ead3efdd8dbcd283c82983141e35a8cd6fa63749
[gcc.git] / gcc / ada / sem_util.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Treepr; -- ???For debugging code below
27
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Casing; use Casing;
31 with Checks; use Checks;
32 with Debug; use Debug;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Exp_Ch11; use Exp_Ch11;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Lib; use Lib;
41 with Lib.Xref; use Lib.Xref;
42 with Namet.Sp; use Namet.Sp;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Attr; use Sem_Attr;
52 with Sem_Ch6; use Sem_Ch6;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Disp; use Sem_Disp;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Prag; use Sem_Prag;
57 with Sem_Res; use Sem_Res;
58 with Sem_Warn; use Sem_Warn;
59 with Sem_Type; use Sem_Type;
60 with Sinfo; use Sinfo;
61 with Sinput; use Sinput;
62 with Stand; use Stand;
63 with Style;
64 with Stringt; use Stringt;
65 with Targparm; use Targparm;
66 with Tbuild; use Tbuild;
67 with Ttypes; use Ttypes;
68 with Uname; use Uname;
69
70 with GNAT.HTable; use GNAT.HTable;
71
72 package body Sem_Util is
73
74 ----------------------------------------
75 -- Global Variables for New_Copy_Tree --
76 ----------------------------------------
77
78 -- These global variables are used by New_Copy_Tree. See description of the
79 -- body of this subprogram for details. Global variables can be safely used
80 -- by New_Copy_Tree, since there is no case of a recursive call from the
81 -- processing inside New_Copy_Tree.
82
83 NCT_Hash_Threshold : constant := 20;
84 -- If there are more than this number of pairs of entries in the map, then
85 -- Hash_Tables_Used will be set, and the hash tables will be initialized
86 -- and used for the searches.
87
88 NCT_Hash_Tables_Used : Boolean := False;
89 -- Set to True if hash tables are in use
90
91 NCT_Table_Entries : Nat := 0;
92 -- Count entries in table to see if threshold is reached
93
94 NCT_Hash_Table_Setup : Boolean := False;
95 -- Set to True if hash table contains data. We set this True if we setup
96 -- the hash table with data, and leave it set permanently from then on,
97 -- this is a signal that second and subsequent users of the hash table
98 -- must clear the old entries before reuse.
99
100 subtype NCT_Header_Num is Int range 0 .. 511;
101 -- Defines range of headers in hash tables (512 headers)
102
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
106
107 function Build_Component_Subtype
108 (C : List_Id;
109 Loc : Source_Ptr;
110 T : Entity_Id) return Node_Id;
111 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
112 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
113 -- Loc is the source location, T is the original subtype.
114
115 function Has_Enabled_Property
116 (Item_Id : Entity_Id;
117 Property : Name_Id) return Boolean;
118 -- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
119 -- Determine whether an abstract state or a variable denoted by entity
120 -- Item_Id has enabled property Property.
121
122 function Has_Null_Extension (T : Entity_Id) return Boolean;
123 -- T is a derived tagged type. Check whether the type extension is null.
124 -- If the parent type is fully initialized, T can be treated as such.
125
126 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
127 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
128 -- with discriminants whose default values are static, examine only the
129 -- components in the selected variant to determine whether all of them
130 -- have a default.
131
132 ------------------------------
133 -- Abstract_Interface_List --
134 ------------------------------
135
136 function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
137 Nod : Node_Id;
138
139 begin
140 if Is_Concurrent_Type (Typ) then
141
142 -- If we are dealing with a synchronized subtype, go to the base
143 -- type, whose declaration has the interface list.
144
145 -- Shouldn't this be Declaration_Node???
146
147 Nod := Parent (Base_Type (Typ));
148
149 if Nkind (Nod) = N_Full_Type_Declaration then
150 return Empty_List;
151 end if;
152
153 elsif Ekind (Typ) = E_Record_Type_With_Private then
154 if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
155 Nod := Type_Definition (Parent (Typ));
156
157 elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
158 if Present (Full_View (Typ))
159 and then
160 Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration
161 then
162 Nod := Type_Definition (Parent (Full_View (Typ)));
163
164 -- If the full-view is not available we cannot do anything else
165 -- here (the source has errors).
166
167 else
168 return Empty_List;
169 end if;
170
171 -- Support for generic formals with interfaces is still missing ???
172
173 elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
174 return Empty_List;
175
176 else
177 pragma Assert
178 (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
179 Nod := Parent (Typ);
180 end if;
181
182 elsif Ekind (Typ) = E_Record_Subtype then
183 Nod := Type_Definition (Parent (Etype (Typ)));
184
185 elsif Ekind (Typ) = E_Record_Subtype_With_Private then
186
187 -- Recurse, because parent may still be a private extension. Also
188 -- note that the full view of the subtype or the full view of its
189 -- base type may (both) be unavailable.
190
191 return Abstract_Interface_List (Etype (Typ));
192
193 else pragma Assert ((Ekind (Typ)) = E_Record_Type);
194 if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
195 Nod := Formal_Type_Definition (Parent (Typ));
196 else
197 Nod := Type_Definition (Parent (Typ));
198 end if;
199 end if;
200
201 return Interface_List (Nod);
202 end Abstract_Interface_List;
203
204 --------------------------------
205 -- Add_Access_Type_To_Process --
206 --------------------------------
207
208 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
209 L : Elist_Id;
210
211 begin
212 Ensure_Freeze_Node (E);
213 L := Access_Types_To_Process (Freeze_Node (E));
214
215 if No (L) then
216 L := New_Elmt_List;
217 Set_Access_Types_To_Process (Freeze_Node (E), L);
218 end if;
219
220 Append_Elmt (A, L);
221 end Add_Access_Type_To_Process;
222
223 --------------------------
224 -- Add_Block_Identifier --
225 --------------------------
226
227 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id) is
228 Loc : constant Source_Ptr := Sloc (N);
229
230 begin
231 pragma Assert (Nkind (N) = N_Block_Statement);
232
233 -- The block already has a label, return its entity
234
235 if Present (Identifier (N)) then
236 Id := Entity (Identifier (N));
237
238 -- Create a new block label and set its attributes
239
240 else
241 Id := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
242 Set_Etype (Id, Standard_Void_Type);
243 Set_Parent (Id, N);
244
245 Set_Identifier (N, New_Occurrence_Of (Id, Loc));
246 Set_Block_Node (Id, Identifier (N));
247 end if;
248 end Add_Block_Identifier;
249
250 ----------------------------
251 -- Add_Global_Declaration --
252 ----------------------------
253
254 procedure Add_Global_Declaration (N : Node_Id) is
255 Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
256
257 begin
258 if No (Declarations (Aux_Node)) then
259 Set_Declarations (Aux_Node, New_List);
260 end if;
261
262 Append_To (Declarations (Aux_Node), N);
263 Analyze (N);
264 end Add_Global_Declaration;
265
266 --------------------------------
267 -- Address_Integer_Convert_OK --
268 --------------------------------
269
270 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean is
271 begin
272 if Allow_Integer_Address
273 and then ((Is_Descendant_Of_Address (T1)
274 and then Is_Private_Type (T1)
275 and then Is_Integer_Type (T2))
276 or else
277 (Is_Descendant_Of_Address (T2)
278 and then Is_Private_Type (T2)
279 and then Is_Integer_Type (T1)))
280 then
281 return True;
282 else
283 return False;
284 end if;
285 end Address_Integer_Convert_OK;
286
287 -------------------
288 -- Address_Value --
289 -------------------
290
291 function Address_Value (N : Node_Id) return Node_Id is
292 Expr : Node_Id := N;
293
294 begin
295 loop
296 -- For constant, get constant expression
297
298 if Is_Entity_Name (Expr)
299 and then Ekind (Entity (Expr)) = E_Constant
300 then
301 Expr := Constant_Value (Entity (Expr));
302
303 -- For unchecked conversion, get result to convert
304
305 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
306 Expr := Expression (Expr);
307
308 -- For (common case) of To_Address call, get argument
309
310 elsif Nkind (Expr) = N_Function_Call
311 and then Is_Entity_Name (Name (Expr))
312 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
313 then
314 Expr := First (Parameter_Associations (Expr));
315
316 if Nkind (Expr) = N_Parameter_Association then
317 Expr := Explicit_Actual_Parameter (Expr);
318 end if;
319
320 -- We finally have the real expression
321
322 else
323 exit;
324 end if;
325 end loop;
326
327 return Expr;
328 end Address_Value;
329
330 -----------------
331 -- Addressable --
332 -----------------
333
334 -- For now, just 8/16/32/64
335
336 function Addressable (V : Uint) return Boolean is
337 begin
338 return V = Uint_8 or else
339 V = Uint_16 or else
340 V = Uint_32 or else
341 V = Uint_64;
342 end Addressable;
343
344 function Addressable (V : Int) return Boolean is
345 begin
346 return V = 8 or else
347 V = 16 or else
348 V = 32 or else
349 V = 64;
350 end Addressable;
351
352 ---------------------------------
353 -- Aggregate_Constraint_Checks --
354 ---------------------------------
355
356 procedure Aggregate_Constraint_Checks
357 (Exp : Node_Id;
358 Check_Typ : Entity_Id)
359 is
360 Exp_Typ : constant Entity_Id := Etype (Exp);
361
362 begin
363 if Raises_Constraint_Error (Exp) then
364 return;
365 end if;
366
367 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
368 -- component's type to force the appropriate accessibility checks.
369
370 -- Ada 2005 (AI-231): Generate conversion to the null-excluding type to
371 -- force the corresponding run-time check
372
373 if Is_Access_Type (Check_Typ)
374 and then Is_Local_Anonymous_Access (Check_Typ)
375 then
376 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
377 Analyze_And_Resolve (Exp, Check_Typ);
378 Check_Unset_Reference (Exp);
379 end if;
380
381 -- What follows is really expansion activity, so check that expansion
382 -- is on and is allowed. In GNATprove mode, we also want check flags to
383 -- be added in the tree, so that the formal verification can rely on
384 -- those to be present. In GNATprove mode for formal verification, some
385 -- treatment typically only done during expansion needs to be performed
386 -- on the tree, but it should not be applied inside generics. Otherwise,
387 -- this breaks the name resolution mechanism for generic instances.
388
389 if not Expander_Active
390 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
391 then
392 return;
393 end if;
394
395 if Is_Access_Type (Check_Typ)
396 and then Can_Never_Be_Null (Check_Typ)
397 and then not Can_Never_Be_Null (Exp_Typ)
398 then
399 Install_Null_Excluding_Check (Exp);
400 end if;
401
402 -- First check if we have to insert discriminant checks
403
404 if Has_Discriminants (Exp_Typ) then
405 Apply_Discriminant_Check (Exp, Check_Typ);
406
407 -- Next emit length checks for array aggregates
408
409 elsif Is_Array_Type (Exp_Typ) then
410 Apply_Length_Check (Exp, Check_Typ);
411
412 -- Finally emit scalar and string checks. If we are dealing with a
413 -- scalar literal we need to check by hand because the Etype of
414 -- literals is not necessarily correct.
415
416 elsif Is_Scalar_Type (Exp_Typ)
417 and then Compile_Time_Known_Value (Exp)
418 then
419 if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
420 Apply_Compile_Time_Constraint_Error
421 (Exp, "value not in range of}??", CE_Range_Check_Failed,
422 Ent => Base_Type (Check_Typ),
423 Typ => Base_Type (Check_Typ));
424
425 elsif Is_Out_Of_Range (Exp, Check_Typ) then
426 Apply_Compile_Time_Constraint_Error
427 (Exp, "value not in range of}??", CE_Range_Check_Failed,
428 Ent => Check_Typ,
429 Typ => Check_Typ);
430
431 elsif not Range_Checks_Suppressed (Check_Typ) then
432 Apply_Scalar_Range_Check (Exp, Check_Typ);
433 end if;
434
435 -- Verify that target type is also scalar, to prevent view anomalies
436 -- in instantiations.
437
438 elsif (Is_Scalar_Type (Exp_Typ)
439 or else Nkind (Exp) = N_String_Literal)
440 and then Is_Scalar_Type (Check_Typ)
441 and then Exp_Typ /= Check_Typ
442 then
443 if Is_Entity_Name (Exp)
444 and then Ekind (Entity (Exp)) = E_Constant
445 then
446 -- If expression is a constant, it is worthwhile checking whether
447 -- it is a bound of the type.
448
449 if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
450 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
451 or else
452 (Is_Entity_Name (Type_High_Bound (Check_Typ))
453 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
454 then
455 return;
456
457 else
458 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
459 Analyze_And_Resolve (Exp, Check_Typ);
460 Check_Unset_Reference (Exp);
461 end if;
462
463 -- Could use a comment on this case ???
464
465 else
466 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
467 Analyze_And_Resolve (Exp, Check_Typ);
468 Check_Unset_Reference (Exp);
469 end if;
470
471 end if;
472 end Aggregate_Constraint_Checks;
473
474 -----------------------
475 -- Alignment_In_Bits --
476 -----------------------
477
478 function Alignment_In_Bits (E : Entity_Id) return Uint is
479 begin
480 return Alignment (E) * System_Storage_Unit;
481 end Alignment_In_Bits;
482
483 --------------------------------------
484 -- All_Composite_Constraints_Static --
485 --------------------------------------
486
487 function All_Composite_Constraints_Static
488 (Constr : Node_Id) return Boolean
489 is
490 begin
491 if No (Constr) or else Error_Posted (Constr) then
492 return True;
493 end if;
494
495 case Nkind (Constr) is
496 when N_Subexpr =>
497 if Nkind (Constr) in N_Has_Entity
498 and then Present (Entity (Constr))
499 then
500 if Is_Type (Entity (Constr)) then
501 return
502 not Is_Discrete_Type (Entity (Constr))
503 or else Is_OK_Static_Subtype (Entity (Constr));
504 end if;
505
506 elsif Nkind (Constr) = N_Range then
507 return
508 Is_OK_Static_Expression (Low_Bound (Constr))
509 and then
510 Is_OK_Static_Expression (High_Bound (Constr));
511
512 elsif Nkind (Constr) = N_Attribute_Reference
513 and then Attribute_Name (Constr) = Name_Range
514 then
515 return
516 Is_OK_Static_Expression
517 (Type_Low_Bound (Etype (Prefix (Constr))))
518 and then
519 Is_OK_Static_Expression
520 (Type_High_Bound (Etype (Prefix (Constr))));
521 end if;
522
523 return
524 not Present (Etype (Constr)) -- previous error
525 or else not Is_Discrete_Type (Etype (Constr))
526 or else Is_OK_Static_Expression (Constr);
527
528 when N_Discriminant_Association =>
529 return All_Composite_Constraints_Static (Expression (Constr));
530
531 when N_Range_Constraint =>
532 return
533 All_Composite_Constraints_Static (Range_Expression (Constr));
534
535 when N_Index_Or_Discriminant_Constraint =>
536 declare
537 One_Cstr : Entity_Id;
538 begin
539 One_Cstr := First (Constraints (Constr));
540 while Present (One_Cstr) loop
541 if not All_Composite_Constraints_Static (One_Cstr) then
542 return False;
543 end if;
544
545 Next (One_Cstr);
546 end loop;
547 end;
548
549 return True;
550
551 when N_Subtype_Indication =>
552 return
553 All_Composite_Constraints_Static (Subtype_Mark (Constr))
554 and then
555 All_Composite_Constraints_Static (Constraint (Constr));
556
557 when others =>
558 raise Program_Error;
559 end case;
560 end All_Composite_Constraints_Static;
561
562 ---------------------------------
563 -- Append_Inherited_Subprogram --
564 ---------------------------------
565
566 procedure Append_Inherited_Subprogram (S : Entity_Id) is
567 Par : constant Entity_Id := Alias (S);
568 -- The parent subprogram
569
570 Scop : constant Entity_Id := Scope (Par);
571 -- The scope of definition of the parent subprogram
572
573 Typ : constant Entity_Id := Defining_Entity (Parent (S));
574 -- The derived type of which S is a primitive operation
575
576 Decl : Node_Id;
577 Next_E : Entity_Id;
578
579 begin
580 if Ekind (Current_Scope) = E_Package
581 and then In_Private_Part (Current_Scope)
582 and then Has_Private_Declaration (Typ)
583 and then Is_Tagged_Type (Typ)
584 and then Scop = Current_Scope
585 then
586 -- The inherited operation is available at the earliest place after
587 -- the derived type declaration ( RM 7.3.1 (6/1)). This is only
588 -- relevant for type extensions. If the parent operation appears
589 -- after the type extension, the operation is not visible.
590
591 Decl := First
592 (Visible_Declarations
593 (Package_Specification (Current_Scope)));
594 while Present (Decl) loop
595 if Nkind (Decl) = N_Private_Extension_Declaration
596 and then Defining_Entity (Decl) = Typ
597 then
598 if Sloc (Decl) > Sloc (Par) then
599 Next_E := Next_Entity (Par);
600 Set_Next_Entity (Par, S);
601 Set_Next_Entity (S, Next_E);
602 return;
603
604 else
605 exit;
606 end if;
607 end if;
608
609 Next (Decl);
610 end loop;
611 end if;
612
613 -- If partial view is not a type extension, or it appears before the
614 -- subprogram declaration, insert normally at end of entity list.
615
616 Append_Entity (S, Current_Scope);
617 end Append_Inherited_Subprogram;
618
619 -----------------------------------------
620 -- Apply_Compile_Time_Constraint_Error --
621 -----------------------------------------
622
623 procedure Apply_Compile_Time_Constraint_Error
624 (N : Node_Id;
625 Msg : String;
626 Reason : RT_Exception_Code;
627 Ent : Entity_Id := Empty;
628 Typ : Entity_Id := Empty;
629 Loc : Source_Ptr := No_Location;
630 Rep : Boolean := True;
631 Warn : Boolean := False)
632 is
633 Stat : constant Boolean := Is_Static_Expression (N);
634 R_Stat : constant Node_Id :=
635 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
636 Rtyp : Entity_Id;
637
638 begin
639 if No (Typ) then
640 Rtyp := Etype (N);
641 else
642 Rtyp := Typ;
643 end if;
644
645 Discard_Node
646 (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
647
648 -- In GNATprove mode, do not replace the node with an exception raised.
649 -- In such a case, either the call to Compile_Time_Constraint_Error
650 -- issues an error which stops analysis, or it issues a warning in
651 -- a few cases where a suitable check flag is set for GNATprove to
652 -- generate a check message.
653
654 if not Rep or GNATprove_Mode then
655 return;
656 end if;
657
658 -- Now we replace the node by an N_Raise_Constraint_Error node
659 -- This does not need reanalyzing, so set it as analyzed now.
660
661 Rewrite (N, R_Stat);
662 Set_Analyzed (N, True);
663
664 Set_Etype (N, Rtyp);
665 Set_Raises_Constraint_Error (N);
666
667 -- Now deal with possible local raise handling
668
669 Possible_Local_Raise (N, Standard_Constraint_Error);
670
671 -- If the original expression was marked as static, the result is
672 -- still marked as static, but the Raises_Constraint_Error flag is
673 -- always set so that further static evaluation is not attempted.
674
675 if Stat then
676 Set_Is_Static_Expression (N);
677 end if;
678 end Apply_Compile_Time_Constraint_Error;
679
680 ---------------------------
681 -- Async_Readers_Enabled --
682 ---------------------------
683
684 function Async_Readers_Enabled (Id : Entity_Id) return Boolean is
685 begin
686 return Has_Enabled_Property (Id, Name_Async_Readers);
687 end Async_Readers_Enabled;
688
689 ---------------------------
690 -- Async_Writers_Enabled --
691 ---------------------------
692
693 function Async_Writers_Enabled (Id : Entity_Id) return Boolean is
694 begin
695 return Has_Enabled_Property (Id, Name_Async_Writers);
696 end Async_Writers_Enabled;
697
698 --------------------------------------
699 -- Available_Full_View_Of_Component --
700 --------------------------------------
701
702 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
703 ST : constant Entity_Id := Scope (T);
704 SCT : constant Entity_Id := Scope (Component_Type (T));
705 begin
706 return In_Open_Scopes (ST)
707 and then In_Open_Scopes (SCT)
708 and then Scope_Depth (ST) >= Scope_Depth (SCT);
709 end Available_Full_View_Of_Component;
710
711 -------------------
712 -- Bad_Attribute --
713 -------------------
714
715 procedure Bad_Attribute
716 (N : Node_Id;
717 Nam : Name_Id;
718 Warn : Boolean := False)
719 is
720 begin
721 Error_Msg_Warn := Warn;
722 Error_Msg_N ("unrecognized attribute&<<", N);
723
724 -- Check for possible misspelling
725
726 Error_Msg_Name_1 := First_Attribute_Name;
727 while Error_Msg_Name_1 <= Last_Attribute_Name loop
728 if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
729 Error_Msg_N -- CODEFIX
730 ("\possible misspelling of %<<", N);
731 exit;
732 end if;
733
734 Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
735 end loop;
736 end Bad_Attribute;
737
738 --------------------------------
739 -- Bad_Predicated_Subtype_Use --
740 --------------------------------
741
742 procedure Bad_Predicated_Subtype_Use
743 (Msg : String;
744 N : Node_Id;
745 Typ : Entity_Id;
746 Suggest_Static : Boolean := False)
747 is
748 Gen : Entity_Id;
749
750 begin
751 -- Avoid cascaded errors
752
753 if Error_Posted (N) then
754 return;
755 end if;
756
757 if Inside_A_Generic then
758 Gen := Current_Scope;
759 while Present (Gen) and then Ekind (Gen) /= E_Generic_Package loop
760 Gen := Scope (Gen);
761 end loop;
762
763 if No (Gen) then
764 return;
765 end if;
766
767 if Is_Generic_Formal (Typ) and then Is_Discrete_Type (Typ) then
768 Set_No_Predicate_On_Actual (Typ);
769 end if;
770
771 elsif Has_Predicates (Typ) then
772 if Is_Generic_Actual_Type (Typ) then
773
774 -- The restriction on loop parameters is only that the type
775 -- should have no dynamic predicates.
776
777 if Nkind (Parent (N)) = N_Loop_Parameter_Specification
778 and then not Has_Dynamic_Predicate_Aspect (Typ)
779 and then Is_OK_Static_Subtype (Typ)
780 then
781 return;
782 end if;
783
784 Gen := Current_Scope;
785 while not Is_Generic_Instance (Gen) loop
786 Gen := Scope (Gen);
787 end loop;
788
789 pragma Assert (Present (Gen));
790
791 if Ekind (Gen) = E_Package and then In_Package_Body (Gen) then
792 Error_Msg_Warn := SPARK_Mode /= On;
793 Error_Msg_FE (Msg & "<<", N, Typ);
794 Error_Msg_F ("\Program_Error [<<", N);
795
796 Insert_Action (N,
797 Make_Raise_Program_Error (Sloc (N),
798 Reason => PE_Bad_Predicated_Generic_Type));
799
800 else
801 Error_Msg_FE (Msg & "<<", N, Typ);
802 end if;
803
804 else
805 Error_Msg_FE (Msg, N, Typ);
806 end if;
807
808 -- Emit an optional suggestion on how to remedy the error if the
809 -- context warrants it.
810
811 if Suggest_Static and then Has_Static_Predicate (Typ) then
812 Error_Msg_FE ("\predicate of & should be marked static", N, Typ);
813 end if;
814 end if;
815 end Bad_Predicated_Subtype_Use;
816
817 -----------------------------------------
818 -- Bad_Unordered_Enumeration_Reference --
819 -----------------------------------------
820
821 function Bad_Unordered_Enumeration_Reference
822 (N : Node_Id;
823 T : Entity_Id) return Boolean
824 is
825 begin
826 return Is_Enumeration_Type (T)
827 and then Warn_On_Unordered_Enumeration_Type
828 and then not Is_Generic_Type (T)
829 and then Comes_From_Source (N)
830 and then not Has_Pragma_Ordered (T)
831 and then not In_Same_Extended_Unit (N, T);
832 end Bad_Unordered_Enumeration_Reference;
833
834 --------------------------
835 -- Build_Actual_Subtype --
836 --------------------------
837
838 function Build_Actual_Subtype
839 (T : Entity_Id;
840 N : Node_Or_Entity_Id) return Node_Id
841 is
842 Loc : Source_Ptr;
843 -- Normally Sloc (N), but may point to corresponding body in some cases
844
845 Constraints : List_Id;
846 Decl : Node_Id;
847 Discr : Entity_Id;
848 Hi : Node_Id;
849 Lo : Node_Id;
850 Subt : Entity_Id;
851 Disc_Type : Entity_Id;
852 Obj : Node_Id;
853
854 begin
855 Loc := Sloc (N);
856
857 if Nkind (N) = N_Defining_Identifier then
858 Obj := New_Occurrence_Of (N, Loc);
859
860 -- If this is a formal parameter of a subprogram declaration, and
861 -- we are compiling the body, we want the declaration for the
862 -- actual subtype to carry the source position of the body, to
863 -- prevent anomalies in gdb when stepping through the code.
864
865 if Is_Formal (N) then
866 declare
867 Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
868 begin
869 if Nkind (Decl) = N_Subprogram_Declaration
870 and then Present (Corresponding_Body (Decl))
871 then
872 Loc := Sloc (Corresponding_Body (Decl));
873 end if;
874 end;
875 end if;
876
877 else
878 Obj := N;
879 end if;
880
881 if Is_Array_Type (T) then
882 Constraints := New_List;
883 for J in 1 .. Number_Dimensions (T) loop
884
885 -- Build an array subtype declaration with the nominal subtype and
886 -- the bounds of the actual. Add the declaration in front of the
887 -- local declarations for the subprogram, for analysis before any
888 -- reference to the formal in the body.
889
890 Lo :=
891 Make_Attribute_Reference (Loc,
892 Prefix =>
893 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
894 Attribute_Name => Name_First,
895 Expressions => New_List (
896 Make_Integer_Literal (Loc, J)));
897
898 Hi :=
899 Make_Attribute_Reference (Loc,
900 Prefix =>
901 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
902 Attribute_Name => Name_Last,
903 Expressions => New_List (
904 Make_Integer_Literal (Loc, J)));
905
906 Append (Make_Range (Loc, Lo, Hi), Constraints);
907 end loop;
908
909 -- If the type has unknown discriminants there is no constrained
910 -- subtype to build. This is never called for a formal or for a
911 -- lhs, so returning the type is ok ???
912
913 elsif Has_Unknown_Discriminants (T) then
914 return T;
915
916 else
917 Constraints := New_List;
918
919 -- Type T is a generic derived type, inherit the discriminants from
920 -- the parent type.
921
922 if Is_Private_Type (T)
923 and then No (Full_View (T))
924
925 -- T was flagged as an error if it was declared as a formal
926 -- derived type with known discriminants. In this case there
927 -- is no need to look at the parent type since T already carries
928 -- its own discriminants.
929
930 and then not Error_Posted (T)
931 then
932 Disc_Type := Etype (Base_Type (T));
933 else
934 Disc_Type := T;
935 end if;
936
937 Discr := First_Discriminant (Disc_Type);
938 while Present (Discr) loop
939 Append_To (Constraints,
940 Make_Selected_Component (Loc,
941 Prefix =>
942 Duplicate_Subexpr_No_Checks (Obj),
943 Selector_Name => New_Occurrence_Of (Discr, Loc)));
944 Next_Discriminant (Discr);
945 end loop;
946 end if;
947
948 Subt := Make_Temporary (Loc, 'S', Related_Node => N);
949 Set_Is_Internal (Subt);
950
951 Decl :=
952 Make_Subtype_Declaration (Loc,
953 Defining_Identifier => Subt,
954 Subtype_Indication =>
955 Make_Subtype_Indication (Loc,
956 Subtype_Mark => New_Occurrence_Of (T, Loc),
957 Constraint =>
958 Make_Index_Or_Discriminant_Constraint (Loc,
959 Constraints => Constraints)));
960
961 Mark_Rewrite_Insertion (Decl);
962 return Decl;
963 end Build_Actual_Subtype;
964
965 ---------------------------------------
966 -- Build_Actual_Subtype_Of_Component --
967 ---------------------------------------
968
969 function Build_Actual_Subtype_Of_Component
970 (T : Entity_Id;
971 N : Node_Id) return Node_Id
972 is
973 Loc : constant Source_Ptr := Sloc (N);
974 P : constant Node_Id := Prefix (N);
975 D : Elmt_Id;
976 Id : Node_Id;
977 Index_Typ : Entity_Id;
978
979 Desig_Typ : Entity_Id;
980 -- This is either a copy of T, or if T is an access type, then it is
981 -- the directly designated type of this access type.
982
983 function Build_Actual_Array_Constraint return List_Id;
984 -- If one or more of the bounds of the component depends on
985 -- discriminants, build actual constraint using the discriminants
986 -- of the prefix.
987
988 function Build_Actual_Record_Constraint return List_Id;
989 -- Similar to previous one, for discriminated components constrained
990 -- by the discriminant of the enclosing object.
991
992 -----------------------------------
993 -- Build_Actual_Array_Constraint --
994 -----------------------------------
995
996 function Build_Actual_Array_Constraint return List_Id is
997 Constraints : constant List_Id := New_List;
998 Indx : Node_Id;
999 Hi : Node_Id;
1000 Lo : Node_Id;
1001 Old_Hi : Node_Id;
1002 Old_Lo : Node_Id;
1003
1004 begin
1005 Indx := First_Index (Desig_Typ);
1006 while Present (Indx) loop
1007 Old_Lo := Type_Low_Bound (Etype (Indx));
1008 Old_Hi := Type_High_Bound (Etype (Indx));
1009
1010 if Denotes_Discriminant (Old_Lo) then
1011 Lo :=
1012 Make_Selected_Component (Loc,
1013 Prefix => New_Copy_Tree (P),
1014 Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
1015
1016 else
1017 Lo := New_Copy_Tree (Old_Lo);
1018
1019 -- The new bound will be reanalyzed in the enclosing
1020 -- declaration. For literal bounds that come from a type
1021 -- declaration, the type of the context must be imposed, so
1022 -- insure that analysis will take place. For non-universal
1023 -- types this is not strictly necessary.
1024
1025 Set_Analyzed (Lo, False);
1026 end if;
1027
1028 if Denotes_Discriminant (Old_Hi) then
1029 Hi :=
1030 Make_Selected_Component (Loc,
1031 Prefix => New_Copy_Tree (P),
1032 Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
1033
1034 else
1035 Hi := New_Copy_Tree (Old_Hi);
1036 Set_Analyzed (Hi, False);
1037 end if;
1038
1039 Append (Make_Range (Loc, Lo, Hi), Constraints);
1040 Next_Index (Indx);
1041 end loop;
1042
1043 return Constraints;
1044 end Build_Actual_Array_Constraint;
1045
1046 ------------------------------------
1047 -- Build_Actual_Record_Constraint --
1048 ------------------------------------
1049
1050 function Build_Actual_Record_Constraint return List_Id is
1051 Constraints : constant List_Id := New_List;
1052 D : Elmt_Id;
1053 D_Val : Node_Id;
1054
1055 begin
1056 D := First_Elmt (Discriminant_Constraint (Desig_Typ));
1057 while Present (D) loop
1058 if Denotes_Discriminant (Node (D)) then
1059 D_Val := Make_Selected_Component (Loc,
1060 Prefix => New_Copy_Tree (P),
1061 Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
1062
1063 else
1064 D_Val := New_Copy_Tree (Node (D));
1065 end if;
1066
1067 Append (D_Val, Constraints);
1068 Next_Elmt (D);
1069 end loop;
1070
1071 return Constraints;
1072 end Build_Actual_Record_Constraint;
1073
1074 -- Start of processing for Build_Actual_Subtype_Of_Component
1075
1076 begin
1077 -- Why the test for Spec_Expression mode here???
1078
1079 if In_Spec_Expression then
1080 return Empty;
1081
1082 -- More comments for the rest of this body would be good ???
1083
1084 elsif Nkind (N) = N_Explicit_Dereference then
1085 if Is_Composite_Type (T)
1086 and then not Is_Constrained (T)
1087 and then not (Is_Class_Wide_Type (T)
1088 and then Is_Constrained (Root_Type (T)))
1089 and then not Has_Unknown_Discriminants (T)
1090 then
1091 -- If the type of the dereference is already constrained, it is an
1092 -- actual subtype.
1093
1094 if Is_Array_Type (Etype (N))
1095 and then Is_Constrained (Etype (N))
1096 then
1097 return Empty;
1098 else
1099 Remove_Side_Effects (P);
1100 return Build_Actual_Subtype (T, N);
1101 end if;
1102 else
1103 return Empty;
1104 end if;
1105 end if;
1106
1107 if Ekind (T) = E_Access_Subtype then
1108 Desig_Typ := Designated_Type (T);
1109 else
1110 Desig_Typ := T;
1111 end if;
1112
1113 if Ekind (Desig_Typ) = E_Array_Subtype then
1114 Id := First_Index (Desig_Typ);
1115 while Present (Id) loop
1116 Index_Typ := Underlying_Type (Etype (Id));
1117
1118 if Denotes_Discriminant (Type_Low_Bound (Index_Typ))
1119 or else
1120 Denotes_Discriminant (Type_High_Bound (Index_Typ))
1121 then
1122 Remove_Side_Effects (P);
1123 return
1124 Build_Component_Subtype
1125 (Build_Actual_Array_Constraint, Loc, Base_Type (T));
1126 end if;
1127
1128 Next_Index (Id);
1129 end loop;
1130
1131 elsif Is_Composite_Type (Desig_Typ)
1132 and then Has_Discriminants (Desig_Typ)
1133 and then not Has_Unknown_Discriminants (Desig_Typ)
1134 then
1135 if Is_Private_Type (Desig_Typ)
1136 and then No (Discriminant_Constraint (Desig_Typ))
1137 then
1138 Desig_Typ := Full_View (Desig_Typ);
1139 end if;
1140
1141 D := First_Elmt (Discriminant_Constraint (Desig_Typ));
1142 while Present (D) loop
1143 if Denotes_Discriminant (Node (D)) then
1144 Remove_Side_Effects (P);
1145 return
1146 Build_Component_Subtype (
1147 Build_Actual_Record_Constraint, Loc, Base_Type (T));
1148 end if;
1149
1150 Next_Elmt (D);
1151 end loop;
1152 end if;
1153
1154 -- If none of the above, the actual and nominal subtypes are the same
1155
1156 return Empty;
1157 end Build_Actual_Subtype_Of_Component;
1158
1159 -----------------------------
1160 -- Build_Component_Subtype --
1161 -----------------------------
1162
1163 function Build_Component_Subtype
1164 (C : List_Id;
1165 Loc : Source_Ptr;
1166 T : Entity_Id) return Node_Id
1167 is
1168 Subt : Entity_Id;
1169 Decl : Node_Id;
1170
1171 begin
1172 -- Unchecked_Union components do not require component subtypes
1173
1174 if Is_Unchecked_Union (T) then
1175 return Empty;
1176 end if;
1177
1178 Subt := Make_Temporary (Loc, 'S');
1179 Set_Is_Internal (Subt);
1180
1181 Decl :=
1182 Make_Subtype_Declaration (Loc,
1183 Defining_Identifier => Subt,
1184 Subtype_Indication =>
1185 Make_Subtype_Indication (Loc,
1186 Subtype_Mark => New_Occurrence_Of (Base_Type (T), Loc),
1187 Constraint =>
1188 Make_Index_Or_Discriminant_Constraint (Loc,
1189 Constraints => C)));
1190
1191 Mark_Rewrite_Insertion (Decl);
1192 return Decl;
1193 end Build_Component_Subtype;
1194
1195 ---------------------------
1196 -- Build_Default_Subtype --
1197 ---------------------------
1198
1199 function Build_Default_Subtype
1200 (T : Entity_Id;
1201 N : Node_Id) return Entity_Id
1202 is
1203 Loc : constant Source_Ptr := Sloc (N);
1204 Disc : Entity_Id;
1205
1206 Bas : Entity_Id;
1207 -- The base type that is to be constrained by the defaults
1208
1209 begin
1210 if not Has_Discriminants (T) or else Is_Constrained (T) then
1211 return T;
1212 end if;
1213
1214 Bas := Base_Type (T);
1215
1216 -- If T is non-private but its base type is private, this is the
1217 -- completion of a subtype declaration whose parent type is private
1218 -- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
1219 -- are to be found in the full view of the base. Check that the private
1220 -- status of T and its base differ.
1221
1222 if Is_Private_Type (Bas)
1223 and then not Is_Private_Type (T)
1224 and then Present (Full_View (Bas))
1225 then
1226 Bas := Full_View (Bas);
1227 end if;
1228
1229 Disc := First_Discriminant (T);
1230
1231 if No (Discriminant_Default_Value (Disc)) then
1232 return T;
1233 end if;
1234
1235 declare
1236 Act : constant Entity_Id := Make_Temporary (Loc, 'S');
1237 Constraints : constant List_Id := New_List;
1238 Decl : Node_Id;
1239
1240 begin
1241 while Present (Disc) loop
1242 Append_To (Constraints,
1243 New_Copy_Tree (Discriminant_Default_Value (Disc)));
1244 Next_Discriminant (Disc);
1245 end loop;
1246
1247 Decl :=
1248 Make_Subtype_Declaration (Loc,
1249 Defining_Identifier => Act,
1250 Subtype_Indication =>
1251 Make_Subtype_Indication (Loc,
1252 Subtype_Mark => New_Occurrence_Of (Bas, Loc),
1253 Constraint =>
1254 Make_Index_Or_Discriminant_Constraint (Loc,
1255 Constraints => Constraints)));
1256
1257 Insert_Action (N, Decl);
1258
1259 -- If the context is a component declaration the subtype declaration
1260 -- will be analyzed when the enclosing type is frozen, otherwise do
1261 -- it now.
1262
1263 if Ekind (Current_Scope) /= E_Record_Type then
1264 Analyze (Decl);
1265 end if;
1266
1267 return Act;
1268 end;
1269 end Build_Default_Subtype;
1270
1271 --------------------------------------------
1272 -- Build_Discriminal_Subtype_Of_Component --
1273 --------------------------------------------
1274
1275 function Build_Discriminal_Subtype_Of_Component
1276 (T : Entity_Id) return Node_Id
1277 is
1278 Loc : constant Source_Ptr := Sloc (T);
1279 D : Elmt_Id;
1280 Id : Node_Id;
1281
1282 function Build_Discriminal_Array_Constraint return List_Id;
1283 -- If one or more of the bounds of the component depends on
1284 -- discriminants, build actual constraint using the discriminants
1285 -- of the prefix.
1286
1287 function Build_Discriminal_Record_Constraint return List_Id;
1288 -- Similar to previous one, for discriminated components constrained by
1289 -- the discriminant of the enclosing object.
1290
1291 ----------------------------------------
1292 -- Build_Discriminal_Array_Constraint --
1293 ----------------------------------------
1294
1295 function Build_Discriminal_Array_Constraint return List_Id is
1296 Constraints : constant List_Id := New_List;
1297 Indx : Node_Id;
1298 Hi : Node_Id;
1299 Lo : Node_Id;
1300 Old_Hi : Node_Id;
1301 Old_Lo : Node_Id;
1302
1303 begin
1304 Indx := First_Index (T);
1305 while Present (Indx) loop
1306 Old_Lo := Type_Low_Bound (Etype (Indx));
1307 Old_Hi := Type_High_Bound (Etype (Indx));
1308
1309 if Denotes_Discriminant (Old_Lo) then
1310 Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
1311
1312 else
1313 Lo := New_Copy_Tree (Old_Lo);
1314 end if;
1315
1316 if Denotes_Discriminant (Old_Hi) then
1317 Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
1318
1319 else
1320 Hi := New_Copy_Tree (Old_Hi);
1321 end if;
1322
1323 Append (Make_Range (Loc, Lo, Hi), Constraints);
1324 Next_Index (Indx);
1325 end loop;
1326
1327 return Constraints;
1328 end Build_Discriminal_Array_Constraint;
1329
1330 -----------------------------------------
1331 -- Build_Discriminal_Record_Constraint --
1332 -----------------------------------------
1333
1334 function Build_Discriminal_Record_Constraint return List_Id is
1335 Constraints : constant List_Id := New_List;
1336 D : Elmt_Id;
1337 D_Val : Node_Id;
1338
1339 begin
1340 D := First_Elmt (Discriminant_Constraint (T));
1341 while Present (D) loop
1342 if Denotes_Discriminant (Node (D)) then
1343 D_Val :=
1344 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
1345 else
1346 D_Val := New_Copy_Tree (Node (D));
1347 end if;
1348
1349 Append (D_Val, Constraints);
1350 Next_Elmt (D);
1351 end loop;
1352
1353 return Constraints;
1354 end Build_Discriminal_Record_Constraint;
1355
1356 -- Start of processing for Build_Discriminal_Subtype_Of_Component
1357
1358 begin
1359 if Ekind (T) = E_Array_Subtype then
1360 Id := First_Index (T);
1361 while Present (Id) loop
1362 if Denotes_Discriminant (Type_Low_Bound (Etype (Id)))
1363 or else
1364 Denotes_Discriminant (Type_High_Bound (Etype (Id)))
1365 then
1366 return Build_Component_Subtype
1367 (Build_Discriminal_Array_Constraint, Loc, T);
1368 end if;
1369
1370 Next_Index (Id);
1371 end loop;
1372
1373 elsif Ekind (T) = E_Record_Subtype
1374 and then Has_Discriminants (T)
1375 and then not Has_Unknown_Discriminants (T)
1376 then
1377 D := First_Elmt (Discriminant_Constraint (T));
1378 while Present (D) loop
1379 if Denotes_Discriminant (Node (D)) then
1380 return Build_Component_Subtype
1381 (Build_Discriminal_Record_Constraint, Loc, T);
1382 end if;
1383
1384 Next_Elmt (D);
1385 end loop;
1386 end if;
1387
1388 -- If none of the above, the actual and nominal subtypes are the same
1389
1390 return Empty;
1391 end Build_Discriminal_Subtype_Of_Component;
1392
1393 ------------------------------
1394 -- Build_Elaboration_Entity --
1395 ------------------------------
1396
1397 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
1398 Loc : constant Source_Ptr := Sloc (N);
1399 Decl : Node_Id;
1400 Elab_Ent : Entity_Id;
1401
1402 procedure Set_Package_Name (Ent : Entity_Id);
1403 -- Given an entity, sets the fully qualified name of the entity in
1404 -- Name_Buffer, with components separated by double underscores. This
1405 -- is a recursive routine that climbs the scope chain to Standard.
1406
1407 ----------------------
1408 -- Set_Package_Name --
1409 ----------------------
1410
1411 procedure Set_Package_Name (Ent : Entity_Id) is
1412 begin
1413 if Scope (Ent) /= Standard_Standard then
1414 Set_Package_Name (Scope (Ent));
1415
1416 declare
1417 Nam : constant String := Get_Name_String (Chars (Ent));
1418 begin
1419 Name_Buffer (Name_Len + 1) := '_';
1420 Name_Buffer (Name_Len + 2) := '_';
1421 Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
1422 Name_Len := Name_Len + Nam'Length + 2;
1423 end;
1424
1425 else
1426 Get_Name_String (Chars (Ent));
1427 end if;
1428 end Set_Package_Name;
1429
1430 -- Start of processing for Build_Elaboration_Entity
1431
1432 begin
1433 -- Ignore call if already constructed
1434
1435 if Present (Elaboration_Entity (Spec_Id)) then
1436 return;
1437
1438 -- Ignore in ASIS mode, elaboration entity is not in source and plays
1439 -- no role in analysis.
1440
1441 elsif ASIS_Mode then
1442 return;
1443
1444 -- See if we need elaboration entity.
1445
1446 -- We always need an elaboration entity when preserving control flow, as
1447 -- we want to remain explicit about the unit's elaboration order.
1448
1449 elsif Opt.Suppress_Control_Flow_Optimizations then
1450 null;
1451
1452 -- We always need an elaboration entity for the dynamic elaboration
1453 -- model, since it is needed to properly generate the PE exception for
1454 -- access before elaboration.
1455
1456 elsif Dynamic_Elaboration_Checks then
1457 null;
1458
1459 -- For the static model, we don't need the elaboration counter if this
1460 -- unit is sure to have no elaboration code, since that means there
1461 -- is no elaboration unit to be called. Note that we can't just decide
1462 -- after the fact by looking to see whether there was elaboration code,
1463 -- because that's too late to make this decision.
1464
1465 elsif Restriction_Active (No_Elaboration_Code) then
1466 return;
1467
1468 -- Similarly, for the static model, we can skip the elaboration counter
1469 -- if we have the No_Multiple_Elaboration restriction, since for the
1470 -- static model, that's the only purpose of the counter (to avoid
1471 -- multiple elaboration).
1472
1473 elsif Restriction_Active (No_Multiple_Elaboration) then
1474 return;
1475 end if;
1476
1477 -- Here we need the elaboration entity
1478
1479 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
1480 -- name with dots replaced by double underscore. We have to manually
1481 -- construct this name, since it will be elaborated in the outer scope,
1482 -- and thus will not have the unit name automatically prepended.
1483
1484 Set_Package_Name (Spec_Id);
1485 Add_Str_To_Name_Buffer ("_E");
1486
1487 -- Create elaboration counter
1488
1489 Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
1490 Set_Elaboration_Entity (Spec_Id, Elab_Ent);
1491
1492 Decl :=
1493 Make_Object_Declaration (Loc,
1494 Defining_Identifier => Elab_Ent,
1495 Object_Definition =>
1496 New_Occurrence_Of (Standard_Short_Integer, Loc),
1497 Expression => Make_Integer_Literal (Loc, Uint_0));
1498
1499 Push_Scope (Standard_Standard);
1500 Add_Global_Declaration (Decl);
1501 Pop_Scope;
1502
1503 -- Reset True_Constant indication, since we will indeed assign a value
1504 -- to the variable in the binder main. We also kill the Current_Value
1505 -- and Last_Assignment fields for the same reason.
1506
1507 Set_Is_True_Constant (Elab_Ent, False);
1508 Set_Current_Value (Elab_Ent, Empty);
1509 Set_Last_Assignment (Elab_Ent, Empty);
1510
1511 -- We do not want any further qualification of the name (if we did not
1512 -- do this, we would pick up the name of the generic package in the case
1513 -- of a library level generic instantiation).
1514
1515 Set_Has_Qualified_Name (Elab_Ent);
1516 Set_Has_Fully_Qualified_Name (Elab_Ent);
1517 end Build_Elaboration_Entity;
1518
1519 --------------------------------
1520 -- Build_Explicit_Dereference --
1521 --------------------------------
1522
1523 procedure Build_Explicit_Dereference
1524 (Expr : Node_Id;
1525 Disc : Entity_Id)
1526 is
1527 Loc : constant Source_Ptr := Sloc (Expr);
1528 I : Interp_Index;
1529 It : Interp;
1530
1531 begin
1532 -- An entity of a type with a reference aspect is overloaded with
1533 -- both interpretations: with and without the dereference. Now that
1534 -- the dereference is made explicit, set the type of the node properly,
1535 -- to prevent anomalies in the backend. Same if the expression is an
1536 -- overloaded function call whose return type has a reference aspect.
1537
1538 if Is_Entity_Name (Expr) then
1539 Set_Etype (Expr, Etype (Entity (Expr)));
1540
1541 -- The designated entity will not be examined again when resolving
1542 -- the dereference, so generate a reference to it now.
1543
1544 Generate_Reference (Entity (Expr), Expr);
1545
1546 elsif Nkind (Expr) = N_Function_Call then
1547
1548 -- If the name of the indexing function is overloaded, locate the one
1549 -- whose return type has an implicit dereference on the desired
1550 -- discriminant, and set entity and type of function call.
1551
1552 if Is_Overloaded (Name (Expr)) then
1553 Get_First_Interp (Name (Expr), I, It);
1554
1555 while Present (It.Nam) loop
1556 if Ekind ((It.Typ)) = E_Record_Type
1557 and then First_Entity ((It.Typ)) = Disc
1558 then
1559 Set_Entity (Name (Expr), It.Nam);
1560 Set_Etype (Name (Expr), Etype (It.Nam));
1561 exit;
1562 end if;
1563
1564 Get_Next_Interp (I, It);
1565 end loop;
1566 end if;
1567
1568 -- Set type of call from resolved function name.
1569
1570 Set_Etype (Expr, Etype (Name (Expr)));
1571 end if;
1572
1573 Set_Is_Overloaded (Expr, False);
1574
1575 -- The expression will often be a generalized indexing that yields a
1576 -- container element that is then dereferenced, in which case the
1577 -- generalized indexing call is also non-overloaded.
1578
1579 if Nkind (Expr) = N_Indexed_Component
1580 and then Present (Generalized_Indexing (Expr))
1581 then
1582 Set_Is_Overloaded (Generalized_Indexing (Expr), False);
1583 end if;
1584
1585 Rewrite (Expr,
1586 Make_Explicit_Dereference (Loc,
1587 Prefix =>
1588 Make_Selected_Component (Loc,
1589 Prefix => Relocate_Node (Expr),
1590 Selector_Name => New_Occurrence_Of (Disc, Loc))));
1591 Set_Etype (Prefix (Expr), Etype (Disc));
1592 Set_Etype (Expr, Designated_Type (Etype (Disc)));
1593 end Build_Explicit_Dereference;
1594
1595 -----------------------------------
1596 -- Cannot_Raise_Constraint_Error --
1597 -----------------------------------
1598
1599 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
1600 begin
1601 if Compile_Time_Known_Value (Expr) then
1602 return True;
1603
1604 elsif Do_Range_Check (Expr) then
1605 return False;
1606
1607 elsif Raises_Constraint_Error (Expr) then
1608 return False;
1609
1610 else
1611 case Nkind (Expr) is
1612 when N_Identifier =>
1613 return True;
1614
1615 when N_Expanded_Name =>
1616 return True;
1617
1618 when N_Selected_Component =>
1619 return not Do_Discriminant_Check (Expr);
1620
1621 when N_Attribute_Reference =>
1622 if Do_Overflow_Check (Expr) then
1623 return False;
1624
1625 elsif No (Expressions (Expr)) then
1626 return True;
1627
1628 else
1629 declare
1630 N : Node_Id;
1631
1632 begin
1633 N := First (Expressions (Expr));
1634 while Present (N) loop
1635 if Cannot_Raise_Constraint_Error (N) then
1636 Next (N);
1637 else
1638 return False;
1639 end if;
1640 end loop;
1641
1642 return True;
1643 end;
1644 end if;
1645
1646 when N_Type_Conversion =>
1647 if Do_Overflow_Check (Expr)
1648 or else Do_Length_Check (Expr)
1649 or else Do_Tag_Check (Expr)
1650 then
1651 return False;
1652 else
1653 return Cannot_Raise_Constraint_Error (Expression (Expr));
1654 end if;
1655
1656 when N_Unchecked_Type_Conversion =>
1657 return Cannot_Raise_Constraint_Error (Expression (Expr));
1658
1659 when N_Unary_Op =>
1660 if Do_Overflow_Check (Expr) then
1661 return False;
1662 else
1663 return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1664 end if;
1665
1666 when N_Op_Divide |
1667 N_Op_Mod |
1668 N_Op_Rem
1669 =>
1670 if Do_Division_Check (Expr)
1671 or else
1672 Do_Overflow_Check (Expr)
1673 then
1674 return False;
1675 else
1676 return
1677 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1678 and then
1679 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1680 end if;
1681
1682 when N_Op_Add |
1683 N_Op_And |
1684 N_Op_Concat |
1685 N_Op_Eq |
1686 N_Op_Expon |
1687 N_Op_Ge |
1688 N_Op_Gt |
1689 N_Op_Le |
1690 N_Op_Lt |
1691 N_Op_Multiply |
1692 N_Op_Ne |
1693 N_Op_Or |
1694 N_Op_Rotate_Left |
1695 N_Op_Rotate_Right |
1696 N_Op_Shift_Left |
1697 N_Op_Shift_Right |
1698 N_Op_Shift_Right_Arithmetic |
1699 N_Op_Subtract |
1700 N_Op_Xor
1701 =>
1702 if Do_Overflow_Check (Expr) then
1703 return False;
1704 else
1705 return
1706 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1707 and then
1708 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1709 end if;
1710
1711 when others =>
1712 return False;
1713 end case;
1714 end if;
1715 end Cannot_Raise_Constraint_Error;
1716
1717 -----------------------------
1718 -- Check_Part_Of_Reference --
1719 -----------------------------
1720
1721 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id) is
1722 Conc_Typ : constant Entity_Id := Encapsulating_State (Var_Id);
1723 Decl : Node_Id;
1724 OK_Use : Boolean := False;
1725 Par : Node_Id;
1726 Prag_Nam : Name_Id;
1727 Spec_Id : Entity_Id;
1728
1729 begin
1730 -- Traverse the parent chain looking for a suitable context for the
1731 -- reference to the concurrent constituent.
1732
1733 Par := Parent (Ref);
1734 while Present (Par) loop
1735 if Nkind (Par) = N_Pragma then
1736 Prag_Nam := Pragma_Name (Par);
1737
1738 -- A concurrent constituent is allowed to appear in pragmas
1739 -- Initial_Condition and Initializes as this is part of the
1740 -- elaboration checks for the constituent (SPARK RM 9.3).
1741
1742 if Nam_In (Prag_Nam, Name_Initial_Condition, Name_Initializes) then
1743 OK_Use := True;
1744 exit;
1745
1746 -- When the reference appears within pragma Depends or Global,
1747 -- check whether the pragma applies to a single task type. Note
1748 -- that the pragma is not encapsulated by the type definition,
1749 -- but this is still a valid context.
1750
1751 elsif Nam_In (Prag_Nam, Name_Depends, Name_Global) then
1752 Decl := Find_Related_Declaration_Or_Body (Par);
1753
1754 if Nkind (Decl) = N_Object_Declaration
1755 and then Defining_Entity (Decl) = Conc_Typ
1756 then
1757 OK_Use := True;
1758 exit;
1759 end if;
1760 end if;
1761
1762 -- The reference appears somewhere in the definition of the single
1763 -- protected/task type (SPARK RM 9.3).
1764
1765 elsif Nkind_In (Par, N_Single_Protected_Declaration,
1766 N_Single_Task_Declaration)
1767 and then Defining_Entity (Par) = Conc_Typ
1768 then
1769 OK_Use := True;
1770 exit;
1771
1772 -- The reference appears within the expanded declaration or the body
1773 -- of the single protected/task type (SPARK RM 9.3).
1774
1775 elsif Nkind_In (Par, N_Protected_Body,
1776 N_Protected_Type_Declaration,
1777 N_Task_Body,
1778 N_Task_Type_Declaration)
1779 then
1780 Spec_Id := Unique_Defining_Entity (Par);
1781
1782 if Present (Anonymous_Object (Spec_Id))
1783 and then Anonymous_Object (Spec_Id) = Conc_Typ
1784 then
1785 OK_Use := True;
1786 exit;
1787 end if;
1788
1789 -- The reference has been relocated within an internally generated
1790 -- package or subprogram. Assume that the reference is legal as the
1791 -- real check was already performed in the original context of the
1792 -- reference.
1793
1794 elsif Nkind_In (Par, N_Package_Body,
1795 N_Package_Declaration,
1796 N_Subprogram_Body,
1797 N_Subprogram_Declaration)
1798 and then not Comes_From_Source (Par)
1799 then
1800 OK_Use := True;
1801 exit;
1802
1803 -- The reference has been relocated to an inlined body for GNATprove.
1804 -- Assume that the reference is legal as the real check was already
1805 -- performed in the original context of the reference.
1806
1807 elsif GNATprove_Mode
1808 and then Nkind (Par) = N_Subprogram_Body
1809 and then Chars (Defining_Entity (Par)) = Name_uParent
1810 then
1811 OK_Use := True;
1812 exit;
1813 end if;
1814
1815 Par := Parent (Par);
1816 end loop;
1817
1818 -- The reference is illegal as it appears outside the definition or
1819 -- body of the single protected/task type.
1820
1821 if not OK_Use then
1822 Error_Msg_NE
1823 ("reference to variable & cannot appear in this context",
1824 Ref, Var_Id);
1825 Error_Msg_Name_1 := Chars (Var_Id);
1826
1827 if Ekind (Conc_Typ) = E_Protected_Type then
1828 Error_Msg_NE
1829 ("\% is constituent of single protected type &", Ref, Conc_Typ);
1830 else
1831 Error_Msg_NE
1832 ("\% is constituent of single task type &", Ref, Conc_Typ);
1833 end if;
1834 end if;
1835 end Check_Part_Of_Reference;
1836
1837 -----------------------------------------
1838 -- Check_Dynamically_Tagged_Expression --
1839 -----------------------------------------
1840
1841 procedure Check_Dynamically_Tagged_Expression
1842 (Expr : Node_Id;
1843 Typ : Entity_Id;
1844 Related_Nod : Node_Id)
1845 is
1846 begin
1847 pragma Assert (Is_Tagged_Type (Typ));
1848
1849 -- In order to avoid spurious errors when analyzing the expanded code,
1850 -- this check is done only for nodes that come from source and for
1851 -- actuals of generic instantiations.
1852
1853 if (Comes_From_Source (Related_Nod)
1854 or else In_Generic_Actual (Expr))
1855 and then (Is_Class_Wide_Type (Etype (Expr))
1856 or else Is_Dynamically_Tagged (Expr))
1857 and then Is_Tagged_Type (Typ)
1858 and then not Is_Class_Wide_Type (Typ)
1859 then
1860 Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
1861 end if;
1862 end Check_Dynamically_Tagged_Expression;
1863
1864 --------------------------
1865 -- Check_Fully_Declared --
1866 --------------------------
1867
1868 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
1869 begin
1870 if Ekind (T) = E_Incomplete_Type then
1871
1872 -- Ada 2005 (AI-50217): If the type is available through a limited
1873 -- with_clause, verify that its full view has been analyzed.
1874
1875 if From_Limited_With (T)
1876 and then Present (Non_Limited_View (T))
1877 and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
1878 then
1879 -- The non-limited view is fully declared
1880
1881 null;
1882
1883 else
1884 Error_Msg_NE
1885 ("premature usage of incomplete}", N, First_Subtype (T));
1886 end if;
1887
1888 -- Need comments for these tests ???
1889
1890 elsif Has_Private_Component (T)
1891 and then not Is_Generic_Type (Root_Type (T))
1892 and then not In_Spec_Expression
1893 then
1894 -- Special case: if T is the anonymous type created for a single
1895 -- task or protected object, use the name of the source object.
1896
1897 if Is_Concurrent_Type (T)
1898 and then not Comes_From_Source (T)
1899 and then Nkind (N) = N_Object_Declaration
1900 then
1901 Error_Msg_NE
1902 ("type of& has incomplete component",
1903 N, Defining_Identifier (N));
1904 else
1905 Error_Msg_NE
1906 ("premature usage of incomplete}",
1907 N, First_Subtype (T));
1908 end if;
1909 end if;
1910 end Check_Fully_Declared;
1911
1912 -------------------------------------------
1913 -- Check_Function_With_Address_Parameter --
1914 -------------------------------------------
1915
1916 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id) is
1917 F : Entity_Id;
1918 T : Entity_Id;
1919
1920 begin
1921 F := First_Formal (Subp_Id);
1922 while Present (F) loop
1923 T := Etype (F);
1924
1925 if Is_Private_Type (T) and then Present (Full_View (T)) then
1926 T := Full_View (T);
1927 end if;
1928
1929 if Is_Descendant_Of_Address (T) or else Is_Limited_Type (T) then
1930 Set_Is_Pure (Subp_Id, False);
1931 exit;
1932 end if;
1933
1934 Next_Formal (F);
1935 end loop;
1936 end Check_Function_With_Address_Parameter;
1937
1938 -------------------------------------
1939 -- Check_Function_Writable_Actuals --
1940 -------------------------------------
1941
1942 procedure Check_Function_Writable_Actuals (N : Node_Id) is
1943 Writable_Actuals_List : Elist_Id := No_Elist;
1944 Identifiers_List : Elist_Id := No_Elist;
1945 Aggr_Error_Node : Node_Id := Empty;
1946 Error_Node : Node_Id := Empty;
1947
1948 procedure Collect_Identifiers (N : Node_Id);
1949 -- In a single traversal of subtree N collect in Writable_Actuals_List
1950 -- all the actuals of functions with writable actuals, and in the list
1951 -- Identifiers_List collect all the identifiers that are not actuals of
1952 -- functions with writable actuals. If a writable actual is referenced
1953 -- twice as writable actual then Error_Node is set to reference its
1954 -- second occurrence, the error is reported, and the tree traversal
1955 -- is abandoned.
1956
1957 function Get_Function_Id (Call : Node_Id) return Entity_Id;
1958 -- Return the entity associated with the function call
1959
1960 procedure Preanalyze_Without_Errors (N : Node_Id);
1961 -- Preanalyze N without reporting errors. Very dubious, you can't just
1962 -- go analyzing things more than once???
1963
1964 -------------------------
1965 -- Collect_Identifiers --
1966 -------------------------
1967
1968 procedure Collect_Identifiers (N : Node_Id) is
1969
1970 function Check_Node (N : Node_Id) return Traverse_Result;
1971 -- Process a single node during the tree traversal to collect the
1972 -- writable actuals of functions and all the identifiers which are
1973 -- not writable actuals of functions.
1974
1975 function Contains (List : Elist_Id; N : Node_Id) return Boolean;
1976 -- Returns True if List has a node whose Entity is Entity (N)
1977
1978 -------------------------
1979 -- Check_Function_Call --
1980 -------------------------
1981
1982 function Check_Node (N : Node_Id) return Traverse_Result is
1983 Is_Writable_Actual : Boolean := False;
1984 Id : Entity_Id;
1985
1986 begin
1987 if Nkind (N) = N_Identifier then
1988
1989 -- No analysis possible if the entity is not decorated
1990
1991 if No (Entity (N)) then
1992 return Skip;
1993
1994 -- Don't collect identifiers of packages, called functions, etc
1995
1996 elsif Ekind_In (Entity (N), E_Package,
1997 E_Function,
1998 E_Procedure,
1999 E_Entry)
2000 then
2001 return Skip;
2002
2003 -- For rewritten nodes, continue the traversal in the original
2004 -- subtree. Needed to handle aggregates in original expressions
2005 -- extracted from the tree by Remove_Side_Effects.
2006
2007 elsif Is_Rewrite_Substitution (N) then
2008 Collect_Identifiers (Original_Node (N));
2009 return Skip;
2010
2011 -- For now we skip aggregate discriminants, since they require
2012 -- performing the analysis in two phases to identify conflicts:
2013 -- first one analyzing discriminants and second one analyzing
2014 -- the rest of components (since at run time, discriminants are
2015 -- evaluated prior to components): too much computation cost
2016 -- to identify a corner case???
2017
2018 elsif Nkind (Parent (N)) = N_Component_Association
2019 and then Nkind_In (Parent (Parent (N)),
2020 N_Aggregate,
2021 N_Extension_Aggregate)
2022 then
2023 declare
2024 Choice : constant Node_Id := First (Choices (Parent (N)));
2025
2026 begin
2027 if Ekind (Entity (N)) = E_Discriminant then
2028 return Skip;
2029
2030 elsif Expression (Parent (N)) = N
2031 and then Nkind (Choice) = N_Identifier
2032 and then Ekind (Entity (Choice)) = E_Discriminant
2033 then
2034 return Skip;
2035 end if;
2036 end;
2037
2038 -- Analyze if N is a writable actual of a function
2039
2040 elsif Nkind (Parent (N)) = N_Function_Call then
2041 declare
2042 Call : constant Node_Id := Parent (N);
2043 Actual : Node_Id;
2044 Formal : Node_Id;
2045
2046 begin
2047 Id := Get_Function_Id (Call);
2048
2049 -- In case of previous error, no check is possible
2050
2051 if No (Id) then
2052 return Abandon;
2053 end if;
2054
2055 if Ekind_In (Id, E_Function, E_Generic_Function)
2056 and then Has_Out_Or_In_Out_Parameter (Id)
2057 then
2058 Formal := First_Formal (Id);
2059 Actual := First_Actual (Call);
2060 while Present (Actual) and then Present (Formal) loop
2061 if Actual = N then
2062 if Ekind_In (Formal, E_Out_Parameter,
2063 E_In_Out_Parameter)
2064 then
2065 Is_Writable_Actual := True;
2066 end if;
2067
2068 exit;
2069 end if;
2070
2071 Next_Formal (Formal);
2072 Next_Actual (Actual);
2073 end loop;
2074 end if;
2075 end;
2076 end if;
2077
2078 if Is_Writable_Actual then
2079
2080 -- Skip checking the error in non-elementary types since
2081 -- RM 6.4.1(6.15/3) is restricted to elementary types, but
2082 -- store this actual in Writable_Actuals_List since it is
2083 -- needed to perform checks on other constructs that have
2084 -- arbitrary order of evaluation (for example, aggregates).
2085
2086 if not Is_Elementary_Type (Etype (N)) then
2087 if not Contains (Writable_Actuals_List, N) then
2088 Append_New_Elmt (N, To => Writable_Actuals_List);
2089 end if;
2090
2091 -- Second occurrence of an elementary type writable actual
2092
2093 elsif Contains (Writable_Actuals_List, N) then
2094
2095 -- Report the error on the second occurrence of the
2096 -- identifier. We cannot assume that N is the second
2097 -- occurrence (according to their location in the
2098 -- sources), since Traverse_Func walks through Field2
2099 -- last (see comment in the body of Traverse_Func).
2100
2101 declare
2102 Elmt : Elmt_Id;
2103
2104 begin
2105 Elmt := First_Elmt (Writable_Actuals_List);
2106 while Present (Elmt)
2107 and then Entity (Node (Elmt)) /= Entity (N)
2108 loop
2109 Next_Elmt (Elmt);
2110 end loop;
2111
2112 if Sloc (N) > Sloc (Node (Elmt)) then
2113 Error_Node := N;
2114 else
2115 Error_Node := Node (Elmt);
2116 end if;
2117
2118 Error_Msg_NE
2119 ("value may be affected by call to & "
2120 & "because order of evaluation is arbitrary",
2121 Error_Node, Id);
2122 return Abandon;
2123 end;
2124
2125 -- First occurrence of a elementary type writable actual
2126
2127 else
2128 Append_New_Elmt (N, To => Writable_Actuals_List);
2129 end if;
2130
2131 else
2132 if Identifiers_List = No_Elist then
2133 Identifiers_List := New_Elmt_List;
2134 end if;
2135
2136 Append_Unique_Elmt (N, Identifiers_List);
2137 end if;
2138 end if;
2139
2140 return OK;
2141 end Check_Node;
2142
2143 --------------
2144 -- Contains --
2145 --------------
2146
2147 function Contains
2148 (List : Elist_Id;
2149 N : Node_Id) return Boolean
2150 is
2151 pragma Assert (Nkind (N) in N_Has_Entity);
2152
2153 Elmt : Elmt_Id;
2154
2155 begin
2156 if List = No_Elist then
2157 return False;
2158 end if;
2159
2160 Elmt := First_Elmt (List);
2161 while Present (Elmt) loop
2162 if Entity (Node (Elmt)) = Entity (N) then
2163 return True;
2164 else
2165 Next_Elmt (Elmt);
2166 end if;
2167 end loop;
2168
2169 return False;
2170 end Contains;
2171
2172 ------------------
2173 -- Do_Traversal --
2174 ------------------
2175
2176 procedure Do_Traversal is new Traverse_Proc (Check_Node);
2177 -- The traversal procedure
2178
2179 -- Start of processing for Collect_Identifiers
2180
2181 begin
2182 if Present (Error_Node) then
2183 return;
2184 end if;
2185
2186 if Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
2187 return;
2188 end if;
2189
2190 Do_Traversal (N);
2191 end Collect_Identifiers;
2192
2193 ---------------------
2194 -- Get_Function_Id --
2195 ---------------------
2196
2197 function Get_Function_Id (Call : Node_Id) return Entity_Id is
2198 Nam : constant Node_Id := Name (Call);
2199 Id : Entity_Id;
2200
2201 begin
2202 if Nkind (Nam) = N_Explicit_Dereference then
2203 Id := Etype (Nam);
2204 pragma Assert (Ekind (Id) = E_Subprogram_Type);
2205
2206 elsif Nkind (Nam) = N_Selected_Component then
2207 Id := Entity (Selector_Name (Nam));
2208
2209 elsif Nkind (Nam) = N_Indexed_Component then
2210 Id := Entity (Selector_Name (Prefix (Nam)));
2211
2212 else
2213 Id := Entity (Nam);
2214 end if;
2215
2216 return Id;
2217 end Get_Function_Id;
2218
2219 -------------------------------
2220 -- Preanalyze_Without_Errors --
2221 -------------------------------
2222
2223 procedure Preanalyze_Without_Errors (N : Node_Id) is
2224 Status : constant Boolean := Get_Ignore_Errors;
2225 begin
2226 Set_Ignore_Errors (True);
2227 Preanalyze (N);
2228 Set_Ignore_Errors (Status);
2229 end Preanalyze_Without_Errors;
2230
2231 -- Start of processing for Check_Function_Writable_Actuals
2232
2233 begin
2234 -- The check only applies to Ada 2012 code on which Check_Actuals has
2235 -- been set, and only to constructs that have multiple constituents
2236 -- whose order of evaluation is not specified by the language.
2237
2238 if Ada_Version < Ada_2012
2239 or else not Check_Actuals (N)
2240 or else (not (Nkind (N) in N_Op)
2241 and then not (Nkind (N) in N_Membership_Test)
2242 and then not Nkind_In (N, N_Range,
2243 N_Aggregate,
2244 N_Extension_Aggregate,
2245 N_Full_Type_Declaration,
2246 N_Function_Call,
2247 N_Procedure_Call_Statement,
2248 N_Entry_Call_Statement))
2249 or else (Nkind (N) = N_Full_Type_Declaration
2250 and then not Is_Record_Type (Defining_Identifier (N)))
2251
2252 -- In addition, this check only applies to source code, not to code
2253 -- generated by constraint checks.
2254
2255 or else not Comes_From_Source (N)
2256 then
2257 return;
2258 end if;
2259
2260 -- If a construct C has two or more direct constituents that are names
2261 -- or expressions whose evaluation may occur in an arbitrary order, at
2262 -- least one of which contains a function call with an in out or out
2263 -- parameter, then the construct is legal only if: for each name N that
2264 -- is passed as a parameter of mode in out or out to some inner function
2265 -- call C2 (not including the construct C itself), there is no other
2266 -- name anywhere within a direct constituent of the construct C other
2267 -- than the one containing C2, that is known to refer to the same
2268 -- object (RM 6.4.1(6.17/3)).
2269
2270 case Nkind (N) is
2271 when N_Range =>
2272 Collect_Identifiers (Low_Bound (N));
2273 Collect_Identifiers (High_Bound (N));
2274
2275 when N_Op | N_Membership_Test =>
2276 declare
2277 Expr : Node_Id;
2278
2279 begin
2280 Collect_Identifiers (Left_Opnd (N));
2281
2282 if Present (Right_Opnd (N)) then
2283 Collect_Identifiers (Right_Opnd (N));
2284 end if;
2285
2286 if Nkind_In (N, N_In, N_Not_In)
2287 and then Present (Alternatives (N))
2288 then
2289 Expr := First (Alternatives (N));
2290 while Present (Expr) loop
2291 Collect_Identifiers (Expr);
2292
2293 Next (Expr);
2294 end loop;
2295 end if;
2296 end;
2297
2298 when N_Full_Type_Declaration =>
2299 declare
2300 function Get_Record_Part (N : Node_Id) return Node_Id;
2301 -- Return the record part of this record type definition
2302
2303 function Get_Record_Part (N : Node_Id) return Node_Id is
2304 Type_Def : constant Node_Id := Type_Definition (N);
2305 begin
2306 if Nkind (Type_Def) = N_Derived_Type_Definition then
2307 return Record_Extension_Part (Type_Def);
2308 else
2309 return Type_Def;
2310 end if;
2311 end Get_Record_Part;
2312
2313 Comp : Node_Id;
2314 Def_Id : Entity_Id := Defining_Identifier (N);
2315 Rec : Node_Id := Get_Record_Part (N);
2316
2317 begin
2318 -- No need to perform any analysis if the record has no
2319 -- components
2320
2321 if No (Rec) or else No (Component_List (Rec)) then
2322 return;
2323 end if;
2324
2325 -- Collect the identifiers starting from the deepest
2326 -- derivation. Done to report the error in the deepest
2327 -- derivation.
2328
2329 loop
2330 if Present (Component_List (Rec)) then
2331 Comp := First (Component_Items (Component_List (Rec)));
2332 while Present (Comp) loop
2333 if Nkind (Comp) = N_Component_Declaration
2334 and then Present (Expression (Comp))
2335 then
2336 Collect_Identifiers (Expression (Comp));
2337 end if;
2338
2339 Next (Comp);
2340 end loop;
2341 end if;
2342
2343 exit when No (Underlying_Type (Etype (Def_Id)))
2344 or else Base_Type (Underlying_Type (Etype (Def_Id)))
2345 = Def_Id;
2346
2347 Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
2348 Rec := Get_Record_Part (Parent (Def_Id));
2349 end loop;
2350 end;
2351
2352 when N_Subprogram_Call |
2353 N_Entry_Call_Statement =>
2354 declare
2355 Id : constant Entity_Id := Get_Function_Id (N);
2356 Formal : Node_Id;
2357 Actual : Node_Id;
2358
2359 begin
2360 Formal := First_Formal (Id);
2361 Actual := First_Actual (N);
2362 while Present (Actual) and then Present (Formal) loop
2363 if Ekind_In (Formal, E_Out_Parameter,
2364 E_In_Out_Parameter)
2365 then
2366 Collect_Identifiers (Actual);
2367 end if;
2368
2369 Next_Formal (Formal);
2370 Next_Actual (Actual);
2371 end loop;
2372 end;
2373
2374 when N_Aggregate |
2375 N_Extension_Aggregate =>
2376 declare
2377 Assoc : Node_Id;
2378 Choice : Node_Id;
2379 Comp_Expr : Node_Id;
2380
2381 begin
2382 -- Handle the N_Others_Choice of array aggregates with static
2383 -- bounds. There is no need to perform this analysis in
2384 -- aggregates without static bounds since we cannot evaluate
2385 -- if the N_Others_Choice covers several elements. There is
2386 -- no need to handle the N_Others choice of record aggregates
2387 -- since at this stage it has been already expanded by
2388 -- Resolve_Record_Aggregate.
2389
2390 if Is_Array_Type (Etype (N))
2391 and then Nkind (N) = N_Aggregate
2392 and then Present (Aggregate_Bounds (N))
2393 and then Compile_Time_Known_Bounds (Etype (N))
2394 and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
2395 >
2396 Expr_Value (Low_Bound (Aggregate_Bounds (N)))
2397 then
2398 declare
2399 Count_Components : Uint := Uint_0;
2400 Num_Components : Uint;
2401 Others_Assoc : Node_Id;
2402 Others_Choice : Node_Id := Empty;
2403 Others_Box_Present : Boolean := False;
2404
2405 begin
2406 -- Count positional associations
2407
2408 if Present (Expressions (N)) then
2409 Comp_Expr := First (Expressions (N));
2410 while Present (Comp_Expr) loop
2411 Count_Components := Count_Components + 1;
2412 Next (Comp_Expr);
2413 end loop;
2414 end if;
2415
2416 -- Count the rest of elements and locate the N_Others
2417 -- choice (if any)
2418
2419 Assoc := First (Component_Associations (N));
2420 while Present (Assoc) loop
2421 Choice := First (Choices (Assoc));
2422 while Present (Choice) loop
2423 if Nkind (Choice) = N_Others_Choice then
2424 Others_Assoc := Assoc;
2425 Others_Choice := Choice;
2426 Others_Box_Present := Box_Present (Assoc);
2427
2428 -- Count several components
2429
2430 elsif Nkind_In (Choice, N_Range,
2431 N_Subtype_Indication)
2432 or else (Is_Entity_Name (Choice)
2433 and then Is_Type (Entity (Choice)))
2434 then
2435 declare
2436 L, H : Node_Id;
2437 begin
2438 Get_Index_Bounds (Choice, L, H);
2439 pragma Assert
2440 (Compile_Time_Known_Value (L)
2441 and then Compile_Time_Known_Value (H));
2442 Count_Components :=
2443 Count_Components
2444 + Expr_Value (H) - Expr_Value (L) + 1;
2445 end;
2446
2447 -- Count single component. No other case available
2448 -- since we are handling an aggregate with static
2449 -- bounds.
2450
2451 else
2452 pragma Assert (Is_OK_Static_Expression (Choice)
2453 or else Nkind (Choice) = N_Identifier
2454 or else Nkind (Choice) = N_Integer_Literal);
2455
2456 Count_Components := Count_Components + 1;
2457 end if;
2458
2459 Next (Choice);
2460 end loop;
2461
2462 Next (Assoc);
2463 end loop;
2464
2465 Num_Components :=
2466 Expr_Value (High_Bound (Aggregate_Bounds (N))) -
2467 Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;
2468
2469 pragma Assert (Count_Components <= Num_Components);
2470
2471 -- Handle the N_Others choice if it covers several
2472 -- components
2473
2474 if Present (Others_Choice)
2475 and then (Num_Components - Count_Components) > 1
2476 then
2477 if not Others_Box_Present then
2478
2479 -- At this stage, if expansion is active, the
2480 -- expression of the others choice has not been
2481 -- analyzed. Hence we generate a duplicate and
2482 -- we analyze it silently to have available the
2483 -- minimum decoration required to collect the
2484 -- identifiers.
2485
2486 if not Expander_Active then
2487 Comp_Expr := Expression (Others_Assoc);
2488 else
2489 Comp_Expr :=
2490 New_Copy_Tree (Expression (Others_Assoc));
2491 Preanalyze_Without_Errors (Comp_Expr);
2492 end if;
2493
2494 Collect_Identifiers (Comp_Expr);
2495
2496 if Writable_Actuals_List /= No_Elist then
2497
2498 -- As suggested by Robert, at current stage we
2499 -- report occurrences of this case as warnings.
2500
2501 Error_Msg_N
2502 ("writable function parameter may affect "
2503 & "value in other component because order "
2504 & "of evaluation is unspecified??",
2505 Node (First_Elmt (Writable_Actuals_List)));
2506 end if;
2507 end if;
2508 end if;
2509 end;
2510
2511 -- For an array aggregate, a discrete_choice_list that has
2512 -- a nonstatic range is considered as two or more separate
2513 -- occurrences of the expression (RM 6.4.1(20/3)).
2514
2515 elsif Is_Array_Type (Etype (N))
2516 and then Nkind (N) = N_Aggregate
2517 and then Present (Aggregate_Bounds (N))
2518 and then not Compile_Time_Known_Bounds (Etype (N))
2519 then
2520 -- Collect identifiers found in the dynamic bounds
2521
2522 declare
2523 Count_Components : Natural := 0;
2524 Low, High : Node_Id;
2525
2526 begin
2527 Assoc := First (Component_Associations (N));
2528 while Present (Assoc) loop
2529 Choice := First (Choices (Assoc));
2530 while Present (Choice) loop
2531 if Nkind_In (Choice, N_Range,
2532 N_Subtype_Indication)
2533 or else (Is_Entity_Name (Choice)
2534 and then Is_Type (Entity (Choice)))
2535 then
2536 Get_Index_Bounds (Choice, Low, High);
2537
2538 if not Compile_Time_Known_Value (Low) then
2539 Collect_Identifiers (Low);
2540
2541 if No (Aggr_Error_Node) then
2542 Aggr_Error_Node := Low;
2543 end if;
2544 end if;
2545
2546 if not Compile_Time_Known_Value (High) then
2547 Collect_Identifiers (High);
2548
2549 if No (Aggr_Error_Node) then
2550 Aggr_Error_Node := High;
2551 end if;
2552 end if;
2553
2554 -- The RM rule is violated if there is more than
2555 -- a single choice in a component association.
2556
2557 else
2558 Count_Components := Count_Components + 1;
2559
2560 if No (Aggr_Error_Node)
2561 and then Count_Components > 1
2562 then
2563 Aggr_Error_Node := Choice;
2564 end if;
2565
2566 if not Compile_Time_Known_Value (Choice) then
2567 Collect_Identifiers (Choice);
2568 end if;
2569 end if;
2570
2571 Next (Choice);
2572 end loop;
2573
2574 Next (Assoc);
2575 end loop;
2576 end;
2577 end if;
2578
2579 -- Handle ancestor part of extension aggregates
2580
2581 if Nkind (N) = N_Extension_Aggregate then
2582 Collect_Identifiers (Ancestor_Part (N));
2583 end if;
2584
2585 -- Handle positional associations
2586
2587 if Present (Expressions (N)) then
2588 Comp_Expr := First (Expressions (N));
2589 while Present (Comp_Expr) loop
2590 if not Is_OK_Static_Expression (Comp_Expr) then
2591 Collect_Identifiers (Comp_Expr);
2592 end if;
2593
2594 Next (Comp_Expr);
2595 end loop;
2596 end if;
2597
2598 -- Handle discrete associations
2599
2600 if Present (Component_Associations (N)) then
2601 Assoc := First (Component_Associations (N));
2602 while Present (Assoc) loop
2603
2604 if not Box_Present (Assoc) then
2605 Choice := First (Choices (Assoc));
2606 while Present (Choice) loop
2607
2608 -- For now we skip discriminants since it requires
2609 -- performing the analysis in two phases: first one
2610 -- analyzing discriminants and second one analyzing
2611 -- the rest of components since discriminants are
2612 -- evaluated prior to components: too much extra
2613 -- work to detect a corner case???
2614
2615 if Nkind (Choice) in N_Has_Entity
2616 and then Present (Entity (Choice))
2617 and then Ekind (Entity (Choice)) = E_Discriminant
2618 then
2619 null;
2620
2621 elsif Box_Present (Assoc) then
2622 null;
2623
2624 else
2625 if not Analyzed (Expression (Assoc)) then
2626 Comp_Expr :=
2627 New_Copy_Tree (Expression (Assoc));
2628 Set_Parent (Comp_Expr, Parent (N));
2629 Preanalyze_Without_Errors (Comp_Expr);
2630 else
2631 Comp_Expr := Expression (Assoc);
2632 end if;
2633
2634 Collect_Identifiers (Comp_Expr);
2635 end if;
2636
2637 Next (Choice);
2638 end loop;
2639 end if;
2640
2641 Next (Assoc);
2642 end loop;
2643 end if;
2644 end;
2645
2646 when others =>
2647 return;
2648 end case;
2649
2650 -- No further action needed if we already reported an error
2651
2652 if Present (Error_Node) then
2653 return;
2654 end if;
2655
2656 -- Check violation of RM 6.20/3 in aggregates
2657
2658 if Present (Aggr_Error_Node)
2659 and then Writable_Actuals_List /= No_Elist
2660 then
2661 Error_Msg_N
2662 ("value may be affected by call in other component because they "
2663 & "are evaluated in unspecified order",
2664 Node (First_Elmt (Writable_Actuals_List)));
2665 return;
2666 end if;
2667
2668 -- Check if some writable argument of a function is referenced
2669
2670 if Writable_Actuals_List /= No_Elist
2671 and then Identifiers_List /= No_Elist
2672 then
2673 declare
2674 Elmt_1 : Elmt_Id;
2675 Elmt_2 : Elmt_Id;
2676
2677 begin
2678 Elmt_1 := First_Elmt (Writable_Actuals_List);
2679 while Present (Elmt_1) loop
2680 Elmt_2 := First_Elmt (Identifiers_List);
2681 while Present (Elmt_2) loop
2682 if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
2683 case Nkind (Parent (Node (Elmt_2))) is
2684 when N_Aggregate |
2685 N_Component_Association |
2686 N_Component_Declaration =>
2687 Error_Msg_N
2688 ("value may be affected by call in other "
2689 & "component because they are evaluated "
2690 & "in unspecified order",
2691 Node (Elmt_2));
2692
2693 when N_In | N_Not_In =>
2694 Error_Msg_N
2695 ("value may be affected by call in other "
2696 & "alternative because they are evaluated "
2697 & "in unspecified order",
2698 Node (Elmt_2));
2699
2700 when others =>
2701 Error_Msg_N
2702 ("value of actual may be affected by call in "
2703 & "other actual because they are evaluated "
2704 & "in unspecified order",
2705 Node (Elmt_2));
2706 end case;
2707 end if;
2708
2709 Next_Elmt (Elmt_2);
2710 end loop;
2711
2712 Next_Elmt (Elmt_1);
2713 end loop;
2714 end;
2715 end if;
2716 end Check_Function_Writable_Actuals;
2717
2718 --------------------------------
2719 -- Check_Implicit_Dereference --
2720 --------------------------------
2721
2722 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id) is
2723 Disc : Entity_Id;
2724 Desig : Entity_Id;
2725 Nam : Node_Id;
2726
2727 begin
2728 if Nkind (N) = N_Indexed_Component
2729 and then Present (Generalized_Indexing (N))
2730 then
2731 Nam := Generalized_Indexing (N);
2732 else
2733 Nam := N;
2734 end if;
2735
2736 if Ada_Version < Ada_2012
2737 or else not Has_Implicit_Dereference (Base_Type (Typ))
2738 then
2739 return;
2740
2741 elsif not Comes_From_Source (N)
2742 and then Nkind (N) /= N_Indexed_Component
2743 then
2744 return;
2745
2746 elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then
2747 null;
2748
2749 else
2750 Disc := First_Discriminant (Typ);
2751 while Present (Disc) loop
2752 if Has_Implicit_Dereference (Disc) then
2753 Desig := Designated_Type (Etype (Disc));
2754 Add_One_Interp (Nam, Disc, Desig);
2755
2756 -- If the node is a generalized indexing, add interpretation
2757 -- to that node as well, for subsequent resolution.
2758
2759 if Nkind (N) = N_Indexed_Component then
2760 Add_One_Interp (N, Disc, Desig);
2761 end if;
2762
2763 -- If the operation comes from a generic unit and the context
2764 -- is a selected component, the selector name may be global
2765 -- and set in the instance already. Remove the entity to
2766 -- force resolution of the selected component, and the
2767 -- generation of an explicit dereference if needed.
2768
2769 if In_Instance
2770 and then Nkind (Parent (Nam)) = N_Selected_Component
2771 then
2772 Set_Entity (Selector_Name (Parent (Nam)), Empty);
2773 end if;
2774
2775 exit;
2776 end if;
2777
2778 Next_Discriminant (Disc);
2779 end loop;
2780 end if;
2781 end Check_Implicit_Dereference;
2782
2783 ----------------------------------
2784 -- Check_Internal_Protected_Use --
2785 ----------------------------------
2786
2787 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
2788 S : Entity_Id;
2789 Prot : Entity_Id;
2790
2791 begin
2792 S := Current_Scope;
2793 while Present (S) loop
2794 if S = Standard_Standard then
2795 return;
2796
2797 elsif Ekind (S) = E_Function
2798 and then Ekind (Scope (S)) = E_Protected_Type
2799 then
2800 Prot := Scope (S);
2801 exit;
2802 end if;
2803
2804 S := Scope (S);
2805 end loop;
2806
2807 if Scope (Nam) = Prot and then Ekind (Nam) /= E_Function then
2808
2809 -- An indirect function call (e.g. a callback within a protected
2810 -- function body) is not statically illegal. If the access type is
2811 -- anonymous and is the type of an access parameter, the scope of Nam
2812 -- will be the protected type, but it is not a protected operation.
2813
2814 if Ekind (Nam) = E_Subprogram_Type
2815 and then
2816 Nkind (Associated_Node_For_Itype (Nam)) = N_Function_Specification
2817 then
2818 null;
2819
2820 elsif Nkind (N) = N_Subprogram_Renaming_Declaration then
2821 Error_Msg_N
2822 ("within protected function cannot use protected "
2823 & "procedure in renaming or as generic actual", N);
2824
2825 elsif Nkind (N) = N_Attribute_Reference then
2826 Error_Msg_N
2827 ("within protected function cannot take access of "
2828 & " protected procedure", N);
2829
2830 else
2831 Error_Msg_N
2832 ("within protected function, protected object is constant", N);
2833 Error_Msg_N
2834 ("\cannot call operation that may modify it", N);
2835 end if;
2836 end if;
2837 end Check_Internal_Protected_Use;
2838
2839 ---------------------------------------
2840 -- Check_Later_Vs_Basic_Declarations --
2841 ---------------------------------------
2842
2843 procedure Check_Later_Vs_Basic_Declarations
2844 (Decls : List_Id;
2845 During_Parsing : Boolean)
2846 is
2847 Body_Sloc : Source_Ptr;
2848 Decl : Node_Id;
2849
2850 function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
2851 -- Return whether Decl is considered as a declarative item.
2852 -- When During_Parsing is True, the semantics of Ada 83 is followed.
2853 -- When During_Parsing is False, the semantics of SPARK is followed.
2854
2855 -------------------------------
2856 -- Is_Later_Declarative_Item --
2857 -------------------------------
2858
2859 function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
2860 begin
2861 if Nkind (Decl) in N_Later_Decl_Item then
2862 return True;
2863
2864 elsif Nkind (Decl) = N_Pragma then
2865 return True;
2866
2867 elsif During_Parsing then
2868 return False;
2869
2870 -- In SPARK, a package declaration is not considered as a later
2871 -- declarative item.
2872
2873 elsif Nkind (Decl) = N_Package_Declaration then
2874 return False;
2875
2876 -- In SPARK, a renaming is considered as a later declarative item
2877
2878 elsif Nkind (Decl) in N_Renaming_Declaration then
2879 return True;
2880
2881 else
2882 return False;
2883 end if;
2884 end Is_Later_Declarative_Item;
2885
2886 -- Start of processing for Check_Later_Vs_Basic_Declarations
2887
2888 begin
2889 Decl := First (Decls);
2890
2891 -- Loop through sequence of basic declarative items
2892
2893 Outer : while Present (Decl) loop
2894 if not Nkind_In (Decl, N_Subprogram_Body, N_Package_Body, N_Task_Body)
2895 and then Nkind (Decl) not in N_Body_Stub
2896 then
2897 Next (Decl);
2898
2899 -- Once a body is encountered, we only allow later declarative
2900 -- items. The inner loop checks the rest of the list.
2901
2902 else
2903 Body_Sloc := Sloc (Decl);
2904
2905 Inner : while Present (Decl) loop
2906 if not Is_Later_Declarative_Item (Decl) then
2907 if During_Parsing then
2908 if Ada_Version = Ada_83 then
2909 Error_Msg_Sloc := Body_Sloc;
2910 Error_Msg_N
2911 ("(Ada 83) decl cannot appear after body#", Decl);
2912 end if;
2913 else
2914 Error_Msg_Sloc := Body_Sloc;
2915 Check_SPARK_05_Restriction
2916 ("decl cannot appear after body#", Decl);
2917 end if;
2918 end if;
2919
2920 Next (Decl);
2921 end loop Inner;
2922 end if;
2923 end loop Outer;
2924 end Check_Later_Vs_Basic_Declarations;
2925
2926 ---------------------------
2927 -- Check_No_Hidden_State --
2928 ---------------------------
2929
2930 procedure Check_No_Hidden_State (Id : Entity_Id) is
2931 function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean;
2932 -- Determine whether the entity of a package denoted by Pkg has a null
2933 -- abstract state.
2934
2935 -----------------------------
2936 -- Has_Null_Abstract_State --
2937 -----------------------------
2938
2939 function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean is
2940 States : constant Elist_Id := Abstract_States (Pkg);
2941
2942 begin
2943 -- Check first available state of related package. A null abstract
2944 -- state always appears as the sole element of the state list.
2945
2946 return
2947 Present (States)
2948 and then Is_Null_State (Node (First_Elmt (States)));
2949 end Has_Null_Abstract_State;
2950
2951 -- Local variables
2952
2953 Context : Entity_Id := Empty;
2954 Not_Visible : Boolean := False;
2955 Scop : Entity_Id;
2956
2957 -- Start of processing for Check_No_Hidden_State
2958
2959 begin
2960 pragma Assert (Ekind_In (Id, E_Abstract_State, E_Variable));
2961
2962 -- Find the proper context where the object or state appears
2963
2964 Scop := Scope (Id);
2965 while Present (Scop) loop
2966 Context := Scop;
2967
2968 -- Keep track of the context's visibility
2969
2970 Not_Visible := Not_Visible or else In_Private_Part (Context);
2971
2972 -- Prevent the search from going too far
2973
2974 if Context = Standard_Standard then
2975 return;
2976
2977 -- Objects and states that appear immediately within a subprogram or
2978 -- inside a construct nested within a subprogram do not introduce a
2979 -- hidden state. They behave as local variable declarations.
2980
2981 elsif Is_Subprogram (Context) then
2982 return;
2983
2984 -- When examining a package body, use the entity of the spec as it
2985 -- carries the abstract state declarations.
2986
2987 elsif Ekind (Context) = E_Package_Body then
2988 Context := Spec_Entity (Context);
2989 end if;
2990
2991 -- Stop the traversal when a package subject to a null abstract state
2992 -- has been found.
2993
2994 if Ekind_In (Context, E_Generic_Package, E_Package)
2995 and then Has_Null_Abstract_State (Context)
2996 then
2997 exit;
2998 end if;
2999
3000 Scop := Scope (Scop);
3001 end loop;
3002
3003 -- At this point we know that there is at least one package with a null
3004 -- abstract state in visibility. Emit an error message unconditionally
3005 -- if the entity being processed is a state because the placement of the
3006 -- related package is irrelevant. This is not the case for objects as
3007 -- the intermediate context matters.
3008
3009 if Present (Context)
3010 and then (Ekind (Id) = E_Abstract_State or else Not_Visible)
3011 then
3012 Error_Msg_N ("cannot introduce hidden state &", Id);
3013 Error_Msg_NE ("\package & has null abstract state", Id, Context);
3014 end if;
3015 end Check_No_Hidden_State;
3016
3017 ----------------------------------------
3018 -- Check_Nonvolatile_Function_Profile --
3019 ----------------------------------------
3020
3021 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id) is
3022 Formal : Entity_Id;
3023
3024 begin
3025 -- Inspect all formal parameters
3026
3027 Formal := First_Formal (Func_Id);
3028 while Present (Formal) loop
3029 if Is_Effectively_Volatile (Etype (Formal)) then
3030 Error_Msg_NE
3031 ("nonvolatile function & cannot have a volatile parameter",
3032 Formal, Func_Id);
3033 end if;
3034
3035 Next_Formal (Formal);
3036 end loop;
3037
3038 -- Inspect the return type
3039
3040 if Is_Effectively_Volatile (Etype (Func_Id)) then
3041 Error_Msg_NE
3042 ("nonvolatile function & cannot have a volatile return type",
3043 Result_Definition (Parent (Func_Id)), Func_Id);
3044 end if;
3045 end Check_Nonvolatile_Function_Profile;
3046
3047 ------------------------------------------
3048 -- Check_Potentially_Blocking_Operation --
3049 ------------------------------------------
3050
3051 procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
3052 S : Entity_Id;
3053
3054 begin
3055 -- N is one of the potentially blocking operations listed in 9.5.1(8).
3056 -- When pragma Detect_Blocking is active, the run time will raise
3057 -- Program_Error. Here we only issue a warning, since we generally
3058 -- support the use of potentially blocking operations in the absence
3059 -- of the pragma.
3060
3061 -- Indirect blocking through a subprogram call cannot be diagnosed
3062 -- statically without interprocedural analysis, so we do not attempt
3063 -- to do it here.
3064
3065 S := Scope (Current_Scope);
3066 while Present (S) and then S /= Standard_Standard loop
3067 if Is_Protected_Type (S) then
3068 Error_Msg_N
3069 ("potentially blocking operation in protected operation??", N);
3070 return;
3071 end if;
3072
3073 S := Scope (S);
3074 end loop;
3075 end Check_Potentially_Blocking_Operation;
3076
3077 ---------------------------------
3078 -- Check_Result_And_Post_State --
3079 ---------------------------------
3080
3081 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id) is
3082 procedure Check_Result_And_Post_State_In_Pragma
3083 (Prag : Node_Id;
3084 Result_Seen : in out Boolean);
3085 -- Determine whether pragma Prag mentions attribute 'Result and whether
3086 -- the pragma contains an expression that evaluates differently in pre-
3087 -- and post-state. Prag is a [refined] postcondition or a contract-cases
3088 -- pragma. Result_Seen is set when the pragma mentions attribute 'Result
3089
3090 function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean;
3091 -- Determine whether subprogram Subp_Id contains at least one IN OUT
3092 -- formal parameter.
3093
3094 -------------------------------------------
3095 -- Check_Result_And_Post_State_In_Pragma --
3096 -------------------------------------------
3097
3098 procedure Check_Result_And_Post_State_In_Pragma
3099 (Prag : Node_Id;
3100 Result_Seen : in out Boolean)
3101 is
3102 procedure Check_Expression (Expr : Node_Id);
3103 -- Perform the 'Result and post-state checks on a given expression
3104
3105 function Is_Function_Result (N : Node_Id) return Traverse_Result;
3106 -- Attempt to find attribute 'Result in a subtree denoted by N
3107
3108 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
3109 -- Determine whether source node N denotes "True" or "False"
3110
3111 function Mentions_Post_State (N : Node_Id) return Boolean;
3112 -- Determine whether a subtree denoted by N mentions any construct
3113 -- that denotes a post-state.
3114
3115 procedure Check_Function_Result is
3116 new Traverse_Proc (Is_Function_Result);
3117
3118 ----------------------
3119 -- Check_Expression --
3120 ----------------------
3121
3122 procedure Check_Expression (Expr : Node_Id) is
3123 begin
3124 if not Is_Trivial_Boolean (Expr) then
3125 Check_Function_Result (Expr);
3126
3127 if not Mentions_Post_State (Expr) then
3128 if Pragma_Name (Prag) = Name_Contract_Cases then
3129 Error_Msg_NE
3130 ("contract case does not check the outcome of calling "
3131 & "&?T?", Expr, Subp_Id);
3132
3133 elsif Pragma_Name (Prag) = Name_Refined_Post then
3134 Error_Msg_NE
3135 ("refined postcondition does not check the outcome of "
3136 & "calling &?T?", Prag, Subp_Id);
3137
3138 else
3139 Error_Msg_NE
3140 ("postcondition does not check the outcome of calling "
3141 & "&?T?", Prag, Subp_Id);
3142 end if;
3143 end if;
3144 end if;
3145 end Check_Expression;
3146
3147 ------------------------
3148 -- Is_Function_Result --
3149 ------------------------
3150
3151 function Is_Function_Result (N : Node_Id) return Traverse_Result is
3152 begin
3153 if Is_Attribute_Result (N) then
3154 Result_Seen := True;
3155 return Abandon;
3156
3157 -- Continue the traversal
3158
3159 else
3160 return OK;
3161 end if;
3162 end Is_Function_Result;
3163
3164 ------------------------
3165 -- Is_Trivial_Boolean --
3166 ------------------------
3167
3168 function Is_Trivial_Boolean (N : Node_Id) return Boolean is
3169 begin
3170 return
3171 Comes_From_Source (N)
3172 and then Is_Entity_Name (N)
3173 and then (Entity (N) = Standard_True
3174 or else
3175 Entity (N) = Standard_False);
3176 end Is_Trivial_Boolean;
3177
3178 -------------------------
3179 -- Mentions_Post_State --
3180 -------------------------
3181
3182 function Mentions_Post_State (N : Node_Id) return Boolean is
3183 Post_State_Seen : Boolean := False;
3184
3185 function Is_Post_State (N : Node_Id) return Traverse_Result;
3186 -- Attempt to find a construct that denotes a post-state. If this
3187 -- is the case, set flag Post_State_Seen.
3188
3189 -------------------
3190 -- Is_Post_State --
3191 -------------------
3192
3193 function Is_Post_State (N : Node_Id) return Traverse_Result is
3194 Ent : Entity_Id;
3195
3196 begin
3197 if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
3198 Post_State_Seen := True;
3199 return Abandon;
3200
3201 elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
3202 Ent := Entity (N);
3203
3204 -- The entity may be modifiable through an implicit
3205 -- dereference.
3206
3207 if No (Ent)
3208 or else Ekind (Ent) in Assignable_Kind
3209 or else (Is_Access_Type (Etype (Ent))
3210 and then Nkind (Parent (N)) =
3211 N_Selected_Component)
3212 then
3213 Post_State_Seen := True;
3214 return Abandon;
3215 end if;
3216
3217 elsif Nkind (N) = N_Attribute_Reference then
3218 if Attribute_Name (N) = Name_Old then
3219 return Skip;
3220
3221 elsif Attribute_Name (N) = Name_Result then
3222 Post_State_Seen := True;
3223 return Abandon;
3224 end if;
3225 end if;
3226
3227 return OK;
3228 end Is_Post_State;
3229
3230 procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
3231
3232 -- Start of processing for Mentions_Post_State
3233
3234 begin
3235 Find_Post_State (N);
3236
3237 return Post_State_Seen;
3238 end Mentions_Post_State;
3239
3240 -- Local variables
3241
3242 Expr : constant Node_Id :=
3243 Get_Pragma_Arg
3244 (First (Pragma_Argument_Associations (Prag)));
3245 Nam : constant Name_Id := Pragma_Name (Prag);
3246 CCase : Node_Id;
3247
3248 -- Start of processing for Check_Result_And_Post_State_In_Pragma
3249
3250 begin
3251 -- Examine all consequences
3252
3253 if Nam = Name_Contract_Cases then
3254 CCase := First (Component_Associations (Expr));
3255 while Present (CCase) loop
3256 Check_Expression (Expression (CCase));
3257
3258 Next (CCase);
3259 end loop;
3260
3261 -- Examine the expression of a postcondition
3262
3263 else pragma Assert (Nam_In (Nam, Name_Postcondition,
3264 Name_Refined_Post));
3265 Check_Expression (Expr);
3266 end if;
3267 end Check_Result_And_Post_State_In_Pragma;
3268
3269 --------------------------
3270 -- Has_In_Out_Parameter --
3271 --------------------------
3272
3273 function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean is
3274 Formal : Entity_Id;
3275
3276 begin
3277 -- Traverse the formals looking for an IN OUT parameter
3278
3279 Formal := First_Formal (Subp_Id);
3280 while Present (Formal) loop
3281 if Ekind (Formal) = E_In_Out_Parameter then
3282 return True;
3283 end if;
3284
3285 Next_Formal (Formal);
3286 end loop;
3287
3288 return False;
3289 end Has_In_Out_Parameter;
3290
3291 -- Local variables
3292
3293 Items : constant Node_Id := Contract (Subp_Id);
3294 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
3295 Case_Prag : Node_Id := Empty;
3296 Post_Prag : Node_Id := Empty;
3297 Prag : Node_Id;
3298 Seen_In_Case : Boolean := False;
3299 Seen_In_Post : Boolean := False;
3300 Spec_Id : Entity_Id;
3301
3302 -- Start of processing for Check_Result_And_Post_State
3303
3304 begin
3305 -- The lack of attribute 'Result or a post-state is classified as a
3306 -- suspicious contract. Do not perform the check if the corresponding
3307 -- swich is not set.
3308
3309 if not Warn_On_Suspicious_Contract then
3310 return;
3311
3312 -- Nothing to do if there is no contract
3313
3314 elsif No (Items) then
3315 return;
3316 end if;
3317
3318 -- Retrieve the entity of the subprogram spec (if any)
3319
3320 if Nkind (Subp_Decl) = N_Subprogram_Body
3321 and then Present (Corresponding_Spec (Subp_Decl))
3322 then
3323 Spec_Id := Corresponding_Spec (Subp_Decl);
3324
3325 elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
3326 and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
3327 then
3328 Spec_Id := Corresponding_Spec_Of_Stub (Subp_Decl);
3329
3330 else
3331 Spec_Id := Subp_Id;
3332 end if;
3333
3334 -- Examine all postconditions for attribute 'Result and a post-state
3335
3336 Prag := Pre_Post_Conditions (Items);
3337 while Present (Prag) loop
3338 if Nam_In (Pragma_Name_Unmapped (Prag),
3339 Name_Postcondition, Name_Refined_Post)
3340 and then not Error_Posted (Prag)
3341 then
3342 Post_Prag := Prag;
3343 Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Post);
3344 end if;
3345
3346 Prag := Next_Pragma (Prag);
3347 end loop;
3348
3349 -- Examine the contract cases of the subprogram for attribute 'Result
3350 -- and a post-state.
3351
3352 Prag := Contract_Test_Cases (Items);
3353 while Present (Prag) loop
3354 if Pragma_Name (Prag) = Name_Contract_Cases
3355 and then not Error_Posted (Prag)
3356 then
3357 Case_Prag := Prag;
3358 Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Case);
3359 end if;
3360
3361 Prag := Next_Pragma (Prag);
3362 end loop;
3363
3364 -- Do not emit any errors if the subprogram is not a function
3365
3366 if not Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
3367 null;
3368
3369 -- Regardless of whether the function has postconditions or contract
3370 -- cases, or whether they mention attribute 'Result, an IN OUT formal
3371 -- parameter is always treated as a result.
3372
3373 elsif Has_In_Out_Parameter (Spec_Id) then
3374 null;
3375
3376 -- The function has both a postcondition and contract cases and they do
3377 -- not mention attribute 'Result.
3378
3379 elsif Present (Case_Prag)
3380 and then not Seen_In_Case
3381 and then Present (Post_Prag)
3382 and then not Seen_In_Post
3383 then
3384 Error_Msg_N
3385 ("neither postcondition nor contract cases mention function "
3386 & "result?T?", Post_Prag);
3387
3388 -- The function has contract cases only and they do not mention
3389 -- attribute 'Result.
3390
3391 elsif Present (Case_Prag) and then not Seen_In_Case then
3392 Error_Msg_N ("contract cases do not mention result?T?", Case_Prag);
3393
3394 -- The function has postconditions only and they do not mention
3395 -- attribute 'Result.
3396
3397 elsif Present (Post_Prag) and then not Seen_In_Post then
3398 Error_Msg_N
3399 ("postcondition does not mention function result?T?", Post_Prag);
3400 end if;
3401 end Check_Result_And_Post_State;
3402
3403 -----------------------------
3404 -- Check_State_Refinements --
3405 -----------------------------
3406
3407 procedure Check_State_Refinements
3408 (Context : Node_Id;
3409 Is_Main_Unit : Boolean := False)
3410 is
3411 procedure Check_Package (Pack : Node_Id);
3412 -- Verify that all abstract states of a [generic] package denoted by its
3413 -- declarative node Pack have proper refinement. Recursively verify the
3414 -- visible and private declarations of the [generic] package for other
3415 -- nested packages.
3416
3417 procedure Check_Packages_In (Decls : List_Id);
3418 -- Seek out [generic] package declarations within declarative list Decls
3419 -- and verify the status of their abstract state refinement.
3420
3421 function SPARK_Mode_Is_Off (N : Node_Id) return Boolean;
3422 -- Determine whether construct N is subject to pragma SPARK_Mode Off
3423
3424 -------------------
3425 -- Check_Package --
3426 -------------------
3427
3428 procedure Check_Package (Pack : Node_Id) is
3429 Body_Id : constant Entity_Id := Corresponding_Body (Pack);
3430 Spec : constant Node_Id := Specification (Pack);
3431 States : constant Elist_Id :=
3432 Abstract_States (Defining_Entity (Pack));
3433
3434 State_Elmt : Elmt_Id;
3435 State_Id : Entity_Id;
3436
3437 begin
3438 -- Do not verify proper state refinement when the package is subject
3439 -- to pragma SPARK_Mode Off because this disables the requirement for
3440 -- state refinement.
3441
3442 if SPARK_Mode_Is_Off (Pack) then
3443 null;
3444
3445 -- State refinement can only occur in a completing packge body. Do
3446 -- not verify proper state refinement when the body is subject to
3447 -- pragma SPARK_Mode Off because this disables the requirement for
3448 -- state refinement.
3449
3450 elsif Present (Body_Id)
3451 and then SPARK_Mode_Is_Off (Unit_Declaration_Node (Body_Id))
3452 then
3453 null;
3454
3455 -- Do not verify proper state refinement when the package is an
3456 -- instance as this check was already performed in the generic.
3457
3458 elsif Present (Generic_Parent (Spec)) then
3459 null;
3460
3461 -- Otherwise examine the contents of the package
3462
3463 else
3464 if Present (States) then
3465 State_Elmt := First_Elmt (States);
3466 while Present (State_Elmt) loop
3467 State_Id := Node (State_Elmt);
3468
3469 -- Emit an error when a non-null state lacks any form of
3470 -- refinement.
3471
3472 if not Is_Null_State (State_Id)
3473 and then not Has_Null_Refinement (State_Id)
3474 and then not Has_Non_Null_Refinement (State_Id)
3475 then
3476 Error_Msg_N ("state & requires refinement", State_Id);
3477 end if;
3478
3479 Next_Elmt (State_Elmt);
3480 end loop;
3481 end if;
3482
3483 Check_Packages_In (Visible_Declarations (Spec));
3484 Check_Packages_In (Private_Declarations (Spec));
3485 end if;
3486 end Check_Package;
3487
3488 -----------------------
3489 -- Check_Packages_In --
3490 -----------------------
3491
3492 procedure Check_Packages_In (Decls : List_Id) is
3493 Decl : Node_Id;
3494
3495 begin
3496 if Present (Decls) then
3497 Decl := First (Decls);
3498 while Present (Decl) loop
3499 if Nkind_In (Decl, N_Generic_Package_Declaration,
3500 N_Package_Declaration)
3501 then
3502 Check_Package (Decl);
3503 end if;
3504
3505 Next (Decl);
3506 end loop;
3507 end if;
3508 end Check_Packages_In;
3509
3510 -----------------------
3511 -- SPARK_Mode_Is_Off --
3512 -----------------------
3513
3514 function SPARK_Mode_Is_Off (N : Node_Id) return Boolean is
3515 Prag : constant Node_Id := SPARK_Pragma (Defining_Entity (N));
3516
3517 begin
3518 return
3519 Present (Prag) and then Get_SPARK_Mode_From_Annotation (Prag) = Off;
3520 end SPARK_Mode_Is_Off;
3521
3522 -- Start of processing for Check_State_Refinements
3523
3524 begin
3525 -- A block may declare a nested package
3526
3527 if Nkind (Context) = N_Block_Statement then
3528 Check_Packages_In (Declarations (Context));
3529
3530 -- An entry, protected, subprogram, or task body may declare a nested
3531 -- package.
3532
3533 elsif Nkind_In (Context, N_Entry_Body,
3534 N_Protected_Body,
3535 N_Subprogram_Body,
3536 N_Task_Body)
3537 then
3538 -- Do not verify proper state refinement when the body is subject to
3539 -- pragma SPARK_Mode Off because this disables the requirement for
3540 -- state refinement.
3541
3542 if not SPARK_Mode_Is_Off (Context) then
3543 Check_Packages_In (Declarations (Context));
3544 end if;
3545
3546 -- A package body may declare a nested package
3547
3548 elsif Nkind (Context) = N_Package_Body then
3549 Check_Package (Unit_Declaration_Node (Corresponding_Spec (Context)));
3550
3551 -- Do not verify proper state refinement when the body is subject to
3552 -- pragma SPARK_Mode Off because this disables the requirement for
3553 -- state refinement.
3554
3555 if not SPARK_Mode_Is_Off (Context) then
3556 Check_Packages_In (Declarations (Context));
3557 end if;
3558
3559 -- A library level [generic] package may declare a nested package
3560
3561 elsif Nkind_In (Context, N_Generic_Package_Declaration,
3562 N_Package_Declaration)
3563 and then Is_Main_Unit
3564 then
3565 Check_Package (Context);
3566 end if;
3567 end Check_State_Refinements;
3568
3569 ------------------------------
3570 -- Check_Unprotected_Access --
3571 ------------------------------
3572
3573 procedure Check_Unprotected_Access
3574 (Context : Node_Id;
3575 Expr : Node_Id)
3576 is
3577 Cont_Encl_Typ : Entity_Id;
3578 Pref_Encl_Typ : Entity_Id;
3579
3580 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
3581 -- Check whether Obj is a private component of a protected object.
3582 -- Return the protected type where the component resides, Empty
3583 -- otherwise.
3584
3585 function Is_Public_Operation return Boolean;
3586 -- Verify that the enclosing operation is callable from outside the
3587 -- protected object, to minimize false positives.
3588
3589 ------------------------------
3590 -- Enclosing_Protected_Type --
3591 ------------------------------
3592
3593 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
3594 begin
3595 if Is_Entity_Name (Obj) then
3596 declare
3597 Ent : Entity_Id := Entity (Obj);
3598
3599 begin
3600 -- The object can be a renaming of a private component, use
3601 -- the original record component.
3602
3603 if Is_Prival (Ent) then
3604 Ent := Prival_Link (Ent);
3605 end if;
3606
3607 if Is_Protected_Type (Scope (Ent)) then
3608 return Scope (Ent);
3609 end if;
3610 end;
3611 end if;
3612
3613 -- For indexed and selected components, recursively check the prefix
3614
3615 if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
3616 return Enclosing_Protected_Type (Prefix (Obj));
3617
3618 -- The object does not denote a protected component
3619
3620 else
3621 return Empty;
3622 end if;
3623 end Enclosing_Protected_Type;
3624
3625 -------------------------
3626 -- Is_Public_Operation --
3627 -------------------------
3628
3629 function Is_Public_Operation return Boolean is
3630 S : Entity_Id;
3631 E : Entity_Id;
3632
3633 begin
3634 S := Current_Scope;
3635 while Present (S) and then S /= Pref_Encl_Typ loop
3636 if Scope (S) = Pref_Encl_Typ then
3637 E := First_Entity (Pref_Encl_Typ);
3638 while Present (E)
3639 and then E /= First_Private_Entity (Pref_Encl_Typ)
3640 loop
3641 if E = S then
3642 return True;
3643 end if;
3644
3645 Next_Entity (E);
3646 end loop;
3647 end if;
3648
3649 S := Scope (S);
3650 end loop;
3651
3652 return False;
3653 end Is_Public_Operation;
3654
3655 -- Start of processing for Check_Unprotected_Access
3656
3657 begin
3658 if Nkind (Expr) = N_Attribute_Reference
3659 and then Attribute_Name (Expr) = Name_Unchecked_Access
3660 then
3661 Cont_Encl_Typ := Enclosing_Protected_Type (Context);
3662 Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
3663
3664 -- Check whether we are trying to export a protected component to a
3665 -- context with an equal or lower access level.
3666
3667 if Present (Pref_Encl_Typ)
3668 and then No (Cont_Encl_Typ)
3669 and then Is_Public_Operation
3670 and then Scope_Depth (Pref_Encl_Typ) >=
3671 Object_Access_Level (Context)
3672 then
3673 Error_Msg_N
3674 ("??possible unprotected access to protected data", Expr);
3675 end if;
3676 end if;
3677 end Check_Unprotected_Access;
3678
3679 ------------------------------
3680 -- Check_Unused_Body_States --
3681 ------------------------------
3682
3683 procedure Check_Unused_Body_States (Body_Id : Entity_Id) is
3684 procedure Process_Refinement_Clause
3685 (Clause : Node_Id;
3686 States : Elist_Id);
3687 -- Inspect all constituents of refinement clause Clause and remove any
3688 -- matches from body state list States.
3689
3690 procedure Report_Unused_Body_States (States : Elist_Id);
3691 -- Emit errors for each abstract state or object found in list States
3692
3693 -------------------------------
3694 -- Process_Refinement_Clause --
3695 -------------------------------
3696
3697 procedure Process_Refinement_Clause
3698 (Clause : Node_Id;
3699 States : Elist_Id)
3700 is
3701 procedure Process_Constituent (Constit : Node_Id);
3702 -- Remove constituent Constit from body state list States
3703
3704 -------------------------
3705 -- Process_Constituent --
3706 -------------------------
3707
3708 procedure Process_Constituent (Constit : Node_Id) is
3709 Constit_Id : Entity_Id;
3710
3711 begin
3712 -- Guard against illegal constituents. Only abstract states and
3713 -- objects can appear on the right hand side of a refinement.
3714
3715 if Is_Entity_Name (Constit) then
3716 Constit_Id := Entity_Of (Constit);
3717
3718 if Present (Constit_Id)
3719 and then Ekind_In (Constit_Id, E_Abstract_State,
3720 E_Constant,
3721 E_Variable)
3722 then
3723 Remove (States, Constit_Id);
3724 end if;
3725 end if;
3726 end Process_Constituent;
3727
3728 -- Local variables
3729
3730 Constit : Node_Id;
3731
3732 -- Start of processing for Process_Refinement_Clause
3733
3734 begin
3735 if Nkind (Clause) = N_Component_Association then
3736 Constit := Expression (Clause);
3737
3738 -- Multiple constituents appear as an aggregate
3739
3740 if Nkind (Constit) = N_Aggregate then
3741 Constit := First (Expressions (Constit));
3742 while Present (Constit) loop
3743 Process_Constituent (Constit);
3744 Next (Constit);
3745 end loop;
3746
3747 -- Various forms of a single constituent
3748
3749 else
3750 Process_Constituent (Constit);
3751 end if;
3752 end if;
3753 end Process_Refinement_Clause;
3754
3755 -------------------------------
3756 -- Report_Unused_Body_States --
3757 -------------------------------
3758
3759 procedure Report_Unused_Body_States (States : Elist_Id) is
3760 Posted : Boolean := False;
3761 State_Elmt : Elmt_Id;
3762 State_Id : Entity_Id;
3763
3764 begin
3765 if Present (States) then
3766 State_Elmt := First_Elmt (States);
3767 while Present (State_Elmt) loop
3768 State_Id := Node (State_Elmt);
3769
3770 -- Constants are part of the hidden state of a package, but the
3771 -- compiler cannot determine whether they have variable input
3772 -- (SPARK RM 7.1.1(2)) and cannot classify them properly as a
3773 -- hidden state. Do not emit an error when a constant does not
3774 -- participate in a state refinement, even though it acts as a
3775 -- hidden state.
3776
3777 if Ekind (State_Id) = E_Constant then
3778 null;
3779
3780 -- Generate an error message of the form:
3781
3782 -- body of package ... has unused hidden states
3783 -- abstract state ... defined at ...
3784 -- variable ... defined at ...
3785
3786 else
3787 if not Posted then
3788 Posted := True;
3789 SPARK_Msg_N
3790 ("body of package & has unused hidden states", Body_Id);
3791 end if;
3792
3793 Error_Msg_Sloc := Sloc (State_Id);
3794
3795 if Ekind (State_Id) = E_Abstract_State then
3796 SPARK_Msg_NE
3797 ("\abstract state & defined #", Body_Id, State_Id);
3798
3799 else
3800 SPARK_Msg_NE ("\variable & defined #", Body_Id, State_Id);
3801 end if;
3802 end if;
3803
3804 Next_Elmt (State_Elmt);
3805 end loop;
3806 end if;
3807 end Report_Unused_Body_States;
3808
3809 -- Local variables
3810
3811 Prag : constant Node_Id := Get_Pragma (Body_Id, Pragma_Refined_State);
3812 Spec_Id : constant Entity_Id := Spec_Entity (Body_Id);
3813 Clause : Node_Id;
3814 States : Elist_Id;
3815
3816 -- Start of processing for Check_Unused_Body_States
3817
3818 begin
3819 -- Inspect the clauses of pragma Refined_State and determine whether all
3820 -- visible states declared within the package body participate in the
3821 -- refinement.
3822
3823 if Present (Prag) then
3824 Clause := Expression (Get_Argument (Prag, Spec_Id));
3825 States := Collect_Body_States (Body_Id);
3826
3827 -- Multiple non-null state refinements appear as an aggregate
3828
3829 if Nkind (Clause) = N_Aggregate then
3830 Clause := First (Component_Associations (Clause));
3831 while Present (Clause) loop
3832 Process_Refinement_Clause (Clause, States);
3833 Next (Clause);
3834 end loop;
3835
3836 -- Various forms of a single state refinement
3837
3838 else
3839 Process_Refinement_Clause (Clause, States);
3840 end if;
3841
3842 -- Ensure that all abstract states and objects declared in the
3843 -- package body state space are utilized as constituents.
3844
3845 Report_Unused_Body_States (States);
3846 end if;
3847 end Check_Unused_Body_States;
3848
3849 -------------------------
3850 -- Collect_Body_States --
3851 -------------------------
3852
3853 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id is
3854 function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean;
3855 -- Determine whether object Obj_Id is a suitable visible state of a
3856 -- package body.
3857
3858 procedure Collect_Visible_States
3859 (Pack_Id : Entity_Id;
3860 States : in out Elist_Id);
3861 -- Gather the entities of all abstract states and objects declared in
3862 -- the visible state space of package Pack_Id.
3863
3864 ----------------------------
3865 -- Collect_Visible_States --
3866 ----------------------------
3867
3868 procedure Collect_Visible_States
3869 (Pack_Id : Entity_Id;
3870 States : in out Elist_Id)
3871 is
3872 Item_Id : Entity_Id;
3873
3874 begin
3875 -- Traverse the entity chain of the package and inspect all visible
3876 -- items.
3877
3878 Item_Id := First_Entity (Pack_Id);
3879 while Present (Item_Id) and then not In_Private_Part (Item_Id) loop
3880
3881 -- Do not consider internally generated items as those cannot be
3882 -- named and participate in refinement.
3883
3884 if not Comes_From_Source (Item_Id) then
3885 null;
3886
3887 elsif Ekind (Item_Id) = E_Abstract_State then
3888 Append_New_Elmt (Item_Id, States);
3889
3890 elsif Ekind_In (Item_Id, E_Constant, E_Variable)
3891 and then Is_Visible_Object (Item_Id)
3892 then
3893 Append_New_Elmt (Item_Id, States);
3894
3895 -- Recursively gather the visible states of a nested package
3896
3897 elsif Ekind (Item_Id) = E_Package then
3898 Collect_Visible_States (Item_Id, States);
3899 end if;
3900
3901 Next_Entity (Item_Id);
3902 end loop;
3903 end Collect_Visible_States;
3904
3905 -----------------------
3906 -- Is_Visible_Object --
3907 -----------------------
3908
3909 function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean is
3910 begin
3911 -- Objects that map generic formals to their actuals are not visible
3912 -- from outside the generic instantiation.
3913
3914 if Present (Corresponding_Generic_Association
3915 (Declaration_Node (Obj_Id)))
3916 then
3917 return False;
3918
3919 -- Constituents of a single protected/task type act as components of
3920 -- the type and are not visible from outside the type.
3921
3922 elsif Ekind (Obj_Id) = E_Variable
3923 and then Present (Encapsulating_State (Obj_Id))
3924 and then Is_Single_Concurrent_Object (Encapsulating_State (Obj_Id))
3925 then
3926 return False;
3927
3928 else
3929 return True;
3930 end if;
3931 end Is_Visible_Object;
3932
3933 -- Local variables
3934
3935 Body_Decl : constant Node_Id := Unit_Declaration_Node (Body_Id);
3936 Decl : Node_Id;
3937 Item_Id : Entity_Id;
3938 States : Elist_Id := No_Elist;
3939
3940 -- Start of processing for Collect_Body_States
3941
3942 begin
3943 -- Inspect the declarations of the body looking for source objects,
3944 -- packages and package instantiations. Note that even though this
3945 -- processing is very similar to Collect_Visible_States, a package
3946 -- body does not have a First/Next_Entity list.
3947
3948 Decl := First (Declarations (Body_Decl));
3949 while Present (Decl) loop
3950
3951 -- Capture source objects as internally generated temporaries cannot
3952 -- be named and participate in refinement.
3953
3954 if Nkind (Decl) = N_Object_Declaration then
3955 Item_Id := Defining_Entity (Decl);
3956
3957 if Comes_From_Source (Item_Id)
3958 and then Is_Visible_Object (Item_Id)
3959 then
3960 Append_New_Elmt (Item_Id, States);
3961 end if;
3962
3963 -- Capture the visible abstract states and objects of a source
3964 -- package [instantiation].
3965
3966 elsif Nkind (Decl) = N_Package_Declaration then
3967 Item_Id := Defining_Entity (Decl);
3968
3969 if Comes_From_Source (Item_Id) then
3970 Collect_Visible_States (Item_Id, States);
3971 end if;
3972 end if;
3973
3974 Next (Decl);
3975 end loop;
3976
3977 return States;
3978 end Collect_Body_States;
3979
3980 ------------------------
3981 -- Collect_Interfaces --
3982 ------------------------
3983
3984 procedure Collect_Interfaces
3985 (T : Entity_Id;
3986 Ifaces_List : out Elist_Id;
3987 Exclude_Parents : Boolean := False;
3988 Use_Full_View : Boolean := True)
3989 is
3990 procedure Collect (Typ : Entity_Id);
3991 -- Subsidiary subprogram used to traverse the whole list
3992 -- of directly and indirectly implemented interfaces
3993
3994 -------------
3995 -- Collect --
3996 -------------
3997
3998 procedure Collect (Typ : Entity_Id) is
3999 Ancestor : Entity_Id;
4000 Full_T : Entity_Id;
4001 Id : Node_Id;
4002 Iface : Entity_Id;
4003
4004 begin
4005 Full_T := Typ;
4006
4007 -- Handle private types and subtypes
4008
4009 if Use_Full_View
4010 and then Is_Private_Type (Typ)
4011 and then Present (Full_View (Typ))
4012 then
4013 Full_T := Full_View (Typ);
4014
4015 if Ekind (Full_T) = E_Record_Subtype then
4016 Full_T := Etype (Typ);
4017
4018 if Present (Full_View (Full_T)) then
4019 Full_T := Full_View (Full_T);
4020 end if;
4021 end if;
4022 end if;
4023
4024 -- Include the ancestor if we are generating the whole list of
4025 -- abstract interfaces.
4026
4027 if Etype (Full_T) /= Typ
4028
4029 -- Protect the frontend against wrong sources. For example:
4030
4031 -- package P is
4032 -- type A is tagged null record;
4033 -- type B is new A with private;
4034 -- type C is new A with private;
4035 -- private
4036 -- type B is new C with null record;
4037 -- type C is new B with null record;
4038 -- end P;
4039
4040 and then Etype (Full_T) /= T
4041 then
4042 Ancestor := Etype (Full_T);
4043 Collect (Ancestor);
4044
4045 if Is_Interface (Ancestor) and then not Exclude_Parents then
4046 Append_Unique_Elmt (Ancestor, Ifaces_List);
4047 end if;
4048 end if;
4049
4050 -- Traverse the graph of ancestor interfaces
4051
4052 if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
4053 Id := First (Abstract_Interface_List (Full_T));
4054 while Present (Id) loop
4055 Iface := Etype (Id);
4056
4057 -- Protect against wrong uses. For example:
4058 -- type I is interface;
4059 -- type O is tagged null record;
4060 -- type Wrong is new I and O with null record; -- ERROR
4061
4062 if Is_Interface (Iface) then
4063 if Exclude_Parents
4064 and then Etype (T) /= T
4065 and then Interface_Present_In_Ancestor (Etype (T), Iface)
4066 then
4067 null;
4068 else
4069 Collect (Iface);
4070 Append_Unique_Elmt (Iface, Ifaces_List);
4071 end if;
4072 end if;
4073
4074 Next (Id);
4075 end loop;
4076 end if;
4077 end Collect;
4078
4079 -- Start of processing for Collect_Interfaces
4080
4081 begin
4082 pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
4083 Ifaces_List := New_Elmt_List;
4084 Collect (T);
4085 end Collect_Interfaces;
4086
4087 ----------------------------------
4088 -- Collect_Interface_Components --
4089 ----------------------------------
4090
4091 procedure Collect_Interface_Components
4092 (Tagged_Type : Entity_Id;
4093 Components_List : out Elist_Id)
4094 is
4095 procedure Collect (Typ : Entity_Id);
4096 -- Subsidiary subprogram used to climb to the parents
4097
4098 -------------
4099 -- Collect --
4100 -------------
4101
4102 procedure Collect (Typ : Entity_Id) is
4103 Tag_Comp : Entity_Id;
4104 Parent_Typ : Entity_Id;
4105
4106 begin
4107 -- Handle private types
4108
4109 if Present (Full_View (Etype (Typ))) then
4110 Parent_Typ := Full_View (Etype (Typ));
4111 else
4112 Parent_Typ := Etype (Typ);
4113 end if;
4114
4115 if Parent_Typ /= Typ
4116
4117 -- Protect the frontend against wrong sources. For example:
4118
4119 -- package P is
4120 -- type A is tagged null record;
4121 -- type B is new A with private;
4122 -- type C is new A with private;
4123 -- private
4124 -- type B is new C with null record;
4125 -- type C is new B with null record;
4126 -- end P;
4127
4128 and then Parent_Typ /= Tagged_Type
4129 then
4130 Collect (Parent_Typ);
4131 end if;
4132
4133 -- Collect the components containing tags of secondary dispatch
4134 -- tables.
4135
4136 Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
4137 while Present (Tag_Comp) loop
4138 pragma Assert (Present (Related_Type (Tag_Comp)));
4139 Append_Elmt (Tag_Comp, Components_List);
4140
4141 Tag_Comp := Next_Tag_Component (Tag_Comp);
4142 end loop;
4143 end Collect;
4144
4145 -- Start of processing for Collect_Interface_Components
4146
4147 begin
4148 pragma Assert (Ekind (Tagged_Type) = E_Record_Type
4149 and then Is_Tagged_Type (Tagged_Type));
4150
4151 Components_List := New_Elmt_List;
4152 Collect (Tagged_Type);
4153 end Collect_Interface_Components;
4154
4155 -----------------------------
4156 -- Collect_Interfaces_Info --
4157 -----------------------------
4158
4159 procedure Collect_Interfaces_Info
4160 (T : Entity_Id;
4161 Ifaces_List : out Elist_Id;
4162 Components_List : out Elist_Id;
4163 Tags_List : out Elist_Id)
4164 is
4165 Comps_List : Elist_Id;
4166 Comp_Elmt : Elmt_Id;
4167 Comp_Iface : Entity_Id;
4168 Iface_Elmt : Elmt_Id;
4169 Iface : Entity_Id;
4170
4171 function Search_Tag (Iface : Entity_Id) return Entity_Id;
4172 -- Search for the secondary tag associated with the interface type
4173 -- Iface that is implemented by T.
4174
4175 ----------------
4176 -- Search_Tag --
4177 ----------------
4178
4179 function Search_Tag (Iface : Entity_Id) return Entity_Id is
4180 ADT : Elmt_Id;
4181 begin
4182 if not Is_CPP_Class (T) then
4183 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
4184 else
4185 ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
4186 end if;
4187
4188 while Present (ADT)
4189 and then Is_Tag (Node (ADT))
4190 and then Related_Type (Node (ADT)) /= Iface
4191 loop
4192 -- Skip secondary dispatch table referencing thunks to user
4193 -- defined primitives covered by this interface.
4194
4195 pragma Assert (Has_Suffix (Node (ADT), 'P'));
4196 Next_Elmt (ADT);
4197
4198 -- Skip secondary dispatch tables of Ada types
4199
4200 if not Is_CPP_Class (T) then
4201
4202 -- Skip secondary dispatch table referencing thunks to
4203 -- predefined primitives.
4204
4205 pragma Assert (Has_Suffix (Node (ADT), 'Y'));
4206 Next_Elmt (ADT);
4207
4208 -- Skip secondary dispatch table referencing user-defined
4209 -- primitives covered by this interface.
4210
4211 pragma Assert (Has_Suffix (Node (ADT), 'D'));
4212 Next_Elmt (ADT);
4213
4214 -- Skip secondary dispatch table referencing predefined
4215 -- primitives.
4216
4217 pragma Assert (Has_Suffix (Node (ADT), 'Z'));
4218 Next_Elmt (ADT);
4219 end if;
4220 end loop;
4221
4222 pragma Assert (Is_Tag (Node (ADT)));
4223 return Node (ADT);
4224 end Search_Tag;
4225
4226 -- Start of processing for Collect_Interfaces_Info
4227
4228 begin
4229 Collect_Interfaces (T, Ifaces_List);
4230 Collect_Interface_Components (T, Comps_List);
4231
4232 -- Search for the record component and tag associated with each
4233 -- interface type of T.
4234
4235 Components_List := New_Elmt_List;
4236 Tags_List := New_Elmt_List;
4237
4238 Iface_Elmt := First_Elmt (Ifaces_List);
4239 while Present (Iface_Elmt) loop
4240 Iface := Node (Iface_Elmt);
4241
4242 -- Associate the primary tag component and the primary dispatch table
4243 -- with all the interfaces that are parents of T
4244
4245 if Is_Ancestor (Iface, T, Use_Full_View => True) then
4246 Append_Elmt (First_Tag_Component (T), Components_List);
4247 Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
4248
4249 -- Otherwise search for the tag component and secondary dispatch
4250 -- table of Iface
4251
4252 else
4253 Comp_Elmt := First_Elmt (Comps_List);
4254 while Present (Comp_Elmt) loop
4255 Comp_Iface := Related_Type (Node (Comp_Elmt));
4256
4257 if Comp_Iface = Iface
4258 or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
4259 then
4260 Append_Elmt (Node (Comp_Elmt), Components_List);
4261 Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
4262 exit;
4263 end if;
4264
4265 Next_Elmt (Comp_Elmt);
4266 end loop;
4267 pragma Assert (Present (Comp_Elmt));
4268 end if;
4269
4270 Next_Elmt (Iface_Elmt);
4271 end loop;
4272 end Collect_Interfaces_Info;
4273
4274 ---------------------
4275 -- Collect_Parents --
4276 ---------------------
4277
4278 procedure Collect_Parents
4279 (T : Entity_Id;
4280 List : out Elist_Id;
4281 Use_Full_View : Boolean := True)
4282 is
4283 Current_Typ : Entity_Id := T;
4284 Parent_Typ : Entity_Id;
4285
4286 begin
4287 List := New_Elmt_List;
4288
4289 -- No action if the if the type has no parents
4290
4291 if T = Etype (T) then
4292 return;
4293 end if;
4294
4295 loop
4296 Parent_Typ := Etype (Current_Typ);
4297
4298 if Is_Private_Type (Parent_Typ)
4299 and then Present (Full_View (Parent_Typ))
4300 and then Use_Full_View
4301 then
4302 Parent_Typ := Full_View (Base_Type (Parent_Typ));
4303 end if;
4304
4305 Append_Elmt (Parent_Typ, List);
4306
4307 exit when Parent_Typ = Current_Typ;
4308 Current_Typ := Parent_Typ;
4309 end loop;
4310 end Collect_Parents;
4311
4312 ----------------------------------
4313 -- Collect_Primitive_Operations --
4314 ----------------------------------
4315
4316 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
4317 B_Type : constant Entity_Id := Base_Type (T);
4318 B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
4319 B_Scope : Entity_Id := Scope (B_Type);
4320 Op_List : Elist_Id;
4321 Formal : Entity_Id;
4322 Is_Prim : Boolean;
4323 Is_Type_In_Pkg : Boolean;
4324 Formal_Derived : Boolean := False;
4325 Id : Entity_Id;
4326
4327 function Match (E : Entity_Id) return Boolean;
4328 -- True if E's base type is B_Type, or E is of an anonymous access type
4329 -- and the base type of its designated type is B_Type.
4330
4331 -----------
4332 -- Match --
4333 -----------
4334
4335 function Match (E : Entity_Id) return Boolean is
4336 Etyp : Entity_Id := Etype (E);
4337
4338 begin
4339 if Ekind (Etyp) = E_Anonymous_Access_Type then
4340 Etyp := Designated_Type (Etyp);
4341 end if;
4342
4343 -- In Ada 2012 a primitive operation may have a formal of an
4344 -- incomplete view of the parent type.
4345
4346 return Base_Type (Etyp) = B_Type
4347 or else
4348 (Ada_Version >= Ada_2012
4349 and then Ekind (Etyp) = E_Incomplete_Type
4350 and then Full_View (Etyp) = B_Type);
4351 end Match;
4352
4353 -- Start of processing for Collect_Primitive_Operations
4354
4355 begin
4356 -- For tagged types, the primitive operations are collected as they
4357 -- are declared, and held in an explicit list which is simply returned.
4358
4359 if Is_Tagged_Type (B_Type) then
4360 return Primitive_Operations (B_Type);
4361
4362 -- An untagged generic type that is a derived type inherits the
4363 -- primitive operations of its parent type. Other formal types only
4364 -- have predefined operators, which are not explicitly represented.
4365
4366 elsif Is_Generic_Type (B_Type) then
4367 if Nkind (B_Decl) = N_Formal_Type_Declaration
4368 and then Nkind (Formal_Type_Definition (B_Decl)) =
4369 N_Formal_Derived_Type_Definition
4370 then
4371 Formal_Derived := True;
4372 else
4373 return New_Elmt_List;
4374 end if;
4375 end if;
4376
4377 Op_List := New_Elmt_List;
4378
4379 if B_Scope = Standard_Standard then
4380 if B_Type = Standard_String then
4381 Append_Elmt (Standard_Op_Concat, Op_List);
4382
4383 elsif B_Type = Standard_Wide_String then
4384 Append_Elmt (Standard_Op_Concatw, Op_List);
4385
4386 else
4387 null;
4388 end if;
4389
4390 -- Locate the primitive subprograms of the type
4391
4392 else
4393 -- The primitive operations appear after the base type, except
4394 -- if the derivation happens within the private part of B_Scope
4395 -- and the type is a private type, in which case both the type
4396 -- and some primitive operations may appear before the base
4397 -- type, and the list of candidates starts after the type.
4398
4399 if In_Open_Scopes (B_Scope)
4400 and then Scope (T) = B_Scope
4401 and then In_Private_Part (B_Scope)
4402 then
4403 Id := Next_Entity (T);
4404
4405 -- In Ada 2012, If the type has an incomplete partial view, there
4406 -- may be primitive operations declared before the full view, so
4407 -- we need to start scanning from the incomplete view, which is
4408 -- earlier on the entity chain.
4409
4410 elsif Nkind (Parent (B_Type)) = N_Full_Type_Declaration
4411 and then Present (Incomplete_View (Parent (B_Type)))
4412 then
4413 Id := Defining_Entity (Incomplete_View (Parent (B_Type)));
4414
4415 -- If T is a derived from a type with an incomplete view declared
4416 -- elsewhere, that incomplete view is irrelevant, we want the
4417 -- operations in the scope of T.
4418
4419 if Scope (Id) /= Scope (B_Type) then
4420 Id := Next_Entity (B_Type);
4421 end if;
4422
4423 else
4424 Id := Next_Entity (B_Type);
4425 end if;
4426
4427 -- Set flag if this is a type in a package spec
4428
4429 Is_Type_In_Pkg :=
4430 Is_Package_Or_Generic_Package (B_Scope)
4431 and then
4432 Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
4433 N_Package_Body;
4434
4435 while Present (Id) loop
4436
4437 -- Test whether the result type or any of the parameter types of
4438 -- each subprogram following the type match that type when the
4439 -- type is declared in a package spec, is a derived type, or the
4440 -- subprogram is marked as primitive. (The Is_Primitive test is
4441 -- needed to find primitives of nonderived types in declarative
4442 -- parts that happen to override the predefined "=" operator.)
4443
4444 -- Note that generic formal subprograms are not considered to be
4445 -- primitive operations and thus are never inherited.
4446
4447 if Is_Overloadable (Id)
4448 and then (Is_Type_In_Pkg
4449 or else Is_Derived_Type (B_Type)
4450 or else Is_Primitive (Id))
4451 and then Nkind (Parent (Parent (Id)))
4452 not in N_Formal_Subprogram_Declaration
4453 then
4454 Is_Prim := False;
4455
4456 if Match (Id) then
4457 Is_Prim := True;
4458
4459 else
4460 Formal := First_Formal (Id);
4461 while Present (Formal) loop
4462 if Match (Formal) then
4463 Is_Prim := True;
4464 exit;
4465 end if;
4466
4467 Next_Formal (Formal);
4468 end loop;
4469 end if;
4470
4471 -- For a formal derived type, the only primitives are the ones
4472 -- inherited from the parent type. Operations appearing in the
4473 -- package declaration are not primitive for it.
4474
4475 if Is_Prim
4476 and then (not Formal_Derived or else Present (Alias (Id)))
4477 then
4478 -- In the special case of an equality operator aliased to
4479 -- an overriding dispatching equality belonging to the same
4480 -- type, we don't include it in the list of primitives.
4481 -- This avoids inheriting multiple equality operators when
4482 -- deriving from untagged private types whose full type is
4483 -- tagged, which can otherwise cause ambiguities. Note that
4484 -- this should only happen for this kind of untagged parent
4485 -- type, since normally dispatching operations are inherited
4486 -- using the type's Primitive_Operations list.
4487
4488 if Chars (Id) = Name_Op_Eq
4489 and then Is_Dispatching_Operation (Id)
4490 and then Present (Alias (Id))
4491 and then Present (Overridden_Operation (Alias (Id)))
4492 and then Base_Type (Etype (First_Entity (Id))) =
4493 Base_Type (Etype (First_Entity (Alias (Id))))
4494 then
4495 null;
4496
4497 -- Include the subprogram in the list of primitives
4498
4499 else
4500 Append_Elmt (Id, Op_List);
4501 end if;
4502 end if;
4503 end if;
4504
4505 Next_Entity (Id);
4506
4507 -- For a type declared in System, some of its operations may
4508 -- appear in the target-specific extension to System.
4509
4510 if No (Id)
4511 and then B_Scope = RTU_Entity (System)
4512 and then Present_System_Aux
4513 then
4514 B_Scope := System_Aux_Id;
4515 Id := First_Entity (System_Aux_Id);
4516 end if;
4517 end loop;
4518 end if;
4519
4520 return Op_List;
4521 end Collect_Primitive_Operations;
4522
4523 -----------------------------------
4524 -- Compile_Time_Constraint_Error --
4525 -----------------------------------
4526
4527 function Compile_Time_Constraint_Error
4528 (N : Node_Id;
4529 Msg : String;
4530 Ent : Entity_Id := Empty;
4531 Loc : Source_Ptr := No_Location;
4532 Warn : Boolean := False) return Node_Id
4533 is
4534 Msgc : String (1 .. Msg'Length + 3);
4535 -- Copy of message, with room for possible ?? or << and ! at end
4536
4537 Msgl : Natural;
4538 Wmsg : Boolean;
4539 Eloc : Source_Ptr;
4540
4541 -- Start of processing for Compile_Time_Constraint_Error
4542
4543 begin
4544 -- If this is a warning, convert it into an error if we are in code
4545 -- subject to SPARK_Mode being set On, unless Warn is True to force a
4546 -- warning. The rationale is that a compile-time constraint error should
4547 -- lead to an error instead of a warning when SPARK_Mode is On, but in
4548 -- a few cases we prefer to issue a warning and generate both a suitable
4549 -- run-time error in GNAT and a suitable check message in GNATprove.
4550 -- Those cases are those that likely correspond to deactivated SPARK
4551 -- code, so that this kind of code can be compiled and analyzed instead
4552 -- of being rejected.
4553
4554 Error_Msg_Warn := Warn or SPARK_Mode /= On;
4555
4556 -- A static constraint error in an instance body is not a fatal error.
4557 -- we choose to inhibit the message altogether, because there is no
4558 -- obvious node (for now) on which to post it. On the other hand the
4559 -- offending node must be replaced with a constraint_error in any case.
4560
4561 -- No messages are generated if we already posted an error on this node
4562
4563 if not Error_Posted (N) then
4564 if Loc /= No_Location then
4565 Eloc := Loc;
4566 else
4567 Eloc := Sloc (N);
4568 end if;
4569
4570 -- Copy message to Msgc, converting any ? in the message into
4571 -- < instead, so that we have an error in GNATprove mode.
4572
4573 Msgl := Msg'Length;
4574
4575 for J in 1 .. Msgl loop
4576 if Msg (J) = '?' and then (J = 1 or else Msg (J - 1) /= ''') then
4577 Msgc (J) := '<';
4578 else
4579 Msgc (J) := Msg (J);
4580 end if;
4581 end loop;
4582
4583 -- Message is a warning, even in Ada 95 case
4584
4585 if Msg (Msg'Last) = '?' or else Msg (Msg'Last) = '<' then
4586 Wmsg := True;
4587
4588 -- In Ada 83, all messages are warnings. In the private part and
4589 -- the body of an instance, constraint_checks are only warnings.
4590 -- We also make this a warning if the Warn parameter is set.
4591
4592 elsif Warn
4593 or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
4594 then
4595 Msgl := Msgl + 1;
4596 Msgc (Msgl) := '<';
4597 Msgl := Msgl + 1;
4598 Msgc (Msgl) := '<';
4599 Wmsg := True;
4600
4601 elsif In_Instance_Not_Visible then
4602 Msgl := Msgl + 1;
4603 Msgc (Msgl) := '<';
4604 Msgl := Msgl + 1;
4605 Msgc (Msgl) := '<';
4606 Wmsg := True;
4607
4608 -- Otherwise we have a real error message (Ada 95 static case)
4609 -- and we make this an unconditional message. Note that in the
4610 -- warning case we do not make the message unconditional, it seems
4611 -- quite reasonable to delete messages like this (about exceptions
4612 -- that will be raised) in dead code.
4613
4614 else
4615 Wmsg := False;
4616 Msgl := Msgl + 1;
4617 Msgc (Msgl) := '!';
4618 end if;
4619
4620 -- One more test, skip the warning if the related expression is
4621 -- statically unevaluated, since we don't want to warn about what
4622 -- will happen when something is evaluated if it never will be
4623 -- evaluated.
4624
4625 if not Is_Statically_Unevaluated (N) then
4626 if Present (Ent) then
4627 Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
4628 else
4629 Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
4630 end if;
4631
4632 if Wmsg then
4633
4634 -- Check whether the context is an Init_Proc
4635
4636 if Inside_Init_Proc then
4637 declare
4638 Conc_Typ : constant Entity_Id :=
4639 Corresponding_Concurrent_Type
4640 (Entity (Parameter_Type (First
4641 (Parameter_Specifications
4642 (Parent (Current_Scope))))));
4643
4644 begin
4645 -- Don't complain if the corresponding concurrent type
4646 -- doesn't come from source (i.e. a single task/protected
4647 -- object).
4648
4649 if Present (Conc_Typ)
4650 and then not Comes_From_Source (Conc_Typ)
4651 then
4652 Error_Msg_NEL
4653 ("\& [<<", N, Standard_Constraint_Error, Eloc);
4654
4655 else
4656 if GNATprove_Mode then
4657 Error_Msg_NEL
4658 ("\& would have been raised for objects of this "
4659 & "type", N, Standard_Constraint_Error, Eloc);
4660 else
4661 Error_Msg_NEL
4662 ("\& will be raised for objects of this type??",
4663 N, Standard_Constraint_Error, Eloc);
4664 end if;
4665 end if;
4666 end;
4667
4668 else
4669 Error_Msg_NEL ("\& [<<", N, Standard_Constraint_Error, Eloc);
4670 end if;
4671
4672 else
4673 Error_Msg ("\static expression fails Constraint_Check", Eloc);
4674 Set_Error_Posted (N);
4675 end if;
4676 end if;
4677 end if;
4678
4679 return N;
4680 end Compile_Time_Constraint_Error;
4681
4682 -----------------------
4683 -- Conditional_Delay --
4684 -----------------------
4685
4686 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
4687 begin
4688 if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
4689 Set_Has_Delayed_Freeze (New_Ent);
4690 end if;
4691 end Conditional_Delay;
4692
4693 ----------------------------
4694 -- Contains_Refined_State --
4695 ----------------------------
4696
4697 function Contains_Refined_State (Prag : Node_Id) return Boolean is
4698 function Has_State_In_Dependency (List : Node_Id) return Boolean;
4699 -- Determine whether a dependency list mentions a state with a visible
4700 -- refinement.
4701
4702 function Has_State_In_Global (List : Node_Id) return Boolean;
4703 -- Determine whether a global list mentions a state with a visible
4704 -- refinement.
4705
4706 function Is_Refined_State (Item : Node_Id) return Boolean;
4707 -- Determine whether Item is a reference to an abstract state with a
4708 -- visible refinement.
4709
4710 -----------------------------
4711 -- Has_State_In_Dependency --
4712 -----------------------------
4713
4714 function Has_State_In_Dependency (List : Node_Id) return Boolean is
4715 Clause : Node_Id;
4716 Output : Node_Id;
4717
4718 begin
4719 -- A null dependency list does not mention any states
4720
4721 if Nkind (List) = N_Null then
4722 return False;
4723
4724 -- Dependency clauses appear as component associations of an
4725 -- aggregate.
4726
4727 elsif Nkind (List) = N_Aggregate
4728 and then Present (Component_Associations (List))
4729 then
4730 Clause := First (Component_Associations (List));
4731 while Present (Clause) loop
4732
4733 -- Inspect the outputs of a dependency clause
4734
4735 Output := First (Choices (Clause));
4736 while Present (Output) loop
4737 if Is_Refined_State (Output) then
4738 return True;
4739 end if;
4740
4741 Next (Output);
4742 end loop;
4743
4744 -- Inspect the outputs of a dependency clause
4745
4746 if Is_Refined_State (Expression (Clause)) then
4747 return True;
4748 end if;
4749
4750 Next (Clause);
4751 end loop;
4752
4753 -- If we get here, then none of the dependency clauses mention a
4754 -- state with visible refinement.
4755
4756 return False;
4757
4758 -- An illegal pragma managed to sneak in
4759
4760 else
4761 raise Program_Error;
4762 end if;
4763 end Has_State_In_Dependency;
4764
4765 -------------------------
4766 -- Has_State_In_Global --
4767 -------------------------
4768
4769 function Has_State_In_Global (List : Node_Id) return Boolean is
4770 Item : Node_Id;
4771
4772 begin
4773 -- A null global list does not mention any states
4774
4775 if Nkind (List) = N_Null then
4776 return False;
4777
4778 -- Simple global list or moded global list declaration
4779
4780 elsif Nkind (List) = N_Aggregate then
4781
4782 -- The declaration of a simple global list appear as a collection
4783 -- of expressions.
4784
4785 if Present (Expressions (List)) then
4786 Item := First (Expressions (List));
4787 while Present (Item) loop
4788 if Is_Refined_State (Item) then
4789 return True;
4790 end if;
4791
4792 Next (Item);
4793 end loop;
4794
4795 -- The declaration of a moded global list appears as a collection
4796 -- of component associations where individual choices denote
4797 -- modes.
4798
4799 else
4800 Item := First (Component_Associations (List));
4801 while Present (Item) loop
4802 if Has_State_In_Global (Expression (Item)) then
4803 return True;
4804 end if;
4805
4806 Next (Item);
4807 end loop;
4808 end if;
4809
4810 -- If we get here, then the simple/moded global list did not
4811 -- mention any states with a visible refinement.
4812
4813 return False;
4814
4815 -- Single global item declaration
4816
4817 elsif Is_Entity_Name (List) then
4818 return Is_Refined_State (List);
4819
4820 -- An illegal pragma managed to sneak in
4821
4822 else
4823 raise Program_Error;
4824 end if;
4825 end Has_State_In_Global;
4826
4827 ----------------------
4828 -- Is_Refined_State --
4829 ----------------------
4830
4831 function Is_Refined_State (Item : Node_Id) return Boolean is
4832 Elmt : Node_Id;
4833 Item_Id : Entity_Id;
4834
4835 begin
4836 if Nkind (Item) = N_Null then
4837 return False;
4838
4839 -- States cannot be subject to attribute 'Result. This case arises
4840 -- in dependency relations.
4841
4842 elsif Nkind (Item) = N_Attribute_Reference
4843 and then Attribute_Name (Item) = Name_Result
4844 then
4845 return False;
4846
4847 -- Multiple items appear as an aggregate. This case arises in
4848 -- dependency relations.
4849
4850 elsif Nkind (Item) = N_Aggregate
4851 and then Present (Expressions (Item))
4852 then
4853 Elmt := First (Expressions (Item));
4854 while Present (Elmt) loop
4855 if Is_Refined_State (Elmt) then
4856 return True;
4857 end if;
4858
4859 Next (Elmt);
4860 end loop;
4861
4862 -- If we get here, then none of the inputs or outputs reference a
4863 -- state with visible refinement.
4864
4865 return False;
4866
4867 -- Single item
4868
4869 else
4870 Item_Id := Entity_Of (Item);
4871
4872 return
4873 Present (Item_Id)
4874 and then Ekind (Item_Id) = E_Abstract_State
4875 and then Has_Visible_Refinement (Item_Id);
4876 end if;
4877 end Is_Refined_State;
4878
4879 -- Local variables
4880
4881 Arg : constant Node_Id :=
4882 Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
4883 Nam : constant Name_Id := Pragma_Name (Prag);
4884
4885 -- Start of processing for Contains_Refined_State
4886
4887 begin
4888 if Nam = Name_Depends then
4889 return Has_State_In_Dependency (Arg);
4890
4891 else pragma Assert (Nam = Name_Global);
4892 return Has_State_In_Global (Arg);
4893 end if;
4894 end Contains_Refined_State;
4895
4896 -------------------------
4897 -- Copy_Component_List --
4898 -------------------------
4899
4900 function Copy_Component_List
4901 (R_Typ : Entity_Id;
4902 Loc : Source_Ptr) return List_Id
4903 is
4904 Comp : Node_Id;
4905 Comps : constant List_Id := New_List;
4906
4907 begin
4908 Comp := First_Component (Underlying_Type (R_Typ));
4909 while Present (Comp) loop
4910 if Comes_From_Source (Comp) then
4911 declare
4912 Comp_Decl : constant Node_Id := Declaration_Node (Comp);
4913 begin
4914 Append_To (Comps,
4915 Make_Component_Declaration (Loc,
4916 Defining_Identifier =>
4917 Make_Defining_Identifier (Loc, Chars (Comp)),
4918 Component_Definition =>
4919 New_Copy_Tree
4920 (Component_Definition (Comp_Decl), New_Sloc => Loc)));
4921 end;
4922 end if;
4923
4924 Next_Component (Comp);
4925 end loop;
4926
4927 return Comps;
4928 end Copy_Component_List;
4929
4930 -------------------------
4931 -- Copy_Parameter_List --
4932 -------------------------
4933
4934 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
4935 Loc : constant Source_Ptr := Sloc (Subp_Id);
4936 Plist : List_Id;
4937 Formal : Entity_Id;
4938
4939 begin
4940 if No (First_Formal (Subp_Id)) then
4941 return No_List;
4942 else
4943 Plist := New_List;
4944 Formal := First_Formal (Subp_Id);
4945 while Present (Formal) loop
4946 Append_To (Plist,
4947 Make_Parameter_Specification (Loc,
4948 Defining_Identifier =>
4949 Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
4950 In_Present => In_Present (Parent (Formal)),
4951 Out_Present => Out_Present (Parent (Formal)),
4952 Parameter_Type =>
4953 New_Occurrence_Of (Etype (Formal), Loc),
4954 Expression =>
4955 New_Copy_Tree (Expression (Parent (Formal)))));
4956
4957 Next_Formal (Formal);
4958 end loop;
4959 end if;
4960
4961 return Plist;
4962 end Copy_Parameter_List;
4963
4964 --------------------------
4965 -- Copy_Subprogram_Spec --
4966 --------------------------
4967
4968 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id is
4969 Def_Id : Node_Id;
4970 Formal_Spec : Node_Id;
4971 Result : Node_Id;
4972
4973 begin
4974 -- The structure of the original tree must be replicated without any
4975 -- alterations. Use New_Copy_Tree for this purpose.
4976
4977 Result := New_Copy_Tree (Spec);
4978
4979 -- Create a new entity for the defining unit name
4980
4981 Def_Id := Defining_Unit_Name (Result);
4982 Set_Defining_Unit_Name (Result,
4983 Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
4984
4985 -- Create new entities for the formal parameters
4986
4987 if Present (Parameter_Specifications (Result)) then
4988 Formal_Spec := First (Parameter_Specifications (Result));
4989 while Present (Formal_Spec) loop
4990 Def_Id := Defining_Identifier (Formal_Spec);
4991 Set_Defining_Identifier (Formal_Spec,
4992 Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
4993
4994 Next (Formal_Spec);
4995 end loop;
4996 end if;
4997
4998 return Result;
4999 end Copy_Subprogram_Spec;
5000
5001 --------------------------------
5002 -- Corresponding_Generic_Type --
5003 --------------------------------
5004
5005 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
5006 Inst : Entity_Id;
5007 Gen : Entity_Id;
5008 Typ : Entity_Id;
5009
5010 begin
5011 if not Is_Generic_Actual_Type (T) then
5012 return Any_Type;
5013
5014 -- If the actual is the actual of an enclosing instance, resolution
5015 -- was correct in the generic.
5016
5017 elsif Nkind (Parent (T)) = N_Subtype_Declaration
5018 and then Is_Entity_Name (Subtype_Indication (Parent (T)))
5019 and then
5020 Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
5021 then
5022 return Any_Type;
5023
5024 else
5025 Inst := Scope (T);
5026
5027 if Is_Wrapper_Package (Inst) then
5028 Inst := Related_Instance (Inst);
5029 end if;
5030
5031 Gen :=
5032 Generic_Parent
5033 (Specification (Unit_Declaration_Node (Inst)));
5034
5035 -- Generic actual has the same name as the corresponding formal
5036
5037 Typ := First_Entity (Gen);
5038 while Present (Typ) loop
5039 if Chars (Typ) = Chars (T) then
5040 return Typ;
5041 end if;
5042
5043 Next_Entity (Typ);
5044 end loop;
5045
5046 return Any_Type;
5047 end if;
5048 end Corresponding_Generic_Type;
5049
5050 --------------------
5051 -- Current_Entity --
5052 --------------------
5053
5054 -- The currently visible definition for a given identifier is the
5055 -- one most chained at the start of the visibility chain, i.e. the
5056 -- one that is referenced by the Node_Id value of the name of the
5057 -- given identifier.
5058
5059 function Current_Entity (N : Node_Id) return Entity_Id is
5060 begin
5061 return Get_Name_Entity_Id (Chars (N));
5062 end Current_Entity;
5063
5064 -----------------------------
5065 -- Current_Entity_In_Scope --
5066 -----------------------------
5067
5068 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
5069 E : Entity_Id;
5070 CS : constant Entity_Id := Current_Scope;
5071
5072 Transient_Case : constant Boolean := Scope_Is_Transient;
5073
5074 begin
5075 E := Get_Name_Entity_Id (Chars (N));
5076 while Present (E)
5077 and then Scope (E) /= CS
5078 and then (not Transient_Case or else Scope (E) /= Scope (CS))
5079 loop
5080 E := Homonym (E);
5081 end loop;
5082
5083 return E;
5084 end Current_Entity_In_Scope;
5085
5086 -------------------
5087 -- Current_Scope --
5088 -------------------
5089
5090 function Current_Scope return Entity_Id is
5091 begin
5092 if Scope_Stack.Last = -1 then
5093 return Standard_Standard;
5094 else
5095 declare
5096 C : constant Entity_Id :=
5097 Scope_Stack.Table (Scope_Stack.Last).Entity;
5098 begin
5099 if Present (C) then
5100 return C;
5101 else
5102 return Standard_Standard;
5103 end if;
5104 end;
5105 end if;
5106 end Current_Scope;
5107
5108 ----------------------------
5109 -- Current_Scope_No_Loops --
5110 ----------------------------
5111
5112 function Current_Scope_No_Loops return Entity_Id is
5113 S : Entity_Id;
5114
5115 begin
5116 -- Examine the scope stack starting from the current scope and skip any
5117 -- internally generated loops.
5118
5119 S := Current_Scope;
5120 while Present (S) and then S /= Standard_Standard loop
5121 if Ekind (S) = E_Loop and then not Comes_From_Source (S) then
5122 S := Scope (S);
5123 else
5124 exit;
5125 end if;
5126 end loop;
5127
5128 return S;
5129 end Current_Scope_No_Loops;
5130
5131 ------------------------
5132 -- Current_Subprogram --
5133 ------------------------
5134
5135 function Current_Subprogram return Entity_Id is
5136 Scop : constant Entity_Id := Current_Scope;
5137 begin
5138 if Is_Subprogram_Or_Generic_Subprogram (Scop) then
5139 return Scop;
5140 else
5141 return Enclosing_Subprogram (Scop);
5142 end if;
5143 end Current_Subprogram;
5144
5145 ----------------------------------
5146 -- Deepest_Type_Access_Level --
5147 ----------------------------------
5148
5149 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
5150 begin
5151 if Ekind (Typ) = E_Anonymous_Access_Type
5152 and then not Is_Local_Anonymous_Access (Typ)
5153 and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
5154 then
5155 -- Typ is the type of an Ada 2012 stand-alone object of an anonymous
5156 -- access type.
5157
5158 return
5159 Scope_Depth (Enclosing_Dynamic_Scope
5160 (Defining_Identifier
5161 (Associated_Node_For_Itype (Typ))));
5162
5163 -- For generic formal type, return Int'Last (infinite).
5164 -- See comment preceding Is_Generic_Type call in Type_Access_Level.
5165
5166 elsif Is_Generic_Type (Root_Type (Typ)) then
5167 return UI_From_Int (Int'Last);
5168
5169 else
5170 return Type_Access_Level (Typ);
5171 end if;
5172 end Deepest_Type_Access_Level;
5173
5174 ---------------------
5175 -- Defining_Entity --
5176 ---------------------
5177
5178 function Defining_Entity
5179 (N : Node_Id;
5180 Empty_On_Errors : Boolean := False) return Entity_Id
5181 is
5182 Err : Entity_Id := Empty;
5183
5184 begin
5185 case Nkind (N) is
5186 when N_Abstract_Subprogram_Declaration |
5187 N_Expression_Function |
5188 N_Formal_Subprogram_Declaration |
5189 N_Generic_Package_Declaration |
5190 N_Generic_Subprogram_Declaration |
5191 N_Package_Declaration |
5192 N_Subprogram_Body |
5193 N_Subprogram_Body_Stub |
5194 N_Subprogram_Declaration |
5195 N_Subprogram_Renaming_Declaration
5196 =>
5197 return Defining_Entity (Specification (N));
5198
5199 when N_Component_Declaration |
5200 N_Defining_Program_Unit_Name |
5201 N_Discriminant_Specification |
5202 N_Entry_Body |
5203 N_Entry_Declaration |
5204 N_Entry_Index_Specification |
5205 N_Exception_Declaration |
5206 N_Exception_Renaming_Declaration |
5207 N_Formal_Object_Declaration |
5208 N_Formal_Package_Declaration |
5209 N_Formal_Type_Declaration |
5210 N_Full_Type_Declaration |
5211 N_Implicit_Label_Declaration |
5212 N_Incomplete_Type_Declaration |
5213 N_Loop_Parameter_Specification |
5214 N_Number_Declaration |
5215 N_Object_Declaration |
5216 N_Object_Renaming_Declaration |
5217 N_Package_Body_Stub |
5218 N_Parameter_Specification |
5219 N_Private_Extension_Declaration |
5220 N_Private_Type_Declaration |
5221 N_Protected_Body |
5222 N_Protected_Body_Stub |
5223 N_Protected_Type_Declaration |
5224 N_Single_Protected_Declaration |
5225 N_Single_Task_Declaration |
5226 N_Subtype_Declaration |
5227 N_Task_Body |
5228 N_Task_Body_Stub |
5229 N_Task_Type_Declaration
5230 =>
5231 return Defining_Identifier (N);
5232
5233 when N_Subunit =>
5234 return Defining_Entity (Proper_Body (N));
5235
5236 when N_Function_Instantiation |
5237 N_Function_Specification |
5238 N_Generic_Function_Renaming_Declaration |
5239 N_Generic_Package_Renaming_Declaration |
5240 N_Generic_Procedure_Renaming_Declaration |
5241 N_Package_Body |
5242 N_Package_Instantiation |
5243 N_Package_Renaming_Declaration |
5244 N_Package_Specification |
5245 N_Procedure_Instantiation |
5246 N_Procedure_Specification
5247 =>
5248 declare
5249 Nam : constant Node_Id := Defining_Unit_Name (N);
5250
5251 begin
5252 if Nkind (Nam) in N_Entity then
5253 return Nam;
5254
5255 -- For Error, make up a name and attach to declaration so we
5256 -- can continue semantic analysis.
5257
5258 elsif Nam = Error then
5259 if Empty_On_Errors then
5260 return Empty;
5261 else
5262 Err := Make_Temporary (Sloc (N), 'T');
5263 Set_Defining_Unit_Name (N, Err);
5264
5265 return Err;
5266 end if;
5267
5268 -- If not an entity, get defining identifier
5269
5270 else
5271 return Defining_Identifier (Nam);
5272 end if;
5273 end;
5274
5275 when N_Block_Statement |
5276 N_Loop_Statement =>
5277 return Entity (Identifier (N));
5278
5279 when others =>
5280 if Empty_On_Errors then
5281 return Empty;
5282 else
5283 raise Program_Error;
5284 end if;
5285
5286 end case;
5287 end Defining_Entity;
5288
5289 --------------------------
5290 -- Denotes_Discriminant --
5291 --------------------------
5292
5293 function Denotes_Discriminant
5294 (N : Node_Id;
5295 Check_Concurrent : Boolean := False) return Boolean
5296 is
5297 E : Entity_Id;
5298
5299 begin
5300 if not Is_Entity_Name (N) or else No (Entity (N)) then
5301 return False;
5302 else
5303 E := Entity (N);
5304 end if;
5305
5306 -- If we are checking for a protected type, the discriminant may have
5307 -- been rewritten as the corresponding discriminal of the original type
5308 -- or of the corresponding concurrent record, depending on whether we
5309 -- are in the spec or body of the protected type.
5310
5311 return Ekind (E) = E_Discriminant
5312 or else
5313 (Check_Concurrent
5314 and then Ekind (E) = E_In_Parameter
5315 and then Present (Discriminal_Link (E))
5316 and then
5317 (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
5318 or else
5319 Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
5320 end Denotes_Discriminant;
5321
5322 -------------------------
5323 -- Denotes_Same_Object --
5324 -------------------------
5325
5326 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
5327 Obj1 : Node_Id := A1;
5328 Obj2 : Node_Id := A2;
5329
5330 function Has_Prefix (N : Node_Id) return Boolean;
5331 -- Return True if N has attribute Prefix
5332
5333 function Is_Renaming (N : Node_Id) return Boolean;
5334 -- Return true if N names a renaming entity
5335
5336 function Is_Valid_Renaming (N : Node_Id) return Boolean;
5337 -- For renamings, return False if the prefix of any dereference within
5338 -- the renamed object_name is a variable, or any expression within the
5339 -- renamed object_name contains references to variables or calls on
5340 -- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
5341
5342 ----------------
5343 -- Has_Prefix --
5344 ----------------
5345
5346 function Has_Prefix (N : Node_Id) return Boolean is
5347 begin
5348 return
5349 Nkind_In (N,
5350 N_Attribute_Reference,
5351 N_Expanded_Name,
5352 N_Explicit_Dereference,
5353 N_Indexed_Component,
5354 N_Reference,
5355 N_Selected_Component,
5356 N_Slice);
5357 end Has_Prefix;
5358
5359 -----------------
5360 -- Is_Renaming --
5361 -----------------
5362
5363 function Is_Renaming (N : Node_Id) return Boolean is
5364 begin
5365 return Is_Entity_Name (N)
5366 and then Present (Renamed_Entity (Entity (N)));
5367 end Is_Renaming;
5368
5369 -----------------------
5370 -- Is_Valid_Renaming --
5371 -----------------------
5372
5373 function Is_Valid_Renaming (N : Node_Id) return Boolean is
5374
5375 function Check_Renaming (N : Node_Id) return Boolean;
5376 -- Recursive function used to traverse all the prefixes of N
5377
5378 function Check_Renaming (N : Node_Id) return Boolean is
5379 begin
5380 if Is_Renaming (N)
5381 and then not Check_Renaming (Renamed_Entity (Entity (N)))
5382 then
5383 return False;
5384 end if;
5385
5386 if Nkind (N) = N_Indexed_Component then
5387 declare
5388 Indx : Node_Id;
5389
5390 begin
5391 Indx := First (Expressions (N));
5392 while Present (Indx) loop
5393 if not Is_OK_Static_Expression (Indx) then
5394 return False;
5395 end if;
5396
5397 Next_Index (Indx);
5398 end loop;
5399 end;
5400 end if;
5401
5402 if Has_Prefix (N) then
5403 declare
5404 P : constant Node_Id := Prefix (N);
5405
5406 begin
5407 if Nkind (N) = N_Explicit_Dereference
5408 and then Is_Variable (P)
5409 then
5410 return False;
5411
5412 elsif Is_Entity_Name (P)
5413 and then Ekind (Entity (P)) = E_Function
5414 then
5415 return False;
5416
5417 elsif Nkind (P) = N_Function_Call then
5418 return False;
5419 end if;
5420
5421 -- Recursion to continue traversing the prefix of the
5422 -- renaming expression
5423
5424 return Check_Renaming (P);
5425 end;
5426 end if;
5427
5428 return True;
5429 end Check_Renaming;
5430
5431 -- Start of processing for Is_Valid_Renaming
5432
5433 begin
5434 return Check_Renaming (N);
5435 end Is_Valid_Renaming;
5436
5437 -- Start of processing for Denotes_Same_Object
5438
5439 begin
5440 -- Both names statically denote the same stand-alone object or parameter
5441 -- (RM 6.4.1(6.5/3))
5442
5443 if Is_Entity_Name (Obj1)
5444 and then Is_Entity_Name (Obj2)
5445 and then Entity (Obj1) = Entity (Obj2)
5446 then
5447 return True;
5448 end if;
5449
5450 -- For renamings, the prefix of any dereference within the renamed
5451 -- object_name is not a variable, and any expression within the
5452 -- renamed object_name contains no references to variables nor
5453 -- calls on nonstatic functions (RM 6.4.1(6.10/3)).
5454
5455 if Is_Renaming (Obj1) then
5456 if Is_Valid_Renaming (Obj1) then
5457 Obj1 := Renamed_Entity (Entity (Obj1));
5458 else
5459 return False;
5460 end if;
5461 end if;
5462
5463 if Is_Renaming (Obj2) then
5464 if Is_Valid_Renaming (Obj2) then
5465 Obj2 := Renamed_Entity (Entity (Obj2));
5466 else
5467 return False;
5468 end if;
5469 end if;
5470
5471 -- No match if not same node kind (such cases are handled by
5472 -- Denotes_Same_Prefix)
5473
5474 if Nkind (Obj1) /= Nkind (Obj2) then
5475 return False;
5476
5477 -- After handling valid renamings, one of the two names statically
5478 -- denoted a renaming declaration whose renamed object_name is known
5479 -- to denote the same object as the other (RM 6.4.1(6.10/3))
5480
5481 elsif Is_Entity_Name (Obj1) then
5482 if Is_Entity_Name (Obj2) then
5483 return Entity (Obj1) = Entity (Obj2);
5484 else
5485 return False;
5486 end if;
5487
5488 -- Both names are selected_components, their prefixes are known to
5489 -- denote the same object, and their selector_names denote the same
5490 -- component (RM 6.4.1(6.6/3)).
5491
5492 elsif Nkind (Obj1) = N_Selected_Component then
5493 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
5494 and then
5495 Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
5496
5497 -- Both names are dereferences and the dereferenced names are known to
5498 -- denote the same object (RM 6.4.1(6.7/3))
5499
5500 elsif Nkind (Obj1) = N_Explicit_Dereference then
5501 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
5502
5503 -- Both names are indexed_components, their prefixes are known to denote
5504 -- the same object, and each of the pairs of corresponding index values
5505 -- are either both static expressions with the same static value or both
5506 -- names that are known to denote the same object (RM 6.4.1(6.8/3))
5507
5508 elsif Nkind (Obj1) = N_Indexed_Component then
5509 if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
5510 return False;
5511 else
5512 declare
5513 Indx1 : Node_Id;
5514 Indx2 : Node_Id;
5515
5516 begin
5517 Indx1 := First (Expressions (Obj1));
5518 Indx2 := First (Expressions (Obj2));
5519 while Present (Indx1) loop
5520
5521 -- Indexes must denote the same static value or same object
5522
5523 if Is_OK_Static_Expression (Indx1) then
5524 if not Is_OK_Static_Expression (Indx2) then
5525 return False;
5526
5527 elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
5528 return False;
5529 end if;
5530
5531 elsif not Denotes_Same_Object (Indx1, Indx2) then
5532 return False;
5533 end if;
5534
5535 Next (Indx1);
5536 Next (Indx2);
5537 end loop;
5538
5539 return True;
5540 end;
5541 end if;
5542
5543 -- Both names are slices, their prefixes are known to denote the same
5544 -- object, and the two slices have statically matching index constraints
5545 -- (RM 6.4.1(6.9/3))
5546
5547 elsif Nkind (Obj1) = N_Slice
5548 and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
5549 then
5550 declare
5551 Lo1, Lo2, Hi1, Hi2 : Node_Id;
5552
5553 begin
5554 Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
5555 Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
5556
5557 -- Check whether bounds are statically identical. There is no
5558 -- attempt to detect partial overlap of slices.
5559
5560 return Denotes_Same_Object (Lo1, Lo2)
5561 and then
5562 Denotes_Same_Object (Hi1, Hi2);
5563 end;
5564
5565 -- In the recursion, literals appear as indexes
5566
5567 elsif Nkind (Obj1) = N_Integer_Literal
5568 and then
5569 Nkind (Obj2) = N_Integer_Literal
5570 then
5571 return Intval (Obj1) = Intval (Obj2);
5572
5573 else
5574 return False;
5575 end if;
5576 end Denotes_Same_Object;
5577
5578 -------------------------
5579 -- Denotes_Same_Prefix --
5580 -------------------------
5581
5582 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
5583 begin
5584 if Is_Entity_Name (A1) then
5585 if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
5586 and then not Is_Access_Type (Etype (A1))
5587 then
5588 return Denotes_Same_Object (A1, Prefix (A2))
5589 or else Denotes_Same_Prefix (A1, Prefix (A2));
5590 else
5591 return False;
5592 end if;
5593
5594 elsif Is_Entity_Name (A2) then
5595 return Denotes_Same_Prefix (A1 => A2, A2 => A1);
5596
5597 elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
5598 and then
5599 Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
5600 then
5601 declare
5602 Root1, Root2 : Node_Id;
5603 Depth1, Depth2 : Nat := 0;
5604
5605 begin
5606 Root1 := Prefix (A1);
5607 while not Is_Entity_Name (Root1) loop
5608 if not Nkind_In
5609 (Root1, N_Selected_Component, N_Indexed_Component)
5610 then
5611 return False;
5612 else
5613 Root1 := Prefix (Root1);
5614 end if;
5615
5616 Depth1 := Depth1 + 1;
5617 end loop;
5618
5619 Root2 := Prefix (A2);
5620 while not Is_Entity_Name (Root2) loop
5621 if not Nkind_In (Root2, N_Selected_Component,
5622 N_Indexed_Component)
5623 then
5624 return False;
5625 else
5626 Root2 := Prefix (Root2);
5627 end if;
5628
5629 Depth2 := Depth2 + 1;
5630 end loop;
5631
5632 -- If both have the same depth and they do not denote the same
5633 -- object, they are disjoint and no warning is needed.
5634
5635 if Depth1 = Depth2 then
5636 return False;
5637
5638 elsif Depth1 > Depth2 then
5639 Root1 := Prefix (A1);
5640 for J in 1 .. Depth1 - Depth2 - 1 loop
5641 Root1 := Prefix (Root1);
5642 end loop;
5643
5644 return Denotes_Same_Object (Root1, A2);
5645
5646 else
5647 Root2 := Prefix (A2);
5648 for J in 1 .. Depth2 - Depth1 - 1 loop
5649 Root2 := Prefix (Root2);
5650 end loop;
5651
5652 return Denotes_Same_Object (A1, Root2);
5653 end if;
5654 end;
5655
5656 else
5657 return False;
5658 end if;
5659 end Denotes_Same_Prefix;
5660
5661 ----------------------
5662 -- Denotes_Variable --
5663 ----------------------
5664
5665 function Denotes_Variable (N : Node_Id) return Boolean is
5666 begin
5667 return Is_Variable (N) and then Paren_Count (N) = 0;
5668 end Denotes_Variable;
5669
5670 -----------------------------
5671 -- Depends_On_Discriminant --
5672 -----------------------------
5673
5674 function Depends_On_Discriminant (N : Node_Id) return Boolean is
5675 L : Node_Id;
5676 H : Node_Id;
5677
5678 begin
5679 Get_Index_Bounds (N, L, H);
5680 return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
5681 end Depends_On_Discriminant;
5682
5683 -------------------------
5684 -- Designate_Same_Unit --
5685 -------------------------
5686
5687 function Designate_Same_Unit
5688 (Name1 : Node_Id;
5689 Name2 : Node_Id) return Boolean
5690 is
5691 K1 : constant Node_Kind := Nkind (Name1);
5692 K2 : constant Node_Kind := Nkind (Name2);
5693
5694 function Prefix_Node (N : Node_Id) return Node_Id;
5695 -- Returns the parent unit name node of a defining program unit name
5696 -- or the prefix if N is a selected component or an expanded name.
5697
5698 function Select_Node (N : Node_Id) return Node_Id;
5699 -- Returns the defining identifier node of a defining program unit
5700 -- name or the selector node if N is a selected component or an
5701 -- expanded name.
5702
5703 -----------------
5704 -- Prefix_Node --
5705 -----------------
5706
5707 function Prefix_Node (N : Node_Id) return Node_Id is
5708 begin
5709 if Nkind (N) = N_Defining_Program_Unit_Name then
5710 return Name (N);
5711 else
5712 return Prefix (N);
5713 end if;
5714 end Prefix_Node;
5715
5716 -----------------
5717 -- Select_Node --
5718 -----------------
5719
5720 function Select_Node (N : Node_Id) return Node_Id is
5721 begin
5722 if Nkind (N) = N_Defining_Program_Unit_Name then
5723 return Defining_Identifier (N);
5724 else
5725 return Selector_Name (N);
5726 end if;
5727 end Select_Node;
5728
5729 -- Start of processing for Designate_Same_Unit
5730
5731 begin
5732 if Nkind_In (K1, N_Identifier, N_Defining_Identifier)
5733 and then
5734 Nkind_In (K2, N_Identifier, N_Defining_Identifier)
5735 then
5736 return Chars (Name1) = Chars (Name2);
5737
5738 elsif Nkind_In (K1, N_Expanded_Name,
5739 N_Selected_Component,
5740 N_Defining_Program_Unit_Name)
5741 and then
5742 Nkind_In (K2, N_Expanded_Name,
5743 N_Selected_Component,
5744 N_Defining_Program_Unit_Name)
5745 then
5746 return
5747 (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
5748 and then
5749 Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
5750
5751 else
5752 return False;
5753 end if;
5754 end Designate_Same_Unit;
5755
5756 ------------------------------------------
5757 -- function Dynamic_Accessibility_Level --
5758 ------------------------------------------
5759
5760 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is
5761 E : Entity_Id;
5762 Loc : constant Source_Ptr := Sloc (Expr);
5763
5764 function Make_Level_Literal (Level : Uint) return Node_Id;
5765 -- Construct an integer literal representing an accessibility level
5766 -- with its type set to Natural.
5767
5768 ------------------------
5769 -- Make_Level_Literal --
5770 ------------------------
5771
5772 function Make_Level_Literal (Level : Uint) return Node_Id is
5773 Result : constant Node_Id := Make_Integer_Literal (Loc, Level);
5774 begin
5775 Set_Etype (Result, Standard_Natural);
5776 return Result;
5777 end Make_Level_Literal;
5778
5779 -- Start of processing for Dynamic_Accessibility_Level
5780
5781 begin
5782 if Is_Entity_Name (Expr) then
5783 E := Entity (Expr);
5784
5785 if Present (Renamed_Object (E)) then
5786 return Dynamic_Accessibility_Level (Renamed_Object (E));
5787 end if;
5788
5789 if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then
5790 if Present (Extra_Accessibility (E)) then
5791 return New_Occurrence_Of (Extra_Accessibility (E), Loc);
5792 end if;
5793 end if;
5794 end if;
5795
5796 -- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
5797
5798 case Nkind (Expr) is
5799
5800 -- For access discriminant, the level of the enclosing object
5801
5802 when N_Selected_Component =>
5803 if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
5804 and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
5805 E_Anonymous_Access_Type
5806 then
5807 return Make_Level_Literal (Object_Access_Level (Expr));
5808 end if;
5809
5810 when N_Attribute_Reference =>
5811 case Get_Attribute_Id (Attribute_Name (Expr)) is
5812
5813 -- For X'Access, the level of the prefix X
5814
5815 when Attribute_Access =>
5816 return Make_Level_Literal
5817 (Object_Access_Level (Prefix (Expr)));
5818
5819 -- Treat the unchecked attributes as library-level
5820
5821 when Attribute_Unchecked_Access |
5822 Attribute_Unrestricted_Access =>
5823 return Make_Level_Literal (Scope_Depth (Standard_Standard));
5824
5825 -- No other access-valued attributes
5826
5827 when others =>
5828 raise Program_Error;
5829 end case;
5830
5831 when N_Allocator =>
5832
5833 -- Unimplemented: depends on context. As an actual parameter where
5834 -- formal type is anonymous, use
5835 -- Scope_Depth (Current_Scope) + 1.
5836 -- For other cases, see 3.10.2(14/3) and following. ???
5837
5838 null;
5839
5840 when N_Type_Conversion =>
5841 if not Is_Local_Anonymous_Access (Etype (Expr)) then
5842
5843 -- Handle type conversions introduced for a rename of an
5844 -- Ada 2012 stand-alone object of an anonymous access type.
5845
5846 return Dynamic_Accessibility_Level (Expression (Expr));
5847 end if;
5848
5849 when others =>
5850 null;
5851 end case;
5852
5853 return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
5854 end Dynamic_Accessibility_Level;
5855
5856 -----------------------------------
5857 -- Effective_Extra_Accessibility --
5858 -----------------------------------
5859
5860 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
5861 begin
5862 if Present (Renamed_Object (Id))
5863 and then Is_Entity_Name (Renamed_Object (Id))
5864 then
5865 return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
5866 else
5867 return Extra_Accessibility (Id);
5868 end if;
5869 end Effective_Extra_Accessibility;
5870
5871 -----------------------------
5872 -- Effective_Reads_Enabled --
5873 -----------------------------
5874
5875 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean is
5876 begin
5877 return Has_Enabled_Property (Id, Name_Effective_Reads);
5878 end Effective_Reads_Enabled;
5879
5880 ------------------------------
5881 -- Effective_Writes_Enabled --
5882 ------------------------------
5883
5884 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean is
5885 begin
5886 return Has_Enabled_Property (Id, Name_Effective_Writes);
5887 end Effective_Writes_Enabled;
5888
5889 ------------------------------
5890 -- Enclosing_Comp_Unit_Node --
5891 ------------------------------
5892
5893 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
5894 Current_Node : Node_Id;
5895
5896 begin
5897 Current_Node := N;
5898 while Present (Current_Node)
5899 and then Nkind (Current_Node) /= N_Compilation_Unit
5900 loop
5901 Current_Node := Parent (Current_Node);
5902 end loop;
5903
5904 if Nkind (Current_Node) /= N_Compilation_Unit then
5905 return Empty;
5906 else
5907 return Current_Node;
5908 end if;
5909 end Enclosing_Comp_Unit_Node;
5910
5911 --------------------------
5912 -- Enclosing_CPP_Parent --
5913 --------------------------
5914
5915 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
5916 Parent_Typ : Entity_Id := Typ;
5917
5918 begin
5919 while not Is_CPP_Class (Parent_Typ)
5920 and then Etype (Parent_Typ) /= Parent_Typ
5921 loop
5922 Parent_Typ := Etype (Parent_Typ);
5923
5924 if Is_Private_Type (Parent_Typ) then
5925 Parent_Typ := Full_View (Base_Type (Parent_Typ));
5926 end if;
5927 end loop;
5928
5929 pragma Assert (Is_CPP_Class (Parent_Typ));
5930 return Parent_Typ;
5931 end Enclosing_CPP_Parent;
5932
5933 ---------------------------
5934 -- Enclosing_Declaration --
5935 ---------------------------
5936
5937 function Enclosing_Declaration (N : Node_Id) return Node_Id is
5938 Decl : Node_Id := N;
5939
5940 begin
5941 while Present (Decl)
5942 and then not (Nkind (Decl) in N_Declaration
5943 or else
5944 Nkind (Decl) in N_Later_Decl_Item)
5945 loop
5946 Decl := Parent (Decl);
5947 end loop;
5948
5949 return Decl;
5950 end Enclosing_Declaration;
5951
5952 ----------------------------
5953 -- Enclosing_Generic_Body --
5954 ----------------------------
5955
5956 function Enclosing_Generic_Body
5957 (N : Node_Id) return Node_Id
5958 is
5959 P : Node_Id;
5960 Decl : Node_Id;
5961 Spec : Node_Id;
5962
5963 begin
5964 P := Parent (N);
5965 while Present (P) loop
5966 if Nkind (P) = N_Package_Body
5967 or else Nkind (P) = N_Subprogram_Body
5968 then
5969 Spec := Corresponding_Spec (P);
5970
5971 if Present (Spec) then
5972 Decl := Unit_Declaration_Node (Spec);
5973
5974 if Nkind (Decl) = N_Generic_Package_Declaration
5975 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
5976 then
5977 return P;
5978 end if;
5979 end if;
5980 end if;
5981
5982 P := Parent (P);
5983 end loop;
5984
5985 return Empty;
5986 end Enclosing_Generic_Body;
5987
5988 ----------------------------
5989 -- Enclosing_Generic_Unit --
5990 ----------------------------
5991
5992 function Enclosing_Generic_Unit
5993 (N : Node_Id) return Node_Id
5994 is
5995 P : Node_Id;
5996 Decl : Node_Id;
5997 Spec : Node_Id;
5998
5999 begin
6000 P := Parent (N);
6001 while Present (P) loop
6002 if Nkind (P) = N_Generic_Package_Declaration
6003 or else Nkind (P) = N_Generic_Subprogram_Declaration
6004 then
6005 return P;
6006
6007 elsif Nkind (P) = N_Package_Body
6008 or else Nkind (P) = N_Subprogram_Body
6009 then
6010 Spec := Corresponding_Spec (P);
6011
6012 if Present (Spec) then
6013 Decl := Unit_Declaration_Node (Spec);
6014
6015 if Nkind (Decl) = N_Generic_Package_Declaration
6016 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
6017 then
6018 return Decl;
6019 end if;
6020 end if;
6021 end if;
6022
6023 P := Parent (P);
6024 end loop;
6025
6026 return Empty;
6027 end Enclosing_Generic_Unit;
6028
6029 -------------------------------
6030 -- Enclosing_Lib_Unit_Entity --
6031 -------------------------------
6032
6033 function Enclosing_Lib_Unit_Entity
6034 (E : Entity_Id := Current_Scope) return Entity_Id
6035 is
6036 Unit_Entity : Entity_Id;
6037
6038 begin
6039 -- Look for enclosing library unit entity by following scope links.
6040 -- Equivalent to, but faster than indexing through the scope stack.
6041
6042 Unit_Entity := E;
6043 while (Present (Scope (Unit_Entity))
6044 and then Scope (Unit_Entity) /= Standard_Standard)
6045 and not Is_Child_Unit (Unit_Entity)
6046 loop
6047 Unit_Entity := Scope (Unit_Entity);
6048 end loop;
6049
6050 return Unit_Entity;
6051 end Enclosing_Lib_Unit_Entity;
6052
6053 -----------------------------
6054 -- Enclosing_Lib_Unit_Node --
6055 -----------------------------
6056
6057 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
6058 Encl_Unit : Node_Id;
6059
6060 begin
6061 Encl_Unit := Enclosing_Comp_Unit_Node (N);
6062 while Present (Encl_Unit)
6063 and then Nkind (Unit (Encl_Unit)) = N_Subunit
6064 loop
6065 Encl_Unit := Library_Unit (Encl_Unit);
6066 end loop;
6067
6068 pragma Assert (Nkind (Encl_Unit) = N_Compilation_Unit);
6069 return Encl_Unit;
6070 end Enclosing_Lib_Unit_Node;
6071
6072 -----------------------
6073 -- Enclosing_Package --
6074 -----------------------
6075
6076 function Enclosing_Package (E : Entity_Id) return Entity_Id is
6077 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
6078
6079 begin
6080 if Dynamic_Scope = Standard_Standard then
6081 return Standard_Standard;
6082
6083 elsif Dynamic_Scope = Empty then
6084 return Empty;
6085
6086 elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body,
6087 E_Generic_Package)
6088 then
6089 return Dynamic_Scope;
6090
6091 else
6092 return Enclosing_Package (Dynamic_Scope);
6093 end if;
6094 end Enclosing_Package;
6095
6096 -------------------------------------
6097 -- Enclosing_Package_Or_Subprogram --
6098 -------------------------------------
6099
6100 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id is
6101 S : Entity_Id;
6102
6103 begin
6104 S := Scope (E);
6105 while Present (S) loop
6106 if Is_Package_Or_Generic_Package (S)
6107 or else Ekind (S) = E_Package_Body
6108 then
6109 return S;
6110
6111 elsif Is_Subprogram_Or_Generic_Subprogram (S)
6112 or else Ekind (S) = E_Subprogram_Body
6113 then
6114 return S;
6115
6116 else
6117 S := Scope (S);
6118 end if;
6119 end loop;
6120
6121 return Empty;
6122 end Enclosing_Package_Or_Subprogram;
6123
6124 --------------------------
6125 -- Enclosing_Subprogram --
6126 --------------------------
6127
6128 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
6129 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
6130
6131 begin
6132 if Dynamic_Scope = Standard_Standard then
6133 return Empty;
6134
6135 elsif Dynamic_Scope = Empty then
6136 return Empty;
6137
6138 elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
6139 return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
6140
6141 elsif Ekind (Dynamic_Scope) = E_Block
6142 or else Ekind (Dynamic_Scope) = E_Return_Statement
6143 then
6144 return Enclosing_Subprogram (Dynamic_Scope);
6145
6146 elsif Ekind (Dynamic_Scope) = E_Task_Type then
6147 return Get_Task_Body_Procedure (Dynamic_Scope);
6148
6149 elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
6150 and then Present (Full_View (Dynamic_Scope))
6151 and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
6152 then
6153 return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
6154
6155 -- No body is generated if the protected operation is eliminated
6156
6157 elsif Convention (Dynamic_Scope) = Convention_Protected
6158 and then not Is_Eliminated (Dynamic_Scope)
6159 and then Present (Protected_Body_Subprogram (Dynamic_Scope))
6160 then
6161 return Protected_Body_Subprogram (Dynamic_Scope);
6162
6163 else
6164 return Dynamic_Scope;
6165 end if;
6166 end Enclosing_Subprogram;
6167
6168 ------------------------
6169 -- Ensure_Freeze_Node --
6170 ------------------------
6171
6172 procedure Ensure_Freeze_Node (E : Entity_Id) is
6173 FN : Node_Id;
6174 begin
6175 if No (Freeze_Node (E)) then
6176 FN := Make_Freeze_Entity (Sloc (E));
6177 Set_Has_Delayed_Freeze (E);
6178 Set_Freeze_Node (E, FN);
6179 Set_Access_Types_To_Process (FN, No_Elist);
6180 Set_TSS_Elist (FN, No_Elist);
6181 Set_Entity (FN, E);
6182 end if;
6183 end Ensure_Freeze_Node;
6184
6185 ----------------
6186 -- Enter_Name --
6187 ----------------
6188
6189 procedure Enter_Name (Def_Id : Entity_Id) is
6190 C : constant Entity_Id := Current_Entity (Def_Id);
6191 E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
6192 S : constant Entity_Id := Current_Scope;
6193
6194 begin
6195 Generate_Definition (Def_Id);
6196
6197 -- Add new name to current scope declarations. Check for duplicate
6198 -- declaration, which may or may not be a genuine error.
6199
6200 if Present (E) then
6201
6202 -- Case of previous entity entered because of a missing declaration
6203 -- or else a bad subtype indication. Best is to use the new entity,
6204 -- and make the previous one invisible.
6205
6206 if Etype (E) = Any_Type then
6207 Set_Is_Immediately_Visible (E, False);
6208
6209 -- Case of renaming declaration constructed for package instances.
6210 -- if there is an explicit declaration with the same identifier,
6211 -- the renaming is not immediately visible any longer, but remains
6212 -- visible through selected component notation.
6213
6214 elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
6215 and then not Comes_From_Source (E)
6216 then
6217 Set_Is_Immediately_Visible (E, False);
6218
6219 -- The new entity may be the package renaming, which has the same
6220 -- same name as a generic formal which has been seen already.
6221
6222 elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
6223 and then not Comes_From_Source (Def_Id)
6224 then
6225 Set_Is_Immediately_Visible (E, False);
6226
6227 -- For a fat pointer corresponding to a remote access to subprogram,
6228 -- we use the same identifier as the RAS type, so that the proper
6229 -- name appears in the stub. This type is only retrieved through
6230 -- the RAS type and never by visibility, and is not added to the
6231 -- visibility list (see below).
6232
6233 elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
6234 and then Ekind (Def_Id) = E_Record_Type
6235 and then Present (Corresponding_Remote_Type (Def_Id))
6236 then
6237 null;
6238
6239 -- Case of an implicit operation or derived literal. The new entity
6240 -- hides the implicit one, which is removed from all visibility,
6241 -- i.e. the entity list of its scope, and homonym chain of its name.
6242
6243 elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
6244 or else Is_Internal (E)
6245 then
6246 declare
6247 Decl : constant Node_Id := Parent (E);
6248 Prev : Entity_Id;
6249 Prev_Vis : Entity_Id;
6250
6251 begin
6252 -- If E is an implicit declaration, it cannot be the first
6253 -- entity in the scope.
6254
6255 Prev := First_Entity (Current_Scope);
6256 while Present (Prev) and then Next_Entity (Prev) /= E loop
6257 Next_Entity (Prev);
6258 end loop;
6259
6260 if No (Prev) then
6261
6262 -- If E is not on the entity chain of the current scope,
6263 -- it is an implicit declaration in the generic formal
6264 -- part of a generic subprogram. When analyzing the body,
6265 -- the generic formals are visible but not on the entity
6266 -- chain of the subprogram. The new entity will become
6267 -- the visible one in the body.
6268
6269 pragma Assert
6270 (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
6271 null;
6272
6273 else
6274 Set_Next_Entity (Prev, Next_Entity (E));
6275
6276 if No (Next_Entity (Prev)) then
6277 Set_Last_Entity (Current_Scope, Prev);
6278 end if;
6279
6280 if E = Current_Entity (E) then
6281 Prev_Vis := Empty;
6282
6283 else
6284 Prev_Vis := Current_Entity (E);
6285 while Homonym (Prev_Vis) /= E loop
6286 Prev_Vis := Homonym (Prev_Vis);
6287 end loop;
6288 end if;
6289
6290 if Present (Prev_Vis) then
6291
6292 -- Skip E in the visibility chain
6293
6294 Set_Homonym (Prev_Vis, Homonym (E));
6295
6296 else
6297 Set_Name_Entity_Id (Chars (E), Homonym (E));
6298 end if;
6299 end if;
6300 end;
6301
6302 -- This section of code could use a comment ???
6303
6304 elsif Present (Etype (E))
6305 and then Is_Concurrent_Type (Etype (E))
6306 and then E = Def_Id
6307 then
6308 return;
6309
6310 -- If the homograph is a protected component renaming, it should not
6311 -- be hiding the current entity. Such renamings are treated as weak
6312 -- declarations.
6313
6314 elsif Is_Prival (E) then
6315 Set_Is_Immediately_Visible (E, False);
6316
6317 -- In this case the current entity is a protected component renaming.
6318 -- Perform minimal decoration by setting the scope and return since
6319 -- the prival should not be hiding other visible entities.
6320
6321 elsif Is_Prival (Def_Id) then
6322 Set_Scope (Def_Id, Current_Scope);
6323 return;
6324
6325 -- Analogous to privals, the discriminal generated for an entry index
6326 -- parameter acts as a weak declaration. Perform minimal decoration
6327 -- to avoid bogus errors.
6328
6329 elsif Is_Discriminal (Def_Id)
6330 and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
6331 then
6332 Set_Scope (Def_Id, Current_Scope);
6333 return;
6334
6335 -- In the body or private part of an instance, a type extension may
6336 -- introduce a component with the same name as that of an actual. The
6337 -- legality rule is not enforced, but the semantics of the full type
6338 -- with two components of same name are not clear at this point???
6339
6340 elsif In_Instance_Not_Visible then
6341 null;
6342
6343 -- When compiling a package body, some child units may have become
6344 -- visible. They cannot conflict with local entities that hide them.
6345
6346 elsif Is_Child_Unit (E)
6347 and then In_Open_Scopes (Scope (E))
6348 and then not Is_Immediately_Visible (E)
6349 then
6350 null;
6351
6352 -- Conversely, with front-end inlining we may compile the parent body
6353 -- first, and a child unit subsequently. The context is now the
6354 -- parent spec, and body entities are not visible.
6355
6356 elsif Is_Child_Unit (Def_Id)
6357 and then Is_Package_Body_Entity (E)
6358 and then not In_Package_Body (Current_Scope)
6359 then
6360 null;
6361
6362 -- Case of genuine duplicate declaration
6363
6364 else
6365 Error_Msg_Sloc := Sloc (E);
6366
6367 -- If the previous declaration is an incomplete type declaration
6368 -- this may be an attempt to complete it with a private type. The
6369 -- following avoids confusing cascaded errors.
6370
6371 if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
6372 and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
6373 then
6374 Error_Msg_N
6375 ("incomplete type cannot be completed with a private " &
6376 "declaration", Parent (Def_Id));
6377 Set_Is_Immediately_Visible (E, False);
6378 Set_Full_View (E, Def_Id);
6379
6380 -- An inherited component of a record conflicts with a new
6381 -- discriminant. The discriminant is inserted first in the scope,
6382 -- but the error should be posted on it, not on the component.
6383
6384 elsif Ekind (E) = E_Discriminant
6385 and then Present (Scope (Def_Id))
6386 and then Scope (Def_Id) /= Current_Scope
6387 then
6388 Error_Msg_Sloc := Sloc (Def_Id);
6389 Error_Msg_N ("& conflicts with declaration#", E);
6390 return;
6391
6392 -- If the name of the unit appears in its own context clause, a
6393 -- dummy package with the name has already been created, and the
6394 -- error emitted. Try to continue quietly.
6395
6396 elsif Error_Posted (E)
6397 and then Sloc (E) = No_Location
6398 and then Nkind (Parent (E)) = N_Package_Specification
6399 and then Current_Scope = Standard_Standard
6400 then
6401 Set_Scope (Def_Id, Current_Scope);
6402 return;
6403
6404 else
6405 Error_Msg_N ("& conflicts with declaration#", Def_Id);
6406
6407 -- Avoid cascaded messages with duplicate components in
6408 -- derived types.
6409
6410 if Ekind_In (E, E_Component, E_Discriminant) then
6411 return;
6412 end if;
6413 end if;
6414
6415 if Nkind (Parent (Parent (Def_Id))) =
6416 N_Generic_Subprogram_Declaration
6417 and then Def_Id =
6418 Defining_Entity (Specification (Parent (Parent (Def_Id))))
6419 then
6420 Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
6421 end if;
6422
6423 -- If entity is in standard, then we are in trouble, because it
6424 -- means that we have a library package with a duplicated name.
6425 -- That's hard to recover from, so abort.
6426
6427 if S = Standard_Standard then
6428 raise Unrecoverable_Error;
6429
6430 -- Otherwise we continue with the declaration. Having two
6431 -- identical declarations should not cause us too much trouble.
6432
6433 else
6434 null;
6435 end if;
6436 end if;
6437 end if;
6438
6439 -- If we fall through, declaration is OK, at least OK enough to continue
6440
6441 -- If Def_Id is a discriminant or a record component we are in the midst
6442 -- of inheriting components in a derived record definition. Preserve
6443 -- their Ekind and Etype.
6444
6445 if Ekind_In (Def_Id, E_Discriminant, E_Component) then
6446 null;
6447
6448 -- If a type is already set, leave it alone (happens when a type
6449 -- declaration is reanalyzed following a call to the optimizer).
6450
6451 elsif Present (Etype (Def_Id)) then
6452 null;
6453
6454 -- Otherwise, the kind E_Void insures that premature uses of the entity
6455 -- will be detected. Any_Type insures that no cascaded errors will occur
6456
6457 else
6458 Set_Ekind (Def_Id, E_Void);
6459 Set_Etype (Def_Id, Any_Type);
6460 end if;
6461
6462 -- Inherited discriminants and components in derived record types are
6463 -- immediately visible. Itypes are not.
6464
6465 -- Unless the Itype is for a record type with a corresponding remote
6466 -- type (what is that about, it was not commented ???)
6467
6468 if Ekind_In (Def_Id, E_Discriminant, E_Component)
6469 or else
6470 ((not Is_Record_Type (Def_Id)
6471 or else No (Corresponding_Remote_Type (Def_Id)))
6472 and then not Is_Itype (Def_Id))
6473 then
6474 Set_Is_Immediately_Visible (Def_Id);
6475 Set_Current_Entity (Def_Id);
6476 end if;
6477
6478 Set_Homonym (Def_Id, C);
6479 Append_Entity (Def_Id, S);
6480 Set_Public_Status (Def_Id);
6481
6482 -- Declaring a homonym is not allowed in SPARK ...
6483
6484 if Present (C) and then Restriction_Check_Required (SPARK_05) then
6485 declare
6486 Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id);
6487 Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id);
6488 Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C);
6489
6490 begin
6491 -- ... unless the new declaration is in a subprogram, and the
6492 -- visible declaration is a variable declaration or a parameter
6493 -- specification outside that subprogram.
6494
6495 if Present (Enclosing_Subp)
6496 and then Nkind_In (Parent (C), N_Object_Declaration,
6497 N_Parameter_Specification)
6498 and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp)
6499 then
6500 null;
6501
6502 -- ... or the new declaration is in a package, and the visible
6503 -- declaration occurs outside that package.
6504
6505 elsif Present (Enclosing_Pack)
6506 and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack)
6507 then
6508 null;
6509
6510 -- ... or the new declaration is a component declaration in a
6511 -- record type definition.
6512
6513 elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then
6514 null;
6515
6516 -- Don't issue error for non-source entities
6517
6518 elsif Comes_From_Source (Def_Id)
6519 and then Comes_From_Source (C)
6520 then
6521 Error_Msg_Sloc := Sloc (C);
6522 Check_SPARK_05_Restriction
6523 ("redeclaration of identifier &#", Def_Id);
6524 end if;
6525 end;
6526 end if;
6527
6528 -- Warn if new entity hides an old one
6529
6530 if Warn_On_Hiding and then Present (C)
6531
6532 -- Don't warn for record components since they always have a well
6533 -- defined scope which does not confuse other uses. Note that in
6534 -- some cases, Ekind has not been set yet.
6535
6536 and then Ekind (C) /= E_Component
6537 and then Ekind (C) /= E_Discriminant
6538 and then Nkind (Parent (C)) /= N_Component_Declaration
6539 and then Ekind (Def_Id) /= E_Component
6540 and then Ekind (Def_Id) /= E_Discriminant
6541 and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
6542
6543 -- Don't warn for one character variables. It is too common to use
6544 -- such variables as locals and will just cause too many false hits.
6545
6546 and then Length_Of_Name (Chars (C)) /= 1
6547
6548 -- Don't warn for non-source entities
6549
6550 and then Comes_From_Source (C)
6551 and then Comes_From_Source (Def_Id)
6552
6553 -- Don't warn unless entity in question is in extended main source
6554
6555 and then In_Extended_Main_Source_Unit (Def_Id)
6556
6557 -- Finally, the hidden entity must be either immediately visible or
6558 -- use visible (i.e. from a used package).
6559
6560 and then
6561 (Is_Immediately_Visible (C)
6562 or else
6563 Is_Potentially_Use_Visible (C))
6564 then
6565 Error_Msg_Sloc := Sloc (C);
6566 Error_Msg_N ("declaration hides &#?h?", Def_Id);
6567 end if;
6568 end Enter_Name;
6569
6570 ---------------
6571 -- Entity_Of --
6572 ---------------
6573
6574 function Entity_Of (N : Node_Id) return Entity_Id is
6575 Id : Entity_Id;
6576
6577 begin
6578 Id := Empty;
6579
6580 if Is_Entity_Name (N) then
6581 Id := Entity (N);
6582
6583 -- Follow a possible chain of renamings to reach the root renamed
6584 -- object.
6585
6586 while Present (Id)
6587 and then Is_Object (Id)
6588 and then Present (Renamed_Object (Id))
6589 loop
6590 if Is_Entity_Name (Renamed_Object (Id)) then
6591 Id := Entity (Renamed_Object (Id));
6592 else
6593 Id := Empty;
6594 exit;
6595 end if;
6596 end loop;
6597 end if;
6598
6599 return Id;
6600 end Entity_Of;
6601
6602 --------------------------
6603 -- Explain_Limited_Type --
6604 --------------------------
6605
6606 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
6607 C : Entity_Id;
6608
6609 begin
6610 -- For array, component type must be limited
6611
6612 if Is_Array_Type (T) then
6613 Error_Msg_Node_2 := T;
6614 Error_Msg_NE
6615 ("\component type& of type& is limited", N, Component_Type (T));
6616 Explain_Limited_Type (Component_Type (T), N);
6617
6618 elsif Is_Record_Type (T) then
6619
6620 -- No need for extra messages if explicit limited record
6621
6622 if Is_Limited_Record (Base_Type (T)) then
6623 return;
6624 end if;
6625
6626 -- Otherwise find a limited component. Check only components that
6627 -- come from source, or inherited components that appear in the
6628 -- source of the ancestor.
6629
6630 C := First_Component (T);
6631 while Present (C) loop
6632 if Is_Limited_Type (Etype (C))
6633 and then
6634 (Comes_From_Source (C)
6635 or else
6636 (Present (Original_Record_Component (C))
6637 and then
6638 Comes_From_Source (Original_Record_Component (C))))
6639 then
6640 Error_Msg_Node_2 := T;
6641 Error_Msg_NE ("\component& of type& has limited type", N, C);
6642 Explain_Limited_Type (Etype (C), N);
6643 return;
6644 end if;
6645
6646 Next_Component (C);
6647 end loop;
6648
6649 -- The type may be declared explicitly limited, even if no component
6650 -- of it is limited, in which case we fall out of the loop.
6651 return;
6652 end if;
6653 end Explain_Limited_Type;
6654
6655 -------------------------------
6656 -- Extensions_Visible_Status --
6657 -------------------------------
6658
6659 function Extensions_Visible_Status
6660 (Id : Entity_Id) return Extensions_Visible_Mode
6661 is
6662 Arg : Node_Id;
6663 Decl : Node_Id;
6664 Expr : Node_Id;
6665 Prag : Node_Id;
6666 Subp : Entity_Id;
6667
6668 begin
6669 -- When a formal parameter is subject to Extensions_Visible, the pragma
6670 -- is stored in the contract of related subprogram.
6671
6672 if Is_Formal (Id) then
6673 Subp := Scope (Id);
6674
6675 elsif Is_Subprogram_Or_Generic_Subprogram (Id) then
6676 Subp := Id;
6677
6678 -- No other construct carries this pragma
6679
6680 else
6681 return Extensions_Visible_None;
6682 end if;
6683
6684 Prag := Get_Pragma (Subp, Pragma_Extensions_Visible);
6685
6686 -- In certain cases analysis may request the Extensions_Visible status
6687 -- of an expression function before the pragma has been analyzed yet.
6688 -- Inspect the declarative items after the expression function looking
6689 -- for the pragma (if any).
6690
6691 if No (Prag) and then Is_Expression_Function (Subp) then
6692 Decl := Next (Unit_Declaration_Node (Subp));
6693 while Present (Decl) loop
6694 if Nkind (Decl) = N_Pragma
6695 and then Pragma_Name (Decl) = Name_Extensions_Visible
6696 then
6697 Prag := Decl;
6698 exit;
6699
6700 -- A source construct ends the region where Extensions_Visible may
6701 -- appear, stop the traversal. An expanded expression function is
6702 -- no longer a source construct, but it must still be recognized.
6703
6704 elsif Comes_From_Source (Decl)
6705 or else
6706 (Nkind_In (Decl, N_Subprogram_Body,
6707 N_Subprogram_Declaration)
6708 and then Is_Expression_Function (Defining_Entity (Decl)))
6709 then
6710 exit;
6711 end if;
6712
6713 Next (Decl);
6714 end loop;
6715 end if;
6716
6717 -- Extract the value from the Boolean expression (if any)
6718
6719 if Present (Prag) then
6720 Arg := First (Pragma_Argument_Associations (Prag));
6721
6722 if Present (Arg) then
6723 Expr := Get_Pragma_Arg (Arg);
6724
6725 -- When the associated subprogram is an expression function, the
6726 -- argument of the pragma may not have been analyzed.
6727
6728 if not Analyzed (Expr) then
6729 Preanalyze_And_Resolve (Expr, Standard_Boolean);
6730 end if;
6731
6732 -- Guard against cascading errors when the argument of pragma
6733 -- Extensions_Visible is not a valid static Boolean expression.
6734
6735 if Error_Posted (Expr) then
6736 return Extensions_Visible_None;
6737
6738 elsif Is_True (Expr_Value (Expr)) then
6739 return Extensions_Visible_True;
6740
6741 else
6742 return Extensions_Visible_False;
6743 end if;
6744
6745 -- Otherwise the aspect or pragma defaults to True
6746
6747 else
6748 return Extensions_Visible_True;
6749 end if;
6750
6751 -- Otherwise aspect or pragma Extensions_Visible is not inherited or
6752 -- directly specified. In SPARK code, its value defaults to "False".
6753
6754 elsif SPARK_Mode = On then
6755 return Extensions_Visible_False;
6756
6757 -- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
6758 -- "True".
6759
6760 else
6761 return Extensions_Visible_True;
6762 end if;
6763 end Extensions_Visible_Status;
6764
6765 -----------------
6766 -- Find_Actual --
6767 -----------------
6768
6769 procedure Find_Actual
6770 (N : Node_Id;
6771 Formal : out Entity_Id;
6772 Call : out Node_Id)
6773 is
6774 Context : constant Node_Id := Parent (N);
6775 Actual : Node_Id;
6776 Call_Nam : Node_Id;
6777
6778 begin
6779 if Nkind_In (Context, N_Indexed_Component, N_Selected_Component)
6780 and then N = Prefix (Context)
6781 then
6782 Find_Actual (Context, Formal, Call);
6783 return;
6784
6785 elsif Nkind (Context) = N_Parameter_Association
6786 and then N = Explicit_Actual_Parameter (Context)
6787 then
6788 Call := Parent (Context);
6789
6790 elsif Nkind_In (Context, N_Entry_Call_Statement,
6791 N_Function_Call,
6792 N_Procedure_Call_Statement)
6793 then
6794 Call := Context;
6795
6796 else
6797 Formal := Empty;
6798 Call := Empty;
6799 return;
6800 end if;
6801
6802 -- If we have a call to a subprogram look for the parameter. Note that
6803 -- we exclude overloaded calls, since we don't know enough to be sure
6804 -- of giving the right answer in this case.
6805
6806 if Nkind_In (Call, N_Entry_Call_Statement,
6807 N_Function_Call,
6808 N_Procedure_Call_Statement)
6809 then
6810 Call_Nam := Name (Call);
6811
6812 -- A call to a protected or task entry appears as a selected
6813 -- component rather than an expanded name.
6814
6815 if Nkind (Call_Nam) = N_Selected_Component then
6816 Call_Nam := Selector_Name (Call_Nam);
6817 end if;
6818
6819 if Is_Entity_Name (Call_Nam)
6820 and then Present (Entity (Call_Nam))
6821 and then Is_Overloadable (Entity (Call_Nam))
6822 and then not Is_Overloaded (Call_Nam)
6823 then
6824 -- If node is name in call it is not an actual
6825
6826 if N = Call_Nam then
6827 Formal := Empty;
6828 Call := Empty;
6829 return;
6830 end if;
6831
6832 -- Fall here if we are definitely a parameter
6833
6834 Actual := First_Actual (Call);
6835 Formal := First_Formal (Entity (Call_Nam));
6836 while Present (Formal) and then Present (Actual) loop
6837 if Actual = N then
6838 return;
6839
6840 -- An actual that is the prefix in a prefixed call may have
6841 -- been rewritten in the call, after the deferred reference
6842 -- was collected. Check if sloc and kinds and names match.
6843
6844 elsif Sloc (Actual) = Sloc (N)
6845 and then Nkind (Actual) = N_Identifier
6846 and then Nkind (Actual) = Nkind (N)
6847 and then Chars (Actual) = Chars (N)
6848 then
6849 return;
6850
6851 else
6852 Actual := Next_Actual (Actual);
6853 Formal := Next_Formal (Formal);
6854 end if;
6855 end loop;
6856 end if;
6857 end if;
6858
6859 -- Fall through here if we did not find matching actual
6860
6861 Formal := Empty;
6862 Call := Empty;
6863 end Find_Actual;
6864
6865 ---------------------------
6866 -- Find_Body_Discriminal --
6867 ---------------------------
6868
6869 function Find_Body_Discriminal
6870 (Spec_Discriminant : Entity_Id) return Entity_Id
6871 is
6872 Tsk : Entity_Id;
6873 Disc : Entity_Id;
6874
6875 begin
6876 -- If expansion is suppressed, then the scope can be the concurrent type
6877 -- itself rather than a corresponding concurrent record type.
6878
6879 if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
6880 Tsk := Scope (Spec_Discriminant);
6881
6882 else
6883 pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
6884
6885 Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
6886 end if;
6887
6888 -- Find discriminant of original concurrent type, and use its current
6889 -- discriminal, which is the renaming within the task/protected body.
6890
6891 Disc := First_Discriminant (Tsk);
6892 while Present (Disc) loop
6893 if Chars (Disc) = Chars (Spec_Discriminant) then
6894 return Discriminal (Disc);
6895 end if;
6896
6897 Next_Discriminant (Disc);
6898 end loop;
6899
6900 -- That loop should always succeed in finding a matching entry and
6901 -- returning. Fatal error if not.
6902
6903 raise Program_Error;
6904 end Find_Body_Discriminal;
6905
6906 -------------------------------------
6907 -- Find_Corresponding_Discriminant --
6908 -------------------------------------
6909
6910 function Find_Corresponding_Discriminant
6911 (Id : Node_Id;
6912 Typ : Entity_Id) return Entity_Id
6913 is
6914 Par_Disc : Entity_Id;
6915 Old_Disc : Entity_Id;
6916 New_Disc : Entity_Id;
6917
6918 begin
6919 Par_Disc := Original_Record_Component (Original_Discriminant (Id));
6920
6921 -- The original type may currently be private, and the discriminant
6922 -- only appear on its full view.
6923
6924 if Is_Private_Type (Scope (Par_Disc))
6925 and then not Has_Discriminants (Scope (Par_Disc))
6926 and then Present (Full_View (Scope (Par_Disc)))
6927 then
6928 Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
6929 else
6930 Old_Disc := First_Discriminant (Scope (Par_Disc));
6931 end if;
6932
6933 if Is_Class_Wide_Type (Typ) then
6934 New_Disc := First_Discriminant (Root_Type (Typ));
6935 else
6936 New_Disc := First_Discriminant (Typ);
6937 end if;
6938
6939 while Present (Old_Disc) and then Present (New_Disc) loop
6940 if Old_Disc = Par_Disc then
6941 return New_Disc;
6942 end if;
6943
6944 Next_Discriminant (Old_Disc);
6945 Next_Discriminant (New_Disc);
6946 end loop;
6947
6948 -- Should always find it
6949
6950 raise Program_Error;
6951 end Find_Corresponding_Discriminant;
6952
6953 ----------------------------------
6954 -- Find_Enclosing_Iterator_Loop --
6955 ----------------------------------
6956
6957 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id is
6958 Constr : Node_Id;
6959 S : Entity_Id;
6960
6961 begin
6962 -- Traverse the scope chain looking for an iterator loop. Such loops are
6963 -- usually transformed into blocks, hence the use of Original_Node.
6964
6965 S := Id;
6966 while Present (S) and then S /= Standard_Standard loop
6967 if Ekind (S) = E_Loop
6968 and then Nkind (Parent (S)) = N_Implicit_Label_Declaration
6969 then
6970 Constr := Original_Node (Label_Construct (Parent (S)));
6971
6972 if Nkind (Constr) = N_Loop_Statement
6973 and then Present (Iteration_Scheme (Constr))
6974 and then Nkind (Iterator_Specification
6975 (Iteration_Scheme (Constr))) =
6976 N_Iterator_Specification
6977 then
6978 return S;
6979 end if;
6980 end if;
6981
6982 S := Scope (S);
6983 end loop;
6984
6985 return Empty;
6986 end Find_Enclosing_Iterator_Loop;
6987
6988 ------------------------------------
6989 -- Find_Loop_In_Conditional_Block --
6990 ------------------------------------
6991
6992 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id is
6993 Stmt : Node_Id;
6994
6995 begin
6996 Stmt := N;
6997
6998 if Nkind (Stmt) = N_If_Statement then
6999 Stmt := First (Then_Statements (Stmt));
7000 end if;
7001
7002 pragma Assert (Nkind (Stmt) = N_Block_Statement);
7003
7004 -- Inspect the statements of the conditional block. In general the loop
7005 -- should be the first statement in the statement sequence of the block,
7006 -- but the finalization machinery may have introduced extra object
7007 -- declarations.
7008
7009 Stmt := First (Statements (Handled_Statement_Sequence (Stmt)));
7010 while Present (Stmt) loop
7011 if Nkind (Stmt) = N_Loop_Statement then
7012 return Stmt;
7013 end if;
7014
7015 Next (Stmt);
7016 end loop;
7017
7018 -- The expansion of attribute 'Loop_Entry produced a malformed block
7019
7020 raise Program_Error;
7021 end Find_Loop_In_Conditional_Block;
7022
7023 --------------------------
7024 -- Find_Overlaid_Entity --
7025 --------------------------
7026
7027 procedure Find_Overlaid_Entity
7028 (N : Node_Id;
7029 Ent : out Entity_Id;
7030 Off : out Boolean)
7031 is
7032 Expr : Node_Id;
7033
7034 begin
7035 -- We are looking for one of the two following forms:
7036
7037 -- for X'Address use Y'Address
7038
7039 -- or
7040
7041 -- Const : constant Address := expr;
7042 -- ...
7043 -- for X'Address use Const;
7044
7045 -- In the second case, the expr is either Y'Address, or recursively a
7046 -- constant that eventually references Y'Address.
7047
7048 Ent := Empty;
7049 Off := False;
7050
7051 if Nkind (N) = N_Attribute_Definition_Clause
7052 and then Chars (N) = Name_Address
7053 then
7054 Expr := Expression (N);
7055
7056 -- This loop checks the form of the expression for Y'Address,
7057 -- using recursion to deal with intermediate constants.
7058
7059 loop
7060 -- Check for Y'Address
7061
7062 if Nkind (Expr) = N_Attribute_Reference
7063 and then Attribute_Name (Expr) = Name_Address
7064 then
7065 Expr := Prefix (Expr);
7066 exit;
7067
7068 -- Check for Const where Const is a constant entity
7069
7070 elsif Is_Entity_Name (Expr)
7071 and then Ekind (Entity (Expr)) = E_Constant
7072 then
7073 Expr := Constant_Value (Entity (Expr));
7074
7075 -- Anything else does not need checking
7076
7077 else
7078 return;
7079 end if;
7080 end loop;
7081
7082 -- This loop checks the form of the prefix for an entity, using
7083 -- recursion to deal with intermediate components.
7084
7085 loop
7086 -- Check for Y where Y is an entity
7087
7088 if Is_Entity_Name (Expr) then
7089 Ent := Entity (Expr);
7090 return;
7091
7092 -- Check for components
7093
7094 elsif
7095 Nkind_In (Expr, N_Selected_Component, N_Indexed_Component)
7096 then
7097 Expr := Prefix (Expr);
7098 Off := True;
7099
7100 -- Anything else does not need checking
7101
7102 else
7103 return;
7104 end if;
7105 end loop;
7106 end if;
7107 end Find_Overlaid_Entity;
7108
7109 -------------------------
7110 -- Find_Parameter_Type --
7111 -------------------------
7112
7113 function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
7114 begin
7115 if Nkind (Param) /= N_Parameter_Specification then
7116 return Empty;
7117
7118 -- For an access parameter, obtain the type from the formal entity
7119 -- itself, because access to subprogram nodes do not carry a type.
7120 -- Shouldn't we always use the formal entity ???
7121
7122 elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
7123 return Etype (Defining_Identifier (Param));
7124
7125 else
7126 return Etype (Parameter_Type (Param));
7127 end if;
7128 end Find_Parameter_Type;
7129
7130 -----------------------------------
7131 -- Find_Placement_In_State_Space --
7132 -----------------------------------
7133
7134 procedure Find_Placement_In_State_Space
7135 (Item_Id : Entity_Id;
7136 Placement : out State_Space_Kind;
7137 Pack_Id : out Entity_Id)
7138 is
7139 Context : Entity_Id;
7140
7141 begin
7142 -- Assume that the item does not appear in the state space of a package
7143
7144 Placement := Not_In_Package;
7145 Pack_Id := Empty;
7146
7147 -- Climb the scope stack and examine the enclosing context
7148
7149 Context := Scope (Item_Id);
7150 while Present (Context) and then Context /= Standard_Standard loop
7151 if Ekind (Context) = E_Package then
7152 Pack_Id := Context;
7153
7154 -- A package body is a cut off point for the traversal as the item
7155 -- cannot be visible to the outside from this point on. Note that
7156 -- this test must be done first as a body is also classified as a
7157 -- private part.
7158
7159 if In_Package_Body (Context) then
7160 Placement := Body_State_Space;
7161 return;
7162
7163 -- The private part of a package is a cut off point for the
7164 -- traversal as the item cannot be visible to the outside from
7165 -- this point on.
7166
7167 elsif In_Private_Part (Context) then
7168 Placement := Private_State_Space;
7169 return;
7170
7171 -- When the item appears in the visible state space of a package,
7172 -- continue to climb the scope stack as this may not be the final
7173 -- state space.
7174
7175 else
7176 Placement := Visible_State_Space;
7177
7178 -- The visible state space of a child unit acts as the proper
7179 -- placement of an item.
7180
7181 if Is_Child_Unit (Context) then
7182 return;
7183 end if;
7184 end if;
7185
7186 -- The item or its enclosing package appear in a construct that has
7187 -- no state space.
7188
7189 else
7190 Placement := Not_In_Package;
7191 return;
7192 end if;
7193
7194 Context := Scope (Context);
7195 end loop;
7196 end Find_Placement_In_State_Space;
7197
7198 ------------------------
7199 -- Find_Specific_Type --
7200 ------------------------
7201
7202 function Find_Specific_Type (CW : Entity_Id) return Entity_Id is
7203 Typ : Entity_Id := Root_Type (CW);
7204
7205 begin
7206 if Ekind (Typ) = E_Incomplete_Type then
7207 if From_Limited_With (Typ) then
7208 Typ := Non_Limited_View (Typ);
7209 else
7210 Typ := Full_View (Typ);
7211 end if;
7212 end if;
7213
7214 if Is_Private_Type (Typ)
7215 and then not Is_Tagged_Type (Typ)
7216 and then Present (Full_View (Typ))
7217 then
7218 return Full_View (Typ);
7219 else
7220 return Typ;
7221 end if;
7222 end Find_Specific_Type;
7223
7224 -----------------------------
7225 -- Find_Static_Alternative --
7226 -----------------------------
7227
7228 function Find_Static_Alternative (N : Node_Id) return Node_Id is
7229 Expr : constant Node_Id := Expression (N);
7230 Val : constant Uint := Expr_Value (Expr);
7231 Alt : Node_Id;
7232 Choice : Node_Id;
7233
7234 begin
7235 Alt := First (Alternatives (N));
7236
7237 Search : loop
7238 if Nkind (Alt) /= N_Pragma then
7239 Choice := First (Discrete_Choices (Alt));
7240 while Present (Choice) loop
7241
7242 -- Others choice, always matches
7243
7244 if Nkind (Choice) = N_Others_Choice then
7245 exit Search;
7246
7247 -- Range, check if value is in the range
7248
7249 elsif Nkind (Choice) = N_Range then
7250 exit Search when
7251 Val >= Expr_Value (Low_Bound (Choice))
7252 and then
7253 Val <= Expr_Value (High_Bound (Choice));
7254
7255 -- Choice is a subtype name. Note that we know it must
7256 -- be a static subtype, since otherwise it would have
7257 -- been diagnosed as illegal.
7258
7259 elsif Is_Entity_Name (Choice)
7260 and then Is_Type (Entity (Choice))
7261 then
7262 exit Search when Is_In_Range (Expr, Etype (Choice),
7263 Assume_Valid => False);
7264
7265 -- Choice is a subtype indication
7266
7267 elsif Nkind (Choice) = N_Subtype_Indication then
7268 declare
7269 C : constant Node_Id := Constraint (Choice);
7270 R : constant Node_Id := Range_Expression (C);
7271
7272 begin
7273 exit Search when
7274 Val >= Expr_Value (Low_Bound (R))
7275 and then
7276 Val <= Expr_Value (High_Bound (R));
7277 end;
7278
7279 -- Choice is a simple expression
7280
7281 else
7282 exit Search when Val = Expr_Value (Choice);
7283 end if;
7284
7285 Next (Choice);
7286 end loop;
7287 end if;
7288
7289 Next (Alt);
7290 pragma Assert (Present (Alt));
7291 end loop Search;
7292
7293 -- The above loop *must* terminate by finding a match, since
7294 -- we know the case statement is valid, and the value of the
7295 -- expression is known at compile time. When we fall out of
7296 -- the loop, Alt points to the alternative that we know will
7297 -- be selected at run time.
7298
7299 return Alt;
7300 end Find_Static_Alternative;
7301
7302 ------------------
7303 -- First_Actual --
7304 ------------------
7305
7306 function First_Actual (Node : Node_Id) return Node_Id is
7307 N : Node_Id;
7308
7309 begin
7310 if No (Parameter_Associations (Node)) then
7311 return Empty;
7312 end if;
7313
7314 N := First (Parameter_Associations (Node));
7315
7316 if Nkind (N) = N_Parameter_Association then
7317 return First_Named_Actual (Node);
7318 else
7319 return N;
7320 end if;
7321 end First_Actual;
7322
7323 -------------
7324 -- Fix_Msg --
7325 -------------
7326
7327 function Fix_Msg (Id : Entity_Id; Msg : String) return String is
7328 Is_Task : constant Boolean :=
7329 Ekind_In (Id, E_Task_Body, E_Task_Type)
7330 or else Is_Single_Task_Object (Id);
7331 Msg_Last : constant Natural := Msg'Last;
7332 Msg_Index : Natural;
7333 Res : String (Msg'Range) := (others => ' ');
7334 Res_Index : Natural;
7335
7336 begin
7337 -- Copy all characters from the input message Msg to result Res with
7338 -- suitable replacements.
7339
7340 Msg_Index := Msg'First;
7341 Res_Index := Res'First;
7342 while Msg_Index <= Msg_Last loop
7343
7344 -- Replace "subprogram" with a different word
7345
7346 if Msg_Index <= Msg_Last - 10
7347 and then Msg (Msg_Index .. Msg_Index + 9) = "subprogram"
7348 then
7349 if Ekind_In (Id, E_Entry, E_Entry_Family) then
7350 Res (Res_Index .. Res_Index + 4) := "entry";
7351 Res_Index := Res_Index + 5;
7352
7353 elsif Is_Task then
7354 Res (Res_Index .. Res_Index + 8) := "task type";
7355 Res_Index := Res_Index + 9;
7356
7357 else
7358 Res (Res_Index .. Res_Index + 9) := "subprogram";
7359 Res_Index := Res_Index + 10;
7360 end if;
7361
7362 Msg_Index := Msg_Index + 10;
7363
7364 -- Replace "protected" with a different word
7365
7366 elsif Msg_Index <= Msg_Last - 9
7367 and then Msg (Msg_Index .. Msg_Index + 8) = "protected"
7368 and then Is_Task
7369 then
7370 Res (Res_Index .. Res_Index + 3) := "task";
7371 Res_Index := Res_Index + 4;
7372 Msg_Index := Msg_Index + 9;
7373
7374 -- Otherwise copy the character
7375
7376 else
7377 Res (Res_Index) := Msg (Msg_Index);
7378 Msg_Index := Msg_Index + 1;
7379 Res_Index := Res_Index + 1;
7380 end if;
7381 end loop;
7382
7383 return Res (Res'First .. Res_Index - 1);
7384 end Fix_Msg;
7385
7386 -----------------------
7387 -- Gather_Components --
7388 -----------------------
7389
7390 procedure Gather_Components
7391 (Typ : Entity_Id;
7392 Comp_List : Node_Id;
7393 Governed_By : List_Id;
7394 Into : Elist_Id;
7395 Report_Errors : out Boolean)
7396 is
7397 Assoc : Node_Id;
7398 Variant : Node_Id;
7399 Discrete_Choice : Node_Id;
7400 Comp_Item : Node_Id;
7401
7402 Discrim : Entity_Id;
7403 Discrim_Name : Node_Id;
7404 Discrim_Value : Node_Id;
7405
7406 begin
7407 Report_Errors := False;
7408
7409 if No (Comp_List) or else Null_Present (Comp_List) then
7410 return;
7411
7412 elsif Present (Component_Items (Comp_List)) then
7413 Comp_Item := First (Component_Items (Comp_List));
7414
7415 else
7416 Comp_Item := Empty;
7417 end if;
7418
7419 while Present (Comp_Item) loop
7420
7421 -- Skip the tag of a tagged record, the interface tags, as well
7422 -- as all items that are not user components (anonymous types,
7423 -- rep clauses, Parent field, controller field).
7424
7425 if Nkind (Comp_Item) = N_Component_Declaration then
7426 declare
7427 Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
7428 begin
7429 if not Is_Tag (Comp) and then Chars (Comp) /= Name_uParent then
7430 Append_Elmt (Comp, Into);
7431 end if;
7432 end;
7433 end if;
7434
7435 Next (Comp_Item);
7436 end loop;
7437
7438 if No (Variant_Part (Comp_List)) then
7439 return;
7440 else
7441 Discrim_Name := Name (Variant_Part (Comp_List));
7442 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
7443 end if;
7444
7445 -- Look for the discriminant that governs this variant part.
7446 -- The discriminant *must* be in the Governed_By List
7447
7448 Assoc := First (Governed_By);
7449 Find_Constraint : loop
7450 Discrim := First (Choices (Assoc));
7451 exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
7452 or else (Present (Corresponding_Discriminant (Entity (Discrim)))
7453 and then
7454 Chars (Corresponding_Discriminant (Entity (Discrim))) =
7455 Chars (Discrim_Name))
7456 or else Chars (Original_Record_Component (Entity (Discrim)))
7457 = Chars (Discrim_Name);
7458
7459 if No (Next (Assoc)) then
7460 if not Is_Constrained (Typ)
7461 and then Is_Derived_Type (Typ)
7462 and then Present (Stored_Constraint (Typ))
7463 then
7464 -- If the type is a tagged type with inherited discriminants,
7465 -- use the stored constraint on the parent in order to find
7466 -- the values of discriminants that are otherwise hidden by an
7467 -- explicit constraint. Renamed discriminants are handled in
7468 -- the code above.
7469
7470 -- If several parent discriminants are renamed by a single
7471 -- discriminant of the derived type, the call to obtain the
7472 -- Corresponding_Discriminant field only retrieves the last
7473 -- of them. We recover the constraint on the others from the
7474 -- Stored_Constraint as well.
7475
7476 declare
7477 D : Entity_Id;
7478 C : Elmt_Id;
7479
7480 begin
7481 D := First_Discriminant (Etype (Typ));
7482 C := First_Elmt (Stored_Constraint (Typ));
7483 while Present (D) and then Present (C) loop
7484 if Chars (Discrim_Name) = Chars (D) then
7485 if Is_Entity_Name (Node (C))
7486 and then Entity (Node (C)) = Entity (Discrim)
7487 then
7488 -- D is renamed by Discrim, whose value is given in
7489 -- Assoc.
7490
7491 null;
7492
7493 else
7494 Assoc :=
7495 Make_Component_Association (Sloc (Typ),
7496 New_List
7497 (New_Occurrence_Of (D, Sloc (Typ))),
7498 Duplicate_Subexpr_No_Checks (Node (C)));
7499 end if;
7500 exit Find_Constraint;
7501 end if;
7502
7503 Next_Discriminant (D);
7504 Next_Elmt (C);
7505 end loop;
7506 end;
7507 end if;
7508 end if;
7509
7510 if No (Next (Assoc)) then
7511 Error_Msg_NE (" missing value for discriminant&",
7512 First (Governed_By), Discrim_Name);
7513 Report_Errors := True;
7514 return;
7515 end if;
7516
7517 Next (Assoc);
7518 end loop Find_Constraint;
7519
7520 Discrim_Value := Expression (Assoc);
7521
7522 if not Is_OK_Static_Expression (Discrim_Value) then
7523
7524 -- If the variant part is governed by a discriminant of the type
7525 -- this is an error. If the variant part and the discriminant are
7526 -- inherited from an ancestor this is legal (AI05-120) unless the
7527 -- components are being gathered for an aggregate, in which case
7528 -- the caller must check Report_Errors.
7529
7530 if Scope (Original_Record_Component
7531 ((Entity (First (Choices (Assoc)))))) = Typ
7532 then
7533 Error_Msg_FE
7534 ("value for discriminant & must be static!",
7535 Discrim_Value, Discrim);
7536 Why_Not_Static (Discrim_Value);
7537 end if;
7538
7539 Report_Errors := True;
7540 return;
7541 end if;
7542
7543 Search_For_Discriminant_Value : declare
7544 Low : Node_Id;
7545 High : Node_Id;
7546
7547 UI_High : Uint;
7548 UI_Low : Uint;
7549 UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
7550
7551 begin
7552 Find_Discrete_Value : while Present (Variant) loop
7553 Discrete_Choice := First (Discrete_Choices (Variant));
7554 while Present (Discrete_Choice) loop
7555 exit Find_Discrete_Value when
7556 Nkind (Discrete_Choice) = N_Others_Choice;
7557
7558 Get_Index_Bounds (Discrete_Choice, Low, High);
7559
7560 UI_Low := Expr_Value (Low);
7561 UI_High := Expr_Value (High);
7562
7563 exit Find_Discrete_Value when
7564 UI_Low <= UI_Discrim_Value
7565 and then
7566 UI_High >= UI_Discrim_Value;
7567
7568 Next (Discrete_Choice);
7569 end loop;
7570
7571 Next_Non_Pragma (Variant);
7572 end loop Find_Discrete_Value;
7573 end Search_For_Discriminant_Value;
7574
7575 -- The case statement must include a variant that corresponds to the
7576 -- value of the discriminant, unless the discriminant type has a
7577 -- static predicate. In that case the absence of an others_choice that
7578 -- would cover this value becomes a run-time error (3.8,1 (21.1/2)).
7579
7580 if No (Variant)
7581 and then not Has_Static_Predicate (Etype (Discrim_Name))
7582 then
7583 Error_Msg_NE
7584 ("value of discriminant & is out of range", Discrim_Value, Discrim);
7585 Report_Errors := True;
7586 return;
7587 end if;
7588
7589 -- If we have found the corresponding choice, recursively add its
7590 -- components to the Into list. The nested components are part of
7591 -- the same record type.
7592
7593 if Present (Variant) then
7594 Gather_Components
7595 (Typ, Component_List (Variant), Governed_By, Into, Report_Errors);
7596 end if;
7597 end Gather_Components;
7598
7599 ------------------------
7600 -- Get_Actual_Subtype --
7601 ------------------------
7602
7603 function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
7604 Typ : constant Entity_Id := Etype (N);
7605 Utyp : Entity_Id := Underlying_Type (Typ);
7606 Decl : Node_Id;
7607 Atyp : Entity_Id;
7608
7609 begin
7610 if No (Utyp) then
7611 Utyp := Typ;
7612 end if;
7613
7614 -- If what we have is an identifier that references a subprogram
7615 -- formal, or a variable or constant object, then we get the actual
7616 -- subtype from the referenced entity if one has been built.
7617
7618 if Nkind (N) = N_Identifier
7619 and then
7620 (Is_Formal (Entity (N))
7621 or else Ekind (Entity (N)) = E_Constant
7622 or else Ekind (Entity (N)) = E_Variable)
7623 and then Present (Actual_Subtype (Entity (N)))
7624 then
7625 return Actual_Subtype (Entity (N));
7626
7627 -- Actual subtype of unchecked union is always itself. We never need
7628 -- the "real" actual subtype. If we did, we couldn't get it anyway
7629 -- because the discriminant is not available. The restrictions on
7630 -- Unchecked_Union are designed to make sure that this is OK.
7631
7632 elsif Is_Unchecked_Union (Base_Type (Utyp)) then
7633 return Typ;
7634
7635 -- Here for the unconstrained case, we must find actual subtype
7636 -- No actual subtype is available, so we must build it on the fly.
7637
7638 -- Checking the type, not the underlying type, for constrainedness
7639 -- seems to be necessary. Maybe all the tests should be on the type???
7640
7641 elsif (not Is_Constrained (Typ))
7642 and then (Is_Array_Type (Utyp)
7643 or else (Is_Record_Type (Utyp)
7644 and then Has_Discriminants (Utyp)))
7645 and then not Has_Unknown_Discriminants (Utyp)
7646 and then not (Ekind (Utyp) = E_String_Literal_Subtype)
7647 then
7648 -- Nothing to do if in spec expression (why not???)
7649
7650 if In_Spec_Expression then
7651 return Typ;
7652
7653 elsif Is_Private_Type (Typ) and then not Has_Discriminants (Typ) then
7654
7655 -- If the type has no discriminants, there is no subtype to
7656 -- build, even if the underlying type is discriminated.
7657
7658 return Typ;
7659
7660 -- Else build the actual subtype
7661
7662 else
7663 Decl := Build_Actual_Subtype (Typ, N);
7664 Atyp := Defining_Identifier (Decl);
7665
7666 -- If Build_Actual_Subtype generated a new declaration then use it
7667
7668 if Atyp /= Typ then
7669
7670 -- The actual subtype is an Itype, so analyze the declaration,
7671 -- but do not attach it to the tree, to get the type defined.
7672
7673 Set_Parent (Decl, N);
7674 Set_Is_Itype (Atyp);
7675 Analyze (Decl, Suppress => All_Checks);
7676 Set_Associated_Node_For_Itype (Atyp, N);
7677 Set_Has_Delayed_Freeze (Atyp, False);
7678
7679 -- We need to freeze the actual subtype immediately. This is
7680 -- needed, because otherwise this Itype will not get frozen
7681 -- at all, and it is always safe to freeze on creation because
7682 -- any associated types must be frozen at this point.
7683
7684 Freeze_Itype (Atyp, N);
7685 return Atyp;
7686
7687 -- Otherwise we did not build a declaration, so return original
7688
7689 else
7690 return Typ;
7691 end if;
7692 end if;
7693
7694 -- For all remaining cases, the actual subtype is the same as
7695 -- the nominal type.
7696
7697 else
7698 return Typ;
7699 end if;
7700 end Get_Actual_Subtype;
7701
7702 -------------------------------------
7703 -- Get_Actual_Subtype_If_Available --
7704 -------------------------------------
7705
7706 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
7707 Typ : constant Entity_Id := Etype (N);
7708
7709 begin
7710 -- If what we have is an identifier that references a subprogram
7711 -- formal, or a variable or constant object, then we get the actual
7712 -- subtype from the referenced entity if one has been built.
7713
7714 if Nkind (N) = N_Identifier
7715 and then
7716 (Is_Formal (Entity (N))
7717 or else Ekind (Entity (N)) = E_Constant
7718 or else Ekind (Entity (N)) = E_Variable)
7719 and then Present (Actual_Subtype (Entity (N)))
7720 then
7721 return Actual_Subtype (Entity (N));
7722
7723 -- Otherwise the Etype of N is returned unchanged
7724
7725 else
7726 return Typ;
7727 end if;
7728 end Get_Actual_Subtype_If_Available;
7729
7730 ------------------------
7731 -- Get_Body_From_Stub --
7732 ------------------------
7733
7734 function Get_Body_From_Stub (N : Node_Id) return Node_Id is
7735 begin
7736 return Proper_Body (Unit (Library_Unit (N)));
7737 end Get_Body_From_Stub;
7738
7739 ---------------------
7740 -- Get_Cursor_Type --
7741 ---------------------
7742
7743 function Get_Cursor_Type
7744 (Aspect : Node_Id;
7745 Typ : Entity_Id) return Entity_Id
7746 is
7747 Assoc : Node_Id;
7748 Func : Entity_Id;
7749 First_Op : Entity_Id;
7750 Cursor : Entity_Id;
7751
7752 begin
7753 -- If error already detected, return
7754
7755 if Error_Posted (Aspect) then
7756 return Any_Type;
7757 end if;
7758
7759 -- The cursor type for an Iterable aspect is the return type of a
7760 -- non-overloaded First primitive operation. Locate association for
7761 -- First.
7762
7763 Assoc := First (Component_Associations (Expression (Aspect)));
7764 First_Op := Any_Id;
7765 while Present (Assoc) loop
7766 if Chars (First (Choices (Assoc))) = Name_First then
7767 First_Op := Expression (Assoc);
7768 exit;
7769 end if;
7770
7771 Next (Assoc);
7772 end loop;
7773
7774 if First_Op = Any_Id then
7775 Error_Msg_N ("aspect Iterable must specify First operation", Aspect);
7776 return Any_Type;
7777 end if;
7778
7779 Cursor := Any_Type;
7780
7781 -- Locate function with desired name and profile in scope of type
7782 -- In the rare case where the type is an integer type, a base type
7783 -- is created for it, check that the base type of the first formal
7784 -- of First matches the base type of the domain.
7785
7786 Func := First_Entity (Scope (Typ));
7787 while Present (Func) loop
7788 if Chars (Func) = Chars (First_Op)
7789 and then Ekind (Func) = E_Function
7790 and then Present (First_Formal (Func))
7791 and then Base_Type (Etype (First_Formal (Func))) = Base_Type (Typ)
7792 and then No (Next_Formal (First_Formal (Func)))
7793 then
7794 if Cursor /= Any_Type then
7795 Error_Msg_N
7796 ("Operation First for iterable type must be unique", Aspect);
7797 return Any_Type;
7798 else
7799 Cursor := Etype (Func);
7800 end if;
7801 end if;
7802
7803 Next_Entity (Func);
7804 end loop;
7805
7806 -- If not found, no way to resolve remaining primitives.
7807
7808 if Cursor = Any_Type then
7809 Error_Msg_N
7810 ("No legal primitive operation First for Iterable type", Aspect);
7811 end if;
7812
7813 return Cursor;
7814 end Get_Cursor_Type;
7815
7816 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
7817 begin
7818 return Etype (Get_Iterable_Type_Primitive (Typ, Name_First));
7819 end Get_Cursor_Type;
7820
7821 -------------------------------
7822 -- Get_Default_External_Name --
7823 -------------------------------
7824
7825 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
7826 begin
7827 Get_Decoded_Name_String (Chars (E));
7828
7829 if Opt.External_Name_Imp_Casing = Uppercase then
7830 Set_Casing (All_Upper_Case);
7831 else
7832 Set_Casing (All_Lower_Case);
7833 end if;
7834
7835 return
7836 Make_String_Literal (Sloc (E),
7837 Strval => String_From_Name_Buffer);
7838 end Get_Default_External_Name;
7839
7840 --------------------------
7841 -- Get_Enclosing_Object --
7842 --------------------------
7843
7844 function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
7845 begin
7846 if Is_Entity_Name (N) then
7847 return Entity (N);
7848 else
7849 case Nkind (N) is
7850 when N_Indexed_Component |
7851 N_Slice |
7852 N_Selected_Component =>
7853
7854 -- If not generating code, a dereference may be left implicit.
7855 -- In thoses cases, return Empty.
7856
7857 if Is_Access_Type (Etype (Prefix (N))) then
7858 return Empty;
7859 else
7860 return Get_Enclosing_Object (Prefix (N));
7861 end if;
7862
7863 when N_Type_Conversion =>
7864 return Get_Enclosing_Object (Expression (N));
7865
7866 when others =>
7867 return Empty;
7868 end case;
7869 end if;
7870 end Get_Enclosing_Object;
7871
7872 ---------------------------
7873 -- Get_Enum_Lit_From_Pos --
7874 ---------------------------
7875
7876 function Get_Enum_Lit_From_Pos
7877 (T : Entity_Id;
7878 Pos : Uint;
7879 Loc : Source_Ptr) return Node_Id
7880 is
7881 Btyp : Entity_Id := Base_Type (T);
7882 Lit : Node_Id;
7883 LLoc : Source_Ptr;
7884
7885 begin
7886 -- In the case where the literal is of type Character, Wide_Character
7887 -- or Wide_Wide_Character or of a type derived from them, there needs
7888 -- to be some special handling since there is no explicit chain of
7889 -- literals to search. Instead, an N_Character_Literal node is created
7890 -- with the appropriate Char_Code and Chars fields.
7891
7892 if Is_Standard_Character_Type (T) then
7893 Set_Character_Literal_Name (UI_To_CC (Pos));
7894
7895 return
7896 Make_Character_Literal (Loc,
7897 Chars => Name_Find,
7898 Char_Literal_Value => Pos);
7899
7900 -- For all other cases, we have a complete table of literals, and
7901 -- we simply iterate through the chain of literal until the one
7902 -- with the desired position value is found.
7903
7904 else
7905 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
7906 Btyp := Full_View (Btyp);
7907 end if;
7908
7909 Lit := First_Literal (Btyp);
7910 for J in 1 .. UI_To_Int (Pos) loop
7911 Next_Literal (Lit);
7912
7913 -- If Lit is Empty, Pos is not in range, so raise Constraint_Error
7914 -- inside the loop to avoid calling Next_Literal on Empty.
7915
7916 if No (Lit) then
7917 raise Constraint_Error;
7918 end if;
7919 end loop;
7920
7921 -- Create a new node from Lit, with source location provided by Loc
7922 -- if not equal to No_Location, or by copying the source location of
7923 -- Lit otherwise.
7924
7925 LLoc := Loc;
7926
7927 if LLoc = No_Location then
7928 LLoc := Sloc (Lit);
7929 end if;
7930
7931 return New_Occurrence_Of (Lit, LLoc);
7932 end if;
7933 end Get_Enum_Lit_From_Pos;
7934
7935 ------------------------
7936 -- Get_Generic_Entity --
7937 ------------------------
7938
7939 function Get_Generic_Entity (N : Node_Id) return Entity_Id is
7940 Ent : constant Entity_Id := Entity (Name (N));
7941 begin
7942 if Present (Renamed_Object (Ent)) then
7943 return Renamed_Object (Ent);
7944 else
7945 return Ent;
7946 end if;
7947 end Get_Generic_Entity;
7948
7949 -------------------------------------
7950 -- Get_Incomplete_View_Of_Ancestor --
7951 -------------------------------------
7952
7953 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id is
7954 Cur_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
7955 Par_Scope : Entity_Id;
7956 Par_Type : Entity_Id;
7957
7958 begin
7959 -- The incomplete view of an ancestor is only relevant for private
7960 -- derived types in child units.
7961
7962 if not Is_Derived_Type (E)
7963 or else not Is_Child_Unit (Cur_Unit)
7964 then
7965 return Empty;
7966
7967 else
7968 Par_Scope := Scope (Cur_Unit);
7969 if No (Par_Scope) then
7970 return Empty;
7971 end if;
7972
7973 Par_Type := Etype (Base_Type (E));
7974
7975 -- Traverse list of ancestor types until we find one declared in
7976 -- a parent or grandparent unit (two levels seem sufficient).
7977
7978 while Present (Par_Type) loop
7979 if Scope (Par_Type) = Par_Scope
7980 or else Scope (Par_Type) = Scope (Par_Scope)
7981 then
7982 return Par_Type;
7983
7984 elsif not Is_Derived_Type (Par_Type) then
7985 return Empty;
7986
7987 else
7988 Par_Type := Etype (Base_Type (Par_Type));
7989 end if;
7990 end loop;
7991
7992 -- If none found, there is no relevant ancestor type.
7993
7994 return Empty;
7995 end if;
7996 end Get_Incomplete_View_Of_Ancestor;
7997
7998 ----------------------
7999 -- Get_Index_Bounds --
8000 ----------------------
8001
8002 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
8003 Kind : constant Node_Kind := Nkind (N);
8004 R : Node_Id;
8005
8006 begin
8007 if Kind = N_Range then
8008 L := Low_Bound (N);
8009 H := High_Bound (N);
8010
8011 elsif Kind = N_Subtype_Indication then
8012 R := Range_Expression (Constraint (N));
8013
8014 if R = Error then
8015 L := Error;
8016 H := Error;
8017 return;
8018
8019 else
8020 L := Low_Bound (Range_Expression (Constraint (N)));
8021 H := High_Bound (Range_Expression (Constraint (N)));
8022 end if;
8023
8024 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
8025 if Error_Posted (Scalar_Range (Entity (N))) then
8026 L := Error;
8027 H := Error;
8028
8029 elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
8030 Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
8031
8032 else
8033 L := Low_Bound (Scalar_Range (Entity (N)));
8034 H := High_Bound (Scalar_Range (Entity (N)));
8035 end if;
8036
8037 else
8038 -- N is an expression, indicating a range with one value
8039
8040 L := N;
8041 H := N;
8042 end if;
8043 end Get_Index_Bounds;
8044
8045 ---------------------------------
8046 -- Get_Iterable_Type_Primitive --
8047 ---------------------------------
8048
8049 function Get_Iterable_Type_Primitive
8050 (Typ : Entity_Id;
8051 Nam : Name_Id) return Entity_Id
8052 is
8053 Funcs : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Iterable);
8054 Assoc : Node_Id;
8055
8056 begin
8057 if No (Funcs) then
8058 return Empty;
8059
8060 else
8061 Assoc := First (Component_Associations (Funcs));
8062 while Present (Assoc) loop
8063 if Chars (First (Choices (Assoc))) = Nam then
8064 return Entity (Expression (Assoc));
8065 end if;
8066
8067 Assoc := Next (Assoc);
8068 end loop;
8069
8070 return Empty;
8071 end if;
8072 end Get_Iterable_Type_Primitive;
8073
8074 ----------------------------------
8075 -- Get_Library_Unit_Name_string --
8076 ----------------------------------
8077
8078 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
8079 Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
8080
8081 begin
8082 Get_Unit_Name_String (Unit_Name_Id);
8083
8084 -- Remove seven last character (" (spec)" or " (body)")
8085
8086 Name_Len := Name_Len - 7;
8087 pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
8088 end Get_Library_Unit_Name_String;
8089
8090 --------------------------
8091 -- Get_Max_Queue_Length --
8092 --------------------------
8093
8094 function Get_Max_Queue_Length (Id : Entity_Id) return Uint is
8095 pragma Assert (Is_Entry (Id));
8096 Prag : constant Entity_Id := Get_Pragma (Id, Pragma_Max_Queue_Length);
8097
8098 begin
8099 -- A value of 0 represents no maximum specified, and entries and entry
8100 -- families with no Max_Queue_Length aspect or pragma default to it.
8101
8102 if not Present (Prag) then
8103 return Uint_0;
8104 end if;
8105
8106 return Intval (Expression (First (Pragma_Argument_Associations (Prag))));
8107 end Get_Max_Queue_Length;
8108
8109 ------------------------
8110 -- Get_Name_Entity_Id --
8111 ------------------------
8112
8113 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
8114 begin
8115 return Entity_Id (Get_Name_Table_Int (Id));
8116 end Get_Name_Entity_Id;
8117
8118 ------------------------------
8119 -- Get_Name_From_CTC_Pragma --
8120 ------------------------------
8121
8122 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
8123 Arg : constant Node_Id :=
8124 Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
8125 begin
8126 return Strval (Expr_Value_S (Arg));
8127 end Get_Name_From_CTC_Pragma;
8128
8129 -----------------------
8130 -- Get_Parent_Entity --
8131 -----------------------
8132
8133 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id is
8134 begin
8135 if Nkind (Unit) = N_Package_Body
8136 and then Nkind (Original_Node (Unit)) = N_Package_Instantiation
8137 then
8138 return Defining_Entity
8139 (Specification (Instance_Spec (Original_Node (Unit))));
8140 elsif Nkind (Unit) = N_Package_Instantiation then
8141 return Defining_Entity (Specification (Instance_Spec (Unit)));
8142 else
8143 return Defining_Entity (Unit);
8144 end if;
8145 end Get_Parent_Entity;
8146
8147 -------------------
8148 -- Get_Pragma_Id --
8149 -------------------
8150
8151 function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
8152 begin
8153 return Get_Pragma_Id (Pragma_Name_Unmapped (N));
8154 end Get_Pragma_Id;
8155
8156 ------------------------
8157 -- Get_Qualified_Name --
8158 ------------------------
8159
8160 function Get_Qualified_Name
8161 (Id : Entity_Id;
8162 Suffix : Entity_Id := Empty) return Name_Id
8163 is
8164 Suffix_Nam : Name_Id := No_Name;
8165
8166 begin
8167 if Present (Suffix) then
8168 Suffix_Nam := Chars (Suffix);
8169 end if;
8170
8171 return Get_Qualified_Name (Chars (Id), Suffix_Nam, Scope (Id));
8172 end Get_Qualified_Name;
8173
8174 function Get_Qualified_Name
8175 (Nam : Name_Id;
8176 Suffix : Name_Id := No_Name;
8177 Scop : Entity_Id := Current_Scope) return Name_Id
8178 is
8179 procedure Add_Scope (S : Entity_Id);
8180 -- Add the fully qualified form of scope S to the name buffer. The
8181 -- format is:
8182 -- s-1__s__
8183
8184 ---------------
8185 -- Add_Scope --
8186 ---------------
8187
8188 procedure Add_Scope (S : Entity_Id) is
8189 begin
8190 if S = Empty then
8191 null;
8192
8193 elsif S = Standard_Standard then
8194 null;
8195
8196 else
8197 Add_Scope (Scope (S));
8198 Get_Name_String_And_Append (Chars (S));
8199 Add_Str_To_Name_Buffer ("__");
8200 end if;
8201 end Add_Scope;
8202
8203 -- Start of processing for Get_Qualified_Name
8204
8205 begin
8206 Name_Len := 0;
8207 Add_Scope (Scop);
8208
8209 -- Append the base name after all scopes have been chained
8210
8211 Get_Name_String_And_Append (Nam);
8212
8213 -- Append the suffix (if present)
8214
8215 if Suffix /= No_Name then
8216 Add_Str_To_Name_Buffer ("__");
8217 Get_Name_String_And_Append (Suffix);
8218 end if;
8219
8220 return Name_Find;
8221 end Get_Qualified_Name;
8222
8223 -----------------------
8224 -- Get_Reason_String --
8225 -----------------------
8226
8227 procedure Get_Reason_String (N : Node_Id) is
8228 begin
8229 if Nkind (N) = N_String_Literal then
8230 Store_String_Chars (Strval (N));
8231
8232 elsif Nkind (N) = N_Op_Concat then
8233 Get_Reason_String (Left_Opnd (N));
8234 Get_Reason_String (Right_Opnd (N));
8235
8236 -- If not of required form, error
8237
8238 else
8239 Error_Msg_N
8240 ("Reason for pragma Warnings has wrong form", N);
8241 Error_Msg_N
8242 ("\must be string literal or concatenation of string literals", N);
8243 return;
8244 end if;
8245 end Get_Reason_String;
8246
8247 --------------------------------
8248 -- Get_Reference_Discriminant --
8249 --------------------------------
8250
8251 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id is
8252 D : Entity_Id;
8253
8254 begin
8255 D := First_Discriminant (Typ);
8256 while Present (D) loop
8257 if Has_Implicit_Dereference (D) then
8258 return D;
8259 end if;
8260 Next_Discriminant (D);
8261 end loop;
8262
8263 return Empty;
8264 end Get_Reference_Discriminant;
8265
8266 ---------------------------
8267 -- Get_Referenced_Object --
8268 ---------------------------
8269
8270 function Get_Referenced_Object (N : Node_Id) return Node_Id is
8271 R : Node_Id;
8272
8273 begin
8274 R := N;
8275 while Is_Entity_Name (R)
8276 and then Present (Renamed_Object (Entity (R)))
8277 loop
8278 R := Renamed_Object (Entity (R));
8279 end loop;
8280
8281 return R;
8282 end Get_Referenced_Object;
8283
8284 ------------------------
8285 -- Get_Renamed_Entity --
8286 ------------------------
8287
8288 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
8289 R : Entity_Id;
8290
8291 begin
8292 R := E;
8293 while Present (Renamed_Entity (R)) loop
8294 R := Renamed_Entity (R);
8295 end loop;
8296
8297 return R;
8298 end Get_Renamed_Entity;
8299
8300 -----------------------
8301 -- Get_Return_Object --
8302 -----------------------
8303
8304 function Get_Return_Object (N : Node_Id) return Entity_Id is
8305 Decl : Node_Id;
8306
8307 begin
8308 Decl := First (Return_Object_Declarations (N));
8309 while Present (Decl) loop
8310 exit when Nkind (Decl) = N_Object_Declaration
8311 and then Is_Return_Object (Defining_Identifier (Decl));
8312 Next (Decl);
8313 end loop;
8314
8315 pragma Assert (Present (Decl));
8316 return Defining_Identifier (Decl);
8317 end Get_Return_Object;
8318
8319 ---------------------------
8320 -- Get_Subprogram_Entity --
8321 ---------------------------
8322
8323 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
8324 Subp : Node_Id;
8325 Subp_Id : Entity_Id;
8326
8327 begin
8328 if Nkind (Nod) = N_Accept_Statement then
8329 Subp := Entry_Direct_Name (Nod);
8330
8331 elsif Nkind (Nod) = N_Slice then
8332 Subp := Prefix (Nod);
8333
8334 else
8335 Subp := Name (Nod);
8336 end if;
8337
8338 -- Strip the subprogram call
8339
8340 loop
8341 if Nkind_In (Subp, N_Explicit_Dereference,
8342 N_Indexed_Component,
8343 N_Selected_Component)
8344 then
8345 Subp := Prefix (Subp);
8346
8347 elsif Nkind_In (Subp, N_Type_Conversion,
8348 N_Unchecked_Type_Conversion)
8349 then
8350 Subp := Expression (Subp);
8351
8352 else
8353 exit;
8354 end if;
8355 end loop;
8356
8357 -- Extract the entity of the subprogram call
8358
8359 if Is_Entity_Name (Subp) then
8360 Subp_Id := Entity (Subp);
8361
8362 if Ekind (Subp_Id) = E_Access_Subprogram_Type then
8363 Subp_Id := Directly_Designated_Type (Subp_Id);
8364 end if;
8365
8366 if Is_Subprogram (Subp_Id) then
8367 return Subp_Id;
8368 else
8369 return Empty;
8370 end if;
8371
8372 -- The search did not find a construct that denotes a subprogram
8373
8374 else
8375 return Empty;
8376 end if;
8377 end Get_Subprogram_Entity;
8378
8379 -----------------------------
8380 -- Get_Task_Body_Procedure --
8381 -----------------------------
8382
8383 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
8384 begin
8385 -- Note: A task type may be the completion of a private type with
8386 -- discriminants. When performing elaboration checks on a task
8387 -- declaration, the current view of the type may be the private one,
8388 -- and the procedure that holds the body of the task is held in its
8389 -- underlying type.
8390
8391 -- This is an odd function, why not have Task_Body_Procedure do
8392 -- the following digging???
8393
8394 return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
8395 end Get_Task_Body_Procedure;
8396
8397 -------------------------
8398 -- Get_User_Defined_Eq --
8399 -------------------------
8400
8401 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id is
8402 Prim : Elmt_Id;
8403 Op : Entity_Id;
8404
8405 begin
8406 Prim := First_Elmt (Collect_Primitive_Operations (E));
8407 while Present (Prim) loop
8408 Op := Node (Prim);
8409
8410 if Chars (Op) = Name_Op_Eq
8411 and then Etype (Op) = Standard_Boolean
8412 and then Etype (First_Formal (Op)) = E
8413 and then Etype (Next_Formal (First_Formal (Op))) = E
8414 then
8415 return Op;
8416 end if;
8417
8418 Next_Elmt (Prim);
8419 end loop;
8420
8421 return Empty;
8422 end Get_User_Defined_Eq;
8423
8424 ---------------
8425 -- Get_Views --
8426 ---------------
8427
8428 procedure Get_Views
8429 (Typ : Entity_Id;
8430 Priv_Typ : out Entity_Id;
8431 Full_Typ : out Entity_Id;
8432 Full_Base : out Entity_Id;
8433 CRec_Typ : out Entity_Id)
8434 is
8435 IP_View : Entity_Id;
8436
8437 begin
8438 -- Assume that none of the views can be recovered
8439
8440 Priv_Typ := Empty;
8441 Full_Typ := Empty;
8442 Full_Base := Empty;
8443 CRec_Typ := Empty;
8444
8445 -- The input type is the corresponding record type of a protected or a
8446 -- task type.
8447
8448 if Ekind (Typ) = E_Record_Type
8449 and then Is_Concurrent_Record_Type (Typ)
8450 then
8451 CRec_Typ := Typ;
8452 Full_Typ := Corresponding_Concurrent_Type (CRec_Typ);
8453 Full_Base := Base_Type (Full_Typ);
8454 Priv_Typ := Incomplete_Or_Partial_View (Full_Typ);
8455
8456 -- Otherwise the input type denotes an arbitrary type
8457
8458 else
8459 IP_View := Incomplete_Or_Partial_View (Typ);
8460
8461 -- The input type denotes the full view of a private type
8462
8463 if Present (IP_View) then
8464 Priv_Typ := IP_View;
8465 Full_Typ := Typ;
8466
8467 -- The input type is a private type
8468
8469 elsif Is_Private_Type (Typ) then
8470 Priv_Typ := Typ;
8471 Full_Typ := Full_View (Priv_Typ);
8472
8473 -- Otherwise the input type does not have any views
8474
8475 else
8476 Full_Typ := Typ;
8477 end if;
8478
8479 if Present (Full_Typ) then
8480 Full_Base := Base_Type (Full_Typ);
8481
8482 if Ekind_In (Full_Typ, E_Protected_Type, E_Task_Type) then
8483 CRec_Typ := Corresponding_Record_Type (Full_Typ);
8484 end if;
8485 end if;
8486 end if;
8487 end Get_Views;
8488
8489 -----------------------
8490 -- Has_Access_Values --
8491 -----------------------
8492
8493 function Has_Access_Values (T : Entity_Id) return Boolean is
8494 Typ : constant Entity_Id := Underlying_Type (T);
8495
8496 begin
8497 -- Case of a private type which is not completed yet. This can only
8498 -- happen in the case of a generic format type appearing directly, or
8499 -- as a component of the type to which this function is being applied
8500 -- at the top level. Return False in this case, since we certainly do
8501 -- not know that the type contains access types.
8502
8503 if No (Typ) then
8504 return False;
8505
8506 elsif Is_Access_Type (Typ) then
8507 return True;
8508
8509 elsif Is_Array_Type (Typ) then
8510 return Has_Access_Values (Component_Type (Typ));
8511
8512 elsif Is_Record_Type (Typ) then
8513 declare
8514 Comp : Entity_Id;
8515
8516 begin
8517 -- Loop to Check components
8518
8519 Comp := First_Component_Or_Discriminant (Typ);
8520 while Present (Comp) loop
8521
8522 -- Check for access component, tag field does not count, even
8523 -- though it is implemented internally using an access type.
8524
8525 if Has_Access_Values (Etype (Comp))
8526 and then Chars (Comp) /= Name_uTag
8527 then
8528 return True;
8529 end if;
8530
8531 Next_Component_Or_Discriminant (Comp);
8532 end loop;
8533 end;
8534
8535 return False;
8536
8537 else
8538 return False;
8539 end if;
8540 end Has_Access_Values;
8541
8542 ------------------------------
8543 -- Has_Compatible_Alignment --
8544 ------------------------------
8545
8546 function Has_Compatible_Alignment
8547 (Obj : Entity_Id;
8548 Expr : Node_Id;
8549 Layout_Done : Boolean) return Alignment_Result
8550 is
8551 function Has_Compatible_Alignment_Internal
8552 (Obj : Entity_Id;
8553 Expr : Node_Id;
8554 Layout_Done : Boolean;
8555 Default : Alignment_Result) return Alignment_Result;
8556 -- This is the internal recursive function that actually does the work.
8557 -- There is one additional parameter, which says what the result should
8558 -- be if no alignment information is found, and there is no definite
8559 -- indication of compatible alignments. At the outer level, this is set
8560 -- to Unknown, but for internal recursive calls in the case where types
8561 -- are known to be correct, it is set to Known_Compatible.
8562
8563 ---------------------------------------
8564 -- Has_Compatible_Alignment_Internal --
8565 ---------------------------------------
8566
8567 function Has_Compatible_Alignment_Internal
8568 (Obj : Entity_Id;
8569 Expr : Node_Id;
8570 Layout_Done : Boolean;
8571 Default : Alignment_Result) return Alignment_Result
8572 is
8573 Result : Alignment_Result := Known_Compatible;
8574 -- Holds the current status of the result. Note that once a value of
8575 -- Known_Incompatible is set, it is sticky and does not get changed
8576 -- to Unknown (the value in Result only gets worse as we go along,
8577 -- never better).
8578
8579 Offs : Uint := No_Uint;
8580 -- Set to a factor of the offset from the base object when Expr is a
8581 -- selected or indexed component, based on Component_Bit_Offset and
8582 -- Component_Size respectively. A negative value is used to represent
8583 -- a value which is not known at compile time.
8584
8585 procedure Check_Prefix;
8586 -- Checks the prefix recursively in the case where the expression
8587 -- is an indexed or selected component.
8588
8589 procedure Set_Result (R : Alignment_Result);
8590 -- If R represents a worse outcome (unknown instead of known
8591 -- compatible, or known incompatible), then set Result to R.
8592
8593 ------------------
8594 -- Check_Prefix --
8595 ------------------
8596
8597 procedure Check_Prefix is
8598 begin
8599 -- The subtlety here is that in doing a recursive call to check
8600 -- the prefix, we have to decide what to do in the case where we
8601 -- don't find any specific indication of an alignment problem.
8602
8603 -- At the outer level, we normally set Unknown as the result in
8604 -- this case, since we can only set Known_Compatible if we really
8605 -- know that the alignment value is OK, but for the recursive
8606 -- call, in the case where the types match, and we have not
8607 -- specified a peculiar alignment for the object, we are only
8608 -- concerned about suspicious rep clauses, the default case does
8609 -- not affect us, since the compiler will, in the absence of such
8610 -- rep clauses, ensure that the alignment is correct.
8611
8612 if Default = Known_Compatible
8613 or else
8614 (Etype (Obj) = Etype (Expr)
8615 and then (Unknown_Alignment (Obj)
8616 or else
8617 Alignment (Obj) = Alignment (Etype (Obj))))
8618 then
8619 Set_Result
8620 (Has_Compatible_Alignment_Internal
8621 (Obj, Prefix (Expr), Layout_Done, Known_Compatible));
8622
8623 -- In all other cases, we need a full check on the prefix
8624
8625 else
8626 Set_Result
8627 (Has_Compatible_Alignment_Internal
8628 (Obj, Prefix (Expr), Layout_Done, Unknown));
8629 end if;
8630 end Check_Prefix;
8631
8632 ----------------
8633 -- Set_Result --
8634 ----------------
8635
8636 procedure Set_Result (R : Alignment_Result) is
8637 begin
8638 if R > Result then
8639 Result := R;
8640 end if;
8641 end Set_Result;
8642
8643 -- Start of processing for Has_Compatible_Alignment_Internal
8644
8645 begin
8646 -- If Expr is a selected component, we must make sure there is no
8647 -- potentially troublesome component clause and that the record is
8648 -- not packed if the layout is not done.
8649
8650 if Nkind (Expr) = N_Selected_Component then
8651
8652 -- Packing generates unknown alignment if layout is not done
8653
8654 if Is_Packed (Etype (Prefix (Expr))) and then not Layout_Done then
8655 Set_Result (Unknown);
8656 end if;
8657
8658 -- Check prefix and component offset
8659
8660 Check_Prefix;
8661 Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
8662
8663 -- If Expr is an indexed component, we must make sure there is no
8664 -- potentially troublesome Component_Size clause and that the array
8665 -- is not bit-packed if the layout is not done.
8666
8667 elsif Nkind (Expr) = N_Indexed_Component then
8668 declare
8669 Typ : constant Entity_Id := Etype (Prefix (Expr));
8670
8671 begin
8672 -- Packing generates unknown alignment if layout is not done
8673
8674 if Is_Bit_Packed_Array (Typ) and then not Layout_Done then
8675 Set_Result (Unknown);
8676 end if;
8677
8678 -- Check prefix and component offset (or at least size)
8679
8680 Check_Prefix;
8681 Offs := Indexed_Component_Bit_Offset (Expr);
8682 if Offs = No_Uint then
8683 Offs := Component_Size (Typ);
8684 end if;
8685 end;
8686 end if;
8687
8688 -- If we have a null offset, the result is entirely determined by
8689 -- the base object and has already been computed recursively.
8690
8691 if Offs = Uint_0 then
8692 null;
8693
8694 -- Case where we know the alignment of the object
8695
8696 elsif Known_Alignment (Obj) then
8697 declare
8698 ObjA : constant Uint := Alignment (Obj);
8699 ExpA : Uint := No_Uint;
8700 SizA : Uint := No_Uint;
8701
8702 begin
8703 -- If alignment of Obj is 1, then we are always OK
8704
8705 if ObjA = 1 then
8706 Set_Result (Known_Compatible);
8707
8708 -- Alignment of Obj is greater than 1, so we need to check
8709
8710 else
8711 -- If we have an offset, see if it is compatible
8712
8713 if Offs /= No_Uint and Offs > Uint_0 then
8714 if Offs mod (System_Storage_Unit * ObjA) /= 0 then
8715 Set_Result (Known_Incompatible);
8716 end if;
8717
8718 -- See if Expr is an object with known alignment
8719
8720 elsif Is_Entity_Name (Expr)
8721 and then Known_Alignment (Entity (Expr))
8722 then
8723 ExpA := Alignment (Entity (Expr));
8724
8725 -- Otherwise, we can use the alignment of the type of
8726 -- Expr given that we already checked for
8727 -- discombobulating rep clauses for the cases of indexed
8728 -- and selected components above.
8729
8730 elsif Known_Alignment (Etype (Expr)) then
8731 ExpA := Alignment (Etype (Expr));
8732
8733 -- Otherwise the alignment is unknown
8734
8735 else
8736 Set_Result (Default);
8737 end if;
8738
8739 -- If we got an alignment, see if it is acceptable
8740
8741 if ExpA /= No_Uint and then ExpA < ObjA then
8742 Set_Result (Known_Incompatible);
8743 end if;
8744
8745 -- If Expr is not a piece of a larger object, see if size
8746 -- is given. If so, check that it is not too small for the
8747 -- required alignment.
8748
8749 if Offs /= No_Uint then
8750 null;
8751
8752 -- See if Expr is an object with known size
8753
8754 elsif Is_Entity_Name (Expr)
8755 and then Known_Static_Esize (Entity (Expr))
8756 then
8757 SizA := Esize (Entity (Expr));
8758
8759 -- Otherwise, we check the object size of the Expr type
8760
8761 elsif Known_Static_Esize (Etype (Expr)) then
8762 SizA := Esize (Etype (Expr));
8763 end if;
8764
8765 -- If we got a size, see if it is a multiple of the Obj
8766 -- alignment, if not, then the alignment cannot be
8767 -- acceptable, since the size is always a multiple of the
8768 -- alignment.
8769
8770 if SizA /= No_Uint then
8771 if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
8772 Set_Result (Known_Incompatible);
8773 end if;
8774 end if;
8775 end if;
8776 end;
8777
8778 -- If we do not know required alignment, any non-zero offset is a
8779 -- potential problem (but certainly may be OK, so result is unknown).
8780
8781 elsif Offs /= No_Uint then
8782 Set_Result (Unknown);
8783
8784 -- If we can't find the result by direct comparison of alignment
8785 -- values, then there is still one case that we can determine known
8786 -- result, and that is when we can determine that the types are the
8787 -- same, and no alignments are specified. Then we known that the
8788 -- alignments are compatible, even if we don't know the alignment
8789 -- value in the front end.
8790
8791 elsif Etype (Obj) = Etype (Expr) then
8792
8793 -- Types are the same, but we have to check for possible size
8794 -- and alignments on the Expr object that may make the alignment
8795 -- different, even though the types are the same.
8796
8797 if Is_Entity_Name (Expr) then
8798
8799 -- First check alignment of the Expr object. Any alignment less
8800 -- than Maximum_Alignment is worrisome since this is the case
8801 -- where we do not know the alignment of Obj.
8802
8803 if Known_Alignment (Entity (Expr))
8804 and then UI_To_Int (Alignment (Entity (Expr))) <
8805 Ttypes.Maximum_Alignment
8806 then
8807 Set_Result (Unknown);
8808
8809 -- Now check size of Expr object. Any size that is not an
8810 -- even multiple of Maximum_Alignment is also worrisome
8811 -- since it may cause the alignment of the object to be less
8812 -- than the alignment of the type.
8813
8814 elsif Known_Static_Esize (Entity (Expr))
8815 and then
8816 (UI_To_Int (Esize (Entity (Expr))) mod
8817 (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
8818 /= 0
8819 then
8820 Set_Result (Unknown);
8821
8822 -- Otherwise same type is decisive
8823
8824 else
8825 Set_Result (Known_Compatible);
8826 end if;
8827 end if;
8828
8829 -- Another case to deal with is when there is an explicit size or
8830 -- alignment clause when the types are not the same. If so, then the
8831 -- result is Unknown. We don't need to do this test if the Default is
8832 -- Unknown, since that result will be set in any case.
8833
8834 elsif Default /= Unknown
8835 and then (Has_Size_Clause (Etype (Expr))
8836 or else
8837 Has_Alignment_Clause (Etype (Expr)))
8838 then
8839 Set_Result (Unknown);
8840
8841 -- If no indication found, set default
8842
8843 else
8844 Set_Result (Default);
8845 end if;
8846
8847 -- Return worst result found
8848
8849 return Result;
8850 end Has_Compatible_Alignment_Internal;
8851
8852 -- Start of processing for Has_Compatible_Alignment
8853
8854 begin
8855 -- If Obj has no specified alignment, then set alignment from the type
8856 -- alignment. Perhaps we should always do this, but for sure we should
8857 -- do it when there is an address clause since we can do more if the
8858 -- alignment is known.
8859
8860 if Unknown_Alignment (Obj) then
8861 Set_Alignment (Obj, Alignment (Etype (Obj)));
8862 end if;
8863
8864 -- Now do the internal call that does all the work
8865
8866 return
8867 Has_Compatible_Alignment_Internal (Obj, Expr, Layout_Done, Unknown);
8868 end Has_Compatible_Alignment;
8869
8870 ----------------------
8871 -- Has_Declarations --
8872 ----------------------
8873
8874 function Has_Declarations (N : Node_Id) return Boolean is
8875 begin
8876 return Nkind_In (Nkind (N), N_Accept_Statement,
8877 N_Block_Statement,
8878 N_Compilation_Unit_Aux,
8879 N_Entry_Body,
8880 N_Package_Body,
8881 N_Protected_Body,
8882 N_Subprogram_Body,
8883 N_Task_Body,
8884 N_Package_Specification);
8885 end Has_Declarations;
8886
8887 ---------------------------------
8888 -- Has_Defaulted_Discriminants --
8889 ---------------------------------
8890
8891 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
8892 begin
8893 return Has_Discriminants (Typ)
8894 and then Present (First_Discriminant (Typ))
8895 and then Present (Discriminant_Default_Value
8896 (First_Discriminant (Typ)));
8897 end Has_Defaulted_Discriminants;
8898
8899 -------------------
8900 -- Has_Denormals --
8901 -------------------
8902
8903 function Has_Denormals (E : Entity_Id) return Boolean is
8904 begin
8905 return Is_Floating_Point_Type (E) and then Denorm_On_Target;
8906 end Has_Denormals;
8907
8908 -------------------------------------------
8909 -- Has_Discriminant_Dependent_Constraint --
8910 -------------------------------------------
8911
8912 function Has_Discriminant_Dependent_Constraint
8913 (Comp : Entity_Id) return Boolean
8914 is
8915 Comp_Decl : constant Node_Id := Parent (Comp);
8916 Subt_Indic : Node_Id;
8917 Constr : Node_Id;
8918 Assn : Node_Id;
8919
8920 begin
8921 -- Discriminants can't depend on discriminants
8922
8923 if Ekind (Comp) = E_Discriminant then
8924 return False;
8925
8926 else
8927 Subt_Indic := Subtype_Indication (Component_Definition (Comp_Decl));
8928
8929 if Nkind (Subt_Indic) = N_Subtype_Indication then
8930 Constr := Constraint (Subt_Indic);
8931
8932 if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
8933 Assn := First (Constraints (Constr));
8934 while Present (Assn) loop
8935 case Nkind (Assn) is
8936 when N_Subtype_Indication |
8937 N_Range |
8938 N_Identifier
8939 =>
8940 if Depends_On_Discriminant (Assn) then
8941 return True;
8942 end if;
8943
8944 when N_Discriminant_Association =>
8945 if Depends_On_Discriminant (Expression (Assn)) then
8946 return True;
8947 end if;
8948
8949 when others =>
8950 null;
8951 end case;
8952
8953 Next (Assn);
8954 end loop;
8955 end if;
8956 end if;
8957 end if;
8958
8959 return False;
8960 end Has_Discriminant_Dependent_Constraint;
8961
8962 --------------------------------------
8963 -- Has_Effectively_Volatile_Profile --
8964 --------------------------------------
8965
8966 function Has_Effectively_Volatile_Profile
8967 (Subp_Id : Entity_Id) return Boolean
8968 is
8969 Formal : Entity_Id;
8970
8971 begin
8972 -- Inspect the formal parameters looking for an effectively volatile
8973 -- type.
8974
8975 Formal := First_Formal (Subp_Id);
8976 while Present (Formal) loop
8977 if Is_Effectively_Volatile (Etype (Formal)) then
8978 return True;
8979 end if;
8980
8981 Next_Formal (Formal);
8982 end loop;
8983
8984 -- Inspect the return type of functions
8985
8986 if Ekind_In (Subp_Id, E_Function, E_Generic_Function)
8987 and then Is_Effectively_Volatile (Etype (Subp_Id))
8988 then
8989 return True;
8990 end if;
8991
8992 return False;
8993 end Has_Effectively_Volatile_Profile;
8994
8995 --------------------------
8996 -- Has_Enabled_Property --
8997 --------------------------
8998
8999 function Has_Enabled_Property
9000 (Item_Id : Entity_Id;
9001 Property : Name_Id) return Boolean
9002 is
9003 function State_Has_Enabled_Property return Boolean;
9004 -- Determine whether a state denoted by Item_Id has the property enabled
9005
9006 function Variable_Has_Enabled_Property return Boolean;
9007 -- Determine whether a variable denoted by Item_Id has the property
9008 -- enabled.
9009
9010 --------------------------------
9011 -- State_Has_Enabled_Property --
9012 --------------------------------
9013
9014 function State_Has_Enabled_Property return Boolean is
9015 Decl : constant Node_Id := Parent (Item_Id);
9016 Opt : Node_Id;
9017 Opt_Nam : Node_Id;
9018 Prop : Node_Id;
9019 Prop_Nam : Node_Id;
9020 Props : Node_Id;
9021
9022 begin
9023 -- The declaration of an external abstract state appears as an
9024 -- extension aggregate. If this is not the case, properties can never
9025 -- be set.
9026
9027 if Nkind (Decl) /= N_Extension_Aggregate then
9028 return False;
9029 end if;
9030
9031 -- When External appears as a simple option, it automatically enables
9032 -- all properties.
9033
9034 Opt := First (Expressions (Decl));
9035 while Present (Opt) loop
9036 if Nkind (Opt) = N_Identifier
9037 and then Chars (Opt) = Name_External
9038 then
9039 return True;
9040 end if;
9041
9042 Next (Opt);
9043 end loop;
9044
9045 -- When External specifies particular properties, inspect those and
9046 -- find the desired one (if any).
9047
9048 Opt := First (Component_Associations (Decl));
9049 while Present (Opt) loop
9050 Opt_Nam := First (Choices (Opt));
9051
9052 if Nkind (Opt_Nam) = N_Identifier
9053 and then Chars (Opt_Nam) = Name_External
9054 then
9055 Props := Expression (Opt);
9056
9057 -- Multiple properties appear as an aggregate
9058
9059 if Nkind (Props) = N_Aggregate then
9060
9061 -- Simple property form
9062
9063 Prop := First (Expressions (Props));
9064 while Present (Prop) loop
9065 if Chars (Prop) = Property then
9066 return True;
9067 end if;
9068
9069 Next (Prop);
9070 end loop;
9071
9072 -- Property with expression form
9073
9074 Prop := First (Component_Associations (Props));
9075 while Present (Prop) loop
9076 Prop_Nam := First (Choices (Prop));
9077
9078 -- The property can be represented in two ways:
9079 -- others => <value>
9080 -- <property> => <value>
9081
9082 if Nkind (Prop_Nam) = N_Others_Choice
9083 or else (Nkind (Prop_Nam) = N_Identifier
9084 and then Chars (Prop_Nam) = Property)
9085 then
9086 return Is_True (Expr_Value (Expression (Prop)));
9087 end if;
9088
9089 Next (Prop);
9090 end loop;
9091
9092 -- Single property
9093
9094 else
9095 return Chars (Props) = Property;
9096 end if;
9097 end if;
9098
9099 Next (Opt);
9100 end loop;
9101
9102 return False;
9103 end State_Has_Enabled_Property;
9104
9105 -----------------------------------
9106 -- Variable_Has_Enabled_Property --
9107 -----------------------------------
9108
9109 function Variable_Has_Enabled_Property return Boolean is
9110 function Is_Enabled (Prag : Node_Id) return Boolean;
9111 -- Determine whether property pragma Prag (if present) denotes an
9112 -- enabled property.
9113
9114 ----------------
9115 -- Is_Enabled --
9116 ----------------
9117
9118 function Is_Enabled (Prag : Node_Id) return Boolean is
9119 Arg1 : Node_Id;
9120
9121 begin
9122 if Present (Prag) then
9123 Arg1 := First (Pragma_Argument_Associations (Prag));
9124
9125 -- The pragma has an optional Boolean expression, the related
9126 -- property is enabled only when the expression evaluates to
9127 -- True.
9128
9129 if Present (Arg1) then
9130 return Is_True (Expr_Value (Get_Pragma_Arg (Arg1)));
9131
9132 -- Otherwise the lack of expression enables the property by
9133 -- default.
9134
9135 else
9136 return True;
9137 end if;
9138
9139 -- The property was never set in the first place
9140
9141 else
9142 return False;
9143 end if;
9144 end Is_Enabled;
9145
9146 -- Local variables
9147
9148 AR : constant Node_Id :=
9149 Get_Pragma (Item_Id, Pragma_Async_Readers);
9150 AW : constant Node_Id :=
9151 Get_Pragma (Item_Id, Pragma_Async_Writers);
9152 ER : constant Node_Id :=
9153 Get_Pragma (Item_Id, Pragma_Effective_Reads);
9154 EW : constant Node_Id :=
9155 Get_Pragma (Item_Id, Pragma_Effective_Writes);
9156
9157 -- Start of processing for Variable_Has_Enabled_Property
9158
9159 begin
9160 -- A non-effectively volatile object can never possess external
9161 -- properties.
9162
9163 if not Is_Effectively_Volatile (Item_Id) then
9164 return False;
9165
9166 -- External properties related to variables come in two flavors -
9167 -- explicit and implicit. The explicit case is characterized by the
9168 -- presence of a property pragma with an optional Boolean flag. The
9169 -- property is enabled when the flag evaluates to True or the flag is
9170 -- missing altogether.
9171
9172 elsif Property = Name_Async_Readers and then Is_Enabled (AR) then
9173 return True;
9174
9175 elsif Property = Name_Async_Writers and then Is_Enabled (AW) then
9176 return True;
9177
9178 elsif Property = Name_Effective_Reads and then Is_Enabled (ER) then
9179 return True;
9180
9181 elsif Property = Name_Effective_Writes and then Is_Enabled (EW) then
9182 return True;
9183
9184 -- The implicit case lacks all property pragmas
9185
9186 elsif No (AR) and then No (AW) and then No (ER) and then No (EW) then
9187 return True;
9188
9189 else
9190 return False;
9191 end if;
9192 end Variable_Has_Enabled_Property;
9193
9194 -- Start of processing for Has_Enabled_Property
9195
9196 begin
9197 -- Abstract states and variables have a flexible scheme of specifying
9198 -- external properties.
9199
9200 if Ekind (Item_Id) = E_Abstract_State then
9201 return State_Has_Enabled_Property;
9202
9203 elsif Ekind (Item_Id) = E_Variable then
9204 return Variable_Has_Enabled_Property;
9205
9206 -- Otherwise a property is enabled when the related item is effectively
9207 -- volatile.
9208
9209 else
9210 return Is_Effectively_Volatile (Item_Id);
9211 end if;
9212 end Has_Enabled_Property;
9213
9214 -------------------------------------
9215 -- Has_Full_Default_Initialization --
9216 -------------------------------------
9217
9218 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean is
9219 Comp : Entity_Id;
9220 Prag : Node_Id;
9221
9222 begin
9223 -- A type subject to pragma Default_Initial_Condition is fully default
9224 -- initialized when the pragma appears with a non-null argument. Since
9225 -- any type may act as the full view of a private type, this check must
9226 -- be performed prior to the specialized tests below.
9227
9228 if Has_DIC (Typ) then
9229 Prag := Get_Pragma (Typ, Pragma_Default_Initial_Condition);
9230 pragma Assert (Present (Prag));
9231
9232 return Is_Verifiable_DIC_Pragma (Prag);
9233 end if;
9234
9235 -- A scalar type is fully default initialized if it is subject to aspect
9236 -- Default_Value.
9237
9238 if Is_Scalar_Type (Typ) then
9239 return Has_Default_Aspect (Typ);
9240
9241 -- An array type is fully default initialized if its element type is
9242 -- scalar and the array type carries aspect Default_Component_Value or
9243 -- the element type is fully default initialized.
9244
9245 elsif Is_Array_Type (Typ) then
9246 return
9247 Has_Default_Aspect (Typ)
9248 or else Has_Full_Default_Initialization (Component_Type (Typ));
9249
9250 -- A protected type, record type, or type extension is fully default
9251 -- initialized if all its components either carry an initialization
9252 -- expression or have a type that is fully default initialized. The
9253 -- parent type of a type extension must be fully default initialized.
9254
9255 elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
9256
9257 -- Inspect all entities defined in the scope of the type, looking for
9258 -- uninitialized components.
9259
9260 Comp := First_Entity (Typ);
9261 while Present (Comp) loop
9262 if Ekind (Comp) = E_Component
9263 and then Comes_From_Source (Comp)
9264 and then No (Expression (Parent (Comp)))
9265 and then not Has_Full_Default_Initialization (Etype (Comp))
9266 then
9267 return False;
9268 end if;
9269
9270 Next_Entity (Comp);
9271 end loop;
9272
9273 -- Ensure that the parent type of a type extension is fully default
9274 -- initialized.
9275
9276 if Etype (Typ) /= Typ
9277 and then not Has_Full_Default_Initialization (Etype (Typ))
9278 then
9279 return False;
9280 end if;
9281
9282 -- If we get here, then all components and parent portion are fully
9283 -- default initialized.
9284
9285 return True;
9286
9287 -- A task type is fully default initialized by default
9288
9289 elsif Is_Task_Type (Typ) then
9290 return True;
9291
9292 -- Otherwise the type is not fully default initialized
9293
9294 else
9295 return False;
9296 end if;
9297 end Has_Full_Default_Initialization;
9298
9299 --------------------
9300 -- Has_Infinities --
9301 --------------------
9302
9303 function Has_Infinities (E : Entity_Id) return Boolean is
9304 begin
9305 return
9306 Is_Floating_Point_Type (E)
9307 and then Nkind (Scalar_Range (E)) = N_Range
9308 and then Includes_Infinities (Scalar_Range (E));
9309 end Has_Infinities;
9310
9311 --------------------
9312 -- Has_Interfaces --
9313 --------------------
9314
9315 function Has_Interfaces
9316 (T : Entity_Id;
9317 Use_Full_View : Boolean := True) return Boolean
9318 is
9319 Typ : Entity_Id := Base_Type (T);
9320
9321 begin
9322 -- Handle concurrent types
9323
9324 if Is_Concurrent_Type (Typ) then
9325 Typ := Corresponding_Record_Type (Typ);
9326 end if;
9327
9328 if not Present (Typ)
9329 or else not Is_Record_Type (Typ)
9330 or else not Is_Tagged_Type (Typ)
9331 then
9332 return False;
9333 end if;
9334
9335 -- Handle private types
9336
9337 if Use_Full_View and then Present (Full_View (Typ)) then
9338 Typ := Full_View (Typ);
9339 end if;
9340
9341 -- Handle concurrent record types
9342
9343 if Is_Concurrent_Record_Type (Typ)
9344 and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
9345 then
9346 return True;
9347 end if;
9348
9349 loop
9350 if Is_Interface (Typ)
9351 or else
9352 (Is_Record_Type (Typ)
9353 and then Present (Interfaces (Typ))
9354 and then not Is_Empty_Elmt_List (Interfaces (Typ)))
9355 then
9356 return True;
9357 end if;
9358
9359 exit when Etype (Typ) = Typ
9360
9361 -- Handle private types
9362
9363 or else (Present (Full_View (Etype (Typ)))
9364 and then Full_View (Etype (Typ)) = Typ)
9365
9366 -- Protect frontend against wrong sources with cyclic derivations
9367
9368 or else Etype (Typ) = T;
9369
9370 -- Climb to the ancestor type handling private types
9371
9372 if Present (Full_View (Etype (Typ))) then
9373 Typ := Full_View (Etype (Typ));
9374 else
9375 Typ := Etype (Typ);
9376 end if;
9377 end loop;
9378
9379 return False;
9380 end Has_Interfaces;
9381
9382 --------------------------
9383 -- Has_Max_Queue_Length --
9384 --------------------------
9385
9386 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean is
9387 begin
9388 return
9389 Ekind (Id) = E_Entry
9390 and then Present (Get_Pragma (Id, Pragma_Max_Queue_Length));
9391 end Has_Max_Queue_Length;
9392
9393 ---------------------------------
9394 -- Has_No_Obvious_Side_Effects --
9395 ---------------------------------
9396
9397 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean is
9398 begin
9399 -- For now handle literals, constants, and non-volatile variables and
9400 -- expressions combining these with operators or short circuit forms.
9401
9402 if Nkind (N) in N_Numeric_Or_String_Literal then
9403 return True;
9404
9405 elsif Nkind (N) = N_Character_Literal then
9406 return True;
9407
9408 elsif Nkind (N) in N_Unary_Op then
9409 return Has_No_Obvious_Side_Effects (Right_Opnd (N));
9410
9411 elsif Nkind (N) in N_Binary_Op or else Nkind (N) in N_Short_Circuit then
9412 return Has_No_Obvious_Side_Effects (Left_Opnd (N))
9413 and then
9414 Has_No_Obvious_Side_Effects (Right_Opnd (N));
9415
9416 elsif Nkind (N) = N_Expression_With_Actions
9417 and then Is_Empty_List (Actions (N))
9418 then
9419 return Has_No_Obvious_Side_Effects (Expression (N));
9420
9421 elsif Nkind (N) in N_Has_Entity then
9422 return Present (Entity (N))
9423 and then Ekind_In (Entity (N), E_Variable,
9424 E_Constant,
9425 E_Enumeration_Literal,
9426 E_In_Parameter,
9427 E_Out_Parameter,
9428 E_In_Out_Parameter)
9429 and then not Is_Volatile (Entity (N));
9430
9431 else
9432 return False;
9433 end if;
9434 end Has_No_Obvious_Side_Effects;
9435
9436 -----------------------------
9437 -- Has_Non_Null_Refinement --
9438 -----------------------------
9439
9440 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean is
9441 Constits : Elist_Id;
9442
9443 begin
9444 pragma Assert (Ekind (Id) = E_Abstract_State);
9445 Constits := Refinement_Constituents (Id);
9446
9447 -- For a refinement to be non-null, the first constituent must be
9448 -- anything other than null.
9449
9450 return
9451 Present (Constits)
9452 and then Nkind (Node (First_Elmt (Constits))) /= N_Null;
9453 end Has_Non_Null_Refinement;
9454
9455 -------------------
9456 -- Has_Null_Body --
9457 -------------------
9458
9459 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
9460 Body_Id : Entity_Id;
9461 Decl : Node_Id;
9462 Spec : Node_Id;
9463 Stmt1 : Node_Id;
9464 Stmt2 : Node_Id;
9465
9466 begin
9467 Spec := Parent (Proc_Id);
9468 Decl := Parent (Spec);
9469
9470 -- Retrieve the entity of the procedure body (e.g. invariant proc).
9471
9472 if Nkind (Spec) = N_Procedure_Specification
9473 and then Nkind (Decl) = N_Subprogram_Declaration
9474 then
9475 Body_Id := Corresponding_Body (Decl);
9476
9477 -- The body acts as a spec
9478
9479 else
9480 Body_Id := Proc_Id;
9481 end if;
9482
9483 -- The body will be generated later
9484
9485 if No (Body_Id) then
9486 return False;
9487 end if;
9488
9489 Spec := Parent (Body_Id);
9490 Decl := Parent (Spec);
9491
9492 pragma Assert
9493 (Nkind (Spec) = N_Procedure_Specification
9494 and then Nkind (Decl) = N_Subprogram_Body);
9495
9496 Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
9497
9498 -- Look for a null statement followed by an optional return
9499 -- statement.
9500
9501 if Nkind (Stmt1) = N_Null_Statement then
9502 Stmt2 := Next (Stmt1);
9503
9504 if Present (Stmt2) then
9505 return Nkind (Stmt2) = N_Simple_Return_Statement;
9506 else
9507 return True;
9508 end if;
9509 end if;
9510
9511 return False;
9512 end Has_Null_Body;
9513
9514 ------------------------
9515 -- Has_Null_Exclusion --
9516 ------------------------
9517
9518 function Has_Null_Exclusion (N : Node_Id) return Boolean is
9519 begin
9520 case Nkind (N) is
9521 when N_Access_Definition |
9522 N_Access_Function_Definition |
9523 N_Access_Procedure_Definition |
9524 N_Access_To_Object_Definition |
9525 N_Allocator |
9526 N_Derived_Type_Definition |
9527 N_Function_Specification |
9528 N_Subtype_Declaration =>
9529 return Null_Exclusion_Present (N);
9530
9531 when N_Component_Definition |
9532 N_Formal_Object_Declaration |
9533 N_Object_Renaming_Declaration =>
9534 if Present (Subtype_Mark (N)) then
9535 return Null_Exclusion_Present (N);
9536 else pragma Assert (Present (Access_Definition (N)));
9537 return Null_Exclusion_Present (Access_Definition (N));
9538 end if;
9539
9540 when N_Discriminant_Specification =>
9541 if Nkind (Discriminant_Type (N)) = N_Access_Definition then
9542 return Null_Exclusion_Present (Discriminant_Type (N));
9543 else
9544 return Null_Exclusion_Present (N);
9545 end if;
9546
9547 when N_Object_Declaration =>
9548 if Nkind (Object_Definition (N)) = N_Access_Definition then
9549 return Null_Exclusion_Present (Object_Definition (N));
9550 else
9551 return Null_Exclusion_Present (N);
9552 end if;
9553
9554 when N_Parameter_Specification =>
9555 if Nkind (Parameter_Type (N)) = N_Access_Definition then
9556 return Null_Exclusion_Present (Parameter_Type (N));
9557 else
9558 return Null_Exclusion_Present (N);
9559 end if;
9560
9561 when others =>
9562 return False;
9563
9564 end case;
9565 end Has_Null_Exclusion;
9566
9567 ------------------------
9568 -- Has_Null_Extension --
9569 ------------------------
9570
9571 function Has_Null_Extension (T : Entity_Id) return Boolean is
9572 B : constant Entity_Id := Base_Type (T);
9573 Comps : Node_Id;
9574 Ext : Node_Id;
9575
9576 begin
9577 if Nkind (Parent (B)) = N_Full_Type_Declaration
9578 and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
9579 then
9580 Ext := Record_Extension_Part (Type_Definition (Parent (B)));
9581
9582 if Present (Ext) then
9583 if Null_Present (Ext) then
9584 return True;
9585 else
9586 Comps := Component_List (Ext);
9587
9588 -- The null component list is rewritten during analysis to
9589 -- include the parent component. Any other component indicates
9590 -- that the extension was not originally null.
9591
9592 return Null_Present (Comps)
9593 or else No (Next (First (Component_Items (Comps))));
9594 end if;
9595 else
9596 return False;
9597 end if;
9598
9599 else
9600 return False;
9601 end if;
9602 end Has_Null_Extension;
9603
9604 -------------------------
9605 -- Has_Null_Refinement --
9606 -------------------------
9607
9608 function Has_Null_Refinement (Id : Entity_Id) return Boolean is
9609 Constits : Elist_Id;
9610
9611 begin
9612 pragma Assert (Ekind (Id) = E_Abstract_State);
9613 Constits := Refinement_Constituents (Id);
9614
9615 -- For a refinement to be null, the state's sole constituent must be a
9616 -- null.
9617
9618 return
9619 Present (Constits)
9620 and then Nkind (Node (First_Elmt (Constits))) = N_Null;
9621 end Has_Null_Refinement;
9622
9623 -------------------------------
9624 -- Has_Overriding_Initialize --
9625 -------------------------------
9626
9627 function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
9628 BT : constant Entity_Id := Base_Type (T);
9629 P : Elmt_Id;
9630
9631 begin
9632 if Is_Controlled (BT) then
9633 if Is_RTU (Scope (BT), Ada_Finalization) then
9634 return False;
9635
9636 elsif Present (Primitive_Operations (BT)) then
9637 P := First_Elmt (Primitive_Operations (BT));
9638 while Present (P) loop
9639 declare
9640 Init : constant Entity_Id := Node (P);
9641 Formal : constant Entity_Id := First_Formal (Init);
9642 begin
9643 if Ekind (Init) = E_Procedure
9644 and then Chars (Init) = Name_Initialize
9645 and then Comes_From_Source (Init)
9646 and then Present (Formal)
9647 and then Etype (Formal) = BT
9648 and then No (Next_Formal (Formal))
9649 and then (Ada_Version < Ada_2012
9650 or else not Null_Present (Parent (Init)))
9651 then
9652 return True;
9653 end if;
9654 end;
9655
9656 Next_Elmt (P);
9657 end loop;
9658 end if;
9659
9660 -- Here if type itself does not have a non-null Initialize operation:
9661 -- check immediate ancestor.
9662
9663 if Is_Derived_Type (BT)
9664 and then Has_Overriding_Initialize (Etype (BT))
9665 then
9666 return True;
9667 end if;
9668 end if;
9669
9670 return False;
9671 end Has_Overriding_Initialize;
9672
9673 --------------------------------------
9674 -- Has_Preelaborable_Initialization --
9675 --------------------------------------
9676
9677 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
9678 Has_PE : Boolean;
9679
9680 procedure Check_Components (E : Entity_Id);
9681 -- Check component/discriminant chain, sets Has_PE False if a component
9682 -- or discriminant does not meet the preelaborable initialization rules.
9683
9684 ----------------------
9685 -- Check_Components --
9686 ----------------------
9687
9688 procedure Check_Components (E : Entity_Id) is
9689 Ent : Entity_Id;
9690 Exp : Node_Id;
9691
9692 function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
9693 -- Returns True if and only if the expression denoted by N does not
9694 -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
9695
9696 ---------------------------------
9697 -- Is_Preelaborable_Expression --
9698 ---------------------------------
9699
9700 function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
9701 Exp : Node_Id;
9702 Assn : Node_Id;
9703 Choice : Node_Id;
9704 Comp_Type : Entity_Id;
9705 Is_Array_Aggr : Boolean;
9706
9707 begin
9708 if Is_OK_Static_Expression (N) then
9709 return True;
9710
9711 elsif Nkind (N) = N_Null then
9712 return True;
9713
9714 -- Attributes are allowed in general, even if their prefix is a
9715 -- formal type. (It seems that certain attributes known not to be
9716 -- static might not be allowed, but there are no rules to prevent
9717 -- them.)
9718
9719 elsif Nkind (N) = N_Attribute_Reference then
9720 return True;
9721
9722 -- The name of a discriminant evaluated within its parent type is
9723 -- defined to be preelaborable (10.2.1(8)). Note that we test for
9724 -- names that denote discriminals as well as discriminants to
9725 -- catch references occurring within init procs.
9726
9727 elsif Is_Entity_Name (N)
9728 and then
9729 (Ekind (Entity (N)) = E_Discriminant
9730 or else (Ekind_In (Entity (N), E_Constant, E_In_Parameter)
9731 and then Present (Discriminal_Link (Entity (N)))))
9732 then
9733 return True;
9734
9735 elsif Nkind (N) = N_Qualified_Expression then
9736 return Is_Preelaborable_Expression (Expression (N));
9737
9738 -- For aggregates we have to check that each of the associations
9739 -- is preelaborable.
9740
9741 elsif Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
9742 Is_Array_Aggr := Is_Array_Type (Etype (N));
9743
9744 if Is_Array_Aggr then
9745 Comp_Type := Component_Type (Etype (N));
9746 end if;
9747
9748 -- Check the ancestor part of extension aggregates, which must
9749 -- be either the name of a type that has preelaborable init or
9750 -- an expression that is preelaborable.
9751
9752 if Nkind (N) = N_Extension_Aggregate then
9753 declare
9754 Anc_Part : constant Node_Id := Ancestor_Part (N);
9755
9756 begin
9757 if Is_Entity_Name (Anc_Part)
9758 and then Is_Type (Entity (Anc_Part))
9759 then
9760 if not Has_Preelaborable_Initialization
9761 (Entity (Anc_Part))
9762 then
9763 return False;
9764 end if;
9765
9766 elsif not Is_Preelaborable_Expression (Anc_Part) then
9767 return False;
9768 end if;
9769 end;
9770 end if;
9771
9772 -- Check positional associations
9773
9774 Exp := First (Expressions (N));
9775 while Present (Exp) loop
9776 if not Is_Preelaborable_Expression (Exp) then
9777 return False;
9778 end if;
9779
9780 Next (Exp);
9781 end loop;
9782
9783 -- Check named associations
9784
9785 Assn := First (Component_Associations (N));
9786 while Present (Assn) loop
9787 Choice := First (Choices (Assn));
9788 while Present (Choice) loop
9789 if Is_Array_Aggr then
9790 if Nkind (Choice) = N_Others_Choice then
9791 null;
9792
9793 elsif Nkind (Choice) = N_Range then
9794 if not Is_OK_Static_Range (Choice) then
9795 return False;
9796 end if;
9797
9798 elsif not Is_OK_Static_Expression (Choice) then
9799 return False;
9800 end if;
9801
9802 else
9803 Comp_Type := Etype (Choice);
9804 end if;
9805
9806 Next (Choice);
9807 end loop;
9808
9809 -- If the association has a <> at this point, then we have
9810 -- to check whether the component's type has preelaborable
9811 -- initialization. Note that this only occurs when the
9812 -- association's corresponding component does not have a
9813 -- default expression, the latter case having already been
9814 -- expanded as an expression for the association.
9815
9816 if Box_Present (Assn) then
9817 if not Has_Preelaborable_Initialization (Comp_Type) then
9818 return False;
9819 end if;
9820
9821 -- In the expression case we check whether the expression
9822 -- is preelaborable.
9823
9824 elsif
9825 not Is_Preelaborable_Expression (Expression (Assn))
9826 then
9827 return False;
9828 end if;
9829
9830 Next (Assn);
9831 end loop;
9832
9833 -- If we get here then aggregate as a whole is preelaborable
9834
9835 return True;
9836
9837 -- All other cases are not preelaborable
9838
9839 else
9840 return False;
9841 end if;
9842 end Is_Preelaborable_Expression;
9843
9844 -- Start of processing for Check_Components
9845
9846 begin
9847 -- Loop through entities of record or protected type
9848
9849 Ent := E;
9850 while Present (Ent) loop
9851
9852 -- We are interested only in components and discriminants
9853
9854 Exp := Empty;
9855
9856 case Ekind (Ent) is
9857 when E_Component =>
9858
9859 -- Get default expression if any. If there is no declaration
9860 -- node, it means we have an internal entity. The parent and
9861 -- tag fields are examples of such entities. For such cases,
9862 -- we just test the type of the entity.
9863
9864 if Present (Declaration_Node (Ent)) then
9865 Exp := Expression (Declaration_Node (Ent));
9866 end if;
9867
9868 when E_Discriminant =>
9869
9870 -- Note: for a renamed discriminant, the Declaration_Node
9871 -- may point to the one from the ancestor, and have a
9872 -- different expression, so use the proper attribute to
9873 -- retrieve the expression from the derived constraint.
9874
9875 Exp := Discriminant_Default_Value (Ent);
9876
9877 when others =>
9878 goto Check_Next_Entity;
9879 end case;
9880
9881 -- A component has PI if it has no default expression and the
9882 -- component type has PI.
9883
9884 if No (Exp) then
9885 if not Has_Preelaborable_Initialization (Etype (Ent)) then
9886 Has_PE := False;
9887 exit;
9888 end if;
9889
9890 -- Require the default expression to be preelaborable
9891
9892 elsif not Is_Preelaborable_Expression (Exp) then
9893 Has_PE := False;
9894 exit;
9895 end if;
9896
9897 <<Check_Next_Entity>>
9898 Next_Entity (Ent);
9899 end loop;
9900 end Check_Components;
9901
9902 -- Start of processing for Has_Preelaborable_Initialization
9903
9904 begin
9905 -- Immediate return if already marked as known preelaborable init. This
9906 -- covers types for which this function has already been called once
9907 -- and returned True (in which case the result is cached), and also
9908 -- types to which a pragma Preelaborable_Initialization applies.
9909
9910 if Known_To_Have_Preelab_Init (E) then
9911 return True;
9912 end if;
9913
9914 -- If the type is a subtype representing a generic actual type, then
9915 -- test whether its base type has preelaborable initialization since
9916 -- the subtype representing the actual does not inherit this attribute
9917 -- from the actual or formal. (but maybe it should???)
9918
9919 if Is_Generic_Actual_Type (E) then
9920 return Has_Preelaborable_Initialization (Base_Type (E));
9921 end if;
9922
9923 -- All elementary types have preelaborable initialization
9924
9925 if Is_Elementary_Type (E) then
9926 Has_PE := True;
9927
9928 -- Array types have PI if the component type has PI
9929
9930 elsif Is_Array_Type (E) then
9931 Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
9932
9933 -- A derived type has preelaborable initialization if its parent type
9934 -- has preelaborable initialization and (in the case of a derived record
9935 -- extension) if the non-inherited components all have preelaborable
9936 -- initialization. However, a user-defined controlled type with an
9937 -- overriding Initialize procedure does not have preelaborable
9938 -- initialization.
9939
9940 elsif Is_Derived_Type (E) then
9941
9942 -- If the derived type is a private extension then it doesn't have
9943 -- preelaborable initialization.
9944
9945 if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
9946 return False;
9947 end if;
9948
9949 -- First check whether ancestor type has preelaborable initialization
9950
9951 Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
9952
9953 -- If OK, check extension components (if any)
9954
9955 if Has_PE and then Is_Record_Type (E) then
9956 Check_Components (First_Entity (E));
9957 end if;
9958
9959 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
9960 -- with a user defined Initialize procedure does not have PI. If
9961 -- the type is untagged, the control primitives come from a component
9962 -- that has already been checked.
9963
9964 if Has_PE
9965 and then Is_Controlled (E)
9966 and then Is_Tagged_Type (E)
9967 and then Has_Overriding_Initialize (E)
9968 then
9969 Has_PE := False;
9970 end if;
9971
9972 -- Private types not derived from a type having preelaborable init and
9973 -- that are not marked with pragma Preelaborable_Initialization do not
9974 -- have preelaborable initialization.
9975
9976 elsif Is_Private_Type (E) then
9977 return False;
9978
9979 -- Record type has PI if it is non private and all components have PI
9980
9981 elsif Is_Record_Type (E) then
9982 Has_PE := True;
9983 Check_Components (First_Entity (E));
9984
9985 -- Protected types must not have entries, and components must meet
9986 -- same set of rules as for record components.
9987
9988 elsif Is_Protected_Type (E) then
9989 if Has_Entries (E) then
9990 Has_PE := False;
9991 else
9992 Has_PE := True;
9993 Check_Components (First_Entity (E));
9994 Check_Components (First_Private_Entity (E));
9995 end if;
9996
9997 -- Type System.Address always has preelaborable initialization
9998
9999 elsif Is_RTE (E, RE_Address) then
10000 Has_PE := True;
10001
10002 -- In all other cases, type does not have preelaborable initialization
10003
10004 else
10005 return False;
10006 end if;
10007
10008 -- If type has preelaborable initialization, cache result
10009
10010 if Has_PE then
10011 Set_Known_To_Have_Preelab_Init (E);
10012 end if;
10013
10014 return Has_PE;
10015 end Has_Preelaborable_Initialization;
10016
10017 ---------------------------
10018 -- Has_Private_Component --
10019 ---------------------------
10020
10021 function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
10022 Btype : Entity_Id := Base_Type (Type_Id);
10023 Component : Entity_Id;
10024
10025 begin
10026 if Error_Posted (Type_Id)
10027 or else Error_Posted (Btype)
10028 then
10029 return False;
10030 end if;
10031
10032 if Is_Class_Wide_Type (Btype) then
10033 Btype := Root_Type (Btype);
10034 end if;
10035
10036 if Is_Private_Type (Btype) then
10037 declare
10038 UT : constant Entity_Id := Underlying_Type (Btype);
10039 begin
10040 if No (UT) then
10041 if No (Full_View (Btype)) then
10042 return not Is_Generic_Type (Btype)
10043 and then
10044 not Is_Generic_Type (Root_Type (Btype));
10045 else
10046 return not Is_Generic_Type (Root_Type (Full_View (Btype)));
10047 end if;
10048 else
10049 return not Is_Frozen (UT) and then Has_Private_Component (UT);
10050 end if;
10051 end;
10052
10053 elsif Is_Array_Type (Btype) then
10054 return Has_Private_Component (Component_Type (Btype));
10055
10056 elsif Is_Record_Type (Btype) then
10057 Component := First_Component (Btype);
10058 while Present (Component) loop
10059 if Has_Private_Component (Etype (Component)) then
10060 return True;
10061 end if;
10062
10063 Next_Component (Component);
10064 end loop;
10065
10066 return False;
10067
10068 elsif Is_Protected_Type (Btype)
10069 and then Present (Corresponding_Record_Type (Btype))
10070 then
10071 return Has_Private_Component (Corresponding_Record_Type (Btype));
10072
10073 else
10074 return False;
10075 end if;
10076 end Has_Private_Component;
10077
10078 ----------------------
10079 -- Has_Signed_Zeros --
10080 ----------------------
10081
10082 function Has_Signed_Zeros (E : Entity_Id) return Boolean is
10083 begin
10084 return Is_Floating_Point_Type (E) and then Signed_Zeros_On_Target;
10085 end Has_Signed_Zeros;
10086
10087 ------------------------------
10088 -- Has_Significant_Contract --
10089 ------------------------------
10090
10091 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean is
10092 Subp_Nam : constant Name_Id := Chars (Subp_Id);
10093
10094 begin
10095 -- _Finalizer procedure
10096
10097 if Subp_Nam = Name_uFinalizer then
10098 return False;
10099
10100 -- _Postconditions procedure
10101
10102 elsif Subp_Nam = Name_uPostconditions then
10103 return False;
10104
10105 -- Predicate function
10106
10107 elsif Ekind (Subp_Id) = E_Function
10108 and then Is_Predicate_Function (Subp_Id)
10109 then
10110 return False;
10111
10112 -- TSS subprogram
10113
10114 elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
10115 return False;
10116
10117 else
10118 return True;
10119 end if;
10120 end Has_Significant_Contract;
10121
10122 -----------------------------
10123 -- Has_Static_Array_Bounds --
10124 -----------------------------
10125
10126 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
10127 Ndims : constant Nat := Number_Dimensions (Typ);
10128
10129 Index : Node_Id;
10130 Low : Node_Id;
10131 High : Node_Id;
10132
10133 begin
10134 -- Unconstrained types do not have static bounds
10135
10136 if not Is_Constrained (Typ) then
10137 return False;
10138 end if;
10139
10140 -- First treat string literals specially, as the lower bound and length
10141 -- of string literals are not stored like those of arrays.
10142
10143 -- A string literal always has static bounds
10144
10145 if Ekind (Typ) = E_String_Literal_Subtype then
10146 return True;
10147 end if;
10148
10149 -- Treat all dimensions in turn
10150
10151 Index := First_Index (Typ);
10152 for Indx in 1 .. Ndims loop
10153
10154 -- In case of an illegal index which is not a discrete type, return
10155 -- that the type is not static.
10156
10157 if not Is_Discrete_Type (Etype (Index))
10158 or else Etype (Index) = Any_Type
10159 then
10160 return False;
10161 end if;
10162
10163 Get_Index_Bounds (Index, Low, High);
10164
10165 if Error_Posted (Low) or else Error_Posted (High) then
10166 return False;
10167 end if;
10168
10169 if Is_OK_Static_Expression (Low)
10170 and then
10171 Is_OK_Static_Expression (High)
10172 then
10173 null;
10174 else
10175 return False;
10176 end if;
10177
10178 Next (Index);
10179 end loop;
10180
10181 -- If we fall through the loop, all indexes matched
10182
10183 return True;
10184 end Has_Static_Array_Bounds;
10185
10186 ----------------
10187 -- Has_Stream --
10188 ----------------
10189
10190 function Has_Stream (T : Entity_Id) return Boolean is
10191 E : Entity_Id;
10192
10193 begin
10194 if No (T) then
10195 return False;
10196
10197 elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
10198 return True;
10199
10200 elsif Is_Array_Type (T) then
10201 return Has_Stream (Component_Type (T));
10202
10203 elsif Is_Record_Type (T) then
10204 E := First_Component (T);
10205 while Present (E) loop
10206 if Has_Stream (Etype (E)) then
10207 return True;
10208 else
10209 Next_Component (E);
10210 end if;
10211 end loop;
10212
10213 return False;
10214
10215 elsif Is_Private_Type (T) then
10216 return Has_Stream (Underlying_Type (T));
10217
10218 else
10219 return False;
10220 end if;
10221 end Has_Stream;
10222
10223 ----------------
10224 -- Has_Suffix --
10225 ----------------
10226
10227 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
10228 begin
10229 Get_Name_String (Chars (E));
10230 return Name_Buffer (Name_Len) = Suffix;
10231 end Has_Suffix;
10232
10233 ----------------
10234 -- Add_Suffix --
10235 ----------------
10236
10237 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
10238 begin
10239 Get_Name_String (Chars (E));
10240 Add_Char_To_Name_Buffer (Suffix);
10241 return Name_Find;
10242 end Add_Suffix;
10243
10244 -------------------
10245 -- Remove_Suffix --
10246 -------------------
10247
10248 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
10249 begin
10250 pragma Assert (Has_Suffix (E, Suffix));
10251 Get_Name_String (Chars (E));
10252 Name_Len := Name_Len - 1;
10253 return Name_Find;
10254 end Remove_Suffix;
10255
10256 ----------------------------------
10257 -- Replace_Null_By_Null_Address --
10258 ----------------------------------
10259
10260 procedure Replace_Null_By_Null_Address (N : Node_Id) is
10261 procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id);
10262 -- Replace operand Op with a reference to Null_Address when the operand
10263 -- denotes a null Address. Other_Op denotes the other operand.
10264
10265 --------------------------
10266 -- Replace_Null_Operand --
10267 --------------------------
10268
10269 procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id) is
10270 begin
10271 -- Check the type of the complementary operand since the N_Null node
10272 -- has not been decorated yet.
10273
10274 if Nkind (Op) = N_Null
10275 and then Is_Descendant_Of_Address (Etype (Other_Op))
10276 then
10277 Rewrite (Op, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (Op)));
10278 end if;
10279 end Replace_Null_Operand;
10280
10281 -- Start of processing for Replace_Null_By_Null_Address
10282
10283 begin
10284 pragma Assert (Relaxed_RM_Semantics);
10285 pragma Assert (Nkind_In (N, N_Null,
10286 N_Op_Eq,
10287 N_Op_Ge,
10288 N_Op_Gt,
10289 N_Op_Le,
10290 N_Op_Lt,
10291 N_Op_Ne));
10292
10293 if Nkind (N) = N_Null then
10294 Rewrite (N, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
10295
10296 else
10297 declare
10298 L : constant Node_Id := Left_Opnd (N);
10299 R : constant Node_Id := Right_Opnd (N);
10300
10301 begin
10302 Replace_Null_Operand (L, Other_Op => R);
10303 Replace_Null_Operand (R, Other_Op => L);
10304 end;
10305 end if;
10306 end Replace_Null_By_Null_Address;
10307
10308 --------------------------
10309 -- Has_Tagged_Component --
10310 --------------------------
10311
10312 function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
10313 Comp : Entity_Id;
10314
10315 begin
10316 if Is_Private_Type (Typ) and then Present (Underlying_Type (Typ)) then
10317 return Has_Tagged_Component (Underlying_Type (Typ));
10318
10319 elsif Is_Array_Type (Typ) then
10320 return Has_Tagged_Component (Component_Type (Typ));
10321
10322 elsif Is_Tagged_Type (Typ) then
10323 return True;
10324
10325 elsif Is_Record_Type (Typ) then
10326 Comp := First_Component (Typ);
10327 while Present (Comp) loop
10328 if Has_Tagged_Component (Etype (Comp)) then
10329 return True;
10330 end if;
10331
10332 Next_Component (Comp);
10333 end loop;
10334
10335 return False;
10336
10337 else
10338 return False;
10339 end if;
10340 end Has_Tagged_Component;
10341
10342 -----------------------------
10343 -- Has_Undefined_Reference --
10344 -----------------------------
10345
10346 function Has_Undefined_Reference (Expr : Node_Id) return Boolean is
10347 Has_Undef_Ref : Boolean := False;
10348 -- Flag set when expression Expr contains at least one undefined
10349 -- reference.
10350
10351 function Is_Undefined_Reference (N : Node_Id) return Traverse_Result;
10352 -- Determine whether N denotes a reference and if it does, whether it is
10353 -- undefined.
10354
10355 ----------------------------
10356 -- Is_Undefined_Reference --
10357 ----------------------------
10358
10359 function Is_Undefined_Reference (N : Node_Id) return Traverse_Result is
10360 begin
10361 if Is_Entity_Name (N)
10362 and then Present (Entity (N))
10363 and then Entity (N) = Any_Id
10364 then
10365 Has_Undef_Ref := True;
10366 return Abandon;
10367 end if;
10368
10369 return OK;
10370 end Is_Undefined_Reference;
10371
10372 procedure Find_Undefined_References is
10373 new Traverse_Proc (Is_Undefined_Reference);
10374
10375 -- Start of processing for Has_Undefined_Reference
10376
10377 begin
10378 Find_Undefined_References (Expr);
10379
10380 return Has_Undef_Ref;
10381 end Has_Undefined_Reference;
10382
10383 ----------------------------
10384 -- Has_Volatile_Component --
10385 ----------------------------
10386
10387 function Has_Volatile_Component (Typ : Entity_Id) return Boolean is
10388 Comp : Entity_Id;
10389
10390 begin
10391 if Has_Volatile_Components (Typ) then
10392 return True;
10393
10394 elsif Is_Array_Type (Typ) then
10395 return Is_Volatile (Component_Type (Typ));
10396
10397 elsif Is_Record_Type (Typ) then
10398 Comp := First_Component (Typ);
10399 while Present (Comp) loop
10400 if Is_Volatile_Object (Comp) then
10401 return True;
10402 end if;
10403
10404 Comp := Next_Component (Comp);
10405 end loop;
10406 end if;
10407
10408 return False;
10409 end Has_Volatile_Component;
10410
10411 -------------------------
10412 -- Implementation_Kind --
10413 -------------------------
10414
10415 function Implementation_Kind (Subp : Entity_Id) return Name_Id is
10416 Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
10417 Arg : Node_Id;
10418 begin
10419 pragma Assert (Present (Impl_Prag));
10420 Arg := Last (Pragma_Argument_Associations (Impl_Prag));
10421 return Chars (Get_Pragma_Arg (Arg));
10422 end Implementation_Kind;
10423
10424 --------------------------
10425 -- Implements_Interface --
10426 --------------------------
10427
10428 function Implements_Interface
10429 (Typ_Ent : Entity_Id;
10430 Iface_Ent : Entity_Id;
10431 Exclude_Parents : Boolean := False) return Boolean
10432 is
10433 Ifaces_List : Elist_Id;
10434 Elmt : Elmt_Id;
10435 Iface : Entity_Id := Base_Type (Iface_Ent);
10436 Typ : Entity_Id := Base_Type (Typ_Ent);
10437
10438 begin
10439 if Is_Class_Wide_Type (Typ) then
10440 Typ := Root_Type (Typ);
10441 end if;
10442
10443 if not Has_Interfaces (Typ) then
10444 return False;
10445 end if;
10446
10447 if Is_Class_Wide_Type (Iface) then
10448 Iface := Root_Type (Iface);
10449 end if;
10450
10451 Collect_Interfaces (Typ, Ifaces_List);
10452
10453 Elmt := First_Elmt (Ifaces_List);
10454 while Present (Elmt) loop
10455 if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
10456 and then Exclude_Parents
10457 then
10458 null;
10459
10460 elsif Node (Elmt) = Iface then
10461 return True;
10462 end if;
10463
10464 Next_Elmt (Elmt);
10465 end loop;
10466
10467 return False;
10468 end Implements_Interface;
10469
10470 ------------------------------------
10471 -- In_Assertion_Expression_Pragma --
10472 ------------------------------------
10473
10474 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean is
10475 Par : Node_Id;
10476 Prag : Node_Id := Empty;
10477
10478 begin
10479 -- Climb the parent chain looking for an enclosing pragma
10480
10481 Par := N;
10482 while Present (Par) loop
10483 if Nkind (Par) = N_Pragma then
10484 Prag := Par;
10485 exit;
10486
10487 -- Precondition-like pragmas are expanded into if statements, check
10488 -- the original node instead.
10489
10490 elsif Nkind (Original_Node (Par)) = N_Pragma then
10491 Prag := Original_Node (Par);
10492 exit;
10493
10494 -- The expansion of attribute 'Old generates a constant to capture
10495 -- the result of the prefix. If the parent traversal reaches
10496 -- one of these constants, then the node technically came from a
10497 -- postcondition-like pragma. Note that the Ekind is not tested here
10498 -- because N may be the expression of an object declaration which is
10499 -- currently being analyzed. Such objects carry Ekind of E_Void.
10500
10501 elsif Nkind (Par) = N_Object_Declaration
10502 and then Constant_Present (Par)
10503 and then Stores_Attribute_Old_Prefix (Defining_Entity (Par))
10504 then
10505 return True;
10506
10507 -- Prevent the search from going too far
10508
10509 elsif Is_Body_Or_Package_Declaration (Par) then
10510 return False;
10511 end if;
10512
10513 Par := Parent (Par);
10514 end loop;
10515
10516 return
10517 Present (Prag)
10518 and then Assertion_Expression_Pragma (Get_Pragma_Id (Prag));
10519 end In_Assertion_Expression_Pragma;
10520
10521 -----------------
10522 -- In_Instance --
10523 -----------------
10524
10525 function In_Instance return Boolean is
10526 Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
10527 S : Entity_Id;
10528
10529 begin
10530 S := Current_Scope;
10531 while Present (S) and then S /= Standard_Standard loop
10532 if Ekind_In (S, E_Function, E_Package, E_Procedure)
10533 and then Is_Generic_Instance (S)
10534 then
10535 -- A child instance is always compiled in the context of a parent
10536 -- instance. Nevertheless, the actuals are not analyzed in an
10537 -- instance context. We detect this case by examining the current
10538 -- compilation unit, which must be a child instance, and checking
10539 -- that it is not currently on the scope stack.
10540
10541 if Is_Child_Unit (Curr_Unit)
10542 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
10543 N_Package_Instantiation
10544 and then not In_Open_Scopes (Curr_Unit)
10545 then
10546 return False;
10547 else
10548 return True;
10549 end if;
10550 end if;
10551
10552 S := Scope (S);
10553 end loop;
10554
10555 return False;
10556 end In_Instance;
10557
10558 ----------------------
10559 -- In_Instance_Body --
10560 ----------------------
10561
10562 function In_Instance_Body return Boolean is
10563 S : Entity_Id;
10564
10565 begin
10566 S := Current_Scope;
10567 while Present (S) and then S /= Standard_Standard loop
10568 if Ekind_In (S, E_Function, E_Procedure)
10569 and then Is_Generic_Instance (S)
10570 then
10571 return True;
10572
10573 elsif Ekind (S) = E_Package
10574 and then In_Package_Body (S)
10575 and then Is_Generic_Instance (S)
10576 then
10577 return True;
10578 end if;
10579
10580 S := Scope (S);
10581 end loop;
10582
10583 return False;
10584 end In_Instance_Body;
10585
10586 -----------------------------
10587 -- In_Instance_Not_Visible --
10588 -----------------------------
10589
10590 function In_Instance_Not_Visible return Boolean is
10591 S : Entity_Id;
10592
10593 begin
10594 S := Current_Scope;
10595 while Present (S) and then S /= Standard_Standard loop
10596 if Ekind_In (S, E_Function, E_Procedure)
10597 and then Is_Generic_Instance (S)
10598 then
10599 return True;
10600
10601 elsif Ekind (S) = E_Package
10602 and then (In_Package_Body (S) or else In_Private_Part (S))
10603 and then Is_Generic_Instance (S)
10604 then
10605 return True;
10606 end if;
10607
10608 S := Scope (S);
10609 end loop;
10610
10611 return False;
10612 end In_Instance_Not_Visible;
10613
10614 ------------------------------
10615 -- In_Instance_Visible_Part --
10616 ------------------------------
10617
10618 function In_Instance_Visible_Part return Boolean is
10619 S : Entity_Id;
10620
10621 begin
10622 S := Current_Scope;
10623 while Present (S) and then S /= Standard_Standard loop
10624 if Ekind (S) = E_Package
10625 and then Is_Generic_Instance (S)
10626 and then not In_Package_Body (S)
10627 and then not In_Private_Part (S)
10628 then
10629 return True;
10630 end if;
10631
10632 S := Scope (S);
10633 end loop;
10634
10635 return False;
10636 end In_Instance_Visible_Part;
10637
10638 ---------------------
10639 -- In_Package_Body --
10640 ---------------------
10641
10642 function In_Package_Body return Boolean is
10643 S : Entity_Id;
10644
10645 begin
10646 S := Current_Scope;
10647 while Present (S) and then S /= Standard_Standard loop
10648 if Ekind (S) = E_Package and then In_Package_Body (S) then
10649 return True;
10650 else
10651 S := Scope (S);
10652 end if;
10653 end loop;
10654
10655 return False;
10656 end In_Package_Body;
10657
10658 --------------------------------
10659 -- In_Parameter_Specification --
10660 --------------------------------
10661
10662 function In_Parameter_Specification (N : Node_Id) return Boolean is
10663 PN : Node_Id;
10664
10665 begin
10666 PN := Parent (N);
10667 while Present (PN) loop
10668 if Nkind (PN) = N_Parameter_Specification then
10669 return True;
10670 end if;
10671
10672 PN := Parent (PN);
10673 end loop;
10674
10675 return False;
10676 end In_Parameter_Specification;
10677
10678 --------------------------
10679 -- In_Pragma_Expression --
10680 --------------------------
10681
10682 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean is
10683 P : Node_Id;
10684 begin
10685 P := Parent (N);
10686 loop
10687 if No (P) then
10688 return False;
10689 elsif Nkind (P) = N_Pragma and then Pragma_Name (P) = Nam then
10690 return True;
10691 else
10692 P := Parent (P);
10693 end if;
10694 end loop;
10695 end In_Pragma_Expression;
10696
10697 ---------------------------
10698 -- In_Pre_Post_Condition --
10699 ---------------------------
10700
10701 function In_Pre_Post_Condition (N : Node_Id) return Boolean is
10702 Par : Node_Id;
10703 Prag : Node_Id := Empty;
10704 Prag_Id : Pragma_Id;
10705
10706 begin
10707 -- Climb the parent chain looking for an enclosing pragma
10708
10709 Par := N;
10710 while Present (Par) loop
10711 if Nkind (Par) = N_Pragma then
10712 Prag := Par;
10713 exit;
10714
10715 -- Prevent the search from going too far
10716
10717 elsif Is_Body_Or_Package_Declaration (Par) then
10718 exit;
10719 end if;
10720
10721 Par := Parent (Par);
10722 end loop;
10723
10724 if Present (Prag) then
10725 Prag_Id := Get_Pragma_Id (Prag);
10726
10727 return
10728 Prag_Id = Pragma_Post
10729 or else Prag_Id = Pragma_Post_Class
10730 or else Prag_Id = Pragma_Postcondition
10731 or else Prag_Id = Pragma_Pre
10732 or else Prag_Id = Pragma_Pre_Class
10733 or else Prag_Id = Pragma_Precondition;
10734
10735 -- Otherwise the node is not enclosed by a pre/postcondition pragma
10736
10737 else
10738 return False;
10739 end if;
10740 end In_Pre_Post_Condition;
10741
10742 -------------------------------------
10743 -- In_Reverse_Storage_Order_Object --
10744 -------------------------------------
10745
10746 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
10747 Pref : Node_Id;
10748 Btyp : Entity_Id := Empty;
10749
10750 begin
10751 -- Climb up indexed components
10752
10753 Pref := N;
10754 loop
10755 case Nkind (Pref) is
10756 when N_Selected_Component =>
10757 Pref := Prefix (Pref);
10758 exit;
10759
10760 when N_Indexed_Component =>
10761 Pref := Prefix (Pref);
10762
10763 when others =>
10764 Pref := Empty;
10765 exit;
10766 end case;
10767 end loop;
10768
10769 if Present (Pref) then
10770 Btyp := Base_Type (Etype (Pref));
10771 end if;
10772
10773 return Present (Btyp)
10774 and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
10775 and then Reverse_Storage_Order (Btyp);
10776 end In_Reverse_Storage_Order_Object;
10777
10778 --------------------------------------
10779 -- In_Subprogram_Or_Concurrent_Unit --
10780 --------------------------------------
10781
10782 function In_Subprogram_Or_Concurrent_Unit return Boolean is
10783 E : Entity_Id;
10784 K : Entity_Kind;
10785
10786 begin
10787 -- Use scope chain to check successively outer scopes
10788
10789 E := Current_Scope;
10790 loop
10791 K := Ekind (E);
10792
10793 if K in Subprogram_Kind
10794 or else K in Concurrent_Kind
10795 or else K in Generic_Subprogram_Kind
10796 then
10797 return True;
10798
10799 elsif E = Standard_Standard then
10800 return False;
10801 end if;
10802
10803 E := Scope (E);
10804 end loop;
10805 end In_Subprogram_Or_Concurrent_Unit;
10806
10807 ---------------------
10808 -- In_Visible_Part --
10809 ---------------------
10810
10811 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
10812 begin
10813 return Is_Package_Or_Generic_Package (Scope_Id)
10814 and then In_Open_Scopes (Scope_Id)
10815 and then not In_Package_Body (Scope_Id)
10816 and then not In_Private_Part (Scope_Id);
10817 end In_Visible_Part;
10818
10819 --------------------------------
10820 -- Incomplete_Or_Partial_View --
10821 --------------------------------
10822
10823 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id is
10824 function Inspect_Decls
10825 (Decls : List_Id;
10826 Taft : Boolean := False) return Entity_Id;
10827 -- Check whether a declarative region contains the incomplete or partial
10828 -- view of Id.
10829
10830 -------------------
10831 -- Inspect_Decls --
10832 -------------------
10833
10834 function Inspect_Decls
10835 (Decls : List_Id;
10836 Taft : Boolean := False) return Entity_Id
10837 is
10838 Decl : Node_Id;
10839 Match : Node_Id;
10840
10841 begin
10842 Decl := First (Decls);
10843 while Present (Decl) loop
10844 Match := Empty;
10845
10846 -- The partial view of a Taft-amendment type is an incomplete
10847 -- type.
10848
10849 if Taft then
10850 if Nkind (Decl) = N_Incomplete_Type_Declaration then
10851 Match := Defining_Identifier (Decl);
10852 end if;
10853
10854 -- Otherwise look for a private type whose full view matches the
10855 -- input type. Note that this checks full_type_declaration nodes
10856 -- to account for derivations from a private type where the type
10857 -- declaration hold the partial view and the full view is an
10858 -- itype.
10859
10860 elsif Nkind_In (Decl, N_Full_Type_Declaration,
10861 N_Private_Extension_Declaration,
10862 N_Private_Type_Declaration)
10863 then
10864 Match := Defining_Identifier (Decl);
10865 end if;
10866
10867 -- Guard against unanalyzed entities
10868
10869 if Present (Match)
10870 and then Is_Type (Match)
10871 and then Present (Full_View (Match))
10872 and then Full_View (Match) = Id
10873 then
10874 return Match;
10875 end if;
10876
10877 Next (Decl);
10878 end loop;
10879
10880 return Empty;
10881 end Inspect_Decls;
10882
10883 -- Local variables
10884
10885 Prev : Entity_Id;
10886
10887 -- Start of processing for Incomplete_Or_Partial_View
10888
10889 begin
10890 -- Deferred constant or incomplete type case
10891
10892 Prev := Current_Entity_In_Scope (Id);
10893
10894 if Present (Prev)
10895 and then (Is_Incomplete_Type (Prev) or else Ekind (Prev) = E_Constant)
10896 and then Present (Full_View (Prev))
10897 and then Full_View (Prev) = Id
10898 then
10899 return Prev;
10900 end if;
10901
10902 -- Private or Taft amendment type case
10903
10904 declare
10905 Pkg : constant Entity_Id := Scope (Id);
10906 Pkg_Decl : Node_Id := Pkg;
10907
10908 begin
10909 if Present (Pkg)
10910 and then Ekind_In (Pkg, E_Generic_Package, E_Package)
10911 then
10912 while Nkind (Pkg_Decl) /= N_Package_Specification loop
10913 Pkg_Decl := Parent (Pkg_Decl);
10914 end loop;
10915
10916 -- It is knows that Typ has a private view, look for it in the
10917 -- visible declarations of the enclosing scope. A special case
10918 -- of this is when the two views have been exchanged - the full
10919 -- appears earlier than the private.
10920
10921 if Has_Private_Declaration (Id) then
10922 Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));
10923
10924 -- Exchanged view case, look in the private declarations
10925
10926 if No (Prev) then
10927 Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
10928 end if;
10929
10930 return Prev;
10931
10932 -- Otherwise if this is the package body, then Typ is a potential
10933 -- Taft amendment type. The incomplete view should be located in
10934 -- the private declarations of the enclosing scope.
10935
10936 elsif In_Package_Body (Pkg) then
10937 return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
10938 end if;
10939 end if;
10940 end;
10941
10942 -- The type has no incomplete or private view
10943
10944 return Empty;
10945 end Incomplete_Or_Partial_View;
10946
10947 ----------------------------------
10948 -- Indexed_Component_Bit_Offset --
10949 ----------------------------------
10950
10951 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint is
10952 Exp : constant Node_Id := First (Expressions (N));
10953 Typ : constant Entity_Id := Etype (Prefix (N));
10954 Off : constant Uint := Component_Size (Typ);
10955 Ind : Node_Id;
10956
10957 begin
10958 -- Return early if the component size is not known or variable
10959
10960 if Off = No_Uint or else Off < Uint_0 then
10961 return No_Uint;
10962 end if;
10963
10964 -- Deal with the degenerate case of an empty component
10965
10966 if Off = Uint_0 then
10967 return Off;
10968 end if;
10969
10970 -- Check that both the index value and the low bound are known
10971
10972 if not Compile_Time_Known_Value (Exp) then
10973 return No_Uint;
10974 end if;
10975
10976 Ind := First_Index (Typ);
10977 if No (Ind) then
10978 return No_Uint;
10979 end if;
10980
10981 if Nkind (Ind) = N_Subtype_Indication then
10982 Ind := Constraint (Ind);
10983
10984 if Nkind (Ind) = N_Range_Constraint then
10985 Ind := Range_Expression (Ind);
10986 end if;
10987 end if;
10988
10989 if Nkind (Ind) /= N_Range
10990 or else not Compile_Time_Known_Value (Low_Bound (Ind))
10991 then
10992 return No_Uint;
10993 end if;
10994
10995 -- Return the scaled offset
10996
10997 return Off * (Expr_Value (Exp) - Expr_Value (Low_Bound ((Ind))));
10998 end Indexed_Component_Bit_Offset;
10999
11000 ----------------------------
11001 -- Inherit_Rep_Item_Chain --
11002 ----------------------------
11003
11004 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id) is
11005 Item : Node_Id;
11006 Next_Item : Node_Id;
11007
11008 begin
11009 -- There are several inheritance scenarios to consider depending on
11010 -- whether both types have rep item chains and whether the destination
11011 -- type already inherits part of the source type's rep item chain.
11012
11013 -- 1) The source type lacks a rep item chain
11014 -- From_Typ ---> Empty
11015 --
11016 -- Typ --------> Item (or Empty)
11017
11018 -- In this case inheritance cannot take place because there are no items
11019 -- to inherit.
11020
11021 -- 2) The destination type lacks a rep item chain
11022 -- From_Typ ---> Item ---> ...
11023 --
11024 -- Typ --------> Empty
11025
11026 -- Inheritance takes place by setting the First_Rep_Item of the
11027 -- destination type to the First_Rep_Item of the source type.
11028 -- From_Typ ---> Item ---> ...
11029 -- ^
11030 -- Typ -----------+
11031
11032 -- 3.1) Both source and destination types have at least one rep item.
11033 -- The destination type does NOT inherit a rep item from the source
11034 -- type.
11035 -- From_Typ ---> Item ---> Item
11036 --
11037 -- Typ --------> Item ---> Item
11038
11039 -- Inheritance takes place by setting the Next_Rep_Item of the last item
11040 -- of the destination type to the First_Rep_Item of the source type.
11041 -- From_Typ -------------------> Item ---> Item
11042 -- ^
11043 -- Typ --------> Item ---> Item --+
11044
11045 -- 3.2) Both source and destination types have at least one rep item.
11046 -- The destination type DOES inherit part of the rep item chain of the
11047 -- source type.
11048 -- From_Typ ---> Item ---> Item ---> Item
11049 -- ^
11050 -- Typ --------> Item ------+
11051
11052 -- This rare case arises when the full view of a private extension must
11053 -- inherit the rep item chain from the full view of its parent type and
11054 -- the full view of the parent type contains extra rep items. Currently
11055 -- only invariants may lead to such form of inheritance.
11056
11057 -- type From_Typ is tagged private
11058 -- with Type_Invariant'Class => Item_2;
11059
11060 -- type Typ is new From_Typ with private
11061 -- with Type_Invariant => Item_4;
11062
11063 -- At this point the rep item chains contain the following items
11064
11065 -- From_Typ -----------> Item_2 ---> Item_3
11066 -- ^
11067 -- Typ --------> Item_4 --+
11068
11069 -- The full views of both types may introduce extra invariants
11070
11071 -- type From_Typ is tagged null record
11072 -- with Type_Invariant => Item_1;
11073
11074 -- type Typ is new From_Typ with null record;
11075
11076 -- The full view of Typ would have to inherit any new rep items added to
11077 -- the full view of From_Typ.
11078
11079 -- From_Typ -----------> Item_1 ---> Item_2 ---> Item_3
11080 -- ^
11081 -- Typ --------> Item_4 --+
11082
11083 -- To achieve this form of inheritance, the destination type must first
11084 -- sever the link between its own rep chain and that of the source type,
11085 -- then inheritance 3.1 takes place.
11086
11087 -- Case 1: The source type lacks a rep item chain
11088
11089 if No (First_Rep_Item (From_Typ)) then
11090 return;
11091
11092 -- Case 2: The destination type lacks a rep item chain
11093
11094 elsif No (First_Rep_Item (Typ)) then
11095 Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
11096
11097 -- Case 3: Both the source and destination types have at least one rep
11098 -- item. Traverse the rep item chain of the destination type to find the
11099 -- last rep item.
11100
11101 else
11102 Item := Empty;
11103 Next_Item := First_Rep_Item (Typ);
11104 while Present (Next_Item) loop
11105
11106 -- Detect a link between the destination type's rep chain and that
11107 -- of the source type. There are two possibilities:
11108
11109 -- Variant 1
11110 -- Next_Item
11111 -- V
11112 -- From_Typ ---> Item_1 --->
11113 -- ^
11114 -- Typ -----------+
11115 --
11116 -- Item is Empty
11117
11118 -- Variant 2
11119 -- Next_Item
11120 -- V
11121 -- From_Typ ---> Item_1 ---> Item_2 --->
11122 -- ^
11123 -- Typ --------> Item_3 ------+
11124 -- ^
11125 -- Item
11126
11127 if Has_Rep_Item (From_Typ, Next_Item) then
11128 exit;
11129 end if;
11130
11131 Item := Next_Item;
11132 Next_Item := Next_Rep_Item (Next_Item);
11133 end loop;
11134
11135 -- Inherit the source type's rep item chain
11136
11137 if Present (Item) then
11138 Set_Next_Rep_Item (Item, First_Rep_Item (From_Typ));
11139 else
11140 Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
11141 end if;
11142 end if;
11143 end Inherit_Rep_Item_Chain;
11144
11145 ---------------------------------
11146 -- Insert_Explicit_Dereference --
11147 ---------------------------------
11148
11149 procedure Insert_Explicit_Dereference (N : Node_Id) is
11150 New_Prefix : constant Node_Id := Relocate_Node (N);
11151 Ent : Entity_Id := Empty;
11152 Pref : Node_Id;
11153 I : Interp_Index;
11154 It : Interp;
11155 T : Entity_Id;
11156
11157 begin
11158 Save_Interps (N, New_Prefix);
11159
11160 Rewrite (N,
11161 Make_Explicit_Dereference (Sloc (Parent (N)),
11162 Prefix => New_Prefix));
11163
11164 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
11165
11166 if Is_Overloaded (New_Prefix) then
11167
11168 -- The dereference is also overloaded, and its interpretations are
11169 -- the designated types of the interpretations of the original node.
11170
11171 Set_Etype (N, Any_Type);
11172
11173 Get_First_Interp (New_Prefix, I, It);
11174 while Present (It.Nam) loop
11175 T := It.Typ;
11176
11177 if Is_Access_Type (T) then
11178 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
11179 end if;
11180
11181 Get_Next_Interp (I, It);
11182 end loop;
11183
11184 End_Interp_List;
11185
11186 else
11187 -- Prefix is unambiguous: mark the original prefix (which might
11188 -- Come_From_Source) as a reference, since the new (relocated) one
11189 -- won't be taken into account.
11190
11191 if Is_Entity_Name (New_Prefix) then
11192 Ent := Entity (New_Prefix);
11193 Pref := New_Prefix;
11194
11195 -- For a retrieval of a subcomponent of some composite object,
11196 -- retrieve the ultimate entity if there is one.
11197
11198 elsif Nkind_In (New_Prefix, N_Selected_Component,
11199 N_Indexed_Component)
11200 then
11201 Pref := Prefix (New_Prefix);
11202 while Present (Pref)
11203 and then Nkind_In (Pref, N_Selected_Component,
11204 N_Indexed_Component)
11205 loop
11206 Pref := Prefix (Pref);
11207 end loop;
11208
11209 if Present (Pref) and then Is_Entity_Name (Pref) then
11210 Ent := Entity (Pref);
11211 end if;
11212 end if;
11213
11214 -- Place the reference on the entity node
11215
11216 if Present (Ent) then
11217 Generate_Reference (Ent, Pref);
11218 end if;
11219 end if;
11220 end Insert_Explicit_Dereference;
11221
11222 ------------------------------------------
11223 -- Inspect_Deferred_Constant_Completion --
11224 ------------------------------------------
11225
11226 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
11227 Decl : Node_Id;
11228
11229 begin
11230 Decl := First (Decls);
11231 while Present (Decl) loop
11232
11233 -- Deferred constant signature
11234
11235 if Nkind (Decl) = N_Object_Declaration
11236 and then Constant_Present (Decl)
11237 and then No (Expression (Decl))
11238
11239 -- No need to check internally generated constants
11240
11241 and then Comes_From_Source (Decl)
11242
11243 -- The constant is not completed. A full object declaration or a
11244 -- pragma Import complete a deferred constant.
11245
11246 and then not Has_Completion (Defining_Identifier (Decl))
11247 then
11248 Error_Msg_N
11249 ("constant declaration requires initialization expression",
11250 Defining_Identifier (Decl));
11251 end if;
11252
11253 Decl := Next (Decl);
11254 end loop;
11255 end Inspect_Deferred_Constant_Completion;
11256
11257 -----------------------------
11258 -- Install_Generic_Formals --
11259 -----------------------------
11260
11261 procedure Install_Generic_Formals (Subp_Id : Entity_Id) is
11262 E : Entity_Id;
11263
11264 begin
11265 pragma Assert (Is_Generic_Subprogram (Subp_Id));
11266
11267 E := First_Entity (Subp_Id);
11268 while Present (E) loop
11269 Install_Entity (E);
11270 Next_Entity (E);
11271 end loop;
11272 end Install_Generic_Formals;
11273
11274 -----------------------------
11275 -- Is_Actual_Out_Parameter --
11276 -----------------------------
11277
11278 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
11279 Formal : Entity_Id;
11280 Call : Node_Id;
11281 begin
11282 Find_Actual (N, Formal, Call);
11283 return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
11284 end Is_Actual_Out_Parameter;
11285
11286 -------------------------
11287 -- Is_Actual_Parameter --
11288 -------------------------
11289
11290 function Is_Actual_Parameter (N : Node_Id) return Boolean is
11291 PK : constant Node_Kind := Nkind (Parent (N));
11292
11293 begin
11294 case PK is
11295 when N_Parameter_Association =>
11296 return N = Explicit_Actual_Parameter (Parent (N));
11297
11298 when N_Subprogram_Call =>
11299 return Is_List_Member (N)
11300 and then
11301 List_Containing (N) = Parameter_Associations (Parent (N));
11302
11303 when others =>
11304 return False;
11305 end case;
11306 end Is_Actual_Parameter;
11307
11308 --------------------------------
11309 -- Is_Actual_Tagged_Parameter --
11310 --------------------------------
11311
11312 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
11313 Formal : Entity_Id;
11314 Call : Node_Id;
11315 begin
11316 Find_Actual (N, Formal, Call);
11317 return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
11318 end Is_Actual_Tagged_Parameter;
11319
11320 ---------------------
11321 -- Is_Aliased_View --
11322 ---------------------
11323
11324 function Is_Aliased_View (Obj : Node_Id) return Boolean is
11325 E : Entity_Id;
11326
11327 begin
11328 if Is_Entity_Name (Obj) then
11329 E := Entity (Obj);
11330
11331 return
11332 (Is_Object (E)
11333 and then
11334 (Is_Aliased (E)
11335 or else (Present (Renamed_Object (E))
11336 and then Is_Aliased_View (Renamed_Object (E)))))
11337
11338 or else ((Is_Formal (E)
11339 or else Ekind_In (E, E_Generic_In_Out_Parameter,
11340 E_Generic_In_Parameter))
11341 and then Is_Tagged_Type (Etype (E)))
11342
11343 or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))
11344
11345 -- Current instance of type, either directly or as rewritten
11346 -- reference to the current object.
11347
11348 or else (Is_Entity_Name (Original_Node (Obj))
11349 and then Present (Entity (Original_Node (Obj)))
11350 and then Is_Type (Entity (Original_Node (Obj))))
11351
11352 or else (Is_Type (E) and then E = Current_Scope)
11353
11354 or else (Is_Incomplete_Or_Private_Type (E)
11355 and then Full_View (E) = Current_Scope)
11356
11357 -- Ada 2012 AI05-0053: the return object of an extended return
11358 -- statement is aliased if its type is immutably limited.
11359
11360 or else (Is_Return_Object (E)
11361 and then Is_Limited_View (Etype (E)));
11362
11363 elsif Nkind (Obj) = N_Selected_Component then
11364 return Is_Aliased (Entity (Selector_Name (Obj)));
11365
11366 elsif Nkind (Obj) = N_Indexed_Component then
11367 return Has_Aliased_Components (Etype (Prefix (Obj)))
11368 or else
11369 (Is_Access_Type (Etype (Prefix (Obj)))
11370 and then Has_Aliased_Components
11371 (Designated_Type (Etype (Prefix (Obj)))));
11372
11373 elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then
11374 return Is_Tagged_Type (Etype (Obj))
11375 and then Is_Aliased_View (Expression (Obj));
11376
11377 elsif Nkind (Obj) = N_Explicit_Dereference then
11378 return Nkind (Original_Node (Obj)) /= N_Function_Call;
11379
11380 else
11381 return False;
11382 end if;
11383 end Is_Aliased_View;
11384
11385 -------------------------
11386 -- Is_Ancestor_Package --
11387 -------------------------
11388
11389 function Is_Ancestor_Package
11390 (E1 : Entity_Id;
11391 E2 : Entity_Id) return Boolean
11392 is
11393 Par : Entity_Id;
11394
11395 begin
11396 Par := E2;
11397 while Present (Par) and then Par /= Standard_Standard loop
11398 if Par = E1 then
11399 return True;
11400 end if;
11401
11402 Par := Scope (Par);
11403 end loop;
11404
11405 return False;
11406 end Is_Ancestor_Package;
11407
11408 ----------------------
11409 -- Is_Atomic_Object --
11410 ----------------------
11411
11412 function Is_Atomic_Object (N : Node_Id) return Boolean is
11413
11414 function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
11415 -- Determines if given object has atomic components
11416
11417 function Is_Atomic_Prefix (N : Node_Id) return Boolean;
11418 -- If prefix is an implicit dereference, examine designated type
11419
11420 ----------------------
11421 -- Is_Atomic_Prefix --
11422 ----------------------
11423
11424 function Is_Atomic_Prefix (N : Node_Id) return Boolean is
11425 begin
11426 if Is_Access_Type (Etype (N)) then
11427 return
11428 Has_Atomic_Components (Designated_Type (Etype (N)));
11429 else
11430 return Object_Has_Atomic_Components (N);
11431 end if;
11432 end Is_Atomic_Prefix;
11433
11434 ----------------------------------
11435 -- Object_Has_Atomic_Components --
11436 ----------------------------------
11437
11438 function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
11439 begin
11440 if Has_Atomic_Components (Etype (N))
11441 or else Is_Atomic (Etype (N))
11442 then
11443 return True;
11444
11445 elsif Is_Entity_Name (N)
11446 and then (Has_Atomic_Components (Entity (N))
11447 or else Is_Atomic (Entity (N)))
11448 then
11449 return True;
11450
11451 elsif Nkind (N) = N_Selected_Component
11452 and then Is_Atomic (Entity (Selector_Name (N)))
11453 then
11454 return True;
11455
11456 elsif Nkind (N) = N_Indexed_Component
11457 or else Nkind (N) = N_Selected_Component
11458 then
11459 return Is_Atomic_Prefix (Prefix (N));
11460
11461 else
11462 return False;
11463 end if;
11464 end Object_Has_Atomic_Components;
11465
11466 -- Start of processing for Is_Atomic_Object
11467
11468 begin
11469 -- Predicate is not relevant to subprograms
11470
11471 if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
11472 return False;
11473
11474 elsif Is_Atomic (Etype (N))
11475 or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
11476 then
11477 return True;
11478
11479 elsif Nkind (N) = N_Selected_Component
11480 and then Is_Atomic (Entity (Selector_Name (N)))
11481 then
11482 return True;
11483
11484 elsif Nkind (N) = N_Indexed_Component
11485 or else Nkind (N) = N_Selected_Component
11486 then
11487 return Is_Atomic_Prefix (Prefix (N));
11488
11489 else
11490 return False;
11491 end if;
11492 end Is_Atomic_Object;
11493
11494 -----------------------------
11495 -- Is_Atomic_Or_VFA_Object --
11496 -----------------------------
11497
11498 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean is
11499 begin
11500 return Is_Atomic_Object (N)
11501 or else (Is_Object_Reference (N)
11502 and then Is_Entity_Name (N)
11503 and then (Is_Volatile_Full_Access (Entity (N))
11504 or else
11505 Is_Volatile_Full_Access (Etype (Entity (N)))));
11506 end Is_Atomic_Or_VFA_Object;
11507
11508 -------------------------
11509 -- Is_Attribute_Result --
11510 -------------------------
11511
11512 function Is_Attribute_Result (N : Node_Id) return Boolean is
11513 begin
11514 return Nkind (N) = N_Attribute_Reference
11515 and then Attribute_Name (N) = Name_Result;
11516 end Is_Attribute_Result;
11517
11518 -------------------------
11519 -- Is_Attribute_Update --
11520 -------------------------
11521
11522 function Is_Attribute_Update (N : Node_Id) return Boolean is
11523 begin
11524 return Nkind (N) = N_Attribute_Reference
11525 and then Attribute_Name (N) = Name_Update;
11526 end Is_Attribute_Update;
11527
11528 ------------------------------------
11529 -- Is_Body_Or_Package_Declaration --
11530 ------------------------------------
11531
11532 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean is
11533 begin
11534 return Nkind_In (N, N_Entry_Body,
11535 N_Package_Body,
11536 N_Package_Declaration,
11537 N_Protected_Body,
11538 N_Subprogram_Body,
11539 N_Task_Body);
11540 end Is_Body_Or_Package_Declaration;
11541
11542 -----------------------
11543 -- Is_Bounded_String --
11544 -----------------------
11545
11546 function Is_Bounded_String (T : Entity_Id) return Boolean is
11547 Under : constant Entity_Id := Underlying_Type (Root_Type (T));
11548
11549 begin
11550 -- Check whether T is ultimately derived from Ada.Strings.Superbounded.
11551 -- Super_String, or one of the [Wide_]Wide_ versions. This will
11552 -- be True for all the Bounded_String types in instances of the
11553 -- Generic_Bounded_Length generics, and for types derived from those.
11554
11555 return Present (Under)
11556 and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
11557 Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
11558 Is_RTE (Root_Type (Under), RO_WW_Super_String));
11559 end Is_Bounded_String;
11560
11561 -------------------------
11562 -- Is_Child_Or_Sibling --
11563 -------------------------
11564
11565 function Is_Child_Or_Sibling
11566 (Pack_1 : Entity_Id;
11567 Pack_2 : Entity_Id) return Boolean
11568 is
11569 function Distance_From_Standard (Pack : Entity_Id) return Nat;
11570 -- Given an arbitrary package, return the number of "climbs" necessary
11571 -- to reach scope Standard_Standard.
11572
11573 procedure Equalize_Depths
11574 (Pack : in out Entity_Id;
11575 Depth : in out Nat;
11576 Depth_To_Reach : Nat);
11577 -- Given an arbitrary package, its depth and a target depth to reach,
11578 -- climb the scope chain until the said depth is reached. The pointer
11579 -- to the package and its depth a modified during the climb.
11580
11581 ----------------------------
11582 -- Distance_From_Standard --
11583 ----------------------------
11584
11585 function Distance_From_Standard (Pack : Entity_Id) return Nat is
11586 Dist : Nat;
11587 Scop : Entity_Id;
11588
11589 begin
11590 Dist := 0;
11591 Scop := Pack;
11592 while Present (Scop) and then Scop /= Standard_Standard loop
11593 Dist := Dist + 1;
11594 Scop := Scope (Scop);
11595 end loop;
11596
11597 return Dist;
11598 end Distance_From_Standard;
11599
11600 ---------------------
11601 -- Equalize_Depths --
11602 ---------------------
11603
11604 procedure Equalize_Depths
11605 (Pack : in out Entity_Id;
11606 Depth : in out Nat;
11607 Depth_To_Reach : Nat)
11608 is
11609 begin
11610 -- The package must be at a greater or equal depth
11611
11612 if Depth < Depth_To_Reach then
11613 raise Program_Error;
11614 end if;
11615
11616 -- Climb the scope chain until the desired depth is reached
11617
11618 while Present (Pack) and then Depth /= Depth_To_Reach loop
11619 Pack := Scope (Pack);
11620 Depth := Depth - 1;
11621 end loop;
11622 end Equalize_Depths;
11623
11624 -- Local variables
11625
11626 P_1 : Entity_Id := Pack_1;
11627 P_1_Child : Boolean := False;
11628 P_1_Depth : Nat := Distance_From_Standard (P_1);
11629 P_2 : Entity_Id := Pack_2;
11630 P_2_Child : Boolean := False;
11631 P_2_Depth : Nat := Distance_From_Standard (P_2);
11632
11633 -- Start of processing for Is_Child_Or_Sibling
11634
11635 begin
11636 pragma Assert
11637 (Ekind (Pack_1) = E_Package and then Ekind (Pack_2) = E_Package);
11638
11639 -- Both packages denote the same entity, therefore they cannot be
11640 -- children or siblings.
11641
11642 if P_1 = P_2 then
11643 return False;
11644
11645 -- One of the packages is at a deeper level than the other. Note that
11646 -- both may still come from differen hierarchies.
11647
11648 -- (root) P_2
11649 -- / \ :
11650 -- X P_2 or X
11651 -- : :
11652 -- P_1 P_1
11653
11654 elsif P_1_Depth > P_2_Depth then
11655 Equalize_Depths
11656 (Pack => P_1,
11657 Depth => P_1_Depth,
11658 Depth_To_Reach => P_2_Depth);
11659 P_1_Child := True;
11660
11661 -- (root) P_1
11662 -- / \ :
11663 -- P_1 X or X
11664 -- : :
11665 -- P_2 P_2
11666
11667 elsif P_2_Depth > P_1_Depth then
11668 Equalize_Depths
11669 (Pack => P_2,
11670 Depth => P_2_Depth,
11671 Depth_To_Reach => P_1_Depth);
11672 P_2_Child := True;
11673 end if;
11674
11675 -- At this stage the package pointers have been elevated to the same
11676 -- depth. If the related entities are the same, then one package is a
11677 -- potential child of the other:
11678
11679 -- P_1
11680 -- :
11681 -- X became P_1 P_2 or vica versa
11682 -- :
11683 -- P_2
11684
11685 if P_1 = P_2 then
11686 if P_1_Child then
11687 return Is_Child_Unit (Pack_1);
11688
11689 else pragma Assert (P_2_Child);
11690 return Is_Child_Unit (Pack_2);
11691 end if;
11692
11693 -- The packages may come from the same package chain or from entirely
11694 -- different hierarcies. To determine this, climb the scope stack until
11695 -- a common root is found.
11696
11697 -- (root) (root 1) (root 2)
11698 -- / \ | |
11699 -- P_1 P_2 P_1 P_2
11700
11701 else
11702 while Present (P_1) and then Present (P_2) loop
11703
11704 -- The two packages may be siblings
11705
11706 if P_1 = P_2 then
11707 return Is_Child_Unit (Pack_1) and then Is_Child_Unit (Pack_2);
11708 end if;
11709
11710 P_1 := Scope (P_1);
11711 P_2 := Scope (P_2);
11712 end loop;
11713 end if;
11714
11715 return False;
11716 end Is_Child_Or_Sibling;
11717
11718 -----------------------------
11719 -- Is_Concurrent_Interface --
11720 -----------------------------
11721
11722 function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
11723 begin
11724 return Is_Interface (T)
11725 and then
11726 (Is_Protected_Interface (T)
11727 or else Is_Synchronized_Interface (T)
11728 or else Is_Task_Interface (T));
11729 end Is_Concurrent_Interface;
11730
11731 -----------------------
11732 -- Is_Constant_Bound --
11733 -----------------------
11734
11735 function Is_Constant_Bound (Exp : Node_Id) return Boolean is
11736 begin
11737 if Compile_Time_Known_Value (Exp) then
11738 return True;
11739
11740 elsif Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
11741 return Is_Constant_Object (Entity (Exp))
11742 or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
11743
11744 elsif Nkind (Exp) in N_Binary_Op then
11745 return Is_Constant_Bound (Left_Opnd (Exp))
11746 and then Is_Constant_Bound (Right_Opnd (Exp))
11747 and then Scope (Entity (Exp)) = Standard_Standard;
11748
11749 else
11750 return False;
11751 end if;
11752 end Is_Constant_Bound;
11753
11754 ---------------------------
11755 -- Is_Container_Element --
11756 ---------------------------
11757
11758 function Is_Container_Element (Exp : Node_Id) return Boolean is
11759 Loc : constant Source_Ptr := Sloc (Exp);
11760 Pref : constant Node_Id := Prefix (Exp);
11761
11762 Call : Node_Id;
11763 -- Call to an indexing aspect
11764
11765 Cont_Typ : Entity_Id;
11766 -- The type of the container being accessed
11767
11768 Elem_Typ : Entity_Id;
11769 -- Its element type
11770
11771 Indexing : Entity_Id;
11772 Is_Const : Boolean;
11773 -- Indicates that constant indexing is used, and the element is thus
11774 -- a constant.
11775
11776 Ref_Typ : Entity_Id;
11777 -- The reference type returned by the indexing operation
11778
11779 begin
11780 -- If C is a container, in a context that imposes the element type of
11781 -- that container, the indexing notation C (X) is rewritten as:
11782
11783 -- Indexing (C, X).Discr.all
11784
11785 -- where Indexing is one of the indexing aspects of the container.
11786 -- If the context does not require a reference, the construct can be
11787 -- rewritten as
11788
11789 -- Element (C, X)
11790
11791 -- First, verify that the construct has the proper form
11792
11793 if not Expander_Active then
11794 return False;
11795
11796 elsif Nkind (Pref) /= N_Selected_Component then
11797 return False;
11798
11799 elsif Nkind (Prefix (Pref)) /= N_Function_Call then
11800 return False;
11801
11802 else
11803 Call := Prefix (Pref);
11804 Ref_Typ := Etype (Call);
11805 end if;
11806
11807 if not Has_Implicit_Dereference (Ref_Typ)
11808 or else No (First (Parameter_Associations (Call)))
11809 or else not Is_Entity_Name (Name (Call))
11810 then
11811 return False;
11812 end if;
11813
11814 -- Retrieve type of container object, and its iterator aspects
11815
11816 Cont_Typ := Etype (First (Parameter_Associations (Call)));
11817 Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Constant_Indexing);
11818 Is_Const := False;
11819
11820 if No (Indexing) then
11821
11822 -- Container should have at least one indexing operation
11823
11824 return False;
11825
11826 elsif Entity (Name (Call)) /= Entity (Indexing) then
11827
11828 -- This may be a variable indexing operation
11829
11830 Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Variable_Indexing);
11831
11832 if No (Indexing)
11833 or else Entity (Name (Call)) /= Entity (Indexing)
11834 then
11835 return False;
11836 end if;
11837
11838 else
11839 Is_Const := True;
11840 end if;
11841
11842 Elem_Typ := Find_Value_Of_Aspect (Cont_Typ, Aspect_Iterator_Element);
11843
11844 if No (Elem_Typ) or else Entity (Elem_Typ) /= Etype (Exp) then
11845 return False;
11846 end if;
11847
11848 -- Check that the expression is not the target of an assignment, in
11849 -- which case the rewriting is not possible.
11850
11851 if not Is_Const then
11852 declare
11853 Par : Node_Id;
11854
11855 begin
11856 Par := Exp;
11857 while Present (Par)
11858 loop
11859 if Nkind (Parent (Par)) = N_Assignment_Statement
11860 and then Par = Name (Parent (Par))
11861 then
11862 return False;
11863
11864 -- A renaming produces a reference, and the transformation
11865 -- does not apply.
11866
11867 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
11868 return False;
11869
11870 elsif Nkind_In
11871 (Nkind (Parent (Par)), N_Function_Call,
11872 N_Procedure_Call_Statement,
11873 N_Entry_Call_Statement)
11874 then
11875 -- Check that the element is not part of an actual for an
11876 -- in-out parameter.
11877
11878 declare
11879 F : Entity_Id;
11880 A : Node_Id;
11881
11882 begin
11883 F := First_Formal (Entity (Name (Parent (Par))));
11884 A := First (Parameter_Associations (Parent (Par)));
11885 while Present (F) loop
11886 if A = Par and then Ekind (F) /= E_In_Parameter then
11887 return False;
11888 end if;
11889
11890 Next_Formal (F);
11891 Next (A);
11892 end loop;
11893 end;
11894
11895 -- E_In_Parameter in a call: element is not modified.
11896
11897 exit;
11898 end if;
11899
11900 Par := Parent (Par);
11901 end loop;
11902 end;
11903 end if;
11904
11905 -- The expression has the proper form and the context requires the
11906 -- element type. Retrieve the Element function of the container and
11907 -- rewrite the construct as a call to it.
11908
11909 declare
11910 Op : Elmt_Id;
11911
11912 begin
11913 Op := First_Elmt (Primitive_Operations (Cont_Typ));
11914 while Present (Op) loop
11915 exit when Chars (Node (Op)) = Name_Element;
11916 Next_Elmt (Op);
11917 end loop;
11918
11919 if No (Op) then
11920 return False;
11921
11922 else
11923 Rewrite (Exp,
11924 Make_Function_Call (Loc,
11925 Name => New_Occurrence_Of (Node (Op), Loc),
11926 Parameter_Associations => Parameter_Associations (Call)));
11927 Analyze_And_Resolve (Exp, Entity (Elem_Typ));
11928 return True;
11929 end if;
11930 end;
11931 end Is_Container_Element;
11932
11933 ----------------------------
11934 -- Is_Contract_Annotation --
11935 ----------------------------
11936
11937 function Is_Contract_Annotation (Item : Node_Id) return Boolean is
11938 begin
11939 return Is_Package_Contract_Annotation (Item)
11940 or else
11941 Is_Subprogram_Contract_Annotation (Item);
11942 end Is_Contract_Annotation;
11943
11944 --------------------------------------
11945 -- Is_Controlling_Limited_Procedure --
11946 --------------------------------------
11947
11948 function Is_Controlling_Limited_Procedure
11949 (Proc_Nam : Entity_Id) return Boolean
11950 is
11951 Param_Typ : Entity_Id := Empty;
11952
11953 begin
11954 if Ekind (Proc_Nam) = E_Procedure
11955 and then Present (Parameter_Specifications (Parent (Proc_Nam)))
11956 then
11957 Param_Typ := Etype (Parameter_Type (First (
11958 Parameter_Specifications (Parent (Proc_Nam)))));
11959
11960 -- In this case where an Itype was created, the procedure call has been
11961 -- rewritten.
11962
11963 elsif Present (Associated_Node_For_Itype (Proc_Nam))
11964 and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
11965 and then
11966 Present (Parameter_Associations
11967 (Associated_Node_For_Itype (Proc_Nam)))
11968 then
11969 Param_Typ :=
11970 Etype (First (Parameter_Associations
11971 (Associated_Node_For_Itype (Proc_Nam))));
11972 end if;
11973
11974 if Present (Param_Typ) then
11975 return
11976 Is_Interface (Param_Typ)
11977 and then Is_Limited_Record (Param_Typ);
11978 end if;
11979
11980 return False;
11981 end Is_Controlling_Limited_Procedure;
11982
11983 -----------------------------
11984 -- Is_CPP_Constructor_Call --
11985 -----------------------------
11986
11987 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
11988 begin
11989 return Nkind (N) = N_Function_Call
11990 and then Is_CPP_Class (Etype (Etype (N)))
11991 and then Is_Constructor (Entity (Name (N)))
11992 and then Is_Imported (Entity (Name (N)));
11993 end Is_CPP_Constructor_Call;
11994
11995 -------------------------
11996 -- Is_Current_Instance --
11997 -------------------------
11998
11999 function Is_Current_Instance (N : Node_Id) return Boolean is
12000 Typ : constant Entity_Id := Entity (N);
12001 P : Node_Id;
12002
12003 begin
12004 -- Simplest case: entity is a concurrent type and we are currently
12005 -- inside the body. This will eventually be expanded into a
12006 -- call to Self (for tasks) or _object (for protected objects).
12007
12008 if Is_Concurrent_Type (Typ) and then In_Open_Scopes (Typ) then
12009 return True;
12010
12011 else
12012 -- Check whether the context is a (sub)type declaration for the
12013 -- type entity.
12014
12015 P := Parent (N);
12016 while Present (P) loop
12017 if Nkind_In (P, N_Full_Type_Declaration,
12018 N_Private_Type_Declaration,
12019 N_Subtype_Declaration)
12020 and then Comes_From_Source (P)
12021 and then Defining_Entity (P) = Typ
12022 then
12023 return True;
12024
12025 -- A subtype name may appear in an aspect specification for a
12026 -- Predicate_Failure aspect, for which we do not construct a
12027 -- wrapper procedure. The subtype will be replaced by the
12028 -- expression being tested when the corresponding predicate
12029 -- check is expanded.
12030
12031 elsif Nkind (P) = N_Aspect_Specification
12032 and then Nkind (Parent (P)) = N_Subtype_Declaration
12033 then
12034 return True;
12035
12036 elsif Nkind (P) = N_Pragma
12037 and then
12038 Get_Pragma_Id (P) = Pragma_Predicate_Failure
12039 then
12040 return True;
12041 end if;
12042
12043 P := Parent (P);
12044 end loop;
12045 end if;
12046
12047 -- In any other context this is not a current occurrence
12048
12049 return False;
12050 end Is_Current_Instance;
12051
12052 --------------------
12053 -- Is_Declaration --
12054 --------------------
12055
12056 function Is_Declaration (N : Node_Id) return Boolean is
12057 begin
12058 case Nkind (N) is
12059 when N_Abstract_Subprogram_Declaration |
12060 N_Exception_Declaration |
12061 N_Exception_Renaming_Declaration |
12062 N_Full_Type_Declaration |
12063 N_Generic_Function_Renaming_Declaration |
12064 N_Generic_Package_Declaration |
12065 N_Generic_Package_Renaming_Declaration |
12066 N_Generic_Procedure_Renaming_Declaration |
12067 N_Generic_Subprogram_Declaration |
12068 N_Number_Declaration |
12069 N_Object_Declaration |
12070 N_Object_Renaming_Declaration |
12071 N_Package_Declaration |
12072 N_Package_Renaming_Declaration |
12073 N_Private_Extension_Declaration |
12074 N_Private_Type_Declaration |
12075 N_Subprogram_Declaration |
12076 N_Subprogram_Renaming_Declaration |
12077 N_Subtype_Declaration =>
12078 return True;
12079
12080 when others =>
12081 return False;
12082 end case;
12083 end Is_Declaration;
12084
12085 --------------------------------
12086 -- Is_Declared_Within_Variant --
12087 --------------------------------
12088
12089 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
12090 Comp_Decl : constant Node_Id := Parent (Comp);
12091 Comp_List : constant Node_Id := Parent (Comp_Decl);
12092 begin
12093 return Nkind (Parent (Comp_List)) = N_Variant;
12094 end Is_Declared_Within_Variant;
12095
12096 ----------------------------------------------
12097 -- Is_Dependent_Component_Of_Mutable_Object --
12098 ----------------------------------------------
12099
12100 function Is_Dependent_Component_Of_Mutable_Object
12101 (Object : Node_Id) return Boolean
12102 is
12103 P : Node_Id;
12104 Prefix_Type : Entity_Id;
12105 P_Aliased : Boolean := False;
12106 Comp : Entity_Id;
12107
12108 Deref : Node_Id := Object;
12109 -- Dereference node, in something like X.all.Y(2)
12110
12111 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
12112
12113 begin
12114 -- Find the dereference node if any
12115
12116 while Nkind_In (Deref, N_Indexed_Component,
12117 N_Selected_Component,
12118 N_Slice)
12119 loop
12120 Deref := Prefix (Deref);
12121 end loop;
12122
12123 -- Ada 2005: If we have a component or slice of a dereference,
12124 -- something like X.all.Y (2), and the type of X is access-to-constant,
12125 -- Is_Variable will return False, because it is indeed a constant
12126 -- view. But it might be a view of a variable object, so we want the
12127 -- following condition to be True in that case.
12128
12129 if Is_Variable (Object)
12130 or else (Ada_Version >= Ada_2005
12131 and then Nkind (Deref) = N_Explicit_Dereference)
12132 then
12133 if Nkind (Object) = N_Selected_Component then
12134 P := Prefix (Object);
12135 Prefix_Type := Etype (P);
12136
12137 if Is_Entity_Name (P) then
12138 if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
12139 Prefix_Type := Base_Type (Prefix_Type);
12140 end if;
12141
12142 if Is_Aliased (Entity (P)) then
12143 P_Aliased := True;
12144 end if;
12145
12146 -- A discriminant check on a selected component may be expanded
12147 -- into a dereference when removing side-effects. Recover the
12148 -- original node and its type, which may be unconstrained.
12149
12150 elsif Nkind (P) = N_Explicit_Dereference
12151 and then not (Comes_From_Source (P))
12152 then
12153 P := Original_Node (P);
12154 Prefix_Type := Etype (P);
12155
12156 else
12157 -- Check for prefix being an aliased component???
12158
12159 null;
12160
12161 end if;
12162
12163 -- A heap object is constrained by its initial value
12164
12165 -- Ada 2005 (AI-363): Always assume the object could be mutable in
12166 -- the dereferenced case, since the access value might denote an
12167 -- unconstrained aliased object, whereas in Ada 95 the designated
12168 -- object is guaranteed to be constrained. A worst-case assumption
12169 -- has to apply in Ada 2005 because we can't tell at compile
12170 -- time whether the object is "constrained by its initial value"
12171 -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
12172 -- rules (these rules are acknowledged to need fixing).
12173
12174 if Ada_Version < Ada_2005 then
12175 if Is_Access_Type (Prefix_Type)
12176 or else Nkind (P) = N_Explicit_Dereference
12177 then
12178 return False;
12179 end if;
12180
12181 else pragma Assert (Ada_Version >= Ada_2005);
12182 if Is_Access_Type (Prefix_Type) then
12183
12184 -- If the access type is pool-specific, and there is no
12185 -- constrained partial view of the designated type, then the
12186 -- designated object is known to be constrained.
12187
12188 if Ekind (Prefix_Type) = E_Access_Type
12189 and then not Object_Type_Has_Constrained_Partial_View
12190 (Typ => Designated_Type (Prefix_Type),
12191 Scop => Current_Scope)
12192 then
12193 return False;
12194
12195 -- Otherwise (general access type, or there is a constrained
12196 -- partial view of the designated type), we need to check
12197 -- based on the designated type.
12198
12199 else
12200 Prefix_Type := Designated_Type (Prefix_Type);
12201 end if;
12202 end if;
12203 end if;
12204
12205 Comp :=
12206 Original_Record_Component (Entity (Selector_Name (Object)));
12207
12208 -- As per AI-0017, the renaming is illegal in a generic body, even
12209 -- if the subtype is indefinite.
12210
12211 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
12212
12213 if not Is_Constrained (Prefix_Type)
12214 and then (Is_Definite_Subtype (Prefix_Type)
12215 or else
12216 (Is_Generic_Type (Prefix_Type)
12217 and then Ekind (Current_Scope) = E_Generic_Package
12218 and then In_Package_Body (Current_Scope)))
12219
12220 and then (Is_Declared_Within_Variant (Comp)
12221 or else Has_Discriminant_Dependent_Constraint (Comp))
12222 and then (not P_Aliased or else Ada_Version >= Ada_2005)
12223 then
12224 return True;
12225
12226 -- If the prefix is of an access type at this point, then we want
12227 -- to return False, rather than calling this function recursively
12228 -- on the access object (which itself might be a discriminant-
12229 -- dependent component of some other object, but that isn't
12230 -- relevant to checking the object passed to us). This avoids
12231 -- issuing wrong errors when compiling with -gnatc, where there
12232 -- can be implicit dereferences that have not been expanded.
12233
12234 elsif Is_Access_Type (Etype (Prefix (Object))) then
12235 return False;
12236
12237 else
12238 return
12239 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
12240 end if;
12241
12242 elsif Nkind (Object) = N_Indexed_Component
12243 or else Nkind (Object) = N_Slice
12244 then
12245 return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
12246
12247 -- A type conversion that Is_Variable is a view conversion:
12248 -- go back to the denoted object.
12249
12250 elsif Nkind (Object) = N_Type_Conversion then
12251 return
12252 Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
12253 end if;
12254 end if;
12255
12256 return False;
12257 end Is_Dependent_Component_Of_Mutable_Object;
12258
12259 ---------------------
12260 -- Is_Dereferenced --
12261 ---------------------
12262
12263 function Is_Dereferenced (N : Node_Id) return Boolean is
12264 P : constant Node_Id := Parent (N);
12265 begin
12266 return Nkind_In (P, N_Selected_Component,
12267 N_Explicit_Dereference,
12268 N_Indexed_Component,
12269 N_Slice)
12270 and then Prefix (P) = N;
12271 end Is_Dereferenced;
12272
12273 ----------------------
12274 -- Is_Descendant_Of --
12275 ----------------------
12276
12277 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
12278 T : Entity_Id;
12279 Etyp : Entity_Id;
12280
12281 begin
12282 pragma Assert (Nkind (T1) in N_Entity);
12283 pragma Assert (Nkind (T2) in N_Entity);
12284
12285 T := Base_Type (T1);
12286
12287 -- Immediate return if the types match
12288
12289 if T = T2 then
12290 return True;
12291
12292 -- Comment needed here ???
12293
12294 elsif Ekind (T) = E_Class_Wide_Type then
12295 return Etype (T) = T2;
12296
12297 -- All other cases
12298
12299 else
12300 loop
12301 Etyp := Etype (T);
12302
12303 -- Done if we found the type we are looking for
12304
12305 if Etyp = T2 then
12306 return True;
12307
12308 -- Done if no more derivations to check
12309
12310 elsif T = T1
12311 or else T = Etyp
12312 then
12313 return False;
12314
12315 -- Following test catches error cases resulting from prev errors
12316
12317 elsif No (Etyp) then
12318 return False;
12319
12320 elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
12321 return False;
12322
12323 elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
12324 return False;
12325 end if;
12326
12327 T := Base_Type (Etyp);
12328 end loop;
12329 end if;
12330 end Is_Descendant_Of;
12331
12332 ----------------------------------------
12333 -- Is_Descendant_Of_Suspension_Object --
12334 ----------------------------------------
12335
12336 function Is_Descendant_Of_Suspension_Object
12337 (Typ : Entity_Id) return Boolean
12338 is
12339 Cur_Typ : Entity_Id;
12340 Par_Typ : Entity_Id;
12341
12342 begin
12343 -- Climb the type derivation chain checking each parent type against
12344 -- Suspension_Object.
12345
12346 Cur_Typ := Base_Type (Typ);
12347 while Present (Cur_Typ) loop
12348 Par_Typ := Etype (Cur_Typ);
12349
12350 -- The current type is a match
12351
12352 if Is_Suspension_Object (Cur_Typ) then
12353 return True;
12354
12355 -- Stop the traversal once the root of the derivation chain has been
12356 -- reached. In that case the current type is its own base type.
12357
12358 elsif Cur_Typ = Par_Typ then
12359 exit;
12360 end if;
12361
12362 Cur_Typ := Base_Type (Par_Typ);
12363 end loop;
12364
12365 return False;
12366 end Is_Descendant_Of_Suspension_Object;
12367
12368 ---------------------------------------------
12369 -- Is_Double_Precision_Floating_Point_Type --
12370 ---------------------------------------------
12371
12372 function Is_Double_Precision_Floating_Point_Type
12373 (E : Entity_Id) return Boolean is
12374 begin
12375 return Is_Floating_Point_Type (E)
12376 and then Machine_Radix_Value (E) = Uint_2
12377 and then Machine_Mantissa_Value (E) = UI_From_Int (53)
12378 and then Machine_Emax_Value (E) = Uint_2 ** Uint_10
12379 and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_10);
12380 end Is_Double_Precision_Floating_Point_Type;
12381
12382 -----------------------------
12383 -- Is_Effectively_Volatile --
12384 -----------------------------
12385
12386 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean is
12387 begin
12388 if Is_Type (Id) then
12389
12390 -- An arbitrary type is effectively volatile when it is subject to
12391 -- pragma Atomic or Volatile.
12392
12393 if Is_Volatile (Id) then
12394 return True;
12395
12396 -- An array type is effectively volatile when it is subject to pragma
12397 -- Atomic_Components or Volatile_Components or its component type is
12398 -- effectively volatile.
12399
12400 elsif Is_Array_Type (Id) then
12401 return
12402 Has_Volatile_Components (Id)
12403 or else
12404 Is_Effectively_Volatile (Component_Type (Base_Type (Id)));
12405
12406 -- A protected type is always volatile
12407
12408 elsif Is_Protected_Type (Id) then
12409 return True;
12410
12411 -- A descendant of Ada.Synchronous_Task_Control.Suspension_Object is
12412 -- automatically volatile.
12413
12414 elsif Is_Descendant_Of_Suspension_Object (Id) then
12415 return True;
12416
12417 -- Otherwise the type is not effectively volatile
12418
12419 else
12420 return False;
12421 end if;
12422
12423 -- Otherwise Id denotes an object
12424
12425 else
12426 return
12427 Is_Volatile (Id)
12428 or else Has_Volatile_Components (Id)
12429 or else Is_Effectively_Volatile (Etype (Id));
12430 end if;
12431 end Is_Effectively_Volatile;
12432
12433 ------------------------------------
12434 -- Is_Effectively_Volatile_Object --
12435 ------------------------------------
12436
12437 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean is
12438 begin
12439 if Is_Entity_Name (N) then
12440 return Is_Effectively_Volatile (Entity (N));
12441
12442 elsif Nkind (N) = N_Indexed_Component then
12443 return Is_Effectively_Volatile_Object (Prefix (N));
12444
12445 elsif Nkind (N) = N_Selected_Component then
12446 return
12447 Is_Effectively_Volatile_Object (Prefix (N))
12448 or else
12449 Is_Effectively_Volatile_Object (Selector_Name (N));
12450
12451 else
12452 return False;
12453 end if;
12454 end Is_Effectively_Volatile_Object;
12455
12456 -------------------
12457 -- Is_Entry_Body --
12458 -------------------
12459
12460 function Is_Entry_Body (Id : Entity_Id) return Boolean is
12461 begin
12462 return
12463 Ekind_In (Id, E_Entry, E_Entry_Family)
12464 and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Body;
12465 end Is_Entry_Body;
12466
12467 --------------------------
12468 -- Is_Entry_Declaration --
12469 --------------------------
12470
12471 function Is_Entry_Declaration (Id : Entity_Id) return Boolean is
12472 begin
12473 return
12474 Ekind_In (Id, E_Entry, E_Entry_Family)
12475 and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Declaration;
12476 end Is_Entry_Declaration;
12477
12478 ------------------------------------
12479 -- Is_Expanded_Priority_Attribute --
12480 ------------------------------------
12481
12482 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean is
12483 begin
12484 return
12485 Nkind (E) = N_Function_Call
12486 and then not Configurable_Run_Time_Mode
12487 and then (Entity (Name (E)) = RTE (RE_Get_Ceiling)
12488 or else Entity (Name (E)) = RTE (RO_PE_Get_Ceiling));
12489 end Is_Expanded_Priority_Attribute;
12490
12491 ----------------------------
12492 -- Is_Expression_Function --
12493 ----------------------------
12494
12495 function Is_Expression_Function (Subp : Entity_Id) return Boolean is
12496 begin
12497 if Ekind_In (Subp, E_Function, E_Subprogram_Body) then
12498 return
12499 Nkind (Original_Node (Unit_Declaration_Node (Subp))) =
12500 N_Expression_Function;
12501 else
12502 return False;
12503 end if;
12504 end Is_Expression_Function;
12505
12506 ------------------------------------------
12507 -- Is_Expression_Function_Or_Completion --
12508 ------------------------------------------
12509
12510 function Is_Expression_Function_Or_Completion
12511 (Subp : Entity_Id) return Boolean
12512 is
12513 Subp_Decl : Node_Id;
12514
12515 begin
12516 if Ekind (Subp) = E_Function then
12517 Subp_Decl := Unit_Declaration_Node (Subp);
12518
12519 -- The function declaration is either an expression function or is
12520 -- completed by an expression function body.
12521
12522 return
12523 Is_Expression_Function (Subp)
12524 or else (Nkind (Subp_Decl) = N_Subprogram_Declaration
12525 and then Present (Corresponding_Body (Subp_Decl))
12526 and then Is_Expression_Function
12527 (Corresponding_Body (Subp_Decl)));
12528
12529 elsif Ekind (Subp) = E_Subprogram_Body then
12530 return Is_Expression_Function (Subp);
12531
12532 else
12533 return False;
12534 end if;
12535 end Is_Expression_Function_Or_Completion;
12536
12537 -----------------------
12538 -- Is_EVF_Expression --
12539 -----------------------
12540
12541 function Is_EVF_Expression (N : Node_Id) return Boolean is
12542 Orig_N : constant Node_Id := Original_Node (N);
12543 Alt : Node_Id;
12544 Expr : Node_Id;
12545 Id : Entity_Id;
12546
12547 begin
12548 -- Detect a reference to a formal parameter of a specific tagged type
12549 -- whose related subprogram is subject to pragma Expresions_Visible with
12550 -- value "False".
12551
12552 if Is_Entity_Name (N) and then Present (Entity (N)) then
12553 Id := Entity (N);
12554
12555 return
12556 Is_Formal (Id)
12557 and then Is_Specific_Tagged_Type (Etype (Id))
12558 and then Extensions_Visible_Status (Id) =
12559 Extensions_Visible_False;
12560
12561 -- A case expression is an EVF expression when it contains at least one
12562 -- EVF dependent_expression. Note that a case expression may have been
12563 -- expanded, hence the use of Original_Node.
12564
12565 elsif Nkind (Orig_N) = N_Case_Expression then
12566 Alt := First (Alternatives (Orig_N));
12567 while Present (Alt) loop
12568 if Is_EVF_Expression (Expression (Alt)) then
12569 return True;
12570 end if;
12571
12572 Next (Alt);
12573 end loop;
12574
12575 -- An if expression is an EVF expression when it contains at least one
12576 -- EVF dependent_expression. Note that an if expression may have been
12577 -- expanded, hence the use of Original_Node.
12578
12579 elsif Nkind (Orig_N) = N_If_Expression then
12580 Expr := Next (First (Expressions (Orig_N)));
12581 while Present (Expr) loop
12582 if Is_EVF_Expression (Expr) then
12583 return True;
12584 end if;
12585
12586 Next (Expr);
12587 end loop;
12588
12589 -- A qualified expression or a type conversion is an EVF expression when
12590 -- its operand is an EVF expression.
12591
12592 elsif Nkind_In (N, N_Qualified_Expression,
12593 N_Unchecked_Type_Conversion,
12594 N_Type_Conversion)
12595 then
12596 return Is_EVF_Expression (Expression (N));
12597
12598 -- Attributes 'Loop_Entry, 'Old, and 'Update are EVF expressions when
12599 -- their prefix denotes an EVF expression.
12600
12601 elsif Nkind (N) = N_Attribute_Reference
12602 and then Nam_In (Attribute_Name (N), Name_Loop_Entry,
12603 Name_Old,
12604 Name_Update)
12605 then
12606 return Is_EVF_Expression (Prefix (N));
12607 end if;
12608
12609 return False;
12610 end Is_EVF_Expression;
12611
12612 --------------
12613 -- Is_False --
12614 --------------
12615
12616 function Is_False (U : Uint) return Boolean is
12617 begin
12618 return (U = 0);
12619 end Is_False;
12620
12621 ---------------------------
12622 -- Is_Fixed_Model_Number --
12623 ---------------------------
12624
12625 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
12626 S : constant Ureal := Small_Value (T);
12627 M : Urealp.Save_Mark;
12628 R : Boolean;
12629 begin
12630 M := Urealp.Mark;
12631 R := (U = UR_Trunc (U / S) * S);
12632 Urealp.Release (M);
12633 return R;
12634 end Is_Fixed_Model_Number;
12635
12636 -------------------------------
12637 -- Is_Fully_Initialized_Type --
12638 -------------------------------
12639
12640 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
12641 begin
12642 -- Scalar types
12643
12644 if Is_Scalar_Type (Typ) then
12645
12646 -- A scalar type with an aspect Default_Value is fully initialized
12647
12648 -- Note: Iniitalize/Normalize_Scalars also ensure full initialization
12649 -- of a scalar type, but we don't take that into account here, since
12650 -- we don't want these to affect warnings.
12651
12652 return Has_Default_Aspect (Typ);
12653
12654 elsif Is_Access_Type (Typ) then
12655 return True;
12656
12657 elsif Is_Array_Type (Typ) then
12658 if Is_Fully_Initialized_Type (Component_Type (Typ))
12659 or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
12660 then
12661 return True;
12662 end if;
12663
12664 -- An interesting case, if we have a constrained type one of whose
12665 -- bounds is known to be null, then there are no elements to be
12666 -- initialized, so all the elements are initialized.
12667
12668 if Is_Constrained (Typ) then
12669 declare
12670 Indx : Node_Id;
12671 Indx_Typ : Entity_Id;
12672 Lbd, Hbd : Node_Id;
12673
12674 begin
12675 Indx := First_Index (Typ);
12676 while Present (Indx) loop
12677 if Etype (Indx) = Any_Type then
12678 return False;
12679
12680 -- If index is a range, use directly
12681
12682 elsif Nkind (Indx) = N_Range then
12683 Lbd := Low_Bound (Indx);
12684 Hbd := High_Bound (Indx);
12685
12686 else
12687 Indx_Typ := Etype (Indx);
12688
12689 if Is_Private_Type (Indx_Typ) then
12690 Indx_Typ := Full_View (Indx_Typ);
12691 end if;
12692
12693 if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
12694 return False;
12695 else
12696 Lbd := Type_Low_Bound (Indx_Typ);
12697 Hbd := Type_High_Bound (Indx_Typ);
12698 end if;
12699 end if;
12700
12701 if Compile_Time_Known_Value (Lbd)
12702 and then
12703 Compile_Time_Known_Value (Hbd)
12704 then
12705 if Expr_Value (Hbd) < Expr_Value (Lbd) then
12706 return True;
12707 end if;
12708 end if;
12709
12710 Next_Index (Indx);
12711 end loop;
12712 end;
12713 end if;
12714
12715 -- If no null indexes, then type is not fully initialized
12716
12717 return False;
12718
12719 -- Record types
12720
12721 elsif Is_Record_Type (Typ) then
12722 if Has_Discriminants (Typ)
12723 and then
12724 Present (Discriminant_Default_Value (First_Discriminant (Typ)))
12725 and then Is_Fully_Initialized_Variant (Typ)
12726 then
12727 return True;
12728 end if;
12729
12730 -- We consider bounded string types to be fully initialized, because
12731 -- otherwise we get false alarms when the Data component is not
12732 -- default-initialized.
12733
12734 if Is_Bounded_String (Typ) then
12735 return True;
12736 end if;
12737
12738 -- Controlled records are considered to be fully initialized if
12739 -- there is a user defined Initialize routine. This may not be
12740 -- entirely correct, but as the spec notes, we are guessing here
12741 -- what is best from the point of view of issuing warnings.
12742
12743 if Is_Controlled (Typ) then
12744 declare
12745 Utyp : constant Entity_Id := Underlying_Type (Typ);
12746
12747 begin
12748 if Present (Utyp) then
12749 declare
12750 Init : constant Entity_Id :=
12751 (Find_Optional_Prim_Op
12752 (Underlying_Type (Typ), Name_Initialize));
12753
12754 begin
12755 if Present (Init)
12756 and then Comes_From_Source (Init)
12757 and then not
12758 Is_Predefined_File_Name
12759 (File_Name (Get_Source_File_Index (Sloc (Init))))
12760 then
12761 return True;
12762
12763 elsif Has_Null_Extension (Typ)
12764 and then
12765 Is_Fully_Initialized_Type
12766 (Etype (Base_Type (Typ)))
12767 then
12768 return True;
12769 end if;
12770 end;
12771 end if;
12772 end;
12773 end if;
12774
12775 -- Otherwise see if all record components are initialized
12776
12777 declare
12778 Ent : Entity_Id;
12779
12780 begin
12781 Ent := First_Entity (Typ);
12782 while Present (Ent) loop
12783 if Ekind (Ent) = E_Component
12784 and then (No (Parent (Ent))
12785 or else No (Expression (Parent (Ent))))
12786 and then not Is_Fully_Initialized_Type (Etype (Ent))
12787
12788 -- Special VM case for tag components, which need to be
12789 -- defined in this case, but are never initialized as VMs
12790 -- are using other dispatching mechanisms. Ignore this
12791 -- uninitialized case. Note that this applies both to the
12792 -- uTag entry and the main vtable pointer (CPP_Class case).
12793
12794 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
12795 then
12796 return False;
12797 end if;
12798
12799 Next_Entity (Ent);
12800 end loop;
12801 end;
12802
12803 -- No uninitialized components, so type is fully initialized.
12804 -- Note that this catches the case of no components as well.
12805
12806 return True;
12807
12808 elsif Is_Concurrent_Type (Typ) then
12809 return True;
12810
12811 elsif Is_Private_Type (Typ) then
12812 declare
12813 U : constant Entity_Id := Underlying_Type (Typ);
12814
12815 begin
12816 if No (U) then
12817 return False;
12818 else
12819 return Is_Fully_Initialized_Type (U);
12820 end if;
12821 end;
12822
12823 else
12824 return False;
12825 end if;
12826 end Is_Fully_Initialized_Type;
12827
12828 ----------------------------------
12829 -- Is_Fully_Initialized_Variant --
12830 ----------------------------------
12831
12832 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
12833 Loc : constant Source_Ptr := Sloc (Typ);
12834 Constraints : constant List_Id := New_List;
12835 Components : constant Elist_Id := New_Elmt_List;
12836 Comp_Elmt : Elmt_Id;
12837 Comp_Id : Node_Id;
12838 Comp_List : Node_Id;
12839 Discr : Entity_Id;
12840 Discr_Val : Node_Id;
12841
12842 Report_Errors : Boolean;
12843 pragma Warnings (Off, Report_Errors);
12844
12845 begin
12846 if Serious_Errors_Detected > 0 then
12847 return False;
12848 end if;
12849
12850 if Is_Record_Type (Typ)
12851 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
12852 and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
12853 then
12854 Comp_List := Component_List (Type_Definition (Parent (Typ)));
12855
12856 Discr := First_Discriminant (Typ);
12857 while Present (Discr) loop
12858 if Nkind (Parent (Discr)) = N_Discriminant_Specification then
12859 Discr_Val := Expression (Parent (Discr));
12860
12861 if Present (Discr_Val)
12862 and then Is_OK_Static_Expression (Discr_Val)
12863 then
12864 Append_To (Constraints,
12865 Make_Component_Association (Loc,
12866 Choices => New_List (New_Occurrence_Of (Discr, Loc)),
12867 Expression => New_Copy (Discr_Val)));
12868 else
12869 return False;
12870 end if;
12871 else
12872 return False;
12873 end if;
12874
12875 Next_Discriminant (Discr);
12876 end loop;
12877
12878 Gather_Components
12879 (Typ => Typ,
12880 Comp_List => Comp_List,
12881 Governed_By => Constraints,
12882 Into => Components,
12883 Report_Errors => Report_Errors);
12884
12885 -- Check that each component present is fully initialized
12886
12887 Comp_Elmt := First_Elmt (Components);
12888 while Present (Comp_Elmt) loop
12889 Comp_Id := Node (Comp_Elmt);
12890
12891 if Ekind (Comp_Id) = E_Component
12892 and then (No (Parent (Comp_Id))
12893 or else No (Expression (Parent (Comp_Id))))
12894 and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
12895 then
12896 return False;
12897 end if;
12898
12899 Next_Elmt (Comp_Elmt);
12900 end loop;
12901
12902 return True;
12903
12904 elsif Is_Private_Type (Typ) then
12905 declare
12906 U : constant Entity_Id := Underlying_Type (Typ);
12907
12908 begin
12909 if No (U) then
12910 return False;
12911 else
12912 return Is_Fully_Initialized_Variant (U);
12913 end if;
12914 end;
12915
12916 else
12917 return False;
12918 end if;
12919 end Is_Fully_Initialized_Variant;
12920
12921 ------------------------------------
12922 -- Is_Generic_Declaration_Or_Body --
12923 ------------------------------------
12924
12925 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean is
12926 Spec_Decl : Node_Id;
12927
12928 begin
12929 -- Package/subprogram body
12930
12931 if Nkind_In (Decl, N_Package_Body, N_Subprogram_Body)
12932 and then Present (Corresponding_Spec (Decl))
12933 then
12934 Spec_Decl := Unit_Declaration_Node (Corresponding_Spec (Decl));
12935
12936 -- Package/subprogram body stub
12937
12938 elsif Nkind_In (Decl, N_Package_Body_Stub, N_Subprogram_Body_Stub)
12939 and then Present (Corresponding_Spec_Of_Stub (Decl))
12940 then
12941 Spec_Decl :=
12942 Unit_Declaration_Node (Corresponding_Spec_Of_Stub (Decl));
12943
12944 -- All other cases
12945
12946 else
12947 Spec_Decl := Decl;
12948 end if;
12949
12950 -- Rather than inspecting the defining entity of the spec declaration,
12951 -- look at its Nkind. This takes care of the case where the analysis of
12952 -- a generic body modifies the Ekind of its spec to allow for recursive
12953 -- calls.
12954
12955 return
12956 Nkind_In (Spec_Decl, N_Generic_Package_Declaration,
12957 N_Generic_Subprogram_Declaration);
12958 end Is_Generic_Declaration_Or_Body;
12959
12960 ----------------------------
12961 -- Is_Inherited_Operation --
12962 ----------------------------
12963
12964 function Is_Inherited_Operation (E : Entity_Id) return Boolean is
12965 pragma Assert (Is_Overloadable (E));
12966 Kind : constant Node_Kind := Nkind (Parent (E));
12967 begin
12968 return Kind = N_Full_Type_Declaration
12969 or else Kind = N_Private_Extension_Declaration
12970 or else Kind = N_Subtype_Declaration
12971 or else (Ekind (E) = E_Enumeration_Literal
12972 and then Is_Derived_Type (Etype (E)));
12973 end Is_Inherited_Operation;
12974
12975 -------------------------------------
12976 -- Is_Inherited_Operation_For_Type --
12977 -------------------------------------
12978
12979 function Is_Inherited_Operation_For_Type
12980 (E : Entity_Id;
12981 Typ : Entity_Id) return Boolean
12982 is
12983 begin
12984 -- Check that the operation has been created by the type declaration
12985
12986 return Is_Inherited_Operation (E)
12987 and then Defining_Identifier (Parent (E)) = Typ;
12988 end Is_Inherited_Operation_For_Type;
12989
12990 -----------------
12991 -- Is_Iterator --
12992 -----------------
12993
12994 function Is_Iterator (Typ : Entity_Id) return Boolean is
12995 function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean;
12996 -- Determine whether type Iter_Typ is a predefined forward or reversible
12997 -- iterator.
12998
12999 ----------------------
13000 -- Denotes_Iterator --
13001 ----------------------
13002
13003 function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean is
13004 begin
13005 -- Check that the name matches, and that the ultimate ancestor is in
13006 -- a predefined unit, i.e the one that declares iterator interfaces.
13007
13008 return
13009 Nam_In (Chars (Iter_Typ), Name_Forward_Iterator,
13010 Name_Reversible_Iterator)
13011 and then Is_Predefined_File_Name
13012 (Unit_File_Name (Get_Source_Unit (Root_Type (Iter_Typ))));
13013 end Denotes_Iterator;
13014
13015 -- Local variables
13016
13017 Iface_Elmt : Elmt_Id;
13018 Ifaces : Elist_Id;
13019
13020 -- Start of processing for Is_Iterator
13021
13022 begin
13023 -- The type may be a subtype of a descendant of the proper instance of
13024 -- the predefined interface type, so we must use the root type of the
13025 -- given type. The same is done for Is_Reversible_Iterator.
13026
13027 if Is_Class_Wide_Type (Typ)
13028 and then Denotes_Iterator (Root_Type (Typ))
13029 then
13030 return True;
13031
13032 elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
13033 return False;
13034
13035 elsif Present (Find_Value_Of_Aspect (Typ, Aspect_Iterable)) then
13036 return True;
13037
13038 else
13039 Collect_Interfaces (Typ, Ifaces);
13040
13041 Iface_Elmt := First_Elmt (Ifaces);
13042 while Present (Iface_Elmt) loop
13043 if Denotes_Iterator (Node (Iface_Elmt)) then
13044 return True;
13045 end if;
13046
13047 Next_Elmt (Iface_Elmt);
13048 end loop;
13049
13050 return False;
13051 end if;
13052 end Is_Iterator;
13053
13054 ----------------------------
13055 -- Is_Iterator_Over_Array --
13056 ----------------------------
13057
13058 function Is_Iterator_Over_Array (N : Node_Id) return Boolean is
13059 Container : constant Node_Id := Name (N);
13060 Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
13061 begin
13062 return Is_Array_Type (Container_Typ);
13063 end Is_Iterator_Over_Array;
13064
13065 ------------
13066 -- Is_LHS --
13067 ------------
13068
13069 -- We seem to have a lot of overlapping functions that do similar things
13070 -- (testing for left hand sides or lvalues???).
13071
13072 function Is_LHS (N : Node_Id) return Is_LHS_Result is
13073 P : constant Node_Id := Parent (N);
13074
13075 begin
13076 -- Return True if we are the left hand side of an assignment statement
13077
13078 if Nkind (P) = N_Assignment_Statement then
13079 if Name (P) = N then
13080 return Yes;
13081 else
13082 return No;
13083 end if;
13084
13085 -- Case of prefix of indexed or selected component or slice
13086
13087 elsif Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice)
13088 and then N = Prefix (P)
13089 then
13090 -- Here we have the case where the parent P is N.Q or N(Q .. R).
13091 -- If P is an LHS, then N is also effectively an LHS, but there
13092 -- is an important exception. If N is of an access type, then
13093 -- what we really have is N.all.Q (or N.all(Q .. R)). In either
13094 -- case this makes N.all a left hand side but not N itself.
13095
13096 -- If we don't know the type yet, this is the case where we return
13097 -- Unknown, since the answer depends on the type which is unknown.
13098
13099 if No (Etype (N)) then
13100 return Unknown;
13101
13102 -- We have an Etype set, so we can check it
13103
13104 elsif Is_Access_Type (Etype (N)) then
13105 return No;
13106
13107 -- OK, not access type case, so just test whole expression
13108
13109 else
13110 return Is_LHS (P);
13111 end if;
13112
13113 -- All other cases are not left hand sides
13114
13115 else
13116 return No;
13117 end if;
13118 end Is_LHS;
13119
13120 -----------------------------
13121 -- Is_Library_Level_Entity --
13122 -----------------------------
13123
13124 function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
13125 begin
13126 -- The following is a small optimization, and it also properly handles
13127 -- discriminals, which in task bodies might appear in expressions before
13128 -- the corresponding procedure has been created, and which therefore do
13129 -- not have an assigned scope.
13130
13131 if Is_Formal (E) then
13132 return False;
13133 end if;
13134
13135 -- Normal test is simply that the enclosing dynamic scope is Standard
13136
13137 return Enclosing_Dynamic_Scope (E) = Standard_Standard;
13138 end Is_Library_Level_Entity;
13139
13140 --------------------------------
13141 -- Is_Limited_Class_Wide_Type --
13142 --------------------------------
13143
13144 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
13145 begin
13146 return
13147 Is_Class_Wide_Type (Typ)
13148 and then (Is_Limited_Type (Typ) or else From_Limited_With (Typ));
13149 end Is_Limited_Class_Wide_Type;
13150
13151 ---------------------------------
13152 -- Is_Local_Variable_Reference --
13153 ---------------------------------
13154
13155 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
13156 begin
13157 if not Is_Entity_Name (Expr) then
13158 return False;
13159
13160 else
13161 declare
13162 Ent : constant Entity_Id := Entity (Expr);
13163 Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
13164 begin
13165 if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
13166 return False;
13167 else
13168 return Present (Sub) and then Sub = Current_Subprogram;
13169 end if;
13170 end;
13171 end if;
13172 end Is_Local_Variable_Reference;
13173
13174 ---------------------------------
13175 -- Is_Nontrivial_DIC_Procedure --
13176 ---------------------------------
13177
13178 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean is
13179 Body_Decl : Node_Id;
13180 Stmt : Node_Id;
13181
13182 begin
13183 if Ekind (Id) = E_Procedure and then Is_DIC_Procedure (Id) then
13184 Body_Decl :=
13185 Unit_Declaration_Node
13186 (Corresponding_Body (Unit_Declaration_Node (Id)));
13187
13188 -- The body of the Default_Initial_Condition procedure must contain
13189 -- at least one statement, otherwise the generation of the subprogram
13190 -- body failed.
13191
13192 pragma Assert (Present (Handled_Statement_Sequence (Body_Decl)));
13193
13194 -- To qualify as nontrivial, the first statement of the procedure
13195 -- must be a check in the form of an if statement. If the original
13196 -- Default_Initial_Condition expression was folded, then the first
13197 -- statement is not a check.
13198
13199 Stmt := First (Statements (Handled_Statement_Sequence (Body_Decl)));
13200
13201 return
13202 Nkind (Stmt) = N_If_Statement
13203 and then Nkind (Original_Node (Stmt)) = N_Pragma;
13204 end if;
13205
13206 return False;
13207 end Is_Nontrivial_DIC_Procedure;
13208
13209 -------------------------
13210 -- Is_Null_Record_Type --
13211 -------------------------
13212
13213 function Is_Null_Record_Type (T : Entity_Id) return Boolean is
13214 Decl : constant Node_Id := Parent (T);
13215 begin
13216 return Nkind (Decl) = N_Full_Type_Declaration
13217 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
13218 and then
13219 (No (Component_List (Type_Definition (Decl)))
13220 or else Null_Present (Component_List (Type_Definition (Decl))));
13221 end Is_Null_Record_Type;
13222
13223 -------------------------
13224 -- Is_Object_Reference --
13225 -------------------------
13226
13227 function Is_Object_Reference (N : Node_Id) return Boolean is
13228 function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean;
13229 -- Determine whether N is the name of an internally-generated renaming
13230
13231 --------------------------------------
13232 -- Is_Internally_Generated_Renaming --
13233 --------------------------------------
13234
13235 function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean is
13236 P : Node_Id;
13237
13238 begin
13239 P := N;
13240 while Present (P) loop
13241 if Nkind (P) = N_Object_Renaming_Declaration then
13242 return not Comes_From_Source (P);
13243 elsif Is_List_Member (P) then
13244 return False;
13245 end if;
13246
13247 P := Parent (P);
13248 end loop;
13249
13250 return False;
13251 end Is_Internally_Generated_Renaming;
13252
13253 -- Start of processing for Is_Object_Reference
13254
13255 begin
13256 if Is_Entity_Name (N) then
13257 return Present (Entity (N)) and then Is_Object (Entity (N));
13258
13259 else
13260 case Nkind (N) is
13261 when N_Indexed_Component | N_Slice =>
13262 return
13263 Is_Object_Reference (Prefix (N))
13264 or else Is_Access_Type (Etype (Prefix (N)));
13265
13266 -- In Ada 95, a function call is a constant object; a procedure
13267 -- call is not.
13268
13269 when N_Function_Call =>
13270 return Etype (N) /= Standard_Void_Type;
13271
13272 -- Attributes 'Input, 'Loop_Entry, 'Old, and 'Result produce
13273 -- objects.
13274
13275 when N_Attribute_Reference =>
13276 return
13277 Nam_In (Attribute_Name (N), Name_Input,
13278 Name_Loop_Entry,
13279 Name_Old,
13280 Name_Result);
13281
13282 when N_Selected_Component =>
13283 return
13284 Is_Object_Reference (Selector_Name (N))
13285 and then
13286 (Is_Object_Reference (Prefix (N))
13287 or else Is_Access_Type (Etype (Prefix (N))));
13288
13289 when N_Explicit_Dereference =>
13290 return True;
13291
13292 -- A view conversion of a tagged object is an object reference
13293
13294 when N_Type_Conversion =>
13295 return Is_Tagged_Type (Etype (Subtype_Mark (N)))
13296 and then Is_Tagged_Type (Etype (Expression (N)))
13297 and then Is_Object_Reference (Expression (N));
13298
13299 -- An unchecked type conversion is considered to be an object if
13300 -- the operand is an object (this construction arises only as a
13301 -- result of expansion activities).
13302
13303 when N_Unchecked_Type_Conversion =>
13304 return True;
13305
13306 -- Allow string literals to act as objects as long as they appear
13307 -- in internally-generated renamings. The expansion of iterators
13308 -- may generate such renamings when the range involves a string
13309 -- literal.
13310
13311 when N_String_Literal =>
13312 return Is_Internally_Generated_Renaming (Parent (N));
13313
13314 -- AI05-0003: In Ada 2012 a qualified expression is a name.
13315 -- This allows disambiguation of function calls and the use
13316 -- of aggregates in more contexts.
13317
13318 when N_Qualified_Expression =>
13319 if Ada_Version < Ada_2012 then
13320 return False;
13321 else
13322 return Is_Object_Reference (Expression (N))
13323 or else Nkind (Expression (N)) = N_Aggregate;
13324 end if;
13325
13326 when others =>
13327 return False;
13328 end case;
13329 end if;
13330 end Is_Object_Reference;
13331
13332 -----------------------------------
13333 -- Is_OK_Variable_For_Out_Formal --
13334 -----------------------------------
13335
13336 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
13337 begin
13338 Note_Possible_Modification (AV, Sure => True);
13339
13340 -- We must reject parenthesized variable names. Comes_From_Source is
13341 -- checked because there are currently cases where the compiler violates
13342 -- this rule (e.g. passing a task object to its controlled Initialize
13343 -- routine). This should be properly documented in sinfo???
13344
13345 if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
13346 return False;
13347
13348 -- A variable is always allowed
13349
13350 elsif Is_Variable (AV) then
13351 return True;
13352
13353 -- Generalized indexing operations are rewritten as explicit
13354 -- dereferences, and it is only during resolution that we can
13355 -- check whether the context requires an access_to_variable type.
13356
13357 elsif Nkind (AV) = N_Explicit_Dereference
13358 and then Ada_Version >= Ada_2012
13359 and then Nkind (Original_Node (AV)) = N_Indexed_Component
13360 and then Present (Etype (Original_Node (AV)))
13361 and then Has_Implicit_Dereference (Etype (Original_Node (AV)))
13362 then
13363 return not Is_Access_Constant (Etype (Prefix (AV)));
13364
13365 -- Unchecked conversions are allowed only if they come from the
13366 -- generated code, which sometimes uses unchecked conversions for out
13367 -- parameters in cases where code generation is unaffected. We tell
13368 -- source unchecked conversions by seeing if they are rewrites of
13369 -- an original Unchecked_Conversion function call, or of an explicit
13370 -- conversion of a function call or an aggregate (as may happen in the
13371 -- expansion of a packed array aggregate).
13372
13373 elsif Nkind (AV) = N_Unchecked_Type_Conversion then
13374 if Nkind_In (Original_Node (AV), N_Function_Call, N_Aggregate) then
13375 return False;
13376
13377 elsif Comes_From_Source (AV)
13378 and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
13379 then
13380 return False;
13381
13382 elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
13383 return Is_OK_Variable_For_Out_Formal (Expression (AV));
13384
13385 else
13386 return True;
13387 end if;
13388
13389 -- Normal type conversions are allowed if argument is a variable
13390
13391 elsif Nkind (AV) = N_Type_Conversion then
13392 if Is_Variable (Expression (AV))
13393 and then Paren_Count (Expression (AV)) = 0
13394 then
13395 Note_Possible_Modification (Expression (AV), Sure => True);
13396 return True;
13397
13398 -- We also allow a non-parenthesized expression that raises
13399 -- constraint error if it rewrites what used to be a variable
13400
13401 elsif Raises_Constraint_Error (Expression (AV))
13402 and then Paren_Count (Expression (AV)) = 0
13403 and then Is_Variable (Original_Node (Expression (AV)))
13404 then
13405 return True;
13406
13407 -- Type conversion of something other than a variable
13408
13409 else
13410 return False;
13411 end if;
13412
13413 -- If this node is rewritten, then test the original form, if that is
13414 -- OK, then we consider the rewritten node OK (for example, if the
13415 -- original node is a conversion, then Is_Variable will not be true
13416 -- but we still want to allow the conversion if it converts a variable).
13417
13418 elsif Original_Node (AV) /= AV then
13419
13420 -- In Ada 2012, the explicit dereference may be a rewritten call to a
13421 -- Reference function.
13422
13423 if Ada_Version >= Ada_2012
13424 and then Nkind (Original_Node (AV)) = N_Function_Call
13425 and then
13426 Has_Implicit_Dereference (Etype (Name (Original_Node (AV))))
13427 then
13428
13429 -- Check that this is not a constant reference.
13430
13431 return not Is_Access_Constant (Etype (Prefix (AV)));
13432
13433 elsif Has_Implicit_Dereference (Etype (Original_Node (AV))) then
13434 return
13435 not Is_Access_Constant (Etype
13436 (Get_Reference_Discriminant (Etype (Original_Node (AV)))));
13437
13438 else
13439 return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
13440 end if;
13441
13442 -- All other non-variables are rejected
13443
13444 else
13445 return False;
13446 end if;
13447 end Is_OK_Variable_For_Out_Formal;
13448
13449 ----------------------------
13450 -- Is_OK_Volatile_Context --
13451 ----------------------------
13452
13453 function Is_OK_Volatile_Context
13454 (Context : Node_Id;
13455 Obj_Ref : Node_Id) return Boolean
13456 is
13457 function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean;
13458 -- Determine whether an arbitrary node denotes a call to a protected
13459 -- entry, function, or procedure in prefixed form where the prefix is
13460 -- Obj_Ref.
13461
13462 function Within_Check (Nod : Node_Id) return Boolean;
13463 -- Determine whether an arbitrary node appears in a check node
13464
13465 function Within_Subprogram_Call (Nod : Node_Id) return Boolean;
13466 -- Determine whether an arbitrary node appears in an entry, function, or
13467 -- procedure call.
13468
13469 function Within_Volatile_Function (Id : Entity_Id) return Boolean;
13470 -- Determine whether an arbitrary entity appears in a volatile function
13471
13472 ---------------------------------
13473 -- Is_Protected_Operation_Call --
13474 ---------------------------------
13475
13476 function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean is
13477 Pref : Node_Id;
13478 Subp : Node_Id;
13479
13480 begin
13481 -- A call to a protected operations retains its selected component
13482 -- form as opposed to other prefixed calls that are transformed in
13483 -- expanded names.
13484
13485 if Nkind (Nod) = N_Selected_Component then
13486 Pref := Prefix (Nod);
13487 Subp := Selector_Name (Nod);
13488
13489 return
13490 Pref = Obj_Ref
13491 and then Present (Etype (Pref))
13492 and then Is_Protected_Type (Etype (Pref))
13493 and then Is_Entity_Name (Subp)
13494 and then Present (Entity (Subp))
13495 and then Ekind_In (Entity (Subp), E_Entry,
13496 E_Entry_Family,
13497 E_Function,
13498 E_Procedure);
13499 else
13500 return False;
13501 end if;
13502 end Is_Protected_Operation_Call;
13503
13504 ------------------
13505 -- Within_Check --
13506 ------------------
13507
13508 function Within_Check (Nod : Node_Id) return Boolean is
13509 Par : Node_Id;
13510
13511 begin
13512 -- Climb the parent chain looking for a check node
13513
13514 Par := Nod;
13515 while Present (Par) loop
13516 if Nkind (Par) in N_Raise_xxx_Error then
13517 return True;
13518
13519 -- Prevent the search from going too far
13520
13521 elsif Is_Body_Or_Package_Declaration (Par) then
13522 exit;
13523 end if;
13524
13525 Par := Parent (Par);
13526 end loop;
13527
13528 return False;
13529 end Within_Check;
13530
13531 ----------------------------
13532 -- Within_Subprogram_Call --
13533 ----------------------------
13534
13535 function Within_Subprogram_Call (Nod : Node_Id) return Boolean is
13536 Par : Node_Id;
13537
13538 begin
13539 -- Climb the parent chain looking for a function or procedure call
13540
13541 Par := Nod;
13542 while Present (Par) loop
13543 if Nkind_In (Par, N_Entry_Call_Statement,
13544 N_Function_Call,
13545 N_Procedure_Call_Statement)
13546 then
13547 return True;
13548
13549 -- Prevent the search from going too far
13550
13551 elsif Is_Body_Or_Package_Declaration (Par) then
13552 exit;
13553 end if;
13554
13555 Par := Parent (Par);
13556 end loop;
13557
13558 return False;
13559 end Within_Subprogram_Call;
13560
13561 ------------------------------
13562 -- Within_Volatile_Function --
13563 ------------------------------
13564
13565 function Within_Volatile_Function (Id : Entity_Id) return Boolean is
13566 Func_Id : Entity_Id;
13567
13568 begin
13569 -- Traverse the scope stack looking for a [generic] function
13570
13571 Func_Id := Id;
13572 while Present (Func_Id) and then Func_Id /= Standard_Standard loop
13573 if Ekind_In (Func_Id, E_Function, E_Generic_Function) then
13574 return Is_Volatile_Function (Func_Id);
13575 end if;
13576
13577 Func_Id := Scope (Func_Id);
13578 end loop;
13579
13580 return False;
13581 end Within_Volatile_Function;
13582
13583 -- Local variables
13584
13585 Obj_Id : Entity_Id;
13586
13587 -- Start of processing for Is_OK_Volatile_Context
13588
13589 begin
13590 -- The volatile object appears on either side of an assignment
13591
13592 if Nkind (Context) = N_Assignment_Statement then
13593 return True;
13594
13595 -- The volatile object is part of the initialization expression of
13596 -- another object.
13597
13598 elsif Nkind (Context) = N_Object_Declaration
13599 and then Present (Expression (Context))
13600 and then Expression (Context) = Obj_Ref
13601 then
13602 Obj_Id := Defining_Entity (Context);
13603
13604 -- The volatile object acts as the initialization expression of an
13605 -- extended return statement. This is valid context as long as the
13606 -- function is volatile.
13607
13608 if Is_Return_Object (Obj_Id) then
13609 return Within_Volatile_Function (Obj_Id);
13610
13611 -- Otherwise this is a normal object initialization
13612
13613 else
13614 return True;
13615 end if;
13616
13617 -- The volatile object acts as the name of a renaming declaration
13618
13619 elsif Nkind (Context) = N_Object_Renaming_Declaration
13620 and then Name (Context) = Obj_Ref
13621 then
13622 return True;
13623
13624 -- The volatile object appears as an actual parameter in a call to an
13625 -- instance of Unchecked_Conversion whose result is renamed.
13626
13627 elsif Nkind (Context) = N_Function_Call
13628 and then Is_Entity_Name (Name (Context))
13629 and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
13630 and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
13631 then
13632 return True;
13633
13634 -- The volatile object is actually the prefix in a protected entry,
13635 -- function, or procedure call.
13636
13637 elsif Is_Protected_Operation_Call (Context) then
13638 return True;
13639
13640 -- The volatile object appears as the expression of a simple return
13641 -- statement that applies to a volatile function.
13642
13643 elsif Nkind (Context) = N_Simple_Return_Statement
13644 and then Expression (Context) = Obj_Ref
13645 then
13646 return
13647 Within_Volatile_Function (Return_Statement_Entity (Context));
13648
13649 -- The volatile object appears as the prefix of a name occurring in a
13650 -- non-interfering context.
13651
13652 elsif Nkind_In (Context, N_Attribute_Reference,
13653 N_Explicit_Dereference,
13654 N_Indexed_Component,
13655 N_Selected_Component,
13656 N_Slice)
13657 and then Prefix (Context) = Obj_Ref
13658 and then Is_OK_Volatile_Context
13659 (Context => Parent (Context),
13660 Obj_Ref => Context)
13661 then
13662 return True;
13663
13664 -- The volatile object appears as the prefix of attributes Address,
13665 -- Alignment, Component_Size, First_Bit, Last_Bit, Position, Size,
13666 -- Storage_Size.
13667
13668 elsif Nkind (Context) = N_Attribute_Reference
13669 and then Prefix (Context) = Obj_Ref
13670 and then Nam_In (Attribute_Name (Context), Name_Address,
13671 Name_Alignment,
13672 Name_Component_Size,
13673 Name_First_Bit,
13674 Name_Last_Bit,
13675 Name_Position,
13676 Name_Size,
13677 Name_Storage_Size)
13678 then
13679 return True;
13680
13681 -- The volatile object appears as the expression of a type conversion
13682 -- occurring in a non-interfering context.
13683
13684 elsif Nkind_In (Context, N_Type_Conversion,
13685 N_Unchecked_Type_Conversion)
13686 and then Expression (Context) = Obj_Ref
13687 and then Is_OK_Volatile_Context
13688 (Context => Parent (Context),
13689 Obj_Ref => Context)
13690 then
13691 return True;
13692
13693 -- Allow references to volatile objects in various checks. This is not a
13694 -- direct SPARK 2014 requirement.
13695
13696 elsif Within_Check (Context) then
13697 return True;
13698
13699 -- Assume that references to effectively volatile objects that appear
13700 -- as actual parameters in a subprogram call are always legal. A full
13701 -- legality check is done when the actuals are resolved (see routine
13702 -- Resolve_Actuals).
13703
13704 elsif Within_Subprogram_Call (Context) then
13705 return True;
13706
13707 -- Otherwise the context is not suitable for an effectively volatile
13708 -- object.
13709
13710 else
13711 return False;
13712 end if;
13713 end Is_OK_Volatile_Context;
13714
13715 ------------------------------------
13716 -- Is_Package_Contract_Annotation --
13717 ------------------------------------
13718
13719 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean is
13720 Nam : Name_Id;
13721
13722 begin
13723 if Nkind (Item) = N_Aspect_Specification then
13724 Nam := Chars (Identifier (Item));
13725
13726 else pragma Assert (Nkind (Item) = N_Pragma);
13727 Nam := Pragma_Name (Item);
13728 end if;
13729
13730 return Nam = Name_Abstract_State
13731 or else Nam = Name_Initial_Condition
13732 or else Nam = Name_Initializes
13733 or else Nam = Name_Refined_State;
13734 end Is_Package_Contract_Annotation;
13735
13736 -----------------------------------
13737 -- Is_Partially_Initialized_Type --
13738 -----------------------------------
13739
13740 function Is_Partially_Initialized_Type
13741 (Typ : Entity_Id;
13742 Include_Implicit : Boolean := True) return Boolean
13743 is
13744 begin
13745 if Is_Scalar_Type (Typ) then
13746 return False;
13747
13748 elsif Is_Access_Type (Typ) then
13749 return Include_Implicit;
13750
13751 elsif Is_Array_Type (Typ) then
13752
13753 -- If component type is partially initialized, so is array type
13754
13755 if Is_Partially_Initialized_Type
13756 (Component_Type (Typ), Include_Implicit)
13757 then
13758 return True;
13759
13760 -- Otherwise we are only partially initialized if we are fully
13761 -- initialized (this is the empty array case, no point in us
13762 -- duplicating that code here).
13763
13764 else
13765 return Is_Fully_Initialized_Type (Typ);
13766 end if;
13767
13768 elsif Is_Record_Type (Typ) then
13769
13770 -- A discriminated type is always partially initialized if in
13771 -- all mode
13772
13773 if Has_Discriminants (Typ) and then Include_Implicit then
13774 return True;
13775
13776 -- A tagged type is always partially initialized
13777
13778 elsif Is_Tagged_Type (Typ) then
13779 return True;
13780
13781 -- Case of non-discriminated record
13782
13783 else
13784 declare
13785 Ent : Entity_Id;
13786
13787 Component_Present : Boolean := False;
13788 -- Set True if at least one component is present. If no
13789 -- components are present, then record type is fully
13790 -- initialized (another odd case, like the null array).
13791
13792 begin
13793 -- Loop through components
13794
13795 Ent := First_Entity (Typ);
13796 while Present (Ent) loop
13797 if Ekind (Ent) = E_Component then
13798 Component_Present := True;
13799
13800 -- If a component has an initialization expression then
13801 -- the enclosing record type is partially initialized
13802
13803 if Present (Parent (Ent))
13804 and then Present (Expression (Parent (Ent)))
13805 then
13806 return True;
13807
13808 -- If a component is of a type which is itself partially
13809 -- initialized, then the enclosing record type is also.
13810
13811 elsif Is_Partially_Initialized_Type
13812 (Etype (Ent), Include_Implicit)
13813 then
13814 return True;
13815 end if;
13816 end if;
13817
13818 Next_Entity (Ent);
13819 end loop;
13820
13821 -- No initialized components found. If we found any components
13822 -- they were all uninitialized so the result is false.
13823
13824 if Component_Present then
13825 return False;
13826
13827 -- But if we found no components, then all the components are
13828 -- initialized so we consider the type to be initialized.
13829
13830 else
13831 return True;
13832 end if;
13833 end;
13834 end if;
13835
13836 -- Concurrent types are always fully initialized
13837
13838 elsif Is_Concurrent_Type (Typ) then
13839 return True;
13840
13841 -- For a private type, go to underlying type. If there is no underlying
13842 -- type then just assume this partially initialized. Not clear if this
13843 -- can happen in a non-error case, but no harm in testing for this.
13844
13845 elsif Is_Private_Type (Typ) then
13846 declare
13847 U : constant Entity_Id := Underlying_Type (Typ);
13848 begin
13849 if No (U) then
13850 return True;
13851 else
13852 return Is_Partially_Initialized_Type (U, Include_Implicit);
13853 end if;
13854 end;
13855
13856 -- For any other type (are there any?) assume partially initialized
13857
13858 else
13859 return True;
13860 end if;
13861 end Is_Partially_Initialized_Type;
13862
13863 ------------------------------------
13864 -- Is_Potentially_Persistent_Type --
13865 ------------------------------------
13866
13867 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
13868 Comp : Entity_Id;
13869 Indx : Node_Id;
13870
13871 begin
13872 -- For private type, test corresponding full type
13873
13874 if Is_Private_Type (T) then
13875 return Is_Potentially_Persistent_Type (Full_View (T));
13876
13877 -- Scalar types are potentially persistent
13878
13879 elsif Is_Scalar_Type (T) then
13880 return True;
13881
13882 -- Record type is potentially persistent if not tagged and the types of
13883 -- all it components are potentially persistent, and no component has
13884 -- an initialization expression.
13885
13886 elsif Is_Record_Type (T)
13887 and then not Is_Tagged_Type (T)
13888 and then not Is_Partially_Initialized_Type (T)
13889 then
13890 Comp := First_Component (T);
13891 while Present (Comp) loop
13892 if not Is_Potentially_Persistent_Type (Etype (Comp)) then
13893 return False;
13894 else
13895 Next_Entity (Comp);
13896 end if;
13897 end loop;
13898
13899 return True;
13900
13901 -- Array type is potentially persistent if its component type is
13902 -- potentially persistent and if all its constraints are static.
13903
13904 elsif Is_Array_Type (T) then
13905 if not Is_Potentially_Persistent_Type (Component_Type (T)) then
13906 return False;
13907 end if;
13908
13909 Indx := First_Index (T);
13910 while Present (Indx) loop
13911 if not Is_OK_Static_Subtype (Etype (Indx)) then
13912 return False;
13913 else
13914 Next_Index (Indx);
13915 end if;
13916 end loop;
13917
13918 return True;
13919
13920 -- All other types are not potentially persistent
13921
13922 else
13923 return False;
13924 end if;
13925 end Is_Potentially_Persistent_Type;
13926
13927 --------------------------------
13928 -- Is_Potentially_Unevaluated --
13929 --------------------------------
13930
13931 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean is
13932 Par : Node_Id;
13933 Expr : Node_Id;
13934
13935 begin
13936 Expr := N;
13937 Par := Parent (N);
13938
13939 -- A postcondition whose expression is a short-circuit is broken down
13940 -- into individual aspects for better exception reporting. The original
13941 -- short-circuit expression is rewritten as the second operand, and an
13942 -- occurrence of 'Old in that operand is potentially unevaluated.
13943 -- See Sem_ch13.adb for details of this transformation.
13944
13945 if Nkind (Original_Node (Par)) = N_And_Then then
13946 return True;
13947 end if;
13948
13949 while not Nkind_In (Par, N_If_Expression,
13950 N_Case_Expression,
13951 N_And_Then,
13952 N_Or_Else,
13953 N_In,
13954 N_Not_In)
13955 loop
13956 Expr := Par;
13957 Par := Parent (Par);
13958
13959 -- If the context is not an expression, or if is the result of
13960 -- expansion of an enclosing construct (such as another attribute)
13961 -- the predicate does not apply.
13962
13963 if Nkind (Par) not in N_Subexpr
13964 or else not Comes_From_Source (Par)
13965 then
13966 return False;
13967 end if;
13968 end loop;
13969
13970 if Nkind (Par) = N_If_Expression then
13971 return Is_Elsif (Par) or else Expr /= First (Expressions (Par));
13972
13973 elsif Nkind (Par) = N_Case_Expression then
13974 return Expr /= Expression (Par);
13975
13976 elsif Nkind_In (Par, N_And_Then, N_Or_Else) then
13977 return Expr = Right_Opnd (Par);
13978
13979 elsif Nkind_In (Par, N_In, N_Not_In) then
13980 return Expr /= Left_Opnd (Par);
13981
13982 else
13983 return False;
13984 end if;
13985 end Is_Potentially_Unevaluated;
13986
13987 ---------------------------------
13988 -- Is_Protected_Self_Reference --
13989 ---------------------------------
13990
13991 function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
13992
13993 function In_Access_Definition (N : Node_Id) return Boolean;
13994 -- Returns true if N belongs to an access definition
13995
13996 --------------------------
13997 -- In_Access_Definition --
13998 --------------------------
13999
14000 function In_Access_Definition (N : Node_Id) return Boolean is
14001 P : Node_Id;
14002
14003 begin
14004 P := Parent (N);
14005 while Present (P) loop
14006 if Nkind (P) = N_Access_Definition then
14007 return True;
14008 end if;
14009
14010 P := Parent (P);
14011 end loop;
14012
14013 return False;
14014 end In_Access_Definition;
14015
14016 -- Start of processing for Is_Protected_Self_Reference
14017
14018 begin
14019 -- Verify that prefix is analyzed and has the proper form. Note that
14020 -- the attributes Elab_Spec, Elab_Body, and Elab_Subp_Body, which also
14021 -- produce the address of an entity, do not analyze their prefix
14022 -- because they denote entities that are not necessarily visible.
14023 -- Neither of them can apply to a protected type.
14024
14025 return Ada_Version >= Ada_2005
14026 and then Is_Entity_Name (N)
14027 and then Present (Entity (N))
14028 and then Is_Protected_Type (Entity (N))
14029 and then In_Open_Scopes (Entity (N))
14030 and then not In_Access_Definition (N);
14031 end Is_Protected_Self_Reference;
14032
14033 -----------------------------
14034 -- Is_RCI_Pkg_Spec_Or_Body --
14035 -----------------------------
14036
14037 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
14038
14039 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
14040 -- Return True if the unit of Cunit is an RCI package declaration
14041
14042 ---------------------------
14043 -- Is_RCI_Pkg_Decl_Cunit --
14044 ---------------------------
14045
14046 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
14047 The_Unit : constant Node_Id := Unit (Cunit);
14048
14049 begin
14050 if Nkind (The_Unit) /= N_Package_Declaration then
14051 return False;
14052 end if;
14053
14054 return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
14055 end Is_RCI_Pkg_Decl_Cunit;
14056
14057 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
14058
14059 begin
14060 return Is_RCI_Pkg_Decl_Cunit (Cunit)
14061 or else
14062 (Nkind (Unit (Cunit)) = N_Package_Body
14063 and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
14064 end Is_RCI_Pkg_Spec_Or_Body;
14065
14066 -----------------------------------------
14067 -- Is_Remote_Access_To_Class_Wide_Type --
14068 -----------------------------------------
14069
14070 function Is_Remote_Access_To_Class_Wide_Type
14071 (E : Entity_Id) return Boolean
14072 is
14073 begin
14074 -- A remote access to class-wide type is a general access to object type
14075 -- declared in the visible part of a Remote_Types or Remote_Call_
14076 -- Interface unit.
14077
14078 return Ekind (E) = E_General_Access_Type
14079 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
14080 end Is_Remote_Access_To_Class_Wide_Type;
14081
14082 -----------------------------------------
14083 -- Is_Remote_Access_To_Subprogram_Type --
14084 -----------------------------------------
14085
14086 function Is_Remote_Access_To_Subprogram_Type
14087 (E : Entity_Id) return Boolean
14088 is
14089 begin
14090 return (Ekind (E) = E_Access_Subprogram_Type
14091 or else (Ekind (E) = E_Record_Type
14092 and then Present (Corresponding_Remote_Type (E))))
14093 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
14094 end Is_Remote_Access_To_Subprogram_Type;
14095
14096 --------------------
14097 -- Is_Remote_Call --
14098 --------------------
14099
14100 function Is_Remote_Call (N : Node_Id) return Boolean is
14101 begin
14102 if Nkind (N) not in N_Subprogram_Call then
14103
14104 -- An entry call cannot be remote
14105
14106 return False;
14107
14108 elsif Nkind (Name (N)) in N_Has_Entity
14109 and then Is_Remote_Call_Interface (Entity (Name (N)))
14110 then
14111 -- A subprogram declared in the spec of a RCI package is remote
14112
14113 return True;
14114
14115 elsif Nkind (Name (N)) = N_Explicit_Dereference
14116 and then Is_Remote_Access_To_Subprogram_Type
14117 (Etype (Prefix (Name (N))))
14118 then
14119 -- The dereference of a RAS is a remote call
14120
14121 return True;
14122
14123 elsif Present (Controlling_Argument (N))
14124 and then Is_Remote_Access_To_Class_Wide_Type
14125 (Etype (Controlling_Argument (N)))
14126 then
14127 -- Any primitive operation call with a controlling argument of
14128 -- a RACW type is a remote call.
14129
14130 return True;
14131 end if;
14132
14133 -- All other calls are local calls
14134
14135 return False;
14136 end Is_Remote_Call;
14137
14138 ----------------------
14139 -- Is_Renamed_Entry --
14140 ----------------------
14141
14142 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
14143 Orig_Node : Node_Id := Empty;
14144 Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
14145
14146 function Is_Entry (Nam : Node_Id) return Boolean;
14147 -- Determine whether Nam is an entry. Traverse selectors if there are
14148 -- nested selected components.
14149
14150 --------------
14151 -- Is_Entry --
14152 --------------
14153
14154 function Is_Entry (Nam : Node_Id) return Boolean is
14155 begin
14156 if Nkind (Nam) = N_Selected_Component then
14157 return Is_Entry (Selector_Name (Nam));
14158 end if;
14159
14160 return Ekind (Entity (Nam)) = E_Entry;
14161 end Is_Entry;
14162
14163 -- Start of processing for Is_Renamed_Entry
14164
14165 begin
14166 if Present (Alias (Proc_Nam)) then
14167 Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
14168 end if;
14169
14170 -- Look for a rewritten subprogram renaming declaration
14171
14172 if Nkind (Subp_Decl) = N_Subprogram_Declaration
14173 and then Present (Original_Node (Subp_Decl))
14174 then
14175 Orig_Node := Original_Node (Subp_Decl);
14176 end if;
14177
14178 -- The rewritten subprogram is actually an entry
14179
14180 if Present (Orig_Node)
14181 and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
14182 and then Is_Entry (Name (Orig_Node))
14183 then
14184 return True;
14185 end if;
14186
14187 return False;
14188 end Is_Renamed_Entry;
14189
14190 -----------------------------
14191 -- Is_Renaming_Declaration --
14192 -----------------------------
14193
14194 function Is_Renaming_Declaration (N : Node_Id) return Boolean is
14195 begin
14196 case Nkind (N) is
14197 when N_Exception_Renaming_Declaration |
14198 N_Generic_Function_Renaming_Declaration |
14199 N_Generic_Package_Renaming_Declaration |
14200 N_Generic_Procedure_Renaming_Declaration |
14201 N_Object_Renaming_Declaration |
14202 N_Package_Renaming_Declaration |
14203 N_Subprogram_Renaming_Declaration =>
14204 return True;
14205
14206 when others =>
14207 return False;
14208 end case;
14209 end Is_Renaming_Declaration;
14210
14211 ----------------------------
14212 -- Is_Reversible_Iterator --
14213 ----------------------------
14214
14215 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
14216 Ifaces_List : Elist_Id;
14217 Iface_Elmt : Elmt_Id;
14218 Iface : Entity_Id;
14219
14220 begin
14221 if Is_Class_Wide_Type (Typ)
14222 and then Chars (Root_Type (Typ)) = Name_Reversible_Iterator
14223 and then Is_Predefined_File_Name
14224 (Unit_File_Name (Get_Source_Unit (Root_Type (Typ))))
14225 then
14226 return True;
14227
14228 elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
14229 return False;
14230
14231 else
14232 Collect_Interfaces (Typ, Ifaces_List);
14233
14234 Iface_Elmt := First_Elmt (Ifaces_List);
14235 while Present (Iface_Elmt) loop
14236 Iface := Node (Iface_Elmt);
14237 if Chars (Iface) = Name_Reversible_Iterator
14238 and then
14239 Is_Predefined_File_Name
14240 (Unit_File_Name (Get_Source_Unit (Iface)))
14241 then
14242 return True;
14243 end if;
14244
14245 Next_Elmt (Iface_Elmt);
14246 end loop;
14247 end if;
14248
14249 return False;
14250 end Is_Reversible_Iterator;
14251
14252 ----------------------
14253 -- Is_Selector_Name --
14254 ----------------------
14255
14256 function Is_Selector_Name (N : Node_Id) return Boolean is
14257 begin
14258 if not Is_List_Member (N) then
14259 declare
14260 P : constant Node_Id := Parent (N);
14261 begin
14262 return Nkind_In (P, N_Expanded_Name,
14263 N_Generic_Association,
14264 N_Parameter_Association,
14265 N_Selected_Component)
14266 and then Selector_Name (P) = N;
14267 end;
14268
14269 else
14270 declare
14271 L : constant List_Id := List_Containing (N);
14272 P : constant Node_Id := Parent (L);
14273 begin
14274 return (Nkind (P) = N_Discriminant_Association
14275 and then Selector_Names (P) = L)
14276 or else
14277 (Nkind (P) = N_Component_Association
14278 and then Choices (P) = L);
14279 end;
14280 end if;
14281 end Is_Selector_Name;
14282
14283 ---------------------------------
14284 -- Is_Single_Concurrent_Object --
14285 ---------------------------------
14286
14287 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean is
14288 begin
14289 return
14290 Is_Single_Protected_Object (Id) or else Is_Single_Task_Object (Id);
14291 end Is_Single_Concurrent_Object;
14292
14293 -------------------------------
14294 -- Is_Single_Concurrent_Type --
14295 -------------------------------
14296
14297 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean is
14298 begin
14299 return
14300 Ekind_In (Id, E_Protected_Type, E_Task_Type)
14301 and then Is_Single_Concurrent_Type_Declaration
14302 (Declaration_Node (Id));
14303 end Is_Single_Concurrent_Type;
14304
14305 -------------------------------------------
14306 -- Is_Single_Concurrent_Type_Declaration --
14307 -------------------------------------------
14308
14309 function Is_Single_Concurrent_Type_Declaration
14310 (N : Node_Id) return Boolean
14311 is
14312 begin
14313 return Nkind_In (Original_Node (N), N_Single_Protected_Declaration,
14314 N_Single_Task_Declaration);
14315 end Is_Single_Concurrent_Type_Declaration;
14316
14317 ---------------------------------------------
14318 -- Is_Single_Precision_Floating_Point_Type --
14319 ---------------------------------------------
14320
14321 function Is_Single_Precision_Floating_Point_Type
14322 (E : Entity_Id) return Boolean is
14323 begin
14324 return Is_Floating_Point_Type (E)
14325 and then Machine_Radix_Value (E) = Uint_2
14326 and then Machine_Mantissa_Value (E) = Uint_24
14327 and then Machine_Emax_Value (E) = Uint_2 ** Uint_7
14328 and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_7);
14329 end Is_Single_Precision_Floating_Point_Type;
14330
14331 --------------------------------
14332 -- Is_Single_Protected_Object --
14333 --------------------------------
14334
14335 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean is
14336 begin
14337 return
14338 Ekind (Id) = E_Variable
14339 and then Ekind (Etype (Id)) = E_Protected_Type
14340 and then Is_Single_Concurrent_Type (Etype (Id));
14341 end Is_Single_Protected_Object;
14342
14343 ---------------------------
14344 -- Is_Single_Task_Object --
14345 ---------------------------
14346
14347 function Is_Single_Task_Object (Id : Entity_Id) return Boolean is
14348 begin
14349 return
14350 Ekind (Id) = E_Variable
14351 and then Ekind (Etype (Id)) = E_Task_Type
14352 and then Is_Single_Concurrent_Type (Etype (Id));
14353 end Is_Single_Task_Object;
14354
14355 -------------------------------------
14356 -- Is_SPARK_05_Initialization_Expr --
14357 -------------------------------------
14358
14359 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean is
14360 Is_Ok : Boolean;
14361 Expr : Node_Id;
14362 Comp_Assn : Node_Id;
14363 Orig_N : constant Node_Id := Original_Node (N);
14364
14365 begin
14366 Is_Ok := True;
14367
14368 if not Comes_From_Source (Orig_N) then
14369 goto Done;
14370 end if;
14371
14372 pragma Assert (Nkind (Orig_N) in N_Subexpr);
14373
14374 case Nkind (Orig_N) is
14375 when N_Character_Literal |
14376 N_Integer_Literal |
14377 N_Real_Literal |
14378 N_String_Literal =>
14379 null;
14380
14381 when N_Identifier |
14382 N_Expanded_Name =>
14383 if Is_Entity_Name (Orig_N)
14384 and then Present (Entity (Orig_N)) -- needed in some cases
14385 then
14386 case Ekind (Entity (Orig_N)) is
14387 when E_Constant |
14388 E_Enumeration_Literal |
14389 E_Named_Integer |
14390 E_Named_Real =>
14391 null;
14392 when others =>
14393 if Is_Type (Entity (Orig_N)) then
14394 null;
14395 else
14396 Is_Ok := False;
14397 end if;
14398 end case;
14399 end if;
14400
14401 when N_Qualified_Expression |
14402 N_Type_Conversion =>
14403 Is_Ok := Is_SPARK_05_Initialization_Expr (Expression (Orig_N));
14404
14405 when N_Unary_Op =>
14406 Is_Ok := Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
14407
14408 when N_Binary_Op |
14409 N_Short_Circuit |
14410 N_Membership_Test =>
14411 Is_Ok := Is_SPARK_05_Initialization_Expr (Left_Opnd (Orig_N))
14412 and then
14413 Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
14414
14415 when N_Aggregate |
14416 N_Extension_Aggregate =>
14417 if Nkind (Orig_N) = N_Extension_Aggregate then
14418 Is_Ok :=
14419 Is_SPARK_05_Initialization_Expr (Ancestor_Part (Orig_N));
14420 end if;
14421
14422 Expr := First (Expressions (Orig_N));
14423 while Present (Expr) loop
14424 if not Is_SPARK_05_Initialization_Expr (Expr) then
14425 Is_Ok := False;
14426 goto Done;
14427 end if;
14428
14429 Next (Expr);
14430 end loop;
14431
14432 Comp_Assn := First (Component_Associations (Orig_N));
14433 while Present (Comp_Assn) loop
14434 Expr := Expression (Comp_Assn);
14435
14436 -- Note: test for Present here needed for box assocation
14437
14438 if Present (Expr)
14439 and then not Is_SPARK_05_Initialization_Expr (Expr)
14440 then
14441 Is_Ok := False;
14442 goto Done;
14443 end if;
14444
14445 Next (Comp_Assn);
14446 end loop;
14447
14448 when N_Attribute_Reference =>
14449 if Nkind (Prefix (Orig_N)) in N_Subexpr then
14450 Is_Ok := Is_SPARK_05_Initialization_Expr (Prefix (Orig_N));
14451 end if;
14452
14453 Expr := First (Expressions (Orig_N));
14454 while Present (Expr) loop
14455 if not Is_SPARK_05_Initialization_Expr (Expr) then
14456 Is_Ok := False;
14457 goto Done;
14458 end if;
14459
14460 Next (Expr);
14461 end loop;
14462
14463 -- Selected components might be expanded named not yet resolved, so
14464 -- default on the safe side. (Eg on sparklex.ads)
14465
14466 when N_Selected_Component =>
14467 null;
14468
14469 when others =>
14470 Is_Ok := False;
14471 end case;
14472
14473 <<Done>>
14474 return Is_Ok;
14475 end Is_SPARK_05_Initialization_Expr;
14476
14477 ----------------------------------
14478 -- Is_SPARK_05_Object_Reference --
14479 ----------------------------------
14480
14481 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean is
14482 begin
14483 if Is_Entity_Name (N) then
14484 return Present (Entity (N))
14485 and then
14486 (Ekind_In (Entity (N), E_Constant, E_Variable)
14487 or else Ekind (Entity (N)) in Formal_Kind);
14488
14489 else
14490 case Nkind (N) is
14491 when N_Selected_Component =>
14492 return Is_SPARK_05_Object_Reference (Prefix (N));
14493
14494 when others =>
14495 return False;
14496 end case;
14497 end if;
14498 end Is_SPARK_05_Object_Reference;
14499
14500 -----------------------------
14501 -- Is_Specific_Tagged_Type --
14502 -----------------------------
14503
14504 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean is
14505 Full_Typ : Entity_Id;
14506
14507 begin
14508 -- Handle private types
14509
14510 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
14511 Full_Typ := Full_View (Typ);
14512 else
14513 Full_Typ := Typ;
14514 end if;
14515
14516 -- A specific tagged type is a non-class-wide tagged type
14517
14518 return Is_Tagged_Type (Full_Typ) and not Is_Class_Wide_Type (Full_Typ);
14519 end Is_Specific_Tagged_Type;
14520
14521 ------------------
14522 -- Is_Statement --
14523 ------------------
14524
14525 function Is_Statement (N : Node_Id) return Boolean is
14526 begin
14527 return
14528 Nkind (N) in N_Statement_Other_Than_Procedure_Call
14529 or else Nkind (N) = N_Procedure_Call_Statement;
14530 end Is_Statement;
14531
14532 ---------------------------------------
14533 -- Is_Subprogram_Contract_Annotation --
14534 ---------------------------------------
14535
14536 function Is_Subprogram_Contract_Annotation
14537 (Item : Node_Id) return Boolean
14538 is
14539 Nam : Name_Id;
14540
14541 begin
14542 if Nkind (Item) = N_Aspect_Specification then
14543 Nam := Chars (Identifier (Item));
14544
14545 else pragma Assert (Nkind (Item) = N_Pragma);
14546 Nam := Pragma_Name (Item);
14547 end if;
14548
14549 return Nam = Name_Contract_Cases
14550 or else Nam = Name_Depends
14551 or else Nam = Name_Extensions_Visible
14552 or else Nam = Name_Global
14553 or else Nam = Name_Post
14554 or else Nam = Name_Post_Class
14555 or else Nam = Name_Postcondition
14556 or else Nam = Name_Pre
14557 or else Nam = Name_Pre_Class
14558 or else Nam = Name_Precondition
14559 or else Nam = Name_Refined_Depends
14560 or else Nam = Name_Refined_Global
14561 or else Nam = Name_Refined_Post
14562 or else Nam = Name_Test_Case;
14563 end Is_Subprogram_Contract_Annotation;
14564
14565 --------------------------------------------------
14566 -- Is_Subprogram_Stub_Without_Prior_Declaration --
14567 --------------------------------------------------
14568
14569 function Is_Subprogram_Stub_Without_Prior_Declaration
14570 (N : Node_Id) return Boolean
14571 is
14572 begin
14573 -- A subprogram stub without prior declaration serves as declaration for
14574 -- the actual subprogram body. As such, it has an attached defining
14575 -- entity of E_[Generic_]Function or E_[Generic_]Procedure.
14576
14577 return Nkind (N) = N_Subprogram_Body_Stub
14578 and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body;
14579 end Is_Subprogram_Stub_Without_Prior_Declaration;
14580
14581 --------------------------
14582 -- Is_Suspension_Object --
14583 --------------------------
14584
14585 function Is_Suspension_Object (Id : Entity_Id) return Boolean is
14586 begin
14587 -- This approach does an exact name match rather than to rely on
14588 -- RTSfind. Routine Is_Effectively_Volatile is used by clients of the
14589 -- front end at point where all auxiliary tables are locked and any
14590 -- modifications to them are treated as violations. Do not tamper with
14591 -- the tables, instead examine the Chars fields of all the scopes of Id.
14592
14593 return
14594 Chars (Id) = Name_Suspension_Object
14595 and then Present (Scope (Id))
14596 and then Chars (Scope (Id)) = Name_Synchronous_Task_Control
14597 and then Present (Scope (Scope (Id)))
14598 and then Chars (Scope (Scope (Id))) = Name_Ada
14599 and then Present (Scope (Scope (Scope (Id))))
14600 and then Scope (Scope (Scope (Id))) = Standard_Standard;
14601 end Is_Suspension_Object;
14602
14603 ----------------------------
14604 -- Is_Synchronized_Object --
14605 ----------------------------
14606
14607 function Is_Synchronized_Object (Id : Entity_Id) return Boolean is
14608 Prag : Node_Id;
14609
14610 begin
14611 if Is_Object (Id) then
14612
14613 -- The object is synchronized if it is of a type that yields a
14614 -- synchronized object.
14615
14616 if Yields_Synchronized_Object (Etype (Id)) then
14617 return True;
14618
14619 -- The object is synchronized if it is atomic and Async_Writers is
14620 -- enabled.
14621
14622 elsif Is_Atomic (Id) and then Async_Writers_Enabled (Id) then
14623 return True;
14624
14625 -- A constant is a synchronized object by default
14626
14627 elsif Ekind (Id) = E_Constant then
14628 return True;
14629
14630 -- A variable is a synchronized object if it is subject to pragma
14631 -- Constant_After_Elaboration.
14632
14633 elsif Ekind (Id) = E_Variable then
14634 Prag := Get_Pragma (Id, Pragma_Constant_After_Elaboration);
14635
14636 return Present (Prag) and then Is_Enabled_Pragma (Prag);
14637 end if;
14638 end if;
14639
14640 -- Otherwise the input is not an object or it does not qualify as a
14641 -- synchronized object.
14642
14643 return False;
14644 end Is_Synchronized_Object;
14645
14646 ---------------------------------
14647 -- Is_Synchronized_Tagged_Type --
14648 ---------------------------------
14649
14650 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
14651 Kind : constant Entity_Kind := Ekind (Base_Type (E));
14652
14653 begin
14654 -- A task or protected type derived from an interface is a tagged type.
14655 -- Such a tagged type is called a synchronized tagged type, as are
14656 -- synchronized interfaces and private extensions whose declaration
14657 -- includes the reserved word synchronized.
14658
14659 return (Is_Tagged_Type (E)
14660 and then (Kind = E_Task_Type
14661 or else
14662 Kind = E_Protected_Type))
14663 or else
14664 (Is_Interface (E)
14665 and then Is_Synchronized_Interface (E))
14666 or else
14667 (Ekind (E) = E_Record_Type_With_Private
14668 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
14669 and then (Synchronized_Present (Parent (E))
14670 or else Is_Synchronized_Interface (Etype (E))));
14671 end Is_Synchronized_Tagged_Type;
14672
14673 -----------------
14674 -- Is_Transfer --
14675 -----------------
14676
14677 function Is_Transfer (N : Node_Id) return Boolean is
14678 Kind : constant Node_Kind := Nkind (N);
14679
14680 begin
14681 if Kind = N_Simple_Return_Statement
14682 or else
14683 Kind = N_Extended_Return_Statement
14684 or else
14685 Kind = N_Goto_Statement
14686 or else
14687 Kind = N_Raise_Statement
14688 or else
14689 Kind = N_Requeue_Statement
14690 then
14691 return True;
14692
14693 elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
14694 and then No (Condition (N))
14695 then
14696 return True;
14697
14698 elsif Kind = N_Procedure_Call_Statement
14699 and then Is_Entity_Name (Name (N))
14700 and then Present (Entity (Name (N)))
14701 and then No_Return (Entity (Name (N)))
14702 then
14703 return True;
14704
14705 elsif Nkind (Original_Node (N)) = N_Raise_Statement then
14706 return True;
14707
14708 else
14709 return False;
14710 end if;
14711 end Is_Transfer;
14712
14713 -------------
14714 -- Is_True --
14715 -------------
14716
14717 function Is_True (U : Uint) return Boolean is
14718 begin
14719 return (U /= 0);
14720 end Is_True;
14721
14722 --------------------------------------
14723 -- Is_Unchecked_Conversion_Instance --
14724 --------------------------------------
14725
14726 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean is
14727 Par : Node_Id;
14728
14729 begin
14730 -- Look for a function whose generic parent is the predefined intrinsic
14731 -- function Unchecked_Conversion, or for one that renames such an
14732 -- instance.
14733
14734 if Ekind (Id) = E_Function then
14735 Par := Parent (Id);
14736
14737 if Nkind (Par) = N_Function_Specification then
14738 Par := Generic_Parent (Par);
14739
14740 if Present (Par) then
14741 return
14742 Chars (Par) = Name_Unchecked_Conversion
14743 and then Is_Intrinsic_Subprogram (Par)
14744 and then Is_Predefined_File_Name
14745 (Unit_File_Name (Get_Source_Unit (Par)));
14746 else
14747 return
14748 Present (Alias (Id))
14749 and then Is_Unchecked_Conversion_Instance (Alias (Id));
14750 end if;
14751 end if;
14752 end if;
14753
14754 return False;
14755 end Is_Unchecked_Conversion_Instance;
14756
14757 -------------------------------
14758 -- Is_Universal_Numeric_Type --
14759 -------------------------------
14760
14761 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
14762 begin
14763 return T = Universal_Integer or else T = Universal_Real;
14764 end Is_Universal_Numeric_Type;
14765
14766 ----------------------------
14767 -- Is_Variable_Size_Array --
14768 ----------------------------
14769
14770 function Is_Variable_Size_Array (E : Entity_Id) return Boolean is
14771 Idx : Node_Id;
14772
14773 begin
14774 pragma Assert (Is_Array_Type (E));
14775
14776 -- Check if some index is initialized with a non-constant value
14777
14778 Idx := First_Index (E);
14779 while Present (Idx) loop
14780 if Nkind (Idx) = N_Range then
14781 if not Is_Constant_Bound (Low_Bound (Idx))
14782 or else not Is_Constant_Bound (High_Bound (Idx))
14783 then
14784 return True;
14785 end if;
14786 end if;
14787
14788 Idx := Next_Index (Idx);
14789 end loop;
14790
14791 return False;
14792 end Is_Variable_Size_Array;
14793
14794 -----------------------------
14795 -- Is_Variable_Size_Record --
14796 -----------------------------
14797
14798 function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
14799 Comp : Entity_Id;
14800 Comp_Typ : Entity_Id;
14801
14802 begin
14803 pragma Assert (Is_Record_Type (E));
14804
14805 Comp := First_Entity (E);
14806 while Present (Comp) loop
14807 Comp_Typ := Etype (Comp);
14808
14809 -- Recursive call if the record type has discriminants
14810
14811 if Is_Record_Type (Comp_Typ)
14812 and then Has_Discriminants (Comp_Typ)
14813 and then Is_Variable_Size_Record (Comp_Typ)
14814 then
14815 return True;
14816
14817 elsif Is_Array_Type (Comp_Typ)
14818 and then Is_Variable_Size_Array (Comp_Typ)
14819 then
14820 return True;
14821 end if;
14822
14823 Next_Entity (Comp);
14824 end loop;
14825
14826 return False;
14827 end Is_Variable_Size_Record;
14828
14829 -----------------
14830 -- Is_Variable --
14831 -----------------
14832
14833 function Is_Variable
14834 (N : Node_Id;
14835 Use_Original_Node : Boolean := True) return Boolean
14836 is
14837 Orig_Node : Node_Id;
14838
14839 function In_Protected_Function (E : Entity_Id) return Boolean;
14840 -- Within a protected function, the private components of the enclosing
14841 -- protected type are constants. A function nested within a (protected)
14842 -- procedure is not itself protected. Within the body of a protected
14843 -- function the current instance of the protected type is a constant.
14844
14845 function Is_Variable_Prefix (P : Node_Id) return Boolean;
14846 -- Prefixes can involve implicit dereferences, in which case we must
14847 -- test for the case of a reference of a constant access type, which can
14848 -- can never be a variable.
14849
14850 ---------------------------
14851 -- In_Protected_Function --
14852 ---------------------------
14853
14854 function In_Protected_Function (E : Entity_Id) return Boolean is
14855 Prot : Entity_Id;
14856 S : Entity_Id;
14857
14858 begin
14859 -- E is the current instance of a type
14860
14861 if Is_Type (E) then
14862 Prot := E;
14863
14864 -- E is an object
14865
14866 else
14867 Prot := Scope (E);
14868 end if;
14869
14870 if not Is_Protected_Type (Prot) then
14871 return False;
14872
14873 else
14874 S := Current_Scope;
14875 while Present (S) and then S /= Prot loop
14876 if Ekind (S) = E_Function and then Scope (S) = Prot then
14877 return True;
14878 end if;
14879
14880 S := Scope (S);
14881 end loop;
14882
14883 return False;
14884 end if;
14885 end In_Protected_Function;
14886
14887 ------------------------
14888 -- Is_Variable_Prefix --
14889 ------------------------
14890
14891 function Is_Variable_Prefix (P : Node_Id) return Boolean is
14892 begin
14893 if Is_Access_Type (Etype (P)) then
14894 return not Is_Access_Constant (Root_Type (Etype (P)));
14895
14896 -- For the case of an indexed component whose prefix has a packed
14897 -- array type, the prefix has been rewritten into a type conversion.
14898 -- Determine variable-ness from the converted expression.
14899
14900 elsif Nkind (P) = N_Type_Conversion
14901 and then not Comes_From_Source (P)
14902 and then Is_Array_Type (Etype (P))
14903 and then Is_Packed (Etype (P))
14904 then
14905 return Is_Variable (Expression (P));
14906
14907 else
14908 return Is_Variable (P);
14909 end if;
14910 end Is_Variable_Prefix;
14911
14912 -- Start of processing for Is_Variable
14913
14914 begin
14915 -- Special check, allow x'Deref(expr) as a variable
14916
14917 if Nkind (N) = N_Attribute_Reference
14918 and then Attribute_Name (N) = Name_Deref
14919 then
14920 return True;
14921 end if;
14922
14923 -- Check if we perform the test on the original node since this may be a
14924 -- test of syntactic categories which must not be disturbed by whatever
14925 -- rewriting might have occurred. For example, an aggregate, which is
14926 -- certainly NOT a variable, could be turned into a variable by
14927 -- expansion.
14928
14929 if Use_Original_Node then
14930 Orig_Node := Original_Node (N);
14931 else
14932 Orig_Node := N;
14933 end if;
14934
14935 -- Definitely OK if Assignment_OK is set. Since this is something that
14936 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
14937
14938 if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
14939 return True;
14940
14941 -- Normally we go to the original node, but there is one exception where
14942 -- we use the rewritten node, namely when it is an explicit dereference.
14943 -- The generated code may rewrite a prefix which is an access type with
14944 -- an explicit dereference. The dereference is a variable, even though
14945 -- the original node may not be (since it could be a constant of the
14946 -- access type).
14947
14948 -- In Ada 2005 we have a further case to consider: the prefix may be a
14949 -- function call given in prefix notation. The original node appears to
14950 -- be a selected component, but we need to examine the call.
14951
14952 elsif Nkind (N) = N_Explicit_Dereference
14953 and then Nkind (Orig_Node) /= N_Explicit_Dereference
14954 and then Present (Etype (Orig_Node))
14955 and then Is_Access_Type (Etype (Orig_Node))
14956 then
14957 -- Note that if the prefix is an explicit dereference that does not
14958 -- come from source, we must check for a rewritten function call in
14959 -- prefixed notation before other forms of rewriting, to prevent a
14960 -- compiler crash.
14961
14962 return
14963 (Nkind (Orig_Node) = N_Function_Call
14964 and then not Is_Access_Constant (Etype (Prefix (N))))
14965 or else
14966 Is_Variable_Prefix (Original_Node (Prefix (N)));
14967
14968 -- in Ada 2012, the dereference may have been added for a type with
14969 -- a declared implicit dereference aspect. Check that it is not an
14970 -- access to constant.
14971
14972 elsif Nkind (N) = N_Explicit_Dereference
14973 and then Present (Etype (Orig_Node))
14974 and then Ada_Version >= Ada_2012
14975 and then Has_Implicit_Dereference (Etype (Orig_Node))
14976 then
14977 return not Is_Access_Constant (Etype (Prefix (N)));
14978
14979 -- A function call is never a variable
14980
14981 elsif Nkind (N) = N_Function_Call then
14982 return False;
14983
14984 -- All remaining checks use the original node
14985
14986 elsif Is_Entity_Name (Orig_Node)
14987 and then Present (Entity (Orig_Node))
14988 then
14989 declare
14990 E : constant Entity_Id := Entity (Orig_Node);
14991 K : constant Entity_Kind := Ekind (E);
14992
14993 begin
14994 return (K = E_Variable
14995 and then Nkind (Parent (E)) /= N_Exception_Handler)
14996 or else (K = E_Component
14997 and then not In_Protected_Function (E))
14998 or else K = E_Out_Parameter
14999 or else K = E_In_Out_Parameter
15000 or else K = E_Generic_In_Out_Parameter
15001
15002 -- Current instance of type. If this is a protected type, check
15003 -- we are not within the body of one of its protected functions.
15004
15005 or else (Is_Type (E)
15006 and then In_Open_Scopes (E)
15007 and then not In_Protected_Function (E))
15008
15009 or else (Is_Incomplete_Or_Private_Type (E)
15010 and then In_Open_Scopes (Full_View (E)));
15011 end;
15012
15013 else
15014 case Nkind (Orig_Node) is
15015 when N_Indexed_Component | N_Slice =>
15016 return Is_Variable_Prefix (Prefix (Orig_Node));
15017
15018 when N_Selected_Component =>
15019 return (Is_Variable (Selector_Name (Orig_Node))
15020 and then Is_Variable_Prefix (Prefix (Orig_Node)))
15021 or else
15022 (Nkind (N) = N_Expanded_Name
15023 and then Scope (Entity (N)) = Entity (Prefix (N)));
15024
15025 -- For an explicit dereference, the type of the prefix cannot
15026 -- be an access to constant or an access to subprogram.
15027
15028 when N_Explicit_Dereference =>
15029 declare
15030 Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
15031 begin
15032 return Is_Access_Type (Typ)
15033 and then not Is_Access_Constant (Root_Type (Typ))
15034 and then Ekind (Typ) /= E_Access_Subprogram_Type;
15035 end;
15036
15037 -- The type conversion is the case where we do not deal with the
15038 -- context dependent special case of an actual parameter. Thus
15039 -- the type conversion is only considered a variable for the
15040 -- purposes of this routine if the target type is tagged. However,
15041 -- a type conversion is considered to be a variable if it does not
15042 -- come from source (this deals for example with the conversions
15043 -- of expressions to their actual subtypes).
15044
15045 when N_Type_Conversion =>
15046 return Is_Variable (Expression (Orig_Node))
15047 and then
15048 (not Comes_From_Source (Orig_Node)
15049 or else
15050 (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
15051 and then
15052 Is_Tagged_Type (Etype (Expression (Orig_Node)))));
15053
15054 -- GNAT allows an unchecked type conversion as a variable. This
15055 -- only affects the generation of internal expanded code, since
15056 -- calls to instantiations of Unchecked_Conversion are never
15057 -- considered variables (since they are function calls).
15058
15059 when N_Unchecked_Type_Conversion =>
15060 return Is_Variable (Expression (Orig_Node));
15061
15062 when others =>
15063 return False;
15064 end case;
15065 end if;
15066 end Is_Variable;
15067
15068 ------------------------------
15069 -- Is_Verifiable_DIC_Pragma --
15070 ------------------------------
15071
15072 function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean is
15073 Args : constant List_Id := Pragma_Argument_Associations (Prag);
15074
15075 begin
15076 -- To qualify as verifiable, a DIC pragma must have a non-null argument
15077
15078 return
15079 Present (Args)
15080 and then Nkind (Get_Pragma_Arg (First (Args))) /= N_Null;
15081 end Is_Verifiable_DIC_Pragma;
15082
15083 ---------------------------
15084 -- Is_Visibly_Controlled --
15085 ---------------------------
15086
15087 function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
15088 Root : constant Entity_Id := Root_Type (T);
15089 begin
15090 return Chars (Scope (Root)) = Name_Finalization
15091 and then Chars (Scope (Scope (Root))) = Name_Ada
15092 and then Scope (Scope (Scope (Root))) = Standard_Standard;
15093 end Is_Visibly_Controlled;
15094
15095 --------------------------
15096 -- Is_Volatile_Function --
15097 --------------------------
15098
15099 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean is
15100 begin
15101 pragma Assert (Ekind_In (Func_Id, E_Function, E_Generic_Function));
15102
15103 -- A function declared within a protected type is volatile
15104
15105 if Is_Protected_Type (Scope (Func_Id)) then
15106 return True;
15107
15108 -- An instance of Ada.Unchecked_Conversion is a volatile function if
15109 -- either the source or the target are effectively volatile.
15110
15111 elsif Is_Unchecked_Conversion_Instance (Func_Id)
15112 and then Has_Effectively_Volatile_Profile (Func_Id)
15113 then
15114 return True;
15115
15116 -- Otherwise the function is treated as volatile if it is subject to
15117 -- enabled pragma Volatile_Function.
15118
15119 else
15120 return
15121 Is_Enabled_Pragma (Get_Pragma (Func_Id, Pragma_Volatile_Function));
15122 end if;
15123 end Is_Volatile_Function;
15124
15125 ------------------------
15126 -- Is_Volatile_Object --
15127 ------------------------
15128
15129 function Is_Volatile_Object (N : Node_Id) return Boolean is
15130
15131 function Is_Volatile_Prefix (N : Node_Id) return Boolean;
15132 -- If prefix is an implicit dereference, examine designated type
15133
15134 function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
15135 -- Determines if given object has volatile components
15136
15137 ------------------------
15138 -- Is_Volatile_Prefix --
15139 ------------------------
15140
15141 function Is_Volatile_Prefix (N : Node_Id) return Boolean is
15142 Typ : constant Entity_Id := Etype (N);
15143
15144 begin
15145 if Is_Access_Type (Typ) then
15146 declare
15147 Dtyp : constant Entity_Id := Designated_Type (Typ);
15148
15149 begin
15150 return Is_Volatile (Dtyp)
15151 or else Has_Volatile_Components (Dtyp);
15152 end;
15153
15154 else
15155 return Object_Has_Volatile_Components (N);
15156 end if;
15157 end Is_Volatile_Prefix;
15158
15159 ------------------------------------
15160 -- Object_Has_Volatile_Components --
15161 ------------------------------------
15162
15163 function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
15164 Typ : constant Entity_Id := Etype (N);
15165
15166 begin
15167 if Is_Volatile (Typ)
15168 or else Has_Volatile_Components (Typ)
15169 then
15170 return True;
15171
15172 elsif Is_Entity_Name (N)
15173 and then (Has_Volatile_Components (Entity (N))
15174 or else Is_Volatile (Entity (N)))
15175 then
15176 return True;
15177
15178 elsif Nkind (N) = N_Indexed_Component
15179 or else Nkind (N) = N_Selected_Component
15180 then
15181 return Is_Volatile_Prefix (Prefix (N));
15182
15183 else
15184 return False;
15185 end if;
15186 end Object_Has_Volatile_Components;
15187
15188 -- Start of processing for Is_Volatile_Object
15189
15190 begin
15191 if Nkind (N) = N_Defining_Identifier then
15192 return Is_Volatile (N) or else Is_Volatile (Etype (N));
15193
15194 elsif Nkind (N) = N_Expanded_Name then
15195 return Is_Volatile_Object (Entity (N));
15196
15197 elsif Is_Volatile (Etype (N))
15198 or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
15199 then
15200 return True;
15201
15202 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component)
15203 and then Is_Volatile_Prefix (Prefix (N))
15204 then
15205 return True;
15206
15207 elsif Nkind (N) = N_Selected_Component
15208 and then Is_Volatile (Entity (Selector_Name (N)))
15209 then
15210 return True;
15211
15212 else
15213 return False;
15214 end if;
15215 end Is_Volatile_Object;
15216
15217 ---------------------------
15218 -- Itype_Has_Declaration --
15219 ---------------------------
15220
15221 function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
15222 begin
15223 pragma Assert (Is_Itype (Id));
15224 return Present (Parent (Id))
15225 and then Nkind_In (Parent (Id), N_Full_Type_Declaration,
15226 N_Subtype_Declaration)
15227 and then Defining_Entity (Parent (Id)) = Id;
15228 end Itype_Has_Declaration;
15229
15230 -------------------------
15231 -- Kill_Current_Values --
15232 -------------------------
15233
15234 procedure Kill_Current_Values
15235 (Ent : Entity_Id;
15236 Last_Assignment_Only : Boolean := False)
15237 is
15238 begin
15239 if Is_Assignable (Ent) then
15240 Set_Last_Assignment (Ent, Empty);
15241 end if;
15242
15243 if Is_Object (Ent) then
15244 if not Last_Assignment_Only then
15245 Kill_Checks (Ent);
15246 Set_Current_Value (Ent, Empty);
15247
15248 -- Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
15249 -- for a constant. Once the constant is elaborated, its value is
15250 -- not changed, therefore the associated flags that describe the
15251 -- value should not be modified either.
15252
15253 if Ekind (Ent) = E_Constant then
15254 null;
15255
15256 -- Non-constant entities
15257
15258 else
15259 if not Can_Never_Be_Null (Ent) then
15260 Set_Is_Known_Non_Null (Ent, False);
15261 end if;
15262
15263 Set_Is_Known_Null (Ent, False);
15264
15265 -- Reset the Is_Known_Valid flag unless the type is always
15266 -- valid. This does not apply to a loop parameter because its
15267 -- bounds are defined by the loop header and therefore always
15268 -- valid.
15269
15270 if not Is_Known_Valid (Etype (Ent))
15271 and then Ekind (Ent) /= E_Loop_Parameter
15272 then
15273 Set_Is_Known_Valid (Ent, False);
15274 end if;
15275 end if;
15276 end if;
15277 end if;
15278 end Kill_Current_Values;
15279
15280 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
15281 S : Entity_Id;
15282
15283 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
15284 -- Clear current value for entity E and all entities chained to E
15285
15286 ------------------------------------------
15287 -- Kill_Current_Values_For_Entity_Chain --
15288 ------------------------------------------
15289
15290 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
15291 Ent : Entity_Id;
15292 begin
15293 Ent := E;
15294 while Present (Ent) loop
15295 Kill_Current_Values (Ent, Last_Assignment_Only);
15296 Next_Entity (Ent);
15297 end loop;
15298 end Kill_Current_Values_For_Entity_Chain;
15299
15300 -- Start of processing for Kill_Current_Values
15301
15302 begin
15303 -- Kill all saved checks, a special case of killing saved values
15304
15305 if not Last_Assignment_Only then
15306 Kill_All_Checks;
15307 end if;
15308
15309 -- Loop through relevant scopes, which includes the current scope and
15310 -- any parent scopes if the current scope is a block or a package.
15311
15312 S := Current_Scope;
15313 Scope_Loop : loop
15314
15315 -- Clear current values of all entities in current scope
15316
15317 Kill_Current_Values_For_Entity_Chain (First_Entity (S));
15318
15319 -- If scope is a package, also clear current values of all private
15320 -- entities in the scope.
15321
15322 if Is_Package_Or_Generic_Package (S)
15323 or else Is_Concurrent_Type (S)
15324 then
15325 Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
15326 end if;
15327
15328 -- If this is a not a subprogram, deal with parents
15329
15330 if not Is_Subprogram (S) then
15331 S := Scope (S);
15332 exit Scope_Loop when S = Standard_Standard;
15333 else
15334 exit Scope_Loop;
15335 end if;
15336 end loop Scope_Loop;
15337 end Kill_Current_Values;
15338
15339 --------------------------
15340 -- Kill_Size_Check_Code --
15341 --------------------------
15342
15343 procedure Kill_Size_Check_Code (E : Entity_Id) is
15344 begin
15345 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
15346 and then Present (Size_Check_Code (E))
15347 then
15348 Remove (Size_Check_Code (E));
15349 Set_Size_Check_Code (E, Empty);
15350 end if;
15351 end Kill_Size_Check_Code;
15352
15353 --------------------------
15354 -- Known_To_Be_Assigned --
15355 --------------------------
15356
15357 function Known_To_Be_Assigned (N : Node_Id) return Boolean is
15358 P : constant Node_Id := Parent (N);
15359
15360 begin
15361 case Nkind (P) is
15362
15363 -- Test left side of assignment
15364
15365 when N_Assignment_Statement =>
15366 return N = Name (P);
15367
15368 -- Function call arguments are never lvalues
15369
15370 when N_Function_Call =>
15371 return False;
15372
15373 -- Positional parameter for procedure or accept call
15374
15375 when N_Procedure_Call_Statement |
15376 N_Accept_Statement
15377 =>
15378 declare
15379 Proc : Entity_Id;
15380 Form : Entity_Id;
15381 Act : Node_Id;
15382
15383 begin
15384 Proc := Get_Subprogram_Entity (P);
15385
15386 if No (Proc) then
15387 return False;
15388 end if;
15389
15390 -- If we are not a list member, something is strange, so
15391 -- be conservative and return False.
15392
15393 if not Is_List_Member (N) then
15394 return False;
15395 end if;
15396
15397 -- We are going to find the right formal by stepping forward
15398 -- through the formals, as we step backwards in the actuals.
15399
15400 Form := First_Formal (Proc);
15401 Act := N;
15402 loop
15403 -- If no formal, something is weird, so be conservative
15404 -- and return False.
15405
15406 if No (Form) then
15407 return False;
15408 end if;
15409
15410 Prev (Act);
15411 exit when No (Act);
15412 Next_Formal (Form);
15413 end loop;
15414
15415 return Ekind (Form) /= E_In_Parameter;
15416 end;
15417
15418 -- Named parameter for procedure or accept call
15419
15420 when N_Parameter_Association =>
15421 declare
15422 Proc : Entity_Id;
15423 Form : Entity_Id;
15424
15425 begin
15426 Proc := Get_Subprogram_Entity (Parent (P));
15427
15428 if No (Proc) then
15429 return False;
15430 end if;
15431
15432 -- Loop through formals to find the one that matches
15433
15434 Form := First_Formal (Proc);
15435 loop
15436 -- If no matching formal, that's peculiar, some kind of
15437 -- previous error, so return False to be conservative.
15438 -- Actually this also happens in legal code in the case
15439 -- where P is a parameter association for an Extra_Formal???
15440
15441 if No (Form) then
15442 return False;
15443 end if;
15444
15445 -- Else test for match
15446
15447 if Chars (Form) = Chars (Selector_Name (P)) then
15448 return Ekind (Form) /= E_In_Parameter;
15449 end if;
15450
15451 Next_Formal (Form);
15452 end loop;
15453 end;
15454
15455 -- Test for appearing in a conversion that itself appears
15456 -- in an lvalue context, since this should be an lvalue.
15457
15458 when N_Type_Conversion =>
15459 return Known_To_Be_Assigned (P);
15460
15461 -- All other references are definitely not known to be modifications
15462
15463 when others =>
15464 return False;
15465
15466 end case;
15467 end Known_To_Be_Assigned;
15468
15469 ---------------------------
15470 -- Last_Source_Statement --
15471 ---------------------------
15472
15473 function Last_Source_Statement (HSS : Node_Id) return Node_Id is
15474 N : Node_Id;
15475
15476 begin
15477 N := Last (Statements (HSS));
15478 while Present (N) loop
15479 exit when Comes_From_Source (N);
15480 Prev (N);
15481 end loop;
15482
15483 return N;
15484 end Last_Source_Statement;
15485
15486 ----------------------------------
15487 -- Matching_Static_Array_Bounds --
15488 ----------------------------------
15489
15490 function Matching_Static_Array_Bounds
15491 (L_Typ : Node_Id;
15492 R_Typ : Node_Id) return Boolean
15493 is
15494 L_Ndims : constant Nat := Number_Dimensions (L_Typ);
15495 R_Ndims : constant Nat := Number_Dimensions (R_Typ);
15496
15497 L_Index : Node_Id;
15498 R_Index : Node_Id;
15499 L_Low : Node_Id;
15500 L_High : Node_Id;
15501 L_Len : Uint;
15502 R_Low : Node_Id;
15503 R_High : Node_Id;
15504 R_Len : Uint;
15505
15506 begin
15507 if L_Ndims /= R_Ndims then
15508 return False;
15509 end if;
15510
15511 -- Unconstrained types do not have static bounds
15512
15513 if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then
15514 return False;
15515 end if;
15516
15517 -- First treat specially the first dimension, as the lower bound and
15518 -- length of string literals are not stored like those of arrays.
15519
15520 if Ekind (L_Typ) = E_String_Literal_Subtype then
15521 L_Low := String_Literal_Low_Bound (L_Typ);
15522 L_Len := String_Literal_Length (L_Typ);
15523 else
15524 L_Index := First_Index (L_Typ);
15525 Get_Index_Bounds (L_Index, L_Low, L_High);
15526
15527 if Is_OK_Static_Expression (L_Low)
15528 and then
15529 Is_OK_Static_Expression (L_High)
15530 then
15531 if Expr_Value (L_High) < Expr_Value (L_Low) then
15532 L_Len := Uint_0;
15533 else
15534 L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1;
15535 end if;
15536 else
15537 return False;
15538 end if;
15539 end if;
15540
15541 if Ekind (R_Typ) = E_String_Literal_Subtype then
15542 R_Low := String_Literal_Low_Bound (R_Typ);
15543 R_Len := String_Literal_Length (R_Typ);
15544 else
15545 R_Index := First_Index (R_Typ);
15546 Get_Index_Bounds (R_Index, R_Low, R_High);
15547
15548 if Is_OK_Static_Expression (R_Low)
15549 and then
15550 Is_OK_Static_Expression (R_High)
15551 then
15552 if Expr_Value (R_High) < Expr_Value (R_Low) then
15553 R_Len := Uint_0;
15554 else
15555 R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1;
15556 end if;
15557 else
15558 return False;
15559 end if;
15560 end if;
15561
15562 if (Is_OK_Static_Expression (L_Low)
15563 and then
15564 Is_OK_Static_Expression (R_Low))
15565 and then Expr_Value (L_Low) = Expr_Value (R_Low)
15566 and then L_Len = R_Len
15567 then
15568 null;
15569 else
15570 return False;
15571 end if;
15572
15573 -- Then treat all other dimensions
15574
15575 for Indx in 2 .. L_Ndims loop
15576 Next (L_Index);
15577 Next (R_Index);
15578
15579 Get_Index_Bounds (L_Index, L_Low, L_High);
15580 Get_Index_Bounds (R_Index, R_Low, R_High);
15581
15582 if (Is_OK_Static_Expression (L_Low) and then
15583 Is_OK_Static_Expression (L_High) and then
15584 Is_OK_Static_Expression (R_Low) and then
15585 Is_OK_Static_Expression (R_High))
15586 and then (Expr_Value (L_Low) = Expr_Value (R_Low)
15587 and then
15588 Expr_Value (L_High) = Expr_Value (R_High))
15589 then
15590 null;
15591 else
15592 return False;
15593 end if;
15594 end loop;
15595
15596 -- If we fall through the loop, all indexes matched
15597
15598 return True;
15599 end Matching_Static_Array_Bounds;
15600
15601 -------------------
15602 -- May_Be_Lvalue --
15603 -------------------
15604
15605 function May_Be_Lvalue (N : Node_Id) return Boolean is
15606 P : constant Node_Id := Parent (N);
15607
15608 begin
15609 case Nkind (P) is
15610
15611 -- Test left side of assignment
15612
15613 when N_Assignment_Statement =>
15614 return N = Name (P);
15615
15616 -- Test prefix of component or attribute. Note that the prefix of an
15617 -- explicit or implicit dereference cannot be an l-value. In the case
15618 -- of a 'Read attribute, the reference can be an actual in the
15619 -- argument list of the attribute.
15620
15621 when N_Attribute_Reference =>
15622 return (N = Prefix (P)
15623 and then Name_Implies_Lvalue_Prefix (Attribute_Name (P)))
15624 or else
15625 Attribute_Name (P) = Name_Read;
15626
15627 -- For an expanded name, the name is an lvalue if the expanded name
15628 -- is an lvalue, but the prefix is never an lvalue, since it is just
15629 -- the scope where the name is found.
15630
15631 when N_Expanded_Name =>
15632 if N = Prefix (P) then
15633 return May_Be_Lvalue (P);
15634 else
15635 return False;
15636 end if;
15637
15638 -- For a selected component A.B, A is certainly an lvalue if A.B is.
15639 -- B is a little interesting, if we have A.B := 3, there is some
15640 -- discussion as to whether B is an lvalue or not, we choose to say
15641 -- it is. Note however that A is not an lvalue if it is of an access
15642 -- type since this is an implicit dereference.
15643
15644 when N_Selected_Component =>
15645 if N = Prefix (P)
15646 and then Present (Etype (N))
15647 and then Is_Access_Type (Etype (N))
15648 then
15649 return False;
15650 else
15651 return May_Be_Lvalue (P);
15652 end if;
15653
15654 -- For an indexed component or slice, the index or slice bounds is
15655 -- never an lvalue. The prefix is an lvalue if the indexed component
15656 -- or slice is an lvalue, except if it is an access type, where we
15657 -- have an implicit dereference.
15658
15659 when N_Indexed_Component | N_Slice =>
15660 if N /= Prefix (P)
15661 or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
15662 then
15663 return False;
15664 else
15665 return May_Be_Lvalue (P);
15666 end if;
15667
15668 -- Prefix of a reference is an lvalue if the reference is an lvalue
15669
15670 when N_Reference =>
15671 return May_Be_Lvalue (P);
15672
15673 -- Prefix of explicit dereference is never an lvalue
15674
15675 when N_Explicit_Dereference =>
15676 return False;
15677
15678 -- Positional parameter for subprogram, entry, or accept call.
15679 -- In older versions of Ada function call arguments are never
15680 -- lvalues. In Ada 2012 functions can have in-out parameters.
15681
15682 when N_Subprogram_Call |
15683 N_Entry_Call_Statement |
15684 N_Accept_Statement
15685 =>
15686 if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then
15687 return False;
15688 end if;
15689
15690 -- The following mechanism is clumsy and fragile. A single flag
15691 -- set in Resolve_Actuals would be preferable ???
15692
15693 declare
15694 Proc : Entity_Id;
15695 Form : Entity_Id;
15696 Act : Node_Id;
15697
15698 begin
15699 Proc := Get_Subprogram_Entity (P);
15700
15701 if No (Proc) then
15702 return True;
15703 end if;
15704
15705 -- If we are not a list member, something is strange, so be
15706 -- conservative and return True.
15707
15708 if not Is_List_Member (N) then
15709 return True;
15710 end if;
15711
15712 -- We are going to find the right formal by stepping forward
15713 -- through the formals, as we step backwards in the actuals.
15714
15715 Form := First_Formal (Proc);
15716 Act := N;
15717 loop
15718 -- If no formal, something is weird, so be conservative and
15719 -- return True.
15720
15721 if No (Form) then
15722 return True;
15723 end if;
15724
15725 Prev (Act);
15726 exit when No (Act);
15727 Next_Formal (Form);
15728 end loop;
15729
15730 return Ekind (Form) /= E_In_Parameter;
15731 end;
15732
15733 -- Named parameter for procedure or accept call
15734
15735 when N_Parameter_Association =>
15736 declare
15737 Proc : Entity_Id;
15738 Form : Entity_Id;
15739
15740 begin
15741 Proc := Get_Subprogram_Entity (Parent (P));
15742
15743 if No (Proc) then
15744 return True;
15745 end if;
15746
15747 -- Loop through formals to find the one that matches
15748
15749 Form := First_Formal (Proc);
15750 loop
15751 -- If no matching formal, that's peculiar, some kind of
15752 -- previous error, so return True to be conservative.
15753 -- Actually happens with legal code for an unresolved call
15754 -- where we may get the wrong homonym???
15755
15756 if No (Form) then
15757 return True;
15758 end if;
15759
15760 -- Else test for match
15761
15762 if Chars (Form) = Chars (Selector_Name (P)) then
15763 return Ekind (Form) /= E_In_Parameter;
15764 end if;
15765
15766 Next_Formal (Form);
15767 end loop;
15768 end;
15769
15770 -- Test for appearing in a conversion that itself appears in an
15771 -- lvalue context, since this should be an lvalue.
15772
15773 when N_Type_Conversion =>
15774 return May_Be_Lvalue (P);
15775
15776 -- Test for appearance in object renaming declaration
15777
15778 when N_Object_Renaming_Declaration =>
15779 return True;
15780
15781 -- All other references are definitely not lvalues
15782
15783 when others =>
15784 return False;
15785
15786 end case;
15787 end May_Be_Lvalue;
15788
15789 -----------------------
15790 -- Mark_Coextensions --
15791 -----------------------
15792
15793 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
15794 Is_Dynamic : Boolean;
15795 -- Indicates whether the context causes nested coextensions to be
15796 -- dynamic or static
15797
15798 function Mark_Allocator (N : Node_Id) return Traverse_Result;
15799 -- Recognize an allocator node and label it as a dynamic coextension
15800
15801 --------------------
15802 -- Mark_Allocator --
15803 --------------------
15804
15805 function Mark_Allocator (N : Node_Id) return Traverse_Result is
15806 begin
15807 if Nkind (N) = N_Allocator then
15808 if Is_Dynamic then
15809 Set_Is_Dynamic_Coextension (N);
15810
15811 -- If the allocator expression is potentially dynamic, it may
15812 -- be expanded out of order and require dynamic allocation
15813 -- anyway, so we treat the coextension itself as dynamic.
15814 -- Potential optimization ???
15815
15816 elsif Nkind (Expression (N)) = N_Qualified_Expression
15817 and then Nkind (Expression (Expression (N))) = N_Op_Concat
15818 then
15819 Set_Is_Dynamic_Coextension (N);
15820 else
15821 Set_Is_Static_Coextension (N);
15822 end if;
15823 end if;
15824
15825 return OK;
15826 end Mark_Allocator;
15827
15828 procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
15829
15830 -- Start of processing for Mark_Coextensions
15831
15832 begin
15833 -- An allocator that appears on the right-hand side of an assignment is
15834 -- treated as a potentially dynamic coextension when the right-hand side
15835 -- is an allocator or a qualified expression.
15836
15837 -- Obj := new ...'(new Coextension ...);
15838
15839 if Nkind (Context_Nod) = N_Assignment_Statement then
15840 Is_Dynamic :=
15841 Nkind_In (Expression (Context_Nod), N_Allocator,
15842 N_Qualified_Expression);
15843
15844 -- An allocator that appears within the expression of a simple return
15845 -- statement is treated as a potentially dynamic coextension when the
15846 -- expression is either aggregate, allocator, or qualified expression.
15847
15848 -- return (new Coextension ...);
15849 -- return new ...'(new Coextension ...);
15850
15851 elsif Nkind (Context_Nod) = N_Simple_Return_Statement then
15852 Is_Dynamic :=
15853 Nkind_In (Expression (Context_Nod), N_Aggregate,
15854 N_Allocator,
15855 N_Qualified_Expression);
15856
15857 -- An alloctor that appears within the initialization expression of an
15858 -- object declaration is considered a potentially dynamic coextension
15859 -- when the initialization expression is an allocator or a qualified
15860 -- expression.
15861
15862 -- Obj : ... := new ...'(new Coextension ...);
15863
15864 -- A similar case arises when the object declaration is part of an
15865 -- extended return statement.
15866
15867 -- return Obj : ... := new ...'(new Coextension ...);
15868 -- return Obj : ... := (new Coextension ...);
15869
15870 elsif Nkind (Context_Nod) = N_Object_Declaration then
15871 Is_Dynamic :=
15872 Nkind_In (Root_Nod, N_Allocator, N_Qualified_Expression)
15873 or else
15874 Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;
15875
15876 -- This routine should not be called with constructs that cannot contain
15877 -- coextensions.
15878
15879 else
15880 raise Program_Error;
15881 end if;
15882
15883 Mark_Allocators (Root_Nod);
15884 end Mark_Coextensions;
15885
15886 ----------------------
15887 -- Needs_One_Actual --
15888 ----------------------
15889
15890 function Needs_One_Actual (E : Entity_Id) return Boolean is
15891 Formal : Entity_Id;
15892
15893 begin
15894 -- Ada 2005 or later, and formals present
15895
15896 if Ada_Version >= Ada_2005 and then Present (First_Formal (E)) then
15897 Formal := Next_Formal (First_Formal (E));
15898 while Present (Formal) loop
15899 if No (Default_Value (Formal)) then
15900 return False;
15901 end if;
15902
15903 Next_Formal (Formal);
15904 end loop;
15905
15906 return True;
15907
15908 -- Ada 83/95 or no formals
15909
15910 else
15911 return False;
15912 end if;
15913 end Needs_One_Actual;
15914
15915 ------------------------
15916 -- New_Copy_List_Tree --
15917 ------------------------
15918
15919 function New_Copy_List_Tree (List : List_Id) return List_Id is
15920 NL : List_Id;
15921 E : Node_Id;
15922
15923 begin
15924 if List = No_List then
15925 return No_List;
15926
15927 else
15928 NL := New_List;
15929 E := First (List);
15930
15931 while Present (E) loop
15932 Append (New_Copy_Tree (E), NL);
15933 E := Next (E);
15934 end loop;
15935
15936 return NL;
15937 end if;
15938 end New_Copy_List_Tree;
15939
15940 --------------------------------------------------
15941 -- New_Copy_Tree Auxiliary Data and Subprograms --
15942 --------------------------------------------------
15943
15944 use Atree.Unchecked_Access;
15945 use Atree_Private_Part;
15946
15947 -- Our approach here requires a two pass traversal of the tree. The
15948 -- first pass visits all nodes that eventually will be copied looking
15949 -- for defining Itypes. If any defining Itypes are found, then they are
15950 -- copied, and an entry is added to the replacement map. In the second
15951 -- phase, the tree is copied, using the replacement map to replace any
15952 -- Itype references within the copied tree.
15953
15954 -- The following hash tables are used if the Map supplied has more
15955 -- than hash threshold entries to speed up access to the map. If
15956 -- there are fewer entries, then the map is searched sequentially
15957 -- (because setting up a hash table for only a few entries takes
15958 -- more time than it saves.
15959
15960 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
15961 -- Hash function used for hash operations
15962
15963 -------------------
15964 -- New_Copy_Hash --
15965 -------------------
15966
15967 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
15968 begin
15969 return Nat (E) mod (NCT_Header_Num'Last + 1);
15970 end New_Copy_Hash;
15971
15972 ---------------
15973 -- NCT_Assoc --
15974 ---------------
15975
15976 -- The hash table NCT_Assoc associates old entities in the table
15977 -- with their corresponding new entities (i.e. the pairs of entries
15978 -- presented in the original Map argument are Key-Element pairs).
15979
15980 package NCT_Assoc is new Simple_HTable (
15981 Header_Num => NCT_Header_Num,
15982 Element => Entity_Id,
15983 No_Element => Empty,
15984 Key => Entity_Id,
15985 Hash => New_Copy_Hash,
15986 Equal => Types."=");
15987
15988 ---------------------
15989 -- NCT_Itype_Assoc --
15990 ---------------------
15991
15992 -- The hash table NCT_Itype_Assoc contains entries only for those
15993 -- old nodes which have a non-empty Associated_Node_For_Itype set.
15994 -- The key is the associated node, and the element is the new node
15995 -- itself (NOT the associated node for the new node).
15996
15997 package NCT_Itype_Assoc is new Simple_HTable (
15998 Header_Num => NCT_Header_Num,
15999 Element => Entity_Id,
16000 No_Element => Empty,
16001 Key => Entity_Id,
16002 Hash => New_Copy_Hash,
16003 Equal => Types."=");
16004
16005 -------------------
16006 -- New_Copy_Tree --
16007 -------------------
16008
16009 function New_Copy_Tree
16010 (Source : Node_Id;
16011 Map : Elist_Id := No_Elist;
16012 New_Sloc : Source_Ptr := No_Location;
16013 New_Scope : Entity_Id := Empty) return Node_Id
16014 is
16015 Actual_Map : Elist_Id := Map;
16016 -- This is the actual map for the copy. It is initialized with the
16017 -- given elements, and then enlarged as required for Itypes that are
16018 -- copied during the first phase of the copy operation. The visit
16019 -- procedures add elements to this map as Itypes are encountered.
16020 -- The reason we cannot use Map directly, is that it may well be
16021 -- (and normally is) initialized to No_Elist, and if we have mapped
16022 -- entities, we have to reset it to point to a real Elist.
16023
16024 function Assoc (N : Node_Or_Entity_Id) return Node_Id;
16025 -- Called during second phase to map entities into their corresponding
16026 -- copies using Actual_Map. If the argument is not an entity, or is not
16027 -- in Actual_Map, then it is returned unchanged.
16028
16029 procedure Build_NCT_Hash_Tables;
16030 -- Builds hash tables (number of elements >= threshold value)
16031
16032 function Copy_Elist_With_Replacement
16033 (Old_Elist : Elist_Id) return Elist_Id;
16034 -- Called during second phase to copy element list doing replacements
16035
16036 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
16037 -- Called during the second phase to process a copied Itype. The actual
16038 -- copy happened during the first phase (so that we could make the entry
16039 -- in the mapping), but we still have to deal with the descendants of
16040 -- the copied Itype and copy them where necessary.
16041
16042 function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
16043 -- Called during second phase to copy list doing replacements
16044
16045 function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
16046 -- Called during second phase to copy node doing replacements
16047
16048 procedure Visit_Elist (E : Elist_Id);
16049 -- Called during first phase to visit all elements of an Elist
16050
16051 procedure Visit_Field (F : Union_Id; N : Node_Id);
16052 -- Visit a single field, recursing to call Visit_Node or Visit_List
16053 -- if the field is a syntactic descendant of the current node (i.e.
16054 -- its parent is Node N).
16055
16056 procedure Visit_Itype (Old_Itype : Entity_Id);
16057 -- Called during first phase to visit subsidiary fields of a defining
16058 -- Itype, and also create a copy and make an entry in the replacement
16059 -- map for the new copy.
16060
16061 procedure Visit_List (L : List_Id);
16062 -- Called during first phase to visit all elements of a List
16063
16064 procedure Visit_Node (N : Node_Or_Entity_Id);
16065 -- Called during first phase to visit a node and all its subtrees
16066
16067 -----------
16068 -- Assoc --
16069 -----------
16070
16071 function Assoc (N : Node_Or_Entity_Id) return Node_Id is
16072 E : Elmt_Id;
16073 Ent : Entity_Id;
16074
16075 begin
16076 if not Has_Extension (N) or else No (Actual_Map) then
16077 return N;
16078
16079 elsif NCT_Hash_Tables_Used then
16080 Ent := NCT_Assoc.Get (Entity_Id (N));
16081
16082 if Present (Ent) then
16083 return Ent;
16084 else
16085 return N;
16086 end if;
16087
16088 -- No hash table used, do serial search
16089
16090 else
16091 E := First_Elmt (Actual_Map);
16092 while Present (E) loop
16093 if Node (E) = N then
16094 return Node (Next_Elmt (E));
16095 else
16096 E := Next_Elmt (Next_Elmt (E));
16097 end if;
16098 end loop;
16099 end if;
16100
16101 return N;
16102 end Assoc;
16103
16104 ---------------------------
16105 -- Build_NCT_Hash_Tables --
16106 ---------------------------
16107
16108 procedure Build_NCT_Hash_Tables is
16109 Elmt : Elmt_Id;
16110 Ent : Entity_Id;
16111 begin
16112 if NCT_Hash_Table_Setup then
16113 NCT_Assoc.Reset;
16114 NCT_Itype_Assoc.Reset;
16115 end if;
16116
16117 Elmt := First_Elmt (Actual_Map);
16118 while Present (Elmt) loop
16119 Ent := Node (Elmt);
16120
16121 -- Get new entity, and associate old and new
16122
16123 Next_Elmt (Elmt);
16124 NCT_Assoc.Set (Ent, Node (Elmt));
16125
16126 if Is_Type (Ent) then
16127 declare
16128 Anode : constant Entity_Id :=
16129 Associated_Node_For_Itype (Ent);
16130
16131 begin
16132 if Present (Anode) then
16133
16134 -- Enter a link between the associated node of the
16135 -- old Itype and the new Itype, for updating later
16136 -- when node is copied.
16137
16138 NCT_Itype_Assoc.Set (Anode, Node (Elmt));
16139 end if;
16140 end;
16141 end if;
16142
16143 Next_Elmt (Elmt);
16144 end loop;
16145
16146 NCT_Hash_Tables_Used := True;
16147 NCT_Hash_Table_Setup := True;
16148 end Build_NCT_Hash_Tables;
16149
16150 ---------------------------------
16151 -- Copy_Elist_With_Replacement --
16152 ---------------------------------
16153
16154 function Copy_Elist_With_Replacement
16155 (Old_Elist : Elist_Id) return Elist_Id
16156 is
16157 M : Elmt_Id;
16158 New_Elist : Elist_Id;
16159
16160 begin
16161 if No (Old_Elist) then
16162 return No_Elist;
16163
16164 else
16165 New_Elist := New_Elmt_List;
16166
16167 M := First_Elmt (Old_Elist);
16168 while Present (M) loop
16169 Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
16170 Next_Elmt (M);
16171 end loop;
16172 end if;
16173
16174 return New_Elist;
16175 end Copy_Elist_With_Replacement;
16176
16177 ---------------------------------
16178 -- Copy_Itype_With_Replacement --
16179 ---------------------------------
16180
16181 -- This routine exactly parallels its phase one analog Visit_Itype,
16182
16183 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
16184 begin
16185 -- Translate Next_Entity, Scope, and Etype fields, in case they
16186 -- reference entities that have been mapped into copies.
16187
16188 Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
16189 Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
16190
16191 if Present (New_Scope) then
16192 Set_Scope (New_Itype, New_Scope);
16193 else
16194 Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
16195 end if;
16196
16197 -- Copy referenced fields
16198
16199 if Is_Discrete_Type (New_Itype) then
16200 Set_Scalar_Range (New_Itype,
16201 Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
16202
16203 elsif Has_Discriminants (Base_Type (New_Itype)) then
16204 Set_Discriminant_Constraint (New_Itype,
16205 Copy_Elist_With_Replacement
16206 (Discriminant_Constraint (New_Itype)));
16207
16208 elsif Is_Array_Type (New_Itype) then
16209 if Present (First_Index (New_Itype)) then
16210 Set_First_Index (New_Itype,
16211 First (Copy_List_With_Replacement
16212 (List_Containing (First_Index (New_Itype)))));
16213 end if;
16214
16215 if Is_Packed (New_Itype) then
16216 Set_Packed_Array_Impl_Type (New_Itype,
16217 Copy_Node_With_Replacement
16218 (Packed_Array_Impl_Type (New_Itype)));
16219 end if;
16220 end if;
16221 end Copy_Itype_With_Replacement;
16222
16223 --------------------------------
16224 -- Copy_List_With_Replacement --
16225 --------------------------------
16226
16227 function Copy_List_With_Replacement
16228 (Old_List : List_Id) return List_Id
16229 is
16230 New_List : List_Id;
16231 E : Node_Id;
16232
16233 begin
16234 if Old_List = No_List then
16235 return No_List;
16236
16237 else
16238 New_List := Empty_List;
16239
16240 E := First (Old_List);
16241 while Present (E) loop
16242 Append (Copy_Node_With_Replacement (E), New_List);
16243 Next (E);
16244 end loop;
16245
16246 return New_List;
16247 end if;
16248 end Copy_List_With_Replacement;
16249
16250 --------------------------------
16251 -- Copy_Node_With_Replacement --
16252 --------------------------------
16253
16254 function Copy_Node_With_Replacement
16255 (Old_Node : Node_Id) return Node_Id
16256 is
16257 New_Node : Node_Id;
16258
16259 procedure Adjust_Named_Associations
16260 (Old_Node : Node_Id;
16261 New_Node : Node_Id);
16262 -- If a call node has named associations, these are chained through
16263 -- the First_Named_Actual, Next_Named_Actual links. These must be
16264 -- propagated separately to the new parameter list, because these
16265 -- are not syntactic fields.
16266
16267 function Copy_Field_With_Replacement
16268 (Field : Union_Id) return Union_Id;
16269 -- Given Field, which is a field of Old_Node, return a copy of it
16270 -- if it is a syntactic field (i.e. its parent is Node), setting
16271 -- the parent of the copy to poit to New_Node. Otherwise returns
16272 -- the field (possibly mapped if it is an entity).
16273
16274 -------------------------------
16275 -- Adjust_Named_Associations --
16276 -------------------------------
16277
16278 procedure Adjust_Named_Associations
16279 (Old_Node : Node_Id;
16280 New_Node : Node_Id)
16281 is
16282 Old_E : Node_Id;
16283 New_E : Node_Id;
16284
16285 Old_Next : Node_Id;
16286 New_Next : Node_Id;
16287
16288 begin
16289 Old_E := First (Parameter_Associations (Old_Node));
16290 New_E := First (Parameter_Associations (New_Node));
16291 while Present (Old_E) loop
16292 if Nkind (Old_E) = N_Parameter_Association
16293 and then Present (Next_Named_Actual (Old_E))
16294 then
16295 if First_Named_Actual (Old_Node)
16296 = Explicit_Actual_Parameter (Old_E)
16297 then
16298 Set_First_Named_Actual
16299 (New_Node, Explicit_Actual_Parameter (New_E));
16300 end if;
16301
16302 -- Now scan parameter list from the beginning,to locate
16303 -- next named actual, which can be out of order.
16304
16305 Old_Next := First (Parameter_Associations (Old_Node));
16306 New_Next := First (Parameter_Associations (New_Node));
16307
16308 while Nkind (Old_Next) /= N_Parameter_Association
16309 or else Explicit_Actual_Parameter (Old_Next) /=
16310 Next_Named_Actual (Old_E)
16311 loop
16312 Next (Old_Next);
16313 Next (New_Next);
16314 end loop;
16315
16316 Set_Next_Named_Actual
16317 (New_E, Explicit_Actual_Parameter (New_Next));
16318 end if;
16319
16320 Next (Old_E);
16321 Next (New_E);
16322 end loop;
16323 end Adjust_Named_Associations;
16324
16325 ---------------------------------
16326 -- Copy_Field_With_Replacement --
16327 ---------------------------------
16328
16329 function Copy_Field_With_Replacement
16330 (Field : Union_Id) return Union_Id
16331 is
16332 begin
16333 if Field = Union_Id (Empty) then
16334 return Field;
16335
16336 elsif Field in Node_Range then
16337 declare
16338 Old_N : constant Node_Id := Node_Id (Field);
16339 New_N : Node_Id;
16340
16341 begin
16342 -- If syntactic field, as indicated by the parent pointer
16343 -- being set, then copy the referenced node recursively.
16344
16345 if Parent (Old_N) = Old_Node then
16346 New_N := Copy_Node_With_Replacement (Old_N);
16347
16348 if New_N /= Old_N then
16349 Set_Parent (New_N, New_Node);
16350 end if;
16351
16352 -- For semantic fields, update possible entity reference
16353 -- from the replacement map.
16354
16355 else
16356 New_N := Assoc (Old_N);
16357 end if;
16358
16359 return Union_Id (New_N);
16360 end;
16361
16362 elsif Field in List_Range then
16363 declare
16364 Old_L : constant List_Id := List_Id (Field);
16365 New_L : List_Id;
16366
16367 begin
16368 -- If syntactic field, as indicated by the parent pointer,
16369 -- then recursively copy the entire referenced list.
16370
16371 if Parent (Old_L) = Old_Node then
16372 New_L := Copy_List_With_Replacement (Old_L);
16373 Set_Parent (New_L, New_Node);
16374
16375 -- For semantic list, just returned unchanged
16376
16377 else
16378 New_L := Old_L;
16379 end if;
16380
16381 return Union_Id (New_L);
16382 end;
16383
16384 -- Anything other than a list or a node is returned unchanged
16385
16386 else
16387 return Field;
16388 end if;
16389 end Copy_Field_With_Replacement;
16390
16391 -- Start of processing for Copy_Node_With_Replacement
16392
16393 begin
16394 if Old_Node <= Empty_Or_Error then
16395 return Old_Node;
16396
16397 elsif Has_Extension (Old_Node) then
16398 return Assoc (Old_Node);
16399
16400 else
16401 New_Node := New_Copy (Old_Node);
16402
16403 -- If the node we are copying is the associated node of a
16404 -- previously copied Itype, then adjust the associated node
16405 -- of the copy of that Itype accordingly.
16406
16407 if Present (Actual_Map) then
16408 declare
16409 E : Elmt_Id;
16410 Ent : Entity_Id;
16411
16412 begin
16413 -- Case of hash table used
16414
16415 if NCT_Hash_Tables_Used then
16416 Ent := NCT_Itype_Assoc.Get (Old_Node);
16417
16418 if Present (Ent) then
16419 Set_Associated_Node_For_Itype (Ent, New_Node);
16420 end if;
16421
16422 -- Case of no hash table used
16423
16424 else
16425 E := First_Elmt (Actual_Map);
16426 while Present (E) loop
16427 if Is_Itype (Node (E))
16428 and then
16429 Old_Node = Associated_Node_For_Itype (Node (E))
16430 then
16431 Set_Associated_Node_For_Itype
16432 (Node (Next_Elmt (E)), New_Node);
16433 end if;
16434
16435 E := Next_Elmt (Next_Elmt (E));
16436 end loop;
16437 end if;
16438 end;
16439 end if;
16440
16441 -- Recursively copy descendants
16442
16443 Set_Field1
16444 (New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
16445 Set_Field2
16446 (New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
16447 Set_Field3
16448 (New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
16449 Set_Field4
16450 (New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
16451 Set_Field5
16452 (New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
16453
16454 -- Adjust Sloc of new node if necessary
16455
16456 if New_Sloc /= No_Location then
16457 Set_Sloc (New_Node, New_Sloc);
16458
16459 -- If we adjust the Sloc, then we are essentially making a
16460 -- completely new node, so the Comes_From_Source flag should
16461 -- be reset to the proper default value.
16462
16463 Set_Comes_From_Source
16464 (New_Node, Default_Node.Comes_From_Source);
16465 end if;
16466
16467 -- If the node is a call and has named associations, set the
16468 -- corresponding links in the copy.
16469
16470 if Nkind_In (Old_Node, N_Entry_Call_Statement,
16471 N_Function_Call,
16472 N_Procedure_Call_Statement)
16473 and then Present (First_Named_Actual (Old_Node))
16474 then
16475 Adjust_Named_Associations (Old_Node, New_Node);
16476 end if;
16477
16478 -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
16479 -- The replacement mechanism applies to entities, and is not used
16480 -- here. Eventually we may need a more general graph-copying
16481 -- routine. For now, do a sequential search to find desired node.
16482
16483 if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
16484 and then Present (First_Real_Statement (Old_Node))
16485 then
16486 declare
16487 Old_F : constant Node_Id := First_Real_Statement (Old_Node);
16488 N1, N2 : Node_Id;
16489
16490 begin
16491 N1 := First (Statements (Old_Node));
16492 N2 := First (Statements (New_Node));
16493
16494 while N1 /= Old_F loop
16495 Next (N1);
16496 Next (N2);
16497 end loop;
16498
16499 Set_First_Real_Statement (New_Node, N2);
16500 end;
16501 end if;
16502 end if;
16503
16504 -- All done, return copied node
16505
16506 return New_Node;
16507 end Copy_Node_With_Replacement;
16508
16509 -----------------
16510 -- Visit_Elist --
16511 -----------------
16512
16513 procedure Visit_Elist (E : Elist_Id) is
16514 Elmt : Elmt_Id;
16515 begin
16516 if Present (E) then
16517 Elmt := First_Elmt (E);
16518
16519 while Elmt /= No_Elmt loop
16520 Visit_Node (Node (Elmt));
16521 Next_Elmt (Elmt);
16522 end loop;
16523 end if;
16524 end Visit_Elist;
16525
16526 -----------------
16527 -- Visit_Field --
16528 -----------------
16529
16530 procedure Visit_Field (F : Union_Id; N : Node_Id) is
16531 begin
16532 if F = Union_Id (Empty) then
16533 return;
16534
16535 elsif F in Node_Range then
16536
16537 -- Copy node if it is syntactic, i.e. its parent pointer is
16538 -- set to point to the field that referenced it (certain
16539 -- Itypes will also meet this criterion, which is fine, since
16540 -- these are clearly Itypes that do need to be copied, since
16541 -- we are copying their parent.)
16542
16543 if Parent (Node_Id (F)) = N then
16544 Visit_Node (Node_Id (F));
16545 return;
16546
16547 -- Another case, if we are pointing to an Itype, then we want
16548 -- to copy it if its associated node is somewhere in the tree
16549 -- being copied.
16550
16551 -- Note: the exclusion of self-referential copies is just an
16552 -- optimization, since the search of the already copied list
16553 -- would catch it, but it is a common case (Etype pointing
16554 -- to itself for an Itype that is a base type).
16555
16556 elsif Has_Extension (Node_Id (F))
16557 and then Is_Itype (Entity_Id (F))
16558 and then Node_Id (F) /= N
16559 then
16560 declare
16561 P : Node_Id;
16562
16563 begin
16564 P := Associated_Node_For_Itype (Node_Id (F));
16565 while Present (P) loop
16566 if P = Source then
16567 Visit_Node (Node_Id (F));
16568 return;
16569 else
16570 P := Parent (P);
16571 end if;
16572 end loop;
16573
16574 -- An Itype whose parent is not being copied definitely
16575 -- should NOT be copied, since it does not belong in any
16576 -- sense to the copied subtree.
16577
16578 return;
16579 end;
16580 end if;
16581
16582 elsif F in List_Range and then Parent (List_Id (F)) = N then
16583 Visit_List (List_Id (F));
16584 return;
16585 end if;
16586 end Visit_Field;
16587
16588 -----------------
16589 -- Visit_Itype --
16590 -----------------
16591
16592 procedure Visit_Itype (Old_Itype : Entity_Id) is
16593 New_Itype : Entity_Id;
16594 E : Elmt_Id;
16595 Ent : Entity_Id;
16596
16597 begin
16598 -- Itypes that describe the designated type of access to subprograms
16599 -- have the structure of subprogram declarations, with signatures,
16600 -- etc. Either we duplicate the signatures completely, or choose to
16601 -- share such itypes, which is fine because their elaboration will
16602 -- have no side effects.
16603
16604 if Ekind (Old_Itype) = E_Subprogram_Type then
16605 return;
16606 end if;
16607
16608 New_Itype := New_Copy (Old_Itype);
16609
16610 -- The new Itype has all the attributes of the old one, and
16611 -- we just copy the contents of the entity. However, the back-end
16612 -- needs different names for debugging purposes, so we create a
16613 -- new internal name for it in all cases.
16614
16615 Set_Chars (New_Itype, New_Internal_Name ('T'));
16616
16617 -- If our associated node is an entity that has already been copied,
16618 -- then set the associated node of the copy to point to the right
16619 -- copy. If we have copied an Itype that is itself the associated
16620 -- node of some previously copied Itype, then we set the right
16621 -- pointer in the other direction.
16622
16623 if Present (Actual_Map) then
16624
16625 -- Case of hash tables used
16626
16627 if NCT_Hash_Tables_Used then
16628
16629 Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
16630
16631 if Present (Ent) then
16632 Set_Associated_Node_For_Itype (New_Itype, Ent);
16633 end if;
16634
16635 Ent := NCT_Itype_Assoc.Get (Old_Itype);
16636 if Present (Ent) then
16637 Set_Associated_Node_For_Itype (Ent, New_Itype);
16638
16639 -- If the hash table has no association for this Itype and
16640 -- its associated node, enter one now.
16641
16642 else
16643 NCT_Itype_Assoc.Set
16644 (Associated_Node_For_Itype (Old_Itype), New_Itype);
16645 end if;
16646
16647 -- Case of hash tables not used
16648
16649 else
16650 E := First_Elmt (Actual_Map);
16651 while Present (E) loop
16652 if Associated_Node_For_Itype (Old_Itype) = Node (E) then
16653 Set_Associated_Node_For_Itype
16654 (New_Itype, Node (Next_Elmt (E)));
16655 end if;
16656
16657 if Is_Type (Node (E))
16658 and then Old_Itype = Associated_Node_For_Itype (Node (E))
16659 then
16660 Set_Associated_Node_For_Itype
16661 (Node (Next_Elmt (E)), New_Itype);
16662 end if;
16663
16664 E := Next_Elmt (Next_Elmt (E));
16665 end loop;
16666 end if;
16667 end if;
16668
16669 if Present (Freeze_Node (New_Itype)) then
16670 Set_Is_Frozen (New_Itype, False);
16671 Set_Freeze_Node (New_Itype, Empty);
16672 end if;
16673
16674 -- Add new association to map
16675
16676 if No (Actual_Map) then
16677 Actual_Map := New_Elmt_List;
16678 end if;
16679
16680 Append_Elmt (Old_Itype, Actual_Map);
16681 Append_Elmt (New_Itype, Actual_Map);
16682
16683 if NCT_Hash_Tables_Used then
16684 NCT_Assoc.Set (Old_Itype, New_Itype);
16685
16686 else
16687 NCT_Table_Entries := NCT_Table_Entries + 1;
16688
16689 if NCT_Table_Entries > NCT_Hash_Threshold then
16690 Build_NCT_Hash_Tables;
16691 end if;
16692 end if;
16693
16694 -- If a record subtype is simply copied, the entity list will be
16695 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
16696
16697 if Ekind_In (Old_Itype, E_Record_Subtype, E_Class_Wide_Subtype) then
16698 Set_Cloned_Subtype (New_Itype, Old_Itype);
16699 end if;
16700
16701 -- Visit descendants that eventually get copied
16702
16703 Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
16704
16705 if Is_Discrete_Type (Old_Itype) then
16706 Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
16707
16708 elsif Has_Discriminants (Base_Type (Old_Itype)) then
16709 -- ??? This should involve call to Visit_Field
16710 Visit_Elist (Discriminant_Constraint (Old_Itype));
16711
16712 elsif Is_Array_Type (Old_Itype) then
16713 if Present (First_Index (Old_Itype)) then
16714 Visit_Field (Union_Id (List_Containing
16715 (First_Index (Old_Itype))),
16716 Old_Itype);
16717 end if;
16718
16719 if Is_Packed (Old_Itype) then
16720 Visit_Field (Union_Id (Packed_Array_Impl_Type (Old_Itype)),
16721 Old_Itype);
16722 end if;
16723 end if;
16724 end Visit_Itype;
16725
16726 ----------------
16727 -- Visit_List --
16728 ----------------
16729
16730 procedure Visit_List (L : List_Id) is
16731 N : Node_Id;
16732 begin
16733 if L /= No_List then
16734 N := First (L);
16735
16736 while Present (N) loop
16737 Visit_Node (N);
16738 Next (N);
16739 end loop;
16740 end if;
16741 end Visit_List;
16742
16743 ----------------
16744 -- Visit_Node --
16745 ----------------
16746
16747 procedure Visit_Node (N : Node_Or_Entity_Id) is
16748
16749 -- Start of processing for Visit_Node
16750
16751 begin
16752 -- Handle case of an Itype, which must be copied
16753
16754 if Has_Extension (N) and then Is_Itype (N) then
16755
16756 -- Nothing to do if already in the list. This can happen with an
16757 -- Itype entity that appears more than once in the tree.
16758 -- Note that we do not want to visit descendants in this case.
16759
16760 -- Test for already in list when hash table is used
16761
16762 if NCT_Hash_Tables_Used then
16763 if Present (NCT_Assoc.Get (Entity_Id (N))) then
16764 return;
16765 end if;
16766
16767 -- Test for already in list when hash table not used
16768
16769 else
16770 declare
16771 E : Elmt_Id;
16772 begin
16773 if Present (Actual_Map) then
16774 E := First_Elmt (Actual_Map);
16775 while Present (E) loop
16776 if Node (E) = N then
16777 return;
16778 else
16779 E := Next_Elmt (Next_Elmt (E));
16780 end if;
16781 end loop;
16782 end if;
16783 end;
16784 end if;
16785
16786 Visit_Itype (N);
16787 end if;
16788
16789 -- Visit descendants
16790
16791 Visit_Field (Field1 (N), N);
16792 Visit_Field (Field2 (N), N);
16793 Visit_Field (Field3 (N), N);
16794 Visit_Field (Field4 (N), N);
16795 Visit_Field (Field5 (N), N);
16796 end Visit_Node;
16797
16798 -- Start of processing for New_Copy_Tree
16799
16800 begin
16801 Actual_Map := Map;
16802
16803 -- See if we should use hash table
16804
16805 if No (Actual_Map) then
16806 NCT_Hash_Tables_Used := False;
16807
16808 else
16809 declare
16810 Elmt : Elmt_Id;
16811
16812 begin
16813 NCT_Table_Entries := 0;
16814
16815 Elmt := First_Elmt (Actual_Map);
16816 while Present (Elmt) loop
16817 NCT_Table_Entries := NCT_Table_Entries + 1;
16818 Next_Elmt (Elmt);
16819 Next_Elmt (Elmt);
16820 end loop;
16821
16822 if NCT_Table_Entries > NCT_Hash_Threshold then
16823 Build_NCT_Hash_Tables;
16824 else
16825 NCT_Hash_Tables_Used := False;
16826 end if;
16827 end;
16828 end if;
16829
16830 -- Hash table set up if required, now start phase one by visiting
16831 -- top node (we will recursively visit the descendants).
16832
16833 Visit_Node (Source);
16834
16835 -- Now the second phase of the copy can start. First we process
16836 -- all the mapped entities, copying their descendants.
16837
16838 if Present (Actual_Map) then
16839 declare
16840 Elmt : Elmt_Id;
16841 New_Itype : Entity_Id;
16842 begin
16843 Elmt := First_Elmt (Actual_Map);
16844 while Present (Elmt) loop
16845 Next_Elmt (Elmt);
16846 New_Itype := Node (Elmt);
16847
16848 if Is_Itype (New_Itype) then
16849 Copy_Itype_With_Replacement (New_Itype);
16850 end if;
16851 Next_Elmt (Elmt);
16852 end loop;
16853 end;
16854 end if;
16855
16856 -- Now we can copy the actual tree
16857
16858 return Copy_Node_With_Replacement (Source);
16859 end New_Copy_Tree;
16860
16861 -------------------------
16862 -- New_External_Entity --
16863 -------------------------
16864
16865 function New_External_Entity
16866 (Kind : Entity_Kind;
16867 Scope_Id : Entity_Id;
16868 Sloc_Value : Source_Ptr;
16869 Related_Id : Entity_Id;
16870 Suffix : Character;
16871 Suffix_Index : Nat := 0;
16872 Prefix : Character := ' ') return Entity_Id
16873 is
16874 N : constant Entity_Id :=
16875 Make_Defining_Identifier (Sloc_Value,
16876 New_External_Name
16877 (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
16878
16879 begin
16880 Set_Ekind (N, Kind);
16881 Set_Is_Internal (N, True);
16882 Append_Entity (N, Scope_Id);
16883 Set_Public_Status (N);
16884
16885 if Kind in Type_Kind then
16886 Init_Size_Align (N);
16887 end if;
16888
16889 return N;
16890 end New_External_Entity;
16891
16892 -------------------------
16893 -- New_Internal_Entity --
16894 -------------------------
16895
16896 function New_Internal_Entity
16897 (Kind : Entity_Kind;
16898 Scope_Id : Entity_Id;
16899 Sloc_Value : Source_Ptr;
16900 Id_Char : Character) return Entity_Id
16901 is
16902 N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
16903
16904 begin
16905 Set_Ekind (N, Kind);
16906 Set_Is_Internal (N, True);
16907 Append_Entity (N, Scope_Id);
16908
16909 if Kind in Type_Kind then
16910 Init_Size_Align (N);
16911 end if;
16912
16913 return N;
16914 end New_Internal_Entity;
16915
16916 -----------------
16917 -- Next_Actual --
16918 -----------------
16919
16920 function Next_Actual (Actual_Id : Node_Id) return Node_Id is
16921 N : Node_Id;
16922
16923 begin
16924 -- If we are pointing at a positional parameter, it is a member of a
16925 -- node list (the list of parameters), and the next parameter is the
16926 -- next node on the list, unless we hit a parameter association, then
16927 -- we shift to using the chain whose head is the First_Named_Actual in
16928 -- the parent, and then is threaded using the Next_Named_Actual of the
16929 -- Parameter_Association. All this fiddling is because the original node
16930 -- list is in the textual call order, and what we need is the
16931 -- declaration order.
16932
16933 if Is_List_Member (Actual_Id) then
16934 N := Next (Actual_Id);
16935
16936 if Nkind (N) = N_Parameter_Association then
16937 return First_Named_Actual (Parent (Actual_Id));
16938 else
16939 return N;
16940 end if;
16941
16942 else
16943 return Next_Named_Actual (Parent (Actual_Id));
16944 end if;
16945 end Next_Actual;
16946
16947 procedure Next_Actual (Actual_Id : in out Node_Id) is
16948 begin
16949 Actual_Id := Next_Actual (Actual_Id);
16950 end Next_Actual;
16951
16952 -----------------------
16953 -- Normalize_Actuals --
16954 -----------------------
16955
16956 -- Chain actuals according to formals of subprogram. If there are no named
16957 -- associations, the chain is simply the list of Parameter Associations,
16958 -- since the order is the same as the declaration order. If there are named
16959 -- associations, then the First_Named_Actual field in the N_Function_Call
16960 -- or N_Procedure_Call_Statement node points to the Parameter_Association
16961 -- node for the parameter that comes first in declaration order. The
16962 -- remaining named parameters are then chained in declaration order using
16963 -- Next_Named_Actual.
16964
16965 -- This routine also verifies that the number of actuals is compatible with
16966 -- the number and default values of formals, but performs no type checking
16967 -- (type checking is done by the caller).
16968
16969 -- If the matching succeeds, Success is set to True and the caller proceeds
16970 -- with type-checking. If the match is unsuccessful, then Success is set to
16971 -- False, and the caller attempts a different interpretation, if there is
16972 -- one.
16973
16974 -- If the flag Report is on, the call is not overloaded, and a failure to
16975 -- match can be reported here, rather than in the caller.
16976
16977 procedure Normalize_Actuals
16978 (N : Node_Id;
16979 S : Entity_Id;
16980 Report : Boolean;
16981 Success : out Boolean)
16982 is
16983 Actuals : constant List_Id := Parameter_Associations (N);
16984 Actual : Node_Id := Empty;
16985 Formal : Entity_Id;
16986 Last : Node_Id := Empty;
16987 First_Named : Node_Id := Empty;
16988 Found : Boolean;
16989
16990 Formals_To_Match : Integer := 0;
16991 Actuals_To_Match : Integer := 0;
16992
16993 procedure Chain (A : Node_Id);
16994 -- Add named actual at the proper place in the list, using the
16995 -- Next_Named_Actual link.
16996
16997 function Reporting return Boolean;
16998 -- Determines if an error is to be reported. To report an error, we
16999 -- need Report to be True, and also we do not report errors caused
17000 -- by calls to init procs that occur within other init procs. Such
17001 -- errors must always be cascaded errors, since if all the types are
17002 -- declared correctly, the compiler will certainly build decent calls.
17003
17004 -----------
17005 -- Chain --
17006 -----------
17007
17008 procedure Chain (A : Node_Id) is
17009 begin
17010 if No (Last) then
17011
17012 -- Call node points to first actual in list
17013
17014 Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
17015
17016 else
17017 Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
17018 end if;
17019
17020 Last := A;
17021 Set_Next_Named_Actual (Last, Empty);
17022 end Chain;
17023
17024 ---------------
17025 -- Reporting --
17026 ---------------
17027
17028 function Reporting return Boolean is
17029 begin
17030 if not Report then
17031 return False;
17032
17033 elsif not Within_Init_Proc then
17034 return True;
17035
17036 elsif Is_Init_Proc (Entity (Name (N))) then
17037 return False;
17038
17039 else
17040 return True;
17041 end if;
17042 end Reporting;
17043
17044 -- Start of processing for Normalize_Actuals
17045
17046 begin
17047 if Is_Access_Type (S) then
17048
17049 -- The name in the call is a function call that returns an access
17050 -- to subprogram. The designated type has the list of formals.
17051
17052 Formal := First_Formal (Designated_Type (S));
17053 else
17054 Formal := First_Formal (S);
17055 end if;
17056
17057 while Present (Formal) loop
17058 Formals_To_Match := Formals_To_Match + 1;
17059 Next_Formal (Formal);
17060 end loop;
17061
17062 -- Find if there is a named association, and verify that no positional
17063 -- associations appear after named ones.
17064
17065 if Present (Actuals) then
17066 Actual := First (Actuals);
17067 end if;
17068
17069 while Present (Actual)
17070 and then Nkind (Actual) /= N_Parameter_Association
17071 loop
17072 Actuals_To_Match := Actuals_To_Match + 1;
17073 Next (Actual);
17074 end loop;
17075
17076 if No (Actual) and Actuals_To_Match = Formals_To_Match then
17077
17078 -- Most common case: positional notation, no defaults
17079
17080 Success := True;
17081 return;
17082
17083 elsif Actuals_To_Match > Formals_To_Match then
17084
17085 -- Too many actuals: will not work
17086
17087 if Reporting then
17088 if Is_Entity_Name (Name (N)) then
17089 Error_Msg_N ("too many arguments in call to&", Name (N));
17090 else
17091 Error_Msg_N ("too many arguments in call", N);
17092 end if;
17093 end if;
17094
17095 Success := False;
17096 return;
17097 end if;
17098
17099 First_Named := Actual;
17100
17101 while Present (Actual) loop
17102 if Nkind (Actual) /= N_Parameter_Association then
17103 Error_Msg_N
17104 ("positional parameters not allowed after named ones", Actual);
17105 Success := False;
17106 return;
17107
17108 else
17109 Actuals_To_Match := Actuals_To_Match + 1;
17110 end if;
17111
17112 Next (Actual);
17113 end loop;
17114
17115 if Present (Actuals) then
17116 Actual := First (Actuals);
17117 end if;
17118
17119 Formal := First_Formal (S);
17120 while Present (Formal) loop
17121
17122 -- Match the formals in order. If the corresponding actual is
17123 -- positional, nothing to do. Else scan the list of named actuals
17124 -- to find the one with the right name.
17125
17126 if Present (Actual)
17127 and then Nkind (Actual) /= N_Parameter_Association
17128 then
17129 Next (Actual);
17130 Actuals_To_Match := Actuals_To_Match - 1;
17131 Formals_To_Match := Formals_To_Match - 1;
17132
17133 else
17134 -- For named parameters, search the list of actuals to find
17135 -- one that matches the next formal name.
17136
17137 Actual := First_Named;
17138 Found := False;
17139 while Present (Actual) loop
17140 if Chars (Selector_Name (Actual)) = Chars (Formal) then
17141 Found := True;
17142 Chain (Actual);
17143 Actuals_To_Match := Actuals_To_Match - 1;
17144 Formals_To_Match := Formals_To_Match - 1;
17145 exit;
17146 end if;
17147
17148 Next (Actual);
17149 end loop;
17150
17151 if not Found then
17152 if Ekind (Formal) /= E_In_Parameter
17153 or else No (Default_Value (Formal))
17154 then
17155 if Reporting then
17156 if (Comes_From_Source (S)
17157 or else Sloc (S) = Standard_Location)
17158 and then Is_Overloadable (S)
17159 then
17160 if No (Actuals)
17161 and then
17162 Nkind_In (Parent (N), N_Procedure_Call_Statement,
17163 N_Function_Call,
17164 N_Parameter_Association)
17165 and then Ekind (S) /= E_Function
17166 then
17167 Set_Etype (N, Etype (S));
17168
17169 else
17170 Error_Msg_Name_1 := Chars (S);
17171 Error_Msg_Sloc := Sloc (S);
17172 Error_Msg_NE
17173 ("missing argument for parameter & "
17174 & "in call to % declared #", N, Formal);
17175 end if;
17176
17177 elsif Is_Overloadable (S) then
17178 Error_Msg_Name_1 := Chars (S);
17179
17180 -- Point to type derivation that generated the
17181 -- operation.
17182
17183 Error_Msg_Sloc := Sloc (Parent (S));
17184
17185 Error_Msg_NE
17186 ("missing argument for parameter & "
17187 & "in call to % (inherited) #", N, Formal);
17188
17189 else
17190 Error_Msg_NE
17191 ("missing argument for parameter &", N, Formal);
17192 end if;
17193 end if;
17194
17195 Success := False;
17196 return;
17197
17198 else
17199 Formals_To_Match := Formals_To_Match - 1;
17200 end if;
17201 end if;
17202 end if;
17203
17204 Next_Formal (Formal);
17205 end loop;
17206
17207 if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
17208 Success := True;
17209 return;
17210
17211 else
17212 if Reporting then
17213
17214 -- Find some superfluous named actual that did not get
17215 -- attached to the list of associations.
17216
17217 Actual := First (Actuals);
17218 while Present (Actual) loop
17219 if Nkind (Actual) = N_Parameter_Association
17220 and then Actual /= Last
17221 and then No (Next_Named_Actual (Actual))
17222 then
17223 -- A validity check may introduce a copy of a call that
17224 -- includes an extra actual (for example for an unrelated
17225 -- accessibility check). Check that the extra actual matches
17226 -- some extra formal, which must exist already because
17227 -- subprogram must be frozen at this point.
17228
17229 if Present (Extra_Formals (S))
17230 and then not Comes_From_Source (Actual)
17231 and then Nkind (Actual) = N_Parameter_Association
17232 and then Chars (Extra_Formals (S)) =
17233 Chars (Selector_Name (Actual))
17234 then
17235 null;
17236 else
17237 Error_Msg_N
17238 ("unmatched actual & in call", Selector_Name (Actual));
17239 exit;
17240 end if;
17241 end if;
17242
17243 Next (Actual);
17244 end loop;
17245 end if;
17246
17247 Success := False;
17248 return;
17249 end if;
17250 end Normalize_Actuals;
17251
17252 --------------------------------
17253 -- Note_Possible_Modification --
17254 --------------------------------
17255
17256 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
17257 Modification_Comes_From_Source : constant Boolean :=
17258 Comes_From_Source (Parent (N));
17259
17260 Ent : Entity_Id;
17261 Exp : Node_Id;
17262
17263 begin
17264 -- Loop to find referenced entity, if there is one
17265
17266 Exp := N;
17267 loop
17268 Ent := Empty;
17269
17270 if Is_Entity_Name (Exp) then
17271 Ent := Entity (Exp);
17272
17273 -- If the entity is missing, it is an undeclared identifier,
17274 -- and there is nothing to annotate.
17275
17276 if No (Ent) then
17277 return;
17278 end if;
17279
17280 elsif Nkind (Exp) = N_Explicit_Dereference then
17281 declare
17282 P : constant Node_Id := Prefix (Exp);
17283
17284 begin
17285 -- In formal verification mode, keep track of all reads and
17286 -- writes through explicit dereferences.
17287
17288 if GNATprove_Mode then
17289 SPARK_Specific.Generate_Dereference (N, 'm');
17290 end if;
17291
17292 if Nkind (P) = N_Selected_Component
17293 and then Present (Entry_Formal (Entity (Selector_Name (P))))
17294 then
17295 -- Case of a reference to an entry formal
17296
17297 Ent := Entry_Formal (Entity (Selector_Name (P)));
17298
17299 elsif Nkind (P) = N_Identifier
17300 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
17301 and then Present (Expression (Parent (Entity (P))))
17302 and then Nkind (Expression (Parent (Entity (P)))) =
17303 N_Reference
17304 then
17305 -- Case of a reference to a value on which side effects have
17306 -- been removed.
17307
17308 Exp := Prefix (Expression (Parent (Entity (P))));
17309 goto Continue;
17310
17311 else
17312 return;
17313 end if;
17314 end;
17315
17316 elsif Nkind_In (Exp, N_Type_Conversion,
17317 N_Unchecked_Type_Conversion)
17318 then
17319 Exp := Expression (Exp);
17320 goto Continue;
17321
17322 elsif Nkind_In (Exp, N_Slice,
17323 N_Indexed_Component,
17324 N_Selected_Component)
17325 then
17326 -- Special check, if the prefix is an access type, then return
17327 -- since we are modifying the thing pointed to, not the prefix.
17328 -- When we are expanding, most usually the prefix is replaced
17329 -- by an explicit dereference, and this test is not needed, but
17330 -- in some cases (notably -gnatc mode and generics) when we do
17331 -- not do full expansion, we need this special test.
17332
17333 if Is_Access_Type (Etype (Prefix (Exp))) then
17334 return;
17335
17336 -- Otherwise go to prefix and keep going
17337
17338 else
17339 Exp := Prefix (Exp);
17340 goto Continue;
17341 end if;
17342
17343 -- All other cases, not a modification
17344
17345 else
17346 return;
17347 end if;
17348
17349 -- Now look for entity being referenced
17350
17351 if Present (Ent) then
17352 if Is_Object (Ent) then
17353 if Comes_From_Source (Exp)
17354 or else Modification_Comes_From_Source
17355 then
17356 -- Give warning if pragma unmodified is given and we are
17357 -- sure this is a modification.
17358
17359 if Has_Pragma_Unmodified (Ent) and then Sure then
17360
17361 -- Note that the entity may be present only as a result
17362 -- of pragma Unused.
17363
17364 if Has_Pragma_Unused (Ent) then
17365 Error_Msg_NE ("??pragma Unused given for &!", N, Ent);
17366 else
17367 Error_Msg_NE
17368 ("??pragma Unmodified given for &!", N, Ent);
17369 end if;
17370 end if;
17371
17372 Set_Never_Set_In_Source (Ent, False);
17373 end if;
17374
17375 Set_Is_True_Constant (Ent, False);
17376 Set_Current_Value (Ent, Empty);
17377 Set_Is_Known_Null (Ent, False);
17378
17379 if not Can_Never_Be_Null (Ent) then
17380 Set_Is_Known_Non_Null (Ent, False);
17381 end if;
17382
17383 -- Follow renaming chain
17384
17385 if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
17386 and then Present (Renamed_Object (Ent))
17387 then
17388 Exp := Renamed_Object (Ent);
17389
17390 -- If the entity is the loop variable in an iteration over
17391 -- a container, retrieve container expression to indicate
17392 -- possible modification.
17393
17394 if Present (Related_Expression (Ent))
17395 and then Nkind (Parent (Related_Expression (Ent))) =
17396 N_Iterator_Specification
17397 then
17398 Exp := Original_Node (Related_Expression (Ent));
17399 end if;
17400
17401 goto Continue;
17402
17403 -- The expression may be the renaming of a subcomponent of an
17404 -- array or container. The assignment to the subcomponent is
17405 -- a modification of the container.
17406
17407 elsif Comes_From_Source (Original_Node (Exp))
17408 and then Nkind_In (Original_Node (Exp), N_Selected_Component,
17409 N_Indexed_Component)
17410 then
17411 Exp := Prefix (Original_Node (Exp));
17412 goto Continue;
17413 end if;
17414
17415 -- Generate a reference only if the assignment comes from
17416 -- source. This excludes, for example, calls to a dispatching
17417 -- assignment operation when the left-hand side is tagged. In
17418 -- GNATprove mode, we need those references also on generated
17419 -- code, as these are used to compute the local effects of
17420 -- subprograms.
17421
17422 if Modification_Comes_From_Source or GNATprove_Mode then
17423 Generate_Reference (Ent, Exp, 'm');
17424
17425 -- If the target of the assignment is the bound variable
17426 -- in an iterator, indicate that the corresponding array
17427 -- or container is also modified.
17428
17429 if Ada_Version >= Ada_2012
17430 and then Nkind (Parent (Ent)) = N_Iterator_Specification
17431 then
17432 declare
17433 Domain : constant Node_Id := Name (Parent (Ent));
17434
17435 begin
17436 -- TBD : in the full version of the construct, the
17437 -- domain of iteration can be given by an expression.
17438
17439 if Is_Entity_Name (Domain) then
17440 Generate_Reference (Entity (Domain), Exp, 'm');
17441 Set_Is_True_Constant (Entity (Domain), False);
17442 Set_Never_Set_In_Source (Entity (Domain), False);
17443 end if;
17444 end;
17445 end if;
17446 end if;
17447 end if;
17448
17449 Kill_Checks (Ent);
17450
17451 -- If we are sure this is a modification from source, and we know
17452 -- this modifies a constant, then give an appropriate warning.
17453
17454 if Sure
17455 and then Modification_Comes_From_Source
17456 and then Overlays_Constant (Ent)
17457 and then Address_Clause_Overlay_Warnings
17458 then
17459 declare
17460 Addr : constant Node_Id := Address_Clause (Ent);
17461 O_Ent : Entity_Id;
17462 Off : Boolean;
17463
17464 begin
17465 Find_Overlaid_Entity (Addr, O_Ent, Off);
17466
17467 Error_Msg_Sloc := Sloc (Addr);
17468 Error_Msg_NE
17469 ("??constant& may be modified via address clause#",
17470 N, O_Ent);
17471 end;
17472 end if;
17473
17474 return;
17475 end if;
17476
17477 <<Continue>>
17478 null;
17479 end loop;
17480 end Note_Possible_Modification;
17481
17482 --------------------------------------
17483 -- Null_To_Null_Address_Convert_OK --
17484 --------------------------------------
17485
17486 function Null_To_Null_Address_Convert_OK
17487 (N : Node_Id;
17488 Typ : Entity_Id := Empty) return Boolean
17489 is
17490 begin
17491 if not Relaxed_RM_Semantics then
17492 return False;
17493 end if;
17494
17495 if Nkind (N) = N_Null then
17496 return Present (Typ) and then Is_Descendant_Of_Address (Typ);
17497
17498 elsif Nkind_In (N, N_Op_Eq, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt, N_Op_Ne)
17499 then
17500 declare
17501 L : constant Node_Id := Left_Opnd (N);
17502 R : constant Node_Id := Right_Opnd (N);
17503
17504 begin
17505 -- We check the Etype of the complementary operand since the
17506 -- N_Null node is not decorated at this stage.
17507
17508 return
17509 ((Nkind (L) = N_Null
17510 and then Is_Descendant_Of_Address (Etype (R)))
17511 or else
17512 (Nkind (R) = N_Null
17513 and then Is_Descendant_Of_Address (Etype (L))));
17514 end;
17515 end if;
17516
17517 return False;
17518 end Null_To_Null_Address_Convert_OK;
17519
17520 -------------------------
17521 -- Object_Access_Level --
17522 -------------------------
17523
17524 -- Returns the static accessibility level of the view denoted by Obj. Note
17525 -- that the value returned is the result of a call to Scope_Depth. Only
17526 -- scope depths associated with dynamic scopes can actually be returned.
17527 -- Since only relative levels matter for accessibility checking, the fact
17528 -- that the distance between successive levels of accessibility is not
17529 -- always one is immaterial (invariant: if level(E2) is deeper than
17530 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
17531
17532 function Object_Access_Level (Obj : Node_Id) return Uint is
17533 function Is_Interface_Conversion (N : Node_Id) return Boolean;
17534 -- Determine whether N is a construct of the form
17535 -- Some_Type (Operand._tag'Address)
17536 -- This construct appears in the context of dispatching calls.
17537
17538 function Reference_To (Obj : Node_Id) return Node_Id;
17539 -- An explicit dereference is created when removing side-effects from
17540 -- expressions for constraint checking purposes. In this case a local
17541 -- access type is created for it. The correct access level is that of
17542 -- the original source node. We detect this case by noting that the
17543 -- prefix of the dereference is created by an object declaration whose
17544 -- initial expression is a reference.
17545
17546 -----------------------------
17547 -- Is_Interface_Conversion --
17548 -----------------------------
17549
17550 function Is_Interface_Conversion (N : Node_Id) return Boolean is
17551 begin
17552 return Nkind (N) = N_Unchecked_Type_Conversion
17553 and then Nkind (Expression (N)) = N_Attribute_Reference
17554 and then Attribute_Name (Expression (N)) = Name_Address;
17555 end Is_Interface_Conversion;
17556
17557 ------------------
17558 -- Reference_To --
17559 ------------------
17560
17561 function Reference_To (Obj : Node_Id) return Node_Id is
17562 Pref : constant Node_Id := Prefix (Obj);
17563 begin
17564 if Is_Entity_Name (Pref)
17565 and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
17566 and then Present (Expression (Parent (Entity (Pref))))
17567 and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
17568 then
17569 return (Prefix (Expression (Parent (Entity (Pref)))));
17570 else
17571 return Empty;
17572 end if;
17573 end Reference_To;
17574
17575 -- Local variables
17576
17577 E : Entity_Id;
17578
17579 -- Start of processing for Object_Access_Level
17580
17581 begin
17582 if Nkind (Obj) = N_Defining_Identifier
17583 or else Is_Entity_Name (Obj)
17584 then
17585 if Nkind (Obj) = N_Defining_Identifier then
17586 E := Obj;
17587 else
17588 E := Entity (Obj);
17589 end if;
17590
17591 if Is_Prival (E) then
17592 E := Prival_Link (E);
17593 end if;
17594
17595 -- If E is a type then it denotes a current instance. For this case
17596 -- we add one to the normal accessibility level of the type to ensure
17597 -- that current instances are treated as always being deeper than
17598 -- than the level of any visible named access type (see 3.10.2(21)).
17599
17600 if Is_Type (E) then
17601 return Type_Access_Level (E) + 1;
17602
17603 elsif Present (Renamed_Object (E)) then
17604 return Object_Access_Level (Renamed_Object (E));
17605
17606 -- Similarly, if E is a component of the current instance of a
17607 -- protected type, any instance of it is assumed to be at a deeper
17608 -- level than the type. For a protected object (whose type is an
17609 -- anonymous protected type) its components are at the same level
17610 -- as the type itself.
17611
17612 elsif not Is_Overloadable (E)
17613 and then Ekind (Scope (E)) = E_Protected_Type
17614 and then Comes_From_Source (Scope (E))
17615 then
17616 return Type_Access_Level (Scope (E)) + 1;
17617
17618 else
17619 -- Aliased formals of functions take their access level from the
17620 -- point of call, i.e. require a dynamic check. For static check
17621 -- purposes, this is smaller than the level of the subprogram
17622 -- itself. For procedures the aliased makes no difference.
17623
17624 if Is_Formal (E)
17625 and then Is_Aliased (E)
17626 and then Ekind (Scope (E)) = E_Function
17627 then
17628 return Type_Access_Level (Etype (E));
17629
17630 else
17631 return Scope_Depth (Enclosing_Dynamic_Scope (E));
17632 end if;
17633 end if;
17634
17635 elsif Nkind (Obj) = N_Selected_Component then
17636 if Is_Access_Type (Etype (Prefix (Obj))) then
17637 return Type_Access_Level (Etype (Prefix (Obj)));
17638 else
17639 return Object_Access_Level (Prefix (Obj));
17640 end if;
17641
17642 elsif Nkind (Obj) = N_Indexed_Component then
17643 if Is_Access_Type (Etype (Prefix (Obj))) then
17644 return Type_Access_Level (Etype (Prefix (Obj)));
17645 else
17646 return Object_Access_Level (Prefix (Obj));
17647 end if;
17648
17649 elsif Nkind (Obj) = N_Explicit_Dereference then
17650
17651 -- If the prefix is a selected access discriminant then we make a
17652 -- recursive call on the prefix, which will in turn check the level
17653 -- of the prefix object of the selected discriminant.
17654
17655 -- In Ada 2012, if the discriminant has implicit dereference and
17656 -- the context is a selected component, treat this as an object of
17657 -- unknown scope (see below). This is necessary in compile-only mode;
17658 -- otherwise expansion will already have transformed the prefix into
17659 -- a temporary.
17660
17661 if Nkind (Prefix (Obj)) = N_Selected_Component
17662 and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
17663 and then
17664 Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
17665 and then
17666 (not Has_Implicit_Dereference
17667 (Entity (Selector_Name (Prefix (Obj))))
17668 or else Nkind (Parent (Obj)) /= N_Selected_Component)
17669 then
17670 return Object_Access_Level (Prefix (Obj));
17671
17672 -- Detect an interface conversion in the context of a dispatching
17673 -- call. Use the original form of the conversion to find the access
17674 -- level of the operand.
17675
17676 elsif Is_Interface (Etype (Obj))
17677 and then Is_Interface_Conversion (Prefix (Obj))
17678 and then Nkind (Original_Node (Obj)) = N_Type_Conversion
17679 then
17680 return Object_Access_Level (Original_Node (Obj));
17681
17682 elsif not Comes_From_Source (Obj) then
17683 declare
17684 Ref : constant Node_Id := Reference_To (Obj);
17685 begin
17686 if Present (Ref) then
17687 return Object_Access_Level (Ref);
17688 else
17689 return Type_Access_Level (Etype (Prefix (Obj)));
17690 end if;
17691 end;
17692
17693 else
17694 return Type_Access_Level (Etype (Prefix (Obj)));
17695 end if;
17696
17697 elsif Nkind_In (Obj, N_Type_Conversion, N_Unchecked_Type_Conversion) then
17698 return Object_Access_Level (Expression (Obj));
17699
17700 elsif Nkind (Obj) = N_Function_Call then
17701
17702 -- Function results are objects, so we get either the access level of
17703 -- the function or, in the case of an indirect call, the level of the
17704 -- access-to-subprogram type. (This code is used for Ada 95, but it
17705 -- looks wrong, because it seems that we should be checking the level
17706 -- of the call itself, even for Ada 95. However, using the Ada 2005
17707 -- version of the code causes regressions in several tests that are
17708 -- compiled with -gnat95. ???)
17709
17710 if Ada_Version < Ada_2005 then
17711 if Is_Entity_Name (Name (Obj)) then
17712 return Subprogram_Access_Level (Entity (Name (Obj)));
17713 else
17714 return Type_Access_Level (Etype (Prefix (Name (Obj))));
17715 end if;
17716
17717 -- For Ada 2005, the level of the result object of a function call is
17718 -- defined to be the level of the call's innermost enclosing master.
17719 -- We determine that by querying the depth of the innermost enclosing
17720 -- dynamic scope.
17721
17722 else
17723 Return_Master_Scope_Depth_Of_Call : declare
17724
17725 function Innermost_Master_Scope_Depth
17726 (N : Node_Id) return Uint;
17727 -- Returns the scope depth of the given node's innermost
17728 -- enclosing dynamic scope (effectively the accessibility
17729 -- level of the innermost enclosing master).
17730
17731 ----------------------------------
17732 -- Innermost_Master_Scope_Depth --
17733 ----------------------------------
17734
17735 function Innermost_Master_Scope_Depth
17736 (N : Node_Id) return Uint
17737 is
17738 Node_Par : Node_Id := Parent (N);
17739
17740 begin
17741 -- Locate the nearest enclosing node (by traversing Parents)
17742 -- that Defining_Entity can be applied to, and return the
17743 -- depth of that entity's nearest enclosing dynamic scope.
17744
17745 while Present (Node_Par) loop
17746 case Nkind (Node_Par) is
17747 when N_Component_Declaration |
17748 N_Entry_Declaration |
17749 N_Formal_Object_Declaration |
17750 N_Formal_Type_Declaration |
17751 N_Full_Type_Declaration |
17752 N_Incomplete_Type_Declaration |
17753 N_Loop_Parameter_Specification |
17754 N_Object_Declaration |
17755 N_Protected_Type_Declaration |
17756 N_Private_Extension_Declaration |
17757 N_Private_Type_Declaration |
17758 N_Subtype_Declaration |
17759 N_Function_Specification |
17760 N_Procedure_Specification |
17761 N_Task_Type_Declaration |
17762 N_Body_Stub |
17763 N_Generic_Instantiation |
17764 N_Proper_Body |
17765 N_Implicit_Label_Declaration |
17766 N_Package_Declaration |
17767 N_Single_Task_Declaration |
17768 N_Subprogram_Declaration |
17769 N_Generic_Declaration |
17770 N_Renaming_Declaration |
17771 N_Block_Statement |
17772 N_Formal_Subprogram_Declaration |
17773 N_Abstract_Subprogram_Declaration |
17774 N_Entry_Body |
17775 N_Exception_Declaration |
17776 N_Formal_Package_Declaration |
17777 N_Number_Declaration |
17778 N_Package_Specification |
17779 N_Parameter_Specification |
17780 N_Single_Protected_Declaration |
17781 N_Subunit =>
17782
17783 return Scope_Depth
17784 (Nearest_Dynamic_Scope
17785 (Defining_Entity (Node_Par)));
17786
17787 when others =>
17788 null;
17789 end case;
17790
17791 Node_Par := Parent (Node_Par);
17792 end loop;
17793
17794 pragma Assert (False);
17795
17796 -- Should never reach the following return
17797
17798 return Scope_Depth (Current_Scope) + 1;
17799 end Innermost_Master_Scope_Depth;
17800
17801 -- Start of processing for Return_Master_Scope_Depth_Of_Call
17802
17803 begin
17804 return Innermost_Master_Scope_Depth (Obj);
17805 end Return_Master_Scope_Depth_Of_Call;
17806 end if;
17807
17808 -- For convenience we handle qualified expressions, even though they
17809 -- aren't technically object names.
17810
17811 elsif Nkind (Obj) = N_Qualified_Expression then
17812 return Object_Access_Level (Expression (Obj));
17813
17814 -- Ditto for aggregates. They have the level of the temporary that
17815 -- will hold their value.
17816
17817 elsif Nkind (Obj) = N_Aggregate then
17818 return Object_Access_Level (Current_Scope);
17819
17820 -- Otherwise return the scope level of Standard. (If there are cases
17821 -- that fall through to this point they will be treated as having
17822 -- global accessibility for now. ???)
17823
17824 else
17825 return Scope_Depth (Standard_Standard);
17826 end if;
17827 end Object_Access_Level;
17828
17829 ---------------------------------
17830 -- Original_Aspect_Pragma_Name --
17831 ---------------------------------
17832
17833 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id is
17834 Item : Node_Id;
17835 Item_Nam : Name_Id;
17836
17837 begin
17838 pragma Assert (Nkind_In (N, N_Aspect_Specification, N_Pragma));
17839
17840 Item := N;
17841
17842 -- The pragma was generated to emulate an aspect, use the original
17843 -- aspect specification.
17844
17845 if Nkind (Item) = N_Pragma and then From_Aspect_Specification (Item) then
17846 Item := Corresponding_Aspect (Item);
17847 end if;
17848
17849 -- Retrieve the name of the aspect/pragma. Note that Pre, Pre_Class,
17850 -- Post and Post_Class rewrite their pragma identifier to preserve the
17851 -- original name.
17852 -- ??? this is kludgey
17853
17854 if Nkind (Item) = N_Pragma then
17855 Item_Nam := Chars (Original_Node (Pragma_Identifier (Item)));
17856
17857 else
17858 pragma Assert (Nkind (Item) = N_Aspect_Specification);
17859 Item_Nam := Chars (Identifier (Item));
17860 end if;
17861
17862 -- Deal with 'Class by converting the name to its _XXX form
17863
17864 if Class_Present (Item) then
17865 if Item_Nam = Name_Invariant then
17866 Item_Nam := Name_uInvariant;
17867
17868 elsif Item_Nam = Name_Post then
17869 Item_Nam := Name_uPost;
17870
17871 elsif Item_Nam = Name_Pre then
17872 Item_Nam := Name_uPre;
17873
17874 elsif Nam_In (Item_Nam, Name_Type_Invariant,
17875 Name_Type_Invariant_Class)
17876 then
17877 Item_Nam := Name_uType_Invariant;
17878
17879 -- Nothing to do for other cases (e.g. a Check that derived from
17880 -- Pre_Class and has the flag set). Also we do nothing if the name
17881 -- is already in special _xxx form.
17882
17883 end if;
17884 end if;
17885
17886 return Item_Nam;
17887 end Original_Aspect_Pragma_Name;
17888
17889 --------------------------------------
17890 -- Original_Corresponding_Operation --
17891 --------------------------------------
17892
17893 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
17894 is
17895 Typ : constant Entity_Id := Find_Dispatching_Type (S);
17896
17897 begin
17898 -- If S is an inherited primitive S2 the original corresponding
17899 -- operation of S is the original corresponding operation of S2
17900
17901 if Present (Alias (S))
17902 and then Find_Dispatching_Type (Alias (S)) /= Typ
17903 then
17904 return Original_Corresponding_Operation (Alias (S));
17905
17906 -- If S overrides an inherited subprogram S2 the original corresponding
17907 -- operation of S is the original corresponding operation of S2
17908
17909 elsif Present (Overridden_Operation (S)) then
17910 return Original_Corresponding_Operation (Overridden_Operation (S));
17911
17912 -- otherwise it is S itself
17913
17914 else
17915 return S;
17916 end if;
17917 end Original_Corresponding_Operation;
17918
17919 -------------------
17920 -- Output_Entity --
17921 -------------------
17922
17923 procedure Output_Entity (Id : Entity_Id) is
17924 Scop : Entity_Id;
17925
17926 begin
17927 Scop := Scope (Id);
17928
17929 -- The entity may lack a scope when it is in the process of being
17930 -- analyzed. Use the current scope as an approximation.
17931
17932 if No (Scop) then
17933 Scop := Current_Scope;
17934 end if;
17935
17936 Output_Name (Chars (Id), Scop);
17937 end Output_Entity;
17938
17939 -----------------
17940 -- Output_Name --
17941 -----------------
17942
17943 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope) is
17944 begin
17945 Write_Str
17946 (Get_Name_String
17947 (Get_Qualified_Name
17948 (Nam => Nam,
17949 Suffix => No_Name,
17950 Scop => Scop)));
17951 Write_Eol;
17952 end Output_Name;
17953
17954 ----------------------
17955 -- Policy_In_Effect --
17956 ----------------------
17957
17958 function Policy_In_Effect (Policy : Name_Id) return Name_Id is
17959 function Policy_In_List (List : Node_Id) return Name_Id;
17960 -- Determine the mode of a policy in a N_Pragma list
17961
17962 --------------------
17963 -- Policy_In_List --
17964 --------------------
17965
17966 function Policy_In_List (List : Node_Id) return Name_Id is
17967 Arg1 : Node_Id;
17968 Arg2 : Node_Id;
17969 Prag : Node_Id;
17970
17971 begin
17972 Prag := List;
17973 while Present (Prag) loop
17974 Arg1 := First (Pragma_Argument_Associations (Prag));
17975 Arg2 := Next (Arg1);
17976
17977 Arg1 := Get_Pragma_Arg (Arg1);
17978 Arg2 := Get_Pragma_Arg (Arg2);
17979
17980 -- The current Check_Policy pragma matches the requested policy or
17981 -- appears in the single argument form (Assertion, policy_id).
17982
17983 if Nam_In (Chars (Arg1), Name_Assertion, Policy) then
17984 return Chars (Arg2);
17985 end if;
17986
17987 Prag := Next_Pragma (Prag);
17988 end loop;
17989
17990 return No_Name;
17991 end Policy_In_List;
17992
17993 -- Local variables
17994
17995 Kind : Name_Id;
17996
17997 -- Start of processing for Policy_In_Effect
17998
17999 begin
18000 if not Is_Valid_Assertion_Kind (Policy) then
18001 raise Program_Error;
18002 end if;
18003
18004 -- Inspect all policy pragmas that appear within scopes (if any)
18005
18006 Kind := Policy_In_List (Check_Policy_List);
18007
18008 -- Inspect all configuration policy pragmas (if any)
18009
18010 if Kind = No_Name then
18011 Kind := Policy_In_List (Check_Policy_List_Config);
18012 end if;
18013
18014 -- The context lacks policy pragmas, determine the mode based on whether
18015 -- assertions are enabled at the configuration level. This ensures that
18016 -- the policy is preserved when analyzing generics.
18017
18018 if Kind = No_Name then
18019 if Assertions_Enabled_Config then
18020 Kind := Name_Check;
18021 else
18022 Kind := Name_Ignore;
18023 end if;
18024 end if;
18025
18026 return Kind;
18027 end Policy_In_Effect;
18028
18029 ----------------------------------
18030 -- Predicate_Tests_On_Arguments --
18031 ----------------------------------
18032
18033 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean is
18034 begin
18035 -- Always test predicates on indirect call
18036
18037 if Ekind (Subp) = E_Subprogram_Type then
18038 return True;
18039
18040 -- Do not test predicates on call to generated default Finalize, since
18041 -- we are not interested in whether something we are finalizing (and
18042 -- typically destroying) satisfies its predicates.
18043
18044 elsif Chars (Subp) = Name_Finalize
18045 and then not Comes_From_Source (Subp)
18046 then
18047 return False;
18048
18049 -- Do not test predicates on any internally generated routines
18050
18051 elsif Is_Internal_Name (Chars (Subp)) then
18052 return False;
18053
18054 -- Do not test predicates on call to Init_Proc, since if needed the
18055 -- predicate test will occur at some other point.
18056
18057 elsif Is_Init_Proc (Subp) then
18058 return False;
18059
18060 -- Do not test predicates on call to predicate function, since this
18061 -- would cause infinite recursion.
18062
18063 elsif Ekind (Subp) = E_Function
18064 and then (Is_Predicate_Function (Subp)
18065 or else
18066 Is_Predicate_Function_M (Subp))
18067 then
18068 return False;
18069
18070 -- For now, no other exceptions
18071
18072 else
18073 return True;
18074 end if;
18075 end Predicate_Tests_On_Arguments;
18076
18077 -----------------------
18078 -- Private_Component --
18079 -----------------------
18080
18081 function Private_Component (Type_Id : Entity_Id) return Entity_Id is
18082 Ancestor : constant Entity_Id := Base_Type (Type_Id);
18083
18084 function Trace_Components
18085 (T : Entity_Id;
18086 Check : Boolean) return Entity_Id;
18087 -- Recursive function that does the work, and checks against circular
18088 -- definition for each subcomponent type.
18089
18090 ----------------------
18091 -- Trace_Components --
18092 ----------------------
18093
18094 function Trace_Components
18095 (T : Entity_Id;
18096 Check : Boolean) return Entity_Id
18097 is
18098 Btype : constant Entity_Id := Base_Type (T);
18099 Component : Entity_Id;
18100 P : Entity_Id;
18101 Candidate : Entity_Id := Empty;
18102
18103 begin
18104 if Check and then Btype = Ancestor then
18105 Error_Msg_N ("circular type definition", Type_Id);
18106 return Any_Type;
18107 end if;
18108
18109 if Is_Private_Type (Btype) and then not Is_Generic_Type (Btype) then
18110 if Present (Full_View (Btype))
18111 and then Is_Record_Type (Full_View (Btype))
18112 and then not Is_Frozen (Btype)
18113 then
18114 -- To indicate that the ancestor depends on a private type, the
18115 -- current Btype is sufficient. However, to check for circular
18116 -- definition we must recurse on the full view.
18117
18118 Candidate := Trace_Components (Full_View (Btype), True);
18119
18120 if Candidate = Any_Type then
18121 return Any_Type;
18122 else
18123 return Btype;
18124 end if;
18125
18126 else
18127 return Btype;
18128 end if;
18129
18130 elsif Is_Array_Type (Btype) then
18131 return Trace_Components (Component_Type (Btype), True);
18132
18133 elsif Is_Record_Type (Btype) then
18134 Component := First_Entity (Btype);
18135 while Present (Component)
18136 and then Comes_From_Source (Component)
18137 loop
18138 -- Skip anonymous types generated by constrained components
18139
18140 if not Is_Type (Component) then
18141 P := Trace_Components (Etype (Component), True);
18142
18143 if Present (P) then
18144 if P = Any_Type then
18145 return P;
18146 else
18147 Candidate := P;
18148 end if;
18149 end if;
18150 end if;
18151
18152 Next_Entity (Component);
18153 end loop;
18154
18155 return Candidate;
18156
18157 else
18158 return Empty;
18159 end if;
18160 end Trace_Components;
18161
18162 -- Start of processing for Private_Component
18163
18164 begin
18165 return Trace_Components (Type_Id, False);
18166 end Private_Component;
18167
18168 ---------------------------
18169 -- Primitive_Names_Match --
18170 ---------------------------
18171
18172 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
18173 function Non_Internal_Name (E : Entity_Id) return Name_Id;
18174 -- Given an internal name, returns the corresponding non-internal name
18175
18176 ------------------------
18177 -- Non_Internal_Name --
18178 ------------------------
18179
18180 function Non_Internal_Name (E : Entity_Id) return Name_Id is
18181 begin
18182 Get_Name_String (Chars (E));
18183 Name_Len := Name_Len - 1;
18184 return Name_Find;
18185 end Non_Internal_Name;
18186
18187 -- Start of processing for Primitive_Names_Match
18188
18189 begin
18190 pragma Assert (Present (E1) and then Present (E2));
18191
18192 return Chars (E1) = Chars (E2)
18193 or else
18194 (not Is_Internal_Name (Chars (E1))
18195 and then Is_Internal_Name (Chars (E2))
18196 and then Non_Internal_Name (E2) = Chars (E1))
18197 or else
18198 (not Is_Internal_Name (Chars (E2))
18199 and then Is_Internal_Name (Chars (E1))
18200 and then Non_Internal_Name (E1) = Chars (E2))
18201 or else
18202 (Is_Predefined_Dispatching_Operation (E1)
18203 and then Is_Predefined_Dispatching_Operation (E2)
18204 and then Same_TSS (E1, E2))
18205 or else
18206 (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
18207 end Primitive_Names_Match;
18208
18209 -----------------------
18210 -- Process_End_Label --
18211 -----------------------
18212
18213 procedure Process_End_Label
18214 (N : Node_Id;
18215 Typ : Character;
18216 Ent : Entity_Id)
18217 is
18218 Loc : Source_Ptr;
18219 Nam : Node_Id;
18220 Scop : Entity_Id;
18221
18222 Label_Ref : Boolean;
18223 -- Set True if reference to end label itself is required
18224
18225 Endl : Node_Id;
18226 -- Gets set to the operator symbol or identifier that references the
18227 -- entity Ent. For the child unit case, this is the identifier from the
18228 -- designator. For other cases, this is simply Endl.
18229
18230 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
18231 -- N is an identifier node that appears as a parent unit reference in
18232 -- the case where Ent is a child unit. This procedure generates an
18233 -- appropriate cross-reference entry. E is the corresponding entity.
18234
18235 -------------------------
18236 -- Generate_Parent_Ref --
18237 -------------------------
18238
18239 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
18240 begin
18241 -- If names do not match, something weird, skip reference
18242
18243 if Chars (E) = Chars (N) then
18244
18245 -- Generate the reference. We do NOT consider this as a reference
18246 -- for unreferenced symbol purposes.
18247
18248 Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
18249
18250 if Style_Check then
18251 Style.Check_Identifier (N, E);
18252 end if;
18253 end if;
18254 end Generate_Parent_Ref;
18255
18256 -- Start of processing for Process_End_Label
18257
18258 begin
18259 -- If no node, ignore. This happens in some error situations, and
18260 -- also for some internally generated structures where no end label
18261 -- references are required in any case.
18262
18263 if No (N) then
18264 return;
18265 end if;
18266
18267 -- Nothing to do if no End_Label, happens for internally generated
18268 -- constructs where we don't want an end label reference anyway. Also
18269 -- nothing to do if Endl is a string literal, which means there was
18270 -- some prior error (bad operator symbol)
18271
18272 Endl := End_Label (N);
18273
18274 if No (Endl) or else Nkind (Endl) = N_String_Literal then
18275 return;
18276 end if;
18277
18278 -- Reference node is not in extended main source unit
18279
18280 if not In_Extended_Main_Source_Unit (N) then
18281
18282 -- Generally we do not collect references except for the extended
18283 -- main source unit. The one exception is the 'e' entry for a
18284 -- package spec, where it is useful for a client to have the
18285 -- ending information to define scopes.
18286
18287 if Typ /= 'e' then
18288 return;
18289
18290 else
18291 Label_Ref := False;
18292
18293 -- For this case, we can ignore any parent references, but we
18294 -- need the package name itself for the 'e' entry.
18295
18296 if Nkind (Endl) = N_Designator then
18297 Endl := Identifier (Endl);
18298 end if;
18299 end if;
18300
18301 -- Reference is in extended main source unit
18302
18303 else
18304 Label_Ref := True;
18305
18306 -- For designator, generate references for the parent entries
18307
18308 if Nkind (Endl) = N_Designator then
18309
18310 -- Generate references for the prefix if the END line comes from
18311 -- source (otherwise we do not need these references) We climb the
18312 -- scope stack to find the expected entities.
18313
18314 if Comes_From_Source (Endl) then
18315 Nam := Name (Endl);
18316 Scop := Current_Scope;
18317 while Nkind (Nam) = N_Selected_Component loop
18318 Scop := Scope (Scop);
18319 exit when No (Scop);
18320 Generate_Parent_Ref (Selector_Name (Nam), Scop);
18321 Nam := Prefix (Nam);
18322 end loop;
18323
18324 if Present (Scop) then
18325 Generate_Parent_Ref (Nam, Scope (Scop));
18326 end if;
18327 end if;
18328
18329 Endl := Identifier (Endl);
18330 end if;
18331 end if;
18332
18333 -- If the end label is not for the given entity, then either we have
18334 -- some previous error, or this is a generic instantiation for which
18335 -- we do not need to make a cross-reference in this case anyway. In
18336 -- either case we simply ignore the call.
18337
18338 if Chars (Ent) /= Chars (Endl) then
18339 return;
18340 end if;
18341
18342 -- If label was really there, then generate a normal reference and then
18343 -- adjust the location in the end label to point past the name (which
18344 -- should almost always be the semicolon).
18345
18346 Loc := Sloc (Endl);
18347
18348 if Comes_From_Source (Endl) then
18349
18350 -- If a label reference is required, then do the style check and
18351 -- generate an l-type cross-reference entry for the label
18352
18353 if Label_Ref then
18354 if Style_Check then
18355 Style.Check_Identifier (Endl, Ent);
18356 end if;
18357
18358 Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
18359 end if;
18360
18361 -- Set the location to point past the label (normally this will
18362 -- mean the semicolon immediately following the label). This is
18363 -- done for the sake of the 'e' or 't' entry generated below.
18364
18365 Get_Decoded_Name_String (Chars (Endl));
18366 Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
18367
18368 else
18369 -- In SPARK mode, no missing label is allowed for packages and
18370 -- subprogram bodies. Detect those cases by testing whether
18371 -- Process_End_Label was called for a body (Typ = 't') or a package.
18372
18373 if Restriction_Check_Required (SPARK_05)
18374 and then (Typ = 't' or else Ekind (Ent) = E_Package)
18375 then
18376 Error_Msg_Node_1 := Endl;
18377 Check_SPARK_05_Restriction
18378 ("`END &` required", Endl, Force => True);
18379 end if;
18380 end if;
18381
18382 -- Now generate the e/t reference
18383
18384 Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
18385
18386 -- Restore Sloc, in case modified above, since we have an identifier
18387 -- and the normal Sloc should be left set in the tree.
18388
18389 Set_Sloc (Endl, Loc);
18390 end Process_End_Label;
18391
18392 --------------------------------
18393 -- Propagate_Concurrent_Flags --
18394 --------------------------------
18395
18396 procedure Propagate_Concurrent_Flags
18397 (Typ : Entity_Id;
18398 Comp_Typ : Entity_Id)
18399 is
18400 begin
18401 if Has_Task (Comp_Typ) then
18402 Set_Has_Task (Typ);
18403 end if;
18404
18405 if Has_Protected (Comp_Typ) then
18406 Set_Has_Protected (Typ);
18407 end if;
18408
18409 if Has_Timing_Event (Comp_Typ) then
18410 Set_Has_Timing_Event (Typ);
18411 end if;
18412 end Propagate_Concurrent_Flags;
18413
18414 ------------------------------
18415 -- Propagate_DIC_Attributes --
18416 ------------------------------
18417
18418 procedure Propagate_DIC_Attributes
18419 (Typ : Entity_Id;
18420 From_Typ : Entity_Id)
18421 is
18422 DIC_Proc : Entity_Id;
18423
18424 begin
18425 if Present (Typ) and then Present (From_Typ) then
18426 pragma Assert (Is_Type (Typ) and then Is_Type (From_Typ));
18427
18428 -- Nothing to do if both the source and the destination denote the
18429 -- same type.
18430
18431 if From_Typ = Typ then
18432 return;
18433 end if;
18434
18435 DIC_Proc := DIC_Procedure (From_Typ);
18436
18437 -- The setting of the attributes is intentionally conservative. This
18438 -- prevents accidental clobbering of enabled attributes.
18439
18440 if Has_Inherited_DIC (From_Typ)
18441 and then not Has_Inherited_DIC (Typ)
18442 then
18443 Set_Has_Inherited_DIC (Typ);
18444 end if;
18445
18446 if Has_Own_DIC (From_Typ) and then not Has_Own_DIC (Typ) then
18447 Set_Has_Own_DIC (Typ);
18448 end if;
18449
18450 if Present (DIC_Proc) and then No (DIC_Procedure (Typ)) then
18451 Set_DIC_Procedure (Typ, DIC_Proc);
18452 end if;
18453 end if;
18454 end Propagate_DIC_Attributes;
18455
18456 ------------------------------------
18457 -- Propagate_Invariant_Attributes --
18458 ------------------------------------
18459
18460 procedure Propagate_Invariant_Attributes
18461 (Typ : Entity_Id;
18462 From_Typ : Entity_Id)
18463 is
18464 Full_IP : Entity_Id;
18465 Part_IP : Entity_Id;
18466
18467 begin
18468 if Present (Typ) and then Present (From_Typ) then
18469 pragma Assert (Is_Type (Typ) and then Is_Type (From_Typ));
18470
18471 -- Nothing to do if both the source and the destination denote the
18472 -- same type.
18473
18474 if From_Typ = Typ then
18475 return;
18476 end if;
18477
18478 Full_IP := Invariant_Procedure (From_Typ);
18479 Part_IP := Partial_Invariant_Procedure (From_Typ);
18480
18481 -- The setting of the attributes is intentionally conservative. This
18482 -- prevents accidental clobbering of enabled attributes.
18483
18484 if Has_Inheritable_Invariants (From_Typ)
18485 and then not Has_Inheritable_Invariants (Typ)
18486 then
18487 Set_Has_Inheritable_Invariants (Typ, True);
18488 end if;
18489
18490 if Has_Inherited_Invariants (From_Typ)
18491 and then not Has_Inherited_Invariants (Typ)
18492 then
18493 Set_Has_Inherited_Invariants (Typ, True);
18494 end if;
18495
18496 if Has_Own_Invariants (From_Typ)
18497 and then not Has_Own_Invariants (Typ)
18498 then
18499 Set_Has_Own_Invariants (Typ, True);
18500 end if;
18501
18502 if Present (Full_IP) and then No (Invariant_Procedure (Typ)) then
18503 Set_Invariant_Procedure (Typ, Full_IP);
18504 end if;
18505
18506 if Present (Part_IP) and then No (Partial_Invariant_Procedure (Typ))
18507 then
18508 Set_Partial_Invariant_Procedure (Typ, Part_IP);
18509 end if;
18510 end if;
18511 end Propagate_Invariant_Attributes;
18512
18513 ---------------------------------------
18514 -- Record_Possible_Part_Of_Reference --
18515 ---------------------------------------
18516
18517 procedure Record_Possible_Part_Of_Reference
18518 (Var_Id : Entity_Id;
18519 Ref : Node_Id)
18520 is
18521 Encap : constant Entity_Id := Encapsulating_State (Var_Id);
18522 Refs : Elist_Id;
18523
18524 begin
18525 -- The variable is a constituent of a single protected/task type. Such
18526 -- a variable acts as a component of the type and must appear within a
18527 -- specific region (SPARK RM 9.3). Instead of recording the reference,
18528 -- verify its legality now.
18529
18530 if Present (Encap) and then Is_Single_Concurrent_Object (Encap) then
18531 Check_Part_Of_Reference (Var_Id, Ref);
18532
18533 -- The variable is subject to pragma Part_Of and may eventually become a
18534 -- constituent of a single protected/task type. Record the reference to
18535 -- verify its placement when the contract of the variable is analyzed.
18536
18537 elsif Present (Get_Pragma (Var_Id, Pragma_Part_Of)) then
18538 Refs := Part_Of_References (Var_Id);
18539
18540 if No (Refs) then
18541 Refs := New_Elmt_List;
18542 Set_Part_Of_References (Var_Id, Refs);
18543 end if;
18544
18545 Append_Elmt (Ref, Refs);
18546 end if;
18547 end Record_Possible_Part_Of_Reference;
18548
18549 ----------------
18550 -- Referenced --
18551 ----------------
18552
18553 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean is
18554 Seen : Boolean := False;
18555
18556 function Is_Reference (N : Node_Id) return Traverse_Result;
18557 -- Determine whether node N denotes a reference to Id. If this is the
18558 -- case, set global flag Seen to True and stop the traversal.
18559
18560 ------------------
18561 -- Is_Reference --
18562 ------------------
18563
18564 function Is_Reference (N : Node_Id) return Traverse_Result is
18565 begin
18566 if Is_Entity_Name (N)
18567 and then Present (Entity (N))
18568 and then Entity (N) = Id
18569 then
18570 Seen := True;
18571 return Abandon;
18572 else
18573 return OK;
18574 end if;
18575 end Is_Reference;
18576
18577 procedure Inspect_Expression is new Traverse_Proc (Is_Reference);
18578
18579 -- Start of processing for Referenced
18580
18581 begin
18582 Inspect_Expression (Expr);
18583 return Seen;
18584 end Referenced;
18585
18586 ------------------------------------
18587 -- References_Generic_Formal_Type --
18588 ------------------------------------
18589
18590 function References_Generic_Formal_Type (N : Node_Id) return Boolean is
18591
18592 function Process (N : Node_Id) return Traverse_Result;
18593 -- Process one node in search for generic formal type
18594
18595 -------------
18596 -- Process --
18597 -------------
18598
18599 function Process (N : Node_Id) return Traverse_Result is
18600 begin
18601 if Nkind (N) in N_Has_Entity then
18602 declare
18603 E : constant Entity_Id := Entity (N);
18604 begin
18605 if Present (E) then
18606 if Is_Generic_Type (E) then
18607 return Abandon;
18608 elsif Present (Etype (E))
18609 and then Is_Generic_Type (Etype (E))
18610 then
18611 return Abandon;
18612 end if;
18613 end if;
18614 end;
18615 end if;
18616
18617 return Atree.OK;
18618 end Process;
18619
18620 function Traverse is new Traverse_Func (Process);
18621 -- Traverse tree to look for generic type
18622
18623 begin
18624 if Inside_A_Generic then
18625 return Traverse (N) = Abandon;
18626 else
18627 return False;
18628 end if;
18629 end References_Generic_Formal_Type;
18630
18631 --------------------
18632 -- Remove_Homonym --
18633 --------------------
18634
18635 procedure Remove_Homonym (E : Entity_Id) is
18636 Prev : Entity_Id := Empty;
18637 H : Entity_Id;
18638
18639 begin
18640 if E = Current_Entity (E) then
18641 if Present (Homonym (E)) then
18642 Set_Current_Entity (Homonym (E));
18643 else
18644 Set_Name_Entity_Id (Chars (E), Empty);
18645 end if;
18646
18647 else
18648 H := Current_Entity (E);
18649 while Present (H) and then H /= E loop
18650 Prev := H;
18651 H := Homonym (H);
18652 end loop;
18653
18654 -- If E is not on the homonym chain, nothing to do
18655
18656 if Present (H) then
18657 Set_Homonym (Prev, Homonym (E));
18658 end if;
18659 end if;
18660 end Remove_Homonym;
18661
18662 ------------------------------
18663 -- Remove_Overloaded_Entity --
18664 ------------------------------
18665
18666 procedure Remove_Overloaded_Entity (Id : Entity_Id) is
18667 procedure Remove_Primitive_Of (Typ : Entity_Id);
18668 -- Remove primitive subprogram Id from the list of primitives that
18669 -- belong to type Typ.
18670
18671 -------------------------
18672 -- Remove_Primitive_Of --
18673 -------------------------
18674
18675 procedure Remove_Primitive_Of (Typ : Entity_Id) is
18676 Prims : Elist_Id;
18677
18678 begin
18679 if Is_Tagged_Type (Typ) then
18680 Prims := Direct_Primitive_Operations (Typ);
18681
18682 if Present (Prims) then
18683 Remove (Prims, Id);
18684 end if;
18685 end if;
18686 end Remove_Primitive_Of;
18687
18688 -- Local variables
18689
18690 Scop : constant Entity_Id := Scope (Id);
18691 Formal : Entity_Id;
18692 Prev_Id : Entity_Id;
18693
18694 -- Start of processing for Remove_Overloaded_Entity
18695
18696 begin
18697 -- Remove the entity from the homonym chain. When the entity is the
18698 -- head of the chain, associate the entry in the name table with its
18699 -- homonym effectively making it the new head of the chain.
18700
18701 if Current_Entity (Id) = Id then
18702 Set_Name_Entity_Id (Chars (Id), Homonym (Id));
18703
18704 -- Otherwise link the previous and next homonyms
18705
18706 else
18707 Prev_Id := Current_Entity (Id);
18708 while Present (Prev_Id) and then Homonym (Prev_Id) /= Id loop
18709 Prev_Id := Homonym (Prev_Id);
18710 end loop;
18711
18712 Set_Homonym (Prev_Id, Homonym (Id));
18713 end if;
18714
18715 -- Remove the entity from the scope entity chain. When the entity is
18716 -- the head of the chain, set the next entity as the new head of the
18717 -- chain.
18718
18719 if First_Entity (Scop) = Id then
18720 Prev_Id := Empty;
18721 Set_First_Entity (Scop, Next_Entity (Id));
18722
18723 -- Otherwise the entity is either in the middle of the chain or it acts
18724 -- as its tail. Traverse and link the previous and next entities.
18725
18726 else
18727 Prev_Id := First_Entity (Scop);
18728 while Present (Prev_Id) and then Next_Entity (Prev_Id) /= Id loop
18729 Next_Entity (Prev_Id);
18730 end loop;
18731
18732 Set_Next_Entity (Prev_Id, Next_Entity (Id));
18733 end if;
18734
18735 -- Handle the case where the entity acts as the tail of the scope entity
18736 -- chain.
18737
18738 if Last_Entity (Scop) = Id then
18739 Set_Last_Entity (Scop, Prev_Id);
18740 end if;
18741
18742 -- The entity denotes a primitive subprogram. Remove it from the list of
18743 -- primitives of the associated controlling type.
18744
18745 if Ekind_In (Id, E_Function, E_Procedure) and then Is_Primitive (Id) then
18746 Formal := First_Formal (Id);
18747 while Present (Formal) loop
18748 if Is_Controlling_Formal (Formal) then
18749 Remove_Primitive_Of (Etype (Formal));
18750 exit;
18751 end if;
18752
18753 Next_Formal (Formal);
18754 end loop;
18755
18756 if Ekind (Id) = E_Function and then Has_Controlling_Result (Id) then
18757 Remove_Primitive_Of (Etype (Id));
18758 end if;
18759 end if;
18760 end Remove_Overloaded_Entity;
18761
18762 ---------------------
18763 -- Rep_To_Pos_Flag --
18764 ---------------------
18765
18766 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
18767 begin
18768 return New_Occurrence_Of
18769 (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
18770 end Rep_To_Pos_Flag;
18771
18772 --------------------
18773 -- Require_Entity --
18774 --------------------
18775
18776 procedure Require_Entity (N : Node_Id) is
18777 begin
18778 if Is_Entity_Name (N) and then No (Entity (N)) then
18779 if Total_Errors_Detected /= 0 then
18780 Set_Entity (N, Any_Id);
18781 else
18782 raise Program_Error;
18783 end if;
18784 end if;
18785 end Require_Entity;
18786
18787 ------------------------------
18788 -- Requires_Transient_Scope --
18789 ------------------------------
18790
18791 -- A transient scope is required when variable-sized temporaries are
18792 -- allocated on the secondary stack, or when finalization actions must be
18793 -- generated before the next instruction.
18794
18795 function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
18796 function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
18797 -- ???We retain the old and new algorithms for Requires_Transient_Scope for
18798 -- the time being. New_Requires_Transient_Scope is used by default; the
18799 -- debug switch -gnatdQ can be used to do Old_Requires_Transient_Scope
18800 -- instead. The intent is to use this temporarily to measure before/after
18801 -- efficiency. Note: when this temporary code is removed, the documentation
18802 -- of dQ in debug.adb should be removed.
18803
18804 procedure Results_Differ (Id : Entity_Id);
18805 -- ???Debugging code. Called when the Old_ and New_ results differ. Will be
18806 -- removed when New_Requires_Transient_Scope becomes
18807 -- Requires_Transient_Scope and Old_Requires_Transient_Scope is eliminated.
18808
18809 procedure Results_Differ (Id : Entity_Id) is
18810 begin
18811 if False then -- False to disable; True for debugging
18812 Treepr.Print_Tree_Node (Id);
18813
18814 if Old_Requires_Transient_Scope (Id) =
18815 New_Requires_Transient_Scope (Id)
18816 then
18817 raise Program_Error;
18818 end if;
18819 end if;
18820 end Results_Differ;
18821
18822 function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
18823 Old_Result : constant Boolean := Old_Requires_Transient_Scope (Id);
18824
18825 begin
18826 if Debug_Flag_QQ then
18827 return Old_Result;
18828 end if;
18829
18830 declare
18831 New_Result : constant Boolean := New_Requires_Transient_Scope (Id);
18832
18833 begin
18834 -- Assert that we're not putting things on the secondary stack if we
18835 -- didn't before; we are trying to AVOID secondary stack when
18836 -- possible.
18837
18838 if not Old_Result then
18839 pragma Assert (not New_Result);
18840 null;
18841 end if;
18842
18843 if New_Result /= Old_Result then
18844 Results_Differ (Id);
18845 end if;
18846
18847 return New_Result;
18848 end;
18849 end Requires_Transient_Scope;
18850
18851 ----------------------------------
18852 -- Old_Requires_Transient_Scope --
18853 ----------------------------------
18854
18855 function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
18856 Typ : constant Entity_Id := Underlying_Type (Id);
18857
18858 begin
18859 -- This is a private type which is not completed yet. This can only
18860 -- happen in a default expression (of a formal parameter or of a
18861 -- record component). Do not expand transient scope in this case.
18862
18863 if No (Typ) then
18864 return False;
18865
18866 -- Do not expand transient scope for non-existent procedure return
18867
18868 elsif Typ = Standard_Void_Type then
18869 return False;
18870
18871 -- Elementary types do not require a transient scope
18872
18873 elsif Is_Elementary_Type (Typ) then
18874 return False;
18875
18876 -- Generally, indefinite subtypes require a transient scope, since the
18877 -- back end cannot generate temporaries, since this is not a valid type
18878 -- for declaring an object. It might be possible to relax this in the
18879 -- future, e.g. by declaring the maximum possible space for the type.
18880
18881 elsif not Is_Definite_Subtype (Typ) then
18882 return True;
18883
18884 -- Functions returning tagged types may dispatch on result so their
18885 -- returned value is allocated on the secondary stack. Controlled
18886 -- type temporaries need finalization.
18887
18888 elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
18889 return True;
18890
18891 -- Record type
18892
18893 elsif Is_Record_Type (Typ) then
18894 declare
18895 Comp : Entity_Id;
18896
18897 begin
18898 Comp := First_Entity (Typ);
18899 while Present (Comp) loop
18900 if Ekind (Comp) = E_Component then
18901
18902 -- ???It's not clear we need a full recursive call to
18903 -- Old_Requires_Transient_Scope here. Note that the
18904 -- following can't happen.
18905
18906 pragma Assert (Is_Definite_Subtype (Etype (Comp)));
18907 pragma Assert (not Has_Controlled_Component (Etype (Comp)));
18908
18909 if Old_Requires_Transient_Scope (Etype (Comp)) then
18910 return True;
18911 end if;
18912 end if;
18913
18914 Next_Entity (Comp);
18915 end loop;
18916 end;
18917
18918 return False;
18919
18920 -- String literal types never require transient scope
18921
18922 elsif Ekind (Typ) = E_String_Literal_Subtype then
18923 return False;
18924
18925 -- Array type. Note that we already know that this is a constrained
18926 -- array, since unconstrained arrays will fail the indefinite test.
18927
18928 elsif Is_Array_Type (Typ) then
18929
18930 -- If component type requires a transient scope, the array does too
18931
18932 if Old_Requires_Transient_Scope (Component_Type (Typ)) then
18933 return True;
18934
18935 -- Otherwise, we only need a transient scope if the size depends on
18936 -- the value of one or more discriminants.
18937
18938 else
18939 return Size_Depends_On_Discriminant (Typ);
18940 end if;
18941
18942 -- All other cases do not require a transient scope
18943
18944 else
18945 pragma Assert (Is_Protected_Type (Typ) or else Is_Task_Type (Typ));
18946 return False;
18947 end if;
18948 end Old_Requires_Transient_Scope;
18949
18950 ----------------------------------
18951 -- New_Requires_Transient_Scope --
18952 ----------------------------------
18953
18954 function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
18955
18956 function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean;
18957 -- This is called for untagged records and protected types, with
18958 -- nondefaulted discriminants. Returns True if the size of function
18959 -- results is known at the call site, False otherwise. Returns False
18960 -- if there is a variant part that depends on the discriminants of
18961 -- this type, or if there is an array constrained by the discriminants
18962 -- of this type. ???Currently, this is overly conservative (the array
18963 -- could be nested inside some other record that is constrained by
18964 -- nondiscriminants). That is, the recursive calls are too conservative.
18965
18966 function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean;
18967 -- Returns True if Typ is a nonlimited record with defaulted
18968 -- discriminants whose max size makes it unsuitable for allocating on
18969 -- the primary stack.
18970
18971 ------------------------------
18972 -- Caller_Known_Size_Record --
18973 ------------------------------
18974
18975 function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean is
18976 pragma Assert (Typ = Underlying_Type (Typ));
18977
18978 begin
18979 if Has_Variant_Part (Typ) and then not Is_Definite_Subtype (Typ) then
18980 return False;
18981 end if;
18982
18983 declare
18984 Comp : Entity_Id;
18985
18986 begin
18987 Comp := First_Entity (Typ);
18988 while Present (Comp) loop
18989
18990 -- Only look at E_Component entities. No need to look at
18991 -- E_Discriminant entities, and we must ignore internal
18992 -- subtypes generated for constrained components.
18993
18994 if Ekind (Comp) = E_Component then
18995 declare
18996 Comp_Type : constant Entity_Id :=
18997 Underlying_Type (Etype (Comp));
18998
18999 begin
19000 if Is_Record_Type (Comp_Type)
19001 or else
19002 Is_Protected_Type (Comp_Type)
19003 then
19004 if not Caller_Known_Size_Record (Comp_Type) then
19005 return False;
19006 end if;
19007
19008 elsif Is_Array_Type (Comp_Type) then
19009 if Size_Depends_On_Discriminant (Comp_Type) then
19010 return False;
19011 end if;
19012 end if;
19013 end;
19014 end if;
19015
19016 Next_Entity (Comp);
19017 end loop;
19018 end;
19019
19020 return True;
19021 end Caller_Known_Size_Record;
19022
19023 ------------------------------
19024 -- Large_Max_Size_Mutable --
19025 ------------------------------
19026
19027 function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean is
19028 pragma Assert (Typ = Underlying_Type (Typ));
19029
19030 function Is_Large_Discrete_Type (T : Entity_Id) return Boolean;
19031 -- Returns true if the discrete type T has a large range
19032
19033 ----------------------------
19034 -- Is_Large_Discrete_Type --
19035 ----------------------------
19036
19037 function Is_Large_Discrete_Type (T : Entity_Id) return Boolean is
19038 Threshold : constant Int := 16;
19039 -- Arbitrary threshold above which we consider it "large". We want
19040 -- a fairly large threshold, because these large types really
19041 -- shouldn't have default discriminants in the first place, in
19042 -- most cases.
19043
19044 begin
19045 return UI_To_Int (RM_Size (T)) > Threshold;
19046 end Is_Large_Discrete_Type;
19047
19048 begin
19049 if Is_Record_Type (Typ)
19050 and then not Is_Limited_View (Typ)
19051 and then Has_Defaulted_Discriminants (Typ)
19052 then
19053 -- Loop through the components, looking for an array whose upper
19054 -- bound(s) depends on discriminants, where both the subtype of
19055 -- the discriminant and the index subtype are too large.
19056
19057 declare
19058 Comp : Entity_Id;
19059
19060 begin
19061 Comp := First_Entity (Typ);
19062 while Present (Comp) loop
19063 if Ekind (Comp) = E_Component then
19064 declare
19065 Comp_Type : constant Entity_Id :=
19066 Underlying_Type (Etype (Comp));
19067 Indx : Node_Id;
19068 Ityp : Entity_Id;
19069 Hi : Node_Id;
19070
19071 begin
19072 if Is_Array_Type (Comp_Type) then
19073 Indx := First_Index (Comp_Type);
19074
19075 while Present (Indx) loop
19076 Ityp := Etype (Indx);
19077 Hi := Type_High_Bound (Ityp);
19078
19079 if Nkind (Hi) = N_Identifier
19080 and then Ekind (Entity (Hi)) = E_Discriminant
19081 and then Is_Large_Discrete_Type (Ityp)
19082 and then Is_Large_Discrete_Type
19083 (Etype (Entity (Hi)))
19084 then
19085 return True;
19086 end if;
19087
19088 Next_Index (Indx);
19089 end loop;
19090 end if;
19091 end;
19092 end if;
19093
19094 Next_Entity (Comp);
19095 end loop;
19096 end;
19097 end if;
19098
19099 return False;
19100 end Large_Max_Size_Mutable;
19101
19102 -- Local declarations
19103
19104 Typ : constant Entity_Id := Underlying_Type (Id);
19105
19106 -- Start of processing for New_Requires_Transient_Scope
19107
19108 begin
19109 -- This is a private type which is not completed yet. This can only
19110 -- happen in a default expression (of a formal parameter or of a
19111 -- record component). Do not expand transient scope in this case.
19112
19113 if No (Typ) then
19114 return False;
19115
19116 -- Do not expand transient scope for non-existent procedure return or
19117 -- string literal types.
19118
19119 elsif Typ = Standard_Void_Type
19120 or else Ekind (Typ) = E_String_Literal_Subtype
19121 then
19122 return False;
19123
19124 -- If Typ is a generic formal incomplete type, then we want to look at
19125 -- the actual type.
19126
19127 elsif Ekind (Typ) = E_Record_Subtype
19128 and then Present (Cloned_Subtype (Typ))
19129 then
19130 return New_Requires_Transient_Scope (Cloned_Subtype (Typ));
19131
19132 -- Functions returning specific tagged types may dispatch on result, so
19133 -- their returned value is allocated on the secondary stack, even in the
19134 -- definite case. We must treat nondispatching functions the same way,
19135 -- because access-to-function types can point at both, so the calling
19136 -- conventions must be compatible. Is_Tagged_Type includes controlled
19137 -- types and class-wide types. Controlled type temporaries need
19138 -- finalization.
19139
19140 -- ???It's not clear why we need to return noncontrolled types with
19141 -- controlled components on the secondary stack.
19142
19143 elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
19144 return True;
19145
19146 -- Untagged definite subtypes are known size. This includes all
19147 -- elementary [sub]types. Tasks are known size even if they have
19148 -- discriminants. So we return False here, with one exception:
19149 -- For a type like:
19150 -- type T (Last : Natural := 0) is
19151 -- X : String (1 .. Last);
19152 -- end record;
19153 -- we return True. That's because for "P(F(...));", where F returns T,
19154 -- we don't know the size of the result at the call site, so if we
19155 -- allocated it on the primary stack, we would have to allocate the
19156 -- maximum size, which is way too big.
19157
19158 elsif Is_Definite_Subtype (Typ) or else Is_Task_Type (Typ) then
19159 return Large_Max_Size_Mutable (Typ);
19160
19161 -- Indefinite (discriminated) untagged record or protected type
19162
19163 elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
19164 return not Caller_Known_Size_Record (Typ);
19165
19166 -- Unconstrained array
19167
19168 else
19169 pragma Assert (Is_Array_Type (Typ) and not Is_Definite_Subtype (Typ));
19170 return True;
19171 end if;
19172 end New_Requires_Transient_Scope;
19173
19174 --------------------------
19175 -- Reset_Analyzed_Flags --
19176 --------------------------
19177
19178 procedure Reset_Analyzed_Flags (N : Node_Id) is
19179
19180 function Clear_Analyzed (N : Node_Id) return Traverse_Result;
19181 -- Function used to reset Analyzed flags in tree. Note that we do
19182 -- not reset Analyzed flags in entities, since there is no need to
19183 -- reanalyze entities, and indeed, it is wrong to do so, since it
19184 -- can result in generating auxiliary stuff more than once.
19185
19186 --------------------
19187 -- Clear_Analyzed --
19188 --------------------
19189
19190 function Clear_Analyzed (N : Node_Id) return Traverse_Result is
19191 begin
19192 if not Has_Extension (N) then
19193 Set_Analyzed (N, False);
19194 end if;
19195
19196 return OK;
19197 end Clear_Analyzed;
19198
19199 procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
19200
19201 -- Start of processing for Reset_Analyzed_Flags
19202
19203 begin
19204 Reset_Analyzed (N);
19205 end Reset_Analyzed_Flags;
19206
19207 ------------------------
19208 -- Restore_SPARK_Mode --
19209 ------------------------
19210
19211 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type) is
19212 begin
19213 SPARK_Mode := Mode;
19214 end Restore_SPARK_Mode;
19215
19216 --------------------------------
19217 -- Returns_Unconstrained_Type --
19218 --------------------------------
19219
19220 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean is
19221 begin
19222 return Ekind (Subp) = E_Function
19223 and then not Is_Scalar_Type (Etype (Subp))
19224 and then not Is_Access_Type (Etype (Subp))
19225 and then not Is_Constrained (Etype (Subp));
19226 end Returns_Unconstrained_Type;
19227
19228 ----------------------------
19229 -- Root_Type_Of_Full_View --
19230 ----------------------------
19231
19232 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id is
19233 Rtyp : constant Entity_Id := Root_Type (T);
19234
19235 begin
19236 -- The root type of the full view may itself be a private type. Keep
19237 -- looking for the ultimate derivation parent.
19238
19239 if Is_Private_Type (Rtyp) and then Present (Full_View (Rtyp)) then
19240 return Root_Type_Of_Full_View (Full_View (Rtyp));
19241 else
19242 return Rtyp;
19243 end if;
19244 end Root_Type_Of_Full_View;
19245
19246 ---------------------------
19247 -- Safe_To_Capture_Value --
19248 ---------------------------
19249
19250 function Safe_To_Capture_Value
19251 (N : Node_Id;
19252 Ent : Entity_Id;
19253 Cond : Boolean := False) return Boolean
19254 is
19255 begin
19256 -- The only entities for which we track constant values are variables
19257 -- which are not renamings, constants, out parameters, and in out
19258 -- parameters, so check if we have this case.
19259
19260 -- Note: it may seem odd to track constant values for constants, but in
19261 -- fact this routine is used for other purposes than simply capturing
19262 -- the value. In particular, the setting of Known[_Non]_Null.
19263
19264 if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
19265 or else
19266 Ekind_In (Ent, E_Constant, E_Out_Parameter, E_In_Out_Parameter)
19267 then
19268 null;
19269
19270 -- For conditionals, we also allow loop parameters and all formals,
19271 -- including in parameters.
19272
19273 elsif Cond and then Ekind_In (Ent, E_Loop_Parameter, E_In_Parameter) then
19274 null;
19275
19276 -- For all other cases, not just unsafe, but impossible to capture
19277 -- Current_Value, since the above are the only entities which have
19278 -- Current_Value fields.
19279
19280 else
19281 return False;
19282 end if;
19283
19284 -- Skip if volatile or aliased, since funny things might be going on in
19285 -- these cases which we cannot necessarily track. Also skip any variable
19286 -- for which an address clause is given, or whose address is taken. Also
19287 -- never capture value of library level variables (an attempt to do so
19288 -- can occur in the case of package elaboration code).
19289
19290 if Treat_As_Volatile (Ent)
19291 or else Is_Aliased (Ent)
19292 or else Present (Address_Clause (Ent))
19293 or else Address_Taken (Ent)
19294 or else (Is_Library_Level_Entity (Ent)
19295 and then Ekind (Ent) = E_Variable)
19296 then
19297 return False;
19298 end if;
19299
19300 -- OK, all above conditions are met. We also require that the scope of
19301 -- the reference be the same as the scope of the entity, not counting
19302 -- packages and blocks and loops.
19303
19304 declare
19305 E_Scope : constant Entity_Id := Scope (Ent);
19306 R_Scope : Entity_Id;
19307
19308 begin
19309 R_Scope := Current_Scope;
19310 while R_Scope /= Standard_Standard loop
19311 exit when R_Scope = E_Scope;
19312
19313 if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
19314 return False;
19315 else
19316 R_Scope := Scope (R_Scope);
19317 end if;
19318 end loop;
19319 end;
19320
19321 -- We also require that the reference does not appear in a context
19322 -- where it is not sure to be executed (i.e. a conditional context
19323 -- or an exception handler). We skip this if Cond is True, since the
19324 -- capturing of values from conditional tests handles this ok.
19325
19326 if Cond then
19327 return True;
19328 end if;
19329
19330 declare
19331 Desc : Node_Id;
19332 P : Node_Id;
19333
19334 begin
19335 Desc := N;
19336
19337 -- Seems dubious that case expressions are not handled here ???
19338
19339 P := Parent (N);
19340 while Present (P) loop
19341 if Nkind (P) = N_If_Statement
19342 or else Nkind (P) = N_Case_Statement
19343 or else (Nkind (P) in N_Short_Circuit
19344 and then Desc = Right_Opnd (P))
19345 or else (Nkind (P) = N_If_Expression
19346 and then Desc /= First (Expressions (P)))
19347 or else Nkind (P) = N_Exception_Handler
19348 or else Nkind (P) = N_Selective_Accept
19349 or else Nkind (P) = N_Conditional_Entry_Call
19350 or else Nkind (P) = N_Timed_Entry_Call
19351 or else Nkind (P) = N_Asynchronous_Select
19352 then
19353 return False;
19354
19355 else
19356 Desc := P;
19357 P := Parent (P);
19358
19359 -- A special Ada 2012 case: the original node may be part
19360 -- of the else_actions of a conditional expression, in which
19361 -- case it might not have been expanded yet, and appears in
19362 -- a non-syntactic list of actions. In that case it is clearly
19363 -- not safe to save a value.
19364
19365 if No (P)
19366 and then Is_List_Member (Desc)
19367 and then No (Parent (List_Containing (Desc)))
19368 then
19369 return False;
19370 end if;
19371 end if;
19372 end loop;
19373 end;
19374
19375 -- OK, looks safe to set value
19376
19377 return True;
19378 end Safe_To_Capture_Value;
19379
19380 ---------------
19381 -- Same_Name --
19382 ---------------
19383
19384 function Same_Name (N1, N2 : Node_Id) return Boolean is
19385 K1 : constant Node_Kind := Nkind (N1);
19386 K2 : constant Node_Kind := Nkind (N2);
19387
19388 begin
19389 if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
19390 and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
19391 then
19392 return Chars (N1) = Chars (N2);
19393
19394 elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
19395 and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
19396 then
19397 return Same_Name (Selector_Name (N1), Selector_Name (N2))
19398 and then Same_Name (Prefix (N1), Prefix (N2));
19399
19400 else
19401 return False;
19402 end if;
19403 end Same_Name;
19404
19405 -----------------
19406 -- Same_Object --
19407 -----------------
19408
19409 function Same_Object (Node1, Node2 : Node_Id) return Boolean is
19410 N1 : constant Node_Id := Original_Node (Node1);
19411 N2 : constant Node_Id := Original_Node (Node2);
19412 -- We do the tests on original nodes, since we are most interested
19413 -- in the original source, not any expansion that got in the way.
19414
19415 K1 : constant Node_Kind := Nkind (N1);
19416 K2 : constant Node_Kind := Nkind (N2);
19417
19418 begin
19419 -- First case, both are entities with same entity
19420
19421 if K1 in N_Has_Entity and then K2 in N_Has_Entity then
19422 declare
19423 EN1 : constant Entity_Id := Entity (N1);
19424 EN2 : constant Entity_Id := Entity (N2);
19425 begin
19426 if Present (EN1) and then Present (EN2)
19427 and then (Ekind_In (EN1, E_Variable, E_Constant)
19428 or else Is_Formal (EN1))
19429 and then EN1 = EN2
19430 then
19431 return True;
19432 end if;
19433 end;
19434 end if;
19435
19436 -- Second case, selected component with same selector, same record
19437
19438 if K1 = N_Selected_Component
19439 and then K2 = N_Selected_Component
19440 and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
19441 then
19442 return Same_Object (Prefix (N1), Prefix (N2));
19443
19444 -- Third case, indexed component with same subscripts, same array
19445
19446 elsif K1 = N_Indexed_Component
19447 and then K2 = N_Indexed_Component
19448 and then Same_Object (Prefix (N1), Prefix (N2))
19449 then
19450 declare
19451 E1, E2 : Node_Id;
19452 begin
19453 E1 := First (Expressions (N1));
19454 E2 := First (Expressions (N2));
19455 while Present (E1) loop
19456 if not Same_Value (E1, E2) then
19457 return False;
19458 else
19459 Next (E1);
19460 Next (E2);
19461 end if;
19462 end loop;
19463
19464 return True;
19465 end;
19466
19467 -- Fourth case, slice of same array with same bounds
19468
19469 elsif K1 = N_Slice
19470 and then K2 = N_Slice
19471 and then Nkind (Discrete_Range (N1)) = N_Range
19472 and then Nkind (Discrete_Range (N2)) = N_Range
19473 and then Same_Value (Low_Bound (Discrete_Range (N1)),
19474 Low_Bound (Discrete_Range (N2)))
19475 and then Same_Value (High_Bound (Discrete_Range (N1)),
19476 High_Bound (Discrete_Range (N2)))
19477 then
19478 return Same_Name (Prefix (N1), Prefix (N2));
19479
19480 -- All other cases, not clearly the same object
19481
19482 else
19483 return False;
19484 end if;
19485 end Same_Object;
19486
19487 ---------------
19488 -- Same_Type --
19489 ---------------
19490
19491 function Same_Type (T1, T2 : Entity_Id) return Boolean is
19492 begin
19493 if T1 = T2 then
19494 return True;
19495
19496 elsif not Is_Constrained (T1)
19497 and then not Is_Constrained (T2)
19498 and then Base_Type (T1) = Base_Type (T2)
19499 then
19500 return True;
19501
19502 -- For now don't bother with case of identical constraints, to be
19503 -- fiddled with later on perhaps (this is only used for optimization
19504 -- purposes, so it is not critical to do a best possible job)
19505
19506 else
19507 return False;
19508 end if;
19509 end Same_Type;
19510
19511 ----------------
19512 -- Same_Value --
19513 ----------------
19514
19515 function Same_Value (Node1, Node2 : Node_Id) return Boolean is
19516 begin
19517 if Compile_Time_Known_Value (Node1)
19518 and then Compile_Time_Known_Value (Node2)
19519 and then Expr_Value (Node1) = Expr_Value (Node2)
19520 then
19521 return True;
19522 elsif Same_Object (Node1, Node2) then
19523 return True;
19524 else
19525 return False;
19526 end if;
19527 end Same_Value;
19528
19529 -----------------------------
19530 -- Save_SPARK_Mode_And_Set --
19531 -----------------------------
19532
19533 procedure Save_SPARK_Mode_And_Set
19534 (Context : Entity_Id;
19535 Mode : out SPARK_Mode_Type)
19536 is
19537 begin
19538 -- Save the current mode in effect
19539
19540 Mode := SPARK_Mode;
19541
19542 -- Do not consider illegal or partially decorated constructs
19543
19544 if Ekind (Context) = E_Void or else Error_Posted (Context) then
19545 null;
19546
19547 elsif Present (SPARK_Pragma (Context)) then
19548 SPARK_Mode := Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Context));
19549 end if;
19550 end Save_SPARK_Mode_And_Set;
19551
19552 -------------------------
19553 -- Scalar_Part_Present --
19554 -------------------------
19555
19556 function Scalar_Part_Present (T : Entity_Id) return Boolean is
19557 C : Entity_Id;
19558
19559 begin
19560 if Is_Scalar_Type (T) then
19561 return True;
19562
19563 elsif Is_Array_Type (T) then
19564 return Scalar_Part_Present (Component_Type (T));
19565
19566 elsif Is_Record_Type (T) or else Has_Discriminants (T) then
19567 C := First_Component_Or_Discriminant (T);
19568 while Present (C) loop
19569 if Scalar_Part_Present (Etype (C)) then
19570 return True;
19571 else
19572 Next_Component_Or_Discriminant (C);
19573 end if;
19574 end loop;
19575 end if;
19576
19577 return False;
19578 end Scalar_Part_Present;
19579
19580 ------------------------
19581 -- Scope_Is_Transient --
19582 ------------------------
19583
19584 function Scope_Is_Transient return Boolean is
19585 begin
19586 return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
19587 end Scope_Is_Transient;
19588
19589 ------------------
19590 -- Scope_Within --
19591 ------------------
19592
19593 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
19594 Scop : Entity_Id;
19595
19596 begin
19597 Scop := Scope1;
19598 while Scop /= Standard_Standard loop
19599 Scop := Scope (Scop);
19600
19601 if Scop = Scope2 then
19602 return True;
19603 end if;
19604 end loop;
19605
19606 return False;
19607 end Scope_Within;
19608
19609 --------------------------
19610 -- Scope_Within_Or_Same --
19611 --------------------------
19612
19613 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
19614 Scop : Entity_Id;
19615
19616 begin
19617 Scop := Scope1;
19618 while Scop /= Standard_Standard loop
19619 if Scop = Scope2 then
19620 return True;
19621 else
19622 Scop := Scope (Scop);
19623 end if;
19624 end loop;
19625
19626 return False;
19627 end Scope_Within_Or_Same;
19628
19629 --------------------
19630 -- Set_Convention --
19631 --------------------
19632
19633 procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
19634 begin
19635 Basic_Set_Convention (E, Val);
19636
19637 if Is_Type (E)
19638 and then Is_Access_Subprogram_Type (Base_Type (E))
19639 and then Has_Foreign_Convention (E)
19640 then
19641
19642 -- A pragma Convention in an instance may apply to the subtype
19643 -- created for a formal, in which case we have already verified
19644 -- that conventions of actual and formal match and there is nothing
19645 -- to flag on the subtype.
19646
19647 if In_Instance then
19648 null;
19649 else
19650 Set_Can_Use_Internal_Rep (E, False);
19651 end if;
19652 end if;
19653
19654 -- If E is an object or component, and the type of E is an anonymous
19655 -- access type with no convention set, then also set the convention of
19656 -- the anonymous access type. We do not do this for anonymous protected
19657 -- types, since protected types always have the default convention.
19658
19659 if Present (Etype (E))
19660 and then (Is_Object (E)
19661 or else Ekind (E) = E_Component
19662
19663 -- Allow E_Void (happens for pragma Convention appearing
19664 -- in the middle of a record applying to a component)
19665
19666 or else Ekind (E) = E_Void)
19667 then
19668 declare
19669 Typ : constant Entity_Id := Etype (E);
19670
19671 begin
19672 if Ekind_In (Typ, E_Anonymous_Access_Type,
19673 E_Anonymous_Access_Subprogram_Type)
19674 and then not Has_Convention_Pragma (Typ)
19675 then
19676 Basic_Set_Convention (Typ, Val);
19677 Set_Has_Convention_Pragma (Typ);
19678
19679 -- And for the access subprogram type, deal similarly with the
19680 -- designated E_Subprogram_Type if it is also internal (which
19681 -- it always is?)
19682
19683 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
19684 declare
19685 Dtype : constant Entity_Id := Designated_Type (Typ);
19686 begin
19687 if Ekind (Dtype) = E_Subprogram_Type
19688 and then Is_Itype (Dtype)
19689 and then not Has_Convention_Pragma (Dtype)
19690 then
19691 Basic_Set_Convention (Dtype, Val);
19692 Set_Has_Convention_Pragma (Dtype);
19693 end if;
19694 end;
19695 end if;
19696 end if;
19697 end;
19698 end if;
19699 end Set_Convention;
19700
19701 ------------------------
19702 -- Set_Current_Entity --
19703 ------------------------
19704
19705 -- The given entity is to be set as the currently visible definition of its
19706 -- associated name (i.e. the Node_Id associated with its name). All we have
19707 -- to do is to get the name from the identifier, and then set the
19708 -- associated Node_Id to point to the given entity.
19709
19710 procedure Set_Current_Entity (E : Entity_Id) is
19711 begin
19712 Set_Name_Entity_Id (Chars (E), E);
19713 end Set_Current_Entity;
19714
19715 ---------------------------
19716 -- Set_Debug_Info_Needed --
19717 ---------------------------
19718
19719 procedure Set_Debug_Info_Needed (T : Entity_Id) is
19720
19721 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
19722 pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
19723 -- Used to set debug info in a related node if not set already
19724
19725 --------------------------------------
19726 -- Set_Debug_Info_Needed_If_Not_Set --
19727 --------------------------------------
19728
19729 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
19730 begin
19731 if Present (E) and then not Needs_Debug_Info (E) then
19732 Set_Debug_Info_Needed (E);
19733
19734 -- For a private type, indicate that the full view also needs
19735 -- debug information.
19736
19737 if Is_Type (E)
19738 and then Is_Private_Type (E)
19739 and then Present (Full_View (E))
19740 then
19741 Set_Debug_Info_Needed (Full_View (E));
19742 end if;
19743 end if;
19744 end Set_Debug_Info_Needed_If_Not_Set;
19745
19746 -- Start of processing for Set_Debug_Info_Needed
19747
19748 begin
19749 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
19750 -- indicates that Debug_Info_Needed is never required for the entity.
19751 -- Nothing to do if entity comes from a predefined file. Library files
19752 -- are compiled without debug information, but inlined bodies of these
19753 -- routines may appear in user code, and debug information on them ends
19754 -- up complicating debugging the user code.
19755
19756 if No (T)
19757 or else Debug_Info_Off (T)
19758 then
19759 return;
19760
19761 elsif In_Inlined_Body
19762 and then Is_Predefined_File_Name
19763 (Unit_File_Name (Get_Source_Unit (Sloc (T))))
19764 then
19765 Set_Needs_Debug_Info (T, False);
19766 end if;
19767
19768 -- Set flag in entity itself. Note that we will go through the following
19769 -- circuitry even if the flag is already set on T. That's intentional,
19770 -- it makes sure that the flag will be set in subsidiary entities.
19771
19772 Set_Needs_Debug_Info (T);
19773
19774 -- Set flag on subsidiary entities if not set already
19775
19776 if Is_Object (T) then
19777 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
19778
19779 elsif Is_Type (T) then
19780 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
19781
19782 if Is_Record_Type (T) then
19783 declare
19784 Ent : Entity_Id := First_Entity (T);
19785 begin
19786 while Present (Ent) loop
19787 Set_Debug_Info_Needed_If_Not_Set (Ent);
19788 Next_Entity (Ent);
19789 end loop;
19790 end;
19791
19792 -- For a class wide subtype, we also need debug information
19793 -- for the equivalent type.
19794
19795 if Ekind (T) = E_Class_Wide_Subtype then
19796 Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
19797 end if;
19798
19799 elsif Is_Array_Type (T) then
19800 Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
19801
19802 declare
19803 Indx : Node_Id := First_Index (T);
19804 begin
19805 while Present (Indx) loop
19806 Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
19807 Indx := Next_Index (Indx);
19808 end loop;
19809 end;
19810
19811 -- For a packed array type, we also need debug information for
19812 -- the type used to represent the packed array. Conversely, we
19813 -- also need it for the former if we need it for the latter.
19814
19815 if Is_Packed (T) then
19816 Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Impl_Type (T));
19817 end if;
19818
19819 if Is_Packed_Array_Impl_Type (T) then
19820 Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T));
19821 end if;
19822
19823 elsif Is_Access_Type (T) then
19824 Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
19825
19826 elsif Is_Private_Type (T) then
19827 declare
19828 FV : constant Entity_Id := Full_View (T);
19829
19830 begin
19831 Set_Debug_Info_Needed_If_Not_Set (FV);
19832
19833 -- If the full view is itself a derived private type, we need
19834 -- debug information on its underlying type.
19835
19836 if Present (FV)
19837 and then Is_Private_Type (FV)
19838 and then Present (Underlying_Full_View (FV))
19839 then
19840 Set_Needs_Debug_Info (Underlying_Full_View (FV));
19841 end if;
19842 end;
19843
19844 elsif Is_Protected_Type (T) then
19845 Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
19846
19847 elsif Is_Scalar_Type (T) then
19848
19849 -- If the subrange bounds are materialized by dedicated constant
19850 -- objects, also include them in the debug info to make sure the
19851 -- debugger can properly use them.
19852
19853 if Present (Scalar_Range (T))
19854 and then Nkind (Scalar_Range (T)) = N_Range
19855 then
19856 declare
19857 Low_Bnd : constant Node_Id := Type_Low_Bound (T);
19858 High_Bnd : constant Node_Id := Type_High_Bound (T);
19859
19860 begin
19861 if Is_Entity_Name (Low_Bnd) then
19862 Set_Debug_Info_Needed_If_Not_Set (Entity (Low_Bnd));
19863 end if;
19864
19865 if Is_Entity_Name (High_Bnd) then
19866 Set_Debug_Info_Needed_If_Not_Set (Entity (High_Bnd));
19867 end if;
19868 end;
19869 end if;
19870 end if;
19871 end if;
19872 end Set_Debug_Info_Needed;
19873
19874 ----------------------------
19875 -- Set_Entity_With_Checks --
19876 ----------------------------
19877
19878 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id) is
19879 Val_Actual : Entity_Id;
19880 Nod : Node_Id;
19881 Post_Node : Node_Id;
19882
19883 begin
19884 -- Unconditionally set the entity
19885
19886 Set_Entity (N, Val);
19887
19888 -- The node to post on is the selector in the case of an expanded name,
19889 -- and otherwise the node itself.
19890
19891 if Nkind (N) = N_Expanded_Name then
19892 Post_Node := Selector_Name (N);
19893 else
19894 Post_Node := N;
19895 end if;
19896
19897 -- Check for violation of No_Fixed_IO
19898
19899 if Restriction_Check_Required (No_Fixed_IO)
19900 and then
19901 ((RTU_Loaded (Ada_Text_IO)
19902 and then (Is_RTE (Val, RE_Decimal_IO)
19903 or else
19904 Is_RTE (Val, RE_Fixed_IO)))
19905
19906 or else
19907 (RTU_Loaded (Ada_Wide_Text_IO)
19908 and then (Is_RTE (Val, RO_WT_Decimal_IO)
19909 or else
19910 Is_RTE (Val, RO_WT_Fixed_IO)))
19911
19912 or else
19913 (RTU_Loaded (Ada_Wide_Wide_Text_IO)
19914 and then (Is_RTE (Val, RO_WW_Decimal_IO)
19915 or else
19916 Is_RTE (Val, RO_WW_Fixed_IO))))
19917
19918 -- A special extra check, don't complain about a reference from within
19919 -- the Ada.Interrupts package itself!
19920
19921 and then not In_Same_Extended_Unit (N, Val)
19922 then
19923 Check_Restriction (No_Fixed_IO, Post_Node);
19924 end if;
19925
19926 -- Remaining checks are only done on source nodes. Note that we test
19927 -- for violation of No_Fixed_IO even on non-source nodes, because the
19928 -- cases for checking violations of this restriction are instantiations
19929 -- where the reference in the instance has Comes_From_Source False.
19930
19931 if not Comes_From_Source (N) then
19932 return;
19933 end if;
19934
19935 -- Check for violation of No_Abort_Statements, which is triggered by
19936 -- call to Ada.Task_Identification.Abort_Task.
19937
19938 if Restriction_Check_Required (No_Abort_Statements)
19939 and then (Is_RTE (Val, RE_Abort_Task))
19940
19941 -- A special extra check, don't complain about a reference from within
19942 -- the Ada.Task_Identification package itself!
19943
19944 and then not In_Same_Extended_Unit (N, Val)
19945 then
19946 Check_Restriction (No_Abort_Statements, Post_Node);
19947 end if;
19948
19949 if Val = Standard_Long_Long_Integer then
19950 Check_Restriction (No_Long_Long_Integers, Post_Node);
19951 end if;
19952
19953 -- Check for violation of No_Dynamic_Attachment
19954
19955 if Restriction_Check_Required (No_Dynamic_Attachment)
19956 and then RTU_Loaded (Ada_Interrupts)
19957 and then (Is_RTE (Val, RE_Is_Reserved) or else
19958 Is_RTE (Val, RE_Is_Attached) or else
19959 Is_RTE (Val, RE_Current_Handler) or else
19960 Is_RTE (Val, RE_Attach_Handler) or else
19961 Is_RTE (Val, RE_Exchange_Handler) or else
19962 Is_RTE (Val, RE_Detach_Handler) or else
19963 Is_RTE (Val, RE_Reference))
19964
19965 -- A special extra check, don't complain about a reference from within
19966 -- the Ada.Interrupts package itself!
19967
19968 and then not In_Same_Extended_Unit (N, Val)
19969 then
19970 Check_Restriction (No_Dynamic_Attachment, Post_Node);
19971 end if;
19972
19973 -- Check for No_Implementation_Identifiers
19974
19975 if Restriction_Check_Required (No_Implementation_Identifiers) then
19976
19977 -- We have an implementation defined entity if it is marked as
19978 -- implementation defined, or is defined in a package marked as
19979 -- implementation defined. However, library packages themselves
19980 -- are excluded (we don't want to flag Interfaces itself, just
19981 -- the entities within it).
19982
19983 if (Is_Implementation_Defined (Val)
19984 or else
19985 (Present (Scope (Val))
19986 and then Is_Implementation_Defined (Scope (Val))))
19987 and then not (Ekind_In (Val, E_Package, E_Generic_Package)
19988 and then Is_Library_Level_Entity (Val))
19989 then
19990 Check_Restriction (No_Implementation_Identifiers, Post_Node);
19991 end if;
19992 end if;
19993
19994 -- Do the style check
19995
19996 if Style_Check
19997 and then not Suppress_Style_Checks (Val)
19998 and then not In_Instance
19999 then
20000 if Nkind (N) = N_Identifier then
20001 Nod := N;
20002 elsif Nkind (N) = N_Expanded_Name then
20003 Nod := Selector_Name (N);
20004 else
20005 return;
20006 end if;
20007
20008 -- A special situation arises for derived operations, where we want
20009 -- to do the check against the parent (since the Sloc of the derived
20010 -- operation points to the derived type declaration itself).
20011
20012 Val_Actual := Val;
20013 while not Comes_From_Source (Val_Actual)
20014 and then Nkind (Val_Actual) in N_Entity
20015 and then (Ekind (Val_Actual) = E_Enumeration_Literal
20016 or else Is_Subprogram_Or_Generic_Subprogram (Val_Actual))
20017 and then Present (Alias (Val_Actual))
20018 loop
20019 Val_Actual := Alias (Val_Actual);
20020 end loop;
20021
20022 -- Renaming declarations for generic actuals do not come from source,
20023 -- and have a different name from that of the entity they rename, so
20024 -- there is no style check to perform here.
20025
20026 if Chars (Nod) = Chars (Val_Actual) then
20027 Style.Check_Identifier (Nod, Val_Actual);
20028 end if;
20029 end if;
20030
20031 Set_Entity (N, Val);
20032 end Set_Entity_With_Checks;
20033
20034 ------------------------
20035 -- Set_Name_Entity_Id --
20036 ------------------------
20037
20038 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
20039 begin
20040 Set_Name_Table_Int (Id, Int (Val));
20041 end Set_Name_Entity_Id;
20042
20043 ---------------------
20044 -- Set_Next_Actual --
20045 ---------------------
20046
20047 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
20048 begin
20049 if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
20050 Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
20051 end if;
20052 end Set_Next_Actual;
20053
20054 ----------------------------------
20055 -- Set_Optimize_Alignment_Flags --
20056 ----------------------------------
20057
20058 procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
20059 begin
20060 if Optimize_Alignment = 'S' then
20061 Set_Optimize_Alignment_Space (E);
20062 elsif Optimize_Alignment = 'T' then
20063 Set_Optimize_Alignment_Time (E);
20064 end if;
20065 end Set_Optimize_Alignment_Flags;
20066
20067 -----------------------
20068 -- Set_Public_Status --
20069 -----------------------
20070
20071 procedure Set_Public_Status (Id : Entity_Id) is
20072 S : constant Entity_Id := Current_Scope;
20073
20074 function Within_HSS_Or_If (E : Entity_Id) return Boolean;
20075 -- Determines if E is defined within handled statement sequence or
20076 -- an if statement, returns True if so, False otherwise.
20077
20078 ----------------------
20079 -- Within_HSS_Or_If --
20080 ----------------------
20081
20082 function Within_HSS_Or_If (E : Entity_Id) return Boolean is
20083 N : Node_Id;
20084 begin
20085 N := Declaration_Node (E);
20086 loop
20087 N := Parent (N);
20088
20089 if No (N) then
20090 return False;
20091
20092 elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
20093 N_If_Statement)
20094 then
20095 return True;
20096 end if;
20097 end loop;
20098 end Within_HSS_Or_If;
20099
20100 -- Start of processing for Set_Public_Status
20101
20102 begin
20103 -- Everything in the scope of Standard is public
20104
20105 if S = Standard_Standard then
20106 Set_Is_Public (Id);
20107
20108 -- Entity is definitely not public if enclosing scope is not public
20109
20110 elsif not Is_Public (S) then
20111 return;
20112
20113 -- An object or function declaration that occurs in a handled sequence
20114 -- of statements or within an if statement is the declaration for a
20115 -- temporary object or local subprogram generated by the expander. It
20116 -- never needs to be made public and furthermore, making it public can
20117 -- cause back end problems.
20118
20119 elsif Nkind_In (Parent (Id), N_Object_Declaration,
20120 N_Function_Specification)
20121 and then Within_HSS_Or_If (Id)
20122 then
20123 return;
20124
20125 -- Entities in public packages or records are public
20126
20127 elsif Ekind (S) = E_Package or Is_Record_Type (S) then
20128 Set_Is_Public (Id);
20129
20130 -- The bounds of an entry family declaration can generate object
20131 -- declarations that are visible to the back-end, e.g. in the
20132 -- the declaration of a composite type that contains tasks.
20133
20134 elsif Is_Concurrent_Type (S)
20135 and then not Has_Completion (S)
20136 and then Nkind (Parent (Id)) = N_Object_Declaration
20137 then
20138 Set_Is_Public (Id);
20139 end if;
20140 end Set_Public_Status;
20141
20142 -----------------------------
20143 -- Set_Referenced_Modified --
20144 -----------------------------
20145
20146 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
20147 Pref : Node_Id;
20148
20149 begin
20150 -- Deal with indexed or selected component where prefix is modified
20151
20152 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
20153 Pref := Prefix (N);
20154
20155 -- If prefix is access type, then it is the designated object that is
20156 -- being modified, which means we have no entity to set the flag on.
20157
20158 if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
20159 return;
20160
20161 -- Otherwise chase the prefix
20162
20163 else
20164 Set_Referenced_Modified (Pref, Out_Param);
20165 end if;
20166
20167 -- Otherwise see if we have an entity name (only other case to process)
20168
20169 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
20170 Set_Referenced_As_LHS (Entity (N), not Out_Param);
20171 Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
20172 end if;
20173 end Set_Referenced_Modified;
20174
20175 ----------------------------
20176 -- Set_Scope_Is_Transient --
20177 ----------------------------
20178
20179 procedure Set_Scope_Is_Transient (V : Boolean := True) is
20180 begin
20181 Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
20182 end Set_Scope_Is_Transient;
20183
20184 -------------------
20185 -- Set_Size_Info --
20186 -------------------
20187
20188 procedure Set_Size_Info (T1, T2 : Entity_Id) is
20189 begin
20190 -- We copy Esize, but not RM_Size, since in general RM_Size is
20191 -- subtype specific and does not get inherited by all subtypes.
20192
20193 Set_Esize (T1, Esize (T2));
20194 Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
20195
20196 if Is_Discrete_Or_Fixed_Point_Type (T1)
20197 and then
20198 Is_Discrete_Or_Fixed_Point_Type (T2)
20199 then
20200 Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
20201 end if;
20202
20203 Set_Alignment (T1, Alignment (T2));
20204 end Set_Size_Info;
20205
20206 --------------------
20207 -- Static_Boolean --
20208 --------------------
20209
20210 function Static_Boolean (N : Node_Id) return Uint is
20211 begin
20212 Analyze_And_Resolve (N, Standard_Boolean);
20213
20214 if N = Error
20215 or else Error_Posted (N)
20216 or else Etype (N) = Any_Type
20217 then
20218 return No_Uint;
20219 end if;
20220
20221 if Is_OK_Static_Expression (N) then
20222 if not Raises_Constraint_Error (N) then
20223 return Expr_Value (N);
20224 else
20225 return No_Uint;
20226 end if;
20227
20228 elsif Etype (N) = Any_Type then
20229 return No_Uint;
20230
20231 else
20232 Flag_Non_Static_Expr
20233 ("static boolean expression required here", N);
20234 return No_Uint;
20235 end if;
20236 end Static_Boolean;
20237
20238 --------------------
20239 -- Static_Integer --
20240 --------------------
20241
20242 function Static_Integer (N : Node_Id) return Uint is
20243 begin
20244 Analyze_And_Resolve (N, Any_Integer);
20245
20246 if N = Error
20247 or else Error_Posted (N)
20248 or else Etype (N) = Any_Type
20249 then
20250 return No_Uint;
20251 end if;
20252
20253 if Is_OK_Static_Expression (N) then
20254 if not Raises_Constraint_Error (N) then
20255 return Expr_Value (N);
20256 else
20257 return No_Uint;
20258 end if;
20259
20260 elsif Etype (N) = Any_Type then
20261 return No_Uint;
20262
20263 else
20264 Flag_Non_Static_Expr
20265 ("static integer expression required here", N);
20266 return No_Uint;
20267 end if;
20268 end Static_Integer;
20269
20270 --------------------------
20271 -- Statically_Different --
20272 --------------------------
20273
20274 function Statically_Different (E1, E2 : Node_Id) return Boolean is
20275 R1 : constant Node_Id := Get_Referenced_Object (E1);
20276 R2 : constant Node_Id := Get_Referenced_Object (E2);
20277 begin
20278 return Is_Entity_Name (R1)
20279 and then Is_Entity_Name (R2)
20280 and then Entity (R1) /= Entity (R2)
20281 and then not Is_Formal (Entity (R1))
20282 and then not Is_Formal (Entity (R2));
20283 end Statically_Different;
20284
20285 --------------------------------------
20286 -- Subject_To_Loop_Entry_Attributes --
20287 --------------------------------------
20288
20289 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean is
20290 Stmt : Node_Id;
20291
20292 begin
20293 Stmt := N;
20294
20295 -- The expansion mechanism transform a loop subject to at least one
20296 -- 'Loop_Entry attribute into a conditional block. Infinite loops lack
20297 -- the conditional part.
20298
20299 if Nkind_In (Stmt, N_Block_Statement, N_If_Statement)
20300 and then Nkind (Original_Node (N)) = N_Loop_Statement
20301 then
20302 Stmt := Original_Node (N);
20303 end if;
20304
20305 return
20306 Nkind (Stmt) = N_Loop_Statement
20307 and then Present (Identifier (Stmt))
20308 and then Present (Entity (Identifier (Stmt)))
20309 and then Has_Loop_Entry_Attributes (Entity (Identifier (Stmt)));
20310 end Subject_To_Loop_Entry_Attributes;
20311
20312 -----------------------------
20313 -- Subprogram_Access_Level --
20314 -----------------------------
20315
20316 function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
20317 begin
20318 if Present (Alias (Subp)) then
20319 return Subprogram_Access_Level (Alias (Subp));
20320 else
20321 return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
20322 end if;
20323 end Subprogram_Access_Level;
20324
20325 -------------------------------
20326 -- Support_Atomic_Primitives --
20327 -------------------------------
20328
20329 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean is
20330 Size : Int;
20331
20332 begin
20333 -- Verify the alignment of Typ is known
20334
20335 if not Known_Alignment (Typ) then
20336 return False;
20337 end if;
20338
20339 if Known_Static_Esize (Typ) then
20340 Size := UI_To_Int (Esize (Typ));
20341
20342 -- If the Esize (Object_Size) is unknown at compile time, look at the
20343 -- RM_Size (Value_Size) which may have been set by an explicit rep item.
20344
20345 elsif Known_Static_RM_Size (Typ) then
20346 Size := UI_To_Int (RM_Size (Typ));
20347
20348 -- Otherwise, the size is considered to be unknown.
20349
20350 else
20351 return False;
20352 end if;
20353
20354 -- Check that the size of the component is 8, 16, 32, or 64 bits and
20355 -- that Typ is properly aligned.
20356
20357 case Size is
20358 when 8 | 16 | 32 | 64 =>
20359 return Size = UI_To_Int (Alignment (Typ)) * 8;
20360 when others =>
20361 return False;
20362 end case;
20363 end Support_Atomic_Primitives;
20364
20365 -----------------
20366 -- Trace_Scope --
20367 -----------------
20368
20369 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
20370 begin
20371 if Debug_Flag_W then
20372 for J in 0 .. Scope_Stack.Last loop
20373 Write_Str (" ");
20374 end loop;
20375
20376 Write_Str (Msg);
20377 Write_Name (Chars (E));
20378 Write_Str (" from ");
20379 Write_Location (Sloc (N));
20380 Write_Eol;
20381 end if;
20382 end Trace_Scope;
20383
20384 -----------------------
20385 -- Transfer_Entities --
20386 -----------------------
20387
20388 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
20389 procedure Set_Public_Status_Of (Id : Entity_Id);
20390 -- Set the Is_Public attribute of arbitrary entity Id by calling routine
20391 -- Set_Public_Status. If successfull and Id denotes a record type, set
20392 -- the Is_Public attribute of its fields.
20393
20394 --------------------------
20395 -- Set_Public_Status_Of --
20396 --------------------------
20397
20398 procedure Set_Public_Status_Of (Id : Entity_Id) is
20399 Field : Entity_Id;
20400
20401 begin
20402 if not Is_Public (Id) then
20403 Set_Public_Status (Id);
20404
20405 -- When the input entity is a public record type, ensure that all
20406 -- its internal fields are also exposed to the linker. The fields
20407 -- of a class-wide type are never made public.
20408
20409 if Is_Public (Id)
20410 and then Is_Record_Type (Id)
20411 and then not Is_Class_Wide_Type (Id)
20412 then
20413 Field := First_Entity (Id);
20414 while Present (Field) loop
20415 Set_Is_Public (Field);
20416 Next_Entity (Field);
20417 end loop;
20418 end if;
20419 end if;
20420 end Set_Public_Status_Of;
20421
20422 -- Local variables
20423
20424 Full_Id : Entity_Id;
20425 Id : Entity_Id;
20426
20427 -- Start of processing for Transfer_Entities
20428
20429 begin
20430 Id := First_Entity (From);
20431
20432 if Present (Id) then
20433
20434 -- Merge the entity chain of the source scope with that of the
20435 -- destination scope.
20436
20437 if Present (Last_Entity (To)) then
20438 Set_Next_Entity (Last_Entity (To), Id);
20439 else
20440 Set_First_Entity (To, Id);
20441 end if;
20442
20443 Set_Last_Entity (To, Last_Entity (From));
20444
20445 -- Inspect the entities of the source scope and update their Scope
20446 -- attribute.
20447
20448 while Present (Id) loop
20449 Set_Scope (Id, To);
20450 Set_Public_Status_Of (Id);
20451
20452 -- Handle an internally generated full view for a private type
20453
20454 if Is_Private_Type (Id)
20455 and then Present (Full_View (Id))
20456 and then Is_Itype (Full_View (Id))
20457 then
20458 Full_Id := Full_View (Id);
20459
20460 Set_Scope (Full_Id, To);
20461 Set_Public_Status_Of (Full_Id);
20462 end if;
20463
20464 Next_Entity (Id);
20465 end loop;
20466
20467 Set_First_Entity (From, Empty);
20468 Set_Last_Entity (From, Empty);
20469 end if;
20470 end Transfer_Entities;
20471
20472 -----------------------
20473 -- Type_Access_Level --
20474 -----------------------
20475
20476 function Type_Access_Level (Typ : Entity_Id) return Uint is
20477 Btyp : Entity_Id;
20478
20479 begin
20480 Btyp := Base_Type (Typ);
20481
20482 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
20483 -- simply use the level where the type is declared. This is true for
20484 -- stand-alone object declarations, and for anonymous access types
20485 -- associated with components the level is the same as that of the
20486 -- enclosing composite type. However, special treatment is needed for
20487 -- the cases of access parameters, return objects of an anonymous access
20488 -- type, and, in Ada 95, access discriminants of limited types.
20489
20490 if Is_Access_Type (Btyp) then
20491 if Ekind (Btyp) = E_Anonymous_Access_Type then
20492
20493 -- If the type is a nonlocal anonymous access type (such as for
20494 -- an access parameter) we treat it as being declared at the
20495 -- library level to ensure that names such as X.all'access don't
20496 -- fail static accessibility checks.
20497
20498 if not Is_Local_Anonymous_Access (Typ) then
20499 return Scope_Depth (Standard_Standard);
20500
20501 -- If this is a return object, the accessibility level is that of
20502 -- the result subtype of the enclosing function. The test here is
20503 -- little complicated, because we have to account for extended
20504 -- return statements that have been rewritten as blocks, in which
20505 -- case we have to find and the Is_Return_Object attribute of the
20506 -- itype's associated object. It would be nice to find a way to
20507 -- simplify this test, but it doesn't seem worthwhile to add a new
20508 -- flag just for purposes of this test. ???
20509
20510 elsif Ekind (Scope (Btyp)) = E_Return_Statement
20511 or else
20512 (Is_Itype (Btyp)
20513 and then Nkind (Associated_Node_For_Itype (Btyp)) =
20514 N_Object_Declaration
20515 and then Is_Return_Object
20516 (Defining_Identifier
20517 (Associated_Node_For_Itype (Btyp))))
20518 then
20519 declare
20520 Scop : Entity_Id;
20521
20522 begin
20523 Scop := Scope (Scope (Btyp));
20524 while Present (Scop) loop
20525 exit when Ekind (Scop) = E_Function;
20526 Scop := Scope (Scop);
20527 end loop;
20528
20529 -- Treat the return object's type as having the level of the
20530 -- function's result subtype (as per RM05-6.5(5.3/2)).
20531
20532 return Type_Access_Level (Etype (Scop));
20533 end;
20534 end if;
20535 end if;
20536
20537 Btyp := Root_Type (Btyp);
20538
20539 -- The accessibility level of anonymous access types associated with
20540 -- discriminants is that of the current instance of the type, and
20541 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
20542
20543 -- AI-402: access discriminants have accessibility based on the
20544 -- object rather than the type in Ada 2005, so the above paragraph
20545 -- doesn't apply.
20546
20547 -- ??? Needs completion with rules from AI-416
20548
20549 if Ada_Version <= Ada_95
20550 and then Ekind (Typ) = E_Anonymous_Access_Type
20551 and then Present (Associated_Node_For_Itype (Typ))
20552 and then Nkind (Associated_Node_For_Itype (Typ)) =
20553 N_Discriminant_Specification
20554 then
20555 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
20556 end if;
20557 end if;
20558
20559 -- Return library level for a generic formal type. This is done because
20560 -- RM(10.3.2) says that "The statically deeper relationship does not
20561 -- apply to ... a descendant of a generic formal type". Rather than
20562 -- checking at each point where a static accessibility check is
20563 -- performed to see if we are dealing with a formal type, this rule is
20564 -- implemented by having Type_Access_Level and Deepest_Type_Access_Level
20565 -- return extreme values for a formal type; Deepest_Type_Access_Level
20566 -- returns Int'Last. By calling the appropriate function from among the
20567 -- two, we ensure that the static accessibility check will pass if we
20568 -- happen to run into a formal type. More specifically, we should call
20569 -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
20570 -- call occurs as part of a static accessibility check and the error
20571 -- case is the case where the type's level is too shallow (as opposed
20572 -- to too deep).
20573
20574 if Is_Generic_Type (Root_Type (Btyp)) then
20575 return Scope_Depth (Standard_Standard);
20576 end if;
20577
20578 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
20579 end Type_Access_Level;
20580
20581 ------------------------------------
20582 -- Type_Without_Stream_Operation --
20583 ------------------------------------
20584
20585 function Type_Without_Stream_Operation
20586 (T : Entity_Id;
20587 Op : TSS_Name_Type := TSS_Null) return Entity_Id
20588 is
20589 BT : constant Entity_Id := Base_Type (T);
20590 Op_Missing : Boolean;
20591
20592 begin
20593 if not Restriction_Active (No_Default_Stream_Attributes) then
20594 return Empty;
20595 end if;
20596
20597 if Is_Elementary_Type (T) then
20598 if Op = TSS_Null then
20599 Op_Missing :=
20600 No (TSS (BT, TSS_Stream_Read))
20601 or else No (TSS (BT, TSS_Stream_Write));
20602
20603 else
20604 Op_Missing := No (TSS (BT, Op));
20605 end if;
20606
20607 if Op_Missing then
20608 return T;
20609 else
20610 return Empty;
20611 end if;
20612
20613 elsif Is_Array_Type (T) then
20614 return Type_Without_Stream_Operation (Component_Type (T), Op);
20615
20616 elsif Is_Record_Type (T) then
20617 declare
20618 Comp : Entity_Id;
20619 C_Typ : Entity_Id;
20620
20621 begin
20622 Comp := First_Component (T);
20623 while Present (Comp) loop
20624 C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op);
20625
20626 if Present (C_Typ) then
20627 return C_Typ;
20628 end if;
20629
20630 Next_Component (Comp);
20631 end loop;
20632
20633 return Empty;
20634 end;
20635
20636 elsif Is_Private_Type (T) and then Present (Full_View (T)) then
20637 return Type_Without_Stream_Operation (Full_View (T), Op);
20638 else
20639 return Empty;
20640 end if;
20641 end Type_Without_Stream_Operation;
20642
20643 ----------------------------
20644 -- Unique_Defining_Entity --
20645 ----------------------------
20646
20647 function Unique_Defining_Entity (N : Node_Id) return Entity_Id is
20648 begin
20649 return Unique_Entity (Defining_Entity (N));
20650 end Unique_Defining_Entity;
20651
20652 -------------------
20653 -- Unique_Entity --
20654 -------------------
20655
20656 function Unique_Entity (E : Entity_Id) return Entity_Id is
20657 U : Entity_Id := E;
20658 P : Node_Id;
20659
20660 begin
20661 case Ekind (E) is
20662 when E_Constant =>
20663 if Present (Full_View (E)) then
20664 U := Full_View (E);
20665 end if;
20666
20667 when Entry_Kind =>
20668 if Nkind (Parent (E)) = N_Entry_Body then
20669 declare
20670 Prot_Item : Entity_Id;
20671 Prot_Type : Entity_Id;
20672
20673 begin
20674 if Ekind (E) = E_Entry then
20675 Prot_Type := Scope (E);
20676
20677 -- Bodies of entry families are nested within an extra scope
20678 -- that contains an entry index declaration
20679
20680 else
20681 Prot_Type := Scope (Scope (E));
20682 end if;
20683
20684 pragma Assert (Ekind (Prot_Type) = E_Protected_Type);
20685
20686 -- Traverse the entity list of the protected type and locate
20687 -- an entry declaration which matches the entry body.
20688
20689 Prot_Item := First_Entity (Prot_Type);
20690 while Present (Prot_Item) loop
20691 if Ekind (Prot_Item) in Entry_Kind
20692 and then Corresponding_Body (Parent (Prot_Item)) = E
20693 then
20694 U := Prot_Item;
20695 exit;
20696 end if;
20697
20698 Next_Entity (Prot_Item);
20699 end loop;
20700 end;
20701 end if;
20702
20703 when Formal_Kind =>
20704 if Present (Spec_Entity (E)) then
20705 U := Spec_Entity (E);
20706 end if;
20707
20708 when E_Package_Body =>
20709 P := Parent (E);
20710
20711 if Nkind (P) = N_Defining_Program_Unit_Name then
20712 P := Parent (P);
20713 end if;
20714
20715 if Nkind (P) = N_Package_Body
20716 and then Present (Corresponding_Spec (P))
20717 then
20718 U := Corresponding_Spec (P);
20719
20720 elsif Nkind (P) = N_Package_Body_Stub
20721 and then Present (Corresponding_Spec_Of_Stub (P))
20722 then
20723 U := Corresponding_Spec_Of_Stub (P);
20724 end if;
20725
20726 when E_Protected_Body =>
20727 P := Parent (E);
20728
20729 if Nkind (P) = N_Protected_Body
20730 and then Present (Corresponding_Spec (P))
20731 then
20732 U := Corresponding_Spec (P);
20733
20734 elsif Nkind (P) = N_Protected_Body_Stub
20735 and then Present (Corresponding_Spec_Of_Stub (P))
20736 then
20737 U := Corresponding_Spec_Of_Stub (P);
20738
20739 if Is_Single_Protected_Object (U) then
20740 U := Etype (U);
20741 end if;
20742 end if;
20743
20744 when E_Subprogram_Body =>
20745 P := Parent (E);
20746
20747 if Nkind (P) = N_Defining_Program_Unit_Name then
20748 P := Parent (P);
20749 end if;
20750
20751 P := Parent (P);
20752
20753 if Nkind (P) = N_Subprogram_Body
20754 and then Present (Corresponding_Spec (P))
20755 then
20756 U := Corresponding_Spec (P);
20757
20758 elsif Nkind (P) = N_Subprogram_Body_Stub
20759 and then Present (Corresponding_Spec_Of_Stub (P))
20760 then
20761 U := Corresponding_Spec_Of_Stub (P);
20762
20763 elsif Nkind (P) = N_Subprogram_Renaming_Declaration then
20764 U := Corresponding_Spec (P);
20765 end if;
20766
20767 when E_Task_Body =>
20768 P := Parent (E);
20769
20770 if Nkind (P) = N_Task_Body
20771 and then Present (Corresponding_Spec (P))
20772 then
20773 U := Corresponding_Spec (P);
20774
20775 elsif Nkind (P) = N_Task_Body_Stub
20776 and then Present (Corresponding_Spec_Of_Stub (P))
20777 then
20778 U := Corresponding_Spec_Of_Stub (P);
20779
20780 if Is_Single_Task_Object (U) then
20781 U := Etype (U);
20782 end if;
20783 end if;
20784
20785 when Type_Kind =>
20786 if Present (Full_View (E)) then
20787 U := Full_View (E);
20788 end if;
20789
20790 when others =>
20791 null;
20792 end case;
20793
20794 return U;
20795 end Unique_Entity;
20796
20797 -----------------
20798 -- Unique_Name --
20799 -----------------
20800
20801 function Unique_Name (E : Entity_Id) return String is
20802
20803 -- Names of E_Subprogram_Body or E_Package_Body entities are not
20804 -- reliable, as they may not include the overloading suffix. Instead,
20805 -- when looking for the name of E or one of its enclosing scope, we get
20806 -- the name of the corresponding Unique_Entity.
20807
20808 function Get_Scoped_Name (E : Entity_Id) return String;
20809 -- Return the name of E prefixed by all the names of the scopes to which
20810 -- E belongs, except for Standard.
20811
20812 ---------------------
20813 -- Get_Scoped_Name --
20814 ---------------------
20815
20816 function Get_Scoped_Name (E : Entity_Id) return String is
20817 Name : constant String := Get_Name_String (Chars (E));
20818 begin
20819 if Has_Fully_Qualified_Name (E)
20820 or else Scope (E) = Standard_Standard
20821 then
20822 return Name;
20823 else
20824 return Get_Scoped_Name (Unique_Entity (Scope (E))) & "__" & Name;
20825 end if;
20826 end Get_Scoped_Name;
20827
20828 -- Start of processing for Unique_Name
20829
20830 begin
20831 if E = Standard_Standard then
20832 return Get_Name_String (Name_Standard);
20833
20834 elsif Scope (E) = Standard_Standard
20835 and then not (Ekind (E) = E_Package or else Is_Subprogram (E))
20836 then
20837 return Get_Name_String (Name_Standard) & "__" &
20838 Get_Name_String (Chars (E));
20839
20840 elsif Ekind (E) = E_Enumeration_Literal then
20841 return Unique_Name (Etype (E)) & "__" & Get_Name_String (Chars (E));
20842
20843 else
20844 return Get_Scoped_Name (Unique_Entity (E));
20845 end if;
20846 end Unique_Name;
20847
20848 ---------------------
20849 -- Unit_Is_Visible --
20850 ---------------------
20851
20852 function Unit_Is_Visible (U : Entity_Id) return Boolean is
20853 Curr : constant Node_Id := Cunit (Current_Sem_Unit);
20854 Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
20855
20856 function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean;
20857 -- For a child unit, check whether unit appears in a with_clause
20858 -- of a parent.
20859
20860 function Unit_In_Context (Comp_Unit : Node_Id) return Boolean;
20861 -- Scan the context clause of one compilation unit looking for a
20862 -- with_clause for the unit in question.
20863
20864 ----------------------------
20865 -- Unit_In_Parent_Context --
20866 ----------------------------
20867
20868 function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is
20869 begin
20870 if Unit_In_Context (Par_Unit) then
20871 return True;
20872
20873 elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then
20874 return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit)));
20875
20876 else
20877 return False;
20878 end if;
20879 end Unit_In_Parent_Context;
20880
20881 ---------------------
20882 -- Unit_In_Context --
20883 ---------------------
20884
20885 function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is
20886 Clause : Node_Id;
20887
20888 begin
20889 Clause := First (Context_Items (Comp_Unit));
20890 while Present (Clause) loop
20891 if Nkind (Clause) = N_With_Clause then
20892 if Library_Unit (Clause) = U then
20893 return True;
20894
20895 -- The with_clause may denote a renaming of the unit we are
20896 -- looking for, eg. Text_IO which renames Ada.Text_IO.
20897
20898 elsif
20899 Renamed_Entity (Entity (Name (Clause))) =
20900 Defining_Entity (Unit (U))
20901 then
20902 return True;
20903 end if;
20904 end if;
20905
20906 Next (Clause);
20907 end loop;
20908
20909 return False;
20910 end Unit_In_Context;
20911
20912 -- Start of processing for Unit_Is_Visible
20913
20914 begin
20915 -- The currrent unit is directly visible
20916
20917 if Curr = U then
20918 return True;
20919
20920 elsif Unit_In_Context (Curr) then
20921 return True;
20922
20923 -- If the current unit is a body, check the context of the spec
20924
20925 elsif Nkind (Unit (Curr)) = N_Package_Body
20926 or else
20927 (Nkind (Unit (Curr)) = N_Subprogram_Body
20928 and then not Acts_As_Spec (Unit (Curr)))
20929 then
20930 if Unit_In_Context (Library_Unit (Curr)) then
20931 return True;
20932 end if;
20933 end if;
20934
20935 -- If the spec is a child unit, examine the parents
20936
20937 if Is_Child_Unit (Curr_Entity) then
20938 if Nkind (Unit (Curr)) in N_Unit_Body then
20939 return
20940 Unit_In_Parent_Context
20941 (Parent_Spec (Unit (Library_Unit (Curr))));
20942 else
20943 return Unit_In_Parent_Context (Parent_Spec (Unit (Curr)));
20944 end if;
20945
20946 else
20947 return False;
20948 end if;
20949 end Unit_Is_Visible;
20950
20951 ------------------------------
20952 -- Universal_Interpretation --
20953 ------------------------------
20954
20955 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
20956 Index : Interp_Index;
20957 It : Interp;
20958
20959 begin
20960 -- The argument may be a formal parameter of an operator or subprogram
20961 -- with multiple interpretations, or else an expression for an actual.
20962
20963 if Nkind (Opnd) = N_Defining_Identifier
20964 or else not Is_Overloaded (Opnd)
20965 then
20966 if Etype (Opnd) = Universal_Integer
20967 or else Etype (Opnd) = Universal_Real
20968 then
20969 return Etype (Opnd);
20970 else
20971 return Empty;
20972 end if;
20973
20974 else
20975 Get_First_Interp (Opnd, Index, It);
20976 while Present (It.Typ) loop
20977 if It.Typ = Universal_Integer
20978 or else It.Typ = Universal_Real
20979 then
20980 return It.Typ;
20981 end if;
20982
20983 Get_Next_Interp (Index, It);
20984 end loop;
20985
20986 return Empty;
20987 end if;
20988 end Universal_Interpretation;
20989
20990 ---------------
20991 -- Unqualify --
20992 ---------------
20993
20994 function Unqualify (Expr : Node_Id) return Node_Id is
20995 begin
20996 -- Recurse to handle unlikely case of multiple levels of qualification
20997
20998 if Nkind (Expr) = N_Qualified_Expression then
20999 return Unqualify (Expression (Expr));
21000
21001 -- Normal case, not a qualified expression
21002
21003 else
21004 return Expr;
21005 end if;
21006 end Unqualify;
21007
21008 -----------------------
21009 -- Visible_Ancestors --
21010 -----------------------
21011
21012 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
21013 List_1 : Elist_Id;
21014 List_2 : Elist_Id;
21015 Elmt : Elmt_Id;
21016
21017 begin
21018 pragma Assert (Is_Record_Type (Typ) and then Is_Tagged_Type (Typ));
21019
21020 -- Collect all the parents and progenitors of Typ. If the full-view of
21021 -- private parents and progenitors is available then it is used to
21022 -- generate the list of visible ancestors; otherwise their partial
21023 -- view is added to the resulting list.
21024
21025 Collect_Parents
21026 (T => Typ,
21027 List => List_1,
21028 Use_Full_View => True);
21029
21030 Collect_Interfaces
21031 (T => Typ,
21032 Ifaces_List => List_2,
21033 Exclude_Parents => True,
21034 Use_Full_View => True);
21035
21036 -- Join the two lists. Avoid duplications because an interface may
21037 -- simultaneously be parent and progenitor of a type.
21038
21039 Elmt := First_Elmt (List_2);
21040 while Present (Elmt) loop
21041 Append_Unique_Elmt (Node (Elmt), List_1);
21042 Next_Elmt (Elmt);
21043 end loop;
21044
21045 return List_1;
21046 end Visible_Ancestors;
21047
21048 ----------------------
21049 -- Within_Init_Proc --
21050 ----------------------
21051
21052 function Within_Init_Proc return Boolean is
21053 S : Entity_Id;
21054
21055 begin
21056 S := Current_Scope;
21057 while not Is_Overloadable (S) loop
21058 if S = Standard_Standard then
21059 return False;
21060 else
21061 S := Scope (S);
21062 end if;
21063 end loop;
21064
21065 return Is_Init_Proc (S);
21066 end Within_Init_Proc;
21067
21068 ------------------
21069 -- Within_Scope --
21070 ------------------
21071
21072 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean is
21073 begin
21074 return Scope_Within_Or_Same (Scope (E), S);
21075 end Within_Scope;
21076
21077 ----------------
21078 -- Wrong_Type --
21079 ----------------
21080
21081 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
21082 Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
21083 Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
21084
21085 Matching_Field : Entity_Id;
21086 -- Entity to give a more precise suggestion on how to write a one-
21087 -- element positional aggregate.
21088
21089 function Has_One_Matching_Field return Boolean;
21090 -- Determines if Expec_Type is a record type with a single component or
21091 -- discriminant whose type matches the found type or is one dimensional
21092 -- array whose component type matches the found type. In the case of
21093 -- one discriminant, we ignore the variant parts. That's not accurate,
21094 -- but good enough for the warning.
21095
21096 ----------------------------
21097 -- Has_One_Matching_Field --
21098 ----------------------------
21099
21100 function Has_One_Matching_Field return Boolean is
21101 E : Entity_Id;
21102
21103 begin
21104 Matching_Field := Empty;
21105
21106 if Is_Array_Type (Expec_Type)
21107 and then Number_Dimensions (Expec_Type) = 1
21108 and then Covers (Etype (Component_Type (Expec_Type)), Found_Type)
21109 then
21110 -- Use type name if available. This excludes multidimensional
21111 -- arrays and anonymous arrays.
21112
21113 if Comes_From_Source (Expec_Type) then
21114 Matching_Field := Expec_Type;
21115
21116 -- For an assignment, use name of target
21117
21118 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
21119 and then Is_Entity_Name (Name (Parent (Expr)))
21120 then
21121 Matching_Field := Entity (Name (Parent (Expr)));
21122 end if;
21123
21124 return True;
21125
21126 elsif not Is_Record_Type (Expec_Type) then
21127 return False;
21128
21129 else
21130 E := First_Entity (Expec_Type);
21131 loop
21132 if No (E) then
21133 return False;
21134
21135 elsif not Ekind_In (E, E_Discriminant, E_Component)
21136 or else Nam_In (Chars (E), Name_uTag, Name_uParent)
21137 then
21138 Next_Entity (E);
21139
21140 else
21141 exit;
21142 end if;
21143 end loop;
21144
21145 if not Covers (Etype (E), Found_Type) then
21146 return False;
21147
21148 elsif Present (Next_Entity (E))
21149 and then (Ekind (E) = E_Component
21150 or else Ekind (Next_Entity (E)) = E_Discriminant)
21151 then
21152 return False;
21153
21154 else
21155 Matching_Field := E;
21156 return True;
21157 end if;
21158 end if;
21159 end Has_One_Matching_Field;
21160
21161 -- Start of processing for Wrong_Type
21162
21163 begin
21164 -- Don't output message if either type is Any_Type, or if a message
21165 -- has already been posted for this node. We need to do the latter
21166 -- check explicitly (it is ordinarily done in Errout), because we
21167 -- are using ! to force the output of the error messages.
21168
21169 if Expec_Type = Any_Type
21170 or else Found_Type = Any_Type
21171 or else Error_Posted (Expr)
21172 then
21173 return;
21174
21175 -- If one of the types is a Taft-Amendment type and the other it its
21176 -- completion, it must be an illegal use of a TAT in the spec, for
21177 -- which an error was already emitted. Avoid cascaded errors.
21178
21179 elsif Is_Incomplete_Type (Expec_Type)
21180 and then Has_Completion_In_Body (Expec_Type)
21181 and then Full_View (Expec_Type) = Etype (Expr)
21182 then
21183 return;
21184
21185 elsif Is_Incomplete_Type (Etype (Expr))
21186 and then Has_Completion_In_Body (Etype (Expr))
21187 and then Full_View (Etype (Expr)) = Expec_Type
21188 then
21189 return;
21190
21191 -- In an instance, there is an ongoing problem with completion of
21192 -- type derived from private types. Their structure is what Gigi
21193 -- expects, but the Etype is the parent type rather than the
21194 -- derived private type itself. Do not flag error in this case. The
21195 -- private completion is an entity without a parent, like an Itype.
21196 -- Similarly, full and partial views may be incorrect in the instance.
21197 -- There is no simple way to insure that it is consistent ???
21198
21199 -- A similar view discrepancy can happen in an inlined body, for the
21200 -- same reason: inserted body may be outside of the original package
21201 -- and only partial views are visible at the point of insertion.
21202
21203 elsif In_Instance or else In_Inlined_Body then
21204 if Etype (Etype (Expr)) = Etype (Expected_Type)
21205 and then
21206 (Has_Private_Declaration (Expected_Type)
21207 or else Has_Private_Declaration (Etype (Expr)))
21208 and then No (Parent (Expected_Type))
21209 then
21210 return;
21211
21212 elsif Nkind (Parent (Expr)) = N_Qualified_Expression
21213 and then Entity (Subtype_Mark (Parent (Expr))) = Expected_Type
21214 then
21215 return;
21216
21217 elsif Is_Private_Type (Expected_Type)
21218 and then Present (Full_View (Expected_Type))
21219 and then Covers (Full_View (Expected_Type), Etype (Expr))
21220 then
21221 return;
21222
21223 -- Conversely, type of expression may be the private one
21224
21225 elsif Is_Private_Type (Base_Type (Etype (Expr)))
21226 and then Full_View (Base_Type (Etype (Expr))) = Expected_Type
21227 then
21228 return;
21229 end if;
21230 end if;
21231
21232 -- An interesting special check. If the expression is parenthesized
21233 -- and its type corresponds to the type of the sole component of the
21234 -- expected record type, or to the component type of the expected one
21235 -- dimensional array type, then assume we have a bad aggregate attempt.
21236
21237 if Nkind (Expr) in N_Subexpr
21238 and then Paren_Count (Expr) /= 0
21239 and then Has_One_Matching_Field
21240 then
21241 Error_Msg_N ("positional aggregate cannot have one component", Expr);
21242
21243 if Present (Matching_Field) then
21244 if Is_Array_Type (Expec_Type) then
21245 Error_Msg_NE
21246 ("\write instead `&''First ='> ...`", Expr, Matching_Field);
21247 else
21248 Error_Msg_NE
21249 ("\write instead `& ='> ...`", Expr, Matching_Field);
21250 end if;
21251 end if;
21252
21253 -- Another special check, if we are looking for a pool-specific access
21254 -- type and we found an E_Access_Attribute_Type, then we have the case
21255 -- of an Access attribute being used in a context which needs a pool-
21256 -- specific type, which is never allowed. The one extra check we make
21257 -- is that the expected designated type covers the Found_Type.
21258
21259 elsif Is_Access_Type (Expec_Type)
21260 and then Ekind (Found_Type) = E_Access_Attribute_Type
21261 and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
21262 and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
21263 and then Covers
21264 (Designated_Type (Expec_Type), Designated_Type (Found_Type))
21265 then
21266 Error_Msg_N -- CODEFIX
21267 ("result must be general access type!", Expr);
21268 Error_Msg_NE -- CODEFIX
21269 ("add ALL to }!", Expr, Expec_Type);
21270
21271 -- Another special check, if the expected type is an integer type,
21272 -- but the expression is of type System.Address, and the parent is
21273 -- an addition or subtraction operation whose left operand is the
21274 -- expression in question and whose right operand is of an integral
21275 -- type, then this is an attempt at address arithmetic, so give
21276 -- appropriate message.
21277
21278 elsif Is_Integer_Type (Expec_Type)
21279 and then Is_RTE (Found_Type, RE_Address)
21280 and then Nkind_In (Parent (Expr), N_Op_Add, N_Op_Subtract)
21281 and then Expr = Left_Opnd (Parent (Expr))
21282 and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
21283 then
21284 Error_Msg_N
21285 ("address arithmetic not predefined in package System",
21286 Parent (Expr));
21287 Error_Msg_N
21288 ("\possible missing with/use of System.Storage_Elements",
21289 Parent (Expr));
21290 return;
21291
21292 -- If the expected type is an anonymous access type, as for access
21293 -- parameters and discriminants, the error is on the designated types.
21294
21295 elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
21296 if Comes_From_Source (Expec_Type) then
21297 Error_Msg_NE ("expected}!", Expr, Expec_Type);
21298 else
21299 Error_Msg_NE
21300 ("expected an access type with designated}",
21301 Expr, Designated_Type (Expec_Type));
21302 end if;
21303
21304 if Is_Access_Type (Found_Type)
21305 and then not Comes_From_Source (Found_Type)
21306 then
21307 Error_Msg_NE
21308 ("\\found an access type with designated}!",
21309 Expr, Designated_Type (Found_Type));
21310 else
21311 if From_Limited_With (Found_Type) then
21312 Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
21313 Error_Msg_Qual_Level := 99;
21314 Error_Msg_NE -- CODEFIX
21315 ("\\missing `WITH &;", Expr, Scope (Found_Type));
21316 Error_Msg_Qual_Level := 0;
21317 else
21318 Error_Msg_NE ("found}!", Expr, Found_Type);
21319 end if;
21320 end if;
21321
21322 -- Normal case of one type found, some other type expected
21323
21324 else
21325 -- If the names of the two types are the same, see if some number
21326 -- of levels of qualification will help. Don't try more than three
21327 -- levels, and if we get to standard, it's no use (and probably
21328 -- represents an error in the compiler) Also do not bother with
21329 -- internal scope names.
21330
21331 declare
21332 Expec_Scope : Entity_Id;
21333 Found_Scope : Entity_Id;
21334
21335 begin
21336 Expec_Scope := Expec_Type;
21337 Found_Scope := Found_Type;
21338
21339 for Levels in Nat range 0 .. 3 loop
21340 if Chars (Expec_Scope) /= Chars (Found_Scope) then
21341 Error_Msg_Qual_Level := Levels;
21342 exit;
21343 end if;
21344
21345 Expec_Scope := Scope (Expec_Scope);
21346 Found_Scope := Scope (Found_Scope);
21347
21348 exit when Expec_Scope = Standard_Standard
21349 or else Found_Scope = Standard_Standard
21350 or else not Comes_From_Source (Expec_Scope)
21351 or else not Comes_From_Source (Found_Scope);
21352 end loop;
21353 end;
21354
21355 if Is_Record_Type (Expec_Type)
21356 and then Present (Corresponding_Remote_Type (Expec_Type))
21357 then
21358 Error_Msg_NE ("expected}!", Expr,
21359 Corresponding_Remote_Type (Expec_Type));
21360 else
21361 Error_Msg_NE ("expected}!", Expr, Expec_Type);
21362 end if;
21363
21364 if Is_Entity_Name (Expr)
21365 and then Is_Package_Or_Generic_Package (Entity (Expr))
21366 then
21367 Error_Msg_N ("\\found package name!", Expr);
21368
21369 elsif Is_Entity_Name (Expr)
21370 and then Ekind_In (Entity (Expr), E_Procedure, E_Generic_Procedure)
21371 then
21372 if Ekind (Expec_Type) = E_Access_Subprogram_Type then
21373 Error_Msg_N
21374 ("found procedure name, possibly missing Access attribute!",
21375 Expr);
21376 else
21377 Error_Msg_N
21378 ("\\found procedure name instead of function!", Expr);
21379 end if;
21380
21381 elsif Nkind (Expr) = N_Function_Call
21382 and then Ekind (Expec_Type) = E_Access_Subprogram_Type
21383 and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
21384 and then No (Parameter_Associations (Expr))
21385 then
21386 Error_Msg_N
21387 ("found function name, possibly missing Access attribute!",
21388 Expr);
21389
21390 -- Catch common error: a prefix or infix operator which is not
21391 -- directly visible because the type isn't.
21392
21393 elsif Nkind (Expr) in N_Op
21394 and then Is_Overloaded (Expr)
21395 and then not Is_Immediately_Visible (Expec_Type)
21396 and then not Is_Potentially_Use_Visible (Expec_Type)
21397 and then not In_Use (Expec_Type)
21398 and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
21399 then
21400 Error_Msg_N
21401 ("operator of the type is not directly visible!", Expr);
21402
21403 elsif Ekind (Found_Type) = E_Void
21404 and then Present (Parent (Found_Type))
21405 and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
21406 then
21407 Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
21408
21409 else
21410 Error_Msg_NE ("\\found}!", Expr, Found_Type);
21411 end if;
21412
21413 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
21414 -- of the same modular type, and (M1 and M2) = 0 was intended.
21415
21416 if Expec_Type = Standard_Boolean
21417 and then Is_Modular_Integer_Type (Found_Type)
21418 and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
21419 and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
21420 then
21421 declare
21422 Op : constant Node_Id := Right_Opnd (Parent (Expr));
21423 L : constant Node_Id := Left_Opnd (Op);
21424 R : constant Node_Id := Right_Opnd (Op);
21425
21426 begin
21427 -- The case for the message is when the left operand of the
21428 -- comparison is the same modular type, or when it is an
21429 -- integer literal (or other universal integer expression),
21430 -- which would have been typed as the modular type if the
21431 -- parens had been there.
21432
21433 if (Etype (L) = Found_Type
21434 or else
21435 Etype (L) = Universal_Integer)
21436 and then Is_Integer_Type (Etype (R))
21437 then
21438 Error_Msg_N
21439 ("\\possible missing parens for modular operation", Expr);
21440 end if;
21441 end;
21442 end if;
21443
21444 -- Reset error message qualification indication
21445
21446 Error_Msg_Qual_Level := 0;
21447 end if;
21448 end Wrong_Type;
21449
21450 --------------------------------
21451 -- Yields_Synchronized_Object --
21452 --------------------------------
21453
21454 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean is
21455 Has_Sync_Comp : Boolean := False;
21456 Id : Entity_Id;
21457
21458 begin
21459 -- An array type yields a synchronized object if its component type
21460 -- yields a synchronized object.
21461
21462 if Is_Array_Type (Typ) then
21463 return Yields_Synchronized_Object (Component_Type (Typ));
21464
21465 -- A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
21466 -- yields a synchronized object by default.
21467
21468 elsif Is_Descendant_Of_Suspension_Object (Typ) then
21469 return True;
21470
21471 -- A protected type yields a synchronized object by default
21472
21473 elsif Is_Protected_Type (Typ) then
21474 return True;
21475
21476 -- A record type or type extension yields a synchronized object when its
21477 -- discriminants (if any) lack default values and all components are of
21478 -- a type that yelds a synchronized object.
21479
21480 elsif Is_Record_Type (Typ) then
21481
21482 -- Inspect all entities defined in the scope of the type, looking for
21483 -- components of a type that does not yeld a synchronized object or
21484 -- for discriminants with default values.
21485
21486 Id := First_Entity (Typ);
21487 while Present (Id) loop
21488 if Comes_From_Source (Id) then
21489 if Ekind (Id) = E_Component then
21490 if Yields_Synchronized_Object (Etype (Id)) then
21491 Has_Sync_Comp := True;
21492
21493 -- The component does not yield a synchronized object
21494
21495 else
21496 return False;
21497 end if;
21498
21499 elsif Ekind (Id) = E_Discriminant
21500 and then Present (Expression (Parent (Id)))
21501 then
21502 return False;
21503 end if;
21504 end if;
21505
21506 Next_Entity (Id);
21507 end loop;
21508
21509 -- Ensure that the parent type of a type extension yields a
21510 -- synchronized object.
21511
21512 if Etype (Typ) /= Typ
21513 and then not Yields_Synchronized_Object (Etype (Typ))
21514 then
21515 return False;
21516 end if;
21517
21518 -- If we get here, then all discriminants lack default values and all
21519 -- components are of a type that yields a synchronized object.
21520
21521 return Has_Sync_Comp;
21522
21523 -- A synchronized interface type yields a synchronized object by default
21524
21525 elsif Is_Synchronized_Interface (Typ) then
21526 return True;
21527
21528 -- A task type yelds a synchronized object by default
21529
21530 elsif Is_Task_Type (Typ) then
21531 return True;
21532
21533 -- Otherwise the type does not yield a synchronized object
21534
21535 else
21536 return False;
21537 end if;
21538 end Yields_Synchronized_Object;
21539
21540 ---------------------------
21541 -- Yields_Universal_Type --
21542 ---------------------------
21543
21544 function Yields_Universal_Type (N : Node_Id) return Boolean is
21545 begin
21546 -- Integer and real literals are of a universal type
21547
21548 if Nkind_In (N, N_Integer_Literal, N_Real_Literal) then
21549 return True;
21550
21551 -- The values of certain attributes are of a universal type
21552
21553 elsif Nkind (N) = N_Attribute_Reference then
21554 return
21555 Universal_Type_Attribute (Get_Attribute_Id (Attribute_Name (N)));
21556
21557 -- ??? There are possibly other cases to consider
21558
21559 else
21560 return False;
21561 end if;
21562 end Yields_Universal_Type;
21563
21564 end Sem_Util;