else
8433 It1 := It;
8434
8435 -- There may be an implicit dereference. Retrieve
8436 -- designated record type.
8437
8438 if Is_Access_Type (It1.Typ) then
8439 T := Designated_Type (It1.Typ);
8440 else
8441 T := It1.Typ;
8442 end if;
8443
8444 if Scope (Comp1) /= T then
8445
8446 -- Resolution chooses the new interpretation.
8447 -- Find the component with the right name.
8448
8449 Comp1 := First_Entity (T);
8450 while Present (Comp1)
8451 and then Chars (Comp1) /= Chars (S)
8452 loop
8453 Comp1 := Next_Entity (Comp1);
8454 end loop;
8455 end if;
8456
8457 exit Search;
8458 end if;
8459 end if;
8460 end if;
8461
8462 Comp := Next_Entity (Comp);
8463 end loop;
8464 end if;
8465
8466 Get_Next_Interp (I, It);
8467 end loop Search;
8468
8469 Resolve (P, It1.Typ);
8470 Set_Etype (N, Typ);
8471 Set_Entity_With_Style_Check (S, Comp1);
8472
8473 else
8474 -- Resolve prefix with its type
8475
8476 Resolve (P, T);
8477 end if;
8478
8479 -- Generate cross-reference. We needed to wait until full overloading
8480 -- resolution was complete to do this, since otherwise we can't tell if
8481 -- we are an lvalue or not.
8482
8483 if May_Be_Lvalue (N) then
8484 Generate_Reference (Entity (S), S, 'm');
8485 else
8486 Generate_Reference (Entity (S), S, 'r');
8487 end if;
8488
8489 -- If prefix is an access type, the node will be transformed into an
8490 -- explicit dereference during expansion. The type of the node is the
8491 -- designated type of that of the prefix.
8492
8493 if Is_Access_Type (Etype (P)) then
8494 T := Designated_Type (Etype (P));
8495 Check_Fully_Declared_Prefix (T, P);
8496 else
8497 T := Etype (P);
8498 end if;
8499
8500 if Has_Discriminants (T)
8501 and then Ekind_In (Entity (S), E_Component, E_Discriminant)
8502 and then Present (Original_Record_Component (Entity (S)))
8503 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
8504 and then Present (Discriminant_Checking_Func
8505 (Original_Record_Component (Entity (S))))
8506 and then not Discriminant_Checks_Suppressed (T)
8507 and then not Init_Component
8508 then
8509 Set_Do_Discriminant_Check (N);
8510 end if;
8511
8512 if Ekind (Entity (S)) = E_Void then
8513 Error_Msg_N ("premature use of component", S);
8514 end if;
8515
8516 -- If the prefix is a record conversion, this may be a renamed
8517 -- discriminant whose bounds differ from those of the original
8518 -- one, so we must ensure that a range check is performed.
8519
8520 if Nkind (P) = N_Type_Conversion
8521 and then Ekind (Entity (S)) = E_Discriminant
8522 and then Is_Discrete_Type (Typ)
8523 then
8524 Set_Etype (N, Base_Type (Typ));
8525 end if;
8526
8527 -- Note: No Eval processing is required, because the prefix is of a
8528 -- record type, or protected type, and neither can possibly be static.
8529
8530 -- If the array type is atomic, and is packed, and we are in a left side
8531 -- context, then this is worth a warning, since we have a situation
8532 -- where the access to the component may cause extra read/writes of the
8533 -- atomic array object, which could be considered unexpected.
8534
8535 if Nkind (N) = N_Selected_Component
8536 and then (Is_Atomic (T)
8537 or else (Is_Entity_Name (Prefix (N))
8538 and then Is_Atomic (Entity (Prefix (N)))))
8539 and then Is_Packed (T)
8540 and then Is_LHS (N)
8541 then
8542 Error_Msg_N ("?assignment to component of packed atomic record",
8543 Prefix (N));
8544 Error_Msg_N ("?\may cause unexpected accesses to atomic object",
8545 Prefix (N));
8546 end if;
8547 end Resolve_Selected_Component;
8548
8549 -------------------
8550 -- Resolve_Shift --
8551 -------------------
8552
8553 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
8554 B_Typ : constant Entity_Id := Base_Type (Typ);
8555 L : constant Node_Id := Left_Opnd (N);
8556 R : constant Node_Id := Right_Opnd (N);
8557
8558 begin
8559 -- We do the resolution using the base type, because intermediate values
8560 -- in expressions always are of the base type, not a subtype of it.
8561
8562 Resolve (L, B_Typ);
8563 Resolve (R, Standard_Natural);
8564
8565 Check_Unset_Reference (L);
8566 Check_Unset_Reference (R);
8567
8568 Set_Etype (N, B_Typ);
8569 Generate_Operator_Reference (N, B_Typ);
8570 Eval_Shift (N);
8571 end Resolve_Shift;
8572
8573 ---------------------------
8574 -- Resolve_Short_Circuit --
8575 ---------------------------
8576
8577 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
8578 B_Typ : constant Entity_Id := Base_Type (Typ);
8579 L : constant Node_Id := Left_Opnd (N);
8580 R : constant Node_Id := Right_Opnd (N);
8581
8582 begin
8583 Resolve (L, B_Typ);
8584 Resolve (R, B_Typ);
8585
8586 -- Check for issuing warning for always False assert/check, this happens
8587 -- when assertions are turned off, in which case the pragma Assert/Check
8588 -- was transformed into:
8589
8590 -- if False and then <condition> then ...
8591
8592 -- and we detect this pattern
8593
8594 if Warn_On_Assertion_Failure
8595 and then Is_Entity_Name (R)
8596 and then Entity (R) = Standard_False
8597 and then Nkind (Parent (N)) = N_If_Statement
8598 and then Nkind (N) = N_And_Then
8599 and then Is_Entity_Name (L)
8600 and then Entity (L) = Standard_False
8601 then
8602 declare
8603 Orig : constant Node_Id := Original_Node (Parent (N));
8604
8605 begin
8606 if Nkind (Orig) = N_Pragma
8607 and then Pragma_Name (Orig) = Name_Assert
8608 then
8609 -- Don't want to warn if original condition is explicit False
8610
8611 declare
8612 Expr : constant Node_Id :=
8613 Original_Node
8614 (Expression
8615 (First (Pragma_Argument_Associations (Orig))));
8616 begin
8617 if Is_Entity_Name (Expr)
8618 and then Entity (Expr) = Standard_False
8619 then
8620 null;
8621 else
8622 -- Issue warning. We do not want the deletion of the
8623 -- IF/AND-THEN to take this message with it. We achieve
8624 -- this by making sure that the expanded code points to
8625 -- the Sloc of the expression, not the original pragma.
8626
8627 Error_Msg_N
8628 ("?assertion would fail at run time!",
8629 Expression
8630 (First (Pragma_Argument_Associations (Orig))));
8631 end if;
8632 end;
8633
8634 -- Similar processing for Check pragma
8635
8636 elsif Nkind (Orig) = N_Pragma
8637 and then Pragma_Name (Orig) = Name_Check
8638 then
8639 -- Don't want to warn if original condition is explicit False
8640
8641 declare
8642 Expr : constant Node_Id :=
8643 Original_Node
8644 (Expression
8645 (Next (First
8646 (Pragma_Argument_Associations (Orig)))));
8647 begin
8648 if Is_Entity_Name (Expr)
8649 and then Entity (Expr) = Standard_False
8650 then
8651 null;
8652 else
8653 Error_Msg_N
8654 ("?check would fail at run time!",
8655 Expression
8656 (Last (Pragma_Argument_Associations (Orig))));
8657 end if;
8658 end;
8659 end if;
8660 end;
8661 end if;
8662
8663 -- Continue with processing of short circuit
8664
8665 Check_Unset_Reference (L);
8666 Check_Unset_Reference (R);
8667
8668 Set_Etype (N, B_Typ);
8669 Eval_Short_Circuit (N);
8670 end Resolve_Short_Circuit;
8671
8672 -------------------
8673 -- Resolve_Slice --
8674 -------------------
8675
8676 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
8677 Name : constant Node_Id := Prefix (N);
8678 Drange : constant Node_Id := Discrete_Range (N);
8679 Array_Type : Entity_Id := Empty;
8680 Index : Node_Id;
8681
8682 begin
8683 if Is_Overloaded (Name) then
8684
8685 -- Use the context type to select the prefix that yields the correct
8686 -- array type.
8687
8688 declare
8689 I : Interp_Index;
8690 I1 : Interp_Index := 0;
8691 It : Interp;
8692 P : constant Node_Id := Prefix (N);
8693 Found : Boolean := False;
8694
8695 begin
8696 Get_First_Interp (P, I, It);
8697 while Present (It.Typ) loop
8698 if (Is_Array_Type (It.Typ)
8699 and then Covers (Typ, It.Typ))
8700 or else (Is_Access_Type (It.Typ)
8701 and then Is_Array_Type (Designated_Type (It.Typ))
8702 and then Covers (Typ, Designated_Type (It.Typ)))
8703 then
8704 if Found then
8705 It := Disambiguate (P, I1, I, Any_Type);
8706
8707 if It = No_Interp then
8708 Error_Msg_N ("ambiguous prefix for slicing", N);
8709 Set_Etype (N, Typ);
8710 return;
8711 else
8712 Found := True;
8713 Array_Type := It.Typ;
8714 I1 := I;
8715 end if;
8716 else
8717 Found := True;
8718 Array_Type := It.Typ;
8719 I1 := I;
8720 end if;
8721 end if;
8722
8723 Get_Next_Interp (I, It);
8724 end loop;
8725 end;
8726
8727 else
8728 Array_Type := Etype (Name);
8729 end if;
8730
8731 Resolve (Name, Array_Type);
8732
8733 if Is_Access_Type (Array_Type) then
8734 Apply_Access_Check (N);
8735 Array_Type := Designated_Type (Array_Type);
8736
8737 -- If the prefix is an access to an unconstrained array, we must use
8738 -- the actual subtype of the object to perform the index checks. The
8739 -- object denoted by the prefix is implicit in the node, so we build
8740 -- an explicit representation for it in order to compute the actual
8741 -- subtype.
8742
8743 if not Is_Constrained (Array_Type) then
8744 Remove_Side_Effects (Prefix (N));
8745
8746 declare
8747 Obj : constant Node_Id :=
8748 Make_Explicit_Dereference (Sloc (N),
8749 Prefix => New_Copy_Tree (Prefix (N)));
8750 begin
8751 Set_Etype (Obj, Array_Type);
8752 Set_Parent (Obj, Parent (N));
8753 Array_Type := Get_Actual_Subtype (Obj);
8754 end;
8755 end if;
8756
8757 elsif Is_Entity_Name (Name)
8758 or else Nkind (Name) = N_Explicit_Dereference
8759 or else (Nkind (Name) = N_Function_Call
8760 and then not Is_Constrained (Etype (Name)))
8761 then
8762 Array_Type := Get_Actual_Subtype (Name);
8763
8764 -- If the name is a selected component that depends on discriminants,
8765 -- build an actual subtype for it. This can happen only when the name
8766 -- itself is overloaded; otherwise the actual subtype is created when
8767 -- the selected component is analyzed.
8768
8769 elsif Nkind (Name) = N_Selected_Component
8770 and then Full_Analysis
8771 and then Depends_On_Discriminant (First_Index (Array_Type))
8772 then
8773 declare
8774 Act_Decl : constant Node_Id :=
8775 Build_Actual_Subtype_Of_Component (Array_Type, Name);
8776 begin
8777 Insert_Action (N, Act_Decl);
8778 Array_Type := Defining_Identifier (Act_Decl);
8779 end;
8780
8781 -- Maybe this should just be "else", instead of checking for the
8782 -- specific case of slice??? This is needed for the case where the
8783 -- prefix is an Image attribute, which gets expanded to a slice, and so
8784 -- has a constrained subtype which we want to use for the slice range
8785 -- check applied below (the range check won't get done if the
8786 -- unconstrained subtype of the 'Image is used).
8787
8788 elsif Nkind (Name) = N_Slice then
8789 Array_Type := Etype (Name);
8790 end if;
8791
8792 -- If name was overloaded, set slice type correctly now
8793
8794 Set_Etype (N, Array_Type);
8795
8796 -- If the range is specified by a subtype mark, no resolution is
8797 -- necessary. Else resolve the bounds, and apply needed checks.
8798
8799 if not Is_Entity_Name (Drange) then
8800 Index := First_Index (Array_Type);
8801 Resolve (Drange, Base_Type (Etype (Index)));
8802
8803 if Nkind (Drange) = N_Range then
8804
8805 -- Ensure that side effects in the bounds are properly handled
8806
8807 Force_Evaluation (Low_Bound (Drange));
8808 Force_Evaluation (High_Bound (Drange));
8809
8810 -- Do not apply the range check to nodes associated with the
8811 -- frontend expansion of the dispatch table. We first check
8812 -- if Ada.Tags is already loaded to avoid the addition of an
8813 -- undesired dependence on such run-time unit.
8814
8815 if not Tagged_Type_Expansion
8816 or else not
8817 (RTU_Loaded (Ada_Tags)
8818 and then Nkind (Prefix (N)) = N_Selected_Component
8819 and then Present (Entity (Selector_Name (Prefix (N))))
8820 and then Entity (Selector_Name (Prefix (N))) =
8821 RTE_Record_Component (RE_Prims_Ptr))
8822 then
8823 Apply_Range_Check (Drange, Etype (Index));
8824 end if;
8825 end if;
8826 end if;
8827
8828 Set_Slice_Subtype (N);
8829
8830 -- Check bad use of type with predicates
8831
8832 if Has_Predicates (Etype (Drange)) then
8833 Bad_Predicated_Subtype_Use
8834 ("subtype& has predicate, not allowed in slice",
8835 Drange, Etype (Drange));
8836
8837 -- Otherwise here is where we check suspicious indexes
8838
8839 elsif Nkind (Drange) = N_Range then
8840 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
8841 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
8842 end if;
8843
8844 Eval_Slice (N);
8845 end Resolve_Slice;
8846
8847 ----------------------------
8848 -- Resolve_String_Literal --
8849 ----------------------------
8850
8851 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
8852 C_Typ : constant Entity_Id := Component_Type (Typ);
8853 R_Typ : constant Entity_Id := Root_Type (C_Typ);
8854 Loc : constant Source_Ptr := Sloc (N);
8855 Str : constant String_Id := Strval (N);
8856 Strlen : constant Nat := String_Length (Str);
8857 Subtype_Id : Entity_Id;
8858 Need_Check : Boolean;
8859
8860 begin
8861 -- For a string appearing in a concatenation, defer creation of the
8862 -- string_literal_subtype until the end of the resolution of the
8863 -- concatenation, because the literal may be constant-folded away. This
8864 -- is a useful optimization for long concatenation expressions.
8865
8866 -- If the string is an aggregate built for a single character (which
8867 -- happens in a non-static context) or a is null string to which special
8868 -- checks may apply, we build the subtype. Wide strings must also get a
8869 -- string subtype if they come from a one character aggregate. Strings
8870 -- generated by attributes might be static, but it is often hard to
8871 -- determine whether the enclosing context is static, so we generate
8872 -- subtypes for them as well, thus losing some rarer optimizations ???
8873 -- Same for strings that come from a static conversion.
8874
8875 Need_Check :=
8876 (Strlen = 0 and then Typ /= Standard_String)
8877 or else Nkind (Parent (N)) /= N_Op_Concat
8878 or else (N /= Left_Opnd (Parent (N))
8879 and then N /= Right_Opnd (Parent (N)))
8880 or else ((Typ = Standard_Wide_String
8881 or else Typ = Standard_Wide_Wide_String)
8882 and then Nkind (Original_Node (N)) /= N_String_Literal);
8883
8884 -- If the resolving type is itself a string literal subtype, we can just
8885 -- reuse it, since there is no point in creating another.
8886
8887 if Ekind (Typ) = E_String_Literal_Subtype then
8888 Subtype_Id := Typ;
8889
8890 elsif Nkind (Parent (N)) = N_Op_Concat
8891 and then not Need_Check
8892 and then not Nkind_In (Original_Node (N), N_Character_Literal,
8893 N_Attribute_Reference,
8894 N_Qualified_Expression,
8895 N_Type_Conversion)
8896 then
8897 Subtype_Id := Typ;
8898
8899 -- Otherwise we must create a string literal subtype. Note that the
8900 -- whole idea of string literal subtypes is simply to avoid the need
8901 -- for building a full fledged array subtype for each literal.
8902
8903 else
8904 Set_String_Literal_Subtype (N, Typ);
8905 Subtype_Id := Etype (N);
8906 end if;
8907
8908 if Nkind (Parent (N)) /= N_Op_Concat
8909 or else Need_Check
8910 then
8911 Set_Etype (N, Subtype_Id);
8912 Eval_String_Literal (N);
8913 end if;
8914
8915 if Is_Limited_Composite (Typ)
8916 or else Is_Private_Composite (Typ)
8917 then
8918 Error_Msg_N ("string literal not available for private array", N);
8919 Set_Etype (N, Any_Type);
8920 return;
8921 end if;
8922
8923 -- The validity of a null string has been checked in the call to
8924 -- Eval_String_Literal.
8925
8926 if Strlen = 0 then
8927 return;
8928
8929 -- Always accept string literal with component type Any_Character, which
8930 -- occurs in error situations and in comparisons of literals, both of
8931 -- which should accept all literals.
8932
8933 elsif R_Typ = Any_Character then
8934 return;
8935
8936 -- If the type is bit-packed, then we always transform the string
8937 -- literal into a full fledged aggregate.
8938
8939 elsif Is_Bit_Packed_Array (Typ) then
8940 null;
8941
8942 -- Deal with cases of Wide_Wide_String, Wide_String, and String
8943
8944 else
8945 -- For Standard.Wide_Wide_String, or any other type whose component
8946 -- type is Standard.Wide_Wide_Character, we know that all the
8947 -- characters in the string must be acceptable, since the parser
8948 -- accepted the characters as valid character literals.
8949
8950 if R_Typ = Standard_Wide_Wide_Character then
8951 null;
8952
8953 -- For the case of Standard.String, or any other type whose component
8954 -- type is Standard.Character, we must make sure that there are no
8955 -- wide characters in the string, i.e. that it is entirely composed
8956 -- of characters in range of type Character.
8957
8958 -- If the string literal is the result of a static concatenation, the
8959 -- test has already been performed on the components, and need not be
8960 -- repeated.
8961
8962 elsif R_Typ = Standard_Character
8963 and then Nkind (Original_Node (N)) /= N_Op_Concat
8964 then
8965 for J in 1 .. Strlen loop
8966 if not In_Character_Range (Get_String_Char (Str, J)) then
8967
8968 -- If we are out of range, post error. This is one of the
8969 -- very few places that we place the flag in the middle of
8970 -- a token, right under the offending wide character. Not
8971 -- quite clear if this is right wrt wide character encoding
8972 -- sequences, but it's only an error message!
8973
8974 Error_Msg
8975 ("literal out of range of type Standard.Character",
8976 Source_Ptr (Int (Loc) + J));
8977 return;
8978 end if;
8979 end loop;
8980
8981 -- For the case of Standard.Wide_String, or any other type whose
8982 -- component type is Standard.Wide_Character, we must make sure that
8983 -- there are no wide characters in the string, i.e. that it is
8984 -- entirely composed of characters in range of type Wide_Character.
8985
8986 -- If the string literal is the result of a static concatenation,
8987 -- the test has already been performed on the components, and need
8988 -- not be repeated.
8989
8990 elsif R_Typ = Standard_Wide_Character
8991 and then Nkind (Original_Node (N)) /= N_Op_Concat
8992 then
8993 for J in 1 .. Strlen loop
8994 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
8995
8996 -- If we are out of range, post error. This is one of the
8997 -- very few places that we place the flag in the middle of
8998 -- a token, right under the offending wide character.
8999
9000 -- This is not quite right, because characters in general
9001 -- will take more than one character position ???
9002
9003 Error_Msg
9004 ("literal out of range of type Standard.Wide_Character",
9005 Source_Ptr (Int (Loc) + J));
9006 return;
9007 end if;
9008 end loop;
9009
9010 -- If the root type is not a standard character, then we will convert
9011 -- the string into an aggregate and will let the aggregate code do
9012 -- the checking. Standard Wide_Wide_Character is also OK here.
9013
9014 else
9015 null;
9016 end if;
9017
9018 -- See if the component type of the array corresponding to the string
9019 -- has compile time known bounds. If yes we can directly check
9020 -- whether the evaluation of the string will raise constraint error.
9021 -- Otherwise we need to transform the string literal into the
9022 -- corresponding character aggregate and let the aggregate code do
9023 -- the checking.
9024
9025 if Is_Standard_Character_Type (R_Typ) then
9026
9027 -- Check for the case of full range, where we are definitely OK
9028
9029 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
9030 return;
9031 end if;
9032
9033 -- Here the range is not the complete base type range, so check
9034
9035 declare
9036 Comp_Typ_Lo : constant Node_Id :=
9037 Type_Low_Bound (Component_Type (Typ));
9038 Comp_Typ_Hi : constant Node_Id :=
9039 Type_High_Bound (Component_Type (Typ));
9040
9041 Char_Val : Uint;
9042
9043 begin
9044 if Compile_Time_Known_Value (Comp_Typ_Lo)
9045 and then Compile_Time_Known_Value (Comp_Typ_Hi)
9046 then
9047 for J in 1 .. Strlen loop
9048 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
9049
9050 if Char_Val < Expr_Value (Comp_Typ_Lo)
9051 or else Char_Val > Expr_Value (Comp_Typ_Hi)
9052 then
9053 Apply_Compile_Time_Constraint_Error
9054 (N, "character out of range?", CE_Range_Check_Failed,
9055 Loc => Source_Ptr (Int (Loc) + J));
9056 end if;
9057 end loop;
9058
9059 return;
9060 end if;
9061 end;
9062 end if;
9063 end if;
9064
9065 -- If we got here we meed to transform the string literal into the
9066 -- equivalent qualified positional array aggregate. This is rather
9067 -- heavy artillery for this situation, but it is hard work to avoid.
9068
9069 declare
9070 Lits : constant List_Id := New_List;
9071 P : Source_Ptr := Loc + 1;
9072 C : Char_Code;
9073
9074 begin
9075 -- Build the character literals, we give them source locations that
9076 -- correspond to the string positions, which is a bit tricky given
9077 -- the possible presence of wide character escape sequences.
9078
9079 for J in 1 .. Strlen loop
9080 C := Get_String_Char (Str, J);
9081 Set_Character_Literal_Name (C);
9082
9083 Append_To (Lits,
9084 Make_Character_Literal (P,
9085 Chars => Name_Find,
9086 Char_Literal_Value => UI_From_CC (C)));
9087
9088 if In_Character_Range (C) then
9089 P := P + 1;
9090
9091 -- Should we have a call to Skip_Wide here ???
9092
9093 -- ??? else
9094 -- Skip_Wide (P);
9095
9096 end if;
9097 end loop;
9098
9099 Rewrite (N,
9100 Make_Qualified_Expression (Loc,
9101 Subtype_Mark => New_Reference_To (Typ, Loc),
9102 Expression =>
9103 Make_Aggregate (Loc, Expressions => Lits)));
9104
9105 Analyze_And_Resolve (N, Typ);
9106 end;
9107 end Resolve_String_Literal;
9108
9109 -----------------------------
9110 -- Resolve_Subprogram_Info --
9111 -----------------------------
9112
9113 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
9114 begin
9115 Set_Etype (N, Typ);
9116 end Resolve_Subprogram_Info;
9117
9118 -----------------------------
9119 -- Resolve_Type_Conversion --
9120 -----------------------------
9121
9122 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
9123 Conv_OK : constant Boolean := Conversion_OK (N);
9124 Operand : constant Node_Id := Expression (N);
9125 Operand_Typ : constant Entity_Id := Etype (Operand);
9126 Target_Typ : constant Entity_Id := Etype (N);
9127 Rop : Node_Id;
9128 Orig_N : Node_Id;
9129 Orig_T : Node_Id;
9130
9131 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
9132 -- Set to False to suppress cases where we want to suppress the test
9133 -- for redundancy to avoid possible false positives on this warning.
9134
9135 begin
9136 if not Conv_OK
9137 and then not Valid_Conversion (N, Target_Typ, Operand)
9138 then
9139 return;
9140 end if;
9141
9142 -- If the Operand Etype is Universal_Fixed, then the conversion is
9143 -- never redundant. We need this check because by the time we have
9144 -- finished the rather complex transformation, the conversion looks
9145 -- redundant when it is not.
9146
9147 if Operand_Typ = Universal_Fixed then
9148 Test_Redundant := False;
9149
9150 -- If the operand is marked as Any_Fixed, then special processing is
9151 -- required. This is also a case where we suppress the test for a
9152 -- redundant conversion, since most certainly it is not redundant.
9153
9154 elsif Operand_Typ = Any_Fixed then
9155 Test_Redundant := False;
9156
9157 -- Mixed-mode operation involving a literal. Context must be a fixed
9158 -- type which is applied to the literal subsequently.
9159
9160 if Is_Fixed_Point_Type (Typ) then
9161 Set_Etype (Operand, Universal_Real);
9162
9163 elsif Is_Numeric_Type (Typ)
9164 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
9165 and then (Etype (Right_Opnd (Operand)) = Universal_Real
9166 or else
9167 Etype (Left_Opnd (Operand)) = Universal_Real)
9168 then
9169 -- Return if expression is ambiguous
9170
9171 if Unique_Fixed_Point_Type (N) = Any_Type then
9172 return;
9173
9174 -- If nothing else, the available fixed type is Duration
9175
9176 else
9177 Set_Etype (Operand, Standard_Duration);
9178 end if;
9179
9180 -- Resolve the real operand with largest available precision
9181
9182 if Etype (Right_Opnd (Operand)) = Universal_Real then
9183 Rop := New_Copy_Tree (Right_Opnd (Operand));
9184 else
9185 Rop := New_Copy_Tree (Left_Opnd (Operand));
9186 end if;
9187
9188 Resolve (Rop, Universal_Real);
9189
9190 -- If the operand is a literal (it could be a non-static and
9191 -- illegal exponentiation) check whether the use of Duration
9192 -- is potentially inaccurate.
9193
9194 if Nkind (Rop) = N_Real_Literal
9195 and then Realval (Rop) /= Ureal_0
9196 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
9197 then
9198 Error_Msg_N
9199 ("?universal real operand can only " &
9200 "be interpreted as Duration!",
9201 Rop);
9202 Error_Msg_N
9203 ("\?precision will be lost in the conversion!", Rop);
9204 end if;
9205
9206 elsif Is_Numeric_Type (Typ)
9207 and then Nkind (Operand) in N_Op
9208 and then Unique_Fixed_Point_Type (N) /= Any_Type
9209 then
9210 Set_Etype (Operand, Standard_Duration);
9211
9212 else
9213 Error_Msg_N ("invalid context for mixed mode operation", N);
9214 Set_Etype (Operand, Any_Type);
9215 return;
9216 end if;
9217 end if;
9218
9219 Resolve (Operand);
9220
9221 -- In SPARK, a type conversion between array types should be restricted
9222 -- to types which have matching static bounds.
9223
9224 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9225 -- operation if not needed.
9226
9227 if Restriction_Check_Required (SPARK)
9228 and then Is_Array_Type (Target_Typ)
9229 and then Is_Array_Type (Operand_Typ)
9230 and then Operand_Typ /= Any_Composite -- or else Operand in error
9231 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
9232 then
9233 Check_SPARK_Restriction
9234 ("array types should have matching static bounds", N);
9235 end if;
9236
9237 -- In formal mode, the operand of an ancestor type conversion must be an
9238 -- object (not an expression).
9239
9240 if Is_Tagged_Type (Target_Typ)
9241 and then not Is_Class_Wide_Type (Target_Typ)
9242 and then Is_Tagged_Type (Operand_Typ)
9243 and then not Is_Class_Wide_Type (Operand_Typ)
9244 and then Is_Ancestor (Target_Typ, Operand_Typ)
9245 and then not Is_SPARK_Object_Reference (Operand)
9246 then
9247 Check_SPARK_Restriction ("object required", Operand);
9248 end if;
9249
9250 -- Note: we do the Eval_Type_Conversion call before applying the
9251 -- required checks for a subtype conversion. This is important, since
9252 -- both are prepared under certain circumstances to change the type
9253 -- conversion to a constraint error node, but in the case of
9254 -- Eval_Type_Conversion this may reflect an illegality in the static
9255 -- case, and we would miss the illegality (getting only a warning
9256 -- message), if we applied the type conversion checks first.
9257
9258 Eval_Type_Conversion (N);
9259
9260 -- Even when evaluation is not possible, we may be able to simplify the
9261 -- conversion or its expression. This needs to be done before applying
9262 -- checks, since otherwise the checks may use the original expression
9263 -- and defeat the simplifications. This is specifically the case for
9264 -- elimination of the floating-point Truncation attribute in
9265 -- float-to-int conversions.
9266
9267 Simplify_Type_Conversion (N);
9268
9269 -- If after evaluation we still have a type conversion, then we may need
9270 -- to apply checks required for a subtype conversion.
9271
9272 -- Skip these type conversion checks if universal fixed operands
9273 -- operands involved, since range checks are handled separately for
9274 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
9275
9276 if Nkind (N) = N_Type_Conversion
9277 and then not Is_Generic_Type (Root_Type (Target_Typ))
9278 and then Target_Typ /= Universal_Fixed
9279 and then Operand_Typ /= Universal_Fixed
9280 then
9281 Apply_Type_Conversion_Checks (N);
9282 end if;
9283
9284 -- Issue warning for conversion of simple object to its own type. We
9285 -- have to test the original nodes, since they may have been rewritten
9286 -- by various optimizations.
9287
9288 Orig_N := Original_Node (N);
9289
9290 -- Here we test for a redundant conversion if the warning mode is
9291 -- active (and was not locally reset), and we have a type conversion
9292 -- from source not appearing in a generic instance.
9293
9294 if Test_Redundant
9295 and then Nkind (Orig_N) = N_Type_Conversion
9296 and then Comes_From_Source (Orig_N)
9297 and then not In_Instance
9298 then
9299 Orig_N := Original_Node (Expression (Orig_N));
9300 Orig_T := Target_Typ;
9301
9302 -- If the node is part of a larger expression, the Target_Type
9303 -- may not be the original type of the node if the context is a
9304 -- condition. Recover original type to see if conversion is needed.
9305
9306 if Is_Boolean_Type (Orig_T)
9307 and then Nkind (Parent (N)) in N_Op
9308 then
9309 Orig_T := Etype (Parent (N));
9310 end if;
9311
9312 -- If we have an entity name, then give the warning if the entity
9313 -- is the right type, or if it is a loop parameter covered by the
9314 -- original type (that's needed because loop parameters have an
9315 -- odd subtype coming from the bounds).
9316
9317 if (Is_Entity_Name (Orig_N)
9318 and then
9319 (Etype (Entity (Orig_N)) = Orig_T
9320 or else
9321 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
9322 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
9323
9324 -- If not an entity, then type of expression must match
9325
9326 or else Etype (Orig_N) = Orig_T
9327 then
9328 -- One more check, do not give warning if the analyzed conversion
9329 -- has an expression with non-static bounds, and the bounds of the
9330 -- target are static. This avoids junk warnings in cases where the
9331 -- conversion is necessary to establish staticness, for example in
9332 -- a case statement.
9333
9334 if not Is_OK_Static_Subtype (Operand_Typ)
9335 and then Is_OK_Static_Subtype (Target_Typ)
9336 then
9337 null;
9338
9339 -- Finally, if this type conversion occurs in a context requiring
9340 -- a prefix, and the expression is a qualified expression then the
9341 -- type conversion is not redundant, since a qualified expression
9342 -- is not a prefix, whereas a type conversion is. For example, "X
9343 -- := T'(Funx(...)).Y;" is illegal because a selected component
9344 -- requires a prefix, but a type conversion makes it legal: "X :=
9345 -- T(T'(Funx(...))).Y;"
9346
9347 -- In Ada 2012, a qualified expression is a name, so this idiom is
9348 -- no longer needed, but we still suppress the warning because it
9349 -- seems unfriendly for warnings to pop up when you switch to the
9350 -- newer language version.
9351
9352 elsif Nkind (Orig_N) = N_Qualified_Expression
9353 and then Nkind_In (Parent (N), N_Attribute_Reference,
9354 N_Indexed_Component,
9355 N_Selected_Component,
9356 N_Slice,
9357 N_Explicit_Dereference)
9358 then
9359 null;
9360
9361 -- Here we give the redundant conversion warning. If it is an
9362 -- entity, give the name of the entity in the message. If not,
9363 -- just mention the expression.
9364
9365 else
9366 if Is_Entity_Name (Orig_N) then
9367 Error_Msg_Node_2 := Orig_T;
9368 Error_Msg_NE -- CODEFIX
9369 ("?redundant conversion, & is of type &!",
9370 N, Entity (Orig_N));
9371 else
9372 Error_Msg_NE
9373 ("?redundant conversion, expression is of type&!",
9374 N, Orig_T);
9375 end if;
9376 end if;
9377 end if;
9378 end if;
9379
9380 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
9381 -- No need to perform any interface conversion if the type of the
9382 -- expression coincides with the target type.
9383
9384 if Ada_Version >= Ada_2005
9385 and then Full_Expander_Active
9386 and then Operand_Typ /= Target_Typ
9387 then
9388 declare
9389 Opnd : Entity_Id := Operand_Typ;
9390 Target : Entity_Id := Target_Typ;
9391
9392 begin
9393 if Is_Access_Type (Opnd) then
9394 Opnd := Designated_Type (Opnd);
9395 end if;
9396
9397 if Is_Access_Type (Target_Typ) then
9398 Target := Designated_Type (Target);
9399 end if;
9400
9401 if Opnd = Target then
9402 null;
9403
9404 -- Conversion from interface type
9405
9406 elsif Is_Interface (Opnd) then
9407
9408 -- Ada 2005 (AI-217): Handle entities from limited views
9409
9410 if From_With_Type (Opnd) then
9411 Error_Msg_Qual_Level := 99;
9412 Error_Msg_NE -- CODEFIX
9413 ("missing WITH clause on package &", N,
9414 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
9415 Error_Msg_N
9416 ("type conversions require visibility of the full view",
9417 N);
9418
9419 elsif From_With_Type (Target)
9420 and then not
9421 (Is_Access_Type (Target_Typ)
9422 and then Present (Non_Limited_View (Etype (Target))))
9423 then
9424 Error_Msg_Qual_Level := 99;
9425 Error_Msg_NE -- CODEFIX
9426 ("missing WITH clause on package &", N,
9427 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
9428 Error_Msg_N
9429 ("type conversions require visibility of the full view",
9430 N);
9431
9432 else
9433 Expand_Interface_Conversion (N, Is_Static => False);
9434 end if;
9435
9436 -- Conversion to interface type
9437
9438 elsif Is_Interface (Target) then
9439
9440 -- Handle subtypes
9441
9442 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
9443 Opnd := Etype (Opnd);
9444 end if;
9445
9446 if not Interface_Present_In_Ancestor
9447 (Typ => Opnd,
9448 Iface => Target)
9449 then
9450 if Is_Class_Wide_Type (Opnd) then
9451
9452 -- The static analysis is not enough to know if the
9453 -- interface is implemented or not. Hence we must pass
9454 -- the work to the expander to generate code to evaluate
9455 -- the conversion at run time.
9456
9457 Expand_Interface_Conversion (N, Is_Static => False);
9458
9459 else
9460 Error_Msg_Name_1 := Chars (Etype (Target));
9461 Error_Msg_Name_2 := Chars (Opnd);
9462 Error_Msg_N
9463 ("wrong interface conversion (% is not a progenitor " &
9464 "of %)", N);
9465 end if;
9466
9467 else
9468 Expand_Interface_Conversion (N);
9469 end if;
9470 end if;
9471 end;
9472 end if;
9473 end Resolve_Type_Conversion;
9474
9475 ----------------------
9476 -- Resolve_Unary_Op --
9477 ----------------------
9478
9479 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
9480 B_Typ : constant Entity_Id := Base_Type (Typ);
9481 R : constant Node_Id := Right_Opnd (N);
9482 OK : Boolean;
9483 Lo : Uint;
9484 Hi : Uint;
9485
9486 begin
9487 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
9488 Error_Msg_Name_1 := Chars (Typ);
9489 Check_SPARK_Restriction
9490 ("unary operator not defined for modular type%", N);
9491 end if;
9492
9493 -- Deal with intrinsic unary operators
9494
9495 if Comes_From_Source (N)
9496 and then Ekind (Entity (N)) = E_Function
9497 and then Is_Imported (Entity (N))
9498 and then Is_Intrinsic_Subprogram (Entity (N))
9499 then
9500 Resolve_Intrinsic_Unary_Operator (N, Typ);
9501 return;
9502 end if;
9503
9504 -- Deal with universal cases
9505
9506 if Etype (R) = Universal_Integer
9507 or else
9508 Etype (R) = Universal_Real
9509 then
9510 Check_For_Visible_Operator (N, B_Typ);
9511 end if;
9512
9513 Set_Etype (N, B_Typ);
9514 Resolve (R, B_Typ);
9515
9516 -- Generate warning for expressions like abs (x mod 2)
9517
9518 if Warn_On_Redundant_Constructs
9519 and then Nkind (N) = N_Op_Abs
9520 then
9521 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
9522
9523 if OK and then Hi >= Lo and then Lo >= 0 then
9524 Error_Msg_N -- CODEFIX
9525 ("?abs applied to known non-negative value has no effect", N);
9526 end if;
9527 end if;
9528
9529 -- Deal with reference generation
9530
9531 Check_Unset_Reference (R);
9532 Generate_Operator_Reference (N, B_Typ);
9533 Eval_Unary_Op (N);
9534
9535 -- Set overflow checking bit. Much cleverer code needed here eventually
9536 -- and perhaps the Resolve routines should be separated for the various
9537 -- arithmetic operations, since they will need different processing ???
9538
9539 if Nkind (N) in N_Op then
9540 if not Overflow_Checks_Suppressed (Etype (N)) then
9541 Enable_Overflow_Check (N);
9542 end if;
9543 end if;
9544
9545 -- Generate warning for expressions like -5 mod 3 for integers. No need
9546 -- to worry in the floating-point case, since parens do not affect the
9547 -- result so there is no point in giving in a warning.
9548
9549 declare
9550 Norig : constant Node_Id := Original_Node (N);
9551 Rorig : Node_Id;
9552 Val : Uint;
9553 HB : Uint;
9554 LB : Uint;
9555 Lval : Uint;
9556 Opnd : Node_Id;
9557
9558 begin
9559 if Warn_On_Questionable_Missing_Parens
9560 and then Comes_From_Source (Norig)
9561 and then Is_Integer_Type (Typ)
9562 and then Nkind (Norig) = N_Op_Minus
9563 then
9564 Rorig := Original_Node (Right_Opnd (Norig));
9565
9566 -- We are looking for cases where the right operand is not
9567 -- parenthesized, and is a binary operator, multiply, divide, or
9568 -- mod. These are the cases where the grouping can affect results.
9569
9570 if Paren_Count (Rorig) = 0
9571 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
9572 then
9573 -- For mod, we always give the warning, since the value is
9574 -- affected by the parenthesization (e.g. (-5) mod 315 /=
9575 -- -(5 mod 315)). But for the other cases, the only concern is
9576 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
9577 -- overflows, but (-2) * 64 does not). So we try to give the
9578 -- message only when overflow is possible.
9579
9580 if Nkind (Rorig) /= N_Op_Mod
9581 and then Compile_Time_Known_Value (R)
9582 then
9583 Val := Expr_Value (R);
9584
9585 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
9586 HB := Expr_Value (Type_High_Bound (Typ));
9587 else
9588 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
9589 end if;
9590
9591 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
9592 LB := Expr_Value (Type_Low_Bound (Typ));
9593 else
9594 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
9595 end if;
9596
9597 -- Note that the test below is deliberately excluding the
9598 -- largest negative number, since that is a potentially
9599 -- troublesome case (e.g. -2 * x, where the result is the
9600 -- largest negative integer has an overflow with 2 * x).
9601
9602 if Val > LB and then Val <= HB then
9603 return;
9604 end if;
9605 end if;
9606
9607 -- For the multiplication case, the only case we have to worry
9608 -- about is when (-a)*b is exactly the largest negative number
9609 -- so that -(a*b) can cause overflow. This can only happen if
9610 -- a is a power of 2, and more generally if any operand is a
9611 -- constant that is not a power of 2, then the parentheses
9612 -- cannot affect whether overflow occurs. We only bother to
9613 -- test the left most operand
9614
9615 -- Loop looking at left operands for one that has known value
9616
9617 Opnd := Rorig;
9618 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
9619 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
9620 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
9621
9622 -- Operand value of 0 or 1 skips warning
9623
9624 if Lval <= 1 then
9625 return;
9626
9627 -- Otherwise check power of 2, if power of 2, warn, if
9628 -- anything else, skip warning.
9629
9630 else
9631 while Lval /= 2 loop
9632 if Lval mod 2 = 1 then
9633 return;
9634 else
9635 Lval := Lval / 2;
9636 end if;
9637 end loop;
9638
9639 exit Opnd_Loop;
9640 end if;
9641 end if;
9642
9643 -- Keep looking at left operands
9644
9645 Opnd := Left_Opnd (Opnd);
9646 end loop Opnd_Loop;
9647
9648 -- For rem or "/" we can only have a problematic situation
9649 -- if the divisor has a value of minus one or one. Otherwise
9650 -- overflow is impossible (divisor > 1) or we have a case of
9651 -- division by zero in any case.
9652
9653 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
9654 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
9655 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
9656 then
9657 return;
9658 end if;
9659
9660 -- If we fall through warning should be issued
9661
9662 Error_Msg_N
9663 ("?unary minus expression should be parenthesized here!", N);
9664 end if;
9665 end if;
9666 end;
9667 end Resolve_Unary_Op;
9668
9669 ----------------------------------
9670 -- Resolve_Unchecked_Expression --
9671 ----------------------------------
9672
9673 procedure Resolve_Unchecked_Expression
9674 (N : Node_Id;
9675 Typ : Entity_Id)
9676 is
9677 begin
9678 Resolve (Expression (N), Typ, Suppress => All_Checks);
9679 Set_Etype (N, Typ);
9680 end Resolve_Unchecked_Expression;
9681
9682 ---------------------------------------
9683 -- Resolve_Unchecked_Type_Conversion --
9684 ---------------------------------------
9685
9686 procedure Resolve_Unchecked_Type_Conversion
9687 (N : Node_Id;
9688 Typ : Entity_Id)
9689 is
9690 pragma Warnings (Off, Typ);
9691
9692 Operand : constant Node_Id := Expression (N);
9693 Opnd_Type : constant Entity_Id := Etype (Operand);
9694
9695 begin
9696 -- Resolve operand using its own type
9697
9698 Resolve (Operand, Opnd_Type);
9699 Eval_Unchecked_Conversion (N);
9700 end Resolve_Unchecked_Type_Conversion;
9701
9702 ------------------------------
9703 -- Rewrite_Operator_As_Call --
9704 ------------------------------
9705
9706 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
9707 Loc : constant Source_Ptr := Sloc (N);
9708 Actuals : constant List_Id := New_List;
9709 New_N : Node_Id;
9710
9711 begin
9712 if Nkind (N) in N_Binary_Op then
9713 Append (Left_Opnd (N), Actuals);
9714 end if;
9715
9716 Append (Right_Opnd (N), Actuals);
9717
9718 New_N :=
9719 Make_Function_Call (Sloc => Loc,
9720 Name => New_Occurrence_Of (Nam, Loc),
9721 Parameter_Associations => Actuals);
9722
9723 Preserve_Comes_From_Source (New_N, N);
9724 Preserve_Comes_From_Source (Name (New_N), N);
9725 Rewrite (N, New_N);
9726 Set_Etype (N, Etype (Nam));
9727 end Rewrite_Operator_As_Call;
9728
9729 ------------------------------
9730 -- Rewrite_Renamed_Operator --
9731 ------------------------------
9732
9733 procedure Rewrite_Renamed_Operator
9734 (N : Node_Id;
9735 Op : Entity_Id;
9736 Typ : Entity_Id)
9737 is
9738 Nam : constant Name_Id := Chars (Op);
9739 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
9740 Op_Node : Node_Id;
9741
9742 begin
9743 -- Rewrite the operator node using the real operator, not its renaming.
9744 -- Exclude user-defined intrinsic operations of the same name, which are
9745 -- treated separately and rewritten as calls.
9746
9747 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
9748 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
9749 Set_Chars (Op_Node, Nam);
9750 Set_Etype (Op_Node, Etype (N));
9751 Set_Entity (Op_Node, Op);
9752 Set_Right_Opnd (Op_Node, Right_Opnd (N));
9753
9754 -- Indicate that both the original entity and its renaming are
9755 -- referenced at this point.
9756
9757 Generate_Reference (Entity (N), N);
9758 Generate_Reference (Op, N);
9759
9760 if Is_Binary then
9761 Set_Left_Opnd (Op_Node, Left_Opnd (N));
9762 end if;
9763
9764 Rewrite (N, Op_Node);
9765
9766 -- If the context type is private, add the appropriate conversions so
9767 -- that the operator is applied to the full view. This is done in the
9768 -- routines that resolve intrinsic operators.
9769
9770 if Is_Intrinsic_Subprogram (Op)
9771 and then Is_Private_Type (Typ)
9772 then
9773 case Nkind (N) is
9774 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
9775 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
9776 Resolve_Intrinsic_Operator (N, Typ);
9777
9778 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
9779 Resolve_Intrinsic_Unary_Operator (N, Typ);
9780
9781 when others =>
9782 Resolve (N, Typ);
9783 end case;
9784 end if;
9785
9786 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
9787
9788 -- Operator renames a user-defined operator of the same name. Use the
9789 -- original operator in the node, which is the one Gigi knows about.
9790
9791 Set_Entity (N, Op);
9792 Set_Is_Overloaded (N, False);
9793 end if;
9794 end Rewrite_Renamed_Operator;
9795
9796 -----------------------
9797 -- Set_Slice_Subtype --
9798 -----------------------
9799
9800 -- Build an implicit subtype declaration to represent the type delivered by
9801 -- the slice. This is an abbreviated version of an array subtype. We define
9802 -- an index subtype for the slice, using either the subtype name or the
9803 -- discrete range of the slice. To be consistent with index usage elsewhere
9804 -- we create a list header to hold the single index. This list is not
9805 -- otherwise attached to the syntax tree.
9806
9807 procedure Set_Slice_Subtype (N : Node_Id) is
9808 Loc : constant Source_Ptr := Sloc (N);
9809 Index_List : constant List_Id := New_List;
9810 Index : Node_Id;
9811 Index_Subtype : Entity_Id;
9812 Index_Type : Entity_Id;
9813 Slice_Subtype : Entity_Id;
9814 Drange : constant Node_Id := Discrete_Range (N);
9815
9816 begin
9817 if Is_Entity_Name (Drange) then
9818 Index_Subtype := Entity (Drange);
9819
9820 else
9821 -- We force the evaluation of a range. This is definitely needed in
9822 -- the renamed case, and seems safer to do unconditionally. Note in
9823 -- any case that since we will create and insert an Itype referring
9824 -- to this range, we must make sure any side effect removal actions
9825 -- are inserted before the Itype definition.
9826
9827 if Nkind (Drange) = N_Range then
9828 Force_Evaluation (Low_Bound (Drange));
9829 Force_Evaluation (High_Bound (Drange));
9830 end if;
9831
9832 Index_Type := Base_Type (Etype (Drange));
9833
9834 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
9835
9836 -- Take a new copy of Drange (where bounds have been rewritten to
9837 -- reference side-effect-free names). Using a separate tree ensures
9838 -- that further expansion (e.g. while rewriting a slice assignment
9839 -- into a FOR loop) does not attempt to remove side effects on the
9840 -- bounds again (which would cause the bounds in the index subtype
9841 -- definition to refer to temporaries before they are defined) (the
9842 -- reason is that some names are considered side effect free here
9843 -- for the subtype, but not in the context of a loop iteration
9844 -- scheme).
9845
9846 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
9847 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
9848 Set_Etype (Index_Subtype, Index_Type);
9849 Set_Size_Info (Index_Subtype, Index_Type);
9850 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
9851 end if;
9852
9853 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
9854
9855 Index := New_Occurrence_Of (Index_Subtype, Loc);
9856 Set_Etype (Index, Index_Subtype);
9857 Append (Index, Index_List);
9858
9859 Set_First_Index (Slice_Subtype, Index);
9860 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
9861 Set_Is_Constrained (Slice_Subtype, True);
9862
9863 Check_Compile_Time_Size (Slice_Subtype);
9864
9865 -- The Etype of the existing Slice node is reset to this slice subtype.
9866 -- Its bounds are obtained from its first index.
9867
9868 Set_Etype (N, Slice_Subtype);
9869
9870 -- For packed slice subtypes, freeze immediately (except in the case of
9871 -- being in a "spec expression" where we never freeze when we first see
9872 -- the expression).
9873
9874 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
9875 Freeze_Itype (Slice_Subtype, N);
9876
9877 -- For all other cases insert an itype reference in the slice's actions
9878 -- so that the itype is frozen at the proper place in the tree (i.e. at
9879 -- the point where actions for the slice are analyzed). Note that this
9880 -- is different from freezing the itype immediately, which might be
9881 -- premature (e.g. if the slice is within a transient scope). This needs
9882 -- to be done only if expansion is enabled.
9883
9884 elsif Full_Expander_Active then
9885 Ensure_Defined (Typ => Slice_Subtype, N => N);
9886 end if;
9887 end Set_Slice_Subtype;
9888
9889 --------------------------------
9890 -- Set_String_Literal_Subtype --
9891 --------------------------------
9892
9893 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
9894 Loc : constant Source_Ptr := Sloc (N);
9895 Low_Bound : constant Node_Id :=
9896 Type_Low_Bound (Etype (First_Index (Typ)));
9897 Subtype_Id : Entity_Id;
9898
9899 begin
9900 if Nkind (N) /= N_String_Literal then
9901 return;
9902 end if;
9903
9904 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
9905 Set_String_Literal_Length (Subtype_Id, UI_From_Int
9906 (String_Length (Strval (N))));
9907 Set_Etype (Subtype_Id, Base_Type (Typ));
9908 Set_Is_Constrained (Subtype_Id);
9909 Set_Etype (N, Subtype_Id);
9910
9911 if Is_OK_Static_Expression (Low_Bound) then
9912
9913 -- The low bound is set from the low bound of the corresponding index
9914 -- type. Note that we do not store the high bound in the string literal
9915 -- subtype, but it can be deduced if necessary from the length and the
9916 -- low bound.
9917
9918 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
9919
9920 else
9921 -- If the lower bound is not static we create a range for the string
9922 -- literal, using the index type and the known length of the literal.
9923 -- The index type is not necessarily Positive, so the upper bound is
9924 -- computed as T'Val (T'Pos (Low_Bound) + L - 1)
9925
9926 declare
9927 Index_List : constant List_Id := New_List;
9928 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
9929
9930 High_Bound : constant Node_Id :=
9931 Make_Attribute_Reference (Loc,
9932 Attribute_Name => Name_Val,
9933 Prefix =>
9934 New_Occurrence_Of (Index_Type, Loc),
9935 Expressions => New_List (
9936 Make_Op_Add (Loc,
9937 Left_Opnd =>
9938 Make_Attribute_Reference (Loc,
9939 Attribute_Name => Name_Pos,
9940 Prefix =>
9941 New_Occurrence_Of (Index_Type, Loc),
9942 Expressions =>
9943 New_List (New_Copy_Tree (Low_Bound))),
9944 Right_Opnd =>
9945 Make_Integer_Literal (Loc,
9946 String_Length (Strval (N)) - 1))));
9947
9948 Array_Subtype : Entity_Id;
9949 Index_Subtype : Entity_Id;
9950 Drange : Node_Id;
9951 Index : Node_Id;
9952
9953 begin
9954 if Is_Integer_Type (Index_Type) then
9955 Set_String_Literal_Low_Bound
9956 (Subtype_Id, Make_Integer_Literal (Loc, 1));
9957
9958 else
9959 -- If the index type is an enumeration type, build bounds
9960 -- expression with attributes.
9961
9962 Set_String_Literal_Low_Bound
9963 (Subtype_Id,
9964 Make_Attribute_Reference (Loc,
9965 Attribute_Name => Name_First,
9966 Prefix =>
9967 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
9968 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
9969 end if;
9970
9971 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
9972
9973 -- Build bona fide subtype for the string, and wrap it in an
9974 -- unchecked conversion, because the backend expects the
9975 -- String_Literal_Subtype to have a static lower bound.
9976
9977 Index_Subtype :=
9978 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
9979 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
9980 Set_Scalar_Range (Index_Subtype, Drange);
9981 Set_Parent (Drange, N);
9982 Analyze_And_Resolve (Drange, Index_Type);
9983
9984 -- In the context, the Index_Type may already have a constraint,
9985 -- so use common base type on string subtype. The base type may
9986 -- be used when generating attributes of the string, for example
9987 -- in the context of a slice assignment.
9988
9989 Set_Etype (Index_Subtype, Base_Type (Index_Type));
9990 Set_Size_Info (Index_Subtype, Index_Type);
9991 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
9992
9993 Array_Subtype := Create_Itype (E_Array_Subtype, N);
9994
9995 Index := New_Occurrence_Of (Index_Subtype, Loc);
9996 Set_Etype (Index, Index_Subtype);
9997 Append (Index, Index_List);
9998
9999 Set_First_Index (Array_Subtype, Index);
10000 Set_Etype (Array_Subtype, Base_Type (Typ));
10001 Set_Is_Constrained (Array_Subtype, True);
10002
10003 Rewrite (N,
10004 Make_Unchecked_Type_Conversion (Loc,
10005 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
10006 Expression => Relocate_Node (N)));
10007 Set_Etype (N, Array_Subtype);
10008 end;
10009 end if;
10010 end Set_String_Literal_Subtype;
10011
10012 ------------------------------
10013 -- Simplify_Type_Conversion --
10014 ------------------------------
10015
10016 procedure Simplify_Type_Conversion (N : Node_Id) is
10017 begin
10018 if Nkind (N) = N_Type_Conversion then
10019 declare
10020 Operand : constant Node_Id := Expression (N);
10021 Target_Typ : constant Entity_Id := Etype (N);
10022 Opnd_Typ : constant Entity_Id := Etype (Operand);
10023
10024 begin
10025 if Is_Floating_Point_Type (Opnd_Typ)
10026 and then
10027 (Is_Integer_Type (Target_Typ)
10028 or else (Is_Fixed_Point_Type (Target_Typ)
10029 and then Conversion_OK (N)))
10030 and then Nkind (Operand) = N_Attribute_Reference
10031 and then Attribute_Name (Operand) = Name_Truncation
10032
10033 -- Special processing required if the conversion is the expression
10034 -- of a Truncation attribute reference. In this case we replace:
10035
10036 -- ityp (ftyp'Truncation (x))
10037
10038 -- by
10039
10040 -- ityp (x)
10041
10042 -- with the Float_Truncate flag set, which is more efficient.
10043
10044 then
10045 Rewrite (Operand,
10046 Relocate_Node (First (Expressions (Operand))));
10047 Set_Float_Truncate (N, True);
10048 end if;
10049 end;
10050 end if;
10051 end Simplify_Type_Conversion;
10052
10053 -----------------------------
10054 -- Unique_Fixed_Point_Type --
10055 -----------------------------
10056
10057 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
10058 T1 : Entity_Id := Empty;
10059 T2 : Entity_Id;
10060 Item : Node_Id;
10061 Scop : Entity_Id;
10062
10063 procedure Fixed_Point_Error;
10064 -- Give error messages for true ambiguity. Messages are posted on node
10065 -- N, and entities T1, T2 are the possible interpretations.
10066
10067 -----------------------
10068 -- Fixed_Point_Error --
10069 -----------------------
10070
10071 procedure Fixed_Point_Error is
10072 begin
10073 Error_Msg_N ("ambiguous universal_fixed_expression", N);
10074 Error_Msg_NE ("\\possible interpretation as}", N, T1);
10075 Error_Msg_NE ("\\possible interpretation as}", N, T2);
10076 end Fixed_Point_Error;
10077
10078 -- Start of processing for Unique_Fixed_Point_Type
10079
10080 begin
10081 -- The operations on Duration are visible, so Duration is always a
10082 -- possible interpretation.
10083
10084 T1 := Standard_Duration;
10085
10086 -- Look for fixed-point types in enclosing scopes
10087
10088 Scop := Current_Scope;
10089 while Scop /= Standard_Standard loop
10090 T2 := First_Entity (Scop);
10091 while Present (T2) loop
10092 if Is_Fixed_Point_Type (T2)
10093 and then Current_Entity (T2) = T2
10094 and then Scope (Base_Type (T2)) = Scop
10095 then
10096 if Present (T1) then
10097 Fixed_Point_Error;
10098 return Any_Type;
10099 else
10100 T1 := T2;
10101 end if;
10102 end if;
10103
10104 Next_Entity (T2);
10105 end loop;
10106
10107 Scop := Scope (Scop);
10108 end loop;
10109
10110 -- Look for visible fixed type declarations in the context
10111
10112 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
10113 while Present (Item) loop
10114 if Nkind (Item) = N_With_Clause then
10115 Scop := Entity (Name (Item));
10116 T2 := First_Entity (Scop);
10117 while Present (T2) loop
10118 if Is_Fixed_Point_Type (T2)
10119 and then Scope (Base_Type (T2)) = Scop
10120 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
10121 then
10122 if Present (T1) then
10123 Fixed_Point_Error;
10124 return Any_Type;
10125 else
10126 T1 := T2;
10127 end if;
10128 end if;
10129
10130 Next_Entity (T2);
10131 end loop;
10132 end if;
10133
10134 Next (Item);
10135 end loop;
10136
10137 if Nkind (N) = N_Real_Literal then
10138 Error_Msg_NE ("?real literal interpreted as }!", N, T1);
10139 else
10140 Error_Msg_NE ("?universal_fixed expression interpreted as }!", N, T1);
10141 end if;
10142
10143 return T1;
10144 end Unique_Fixed_Point_Type;
10145
10146 ----------------------
10147 -- Valid_Conversion --
10148 ----------------------
10149
10150 function Valid_Conversion
10151 (N : Node_Id;
10152 Target : Entity_Id;
10153 Operand : Node_Id;
10154 Report_Errs : Boolean := True) return Boolean
10155 is
10156 Target_Type : constant Entity_Id := Base_Type (Target);
10157 Opnd_Type : Entity_Id := Etype (Operand);
10158
10159 function Conversion_Check
10160 (Valid : Boolean;
10161 Msg : String) return Boolean;
10162 -- Little routine to post Msg if Valid is False, returns Valid value
10163
10164 -- The following are badly named, this kind of overloading is actively
10165 -- confusing in reading code, please rename to something like
10166 -- Error_Msg_N_If_Reporting ???
10167
10168 procedure Error_Msg_N (Msg : String; N : Node_Or_Entity_Id);
10169 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
10170
10171 procedure Error_Msg_NE
10172 (Msg : String;
10173 N : Node_Or_Entity_Id;
10174 E : Node_Or_Entity_Id);
10175 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
10176
10177 function Valid_Tagged_Conversion
10178 (Target_Type : Entity_Id;
10179 Opnd_Type : Entity_Id) return Boolean;
10180 -- Specifically test for validity of tagged conversions
10181
10182 function Valid_Array_Conversion return Boolean;
10183 -- Check index and component conformance, and accessibility levels if
10184 -- the component types are anonymous access types (Ada 2005).
10185
10186 ----------------------
10187 -- Conversion_Check --
10188 ----------------------
10189
10190 function Conversion_Check
10191 (Valid : Boolean;
10192 Msg : String) return Boolean
10193 is
10194 begin
10195 if not Valid
10196
10197 -- A generic unit has already been analyzed and we have verified
10198 -- that a particular conversion is OK in that context. Since the
10199 -- instance is reanalyzed without relying on the relationships
10200 -- established during the analysis of the generic, it is possible
10201 -- to end up with inconsistent views of private types. Do not emit
10202 -- the error message in such cases. The rest of the machinery in
10203 -- Valid_Conversion still ensures the proper compatibility of
10204 -- target and operand types.
10205
10206 and then not In_Instance
10207 then
10208 Error_Msg_N (Msg, Operand);
10209 end if;
10210
10211 return Valid;
10212 end Conversion_Check;
10213
10214 -----------------
10215 -- Error_Msg_N --
10216 -----------------
10217
10218 procedure Error_Msg_N (Msg : String; N : Node_Or_Entity_Id) is
10219 begin
10220 if Report_Errs then
10221 Errout.Error_Msg_N (Msg, N);
10222 end if;
10223 end Error_Msg_N;
10224
10225 ------------------
10226 -- Error_Msg_NE --
10227 ------------------
10228
10229 procedure Error_Msg_NE
10230 (Msg : String;
10231 N : Node_Or_Entity_Id;
10232 E : Node_Or_Entity_Id)
10233 is
10234 begin
10235 if Report_Errs then
10236 Errout.Error_Msg_NE (Msg, N, E);
10237 end if;
10238 end Error_Msg_NE;
10239
10240 ----------------------------
10241 -- Valid_Array_Conversion --
10242 ----------------------------
10243
10244 function Valid_Array_Conversion return Boolean
10245 is
10246 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
10247 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
10248
10249 Opnd_Index : Node_Id;
10250 Opnd_Index_Type : Entity_Id;
10251
10252 Target_Comp_Type : constant Entity_Id :=
10253 Component_Type (Target_Type);
10254 Target_Comp_Base : constant Entity_Id :=
10255 Base_Type (Target_Comp_Type);
10256
10257 Target_Index : Node_Id;
10258 Target_Index_Type : Entity_Id;
10259
10260 begin
10261 -- Error if wrong number of dimensions
10262
10263 if
10264 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
10265 then
10266 Error_Msg_N
10267 ("incompatible number of dimensions for conversion", Operand);
10268 return False;
10269
10270 -- Number of dimensions matches
10271
10272 else
10273 -- Loop through indexes of the two arrays
10274
10275 Target_Index := First_Index (Target_Type);
10276 Opnd_Index := First_Index (Opnd_Type);
10277 while Present (Target_Index) and then Present (Opnd_Index) loop
10278 Target_Index_Type := Etype (Target_Index);
10279 Opnd_Index_Type := Etype (Opnd_Index);
10280
10281 -- Error if index types are incompatible
10282
10283 if not (Is_Integer_Type (Target_Index_Type)
10284 and then Is_Integer_Type (Opnd_Index_Type))
10285 and then (Root_Type (Target_Index_Type)
10286 /= Root_Type (Opnd_Index_Type))
10287 then
10288 Error_Msg_N
10289 ("incompatible index types for array conversion",
10290 Operand);
10291 return False;
10292 end if;
10293
10294 Next_Index (Target_Index);
10295 Next_Index (Opnd_Index);
10296 end loop;
10297
10298 -- If component types have same base type, all set
10299
10300 if Target_Comp_Base = Opnd_Comp_Base then
10301 null;
10302
10303 -- Here if base types of components are not the same. The only
10304 -- time this is allowed is if we have anonymous access types.
10305
10306 -- The conversion of arrays of anonymous access types can lead
10307 -- to dangling pointers. AI-392 formalizes the accessibility
10308 -- checks that must be applied to such conversions to prevent
10309 -- out-of-scope references.
10310
10311 elsif Ekind_In
10312 (Target_Comp_Base, E_Anonymous_Access_Type,
10313 E_Anonymous_Access_Subprogram_Type)
10314 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
10315 and then
10316 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
10317 then
10318 if Type_Access_Level (Target_Type) <
10319 Type_Access_Level (Opnd_Type)
10320 then
10321 if In_Instance_Body then
10322 Error_Msg_N ("?source array type " &
10323 "has deeper accessibility level than target", Operand);
10324 Error_Msg_N ("\?Program_Error will be raised at run time",
10325 Operand);
10326 Rewrite (N,
10327 Make_Raise_Program_Error (Sloc (N),
10328 Reason => PE_Accessibility_Check_Failed));
10329 Set_Etype (N, Target_Type);
10330 return False;
10331
10332 -- Conversion not allowed because of accessibility levels
10333
10334 else
10335 Error_Msg_N ("source array type " &
10336 "has deeper accessibility level than target", Operand);
10337 return False;
10338 end if;
10339
10340 else
10341 null;
10342 end if;
10343
10344 -- All other cases where component base types do not match
10345
10346 else
10347 Error_Msg_N
10348 ("incompatible component types for array conversion",
10349 Operand);
10350 return False;
10351 end if;
10352
10353 -- Check that component subtypes statically match. For numeric
10354 -- types this means that both must be either constrained or
10355 -- unconstrained. For enumeration types the bounds must match.
10356 -- All of this is checked in Subtypes_Statically_Match.
10357
10358 if not Subtypes_Statically_Match
10359 (Target_Comp_Type, Opnd_Comp_Type)
10360 then
10361 Error_Msg_N
10362 ("component subtypes must statically match", Operand);
10363 return False;
10364 end if;
10365 end if;
10366
10367 return True;
10368 end Valid_Array_Conversion;
10369
10370 -----------------------------
10371 -- Valid_Tagged_Conversion --
10372 -----------------------------
10373
10374 function Valid_Tagged_Conversion
10375 (Target_Type : Entity_Id;
10376 Opnd_Type : Entity_Id) return Boolean
10377 is
10378 begin
10379 -- Upward conversions are allowed (RM 4.6(22))
10380
10381 if Covers (Target_Type, Opnd_Type)
10382 or else Is_Ancestor (Target_Type, Opnd_Type)
10383 then
10384 return True;
10385
10386 -- Downward conversion are allowed if the operand is class-wide
10387 -- (RM 4.6(23)).
10388
10389 elsif Is_Class_Wide_Type (Opnd_Type)
10390 and then Covers (Opnd_Type, Target_Type)
10391 then
10392 return True;
10393
10394 elsif Covers (Opnd_Type, Target_Type)
10395 or else Is_Ancestor (Opnd_Type, Target_Type)
10396 then
10397 return
10398 Conversion_Check (False,
10399 "downward conversion of tagged objects not allowed");
10400
10401 -- Ada 2005 (AI-251): The conversion to/from interface types is
10402 -- always valid
10403
10404 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
10405 return True;
10406
10407 -- If the operand is a class-wide type obtained through a limited_
10408 -- with clause, and the context includes the non-limited view, use
10409 -- it to determine whether the conversion is legal.
10410
10411 elsif Is_Class_Wide_Type (Opnd_Type)
10412 and then From_With_Type (Opnd_Type)
10413 and then Present (Non_Limited_View (Etype (Opnd_Type)))
10414 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
10415 then
10416 return True;
10417
10418 elsif Is_Access_Type (Opnd_Type)
10419 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
10420 then
10421 return True;
10422
10423 else
10424 Error_Msg_NE
10425 ("invalid tagged conversion, not compatible with}",
10426 N, First_Subtype (Opnd_Type));
10427 return False;
10428 end if;
10429 end Valid_Tagged_Conversion;
10430
10431 -- Start of processing for Valid_Conversion
10432
10433 begin
10434 Check_Parameterless_Call (Operand);
10435
10436 if Is_Overloaded (Operand) then
10437 declare
10438 I : Interp_Index;
10439 I1 : Interp_Index;
10440 It : Interp;
10441 It1 : Interp;
10442 N1 : Entity_Id;
10443 T1 : Entity_Id;
10444
10445 begin
10446 -- Remove procedure calls, which syntactically cannot appear in
10447 -- this context, but which cannot be removed by type checking,
10448 -- because the context does not impose a type.
10449
10450 -- When compiling for VMS, spurious ambiguities can be produced
10451 -- when arithmetic operations have a literal operand and return
10452 -- System.Address or a descendant of it. These ambiguities are
10453 -- otherwise resolved by the context, but for conversions there
10454 -- is no context type and the removal of the spurious operations
10455 -- must be done explicitly here.
10456
10457 -- The node may be labelled overloaded, but still contain only one
10458 -- interpretation because others were discarded earlier. If this
10459 -- is the case, retain the single interpretation if legal.
10460
10461 Get_First_Interp (Operand, I, It);
10462 Opnd_Type := It.Typ;
10463 Get_Next_Interp (I, It);
10464
10465 if Present (It.Typ)
10466 and then Opnd_Type /= Standard_Void_Type
10467 then
10468 -- More than one candidate interpretation is available
10469
10470 Get_First_Interp (Operand, I, It);
10471 while Present (It.Typ) loop
10472 if It.Typ = Standard_Void_Type then
10473 Remove_Interp (I);
10474 end if;
10475
10476 if Present (System_Aux_Id)
10477 and then Is_Descendent_Of_Address (It.Typ)
10478 then
10479 Remove_Interp (I);
10480 end if;
10481
10482 Get_Next_Interp (I, It);
10483 end loop;
10484 end if;
10485
10486 Get_First_Interp (Operand, I, It);
10487 I1 := I;
10488 It1 := It;
10489
10490 if No (It.Typ) then
10491 Error_Msg_N ("illegal operand in conversion", Operand);
10492 return False;
10493 end if;
10494
10495 Get_Next_Interp (I, It);
10496
10497 if Present (It.Typ) then
10498 N1 := It1.Nam;
10499 T1 := It1.Typ;
10500 It1 := Disambiguate (Operand, I1, I, Any_Type);
10501
10502 if It1 = No_Interp then
10503 Error_Msg_N ("ambiguous operand in conversion", Operand);
10504
10505 -- If the interpretation involves a standard operator, use
10506 -- the location of the type, which may be user-defined.
10507
10508 if Sloc (It.Nam) = Standard_Location then
10509 Error_Msg_Sloc := Sloc (It.Typ);
10510 else
10511 Error_Msg_Sloc := Sloc (It.Nam);
10512 end if;
10513
10514 Error_Msg_N -- CODEFIX
10515 ("\\possible interpretation#!", Operand);
10516
10517 if Sloc (N1) = Standard_Location then
10518 Error_Msg_Sloc := Sloc (T1);
10519 else
10520 Error_Msg_Sloc := Sloc (N1);
10521 end if;
10522
10523 Error_Msg_N -- CODEFIX
10524 ("\\possible interpretation#!", Operand);
10525
10526 return False;
10527 end if;
10528 end if;
10529
10530 Set_Etype (Operand, It1.Typ);
10531 Opnd_Type := It1.Typ;
10532 end;
10533 end if;
10534
10535 -- Numeric types
10536
10537 if Is_Numeric_Type (Target_Type) then
10538
10539 -- A universal fixed expression can be converted to any numeric type
10540
10541 if Opnd_Type = Universal_Fixed then
10542 return True;
10543
10544 -- Also no need to check when in an instance or inlined body, because
10545 -- the legality has been established when the template was analyzed.
10546 -- Furthermore, numeric conversions may occur where only a private
10547 -- view of the operand type is visible at the instantiation point.
10548 -- This results in a spurious error if we check that the operand type
10549 -- is a numeric type.
10550
10551 -- Note: in a previous version of this unit, the following tests were
10552 -- applied only for generated code (Comes_From_Source set to False),
10553 -- but in fact the test is required for source code as well, since
10554 -- this situation can arise in source code.
10555
10556 elsif In_Instance or else In_Inlined_Body then
10557 return True;
10558
10559 -- Otherwise we need the conversion check
10560
10561 else
10562 return Conversion_Check
10563 (Is_Numeric_Type (Opnd_Type),
10564 "illegal operand for numeric conversion");
10565 end if;
10566
10567 -- Array types
10568
10569 elsif Is_Array_Type (Target_Type) then
10570 if not Is_Array_Type (Opnd_Type)
10571 or else Opnd_Type = Any_Composite
10572 or else Opnd_Type = Any_String
10573 then
10574 Error_Msg_N ("illegal operand for array conversion", Operand);
10575 return False;
10576 else
10577 return Valid_Array_Conversion;
10578 end if;
10579
10580 -- Ada 2005 (AI-251): Anonymous access types where target references an
10581 -- interface type.
10582
10583 elsif Ekind_In (Target_Type, E_General_Access_Type,
10584 E_Anonymous_Access_Type)
10585 and then Is_Interface (Directly_Designated_Type (Target_Type))
10586 then
10587 -- Check the static accessibility rule of 4.6(17). Note that the
10588 -- check is not enforced when within an instance body, since the
10589 -- RM requires such cases to be caught at run time.
10590
10591 if Ekind (Target_Type) /= E_Anonymous_Access_Type then
10592 if Type_Access_Level (Opnd_Type) >
10593 Deepest_Type_Access_Level (Target_Type)
10594 then
10595 -- In an instance, this is a run-time check, but one we know
10596 -- will fail, so generate an appropriate warning. The raise
10597 -- will be generated by Expand_N_Type_Conversion.
10598
10599 if In_Instance_Body then
10600 Error_Msg_N
10601 ("?cannot convert local pointer to non-local access type",
10602 Operand);
10603 Error_Msg_N
10604 ("\?Program_Error will be raised at run time", Operand);
10605
10606 else
10607 Error_Msg_N
10608 ("cannot convert local pointer to non-local access type",
10609 Operand);
10610 return False;
10611 end if;
10612
10613 -- Special accessibility checks are needed in the case of access
10614 -- discriminants declared for a limited type.
10615
10616 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
10617 and then not Is_Local_Anonymous_Access (Opnd_Type)
10618 then
10619 -- When the operand is a selected access discriminant the check
10620 -- needs to be made against the level of the object denoted by
10621 -- the prefix of the selected name (Object_Access_Level handles
10622 -- checking the prefix of the operand for this case).
10623
10624 if Nkind (Operand) = N_Selected_Component
10625 and then Object_Access_Level (Operand) >
10626 Deepest_Type_Access_Level (Target_Type)
10627 then
10628 -- In an instance, this is a run-time check, but one we know
10629 -- will fail, so generate an appropriate warning. The raise
10630 -- will be generated by Expand_N_Type_Conversion.
10631
10632 if In_Instance_Body then
10633 Error_Msg_N
10634 ("?cannot convert access discriminant to non-local" &
10635 " access type", Operand);
10636 Error_Msg_N
10637 ("\?Program_Error will be raised at run time", Operand);
10638 else
10639 Error_Msg_N
10640 ("cannot convert access discriminant to non-local" &
10641 " access type", Operand);
10642 return False;
10643 end if;
10644 end if;
10645
10646 -- The case of a reference to an access discriminant from
10647 -- within a limited type declaration (which will appear as
10648 -- a discriminal) is always illegal because the level of the
10649 -- discriminant is considered to be deeper than any (nameable)
10650 -- access type.
10651
10652 if Is_Entity_Name (Operand)
10653 and then not Is_Local_Anonymous_Access (Opnd_Type)
10654 and then
10655 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
10656 and then Present (Discriminal_Link (Entity (Operand)))
10657 then
10658 Error_Msg_N
10659 ("discriminant has deeper accessibility level than target",
10660 Operand);
10661 return False;
10662 end if;
10663 end if;
10664 end if;
10665
10666 return True;
10667
10668 -- General and anonymous access types
10669
10670 elsif Ekind_In (Target_Type, E_General_Access_Type,
10671 E_Anonymous_Access_Type)
10672 and then
10673 Conversion_Check
10674 (Is_Access_Type (Opnd_Type)
10675 and then not
10676 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
10677 E_Access_Protected_Subprogram_Type),
10678 "must be an access-to-object type")
10679 then
10680 if Is_Access_Constant (Opnd_Type)
10681 and then not Is_Access_Constant (Target_Type)
10682 then
10683 Error_Msg_N
10684 ("access-to-constant operand type not allowed", Operand);
10685 return False;
10686 end if;
10687
10688 -- Check the static accessibility rule of 4.6(17). Note that the
10689 -- check is not enforced when within an instance body, since the RM
10690 -- requires such cases to be caught at run time.
10691
10692 if Ekind (Target_Type) /= E_Anonymous_Access_Type
10693 or else Is_Local_Anonymous_Access (Target_Type)
10694 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
10695 N_Object_Declaration
10696 then
10697 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
10698 -- conversions from an anonymous access type to a named general
10699 -- access type. Such conversions are not allowed in the case of
10700 -- access parameters and stand-alone objects of an anonymous
10701 -- access type. The implicit conversion case is recognized by
10702 -- testing that Comes_From_Source is False and that it's been
10703 -- rewritten. The Comes_From_Source test isn't sufficient because
10704 -- nodes in inlined calls to predefined library routines can have
10705 -- Comes_From_Source set to False. (Is there a better way to test
10706 -- for implicit conversions???)
10707
10708 if Ada_Version >= Ada_2012
10709 and then not Comes_From_Source (N)
10710 and then N /= Original_Node (N)
10711 and then Ekind (Target_Type) = E_General_Access_Type
10712 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
10713 then
10714 if Is_Itype (Opnd_Type) then
10715
10716 -- Implicit conversions aren't allowed for objects of an
10717 -- anonymous access type, since such objects have nonstatic
10718 -- levels in Ada 2012.
10719
10720 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
10721 N_Object_Declaration
10722 then
10723 Error_Msg_N
10724 ("implicit conversion of stand-alone anonymous " &
10725 "access object not allowed", Operand);
10726 return False;
10727
10728 -- Implicit conversions aren't allowed for anonymous access
10729 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
10730 -- is done to exclude anonymous access results.
10731
10732 elsif not Is_Local_Anonymous_Access (Opnd_Type)
10733 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
10734 N_Function_Specification,
10735 N_Procedure_Specification)
10736 then
10737 Error_Msg_N
10738 ("implicit conversion of anonymous access formal " &
10739 "not allowed", Operand);
10740 return False;
10741
10742 -- This is a case where there's an enclosing object whose
10743 -- to which the "statically deeper than" relationship does
10744 -- not apply (such as an access discriminant selected from
10745 -- a dereference of an access parameter).
10746
10747 elsif Object_Access_Level (Operand)
10748 = Scope_Depth (Standard_Standard)
10749 then
10750 Error_Msg_N
10751 ("implicit conversion of anonymous access value " &
10752 "not allowed", Operand);
10753 return False;
10754
10755 -- In other cases, the level of the operand's type must be
10756 -- statically less deep than that of the target type, else
10757 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
10758
10759 elsif Type_Access_Level (Opnd_Type) >
10760 Deepest_Type_Access_Level (Target_Type)
10761 then
10762 Error_Msg_N
10763 ("implicit conversion of anonymous access value " &
10764 "violates accessibility", Operand);
10765 return False;
10766 end if;
10767 end if;
10768
10769 elsif Type_Access_Level (Opnd_Type) >
10770 Deepest_Type_Access_Level (Target_Type)
10771 then
10772 -- In an instance, this is a run-time check, but one we know
10773 -- will fail, so generate an appropriate warning. The raise
10774 -- will be generated by Expand_N_Type_Conversion.
10775
10776 if In_Instance_Body then
10777 Error_Msg_N
10778 ("?cannot convert local pointer to non-local access type",
10779 Operand);
10780 Error_Msg_N
10781 ("\?Program_Error will be raised at run time", Operand);
10782
10783 else
10784 -- Avoid generation of spurious error message
10785
10786 if not Error_Posted (N) then
10787 Error_Msg_N
10788 ("cannot convert local pointer to non-local access type",
10789 Operand);
10790 end if;
10791
10792 return False;
10793 end if;
10794
10795 -- Special accessibility checks are needed in the case of access
10796 -- discriminants declared for a limited type.
10797
10798 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
10799 and then not Is_Local_Anonymous_Access (Opnd_Type)
10800 then
10801 -- When the operand is a selected access discriminant the check
10802 -- needs to be made against the level of the object denoted by
10803 -- the prefix of the selected name (Object_Access_Level handles
10804 -- checking the prefix of the operand for this case).
10805
10806 if Nkind (Operand) = N_Selected_Component
10807 and then Object_Access_Level (Operand) >
10808 Deepest_Type_Access_Level (Target_Type)
10809 then
10810 -- In an instance, this is a run-time check, but one we know
10811 -- will fail, so generate an appropriate warning. The raise
10812 -- will be generated by Expand_N_Type_Conversion.
10813
10814 if In_Instance_Body then
10815 Error_Msg_N
10816 ("?cannot convert access discriminant to non-local" &
10817 " access type", Operand);
10818 Error_Msg_N
10819 ("\?Program_Error will be raised at run time",
10820 Operand);
10821
10822 else
10823 Error_Msg_N
10824 ("cannot convert access discriminant to non-local" &
10825 " access type", Operand);
10826 return False;
10827 end if;
10828 end if;
10829
10830 -- The case of a reference to an access discriminant from
10831 -- within a limited type declaration (which will appear as
10832 -- a discriminal) is always illegal because the level of the
10833 -- discriminant is considered to be deeper than any (nameable)
10834 -- access type.
10835
10836 if Is_Entity_Name (Operand)
10837 and then
10838 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
10839 and then Present (Discriminal_Link (Entity (Operand)))
10840 then
10841 Error_Msg_N
10842 ("discriminant has deeper accessibility level than target",
10843 Operand);
10844 return False;
10845 end if;
10846 end if;
10847 end if;
10848
10849 -- In the presence of limited_with clauses we have to use non-limited
10850 -- views, if available.
10851
10852 Check_Limited : declare
10853 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
10854 -- Helper function to handle limited views
10855
10856 --------------------------
10857 -- Full_Designated_Type --
10858 --------------------------
10859
10860 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
10861 Desig : constant Entity_Id := Designated_Type (T);
10862
10863 begin
10864 -- Handle the limited view of a type
10865
10866 if Is_Incomplete_Type (Desig)
10867 and then From_With_Type (Desig)
10868 and then Present (Non_Limited_View (Desig))
10869 then
10870 return Available_View (Desig);
10871 else
10872 return Desig;
10873 end if;
10874 end Full_Designated_Type;
10875
10876 -- Local Declarations
10877
10878 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
10879 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
10880
10881 Same_Base : constant Boolean :=
10882 Base_Type (Target) = Base_Type (Opnd);
10883
10884 -- Start of processing for Check_Limited
10885
10886 begin
10887 if Is_Tagged_Type (Target) then
10888 return Valid_Tagged_Conversion (Target, Opnd);
10889
10890 else
10891 if not Same_Base then
10892 Error_Msg_NE
10893 ("target designated type not compatible with }",
10894 N, Base_Type (Opnd));
10895 return False;
10896
10897 -- Ada 2005 AI-384: legality rule is symmetric in both
10898 -- designated types. The conversion is legal (with possible
10899 -- constraint check) if either designated type is
10900 -- unconstrained.
10901
10902 elsif Subtypes_Statically_Match (Target, Opnd)
10903 or else
10904 (Has_Discriminants (Target)
10905 and then
10906 (not Is_Constrained (Opnd)
10907 or else not Is_Constrained (Target)))
10908 then
10909 -- Special case, if Value_Size has been used to make the
10910 -- sizes different, the conversion is not allowed even
10911 -- though the subtypes statically match.
10912
10913 if Known_Static_RM_Size (Target)
10914 and then Known_Static_RM_Size (Opnd)
10915 and then RM_Size (Target) /= RM_Size (Opnd)
10916 then
10917 Error_Msg_NE
10918 ("target designated subtype not compatible with }",
10919 N, Opnd);
10920 Error_Msg_NE
10921 ("\because sizes of the two designated subtypes differ",
10922 N, Opnd);
10923 return False;
10924
10925 -- Normal case where conversion is allowed
10926
10927 else
10928 return True;
10929 end if;
10930
10931 else
10932 Error_Msg_NE
10933 ("target designated subtype not compatible with }",
10934 N, Opnd);
10935 return False;
10936 end if;
10937 end if;
10938 end Check_Limited;
10939
10940 -- Access to subprogram types. If the operand is an access parameter,
10941 -- the type has a deeper accessibility that any master, and cannot be
10942 -- assigned. We must make an exception if the conversion is part of an
10943 -- assignment and the target is the return object of an extended return
10944 -- statement, because in that case the accessibility check takes place
10945 -- after the return.
10946
10947 elsif Is_Access_Subprogram_Type (Target_Type)
10948 and then No (Corresponding_Remote_Type (Opnd_Type))
10949 then
10950 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
10951 and then Is_Entity_Name (Operand)
10952 and then Ekind (Entity (Operand)) = E_In_Parameter
10953 and then
10954 (Nkind (Parent (N)) /= N_Assignment_Statement
10955 or else not Is_Entity_Name (Name (Parent (N)))
10956 or else not Is_Return_Object (Entity (Name (Parent (N)))))
10957 then
10958 Error_Msg_N
10959 ("illegal attempt to store anonymous access to subprogram",
10960 Operand);
10961 Error_Msg_N
10962 ("\value has deeper accessibility than any master " &
10963 "(RM 3.10.2 (13))",
10964 Operand);
10965
10966 Error_Msg_NE
10967 ("\use named access type for& instead of access parameter",
10968 Operand, Entity (Operand));
10969 end if;
10970
10971 -- Check that the designated types are subtype conformant
10972
10973 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
10974 Old_Id => Designated_Type (Opnd_Type),
10975 Err_Loc => N);
10976
10977 -- Check the static accessibility rule of 4.6(20)
10978
10979 if Type_Access_Level (Opnd_Type) >
10980 Deepest_Type_Access_Level (Target_Type)
10981 then
10982 Error_Msg_N
10983 ("operand type has deeper accessibility level than target",
10984 Operand);
10985
10986 -- Check that if the operand type is declared in a generic body,
10987 -- then the target type must be declared within that same body
10988 -- (enforces last sentence of 4.6(20)).
10989
10990 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
10991 declare
10992 O_Gen : constant Node_Id :=
10993 Enclosing_Generic_Body (Opnd_Type);
10994
10995 T_Gen : Node_Id;
10996
10997 begin
10998 T_Gen := Enclosing_Generic_Body (Target_Type);
10999 while Present (T_Gen) and then T_Gen /= O_Gen loop
11000 T_Gen := Enclosing_Generic_Body (T_Gen);
11001 end loop;
11002
11003 if T_Gen /= O_Gen then
11004 Error_Msg_N
11005 ("target type must be declared in same generic body"
11006 & " as operand type", N);
11007 end if;
11008 end;
11009 end if;
11010
11011 return True;
11012
11013 -- Remote subprogram access types
11014
11015 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
11016 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
11017 then
11018 -- It is valid to convert from one RAS type to another provided
11019 -- that their specification statically match.
11020
11021 Check_Subtype_Conformant
11022 (New_Id =>
11023 Designated_Type (Corresponding_Remote_Type (Target_Type)),
11024 Old_Id =>
11025 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
11026 Err_Loc =>
11027 N);
11028 return True;
11029
11030 -- If both are tagged types, check legality of view conversions
11031
11032 elsif Is_Tagged_Type (Target_Type)
11033 and then
11034 Is_Tagged_Type (Opnd_Type)
11035 then
11036 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
11037
11038 -- Types derived from the same root type are convertible
11039
11040 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
11041 return True;
11042
11043 -- In an instance or an inlined body, there may be inconsistent views of
11044 -- the same type, or of types derived from a common root.
11045
11046 elsif (In_Instance or In_Inlined_Body)
11047 and then
11048 Root_Type (Underlying_Type (Target_Type)) =
11049 Root_Type (Underlying_Type (Opnd_Type))
11050 then
11051 return True;
11052
11053 -- Special check for common access type error case
11054
11055 elsif Ekind (Target_Type) = E_Access_Type
11056 and then Is_Access_Type (Opnd_Type)
11057 then
11058 Error_Msg_N ("target type must be general access type!", N);
11059 Error_Msg_NE -- CODEFIX
11060 ("add ALL to }!", N, Target_Type);
11061 return False;
11062
11063 else
11064 Error_Msg_NE ("invalid conversion, not compatible with }",
11065 N, Opnd_Type);
11066 return False;
11067 end if;
11068 end Valid_Conversion;
11069
11070 end Sem_Res;