8957287dbfda2bd412796f4765492d4a8acccc0b
[gcc.git] / gcc / ada / sem_res.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Ghost; use Ghost;
41 with Inline; use Inline;
42 with Itypes; use Itypes;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Nlists; use Nlists;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Par_SCO; use Par_SCO;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Aggr; use Sem_Aggr;
57 with Sem_Attr; use Sem_Attr;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch4; use Sem_Ch4;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch6; use Sem_Ch6;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Dim; use Sem_Dim;
65 with Sem_Disp; use Sem_Disp;
66 with Sem_Dist; use Sem_Dist;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Elab; use Sem_Elab;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Intr; use Sem_Intr;
71 with Sem_Util; use Sem_Util;
72 with Targparm; use Targparm;
73 with Sem_Type; use Sem_Type;
74 with Sem_Warn; use Sem_Warn;
75 with Sinfo; use Sinfo;
76 with Sinfo.CN; use Sinfo.CN;
77 with Snames; use Snames;
78 with Stand; use Stand;
79 with Stringt; use Stringt;
80 with Style; use Style;
81 with Tbuild; use Tbuild;
82 with Uintp; use Uintp;
83 with Urealp; use Urealp;
84
85 package body Sem_Res is
86
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
90
91 -- Second pass (top-down) type checking and overload resolution procedures
92 -- Typ is the type required by context. These procedures propagate the
93 -- type information recursively to the descendants of N. If the node is not
94 -- overloaded, its Etype is established in the first pass. If overloaded,
95 -- the Resolve routines set the correct type. For arithmetic operators, the
96 -- Etype is the base type of the context.
97
98 -- Note that Resolve_Attribute is separated off in Sem_Attr
99
100 procedure Check_Discriminant_Use (N : Node_Id);
101 -- Enforce the restrictions on the use of discriminants when constraining
102 -- a component of a discriminated type (record or concurrent type).
103
104 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
105 -- Given a node for an operator associated with type T, check that the
106 -- operator is visible. Operators all of whose operands are universal must
107 -- be checked for visibility during resolution because their type is not
108 -- determinable based on their operands.
109
110 procedure Check_Fully_Declared_Prefix
111 (Typ : Entity_Id;
112 Pref : Node_Id);
113 -- Check that the type of the prefix of a dereference is not incomplete
114
115 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
116 -- Given a call node, N, which is known to occur immediately within the
117 -- subprogram being called, determines whether it is a detectable case of
118 -- an infinite recursion, and if so, outputs appropriate messages. Returns
119 -- True if an infinite recursion is detected, and False otherwise.
120
121 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
122 -- If the type of the object being initialized uses the secondary stack
123 -- directly or indirectly, create a transient scope for the call to the
124 -- init proc. This is because we do not create transient scopes for the
125 -- initialization of individual components within the init proc itself.
126 -- Could be optimized away perhaps?
127
128 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
129 -- N is the node for a logical operator. If the operator is predefined, and
130 -- the root type of the operands is Standard.Boolean, then a check is made
131 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
132 -- the style check for Style_Check_Boolean_And_Or.
133
134 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
135 -- N is either an indexed component or a selected component. This function
136 -- returns true if the prefix refers to an object that has an address
137 -- clause (the case in which we may want to issue a warning).
138
139 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
142
143 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
151 -- predicate.
152
153 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
157
158 procedure Resolve_Op_Concat_Arg
159 (N : Node_Id;
160 Arg : Node_Id;
161 Typ : Entity_Id;
162 Is_Comp : Boolean);
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
167
168 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
169 -- Does the first part of the work of Resolve_Op_Concat
170
171 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
174
175 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
210
211 function Operator_Kind
212 (Op_Name : Name_Id;
213 Is_Binary : Boolean) return Node_Kind;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
216
217 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
221
222 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
228
229 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
234
235 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236 -- Ditto, for arithmetic unary operators
237
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
241
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
250
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
257
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
262
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
265
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
270
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
276
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
280
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
283
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
287
288 -- First the ones in Standard
289
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
292
293 -- Include Wide_Wide_Character in Ada 2005 mode
294
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
298
299 -- Now any other types that match
300
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
308
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
312
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
318
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
324
325 -- Versions with check(s) suppressed
326
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
331 is
332 Scop : constant Entity_Id := Current_Scope;
333
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
343
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
353
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
362
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
367
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
371 is
372 Scop : constant Entity_Id := Current_Scope;
373
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
383
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
393
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
399
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
403
404 procedure Check_Discriminant_Use (N : Node_Id) is
405 PN : constant Node_Id := Parent (N);
406 Disc : constant Entity_Id := Entity (N);
407 P : Node_Id;
408 D : Node_Id;
409
410 begin
411 -- Any use in a spec-expression is legal
412
413 if In_Spec_Expression then
414 null;
415
416 elsif Nkind (PN) = N_Range then
417
418 -- Discriminant cannot be used to constrain a scalar type
419
420 P := Parent (PN);
421
422 if Nkind (P) = N_Range_Constraint
423 and then Nkind (Parent (P)) = N_Subtype_Indication
424 and then Nkind (Parent (Parent (P))) = N_Component_Definition
425 then
426 Error_Msg_N ("discriminant cannot constrain scalar type", N);
427
428 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
429
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
436 -- below. ???
437
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
445
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
459
460 -- Detect a common error:
461
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
465
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
470
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
476
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
481
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
485
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
491
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
498
499 -- Start of processing for Check_Large
500
501 begin
502 -- Check that the Disc has a large range
503
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
507
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
511
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
515
516 -- Check that it is the high bound
517
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
523
524 -- Check the array allows a large range at this bound. First
525 -- find the array
526
527 SI := Parent (P);
528
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
532
533 T := Entity (Subtype_Mark (SI));
534
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
538
539 -- Next, find the dimension
540
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
551
552 if CB /= PN then
553 goto No_Danger;
554 end if;
555
556 -- Now, check the dimension has a large range
557
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
561
562 -- Warn about the danger
563
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
567
568 <<No_Danger>>
569 null;
570
571 end Check_Large;
572 end if;
573
574 -- Legal case is in index or discriminant constraint
575
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
582
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
589
590 return;
591
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
594
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
606
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
611
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
616
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
619
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
631
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
635
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
645
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
649
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
653 is
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
660
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
663
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
672
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
677
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
681
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
694
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
698
699 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700 P : Node_Id;
701 C : Node_Id;
702
703 function Same_Argument_List return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
706
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
710
711 function Same_Argument_List return Boolean is
712 A : Node_Id;
713 F : Entity_Id;
714 Subp : Entity_Id;
715
716 begin
717 if not Is_Entity_Name (Name (N)) then
718 return False;
719 else
720 Subp := Entity (Name (N));
721 end if;
722
723 F := First_Formal (Subp);
724 A := First_Actual (N);
725 while Present (F) and then Present (A) loop
726 if not Is_Entity_Name (A) or else Entity (A) /= F then
727 return False;
728 end if;
729
730 Next_Actual (A);
731 Next_Formal (F);
732 end loop;
733
734 return True;
735 end Same_Argument_List;
736
737 -- Start of processing for Check_Infinite_Recursion
738
739 begin
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
743
744 if Is_List_Member (N)
745 and then List_Length (List_Containing (N)) = 1
746 and then Same_Argument_List
747 then
748 declare
749 P : constant Node_Id := Parent (N);
750 begin
751 if Nkind (P) = N_Handled_Sequence_Of_Statements
752 and then Nkind (Parent (P)) = N_Subprogram_Body
753 and then Is_Empty_List (Declarations (Parent (P)))
754 then
755 Error_Msg_Warn := SPARK_Mode /= On;
756 Error_Msg_N ("!infinite recursion<<", N);
757 Error_Msg_N ("\!Storage_Error [<<", N);
758 Insert_Action (N,
759 Make_Raise_Storage_Error (Sloc (N),
760 Reason => SE_Infinite_Recursion));
761 return True;
762 end if;
763 end;
764 end if;
765
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
769
770 C := N;
771 loop
772 P := Parent (C);
773
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
777
778 if No (P) then
779 return False;
780 end if;
781
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
784
785 exit when Nkind (P) = N_Subprogram_Body;
786
787 -- If appearing in conditional, result is false
788
789 if Nkind_In (P, N_Or_Else,
790 N_And_Then,
791 N_Case_Expression,
792 N_Case_Statement,
793 N_If_Expression,
794 N_If_Statement)
795 then
796 return False;
797
798 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799 and then C /= First (Statements (P))
800 then
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
805
806 -- Furthermore, this corresponds to a common idiom:
807
808 -- function F (L : Thing) return Boolean is
809 -- begin
810 -- raise Program_Error;
811 -- return F (L);
812 -- end F;
813
814 -- for generating a stub function
815
816 if Nkind (Parent (N)) = N_Simple_Return_Statement
817 and then Same_Argument_List
818 then
819 exit when not Is_List_Member (Parent (N));
820
821 -- OK, return statement is in a statement list, look for raise
822
823 declare
824 Nod : Node_Id;
825
826 begin
827 -- Skip past N_Freeze_Entity nodes generated by expansion
828
829 Nod := Prev (Parent (N));
830 while Present (Nod)
831 and then Nkind (Nod) = N_Freeze_Entity
832 loop
833 Prev (Nod);
834 end loop;
835
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
839
840 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841 and then
842 (Nkind (Nod) not in N_Raise_xxx_Error
843 or else Present (Condition (Nod)));
844 end;
845 end if;
846
847 return False;
848
849 else
850 C := P;
851 end if;
852 end loop;
853
854 Error_Msg_Warn := SPARK_Mode /= On;
855 Error_Msg_N ("!possible infinite recursion<<", N);
856 Error_Msg_N ("\!??Storage_Error ]<<", N);
857
858 return True;
859 end Check_Infinite_Recursion;
860
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
864
865 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866 Typ : constant Entity_Id := Etype (First_Formal (Nam));
867
868 function Uses_SS (T : Entity_Id) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
874
875 -------------
876 -- Uses_SS --
877 -------------
878
879 function Uses_SS (T : Entity_Id) return Boolean is
880 Comp : Entity_Id;
881 Expr : Node_Id;
882 Full_Type : Entity_Id := Underlying_Type (T);
883
884 begin
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
887
888 if not Present (Full_Type) then
889 Full_Type := T;
890 end if;
891
892 if Is_Controlled (Full_Type) then
893 return False;
894
895 elsif Is_Array_Type (Full_Type) then
896 return Uses_SS (Component_Type (Full_Type));
897
898 elsif Is_Record_Type (Full_Type) then
899 Comp := First_Component (Full_Type);
900 while Present (Comp) loop
901 if Ekind (Comp) = E_Component
902 and then Nkind (Parent (Comp)) = N_Component_Declaration
903 then
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
906
907 Expr := Original_Node (Expression (Parent (Comp)));
908
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
912 -- transient scope.
913
914 if (Nkind (Expr) = N_Function_Call
915 or else Nkind (Expr) in N_Op
916 or else (Nkind (Expr) = N_Attribute_Reference
917 and then Present (Expressions (Expr))))
918 and then Requires_Transient_Scope (Etype (Expr))
919 then
920 return True;
921
922 elsif Uses_SS (Etype (Comp)) then
923 return True;
924 end if;
925 end if;
926
927 Next_Component (Comp);
928 end loop;
929
930 return False;
931
932 else
933 return False;
934 end if;
935 end Uses_SS;
936
937 -- Start of processing for Check_Initialization_Call
938
939 begin
940 -- Establish a transient scope if the type needs it
941
942 if Uses_SS (Typ) then
943 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944 end if;
945 end Check_Initialization_Call;
946
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
950
951 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952 begin
953 if Scope (Entity (N)) = Standard_Standard
954 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955 then
956 -- Restriction only applies to original source code
957
958 if Comes_From_Source (N) then
959 Check_Restriction (No_Direct_Boolean_Operators, N);
960 end if;
961 end if;
962
963 -- Do style check (but skip if in instance, error is on template)
964
965 if Style_Check then
966 if not In_Instance then
967 Check_Boolean_Operator (N);
968 end if;
969 end if;
970 end Check_No_Direct_Boolean_Operators;
971
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
975
976 procedure Check_Parameterless_Call (N : Node_Id) is
977 Nam : Node_Id;
978
979 function Prefix_Is_Access_Subp return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
983
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
987
988 function Prefix_Is_Access_Subp return Boolean is
989 I : Interp_Index;
990 It : Interp;
991
992 begin
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
995
996 if Nkind (Parent (N)) = N_Attribute_Reference
997 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998 Name_Code_Address,
999 Name_Access)
1000 then
1001 return False;
1002 end if;
1003
1004 if not Is_Overloaded (N) then
1005 return
1006 Ekind (Etype (N)) = E_Subprogram_Type
1007 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008 else
1009 Get_First_Interp (N, I, It);
1010 while Present (It.Typ) loop
1011 if Ekind (It.Typ) /= E_Subprogram_Type
1012 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013 then
1014 return False;
1015 end if;
1016
1017 Get_Next_Interp (I, It);
1018 end loop;
1019
1020 return True;
1021 end if;
1022 end Prefix_Is_Access_Subp;
1023
1024 -- Start of processing for Check_Parameterless_Call
1025
1026 begin
1027 -- Defend against junk stuff if errors already detected
1028
1029 if Total_Errors_Detected /= 0 then
1030 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031 return;
1032 elsif Nkind (N) in N_Has_Chars
1033 and then Chars (N) in Error_Name_Or_No_Name
1034 then
1035 return;
1036 end if;
1037
1038 Require_Entity (N);
1039 end if;
1040
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1044
1045 if Is_Entity_Name (N)
1046 and then Ekind (Entity (N)) = E_Procedure
1047 and then not Is_Overloaded (N)
1048 and then
1049 Nkind_In (Parent (N), N_Parameter_Association,
1050 N_Function_Call,
1051 N_Procedure_Call_Statement)
1052 then
1053 return;
1054 end if;
1055
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1059
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1064
1065 if (Is_Entity_Name (N)
1066 and then Nkind (N) /= N_Operator_Symbol
1067 and then Is_Overloadable (Entity (N))
1068 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069 or else Is_Overloaded (N)))
1070
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1074
1075 or else
1076 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1077
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1081
1082 or else
1083 (Nkind (N) = N_Selected_Component
1084 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085 or else
1086 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087 E_Procedure)
1088 and then Is_Overloaded (Selector_Name (N)))))
1089
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1092
1093 then
1094 if Nkind (Parent (N)) /= N_Function_Call
1095 or else N /= Name (Parent (N))
1096 then
1097
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1100
1101 if Ada_Version >= Ada_2005
1102 and then Nkind (N) = N_Selected_Component
1103 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104 then
1105 Analyze_Selected_Component (N);
1106
1107 if Nkind (N) /= N_Selected_Component then
1108 return;
1109 end if;
1110 end if;
1111
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1114
1115 Nam := Relocate_Node (N);
1116
1117 -- If overloaded, overload set belongs to new copy
1118
1119 Save_Interps (N, Nam);
1120
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1124
1125 Change_Node (N, N_Function_Call);
1126 Set_Name (N, Nam);
1127 Set_Sloc (N, Sloc (Nam));
1128 Analyze_Call (N);
1129 end if;
1130
1131 elsif Nkind (N) = N_Parameter_Association then
1132 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1133
1134 elsif Nkind (N) = N_Operator_Symbol then
1135 Change_Operator_Symbol_To_String_Literal (N);
1136 Set_Is_Overloaded (N, False);
1137 Set_Etype (N, Any_String);
1138 end if;
1139 end Check_Parameterless_Call;
1140
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1144
1145 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146 Pref : constant Node_Id := Prefix (N);
1147
1148 begin
1149 if not Is_Entity_Name (Pref) then
1150 return False;
1151
1152 else
1153 declare
1154 Pent : constant Entity_Id := Entity (Pref);
1155 Ptyp : constant Entity_Id := Etype (Pent);
1156 begin
1157 return not Is_Access_Type (Ptyp)
1158 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159 and then Present (Address_Clause (Pent));
1160 end;
1161 end if;
1162 end Is_Atomic_Ref_With_Address;
1163
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1167
1168 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169 Btyp : constant Entity_Id := Base_Type (E);
1170 begin
1171 return Ekind (Btyp) = E_Access_Type
1172 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173 and then Comes_From_Source (Btyp));
1174 end Is_Definite_Access_Type;
1175
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1179
1180 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181 begin
1182 -- Predefined operators are intrinsic subprograms
1183
1184 if not Is_Intrinsic_Subprogram (Nam) then
1185 return False;
1186 end if;
1187
1188 -- A call to a back-end builtin is never a predefined operator
1189
1190 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191 return False;
1192 end if;
1193
1194 return not Is_Generic_Instance (Nam)
1195 and then Chars (Nam) in Any_Operator_Name
1196 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197 end Is_Predefined_Op;
1198
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1202
1203 procedure Make_Call_Into_Operator
1204 (N : Node_Id;
1205 Typ : Entity_Id;
1206 Op_Id : Entity_Id)
1207 is
1208 Op_Name : constant Name_Id := Chars (Op_Id);
1209 Act1 : Node_Id := First_Actual (N);
1210 Act2 : Node_Id := Next_Actual (Act1);
1211 Error : Boolean := False;
1212 Func : constant Entity_Id := Entity (Name (N));
1213 Is_Binary : constant Boolean := Present (Act2);
1214 Op_Node : Node_Id;
1215 Opnd_Type : Entity_Id;
1216 Orig_Type : Entity_Id := Empty;
1217 Pack : Entity_Id;
1218
1219 type Kind_Test is access function (E : Entity_Id) return Boolean;
1220
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1225
1226 function Type_In_P (Test : Kind_Test) return Entity_Id;
1227 -- Find a type of the given class in package Pack that contains the
1228 -- operator.
1229
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1233
1234 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235 Nod : constant Node_Id := Right_Opnd (Op_Node);
1236 I : Interp_Index;
1237 It : Interp;
1238
1239 begin
1240 if not Is_Overloaded (Nod) then
1241 return Scope (Base_Type (Etype (Nod))) = S;
1242
1243 else
1244 Get_First_Interp (Nod, I, It);
1245 while Present (It.Typ) loop
1246 if Scope (Base_Type (It.Typ)) = S then
1247 return True;
1248 end if;
1249
1250 Get_Next_Interp (I, It);
1251 end loop;
1252
1253 return False;
1254 end if;
1255 end Operand_Type_In_Scope;
1256
1257 ---------------
1258 -- Type_In_P --
1259 ---------------
1260
1261 function Type_In_P (Test : Kind_Test) return Entity_Id is
1262 E : Entity_Id;
1263
1264 function In_Decl return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1267
1268 -------------
1269 -- In_Decl --
1270 -------------
1271
1272 function In_Decl return Boolean is
1273 Decl_Node : constant Node_Id := Parent (E);
1274 N2 : Node_Id;
1275
1276 begin
1277 N2 := N;
1278
1279 if Etype (E) = Any_Type then
1280 return True;
1281
1282 elsif No (Decl_Node) then
1283 return False;
1284
1285 else
1286 while Present (N2)
1287 and then Nkind (N2) /= N_Compilation_Unit
1288 loop
1289 if N2 = Decl_Node then
1290 return True;
1291 else
1292 N2 := Parent (N2);
1293 end if;
1294 end loop;
1295
1296 return False;
1297 end if;
1298 end In_Decl;
1299
1300 -- Start of processing for Type_In_P
1301
1302 begin
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1305
1306 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307 return Base_Type (Typ);
1308
1309 else
1310 E := First_Entity (Pack);
1311 while Present (E) loop
1312 if Test (E) and then not In_Decl then
1313 return E;
1314 end if;
1315
1316 Next_Entity (E);
1317 end loop;
1318
1319 return Empty;
1320 end if;
1321 end Type_In_P;
1322
1323 -- Start of processing for Make_Call_Into_Operator
1324
1325 begin
1326 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1327
1328 -- Binary operator
1329
1330 if Is_Binary then
1331 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1332 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1333 Save_Interps (Act1, Left_Opnd (Op_Node));
1334 Save_Interps (Act2, Right_Opnd (Op_Node));
1335 Act1 := Left_Opnd (Op_Node);
1336 Act2 := Right_Opnd (Op_Node);
1337
1338 -- Unary operator
1339
1340 else
1341 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1342 Save_Interps (Act1, Right_Opnd (Op_Node));
1343 Act1 := Right_Opnd (Op_Node);
1344 end if;
1345
1346 -- If the operator is denoted by an expanded name, and the prefix is
1347 -- not Standard, but the operator is a predefined one whose scope is
1348 -- Standard, then this is an implicit_operator, inserted as an
1349 -- interpretation by the procedure of the same name. This procedure
1350 -- overestimates the presence of implicit operators, because it does
1351 -- not examine the type of the operands. Verify now that the operand
1352 -- type appears in the given scope. If right operand is universal,
1353 -- check the other operand. In the case of concatenation, either
1354 -- argument can be the component type, so check the type of the result.
1355 -- If both arguments are literals, look for a type of the right kind
1356 -- defined in the given scope. This elaborate nonsense is brought to
1357 -- you courtesy of b33302a. The type itself must be frozen, so we must
1358 -- find the type of the proper class in the given scope.
1359
1360 -- A final wrinkle is the multiplication operator for fixed point types,
1361 -- which is defined in Standard only, and not in the scope of the
1362 -- fixed point type itself.
1363
1364 if Nkind (Name (N)) = N_Expanded_Name then
1365 Pack := Entity (Prefix (Name (N)));
1366
1367 -- If this is a package renaming, get renamed entity, which will be
1368 -- the scope of the operands if operaton is type-correct.
1369
1370 if Present (Renamed_Entity (Pack)) then
1371 Pack := Renamed_Entity (Pack);
1372 end if;
1373
1374 -- If the entity being called is defined in the given package, it is
1375 -- a renaming of a predefined operator, and known to be legal.
1376
1377 if Scope (Entity (Name (N))) = Pack
1378 and then Pack /= Standard_Standard
1379 then
1380 null;
1381
1382 -- Visibility does not need to be checked in an instance: if the
1383 -- operator was not visible in the generic it has been diagnosed
1384 -- already, else there is an implicit copy of it in the instance.
1385
1386 elsif In_Instance then
1387 null;
1388
1389 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1390 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1391 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1392 then
1393 if Pack /= Standard_Standard then
1394 Error := True;
1395 end if;
1396
1397 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1398 -- available.
1399
1400 elsif Ada_Version >= Ada_2005
1401 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1402 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1403 then
1404 null;
1405
1406 else
1407 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1408
1409 if Op_Name = Name_Op_Concat then
1410 Opnd_Type := Base_Type (Typ);
1411
1412 elsif (Scope (Opnd_Type) = Standard_Standard
1413 and then Is_Binary)
1414 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1415 and then Is_Binary
1416 and then not Comes_From_Source (Opnd_Type))
1417 then
1418 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1419 end if;
1420
1421 if Scope (Opnd_Type) = Standard_Standard then
1422
1423 -- Verify that the scope contains a type that corresponds to
1424 -- the given literal. Optimize the case where Pack is Standard.
1425
1426 if Pack /= Standard_Standard then
1427
1428 if Opnd_Type = Universal_Integer then
1429 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1430
1431 elsif Opnd_Type = Universal_Real then
1432 Orig_Type := Type_In_P (Is_Real_Type'Access);
1433
1434 elsif Opnd_Type = Any_String then
1435 Orig_Type := Type_In_P (Is_String_Type'Access);
1436
1437 elsif Opnd_Type = Any_Access then
1438 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1439
1440 elsif Opnd_Type = Any_Composite then
1441 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1442
1443 if Present (Orig_Type) then
1444 if Has_Private_Component (Orig_Type) then
1445 Orig_Type := Empty;
1446 else
1447 Set_Etype (Act1, Orig_Type);
1448
1449 if Is_Binary then
1450 Set_Etype (Act2, Orig_Type);
1451 end if;
1452 end if;
1453 end if;
1454
1455 else
1456 Orig_Type := Empty;
1457 end if;
1458
1459 Error := No (Orig_Type);
1460 end if;
1461
1462 elsif Ekind (Opnd_Type) = E_Allocator_Type
1463 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1464 then
1465 Error := True;
1466
1467 -- If the type is defined elsewhere, and the operator is not
1468 -- defined in the given scope (by a renaming declaration, e.g.)
1469 -- then this is an error as well. If an extension of System is
1470 -- present, and the type may be defined there, Pack must be
1471 -- System itself.
1472
1473 elsif Scope (Opnd_Type) /= Pack
1474 and then Scope (Op_Id) /= Pack
1475 and then (No (System_Aux_Id)
1476 or else Scope (Opnd_Type) /= System_Aux_Id
1477 or else Pack /= Scope (System_Aux_Id))
1478 then
1479 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1480 Error := True;
1481 else
1482 Error := not Operand_Type_In_Scope (Pack);
1483 end if;
1484
1485 elsif Pack = Standard_Standard
1486 and then not Operand_Type_In_Scope (Standard_Standard)
1487 then
1488 Error := True;
1489 end if;
1490 end if;
1491
1492 if Error then
1493 Error_Msg_Node_2 := Pack;
1494 Error_Msg_NE
1495 ("& not declared in&", N, Selector_Name (Name (N)));
1496 Set_Etype (N, Any_Type);
1497 return;
1498
1499 -- Detect a mismatch between the context type and the result type
1500 -- in the named package, which is otherwise not detected if the
1501 -- operands are universal. Check is only needed if source entity is
1502 -- an operator, not a function that renames an operator.
1503
1504 elsif Nkind (Parent (N)) /= N_Type_Conversion
1505 and then Ekind (Entity (Name (N))) = E_Operator
1506 and then Is_Numeric_Type (Typ)
1507 and then not Is_Universal_Numeric_Type (Typ)
1508 and then Scope (Base_Type (Typ)) /= Pack
1509 and then not In_Instance
1510 then
1511 if Is_Fixed_Point_Type (Typ)
1512 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1513 then
1514 -- Already checked above
1515
1516 null;
1517
1518 -- Operator may be defined in an extension of System
1519
1520 elsif Present (System_Aux_Id)
1521 and then Scope (Opnd_Type) = System_Aux_Id
1522 then
1523 null;
1524
1525 else
1526 -- Could we use Wrong_Type here??? (this would require setting
1527 -- Etype (N) to the actual type found where Typ was expected).
1528
1529 Error_Msg_NE ("expect }", N, Typ);
1530 end if;
1531 end if;
1532 end if;
1533
1534 Set_Chars (Op_Node, Op_Name);
1535
1536 if not Is_Private_Type (Etype (N)) then
1537 Set_Etype (Op_Node, Base_Type (Etype (N)));
1538 else
1539 Set_Etype (Op_Node, Etype (N));
1540 end if;
1541
1542 -- If this is a call to a function that renames a predefined equality,
1543 -- the renaming declaration provides a type that must be used to
1544 -- resolve the operands. This must be done now because resolution of
1545 -- the equality node will not resolve any remaining ambiguity, and it
1546 -- assumes that the first operand is not overloaded.
1547
1548 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1549 and then Ekind (Func) = E_Function
1550 and then Is_Overloaded (Act1)
1551 then
1552 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1553 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1554 end if;
1555
1556 Set_Entity (Op_Node, Op_Id);
1557 Generate_Reference (Op_Id, N, ' ');
1558
1559 -- Do rewrite setting Comes_From_Source on the result if the original
1560 -- call came from source. Although it is not strictly the case that the
1561 -- operator as such comes from the source, logically it corresponds
1562 -- exactly to the function call in the source, so it should be marked
1563 -- this way (e.g. to make sure that validity checks work fine).
1564
1565 declare
1566 CS : constant Boolean := Comes_From_Source (N);
1567 begin
1568 Rewrite (N, Op_Node);
1569 Set_Comes_From_Source (N, CS);
1570 end;
1571
1572 -- If this is an arithmetic operator and the result type is private,
1573 -- the operands and the result must be wrapped in conversion to
1574 -- expose the underlying numeric type and expand the proper checks,
1575 -- e.g. on division.
1576
1577 if Is_Private_Type (Typ) then
1578 case Nkind (N) is
1579 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1580 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1581 Resolve_Intrinsic_Operator (N, Typ);
1582
1583 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1584 Resolve_Intrinsic_Unary_Operator (N, Typ);
1585
1586 when others =>
1587 Resolve (N, Typ);
1588 end case;
1589 else
1590 Resolve (N, Typ);
1591 end if;
1592
1593 -- If in ASIS_Mode, propagate operand types to original actuals of
1594 -- function call, which would otherwise not be fully resolved. If
1595 -- the call has already been constant-folded, nothing to do. We
1596 -- relocate the operand nodes rather than copy them, to preserve
1597 -- original_node pointers, given that the operands themselves may
1598 -- have been rewritten. If the call was itself a rewriting of an
1599 -- operator node, nothing to do.
1600
1601 if ASIS_Mode
1602 and then Nkind (N) in N_Op
1603 and then Nkind (Original_Node (N)) = N_Function_Call
1604 then
1605 declare
1606 L : Node_Id;
1607 R : constant Node_Id := Right_Opnd (N);
1608
1609 Old_First : constant Node_Id :=
1610 First (Parameter_Associations (Original_Node (N)));
1611 Old_Sec : Node_Id;
1612
1613 begin
1614 if Is_Binary then
1615 L := Left_Opnd (N);
1616 Old_Sec := Next (Old_First);
1617
1618 -- If the original call has named associations, replace the
1619 -- explicit actual parameter in the association with the proper
1620 -- resolved operand.
1621
1622 if Nkind (Old_First) = N_Parameter_Association then
1623 if Chars (Selector_Name (Old_First)) =
1624 Chars (First_Entity (Op_Id))
1625 then
1626 Rewrite (Explicit_Actual_Parameter (Old_First),
1627 Relocate_Node (L));
1628 else
1629 Rewrite (Explicit_Actual_Parameter (Old_First),
1630 Relocate_Node (R));
1631 end if;
1632
1633 else
1634 Rewrite (Old_First, Relocate_Node (L));
1635 end if;
1636
1637 if Nkind (Old_Sec) = N_Parameter_Association then
1638 if Chars (Selector_Name (Old_Sec)) =
1639 Chars (First_Entity (Op_Id))
1640 then
1641 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1642 Relocate_Node (L));
1643 else
1644 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1645 Relocate_Node (R));
1646 end if;
1647
1648 else
1649 Rewrite (Old_Sec, Relocate_Node (R));
1650 end if;
1651
1652 else
1653 if Nkind (Old_First) = N_Parameter_Association then
1654 Rewrite (Explicit_Actual_Parameter (Old_First),
1655 Relocate_Node (R));
1656 else
1657 Rewrite (Old_First, Relocate_Node (R));
1658 end if;
1659 end if;
1660 end;
1661
1662 Set_Parent (Original_Node (N), Parent (N));
1663 end if;
1664 end Make_Call_Into_Operator;
1665
1666 -------------------
1667 -- Operator_Kind --
1668 -------------------
1669
1670 function Operator_Kind
1671 (Op_Name : Name_Id;
1672 Is_Binary : Boolean) return Node_Kind
1673 is
1674 Kind : Node_Kind;
1675
1676 begin
1677 -- Use CASE statement or array???
1678
1679 if Is_Binary then
1680 if Op_Name = Name_Op_And then
1681 Kind := N_Op_And;
1682 elsif Op_Name = Name_Op_Or then
1683 Kind := N_Op_Or;
1684 elsif Op_Name = Name_Op_Xor then
1685 Kind := N_Op_Xor;
1686 elsif Op_Name = Name_Op_Eq then
1687 Kind := N_Op_Eq;
1688 elsif Op_Name = Name_Op_Ne then
1689 Kind := N_Op_Ne;
1690 elsif Op_Name = Name_Op_Lt then
1691 Kind := N_Op_Lt;
1692 elsif Op_Name = Name_Op_Le then
1693 Kind := N_Op_Le;
1694 elsif Op_Name = Name_Op_Gt then
1695 Kind := N_Op_Gt;
1696 elsif Op_Name = Name_Op_Ge then
1697 Kind := N_Op_Ge;
1698 elsif Op_Name = Name_Op_Add then
1699 Kind := N_Op_Add;
1700 elsif Op_Name = Name_Op_Subtract then
1701 Kind := N_Op_Subtract;
1702 elsif Op_Name = Name_Op_Concat then
1703 Kind := N_Op_Concat;
1704 elsif Op_Name = Name_Op_Multiply then
1705 Kind := N_Op_Multiply;
1706 elsif Op_Name = Name_Op_Divide then
1707 Kind := N_Op_Divide;
1708 elsif Op_Name = Name_Op_Mod then
1709 Kind := N_Op_Mod;
1710 elsif Op_Name = Name_Op_Rem then
1711 Kind := N_Op_Rem;
1712 elsif Op_Name = Name_Op_Expon then
1713 Kind := N_Op_Expon;
1714 else
1715 raise Program_Error;
1716 end if;
1717
1718 -- Unary operators
1719
1720 else
1721 if Op_Name = Name_Op_Add then
1722 Kind := N_Op_Plus;
1723 elsif Op_Name = Name_Op_Subtract then
1724 Kind := N_Op_Minus;
1725 elsif Op_Name = Name_Op_Abs then
1726 Kind := N_Op_Abs;
1727 elsif Op_Name = Name_Op_Not then
1728 Kind := N_Op_Not;
1729 else
1730 raise Program_Error;
1731 end if;
1732 end if;
1733
1734 return Kind;
1735 end Operator_Kind;
1736
1737 ----------------------------
1738 -- Preanalyze_And_Resolve --
1739 ----------------------------
1740
1741 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1742 Save_Full_Analysis : constant Boolean := Full_Analysis;
1743
1744 begin
1745 Full_Analysis := False;
1746 Expander_Mode_Save_And_Set (False);
1747
1748 -- Normally, we suppress all checks for this preanalysis. There is no
1749 -- point in processing them now, since they will be applied properly
1750 -- and in the proper location when the default expressions reanalyzed
1751 -- and reexpanded later on. We will also have more information at that
1752 -- point for possible suppression of individual checks.
1753
1754 -- However, in SPARK mode, most expansion is suppressed, and this
1755 -- later reanalysis and reexpansion may not occur. SPARK mode does
1756 -- require the setting of checking flags for proof purposes, so we
1757 -- do the SPARK preanalysis without suppressing checks.
1758
1759 -- This special handling for SPARK mode is required for example in the
1760 -- case of Ada 2012 constructs such as quantified expressions, which are
1761 -- expanded in two separate steps.
1762
1763 if GNATprove_Mode then
1764 Analyze_And_Resolve (N, T);
1765 else
1766 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1767 end if;
1768
1769 Expander_Mode_Restore;
1770 Full_Analysis := Save_Full_Analysis;
1771 end Preanalyze_And_Resolve;
1772
1773 -- Version without context type
1774
1775 procedure Preanalyze_And_Resolve (N : Node_Id) is
1776 Save_Full_Analysis : constant Boolean := Full_Analysis;
1777
1778 begin
1779 Full_Analysis := False;
1780 Expander_Mode_Save_And_Set (False);
1781
1782 Analyze (N);
1783 Resolve (N, Etype (N), Suppress => All_Checks);
1784
1785 Expander_Mode_Restore;
1786 Full_Analysis := Save_Full_Analysis;
1787 end Preanalyze_And_Resolve;
1788
1789 ----------------------------------
1790 -- Replace_Actual_Discriminants --
1791 ----------------------------------
1792
1793 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1794 Loc : constant Source_Ptr := Sloc (N);
1795 Tsk : Node_Id := Empty;
1796
1797 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1798 -- Comment needed???
1799
1800 -------------------
1801 -- Process_Discr --
1802 -------------------
1803
1804 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1805 Ent : Entity_Id;
1806
1807 begin
1808 if Nkind (Nod) = N_Identifier then
1809 Ent := Entity (Nod);
1810
1811 if Present (Ent)
1812 and then Ekind (Ent) = E_Discriminant
1813 then
1814 Rewrite (Nod,
1815 Make_Selected_Component (Loc,
1816 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1817 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1818
1819 Set_Etype (Nod, Etype (Ent));
1820 end if;
1821
1822 end if;
1823
1824 return OK;
1825 end Process_Discr;
1826
1827 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1828
1829 -- Start of processing for Replace_Actual_Discriminants
1830
1831 begin
1832 if not Expander_Active then
1833 return;
1834 end if;
1835
1836 if Nkind (Name (N)) = N_Selected_Component then
1837 Tsk := Prefix (Name (N));
1838
1839 elsif Nkind (Name (N)) = N_Indexed_Component then
1840 Tsk := Prefix (Prefix (Name (N)));
1841 end if;
1842
1843 if No (Tsk) then
1844 return;
1845 else
1846 Replace_Discrs (Default);
1847 end if;
1848 end Replace_Actual_Discriminants;
1849
1850 -------------
1851 -- Resolve --
1852 -------------
1853
1854 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1855 Ambiguous : Boolean := False;
1856 Ctx_Type : Entity_Id := Typ;
1857 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1858 Err_Type : Entity_Id := Empty;
1859 Found : Boolean := False;
1860 From_Lib : Boolean;
1861 I : Interp_Index;
1862 I1 : Interp_Index := 0; -- prevent junk warning
1863 It : Interp;
1864 It1 : Interp;
1865 Seen : Entity_Id := Empty; -- prevent junk warning
1866
1867 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1868 -- Determine whether a node comes from a predefined library unit or
1869 -- Standard.
1870
1871 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1872 -- Try and fix up a literal so that it matches its expected type. New
1873 -- literals are manufactured if necessary to avoid cascaded errors.
1874
1875 procedure Report_Ambiguous_Argument;
1876 -- Additional diagnostics when an ambiguous call has an ambiguous
1877 -- argument (typically a controlling actual).
1878
1879 procedure Resolution_Failed;
1880 -- Called when attempt at resolving current expression fails
1881
1882 ------------------------------------
1883 -- Comes_From_Predefined_Lib_Unit --
1884 -------------------------------------
1885
1886 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1887 begin
1888 return
1889 Sloc (Nod) = Standard_Location
1890 or else Is_Predefined_File_Name
1891 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1892 end Comes_From_Predefined_Lib_Unit;
1893
1894 --------------------
1895 -- Patch_Up_Value --
1896 --------------------
1897
1898 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1899 begin
1900 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1901 Rewrite (N,
1902 Make_Real_Literal (Sloc (N),
1903 Realval => UR_From_Uint (Intval (N))));
1904 Set_Etype (N, Universal_Real);
1905 Set_Is_Static_Expression (N);
1906
1907 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1908 Rewrite (N,
1909 Make_Integer_Literal (Sloc (N),
1910 Intval => UR_To_Uint (Realval (N))));
1911 Set_Etype (N, Universal_Integer);
1912 Set_Is_Static_Expression (N);
1913
1914 elsif Nkind (N) = N_String_Literal
1915 and then Is_Character_Type (Typ)
1916 then
1917 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1918 Rewrite (N,
1919 Make_Character_Literal (Sloc (N),
1920 Chars => Name_Find,
1921 Char_Literal_Value =>
1922 UI_From_Int (Character'Pos ('A'))));
1923 Set_Etype (N, Any_Character);
1924 Set_Is_Static_Expression (N);
1925
1926 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1927 Rewrite (N,
1928 Make_String_Literal (Sloc (N),
1929 Strval => End_String));
1930
1931 elsif Nkind (N) = N_Range then
1932 Patch_Up_Value (Low_Bound (N), Typ);
1933 Patch_Up_Value (High_Bound (N), Typ);
1934 end if;
1935 end Patch_Up_Value;
1936
1937 -------------------------------
1938 -- Report_Ambiguous_Argument --
1939 -------------------------------
1940
1941 procedure Report_Ambiguous_Argument is
1942 Arg : constant Node_Id := First (Parameter_Associations (N));
1943 I : Interp_Index;
1944 It : Interp;
1945
1946 begin
1947 if Nkind (Arg) = N_Function_Call
1948 and then Is_Entity_Name (Name (Arg))
1949 and then Is_Overloaded (Name (Arg))
1950 then
1951 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1952
1953 -- Could use comments on what is going on here???
1954
1955 Get_First_Interp (Name (Arg), I, It);
1956 while Present (It.Nam) loop
1957 Error_Msg_Sloc := Sloc (It.Nam);
1958
1959 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1960 Error_Msg_N ("interpretation (inherited) #!", Arg);
1961 else
1962 Error_Msg_N ("interpretation #!", Arg);
1963 end if;
1964
1965 Get_Next_Interp (I, It);
1966 end loop;
1967 end if;
1968 end Report_Ambiguous_Argument;
1969
1970 -----------------------
1971 -- Resolution_Failed --
1972 -----------------------
1973
1974 procedure Resolution_Failed is
1975 begin
1976 Patch_Up_Value (N, Typ);
1977 Set_Etype (N, Typ);
1978 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1979 Set_Is_Overloaded (N, False);
1980
1981 -- The caller will return without calling the expander, so we need
1982 -- to set the analyzed flag. Note that it is fine to set Analyzed
1983 -- to True even if we are in the middle of a shallow analysis,
1984 -- (see the spec of sem for more details) since this is an error
1985 -- situation anyway, and there is no point in repeating the
1986 -- analysis later (indeed it won't work to repeat it later, since
1987 -- we haven't got a clear resolution of which entity is being
1988 -- referenced.)
1989
1990 Set_Analyzed (N, True);
1991 return;
1992 end Resolution_Failed;
1993
1994 -- Local variables
1995
1996 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
1997
1998 -- Start of processing for Resolve
1999
2000 begin
2001 if N = Error then
2002 return;
2003 end if;
2004
2005 -- A declaration may be subject to pragma Ghost. Set the mode now to
2006 -- ensure that any nodes generated during analysis and expansion are
2007 -- marked as Ghost.
2008
2009 if Is_Declaration (N) then
2010 Set_Ghost_Mode (N);
2011 end if;
2012
2013 -- Access attribute on remote subprogram cannot be used for a non-remote
2014 -- access-to-subprogram type.
2015
2016 if Nkind (N) = N_Attribute_Reference
2017 and then Nam_In (Attribute_Name (N), Name_Access,
2018 Name_Unrestricted_Access,
2019 Name_Unchecked_Access)
2020 and then Comes_From_Source (N)
2021 and then Is_Entity_Name (Prefix (N))
2022 and then Is_Subprogram (Entity (Prefix (N)))
2023 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2024 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2025 then
2026 Error_Msg_N
2027 ("prefix must statically denote a non-remote subprogram", N);
2028 end if;
2029
2030 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2031
2032 -- If the context is a Remote_Access_To_Subprogram, access attributes
2033 -- must be resolved with the corresponding fat pointer. There is no need
2034 -- to check for the attribute name since the return type of an
2035 -- attribute is never a remote type.
2036
2037 if Nkind (N) = N_Attribute_Reference
2038 and then Comes_From_Source (N)
2039 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2040 then
2041 declare
2042 Attr : constant Attribute_Id :=
2043 Get_Attribute_Id (Attribute_Name (N));
2044 Pref : constant Node_Id := Prefix (N);
2045 Decl : Node_Id;
2046 Spec : Node_Id;
2047 Is_Remote : Boolean := True;
2048
2049 begin
2050 -- Check that Typ is a remote access-to-subprogram type
2051
2052 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2053
2054 -- Prefix (N) must statically denote a remote subprogram
2055 -- declared in a package specification.
2056
2057 if Attr = Attribute_Access or else
2058 Attr = Attribute_Unchecked_Access or else
2059 Attr = Attribute_Unrestricted_Access
2060 then
2061 Decl := Unit_Declaration_Node (Entity (Pref));
2062
2063 if Nkind (Decl) = N_Subprogram_Body then
2064 Spec := Corresponding_Spec (Decl);
2065
2066 if Present (Spec) then
2067 Decl := Unit_Declaration_Node (Spec);
2068 end if;
2069 end if;
2070
2071 Spec := Parent (Decl);
2072
2073 if not Is_Entity_Name (Prefix (N))
2074 or else Nkind (Spec) /= N_Package_Specification
2075 or else
2076 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2077 then
2078 Is_Remote := False;
2079 Error_Msg_N
2080 ("prefix must statically denote a remote subprogram ",
2081 N);
2082 end if;
2083
2084 -- If we are generating code in distributed mode, perform
2085 -- semantic checks against corresponding remote entities.
2086
2087 if Expander_Active
2088 and then Get_PCS_Name /= Name_No_DSA
2089 then
2090 Check_Subtype_Conformant
2091 (New_Id => Entity (Prefix (N)),
2092 Old_Id => Designated_Type
2093 (Corresponding_Remote_Type (Typ)),
2094 Err_Loc => N);
2095
2096 if Is_Remote then
2097 Process_Remote_AST_Attribute (N, Typ);
2098 end if;
2099 end if;
2100 end if;
2101 end if;
2102 end;
2103 end if;
2104
2105 Debug_A_Entry ("resolving ", N);
2106
2107 if Debug_Flag_V then
2108 Write_Overloads (N);
2109 end if;
2110
2111 if Comes_From_Source (N) then
2112 if Is_Fixed_Point_Type (Typ) then
2113 Check_Restriction (No_Fixed_Point, N);
2114
2115 elsif Is_Floating_Point_Type (Typ)
2116 and then Typ /= Universal_Real
2117 and then Typ /= Any_Real
2118 then
2119 Check_Restriction (No_Floating_Point, N);
2120 end if;
2121 end if;
2122
2123 -- Return if already analyzed
2124
2125 if Analyzed (N) then
2126 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2127 Analyze_Dimension (N);
2128 Ghost_Mode := Save_Ghost_Mode;
2129 return;
2130
2131 -- Any case of Any_Type as the Etype value means that we had a
2132 -- previous error.
2133
2134 elsif Etype (N) = Any_Type then
2135 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2136 Ghost_Mode := Save_Ghost_Mode;
2137 return;
2138 end if;
2139
2140 Check_Parameterless_Call (N);
2141
2142 -- The resolution of an Expression_With_Actions is determined by
2143 -- its Expression.
2144
2145 if Nkind (N) = N_Expression_With_Actions then
2146 Resolve (Expression (N), Typ);
2147
2148 Found := True;
2149 Expr_Type := Etype (Expression (N));
2150
2151 -- If not overloaded, then we know the type, and all that needs doing
2152 -- is to check that this type is compatible with the context.
2153
2154 elsif not Is_Overloaded (N) then
2155 Found := Covers (Typ, Etype (N));
2156 Expr_Type := Etype (N);
2157
2158 -- In the overloaded case, we must select the interpretation that
2159 -- is compatible with the context (i.e. the type passed to Resolve)
2160
2161 else
2162 -- Loop through possible interpretations
2163
2164 Get_First_Interp (N, I, It);
2165 Interp_Loop : while Present (It.Typ) loop
2166 if Debug_Flag_V then
2167 Write_Str ("Interp: ");
2168 Write_Interp (It);
2169 end if;
2170
2171 -- We are only interested in interpretations that are compatible
2172 -- with the expected type, any other interpretations are ignored.
2173
2174 if not Covers (Typ, It.Typ) then
2175 if Debug_Flag_V then
2176 Write_Str (" interpretation incompatible with context");
2177 Write_Eol;
2178 end if;
2179
2180 else
2181 -- Skip the current interpretation if it is disabled by an
2182 -- abstract operator. This action is performed only when the
2183 -- type against which we are resolving is the same as the
2184 -- type of the interpretation.
2185
2186 if Ada_Version >= Ada_2005
2187 and then It.Typ = Typ
2188 and then Typ /= Universal_Integer
2189 and then Typ /= Universal_Real
2190 and then Present (It.Abstract_Op)
2191 then
2192 if Debug_Flag_V then
2193 Write_Line ("Skip.");
2194 end if;
2195
2196 goto Continue;
2197 end if;
2198
2199 -- First matching interpretation
2200
2201 if not Found then
2202 Found := True;
2203 I1 := I;
2204 Seen := It.Nam;
2205 Expr_Type := It.Typ;
2206
2207 -- Matching interpretation that is not the first, maybe an
2208 -- error, but there are some cases where preference rules are
2209 -- used to choose between the two possibilities. These and
2210 -- some more obscure cases are handled in Disambiguate.
2211
2212 else
2213 -- If the current statement is part of a predefined library
2214 -- unit, then all interpretations which come from user level
2215 -- packages should not be considered. Check previous and
2216 -- current one.
2217
2218 if From_Lib then
2219 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2220 goto Continue;
2221
2222 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2223
2224 -- Previous interpretation must be discarded
2225
2226 I1 := I;
2227 Seen := It.Nam;
2228 Expr_Type := It.Typ;
2229 Set_Entity (N, Seen);
2230 goto Continue;
2231 end if;
2232 end if;
2233
2234 -- Otherwise apply further disambiguation steps
2235
2236 Error_Msg_Sloc := Sloc (Seen);
2237 It1 := Disambiguate (N, I1, I, Typ);
2238
2239 -- Disambiguation has succeeded. Skip the remaining
2240 -- interpretations.
2241
2242 if It1 /= No_Interp then
2243 Seen := It1.Nam;
2244 Expr_Type := It1.Typ;
2245
2246 while Present (It.Typ) loop
2247 Get_Next_Interp (I, It);
2248 end loop;
2249
2250 else
2251 -- Before we issue an ambiguity complaint, check for
2252 -- the case of a subprogram call where at least one
2253 -- of the arguments is Any_Type, and if so, suppress
2254 -- the message, since it is a cascaded error.
2255
2256 if Nkind (N) in N_Subprogram_Call then
2257 declare
2258 A : Node_Id;
2259 E : Node_Id;
2260
2261 begin
2262 A := First_Actual (N);
2263 while Present (A) loop
2264 E := A;
2265
2266 if Nkind (E) = N_Parameter_Association then
2267 E := Explicit_Actual_Parameter (E);
2268 end if;
2269
2270 if Etype (E) = Any_Type then
2271 if Debug_Flag_V then
2272 Write_Str ("Any_Type in call");
2273 Write_Eol;
2274 end if;
2275
2276 exit Interp_Loop;
2277 end if;
2278
2279 Next_Actual (A);
2280 end loop;
2281 end;
2282
2283 elsif Nkind (N) in N_Binary_Op
2284 and then (Etype (Left_Opnd (N)) = Any_Type
2285 or else Etype (Right_Opnd (N)) = Any_Type)
2286 then
2287 exit Interp_Loop;
2288
2289 elsif Nkind (N) in N_Unary_Op
2290 and then Etype (Right_Opnd (N)) = Any_Type
2291 then
2292 exit Interp_Loop;
2293 end if;
2294
2295 -- Not that special case, so issue message using the
2296 -- flag Ambiguous to control printing of the header
2297 -- message only at the start of an ambiguous set.
2298
2299 if not Ambiguous then
2300 if Nkind (N) = N_Function_Call
2301 and then Nkind (Name (N)) = N_Explicit_Dereference
2302 then
2303 Error_Msg_N
2304 ("ambiguous expression "
2305 & "(cannot resolve indirect call)!", N);
2306 else
2307 Error_Msg_NE -- CODEFIX
2308 ("ambiguous expression (cannot resolve&)!",
2309 N, It.Nam);
2310 end if;
2311
2312 Ambiguous := True;
2313
2314 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2315 Error_Msg_N
2316 ("\\possible interpretation (inherited)#!", N);
2317 else
2318 Error_Msg_N -- CODEFIX
2319 ("\\possible interpretation#!", N);
2320 end if;
2321
2322 if Nkind (N) in N_Subprogram_Call
2323 and then Present (Parameter_Associations (N))
2324 then
2325 Report_Ambiguous_Argument;
2326 end if;
2327 end if;
2328
2329 Error_Msg_Sloc := Sloc (It.Nam);
2330
2331 -- By default, the error message refers to the candidate
2332 -- interpretation. But if it is a predefined operator, it
2333 -- is implicitly declared at the declaration of the type
2334 -- of the operand. Recover the sloc of that declaration
2335 -- for the error message.
2336
2337 if Nkind (N) in N_Op
2338 and then Scope (It.Nam) = Standard_Standard
2339 and then not Is_Overloaded (Right_Opnd (N))
2340 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2341 Standard_Standard
2342 then
2343 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2344
2345 if Comes_From_Source (Err_Type)
2346 and then Present (Parent (Err_Type))
2347 then
2348 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2349 end if;
2350
2351 elsif Nkind (N) in N_Binary_Op
2352 and then Scope (It.Nam) = Standard_Standard
2353 and then not Is_Overloaded (Left_Opnd (N))
2354 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2355 Standard_Standard
2356 then
2357 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2358
2359 if Comes_From_Source (Err_Type)
2360 and then Present (Parent (Err_Type))
2361 then
2362 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2363 end if;
2364
2365 -- If this is an indirect call, use the subprogram_type
2366 -- in the message, to have a meaningful location. Also
2367 -- indicate if this is an inherited operation, created
2368 -- by a type declaration.
2369
2370 elsif Nkind (N) = N_Function_Call
2371 and then Nkind (Name (N)) = N_Explicit_Dereference
2372 and then Is_Type (It.Nam)
2373 then
2374 Err_Type := It.Nam;
2375 Error_Msg_Sloc :=
2376 Sloc (Associated_Node_For_Itype (Err_Type));
2377 else
2378 Err_Type := Empty;
2379 end if;
2380
2381 if Nkind (N) in N_Op
2382 and then Scope (It.Nam) = Standard_Standard
2383 and then Present (Err_Type)
2384 then
2385 -- Special-case the message for universal_fixed
2386 -- operators, which are not declared with the type
2387 -- of the operand, but appear forever in Standard.
2388
2389 if It.Typ = Universal_Fixed
2390 and then Scope (It.Nam) = Standard_Standard
2391 then
2392 Error_Msg_N
2393 ("\\possible interpretation as universal_fixed "
2394 & "operation (RM 4.5.5 (19))", N);
2395 else
2396 Error_Msg_N
2397 ("\\possible interpretation (predefined)#!", N);
2398 end if;
2399
2400 elsif
2401 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2402 then
2403 Error_Msg_N
2404 ("\\possible interpretation (inherited)#!", N);
2405 else
2406 Error_Msg_N -- CODEFIX
2407 ("\\possible interpretation#!", N);
2408 end if;
2409
2410 end if;
2411 end if;
2412
2413 -- We have a matching interpretation, Expr_Type is the type
2414 -- from this interpretation, and Seen is the entity.
2415
2416 -- For an operator, just set the entity name. The type will be
2417 -- set by the specific operator resolution routine.
2418
2419 if Nkind (N) in N_Op then
2420 Set_Entity (N, Seen);
2421 Generate_Reference (Seen, N);
2422
2423 elsif Nkind (N) = N_Case_Expression then
2424 Set_Etype (N, Expr_Type);
2425
2426 elsif Nkind (N) = N_Character_Literal then
2427 Set_Etype (N, Expr_Type);
2428
2429 elsif Nkind (N) = N_If_Expression then
2430 Set_Etype (N, Expr_Type);
2431
2432 -- AI05-0139-2: Expression is overloaded because type has
2433 -- implicit dereference. If type matches context, no implicit
2434 -- dereference is involved.
2435
2436 elsif Has_Implicit_Dereference (Expr_Type) then
2437 Set_Etype (N, Expr_Type);
2438 Set_Is_Overloaded (N, False);
2439 exit Interp_Loop;
2440
2441 elsif Is_Overloaded (N)
2442 and then Present (It.Nam)
2443 and then Ekind (It.Nam) = E_Discriminant
2444 and then Has_Implicit_Dereference (It.Nam)
2445 then
2446 -- If the node is a general indexing, the dereference is
2447 -- is inserted when resolving the rewritten form, else
2448 -- insert it now.
2449
2450 if Nkind (N) /= N_Indexed_Component
2451 or else No (Generalized_Indexing (N))
2452 then
2453 Build_Explicit_Dereference (N, It.Nam);
2454 end if;
2455
2456 -- For an explicit dereference, attribute reference, range,
2457 -- short-circuit form (which is not an operator node), or call
2458 -- with a name that is an explicit dereference, there is
2459 -- nothing to be done at this point.
2460
2461 elsif Nkind_In (N, N_Explicit_Dereference,
2462 N_Attribute_Reference,
2463 N_And_Then,
2464 N_Indexed_Component,
2465 N_Or_Else,
2466 N_Range,
2467 N_Selected_Component,
2468 N_Slice)
2469 or else Nkind (Name (N)) = N_Explicit_Dereference
2470 then
2471 null;
2472
2473 -- For procedure or function calls, set the type of the name,
2474 -- and also the entity pointer for the prefix.
2475
2476 elsif Nkind (N) in N_Subprogram_Call
2477 and then Is_Entity_Name (Name (N))
2478 then
2479 Set_Etype (Name (N), Expr_Type);
2480 Set_Entity (Name (N), Seen);
2481 Generate_Reference (Seen, Name (N));
2482
2483 elsif Nkind (N) = N_Function_Call
2484 and then Nkind (Name (N)) = N_Selected_Component
2485 then
2486 Set_Etype (Name (N), Expr_Type);
2487 Set_Entity (Selector_Name (Name (N)), Seen);
2488 Generate_Reference (Seen, Selector_Name (Name (N)));
2489
2490 -- For all other cases, just set the type of the Name
2491
2492 else
2493 Set_Etype (Name (N), Expr_Type);
2494 end if;
2495
2496 end if;
2497
2498 <<Continue>>
2499
2500 -- Move to next interpretation
2501
2502 exit Interp_Loop when No (It.Typ);
2503
2504 Get_Next_Interp (I, It);
2505 end loop Interp_Loop;
2506 end if;
2507
2508 -- At this stage Found indicates whether or not an acceptable
2509 -- interpretation exists. If not, then we have an error, except that if
2510 -- the context is Any_Type as a result of some other error, then we
2511 -- suppress the error report.
2512
2513 if not Found then
2514 if Typ /= Any_Type then
2515
2516 -- If type we are looking for is Void, then this is the procedure
2517 -- call case, and the error is simply that what we gave is not a
2518 -- procedure name (we think of procedure calls as expressions with
2519 -- types internally, but the user doesn't think of them this way).
2520
2521 if Typ = Standard_Void_Type then
2522
2523 -- Special case message if function used as a procedure
2524
2525 if Nkind (N) = N_Procedure_Call_Statement
2526 and then Is_Entity_Name (Name (N))
2527 and then Ekind (Entity (Name (N))) = E_Function
2528 then
2529 Error_Msg_NE
2530 ("cannot use function & in a procedure call",
2531 Name (N), Entity (Name (N)));
2532
2533 -- Otherwise give general message (not clear what cases this
2534 -- covers, but no harm in providing for them).
2535
2536 else
2537 Error_Msg_N ("expect procedure name in procedure call", N);
2538 end if;
2539
2540 Found := True;
2541
2542 -- Otherwise we do have a subexpression with the wrong type
2543
2544 -- Check for the case of an allocator which uses an access type
2545 -- instead of the designated type. This is a common error and we
2546 -- specialize the message, posting an error on the operand of the
2547 -- allocator, complaining that we expected the designated type of
2548 -- the allocator.
2549
2550 elsif Nkind (N) = N_Allocator
2551 and then Is_Access_Type (Typ)
2552 and then Is_Access_Type (Etype (N))
2553 and then Designated_Type (Etype (N)) = Typ
2554 then
2555 Wrong_Type (Expression (N), Designated_Type (Typ));
2556 Found := True;
2557
2558 -- Check for view mismatch on Null in instances, for which the
2559 -- view-swapping mechanism has no identifier.
2560
2561 elsif (In_Instance or else In_Inlined_Body)
2562 and then (Nkind (N) = N_Null)
2563 and then Is_Private_Type (Typ)
2564 and then Is_Access_Type (Full_View (Typ))
2565 then
2566 Resolve (N, Full_View (Typ));
2567 Set_Etype (N, Typ);
2568 Ghost_Mode := Save_Ghost_Mode;
2569 return;
2570
2571 -- Check for an aggregate. Sometimes we can get bogus aggregates
2572 -- from misuse of parentheses, and we are about to complain about
2573 -- the aggregate without even looking inside it.
2574
2575 -- Instead, if we have an aggregate of type Any_Composite, then
2576 -- analyze and resolve the component fields, and then only issue
2577 -- another message if we get no errors doing this (otherwise
2578 -- assume that the errors in the aggregate caused the problem).
2579
2580 elsif Nkind (N) = N_Aggregate
2581 and then Etype (N) = Any_Composite
2582 then
2583 -- Disable expansion in any case. If there is a type mismatch
2584 -- it may be fatal to try to expand the aggregate. The flag
2585 -- would otherwise be set to false when the error is posted.
2586
2587 Expander_Active := False;
2588
2589 declare
2590 procedure Check_Aggr (Aggr : Node_Id);
2591 -- Check one aggregate, and set Found to True if we have a
2592 -- definite error in any of its elements
2593
2594 procedure Check_Elmt (Aelmt : Node_Id);
2595 -- Check one element of aggregate and set Found to True if
2596 -- we definitely have an error in the element.
2597
2598 ----------------
2599 -- Check_Aggr --
2600 ----------------
2601
2602 procedure Check_Aggr (Aggr : Node_Id) is
2603 Elmt : Node_Id;
2604
2605 begin
2606 if Present (Expressions (Aggr)) then
2607 Elmt := First (Expressions (Aggr));
2608 while Present (Elmt) loop
2609 Check_Elmt (Elmt);
2610 Next (Elmt);
2611 end loop;
2612 end if;
2613
2614 if Present (Component_Associations (Aggr)) then
2615 Elmt := First (Component_Associations (Aggr));
2616 while Present (Elmt) loop
2617
2618 -- If this is a default-initialized component, then
2619 -- there is nothing to check. The box will be
2620 -- replaced by the appropriate call during late
2621 -- expansion.
2622
2623 if not Box_Present (Elmt) then
2624 Check_Elmt (Expression (Elmt));
2625 end if;
2626
2627 Next (Elmt);
2628 end loop;
2629 end if;
2630 end Check_Aggr;
2631
2632 ----------------
2633 -- Check_Elmt --
2634 ----------------
2635
2636 procedure Check_Elmt (Aelmt : Node_Id) is
2637 begin
2638 -- If we have a nested aggregate, go inside it (to
2639 -- attempt a naked analyze-resolve of the aggregate can
2640 -- cause undesirable cascaded errors). Do not resolve
2641 -- expression if it needs a type from context, as for
2642 -- integer * fixed expression.
2643
2644 if Nkind (Aelmt) = N_Aggregate then
2645 Check_Aggr (Aelmt);
2646
2647 else
2648 Analyze (Aelmt);
2649
2650 if not Is_Overloaded (Aelmt)
2651 and then Etype (Aelmt) /= Any_Fixed
2652 then
2653 Resolve (Aelmt);
2654 end if;
2655
2656 if Etype (Aelmt) = Any_Type then
2657 Found := True;
2658 end if;
2659 end if;
2660 end Check_Elmt;
2661
2662 begin
2663 Check_Aggr (N);
2664 end;
2665 end if;
2666
2667 -- Looks like we have a type error, but check for special case
2668 -- of Address wanted, integer found, with the configuration pragma
2669 -- Allow_Integer_Address active. If we have this case, introduce
2670 -- an unchecked conversion to allow the integer expression to be
2671 -- treated as an Address. The reverse case of integer wanted,
2672 -- Address found, is treated in an analogous manner.
2673
2674 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2675 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2676 Analyze_And_Resolve (N, Typ);
2677 Ghost_Mode := Save_Ghost_Mode;
2678 return;
2679 end if;
2680
2681 -- That special Allow_Integer_Address check did not appply, so we
2682 -- have a real type error. If an error message was issued already,
2683 -- Found got reset to True, so if it's still False, issue standard
2684 -- Wrong_Type message.
2685
2686 if not Found then
2687 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2688 declare
2689 Subp_Name : Node_Id;
2690
2691 begin
2692 if Is_Entity_Name (Name (N)) then
2693 Subp_Name := Name (N);
2694
2695 elsif Nkind (Name (N)) = N_Selected_Component then
2696
2697 -- Protected operation: retrieve operation name
2698
2699 Subp_Name := Selector_Name (Name (N));
2700
2701 else
2702 raise Program_Error;
2703 end if;
2704
2705 Error_Msg_Node_2 := Typ;
2706 Error_Msg_NE
2707 ("no visible interpretation of& "
2708 & "matches expected type&", N, Subp_Name);
2709 end;
2710
2711 if All_Errors_Mode then
2712 declare
2713 Index : Interp_Index;
2714 It : Interp;
2715
2716 begin
2717 Error_Msg_N ("\\possible interpretations:", N);
2718
2719 Get_First_Interp (Name (N), Index, It);
2720 while Present (It.Nam) loop
2721 Error_Msg_Sloc := Sloc (It.Nam);
2722 Error_Msg_Node_2 := It.Nam;
2723 Error_Msg_NE
2724 ("\\ type& for & declared#", N, It.Typ);
2725 Get_Next_Interp (Index, It);
2726 end loop;
2727 end;
2728
2729 else
2730 Error_Msg_N ("\use -gnatf for details", N);
2731 end if;
2732
2733 else
2734 Wrong_Type (N, Typ);
2735 end if;
2736 end if;
2737 end if;
2738
2739 Resolution_Failed;
2740 Ghost_Mode := Save_Ghost_Mode;
2741 return;
2742
2743 -- Test if we have more than one interpretation for the context
2744
2745 elsif Ambiguous then
2746 Resolution_Failed;
2747 Ghost_Mode := Save_Ghost_Mode;
2748 return;
2749
2750 -- Only one intepretation
2751
2752 else
2753 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2754 -- the "+" on T is abstract, and the operands are of universal type,
2755 -- the above code will have (incorrectly) resolved the "+" to the
2756 -- universal one in Standard. Therefore check for this case and give
2757 -- an error. We can't do this earlier, because it would cause legal
2758 -- cases to get errors (when some other type has an abstract "+").
2759
2760 if Ada_Version >= Ada_2005
2761 and then Nkind (N) in N_Op
2762 and then Is_Overloaded (N)
2763 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2764 then
2765 Get_First_Interp (N, I, It);
2766 while Present (It.Typ) loop
2767 if Present (It.Abstract_Op) and then
2768 Etype (It.Abstract_Op) = Typ
2769 then
2770 Error_Msg_NE
2771 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2772 return;
2773 end if;
2774
2775 Get_Next_Interp (I, It);
2776 end loop;
2777 end if;
2778
2779 -- Here we have an acceptable interpretation for the context
2780
2781 -- Propagate type information and normalize tree for various
2782 -- predefined operations. If the context only imposes a class of
2783 -- types, rather than a specific type, propagate the actual type
2784 -- downward.
2785
2786 if Typ = Any_Integer or else
2787 Typ = Any_Boolean or else
2788 Typ = Any_Modular or else
2789 Typ = Any_Real or else
2790 Typ = Any_Discrete
2791 then
2792 Ctx_Type := Expr_Type;
2793
2794 -- Any_Fixed is legal in a real context only if a specific fixed-
2795 -- point type is imposed. If Norman Cohen can be confused by this,
2796 -- it deserves a separate message.
2797
2798 if Typ = Any_Real
2799 and then Expr_Type = Any_Fixed
2800 then
2801 Error_Msg_N ("illegal context for mixed mode operation", N);
2802 Set_Etype (N, Universal_Real);
2803 Ctx_Type := Universal_Real;
2804 end if;
2805 end if;
2806
2807 -- A user-defined operator is transformed into a function call at
2808 -- this point, so that further processing knows that operators are
2809 -- really operators (i.e. are predefined operators). User-defined
2810 -- operators that are intrinsic are just renamings of the predefined
2811 -- ones, and need not be turned into calls either, but if they rename
2812 -- a different operator, we must transform the node accordingly.
2813 -- Instantiations of Unchecked_Conversion are intrinsic but are
2814 -- treated as functions, even if given an operator designator.
2815
2816 if Nkind (N) in N_Op
2817 and then Present (Entity (N))
2818 and then Ekind (Entity (N)) /= E_Operator
2819 then
2820
2821 if not Is_Predefined_Op (Entity (N)) then
2822 Rewrite_Operator_As_Call (N, Entity (N));
2823
2824 elsif Present (Alias (Entity (N)))
2825 and then
2826 Nkind (Parent (Parent (Entity (N)))) =
2827 N_Subprogram_Renaming_Declaration
2828 then
2829 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2830
2831 -- If the node is rewritten, it will be fully resolved in
2832 -- Rewrite_Renamed_Operator.
2833
2834 if Analyzed (N) then
2835 Ghost_Mode := Save_Ghost_Mode;
2836 return;
2837 end if;
2838 end if;
2839 end if;
2840
2841 case N_Subexpr'(Nkind (N)) is
2842
2843 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2844
2845 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2846
2847 when N_Short_Circuit
2848 => Resolve_Short_Circuit (N, Ctx_Type);
2849
2850 when N_Attribute_Reference
2851 => Resolve_Attribute (N, Ctx_Type);
2852
2853 when N_Case_Expression
2854 => Resolve_Case_Expression (N, Ctx_Type);
2855
2856 when N_Character_Literal
2857 => Resolve_Character_Literal (N, Ctx_Type);
2858
2859 when N_Expanded_Name
2860 => Resolve_Entity_Name (N, Ctx_Type);
2861
2862 when N_Explicit_Dereference
2863 => Resolve_Explicit_Dereference (N, Ctx_Type);
2864
2865 when N_Expression_With_Actions
2866 => Resolve_Expression_With_Actions (N, Ctx_Type);
2867
2868 when N_Extension_Aggregate
2869 => Resolve_Extension_Aggregate (N, Ctx_Type);
2870
2871 when N_Function_Call
2872 => Resolve_Call (N, Ctx_Type);
2873
2874 when N_Identifier
2875 => Resolve_Entity_Name (N, Ctx_Type);
2876
2877 when N_If_Expression
2878 => Resolve_If_Expression (N, Ctx_Type);
2879
2880 when N_Indexed_Component
2881 => Resolve_Indexed_Component (N, Ctx_Type);
2882
2883 when N_Integer_Literal
2884 => Resolve_Integer_Literal (N, Ctx_Type);
2885
2886 when N_Membership_Test
2887 => Resolve_Membership_Op (N, Ctx_Type);
2888
2889 when N_Null => Resolve_Null (N, Ctx_Type);
2890
2891 when N_Op_And | N_Op_Or | N_Op_Xor
2892 => Resolve_Logical_Op (N, Ctx_Type);
2893
2894 when N_Op_Eq | N_Op_Ne
2895 => Resolve_Equality_Op (N, Ctx_Type);
2896
2897 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2898 => Resolve_Comparison_Op (N, Ctx_Type);
2899
2900 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2901
2902 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2903 N_Op_Divide | N_Op_Mod | N_Op_Rem
2904
2905 => Resolve_Arithmetic_Op (N, Ctx_Type);
2906
2907 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2908
2909 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2910
2911 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2912 => Resolve_Unary_Op (N, Ctx_Type);
2913
2914 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2915
2916 when N_Procedure_Call_Statement
2917 => Resolve_Call (N, Ctx_Type);
2918
2919 when N_Operator_Symbol
2920 => Resolve_Operator_Symbol (N, Ctx_Type);
2921
2922 when N_Qualified_Expression
2923 => Resolve_Qualified_Expression (N, Ctx_Type);
2924
2925 -- Why is the following null, needs a comment ???
2926
2927 when N_Quantified_Expression
2928 => null;
2929
2930 when N_Raise_Expression
2931 => Resolve_Raise_Expression (N, Ctx_Type);
2932
2933 when N_Raise_xxx_Error
2934 => Set_Etype (N, Ctx_Type);
2935
2936 when N_Range => Resolve_Range (N, Ctx_Type);
2937
2938 when N_Real_Literal
2939 => Resolve_Real_Literal (N, Ctx_Type);
2940
2941 when N_Reference => Resolve_Reference (N, Ctx_Type);
2942
2943 when N_Selected_Component
2944 => Resolve_Selected_Component (N, Ctx_Type);
2945
2946 when N_Slice => Resolve_Slice (N, Ctx_Type);
2947
2948 when N_String_Literal
2949 => Resolve_String_Literal (N, Ctx_Type);
2950
2951 when N_Type_Conversion
2952 => Resolve_Type_Conversion (N, Ctx_Type);
2953
2954 when N_Unchecked_Expression =>
2955 Resolve_Unchecked_Expression (N, Ctx_Type);
2956
2957 when N_Unchecked_Type_Conversion =>
2958 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2959 end case;
2960
2961 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2962 -- expression of an anonymous access type that occurs in the context
2963 -- of a named general access type, except when the expression is that
2964 -- of a membership test. This ensures proper legality checking in
2965 -- terms of allowed conversions (expressions that would be illegal to
2966 -- convert implicitly are allowed in membership tests).
2967
2968 if Ada_Version >= Ada_2012
2969 and then Ekind (Ctx_Type) = E_General_Access_Type
2970 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2971 and then Nkind (Parent (N)) not in N_Membership_Test
2972 then
2973 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2974 Analyze_And_Resolve (N, Ctx_Type);
2975 end if;
2976
2977 -- If the subexpression was replaced by a non-subexpression, then
2978 -- all we do is to expand it. The only legitimate case we know of
2979 -- is converting procedure call statement to entry call statements,
2980 -- but there may be others, so we are making this test general.
2981
2982 if Nkind (N) not in N_Subexpr then
2983 Debug_A_Exit ("resolving ", N, " (done)");
2984 Expand (N);
2985 Ghost_Mode := Save_Ghost_Mode;
2986 return;
2987 end if;
2988
2989 -- The expression is definitely NOT overloaded at this point, so
2990 -- we reset the Is_Overloaded flag to avoid any confusion when
2991 -- reanalyzing the node.
2992
2993 Set_Is_Overloaded (N, False);
2994
2995 -- Freeze expression type, entity if it is a name, and designated
2996 -- type if it is an allocator (RM 13.14(10,11,13)).
2997
2998 -- Now that the resolution of the type of the node is complete, and
2999 -- we did not detect an error, we can expand this node. We skip the
3000 -- expand call if we are in a default expression, see section
3001 -- "Handling of Default Expressions" in Sem spec.
3002
3003 Debug_A_Exit ("resolving ", N, " (done)");
3004
3005 -- We unconditionally freeze the expression, even if we are in
3006 -- default expression mode (the Freeze_Expression routine tests this
3007 -- flag and only freezes static types if it is set).
3008
3009 -- Ada 2012 (AI05-177): The declaration of an expression function
3010 -- does not cause freezing, but we never reach here in that case.
3011 -- Here we are resolving the corresponding expanded body, so we do
3012 -- need to perform normal freezing.
3013
3014 Freeze_Expression (N);
3015
3016 -- Now we can do the expansion
3017
3018 Expand (N);
3019 end if;
3020
3021 Ghost_Mode := Save_Ghost_Mode;
3022 end Resolve;
3023
3024 -------------
3025 -- Resolve --
3026 -------------
3027
3028 -- Version with check(s) suppressed
3029
3030 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3031 begin
3032 if Suppress = All_Checks then
3033 declare
3034 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3035 begin
3036 Scope_Suppress.Suppress := (others => True);
3037 Resolve (N, Typ);
3038 Scope_Suppress.Suppress := Sva;
3039 end;
3040
3041 else
3042 declare
3043 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3044 begin
3045 Scope_Suppress.Suppress (Suppress) := True;
3046 Resolve (N, Typ);
3047 Scope_Suppress.Suppress (Suppress) := Svg;
3048 end;
3049 end if;
3050 end Resolve;
3051
3052 -------------
3053 -- Resolve --
3054 -------------
3055
3056 -- Version with implicit type
3057
3058 procedure Resolve (N : Node_Id) is
3059 begin
3060 Resolve (N, Etype (N));
3061 end Resolve;
3062
3063 ---------------------
3064 -- Resolve_Actuals --
3065 ---------------------
3066
3067 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3068 Loc : constant Source_Ptr := Sloc (N);
3069 A : Node_Id;
3070 A_Id : Entity_Id;
3071 A_Typ : Entity_Id;
3072 F : Entity_Id;
3073 F_Typ : Entity_Id;
3074 Prev : Node_Id := Empty;
3075 Orig_A : Node_Id;
3076 Real_F : Entity_Id;
3077
3078 Real_Subp : Entity_Id;
3079 -- If the subprogram being called is an inherited operation for
3080 -- a formal derived type in an instance, Real_Subp is the subprogram
3081 -- that will be called. It may have different formal names than the
3082 -- operation of the formal in the generic, so after actual is resolved
3083 -- the name of the actual in a named association must carry the name
3084 -- of the actual of the subprogram being called.
3085
3086 procedure Check_Aliased_Parameter;
3087 -- Check rules on aliased parameters and related accessibility rules
3088 -- in (RM 3.10.2 (10.2-10.4)).
3089
3090 procedure Check_Argument_Order;
3091 -- Performs a check for the case where the actuals are all simple
3092 -- identifiers that correspond to the formal names, but in the wrong
3093 -- order, which is considered suspicious and cause for a warning.
3094
3095 procedure Check_Prefixed_Call;
3096 -- If the original node is an overloaded call in prefix notation,
3097 -- insert an 'Access or a dereference as needed over the first actual.
3098 -- Try_Object_Operation has already verified that there is a valid
3099 -- interpretation, but the form of the actual can only be determined
3100 -- once the primitive operation is identified.
3101
3102 procedure Insert_Default;
3103 -- If the actual is missing in a call, insert in the actuals list
3104 -- an instance of the default expression. The insertion is always
3105 -- a named association.
3106
3107 procedure Property_Error
3108 (Var : Node_Id;
3109 Var_Id : Entity_Id;
3110 Prop_Nam : Name_Id);
3111 -- Emit an error concerning variable Var with entity Var_Id that has
3112 -- enabled property Prop_Nam when it acts as an actual parameter in a
3113 -- call and the corresponding formal parameter is of mode IN.
3114
3115 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3116 -- Check whether T1 and T2, or their full views, are derived from a
3117 -- common type. Used to enforce the restrictions on array conversions
3118 -- of AI95-00246.
3119
3120 function Static_Concatenation (N : Node_Id) return Boolean;
3121 -- Predicate to determine whether an actual that is a concatenation
3122 -- will be evaluated statically and does not need a transient scope.
3123 -- This must be determined before the actual is resolved and expanded
3124 -- because if needed the transient scope must be introduced earlier.
3125
3126 -----------------------------
3127 -- Check_Aliased_Parameter --
3128 -----------------------------
3129
3130 procedure Check_Aliased_Parameter is
3131 Nominal_Subt : Entity_Id;
3132
3133 begin
3134 if Is_Aliased (F) then
3135 if Is_Tagged_Type (A_Typ) then
3136 null;
3137
3138 elsif Is_Aliased_View (A) then
3139 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3140 Nominal_Subt := Base_Type (A_Typ);
3141 else
3142 Nominal_Subt := A_Typ;
3143 end if;
3144
3145 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3146 null;
3147
3148 -- In a generic body assume the worst for generic formals:
3149 -- they can have a constrained partial view (AI05-041).
3150
3151 elsif Has_Discriminants (F_Typ)
3152 and then not Is_Constrained (F_Typ)
3153 and then not Has_Constrained_Partial_View (F_Typ)
3154 and then not Is_Generic_Type (F_Typ)
3155 then
3156 null;
3157
3158 else
3159 Error_Msg_NE ("untagged actual does not match "
3160 & "aliased formal&", A, F);
3161 end if;
3162
3163 else
3164 Error_Msg_NE ("actual for aliased formal& must be "
3165 & "aliased object", A, F);
3166 end if;
3167
3168 if Ekind (Nam) = E_Procedure then
3169 null;
3170
3171 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3172 if Nkind (Parent (N)) = N_Type_Conversion
3173 and then Type_Access_Level (Etype (Parent (N))) <
3174 Object_Access_Level (A)
3175 then
3176 Error_Msg_N ("aliased actual has wrong accessibility", A);
3177 end if;
3178
3179 elsif Nkind (Parent (N)) = N_Qualified_Expression
3180 and then Nkind (Parent (Parent (N))) = N_Allocator
3181 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3182 Object_Access_Level (A)
3183 then
3184 Error_Msg_N
3185 ("aliased actual in allocator has wrong accessibility", A);
3186 end if;
3187 end if;
3188 end Check_Aliased_Parameter;
3189
3190 --------------------------
3191 -- Check_Argument_Order --
3192 --------------------------
3193
3194 procedure Check_Argument_Order is
3195 begin
3196 -- Nothing to do if no parameters, or original node is neither a
3197 -- function call nor a procedure call statement (happens in the
3198 -- operator-transformed-to-function call case), or the call does
3199 -- not come from source, or this warning is off.
3200
3201 if not Warn_On_Parameter_Order
3202 or else No (Parameter_Associations (N))
3203 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3204 or else not Comes_From_Source (N)
3205 then
3206 return;
3207 end if;
3208
3209 declare
3210 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3211
3212 begin
3213 -- Nothing to do if only one parameter
3214
3215 if Nargs < 2 then
3216 return;
3217 end if;
3218
3219 -- Here if at least two arguments
3220
3221 declare
3222 Actuals : array (1 .. Nargs) of Node_Id;
3223 Actual : Node_Id;
3224 Formal : Node_Id;
3225
3226 Wrong_Order : Boolean := False;
3227 -- Set True if an out of order case is found
3228
3229 begin
3230 -- Collect identifier names of actuals, fail if any actual is
3231 -- not a simple identifier, and record max length of name.
3232
3233 Actual := First (Parameter_Associations (N));
3234 for J in Actuals'Range loop
3235 if Nkind (Actual) /= N_Identifier then
3236 return;
3237 else
3238 Actuals (J) := Actual;
3239 Next (Actual);
3240 end if;
3241 end loop;
3242
3243 -- If we got this far, all actuals are identifiers and the list
3244 -- of their names is stored in the Actuals array.
3245
3246 Formal := First_Formal (Nam);
3247 for J in Actuals'Range loop
3248
3249 -- If we ran out of formals, that's odd, probably an error
3250 -- which will be detected elsewhere, but abandon the search.
3251
3252 if No (Formal) then
3253 return;
3254 end if;
3255
3256 -- If name matches and is in order OK
3257
3258 if Chars (Formal) = Chars (Actuals (J)) then
3259 null;
3260
3261 else
3262 -- If no match, see if it is elsewhere in list and if so
3263 -- flag potential wrong order if type is compatible.
3264
3265 for K in Actuals'Range loop
3266 if Chars (Formal) = Chars (Actuals (K))
3267 and then
3268 Has_Compatible_Type (Actuals (K), Etype (Formal))
3269 then
3270 Wrong_Order := True;
3271 goto Continue;
3272 end if;
3273 end loop;
3274
3275 -- No match
3276
3277 return;
3278 end if;
3279
3280 <<Continue>> Next_Formal (Formal);
3281 end loop;
3282
3283 -- If Formals left over, also probably an error, skip warning
3284
3285 if Present (Formal) then
3286 return;
3287 end if;
3288
3289 -- Here we give the warning if something was out of order
3290
3291 if Wrong_Order then
3292 Error_Msg_N
3293 ("?P?actuals for this call may be in wrong order", N);
3294 end if;
3295 end;
3296 end;
3297 end Check_Argument_Order;
3298
3299 -------------------------
3300 -- Check_Prefixed_Call --
3301 -------------------------
3302
3303 procedure Check_Prefixed_Call is
3304 Act : constant Node_Id := First_Actual (N);
3305 A_Type : constant Entity_Id := Etype (Act);
3306 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3307 Orig : constant Node_Id := Original_Node (N);
3308 New_A : Node_Id;
3309
3310 begin
3311 -- Check whether the call is a prefixed call, with or without
3312 -- additional actuals.
3313
3314 if Nkind (Orig) = N_Selected_Component
3315 or else
3316 (Nkind (Orig) = N_Indexed_Component
3317 and then Nkind (Prefix (Orig)) = N_Selected_Component
3318 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3319 and then Is_Entity_Name (Act)
3320 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3321 then
3322 if Is_Access_Type (A_Type)
3323 and then not Is_Access_Type (F_Type)
3324 then
3325 -- Introduce dereference on object in prefix
3326
3327 New_A :=
3328 Make_Explicit_Dereference (Sloc (Act),
3329 Prefix => Relocate_Node (Act));
3330 Rewrite (Act, New_A);
3331 Analyze (Act);
3332
3333 elsif Is_Access_Type (F_Type)
3334 and then not Is_Access_Type (A_Type)
3335 then
3336 -- Introduce an implicit 'Access in prefix
3337
3338 if not Is_Aliased_View (Act) then
3339 Error_Msg_NE
3340 ("object in prefixed call to& must be aliased "
3341 & "(RM 4.1.3 (13 1/2))",
3342 Prefix (Act), Nam);
3343 end if;
3344
3345 Rewrite (Act,
3346 Make_Attribute_Reference (Loc,
3347 Attribute_Name => Name_Access,
3348 Prefix => Relocate_Node (Act)));
3349 end if;
3350
3351 Analyze (Act);
3352 end if;
3353 end Check_Prefixed_Call;
3354
3355 --------------------
3356 -- Insert_Default --
3357 --------------------
3358
3359 procedure Insert_Default is
3360 Actval : Node_Id;
3361 Assoc : Node_Id;
3362
3363 begin
3364 -- Missing argument in call, nothing to insert
3365
3366 if No (Default_Value (F)) then
3367 return;
3368
3369 else
3370 -- Note that we do a full New_Copy_Tree, so that any associated
3371 -- Itypes are properly copied. This may not be needed any more,
3372 -- but it does no harm as a safety measure. Defaults of a generic
3373 -- formal may be out of bounds of the corresponding actual (see
3374 -- cc1311b) and an additional check may be required.
3375
3376 Actval :=
3377 New_Copy_Tree
3378 (Default_Value (F),
3379 New_Scope => Current_Scope,
3380 New_Sloc => Loc);
3381
3382 -- Propagate dimension information, if any.
3383
3384 Copy_Dimensions (Default_Value (F), Actval);
3385
3386 if Is_Concurrent_Type (Scope (Nam))
3387 and then Has_Discriminants (Scope (Nam))
3388 then
3389 Replace_Actual_Discriminants (N, Actval);
3390 end if;
3391
3392 if Is_Overloadable (Nam)
3393 and then Present (Alias (Nam))
3394 then
3395 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3396 and then not Is_Tagged_Type (Etype (F))
3397 then
3398 -- If default is a real literal, do not introduce a
3399 -- conversion whose effect may depend on the run-time
3400 -- size of universal real.
3401
3402 if Nkind (Actval) = N_Real_Literal then
3403 Set_Etype (Actval, Base_Type (Etype (F)));
3404 else
3405 Actval := Unchecked_Convert_To (Etype (F), Actval);
3406 end if;
3407 end if;
3408
3409 if Is_Scalar_Type (Etype (F)) then
3410 Enable_Range_Check (Actval);
3411 end if;
3412
3413 Set_Parent (Actval, N);
3414
3415 -- Resolve aggregates with their base type, to avoid scope
3416 -- anomalies: the subtype was first built in the subprogram
3417 -- declaration, and the current call may be nested.
3418
3419 if Nkind (Actval) = N_Aggregate then
3420 Analyze_And_Resolve (Actval, Etype (F));
3421 else
3422 Analyze_And_Resolve (Actval, Etype (Actval));
3423 end if;
3424
3425 else
3426 Set_Parent (Actval, N);
3427
3428 -- See note above concerning aggregates
3429
3430 if Nkind (Actval) = N_Aggregate
3431 and then Has_Discriminants (Etype (Actval))
3432 then
3433 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3434
3435 -- Resolve entities with their own type, which may differ from
3436 -- the type of a reference in a generic context (the view
3437 -- swapping mechanism did not anticipate the re-analysis of
3438 -- default values in calls).
3439
3440 elsif Is_Entity_Name (Actval) then
3441 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3442
3443 else
3444 Analyze_And_Resolve (Actval, Etype (Actval));
3445 end if;
3446 end if;
3447
3448 -- If default is a tag indeterminate function call, propagate tag
3449 -- to obtain proper dispatching.
3450
3451 if Is_Controlling_Formal (F)
3452 and then Nkind (Default_Value (F)) = N_Function_Call
3453 then
3454 Set_Is_Controlling_Actual (Actval);
3455 end if;
3456
3457 end if;
3458
3459 -- If the default expression raises constraint error, then just
3460 -- silently replace it with an N_Raise_Constraint_Error node, since
3461 -- we already gave the warning on the subprogram spec. If node is
3462 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3463 -- the warnings removal machinery.
3464
3465 if Raises_Constraint_Error (Actval)
3466 and then Nkind (Actval) /= N_Raise_Constraint_Error
3467 then
3468 Rewrite (Actval,
3469 Make_Raise_Constraint_Error (Loc,
3470 Reason => CE_Range_Check_Failed));
3471 Set_Raises_Constraint_Error (Actval);
3472 Set_Etype (Actval, Etype (F));
3473 end if;
3474
3475 Assoc :=
3476 Make_Parameter_Association (Loc,
3477 Explicit_Actual_Parameter => Actval,
3478 Selector_Name => Make_Identifier (Loc, Chars (F)));
3479
3480 -- Case of insertion is first named actual
3481
3482 if No (Prev) or else
3483 Nkind (Parent (Prev)) /= N_Parameter_Association
3484 then
3485 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3486 Set_First_Named_Actual (N, Actval);
3487
3488 if No (Prev) then
3489 if No (Parameter_Associations (N)) then
3490 Set_Parameter_Associations (N, New_List (Assoc));
3491 else
3492 Append (Assoc, Parameter_Associations (N));
3493 end if;
3494
3495 else
3496 Insert_After (Prev, Assoc);
3497 end if;
3498
3499 -- Case of insertion is not first named actual
3500
3501 else
3502 Set_Next_Named_Actual
3503 (Assoc, Next_Named_Actual (Parent (Prev)));
3504 Set_Next_Named_Actual (Parent (Prev), Actval);
3505 Append (Assoc, Parameter_Associations (N));
3506 end if;
3507
3508 Mark_Rewrite_Insertion (Assoc);
3509 Mark_Rewrite_Insertion (Actval);
3510
3511 Prev := Actval;
3512 end Insert_Default;
3513
3514 --------------------
3515 -- Property_Error --
3516 --------------------
3517
3518 procedure Property_Error
3519 (Var : Node_Id;
3520 Var_Id : Entity_Id;
3521 Prop_Nam : Name_Id)
3522 is
3523 begin
3524 Error_Msg_Name_1 := Prop_Nam;
3525 Error_Msg_NE
3526 ("external variable & with enabled property % cannot appear as "
3527 & "actual in procedure call (SPARK RM 7.1.3(10))", Var, Var_Id);
3528 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3529 end Property_Error;
3530
3531 -------------------
3532 -- Same_Ancestor --
3533 -------------------
3534
3535 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3536 FT1 : Entity_Id := T1;
3537 FT2 : Entity_Id := T2;
3538
3539 begin
3540 if Is_Private_Type (T1)
3541 and then Present (Full_View (T1))
3542 then
3543 FT1 := Full_View (T1);
3544 end if;
3545
3546 if Is_Private_Type (T2)
3547 and then Present (Full_View (T2))
3548 then
3549 FT2 := Full_View (T2);
3550 end if;
3551
3552 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3553 end Same_Ancestor;
3554
3555 --------------------------
3556 -- Static_Concatenation --
3557 --------------------------
3558
3559 function Static_Concatenation (N : Node_Id) return Boolean is
3560 begin
3561 case Nkind (N) is
3562 when N_String_Literal =>
3563 return True;
3564
3565 when N_Op_Concat =>
3566
3567 -- Concatenation is static when both operands are static and
3568 -- the concatenation operator is a predefined one.
3569
3570 return Scope (Entity (N)) = Standard_Standard
3571 and then
3572 Static_Concatenation (Left_Opnd (N))
3573 and then
3574 Static_Concatenation (Right_Opnd (N));
3575
3576 when others =>
3577 if Is_Entity_Name (N) then
3578 declare
3579 Ent : constant Entity_Id := Entity (N);
3580 begin
3581 return Ekind (Ent) = E_Constant
3582 and then Present (Constant_Value (Ent))
3583 and then
3584 Is_OK_Static_Expression (Constant_Value (Ent));
3585 end;
3586
3587 else
3588 return False;
3589 end if;
3590 end case;
3591 end Static_Concatenation;
3592
3593 -- Start of processing for Resolve_Actuals
3594
3595 begin
3596 Check_Argument_Order;
3597
3598 if Is_Overloadable (Nam)
3599 and then Is_Inherited_Operation (Nam)
3600 and then In_Instance
3601 and then Present (Alias (Nam))
3602 and then Present (Overridden_Operation (Alias (Nam)))
3603 then
3604 Real_Subp := Alias (Nam);
3605 else
3606 Real_Subp := Empty;
3607 end if;
3608
3609 if Present (First_Actual (N)) then
3610 Check_Prefixed_Call;
3611 end if;
3612
3613 A := First_Actual (N);
3614 F := First_Formal (Nam);
3615
3616 if Present (Real_Subp) then
3617 Real_F := First_Formal (Real_Subp);
3618 end if;
3619
3620 while Present (F) loop
3621 if No (A) and then Needs_No_Actuals (Nam) then
3622 null;
3623
3624 -- If we have an error in any actual or formal, indicated by a type
3625 -- of Any_Type, then abandon resolution attempt, and set result type
3626 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3627 -- type is imposed from context.
3628
3629 elsif (Present (A) and then Etype (A) = Any_Type)
3630 or else Etype (F) = Any_Type
3631 then
3632 if Nkind (A) /= N_Raise_Expression then
3633 Set_Etype (N, Any_Type);
3634 return;
3635 end if;
3636 end if;
3637
3638 -- Case where actual is present
3639
3640 -- If the actual is an entity, generate a reference to it now. We
3641 -- do this before the actual is resolved, because a formal of some
3642 -- protected subprogram, or a task discriminant, will be rewritten
3643 -- during expansion, and the source entity reference may be lost.
3644
3645 if Present (A)
3646 and then Is_Entity_Name (A)
3647 and then Comes_From_Source (N)
3648 then
3649 Orig_A := Entity (A);
3650
3651 if Present (Orig_A) then
3652 if Is_Formal (Orig_A)
3653 and then Ekind (F) /= E_In_Parameter
3654 then
3655 Generate_Reference (Orig_A, A, 'm');
3656
3657 elsif not Is_Overloaded (A) then
3658 if Ekind (F) /= E_Out_Parameter then
3659 Generate_Reference (Orig_A, A);
3660
3661 -- RM 6.4.1(12): For an out parameter that is passed by
3662 -- copy, the formal parameter object is created, and:
3663
3664 -- * For an access type, the formal parameter is initialized
3665 -- from the value of the actual, without checking that the
3666 -- value satisfies any constraint, any predicate, or any
3667 -- exclusion of the null value.
3668
3669 -- * For a scalar type that has the Default_Value aspect
3670 -- specified, the formal parameter is initialized from the
3671 -- value of the actual, without checking that the value
3672 -- satisfies any constraint or any predicate.
3673 -- I do not understand why this case is included??? this is
3674 -- not a case where an OUT parameter is treated as IN OUT.
3675
3676 -- * For a composite type with discriminants or that has
3677 -- implicit initial values for any subcomponents, the
3678 -- behavior is as for an in out parameter passed by copy.
3679
3680 -- Hence for these cases we generate the read reference now
3681 -- (the write reference will be generated later by
3682 -- Note_Possible_Modification).
3683
3684 elsif Is_By_Copy_Type (Etype (F))
3685 and then
3686 (Is_Access_Type (Etype (F))
3687 or else
3688 (Is_Scalar_Type (Etype (F))
3689 and then
3690 Present (Default_Aspect_Value (Etype (F))))
3691 or else
3692 (Is_Composite_Type (Etype (F))
3693 and then (Has_Discriminants (Etype (F))
3694 or else Is_Partially_Initialized_Type
3695 (Etype (F)))))
3696 then
3697 Generate_Reference (Orig_A, A);
3698 end if;
3699 end if;
3700 end if;
3701 end if;
3702
3703 if Present (A)
3704 and then (Nkind (Parent (A)) /= N_Parameter_Association
3705 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3706 then
3707 -- If style checking mode on, check match of formal name
3708
3709 if Style_Check then
3710 if Nkind (Parent (A)) = N_Parameter_Association then
3711 Check_Identifier (Selector_Name (Parent (A)), F);
3712 end if;
3713 end if;
3714
3715 -- If the formal is Out or In_Out, do not resolve and expand the
3716 -- conversion, because it is subsequently expanded into explicit
3717 -- temporaries and assignments. However, the object of the
3718 -- conversion can be resolved. An exception is the case of tagged
3719 -- type conversion with a class-wide actual. In that case we want
3720 -- the tag check to occur and no temporary will be needed (no
3721 -- representation change can occur) and the parameter is passed by
3722 -- reference, so we go ahead and resolve the type conversion.
3723 -- Another exception is the case of reference to component or
3724 -- subcomponent of a bit-packed array, in which case we want to
3725 -- defer expansion to the point the in and out assignments are
3726 -- performed.
3727
3728 if Ekind (F) /= E_In_Parameter
3729 and then Nkind (A) = N_Type_Conversion
3730 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3731 then
3732 if Ekind (F) = E_In_Out_Parameter
3733 and then Is_Array_Type (Etype (F))
3734 then
3735 -- In a view conversion, the conversion must be legal in
3736 -- both directions, and thus both component types must be
3737 -- aliased, or neither (4.6 (8)).
3738
3739 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3740 -- the privacy requirement should not apply to generic
3741 -- types, and should be checked in an instance. ARG query
3742 -- is in order ???
3743
3744 if Has_Aliased_Components (Etype (Expression (A))) /=
3745 Has_Aliased_Components (Etype (F))
3746 then
3747 Error_Msg_N
3748 ("both component types in a view conversion must be"
3749 & " aliased, or neither", A);
3750
3751 -- Comment here??? what set of cases???
3752
3753 elsif
3754 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3755 then
3756 -- Check view conv between unrelated by ref array types
3757
3758 if Is_By_Reference_Type (Etype (F))
3759 or else Is_By_Reference_Type (Etype (Expression (A)))
3760 then
3761 Error_Msg_N
3762 ("view conversion between unrelated by reference "
3763 & "array types not allowed (\'A'I-00246)", A);
3764
3765 -- In Ada 2005 mode, check view conversion component
3766 -- type cannot be private, tagged, or volatile. Note
3767 -- that we only apply this to source conversions. The
3768 -- generated code can contain conversions which are
3769 -- not subject to this test, and we cannot extract the
3770 -- component type in such cases since it is not present.
3771
3772 elsif Comes_From_Source (A)
3773 and then Ada_Version >= Ada_2005
3774 then
3775 declare
3776 Comp_Type : constant Entity_Id :=
3777 Component_Type
3778 (Etype (Expression (A)));
3779 begin
3780 if (Is_Private_Type (Comp_Type)
3781 and then not Is_Generic_Type (Comp_Type))
3782 or else Is_Tagged_Type (Comp_Type)
3783 or else Is_Volatile (Comp_Type)
3784 then
3785 Error_Msg_N
3786 ("component type of a view conversion cannot"
3787 & " be private, tagged, or volatile"
3788 & " (RM 4.6 (24))",
3789 Expression (A));
3790 end if;
3791 end;
3792 end if;
3793 end if;
3794 end if;
3795
3796 -- Resolve expression if conversion is all OK
3797
3798 if (Conversion_OK (A)
3799 or else Valid_Conversion (A, Etype (A), Expression (A)))
3800 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3801 then
3802 Resolve (Expression (A));
3803 end if;
3804
3805 -- If the actual is a function call that returns a limited
3806 -- unconstrained object that needs finalization, create a
3807 -- transient scope for it, so that it can receive the proper
3808 -- finalization list.
3809
3810 elsif Nkind (A) = N_Function_Call
3811 and then Is_Limited_Record (Etype (F))
3812 and then not Is_Constrained (Etype (F))
3813 and then Expander_Active
3814 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3815 then
3816 Establish_Transient_Scope (A, Sec_Stack => False);
3817 Resolve (A, Etype (F));
3818
3819 -- A small optimization: if one of the actuals is a concatenation
3820 -- create a block around a procedure call to recover stack space.
3821 -- This alleviates stack usage when several procedure calls in
3822 -- the same statement list use concatenation. We do not perform
3823 -- this wrapping for code statements, where the argument is a
3824 -- static string, and we want to preserve warnings involving
3825 -- sequences of such statements.
3826
3827 elsif Nkind (A) = N_Op_Concat
3828 and then Nkind (N) = N_Procedure_Call_Statement
3829 and then Expander_Active
3830 and then
3831 not (Is_Intrinsic_Subprogram (Nam)
3832 and then Chars (Nam) = Name_Asm)
3833 and then not Static_Concatenation (A)
3834 then
3835 Establish_Transient_Scope (A, Sec_Stack => False);
3836 Resolve (A, Etype (F));
3837
3838 else
3839 if Nkind (A) = N_Type_Conversion
3840 and then Is_Array_Type (Etype (F))
3841 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3842 and then
3843 (Is_Limited_Type (Etype (F))
3844 or else Is_Limited_Type (Etype (Expression (A))))
3845 then
3846 Error_Msg_N
3847 ("conversion between unrelated limited array types "
3848 & "not allowed ('A'I-00246)", A);
3849
3850 if Is_Limited_Type (Etype (F)) then
3851 Explain_Limited_Type (Etype (F), A);
3852 end if;
3853
3854 if Is_Limited_Type (Etype (Expression (A))) then
3855 Explain_Limited_Type (Etype (Expression (A)), A);
3856 end if;
3857 end if;
3858
3859 -- (Ada 2005: AI-251): If the actual is an allocator whose
3860 -- directly designated type is a class-wide interface, we build
3861 -- an anonymous access type to use it as the type of the
3862 -- allocator. Later, when the subprogram call is expanded, if
3863 -- the interface has a secondary dispatch table the expander
3864 -- will add a type conversion to force the correct displacement
3865 -- of the pointer.
3866
3867 if Nkind (A) = N_Allocator then
3868 declare
3869 DDT : constant Entity_Id :=
3870 Directly_Designated_Type (Base_Type (Etype (F)));
3871
3872 New_Itype : Entity_Id;
3873
3874 begin
3875 if Is_Class_Wide_Type (DDT)
3876 and then Is_Interface (DDT)
3877 then
3878 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3879 Set_Etype (New_Itype, Etype (A));
3880 Set_Directly_Designated_Type
3881 (New_Itype, Directly_Designated_Type (Etype (A)));
3882 Set_Etype (A, New_Itype);
3883 end if;
3884
3885 -- Ada 2005, AI-162:If the actual is an allocator, the
3886 -- innermost enclosing statement is the master of the
3887 -- created object. This needs to be done with expansion
3888 -- enabled only, otherwise the transient scope will not
3889 -- be removed in the expansion of the wrapped construct.
3890
3891 if (Is_Controlled (DDT) or else Has_Task (DDT))
3892 and then Expander_Active
3893 then
3894 Establish_Transient_Scope (A, Sec_Stack => False);
3895 end if;
3896 end;
3897
3898 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3899 Check_Restriction (No_Access_Parameter_Allocators, A);
3900 end if;
3901 end if;
3902
3903 -- (Ada 2005): The call may be to a primitive operation of a
3904 -- tagged synchronized type, declared outside of the type. In
3905 -- this case the controlling actual must be converted to its
3906 -- corresponding record type, which is the formal type. The
3907 -- actual may be a subtype, either because of a constraint or
3908 -- because it is a generic actual, so use base type to locate
3909 -- concurrent type.
3910
3911 F_Typ := Base_Type (Etype (F));
3912
3913 if Is_Tagged_Type (F_Typ)
3914 and then (Is_Concurrent_Type (F_Typ)
3915 or else Is_Concurrent_Record_Type (F_Typ))
3916 then
3917 -- If the actual is overloaded, look for an interpretation
3918 -- that has a synchronized type.
3919
3920 if not Is_Overloaded (A) then
3921 A_Typ := Base_Type (Etype (A));
3922
3923 else
3924 declare
3925 Index : Interp_Index;
3926 It : Interp;
3927
3928 begin
3929 Get_First_Interp (A, Index, It);
3930 while Present (It.Typ) loop
3931 if Is_Concurrent_Type (It.Typ)
3932 or else Is_Concurrent_Record_Type (It.Typ)
3933 then
3934 A_Typ := Base_Type (It.Typ);
3935 exit;
3936 end if;
3937
3938 Get_Next_Interp (Index, It);
3939 end loop;
3940 end;
3941 end if;
3942
3943 declare
3944 Full_A_Typ : Entity_Id;
3945
3946 begin
3947 if Present (Full_View (A_Typ)) then
3948 Full_A_Typ := Base_Type (Full_View (A_Typ));
3949 else
3950 Full_A_Typ := A_Typ;
3951 end if;
3952
3953 -- Tagged synchronized type (case 1): the actual is a
3954 -- concurrent type.
3955
3956 if Is_Concurrent_Type (A_Typ)
3957 and then Corresponding_Record_Type (A_Typ) = F_Typ
3958 then
3959 Rewrite (A,
3960 Unchecked_Convert_To
3961 (Corresponding_Record_Type (A_Typ), A));
3962 Resolve (A, Etype (F));
3963
3964 -- Tagged synchronized type (case 2): the formal is a
3965 -- concurrent type.
3966
3967 elsif Ekind (Full_A_Typ) = E_Record_Type
3968 and then Present
3969 (Corresponding_Concurrent_Type (Full_A_Typ))
3970 and then Is_Concurrent_Type (F_Typ)
3971 and then Present (Corresponding_Record_Type (F_Typ))
3972 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3973 then
3974 Resolve (A, Corresponding_Record_Type (F_Typ));
3975
3976 -- Common case
3977
3978 else
3979 Resolve (A, Etype (F));
3980 end if;
3981 end;
3982
3983 -- Not a synchronized operation
3984
3985 else
3986 Resolve (A, Etype (F));
3987 end if;
3988 end if;
3989
3990 A_Typ := Etype (A);
3991 F_Typ := Etype (F);
3992
3993 -- An actual cannot be an untagged formal incomplete type
3994
3995 if Ekind (A_Typ) = E_Incomplete_Type
3996 and then not Is_Tagged_Type (A_Typ)
3997 and then Is_Generic_Type (A_Typ)
3998 then
3999 Error_Msg_N
4000 ("invalid use of untagged formal incomplete type", A);
4001 end if;
4002
4003 if Comes_From_Source (Original_Node (N))
4004 and then Nkind_In (Original_Node (N), N_Function_Call,
4005 N_Procedure_Call_Statement)
4006 then
4007 -- In formal mode, check that actual parameters matching
4008 -- formals of tagged types are objects (or ancestor type
4009 -- conversions of objects), not general expressions.
4010
4011 if Is_Actual_Tagged_Parameter (A) then
4012 if Is_SPARK_05_Object_Reference (A) then
4013 null;
4014
4015 elsif Nkind (A) = N_Type_Conversion then
4016 declare
4017 Operand : constant Node_Id := Expression (A);
4018 Operand_Typ : constant Entity_Id := Etype (Operand);
4019 Target_Typ : constant Entity_Id := A_Typ;
4020
4021 begin
4022 if not Is_SPARK_05_Object_Reference (Operand) then
4023 Check_SPARK_05_Restriction
4024 ("object required", Operand);
4025
4026 -- In formal mode, the only view conversions are those
4027 -- involving ancestor conversion of an extended type.
4028
4029 elsif not
4030 (Is_Tagged_Type (Target_Typ)
4031 and then not Is_Class_Wide_Type (Target_Typ)
4032 and then Is_Tagged_Type (Operand_Typ)
4033 and then not Is_Class_Wide_Type (Operand_Typ)
4034 and then Is_Ancestor (Target_Typ, Operand_Typ))
4035 then
4036 if Ekind_In
4037 (F, E_Out_Parameter, E_In_Out_Parameter)
4038 then
4039 Check_SPARK_05_Restriction
4040 ("ancestor conversion is the only permitted "
4041 & "view conversion", A);
4042 else
4043 Check_SPARK_05_Restriction
4044 ("ancestor conversion required", A);
4045 end if;
4046
4047 else
4048 null;
4049 end if;
4050 end;
4051
4052 else
4053 Check_SPARK_05_Restriction ("object required", A);
4054 end if;
4055
4056 -- In formal mode, the only view conversions are those
4057 -- involving ancestor conversion of an extended type.
4058
4059 elsif Nkind (A) = N_Type_Conversion
4060 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4061 then
4062 Check_SPARK_05_Restriction
4063 ("ancestor conversion is the only permitted view "
4064 & "conversion", A);
4065 end if;
4066 end if;
4067
4068 -- has warnings suppressed, then we reset Never_Set_In_Source for
4069 -- the calling entity. The reason for this is to catch cases like
4070 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4071 -- uses trickery to modify an IN parameter.
4072
4073 if Ekind (F) = E_In_Parameter
4074 and then Is_Entity_Name (A)
4075 and then Present (Entity (A))
4076 and then Ekind (Entity (A)) = E_Variable
4077 and then Has_Warnings_Off (F_Typ)
4078 then
4079 Set_Never_Set_In_Source (Entity (A), False);
4080 end if;
4081
4082 -- Perform error checks for IN and IN OUT parameters
4083
4084 if Ekind (F) /= E_Out_Parameter then
4085
4086 -- Check unset reference. For scalar parameters, it is clearly
4087 -- wrong to pass an uninitialized value as either an IN or
4088 -- IN-OUT parameter. For composites, it is also clearly an
4089 -- error to pass a completely uninitialized value as an IN
4090 -- parameter, but the case of IN OUT is trickier. We prefer
4091 -- not to give a warning here. For example, suppose there is
4092 -- a routine that sets some component of a record to False.
4093 -- It is perfectly reasonable to make this IN-OUT and allow
4094 -- either initialized or uninitialized records to be passed
4095 -- in this case.
4096
4097 -- For partially initialized composite values, we also avoid
4098 -- warnings, since it is quite likely that we are passing a
4099 -- partially initialized value and only the initialized fields
4100 -- will in fact be read in the subprogram.
4101
4102 if Is_Scalar_Type (A_Typ)
4103 or else (Ekind (F) = E_In_Parameter
4104 and then not Is_Partially_Initialized_Type (A_Typ))
4105 then
4106 Check_Unset_Reference (A);
4107 end if;
4108
4109 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4110 -- actual to a nested call, since this constitutes a reading of
4111 -- the parameter, which is not allowed.
4112
4113 if Ada_Version = Ada_83
4114 and then Is_Entity_Name (A)
4115 and then Ekind (Entity (A)) = E_Out_Parameter
4116 then
4117 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4118 end if;
4119 end if;
4120
4121 -- Case of OUT or IN OUT parameter
4122
4123 if Ekind (F) /= E_In_Parameter then
4124
4125 -- For an Out parameter, check for useless assignment. Note
4126 -- that we can't set Last_Assignment this early, because we may
4127 -- kill current values in Resolve_Call, and that call would
4128 -- clobber the Last_Assignment field.
4129
4130 -- Note: call Warn_On_Useless_Assignment before doing the check
4131 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4132 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4133 -- reflects the last assignment, not this one.
4134
4135 if Ekind (F) = E_Out_Parameter then
4136 if Warn_On_Modified_As_Out_Parameter (F)
4137 and then Is_Entity_Name (A)
4138 and then Present (Entity (A))
4139 and then Comes_From_Source (N)
4140 then
4141 Warn_On_Useless_Assignment (Entity (A), A);
4142 end if;
4143 end if;
4144
4145 -- Validate the form of the actual. Note that the call to
4146 -- Is_OK_Variable_For_Out_Formal generates the required
4147 -- reference in this case.
4148
4149 -- A call to an initialization procedure for an aggregate
4150 -- component may initialize a nested component of a constant
4151 -- designated object. In this context the object is variable.
4152
4153 if not Is_OK_Variable_For_Out_Formal (A)
4154 and then not Is_Init_Proc (Nam)
4155 then
4156 Error_Msg_NE ("actual for& must be a variable", A, F);
4157
4158 if Is_Subprogram (Current_Scope)
4159 and then
4160 (Is_Invariant_Procedure (Current_Scope)
4161 or else Is_Predicate_Function (Current_Scope))
4162 then
4163 Error_Msg_N
4164 ("function used in predicate cannot "
4165 & "modify its argument", F);
4166 end if;
4167 end if;
4168
4169 -- What's the following about???
4170
4171 if Is_Entity_Name (A) then
4172 Kill_Checks (Entity (A));
4173 else
4174 Kill_All_Checks;
4175 end if;
4176 end if;
4177
4178 if Etype (A) = Any_Type then
4179 Set_Etype (N, Any_Type);
4180 return;
4181 end if;
4182
4183 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4184
4185 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4186
4187 -- Apply predicate tests except in certain special cases. Note
4188 -- that it might be more consistent to apply these only when
4189 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4190 -- for the outbound predicate tests ???
4191
4192 if Predicate_Tests_On_Arguments (Nam) then
4193 Apply_Predicate_Check (A, F_Typ);
4194 end if;
4195
4196 -- Apply required constraint checks
4197
4198 -- Gigi looks at the check flag and uses the appropriate types.
4199 -- For now since one flag is used there is an optimization
4200 -- which might not be done in the IN OUT case since Gigi does
4201 -- not do any analysis. More thought required about this ???
4202
4203 -- In fact is this comment obsolete??? doesn't the expander now
4204 -- generate all these tests anyway???
4205
4206 if Is_Scalar_Type (Etype (A)) then
4207 Apply_Scalar_Range_Check (A, F_Typ);
4208
4209 elsif Is_Array_Type (Etype (A)) then
4210 Apply_Length_Check (A, F_Typ);
4211
4212 elsif Is_Record_Type (F_Typ)
4213 and then Has_Discriminants (F_Typ)
4214 and then Is_Constrained (F_Typ)
4215 and then (not Is_Derived_Type (F_Typ)
4216 or else Comes_From_Source (Nam))
4217 then
4218 Apply_Discriminant_Check (A, F_Typ);
4219
4220 -- For view conversions of a discriminated object, apply
4221 -- check to object itself, the conversion alreay has the
4222 -- proper type.
4223
4224 if Nkind (A) = N_Type_Conversion
4225 and then Is_Constrained (Etype (Expression (A)))
4226 then
4227 Apply_Discriminant_Check (Expression (A), F_Typ);
4228 end if;
4229
4230 elsif Is_Access_Type (F_Typ)
4231 and then Is_Array_Type (Designated_Type (F_Typ))
4232 and then Is_Constrained (Designated_Type (F_Typ))
4233 then
4234 Apply_Length_Check (A, F_Typ);
4235
4236 elsif Is_Access_Type (F_Typ)
4237 and then Has_Discriminants (Designated_Type (F_Typ))
4238 and then Is_Constrained (Designated_Type (F_Typ))
4239 then
4240 Apply_Discriminant_Check (A, F_Typ);
4241
4242 else
4243 Apply_Range_Check (A, F_Typ);
4244 end if;
4245
4246 -- Ada 2005 (AI-231): Note that the controlling parameter case
4247 -- already existed in Ada 95, which is partially checked
4248 -- elsewhere (see Checks), and we don't want the warning
4249 -- message to differ.
4250
4251 if Is_Access_Type (F_Typ)
4252 and then Can_Never_Be_Null (F_Typ)
4253 and then Known_Null (A)
4254 then
4255 if Is_Controlling_Formal (F) then
4256 Apply_Compile_Time_Constraint_Error
4257 (N => A,
4258 Msg => "null value not allowed here??",
4259 Reason => CE_Access_Check_Failed);
4260
4261 elsif Ada_Version >= Ada_2005 then
4262 Apply_Compile_Time_Constraint_Error
4263 (N => A,
4264 Msg => "(Ada 2005) null not allowed in "
4265 & "null-excluding formal??",
4266 Reason => CE_Null_Not_Allowed);
4267 end if;
4268 end if;
4269 end if;
4270
4271 -- Checks for OUT parameters and IN OUT parameters
4272
4273 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4274
4275 -- If there is a type conversion, to make sure the return value
4276 -- meets the constraints of the variable before the conversion.
4277
4278 if Nkind (A) = N_Type_Conversion then
4279 if Is_Scalar_Type (A_Typ) then
4280 Apply_Scalar_Range_Check
4281 (Expression (A), Etype (Expression (A)), A_Typ);
4282 else
4283 Apply_Range_Check
4284 (Expression (A), Etype (Expression (A)), A_Typ);
4285 end if;
4286
4287 -- If no conversion apply scalar range checks and length checks
4288 -- base on the subtype of the actual (NOT that of the formal).
4289
4290 else
4291 if Is_Scalar_Type (F_Typ) then
4292 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4293 elsif Is_Array_Type (F_Typ)
4294 and then Ekind (F) = E_Out_Parameter
4295 then
4296 Apply_Length_Check (A, F_Typ);
4297 else
4298 Apply_Range_Check (A, A_Typ, F_Typ);
4299 end if;
4300 end if;
4301
4302 -- Note: we do not apply the predicate checks for the case of
4303 -- OUT and IN OUT parameters. They are instead applied in the
4304 -- Expand_Actuals routine in Exp_Ch6.
4305 end if;
4306
4307 -- An actual associated with an access parameter is implicitly
4308 -- converted to the anonymous access type of the formal and must
4309 -- satisfy the legality checks for access conversions.
4310
4311 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4312 if not Valid_Conversion (A, F_Typ, A) then
4313 Error_Msg_N
4314 ("invalid implicit conversion for access parameter", A);
4315 end if;
4316
4317 -- If the actual is an access selected component of a variable,
4318 -- the call may modify its designated object. It is reasonable
4319 -- to treat this as a potential modification of the enclosing
4320 -- record, to prevent spurious warnings that it should be
4321 -- declared as a constant, because intuitively programmers
4322 -- regard the designated subcomponent as part of the record.
4323
4324 if Nkind (A) = N_Selected_Component
4325 and then Is_Entity_Name (Prefix (A))
4326 and then not Is_Constant_Object (Entity (Prefix (A)))
4327 then
4328 Note_Possible_Modification (A, Sure => False);
4329 end if;
4330 end if;
4331
4332 -- Check bad case of atomic/volatile argument (RM C.6(12))
4333
4334 if Is_By_Reference_Type (Etype (F))
4335 and then Comes_From_Source (N)
4336 then
4337 if Is_Atomic_Object (A)
4338 and then not Is_Atomic (Etype (F))
4339 then
4340 Error_Msg_NE
4341 ("cannot pass atomic argument to non-atomic formal&",
4342 A, F);
4343
4344 elsif Is_Volatile_Object (A)
4345 and then not Is_Volatile (Etype (F))
4346 then
4347 Error_Msg_NE
4348 ("cannot pass volatile argument to non-volatile formal&",
4349 A, F);
4350 end if;
4351 end if;
4352
4353 -- Check that subprograms don't have improper controlling
4354 -- arguments (RM 3.9.2 (9)).
4355
4356 -- A primitive operation may have an access parameter of an
4357 -- incomplete tagged type, but a dispatching call is illegal
4358 -- if the type is still incomplete.
4359
4360 if Is_Controlling_Formal (F) then
4361 Set_Is_Controlling_Actual (A);
4362
4363 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4364 declare
4365 Desig : constant Entity_Id := Designated_Type (Etype (F));
4366 begin
4367 if Ekind (Desig) = E_Incomplete_Type
4368 and then No (Full_View (Desig))
4369 and then No (Non_Limited_View (Desig))
4370 then
4371 Error_Msg_NE
4372 ("premature use of incomplete type& "
4373 & "in dispatching call", A, Desig);
4374 end if;
4375 end;
4376 end if;
4377
4378 elsif Nkind (A) = N_Explicit_Dereference then
4379 Validate_Remote_Access_To_Class_Wide_Type (A);
4380 end if;
4381
4382 -- Apply legality rule 3.9.2 (9/1)
4383
4384 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4385 and then not Is_Class_Wide_Type (F_Typ)
4386 and then not Is_Controlling_Formal (F)
4387 and then not In_Instance
4388 then
4389 Error_Msg_N ("class-wide argument not allowed here!", A);
4390
4391 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4392 Error_Msg_Node_2 := F_Typ;
4393 Error_Msg_NE
4394 ("& is not a dispatching operation of &!", A, Nam);
4395 end if;
4396
4397 -- Apply the checks described in 3.10.2(27): if the context is a
4398 -- specific access-to-object, the actual cannot be class-wide.
4399 -- Use base type to exclude access_to_subprogram cases.
4400
4401 elsif Is_Access_Type (A_Typ)
4402 and then Is_Access_Type (F_Typ)
4403 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4404 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4405 or else (Nkind (A) = N_Attribute_Reference
4406 and then
4407 Is_Class_Wide_Type (Etype (Prefix (A)))))
4408 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4409 and then not Is_Controlling_Formal (F)
4410
4411 -- Disable these checks for call to imported C++ subprograms
4412
4413 and then not
4414 (Is_Entity_Name (Name (N))
4415 and then Is_Imported (Entity (Name (N)))
4416 and then Convention (Entity (Name (N))) = Convention_CPP)
4417 then
4418 Error_Msg_N
4419 ("access to class-wide argument not allowed here!", A);
4420
4421 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4422 Error_Msg_Node_2 := Designated_Type (F_Typ);
4423 Error_Msg_NE
4424 ("& is not a dispatching operation of &!", A, Nam);
4425 end if;
4426 end if;
4427
4428 Check_Aliased_Parameter;
4429
4430 Eval_Actual (A);
4431
4432 -- If it is a named association, treat the selector_name as a
4433 -- proper identifier, and mark the corresponding entity.
4434
4435 if Nkind (Parent (A)) = N_Parameter_Association
4436
4437 -- Ignore reference in SPARK mode, as it refers to an entity not
4438 -- in scope at the point of reference, so the reference should
4439 -- be ignored for computing effects of subprograms.
4440
4441 and then not GNATprove_Mode
4442 then
4443 -- If subprogram is overridden, use name of formal that
4444 -- is being called.
4445
4446 if Present (Real_Subp) then
4447 Set_Entity (Selector_Name (Parent (A)), Real_F);
4448 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4449
4450 else
4451 Set_Entity (Selector_Name (Parent (A)), F);
4452 Generate_Reference (F, Selector_Name (Parent (A)));
4453 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4454 Generate_Reference (F_Typ, N, ' ');
4455 end if;
4456 end if;
4457
4458 Prev := A;
4459
4460 if Ekind (F) /= E_Out_Parameter then
4461 Check_Unset_Reference (A);
4462 end if;
4463
4464 -- The following checks are only relevant when SPARK_Mode is on as
4465 -- they are not standard Ada legality rule. Internally generated
4466 -- temporaries are ignored.
4467
4468 if SPARK_Mode = On
4469 and then Comes_From_Source (A)
4470 and then Is_Effectively_Volatile_Object (A)
4471 then
4472 -- An effectively volatile object may act as an actual when the
4473 -- corresponding formal is of a non-scalar effectively volatile
4474 -- type (SPARK RM 7.1.3(11)).
4475
4476 if not Is_Scalar_Type (Etype (F))
4477 and then Is_Effectively_Volatile (Etype (F))
4478 then
4479 null;
4480
4481 -- An effectively volatile object may act as an actual in a
4482 -- call to an instance of Unchecked_Conversion.
4483 -- (SPARK RM 7.1.3(11)).
4484
4485 elsif Is_Unchecked_Conversion_Instance (Nam) then
4486 null;
4487
4488 else
4489 Error_Msg_N
4490 ("volatile object cannot act as actual in a call (SPARK "
4491 & "RM 7.1.3(11))", A);
4492 end if;
4493
4494 -- Detect an external variable with an enabled property that
4495 -- does not match the mode of the corresponding formal in a
4496 -- procedure call. Functions are not considered because they
4497 -- cannot have effectively volatile formal parameters in the
4498 -- first place.
4499
4500 if Ekind (Nam) = E_Procedure
4501 and then Ekind (F) = E_In_Parameter
4502 and then Is_Entity_Name (A)
4503 and then Present (Entity (A))
4504 and then Ekind (Entity (A)) = E_Variable
4505 then
4506 A_Id := Entity (A);
4507
4508 if Async_Readers_Enabled (A_Id) then
4509 Property_Error (A, A_Id, Name_Async_Readers);
4510 elsif Effective_Reads_Enabled (A_Id) then
4511 Property_Error (A, A_Id, Name_Effective_Reads);
4512 elsif Effective_Writes_Enabled (A_Id) then
4513 Property_Error (A, A_Id, Name_Effective_Writes);
4514 end if;
4515 end if;
4516 end if;
4517
4518 -- A formal parameter of a specific tagged type whose related
4519 -- subprogram is subject to pragma Extensions_Visible with value
4520 -- "False" cannot act as an actual in a subprogram with value
4521 -- "True" (SPARK RM 6.1.7(3)).
4522
4523 if Is_EVF_Expression (A)
4524 and then Extensions_Visible_Status (Nam) =
4525 Extensions_Visible_True
4526 then
4527 Error_Msg_N
4528 ("formal parameter with Extensions_Visible False cannot act "
4529 & "as actual parameter", A);
4530 Error_Msg_NE
4531 ("\subprogram & has Extensions_Visible True", A, Nam);
4532 end if;
4533
4534 -- The actual parameter of a Ghost subprogram whose formal is of
4535 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4536
4537 if Comes_From_Source (Nam)
4538 and then Is_Ghost_Entity (Nam)
4539 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4540 and then Is_Entity_Name (A)
4541 and then Present (Entity (A))
4542 and then not Is_Ghost_Entity (Entity (A))
4543 then
4544 Error_Msg_NE
4545 ("non-ghost variable & cannot appear as actual in call to "
4546 & "ghost procedure", A, Entity (A));
4547
4548 if Ekind (F) = E_In_Out_Parameter then
4549 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4550 else
4551 Error_Msg_N ("\corresponding formal has mode OUT", A);
4552 end if;
4553 end if;
4554
4555 Next_Actual (A);
4556
4557 -- Case where actual is not present
4558
4559 else
4560 Insert_Default;
4561 end if;
4562
4563 Next_Formal (F);
4564
4565 if Present (Real_Subp) then
4566 Next_Formal (Real_F);
4567 end if;
4568 end loop;
4569 end Resolve_Actuals;
4570
4571 -----------------------
4572 -- Resolve_Allocator --
4573 -----------------------
4574
4575 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4576 Desig_T : constant Entity_Id := Designated_Type (Typ);
4577 E : constant Node_Id := Expression (N);
4578 Subtyp : Entity_Id;
4579 Discrim : Entity_Id;
4580 Constr : Node_Id;
4581 Aggr : Node_Id;
4582 Assoc : Node_Id := Empty;
4583 Disc_Exp : Node_Id;
4584
4585 procedure Check_Allocator_Discrim_Accessibility
4586 (Disc_Exp : Node_Id;
4587 Alloc_Typ : Entity_Id);
4588 -- Check that accessibility level associated with an access discriminant
4589 -- initialized in an allocator by the expression Disc_Exp is not deeper
4590 -- than the level of the allocator type Alloc_Typ. An error message is
4591 -- issued if this condition is violated. Specialized checks are done for
4592 -- the cases of a constraint expression which is an access attribute or
4593 -- an access discriminant.
4594
4595 function In_Dispatching_Context return Boolean;
4596 -- If the allocator is an actual in a call, it is allowed to be class-
4597 -- wide when the context is not because it is a controlling actual.
4598
4599 -------------------------------------------
4600 -- Check_Allocator_Discrim_Accessibility --
4601 -------------------------------------------
4602
4603 procedure Check_Allocator_Discrim_Accessibility
4604 (Disc_Exp : Node_Id;
4605 Alloc_Typ : Entity_Id)
4606 is
4607 begin
4608 if Type_Access_Level (Etype (Disc_Exp)) >
4609 Deepest_Type_Access_Level (Alloc_Typ)
4610 then
4611 Error_Msg_N
4612 ("operand type has deeper level than allocator type", Disc_Exp);
4613
4614 -- When the expression is an Access attribute the level of the prefix
4615 -- object must not be deeper than that of the allocator's type.
4616
4617 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4618 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4619 Attribute_Access
4620 and then Object_Access_Level (Prefix (Disc_Exp)) >
4621 Deepest_Type_Access_Level (Alloc_Typ)
4622 then
4623 Error_Msg_N
4624 ("prefix of attribute has deeper level than allocator type",
4625 Disc_Exp);
4626
4627 -- When the expression is an access discriminant the check is against
4628 -- the level of the prefix object.
4629
4630 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4631 and then Nkind (Disc_Exp) = N_Selected_Component
4632 and then Object_Access_Level (Prefix (Disc_Exp)) >
4633 Deepest_Type_Access_Level (Alloc_Typ)
4634 then
4635 Error_Msg_N
4636 ("access discriminant has deeper level than allocator type",
4637 Disc_Exp);
4638
4639 -- All other cases are legal
4640
4641 else
4642 null;
4643 end if;
4644 end Check_Allocator_Discrim_Accessibility;
4645
4646 ----------------------------
4647 -- In_Dispatching_Context --
4648 ----------------------------
4649
4650 function In_Dispatching_Context return Boolean is
4651 Par : constant Node_Id := Parent (N);
4652
4653 begin
4654 return Nkind (Par) in N_Subprogram_Call
4655 and then Is_Entity_Name (Name (Par))
4656 and then Is_Dispatching_Operation (Entity (Name (Par)));
4657 end In_Dispatching_Context;
4658
4659 -- Start of processing for Resolve_Allocator
4660
4661 begin
4662 -- Replace general access with specific type
4663
4664 if Ekind (Etype (N)) = E_Allocator_Type then
4665 Set_Etype (N, Base_Type (Typ));
4666 end if;
4667
4668 if Is_Abstract_Type (Typ) then
4669 Error_Msg_N ("type of allocator cannot be abstract", N);
4670 end if;
4671
4672 -- For qualified expression, resolve the expression using the given
4673 -- subtype (nothing to do for type mark, subtype indication)
4674
4675 if Nkind (E) = N_Qualified_Expression then
4676 if Is_Class_Wide_Type (Etype (E))
4677 and then not Is_Class_Wide_Type (Desig_T)
4678 and then not In_Dispatching_Context
4679 then
4680 Error_Msg_N
4681 ("class-wide allocator not allowed for this access type", N);
4682 end if;
4683
4684 Resolve (Expression (E), Etype (E));
4685 Check_Non_Static_Context (Expression (E));
4686 Check_Unset_Reference (Expression (E));
4687
4688 -- Allocators generated by the build-in-place expansion mechanism
4689 -- are explicitly marked as coming from source but do not need to be
4690 -- checked for limited initialization. To exclude this case, ensure
4691 -- that the parent of the allocator is a source node.
4692
4693 if Is_Limited_Type (Etype (E))
4694 and then Comes_From_Source (N)
4695 and then Comes_From_Source (Parent (N))
4696 and then not In_Instance_Body
4697 then
4698 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4699 Error_Msg_N ("initialization not allowed for limited types", N);
4700 Explain_Limited_Type (Etype (E), N);
4701 end if;
4702 end if;
4703
4704 -- A qualified expression requires an exact match of the type.
4705 -- Class-wide matching is not allowed.
4706
4707 if (Is_Class_Wide_Type (Etype (Expression (E)))
4708 or else Is_Class_Wide_Type (Etype (E)))
4709 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4710 then
4711 Wrong_Type (Expression (E), Etype (E));
4712 end if;
4713
4714 -- Calls to build-in-place functions are not currently supported in
4715 -- allocators for access types associated with a simple storage pool.
4716 -- Supporting such allocators may require passing additional implicit
4717 -- parameters to build-in-place functions (or a significant revision
4718 -- of the current b-i-p implementation to unify the handling for
4719 -- multiple kinds of storage pools). ???
4720
4721 if Is_Limited_View (Desig_T)
4722 and then Nkind (Expression (E)) = N_Function_Call
4723 then
4724 declare
4725 Pool : constant Entity_Id :=
4726 Associated_Storage_Pool (Root_Type (Typ));
4727 begin
4728 if Present (Pool)
4729 and then
4730 Present (Get_Rep_Pragma
4731 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4732 then
4733 Error_Msg_N
4734 ("limited function calls not yet supported in simple "
4735 & "storage pool allocators", Expression (E));
4736 end if;
4737 end;
4738 end if;
4739
4740 -- A special accessibility check is needed for allocators that
4741 -- constrain access discriminants. The level of the type of the
4742 -- expression used to constrain an access discriminant cannot be
4743 -- deeper than the type of the allocator (in contrast to access
4744 -- parameters, where the level of the actual can be arbitrary).
4745
4746 -- We can't use Valid_Conversion to perform this check because in
4747 -- general the type of the allocator is unrelated to the type of
4748 -- the access discriminant.
4749
4750 if Ekind (Typ) /= E_Anonymous_Access_Type
4751 or else Is_Local_Anonymous_Access (Typ)
4752 then
4753 Subtyp := Entity (Subtype_Mark (E));
4754
4755 Aggr := Original_Node (Expression (E));
4756
4757 if Has_Discriminants (Subtyp)
4758 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4759 then
4760 Discrim := First_Discriminant (Base_Type (Subtyp));
4761
4762 -- Get the first component expression of the aggregate
4763
4764 if Present (Expressions (Aggr)) then
4765 Disc_Exp := First (Expressions (Aggr));
4766
4767 elsif Present (Component_Associations (Aggr)) then
4768 Assoc := First (Component_Associations (Aggr));
4769
4770 if Present (Assoc) then
4771 Disc_Exp := Expression (Assoc);
4772 else
4773 Disc_Exp := Empty;
4774 end if;
4775
4776 else
4777 Disc_Exp := Empty;
4778 end if;
4779
4780 while Present (Discrim) and then Present (Disc_Exp) loop
4781 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4782 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4783 end if;
4784
4785 Next_Discriminant (Discrim);
4786
4787 if Present (Discrim) then
4788 if Present (Assoc) then
4789 Next (Assoc);
4790 Disc_Exp := Expression (Assoc);
4791
4792 elsif Present (Next (Disc_Exp)) then
4793 Next (Disc_Exp);
4794
4795 else
4796 Assoc := First (Component_Associations (Aggr));
4797
4798 if Present (Assoc) then
4799 Disc_Exp := Expression (Assoc);
4800 else
4801 Disc_Exp := Empty;
4802 end if;
4803 end if;
4804 end if;
4805 end loop;
4806 end if;
4807 end if;
4808
4809 -- For a subtype mark or subtype indication, freeze the subtype
4810
4811 else
4812 Freeze_Expression (E);
4813
4814 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4815 Error_Msg_N
4816 ("initialization required for access-to-constant allocator", N);
4817 end if;
4818
4819 -- A special accessibility check is needed for allocators that
4820 -- constrain access discriminants. The level of the type of the
4821 -- expression used to constrain an access discriminant cannot be
4822 -- deeper than the type of the allocator (in contrast to access
4823 -- parameters, where the level of the actual can be arbitrary).
4824 -- We can't use Valid_Conversion to perform this check because
4825 -- in general the type of the allocator is unrelated to the type
4826 -- of the access discriminant.
4827
4828 if Nkind (Original_Node (E)) = N_Subtype_Indication
4829 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4830 or else Is_Local_Anonymous_Access (Typ))
4831 then
4832 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4833
4834 if Has_Discriminants (Subtyp) then
4835 Discrim := First_Discriminant (Base_Type (Subtyp));
4836 Constr := First (Constraints (Constraint (Original_Node (E))));
4837 while Present (Discrim) and then Present (Constr) loop
4838 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4839 if Nkind (Constr) = N_Discriminant_Association then
4840 Disc_Exp := Original_Node (Expression (Constr));
4841 else
4842 Disc_Exp := Original_Node (Constr);
4843 end if;
4844
4845 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4846 end if;
4847
4848 Next_Discriminant (Discrim);
4849 Next (Constr);
4850 end loop;
4851 end if;
4852 end if;
4853 end if;
4854
4855 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4856 -- check that the level of the type of the created object is not deeper
4857 -- than the level of the allocator's access type, since extensions can
4858 -- now occur at deeper levels than their ancestor types. This is a
4859 -- static accessibility level check; a run-time check is also needed in
4860 -- the case of an initialized allocator with a class-wide argument (see
4861 -- Expand_Allocator_Expression).
4862
4863 if Ada_Version >= Ada_2005
4864 and then Is_Class_Wide_Type (Desig_T)
4865 then
4866 declare
4867 Exp_Typ : Entity_Id;
4868
4869 begin
4870 if Nkind (E) = N_Qualified_Expression then
4871 Exp_Typ := Etype (E);
4872 elsif Nkind (E) = N_Subtype_Indication then
4873 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4874 else
4875 Exp_Typ := Entity (E);
4876 end if;
4877
4878 if Type_Access_Level (Exp_Typ) >
4879 Deepest_Type_Access_Level (Typ)
4880 then
4881 if In_Instance_Body then
4882 Error_Msg_Warn := SPARK_Mode /= On;
4883 Error_Msg_N
4884 ("type in allocator has deeper level than "
4885 & "designated class-wide type<<", E);
4886 Error_Msg_N ("\Program_Error [<<", E);
4887 Rewrite (N,
4888 Make_Raise_Program_Error (Sloc (N),
4889 Reason => PE_Accessibility_Check_Failed));
4890 Set_Etype (N, Typ);
4891
4892 -- Do not apply Ada 2005 accessibility checks on a class-wide
4893 -- allocator if the type given in the allocator is a formal
4894 -- type. A run-time check will be performed in the instance.
4895
4896 elsif not Is_Generic_Type (Exp_Typ) then
4897 Error_Msg_N ("type in allocator has deeper level than "
4898 & "designated class-wide type", E);
4899 end if;
4900 end if;
4901 end;
4902 end if;
4903
4904 -- Check for allocation from an empty storage pool
4905
4906 if No_Pool_Assigned (Typ) then
4907 Error_Msg_N ("allocation from empty storage pool!", N);
4908
4909 -- If the context is an unchecked conversion, as may happen within an
4910 -- inlined subprogram, the allocator is being resolved with its own
4911 -- anonymous type. In that case, if the target type has a specific
4912 -- storage pool, it must be inherited explicitly by the allocator type.
4913
4914 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4915 and then No (Associated_Storage_Pool (Typ))
4916 then
4917 Set_Associated_Storage_Pool
4918 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4919 end if;
4920
4921 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4922 Check_Restriction (No_Anonymous_Allocators, N);
4923 end if;
4924
4925 -- Check that an allocator with task parts isn't for a nested access
4926 -- type when restriction No_Task_Hierarchy applies.
4927
4928 if not Is_Library_Level_Entity (Base_Type (Typ))
4929 and then Has_Task (Base_Type (Desig_T))
4930 then
4931 Check_Restriction (No_Task_Hierarchy, N);
4932 end if;
4933
4934 -- An illegal allocator may be rewritten as a raise Program_Error
4935 -- statement.
4936
4937 if Nkind (N) = N_Allocator then
4938
4939 -- An anonymous access discriminant is the definition of a
4940 -- coextension.
4941
4942 if Ekind (Typ) = E_Anonymous_Access_Type
4943 and then Nkind (Associated_Node_For_Itype (Typ)) =
4944 N_Discriminant_Specification
4945 then
4946 declare
4947 Discr : constant Entity_Id :=
4948 Defining_Identifier (Associated_Node_For_Itype (Typ));
4949
4950 begin
4951 Check_Restriction (No_Coextensions, N);
4952
4953 -- Ada 2012 AI05-0052: If the designated type of the allocator
4954 -- is limited, then the allocator shall not be used to define
4955 -- the value of an access discriminant unless the discriminated
4956 -- type is immutably limited.
4957
4958 if Ada_Version >= Ada_2012
4959 and then Is_Limited_Type (Desig_T)
4960 and then not Is_Limited_View (Scope (Discr))
4961 then
4962 Error_Msg_N
4963 ("only immutably limited types can have anonymous "
4964 & "access discriminants designating a limited type", N);
4965 end if;
4966 end;
4967
4968 -- Avoid marking an allocator as a dynamic coextension if it is
4969 -- within a static construct.
4970
4971 if not Is_Static_Coextension (N) then
4972 Set_Is_Dynamic_Coextension (N);
4973 end if;
4974
4975 -- Cleanup for potential static coextensions
4976
4977 else
4978 Set_Is_Dynamic_Coextension (N, False);
4979 Set_Is_Static_Coextension (N, False);
4980 end if;
4981 end if;
4982
4983 -- Report a simple error: if the designated object is a local task,
4984 -- its body has not been seen yet, and its activation will fail an
4985 -- elaboration check.
4986
4987 if Is_Task_Type (Desig_T)
4988 and then Scope (Base_Type (Desig_T)) = Current_Scope
4989 and then Is_Compilation_Unit (Current_Scope)
4990 and then Ekind (Current_Scope) = E_Package
4991 and then not In_Package_Body (Current_Scope)
4992 then
4993 Error_Msg_Warn := SPARK_Mode /= On;
4994 Error_Msg_N ("cannot activate task before body seen<<", N);
4995 Error_Msg_N ("\Program_Error [<<", N);
4996 end if;
4997
4998 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4999 -- type with a task component on a subpool. This action must raise
5000 -- Program_Error at runtime.
5001
5002 if Ada_Version >= Ada_2012
5003 and then Nkind (N) = N_Allocator
5004 and then Present (Subpool_Handle_Name (N))
5005 and then Has_Task (Desig_T)
5006 then
5007 Error_Msg_Warn := SPARK_Mode /= On;
5008 Error_Msg_N ("cannot allocate task on subpool<<", N);
5009 Error_Msg_N ("\Program_Error [<<", N);
5010
5011 Rewrite (N,
5012 Make_Raise_Program_Error (Sloc (N),
5013 Reason => PE_Explicit_Raise));
5014 Set_Etype (N, Typ);
5015 end if;
5016 end Resolve_Allocator;
5017
5018 ---------------------------
5019 -- Resolve_Arithmetic_Op --
5020 ---------------------------
5021
5022 -- Used for resolving all arithmetic operators except exponentiation
5023
5024 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5025 L : constant Node_Id := Left_Opnd (N);
5026 R : constant Node_Id := Right_Opnd (N);
5027 TL : constant Entity_Id := Base_Type (Etype (L));
5028 TR : constant Entity_Id := Base_Type (Etype (R));
5029 T : Entity_Id;
5030 Rop : Node_Id;
5031
5032 B_Typ : constant Entity_Id := Base_Type (Typ);
5033 -- We do the resolution using the base type, because intermediate values
5034 -- in expressions always are of the base type, not a subtype of it.
5035
5036 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5037 -- Returns True if N is in a context that expects "any real type"
5038
5039 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5040 -- Return True iff given type is Integer or universal real/integer
5041
5042 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5043 -- Choose type of integer literal in fixed-point operation to conform
5044 -- to available fixed-point type. T is the type of the other operand,
5045 -- which is needed to determine the expected type of N.
5046
5047 procedure Set_Operand_Type (N : Node_Id);
5048 -- Set operand type to T if universal
5049
5050 -------------------------------
5051 -- Expected_Type_Is_Any_Real --
5052 -------------------------------
5053
5054 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5055 begin
5056 -- N is the expression after "delta" in a fixed_point_definition;
5057 -- see RM-3.5.9(6):
5058
5059 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5060 N_Decimal_Fixed_Point_Definition,
5061
5062 -- N is one of the bounds in a real_range_specification;
5063 -- see RM-3.5.7(5):
5064
5065 N_Real_Range_Specification,
5066
5067 -- N is the expression of a delta_constraint;
5068 -- see RM-J.3(3):
5069
5070 N_Delta_Constraint);
5071 end Expected_Type_Is_Any_Real;
5072
5073 -----------------------------
5074 -- Is_Integer_Or_Universal --
5075 -----------------------------
5076
5077 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5078 T : Entity_Id;
5079 Index : Interp_Index;
5080 It : Interp;
5081
5082 begin
5083 if not Is_Overloaded (N) then
5084 T := Etype (N);
5085 return Base_Type (T) = Base_Type (Standard_Integer)
5086 or else T = Universal_Integer
5087 or else T = Universal_Real;
5088 else
5089 Get_First_Interp (N, Index, It);
5090 while Present (It.Typ) loop
5091 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5092 or else It.Typ = Universal_Integer
5093 or else It.Typ = Universal_Real
5094 then
5095 return True;
5096 end if;
5097
5098 Get_Next_Interp (Index, It);
5099 end loop;
5100 end if;
5101
5102 return False;
5103 end Is_Integer_Or_Universal;
5104
5105 ----------------------------
5106 -- Set_Mixed_Mode_Operand --
5107 ----------------------------
5108
5109 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5110 Index : Interp_Index;
5111 It : Interp;
5112
5113 begin
5114 if Universal_Interpretation (N) = Universal_Integer then
5115
5116 -- A universal integer literal is resolved as standard integer
5117 -- except in the case of a fixed-point result, where we leave it
5118 -- as universal (to be handled by Exp_Fixd later on)
5119
5120 if Is_Fixed_Point_Type (T) then
5121 Resolve (N, Universal_Integer);
5122 else
5123 Resolve (N, Standard_Integer);
5124 end if;
5125
5126 elsif Universal_Interpretation (N) = Universal_Real
5127 and then (T = Base_Type (Standard_Integer)
5128 or else T = Universal_Integer
5129 or else T = Universal_Real)
5130 then
5131 -- A universal real can appear in a fixed-type context. We resolve
5132 -- the literal with that context, even though this might raise an
5133 -- exception prematurely (the other operand may be zero).
5134
5135 Resolve (N, B_Typ);
5136
5137 elsif Etype (N) = Base_Type (Standard_Integer)
5138 and then T = Universal_Real
5139 and then Is_Overloaded (N)
5140 then
5141 -- Integer arg in mixed-mode operation. Resolve with universal
5142 -- type, in case preference rule must be applied.
5143
5144 Resolve (N, Universal_Integer);
5145
5146 elsif Etype (N) = T
5147 and then B_Typ /= Universal_Fixed
5148 then
5149 -- Not a mixed-mode operation, resolve with context
5150
5151 Resolve (N, B_Typ);
5152
5153 elsif Etype (N) = Any_Fixed then
5154
5155 -- N may itself be a mixed-mode operation, so use context type
5156
5157 Resolve (N, B_Typ);
5158
5159 elsif Is_Fixed_Point_Type (T)
5160 and then B_Typ = Universal_Fixed
5161 and then Is_Overloaded (N)
5162 then
5163 -- Must be (fixed * fixed) operation, operand must have one
5164 -- compatible interpretation.
5165
5166 Resolve (N, Any_Fixed);
5167
5168 elsif Is_Fixed_Point_Type (B_Typ)
5169 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5170 and then Is_Overloaded (N)
5171 then
5172 -- C * F(X) in a fixed context, where C is a real literal or a
5173 -- fixed-point expression. F must have either a fixed type
5174 -- interpretation or an integer interpretation, but not both.
5175
5176 Get_First_Interp (N, Index, It);
5177 while Present (It.Typ) loop
5178 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5179 if Analyzed (N) then
5180 Error_Msg_N ("ambiguous operand in fixed operation", N);
5181 else
5182 Resolve (N, Standard_Integer);
5183 end if;
5184
5185 elsif Is_Fixed_Point_Type (It.Typ) then
5186 if Analyzed (N) then
5187 Error_Msg_N ("ambiguous operand in fixed operation", N);
5188 else
5189 Resolve (N, It.Typ);
5190 end if;
5191 end if;
5192
5193 Get_Next_Interp (Index, It);
5194 end loop;
5195
5196 -- Reanalyze the literal with the fixed type of the context. If
5197 -- context is Universal_Fixed, we are within a conversion, leave
5198 -- the literal as a universal real because there is no usable
5199 -- fixed type, and the target of the conversion plays no role in
5200 -- the resolution.
5201
5202 declare
5203 Op2 : Node_Id;
5204 T2 : Entity_Id;
5205
5206 begin
5207 if N = L then
5208 Op2 := R;
5209 else
5210 Op2 := L;
5211 end if;
5212
5213 if B_Typ = Universal_Fixed
5214 and then Nkind (Op2) = N_Real_Literal
5215 then
5216 T2 := Universal_Real;
5217 else
5218 T2 := B_Typ;
5219 end if;
5220
5221 Set_Analyzed (Op2, False);
5222 Resolve (Op2, T2);
5223 end;
5224
5225 else
5226 Resolve (N);
5227 end if;
5228 end Set_Mixed_Mode_Operand;
5229
5230 ----------------------
5231 -- Set_Operand_Type --
5232 ----------------------
5233
5234 procedure Set_Operand_Type (N : Node_Id) is
5235 begin
5236 if Etype (N) = Universal_Integer
5237 or else Etype (N) = Universal_Real
5238 then
5239 Set_Etype (N, T);
5240 end if;
5241 end Set_Operand_Type;
5242
5243 -- Start of processing for Resolve_Arithmetic_Op
5244
5245 begin
5246 if Comes_From_Source (N)
5247 and then Ekind (Entity (N)) = E_Function
5248 and then Is_Imported (Entity (N))
5249 and then Is_Intrinsic_Subprogram (Entity (N))
5250 then
5251 Resolve_Intrinsic_Operator (N, Typ);
5252 return;
5253
5254 -- Special-case for mixed-mode universal expressions or fixed point type
5255 -- operation: each argument is resolved separately. The same treatment
5256 -- is required if one of the operands of a fixed point operation is
5257 -- universal real, since in this case we don't do a conversion to a
5258 -- specific fixed-point type (instead the expander handles the case).
5259
5260 -- Set the type of the node to its universal interpretation because
5261 -- legality checks on an exponentiation operand need the context.
5262
5263 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5264 and then Present (Universal_Interpretation (L))
5265 and then Present (Universal_Interpretation (R))
5266 then
5267 Set_Etype (N, B_Typ);
5268 Resolve (L, Universal_Interpretation (L));
5269 Resolve (R, Universal_Interpretation (R));
5270
5271 elsif (B_Typ = Universal_Real
5272 or else Etype (N) = Universal_Fixed
5273 or else (Etype (N) = Any_Fixed
5274 and then Is_Fixed_Point_Type (B_Typ))
5275 or else (Is_Fixed_Point_Type (B_Typ)
5276 and then (Is_Integer_Or_Universal (L)
5277 or else
5278 Is_Integer_Or_Universal (R))))
5279 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5280 then
5281 if TL = Universal_Integer or else TR = Universal_Integer then
5282 Check_For_Visible_Operator (N, B_Typ);
5283 end if;
5284
5285 -- If context is a fixed type and one operand is integer, the other
5286 -- is resolved with the type of the context.
5287
5288 if Is_Fixed_Point_Type (B_Typ)
5289 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5290 or else TL = Universal_Integer)
5291 then
5292 Resolve (R, B_Typ);
5293 Resolve (L, TL);
5294
5295 elsif Is_Fixed_Point_Type (B_Typ)
5296 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5297 or else TR = Universal_Integer)
5298 then
5299 Resolve (L, B_Typ);
5300 Resolve (R, TR);
5301
5302 else
5303 Set_Mixed_Mode_Operand (L, TR);
5304 Set_Mixed_Mode_Operand (R, TL);
5305 end if;
5306
5307 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5308 -- multiplying operators from being used when the expected type is
5309 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5310 -- some cases where the expected type is actually Any_Real;
5311 -- Expected_Type_Is_Any_Real takes care of that case.
5312
5313 if Etype (N) = Universal_Fixed
5314 or else Etype (N) = Any_Fixed
5315 then
5316 if B_Typ = Universal_Fixed
5317 and then not Expected_Type_Is_Any_Real (N)
5318 and then not Nkind_In (Parent (N), N_Type_Conversion,
5319 N_Unchecked_Type_Conversion)
5320 then
5321 Error_Msg_N ("type cannot be determined from context!", N);
5322 Error_Msg_N ("\explicit conversion to result type required", N);
5323
5324 Set_Etype (L, Any_Type);
5325 Set_Etype (R, Any_Type);
5326
5327 else
5328 if Ada_Version = Ada_83
5329 and then Etype (N) = Universal_Fixed
5330 and then not
5331 Nkind_In (Parent (N), N_Type_Conversion,
5332 N_Unchecked_Type_Conversion)
5333 then
5334 Error_Msg_N
5335 ("(Ada 83) fixed-point operation needs explicit "
5336 & "conversion", N);
5337 end if;
5338
5339 -- The expected type is "any real type" in contexts like
5340
5341 -- type T is delta <universal_fixed-expression> ...
5342
5343 -- in which case we need to set the type to Universal_Real
5344 -- so that static expression evaluation will work properly.
5345
5346 if Expected_Type_Is_Any_Real (N) then
5347 Set_Etype (N, Universal_Real);
5348 else
5349 Set_Etype (N, B_Typ);
5350 end if;
5351 end if;
5352
5353 elsif Is_Fixed_Point_Type (B_Typ)
5354 and then (Is_Integer_Or_Universal (L)
5355 or else Nkind (L) = N_Real_Literal
5356 or else Nkind (R) = N_Real_Literal
5357 or else Is_Integer_Or_Universal (R))
5358 then
5359 Set_Etype (N, B_Typ);
5360
5361 elsif Etype (N) = Any_Fixed then
5362
5363 -- If no previous errors, this is only possible if one operand is
5364 -- overloaded and the context is universal. Resolve as such.
5365
5366 Set_Etype (N, B_Typ);
5367 end if;
5368
5369 else
5370 if (TL = Universal_Integer or else TL = Universal_Real)
5371 and then
5372 (TR = Universal_Integer or else TR = Universal_Real)
5373 then
5374 Check_For_Visible_Operator (N, B_Typ);
5375 end if;
5376
5377 -- If the context is Universal_Fixed and the operands are also
5378 -- universal fixed, this is an error, unless there is only one
5379 -- applicable fixed_point type (usually Duration).
5380
5381 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5382 T := Unique_Fixed_Point_Type (N);
5383
5384 if T = Any_Type then
5385 Set_Etype (N, T);
5386 return;
5387 else
5388 Resolve (L, T);
5389 Resolve (R, T);
5390 end if;
5391
5392 else
5393 Resolve (L, B_Typ);
5394 Resolve (R, B_Typ);
5395 end if;
5396
5397 -- If one of the arguments was resolved to a non-universal type.
5398 -- label the result of the operation itself with the same type.
5399 -- Do the same for the universal argument, if any.
5400
5401 T := Intersect_Types (L, R);
5402 Set_Etype (N, Base_Type (T));
5403 Set_Operand_Type (L);
5404 Set_Operand_Type (R);
5405 end if;
5406
5407 Generate_Operator_Reference (N, Typ);
5408 Analyze_Dimension (N);
5409 Eval_Arithmetic_Op (N);
5410
5411 -- In SPARK, a multiplication or division with operands of fixed point
5412 -- types must be qualified or explicitly converted to identify the
5413 -- result type.
5414
5415 if (Is_Fixed_Point_Type (Etype (L))
5416 or else Is_Fixed_Point_Type (Etype (R)))
5417 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5418 and then
5419 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5420 then
5421 Check_SPARK_05_Restriction
5422 ("operation should be qualified or explicitly converted", N);
5423 end if;
5424
5425 -- Set overflow and division checking bit
5426
5427 if Nkind (N) in N_Op then
5428 if not Overflow_Checks_Suppressed (Etype (N)) then
5429 Enable_Overflow_Check (N);
5430 end if;
5431
5432 -- Give warning if explicit division by zero
5433
5434 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5435 and then not Division_Checks_Suppressed (Etype (N))
5436 then
5437 Rop := Right_Opnd (N);
5438
5439 if Compile_Time_Known_Value (Rop)
5440 and then ((Is_Integer_Type (Etype (Rop))
5441 and then Expr_Value (Rop) = Uint_0)
5442 or else
5443 (Is_Real_Type (Etype (Rop))
5444 and then Expr_Value_R (Rop) = Ureal_0))
5445 then
5446 -- Specialize the warning message according to the operation.
5447 -- When SPARK_Mode is On, force a warning instead of an error
5448 -- in that case, as this likely corresponds to deactivated
5449 -- code. The following warnings are for the case
5450
5451 case Nkind (N) is
5452 when N_Op_Divide =>
5453
5454 -- For division, we have two cases, for float division
5455 -- of an unconstrained float type, on a machine where
5456 -- Machine_Overflows is false, we don't get an exception
5457 -- at run-time, but rather an infinity or Nan. The Nan
5458 -- case is pretty obscure, so just warn about infinities.
5459
5460 if Is_Floating_Point_Type (Typ)
5461 and then not Is_Constrained (Typ)
5462 and then not Machine_Overflows_On_Target
5463 then
5464 Error_Msg_N
5465 ("float division by zero, may generate "
5466 & "'+'/'- infinity??", Right_Opnd (N));
5467
5468 -- For all other cases, we get a Constraint_Error
5469
5470 else
5471 Apply_Compile_Time_Constraint_Error
5472 (N, "division by zero??", CE_Divide_By_Zero,
5473 Loc => Sloc (Right_Opnd (N)),
5474 Warn => SPARK_Mode = On);
5475 end if;
5476
5477 when N_Op_Rem =>
5478 Apply_Compile_Time_Constraint_Error
5479 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5480 Loc => Sloc (Right_Opnd (N)),
5481 Warn => SPARK_Mode = On);
5482
5483 when N_Op_Mod =>
5484 Apply_Compile_Time_Constraint_Error
5485 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5486 Loc => Sloc (Right_Opnd (N)),
5487 Warn => SPARK_Mode = On);
5488
5489 -- Division by zero can only happen with division, rem,
5490 -- and mod operations.
5491
5492 when others =>
5493 raise Program_Error;
5494 end case;
5495
5496 -- In GNATprove mode, we enable the division check so that
5497 -- GNATprove will issue a message if it cannot be proved.
5498
5499 if GNATprove_Mode then
5500 Activate_Division_Check (N);
5501 end if;
5502
5503 -- Otherwise just set the flag to check at run time
5504
5505 else
5506 Activate_Division_Check (N);
5507 end if;
5508 end if;
5509
5510 -- If Restriction No_Implicit_Conditionals is active, then it is
5511 -- violated if either operand can be negative for mod, or for rem
5512 -- if both operands can be negative.
5513
5514 if Restriction_Check_Required (No_Implicit_Conditionals)
5515 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5516 then
5517 declare
5518 Lo : Uint;
5519 Hi : Uint;
5520 OK : Boolean;
5521
5522 LNeg : Boolean;
5523 RNeg : Boolean;
5524 -- Set if corresponding operand might be negative
5525
5526 begin
5527 Determine_Range
5528 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5529 LNeg := (not OK) or else Lo < 0;
5530
5531 Determine_Range
5532 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5533 RNeg := (not OK) or else Lo < 0;
5534
5535 -- Check if we will be generating conditionals. There are two
5536 -- cases where that can happen, first for REM, the only case
5537 -- is largest negative integer mod -1, where the division can
5538 -- overflow, but we still have to give the right result. The
5539 -- front end generates a test for this annoying case. Here we
5540 -- just test if both operands can be negative (that's what the
5541 -- expander does, so we match its logic here).
5542
5543 -- The second case is mod where either operand can be negative.
5544 -- In this case, the back end has to generate additional tests.
5545
5546 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5547 or else
5548 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5549 then
5550 Check_Restriction (No_Implicit_Conditionals, N);
5551 end if;
5552 end;
5553 end if;
5554 end if;
5555
5556 Check_Unset_Reference (L);
5557 Check_Unset_Reference (R);
5558 end Resolve_Arithmetic_Op;
5559
5560 ------------------
5561 -- Resolve_Call --
5562 ------------------
5563
5564 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5565 function Same_Or_Aliased_Subprograms
5566 (S : Entity_Id;
5567 E : Entity_Id) return Boolean;
5568 -- Returns True if the subprogram entity S is the same as E or else
5569 -- S is an alias of E.
5570
5571 ---------------------------------
5572 -- Same_Or_Aliased_Subprograms --
5573 ---------------------------------
5574
5575 function Same_Or_Aliased_Subprograms
5576 (S : Entity_Id;
5577 E : Entity_Id) return Boolean
5578 is
5579 Subp_Alias : constant Entity_Id := Alias (S);
5580 begin
5581 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5582 end Same_Or_Aliased_Subprograms;
5583
5584 -- Local variables
5585
5586 Loc : constant Source_Ptr := Sloc (N);
5587 Subp : constant Node_Id := Name (N);
5588 Body_Id : Entity_Id;
5589 I : Interp_Index;
5590 It : Interp;
5591 Nam : Entity_Id;
5592 Nam_Decl : Node_Id;
5593 Nam_UA : Entity_Id;
5594 Norm_OK : Boolean;
5595 Rtype : Entity_Id;
5596 Scop : Entity_Id;
5597
5598 -- Start of processing for Resolve_Call
5599
5600 begin
5601 -- The context imposes a unique interpretation with type Typ on a
5602 -- procedure or function call. Find the entity of the subprogram that
5603 -- yields the expected type, and propagate the corresponding formal
5604 -- constraints on the actuals. The caller has established that an
5605 -- interpretation exists, and emitted an error if not unique.
5606
5607 -- First deal with the case of a call to an access-to-subprogram,
5608 -- dereference made explicit in Analyze_Call.
5609
5610 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5611 if not Is_Overloaded (Subp) then
5612 Nam := Etype (Subp);
5613
5614 else
5615 -- Find the interpretation whose type (a subprogram type) has a
5616 -- return type that is compatible with the context. Analysis of
5617 -- the node has established that one exists.
5618
5619 Nam := Empty;
5620
5621 Get_First_Interp (Subp, I, It);
5622 while Present (It.Typ) loop
5623 if Covers (Typ, Etype (It.Typ)) then
5624 Nam := It.Typ;
5625 exit;
5626 end if;
5627
5628 Get_Next_Interp (I, It);
5629 end loop;
5630
5631 if No (Nam) then
5632 raise Program_Error;
5633 end if;
5634 end if;
5635
5636 -- If the prefix is not an entity, then resolve it
5637
5638 if not Is_Entity_Name (Subp) then
5639 Resolve (Subp, Nam);
5640 end if;
5641
5642 -- For an indirect call, we always invalidate checks, since we do not
5643 -- know whether the subprogram is local or global. Yes we could do
5644 -- better here, e.g. by knowing that there are no local subprograms,
5645 -- but it does not seem worth the effort. Similarly, we kill all
5646 -- knowledge of current constant values.
5647
5648 Kill_Current_Values;
5649
5650 -- If this is a procedure call which is really an entry call, do
5651 -- the conversion of the procedure call to an entry call. Protected
5652 -- operations use the same circuitry because the name in the call
5653 -- can be an arbitrary expression with special resolution rules.
5654
5655 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5656 or else (Is_Entity_Name (Subp)
5657 and then Ekind (Entity (Subp)) = E_Entry)
5658 then
5659 Resolve_Entry_Call (N, Typ);
5660 Check_Elab_Call (N);
5661
5662 -- Kill checks and constant values, as above for indirect case
5663 -- Who knows what happens when another task is activated?
5664
5665 Kill_Current_Values;
5666 return;
5667
5668 -- Normal subprogram call with name established in Resolve
5669
5670 elsif not (Is_Type (Entity (Subp))) then
5671 Nam := Entity (Subp);
5672 Set_Entity_With_Checks (Subp, Nam);
5673
5674 -- Otherwise we must have the case of an overloaded call
5675
5676 else
5677 pragma Assert (Is_Overloaded (Subp));
5678
5679 -- Initialize Nam to prevent warning (we know it will be assigned
5680 -- in the loop below, but the compiler does not know that).
5681
5682 Nam := Empty;
5683
5684 Get_First_Interp (Subp, I, It);
5685 while Present (It.Typ) loop
5686 if Covers (Typ, It.Typ) then
5687 Nam := It.Nam;
5688 Set_Entity_With_Checks (Subp, Nam);
5689 exit;
5690 end if;
5691
5692 Get_Next_Interp (I, It);
5693 end loop;
5694 end if;
5695
5696 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5697 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5698 and then Nkind (Subp) /= N_Explicit_Dereference
5699 and then Present (Parameter_Associations (N))
5700 then
5701 -- The prefix is a parameterless function call that returns an access
5702 -- to subprogram. If parameters are present in the current call, add
5703 -- add an explicit dereference. We use the base type here because
5704 -- within an instance these may be subtypes.
5705
5706 -- The dereference is added either in Analyze_Call or here. Should
5707 -- be consolidated ???
5708
5709 Set_Is_Overloaded (Subp, False);
5710 Set_Etype (Subp, Etype (Nam));
5711 Insert_Explicit_Dereference (Subp);
5712 Nam := Designated_Type (Etype (Nam));
5713 Resolve (Subp, Nam);
5714 end if;
5715
5716 -- Check that a call to Current_Task does not occur in an entry body
5717
5718 if Is_RTE (Nam, RE_Current_Task) then
5719 declare
5720 P : Node_Id;
5721
5722 begin
5723 P := N;
5724 loop
5725 P := Parent (P);
5726
5727 -- Exclude calls that occur within the default of a formal
5728 -- parameter of the entry, since those are evaluated outside
5729 -- of the body.
5730
5731 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5732
5733 if Nkind (P) = N_Entry_Body
5734 or else (Nkind (P) = N_Subprogram_Body
5735 and then Is_Entry_Barrier_Function (P))
5736 then
5737 Rtype := Etype (N);
5738 Error_Msg_Warn := SPARK_Mode /= On;
5739 Error_Msg_NE
5740 ("& should not be used in entry body (RM C.7(17))<<",
5741 N, Nam);
5742 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5743 Rewrite (N,
5744 Make_Raise_Program_Error (Loc,
5745 Reason => PE_Current_Task_In_Entry_Body));
5746 Set_Etype (N, Rtype);
5747 return;
5748 end if;
5749 end loop;
5750 end;
5751 end if;
5752
5753 -- Check that a procedure call does not occur in the context of the
5754 -- entry call statement of a conditional or timed entry call. Note that
5755 -- the case of a call to a subprogram renaming of an entry will also be
5756 -- rejected. The test for N not being an N_Entry_Call_Statement is
5757 -- defensive, covering the possibility that the processing of entry
5758 -- calls might reach this point due to later modifications of the code
5759 -- above.
5760
5761 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5762 and then Nkind (N) /= N_Entry_Call_Statement
5763 and then Entry_Call_Statement (Parent (N)) = N
5764 then
5765 if Ada_Version < Ada_2005 then
5766 Error_Msg_N ("entry call required in select statement", N);
5767
5768 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5769 -- for a procedure_or_entry_call, the procedure_name or
5770 -- procedure_prefix of the procedure_call_statement shall denote
5771 -- an entry renamed by a procedure, or (a view of) a primitive
5772 -- subprogram of a limited interface whose first parameter is
5773 -- a controlling parameter.
5774
5775 elsif Nkind (N) = N_Procedure_Call_Statement
5776 and then not Is_Renamed_Entry (Nam)
5777 and then not Is_Controlling_Limited_Procedure (Nam)
5778 then
5779 Error_Msg_N
5780 ("entry call or dispatching primitive of interface required", N);
5781 end if;
5782 end if;
5783
5784 -- If the SPARK_05 restriction is active, we are not allowed
5785 -- to have a call to a subprogram before we see its completion.
5786
5787 if not Has_Completion (Nam)
5788 and then Restriction_Check_Required (SPARK_05)
5789
5790 -- Don't flag strange internal calls
5791
5792 and then Comes_From_Source (N)
5793 and then Comes_From_Source (Nam)
5794
5795 -- Only flag calls in extended main source
5796
5797 and then In_Extended_Main_Source_Unit (Nam)
5798 and then In_Extended_Main_Source_Unit (N)
5799
5800 -- Exclude enumeration literals from this processing
5801
5802 and then Ekind (Nam) /= E_Enumeration_Literal
5803 then
5804 Check_SPARK_05_Restriction
5805 ("call to subprogram cannot appear before its body", N);
5806 end if;
5807
5808 -- Check that this is not a call to a protected procedure or entry from
5809 -- within a protected function.
5810
5811 Check_Internal_Protected_Use (N, Nam);
5812
5813 -- Freeze the subprogram name if not in a spec-expression. Note that
5814 -- we freeze procedure calls as well as function calls. Procedure calls
5815 -- are not frozen according to the rules (RM 13.14(14)) because it is
5816 -- impossible to have a procedure call to a non-frozen procedure in
5817 -- pure Ada, but in the code that we generate in the expander, this
5818 -- rule needs extending because we can generate procedure calls that
5819 -- need freezing.
5820
5821 -- In Ada 2012, expression functions may be called within pre/post
5822 -- conditions of subsequent functions or expression functions. Such
5823 -- calls do not freeze when they appear within generated bodies,
5824 -- (including the body of another expression function) which would
5825 -- place the freeze node in the wrong scope. An expression function
5826 -- is frozen in the usual fashion, by the appearance of a real body,
5827 -- or at the end of a declarative part.
5828
5829 if Is_Entity_Name (Subp)
5830 and then not In_Spec_Expression
5831 and then not Is_Expression_Function_Or_Completion (Current_Scope)
5832 and then
5833 (not Is_Expression_Function_Or_Completion (Entity (Subp))
5834 or else Scope (Entity (Subp)) = Current_Scope)
5835 then
5836 Freeze_Expression (Subp);
5837 end if;
5838
5839 -- For a predefined operator, the type of the result is the type imposed
5840 -- by context, except for a predefined operation on universal fixed.
5841 -- Otherwise The type of the call is the type returned by the subprogram
5842 -- being called.
5843
5844 if Is_Predefined_Op (Nam) then
5845 if Etype (N) /= Universal_Fixed then
5846 Set_Etype (N, Typ);
5847 end if;
5848
5849 -- If the subprogram returns an array type, and the context requires the
5850 -- component type of that array type, the node is really an indexing of
5851 -- the parameterless call. Resolve as such. A pathological case occurs
5852 -- when the type of the component is an access to the array type. In
5853 -- this case the call is truly ambiguous.
5854
5855 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5856 and then
5857 ((Is_Array_Type (Etype (Nam))
5858 and then Covers (Typ, Component_Type (Etype (Nam))))
5859 or else
5860 (Is_Access_Type (Etype (Nam))
5861 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5862 and then
5863 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
5864 then
5865 declare
5866 Index_Node : Node_Id;
5867 New_Subp : Node_Id;
5868 Ret_Type : constant Entity_Id := Etype (Nam);
5869
5870 begin
5871 if Is_Access_Type (Ret_Type)
5872 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5873 then
5874 Error_Msg_N
5875 ("cannot disambiguate function call and indexing", N);
5876 else
5877 New_Subp := Relocate_Node (Subp);
5878
5879 -- The called entity may be an explicit dereference, in which
5880 -- case there is no entity to set.
5881
5882 if Nkind (New_Subp) /= N_Explicit_Dereference then
5883 Set_Entity (Subp, Nam);
5884 end if;
5885
5886 if (Is_Array_Type (Ret_Type)
5887 and then Component_Type (Ret_Type) /= Any_Type)
5888 or else
5889 (Is_Access_Type (Ret_Type)
5890 and then
5891 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5892 then
5893 if Needs_No_Actuals (Nam) then
5894
5895 -- Indexed call to a parameterless function
5896
5897 Index_Node :=
5898 Make_Indexed_Component (Loc,
5899 Prefix =>
5900 Make_Function_Call (Loc, Name => New_Subp),
5901 Expressions => Parameter_Associations (N));
5902 else
5903 -- An Ada 2005 prefixed call to a primitive operation
5904 -- whose first parameter is the prefix. This prefix was
5905 -- prepended to the parameter list, which is actually a
5906 -- list of indexes. Remove the prefix in order to build
5907 -- the proper indexed component.
5908
5909 Index_Node :=
5910 Make_Indexed_Component (Loc,
5911 Prefix =>
5912 Make_Function_Call (Loc,
5913 Name => New_Subp,
5914 Parameter_Associations =>
5915 New_List
5916 (Remove_Head (Parameter_Associations (N)))),
5917 Expressions => Parameter_Associations (N));
5918 end if;
5919
5920 -- Preserve the parenthesis count of the node
5921
5922 Set_Paren_Count (Index_Node, Paren_Count (N));
5923
5924 -- Since we are correcting a node classification error made
5925 -- by the parser, we call Replace rather than Rewrite.
5926
5927 Replace (N, Index_Node);
5928
5929 Set_Etype (Prefix (N), Ret_Type);
5930 Set_Etype (N, Typ);
5931 Resolve_Indexed_Component (N, Typ);
5932 Check_Elab_Call (Prefix (N));
5933 end if;
5934 end if;
5935
5936 return;
5937 end;
5938
5939 else
5940 Set_Etype (N, Etype (Nam));
5941 end if;
5942
5943 -- In the case where the call is to an overloaded subprogram, Analyze
5944 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5945 -- such a case Normalize_Actuals needs to be called once more to order
5946 -- the actuals correctly. Otherwise the call will have the ordering
5947 -- given by the last overloaded subprogram whether this is the correct
5948 -- one being called or not.
5949
5950 if Is_Overloaded (Subp) then
5951 Normalize_Actuals (N, Nam, False, Norm_OK);
5952 pragma Assert (Norm_OK);
5953 end if;
5954
5955 -- In any case, call is fully resolved now. Reset Overload flag, to
5956 -- prevent subsequent overload resolution if node is analyzed again
5957
5958 Set_Is_Overloaded (Subp, False);
5959 Set_Is_Overloaded (N, False);
5960
5961 -- A Ghost entity must appear in a specific context
5962
5963 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
5964 Check_Ghost_Context (Nam, N);
5965 end if;
5966
5967 -- If we are calling the current subprogram from immediately within its
5968 -- body, then that is the case where we can sometimes detect cases of
5969 -- infinite recursion statically. Do not try this in case restriction
5970 -- No_Recursion is in effect anyway, and do it only for source calls.
5971
5972 if Comes_From_Source (N) then
5973 Scop := Current_Scope;
5974
5975 -- Check violation of SPARK_05 restriction which does not permit
5976 -- a subprogram body to contain a call to the subprogram directly.
5977
5978 if Restriction_Check_Required (SPARK_05)
5979 and then Same_Or_Aliased_Subprograms (Nam, Scop)
5980 then
5981 Check_SPARK_05_Restriction
5982 ("subprogram may not contain direct call to itself", N);
5983 end if;
5984
5985 -- Issue warning for possible infinite recursion in the absence
5986 -- of the No_Recursion restriction.
5987
5988 if Same_Or_Aliased_Subprograms (Nam, Scop)
5989 and then not Restriction_Active (No_Recursion)
5990 and then Check_Infinite_Recursion (N)
5991 then
5992 -- Here we detected and flagged an infinite recursion, so we do
5993 -- not need to test the case below for further warnings. Also we
5994 -- are all done if we now have a raise SE node.
5995
5996 if Nkind (N) = N_Raise_Storage_Error then
5997 return;
5998 end if;
5999
6000 -- If call is to immediately containing subprogram, then check for
6001 -- the case of a possible run-time detectable infinite recursion.
6002
6003 else
6004 Scope_Loop : while Scop /= Standard_Standard loop
6005 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6006
6007 -- Although in general case, recursion is not statically
6008 -- checkable, the case of calling an immediately containing
6009 -- subprogram is easy to catch.
6010
6011 Check_Restriction (No_Recursion, N);
6012
6013 -- If the recursive call is to a parameterless subprogram,
6014 -- then even if we can't statically detect infinite
6015 -- recursion, this is pretty suspicious, and we output a
6016 -- warning. Furthermore, we will try later to detect some
6017 -- cases here at run time by expanding checking code (see
6018 -- Detect_Infinite_Recursion in package Exp_Ch6).
6019
6020 -- If the recursive call is within a handler, do not emit a
6021 -- warning, because this is a common idiom: loop until input
6022 -- is correct, catch illegal input in handler and restart.
6023
6024 if No (First_Formal (Nam))
6025 and then Etype (Nam) = Standard_Void_Type
6026 and then not Error_Posted (N)
6027 and then Nkind (Parent (N)) /= N_Exception_Handler
6028 then
6029 -- For the case of a procedure call. We give the message
6030 -- only if the call is the first statement in a sequence
6031 -- of statements, or if all previous statements are
6032 -- simple assignments. This is simply a heuristic to
6033 -- decrease false positives, without losing too many good
6034 -- warnings. The idea is that these previous statements
6035 -- may affect global variables the procedure depends on.
6036 -- We also exclude raise statements, that may arise from
6037 -- constraint checks and are probably unrelated to the
6038 -- intended control flow.
6039
6040 if Nkind (N) = N_Procedure_Call_Statement
6041 and then Is_List_Member (N)
6042 then
6043 declare
6044 P : Node_Id;
6045 begin
6046 P := Prev (N);
6047 while Present (P) loop
6048 if not Nkind_In (P, N_Assignment_Statement,
6049 N_Raise_Constraint_Error)
6050 then
6051 exit Scope_Loop;
6052 end if;
6053
6054 Prev (P);
6055 end loop;
6056 end;
6057 end if;
6058
6059 -- Do not give warning if we are in a conditional context
6060
6061 declare
6062 K : constant Node_Kind := Nkind (Parent (N));
6063 begin
6064 if (K = N_Loop_Statement
6065 and then Present (Iteration_Scheme (Parent (N))))
6066 or else K = N_If_Statement
6067 or else K = N_Elsif_Part
6068 or else K = N_Case_Statement_Alternative
6069 then
6070 exit Scope_Loop;
6071 end if;
6072 end;
6073
6074 -- Here warning is to be issued
6075
6076 Set_Has_Recursive_Call (Nam);
6077 Error_Msg_Warn := SPARK_Mode /= On;
6078 Error_Msg_N ("possible infinite recursion<<!", N);
6079 Error_Msg_N ("\Storage_Error ]<<!", N);
6080 end if;
6081
6082 exit Scope_Loop;
6083 end if;
6084
6085 Scop := Scope (Scop);
6086 end loop Scope_Loop;
6087 end if;
6088 end if;
6089
6090 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6091
6092 Check_Obsolescent_2005_Entity (Nam, Subp);
6093
6094 -- If subprogram name is a predefined operator, it was given in
6095 -- functional notation. Replace call node with operator node, so
6096 -- that actuals can be resolved appropriately.
6097
6098 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6099 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6100 return;
6101
6102 elsif Present (Alias (Nam))
6103 and then Is_Predefined_Op (Alias (Nam))
6104 then
6105 Resolve_Actuals (N, Nam);
6106 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6107 return;
6108 end if;
6109
6110 -- Create a transient scope if the resulting type requires it
6111
6112 -- There are several notable exceptions:
6113
6114 -- a) In init procs, the transient scope overhead is not needed, and is
6115 -- even incorrect when the call is a nested initialization call for a
6116 -- component whose expansion may generate adjust calls. However, if the
6117 -- call is some other procedure call within an initialization procedure
6118 -- (for example a call to Create_Task in the init_proc of the task
6119 -- run-time record) a transient scope must be created around this call.
6120
6121 -- b) Enumeration literal pseudo-calls need no transient scope
6122
6123 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6124 -- functions) do not use the secondary stack even though the return
6125 -- type may be unconstrained.
6126
6127 -- d) Calls to a build-in-place function, since such functions may
6128 -- allocate their result directly in a target object, and cases where
6129 -- the result does get allocated in the secondary stack are checked for
6130 -- within the specialized Exp_Ch6 procedures for expanding those
6131 -- build-in-place calls.
6132
6133 -- e) If the subprogram is marked Inline_Always, then even if it returns
6134 -- an unconstrained type the call does not require use of the secondary
6135 -- stack. However, inlining will only take place if the body to inline
6136 -- is already present. It may not be available if e.g. the subprogram is
6137 -- declared in a child instance.
6138
6139 -- If this is an initialization call for a type whose construction
6140 -- uses the secondary stack, and it is not a nested call to initialize
6141 -- a component, we do need to create a transient scope for it. We
6142 -- check for this by traversing the type in Check_Initialization_Call.
6143
6144 if Is_Inlined (Nam)
6145 and then Has_Pragma_Inline (Nam)
6146 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6147 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6148 then
6149 null;
6150
6151 elsif Ekind (Nam) = E_Enumeration_Literal
6152 or else Is_Build_In_Place_Function (Nam)
6153 or else Is_Intrinsic_Subprogram (Nam)
6154 then
6155 null;
6156
6157 elsif Expander_Active
6158 and then Is_Type (Etype (Nam))
6159 and then Requires_Transient_Scope (Etype (Nam))
6160 and then
6161 (not Within_Init_Proc
6162 or else
6163 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6164 then
6165 Establish_Transient_Scope (N, Sec_Stack => True);
6166
6167 -- If the call appears within the bounds of a loop, it will
6168 -- be rewritten and reanalyzed, nothing left to do here.
6169
6170 if Nkind (N) /= N_Function_Call then
6171 return;
6172 end if;
6173
6174 elsif Is_Init_Proc (Nam)
6175 and then not Within_Init_Proc
6176 then
6177 Check_Initialization_Call (N, Nam);
6178 end if;
6179
6180 -- A protected function cannot be called within the definition of the
6181 -- enclosing protected type, unless it is part of a pre/postcondition
6182 -- on another protected operation.
6183
6184 if Is_Protected_Type (Scope (Nam))
6185 and then In_Open_Scopes (Scope (Nam))
6186 and then not Has_Completion (Scope (Nam))
6187 and then not In_Spec_Expression
6188 then
6189 Error_Msg_NE
6190 ("& cannot be called before end of protected definition", N, Nam);
6191 end if;
6192
6193 -- Propagate interpretation to actuals, and add default expressions
6194 -- where needed.
6195
6196 if Present (First_Formal (Nam)) then
6197 Resolve_Actuals (N, Nam);
6198
6199 -- Overloaded literals are rewritten as function calls, for purpose of
6200 -- resolution. After resolution, we can replace the call with the
6201 -- literal itself.
6202
6203 elsif Ekind (Nam) = E_Enumeration_Literal then
6204 Copy_Node (Subp, N);
6205 Resolve_Entity_Name (N, Typ);
6206
6207 -- Avoid validation, since it is a static function call
6208
6209 Generate_Reference (Nam, Subp);
6210 return;
6211 end if;
6212
6213 -- If the subprogram is not global, then kill all saved values and
6214 -- checks. This is a bit conservative, since in many cases we could do
6215 -- better, but it is not worth the effort. Similarly, we kill constant
6216 -- values. However we do not need to do this for internal entities
6217 -- (unless they are inherited user-defined subprograms), since they
6218 -- are not in the business of molesting local values.
6219
6220 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6221 -- kill all checks and values for calls to global subprograms. This
6222 -- takes care of the case where an access to a local subprogram is
6223 -- taken, and could be passed directly or indirectly and then called
6224 -- from almost any context.
6225
6226 -- Note: we do not do this step till after resolving the actuals. That
6227 -- way we still take advantage of the current value information while
6228 -- scanning the actuals.
6229
6230 -- We suppress killing values if we are processing the nodes associated
6231 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6232 -- type kills all the values as part of analyzing the code that
6233 -- initializes the dispatch tables.
6234
6235 if Inside_Freezing_Actions = 0
6236 and then (not Is_Library_Level_Entity (Nam)
6237 or else Suppress_Value_Tracking_On_Call
6238 (Nearest_Dynamic_Scope (Current_Scope)))
6239 and then (Comes_From_Source (Nam)
6240 or else (Present (Alias (Nam))
6241 and then Comes_From_Source (Alias (Nam))))
6242 then
6243 Kill_Current_Values;
6244 end if;
6245
6246 -- If we are warning about unread OUT parameters, this is the place to
6247 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6248 -- after the above call to Kill_Current_Values (since that call clears
6249 -- the Last_Assignment field of all local variables).
6250
6251 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6252 and then Comes_From_Source (N)
6253 and then In_Extended_Main_Source_Unit (N)
6254 then
6255 declare
6256 F : Entity_Id;
6257 A : Node_Id;
6258
6259 begin
6260 F := First_Formal (Nam);
6261 A := First_Actual (N);
6262 while Present (F) and then Present (A) loop
6263 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6264 and then Warn_On_Modified_As_Out_Parameter (F)
6265 and then Is_Entity_Name (A)
6266 and then Present (Entity (A))
6267 and then Comes_From_Source (N)
6268 and then Safe_To_Capture_Value (N, Entity (A))
6269 then
6270 Set_Last_Assignment (Entity (A), A);
6271 end if;
6272
6273 Next_Formal (F);
6274 Next_Actual (A);
6275 end loop;
6276 end;
6277 end if;
6278
6279 -- If the subprogram is a primitive operation, check whether or not
6280 -- it is a correct dispatching call.
6281
6282 if Is_Overloadable (Nam)
6283 and then Is_Dispatching_Operation (Nam)
6284 then
6285 Check_Dispatching_Call (N);
6286
6287 elsif Ekind (Nam) /= E_Subprogram_Type
6288 and then Is_Abstract_Subprogram (Nam)
6289 and then not In_Instance
6290 then
6291 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6292 end if;
6293
6294 -- If this is a dispatching call, generate the appropriate reference,
6295 -- for better source navigation in GPS.
6296
6297 if Is_Overloadable (Nam)
6298 and then Present (Controlling_Argument (N))
6299 then
6300 Generate_Reference (Nam, Subp, 'R');
6301
6302 -- Normal case, not a dispatching call: generate a call reference
6303
6304 else
6305 Generate_Reference (Nam, Subp, 's');
6306 end if;
6307
6308 if Is_Intrinsic_Subprogram (Nam) then
6309 Check_Intrinsic_Call (N);
6310 end if;
6311
6312 -- Check for violation of restriction No_Specific_Termination_Handlers
6313 -- and warn on a potentially blocking call to Abort_Task.
6314
6315 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6316 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6317 or else
6318 Is_RTE (Nam, RE_Specific_Handler))
6319 then
6320 Check_Restriction (No_Specific_Termination_Handlers, N);
6321
6322 elsif Is_RTE (Nam, RE_Abort_Task) then
6323 Check_Potentially_Blocking_Operation (N);
6324 end if;
6325
6326 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6327 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6328 -- need to check the second argument to determine whether it is an
6329 -- absolute or relative timing event.
6330
6331 if Restriction_Check_Required (No_Relative_Delay)
6332 and then Is_RTE (Nam, RE_Set_Handler)
6333 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6334 then
6335 Check_Restriction (No_Relative_Delay, N);
6336 end if;
6337
6338 -- Issue an error for a call to an eliminated subprogram. This routine
6339 -- will not perform the check if the call appears within a default
6340 -- expression.
6341
6342 Check_For_Eliminated_Subprogram (Subp, Nam);
6343
6344 -- In formal mode, the primitive operations of a tagged type or type
6345 -- extension do not include functions that return the tagged type.
6346
6347 if Nkind (N) = N_Function_Call
6348 and then Is_Tagged_Type (Etype (N))
6349 and then Is_Entity_Name (Name (N))
6350 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6351 then
6352 Check_SPARK_05_Restriction ("function not inherited", N);
6353 end if;
6354
6355 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6356 -- class-wide and the call dispatches on result in a context that does
6357 -- not provide a tag, the call raises Program_Error.
6358
6359 if Nkind (N) = N_Function_Call
6360 and then In_Instance
6361 and then Is_Generic_Actual_Type (Typ)
6362 and then Is_Class_Wide_Type (Typ)
6363 and then Has_Controlling_Result (Nam)
6364 and then Nkind (Parent (N)) = N_Object_Declaration
6365 then
6366 -- Verify that none of the formals are controlling
6367
6368 declare
6369 Call_OK : Boolean := False;
6370 F : Entity_Id;
6371
6372 begin
6373 F := First_Formal (Nam);
6374 while Present (F) loop
6375 if Is_Controlling_Formal (F) then
6376 Call_OK := True;
6377 exit;
6378 end if;
6379
6380 Next_Formal (F);
6381 end loop;
6382
6383 if not Call_OK then
6384 Error_Msg_Warn := SPARK_Mode /= On;
6385 Error_Msg_N ("!cannot determine tag of result<<", N);
6386 Error_Msg_N ("\Program_Error [<<!", N);
6387 Insert_Action (N,
6388 Make_Raise_Program_Error (Sloc (N),
6389 Reason => PE_Explicit_Raise));
6390 end if;
6391 end;
6392 end if;
6393
6394 -- Check for calling a function with OUT or IN OUT parameter when the
6395 -- calling context (us right now) is not Ada 2012, so does not allow
6396 -- OUT or IN OUT parameters in function calls. Functions declared in
6397 -- a predefined unit are OK, as they may be called indirectly from a
6398 -- user-declared instantiation.
6399
6400 if Ada_Version < Ada_2012
6401 and then Ekind (Nam) = E_Function
6402 and then Has_Out_Or_In_Out_Parameter (Nam)
6403 and then not In_Predefined_Unit (Nam)
6404 then
6405 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6406 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6407 end if;
6408
6409 -- Check the dimensions of the actuals in the call. For function calls,
6410 -- propagate the dimensions from the returned type to N.
6411
6412 Analyze_Dimension_Call (N, Nam);
6413
6414 -- All done, evaluate call and deal with elaboration issues
6415
6416 Eval_Call (N);
6417 Check_Elab_Call (N);
6418
6419 -- In GNATprove mode, expansion is disabled, but we want to inline some
6420 -- subprograms to facilitate formal verification. Indirect calls through
6421 -- a subprogram type or within a generic cannot be inlined. Inlining is
6422 -- performed only for calls subject to SPARK_Mode on.
6423
6424 if GNATprove_Mode
6425 and then SPARK_Mode = On
6426 and then Is_Overloadable (Nam)
6427 and then not Inside_A_Generic
6428 then
6429 Nam_UA := Ultimate_Alias (Nam);
6430 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6431
6432 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6433 Body_Id := Corresponding_Body (Nam_Decl);
6434
6435 -- Nothing to do if the subprogram is not eligible for inlining in
6436 -- GNATprove mode.
6437
6438 if not Is_Inlined_Always (Nam_UA)
6439 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6440 then
6441 null;
6442
6443 -- Calls cannot be inlined inside assertions, as GNATprove treats
6444 -- assertions as logic expressions.
6445
6446 elsif In_Assertion_Expr /= 0 then
6447 Cannot_Inline
6448 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6449
6450 -- Calls cannot be inlined inside default expressions
6451
6452 elsif In_Default_Expr then
6453 Cannot_Inline
6454 ("cannot inline & (in default expression)?", N, Nam_UA);
6455
6456 -- Inlining should not be performed during pre-analysis
6457
6458 elsif Full_Analysis then
6459
6460 -- With the one-pass inlining technique, a call cannot be
6461 -- inlined if the corresponding body has not been seen yet.
6462
6463 if No (Body_Id) then
6464 Cannot_Inline
6465 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6466
6467 -- Nothing to do if there is no body to inline, indicating that
6468 -- the subprogram is not suitable for inlining in GNATprove
6469 -- mode.
6470
6471 elsif No (Body_To_Inline (Nam_Decl)) then
6472 null;
6473
6474 -- Do not inline calls inside expression functions, as this
6475 -- would prevent interpreting them as logical formulas in
6476 -- GNATprove.
6477
6478 elsif Present (Current_Subprogram)
6479 and then
6480 Is_Expression_Function_Or_Completion (Current_Subprogram)
6481 then
6482 Cannot_Inline
6483 ("cannot inline & (inside expression function)?",
6484 N, Nam_UA);
6485
6486 -- Calls cannot be inlined inside potentially unevaluated
6487 -- expressions, as this would create complex actions inside
6488 -- expressions, that are not handled by GNATprove.
6489
6490 elsif Is_Potentially_Unevaluated (N) then
6491 Cannot_Inline
6492 ("cannot inline & (in potentially unevaluated context)?",
6493 N, Nam_UA);
6494
6495 -- Otherwise, inline the call
6496
6497 else
6498 Expand_Inlined_Call (N, Nam_UA, Nam);
6499 end if;
6500 end if;
6501 end if;
6502 end if;
6503
6504 Warn_On_Overlapping_Actuals (Nam, N);
6505 end Resolve_Call;
6506
6507 -----------------------------
6508 -- Resolve_Case_Expression --
6509 -----------------------------
6510
6511 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6512 Alt : Node_Id;
6513 Alt_Expr : Node_Id;
6514 Alt_Typ : Entity_Id;
6515 Is_Dyn : Boolean;
6516
6517 begin
6518 Alt := First (Alternatives (N));
6519 while Present (Alt) loop
6520 Alt_Expr := Expression (Alt);
6521 Resolve (Alt_Expr, Typ);
6522 Alt_Typ := Etype (Alt_Expr);
6523
6524 -- When the expression is of a scalar subtype different from the
6525 -- result subtype, then insert a conversion to ensure the generation
6526 -- of a constraint check.
6527
6528 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6529 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6530 Analyze_And_Resolve (Alt_Expr, Typ);
6531 end if;
6532
6533 Next (Alt);
6534 end loop;
6535
6536 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6537 -- dynamically tagged must be known statically.
6538
6539 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6540 Alt := First (Alternatives (N));
6541 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6542
6543 while Present (Alt) loop
6544 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6545 Error_Msg_N
6546 ("all or none of the dependent expressions can be "
6547 & "dynamically tagged", N);
6548 end if;
6549
6550 Next (Alt);
6551 end loop;
6552 end if;
6553
6554 Set_Etype (N, Typ);
6555 Eval_Case_Expression (N);
6556 end Resolve_Case_Expression;
6557
6558 -------------------------------
6559 -- Resolve_Character_Literal --
6560 -------------------------------
6561
6562 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6563 B_Typ : constant Entity_Id := Base_Type (Typ);
6564 C : Entity_Id;
6565
6566 begin
6567 -- Verify that the character does belong to the type of the context
6568
6569 Set_Etype (N, B_Typ);
6570 Eval_Character_Literal (N);
6571
6572 -- Wide_Wide_Character literals must always be defined, since the set
6573 -- of wide wide character literals is complete, i.e. if a character
6574 -- literal is accepted by the parser, then it is OK for wide wide
6575 -- character (out of range character literals are rejected).
6576
6577 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6578 return;
6579
6580 -- Always accept character literal for type Any_Character, which
6581 -- occurs in error situations and in comparisons of literals, both
6582 -- of which should accept all literals.
6583
6584 elsif B_Typ = Any_Character then
6585 return;
6586
6587 -- For Standard.Character or a type derived from it, check that the
6588 -- literal is in range.
6589
6590 elsif Root_Type (B_Typ) = Standard_Character then
6591 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6592 return;
6593 end if;
6594
6595 -- For Standard.Wide_Character or a type derived from it, check that the
6596 -- literal is in range.
6597
6598 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6599 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6600 return;
6601 end if;
6602
6603 -- For Standard.Wide_Wide_Character or a type derived from it, we
6604 -- know the literal is in range, since the parser checked.
6605
6606 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6607 return;
6608
6609 -- If the entity is already set, this has already been resolved in a
6610 -- generic context, or comes from expansion. Nothing else to do.
6611
6612 elsif Present (Entity (N)) then
6613 return;
6614
6615 -- Otherwise we have a user defined character type, and we can use the
6616 -- standard visibility mechanisms to locate the referenced entity.
6617
6618 else
6619 C := Current_Entity (N);
6620 while Present (C) loop
6621 if Etype (C) = B_Typ then
6622 Set_Entity_With_Checks (N, C);
6623 Generate_Reference (C, N);
6624 return;
6625 end if;
6626
6627 C := Homonym (C);
6628 end loop;
6629 end if;
6630
6631 -- If we fall through, then the literal does not match any of the
6632 -- entries of the enumeration type. This isn't just a constraint error
6633 -- situation, it is an illegality (see RM 4.2).
6634
6635 Error_Msg_NE
6636 ("character not defined for }", N, First_Subtype (B_Typ));
6637 end Resolve_Character_Literal;
6638
6639 ---------------------------
6640 -- Resolve_Comparison_Op --
6641 ---------------------------
6642
6643 -- Context requires a boolean type, and plays no role in resolution.
6644 -- Processing identical to that for equality operators. The result type is
6645 -- the base type, which matters when pathological subtypes of booleans with
6646 -- limited ranges are used.
6647
6648 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6649 L : constant Node_Id := Left_Opnd (N);
6650 R : constant Node_Id := Right_Opnd (N);
6651 T : Entity_Id;
6652
6653 begin
6654 -- If this is an intrinsic operation which is not predefined, use the
6655 -- types of its declared arguments to resolve the possibly overloaded
6656 -- operands. Otherwise the operands are unambiguous and specify the
6657 -- expected type.
6658
6659 if Scope (Entity (N)) /= Standard_Standard then
6660 T := Etype (First_Entity (Entity (N)));
6661
6662 else
6663 T := Find_Unique_Type (L, R);
6664
6665 if T = Any_Fixed then
6666 T := Unique_Fixed_Point_Type (L);
6667 end if;
6668 end if;
6669
6670 Set_Etype (N, Base_Type (Typ));
6671 Generate_Reference (T, N, ' ');
6672
6673 -- Skip remaining processing if already set to Any_Type
6674
6675 if T = Any_Type then
6676 return;
6677 end if;
6678
6679 -- Deal with other error cases
6680
6681 if T = Any_String or else
6682 T = Any_Composite or else
6683 T = Any_Character
6684 then
6685 if T = Any_Character then
6686 Ambiguous_Character (L);
6687 else
6688 Error_Msg_N ("ambiguous operands for comparison", N);
6689 end if;
6690
6691 Set_Etype (N, Any_Type);
6692 return;
6693 end if;
6694
6695 -- Resolve the operands if types OK
6696
6697 Resolve (L, T);
6698 Resolve (R, T);
6699 Check_Unset_Reference (L);
6700 Check_Unset_Reference (R);
6701 Generate_Operator_Reference (N, T);
6702 Check_Low_Bound_Tested (N);
6703
6704 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6705 -- types or array types except String.
6706
6707 if Is_Boolean_Type (T) then
6708 Check_SPARK_05_Restriction
6709 ("comparison is not defined on Boolean type", N);
6710
6711 elsif Is_Array_Type (T)
6712 and then Base_Type (T) /= Standard_String
6713 then
6714 Check_SPARK_05_Restriction
6715 ("comparison is not defined on array types other than String", N);
6716 end if;
6717
6718 -- Check comparison on unordered enumeration
6719
6720 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6721 Error_Msg_Sloc := Sloc (Etype (L));
6722 Error_Msg_NE
6723 ("comparison on unordered enumeration type& declared#?U?",
6724 N, Etype (L));
6725 end if;
6726
6727 -- Evaluate the relation (note we do this after the above check since
6728 -- this Eval call may change N to True/False.
6729
6730 Analyze_Dimension (N);
6731 Eval_Relational_Op (N);
6732 end Resolve_Comparison_Op;
6733
6734 -----------------------------------------
6735 -- Resolve_Discrete_Subtype_Indication --
6736 -----------------------------------------
6737
6738 procedure Resolve_Discrete_Subtype_Indication
6739 (N : Node_Id;
6740 Typ : Entity_Id)
6741 is
6742 R : Node_Id;
6743 S : Entity_Id;
6744
6745 begin
6746 Analyze (Subtype_Mark (N));
6747 S := Entity (Subtype_Mark (N));
6748
6749 if Nkind (Constraint (N)) /= N_Range_Constraint then
6750 Error_Msg_N ("expect range constraint for discrete type", N);
6751 Set_Etype (N, Any_Type);
6752
6753 else
6754 R := Range_Expression (Constraint (N));
6755
6756 if R = Error then
6757 return;
6758 end if;
6759
6760 Analyze (R);
6761
6762 if Base_Type (S) /= Base_Type (Typ) then
6763 Error_Msg_NE
6764 ("expect subtype of }", N, First_Subtype (Typ));
6765
6766 -- Rewrite the constraint as a range of Typ
6767 -- to allow compilation to proceed further.
6768
6769 Set_Etype (N, Typ);
6770 Rewrite (Low_Bound (R),
6771 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6772 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6773 Attribute_Name => Name_First));
6774 Rewrite (High_Bound (R),
6775 Make_Attribute_Reference (Sloc (High_Bound (R)),
6776 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6777 Attribute_Name => Name_First));
6778
6779 else
6780 Resolve (R, Typ);
6781 Set_Etype (N, Etype (R));
6782
6783 -- Additionally, we must check that the bounds are compatible
6784 -- with the given subtype, which might be different from the
6785 -- type of the context.
6786
6787 Apply_Range_Check (R, S);
6788
6789 -- ??? If the above check statically detects a Constraint_Error
6790 -- it replaces the offending bound(s) of the range R with a
6791 -- Constraint_Error node. When the itype which uses these bounds
6792 -- is frozen the resulting call to Duplicate_Subexpr generates
6793 -- a new temporary for the bounds.
6794
6795 -- Unfortunately there are other itypes that are also made depend
6796 -- on these bounds, so when Duplicate_Subexpr is called they get
6797 -- a forward reference to the newly created temporaries and Gigi
6798 -- aborts on such forward references. This is probably sign of a
6799 -- more fundamental problem somewhere else in either the order of
6800 -- itype freezing or the way certain itypes are constructed.
6801
6802 -- To get around this problem we call Remove_Side_Effects right
6803 -- away if either bounds of R are a Constraint_Error.
6804
6805 declare
6806 L : constant Node_Id := Low_Bound (R);
6807 H : constant Node_Id := High_Bound (R);
6808
6809 begin
6810 if Nkind (L) = N_Raise_Constraint_Error then
6811 Remove_Side_Effects (L);
6812 end if;
6813
6814 if Nkind (H) = N_Raise_Constraint_Error then
6815 Remove_Side_Effects (H);
6816 end if;
6817 end;
6818
6819 Check_Unset_Reference (Low_Bound (R));
6820 Check_Unset_Reference (High_Bound (R));
6821 end if;
6822 end if;
6823 end Resolve_Discrete_Subtype_Indication;
6824
6825 -------------------------
6826 -- Resolve_Entity_Name --
6827 -------------------------
6828
6829 -- Used to resolve identifiers and expanded names
6830
6831 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6832 function Is_Assignment_Or_Object_Expression
6833 (Context : Node_Id;
6834 Expr : Node_Id) return Boolean;
6835 -- Determine whether node Context denotes an assignment statement or an
6836 -- object declaration whose expression is node Expr.
6837
6838 ----------------------------------------
6839 -- Is_Assignment_Or_Object_Expression --
6840 ----------------------------------------
6841
6842 function Is_Assignment_Or_Object_Expression
6843 (Context : Node_Id;
6844 Expr : Node_Id) return Boolean
6845 is
6846 begin
6847 if Nkind_In (Context, N_Assignment_Statement,
6848 N_Object_Declaration)
6849 and then Expression (Context) = Expr
6850 then
6851 return True;
6852
6853 -- Check whether a construct that yields a name is the expression of
6854 -- an assignment statement or an object declaration.
6855
6856 elsif (Nkind_In (Context, N_Attribute_Reference,
6857 N_Explicit_Dereference,
6858 N_Indexed_Component,
6859 N_Selected_Component,
6860 N_Slice)
6861 and then Prefix (Context) = Expr)
6862 or else
6863 (Nkind_In (Context, N_Type_Conversion,
6864 N_Unchecked_Type_Conversion)
6865 and then Expression (Context) = Expr)
6866 then
6867 return
6868 Is_Assignment_Or_Object_Expression
6869 (Context => Parent (Context),
6870 Expr => Context);
6871
6872 -- Otherwise the context is not an assignment statement or an object
6873 -- declaration.
6874
6875 else
6876 return False;
6877 end if;
6878 end Is_Assignment_Or_Object_Expression;
6879
6880 -- Local variables
6881
6882 E : constant Entity_Id := Entity (N);
6883 Par : Node_Id;
6884
6885 -- Start of processing for Resolve_Entity_Name
6886
6887 begin
6888 -- If garbage from errors, set to Any_Type and return
6889
6890 if No (E) and then Total_Errors_Detected /= 0 then
6891 Set_Etype (N, Any_Type);
6892 return;
6893 end if;
6894
6895 -- Replace named numbers by corresponding literals. Note that this is
6896 -- the one case where Resolve_Entity_Name must reset the Etype, since
6897 -- it is currently marked as universal.
6898
6899 if Ekind (E) = E_Named_Integer then
6900 Set_Etype (N, Typ);
6901 Eval_Named_Integer (N);
6902
6903 elsif Ekind (E) = E_Named_Real then
6904 Set_Etype (N, Typ);
6905 Eval_Named_Real (N);
6906
6907 -- For enumeration literals, we need to make sure that a proper style
6908 -- check is done, since such literals are overloaded, and thus we did
6909 -- not do a style check during the first phase of analysis.
6910
6911 elsif Ekind (E) = E_Enumeration_Literal then
6912 Set_Entity_With_Checks (N, E);
6913 Eval_Entity_Name (N);
6914
6915 -- Case of (sub)type name appearing in a context where an expression
6916 -- is expected. This is legal if occurrence is a current instance.
6917 -- See RM 8.6 (17/3).
6918
6919 elsif Is_Type (E) then
6920 if Is_Current_Instance (N) then
6921 null;
6922
6923 -- Any other use is an error
6924
6925 else
6926 Error_Msg_N
6927 ("invalid use of subtype mark in expression or call", N);
6928 end if;
6929
6930 -- Check discriminant use if entity is discriminant in current scope,
6931 -- i.e. discriminant of record or concurrent type currently being
6932 -- analyzed. Uses in corresponding body are unrestricted.
6933
6934 elsif Ekind (E) = E_Discriminant
6935 and then Scope (E) = Current_Scope
6936 and then not Has_Completion (Current_Scope)
6937 then
6938 Check_Discriminant_Use (N);
6939
6940 -- A parameterless generic function cannot appear in a context that
6941 -- requires resolution.
6942
6943 elsif Ekind (E) = E_Generic_Function then
6944 Error_Msg_N ("illegal use of generic function", N);
6945
6946 -- In Ada 83 an OUT parameter cannot be read
6947
6948 elsif Ekind (E) = E_Out_Parameter
6949 and then (Nkind (Parent (N)) in N_Op
6950 or else Nkind (Parent (N)) = N_Explicit_Dereference
6951 or else Is_Assignment_Or_Object_Expression
6952 (Context => Parent (N),
6953 Expr => N))
6954 then
6955 if Ada_Version = Ada_83 then
6956 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
6957 end if;
6958
6959 -- In all other cases, just do the possible static evaluation
6960
6961 else
6962 -- A deferred constant that appears in an expression must have a
6963 -- completion, unless it has been removed by in-place expansion of
6964 -- an aggregate. A constant that is a renaming does not need
6965 -- initialization.
6966
6967 if Ekind (E) = E_Constant
6968 and then Comes_From_Source (E)
6969 and then No (Constant_Value (E))
6970 and then Is_Frozen (Etype (E))
6971 and then not In_Spec_Expression
6972 and then not Is_Imported (E)
6973 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
6974 then
6975 if No_Initialization (Parent (E))
6976 or else (Present (Full_View (E))
6977 and then No_Initialization (Parent (Full_View (E))))
6978 then
6979 null;
6980 else
6981 Error_Msg_N
6982 ("deferred constant is frozen before completion", N);
6983 end if;
6984 end if;
6985
6986 Eval_Entity_Name (N);
6987 end if;
6988
6989 Par := Parent (N);
6990
6991 -- When the entity appears in a parameter association, retrieve the
6992 -- related subprogram call.
6993
6994 if Nkind (Par) = N_Parameter_Association then
6995 Par := Parent (Par);
6996 end if;
6997
6998 if Comes_From_Source (N) then
6999
7000 -- The following checks are only relevant when SPARK_Mode is on as
7001 -- they are not standard Ada legality rules.
7002
7003 if SPARK_Mode = On then
7004
7005 -- An effectively volatile object subject to enabled properties
7006 -- Async_Writers or Effective_Reads must appear in non-interfering
7007 -- context (SPARK RM 7.1.3(12)).
7008
7009 if Is_Object (E)
7010 and then Is_Effectively_Volatile (E)
7011 and then (Async_Writers_Enabled (E)
7012 or else Effective_Reads_Enabled (E))
7013 and then not Is_OK_Volatile_Context (Par, N)
7014 then
7015 SPARK_Msg_N
7016 ("volatile object cannot appear in this context "
7017 & "(SPARK RM 7.1.3(12))", N);
7018 end if;
7019
7020 -- Check for possible elaboration issues with respect to reads of
7021 -- variables. The act of renaming the variable is not considered a
7022 -- read as it simply establishes an alias.
7023
7024 if Ekind (E) = E_Variable
7025 and then Nkind (Par) /= N_Object_Renaming_Declaration
7026 then
7027 Check_Elab_Call (N);
7028 end if;
7029
7030 -- The variable may eventually become a constituent of a single
7031 -- protected/task type. Record the reference now and verify its
7032 -- legality when analyzing the contract of the variable
7033 -- (SPARK RM 9.3).
7034
7035 if Ekind (E) = E_Variable then
7036 Record_Possible_Part_Of_Reference (E, N);
7037 end if;
7038 end if;
7039
7040 -- A Ghost entity must appear in a specific context
7041
7042 if Is_Ghost_Entity (E) then
7043 Check_Ghost_Context (E, N);
7044 end if;
7045 end if;
7046 end Resolve_Entity_Name;
7047
7048 -------------------
7049 -- Resolve_Entry --
7050 -------------------
7051
7052 procedure Resolve_Entry (Entry_Name : Node_Id) is
7053 Loc : constant Source_Ptr := Sloc (Entry_Name);
7054 Nam : Entity_Id;
7055 New_N : Node_Id;
7056 S : Entity_Id;
7057 Tsk : Entity_Id;
7058 E_Name : Node_Id;
7059 Index : Node_Id;
7060
7061 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7062 -- If the bounds of the entry family being called depend on task
7063 -- discriminants, build a new index subtype where a discriminant is
7064 -- replaced with the value of the discriminant of the target task.
7065 -- The target task is the prefix of the entry name in the call.
7066
7067 -----------------------
7068 -- Actual_Index_Type --
7069 -----------------------
7070
7071 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7072 Typ : constant Entity_Id := Entry_Index_Type (E);
7073 Tsk : constant Entity_Id := Scope (E);
7074 Lo : constant Node_Id := Type_Low_Bound (Typ);
7075 Hi : constant Node_Id := Type_High_Bound (Typ);
7076 New_T : Entity_Id;
7077
7078 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7079 -- If the bound is given by a discriminant, replace with a reference
7080 -- to the discriminant of the same name in the target task. If the
7081 -- entry name is the target of a requeue statement and the entry is
7082 -- in the current protected object, the bound to be used is the
7083 -- discriminal of the object (see Apply_Range_Checks for details of
7084 -- the transformation).
7085
7086 -----------------------------
7087 -- Actual_Discriminant_Ref --
7088 -----------------------------
7089
7090 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7091 Typ : constant Entity_Id := Etype (Bound);
7092 Ref : Node_Id;
7093
7094 begin
7095 Remove_Side_Effects (Bound);
7096
7097 if not Is_Entity_Name (Bound)
7098 or else Ekind (Entity (Bound)) /= E_Discriminant
7099 then
7100 return Bound;
7101
7102 elsif Is_Protected_Type (Tsk)
7103 and then In_Open_Scopes (Tsk)
7104 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7105 then
7106 -- Note: here Bound denotes a discriminant of the corresponding
7107 -- record type tskV, whose discriminal is a formal of the
7108 -- init-proc tskVIP. What we want is the body discriminal,
7109 -- which is associated to the discriminant of the original
7110 -- concurrent type tsk.
7111
7112 return New_Occurrence_Of
7113 (Find_Body_Discriminal (Entity (Bound)), Loc);
7114
7115 else
7116 Ref :=
7117 Make_Selected_Component (Loc,
7118 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7119 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7120 Analyze (Ref);
7121 Resolve (Ref, Typ);
7122 return Ref;
7123 end if;
7124 end Actual_Discriminant_Ref;
7125
7126 -- Start of processing for Actual_Index_Type
7127
7128 begin
7129 if not Has_Discriminants (Tsk)
7130 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7131 then
7132 return Entry_Index_Type (E);
7133
7134 else
7135 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7136 Set_Etype (New_T, Base_Type (Typ));
7137 Set_Size_Info (New_T, Typ);
7138 Set_RM_Size (New_T, RM_Size (Typ));
7139 Set_Scalar_Range (New_T,
7140 Make_Range (Sloc (Entry_Name),
7141 Low_Bound => Actual_Discriminant_Ref (Lo),
7142 High_Bound => Actual_Discriminant_Ref (Hi)));
7143
7144 return New_T;
7145 end if;
7146 end Actual_Index_Type;
7147
7148 -- Start of processing for Resolve_Entry
7149
7150 begin
7151 -- Find name of entry being called, and resolve prefix of name with its
7152 -- own type. The prefix can be overloaded, and the name and signature of
7153 -- the entry must be taken into account.
7154
7155 if Nkind (Entry_Name) = N_Indexed_Component then
7156
7157 -- Case of dealing with entry family within the current tasks
7158
7159 E_Name := Prefix (Entry_Name);
7160
7161 else
7162 E_Name := Entry_Name;
7163 end if;
7164
7165 if Is_Entity_Name (E_Name) then
7166
7167 -- Entry call to an entry (or entry family) in the current task. This
7168 -- is legal even though the task will deadlock. Rewrite as call to
7169 -- current task.
7170
7171 -- This can also be a call to an entry in an enclosing task. If this
7172 -- is a single task, we have to retrieve its name, because the scope
7173 -- of the entry is the task type, not the object. If the enclosing
7174 -- task is a task type, the identity of the task is given by its own
7175 -- self variable.
7176
7177 -- Finally this can be a requeue on an entry of the same task or
7178 -- protected object.
7179
7180 S := Scope (Entity (E_Name));
7181
7182 for J in reverse 0 .. Scope_Stack.Last loop
7183 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7184 and then not Comes_From_Source (S)
7185 then
7186 -- S is an enclosing task or protected object. The concurrent
7187 -- declaration has been converted into a type declaration, and
7188 -- the object itself has an object declaration that follows
7189 -- the type in the same declarative part.
7190
7191 Tsk := Next_Entity (S);
7192 while Etype (Tsk) /= S loop
7193 Next_Entity (Tsk);
7194 end loop;
7195
7196 S := Tsk;
7197 exit;
7198
7199 elsif S = Scope_Stack.Table (J).Entity then
7200
7201 -- Call to current task. Will be transformed into call to Self
7202
7203 exit;
7204
7205 end if;
7206 end loop;
7207
7208 New_N :=
7209 Make_Selected_Component (Loc,
7210 Prefix => New_Occurrence_Of (S, Loc),
7211 Selector_Name =>
7212 New_Occurrence_Of (Entity (E_Name), Loc));
7213 Rewrite (E_Name, New_N);
7214 Analyze (E_Name);
7215
7216 elsif Nkind (Entry_Name) = N_Selected_Component
7217 and then Is_Overloaded (Prefix (Entry_Name))
7218 then
7219 -- Use the entry name (which must be unique at this point) to find
7220 -- the prefix that returns the corresponding task/protected type.
7221
7222 declare
7223 Pref : constant Node_Id := Prefix (Entry_Name);
7224 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7225 I : Interp_Index;
7226 It : Interp;
7227
7228 begin
7229 Get_First_Interp (Pref, I, It);
7230 while Present (It.Typ) loop
7231 if Scope (Ent) = It.Typ then
7232 Set_Etype (Pref, It.Typ);
7233 exit;
7234 end if;
7235
7236 Get_Next_Interp (I, It);
7237 end loop;
7238 end;
7239 end if;
7240
7241 if Nkind (Entry_Name) = N_Selected_Component then
7242 Resolve (Prefix (Entry_Name));
7243
7244 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7245 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7246 Resolve (Prefix (Prefix (Entry_Name)));
7247 Index := First (Expressions (Entry_Name));
7248 Resolve (Index, Entry_Index_Type (Nam));
7249
7250 -- Up to this point the expression could have been the actual in a
7251 -- simple entry call, and be given by a named association.
7252
7253 if Nkind (Index) = N_Parameter_Association then
7254 Error_Msg_N ("expect expression for entry index", Index);
7255 else
7256 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7257 end if;
7258 end if;
7259 end Resolve_Entry;
7260
7261 ------------------------
7262 -- Resolve_Entry_Call --
7263 ------------------------
7264
7265 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7266 Entry_Name : constant Node_Id := Name (N);
7267 Loc : constant Source_Ptr := Sloc (Entry_Name);
7268 Actuals : List_Id;
7269 First_Named : Node_Id;
7270 Nam : Entity_Id;
7271 Norm_OK : Boolean;
7272 Obj : Node_Id;
7273 Was_Over : Boolean;
7274
7275 begin
7276 -- We kill all checks here, because it does not seem worth the effort to
7277 -- do anything better, an entry call is a big operation.
7278
7279 Kill_All_Checks;
7280
7281 -- Processing of the name is similar for entry calls and protected
7282 -- operation calls. Once the entity is determined, we can complete
7283 -- the resolution of the actuals.
7284
7285 -- The selector may be overloaded, in the case of a protected object
7286 -- with overloaded functions. The type of the context is used for
7287 -- resolution.
7288
7289 if Nkind (Entry_Name) = N_Selected_Component
7290 and then Is_Overloaded (Selector_Name (Entry_Name))
7291 and then Typ /= Standard_Void_Type
7292 then
7293 declare
7294 I : Interp_Index;
7295 It : Interp;
7296
7297 begin
7298 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7299 while Present (It.Typ) loop
7300 if Covers (Typ, It.Typ) then
7301 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7302 Set_Etype (Entry_Name, It.Typ);
7303
7304 Generate_Reference (It.Typ, N, ' ');
7305 end if;
7306
7307 Get_Next_Interp (I, It);
7308 end loop;
7309 end;
7310 end if;
7311
7312 Resolve_Entry (Entry_Name);
7313
7314 if Nkind (Entry_Name) = N_Selected_Component then
7315
7316 -- Simple entry call
7317
7318 Nam := Entity (Selector_Name (Entry_Name));
7319 Obj := Prefix (Entry_Name);
7320 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7321
7322 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7323
7324 -- Call to member of entry family
7325
7326 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7327 Obj := Prefix (Prefix (Entry_Name));
7328 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7329 end if;
7330
7331 -- We cannot in general check the maximum depth of protected entry calls
7332 -- at compile time. But we can tell that any protected entry call at all
7333 -- violates a specified nesting depth of zero.
7334
7335 if Is_Protected_Type (Scope (Nam)) then
7336 Check_Restriction (Max_Entry_Queue_Length, N);
7337 end if;
7338
7339 -- Use context type to disambiguate a protected function that can be
7340 -- called without actuals and that returns an array type, and where the
7341 -- argument list may be an indexing of the returned value.
7342
7343 if Ekind (Nam) = E_Function
7344 and then Needs_No_Actuals (Nam)
7345 and then Present (Parameter_Associations (N))
7346 and then
7347 ((Is_Array_Type (Etype (Nam))
7348 and then Covers (Typ, Component_Type (Etype (Nam))))
7349
7350 or else (Is_Access_Type (Etype (Nam))
7351 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7352 and then
7353 Covers
7354 (Typ,
7355 Component_Type (Designated_Type (Etype (Nam))))))
7356 then
7357 declare
7358 Index_Node : Node_Id;
7359
7360 begin
7361 Index_Node :=
7362 Make_Indexed_Component (Loc,
7363 Prefix =>
7364 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7365 Expressions => Parameter_Associations (N));
7366
7367 -- Since we are correcting a node classification error made by the
7368 -- parser, we call Replace rather than Rewrite.
7369
7370 Replace (N, Index_Node);
7371 Set_Etype (Prefix (N), Etype (Nam));
7372 Set_Etype (N, Typ);
7373 Resolve_Indexed_Component (N, Typ);
7374 return;
7375 end;
7376 end if;
7377
7378 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7379 and then Present (Contract_Wrapper (Nam))
7380 and then Current_Scope /= Contract_Wrapper (Nam)
7381 then
7382
7383 -- Note the entity being called before rewriting the call, so that
7384 -- it appears used at this point.
7385
7386 Generate_Reference (Nam, Entry_Name, 'r');
7387
7388 -- Rewrite as call to the precondition wrapper, adding the task
7389 -- object to the list of actuals. If the call is to a member of an
7390 -- entry family, include the index as well.
7391
7392 declare
7393 New_Call : Node_Id;
7394 New_Actuals : List_Id;
7395
7396 begin
7397 New_Actuals := New_List (Obj);
7398
7399 if Nkind (Entry_Name) = N_Indexed_Component then
7400 Append_To (New_Actuals,
7401 New_Copy_Tree (First (Expressions (Entry_Name))));
7402 end if;
7403
7404 Append_List (Parameter_Associations (N), New_Actuals);
7405 New_Call :=
7406 Make_Procedure_Call_Statement (Loc,
7407 Name =>
7408 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7409 Parameter_Associations => New_Actuals);
7410 Rewrite (N, New_Call);
7411
7412 -- Preanalyze and resolve new call. Current procedure is called
7413 -- from Resolve_Call, after which expansion will take place.
7414
7415 Preanalyze_And_Resolve (N);
7416 return;
7417 end;
7418 end if;
7419
7420 -- The operation name may have been overloaded. Order the actuals
7421 -- according to the formals of the resolved entity, and set the return
7422 -- type to that of the operation.
7423
7424 if Was_Over then
7425 Normalize_Actuals (N, Nam, False, Norm_OK);
7426 pragma Assert (Norm_OK);
7427 Set_Etype (N, Etype (Nam));
7428
7429 -- Reset the Is_Overloaded flag, since resolution is now completed
7430
7431 -- Simple entry call
7432
7433 if Nkind (Entry_Name) = N_Selected_Component then
7434 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7435
7436 -- Call to a member of an entry family
7437
7438 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7439 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7440 end if;
7441 end if;
7442
7443 Resolve_Actuals (N, Nam);
7444 Check_Internal_Protected_Use (N, Nam);
7445
7446 -- Create a call reference to the entry
7447
7448 Generate_Reference (Nam, Entry_Name, 's');
7449
7450 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7451 Check_Potentially_Blocking_Operation (N);
7452 end if;
7453
7454 -- Verify that a procedure call cannot masquerade as an entry
7455 -- call where an entry call is expected.
7456
7457 if Ekind (Nam) = E_Procedure then
7458 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7459 and then N = Entry_Call_Statement (Parent (N))
7460 then
7461 Error_Msg_N ("entry call required in select statement", N);
7462
7463 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7464 and then N = Triggering_Statement (Parent (N))
7465 then
7466 Error_Msg_N ("triggering statement cannot be procedure call", N);
7467
7468 elsif Ekind (Scope (Nam)) = E_Task_Type
7469 and then not In_Open_Scopes (Scope (Nam))
7470 then
7471 Error_Msg_N ("task has no entry with this name", Entry_Name);
7472 end if;
7473 end if;
7474
7475 -- After resolution, entry calls and protected procedure calls are
7476 -- changed into entry calls, for expansion. The structure of the node
7477 -- does not change, so it can safely be done in place. Protected
7478 -- function calls must keep their structure because they are
7479 -- subexpressions.
7480
7481 if Ekind (Nam) /= E_Function then
7482
7483 -- A protected operation that is not a function may modify the
7484 -- corresponding object, and cannot apply to a constant. If this
7485 -- is an internal call, the prefix is the type itself.
7486
7487 if Is_Protected_Type (Scope (Nam))
7488 and then not Is_Variable (Obj)
7489 and then (not Is_Entity_Name (Obj)
7490 or else not Is_Type (Entity (Obj)))
7491 then
7492 Error_Msg_N
7493 ("prefix of protected procedure or entry call must be variable",
7494 Entry_Name);
7495 end if;
7496
7497 Actuals := Parameter_Associations (N);
7498 First_Named := First_Named_Actual (N);
7499
7500 Rewrite (N,
7501 Make_Entry_Call_Statement (Loc,
7502 Name => Entry_Name,
7503 Parameter_Associations => Actuals));
7504
7505 Set_First_Named_Actual (N, First_Named);
7506 Set_Analyzed (N, True);
7507
7508 -- Protected functions can return on the secondary stack, in which
7509 -- case we must trigger the transient scope mechanism.
7510
7511 elsif Expander_Active
7512 and then Requires_Transient_Scope (Etype (Nam))
7513 then
7514 Establish_Transient_Scope (N, Sec_Stack => True);
7515 end if;
7516 end Resolve_Entry_Call;
7517
7518 -------------------------
7519 -- Resolve_Equality_Op --
7520 -------------------------
7521
7522 -- Both arguments must have the same type, and the boolean context does
7523 -- not participate in the resolution. The first pass verifies that the
7524 -- interpretation is not ambiguous, and the type of the left argument is
7525 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7526 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7527 -- though they carry a single (universal) type. Diagnose this case here.
7528
7529 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7530 L : constant Node_Id := Left_Opnd (N);
7531 R : constant Node_Id := Right_Opnd (N);
7532 T : Entity_Id := Find_Unique_Type (L, R);
7533
7534 procedure Check_If_Expression (Cond : Node_Id);
7535 -- The resolution rule for if expressions requires that each such must
7536 -- have a unique type. This means that if several dependent expressions
7537 -- are of a non-null anonymous access type, and the context does not
7538 -- impose an expected type (as can be the case in an equality operation)
7539 -- the expression must be rejected.
7540
7541 procedure Explain_Redundancy (N : Node_Id);
7542 -- Attempt to explain the nature of a redundant comparison with True. If
7543 -- the expression N is too complex, this routine issues a general error
7544 -- message.
7545
7546 function Find_Unique_Access_Type return Entity_Id;
7547 -- In the case of allocators and access attributes, the context must
7548 -- provide an indication of the specific access type to be used. If
7549 -- one operand is of such a "generic" access type, check whether there
7550 -- is a specific visible access type that has the same designated type.
7551 -- This is semantically dubious, and of no interest to any real code,
7552 -- but c48008a makes it all worthwhile.
7553
7554 -------------------------
7555 -- Check_If_Expression --
7556 -------------------------
7557
7558 procedure Check_If_Expression (Cond : Node_Id) is
7559 Then_Expr : Node_Id;
7560 Else_Expr : Node_Id;
7561
7562 begin
7563 if Nkind (Cond) = N_If_Expression then
7564 Then_Expr := Next (First (Expressions (Cond)));
7565 Else_Expr := Next (Then_Expr);
7566
7567 if Nkind (Then_Expr) /= N_Null
7568 and then Nkind (Else_Expr) /= N_Null
7569 then
7570 Error_Msg_N ("cannot determine type of if expression", Cond);
7571 end if;
7572 end if;
7573 end Check_If_Expression;
7574
7575 ------------------------
7576 -- Explain_Redundancy --
7577 ------------------------
7578
7579 procedure Explain_Redundancy (N : Node_Id) is
7580 Error : Name_Id;
7581 Val : Node_Id;
7582 Val_Id : Entity_Id;
7583
7584 begin
7585 Val := N;
7586
7587 -- Strip the operand down to an entity
7588
7589 loop
7590 if Nkind (Val) = N_Selected_Component then
7591 Val := Selector_Name (Val);
7592 else
7593 exit;
7594 end if;
7595 end loop;
7596
7597 -- The construct denotes an entity
7598
7599 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7600 Val_Id := Entity (Val);
7601
7602 -- Do not generate an error message when the comparison is done
7603 -- against the enumeration literal Standard.True.
7604
7605 if Ekind (Val_Id) /= E_Enumeration_Literal then
7606
7607 -- Build a customized error message
7608
7609 Name_Len := 0;
7610 Add_Str_To_Name_Buffer ("?r?");
7611
7612 if Ekind (Val_Id) = E_Component then
7613 Add_Str_To_Name_Buffer ("component ");
7614
7615 elsif Ekind (Val_Id) = E_Constant then
7616 Add_Str_To_Name_Buffer ("constant ");
7617
7618 elsif Ekind (Val_Id) = E_Discriminant then
7619 Add_Str_To_Name_Buffer ("discriminant ");
7620
7621 elsif Is_Formal (Val_Id) then
7622 Add_Str_To_Name_Buffer ("parameter ");
7623
7624 elsif Ekind (Val_Id) = E_Variable then
7625 Add_Str_To_Name_Buffer ("variable ");
7626 end if;
7627
7628 Add_Str_To_Name_Buffer ("& is always True!");
7629 Error := Name_Find;
7630
7631 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7632 end if;
7633
7634 -- The construct is too complex to disect, issue a general message
7635
7636 else
7637 Error_Msg_N ("?r?expression is always True!", Val);
7638 end if;
7639 end Explain_Redundancy;
7640
7641 -----------------------------
7642 -- Find_Unique_Access_Type --
7643 -----------------------------
7644
7645 function Find_Unique_Access_Type return Entity_Id is
7646 Acc : Entity_Id;
7647 E : Entity_Id;
7648 S : Entity_Id;
7649
7650 begin
7651 if Ekind_In (Etype (R), E_Allocator_Type,
7652 E_Access_Attribute_Type)
7653 then
7654 Acc := Designated_Type (Etype (R));
7655
7656 elsif Ekind_In (Etype (L), E_Allocator_Type,
7657 E_Access_Attribute_Type)
7658 then
7659 Acc := Designated_Type (Etype (L));
7660 else
7661 return Empty;
7662 end if;
7663
7664 S := Current_Scope;
7665 while S /= Standard_Standard loop
7666 E := First_Entity (S);
7667 while Present (E) loop
7668 if Is_Type (E)
7669 and then Is_Access_Type (E)
7670 and then Ekind (E) /= E_Allocator_Type
7671 and then Designated_Type (E) = Base_Type (Acc)
7672 then
7673 return E;
7674 end if;
7675
7676 Next_Entity (E);
7677 end loop;
7678
7679 S := Scope (S);
7680 end loop;
7681
7682 return Empty;
7683 end Find_Unique_Access_Type;
7684
7685 -- Start of processing for Resolve_Equality_Op
7686
7687 begin
7688 Set_Etype (N, Base_Type (Typ));
7689 Generate_Reference (T, N, ' ');
7690
7691 if T = Any_Fixed then
7692 T := Unique_Fixed_Point_Type (L);
7693 end if;
7694
7695 if T /= Any_Type then
7696 if T = Any_String or else
7697 T = Any_Composite or else
7698 T = Any_Character
7699 then
7700 if T = Any_Character then
7701 Ambiguous_Character (L);
7702 else
7703 Error_Msg_N ("ambiguous operands for equality", N);
7704 end if;
7705
7706 Set_Etype (N, Any_Type);
7707 return;
7708
7709 elsif T = Any_Access
7710 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7711 then
7712 T := Find_Unique_Access_Type;
7713
7714 if No (T) then
7715 Error_Msg_N ("ambiguous operands for equality", N);
7716 Set_Etype (N, Any_Type);
7717 return;
7718 end if;
7719
7720 -- If expressions must have a single type, and if the context does
7721 -- not impose one the dependent expressions cannot be anonymous
7722 -- access types.
7723
7724 -- Why no similar processing for case expressions???
7725
7726 elsif Ada_Version >= Ada_2012
7727 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7728 E_Anonymous_Access_Subprogram_Type)
7729 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7730 E_Anonymous_Access_Subprogram_Type)
7731 then
7732 Check_If_Expression (L);
7733 Check_If_Expression (R);
7734 end if;
7735
7736 Resolve (L, T);
7737 Resolve (R, T);
7738
7739 -- In SPARK, equality operators = and /= for array types other than
7740 -- String are only defined when, for each index position, the
7741 -- operands have equal static bounds.
7742
7743 if Is_Array_Type (T) then
7744
7745 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7746 -- operation if not needed.
7747
7748 if Restriction_Check_Required (SPARK_05)
7749 and then Base_Type (T) /= Standard_String
7750 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7751 and then Etype (L) /= Any_Composite -- or else L in error
7752 and then Etype (R) /= Any_Composite -- or else R in error
7753 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7754 then
7755 Check_SPARK_05_Restriction
7756 ("array types should have matching static bounds", N);
7757 end if;
7758 end if;
7759
7760 -- If the unique type is a class-wide type then it will be expanded
7761 -- into a dispatching call to the predefined primitive. Therefore we
7762 -- check here for potential violation of such restriction.
7763
7764 if Is_Class_Wide_Type (T) then
7765 Check_Restriction (No_Dispatching_Calls, N);
7766 end if;
7767
7768 if Warn_On_Redundant_Constructs
7769 and then Comes_From_Source (N)
7770 and then Comes_From_Source (R)
7771 and then Is_Entity_Name (R)
7772 and then Entity (R) = Standard_True
7773 then
7774 Error_Msg_N -- CODEFIX
7775 ("?r?comparison with True is redundant!", N);
7776 Explain_Redundancy (Original_Node (R));
7777 end if;
7778
7779 Check_Unset_Reference (L);
7780 Check_Unset_Reference (R);
7781 Generate_Operator_Reference (N, T);
7782 Check_Low_Bound_Tested (N);
7783
7784 -- If this is an inequality, it may be the implicit inequality
7785 -- created for a user-defined operation, in which case the corres-
7786 -- ponding equality operation is not intrinsic, and the operation
7787 -- cannot be constant-folded. Else fold.
7788
7789 if Nkind (N) = N_Op_Eq
7790 or else Comes_From_Source (Entity (N))
7791 or else Ekind (Entity (N)) = E_Operator
7792 or else Is_Intrinsic_Subprogram
7793 (Corresponding_Equality (Entity (N)))
7794 then
7795 Analyze_Dimension (N);
7796 Eval_Relational_Op (N);
7797
7798 elsif Nkind (N) = N_Op_Ne
7799 and then Is_Abstract_Subprogram (Entity (N))
7800 then
7801 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7802 end if;
7803
7804 -- Ada 2005: If one operand is an anonymous access type, convert the
7805 -- other operand to it, to ensure that the underlying types match in
7806 -- the back-end. Same for access_to_subprogram, and the conversion
7807 -- verifies that the types are subtype conformant.
7808
7809 -- We apply the same conversion in the case one of the operands is a
7810 -- private subtype of the type of the other.
7811
7812 -- Why the Expander_Active test here ???
7813
7814 if Expander_Active
7815 and then
7816 (Ekind_In (T, E_Anonymous_Access_Type,
7817 E_Anonymous_Access_Subprogram_Type)
7818 or else Is_Private_Type (T))
7819 then
7820 if Etype (L) /= T then
7821 Rewrite (L,
7822 Make_Unchecked_Type_Conversion (Sloc (L),
7823 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7824 Expression => Relocate_Node (L)));
7825 Analyze_And_Resolve (L, T);
7826 end if;
7827
7828 if (Etype (R)) /= T then
7829 Rewrite (R,
7830 Make_Unchecked_Type_Conversion (Sloc (R),
7831 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7832 Expression => Relocate_Node (R)));
7833 Analyze_And_Resolve (R, T);
7834 end if;
7835 end if;
7836 end if;
7837 end Resolve_Equality_Op;
7838
7839 ----------------------------------
7840 -- Resolve_Explicit_Dereference --
7841 ----------------------------------
7842
7843 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7844 Loc : constant Source_Ptr := Sloc (N);
7845 New_N : Node_Id;
7846 P : constant Node_Id := Prefix (N);
7847
7848 P_Typ : Entity_Id;
7849 -- The candidate prefix type, if overloaded
7850
7851 I : Interp_Index;
7852 It : Interp;
7853
7854 begin
7855 Check_Fully_Declared_Prefix (Typ, P);
7856 P_Typ := Empty;
7857
7858 -- A useful optimization: check whether the dereference denotes an
7859 -- element of a container, and if so rewrite it as a call to the
7860 -- corresponding Element function.
7861
7862 -- Disabled for now, on advice of ARG. A more restricted form of the
7863 -- predicate might be acceptable ???
7864
7865 -- if Is_Container_Element (N) then
7866 -- return;
7867 -- end if;
7868
7869 if Is_Overloaded (P) then
7870
7871 -- Use the context type to select the prefix that has the correct
7872 -- designated type. Keep the first match, which will be the inner-
7873 -- most.
7874
7875 Get_First_Interp (P, I, It);
7876
7877 while Present (It.Typ) loop
7878 if Is_Access_Type (It.Typ)
7879 and then Covers (Typ, Designated_Type (It.Typ))
7880 then
7881 if No (P_Typ) then
7882 P_Typ := It.Typ;
7883 end if;
7884
7885 -- Remove access types that do not match, but preserve access
7886 -- to subprogram interpretations, in case a further dereference
7887 -- is needed (see below).
7888
7889 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7890 Remove_Interp (I);
7891 end if;
7892
7893 Get_Next_Interp (I, It);
7894 end loop;
7895
7896 if Present (P_Typ) then
7897 Resolve (P, P_Typ);
7898 Set_Etype (N, Designated_Type (P_Typ));
7899
7900 else
7901 -- If no interpretation covers the designated type of the prefix,
7902 -- this is the pathological case where not all implementations of
7903 -- the prefix allow the interpretation of the node as a call. Now
7904 -- that the expected type is known, Remove other interpretations
7905 -- from prefix, rewrite it as a call, and resolve again, so that
7906 -- the proper call node is generated.
7907
7908 Get_First_Interp (P, I, It);
7909 while Present (It.Typ) loop
7910 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
7911 Remove_Interp (I);
7912 end if;
7913
7914 Get_Next_Interp (I, It);
7915 end loop;
7916
7917 New_N :=
7918 Make_Function_Call (Loc,
7919 Name =>
7920 Make_Explicit_Dereference (Loc,
7921 Prefix => P),
7922 Parameter_Associations => New_List);
7923
7924 Save_Interps (N, New_N);
7925 Rewrite (N, New_N);
7926 Analyze_And_Resolve (N, Typ);
7927 return;
7928 end if;
7929
7930 -- If not overloaded, resolve P with its own type
7931
7932 else
7933 Resolve (P);
7934 end if;
7935
7936 -- If the prefix might be null, add an access check
7937
7938 if Is_Access_Type (Etype (P))
7939 and then not Can_Never_Be_Null (Etype (P))
7940 then
7941 Apply_Access_Check (N);
7942 end if;
7943
7944 -- If the designated type is a packed unconstrained array type, and the
7945 -- explicit dereference is not in the context of an attribute reference,
7946 -- then we must compute and set the actual subtype, since it is needed
7947 -- by Gigi. The reason we exclude the attribute case is that this is
7948 -- handled fine by Gigi, and in fact we use such attributes to build the
7949 -- actual subtype. We also exclude generated code (which builds actual
7950 -- subtypes directly if they are needed).
7951
7952 if Is_Array_Type (Etype (N))
7953 and then Is_Packed (Etype (N))
7954 and then not Is_Constrained (Etype (N))
7955 and then Nkind (Parent (N)) /= N_Attribute_Reference
7956 and then Comes_From_Source (N)
7957 then
7958 Set_Etype (N, Get_Actual_Subtype (N));
7959 end if;
7960
7961 Analyze_Dimension (N);
7962
7963 -- Note: No Eval processing is required for an explicit dereference,
7964 -- because such a name can never be static.
7965
7966 end Resolve_Explicit_Dereference;
7967
7968 -------------------------------------
7969 -- Resolve_Expression_With_Actions --
7970 -------------------------------------
7971
7972 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
7973 begin
7974 Set_Etype (N, Typ);
7975
7976 -- If N has no actions, and its expression has been constant folded,
7977 -- then rewrite N as just its expression. Note, we can't do this in
7978 -- the general case of Is_Empty_List (Actions (N)) as this would cause
7979 -- Expression (N) to be expanded again.
7980
7981 if Is_Empty_List (Actions (N))
7982 and then Compile_Time_Known_Value (Expression (N))
7983 then
7984 Rewrite (N, Expression (N));
7985 end if;
7986 end Resolve_Expression_With_Actions;
7987
7988 ----------------------------------
7989 -- Resolve_Generalized_Indexing --
7990 ----------------------------------
7991
7992 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
7993 Indexing : constant Node_Id := Generalized_Indexing (N);
7994 Call : Node_Id;
7995 Indexes : List_Id;
7996 Pref : Node_Id;
7997
7998 begin
7999 -- In ASIS mode, propagate the information about the indexes back to
8000 -- to the original indexing node. The generalized indexing is either
8001 -- a function call, or a dereference of one. The actuals include the
8002 -- prefix of the original node, which is the container expression.
8003
8004 if ASIS_Mode then
8005 Resolve (Indexing, Typ);
8006 Set_Etype (N, Etype (Indexing));
8007 Set_Is_Overloaded (N, False);
8008
8009 Call := Indexing;
8010 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8011 loop
8012 Call := Prefix (Call);
8013 end loop;
8014
8015 if Nkind (Call) = N_Function_Call then
8016 Indexes := Parameter_Associations (Call);
8017 Pref := Remove_Head (Indexes);
8018 Set_Expressions (N, Indexes);
8019
8020 -- If expression is to be reanalyzed, reset Generalized_Indexing
8021 -- to recreate call node, as is the case when the expression is
8022 -- part of an expression function.
8023
8024 if In_Spec_Expression then
8025 Set_Generalized_Indexing (N, Empty);
8026 end if;
8027
8028 Set_Prefix (N, Pref);
8029 end if;
8030
8031 else
8032 Rewrite (N, Indexing);
8033 Resolve (N, Typ);
8034 end if;
8035 end Resolve_Generalized_Indexing;
8036
8037 ---------------------------
8038 -- Resolve_If_Expression --
8039 ---------------------------
8040
8041 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8042 Condition : constant Node_Id := First (Expressions (N));
8043 Then_Expr : constant Node_Id := Next (Condition);
8044 Else_Expr : Node_Id := Next (Then_Expr);
8045 Else_Typ : Entity_Id;
8046 Then_Typ : Entity_Id;
8047
8048 begin
8049 Resolve (Condition, Any_Boolean);
8050 Resolve (Then_Expr, Typ);
8051 Then_Typ := Etype (Then_Expr);
8052
8053 -- When the "then" expression is of a scalar subtype different from the
8054 -- result subtype, then insert a conversion to ensure the generation of
8055 -- a constraint check. The same is done for the else part below, again
8056 -- comparing subtypes rather than base types.
8057
8058 if Is_Scalar_Type (Then_Typ)
8059 and then Then_Typ /= Typ
8060 then
8061 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8062 Analyze_And_Resolve (Then_Expr, Typ);
8063 end if;
8064
8065 -- If ELSE expression present, just resolve using the determined type
8066 -- If type is universal, resolve to any member of the class.
8067
8068 if Present (Else_Expr) then
8069 if Typ = Universal_Integer then
8070 Resolve (Else_Expr, Any_Integer);
8071
8072 elsif Typ = Universal_Real then
8073 Resolve (Else_Expr, Any_Real);
8074
8075 else
8076 Resolve (Else_Expr, Typ);
8077 end if;
8078
8079 Else_Typ := Etype (Else_Expr);
8080
8081 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8082 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8083 Analyze_And_Resolve (Else_Expr, Typ);
8084
8085 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8086 -- dynamically tagged must be known statically.
8087
8088 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8089 if Is_Dynamically_Tagged (Then_Expr) /=
8090 Is_Dynamically_Tagged (Else_Expr)
8091 then
8092 Error_Msg_N ("all or none of the dependent expressions "
8093 & "can be dynamically tagged", N);
8094 end if;
8095 end if;
8096
8097 -- If no ELSE expression is present, root type must be Standard.Boolean
8098 -- and we provide a Standard.True result converted to the appropriate
8099 -- Boolean type (in case it is a derived boolean type).
8100
8101 elsif Root_Type (Typ) = Standard_Boolean then
8102 Else_Expr :=
8103 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8104 Analyze_And_Resolve (Else_Expr, Typ);
8105 Append_To (Expressions (N), Else_Expr);
8106
8107 else
8108 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8109 Append_To (Expressions (N), Error);
8110 end if;
8111
8112 Set_Etype (N, Typ);
8113 Eval_If_Expression (N);
8114 end Resolve_If_Expression;
8115
8116 -------------------------------
8117 -- Resolve_Indexed_Component --
8118 -------------------------------
8119
8120 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8121 Name : constant Node_Id := Prefix (N);
8122 Expr : Node_Id;
8123 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8124 Index : Node_Id;
8125
8126 begin
8127 if Present (Generalized_Indexing (N)) then
8128 Resolve_Generalized_Indexing (N, Typ);
8129 return;
8130 end if;
8131
8132 if Is_Overloaded (Name) then
8133
8134 -- Use the context type to select the prefix that yields the correct
8135 -- component type.
8136
8137 declare
8138 I : Interp_Index;
8139 It : Interp;
8140 I1 : Interp_Index := 0;
8141 P : constant Node_Id := Prefix (N);
8142 Found : Boolean := False;
8143
8144 begin
8145 Get_First_Interp (P, I, It);
8146 while Present (It.Typ) loop
8147 if (Is_Array_Type (It.Typ)
8148 and then Covers (Typ, Component_Type (It.Typ)))
8149 or else (Is_Access_Type (It.Typ)
8150 and then Is_Array_Type (Designated_Type (It.Typ))
8151 and then
8152 Covers
8153 (Typ,
8154 Component_Type (Designated_Type (It.Typ))))
8155 then
8156 if Found then
8157 It := Disambiguate (P, I1, I, Any_Type);
8158
8159 if It = No_Interp then
8160 Error_Msg_N ("ambiguous prefix for indexing", N);
8161 Set_Etype (N, Typ);
8162 return;
8163
8164 else
8165 Found := True;
8166 Array_Type := It.Typ;
8167 I1 := I;
8168 end if;
8169
8170 else
8171 Found := True;
8172 Array_Type := It.Typ;
8173 I1 := I;
8174 end if;
8175 end if;
8176
8177 Get_Next_Interp (I, It);
8178 end loop;
8179 end;
8180
8181 else
8182 Array_Type := Etype (Name);
8183 end if;
8184
8185 Resolve (Name, Array_Type);
8186 Array_Type := Get_Actual_Subtype_If_Available (Name);
8187
8188 -- If prefix is access type, dereference to get real array type.
8189 -- Note: we do not apply an access check because the expander always
8190 -- introduces an explicit dereference, and the check will happen there.
8191
8192 if Is_Access_Type (Array_Type) then
8193 Array_Type := Designated_Type (Array_Type);
8194 end if;
8195
8196 -- If name was overloaded, set component type correctly now
8197 -- If a misplaced call to an entry family (which has no index types)
8198 -- return. Error will be diagnosed from calling context.
8199
8200 if Is_Array_Type (Array_Type) then
8201 Set_Etype (N, Component_Type (Array_Type));
8202 else
8203 return;
8204 end if;
8205
8206 Index := First_Index (Array_Type);
8207 Expr := First (Expressions (N));
8208
8209 -- The prefix may have resolved to a string literal, in which case its
8210 -- etype has a special representation. This is only possible currently
8211 -- if the prefix is a static concatenation, written in functional
8212 -- notation.
8213
8214 if Ekind (Array_Type) = E_String_Literal_Subtype then
8215 Resolve (Expr, Standard_Positive);
8216
8217 else
8218 while Present (Index) and Present (Expr) loop
8219 Resolve (Expr, Etype (Index));
8220 Check_Unset_Reference (Expr);
8221
8222 if Is_Scalar_Type (Etype (Expr)) then
8223 Apply_Scalar_Range_Check (Expr, Etype (Index));
8224 else
8225 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8226 end if;
8227
8228 Next_Index (Index);
8229 Next (Expr);
8230 end loop;
8231 end if;
8232
8233 Analyze_Dimension (N);
8234
8235 -- Do not generate the warning on suspicious index if we are analyzing
8236 -- package Ada.Tags; otherwise we will report the warning with the
8237 -- Prims_Ptr field of the dispatch table.
8238
8239 if Scope (Etype (Prefix (N))) = Standard_Standard
8240 or else not
8241 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8242 Ada_Tags)
8243 then
8244 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8245 Eval_Indexed_Component (N);
8246 end if;
8247
8248 -- If the array type is atomic, and the component is not atomic, then
8249 -- this is worth a warning, since we have a situation where the access
8250 -- to the component may cause extra read/writes of the atomic array
8251 -- object, or partial word accesses, which could be unexpected.
8252
8253 if Nkind (N) = N_Indexed_Component
8254 and then Is_Atomic_Ref_With_Address (N)
8255 and then not (Has_Atomic_Components (Array_Type)
8256 or else (Is_Entity_Name (Prefix (N))
8257 and then Has_Atomic_Components
8258 (Entity (Prefix (N)))))
8259 and then not Is_Atomic (Component_Type (Array_Type))
8260 then
8261 Error_Msg_N
8262 ("??access to non-atomic component of atomic array", Prefix (N));
8263 Error_Msg_N
8264 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8265 end if;
8266 end Resolve_Indexed_Component;
8267
8268 -----------------------------
8269 -- Resolve_Integer_Literal --
8270 -----------------------------
8271
8272 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8273 begin
8274 Set_Etype (N, Typ);
8275 Eval_Integer_Literal (N);
8276 end Resolve_Integer_Literal;
8277
8278 --------------------------------
8279 -- Resolve_Intrinsic_Operator --
8280 --------------------------------
8281
8282 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8283 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8284 Op : Entity_Id;
8285 Arg1 : Node_Id;
8286 Arg2 : Node_Id;
8287
8288 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8289 -- If the operand is a literal, it cannot be the expression in a
8290 -- conversion. Use a qualified expression instead.
8291
8292 ---------------------
8293 -- Convert_Operand --
8294 ---------------------
8295
8296 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8297 Loc : constant Source_Ptr := Sloc (Opnd);
8298 Res : Node_Id;
8299
8300 begin
8301 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8302 Res :=
8303 Make_Qualified_Expression (Loc,
8304 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8305 Expression => Relocate_Node (Opnd));
8306 Analyze (Res);
8307
8308 else
8309 Res := Unchecked_Convert_To (Btyp, Opnd);
8310 end if;
8311
8312 return Res;
8313 end Convert_Operand;
8314
8315 -- Start of processing for Resolve_Intrinsic_Operator
8316
8317 begin
8318 -- We must preserve the original entity in a generic setting, so that
8319 -- the legality of the operation can be verified in an instance.
8320
8321 if not Expander_Active then
8322 return;
8323 end if;
8324
8325 Op := Entity (N);
8326 while Scope (Op) /= Standard_Standard loop
8327 Op := Homonym (Op);
8328 pragma Assert (Present (Op));
8329 end loop;
8330
8331 Set_Entity (N, Op);
8332 Set_Is_Overloaded (N, False);
8333
8334 -- If the result or operand types are private, rewrite with unchecked
8335 -- conversions on the operands and the result, to expose the proper
8336 -- underlying numeric type.
8337
8338 if Is_Private_Type (Typ)
8339 or else Is_Private_Type (Etype (Left_Opnd (N)))
8340 or else Is_Private_Type (Etype (Right_Opnd (N)))
8341 then
8342 Arg1 := Convert_Operand (Left_Opnd (N));
8343
8344 if Nkind (N) = N_Op_Expon then
8345 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8346 else
8347 Arg2 := Convert_Operand (Right_Opnd (N));
8348 end if;
8349
8350 if Nkind (Arg1) = N_Type_Conversion then
8351 Save_Interps (Left_Opnd (N), Expression (Arg1));
8352 end if;
8353
8354 if Nkind (Arg2) = N_Type_Conversion then
8355 Save_Interps (Right_Opnd (N), Expression (Arg2));
8356 end if;
8357
8358 Set_Left_Opnd (N, Arg1);
8359 Set_Right_Opnd (N, Arg2);
8360
8361 Set_Etype (N, Btyp);
8362 Rewrite (N, Unchecked_Convert_To (Typ, N));
8363 Resolve (N, Typ);
8364
8365 elsif Typ /= Etype (Left_Opnd (N))
8366 or else Typ /= Etype (Right_Opnd (N))
8367 then
8368 -- Add explicit conversion where needed, and save interpretations in
8369 -- case operands are overloaded.
8370
8371 Arg1 := Convert_To (Typ, Left_Opnd (N));
8372 Arg2 := Convert_To (Typ, Right_Opnd (N));
8373
8374 if Nkind (Arg1) = N_Type_Conversion then
8375 Save_Interps (Left_Opnd (N), Expression (Arg1));
8376 else
8377 Save_Interps (Left_Opnd (N), Arg1);
8378 end if;
8379
8380 if Nkind (Arg2) = N_Type_Conversion then
8381 Save_Interps (Right_Opnd (N), Expression (Arg2));
8382 else
8383 Save_Interps (Right_Opnd (N), Arg2);
8384 end if;
8385
8386 Rewrite (Left_Opnd (N), Arg1);
8387 Rewrite (Right_Opnd (N), Arg2);
8388 Analyze (Arg1);
8389 Analyze (Arg2);
8390 Resolve_Arithmetic_Op (N, Typ);
8391
8392 else
8393 Resolve_Arithmetic_Op (N, Typ);
8394 end if;
8395 end Resolve_Intrinsic_Operator;
8396
8397 --------------------------------------
8398 -- Resolve_Intrinsic_Unary_Operator --
8399 --------------------------------------
8400
8401 procedure Resolve_Intrinsic_Unary_Operator
8402 (N : Node_Id;
8403 Typ : Entity_Id)
8404 is
8405 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8406 Op : Entity_Id;
8407 Arg2 : Node_Id;
8408
8409 begin
8410 Op := Entity (N);
8411 while Scope (Op) /= Standard_Standard loop
8412 Op := Homonym (Op);
8413 pragma Assert (Present (Op));
8414 end loop;
8415
8416 Set_Entity (N, Op);
8417
8418 if Is_Private_Type (Typ) then
8419 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8420 Save_Interps (Right_Opnd (N), Expression (Arg2));
8421
8422 Set_Right_Opnd (N, Arg2);
8423
8424 Set_Etype (N, Btyp);
8425 Rewrite (N, Unchecked_Convert_To (Typ, N));
8426 Resolve (N, Typ);
8427
8428 else
8429 Resolve_Unary_Op (N, Typ);
8430 end if;
8431 end Resolve_Intrinsic_Unary_Operator;
8432
8433 ------------------------
8434 -- Resolve_Logical_Op --
8435 ------------------------
8436
8437 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8438 B_Typ : Entity_Id;
8439
8440 begin
8441 Check_No_Direct_Boolean_Operators (N);
8442
8443 -- Predefined operations on scalar types yield the base type. On the
8444 -- other hand, logical operations on arrays yield the type of the
8445 -- arguments (and the context).
8446
8447 if Is_Array_Type (Typ) then
8448 B_Typ := Typ;
8449 else
8450 B_Typ := Base_Type (Typ);
8451 end if;
8452
8453 -- The following test is required because the operands of the operation
8454 -- may be literals, in which case the resulting type appears to be
8455 -- compatible with a signed integer type, when in fact it is compatible
8456 -- only with modular types. If the context itself is universal, the
8457 -- operation is illegal.
8458
8459 if not Valid_Boolean_Arg (Typ) then
8460 Error_Msg_N ("invalid context for logical operation", N);
8461 Set_Etype (N, Any_Type);
8462 return;
8463
8464 elsif Typ = Any_Modular then
8465 Error_Msg_N
8466 ("no modular type available in this context", N);
8467 Set_Etype (N, Any_Type);
8468 return;
8469
8470 elsif Is_Modular_Integer_Type (Typ)
8471 and then Etype (Left_Opnd (N)) = Universal_Integer
8472 and then Etype (Right_Opnd (N)) = Universal_Integer
8473 then
8474 Check_For_Visible_Operator (N, B_Typ);
8475 end if;
8476
8477 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8478 -- is active and the result type is standard Boolean (do not mess with
8479 -- ops that return a nonstandard Boolean type, because something strange
8480 -- is going on).
8481
8482 -- Note: you might expect this replacement to be done during expansion,
8483 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8484 -- is used, no part of the right operand of an "and" or "or" operator
8485 -- should be executed if the left operand would short-circuit the
8486 -- evaluation of the corresponding "and then" or "or else". If we left
8487 -- the replacement to expansion time, then run-time checks associated
8488 -- with such operands would be evaluated unconditionally, due to being
8489 -- before the condition prior to the rewriting as short-circuit forms
8490 -- during expansion.
8491
8492 if Short_Circuit_And_Or
8493 and then B_Typ = Standard_Boolean
8494 and then Nkind_In (N, N_Op_And, N_Op_Or)
8495 then
8496 -- Mark the corresponding putative SCO operator as truly a logical
8497 -- (and short-circuit) operator.
8498
8499 if Generate_SCO and then Comes_From_Source (N) then
8500 Set_SCO_Logical_Operator (N);
8501 end if;
8502
8503 if Nkind (N) = N_Op_And then
8504 Rewrite (N,
8505 Make_And_Then (Sloc (N),
8506 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8507 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8508 Analyze_And_Resolve (N, B_Typ);
8509
8510 -- Case of OR changed to OR ELSE
8511
8512 else
8513 Rewrite (N,
8514 Make_Or_Else (Sloc (N),
8515 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8516 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8517 Analyze_And_Resolve (N, B_Typ);
8518 end if;
8519
8520 -- Return now, since analysis of the rewritten ops will take care of
8521 -- other reference bookkeeping and expression folding.
8522
8523 return;
8524 end if;
8525
8526 Resolve (Left_Opnd (N), B_Typ);
8527 Resolve (Right_Opnd (N), B_Typ);
8528
8529 Check_Unset_Reference (Left_Opnd (N));
8530 Check_Unset_Reference (Right_Opnd (N));
8531
8532 Set_Etype (N, B_Typ);
8533 Generate_Operator_Reference (N, B_Typ);
8534 Eval_Logical_Op (N);
8535
8536 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8537 -- only when both operands have same static lower and higher bounds. Of
8538 -- course the types have to match, so only check if operands are
8539 -- compatible and the node itself has no errors.
8540
8541 if Is_Array_Type (B_Typ)
8542 and then Nkind (N) in N_Binary_Op
8543 then
8544 declare
8545 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8546 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8547
8548 begin
8549 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8550 -- operation if not needed.
8551
8552 if Restriction_Check_Required (SPARK_05)
8553 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8554 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8555 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8556 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8557 then
8558 Check_SPARK_05_Restriction
8559 ("array types should have matching static bounds", N);
8560 end if;
8561 end;
8562 end if;
8563 end Resolve_Logical_Op;
8564
8565 ---------------------------
8566 -- Resolve_Membership_Op --
8567 ---------------------------
8568
8569 -- The context can only be a boolean type, and does not determine the
8570 -- arguments. Arguments should be unambiguous, but the preference rule for
8571 -- universal types applies.
8572
8573 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8574 pragma Warnings (Off, Typ);
8575
8576 L : constant Node_Id := Left_Opnd (N);
8577 R : constant Node_Id := Right_Opnd (N);
8578 T : Entity_Id;
8579
8580 procedure Resolve_Set_Membership;
8581 -- Analysis has determined a unique type for the left operand. Use it to
8582 -- resolve the disjuncts.
8583
8584 ----------------------------
8585 -- Resolve_Set_Membership --
8586 ----------------------------
8587
8588 procedure Resolve_Set_Membership is
8589 Alt : Node_Id;
8590 Ltyp : Entity_Id;
8591
8592 begin
8593 -- If the left operand is overloaded, find type compatible with not
8594 -- overloaded alternative of the right operand.
8595
8596 if Is_Overloaded (L) then
8597 Ltyp := Empty;
8598 Alt := First (Alternatives (N));
8599 while Present (Alt) loop
8600 if not Is_Overloaded (Alt) then
8601 Ltyp := Intersect_Types (L, Alt);
8602 exit;
8603 else
8604 Next (Alt);
8605 end if;
8606 end loop;
8607
8608 -- Unclear how to resolve expression if all alternatives are also
8609 -- overloaded.
8610
8611 if No (Ltyp) then
8612 Error_Msg_N ("ambiguous expression", N);
8613 end if;
8614
8615 else
8616 Ltyp := Etype (L);
8617 end if;
8618
8619 Resolve (L, Ltyp);
8620
8621 Alt := First (Alternatives (N));
8622 while Present (Alt) loop
8623
8624 -- Alternative is an expression, a range
8625 -- or a subtype mark.
8626
8627 if not Is_Entity_Name (Alt)
8628 or else not Is_Type (Entity (Alt))
8629 then
8630 Resolve (Alt, Ltyp);
8631 end if;
8632
8633 Next (Alt);
8634 end loop;
8635
8636 -- Check for duplicates for discrete case
8637
8638 if Is_Discrete_Type (Ltyp) then
8639 declare
8640 type Ent is record
8641 Alt : Node_Id;
8642 Val : Uint;
8643 end record;
8644
8645 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8646 Nalts : Nat;
8647
8648 begin
8649 -- Loop checking duplicates. This is quadratic, but giant sets
8650 -- are unlikely in this context so it's a reasonable choice.
8651
8652 Nalts := 0;
8653 Alt := First (Alternatives (N));
8654 while Present (Alt) loop
8655 if Is_OK_Static_Expression (Alt)
8656 and then (Nkind_In (Alt, N_Integer_Literal,
8657 N_Character_Literal)
8658 or else Nkind (Alt) in N_Has_Entity)
8659 then
8660 Nalts := Nalts + 1;
8661 Alts (Nalts) := (Alt, Expr_Value (Alt));
8662
8663 for J in 1 .. Nalts - 1 loop
8664 if Alts (J).Val = Alts (Nalts).Val then
8665 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8666 Error_Msg_N ("duplicate of value given#??", Alt);
8667 end if;
8668 end loop;
8669 end if;
8670
8671 Alt := Next (Alt);
8672 end loop;
8673 end;
8674 end if;
8675 end Resolve_Set_Membership;
8676
8677 -- Start of processing for Resolve_Membership_Op
8678
8679 begin
8680 if L = Error or else R = Error then
8681 return;
8682 end if;
8683
8684 if Present (Alternatives (N)) then
8685 Resolve_Set_Membership;
8686 goto SM_Exit;
8687
8688 elsif not Is_Overloaded (R)
8689 and then
8690 (Etype (R) = Universal_Integer
8691 or else
8692 Etype (R) = Universal_Real)
8693 and then Is_Overloaded (L)
8694 then
8695 T := Etype (R);
8696
8697 -- Ada 2005 (AI-251): Support the following case:
8698
8699 -- type I is interface;
8700 -- type T is tagged ...
8701
8702 -- function Test (O : I'Class) is
8703 -- begin
8704 -- return O in T'Class.
8705 -- end Test;
8706
8707 -- In this case we have nothing else to do. The membership test will be
8708 -- done at run time.
8709
8710 elsif Ada_Version >= Ada_2005
8711 and then Is_Class_Wide_Type (Etype (L))
8712 and then Is_Interface (Etype (L))
8713 and then Is_Class_Wide_Type (Etype (R))
8714 and then not Is_Interface (Etype (R))
8715 then
8716 return;
8717 else
8718 T := Intersect_Types (L, R);
8719 end if;
8720
8721 -- If mixed-mode operations are present and operands are all literal,
8722 -- the only interpretation involves Duration, which is probably not
8723 -- the intention of the programmer.
8724
8725 if T = Any_Fixed then
8726 T := Unique_Fixed_Point_Type (N);
8727
8728 if T = Any_Type then
8729 return;
8730 end if;
8731 end if;
8732
8733 Resolve (L, T);
8734 Check_Unset_Reference (L);
8735
8736 if Nkind (R) = N_Range
8737 and then not Is_Scalar_Type (T)
8738 then
8739 Error_Msg_N ("scalar type required for range", R);
8740 end if;
8741
8742 if Is_Entity_Name (R) then
8743 Freeze_Expression (R);
8744 else
8745 Resolve (R, T);
8746 Check_Unset_Reference (R);
8747 end if;
8748
8749 -- Here after resolving membership operation
8750
8751 <<SM_Exit>>
8752
8753 Eval_Membership_Op (N);
8754 end Resolve_Membership_Op;
8755
8756 ------------------
8757 -- Resolve_Null --
8758 ------------------
8759
8760 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8761 Loc : constant Source_Ptr := Sloc (N);
8762
8763 begin
8764 -- Handle restriction against anonymous null access values This
8765 -- restriction can be turned off using -gnatdj.
8766
8767 -- Ada 2005 (AI-231): Remove restriction
8768
8769 if Ada_Version < Ada_2005
8770 and then not Debug_Flag_J
8771 and then Ekind (Typ) = E_Anonymous_Access_Type
8772 and then Comes_From_Source (N)
8773 then
8774 -- In the common case of a call which uses an explicitly null value
8775 -- for an access parameter, give specialized error message.
8776
8777 if Nkind (Parent (N)) in N_Subprogram_Call then
8778 Error_Msg_N
8779 ("null is not allowed as argument for an access parameter", N);
8780
8781 -- Standard message for all other cases (are there any?)
8782
8783 else
8784 Error_Msg_N
8785 ("null cannot be of an anonymous access type", N);
8786 end if;
8787 end if;
8788
8789 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8790 -- assignment to a null-excluding object
8791
8792 if Ada_Version >= Ada_2005
8793 and then Can_Never_Be_Null (Typ)
8794 and then Nkind (Parent (N)) = N_Assignment_Statement
8795 then
8796 if not Inside_Init_Proc then
8797 Insert_Action
8798 (Compile_Time_Constraint_Error (N,
8799 "(Ada 2005) null not allowed in null-excluding objects??"),
8800 Make_Raise_Constraint_Error (Loc,
8801 Reason => CE_Access_Check_Failed));
8802 else
8803 Insert_Action (N,
8804 Make_Raise_Constraint_Error (Loc,
8805 Reason => CE_Access_Check_Failed));
8806 end if;
8807 end if;
8808
8809 -- In a distributed context, null for a remote access to subprogram may
8810 -- need to be replaced with a special record aggregate. In this case,
8811 -- return after having done the transformation.
8812
8813 if (Ekind (Typ) = E_Record_Type
8814 or else Is_Remote_Access_To_Subprogram_Type (Typ))
8815 and then Remote_AST_Null_Value (N, Typ)
8816 then
8817 return;
8818 end if;
8819
8820 -- The null literal takes its type from the context
8821
8822 Set_Etype (N, Typ);
8823 end Resolve_Null;
8824
8825 -----------------------
8826 -- Resolve_Op_Concat --
8827 -----------------------
8828
8829 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
8830
8831 -- We wish to avoid deep recursion, because concatenations are often
8832 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8833 -- operands nonrecursively until we find something that is not a simple
8834 -- concatenation (A in this case). We resolve that, and then walk back
8835 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8836 -- to do the rest of the work at each level. The Parent pointers allow
8837 -- us to avoid recursion, and thus avoid running out of memory. See also
8838 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8839
8840 NN : Node_Id := N;
8841 Op1 : Node_Id;
8842
8843 begin
8844 -- The following code is equivalent to:
8845
8846 -- Resolve_Op_Concat_First (NN, Typ);
8847 -- Resolve_Op_Concat_Arg (N, ...);
8848 -- Resolve_Op_Concat_Rest (N, Typ);
8849
8850 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
8851 -- operand is a concatenation.
8852
8853 -- Walk down left operands
8854
8855 loop
8856 Resolve_Op_Concat_First (NN, Typ);
8857 Op1 := Left_Opnd (NN);
8858 exit when not (Nkind (Op1) = N_Op_Concat
8859 and then not Is_Array_Type (Component_Type (Typ))
8860 and then Entity (Op1) = Entity (NN));
8861 NN := Op1;
8862 end loop;
8863
8864 -- Now (given the above example) NN is A&B and Op1 is A
8865
8866 -- First resolve Op1 ...
8867
8868 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
8869
8870 -- ... then walk NN back up until we reach N (where we started), calling
8871 -- Resolve_Op_Concat_Rest along the way.
8872
8873 loop
8874 Resolve_Op_Concat_Rest (NN, Typ);
8875 exit when NN = N;
8876 NN := Parent (NN);
8877 end loop;
8878
8879 if Base_Type (Etype (N)) /= Standard_String then
8880 Check_SPARK_05_Restriction
8881 ("result of concatenation should have type String", N);
8882 end if;
8883 end Resolve_Op_Concat;
8884
8885 ---------------------------
8886 -- Resolve_Op_Concat_Arg --
8887 ---------------------------
8888
8889 procedure Resolve_Op_Concat_Arg
8890 (N : Node_Id;
8891 Arg : Node_Id;
8892 Typ : Entity_Id;
8893 Is_Comp : Boolean)
8894 is
8895 Btyp : constant Entity_Id := Base_Type (Typ);
8896 Ctyp : constant Entity_Id := Component_Type (Typ);
8897
8898 begin
8899 if In_Instance then
8900 if Is_Comp
8901 or else (not Is_Overloaded (Arg)
8902 and then Etype (Arg) /= Any_Composite
8903 and then Covers (Ctyp, Etype (Arg)))
8904 then
8905 Resolve (Arg, Ctyp);
8906 else
8907 Resolve (Arg, Btyp);
8908 end if;
8909
8910 -- If both Array & Array and Array & Component are visible, there is a
8911 -- potential ambiguity that must be reported.
8912
8913 elsif Has_Compatible_Type (Arg, Ctyp) then
8914 if Nkind (Arg) = N_Aggregate
8915 and then Is_Composite_Type (Ctyp)
8916 then
8917 if Is_Private_Type (Ctyp) then
8918 Resolve (Arg, Btyp);
8919
8920 -- If the operation is user-defined and not overloaded use its
8921 -- profile. The operation may be a renaming, in which case it has
8922 -- been rewritten, and we want the original profile.
8923
8924 elsif not Is_Overloaded (N)
8925 and then Comes_From_Source (Entity (Original_Node (N)))
8926 and then Ekind (Entity (Original_Node (N))) = E_Function
8927 then
8928 Resolve (Arg,
8929 Etype
8930 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
8931 return;
8932
8933 -- Otherwise an aggregate may match both the array type and the
8934 -- component type.
8935
8936 else
8937 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
8938 Set_Etype (Arg, Any_Type);
8939 end if;
8940
8941 else
8942 if Is_Overloaded (Arg)
8943 and then Has_Compatible_Type (Arg, Typ)
8944 and then Etype (Arg) /= Any_Type
8945 then
8946 declare
8947 I : Interp_Index;
8948 It : Interp;
8949 Func : Entity_Id;
8950
8951 begin
8952 Get_First_Interp (Arg, I, It);
8953 Func := It.Nam;
8954 Get_Next_Interp (I, It);
8955
8956 -- Special-case the error message when the overloading is
8957 -- caused by a function that yields an array and can be
8958 -- called without parameters.
8959
8960 if It.Nam = Func then
8961 Error_Msg_Sloc := Sloc (Func);
8962 Error_Msg_N ("ambiguous call to function#", Arg);
8963 Error_Msg_NE
8964 ("\\interpretation as call yields&", Arg, Typ);
8965 Error_Msg_NE
8966 ("\\interpretation as indexing of call yields&",
8967 Arg, Component_Type (Typ));
8968
8969 else
8970 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
8971
8972 Get_First_Interp (Arg, I, It);
8973 while Present (It.Nam) loop
8974 Error_Msg_Sloc := Sloc (It.Nam);
8975
8976 if Base_Type (It.Typ) = Btyp
8977 or else
8978 Base_Type (It.Typ) = Base_Type (Ctyp)
8979 then
8980 Error_Msg_N -- CODEFIX
8981 ("\\possible interpretation#", Arg);
8982 end if;
8983
8984 Get_Next_Interp (I, It);
8985 end loop;
8986 end if;
8987 end;
8988 end if;
8989
8990 Resolve (Arg, Component_Type (Typ));
8991
8992 if Nkind (Arg) = N_String_Literal then
8993 Set_Etype (Arg, Component_Type (Typ));
8994 end if;
8995
8996 if Arg = Left_Opnd (N) then
8997 Set_Is_Component_Left_Opnd (N);
8998 else
8999 Set_Is_Component_Right_Opnd (N);
9000 end if;
9001 end if;
9002
9003 else
9004 Resolve (Arg, Btyp);
9005 end if;
9006
9007 -- Concatenation is restricted in SPARK: each operand must be either a
9008 -- string literal, the name of a string constant, a static character or
9009 -- string expression, or another concatenation. Arg cannot be a
9010 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9011 -- separately on each final operand, past concatenation operations.
9012
9013 if Is_Character_Type (Etype (Arg)) then
9014 if not Is_OK_Static_Expression (Arg) then
9015 Check_SPARK_05_Restriction
9016 ("character operand for concatenation should be static", Arg);
9017 end if;
9018
9019 elsif Is_String_Type (Etype (Arg)) then
9020 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9021 and then Is_Constant_Object (Entity (Arg)))
9022 and then not Is_OK_Static_Expression (Arg)
9023 then
9024 Check_SPARK_05_Restriction
9025 ("string operand for concatenation should be static", Arg);
9026 end if;
9027
9028 -- Do not issue error on an operand that is neither a character nor a
9029 -- string, as the error is issued in Resolve_Op_Concat.
9030
9031 else
9032 null;
9033 end if;
9034
9035 Check_Unset_Reference (Arg);
9036 end Resolve_Op_Concat_Arg;
9037
9038 -----------------------------
9039 -- Resolve_Op_Concat_First --
9040 -----------------------------
9041
9042 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9043 Btyp : constant Entity_Id := Base_Type (Typ);
9044 Op1 : constant Node_Id := Left_Opnd (N);
9045 Op2 : constant Node_Id := Right_Opnd (N);
9046
9047 begin
9048 -- The parser folds an enormous sequence of concatenations of string
9049 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9050 -- in the right operand. If the expression resolves to a predefined "&"
9051 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9052 -- we give an error. See P_Simple_Expression in Par.Ch4.
9053
9054 if Nkind (Op2) = N_String_Literal
9055 and then Is_Folded_In_Parser (Op2)
9056 and then Ekind (Entity (N)) = E_Function
9057 then
9058 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9059 and then String_Length (Strval (Op1)) = 0);
9060 Error_Msg_N ("too many user-defined concatenations", N);
9061 return;
9062 end if;
9063
9064 Set_Etype (N, Btyp);
9065
9066 if Is_Limited_Composite (Btyp) then
9067 Error_Msg_N ("concatenation not available for limited array", N);
9068 Explain_Limited_Type (Btyp, N);
9069 end if;
9070 end Resolve_Op_Concat_First;
9071
9072 ----------------------------
9073 -- Resolve_Op_Concat_Rest --
9074 ----------------------------
9075
9076 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9077 Op1 : constant Node_Id := Left_Opnd (N);
9078 Op2 : constant Node_Id := Right_Opnd (N);
9079
9080 begin
9081 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9082
9083 Generate_Operator_Reference (N, Typ);
9084
9085 if Is_String_Type (Typ) then
9086 Eval_Concatenation (N);
9087 end if;
9088
9089 -- If this is not a static concatenation, but the result is a string
9090 -- type (and not an array of strings) ensure that static string operands
9091 -- have their subtypes properly constructed.
9092
9093 if Nkind (N) /= N_String_Literal
9094 and then Is_Character_Type (Component_Type (Typ))
9095 then
9096 Set_String_Literal_Subtype (Op1, Typ);
9097 Set_String_Literal_Subtype (Op2, Typ);
9098 end if;
9099 end Resolve_Op_Concat_Rest;
9100
9101 ----------------------
9102 -- Resolve_Op_Expon --
9103 ----------------------
9104
9105 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9106 B_Typ : constant Entity_Id := Base_Type (Typ);
9107
9108 begin
9109 -- Catch attempts to do fixed-point exponentiation with universal
9110 -- operands, which is a case where the illegality is not caught during
9111 -- normal operator analysis. This is not done in preanalysis mode
9112 -- since the tree is not fully decorated during preanalysis.
9113
9114 if Full_Analysis then
9115 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9116 Error_Msg_N ("exponentiation not available for fixed point", N);
9117 return;
9118
9119 elsif Nkind (Parent (N)) in N_Op
9120 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9121 and then Etype (N) = Universal_Real
9122 and then Comes_From_Source (N)
9123 then
9124 Error_Msg_N ("exponentiation not available for fixed point", N);
9125 return;
9126 end if;
9127 end if;
9128
9129 if Comes_From_Source (N)
9130 and then Ekind (Entity (N)) = E_Function
9131 and then Is_Imported (Entity (N))
9132 and then Is_Intrinsic_Subprogram (Entity (N))
9133 then
9134 Resolve_Intrinsic_Operator (N, Typ);
9135 return;
9136 end if;
9137
9138 if Etype (Left_Opnd (N)) = Universal_Integer
9139 or else Etype (Left_Opnd (N)) = Universal_Real
9140 then
9141 Check_For_Visible_Operator (N, B_Typ);
9142 end if;
9143
9144 -- We do the resolution using the base type, because intermediate values
9145 -- in expressions are always of the base type, not a subtype of it.
9146
9147 Resolve (Left_Opnd (N), B_Typ);
9148 Resolve (Right_Opnd (N), Standard_Integer);
9149
9150 -- For integer types, right argument must be in Natural range
9151
9152 if Is_Integer_Type (Typ) then
9153 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9154 end if;
9155
9156 Check_Unset_Reference (Left_Opnd (N));
9157 Check_Unset_Reference (Right_Opnd (N));
9158
9159 Set_Etype (N, B_Typ);
9160 Generate_Operator_Reference (N, B_Typ);
9161
9162 Analyze_Dimension (N);
9163
9164 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9165 -- Evaluate the exponentiation operator for dimensioned type
9166
9167 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9168 else
9169 Eval_Op_Expon (N);
9170 end if;
9171
9172 -- Set overflow checking bit. Much cleverer code needed here eventually
9173 -- and perhaps the Resolve routines should be separated for the various
9174 -- arithmetic operations, since they will need different processing. ???
9175
9176 if Nkind (N) in N_Op then
9177 if not Overflow_Checks_Suppressed (Etype (N)) then
9178 Enable_Overflow_Check (N);
9179 end if;
9180 end if;
9181 end Resolve_Op_Expon;
9182
9183 --------------------
9184 -- Resolve_Op_Not --
9185 --------------------
9186
9187 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9188 B_Typ : Entity_Id;
9189
9190 function Parent_Is_Boolean return Boolean;
9191 -- This function determines if the parent node is a boolean operator or
9192 -- operation (comparison op, membership test, or short circuit form) and
9193 -- the not in question is the left operand of this operation. Note that
9194 -- if the not is in parens, then false is returned.
9195
9196 -----------------------
9197 -- Parent_Is_Boolean --
9198 -----------------------
9199
9200 function Parent_Is_Boolean return Boolean is
9201 begin
9202 if Paren_Count (N) /= 0 then
9203 return False;
9204
9205 else
9206 case Nkind (Parent (N)) is
9207 when N_Op_And |
9208 N_Op_Eq |
9209 N_Op_Ge |
9210 N_Op_Gt |
9211 N_Op_Le |
9212 N_Op_Lt |
9213 N_Op_Ne |
9214 N_Op_Or |
9215 N_Op_Xor |
9216 N_In |
9217 N_Not_In |
9218 N_And_Then |
9219 N_Or_Else =>
9220
9221 return Left_Opnd (Parent (N)) = N;
9222
9223 when others =>
9224 return False;
9225 end case;
9226 end if;
9227 end Parent_Is_Boolean;
9228
9229 -- Start of processing for Resolve_Op_Not
9230
9231 begin
9232 -- Predefined operations on scalar types yield the base type. On the
9233 -- other hand, logical operations on arrays yield the type of the
9234 -- arguments (and the context).
9235
9236 if Is_Array_Type (Typ) then
9237 B_Typ := Typ;
9238 else
9239 B_Typ := Base_Type (Typ);
9240 end if;
9241
9242 -- Straightforward case of incorrect arguments
9243
9244 if not Valid_Boolean_Arg (Typ) then
9245 Error_Msg_N ("invalid operand type for operator&", N);
9246 Set_Etype (N, Any_Type);
9247 return;
9248
9249 -- Special case of probable missing parens
9250
9251 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9252 if Parent_Is_Boolean then
9253 Error_Msg_N
9254 ("operand of not must be enclosed in parentheses",
9255 Right_Opnd (N));
9256 else
9257 Error_Msg_N
9258 ("no modular type available in this context", N);
9259 end if;
9260
9261 Set_Etype (N, Any_Type);
9262 return;
9263
9264 -- OK resolution of NOT
9265
9266 else
9267 -- Warn if non-boolean types involved. This is a case like not a < b
9268 -- where a and b are modular, where we will get (not a) < b and most
9269 -- likely not (a < b) was intended.
9270
9271 if Warn_On_Questionable_Missing_Parens
9272 and then not Is_Boolean_Type (Typ)
9273 and then Parent_Is_Boolean
9274 then
9275 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9276 end if;
9277
9278 -- Warn on double negation if checking redundant constructs
9279
9280 if Warn_On_Redundant_Constructs
9281 and then Comes_From_Source (N)
9282 and then Comes_From_Source (Right_Opnd (N))
9283 and then Root_Type (Typ) = Standard_Boolean
9284 and then Nkind (Right_Opnd (N)) = N_Op_Not
9285 then
9286 Error_Msg_N ("redundant double negation?r?", N);
9287 end if;
9288
9289 -- Complete resolution and evaluation of NOT
9290
9291 Resolve (Right_Opnd (N), B_Typ);
9292 Check_Unset_Reference (Right_Opnd (N));
9293 Set_Etype (N, B_Typ);
9294 Generate_Operator_Reference (N, B_Typ);
9295 Eval_Op_Not (N);
9296 end if;
9297 end Resolve_Op_Not;
9298
9299 -----------------------------
9300 -- Resolve_Operator_Symbol --
9301 -----------------------------
9302
9303 -- Nothing to be done, all resolved already
9304
9305 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9306 pragma Warnings (Off, N);
9307 pragma Warnings (Off, Typ);
9308
9309 begin
9310 null;
9311 end Resolve_Operator_Symbol;
9312
9313 ----------------------------------
9314 -- Resolve_Qualified_Expression --
9315 ----------------------------------
9316
9317 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9318 pragma Warnings (Off, Typ);
9319
9320 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9321 Expr : constant Node_Id := Expression (N);
9322
9323 begin
9324 Resolve (Expr, Target_Typ);
9325
9326 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9327 -- operation if not needed.
9328
9329 if Restriction_Check_Required (SPARK_05)
9330 and then Is_Array_Type (Target_Typ)
9331 and then Is_Array_Type (Etype (Expr))
9332 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9333 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9334 then
9335 Check_SPARK_05_Restriction
9336 ("array types should have matching static bounds", N);
9337 end if;
9338
9339 -- A qualified expression requires an exact match of the type, class-
9340 -- wide matching is not allowed. However, if the qualifying type is
9341 -- specific and the expression has a class-wide type, it may still be
9342 -- okay, since it can be the result of the expansion of a call to a
9343 -- dispatching function, so we also have to check class-wideness of the
9344 -- type of the expression's original node.
9345
9346 if (Is_Class_Wide_Type (Target_Typ)
9347 or else
9348 (Is_Class_Wide_Type (Etype (Expr))
9349 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9350 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9351 then
9352 Wrong_Type (Expr, Target_Typ);
9353 end if;
9354
9355 -- If the target type is unconstrained, then we reset the type of the
9356 -- result from the type of the expression. For other cases, the actual
9357 -- subtype of the expression is the target type.
9358
9359 if Is_Composite_Type (Target_Typ)
9360 and then not Is_Constrained (Target_Typ)
9361 then
9362 Set_Etype (N, Etype (Expr));
9363 end if;
9364
9365 Analyze_Dimension (N);
9366 Eval_Qualified_Expression (N);
9367
9368 -- If we still have a qualified expression after the static evaluation,
9369 -- then apply a scalar range check if needed. The reason that we do this
9370 -- after the Eval call is that otherwise, the application of the range
9371 -- check may convert an illegal static expression and result in warning
9372 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9373
9374 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9375 Apply_Scalar_Range_Check (Expr, Typ);
9376 end if;
9377 end Resolve_Qualified_Expression;
9378
9379 ------------------------------
9380 -- Resolve_Raise_Expression --
9381 ------------------------------
9382
9383 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9384 begin
9385 if Typ = Raise_Type then
9386 Error_Msg_N ("cannot find unique type for raise expression", N);
9387 Set_Etype (N, Any_Type);
9388 else
9389 Set_Etype (N, Typ);
9390 end if;
9391 end Resolve_Raise_Expression;
9392
9393 -------------------
9394 -- Resolve_Range --
9395 -------------------
9396
9397 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9398 L : constant Node_Id := Low_Bound (N);
9399 H : constant Node_Id := High_Bound (N);
9400
9401 function First_Last_Ref return Boolean;
9402 -- Returns True if N is of the form X'First .. X'Last where X is the
9403 -- same entity for both attributes.
9404
9405 --------------------
9406 -- First_Last_Ref --
9407 --------------------
9408
9409 function First_Last_Ref return Boolean is
9410 Lorig : constant Node_Id := Original_Node (L);
9411 Horig : constant Node_Id := Original_Node (H);
9412
9413 begin
9414 if Nkind (Lorig) = N_Attribute_Reference
9415 and then Nkind (Horig) = N_Attribute_Reference
9416 and then Attribute_Name (Lorig) = Name_First
9417 and then Attribute_Name (Horig) = Name_Last
9418 then
9419 declare
9420 PL : constant Node_Id := Prefix (Lorig);
9421 PH : constant Node_Id := Prefix (Horig);
9422 begin
9423 if Is_Entity_Name (PL)
9424 and then Is_Entity_Name (PH)
9425 and then Entity (PL) = Entity (PH)
9426 then
9427 return True;
9428 end if;
9429 end;
9430 end if;
9431
9432 return False;
9433 end First_Last_Ref;
9434
9435 -- Start of processing for Resolve_Range
9436
9437 begin
9438 Set_Etype (N, Typ);
9439 Resolve (L, Typ);
9440 Resolve (H, Typ);
9441
9442 -- Check for inappropriate range on unordered enumeration type
9443
9444 if Bad_Unordered_Enumeration_Reference (N, Typ)
9445
9446 -- Exclude X'First .. X'Last if X is the same entity for both
9447
9448 and then not First_Last_Ref
9449 then
9450 Error_Msg_Sloc := Sloc (Typ);
9451 Error_Msg_NE
9452 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9453 end if;
9454
9455 Check_Unset_Reference (L);
9456 Check_Unset_Reference (H);
9457
9458 -- We have to check the bounds for being within the base range as
9459 -- required for a non-static context. Normally this is automatic and
9460 -- done as part of evaluating expressions, but the N_Range node is an
9461 -- exception, since in GNAT we consider this node to be a subexpression,
9462 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9463 -- this, but that would put the test on the main evaluation path for
9464 -- expressions.
9465
9466 Check_Non_Static_Context (L);
9467 Check_Non_Static_Context (H);
9468
9469 -- Check for an ambiguous range over character literals. This will
9470 -- happen with a membership test involving only literals.
9471
9472 if Typ = Any_Character then
9473 Ambiguous_Character (L);
9474 Set_Etype (N, Any_Type);
9475 return;
9476 end if;
9477
9478 -- If bounds are static, constant-fold them, so size computations are
9479 -- identical between front-end and back-end. Do not perform this
9480 -- transformation while analyzing generic units, as type information
9481 -- would be lost when reanalyzing the constant node in the instance.
9482
9483 if Is_Discrete_Type (Typ) and then Expander_Active then
9484 if Is_OK_Static_Expression (L) then
9485 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9486 end if;
9487
9488 if Is_OK_Static_Expression (H) then
9489 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9490 end if;
9491 end if;
9492 end Resolve_Range;
9493
9494 --------------------------
9495 -- Resolve_Real_Literal --
9496 --------------------------
9497
9498 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9499 Actual_Typ : constant Entity_Id := Etype (N);
9500
9501 begin
9502 -- Special processing for fixed-point literals to make sure that the
9503 -- value is an exact multiple of small where this is required. We skip
9504 -- this for the universal real case, and also for generic types.
9505
9506 if Is_Fixed_Point_Type (Typ)
9507 and then Typ /= Universal_Fixed
9508 and then Typ /= Any_Fixed
9509 and then not Is_Generic_Type (Typ)
9510 then
9511 declare
9512 Val : constant Ureal := Realval (N);
9513 Cintr : constant Ureal := Val / Small_Value (Typ);
9514 Cint : constant Uint := UR_Trunc (Cintr);
9515 Den : constant Uint := Norm_Den (Cintr);
9516 Stat : Boolean;
9517
9518 begin
9519 -- Case of literal is not an exact multiple of the Small
9520
9521 if Den /= 1 then
9522
9523 -- For a source program literal for a decimal fixed-point type,
9524 -- this is statically illegal (RM 4.9(36)).
9525
9526 if Is_Decimal_Fixed_Point_Type (Typ)
9527 and then Actual_Typ = Universal_Real
9528 and then Comes_From_Source (N)
9529 then
9530 Error_Msg_N ("value has extraneous low order digits", N);
9531 end if;
9532
9533 -- Generate a warning if literal from source
9534
9535 if Is_OK_Static_Expression (N)
9536 and then Warn_On_Bad_Fixed_Value
9537 then
9538 Error_Msg_N
9539 ("?b?static fixed-point value is not a multiple of Small!",
9540 N);
9541 end if;
9542
9543 -- Replace literal by a value that is the exact representation
9544 -- of a value of the type, i.e. a multiple of the small value,
9545 -- by truncation, since Machine_Rounds is false for all GNAT
9546 -- fixed-point types (RM 4.9(38)).
9547
9548 Stat := Is_OK_Static_Expression (N);
9549 Rewrite (N,
9550 Make_Real_Literal (Sloc (N),
9551 Realval => Small_Value (Typ) * Cint));
9552
9553 Set_Is_Static_Expression (N, Stat);
9554 end if;
9555
9556 -- In all cases, set the corresponding integer field
9557
9558 Set_Corresponding_Integer_Value (N, Cint);
9559 end;
9560 end if;
9561
9562 -- Now replace the actual type by the expected type as usual
9563
9564 Set_Etype (N, Typ);
9565 Eval_Real_Literal (N);
9566 end Resolve_Real_Literal;
9567
9568 -----------------------
9569 -- Resolve_Reference --
9570 -----------------------
9571
9572 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9573 P : constant Node_Id := Prefix (N);
9574
9575 begin
9576 -- Replace general access with specific type
9577
9578 if Ekind (Etype (N)) = E_Allocator_Type then
9579 Set_Etype (N, Base_Type (Typ));
9580 end if;
9581
9582 Resolve (P, Designated_Type (Etype (N)));
9583
9584 -- If we are taking the reference of a volatile entity, then treat it as
9585 -- a potential modification of this entity. This is too conservative,
9586 -- but necessary because remove side effects can cause transformations
9587 -- of normal assignments into reference sequences that otherwise fail to
9588 -- notice the modification.
9589
9590 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9591 Note_Possible_Modification (P, Sure => False);
9592 end if;
9593 end Resolve_Reference;
9594
9595 --------------------------------
9596 -- Resolve_Selected_Component --
9597 --------------------------------
9598
9599 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9600 Comp : Entity_Id;
9601 Comp1 : Entity_Id := Empty; -- prevent junk warning
9602 P : constant Node_Id := Prefix (N);
9603 S : constant Node_Id := Selector_Name (N);
9604 T : Entity_Id := Etype (P);
9605 I : Interp_Index;
9606 I1 : Interp_Index := 0; -- prevent junk warning
9607 It : Interp;
9608 It1 : Interp;
9609 Found : Boolean;
9610
9611 function Init_Component return Boolean;
9612 -- Check whether this is the initialization of a component within an
9613 -- init proc (by assignment or call to another init proc). If true,
9614 -- there is no need for a discriminant check.
9615
9616 --------------------
9617 -- Init_Component --
9618 --------------------
9619
9620 function Init_Component return Boolean is
9621 begin
9622 return Inside_Init_Proc
9623 and then Nkind (Prefix (N)) = N_Identifier
9624 and then Chars (Prefix (N)) = Name_uInit
9625 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9626 end Init_Component;
9627
9628 -- Start of processing for Resolve_Selected_Component
9629
9630 begin
9631 if Is_Overloaded (P) then
9632
9633 -- Use the context type to select the prefix that has a selector
9634 -- of the correct name and type.
9635
9636 Found := False;
9637 Get_First_Interp (P, I, It);
9638
9639 Search : while Present (It.Typ) loop
9640 if Is_Access_Type (It.Typ) then
9641 T := Designated_Type (It.Typ);
9642 else
9643 T := It.Typ;
9644 end if;
9645
9646 -- Locate selected component. For a private prefix the selector
9647 -- can denote a discriminant.
9648
9649 if Is_Record_Type (T) or else Is_Private_Type (T) then
9650
9651 -- The visible components of a class-wide type are those of
9652 -- the root type.
9653
9654 if Is_Class_Wide_Type (T) then
9655 T := Etype (T);
9656 end if;
9657
9658 Comp := First_Entity (T);
9659 while Present (Comp) loop
9660 if Chars (Comp) = Chars (S)
9661 and then Covers (Typ, Etype (Comp))
9662 then
9663 if not Found then
9664 Found := True;
9665 I1 := I;
9666 It1 := It;
9667 Comp1 := Comp;
9668
9669 else
9670 It := Disambiguate (P, I1, I, Any_Type);
9671
9672 if It = No_Interp then
9673 Error_Msg_N
9674 ("ambiguous prefix for selected component", N);
9675 Set_Etype (N, Typ);
9676 return;
9677
9678 else
9679 It1 := It;
9680
9681 -- There may be an implicit dereference. Retrieve
9682 -- designated record type.
9683
9684 if Is_Access_Type (It1.Typ) then
9685 T := Designated_Type (It1.Typ);
9686 else
9687 T := It1.Typ;
9688 end if;
9689
9690 if Scope (Comp1) /= T then
9691
9692 -- Resolution chooses the new interpretation.
9693 -- Find the component with the right name.
9694
9695 Comp1 := First_Entity (T);
9696 while Present (Comp1)
9697 and then Chars (Comp1) /= Chars (S)
9698 loop
9699 Comp1 := Next_Entity (Comp1);
9700 end loop;
9701 end if;
9702
9703 exit Search;
9704 end if;
9705 end if;
9706 end if;
9707
9708 Comp := Next_Entity (Comp);
9709 end loop;
9710 end if;
9711
9712 Get_Next_Interp (I, It);
9713 end loop Search;
9714
9715 -- There must be a legal interpretation at this point
9716
9717 pragma Assert (Found);
9718 Resolve (P, It1.Typ);
9719 Set_Etype (N, Typ);
9720 Set_Entity_With_Checks (S, Comp1);
9721
9722 else
9723 -- Resolve prefix with its type
9724
9725 Resolve (P, T);
9726 end if;
9727
9728 -- Generate cross-reference. We needed to wait until full overloading
9729 -- resolution was complete to do this, since otherwise we can't tell if
9730 -- we are an lvalue or not.
9731
9732 if May_Be_Lvalue (N) then
9733 Generate_Reference (Entity (S), S, 'm');
9734 else
9735 Generate_Reference (Entity (S), S, 'r');
9736 end if;
9737
9738 -- If prefix is an access type, the node will be transformed into an
9739 -- explicit dereference during expansion. The type of the node is the
9740 -- designated type of that of the prefix.
9741
9742 if Is_Access_Type (Etype (P)) then
9743 T := Designated_Type (Etype (P));
9744 Check_Fully_Declared_Prefix (T, P);
9745 else
9746 T := Etype (P);
9747 end if;
9748
9749 -- Set flag for expander if discriminant check required on a component
9750 -- appearing within a variant.
9751
9752 if Has_Discriminants (T)
9753 and then Ekind (Entity (S)) = E_Component
9754 and then Present (Original_Record_Component (Entity (S)))
9755 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9756 and then
9757 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
9758 and then not Discriminant_Checks_Suppressed (T)
9759 and then not Init_Component
9760 then
9761 Set_Do_Discriminant_Check (N);
9762 end if;
9763
9764 if Ekind (Entity (S)) = E_Void then
9765 Error_Msg_N ("premature use of component", S);
9766 end if;
9767
9768 -- If the prefix is a record conversion, this may be a renamed
9769 -- discriminant whose bounds differ from those of the original
9770 -- one, so we must ensure that a range check is performed.
9771
9772 if Nkind (P) = N_Type_Conversion
9773 and then Ekind (Entity (S)) = E_Discriminant
9774 and then Is_Discrete_Type (Typ)
9775 then
9776 Set_Etype (N, Base_Type (Typ));
9777 end if;
9778
9779 -- Note: No Eval processing is required, because the prefix is of a
9780 -- record type, or protected type, and neither can possibly be static.
9781
9782 -- If the record type is atomic, and the component is non-atomic, then
9783 -- this is worth a warning, since we have a situation where the access
9784 -- to the component may cause extra read/writes of the atomic array
9785 -- object, or partial word accesses, both of which may be unexpected.
9786
9787 if Nkind (N) = N_Selected_Component
9788 and then Is_Atomic_Ref_With_Address (N)
9789 and then not Is_Atomic (Entity (S))
9790 and then not Is_Atomic (Etype (Entity (S)))
9791 then
9792 Error_Msg_N
9793 ("??access to non-atomic component of atomic record",
9794 Prefix (N));
9795 Error_Msg_N
9796 ("\??may cause unexpected accesses to atomic object",
9797 Prefix (N));
9798 end if;
9799
9800 Analyze_Dimension (N);
9801 end Resolve_Selected_Component;
9802
9803 -------------------
9804 -- Resolve_Shift --
9805 -------------------
9806
9807 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9808 B_Typ : constant Entity_Id := Base_Type (Typ);
9809 L : constant Node_Id := Left_Opnd (N);
9810 R : constant Node_Id := Right_Opnd (N);
9811
9812 begin
9813 -- We do the resolution using the base type, because intermediate values
9814 -- in expressions always are of the base type, not a subtype of it.
9815
9816 Resolve (L, B_Typ);
9817 Resolve (R, Standard_Natural);
9818
9819 Check_Unset_Reference (L);
9820 Check_Unset_Reference (R);
9821
9822 Set_Etype (N, B_Typ);
9823 Generate_Operator_Reference (N, B_Typ);
9824 Eval_Shift (N);
9825 end Resolve_Shift;
9826
9827 ---------------------------
9828 -- Resolve_Short_Circuit --
9829 ---------------------------
9830
9831 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
9832 B_Typ : constant Entity_Id := Base_Type (Typ);
9833 L : constant Node_Id := Left_Opnd (N);
9834 R : constant Node_Id := Right_Opnd (N);
9835
9836 begin
9837 -- Ensure all actions associated with the left operand (e.g.
9838 -- finalization of transient controlled objects) are fully evaluated
9839 -- locally within an expression with actions. This is particularly
9840 -- helpful for coverage analysis. However this should not happen in
9841 -- generics or if Minimize_Expression_With_Actions is set.
9842
9843 if Expander_Active and not Minimize_Expression_With_Actions then
9844 declare
9845 Reloc_L : constant Node_Id := Relocate_Node (L);
9846 begin
9847 Save_Interps (Old_N => L, New_N => Reloc_L);
9848
9849 Rewrite (L,
9850 Make_Expression_With_Actions (Sloc (L),
9851 Actions => New_List,
9852 Expression => Reloc_L));
9853
9854 -- Set Comes_From_Source on L to preserve warnings for unset
9855 -- reference.
9856
9857 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
9858 end;
9859 end if;
9860
9861 Resolve (L, B_Typ);
9862 Resolve (R, B_Typ);
9863
9864 -- Check for issuing warning for always False assert/check, this happens
9865 -- when assertions are turned off, in which case the pragma Assert/Check
9866 -- was transformed into:
9867
9868 -- if False and then <condition> then ...
9869
9870 -- and we detect this pattern
9871
9872 if Warn_On_Assertion_Failure
9873 and then Is_Entity_Name (R)
9874 and then Entity (R) = Standard_False
9875 and then Nkind (Parent (N)) = N_If_Statement
9876 and then Nkind (N) = N_And_Then
9877 and then Is_Entity_Name (L)
9878 and then Entity (L) = Standard_False
9879 then
9880 declare
9881 Orig : constant Node_Id := Original_Node (Parent (N));
9882
9883 begin
9884 -- Special handling of Asssert pragma
9885
9886 if Nkind (Orig) = N_Pragma
9887 and then Pragma_Name (Orig) = Name_Assert
9888 then
9889 declare
9890 Expr : constant Node_Id :=
9891 Original_Node
9892 (Expression
9893 (First (Pragma_Argument_Associations (Orig))));
9894
9895 begin
9896 -- Don't warn if original condition is explicit False,
9897 -- since obviously the failure is expected in this case.
9898
9899 if Is_Entity_Name (Expr)
9900 and then Entity (Expr) = Standard_False
9901 then
9902 null;
9903
9904 -- Issue warning. We do not want the deletion of the
9905 -- IF/AND-THEN to take this message with it. We achieve this
9906 -- by making sure that the expanded code points to the Sloc
9907 -- of the expression, not the original pragma.
9908
9909 else
9910 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
9911 -- The source location of the expression is not usually
9912 -- the best choice here. For example, it gets located on
9913 -- the last AND keyword in a chain of boolean expressiond
9914 -- AND'ed together. It is best to put the message on the
9915 -- first character of the assertion, which is the effect
9916 -- of the First_Node call here.
9917
9918 Error_Msg_F
9919 ("?A?assertion would fail at run time!",
9920 Expression
9921 (First (Pragma_Argument_Associations (Orig))));
9922 end if;
9923 end;
9924
9925 -- Similar processing for Check pragma
9926
9927 elsif Nkind (Orig) = N_Pragma
9928 and then Pragma_Name (Orig) = Name_Check
9929 then
9930 -- Don't want to warn if original condition is explicit False
9931
9932 declare
9933 Expr : constant Node_Id :=
9934 Original_Node
9935 (Expression
9936 (Next (First (Pragma_Argument_Associations (Orig)))));
9937 begin
9938 if Is_Entity_Name (Expr)
9939 and then Entity (Expr) = Standard_False
9940 then
9941 null;
9942
9943 -- Post warning
9944
9945 else
9946 -- Again use Error_Msg_F rather than Error_Msg_N, see
9947 -- comment above for an explanation of why we do this.
9948
9949 Error_Msg_F
9950 ("?A?check would fail at run time!",
9951 Expression
9952 (Last (Pragma_Argument_Associations (Orig))));
9953 end if;
9954 end;
9955 end if;
9956 end;
9957 end if;
9958
9959 -- Continue with processing of short circuit
9960
9961 Check_Unset_Reference (L);
9962 Check_Unset_Reference (R);
9963
9964 Set_Etype (N, B_Typ);
9965 Eval_Short_Circuit (N);
9966 end Resolve_Short_Circuit;
9967
9968 -------------------
9969 -- Resolve_Slice --
9970 -------------------
9971
9972 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
9973 Drange : constant Node_Id := Discrete_Range (N);
9974 Name : constant Node_Id := Prefix (N);
9975 Array_Type : Entity_Id := Empty;
9976 Dexpr : Node_Id := Empty;
9977 Index_Type : Entity_Id;
9978
9979 begin
9980 if Is_Overloaded (Name) then
9981
9982 -- Use the context type to select the prefix that yields the correct
9983 -- array type.
9984
9985 declare
9986 I : Interp_Index;
9987 I1 : Interp_Index := 0;
9988 It : Interp;
9989 P : constant Node_Id := Prefix (N);
9990 Found : Boolean := False;
9991
9992 begin
9993 Get_First_Interp (P, I, It);
9994 while Present (It.Typ) loop
9995 if (Is_Array_Type (It.Typ)
9996 and then Covers (Typ, It.Typ))
9997 or else (Is_Access_Type (It.Typ)
9998 and then Is_Array_Type (Designated_Type (It.Typ))
9999 and then Covers (Typ, Designated_Type (It.Typ)))
10000 then
10001 if Found then
10002 It := Disambiguate (P, I1, I, Any_Type);
10003
10004 if It = No_Interp then
10005 Error_Msg_N ("ambiguous prefix for slicing", N);
10006 Set_Etype (N, Typ);
10007 return;
10008 else
10009 Found := True;
10010 Array_Type := It.Typ;
10011 I1 := I;
10012 end if;
10013 else
10014 Found := True;
10015 Array_Type := It.Typ;
10016 I1 := I;
10017 end if;
10018 end if;
10019
10020 Get_Next_Interp (I, It);
10021 end loop;
10022 end;
10023
10024 else
10025 Array_Type := Etype (Name);
10026 end if;
10027
10028 Resolve (Name, Array_Type);
10029
10030 if Is_Access_Type (Array_Type) then
10031 Apply_Access_Check (N);
10032 Array_Type := Designated_Type (Array_Type);
10033
10034 -- If the prefix is an access to an unconstrained array, we must use
10035 -- the actual subtype of the object to perform the index checks. The
10036 -- object denoted by the prefix is implicit in the node, so we build
10037 -- an explicit representation for it in order to compute the actual
10038 -- subtype.
10039
10040 if not Is_Constrained (Array_Type) then
10041 Remove_Side_Effects (Prefix (N));
10042
10043 declare
10044 Obj : constant Node_Id :=
10045 Make_Explicit_Dereference (Sloc (N),
10046 Prefix => New_Copy_Tree (Prefix (N)));
10047 begin
10048 Set_Etype (Obj, Array_Type);
10049 Set_Parent (Obj, Parent (N));
10050 Array_Type := Get_Actual_Subtype (Obj);
10051 end;
10052 end if;
10053
10054 elsif Is_Entity_Name (Name)
10055 or else Nkind (Name) = N_Explicit_Dereference
10056 or else (Nkind (Name) = N_Function_Call
10057 and then not Is_Constrained (Etype (Name)))
10058 then
10059 Array_Type := Get_Actual_Subtype (Name);
10060
10061 -- If the name is a selected component that depends on discriminants,
10062 -- build an actual subtype for it. This can happen only when the name
10063 -- itself is overloaded; otherwise the actual subtype is created when
10064 -- the selected component is analyzed.
10065
10066 elsif Nkind (Name) = N_Selected_Component
10067 and then Full_Analysis
10068 and then Depends_On_Discriminant (First_Index (Array_Type))
10069 then
10070 declare
10071 Act_Decl : constant Node_Id :=
10072 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10073 begin
10074 Insert_Action (N, Act_Decl);
10075 Array_Type := Defining_Identifier (Act_Decl);
10076 end;
10077
10078 -- Maybe this should just be "else", instead of checking for the
10079 -- specific case of slice??? This is needed for the case where the
10080 -- prefix is an Image attribute, which gets expanded to a slice, and so
10081 -- has a constrained subtype which we want to use for the slice range
10082 -- check applied below (the range check won't get done if the
10083 -- unconstrained subtype of the 'Image is used).
10084
10085 elsif Nkind (Name) = N_Slice then
10086 Array_Type := Etype (Name);
10087 end if;
10088
10089 -- Obtain the type of the array index
10090
10091 if Ekind (Array_Type) = E_String_Literal_Subtype then
10092 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10093 else
10094 Index_Type := Etype (First_Index (Array_Type));
10095 end if;
10096
10097 -- If name was overloaded, set slice type correctly now
10098
10099 Set_Etype (N, Array_Type);
10100
10101 -- Handle the generation of a range check that compares the array index
10102 -- against the discrete_range. The check is not applied to internally
10103 -- built nodes associated with the expansion of dispatch tables. Check
10104 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10105 -- the unit.
10106
10107 if Tagged_Type_Expansion
10108 and then RTU_Loaded (Ada_Tags)
10109 and then Nkind (Prefix (N)) = N_Selected_Component
10110 and then Present (Entity (Selector_Name (Prefix (N))))
10111 and then Entity (Selector_Name (Prefix (N))) =
10112 RTE_Record_Component (RE_Prims_Ptr)
10113 then
10114 null;
10115
10116 -- The discrete_range is specified by a subtype indication. Create a
10117 -- shallow copy and inherit the type, parent and source location from
10118 -- the discrete_range. This ensures that the range check is inserted
10119 -- relative to the slice and that the runtime exception points to the
10120 -- proper construct.
10121
10122 elsif Is_Entity_Name (Drange) then
10123 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10124
10125 Set_Etype (Dexpr, Etype (Drange));
10126 Set_Parent (Dexpr, Parent (Drange));
10127 Set_Sloc (Dexpr, Sloc (Drange));
10128
10129 -- The discrete_range is a regular range. Resolve the bounds and remove
10130 -- their side effects.
10131
10132 else
10133 Resolve (Drange, Base_Type (Index_Type));
10134
10135 if Nkind (Drange) = N_Range then
10136 Force_Evaluation (Low_Bound (Drange));
10137 Force_Evaluation (High_Bound (Drange));
10138
10139 Dexpr := Drange;
10140 end if;
10141 end if;
10142
10143 if Present (Dexpr) then
10144 Apply_Range_Check (Dexpr, Index_Type);
10145 end if;
10146
10147 Set_Slice_Subtype (N);
10148
10149 -- Check bad use of type with predicates
10150
10151 declare
10152 Subt : Entity_Id;
10153
10154 begin
10155 if Nkind (Drange) = N_Subtype_Indication
10156 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10157 then
10158 Subt := Entity (Subtype_Mark (Drange));
10159 else
10160 Subt := Etype (Drange);
10161 end if;
10162
10163 if Has_Predicates (Subt) then
10164 Bad_Predicated_Subtype_Use
10165 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10166 end if;
10167 end;
10168
10169 -- Otherwise here is where we check suspicious indexes
10170
10171 if Nkind (Drange) = N_Range then
10172 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10173 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10174 end if;
10175
10176 Analyze_Dimension (N);
10177 Eval_Slice (N);
10178 end Resolve_Slice;
10179
10180 ----------------------------
10181 -- Resolve_String_Literal --
10182 ----------------------------
10183
10184 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10185 C_Typ : constant Entity_Id := Component_Type (Typ);
10186 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10187 Loc : constant Source_Ptr := Sloc (N);
10188 Str : constant String_Id := Strval (N);
10189 Strlen : constant Nat := String_Length (Str);
10190 Subtype_Id : Entity_Id;
10191 Need_Check : Boolean;
10192
10193 begin
10194 -- For a string appearing in a concatenation, defer creation of the
10195 -- string_literal_subtype until the end of the resolution of the
10196 -- concatenation, because the literal may be constant-folded away. This
10197 -- is a useful optimization for long concatenation expressions.
10198
10199 -- If the string is an aggregate built for a single character (which
10200 -- happens in a non-static context) or a is null string to which special
10201 -- checks may apply, we build the subtype. Wide strings must also get a
10202 -- string subtype if they come from a one character aggregate. Strings
10203 -- generated by attributes might be static, but it is often hard to
10204 -- determine whether the enclosing context is static, so we generate
10205 -- subtypes for them as well, thus losing some rarer optimizations ???
10206 -- Same for strings that come from a static conversion.
10207
10208 Need_Check :=
10209 (Strlen = 0 and then Typ /= Standard_String)
10210 or else Nkind (Parent (N)) /= N_Op_Concat
10211 or else (N /= Left_Opnd (Parent (N))
10212 and then N /= Right_Opnd (Parent (N)))
10213 or else ((Typ = Standard_Wide_String
10214 or else Typ = Standard_Wide_Wide_String)
10215 and then Nkind (Original_Node (N)) /= N_String_Literal);
10216
10217 -- If the resolving type is itself a string literal subtype, we can just
10218 -- reuse it, since there is no point in creating another.
10219
10220 if Ekind (Typ) = E_String_Literal_Subtype then
10221 Subtype_Id := Typ;
10222
10223 elsif Nkind (Parent (N)) = N_Op_Concat
10224 and then not Need_Check
10225 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10226 N_Attribute_Reference,
10227 N_Qualified_Expression,
10228 N_Type_Conversion)
10229 then
10230 Subtype_Id := Typ;
10231
10232 -- Do not generate a string literal subtype for the default expression
10233 -- of a formal parameter in GNATprove mode. This is because the string
10234 -- subtype is associated with the freezing actions of the subprogram,
10235 -- however freezing is disabled in GNATprove mode and as a result the
10236 -- subtype is unavailable.
10237
10238 elsif GNATprove_Mode
10239 and then Nkind (Parent (N)) = N_Parameter_Specification
10240 then
10241 Subtype_Id := Typ;
10242
10243 -- Otherwise we must create a string literal subtype. Note that the
10244 -- whole idea of string literal subtypes is simply to avoid the need
10245 -- for building a full fledged array subtype for each literal.
10246
10247 else
10248 Set_String_Literal_Subtype (N, Typ);
10249 Subtype_Id := Etype (N);
10250 end if;
10251
10252 if Nkind (Parent (N)) /= N_Op_Concat
10253 or else Need_Check
10254 then
10255 Set_Etype (N, Subtype_Id);
10256 Eval_String_Literal (N);
10257 end if;
10258
10259 if Is_Limited_Composite (Typ)
10260 or else Is_Private_Composite (Typ)
10261 then
10262 Error_Msg_N ("string literal not available for private array", N);
10263 Set_Etype (N, Any_Type);
10264 return;
10265 end if;
10266
10267 -- The validity of a null string has been checked in the call to
10268 -- Eval_String_Literal.
10269
10270 if Strlen = 0 then
10271 return;
10272
10273 -- Always accept string literal with component type Any_Character, which
10274 -- occurs in error situations and in comparisons of literals, both of
10275 -- which should accept all literals.
10276
10277 elsif R_Typ = Any_Character then
10278 return;
10279
10280 -- If the type is bit-packed, then we always transform the string
10281 -- literal into a full fledged aggregate.
10282
10283 elsif Is_Bit_Packed_Array (Typ) then
10284 null;
10285
10286 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10287
10288 else
10289 -- For Standard.Wide_Wide_String, or any other type whose component
10290 -- type is Standard.Wide_Wide_Character, we know that all the
10291 -- characters in the string must be acceptable, since the parser
10292 -- accepted the characters as valid character literals.
10293
10294 if R_Typ = Standard_Wide_Wide_Character then
10295 null;
10296
10297 -- For the case of Standard.String, or any other type whose component
10298 -- type is Standard.Character, we must make sure that there are no
10299 -- wide characters in the string, i.e. that it is entirely composed
10300 -- of characters in range of type Character.
10301
10302 -- If the string literal is the result of a static concatenation, the
10303 -- test has already been performed on the components, and need not be
10304 -- repeated.
10305
10306 elsif R_Typ = Standard_Character
10307 and then Nkind (Original_Node (N)) /= N_Op_Concat
10308 then
10309 for J in 1 .. Strlen loop
10310 if not In_Character_Range (Get_String_Char (Str, J)) then
10311
10312 -- If we are out of range, post error. This is one of the
10313 -- very few places that we place the flag in the middle of
10314 -- a token, right under the offending wide character. Not
10315 -- quite clear if this is right wrt wide character encoding
10316 -- sequences, but it's only an error message.
10317
10318 Error_Msg
10319 ("literal out of range of type Standard.Character",
10320 Source_Ptr (Int (Loc) + J));
10321 return;
10322 end if;
10323 end loop;
10324
10325 -- For the case of Standard.Wide_String, or any other type whose
10326 -- component type is Standard.Wide_Character, we must make sure that
10327 -- there are no wide characters in the string, i.e. that it is
10328 -- entirely composed of characters in range of type Wide_Character.
10329
10330 -- If the string literal is the result of a static concatenation,
10331 -- the test has already been performed on the components, and need
10332 -- not be repeated.
10333
10334 elsif R_Typ = Standard_Wide_Character
10335 and then Nkind (Original_Node (N)) /= N_Op_Concat
10336 then
10337 for J in 1 .. Strlen loop
10338 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10339
10340 -- If we are out of range, post error. This is one of the
10341 -- very few places that we place the flag in the middle of
10342 -- a token, right under the offending wide character.
10343
10344 -- This is not quite right, because characters in general
10345 -- will take more than one character position ???
10346
10347 Error_Msg
10348 ("literal out of range of type Standard.Wide_Character",
10349 Source_Ptr (Int (Loc) + J));
10350 return;
10351 end if;
10352 end loop;
10353
10354 -- If the root type is not a standard character, then we will convert
10355 -- the string into an aggregate and will let the aggregate code do
10356 -- the checking. Standard Wide_Wide_Character is also OK here.
10357
10358 else
10359 null;
10360 end if;
10361
10362 -- See if the component type of the array corresponding to the string
10363 -- has compile time known bounds. If yes we can directly check
10364 -- whether the evaluation of the string will raise constraint error.
10365 -- Otherwise we need to transform the string literal into the
10366 -- corresponding character aggregate and let the aggregate code do
10367 -- the checking.
10368
10369 if Is_Standard_Character_Type (R_Typ) then
10370
10371 -- Check for the case of full range, where we are definitely OK
10372
10373 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10374 return;
10375 end if;
10376
10377 -- Here the range is not the complete base type range, so check
10378
10379 declare
10380 Comp_Typ_Lo : constant Node_Id :=
10381 Type_Low_Bound (Component_Type (Typ));
10382 Comp_Typ_Hi : constant Node_Id :=
10383 Type_High_Bound (Component_Type (Typ));
10384
10385 Char_Val : Uint;
10386
10387 begin
10388 if Compile_Time_Known_Value (Comp_Typ_Lo)
10389 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10390 then
10391 for J in 1 .. Strlen loop
10392 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10393
10394 if Char_Val < Expr_Value (Comp_Typ_Lo)
10395 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10396 then
10397 Apply_Compile_Time_Constraint_Error
10398 (N, "character out of range??",
10399 CE_Range_Check_Failed,
10400 Loc => Source_Ptr (Int (Loc) + J));
10401 end if;
10402 end loop;
10403
10404 return;
10405 end if;
10406 end;
10407 end if;
10408 end if;
10409
10410 -- If we got here we meed to transform the string literal into the
10411 -- equivalent qualified positional array aggregate. This is rather
10412 -- heavy artillery for this situation, but it is hard work to avoid.
10413
10414 declare
10415 Lits : constant List_Id := New_List;
10416 P : Source_Ptr := Loc + 1;
10417 C : Char_Code;
10418
10419 begin
10420 -- Build the character literals, we give them source locations that
10421 -- correspond to the string positions, which is a bit tricky given
10422 -- the possible presence of wide character escape sequences.
10423
10424 for J in 1 .. Strlen loop
10425 C := Get_String_Char (Str, J);
10426 Set_Character_Literal_Name (C);
10427
10428 Append_To (Lits,
10429 Make_Character_Literal (P,
10430 Chars => Name_Find,
10431 Char_Literal_Value => UI_From_CC (C)));
10432
10433 if In_Character_Range (C) then
10434 P := P + 1;
10435
10436 -- Should we have a call to Skip_Wide here ???
10437
10438 -- ??? else
10439 -- Skip_Wide (P);
10440
10441 end if;
10442 end loop;
10443
10444 Rewrite (N,
10445 Make_Qualified_Expression (Loc,
10446 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10447 Expression =>
10448 Make_Aggregate (Loc, Expressions => Lits)));
10449
10450 Analyze_And_Resolve (N, Typ);
10451 end;
10452 end Resolve_String_Literal;
10453
10454 -----------------------------
10455 -- Resolve_Type_Conversion --
10456 -----------------------------
10457
10458 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10459 Conv_OK : constant Boolean := Conversion_OK (N);
10460 Operand : constant Node_Id := Expression (N);
10461 Operand_Typ : constant Entity_Id := Etype (Operand);
10462 Target_Typ : constant Entity_Id := Etype (N);
10463 Rop : Node_Id;
10464 Orig_N : Node_Id;
10465 Orig_T : Node_Id;
10466
10467 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10468 -- Set to False to suppress cases where we want to suppress the test
10469 -- for redundancy to avoid possible false positives on this warning.
10470
10471 begin
10472 if not Conv_OK
10473 and then not Valid_Conversion (N, Target_Typ, Operand)
10474 then
10475 return;
10476 end if;
10477
10478 -- If the Operand Etype is Universal_Fixed, then the conversion is
10479 -- never redundant. We need this check because by the time we have
10480 -- finished the rather complex transformation, the conversion looks
10481 -- redundant when it is not.
10482
10483 if Operand_Typ = Universal_Fixed then
10484 Test_Redundant := False;
10485
10486 -- If the operand is marked as Any_Fixed, then special processing is
10487 -- required. This is also a case where we suppress the test for a
10488 -- redundant conversion, since most certainly it is not redundant.
10489
10490 elsif Operand_Typ = Any_Fixed then
10491 Test_Redundant := False;
10492
10493 -- Mixed-mode operation involving a literal. Context must be a fixed
10494 -- type which is applied to the literal subsequently.
10495
10496 if Is_Fixed_Point_Type (Typ) then
10497 Set_Etype (Operand, Universal_Real);
10498
10499 elsif Is_Numeric_Type (Typ)
10500 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10501 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10502 or else
10503 Etype (Left_Opnd (Operand)) = Universal_Real)
10504 then
10505 -- Return if expression is ambiguous
10506
10507 if Unique_Fixed_Point_Type (N) = Any_Type then
10508 return;
10509
10510 -- If nothing else, the available fixed type is Duration
10511
10512 else
10513 Set_Etype (Operand, Standard_Duration);
10514 end if;
10515
10516 -- Resolve the real operand with largest available precision
10517
10518 if Etype (Right_Opnd (Operand)) = Universal_Real then
10519 Rop := New_Copy_Tree (Right_Opnd (Operand));
10520 else
10521 Rop := New_Copy_Tree (Left_Opnd (Operand));
10522 end if;
10523
10524 Resolve (Rop, Universal_Real);
10525
10526 -- If the operand is a literal (it could be a non-static and
10527 -- illegal exponentiation) check whether the use of Duration
10528 -- is potentially inaccurate.
10529
10530 if Nkind (Rop) = N_Real_Literal
10531 and then Realval (Rop) /= Ureal_0
10532 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10533 then
10534 Error_Msg_N
10535 ("??universal real operand can only "
10536 & "be interpreted as Duration!", Rop);
10537 Error_Msg_N
10538 ("\??precision will be lost in the conversion!", Rop);
10539 end if;
10540
10541 elsif Is_Numeric_Type (Typ)
10542 and then Nkind (Operand) in N_Op
10543 and then Unique_Fixed_Point_Type (N) /= Any_Type
10544 then
10545 Set_Etype (Operand, Standard_Duration);
10546
10547 else
10548 Error_Msg_N ("invalid context for mixed mode operation", N);
10549 Set_Etype (Operand, Any_Type);
10550 return;
10551 end if;
10552 end if;
10553
10554 Resolve (Operand);
10555
10556 -- In SPARK, a type conversion between array types should be restricted
10557 -- to types which have matching static bounds.
10558
10559 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10560 -- operation if not needed.
10561
10562 if Restriction_Check_Required (SPARK_05)
10563 and then Is_Array_Type (Target_Typ)
10564 and then Is_Array_Type (Operand_Typ)
10565 and then Operand_Typ /= Any_Composite -- or else Operand in error
10566 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10567 then
10568 Check_SPARK_05_Restriction
10569 ("array types should have matching static bounds", N);
10570 end if;
10571
10572 -- In formal mode, the operand of an ancestor type conversion must be an
10573 -- object (not an expression).
10574
10575 if Is_Tagged_Type (Target_Typ)
10576 and then not Is_Class_Wide_Type (Target_Typ)
10577 and then Is_Tagged_Type (Operand_Typ)
10578 and then not Is_Class_Wide_Type (Operand_Typ)
10579 and then Is_Ancestor (Target_Typ, Operand_Typ)
10580 and then not Is_SPARK_05_Object_Reference (Operand)
10581 then
10582 Check_SPARK_05_Restriction ("object required", Operand);
10583 end if;
10584
10585 Analyze_Dimension (N);
10586
10587 -- Note: we do the Eval_Type_Conversion call before applying the
10588 -- required checks for a subtype conversion. This is important, since
10589 -- both are prepared under certain circumstances to change the type
10590 -- conversion to a constraint error node, but in the case of
10591 -- Eval_Type_Conversion this may reflect an illegality in the static
10592 -- case, and we would miss the illegality (getting only a warning
10593 -- message), if we applied the type conversion checks first.
10594
10595 Eval_Type_Conversion (N);
10596
10597 -- Even when evaluation is not possible, we may be able to simplify the
10598 -- conversion or its expression. This needs to be done before applying
10599 -- checks, since otherwise the checks may use the original expression
10600 -- and defeat the simplifications. This is specifically the case for
10601 -- elimination of the floating-point Truncation attribute in
10602 -- float-to-int conversions.
10603
10604 Simplify_Type_Conversion (N);
10605
10606 -- If after evaluation we still have a type conversion, then we may need
10607 -- to apply checks required for a subtype conversion.
10608
10609 -- Skip these type conversion checks if universal fixed operands
10610 -- operands involved, since range checks are handled separately for
10611 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10612
10613 if Nkind (N) = N_Type_Conversion
10614 and then not Is_Generic_Type (Root_Type (Target_Typ))
10615 and then Target_Typ /= Universal_Fixed
10616 and then Operand_Typ /= Universal_Fixed
10617 then
10618 Apply_Type_Conversion_Checks (N);
10619 end if;
10620
10621 -- Issue warning for conversion of simple object to its own type. We
10622 -- have to test the original nodes, since they may have been rewritten
10623 -- by various optimizations.
10624
10625 Orig_N := Original_Node (N);
10626
10627 -- Here we test for a redundant conversion if the warning mode is
10628 -- active (and was not locally reset), and we have a type conversion
10629 -- from source not appearing in a generic instance.
10630
10631 if Test_Redundant
10632 and then Nkind (Orig_N) = N_Type_Conversion
10633 and then Comes_From_Source (Orig_N)
10634 and then not In_Instance
10635 then
10636 Orig_N := Original_Node (Expression (Orig_N));
10637 Orig_T := Target_Typ;
10638
10639 -- If the node is part of a larger expression, the Target_Type
10640 -- may not be the original type of the node if the context is a
10641 -- condition. Recover original type to see if conversion is needed.
10642
10643 if Is_Boolean_Type (Orig_T)
10644 and then Nkind (Parent (N)) in N_Op
10645 then
10646 Orig_T := Etype (Parent (N));
10647 end if;
10648
10649 -- If we have an entity name, then give the warning if the entity
10650 -- is the right type, or if it is a loop parameter covered by the
10651 -- original type (that's needed because loop parameters have an
10652 -- odd subtype coming from the bounds).
10653
10654 if (Is_Entity_Name (Orig_N)
10655 and then
10656 (Etype (Entity (Orig_N)) = Orig_T
10657 or else
10658 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10659 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10660
10661 -- If not an entity, then type of expression must match
10662
10663 or else Etype (Orig_N) = Orig_T
10664 then
10665 -- One more check, do not give warning if the analyzed conversion
10666 -- has an expression with non-static bounds, and the bounds of the
10667 -- target are static. This avoids junk warnings in cases where the
10668 -- conversion is necessary to establish staticness, for example in
10669 -- a case statement.
10670
10671 if not Is_OK_Static_Subtype (Operand_Typ)
10672 and then Is_OK_Static_Subtype (Target_Typ)
10673 then
10674 null;
10675
10676 -- Finally, if this type conversion occurs in a context requiring
10677 -- a prefix, and the expression is a qualified expression then the
10678 -- type conversion is not redundant, since a qualified expression
10679 -- is not a prefix, whereas a type conversion is. For example, "X
10680 -- := T'(Funx(...)).Y;" is illegal because a selected component
10681 -- requires a prefix, but a type conversion makes it legal: "X :=
10682 -- T(T'(Funx(...))).Y;"
10683
10684 -- In Ada 2012, a qualified expression is a name, so this idiom is
10685 -- no longer needed, but we still suppress the warning because it
10686 -- seems unfriendly for warnings to pop up when you switch to the
10687 -- newer language version.
10688
10689 elsif Nkind (Orig_N) = N_Qualified_Expression
10690 and then Nkind_In (Parent (N), N_Attribute_Reference,
10691 N_Indexed_Component,
10692 N_Selected_Component,
10693 N_Slice,
10694 N_Explicit_Dereference)
10695 then
10696 null;
10697
10698 -- Never warn on conversion to Long_Long_Integer'Base since
10699 -- that is most likely an artifact of the extended overflow
10700 -- checking and comes from complex expanded code.
10701
10702 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10703 null;
10704
10705 -- Here we give the redundant conversion warning. If it is an
10706 -- entity, give the name of the entity in the message. If not,
10707 -- just mention the expression.
10708
10709 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10710
10711 else
10712 if Is_Entity_Name (Orig_N) then
10713 Error_Msg_Node_2 := Orig_T;
10714 Error_Msg_NE -- CODEFIX
10715 ("??redundant conversion, & is of type &!",
10716 N, Entity (Orig_N));
10717 else
10718 Error_Msg_NE
10719 ("??redundant conversion, expression is of type&!",
10720 N, Orig_T);
10721 end if;
10722 end if;
10723 end if;
10724 end if;
10725
10726 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10727 -- No need to perform any interface conversion if the type of the
10728 -- expression coincides with the target type.
10729
10730 if Ada_Version >= Ada_2005
10731 and then Expander_Active
10732 and then Operand_Typ /= Target_Typ
10733 then
10734 declare
10735 Opnd : Entity_Id := Operand_Typ;
10736 Target : Entity_Id := Target_Typ;
10737
10738 begin
10739 -- If the type of the operand is a limited view, use nonlimited
10740 -- view when available. If it is a class-wide type, recover the
10741 -- class-wide type of the nonlimited view.
10742
10743 if From_Limited_With (Opnd)
10744 and then Has_Non_Limited_View (Opnd)
10745 then
10746 Opnd := Non_Limited_View (Opnd);
10747 Set_Etype (Expression (N), Opnd);
10748 end if;
10749
10750 if Is_Access_Type (Opnd) then
10751 Opnd := Designated_Type (Opnd);
10752 end if;
10753
10754 if Is_Access_Type (Target_Typ) then
10755 Target := Designated_Type (Target);
10756 end if;
10757
10758 if Opnd = Target then
10759 null;
10760
10761 -- Conversion from interface type
10762
10763 elsif Is_Interface (Opnd) then
10764
10765 -- Ada 2005 (AI-217): Handle entities from limited views
10766
10767 if From_Limited_With (Opnd) then
10768 Error_Msg_Qual_Level := 99;
10769 Error_Msg_NE -- CODEFIX
10770 ("missing WITH clause on package &", N,
10771 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10772 Error_Msg_N
10773 ("type conversions require visibility of the full view",
10774 N);
10775
10776 elsif From_Limited_With (Target)
10777 and then not
10778 (Is_Access_Type (Target_Typ)
10779 and then Present (Non_Limited_View (Etype (Target))))
10780 then
10781 Error_Msg_Qual_Level := 99;
10782 Error_Msg_NE -- CODEFIX
10783 ("missing WITH clause on package &", N,
10784 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10785 Error_Msg_N
10786 ("type conversions require visibility of the full view",
10787 N);
10788
10789 else
10790 Expand_Interface_Conversion (N);
10791 end if;
10792
10793 -- Conversion to interface type
10794
10795 elsif Is_Interface (Target) then
10796
10797 -- Handle subtypes
10798
10799 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10800 Opnd := Etype (Opnd);
10801 end if;
10802
10803 if Is_Class_Wide_Type (Opnd)
10804 or else Interface_Present_In_Ancestor
10805 (Typ => Opnd,
10806 Iface => Target)
10807 then
10808 Expand_Interface_Conversion (N);
10809 else
10810 Error_Msg_Name_1 := Chars (Etype (Target));
10811 Error_Msg_Name_2 := Chars (Opnd);
10812 Error_Msg_N
10813 ("wrong interface conversion (% is not a progenitor "
10814 & "of %)", N);
10815 end if;
10816 end if;
10817 end;
10818 end if;
10819
10820 -- Ada 2012: if target type has predicates, the result requires a
10821 -- predicate check. If the context is a call to another predicate
10822 -- check we must prevent infinite recursion.
10823
10824 if Has_Predicates (Target_Typ) then
10825 if Nkind (Parent (N)) = N_Function_Call
10826 and then Present (Name (Parent (N)))
10827 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
10828 or else
10829 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
10830 then
10831 null;
10832
10833 else
10834 Apply_Predicate_Check (N, Target_Typ);
10835 end if;
10836 end if;
10837
10838 -- If at this stage we have a real to integer conversion, make sure
10839 -- that the Do_Range_Check flag is set, because such conversions in
10840 -- general need a range check. We only need this if expansion is off
10841 -- or we are in GNATProve mode.
10842
10843 if Nkind (N) = N_Type_Conversion
10844 and then (GNATprove_Mode or not Expander_Active)
10845 and then Is_Integer_Type (Target_Typ)
10846 and then Is_Real_Type (Operand_Typ)
10847 then
10848 Set_Do_Range_Check (Operand);
10849 end if;
10850
10851 -- Generating C code a type conversion of an access to constrained
10852 -- array type to access to unconstrained array type involves building
10853 -- a fat pointer which in general cannot be generated on the fly. We
10854 -- remove side effects in order to store the result of the conversion
10855 -- into a temporary.
10856
10857 if Generate_C_Code
10858 and then Nkind (N) = N_Type_Conversion
10859 and then Nkind (Parent (N)) /= N_Object_Declaration
10860 and then Is_Access_Type (Etype (N))
10861 and then Is_Array_Type (Designated_Type (Etype (N)))
10862 and then not Is_Constrained (Designated_Type (Etype (N)))
10863 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
10864 then
10865 Remove_Side_Effects (N);
10866 end if;
10867 end Resolve_Type_Conversion;
10868
10869 ----------------------
10870 -- Resolve_Unary_Op --
10871 ----------------------
10872
10873 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
10874 B_Typ : constant Entity_Id := Base_Type (Typ);
10875 R : constant Node_Id := Right_Opnd (N);
10876 OK : Boolean;
10877 Lo : Uint;
10878 Hi : Uint;
10879
10880 begin
10881 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
10882 Error_Msg_Name_1 := Chars (Typ);
10883 Check_SPARK_05_Restriction
10884 ("unary operator not defined for modular type%", N);
10885 end if;
10886
10887 -- Deal with intrinsic unary operators
10888
10889 if Comes_From_Source (N)
10890 and then Ekind (Entity (N)) = E_Function
10891 and then Is_Imported (Entity (N))
10892 and then Is_Intrinsic_Subprogram (Entity (N))
10893 then
10894 Resolve_Intrinsic_Unary_Operator (N, Typ);
10895 return;
10896 end if;
10897
10898 -- Deal with universal cases
10899
10900 if Etype (R) = Universal_Integer
10901 or else
10902 Etype (R) = Universal_Real
10903 then
10904 Check_For_Visible_Operator (N, B_Typ);
10905 end if;
10906
10907 Set_Etype (N, B_Typ);
10908 Resolve (R, B_Typ);
10909
10910 -- Generate warning for expressions like abs (x mod 2)
10911
10912 if Warn_On_Redundant_Constructs
10913 and then Nkind (N) = N_Op_Abs
10914 then
10915 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
10916
10917 if OK and then Hi >= Lo and then Lo >= 0 then
10918 Error_Msg_N -- CODEFIX
10919 ("?r?abs applied to known non-negative value has no effect", N);
10920 end if;
10921 end if;
10922
10923 -- Deal with reference generation
10924
10925 Check_Unset_Reference (R);
10926 Generate_Operator_Reference (N, B_Typ);
10927 Analyze_Dimension (N);
10928 Eval_Unary_Op (N);
10929
10930 -- Set overflow checking bit. Much cleverer code needed here eventually
10931 -- and perhaps the Resolve routines should be separated for the various
10932 -- arithmetic operations, since they will need different processing ???
10933
10934 if Nkind (N) in N_Op then
10935 if not Overflow_Checks_Suppressed (Etype (N)) then
10936 Enable_Overflow_Check (N);
10937 end if;
10938 end if;
10939
10940 -- Generate warning for expressions like -5 mod 3 for integers. No need
10941 -- to worry in the floating-point case, since parens do not affect the
10942 -- result so there is no point in giving in a warning.
10943
10944 declare
10945 Norig : constant Node_Id := Original_Node (N);
10946 Rorig : Node_Id;
10947 Val : Uint;
10948 HB : Uint;
10949 LB : Uint;
10950 Lval : Uint;
10951 Opnd : Node_Id;
10952
10953 begin
10954 if Warn_On_Questionable_Missing_Parens
10955 and then Comes_From_Source (Norig)
10956 and then Is_Integer_Type (Typ)
10957 and then Nkind (Norig) = N_Op_Minus
10958 then
10959 Rorig := Original_Node (Right_Opnd (Norig));
10960
10961 -- We are looking for cases where the right operand is not
10962 -- parenthesized, and is a binary operator, multiply, divide, or
10963 -- mod. These are the cases where the grouping can affect results.
10964
10965 if Paren_Count (Rorig) = 0
10966 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
10967 then
10968 -- For mod, we always give the warning, since the value is
10969 -- affected by the parenthesization (e.g. (-5) mod 315 /=
10970 -- -(5 mod 315)). But for the other cases, the only concern is
10971 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
10972 -- overflows, but (-2) * 64 does not). So we try to give the
10973 -- message only when overflow is possible.
10974
10975 if Nkind (Rorig) /= N_Op_Mod
10976 and then Compile_Time_Known_Value (R)
10977 then
10978 Val := Expr_Value (R);
10979
10980 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
10981 HB := Expr_Value (Type_High_Bound (Typ));
10982 else
10983 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
10984 end if;
10985
10986 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
10987 LB := Expr_Value (Type_Low_Bound (Typ));
10988 else
10989 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
10990 end if;
10991
10992 -- Note that the test below is deliberately excluding the
10993 -- largest negative number, since that is a potentially
10994 -- troublesome case (e.g. -2 * x, where the result is the
10995 -- largest negative integer has an overflow with 2 * x).
10996
10997 if Val > LB and then Val <= HB then
10998 return;
10999 end if;
11000 end if;
11001
11002 -- For the multiplication case, the only case we have to worry
11003 -- about is when (-a)*b is exactly the largest negative number
11004 -- so that -(a*b) can cause overflow. This can only happen if
11005 -- a is a power of 2, and more generally if any operand is a
11006 -- constant that is not a power of 2, then the parentheses
11007 -- cannot affect whether overflow occurs. We only bother to
11008 -- test the left most operand
11009
11010 -- Loop looking at left operands for one that has known value
11011
11012 Opnd := Rorig;
11013 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11014 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11015 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11016
11017 -- Operand value of 0 or 1 skips warning
11018
11019 if Lval <= 1 then
11020 return;
11021
11022 -- Otherwise check power of 2, if power of 2, warn, if
11023 -- anything else, skip warning.
11024
11025 else
11026 while Lval /= 2 loop
11027 if Lval mod 2 = 1 then
11028 return;
11029 else
11030 Lval := Lval / 2;
11031 end if;
11032 end loop;
11033
11034 exit Opnd_Loop;
11035 end if;
11036 end if;
11037
11038 -- Keep looking at left operands
11039
11040 Opnd := Left_Opnd (Opnd);
11041 end loop Opnd_Loop;
11042
11043 -- For rem or "/" we can only have a problematic situation
11044 -- if the divisor has a value of minus one or one. Otherwise
11045 -- overflow is impossible (divisor > 1) or we have a case of
11046 -- division by zero in any case.
11047
11048 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11049 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11050 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11051 then
11052 return;
11053 end if;
11054
11055 -- If we fall through warning should be issued
11056
11057 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11058
11059 Error_Msg_N
11060 ("??unary minus expression should be parenthesized here!", N);
11061 end if;
11062 end if;
11063 end;
11064 end Resolve_Unary_Op;
11065
11066 ----------------------------------
11067 -- Resolve_Unchecked_Expression --
11068 ----------------------------------
11069
11070 procedure Resolve_Unchecked_Expression
11071 (N : Node_Id;
11072 Typ : Entity_Id)
11073 is
11074 begin
11075 Resolve (Expression (N), Typ, Suppress => All_Checks);
11076 Set_Etype (N, Typ);
11077 end Resolve_Unchecked_Expression;
11078
11079 ---------------------------------------
11080 -- Resolve_Unchecked_Type_Conversion --
11081 ---------------------------------------
11082
11083 procedure Resolve_Unchecked_Type_Conversion
11084 (N : Node_Id;
11085 Typ : Entity_Id)
11086 is
11087 pragma Warnings (Off, Typ);
11088
11089 Operand : constant Node_Id := Expression (N);
11090 Opnd_Type : constant Entity_Id := Etype (Operand);
11091
11092 begin
11093 -- Resolve operand using its own type
11094
11095 Resolve (Operand, Opnd_Type);
11096
11097 -- In an inlined context, the unchecked conversion may be applied
11098 -- to a literal, in which case its type is the type of the context.
11099 -- (In other contexts conversions cannot apply to literals).
11100
11101 if In_Inlined_Body
11102 and then (Opnd_Type = Any_Character or else
11103 Opnd_Type = Any_Integer or else
11104 Opnd_Type = Any_Real)
11105 then
11106 Set_Etype (Operand, Typ);
11107 end if;
11108
11109 Analyze_Dimension (N);
11110 Eval_Unchecked_Conversion (N);
11111 end Resolve_Unchecked_Type_Conversion;
11112
11113 ------------------------------
11114 -- Rewrite_Operator_As_Call --
11115 ------------------------------
11116
11117 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11118 Loc : constant Source_Ptr := Sloc (N);
11119 Actuals : constant List_Id := New_List;
11120 New_N : Node_Id;
11121
11122 begin
11123 if Nkind (N) in N_Binary_Op then
11124 Append (Left_Opnd (N), Actuals);
11125 end if;
11126
11127 Append (Right_Opnd (N), Actuals);
11128
11129 New_N :=
11130 Make_Function_Call (Sloc => Loc,
11131 Name => New_Occurrence_Of (Nam, Loc),
11132 Parameter_Associations => Actuals);
11133
11134 Preserve_Comes_From_Source (New_N, N);
11135 Preserve_Comes_From_Source (Name (New_N), N);
11136 Rewrite (N, New_N);
11137 Set_Etype (N, Etype (Nam));
11138 end Rewrite_Operator_As_Call;
11139
11140 ------------------------------
11141 -- Rewrite_Renamed_Operator --
11142 ------------------------------
11143
11144 procedure Rewrite_Renamed_Operator
11145 (N : Node_Id;
11146 Op : Entity_Id;
11147 Typ : Entity_Id)
11148 is
11149 Nam : constant Name_Id := Chars (Op);
11150 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11151 Op_Node : Node_Id;
11152
11153 begin
11154 -- Do not perform this transformation within a pre/postcondition,
11155 -- because the expression will be re-analyzed, and the transformation
11156 -- might affect the visibility of the operator, e.g. in an instance.
11157 -- Note that fully analyzed and expanded pre/postconditions appear as
11158 -- pragma Check equivalents.
11159
11160 if In_Pre_Post_Condition (N) then
11161 return;
11162 end if;
11163
11164 -- Rewrite the operator node using the real operator, not its renaming.
11165 -- Exclude user-defined intrinsic operations of the same name, which are
11166 -- treated separately and rewritten as calls.
11167
11168 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11169 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11170 Set_Chars (Op_Node, Nam);
11171 Set_Etype (Op_Node, Etype (N));
11172 Set_Entity (Op_Node, Op);
11173 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11174
11175 -- Indicate that both the original entity and its renaming are
11176 -- referenced at this point.
11177
11178 Generate_Reference (Entity (N), N);
11179 Generate_Reference (Op, N);
11180
11181 if Is_Binary then
11182 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11183 end if;
11184
11185 Rewrite (N, Op_Node);
11186
11187 -- If the context type is private, add the appropriate conversions so
11188 -- that the operator is applied to the full view. This is done in the
11189 -- routines that resolve intrinsic operators.
11190
11191 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11192 case Nkind (N) is
11193 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11194 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
11195 Resolve_Intrinsic_Operator (N, Typ);
11196
11197 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
11198 Resolve_Intrinsic_Unary_Operator (N, Typ);
11199
11200 when others =>
11201 Resolve (N, Typ);
11202 end case;
11203 end if;
11204
11205 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11206
11207 -- Operator renames a user-defined operator of the same name. Use the
11208 -- original operator in the node, which is the one Gigi knows about.
11209
11210 Set_Entity (N, Op);
11211 Set_Is_Overloaded (N, False);
11212 end if;
11213 end Rewrite_Renamed_Operator;
11214
11215 -----------------------
11216 -- Set_Slice_Subtype --
11217 -----------------------
11218
11219 -- Build an implicit subtype declaration to represent the type delivered by
11220 -- the slice. This is an abbreviated version of an array subtype. We define
11221 -- an index subtype for the slice, using either the subtype name or the
11222 -- discrete range of the slice. To be consistent with index usage elsewhere
11223 -- we create a list header to hold the single index. This list is not
11224 -- otherwise attached to the syntax tree.
11225
11226 procedure Set_Slice_Subtype (N : Node_Id) is
11227 Loc : constant Source_Ptr := Sloc (N);
11228 Index_List : constant List_Id := New_List;
11229 Index : Node_Id;
11230 Index_Subtype : Entity_Id;
11231 Index_Type : Entity_Id;
11232 Slice_Subtype : Entity_Id;
11233 Drange : constant Node_Id := Discrete_Range (N);
11234
11235 begin
11236 Index_Type := Base_Type (Etype (Drange));
11237
11238 if Is_Entity_Name (Drange) then
11239 Index_Subtype := Entity (Drange);
11240
11241 else
11242 -- We force the evaluation of a range. This is definitely needed in
11243 -- the renamed case, and seems safer to do unconditionally. Note in
11244 -- any case that since we will create and insert an Itype referring
11245 -- to this range, we must make sure any side effect removal actions
11246 -- are inserted before the Itype definition.
11247
11248 if Nkind (Drange) = N_Range then
11249 Force_Evaluation (Low_Bound (Drange));
11250 Force_Evaluation (High_Bound (Drange));
11251
11252 -- If the discrete range is given by a subtype indication, the
11253 -- type of the slice is the base of the subtype mark.
11254
11255 elsif Nkind (Drange) = N_Subtype_Indication then
11256 declare
11257 R : constant Node_Id := Range_Expression (Constraint (Drange));
11258 begin
11259 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11260 Force_Evaluation (Low_Bound (R));
11261 Force_Evaluation (High_Bound (R));
11262 end;
11263 end if;
11264
11265 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11266
11267 -- Take a new copy of Drange (where bounds have been rewritten to
11268 -- reference side-effect-free names). Using a separate tree ensures
11269 -- that further expansion (e.g. while rewriting a slice assignment
11270 -- into a FOR loop) does not attempt to remove side effects on the
11271 -- bounds again (which would cause the bounds in the index subtype
11272 -- definition to refer to temporaries before they are defined) (the
11273 -- reason is that some names are considered side effect free here
11274 -- for the subtype, but not in the context of a loop iteration
11275 -- scheme).
11276
11277 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11278 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11279 Set_Etype (Index_Subtype, Index_Type);
11280 Set_Size_Info (Index_Subtype, Index_Type);
11281 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11282 end if;
11283
11284 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11285
11286 Index := New_Occurrence_Of (Index_Subtype, Loc);
11287 Set_Etype (Index, Index_Subtype);
11288 Append (Index, Index_List);
11289
11290 Set_First_Index (Slice_Subtype, Index);
11291 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11292 Set_Is_Constrained (Slice_Subtype, True);
11293
11294 Check_Compile_Time_Size (Slice_Subtype);
11295
11296 -- The Etype of the existing Slice node is reset to this slice subtype.
11297 -- Its bounds are obtained from its first index.
11298
11299 Set_Etype (N, Slice_Subtype);
11300
11301 -- For packed slice subtypes, freeze immediately (except in the case of
11302 -- being in a "spec expression" where we never freeze when we first see
11303 -- the expression).
11304
11305 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11306 Freeze_Itype (Slice_Subtype, N);
11307
11308 -- For all other cases insert an itype reference in the slice's actions
11309 -- so that the itype is frozen at the proper place in the tree (i.e. at
11310 -- the point where actions for the slice are analyzed). Note that this
11311 -- is different from freezing the itype immediately, which might be
11312 -- premature (e.g. if the slice is within a transient scope). This needs
11313 -- to be done only if expansion is enabled.
11314
11315 elsif Expander_Active then
11316 Ensure_Defined (Typ => Slice_Subtype, N => N);
11317 end if;
11318 end Set_Slice_Subtype;
11319
11320 --------------------------------
11321 -- Set_String_Literal_Subtype --
11322 --------------------------------
11323
11324 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11325 Loc : constant Source_Ptr := Sloc (N);
11326 Low_Bound : constant Node_Id :=
11327 Type_Low_Bound (Etype (First_Index (Typ)));
11328 Subtype_Id : Entity_Id;
11329
11330 begin
11331 if Nkind (N) /= N_String_Literal then
11332 return;
11333 end if;
11334
11335 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11336 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11337 (String_Length (Strval (N))));
11338 Set_Etype (Subtype_Id, Base_Type (Typ));
11339 Set_Is_Constrained (Subtype_Id);
11340 Set_Etype (N, Subtype_Id);
11341
11342 -- The low bound is set from the low bound of the corresponding index
11343 -- type. Note that we do not store the high bound in the string literal
11344 -- subtype, but it can be deduced if necessary from the length and the
11345 -- low bound.
11346
11347 if Is_OK_Static_Expression (Low_Bound) then
11348 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11349
11350 -- If the lower bound is not static we create a range for the string
11351 -- literal, using the index type and the known length of the literal.
11352 -- The index type is not necessarily Positive, so the upper bound is
11353 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11354
11355 else
11356 declare
11357 Index_List : constant List_Id := New_List;
11358 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11359 High_Bound : constant Node_Id :=
11360 Make_Attribute_Reference (Loc,
11361 Attribute_Name => Name_Val,
11362 Prefix =>
11363 New_Occurrence_Of (Index_Type, Loc),
11364 Expressions => New_List (
11365 Make_Op_Add (Loc,
11366 Left_Opnd =>
11367 Make_Attribute_Reference (Loc,
11368 Attribute_Name => Name_Pos,
11369 Prefix =>
11370 New_Occurrence_Of (Index_Type, Loc),
11371 Expressions =>
11372 New_List (New_Copy_Tree (Low_Bound))),
11373 Right_Opnd =>
11374 Make_Integer_Literal (Loc,
11375 String_Length (Strval (N)) - 1))));
11376
11377 Array_Subtype : Entity_Id;
11378 Drange : Node_Id;
11379 Index : Node_Id;
11380 Index_Subtype : Entity_Id;
11381
11382 begin
11383 if Is_Integer_Type (Index_Type) then
11384 Set_String_Literal_Low_Bound
11385 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11386
11387 else
11388 -- If the index type is an enumeration type, build bounds
11389 -- expression with attributes.
11390
11391 Set_String_Literal_Low_Bound
11392 (Subtype_Id,
11393 Make_Attribute_Reference (Loc,
11394 Attribute_Name => Name_First,
11395 Prefix =>
11396 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11397 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11398 end if;
11399
11400 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11401
11402 -- Build bona fide subtype for the string, and wrap it in an
11403 -- unchecked conversion, because the backend expects the
11404 -- String_Literal_Subtype to have a static lower bound.
11405
11406 Index_Subtype :=
11407 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11408 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11409 Set_Scalar_Range (Index_Subtype, Drange);
11410 Set_Parent (Drange, N);
11411 Analyze_And_Resolve (Drange, Index_Type);
11412
11413 -- In the context, the Index_Type may already have a constraint,
11414 -- so use common base type on string subtype. The base type may
11415 -- be used when generating attributes of the string, for example
11416 -- in the context of a slice assignment.
11417
11418 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11419 Set_Size_Info (Index_Subtype, Index_Type);
11420 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11421
11422 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11423
11424 Index := New_Occurrence_Of (Index_Subtype, Loc);
11425 Set_Etype (Index, Index_Subtype);
11426 Append (Index, Index_List);
11427
11428 Set_First_Index (Array_Subtype, Index);
11429 Set_Etype (Array_Subtype, Base_Type (Typ));
11430 Set_Is_Constrained (Array_Subtype, True);
11431
11432 Rewrite (N,
11433 Make_Unchecked_Type_Conversion (Loc,
11434 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11435 Expression => Relocate_Node (N)));
11436 Set_Etype (N, Array_Subtype);
11437 end;
11438 end if;
11439 end Set_String_Literal_Subtype;
11440
11441 ------------------------------
11442 -- Simplify_Type_Conversion --
11443 ------------------------------
11444
11445 procedure Simplify_Type_Conversion (N : Node_Id) is
11446 begin
11447 if Nkind (N) = N_Type_Conversion then
11448 declare
11449 Operand : constant Node_Id := Expression (N);
11450 Target_Typ : constant Entity_Id := Etype (N);
11451 Opnd_Typ : constant Entity_Id := Etype (Operand);
11452
11453 begin
11454 -- Special processing if the conversion is the expression of a
11455 -- Rounding or Truncation attribute reference. In this case we
11456 -- replace:
11457
11458 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11459
11460 -- by
11461
11462 -- ityp (x)
11463
11464 -- with the Float_Truncate flag set to False or True respectively,
11465 -- which is more efficient.
11466
11467 if Is_Floating_Point_Type (Opnd_Typ)
11468 and then
11469 (Is_Integer_Type (Target_Typ)
11470 or else (Is_Fixed_Point_Type (Target_Typ)
11471 and then Conversion_OK (N)))
11472 and then Nkind (Operand) = N_Attribute_Reference
11473 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11474 Name_Truncation)
11475 then
11476 declare
11477 Truncate : constant Boolean :=
11478 Attribute_Name (Operand) = Name_Truncation;
11479 begin
11480 Rewrite (Operand,
11481 Relocate_Node (First (Expressions (Operand))));
11482 Set_Float_Truncate (N, Truncate);
11483 end;
11484 end if;
11485 end;
11486 end if;
11487 end Simplify_Type_Conversion;
11488
11489 -----------------------------
11490 -- Unique_Fixed_Point_Type --
11491 -----------------------------
11492
11493 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11494 T1 : Entity_Id := Empty;
11495 T2 : Entity_Id;
11496 Item : Node_Id;
11497 Scop : Entity_Id;
11498
11499 procedure Fixed_Point_Error;
11500 -- Give error messages for true ambiguity. Messages are posted on node
11501 -- N, and entities T1, T2 are the possible interpretations.
11502
11503 -----------------------
11504 -- Fixed_Point_Error --
11505 -----------------------
11506
11507 procedure Fixed_Point_Error is
11508 begin
11509 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11510 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11511 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11512 end Fixed_Point_Error;
11513
11514 -- Start of processing for Unique_Fixed_Point_Type
11515
11516 begin
11517 -- The operations on Duration are visible, so Duration is always a
11518 -- possible interpretation.
11519
11520 T1 := Standard_Duration;
11521
11522 -- Look for fixed-point types in enclosing scopes
11523
11524 Scop := Current_Scope;
11525 while Scop /= Standard_Standard loop
11526 T2 := First_Entity (Scop);
11527 while Present (T2) loop
11528 if Is_Fixed_Point_Type (T2)
11529 and then Current_Entity (T2) = T2
11530 and then Scope (Base_Type (T2)) = Scop
11531 then
11532 if Present (T1) then
11533 Fixed_Point_Error;
11534 return Any_Type;
11535 else
11536 T1 := T2;
11537 end if;
11538 end if;
11539
11540 Next_Entity (T2);
11541 end loop;
11542
11543 Scop := Scope (Scop);
11544 end loop;
11545
11546 -- Look for visible fixed type declarations in the context
11547
11548 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11549 while Present (Item) loop
11550 if Nkind (Item) = N_With_Clause then
11551 Scop := Entity (Name (Item));
11552 T2 := First_Entity (Scop);
11553 while Present (T2) loop
11554 if Is_Fixed_Point_Type (T2)
11555 and then Scope (Base_Type (T2)) = Scop
11556 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11557 then
11558 if Present (T1) then
11559 Fixed_Point_Error;
11560 return Any_Type;
11561 else
11562 T1 := T2;
11563 end if;
11564 end if;
11565
11566 Next_Entity (T2);
11567 end loop;
11568 end if;
11569
11570 Next (Item);
11571 end loop;
11572
11573 if Nkind (N) = N_Real_Literal then
11574 Error_Msg_NE
11575 ("??real literal interpreted as }!", N, T1);
11576 else
11577 Error_Msg_NE
11578 ("??universal_fixed expression interpreted as }!", N, T1);
11579 end if;
11580
11581 return T1;
11582 end Unique_Fixed_Point_Type;
11583
11584 ----------------------
11585 -- Valid_Conversion --
11586 ----------------------
11587
11588 function Valid_Conversion
11589 (N : Node_Id;
11590 Target : Entity_Id;
11591 Operand : Node_Id;
11592 Report_Errs : Boolean := True) return Boolean
11593 is
11594 Target_Type : constant Entity_Id := Base_Type (Target);
11595 Opnd_Type : Entity_Id := Etype (Operand);
11596 Inc_Ancestor : Entity_Id;
11597
11598 function Conversion_Check
11599 (Valid : Boolean;
11600 Msg : String) return Boolean;
11601 -- Little routine to post Msg if Valid is False, returns Valid value
11602
11603 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11604 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11605
11606 procedure Conversion_Error_NE
11607 (Msg : String;
11608 N : Node_Or_Entity_Id;
11609 E : Node_Or_Entity_Id);
11610 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11611
11612 function Valid_Tagged_Conversion
11613 (Target_Type : Entity_Id;
11614 Opnd_Type : Entity_Id) return Boolean;
11615 -- Specifically test for validity of tagged conversions
11616
11617 function Valid_Array_Conversion return Boolean;
11618 -- Check index and component conformance, and accessibility levels if
11619 -- the component types are anonymous access types (Ada 2005).
11620
11621 ----------------------
11622 -- Conversion_Check --
11623 ----------------------
11624
11625 function Conversion_Check
11626 (Valid : Boolean;
11627 Msg : String) return Boolean
11628 is
11629 begin
11630 if not Valid
11631
11632 -- A generic unit has already been analyzed and we have verified
11633 -- that a particular conversion is OK in that context. Since the
11634 -- instance is reanalyzed without relying on the relationships
11635 -- established during the analysis of the generic, it is possible
11636 -- to end up with inconsistent views of private types. Do not emit
11637 -- the error message in such cases. The rest of the machinery in
11638 -- Valid_Conversion still ensures the proper compatibility of
11639 -- target and operand types.
11640
11641 and then not In_Instance
11642 then
11643 Conversion_Error_N (Msg, Operand);
11644 end if;
11645
11646 return Valid;
11647 end Conversion_Check;
11648
11649 ------------------------
11650 -- Conversion_Error_N --
11651 ------------------------
11652
11653 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11654 begin
11655 if Report_Errs then
11656 Error_Msg_N (Msg, N);
11657 end if;
11658 end Conversion_Error_N;
11659
11660 -------------------------
11661 -- Conversion_Error_NE --
11662 -------------------------
11663
11664 procedure Conversion_Error_NE
11665 (Msg : String;
11666 N : Node_Or_Entity_Id;
11667 E : Node_Or_Entity_Id)
11668 is
11669 begin
11670 if Report_Errs then
11671 Error_Msg_NE (Msg, N, E);
11672 end if;
11673 end Conversion_Error_NE;
11674
11675 ----------------------------
11676 -- Valid_Array_Conversion --
11677 ----------------------------
11678
11679 function Valid_Array_Conversion return Boolean
11680 is
11681 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11682 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11683
11684 Opnd_Index : Node_Id;
11685 Opnd_Index_Type : Entity_Id;
11686
11687 Target_Comp_Type : constant Entity_Id :=
11688 Component_Type (Target_Type);
11689 Target_Comp_Base : constant Entity_Id :=
11690 Base_Type (Target_Comp_Type);
11691
11692 Target_Index : Node_Id;
11693 Target_Index_Type : Entity_Id;
11694
11695 begin
11696 -- Error if wrong number of dimensions
11697
11698 if
11699 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11700 then
11701 Conversion_Error_N
11702 ("incompatible number of dimensions for conversion", Operand);
11703 return False;
11704
11705 -- Number of dimensions matches
11706
11707 else
11708 -- Loop through indexes of the two arrays
11709
11710 Target_Index := First_Index (Target_Type);
11711 Opnd_Index := First_Index (Opnd_Type);
11712 while Present (Target_Index) and then Present (Opnd_Index) loop
11713 Target_Index_Type := Etype (Target_Index);
11714 Opnd_Index_Type := Etype (Opnd_Index);
11715
11716 -- Error if index types are incompatible
11717
11718 if not (Is_Integer_Type (Target_Index_Type)
11719 and then Is_Integer_Type (Opnd_Index_Type))
11720 and then (Root_Type (Target_Index_Type)
11721 /= Root_Type (Opnd_Index_Type))
11722 then
11723 Conversion_Error_N
11724 ("incompatible index types for array conversion",
11725 Operand);
11726 return False;
11727 end if;
11728
11729 Next_Index (Target_Index);
11730 Next_Index (Opnd_Index);
11731 end loop;
11732
11733 -- If component types have same base type, all set
11734
11735 if Target_Comp_Base = Opnd_Comp_Base then
11736 null;
11737
11738 -- Here if base types of components are not the same. The only
11739 -- time this is allowed is if we have anonymous access types.
11740
11741 -- The conversion of arrays of anonymous access types can lead
11742 -- to dangling pointers. AI-392 formalizes the accessibility
11743 -- checks that must be applied to such conversions to prevent
11744 -- out-of-scope references.
11745
11746 elsif Ekind_In
11747 (Target_Comp_Base, E_Anonymous_Access_Type,
11748 E_Anonymous_Access_Subprogram_Type)
11749 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11750 and then
11751 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11752 then
11753 if Type_Access_Level (Target_Type) <
11754 Deepest_Type_Access_Level (Opnd_Type)
11755 then
11756 if In_Instance_Body then
11757 Error_Msg_Warn := SPARK_Mode /= On;
11758 Conversion_Error_N
11759 ("source array type has deeper accessibility "
11760 & "level than target<<", Operand);
11761 Conversion_Error_N ("\Program_Error [<<", Operand);
11762 Rewrite (N,
11763 Make_Raise_Program_Error (Sloc (N),
11764 Reason => PE_Accessibility_Check_Failed));
11765 Set_Etype (N, Target_Type);
11766 return False;
11767
11768 -- Conversion not allowed because of accessibility levels
11769
11770 else
11771 Conversion_Error_N
11772 ("source array type has deeper accessibility "
11773 & "level than target", Operand);
11774 return False;
11775 end if;
11776
11777 else
11778 null;
11779 end if;
11780
11781 -- All other cases where component base types do not match
11782
11783 else
11784 Conversion_Error_N
11785 ("incompatible component types for array conversion",
11786 Operand);
11787 return False;
11788 end if;
11789
11790 -- Check that component subtypes statically match. For numeric
11791 -- types this means that both must be either constrained or
11792 -- unconstrained. For enumeration types the bounds must match.
11793 -- All of this is checked in Subtypes_Statically_Match.
11794
11795 if not Subtypes_Statically_Match
11796 (Target_Comp_Type, Opnd_Comp_Type)
11797 then
11798 Conversion_Error_N
11799 ("component subtypes must statically match", Operand);
11800 return False;
11801 end if;
11802 end if;
11803
11804 return True;
11805 end Valid_Array_Conversion;
11806
11807 -----------------------------
11808 -- Valid_Tagged_Conversion --
11809 -----------------------------
11810
11811 function Valid_Tagged_Conversion
11812 (Target_Type : Entity_Id;
11813 Opnd_Type : Entity_Id) return Boolean
11814 is
11815 begin
11816 -- Upward conversions are allowed (RM 4.6(22))
11817
11818 if Covers (Target_Type, Opnd_Type)
11819 or else Is_Ancestor (Target_Type, Opnd_Type)
11820 then
11821 return True;
11822
11823 -- Downward conversion are allowed if the operand is class-wide
11824 -- (RM 4.6(23)).
11825
11826 elsif Is_Class_Wide_Type (Opnd_Type)
11827 and then Covers (Opnd_Type, Target_Type)
11828 then
11829 return True;
11830
11831 elsif Covers (Opnd_Type, Target_Type)
11832 or else Is_Ancestor (Opnd_Type, Target_Type)
11833 then
11834 return
11835 Conversion_Check (False,
11836 "downward conversion of tagged objects not allowed");
11837
11838 -- Ada 2005 (AI-251): The conversion to/from interface types is
11839 -- always valid
11840
11841 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
11842 return True;
11843
11844 -- If the operand is a class-wide type obtained through a limited_
11845 -- with clause, and the context includes the nonlimited view, use
11846 -- it to determine whether the conversion is legal.
11847
11848 elsif Is_Class_Wide_Type (Opnd_Type)
11849 and then From_Limited_With (Opnd_Type)
11850 and then Present (Non_Limited_View (Etype (Opnd_Type)))
11851 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
11852 then
11853 return True;
11854
11855 elsif Is_Access_Type (Opnd_Type)
11856 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
11857 then
11858 return True;
11859
11860 else
11861 Conversion_Error_NE
11862 ("invalid tagged conversion, not compatible with}",
11863 N, First_Subtype (Opnd_Type));
11864 return False;
11865 end if;
11866 end Valid_Tagged_Conversion;
11867
11868 -- Start of processing for Valid_Conversion
11869
11870 begin
11871 Check_Parameterless_Call (Operand);
11872
11873 if Is_Overloaded (Operand) then
11874 declare
11875 I : Interp_Index;
11876 I1 : Interp_Index;
11877 It : Interp;
11878 It1 : Interp;
11879 N1 : Entity_Id;
11880 T1 : Entity_Id;
11881
11882 begin
11883 -- Remove procedure calls, which syntactically cannot appear in
11884 -- this context, but which cannot be removed by type checking,
11885 -- because the context does not impose a type.
11886
11887 -- The node may be labelled overloaded, but still contain only one
11888 -- interpretation because others were discarded earlier. If this
11889 -- is the case, retain the single interpretation if legal.
11890
11891 Get_First_Interp (Operand, I, It);
11892 Opnd_Type := It.Typ;
11893 Get_Next_Interp (I, It);
11894
11895 if Present (It.Typ)
11896 and then Opnd_Type /= Standard_Void_Type
11897 then
11898 -- More than one candidate interpretation is available
11899
11900 Get_First_Interp (Operand, I, It);
11901 while Present (It.Typ) loop
11902 if It.Typ = Standard_Void_Type then
11903 Remove_Interp (I);
11904 end if;
11905
11906 -- When compiling for a system where Address is of a visible
11907 -- integer type, spurious ambiguities can be produced when
11908 -- arithmetic operations have a literal operand and return
11909 -- System.Address or a descendant of it. These ambiguities
11910 -- are usually resolved by the context, but for conversions
11911 -- there is no context type and the removal of the spurious
11912 -- operations must be done explicitly here.
11913
11914 if not Address_Is_Private
11915 and then Is_Descendant_Of_Address (It.Typ)
11916 then
11917 Remove_Interp (I);
11918 end if;
11919
11920 Get_Next_Interp (I, It);
11921 end loop;
11922 end if;
11923
11924 Get_First_Interp (Operand, I, It);
11925 I1 := I;
11926 It1 := It;
11927
11928 if No (It.Typ) then
11929 Conversion_Error_N ("illegal operand in conversion", Operand);
11930 return False;
11931 end if;
11932
11933 Get_Next_Interp (I, It);
11934
11935 if Present (It.Typ) then
11936 N1 := It1.Nam;
11937 T1 := It1.Typ;
11938 It1 := Disambiguate (Operand, I1, I, Any_Type);
11939
11940 if It1 = No_Interp then
11941 Conversion_Error_N
11942 ("ambiguous operand in conversion", Operand);
11943
11944 -- If the interpretation involves a standard operator, use
11945 -- the location of the type, which may be user-defined.
11946
11947 if Sloc (It.Nam) = Standard_Location then
11948 Error_Msg_Sloc := Sloc (It.Typ);
11949 else
11950 Error_Msg_Sloc := Sloc (It.Nam);
11951 end if;
11952
11953 Conversion_Error_N -- CODEFIX
11954 ("\\possible interpretation#!", Operand);
11955
11956 if Sloc (N1) = Standard_Location then
11957 Error_Msg_Sloc := Sloc (T1);
11958 else
11959 Error_Msg_Sloc := Sloc (N1);
11960 end if;
11961
11962 Conversion_Error_N -- CODEFIX
11963 ("\\possible interpretation#!", Operand);
11964
11965 return False;
11966 end if;
11967 end if;
11968
11969 Set_Etype (Operand, It1.Typ);
11970 Opnd_Type := It1.Typ;
11971 end;
11972 end if;
11973
11974 -- Deal with conversion of integer type to address if the pragma
11975 -- Allow_Integer_Address is in effect. We convert the conversion to
11976 -- an unchecked conversion in this case and we are all done.
11977
11978 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
11979 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
11980 Analyze_And_Resolve (N, Target_Type);
11981 return True;
11982 end if;
11983
11984 -- If we are within a child unit, check whether the type of the
11985 -- expression has an ancestor in a parent unit, in which case it
11986 -- belongs to its derivation class even if the ancestor is private.
11987 -- See RM 7.3.1 (5.2/3).
11988
11989 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
11990
11991 -- Numeric types
11992
11993 if Is_Numeric_Type (Target_Type) then
11994
11995 -- A universal fixed expression can be converted to any numeric type
11996
11997 if Opnd_Type = Universal_Fixed then
11998 return True;
11999
12000 -- Also no need to check when in an instance or inlined body, because
12001 -- the legality has been established when the template was analyzed.
12002 -- Furthermore, numeric conversions may occur where only a private
12003 -- view of the operand type is visible at the instantiation point.
12004 -- This results in a spurious error if we check that the operand type
12005 -- is a numeric type.
12006
12007 -- Note: in a previous version of this unit, the following tests were
12008 -- applied only for generated code (Comes_From_Source set to False),
12009 -- but in fact the test is required for source code as well, since
12010 -- this situation can arise in source code.
12011
12012 elsif In_Instance or else In_Inlined_Body then
12013 return True;
12014
12015 -- Otherwise we need the conversion check
12016
12017 else
12018 return Conversion_Check
12019 (Is_Numeric_Type (Opnd_Type)
12020 or else
12021 (Present (Inc_Ancestor)
12022 and then Is_Numeric_Type (Inc_Ancestor)),
12023 "illegal operand for numeric conversion");
12024 end if;
12025
12026 -- Array types
12027
12028 elsif Is_Array_Type (Target_Type) then
12029 if not Is_Array_Type (Opnd_Type)
12030 or else Opnd_Type = Any_Composite
12031 or else Opnd_Type = Any_String
12032 then
12033 Conversion_Error_N
12034 ("illegal operand for array conversion", Operand);
12035 return False;
12036
12037 else
12038 return Valid_Array_Conversion;
12039 end if;
12040
12041 -- Ada 2005 (AI-251): Internally generated conversions of access to
12042 -- interface types added to force the displacement of the pointer to
12043 -- reference the corresponding dispatch table.
12044
12045 elsif not Comes_From_Source (N)
12046 and then Is_Access_Type (Target_Type)
12047 and then Is_Interface (Designated_Type (Target_Type))
12048 then
12049 return True;
12050
12051 -- Ada 2005 (AI-251): Anonymous access types where target references an
12052 -- interface type.
12053
12054 elsif Is_Access_Type (Opnd_Type)
12055 and then Ekind_In (Target_Type, E_General_Access_Type,
12056 E_Anonymous_Access_Type)
12057 and then Is_Interface (Directly_Designated_Type (Target_Type))
12058 then
12059 -- Check the static accessibility rule of 4.6(17). Note that the
12060 -- check is not enforced when within an instance body, since the
12061 -- RM requires such cases to be caught at run time.
12062
12063 -- If the operand is a rewriting of an allocator no check is needed
12064 -- because there are no accessibility issues.
12065
12066 if Nkind (Original_Node (N)) = N_Allocator then
12067 null;
12068
12069 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12070 if Type_Access_Level (Opnd_Type) >
12071 Deepest_Type_Access_Level (Target_Type)
12072 then
12073 -- In an instance, this is a run-time check, but one we know
12074 -- will fail, so generate an appropriate warning. The raise
12075 -- will be generated by Expand_N_Type_Conversion.
12076
12077 if In_Instance_Body then
12078 Error_Msg_Warn := SPARK_Mode /= On;
12079 Conversion_Error_N
12080 ("cannot convert local pointer to non-local access type<<",
12081 Operand);
12082 Conversion_Error_N ("\Program_Error [<<", Operand);
12083
12084 else
12085 Conversion_Error_N
12086 ("cannot convert local pointer to non-local access type",
12087 Operand);
12088 return False;
12089 end if;
12090
12091 -- Special accessibility checks are needed in the case of access
12092 -- discriminants declared for a limited type.
12093
12094 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12095 and then not Is_Local_Anonymous_Access (Opnd_Type)
12096 then
12097 -- When the operand is a selected access discriminant the check
12098 -- needs to be made against the level of the object denoted by
12099 -- the prefix of the selected name (Object_Access_Level handles
12100 -- checking the prefix of the operand for this case).
12101
12102 if Nkind (Operand) = N_Selected_Component
12103 and then Object_Access_Level (Operand) >
12104 Deepest_Type_Access_Level (Target_Type)
12105 then
12106 -- In an instance, this is a run-time check, but one we know
12107 -- will fail, so generate an appropriate warning. The raise
12108 -- will be generated by Expand_N_Type_Conversion.
12109
12110 if In_Instance_Body then
12111 Error_Msg_Warn := SPARK_Mode /= On;
12112 Conversion_Error_N
12113 ("cannot convert access discriminant to non-local "
12114 & "access type<<", Operand);
12115 Conversion_Error_N ("\Program_Error [<<", Operand);
12116
12117 -- Real error if not in instance body
12118
12119 else
12120 Conversion_Error_N
12121 ("cannot convert access discriminant to non-local "
12122 & "access type", Operand);
12123 return False;
12124 end if;
12125 end if;
12126
12127 -- The case of a reference to an access discriminant from
12128 -- within a limited type declaration (which will appear as
12129 -- a discriminal) is always illegal because the level of the
12130 -- discriminant is considered to be deeper than any (nameable)
12131 -- access type.
12132
12133 if Is_Entity_Name (Operand)
12134 and then not Is_Local_Anonymous_Access (Opnd_Type)
12135 and then
12136 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12137 and then Present (Discriminal_Link (Entity (Operand)))
12138 then
12139 Conversion_Error_N
12140 ("discriminant has deeper accessibility level than target",
12141 Operand);
12142 return False;
12143 end if;
12144 end if;
12145 end if;
12146
12147 return True;
12148
12149 -- General and anonymous access types
12150
12151 elsif Ekind_In (Target_Type, E_General_Access_Type,
12152 E_Anonymous_Access_Type)
12153 and then
12154 Conversion_Check
12155 (Is_Access_Type (Opnd_Type)
12156 and then not
12157 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12158 E_Access_Protected_Subprogram_Type),
12159 "must be an access-to-object type")
12160 then
12161 if Is_Access_Constant (Opnd_Type)
12162 and then not Is_Access_Constant (Target_Type)
12163 then
12164 Conversion_Error_N
12165 ("access-to-constant operand type not allowed", Operand);
12166 return False;
12167 end if;
12168
12169 -- Check the static accessibility rule of 4.6(17). Note that the
12170 -- check is not enforced when within an instance body, since the RM
12171 -- requires such cases to be caught at run time.
12172
12173 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12174 or else Is_Local_Anonymous_Access (Target_Type)
12175 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12176 N_Object_Declaration
12177 then
12178 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12179 -- conversions from an anonymous access type to a named general
12180 -- access type. Such conversions are not allowed in the case of
12181 -- access parameters and stand-alone objects of an anonymous
12182 -- access type. The implicit conversion case is recognized by
12183 -- testing that Comes_From_Source is False and that it's been
12184 -- rewritten. The Comes_From_Source test isn't sufficient because
12185 -- nodes in inlined calls to predefined library routines can have
12186 -- Comes_From_Source set to False. (Is there a better way to test
12187 -- for implicit conversions???)
12188
12189 if Ada_Version >= Ada_2012
12190 and then not Comes_From_Source (N)
12191 and then N /= Original_Node (N)
12192 and then Ekind (Target_Type) = E_General_Access_Type
12193 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12194 then
12195 if Is_Itype (Opnd_Type) then
12196
12197 -- Implicit conversions aren't allowed for objects of an
12198 -- anonymous access type, since such objects have nonstatic
12199 -- levels in Ada 2012.
12200
12201 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12202 N_Object_Declaration
12203 then
12204 Conversion_Error_N
12205 ("implicit conversion of stand-alone anonymous "
12206 & "access object not allowed", Operand);
12207 return False;
12208
12209 -- Implicit conversions aren't allowed for anonymous access
12210 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12211 -- is done to exclude anonymous access results.
12212
12213 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12214 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12215 N_Function_Specification,
12216 N_Procedure_Specification)
12217 then
12218 Conversion_Error_N
12219 ("implicit conversion of anonymous access formal "
12220 & "not allowed", Operand);
12221 return False;
12222
12223 -- This is a case where there's an enclosing object whose
12224 -- to which the "statically deeper than" relationship does
12225 -- not apply (such as an access discriminant selected from
12226 -- a dereference of an access parameter).
12227
12228 elsif Object_Access_Level (Operand)
12229 = Scope_Depth (Standard_Standard)
12230 then
12231 Conversion_Error_N
12232 ("implicit conversion of anonymous access value "
12233 & "not allowed", Operand);
12234 return False;
12235
12236 -- In other cases, the level of the operand's type must be
12237 -- statically less deep than that of the target type, else
12238 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12239
12240 elsif Type_Access_Level (Opnd_Type) >
12241 Deepest_Type_Access_Level (Target_Type)
12242 then
12243 Conversion_Error_N
12244 ("implicit conversion of anonymous access value "
12245 & "violates accessibility", Operand);
12246 return False;
12247 end if;
12248 end if;
12249
12250 elsif Type_Access_Level (Opnd_Type) >
12251 Deepest_Type_Access_Level (Target_Type)
12252 then
12253 -- In an instance, this is a run-time check, but one we know
12254 -- will fail, so generate an appropriate warning. The raise
12255 -- will be generated by Expand_N_Type_Conversion.
12256
12257 if In_Instance_Body then
12258 Error_Msg_Warn := SPARK_Mode /= On;
12259 Conversion_Error_N
12260 ("cannot convert local pointer to non-local access type<<",
12261 Operand);
12262 Conversion_Error_N ("\Program_Error [<<", Operand);
12263
12264 -- If not in an instance body, this is a real error
12265
12266 else
12267 -- Avoid generation of spurious error message
12268
12269 if not Error_Posted (N) then
12270 Conversion_Error_N
12271 ("cannot convert local pointer to non-local access type",
12272 Operand);
12273 end if;
12274
12275 return False;
12276 end if;
12277
12278 -- Special accessibility checks are needed in the case of access
12279 -- discriminants declared for a limited type.
12280
12281 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12282 and then not Is_Local_Anonymous_Access (Opnd_Type)
12283 then
12284 -- When the operand is a selected access discriminant the check
12285 -- needs to be made against the level of the object denoted by
12286 -- the prefix of the selected name (Object_Access_Level handles
12287 -- checking the prefix of the operand for this case).
12288
12289 if Nkind (Operand) = N_Selected_Component
12290 and then Object_Access_Level (Operand) >
12291 Deepest_Type_Access_Level (Target_Type)
12292 then
12293 -- In an instance, this is a run-time check, but one we know
12294 -- will fail, so generate an appropriate warning. The raise
12295 -- will be generated by Expand_N_Type_Conversion.
12296
12297 if In_Instance_Body then
12298 Error_Msg_Warn := SPARK_Mode /= On;
12299 Conversion_Error_N
12300 ("cannot convert access discriminant to non-local "
12301 & "access type<<", Operand);
12302 Conversion_Error_N ("\Program_Error [<<", Operand);
12303
12304 -- If not in an instance body, this is a real error
12305
12306 else
12307 Conversion_Error_N
12308 ("cannot convert access discriminant to non-local "
12309 & "access type", Operand);
12310 return False;
12311 end if;
12312 end if;
12313
12314 -- The case of a reference to an access discriminant from
12315 -- within a limited type declaration (which will appear as
12316 -- a discriminal) is always illegal because the level of the
12317 -- discriminant is considered to be deeper than any (nameable)
12318 -- access type.
12319
12320 if Is_Entity_Name (Operand)
12321 and then
12322 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12323 and then Present (Discriminal_Link (Entity (Operand)))
12324 then
12325 Conversion_Error_N
12326 ("discriminant has deeper accessibility level than target",
12327 Operand);
12328 return False;
12329 end if;
12330 end if;
12331 end if;
12332
12333 -- In the presence of limited_with clauses we have to use nonlimited
12334 -- views, if available.
12335
12336 Check_Limited : declare
12337 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12338 -- Helper function to handle limited views
12339
12340 --------------------------
12341 -- Full_Designated_Type --
12342 --------------------------
12343
12344 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12345 Desig : constant Entity_Id := Designated_Type (T);
12346
12347 begin
12348 -- Handle the limited view of a type
12349
12350 if From_Limited_With (Desig)
12351 and then Has_Non_Limited_View (Desig)
12352 then
12353 return Available_View (Desig);
12354 else
12355 return Desig;
12356 end if;
12357 end Full_Designated_Type;
12358
12359 -- Local Declarations
12360
12361 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12362 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12363
12364 Same_Base : constant Boolean :=
12365 Base_Type (Target) = Base_Type (Opnd);
12366
12367 -- Start of processing for Check_Limited
12368
12369 begin
12370 if Is_Tagged_Type (Target) then
12371 return Valid_Tagged_Conversion (Target, Opnd);
12372
12373 else
12374 if not Same_Base then
12375 Conversion_Error_NE
12376 ("target designated type not compatible with }",
12377 N, Base_Type (Opnd));
12378 return False;
12379
12380 -- Ada 2005 AI-384: legality rule is symmetric in both
12381 -- designated types. The conversion is legal (with possible
12382 -- constraint check) if either designated type is
12383 -- unconstrained.
12384
12385 elsif Subtypes_Statically_Match (Target, Opnd)
12386 or else
12387 (Has_Discriminants (Target)
12388 and then
12389 (not Is_Constrained (Opnd)
12390 or else not Is_Constrained (Target)))
12391 then
12392 -- Special case, if Value_Size has been used to make the
12393 -- sizes different, the conversion is not allowed even
12394 -- though the subtypes statically match.
12395
12396 if Known_Static_RM_Size (Target)
12397 and then Known_Static_RM_Size (Opnd)
12398 and then RM_Size (Target) /= RM_Size (Opnd)
12399 then
12400 Conversion_Error_NE
12401 ("target designated subtype not compatible with }",
12402 N, Opnd);
12403 Conversion_Error_NE
12404 ("\because sizes of the two designated subtypes differ",
12405 N, Opnd);
12406 return False;
12407
12408 -- Normal case where conversion is allowed
12409
12410 else
12411 return True;
12412 end if;
12413
12414 else
12415 Error_Msg_NE
12416 ("target designated subtype not compatible with }",
12417 N, Opnd);
12418 return False;
12419 end if;
12420 end if;
12421 end Check_Limited;
12422
12423 -- Access to subprogram types. If the operand is an access parameter,
12424 -- the type has a deeper accessibility that any master, and cannot be
12425 -- assigned. We must make an exception if the conversion is part of an
12426 -- assignment and the target is the return object of an extended return
12427 -- statement, because in that case the accessibility check takes place
12428 -- after the return.
12429
12430 elsif Is_Access_Subprogram_Type (Target_Type)
12431
12432 -- Note: this test of Opnd_Type is there to prevent entering this
12433 -- branch in the case of a remote access to subprogram type, which
12434 -- is internally represented as an E_Record_Type.
12435
12436 and then Is_Access_Type (Opnd_Type)
12437 then
12438 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12439 and then Is_Entity_Name (Operand)
12440 and then Ekind (Entity (Operand)) = E_In_Parameter
12441 and then
12442 (Nkind (Parent (N)) /= N_Assignment_Statement
12443 or else not Is_Entity_Name (Name (Parent (N)))
12444 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12445 then
12446 Conversion_Error_N
12447 ("illegal attempt to store anonymous access to subprogram",
12448 Operand);
12449 Conversion_Error_N
12450 ("\value has deeper accessibility than any master "
12451 & "(RM 3.10.2 (13))",
12452 Operand);
12453
12454 Error_Msg_NE
12455 ("\use named access type for& instead of access parameter",
12456 Operand, Entity (Operand));
12457 end if;
12458
12459 -- Check that the designated types are subtype conformant
12460
12461 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12462 Old_Id => Designated_Type (Opnd_Type),
12463 Err_Loc => N);
12464
12465 -- Check the static accessibility rule of 4.6(20)
12466
12467 if Type_Access_Level (Opnd_Type) >
12468 Deepest_Type_Access_Level (Target_Type)
12469 then
12470 Conversion_Error_N
12471 ("operand type has deeper accessibility level than target",
12472 Operand);
12473
12474 -- Check that if the operand type is declared in a generic body,
12475 -- then the target type must be declared within that same body
12476 -- (enforces last sentence of 4.6(20)).
12477
12478 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12479 declare
12480 O_Gen : constant Node_Id :=
12481 Enclosing_Generic_Body (Opnd_Type);
12482
12483 T_Gen : Node_Id;
12484
12485 begin
12486 T_Gen := Enclosing_Generic_Body (Target_Type);
12487 while Present (T_Gen) and then T_Gen /= O_Gen loop
12488 T_Gen := Enclosing_Generic_Body (T_Gen);
12489 end loop;
12490
12491 if T_Gen /= O_Gen then
12492 Conversion_Error_N
12493 ("target type must be declared in same generic body "
12494 & "as operand type", N);
12495 end if;
12496 end;
12497 end if;
12498
12499 return True;
12500
12501 -- Remote access to subprogram types
12502
12503 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12504 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12505 then
12506 -- It is valid to convert from one RAS type to another provided
12507 -- that their specification statically match.
12508
12509 -- Note: at this point, remote access to subprogram types have been
12510 -- expanded to their E_Record_Type representation, and we need to
12511 -- go back to the original access type definition using the
12512 -- Corresponding_Remote_Type attribute in order to check that the
12513 -- designated profiles match.
12514
12515 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12516 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12517
12518 Check_Subtype_Conformant
12519 (New_Id =>
12520 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12521 Old_Id =>
12522 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12523 Err_Loc =>
12524 N);
12525 return True;
12526
12527 -- If it was legal in the generic, it's legal in the instance
12528
12529 elsif In_Instance_Body then
12530 return True;
12531
12532 -- If both are tagged types, check legality of view conversions
12533
12534 elsif Is_Tagged_Type (Target_Type)
12535 and then
12536 Is_Tagged_Type (Opnd_Type)
12537 then
12538 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12539
12540 -- Types derived from the same root type are convertible
12541
12542 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12543 return True;
12544
12545 -- In an instance or an inlined body, there may be inconsistent views of
12546 -- the same type, or of types derived from a common root.
12547
12548 elsif (In_Instance or In_Inlined_Body)
12549 and then
12550 Root_Type (Underlying_Type (Target_Type)) =
12551 Root_Type (Underlying_Type (Opnd_Type))
12552 then
12553 return True;
12554
12555 -- Special check for common access type error case
12556
12557 elsif Ekind (Target_Type) = E_Access_Type
12558 and then Is_Access_Type (Opnd_Type)
12559 then
12560 Conversion_Error_N ("target type must be general access type!", N);
12561 Conversion_Error_NE -- CODEFIX
12562 ("add ALL to }!", N, Target_Type);
12563 return False;
12564
12565 -- Here we have a real conversion error
12566
12567 else
12568 Conversion_Error_NE
12569 ("invalid conversion, not compatible with }", N, Opnd_Type);
12570 return False;
12571 end if;
12572 end Valid_Conversion;
12573
12574 end Sem_Res;