[Ada] Various typo fixes and reformatting of comments
[gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Atree; use Atree;
29 with Einfo; use Einfo;
30 with Exp_Tss; use Exp_Tss;
31 with Namet; use Namet;
32 with Opt; use Opt;
33 with Snames; use Snames;
34 with Types; use Types;
35 with Uintp; use Uintp;
36 with Urealp; use Urealp;
37
38 package Sem_Util is
39
40 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
41 -- The list of interfaces implemented by Typ. Empty if there are none,
42 -- including the cases where there can't be any because e.g. the type is
43 -- not tagged.
44
45 function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
46 -- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
47 -- the given string argument, adding leading and trailing asterisks if they
48 -- are not already present. Str_Lit is the static value of the pragma
49 -- argument.
50
51 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
52 -- Add A to the list of access types to process when expanding the
53 -- freeze node of E.
54
55 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
56 -- Given a block statement N, generate an internal E_Block label and make
57 -- it the identifier of the block. Id denotes the generated entity. If the
58 -- block already has an identifier, Id returns the entity of its label.
59
60 procedure Add_Global_Declaration (N : Node_Id);
61 -- These procedures adds a declaration N at the library level, to be
62 -- elaborated before any other code in the unit. It is used for example
63 -- for the entity that marks whether a unit has been elaborated. The
64 -- declaration is added to the Declarations list of the Aux_Decls_Node
65 -- for the current unit. The declarations are added in the current scope,
66 -- so the caller should push a new scope as required before the call.
67
68 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
69 -- Returns the name of E adding Suffix
70
71 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
72 -- Given two types, returns True if we are in Allow_Integer_Address mode
73 -- and one of the types is (a descendant of) System.Address (and this type
74 -- is private), and the other type is any integer type.
75
76 function Address_Value (N : Node_Id) return Node_Id;
77 -- Return the underlying value of the expression N of an address clause
78
79 function Addressable (V : Uint) return Boolean;
80 function Addressable (V : Int) return Boolean;
81 pragma Inline (Addressable);
82 -- Returns True if the value of V is the word size or an addressable factor
83 -- of the word size (typically 8, 16, 32 or 64).
84
85 procedure Aggregate_Constraint_Checks
86 (Exp : Node_Id;
87 Check_Typ : Entity_Id);
88 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
89 -- and Check_Typ a constrained record type with discriminants, we generate
90 -- the appropriate discriminant checks. If Exp is an array aggregate then
91 -- emit the appropriate length checks. If Exp is a scalar type, or a string
92 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
93 -- are performed at run time. Also used for expressions in the argument of
94 -- 'Update, which shares some of the features of an aggregate.
95
96 function Alignment_In_Bits (E : Entity_Id) return Uint;
97 -- If the alignment of the type or object E is currently known to the
98 -- compiler, then this function returns the alignment value in bits.
99 -- Otherwise Uint_0 is returned, indicating that the alignment of the
100 -- entity is not yet known to the compiler.
101
102 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
103 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
104 -- Given a constraint or subtree of a constraint on a composite
105 -- subtype/object, returns True if there are no nonstatic constraints,
106 -- which might cause objects to be created with dynamic size.
107 -- Called for subtype declarations (including implicit ones created for
108 -- subtype indications in object declarations, as well as discriminated
109 -- record aggregate cases). For record aggregates, only records containing
110 -- discriminant-dependent arrays matter, because the discriminants must be
111 -- static when governing a variant part. Access discriminants are
112 -- irrelevant. Also called for array aggregates, but only named notation,
113 -- because those are the only dynamic cases.
114
115 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
116 -- Recursive procedure to construct string for qualified name of enclosing
117 -- program unit. The qualification stops at an enclosing scope has no
118 -- source name (block or loop). If entity is a subprogram instance, skip
119 -- enclosing wrapper package. The name is appended to Buf.
120
121 procedure Append_Inherited_Subprogram (S : Entity_Id);
122 -- If the parent of the operation is declared in the visible part of
123 -- the current scope, the inherited operation is visible even though the
124 -- derived type that inherits the operation may be completed in the private
125 -- part of the current package.
126
127 procedure Apply_Compile_Time_Constraint_Error
128 (N : Node_Id;
129 Msg : String;
130 Reason : RT_Exception_Code;
131 Ent : Entity_Id := Empty;
132 Typ : Entity_Id := Empty;
133 Loc : Source_Ptr := No_Location;
134 Rep : Boolean := True;
135 Warn : Boolean := False);
136 -- N is a subexpression that will raise Constraint_Error when evaluated
137 -- at run time. Msg is a message that explains the reason for raising the
138 -- exception. The last character is ? if the message is always a warning,
139 -- even in Ada 95, and is not a ? if the message represents an illegality
140 -- (because of violation of static expression rules) in Ada 95 (but not
141 -- in Ada 83). Typically this routine posts all messages at the Sloc of
142 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
143 -- the message. After posting the appropriate message, and if the flag
144 -- Rep is set, this routine replaces the expression with an appropriate
145 -- N_Raise_Constraint_Error node using the given Reason code. This node
146 -- is then marked as being static if the original node is static, but
147 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
148 -- The error message may contain a } or & insertion character. This
149 -- normally references Etype (N), unless the Ent argument is given
150 -- explicitly, in which case it is used instead. The type of the raise
151 -- node that is built is normally Etype (N), but if the Typ parameter
152 -- is present, this is used instead. Warn is normally False. If it is
153 -- True then the message is treated as a warning even though it does
154 -- not end with a ? (this is used when the caller wants to parameterize
155 -- whether an error or warning is given), or when the message should be
156 -- treated as a warning even when SPARK_Mode is On (which otherwise would
157 -- force an error).
158
159 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
160 -- Id should be the entity of a state abstraction, a variable, or a type.
161 -- Returns True iff Id is subject to external property Async_Readers.
162
163 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
164 -- Id should be the entity of a state abstraction, a variable, or a type.
165 -- Returns True iff Id is subject to external property Async_Writers.
166
167 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
168 -- If at the point of declaration an array type has a private or limited
169 -- component, several array operations are not available on the type, and
170 -- the array type is flagged accordingly. If in the immediate scope of
171 -- the array type the component becomes non-private or non-limited, these
172 -- operations become available. This can happen if the scopes of both types
173 -- are open, and the scope of the array is not outside the scope of the
174 -- component.
175
176 procedure Bad_Attribute
177 (N : Node_Id;
178 Nam : Name_Id;
179 Warn : Boolean := False);
180 -- Called when node N is expected to contain a valid attribute name, and
181 -- Nam is found instead. If Warn is set True this is a warning, else this
182 -- is an error.
183
184 procedure Bad_Predicated_Subtype_Use
185 (Msg : String;
186 N : Node_Id;
187 Typ : Entity_Id;
188 Suggest_Static : Boolean := False);
189 -- This is called when Typ, a predicated subtype, is used in a context
190 -- which does not allow the use of a predicated subtype. Msg is passed to
191 -- Error_Msg_FE to output an appropriate message using N as the location,
192 -- and Typ as the entity. The caller must set up any insertions other than
193 -- the & for the type itself. Note that if Typ is a generic actual type,
194 -- then the message will be output as a warning, and a raise Program_Error
195 -- is inserted using Insert_Action with node N as the insertion point. Node
196 -- N also supplies the source location for construction of the raise node.
197 -- If Typ does not have any predicates, the call has no effect. Set flag
198 -- Suggest_Static when the context warrants an advice on how to avoid the
199 -- use error.
200
201 function Bad_Unordered_Enumeration_Reference
202 (N : Node_Id;
203 T : Entity_Id) return Boolean;
204 -- Node N contains a potentially dubious reference to type T, either an
205 -- explicit comparison, or an explicit range. This function returns True
206 -- if the type T is an enumeration type for which No pragma Order has been
207 -- given, and the reference N is not in the same extended source unit as
208 -- the declaration of T.
209
210 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
211 -- Given block statement, entry body, package body, subprogram body, or
212 -- task body N, return the closest source location to the "begin" keyword.
213
214 function Build_Actual_Subtype
215 (T : Entity_Id;
216 N : Node_Or_Entity_Id) return Node_Id;
217 -- Build an anonymous subtype for an entity or expression, using the
218 -- bounds of the entity or the discriminants of the enclosing record.
219 -- T is the type for which the actual subtype is required, and N is either
220 -- a defining identifier, or any subexpression.
221
222 function Build_Actual_Subtype_Of_Component
223 (T : Entity_Id;
224 N : Node_Id) return Node_Id;
225 -- Determine whether a selected component has a type that depends on
226 -- discriminants, and build actual subtype for it if so.
227
228 -- Handling of inherited primitives whose ancestors have class-wide
229 -- pre/postconditions.
230
231 -- If a primitive operation of a parent type has a class-wide pre/post-
232 -- condition that includes calls to other primitives, and that operation
233 -- is inherited by a descendant type that also overrides some of these
234 -- other primitives, the condition that applies to the inherited
235 -- operation has a modified condition in which the overridden primitives
236 -- have been replaced by the primitives of the descendent type. A call
237 -- to the inherited operation cannot be simply a call to the parent
238 -- operation (with an appropriate conversion) as is the case for other
239 -- inherited operations, but must appear with a wrapper subprogram to which
240 -- the modified conditions apply. Furthermore the call to the parent
241 -- operation must not be subject to the original class-wide condition,
242 -- given that modified conditions apply. To implement these semantics
243 -- economically we create a subprogram body (a "class-wide clone") to
244 -- which no pre/postconditions apply, and we create bodies for the
245 -- original and the inherited operation that have their respective
246 -- pre/postconditions and simply call the clone. The following operations
247 -- take care of constructing declaration and body of the clone, and
248 -- building the calls to it within the appropriate wrappers.
249
250 procedure Build_Class_Wide_Clone_Body
251 (Spec_Id : Entity_Id;
252 Bod : Node_Id);
253 -- Build body of subprogram that has a class-wide condition that contains
254 -- calls to other primitives. Spec_Id is the Id of the subprogram, and B
255 -- is its source body, which becomes the body of the clone.
256
257 function Build_Class_Wide_Clone_Call
258 (Loc : Source_Ptr;
259 Decls : List_Id;
260 Spec_Id : Entity_Id;
261 Spec : Node_Id) return Node_Id;
262 -- Build a call to the common class-wide clone of a subprogram with
263 -- class-wide conditions. The body of the subprogram becomes a wrapper
264 -- for a call to the clone. The inherited operation becomes a similar
265 -- wrapper to which modified conditions apply, and the call to the
266 -- clone includes the proper conversion in a call the parent operation.
267
268 procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id);
269 -- For a subprogram that has a class-wide condition that contains calls
270 -- to other primitives, build an internal subprogram that is invoked
271 -- through a type-specific wrapper for all inherited subprograms that
272 -- may have a modified condition.
273
274 procedure Build_Constrained_Itype
275 (N : Node_Id;
276 Typ : Entity_Id;
277 New_Assoc_List : List_Id);
278 -- Build a constrained itype for the newly created record aggregate N and
279 -- set it as a type of N. The itype will have Typ as its base type and
280 -- will be constrained by the values of discriminants from the component
281 -- association list New_Assoc_List.
282
283 -- ??? This code used to be pretty much a copy of Build_Subtype, but now
284 -- those two routines behave differently for types with unknown
285 -- discriminants. They are both exported in from this package in the hope
286 -- to eventually unify them (a not duplicate them even more until then).
287
288 -- ??? Performance WARNING. The current implementation creates a new itype
289 -- for all aggregates whose base type is discriminated. This means that
290 -- for record aggregates nested inside an array aggregate we will create
291 -- a new itype for each record aggregate if the array component type has
292 -- discriminants. For large aggregates this may be a problem. What should
293 -- be done in this case is to reuse itypes as much as possible.
294
295 function Build_Default_Subtype
296 (T : Entity_Id;
297 N : Node_Id) return Entity_Id;
298 -- If T is an unconstrained type with defaulted discriminants, build a
299 -- subtype constrained by the default values, insert the subtype
300 -- declaration in the tree before N, and return the entity of that
301 -- subtype. Otherwise, simply return T.
302
303 function Build_Discriminal_Subtype_Of_Component
304 (T : Entity_Id) return Node_Id;
305 -- Determine whether a record component has a type that depends on
306 -- discriminants, and build actual subtype for it if so.
307
308 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
309 -- Given a compilation unit node N, allocate an elaboration counter for
310 -- the compilation unit, and install it in the Elaboration_Entity field
311 -- of Spec_Id, the entity for the compilation unit.
312
313 procedure Build_Explicit_Dereference
314 (Expr : Node_Id;
315 Disc : Entity_Id);
316 -- AI05-139: Names with implicit dereference. If the expression N is a
317 -- reference type and the context imposes the corresponding designated
318 -- type, convert N into N.Disc.all. Such expressions are always over-
319 -- loaded with both interpretations, and the dereference interpretation
320 -- carries the name of the reference discriminant.
321
322 function Build_Overriding_Spec
323 (Op : Node_Id;
324 Typ : Entity_Id) return Node_Id;
325 -- Build a subprogram specification for the wrapper of an inherited
326 -- operation with a modified pre- or postcondition (See AI12-0113).
327 -- Op is the parent operation, and Typ is the descendant type that
328 -- inherits the operation.
329
330 function Build_Subtype
331 (Related_Node : Node_Id;
332 Loc : Source_Ptr;
333 Typ : Entity_Id;
334 Constraints : List_Id)
335 return Entity_Id;
336 -- Typ is an array or discriminated type, Constraints is a list of
337 -- constraints that apply to Typ. This routine builds the constrained
338 -- subtype using Loc as the source location and attached this subtype
339 -- declaration to Related_Node. The returned subtype inherits predicates
340 -- from Typ.
341
342 -- ??? The routine is mostly a duplicate of Build_Constrained_Itype, so be
343 -- careful which of the two better suits your needs (and certainly do not
344 -- duplicate their code).
345
346 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
347 -- Returns True if the expression cannot possibly raise Constraint_Error.
348 -- The response is conservative in the sense that a result of False does
349 -- not necessarily mean that CE could be raised, but a response of True
350 -- means that for sure CE cannot be raised.
351
352 procedure Check_Dynamically_Tagged_Expression
353 (Expr : Node_Id;
354 Typ : Entity_Id;
355 Related_Nod : Node_Id);
356 -- Check wrong use of dynamically tagged expression
357
358 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
359 -- Verify that the full declaration of type T has been seen. If not, place
360 -- error message on node N. Used in object declarations, type conversions
361 -- and qualified expressions.
362
363 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
364 -- A subprogram that has an Address parameter and is declared in a Pure
365 -- package is not considered Pure, because the parameter may be used as a
366 -- pointer and the referenced data may change even if the address value
367 -- itself does not.
368 -- If the programmer gave an explicit Pure_Function pragma, then we respect
369 -- the pragma and leave the subprogram Pure.
370
371 procedure Check_Function_Writable_Actuals (N : Node_Id);
372 -- (Ada 2012): If the construct N has two or more direct constituents that
373 -- are names or expressions whose evaluation may occur in an arbitrary
374 -- order, at least one of which contains a function call with an in out or
375 -- out parameter, then the construct is legal only if: for each name that
376 -- is passed as a parameter of mode in out or out to some inner function
377 -- call C2 (not including the construct N itself), there is no other name
378 -- anywhere within a direct constituent of the construct C other than
379 -- the one containing C2, that is known to refer to the same object (RM
380 -- 6.4.1(6.17/3)).
381
382 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
383 -- AI05-139-2: Accessors and iterators for containers. This procedure
384 -- checks whether T is a reference type, and if so it adds an interprettion
385 -- to N whose type is the designated type of the reference_discriminant.
386 -- If N is a generalized indexing operation, the interpretation is added
387 -- both to the corresponding function call, and to the indexing node.
388
389 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
390 -- Within a protected function, the current object is a constant, and
391 -- internal calls to a procedure or entry are illegal. Similarly, other
392 -- uses of a protected procedure in a renaming or a generic instantiation
393 -- in the context of a protected function are illegal (AI05-0225).
394
395 procedure Check_Later_Vs_Basic_Declarations
396 (Decls : List_Id;
397 During_Parsing : Boolean);
398 -- If During_Parsing is True, check for misplacement of later vs basic
399 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
400 -- restriction is set, do the same: although SPARK 95 removes the
401 -- distinction between initial and later declarative items, the distinction
402 -- remains in the Examiner (JB01-005). Note that the Examiner does not
403 -- count package declarations in later declarative items.
404
405 procedure Check_No_Hidden_State (Id : Entity_Id);
406 -- Determine whether object or state Id introduces a hidden state. If this
407 -- is the case, emit an error.
408
409 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
410 -- Verify that the profile of nonvolatile function Func_Id does not contain
411 -- effectively volatile parameters or return type.
412
413 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
414 -- Verify the legality of reference Ref to variable Var_Id when the
415 -- variable is a constituent of a single protected/task type.
416
417 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
418 -- N is one of the statement forms that is a potentially blocking
419 -- operation. If it appears within a protected action, emit warning.
420
421 procedure Check_Previous_Null_Procedure
422 (Decl : Node_Id;
423 Prev : Entity_Id);
424 -- A null procedure or a subprogram renaming can complete a previous
425 -- declaration, unless that previous declaration is itself a null
426 -- procedure. This must be treated specially because the analysis of
427 -- the null procedure leaves the corresponding entity as having no
428 -- completion, because its completion is provided by a generated body
429 -- inserted after all other declarations.
430
431 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
432 -- Determine whether the contract of subprogram Subp_Id mentions attribute
433 -- 'Result and it contains an expression that evaluates differently in pre-
434 -- and post-state.
435
436 procedure Check_State_Refinements
437 (Context : Node_Id;
438 Is_Main_Unit : Boolean := False);
439 -- Verify that all abstract states declared in a block statement, entry
440 -- body, package body, protected body, subprogram body, task body, or a
441 -- package declaration denoted by Context have proper refinement. Emit an
442 -- error if this is not the case. Flag Is_Main_Unit should be set when
443 -- Context denotes the main compilation unit.
444
445 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
446 -- Verify that all abstract states and objects declared in the state space
447 -- of package body Body_Id are used as constituents. Emit an error if this
448 -- is not the case.
449
450 procedure Check_Unprotected_Access
451 (Context : Node_Id;
452 Expr : Node_Id);
453 -- Check whether the expression is a pointer to a protected component,
454 -- and the context is external to the protected operation, to warn against
455 -- a possible unlocked access to data.
456
457 procedure Check_Volatility_Compatibility
458 (Id1, Id2 : Entity_Id;
459 Description_1, Description_2 : String;
460 Srcpos_Bearer : Node_Id);
461 -- Id1 and Id2 should each be the entity of a state abstraction, a
462 -- variable, or a type (i.e., something suitable for passing to
463 -- Async_Readers_Enabled and similar functions).
464 -- Does nothing if SPARK_Mode /= On. Otherwise, flags a legality violation
465 -- if one or more of the four volatility-related aspects is False for Id1
466 -- and True for Id2. The two descriptions are included in the error message
467 -- text; the source position for the generated message is determined by
468 -- Srcpos_Bearer.
469
470 function Choice_List (N : Node_Id) return List_Id;
471 -- Utility to retrieve the choices of a Component_Association or the
472 -- Discrete_Choices of an Iterated_Component_Association. For various
473 -- reasons these nodes have a different structure even though they play
474 -- similar roles in array aggregates.
475
476 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
477 -- Gather the entities of all abstract states and objects declared in the
478 -- body state space of package body Body_Id.
479
480 procedure Collect_Interfaces
481 (T : Entity_Id;
482 Ifaces_List : out Elist_Id;
483 Exclude_Parents : Boolean := False;
484 Use_Full_View : Boolean := True);
485 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
486 -- directly or indirectly implemented by T. Exclude_Parents is used to
487 -- avoid the addition of inherited interfaces to the generated list.
488 -- Use_Full_View is used to collect the interfaces using the full-view
489 -- (if available).
490
491 procedure Collect_Interface_Components
492 (Tagged_Type : Entity_Id;
493 Components_List : out Elist_Id);
494 -- Ada 2005 (AI-251): Collect all the tag components associated with the
495 -- secondary dispatch tables of a tagged type.
496
497 procedure Collect_Interfaces_Info
498 (T : Entity_Id;
499 Ifaces_List : out Elist_Id;
500 Components_List : out Elist_Id;
501 Tags_List : out Elist_Id);
502 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
503 -- the record component and tag associated with each of these interfaces.
504 -- On exit Ifaces_List, Components_List and Tags_List have the same number
505 -- of elements, and elements at the same position on these tables provide
506 -- information on the same interface type.
507
508 procedure Collect_Parents
509 (T : Entity_Id;
510 List : out Elist_Id;
511 Use_Full_View : Boolean := True);
512 -- Collect all the parents of Typ. Use_Full_View is used to collect them
513 -- using the full-view of private parents (if available).
514
515 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
516 -- Called upon type derivation and extension. We scan the declarative part
517 -- in which the type appears, and collect subprograms that have one
518 -- subsidiary subtype of the type. These subprograms can only appear after
519 -- the type itself.
520
521 function Compile_Time_Constraint_Error
522 (N : Node_Id;
523 Msg : String;
524 Ent : Entity_Id := Empty;
525 Loc : Source_Ptr := No_Location;
526 Warn : Boolean := False;
527 Extra_Msg : String := "") return Node_Id;
528 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
529 -- generates a warning (or error) message in the same manner, but it does
530 -- not replace any nodes. For convenience, the function always returns its
531 -- first argument. The message is a warning if the message ends with ?, or
532 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
533 -- If Extra_Msg is not a null string, then it's associated with N and
534 -- emitted immediately after the main message (and before output of any
535 -- message indicating that Constraint_Error will be raised).
536
537 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
538 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
539 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
540 -- False).
541
542 function Copy_Component_List
543 (R_Typ : Entity_Id;
544 Loc : Source_Ptr) return List_Id;
545 -- Copy components from record type R_Typ that come from source. Used to
546 -- create a new compatible record type. Loc is the source location assigned
547 -- to the created nodes.
548
549 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
550 -- Utility to create a parameter profile for a new subprogram spec, when
551 -- the subprogram has a body that acts as spec. This is done for some cases
552 -- of inlining, and for private protected ops. Also used to create bodies
553 -- for stubbed subprograms.
554
555 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
556 -- Copy the SPARK_Mode aspect if present in the aspect specifications
557 -- of node From to node To. On entry it is assumed that To does not have
558 -- aspect specifications. If From has no aspects, the routine has no
559 -- effect.
560
561 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
562 -- Replicate a function or a procedure specification denoted by Spec. The
563 -- resulting tree is an exact duplicate of the original tree. New entities
564 -- are created for the unit name and the formal parameters.
565
566 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
567 -- If a type is a generic actual type, return the corresponding formal in
568 -- the generic parent unit. There is no direct link in the tree for this
569 -- attribute, except in the case of formal private and derived types.
570 -- Possible optimization???
571
572 function Current_Entity (N : Node_Id) return Entity_Id;
573 pragma Inline (Current_Entity);
574 -- Find the currently visible definition for a given identifier, that is to
575 -- say the first entry in the visibility chain for the Chars of N.
576
577 function Current_Entity_In_Scope (N : Name_Id) return Entity_Id;
578 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
579 -- Find whether there is a previous definition for name or identifier N in
580 -- the current scope. Because declarations for a scope are not necessarily
581 -- contiguous (e.g. for packages) the first entry on the visibility chain
582 -- for N is not necessarily in the current scope.
583
584 function Current_Scope return Entity_Id;
585 -- Get entity representing current scope
586
587 function Current_Scope_No_Loops return Entity_Id;
588 -- Return the current scope ignoring internally generated loops
589
590 function Current_Subprogram return Entity_Id;
591 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
592 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
593 -- Current_Scope is returned. The returned value is Empty if this is called
594 -- from a library package which is not within any subprogram.
595
596 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
597 -- Same as Type_Access_Level, except that if the type is the type of an Ada
598 -- 2012 stand-alone object of an anonymous access type, then return the
599 -- static accessibility level of the object. In that case, the dynamic
600 -- accessibility level of the object may take on values in a range. The low
601 -- bound of that range is returned by Type_Access_Level; this function
602 -- yields the high bound of that range. Also differs from Type_Access_Level
603 -- in the case of a descendant of a generic formal type (returns Int'Last
604 -- instead of 0).
605
606 function Defining_Entity (N : Node_Id) return Entity_Id;
607 -- Given a declaration N, returns the associated defining entity. If the
608 -- declaration has a specification, the entity is obtained from the
609 -- specification. If the declaration has a defining unit name, then the
610 -- defining entity is obtained from the defining unit name ignoring any
611 -- child unit prefixes.
612 --
613 -- Iterator loops also have a defining entity, which holds the list of
614 -- local entities declared during loop expansion. These entities need
615 -- debugging information, generated through Qualify_Entity_Names, and
616 -- the loop declaration must be placed in the table Name_Qualify_Units.
617
618 -- WARNING: There is a matching C declaration of this subprogram in fe.h
619
620 function Denotes_Discriminant
621 (N : Node_Id;
622 Check_Concurrent : Boolean := False) return Boolean;
623 -- Returns True if node N is an Entity_Name node for a discriminant. If the
624 -- flag Check_Concurrent is true, function also returns true when N denotes
625 -- the discriminal of the discriminant of a concurrent type. This is needed
626 -- to disable some optimizations on private components of protected types,
627 -- and constraint checks on entry families constrained by discriminants.
628
629 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
630 -- Detect suspicious overlapping between actuals in a call, when both are
631 -- writable (RM 2012 6.4.1(6.4/3)).
632
633 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
634 -- Functions to detect suspicious overlapping between actuals in a call,
635 -- when one of them is writable. The predicates are those proposed in
636 -- AI05-0144, to detect dangerous order dependence in complex calls.
637 -- I would add a parameter Warn which enables more extensive testing of
638 -- cases as we find appropriate when we are only warning ??? Or perhaps
639 -- return an indication of (Error, Warn, OK) ???
640
641 function Denotes_Variable (N : Node_Id) return Boolean;
642 -- Returns True if node N denotes a single variable without parentheses
643
644 function Depends_On_Discriminant (N : Node_Id) return Boolean;
645 -- Returns True if N denotes a discriminant or if N is a range, a subtype
646 -- indication or a scalar subtype where one of the bounds is a
647 -- discriminant.
648
649 function Designate_Same_Unit
650 (Name1 : Node_Id;
651 Name2 : Node_Id) return Boolean;
652 -- Returns True if Name1 and Name2 designate the same unit name; each of
653 -- these names is supposed to be a selected component name, an expanded
654 -- name, a defining program unit name or an identifier.
655
656 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
657 -- Emit an error if iterated component association N is actually an illegal
658 -- quantified expression lacking a quantifier.
659
660 function Discriminated_Size (Comp : Entity_Id) return Boolean;
661 -- If a component size is not static then a warning will be emitted
662 -- in Ravenscar or other restricted contexts. When a component is non-
663 -- static because of a discriminant constraint we can specialize the
664 -- warning by mentioning discriminants explicitly. This was created for
665 -- private components of protected objects, but is generally useful when
666 -- restriction No_Implicit_Heap_Allocation is active.
667
668 function Dynamic_Accessibility_Level (N : Node_Id) return Node_Id;
669 -- N should be an expression of an access type. Builds an integer literal
670 -- except in cases involving anonymous access types, where accessibility
671 -- levels are tracked at run time (access parameters and Ada 2012 stand-
672 -- alone objects).
673
674 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
675 -- Same as Einfo.Extra_Accessibility except thtat object renames
676 -- are looked through.
677
678 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
679 -- Id should be the entity of a state abstraction, a variable, or a type.
680 -- Returns True iff Id is subject to external property Effective_Reads.
681
682 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
683 -- Id should be the entity of a state abstraction, a variable, or a type.
684 -- Returns True iff Id is subject to external property Effective_Writes.
685
686 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
687 -- Returns the enclosing N_Compilation_Unit node that is the root of a
688 -- subtree containing N.
689
690 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
691 -- Returns the closest ancestor of Typ that is a CPP type.
692
693 function Enclosing_Declaration (N : Node_Id) return Node_Id;
694 -- Returns the declaration node enclosing N (including possibly N itself),
695 -- if any, or Empty otherwise.
696
697 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
698 -- Returns the Node_Id associated with the innermost enclosing generic
699 -- body, if any. If none, then returns Empty.
700
701 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
702 -- Returns the Node_Id associated with the innermost enclosing generic
703 -- unit, if any. If none, then returns Empty.
704
705 function Enclosing_Lib_Unit_Entity
706 (E : Entity_Id := Current_Scope) return Entity_Id;
707 -- Returns the entity of enclosing library unit node which is the root of
708 -- the current scope (which must not be Standard_Standard, and the caller
709 -- is responsible for ensuring this condition) or other specified entity.
710
711 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
712 -- Returns the N_Compilation_Unit node of the library unit that is directly
713 -- or indirectly (through a subunit) at the root of a subtree containing
714 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
715 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
716 -- library unit. If no such item is found, returns Empty.
717
718 function Enclosing_Package (E : Entity_Id) return Entity_Id;
719 -- Utility function to return the Ada entity of the package enclosing
720 -- the entity E, if any. Returns Empty if no enclosing package.
721
722 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
723 -- Returns the entity of the package or subprogram enclosing E, if any.
724 -- Returns Empty if no enclosing package or subprogram.
725
726 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
727 -- Utility function to return the Ada entity of the subprogram enclosing
728 -- the entity E, if any. Returns Empty if no enclosing subprogram.
729
730 function End_Keyword_Location (N : Node_Id) return Source_Ptr;
731 -- Given block statement, entry body, package body, package declaration,
732 -- protected body, [single] protected type declaration, subprogram body,
733 -- task body, or [single] task type declaration N, return the closest
734 -- source location of the "end" keyword.
735
736 procedure Ensure_Freeze_Node (E : Entity_Id);
737 -- Make sure a freeze node is allocated for entity E. If necessary, build
738 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
739
740 procedure Enter_Name (Def_Id : Entity_Id);
741 -- Insert new name in symbol table of current scope with check for
742 -- duplications (error message is issued if a conflict is found).
743 -- Note: Enter_Name is not used for overloadable entities, instead these
744 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
745
746 function Entity_Of (N : Node_Id) return Entity_Id;
747 -- Obtain the entity of arbitrary node N. If N is a renaming, return the
748 -- entity of the earliest renamed source abstract state or whole object.
749 -- If no suitable entity is available, return Empty. This routine carries
750 -- out actions that are tied to SPARK semantics.
751
752 function Exceptions_OK return Boolean;
753 -- Determine whether exceptions are allowed to be caught, propagated, or
754 -- raised.
755
756 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
757 -- This procedure is called after issuing a message complaining about an
758 -- inappropriate use of limited type T. If useful, it adds additional
759 -- continuation lines to the message explaining why type T is limited.
760 -- Messages are placed at node N.
761
762 function Expression_Of_Expression_Function
763 (Subp : Entity_Id) return Node_Id;
764 -- Return the expression of expression function Subp
765
766 type Extensions_Visible_Mode is
767 (Extensions_Visible_None,
768 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
769 -- value acts as a default in a non-SPARK compilation.
770
771 Extensions_Visible_False,
772 -- A value of "False" signifies that Extensions_Visible is either
773 -- missing or the pragma is present and the value of its Boolean
774 -- expression is False.
775
776 Extensions_Visible_True);
777 -- A value of "True" signifies that Extensions_Visible is present and
778 -- the value of its Boolean expression is True.
779
780 function Extensions_Visible_Status
781 (Id : Entity_Id) return Extensions_Visible_Mode;
782 -- Given the entity of a subprogram or formal parameter subject to pragma
783 -- Extensions_Visible, return the Boolean value denoted by the expression
784 -- of the pragma.
785
786 procedure Find_Actual
787 (N : Node_Id;
788 Formal : out Entity_Id;
789 Call : out Node_Id);
790 -- Determines if the node N is an actual parameter of a function or a
791 -- procedure call. If so, then Formal points to the entity for the formal
792 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
793 -- Call is set to the node for the corresponding call. If the node N is not
794 -- an actual parameter then Formal and Call are set to Empty.
795
796 function Find_Body_Discriminal
797 (Spec_Discriminant : Entity_Id) return Entity_Id;
798 -- Given a discriminant of the record type that implements a task or
799 -- protected type, return the discriminal of the corresponding discriminant
800 -- of the actual concurrent type.
801
802 function Find_Corresponding_Discriminant
803 (Id : Node_Id;
804 Typ : Entity_Id) return Entity_Id;
805 -- Because discriminants may have different names in a generic unit and in
806 -- an instance, they are resolved positionally when possible. A reference
807 -- to a discriminant carries the discriminant that it denotes when it is
808 -- analyzed. Subsequent uses of this id on a different type denotes the
809 -- discriminant at the same position in this new type.
810
811 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
812 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
813 -- defines the Default_Initial_Condition pragma of type Typ. This is either
814 -- Typ itself or a parent type when the pragma is inherited.
815
816 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
817 -- Find the nearest iterator loop which encloses arbitrary entity Id. If
818 -- such a loop exists, return the entity of its identifier (E_Loop scope),
819 -- otherwise return Empty.
820
821 function Find_Enclosing_Scope (N : Node_Id) return Entity_Id;
822 -- Find the nearest scope which encloses arbitrary node N
823
824 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
825 -- Find the nested loop statement in a conditional block. Loops subject to
826 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
827 -- loop are nested within the block.
828
829 procedure Find_Overlaid_Entity
830 (N : Node_Id;
831 Ent : out Entity_Id;
832 Off : out Boolean);
833 -- The node N should be an address representation clause. Determines if
834 -- the target expression is the address of an entity with an optional
835 -- offset. If so, set Ent to the entity and, if there is an offset, set
836 -- Off to True, otherwise to False. If N is not an address representation
837 -- clause, or if it is not possible to determine that the address is of
838 -- this form, then set Ent to Empty.
839
840 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
841 -- Return the type of formal parameter Param as determined by its
842 -- specification.
843
844 -- The following type describes the placement of an arbitrary entity with
845 -- respect to SPARK visible / hidden state space.
846
847 type State_Space_Kind is
848 (Not_In_Package,
849 -- An entity is not in the visible, private or body state space when
850 -- the immediate enclosing construct is not a package.
851
852 Visible_State_Space,
853 -- An entity is in the visible state space when it appears immediately
854 -- within the visible declarations of a package or when it appears in
855 -- the visible state space of a nested package which in turn is declared
856 -- in the visible declarations of an enclosing package:
857
858 -- package Pack is
859 -- Visible_Variable : ...
860 -- package Nested
861 -- with Abstract_State => Visible_State
862 -- is
863 -- Visible_Nested_Variable : ...
864 -- end Nested;
865 -- end Pack;
866
867 -- Entities associated with a package instantiation inherit the state
868 -- space from the instance placement:
869
870 -- generic
871 -- package Gen is
872 -- Generic_Variable : ...
873 -- end Gen;
874
875 -- with Gen;
876 -- package Pack is
877 -- package Inst is new Gen;
878 -- -- Generic_Variable is in the visible state space of Pack
879 -- end Pack;
880
881 Private_State_Space,
882 -- An entity is in the private state space when it appears immediately
883 -- within the private declarations of a package or when it appears in
884 -- the visible state space of a nested package which in turn is declared
885 -- in the private declarations of an enclosing package:
886
887 -- package Pack is
888 -- private
889 -- Private_Variable : ...
890 -- package Nested
891 -- with Abstract_State => Private_State
892 -- is
893 -- Private_Nested_Variable : ...
894 -- end Nested;
895 -- end Pack;
896
897 -- The same placement principle applies to package instantiations
898
899 Body_State_Space);
900 -- An entity is in the body state space when it appears immediately
901 -- within the declarations of a package body or when it appears in the
902 -- visible state space of a nested package which in turn is declared in
903 -- the declarations of an enclosing package body:
904
905 -- package body Pack is
906 -- Body_Variable : ...
907 -- package Nested
908 -- with Abstract_State => Body_State
909 -- is
910 -- Body_Nested_Variable : ...
911 -- end Nested;
912 -- end Pack;
913
914 -- The same placement principle applies to package instantiations
915
916 procedure Find_Placement_In_State_Space
917 (Item_Id : Entity_Id;
918 Placement : out State_Space_Kind;
919 Pack_Id : out Entity_Id);
920 -- Determine the state space placement of an item. Item_Id denotes the
921 -- entity of an abstract state, object, or package instantiation. Placement
922 -- captures the precise placement of the item in the enclosing state space.
923 -- If the state space is that of a package, Pack_Id denotes its entity,
924 -- otherwise Pack_Id is Empty.
925
926 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
927 -- Locate primitive equality for type if it exists. Return Empty if it is
928 -- not available.
929
930 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
931 -- Find specific type of a class-wide type, and handle the case of an
932 -- incomplete type coming either from a limited_with clause or from an
933 -- incomplete type declaration. If resulting type is private return its
934 -- full view.
935
936 function Find_Static_Alternative (N : Node_Id) return Node_Id;
937 -- N is a case statement whose expression is a compile-time value.
938 -- Determine the alternative chosen, so that the code of non-selected
939 -- alternatives, and the warnings that may apply to them, are removed.
940
941 function First_Actual (Node : Node_Id) return Node_Id;
942 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
943 -- N_Entry_Call_Statement node. The result returned is the first actual
944 -- parameter in declaration order (not the order of parameters as they
945 -- appeared in the source, which can be quite different as a result of the
946 -- use of named parameters). Empty is returned for a call with no
947 -- parameters. The procedure for iterating through the actuals in
948 -- declaration order is to use this function to find the first actual, and
949 -- then use Next_Actual to obtain the next actual in declaration order.
950 -- Note that the value returned is always the expression (not the
951 -- N_Parameter_Association nodes, even if named association is used).
952
953 -- WARNING: There is a matching C declaration of this subprogram in fe.h
954
955 function First_Global
956 (Subp : Entity_Id;
957 Global_Mode : Name_Id;
958 Refined : Boolean := False) return Node_Id;
959 -- Returns the first global item of mode Global_Mode (which can be
960 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
961 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item
962 -- is retrieved from the Refined_Global aspect/pragma associated to the
963 -- body of Subp if present. Next_Global can be used to get the next global
964 -- item with the same mode.
965
966 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
967 -- Replace all occurrences of a particular word in string Msg depending on
968 -- the Ekind of Id as follows:
969 -- * Replace "subprogram" with
970 -- - "entry" when Id is an entry [family]
971 -- - "task type" when Id is a single task object, task type or task
972 -- body.
973 -- * Replace "protected" with
974 -- - "task" when Id is a single task object, task type or task body
975 -- All other non-matching words remain as is
976
977 function From_Nested_Package (T : Entity_Id) return Boolean;
978 -- A type declared in a nested package may be frozen by a declaration
979 -- appearing after the package but before the package is frozen. If the
980 -- type has aspects that generate subprograms, these may contain references
981 -- to entities local to the nested package. In that case the package must
982 -- be installed on the scope stack to prevent spurious visibility errors.
983
984 procedure Gather_Components
985 (Typ : Entity_Id;
986 Comp_List : Node_Id;
987 Governed_By : List_Id;
988 Into : Elist_Id;
989 Report_Errors : out Boolean);
990 -- The purpose of this procedure is to gather the valid components in a
991 -- record type according to the values of its discriminants, in order to
992 -- validate the components of a record aggregate.
993 --
994 -- Typ is the type of the aggregate when its constrained discriminants
995 -- need to be collected, otherwise it is Empty.
996 --
997 -- Comp_List is an N_Component_List node.
998 --
999 -- Governed_By is a list of N_Component_Association nodes, where each
1000 -- choice list contains the name of a discriminant and the expression
1001 -- field gives its value. The values of the discriminants governing
1002 -- the (possibly nested) variant parts in Comp_List are found in this
1003 -- Component_Association List.
1004 --
1005 -- Into is the list where the valid components are appended. Note that
1006 -- Into need not be an Empty list. If it's not, components are attached
1007 -- to its tail.
1008 --
1009 -- Report_Errors is set to True if the values of the discriminants are
1010 -- non-static.
1011 --
1012 -- This procedure is also used when building a record subtype. If the
1013 -- discriminant constraint of the subtype is static, the components of the
1014 -- subtype are only those of the variants selected by the values of the
1015 -- discriminants. Otherwise all components of the parent must be included
1016 -- in the subtype for semantic analysis.
1017
1018 function Get_Accessibility (E : Entity_Id) return Node_Id;
1019 -- Obtain the accessibility level for a given entity formal taking into
1020 -- account both extra and minimum accessibility.
1021
1022 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
1023 -- Given a node for an expression, obtain the actual subtype of the
1024 -- expression. In the case of a parameter where the formal is an
1025 -- unconstrained array or discriminated type, this will be the previously
1026 -- constructed subtype of the actual. Note that this is not quite the
1027 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
1028 -- it is the subtype of the value of the actual. The actual subtype is also
1029 -- returned in other cases where it has already been constructed for an
1030 -- object. Otherwise the expression type is returned unchanged, except for
1031 -- the case of an unconstrained array type, where an actual subtype is
1032 -- created, using Insert_Actions if necessary to insert any associated
1033 -- actions.
1034
1035 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
1036 -- This is like Get_Actual_Subtype, except that it never constructs an
1037 -- actual subtype. If an actual subtype is already available, i.e. the
1038 -- Actual_Subtype field of the corresponding entity is set, then it is
1039 -- returned. Otherwise the Etype of the node is returned.
1040
1041 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
1042 -- Return the body node for a stub
1043
1044 function Get_Cursor_Type
1045 (Aspect : Node_Id;
1046 Typ : Entity_Id) return Entity_Id;
1047 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1048 -- primitive operation First. For use in resolving the other primitive
1049 -- operations of an Iterable type and expanding loops and quantified
1050 -- expressions over formal containers.
1051
1052 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1053 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1054 -- primitive operation First. For use after resolving the primitive
1055 -- operations of an Iterable type.
1056
1057 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1058 -- This is used to construct the string literal node representing a
1059 -- default external name, i.e. one that is constructed from the name of an
1060 -- entity, or (in the case of extended DEC import/export pragmas) an
1061 -- identifier provided as the external name. Letters in the name are
1062 -- according to the setting of Opt.External_Name_Default_Casing.
1063
1064 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1065 -- If expression N references a part of an object, return this object.
1066 -- Otherwise return Empty. Expression N should have been resolved already.
1067
1068 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1069 -- Returns the true generic entity in an instantiation. If the name in the
1070 -- instantiation is a renaming, the function returns the renamed generic.
1071
1072 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1073 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1074 -- in a child unit a derived type is within the derivation class of an
1075 -- ancestor declared in a parent unit, even if there is an intermediate
1076 -- derivation that does not see the full view of that ancestor.
1077
1078 procedure Get_Index_Bounds
1079 (N : Node_Id;
1080 L : out Node_Id;
1081 H : out Node_Id;
1082 Use_Full_View : Boolean := False);
1083 -- This procedure assigns to L and H respectively the values of the low and
1084 -- high bounds of node N, which must be a range, subtype indication, or the
1085 -- name of a scalar subtype. The result in L, H may be set to Error if
1086 -- there was an earlier error in the range.
1087 -- Use_Full_View is intended for use by clients other than the compiler
1088 -- (specifically, gnat2scil) to indicate that we want the full view if
1089 -- the index type turns out to be a partial view; this case should not
1090 -- arise during normal compilation of semantically correct programs.
1091
1092 procedure Get_Interfacing_Aspects
1093 (Iface_Asp : Node_Id;
1094 Conv_Asp : out Node_Id;
1095 EN_Asp : out Node_Id;
1096 Expo_Asp : out Node_Id;
1097 Imp_Asp : out Node_Id;
1098 LN_Asp : out Node_Id;
1099 Do_Checks : Boolean := False);
1100 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1101 -- aspects that apply to the same related entity. The aspects considered by
1102 -- this routine are as follows:
1103 --
1104 -- Conv_Asp - aspect Convention
1105 -- EN_Asp - aspect External_Name
1106 -- Expo_Asp - aspect Export
1107 -- Imp_Asp - aspect Import
1108 -- LN_Asp - aspect Link_Name
1109 --
1110 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1111 -- aspects.
1112
1113 function Get_Enum_Lit_From_Pos
1114 (T : Entity_Id;
1115 Pos : Uint;
1116 Loc : Source_Ptr) return Node_Id;
1117 -- This function returns an identifier denoting the E_Enumeration_Literal
1118 -- entity for the specified value from the enumeration type or subtype T.
1119 -- The second argument is the Pos value. Constraint_Error is raised if
1120 -- argument Pos is not in range. The third argument supplies a source
1121 -- location for constructed nodes returned by this function. If No_Location
1122 -- is supplied as source location, the location of the returned node is
1123 -- copied from the original source location for the enumeration literal,
1124 -- when available.
1125
1126 function Get_Iterable_Type_Primitive
1127 (Typ : Entity_Id;
1128 Nam : Name_Id) return Entity_Id;
1129 -- Retrieve one of the primitives First, Last, Next, Previous, Has_Element,
1130 -- Element from the value of the Iterable aspect of a type.
1131
1132 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
1133 -- Retrieve the fully expanded name of the library unit declared by
1134 -- Decl_Node into the name buffer.
1135
1136 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1137 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1138 -- is not present. It is assumed that Id denotes an entry.
1139
1140 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1141 pragma Inline (Get_Name_Entity_Id);
1142 -- An entity value is associated with each name in the name table. The
1143 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1144 -- is the innermost visible entity with the given name. See the body of
1145 -- Sem_Ch8 for further details on handling of entity visibility.
1146
1147 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1148 -- Return the Name component of Test_Case pragma N
1149 -- Bad name now that this no longer applies to Contract_Case ???
1150
1151 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1152 -- Get defining entity of parent unit of a child unit. In most cases this
1153 -- is the defining entity of the unit, but for a child instance whose
1154 -- parent needs a body for inlining, the instantiation node of the parent
1155 -- has not yet been rewritten as a package declaration, and the entity has
1156 -- to be retrieved from the Instance_Spec of the unit.
1157
1158 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1159 pragma Inline (Get_Pragma_Id);
1160 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1161
1162 function Get_Qualified_Name
1163 (Id : Entity_Id;
1164 Suffix : Entity_Id := Empty) return Name_Id;
1165 -- Obtain the fully qualified form of entity Id. The format is:
1166 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1167
1168 function Get_Qualified_Name
1169 (Nam : Name_Id;
1170 Suffix : Name_Id := No_Name;
1171 Scop : Entity_Id := Current_Scope) return Name_Id;
1172 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1173 -- Scop. The format is:
1174 -- scop-1__scop__nam__suffix
1175
1176 procedure Get_Reason_String (N : Node_Id);
1177 -- Recursive routine to analyze reason argument for pragma Warnings. The
1178 -- value of the reason argument is appended to the current string using
1179 -- Store_String_Chars. The reason argument is expected to be a string
1180 -- literal or concatenation of string literals. An error is given for
1181 -- any other form.
1182
1183 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1184 -- If Typ has Implicit_Dereference, return discriminant specified in the
1185 -- corresponding aspect.
1186
1187 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1188 -- Given an arbitrary node, return the renamed object if the node
1189 -- represents a renamed object; otherwise return the node unchanged.
1190 -- The node can represent an arbitrary expression or any other kind of
1191 -- node (such as the name of a type).
1192
1193 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1194 -- Given an entity for an exception, package, subprogram or generic unit,
1195 -- returns the ultimately renamed entity if this is a renaming. If this is
1196 -- not a renamed entity, returns its argument. It is an error to call this
1197 -- with any other kind of entity.
1198
1199 function Get_Return_Object (N : Node_Id) return Entity_Id;
1200 -- Given an extended return statement, return the corresponding return
1201 -- object, identified as the one for which Is_Return_Object = True.
1202
1203 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1204 -- Nod is either a procedure call statement, or a function call, or an
1205 -- accept statement node. This procedure finds the Entity_Id of the related
1206 -- subprogram or entry and returns it, or if no subprogram can be found,
1207 -- returns Empty.
1208
1209 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1210 -- Given an entity for a task type or subtype, retrieves the
1211 -- Task_Body_Procedure field from the corresponding task type declaration.
1212
1213 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
1214 -- For a type entity, return the entity of the primitive equality function
1215 -- for the type if it exists, otherwise return Empty.
1216
1217 procedure Get_Views
1218 (Typ : Entity_Id;
1219 Priv_Typ : out Entity_Id;
1220 Full_Typ : out Entity_Id;
1221 UFull_Typ : out Entity_Id;
1222 CRec_Typ : out Entity_Id);
1223 -- Obtain the partial and full views of type Typ and in addition any extra
1224 -- types the full views may have. The return entities are as follows:
1225 --
1226 -- Priv_Typ - the partial view (a private type)
1227 -- Full_Typ - the full view
1228 -- UFull_Typ - the underlying full view, if the full view is private
1229 -- CRec_Typ - the corresponding record type of the full views
1230
1231 function Has_Access_Values (T : Entity_Id) return Boolean;
1232 -- Returns true if type or subtype T is an access type, or has a component
1233 -- (at any recursive level) that is an access type. This is a conservative
1234 -- predicate, if it is not known whether or not T contains access values
1235 -- (happens for generic formals in some cases), then False is returned.
1236 -- Note that tagged types return False. Even though the tag is implemented
1237 -- as an access type internally, this function tests only for access types
1238 -- known to the programmer. See also Has_Tagged_Component.
1239
1240 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1241 -- Result of Has_Compatible_Alignment test, description found below. Note
1242 -- that the values are arranged in increasing order of problematicness.
1243
1244 function Has_Compatible_Alignment
1245 (Obj : Entity_Id;
1246 Expr : Node_Id;
1247 Layout_Done : Boolean) return Alignment_Result;
1248 -- Obj is an object entity, and expr is a node for an object reference. If
1249 -- the alignment of the object referenced by Expr is known to be compatible
1250 -- with the alignment of Obj (i.e. is larger or the same), then the result
1251 -- is Known_Compatible. If the alignment of the object referenced by Expr
1252 -- is known to be less than the alignment of Obj, then Known_Incompatible
1253 -- is returned. If neither condition can be reliably established at compile
1254 -- time, then Unknown is returned. If Layout_Done is True, the function can
1255 -- assume that the information on size and alignment of types and objects
1256 -- is present in the tree. This is used to determine if alignment checks
1257 -- are required for address clauses (Layout_Done is False in this case) as
1258 -- well as to issue appropriate warnings for them in the post compilation
1259 -- phase (Layout_Done is True in this case).
1260 --
1261 -- Note: Known_Incompatible does not mean that at run time the alignment
1262 -- of Expr is known to be wrong for Obj, just that it can be determined
1263 -- that alignments have been explicitly or implicitly specified which are
1264 -- incompatible (whereas Unknown means that even this is not known). The
1265 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1266 -- Unknown, but issue a warning that there may be an alignment error.
1267
1268 function Has_Declarations (N : Node_Id) return Boolean;
1269 -- Determines if the node can have declarations
1270
1271 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1272 -- Simple predicate to test for defaulted discriminants
1273
1274 function Has_Denormals (E : Entity_Id) return Boolean;
1275 -- Determines if the floating-point type E supports denormal numbers.
1276 -- Returns False if E is not a floating-point type.
1277
1278 function Has_Discriminant_Dependent_Constraint
1279 (Comp : Entity_Id) return Boolean;
1280 -- Returns True if and only if Comp has a constrained subtype that depends
1281 -- on a discriminant.
1282
1283 function Has_Effectively_Volatile_Profile
1284 (Subp_Id : Entity_Id) return Boolean;
1285 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1286 -- parameter or returns an effectively volatile value.
1287
1288 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1289 -- Determine whether type Typ defines "full default initialization" as
1290 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1291 -- * A scalar type with specified Default_Value
1292 -- * An array-of-scalar type with specified Default_Component_Value
1293 -- * An array type whose element type defines full default initialization
1294 -- * A protected type, record type or type extension whose components
1295 -- either include a default expression or have a type which defines
1296 -- full default initialization. In the case of type extensions, the
1297 -- parent type defines full default initialization.
1298 -- * A task type
1299 -- * A private type with pragma Default_Initial_Condition that provides
1300 -- full default initialization.
1301 -- This function is not used in GNATprove anymore, but is used in CodePeer.
1302
1303 function Has_Fully_Default_Initializing_DIC_Pragma
1304 (Typ : Entity_Id) return Boolean;
1305 -- Determine whether type Typ has a suitable Default_Initial_Condition
1306 -- pragma which provides the full default initialization of the type.
1307
1308 function Has_Infinities (E : Entity_Id) return Boolean;
1309 -- Determines if the range of the floating-point type E includes
1310 -- infinities. Returns False if E is not a floating-point type.
1311
1312 function Has_Interfaces
1313 (T : Entity_Id;
1314 Use_Full_View : Boolean := True) return Boolean;
1315 -- Where T is a concurrent type or a record type, returns true if T covers
1316 -- any abstract interface types. In case of private types the argument
1317 -- Use_Full_View controls if the check is done using its full view (if
1318 -- available).
1319
1320 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1321 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1322 -- assumed that Id denotes an entry.
1323
1324 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1325 -- This is a simple minded function for determining whether an expression
1326 -- has no obvious side effects. It is used only for determining whether
1327 -- warnings are needed in certain situations, and is not guaranteed to
1328 -- be accurate in either direction. Exceptions may mean an expression
1329 -- does in fact have side effects, but this may be ignored and True is
1330 -- returned, or a complex expression may in fact be side effect free
1331 -- but we don't recognize it here and return False. The Side_Effect_Free
1332 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1333 -- be shared, so that this routine would be more accurate.
1334
1335 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1336 -- Determine whether abstract state Id has at least one nonnull constituent
1337 -- as expressed in pragma Refined_State. This function does not take into
1338 -- account the visible refinement region of abstract state Id.
1339
1340 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1341 -- Determine whether subprogram Subp has a class-wide precondition that is
1342 -- not statically True.
1343
1344 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1345 -- Determine whether the body of procedure Proc_Id contains a sole null
1346 -- statement, possibly followed by an optional return. Used to optimize
1347 -- useless calls to assertion checks.
1348
1349 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1350 -- Determine whether node N has a null exclusion
1351
1352 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1353 -- Determine whether abstract state Id has a null refinement as expressed
1354 -- in pragma Refined_State. This function does not take into account the
1355 -- visible refinement region of abstract state Id.
1356
1357 function Has_Non_Null_Statements (L : List_Id) return Boolean;
1358 -- Return True if L has non-null statements
1359
1360 function Side_Effect_Free_Statements (L : List_Id) return Boolean;
1361 -- Return True if L has no statements with side effects
1362
1363 function Side_Effect_Free_Loop (N : Node_Id) return Boolean;
1364 -- Return True if the loop has no side effect and can therefore be
1365 -- marked for removal. Return False if N is not a N_Loop_Statement.
1366
1367 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1368 -- Predicate to determine whether a controlled type has a user-defined
1369 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1370 -- non-null), which causes the type to not have preelaborable
1371 -- initialization.
1372
1373 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1374 -- Return True iff type E has preelaborable initialization as defined in
1375 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1376
1377 function Has_Prefix (N : Node_Id) return Boolean;
1378 -- Return True if N has attribute Prefix
1379
1380 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1381 -- Check if a type has a (sub)component of a private type that has not
1382 -- yet received a full declaration.
1383
1384 function Has_Relaxed_Initialization (E : Entity_Id) return Boolean;
1385 -- Returns True iff entity E is subject to the Relaxed_Initialization
1386 -- aspect. Entity E can be either type, variable, constant, function,
1387 -- or abstract state. For private types and deferred constants E should
1388 -- be the private view, because aspect can only be attached there.
1389
1390 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1391 -- Determines if the floating-point type E supports signed zeros.
1392 -- Returns False if E is not a floating-point type.
1393
1394 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1395 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1396 -- All subprograms have a N_Contract node, but this does not mean that the
1397 -- contract is useful.
1398
1399 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1400 -- Return whether an array type has static bounds
1401
1402 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1403 -- Determine whether array type Typ has static non-empty bounds
1404
1405 function Has_Stream (T : Entity_Id) return Boolean;
1406 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1407 -- case of a composite type, has a component for which this predicate is
1408 -- True, and if so returns True. Otherwise a result of False means that
1409 -- there is no Stream type in sight. For a private type, the test is
1410 -- applied to the underlying type (or returns False if there is no
1411 -- underlying type).
1412
1413 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1414 -- Returns true if the last character of E is Suffix. Used in Assertions.
1415
1416 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1417 -- Returns True if Typ is a composite type (array or record) that is either
1418 -- a tagged type or has a subcomponent that is tagged. Returns False for a
1419 -- noncomposite type, or if no tagged subcomponents are present. This
1420 -- function is used to check if "=" has to be expanded into a bunch
1421 -- component comparisons.
1422
1423 function Has_Unconstrained_Access_Discriminants
1424 (Subtyp : Entity_Id) return Boolean;
1425 -- Returns True if the given subtype is unconstrained and has one or more
1426 -- access discriminants.
1427
1428 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1429 -- Given arbitrary expression Expr, determine whether it contains at
1430 -- least one name whose entity is Any_Id.
1431
1432 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1433 -- Given arbitrary type Typ, determine whether it contains at least one
1434 -- volatile component.
1435
1436 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1437 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1438 -- implementation requirement which the pragma imposes. The return value is
1439 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1440
1441 function Implements_Interface
1442 (Typ_Ent : Entity_Id;
1443 Iface_Ent : Entity_Id;
1444 Exclude_Parents : Boolean := False) return Boolean;
1445 -- Returns true if the Typ_Ent implements interface Iface_Ent
1446
1447 function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id;
1448 -- Called when Typ is the type of the prefix of an implicit dereference.
1449 -- Return the designated type of Typ, taking into account that this type
1450 -- may be a limited view, when the nonlimited view is visible.
1451
1452 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1453 -- Returns True if node N appears within a pragma that acts as an assertion
1454 -- expression. See Sem_Prag for the list of qualifying pragmas.
1455
1456 function In_Generic_Scope (E : Entity_Id) return Boolean;
1457 -- Returns True if entity E is inside a generic scope
1458
1459 function In_Instance return Boolean;
1460 -- Returns True if the current scope is within a generic instance
1461
1462 function In_Instance_Body return Boolean;
1463 -- Returns True if current scope is within the body of an instance, where
1464 -- several semantic checks (e.g. accessibility checks) are relaxed.
1465
1466 function In_Instance_Not_Visible return Boolean;
1467 -- Returns True if current scope is with the private part or the body of
1468 -- an instance. Other semantic checks are suppressed in this context.
1469
1470 function In_Instance_Visible_Part
1471 (Id : Entity_Id := Current_Scope) return Boolean;
1472 -- Returns True if arbitrary entity Id is within the visible part of a
1473 -- package instance, where several additional semantic checks apply.
1474
1475 function In_Package_Body return Boolean;
1476 -- Returns True if current scope is within a package body
1477
1478 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1479 -- Returns true if the expression N occurs within a pragma with name Nam
1480
1481 function In_Pre_Post_Condition (N : Node_Id) return Boolean;
1482 -- Returns True if node N appears within a pre/postcondition pragma. Note
1483 -- the pragma Check equivalents are NOT considered.
1484
1485 function In_Quantified_Expression (N : Node_Id) return Boolean;
1486 -- Returns true if the expression N occurs within a quantified expression
1487
1488 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1489 -- Returns True if N denotes a component or subcomponent in a record or
1490 -- array that has Reverse_Storage_Order.
1491
1492 function In_Same_Declarative_Part
1493 (Context : Node_Id;
1494 N : Node_Id) return Boolean;
1495 -- True if the node N appears within the same declarative part denoted by
1496 -- the node Context.
1497
1498 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1499 -- Determines if the current scope is within a subprogram compilation unit
1500 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1501 -- declaration) or within a task or protected body. The test is for
1502 -- appearing anywhere within such a construct (that is it does not need
1503 -- to be directly within).
1504
1505 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1506 -- Determine whether node N is within the subtree rooted at Root
1507
1508 function In_Subtree
1509 (N : Node_Id;
1510 Root1 : Node_Id;
1511 Root2 : Node_Id) return Boolean;
1512 -- Determine whether node N is within the subtree rooted at Root1 or Root2.
1513 -- This version is more efficient than calling the single root version of
1514 -- Is_Subtree twice.
1515
1516 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1517 -- Determine whether a declaration occurs within the visible part of a
1518 -- package specification. The package must be on the scope stack, and the
1519 -- corresponding private part must not.
1520
1521 function In_While_Loop_Condition (N : Node_Id) return Boolean;
1522 -- Returns true if the expression N occurs within the condition of a while
1523
1524 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1525 -- Given the entity of a constant or a type, retrieve the incomplete or
1526 -- partial view of the same entity. Note that Id may not have a partial
1527 -- view in which case the function returns Empty.
1528
1529 function Incomplete_View_From_Limited_With
1530 (Typ : Entity_Id) return Entity_Id;
1531 -- Typ is a type entity. This normally returns Typ. However, if there is
1532 -- an incomplete view of this entity that comes from a limited-with'ed
1533 -- package, then this returns that incomplete view.
1534
1535 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1536 -- Given an N_Indexed_Component node, return the first bit position of the
1537 -- component if it is known at compile time. A value of No_Uint means that
1538 -- either the value is not yet known before back-end processing or it is
1539 -- not known at compile time after back-end processing.
1540
1541 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
1542 -- Propagate static and dynamic predicate flags from a parent to the
1543 -- subtype in a subtype declaration with and without constraints.
1544
1545 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1546 -- Inherit the rep item chain of type From_Typ without clobbering any
1547 -- existing rep items on Typ's chain. Typ is the destination type.
1548
1549 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1550 pragma Inline (Inherits_From_Tagged_Full_View);
1551 -- Return True if Typ is an untagged private type completed with a
1552 -- derivation of an untagged private type declaration whose full view
1553 -- is a tagged type.
1554
1555 procedure Insert_Explicit_Dereference (N : Node_Id);
1556 -- In a context that requires a composite or subprogram type and where a
1557 -- prefix is an access type, rewrite the access type node N (which is the
1558 -- prefix, e.g. of an indexed component) as an explicit dereference.
1559
1560 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1561 -- Examine all deferred constants in the declaration list Decls and check
1562 -- whether they have been completed by a full constant declaration or an
1563 -- Import pragma. Emit the error message if that is not the case.
1564
1565 procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1566 -- Install the elaboration model specified by pragma Elaboration_Checks
1567 -- associated with compilation unit Unit_Id. No action is taken when the
1568 -- unit lacks such pragma.
1569
1570 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1571 -- Install both the generic formal parameters and the formal parameters of
1572 -- generic subprogram Subp_Id into visibility.
1573
1574 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1575 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1576
1577 function Invalid_Scalar_Value
1578 (Loc : Source_Ptr;
1579 Scal_Typ : Scalar_Id) return Node_Id;
1580 -- Obtain the invalid value for scalar type Scal_Typ as either specified by
1581 -- pragma Initialize_Scalars or by the binder. Return an expression created
1582 -- at source location Loc, which denotes the invalid value.
1583
1584 function Is_Anonymous_Access_Actual (N : Node_Id) return Boolean;
1585 -- Determine if N is used as an actual for a call whose corresponding
1586 -- formal is of an anonymous access type.
1587
1588 function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean;
1589 -- True if E is the constructed wrapper for an access_to_subprogram
1590 -- type with Pre/Postconditions.
1591
1592 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1593 -- Determines if N is an actual parameter of out mode in a subprogram call
1594
1595 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1596 -- Determines if N is an actual parameter in a subprogram call
1597
1598 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1599 -- Determines if N is an actual parameter of a formal of tagged type in a
1600 -- subprogram call.
1601
1602 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1603 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1604 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1605 -- rules of the language, it does not take into account the restriction
1606 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1607 -- and Obj violates the restriction. The caller is responsible for calling
1608 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1609 -- requirement for obeying the restriction in the call context.
1610
1611 function Is_Ancestor_Package
1612 (E1 : Entity_Id;
1613 E2 : Entity_Id) return Boolean;
1614 -- Determine whether package E1 is an ancestor of E2
1615
1616 function Is_Atomic_Object (N : Node_Id) return Boolean;
1617 -- Determine whether arbitrary node N denotes a reference to an atomic
1618 -- object as per RM C.6(7) and the crucial remark in RM C.6(8).
1619
1620 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean;
1621 -- Determine whether arbitrary node N denotes a reference to an object
1622 -- which is either atomic or Volatile_Full_Access.
1623
1624 function Is_Attribute_Old (N : Node_Id) return Boolean;
1625 -- Determine whether node N denotes attribute 'Old
1626
1627 function Is_Attribute_Result (N : Node_Id) return Boolean;
1628 -- Determine whether node N denotes attribute 'Result
1629
1630 function Is_Attribute_Update (N : Node_Id) return Boolean;
1631 -- Determine whether node N denotes attribute 'Update
1632
1633 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1634 -- Determine whether node N denotes a body or a package declaration
1635
1636 function Is_Bounded_String (T : Entity_Id) return Boolean;
1637 -- True if T is a bounded string type. Used to make sure "=" composes
1638 -- properly for bounded string types.
1639
1640 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1641 -- Exp is the expression for an array bound. Determines whether the
1642 -- bound is a compile-time known value, or a constant entity, or an
1643 -- enumeration literal, or an expression composed of constant-bound
1644 -- subexpressions which are evaluated by means of standard operators.
1645
1646 function Is_Container_Element (Exp : Node_Id) return Boolean;
1647 -- This routine recognizes expressions that denote an element of one of
1648 -- the predefined containers, when the source only contains an indexing
1649 -- operation and an implicit dereference is inserted by the compiler.
1650 -- In the absence of this optimization, the indexing creates a temporary
1651 -- controlled cursor that sets the tampering bit of the container, and
1652 -- restricts the use of the convenient notation C (X) to contexts that
1653 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1654 -- explicit dereference. The transformation applies when it has the form
1655 -- F (X).Discr.all.
1656
1657 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1658 -- Determine whether aspect specification or pragma Item is a contract
1659 -- annotation.
1660
1661 function Is_Controlling_Limited_Procedure
1662 (Proc_Nam : Entity_Id) return Boolean;
1663 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1664 -- of a limited interface with a controlling first parameter.
1665
1666 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1667 -- Returns True if N is a call to a CPP constructor
1668
1669 function Is_CCT_Instance
1670 (Ref_Id : Entity_Id;
1671 Context_Id : Entity_Id) return Boolean;
1672 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1673 -- Global; also used when analyzing default expressions of protected and
1674 -- record components. Determine whether entity Ref_Id (which must represent
1675 -- either a protected type or a task type) denotes the current instance of
1676 -- a concurrent type. Context_Id denotes the associated context where the
1677 -- pragma appears.
1678
1679 function Is_Child_Or_Sibling
1680 (Pack_1 : Entity_Id;
1681 Pack_2 : Entity_Id) return Boolean;
1682 -- Determine the following relations between two arbitrary packages:
1683 -- 1) One package is the parent of a child package
1684 -- 2) Both packages are siblings and share a common parent
1685
1686 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1687 -- First determine whether type T is an interface and then check whether
1688 -- it is of protected, synchronized or task kind.
1689
1690 function Is_Current_Instance (N : Node_Id) return Boolean;
1691 -- Predicate is true if N legally denotes a type name within its own
1692 -- declaration. Prior to Ada 2012 this covered only synchronized type
1693 -- declarations. In Ada 2012 it also covers type and subtype declarations
1694 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1695
1696 function Is_Current_Instance_Reference_In_Type_Aspect
1697 (N : Node_Id) return Boolean;
1698 -- True if N is a reference to a current instance object that occurs within
1699 -- an aspect_specification for a type or subtype. In this case N will be
1700 -- a formal parameter of a subprogram created for a predicate, invariant,
1701 -- or Default_Initial_Condition aspect.
1702
1703 function Is_Declaration
1704 (N : Node_Id;
1705 Body_OK : Boolean := True;
1706 Concurrent_OK : Boolean := True;
1707 Formal_OK : Boolean := True;
1708 Generic_OK : Boolean := True;
1709 Instantiation_OK : Boolean := True;
1710 Renaming_OK : Boolean := True;
1711 Stub_OK : Boolean := True;
1712 Subprogram_OK : Boolean := True;
1713 Type_OK : Boolean := True) return Boolean;
1714 -- Determine whether arbitrary node N denotes a declaration depending
1715 -- on the allowed subsets of declarations. Set the following flags to
1716 -- consider specific subsets of declarations:
1717 --
1718 -- * Body_OK - body declarations
1719 --
1720 -- * Concurrent_OK - concurrent type declarations
1721 --
1722 -- * Formal_OK - formal declarations
1723 --
1724 -- * Generic_OK - generic declarations, including generic renamings
1725 --
1726 -- * Instantiation_OK - generic instantiations
1727 --
1728 -- * Renaming_OK - renaming declarations, including generic renamings
1729 --
1730 -- * Stub_OK - stub declarations
1731 --
1732 -- * Subprogram_OK - entry, expression function, and subprogram
1733 -- declarations.
1734 --
1735 -- * Type_OK - type declarations, including concurrent types
1736
1737 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1738 -- Returns True iff component Comp is declared within a variant part
1739
1740 function Is_Dependent_Component_Of_Mutable_Object
1741 (Object : Node_Id) return Boolean;
1742 -- Returns True if Object is the name of a subcomponent that depends on
1743 -- discriminants of a variable whose nominal subtype is unconstrained and
1744 -- not indefinite, and the variable is not aliased. Otherwise returns
1745 -- False. The nodes passed to this function are assumed to denote objects.
1746
1747 function Is_Dereferenced (N : Node_Id) return Boolean;
1748 -- N is a subexpression node of an access type. This function returns true
1749 -- if N appears as the prefix of a node that does a dereference of the
1750 -- access value (selected/indexed component, explicit dereference or a
1751 -- slice), and false otherwise.
1752
1753 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1754 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
1755 -- This is the RM definition, a type is a descendant of another type if it
1756 -- is the same type or is derived from a descendant of the other type.
1757
1758 function Is_Descendant_Of_Suspension_Object
1759 (Typ : Entity_Id) return Boolean;
1760 -- Determine whether type Typ is a descendant of type Suspension_Object
1761 -- defined in Ada.Synchronous_Task_Control. This version is different from
1762 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
1763 -- an entity and by extension a call to RTSfind.
1764
1765 function Is_Double_Precision_Floating_Point_Type
1766 (E : Entity_Id) return Boolean;
1767 -- Return whether E is a double precision floating point type,
1768 -- characterized by:
1769 -- . machine_radix = 2
1770 -- . machine_mantissa = 53
1771 -- . machine_emax = 2**10
1772 -- . machine_emin = 3 - machine_emax
1773
1774 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1775 -- Determine whether a type or object denoted by entity Id is effectively
1776 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1777 -- * Volatile without No_Caching
1778 -- * An array type subject to aspect Volatile_Components
1779 -- * An array type whose component type is effectively volatile
1780 -- * A protected type
1781 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1782
1783 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1784 -- Determine whether an arbitrary node denotes an effectively volatile
1785 -- object (SPARK RM 7.1.2).
1786
1787 function Is_Entry_Body (Id : Entity_Id) return Boolean;
1788 -- Determine whether entity Id is the body entity of an entry [family]
1789
1790 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1791 -- Determine whether entity Id is the spec entity of an entry [family]
1792
1793 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
1794 -- Check whether a function in a call is an expanded priority attribute,
1795 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
1796 -- does not take place in a configurable runtime.
1797
1798 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1799 -- Determine whether subprogram [body] Subp denotes an expression function
1800
1801 function Is_Expression_Function_Or_Completion
1802 (Subp : Entity_Id) return Boolean;
1803 -- Determine whether subprogram [body] Subp denotes an expression function
1804 -- or is completed by an expression function body.
1805
1806 function Is_EVF_Expression (N : Node_Id) return Boolean;
1807 -- Determine whether node N denotes a reference to a formal parameter of
1808 -- a specific tagged type whose related subprogram is subject to pragma
1809 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
1810 -- constructs fall under this category:
1811 -- 1) A qualified expression whose operand is EVF
1812 -- 2) A type conversion whose operand is EVF
1813 -- 3) An if expression with at least one EVF dependent_expression
1814 -- 4) A case expression with at least one EVF dependent_expression
1815
1816 function Is_False (U : Uint) return Boolean;
1817 pragma Inline (Is_False);
1818 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1819 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1820 -- if it is False (i.e. zero).
1821
1822 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1823 -- Returns True iff the number U is a model number of the fixed-point type
1824 -- T, i.e. if it is an exact multiple of Small.
1825
1826 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1827 -- Typ is a type entity. This function returns true if this type is fully
1828 -- initialized, meaning that an object of the type is fully initialized.
1829 -- Note that initialization resulting from use of pragma Normalize_Scalars
1830 -- does not count. Note that this is only used for the purpose of issuing
1831 -- warnings for objects that are potentially referenced uninitialized. This
1832 -- means that the result returned is not crucial, but should err on the
1833 -- side of thinking things are fully initialized if it does not know.
1834
1835 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1836 -- Determine whether arbitrary declaration Decl denotes a generic package,
1837 -- a generic subprogram or a generic body.
1838
1839 function Is_Independent_Object (N : Node_Id) return Boolean;
1840 -- Determine whether arbitrary node N denotes a reference to an independent
1841 -- object as per RM C.6(8).
1842
1843 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1844 -- E is a subprogram. Return True is E is an implicit operation inherited
1845 -- by a derived type declaration.
1846
1847 function Is_Inherited_Operation_For_Type
1848 (E : Entity_Id;
1849 Typ : Entity_Id) return Boolean;
1850 -- E is a subprogram. Return True is E is an implicit operation inherited
1851 -- by the derived type declaration for type Typ.
1852
1853 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
1854 -- Return True if Subp is an expression function that fulfills all the
1855 -- following requirements for inlining:
1856 -- 1. pragma/aspect Inline_Always
1857 -- 2. No formals
1858 -- 3. No contracts
1859 -- 4. No dispatching primitive
1860 -- 5. Result subtype controlled (or with controlled components)
1861 -- 6. Result subtype not subject to type-invariant checks
1862 -- 7. Result subtype not a class-wide type
1863 -- 8. Return expression naming an object global to the function
1864 -- 9. Nominal subtype of the returned object statically compatible
1865 -- with the result subtype of the expression function.
1866
1867 function Is_Iterator (Typ : Entity_Id) return Boolean;
1868 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1869 -- Ada.Iterator_Interfaces, or it is derived from one.
1870
1871 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
1872 -- N is an iterator specification. Returns True iff N is an iterator over
1873 -- an array, either inside a loop of the form 'for X of A' or a quantified
1874 -- expression of the form 'for all/some X of A' where A is of array type.
1875
1876 type Is_LHS_Result is (Yes, No, Unknown);
1877 function Is_LHS (N : Node_Id) return Is_LHS_Result;
1878 -- Returns Yes if N is definitely used as Name in an assignment statement.
1879 -- Returns No if N is definitely NOT used as a Name in an assignment
1880 -- statement. Returns Unknown if we can't tell at this stage (happens in
1881 -- the case where we don't know the type of N yet, and we have something
1882 -- like N.A := 3, where this counts as N being used on the left side of
1883 -- an assignment only if N is not an access type. If it is an access type
1884 -- then it is N.all.A that is assigned, not N.
1885
1886 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1887 -- A library-level declaration is one that is accessible from Standard,
1888 -- i.e. a library unit or an entity declared in a library package.
1889
1890 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1891 -- Determine whether a given type is a limited class-wide type, in which
1892 -- case it needs a Master_Id, because extensions of its designated type
1893 -- may include task components. A class-wide type that comes from a
1894 -- limited view must be treated in the same way.
1895
1896 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1897 -- Determines whether Expr is a reference to a variable or IN OUT mode
1898 -- parameter of the current enclosing subprogram.
1899 -- Why are OUT parameters not considered here ???
1900
1901 function Is_Name_Reference (N : Node_Id) return Boolean;
1902 -- Determine whether arbitrary node N is a reference to a name. This is
1903 -- similar to Is_Object_Reference but returns True only if N can be renamed
1904 -- without the need for a temporary, the typical example of an object not
1905 -- in this category being a function call.
1906
1907 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
1908 -- Determine whether arbitrary construct N violates preelaborability as
1909 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the
1910 -- syntactic and semantic properties of the construct.
1911
1912 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
1913 -- Determine whether entity Id denotes the procedure that verifies the
1914 -- assertion expression of pragma Default_Initial_Condition and if it does,
1915 -- the encapsulated expression is nontrivial.
1916
1917 function Is_Null_Record_Type (T : Entity_Id) return Boolean;
1918 -- Determine whether T is declared with a null record definition or a
1919 -- null component list.
1920
1921 function Is_Object_Image (Prefix : Node_Id) return Boolean;
1922 -- Returns True if an 'Img, 'Image, 'Wide_Image, or 'Wide_Wide_Image
1923 -- attribute is applied to an object.
1924
1925 function Is_Object_Reference (N : Node_Id) return Boolean;
1926 -- Determines if the tree referenced by N represents an object. Both
1927 -- variable and constant objects return True (compare Is_Variable).
1928
1929 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1930 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1931 -- Note that the Is_Variable function is not quite the right test because
1932 -- this is a case in which conversions whose expression is a variable (in
1933 -- the Is_Variable sense) with an untagged type target are considered view
1934 -- conversions and hence variables.
1935
1936 function Is_OK_Volatile_Context
1937 (Context : Node_Id;
1938 Obj_Ref : Node_Id) return Boolean;
1939 -- Determine whether node Context denotes a "non-interfering context" (as
1940 -- defined in SPARK RM 7.1.3(10)) where volatile reference Obj_Ref can
1941 -- safely reside.
1942
1943 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
1944 -- Determine whether aspect specification or pragma Item is one of the
1945 -- following package contract annotations:
1946 -- Abstract_State
1947 -- Initial_Condition
1948 -- Initializes
1949 -- Refined_State
1950
1951 function Is_Partially_Initialized_Type
1952 (Typ : Entity_Id;
1953 Include_Implicit : Boolean := True) return Boolean;
1954 -- Typ is a type entity. This function returns true if this type is partly
1955 -- initialized, meaning that an object of the type is at least partly
1956 -- initialized (in particular in the record case, that at least one
1957 -- component has an initialization expression, including via Default_Value
1958 -- and Default_Component_Value aspects). Note that initialization
1959 -- resulting from the use of pragma Normalize_Scalars does not count.
1960 -- Include_Implicit controls whether implicit initialization of access
1961 -- values to null, and of discriminant values, is counted as making the
1962 -- type be partially initialized. For the default setting of True, these
1963 -- implicit cases do count, and discriminated types or types containing
1964 -- access values not explicitly initialized will return True. Otherwise
1965 -- if Include_Implicit is False, these cases do not count as making the
1966 -- type be partially initialized.
1967
1968 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1969 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1970
1971 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1972 -- Determines if type T is a potentially persistent type. A potentially
1973 -- persistent type is defined (recursively) as a scalar type, an untagged
1974 -- record whose components are all of a potentially persistent type, or an
1975 -- array with all static constraints whose component type is potentially
1976 -- persistent. A private type is potentially persistent if the full type
1977 -- is potentially persistent.
1978
1979 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
1980 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation
1981
1982 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
1983 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
1984 -- required to implement interfaces.
1985
1986 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
1987 -- Similar to the previous one, but excludes stream operations, because
1988 -- these may be overridden, and need extra formals, like user-defined
1989 -- operations.
1990
1991 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
1992 -- Determine whether aggregate Aggr violates the restrictions of
1993 -- preelaborable constructs as defined in ARM 10.2.1(5-9).
1994
1995 function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
1996 -- Determine whether arbitrary node N violates the restrictions of
1997 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
1998 -- Is_Non_Preelaborable_Construct takes into account the syntactic
1999 -- and semantic properties of N for a more accurate diagnostic.
2000
2001 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
2002 -- Return True if node N denotes a protected type name which represents
2003 -- the current instance of a protected object according to RM 9.4(21/2).
2004
2005 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
2006 -- Return True if a compilation unit is the specification or the
2007 -- body of a remote call interface package.
2008
2009 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
2010 -- Return True if E is a remote access-to-class-wide type
2011
2012 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
2013 -- Return True if E is a remote access to subprogram type
2014
2015 function Is_Remote_Call (N : Node_Id) return Boolean;
2016 -- Return True if N denotes a potentially remote call
2017
2018 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
2019 -- Return True if Proc_Nam is a procedure renaming of an entry
2020
2021 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
2022 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
2023 -- Ada.Iterator_Interfaces.Reversible_Iterator.
2024
2025 function Is_Selector_Name (N : Node_Id) return Boolean;
2026 -- Given an N_Identifier node N, determines if it is a Selector_Name.
2027 -- As described in Sinfo, Selector_Names are special because they
2028 -- represent use of the N_Identifier node for a true identifier, when
2029 -- normally such nodes represent a direct name.
2030
2031 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
2032 -- Determine whether arbitrary entity Id denotes the anonymous object
2033 -- created for a single protected or single task type.
2034
2035 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
2036 -- Determine whether arbitrary entity Id denotes a single protected or
2037 -- single task type.
2038
2039 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
2040 -- Determine whether arbitrary node N denotes the declaration of a single
2041 -- protected type or single task type.
2042
2043 function Is_Single_Precision_Floating_Point_Type
2044 (E : Entity_Id) return Boolean;
2045 -- Return whether E is a single precision floating point type,
2046 -- characterized by:
2047 -- . machine_radix = 2
2048 -- . machine_mantissa = 24
2049 -- . machine_emax = 2**7
2050 -- . machine_emin = 3 - machine_emax
2051
2052 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
2053 -- Determine whether arbitrary entity Id denotes the anonymous object
2054 -- created for a single protected type.
2055
2056 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
2057 -- Determine whether arbitrary entity Id denotes the anonymous object
2058 -- created for a single task type.
2059
2060 function Is_Special_Aliased_Formal_Access
2061 (Exp : Node_Id;
2062 Scop : Entity_Id) return Boolean;
2063 -- Determines whether a dynamic check must be generated for explicitly
2064 -- aliased formals within a function Scop for the expression Exp.
2065
2066 -- More specially, Is_Special_Aliased_Formal_Access checks that Exp is a
2067 -- 'Access attribute reference within a return statement where the ultimate
2068 -- prefix is an aliased formal of Scop and that Scop returns an anonymous
2069 -- access type. See RM 3.10.2 for more details.
2070
2071 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
2072 -- Determine whether an arbitrary [private] type is specifically tagged
2073
2074 function Is_Statement (N : Node_Id) return Boolean;
2075 pragma Inline (Is_Statement);
2076 -- Check if the node N is a statement node. Note that this includes
2077 -- the case of procedure call statements (unlike the direct use of
2078 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
2079 -- Note that a label is *not* a statement, and will return False.
2080
2081 function Is_Static_Expression_Function (Subp : Entity_Id) return Boolean;
2082 -- Determine whether subprogram Subp denotes a static expression function,
2083 -- which is an expression function with the aspect Static with value True.
2084
2085 function Is_Static_Expression_Function_Call (Call : Node_Id) return Boolean;
2086 -- Determine whether Call is a static call to a static expression function,
2087 -- meaning that the name of the call denotes a static expression function
2088 -- and all of the call's actual parameters are given by static expressions.
2089
2090 function Is_Subcomponent_Of_Atomic_Object (N : Node_Id) return Boolean;
2091 -- Determine whether arbitrary node N denotes a reference to a subcomponent
2092 -- of an atomic object as per RM C.6(7).
2093
2094 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2095 -- Determine whether aspect specification or pragma Item is one of the
2096 -- following subprogram contract annotations:
2097 -- Contract_Cases
2098 -- Depends
2099 -- Extensions_Visible
2100 -- Global
2101 -- Post
2102 -- Post_Class
2103 -- Postcondition
2104 -- Pre
2105 -- Pre_Class
2106 -- Precondition
2107 -- Refined_Depends
2108 -- Refined_Global
2109 -- Refined_Post
2110 -- Test_Case
2111
2112 function Is_Subprogram_Stub_Without_Prior_Declaration
2113 (N : Node_Id) return Boolean;
2114 -- Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2115 -- stub with no prior subprogram declaration.
2116
2117 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2118 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2119 -- an arbitrary tagged type.
2120
2121 function Is_Suspension_Object (Id : Entity_Id) return Boolean;
2122 -- Determine whether arbitrary entity Id denotes Suspension_Object defined
2123 -- in Ada.Synchronous_Task_Control.
2124
2125 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2126 -- Determine whether entity Id denotes an object and if it does, whether
2127 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
2128 -- such, the object must be
2129 -- * Of a type that yields a synchronized object
2130 -- * An atomic object with enabled Async_Writers
2131 -- * A constant
2132 -- * A variable subject to pragma Constant_After_Elaboration
2133
2134 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2135 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2136
2137 function Is_Transfer (N : Node_Id) return Boolean;
2138 -- Returns True if the node N is a statement which is known to cause an
2139 -- unconditional transfer of control at run time, i.e. the following
2140 -- statement definitely will not be executed.
2141
2142 function Is_True (U : Uint) return Boolean;
2143 pragma Inline (Is_True);
2144 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
2145 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
2146 -- if it is True (i.e. non-zero).
2147
2148 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2149 -- Determine whether an arbitrary entity denotes an instance of function
2150 -- Ada.Unchecked_Conversion.
2151
2152 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2153 pragma Inline (Is_Universal_Numeric_Type);
2154 -- True if T is Universal_Integer or Universal_Real
2155
2156 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2157 -- Determine whether an entity denotes a user-defined equality
2158
2159 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2160 -- Determine whether N denotes a reference to a variable which captures the
2161 -- value of an object for validation purposes.
2162
2163 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2164 -- Returns true if E has variable size components
2165
2166 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2167 -- Returns true if E has variable size components
2168
2169 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2170
2171 function Is_Variable
2172 (N : Node_Id;
2173 Use_Original_Node : Boolean := True) return Boolean;
2174 -- Determines if the tree referenced by N represents a variable, i.e. can
2175 -- appear on the left side of an assignment. There is one situation (formal
2176 -- parameters) in which untagged type conversions are also considered
2177 -- variables, but Is_Variable returns False for such cases, since it has
2178 -- no knowledge of the context. Note that this is the point at which
2179 -- Assignment_OK is checked, and True is returned for any tree thus marked.
2180 -- Use_Original_Node is used to perform the test on Original_Node (N). By
2181 -- default is True since this routine is commonly invoked as part of the
2182 -- semantic analysis and it must not be disturbed by the rewriten nodes.
2183
2184 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2185 -- Check whether T is derived from a visibly controlled type. This is true
2186 -- if the root type is declared in Ada.Finalization. If T is derived
2187 -- instead from a private type whose full view is controlled, an explicit
2188 -- Initialize/Adjust/Finalize subprogram does not override the inherited
2189 -- one.
2190
2191 function Is_Volatile_Full_Access_Object (N : Node_Id) return Boolean;
2192 -- Determine whether arbitrary node N denotes a reference to an object
2193 -- which is Volatile_Full_Access.
2194
2195 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2196 -- Determine whether [generic] function Func_Id is subject to enabled
2197 -- pragma Volatile_Function. Protected functions are treated as volatile
2198 -- (SPARK RM 7.1.2).
2199
2200 function Is_Volatile_Object (N : Node_Id) return Boolean;
2201 -- Determine whether arbitrary node N denotes a reference to a volatile
2202 -- object as per RM C.6(8). Note that the test here is for something that
2203 -- is actually declared as volatile, not for an object that gets treated
2204 -- as volatile (see Einfo.Treat_As_Volatile).
2205
2206 generic
2207 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2208 procedure Iterate_Call_Parameters (Call : Node_Id);
2209 -- Calls Handle_Parameter for each pair of formal and actual parameters of
2210 -- a function, procedure, or entry call.
2211
2212 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
2213 -- Applies to Itypes. True if the Itype is attached to a declaration for
2214 -- the type through its Parent field, which may or not be present in the
2215 -- tree.
2216
2217 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2218 -- This procedure is called to clear all constant indications from all
2219 -- entities in the current scope and in any parent scopes if the current
2220 -- scope is a block or a package (and that recursion continues to the top
2221 -- scope that is not a block or a package). This is used when the
2222 -- sequential flow-of-control assumption is violated (occurrence of a
2223 -- label, head of a loop, or start of an exception handler). The effect of
2224 -- the call is to clear the Current_Value field (but we do not need to
2225 -- clear the Is_True_Constant flag, since that only gets reset if there
2226 -- really is an assignment somewhere in the entity scope). This procedure
2227 -- also calls Kill_All_Checks, since this is a special case of needing to
2228 -- forget saved values. This procedure also clears the Is_Known_Null and
2229 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2230 -- parameters since these are also not known to be trustable any more.
2231 --
2232 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
2233 -- fields and leave other fields unchanged. This is used when we encounter
2234 -- an unconditional flow of control change (return, goto, raise). In such
2235 -- cases we don't need to clear the current values, since it may be that
2236 -- the flow of control change occurs in a conditional context, and if it
2237 -- is not taken, then it is just fine to keep the current values. But the
2238 -- Last_Assignment field is different, if we have a sequence assign-to-v,
2239 -- conditional-return, assign-to-v, we do not want to complain that the
2240 -- second assignment clobbers the first.
2241
2242 procedure Kill_Current_Values
2243 (Ent : Entity_Id;
2244 Last_Assignment_Only : Boolean := False);
2245 -- This performs the same processing as described above for the form with
2246 -- no argument, but for the specific entity given. The call has no effect
2247 -- if the entity Ent is not for an object. Last_Assignment_Only has the
2248 -- same meaning as for the call with no Ent.
2249
2250 procedure Kill_Size_Check_Code (E : Entity_Id);
2251 -- Called when an address clause or pragma Import is applied to an entity.
2252 -- If the entity is a variable or a constant, and size check code is
2253 -- present, this size check code is killed, since the object will not be
2254 -- allocated by the program.
2255
2256 function Known_Non_Null (N : Node_Id) return Boolean;
2257 -- Given a node N for a subexpression of an access type, determines if
2258 -- this subexpression yields a value that is known at compile time to
2259 -- be non-null and returns True if so. Returns False otherwise. It is
2260 -- an error to call this function if N is not of an access type.
2261
2262 function Known_Null (N : Node_Id) return Boolean;
2263 -- Given a node N for a subexpression of an access type, determines if this
2264 -- subexpression yields a value that is known at compile time to be null
2265 -- and returns True if so. Returns False otherwise. It is an error to call
2266 -- this function if N is not of an access type.
2267
2268 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
2269 -- The node N is an entity reference. This function determines whether the
2270 -- reference is for sure an assignment of the entity, returning True if
2271 -- so. This differs from May_Be_Lvalue in that it defaults in the other
2272 -- direction. Cases which may possibly be assignments but are not known to
2273 -- be may return True from May_Be_Lvalue, but False from this function.
2274
2275 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2276 -- HSS is a handled statement sequence. This function returns the last
2277 -- statement in Statements (HSS) that has Comes_From_Source set. If no
2278 -- such statement exists, Empty is returned.
2279
2280 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2281 -- Given a node which designates the context of analysis and an origin in
2282 -- the tree, traverse from Root_Nod and mark all allocators as either
2283 -- dynamic or static depending on Context_Nod. Any incorrect marking is
2284 -- cleaned up during resolution.
2285
2286 procedure Mark_Elaboration_Attributes
2287 (N_Id : Node_Or_Entity_Id;
2288 Checks : Boolean := False;
2289 Level : Boolean := False;
2290 Modes : Boolean := False;
2291 Warnings : Boolean := False);
2292 -- Preserve relevant elaboration-related properties of the context in
2293 -- arbitrary entity or node N_Id. The flags control the properties as
2294 -- follows:
2295 --
2296 -- Checks - Save the status of Elaboration_Check
2297 -- Level - Save the declaration level of N_Id (if appicable)
2298 -- Modes - Save the Ghost and SPARK modes in effect (if applicable)
2299 -- Warnings - Save the status of Elab_Warnings
2300
2301 procedure Mark_Save_Invocation_Graph_Of_Body;
2302 -- Notify the body of the main unit that the invocation constructs and
2303 -- relations expressed within it must be recorded by the ABE mechanism.
2304
2305 function Matching_Static_Array_Bounds
2306 (L_Typ : Node_Id;
2307 R_Typ : Node_Id) return Boolean;
2308 -- L_Typ and R_Typ are two array types. Returns True when they have the
2309 -- same number of dimensions, and the same static bounds for each index
2310 -- position.
2311
2312 function May_Be_Lvalue (N : Node_Id) return Boolean;
2313 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
2314 -- An lvalue is defined as any expression which appears in a context where
2315 -- a name is required by the syntax, and the identity, rather than merely
2316 -- the value of the node is needed (for example, the prefix of an Access
2317 -- attribute is in this category). Note that, as implied by the name, this
2318 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
2319 -- it returns True. It tries hard to get the answer right, but it is hard
2320 -- to guarantee this in all cases. Note that it is more possible to give
2321 -- correct answer if the tree is fully analyzed.
2322
2323 function Might_Raise (N : Node_Id) return Boolean;
2324 -- True if evaluation of N might raise an exception. This is conservative;
2325 -- if we're not sure, we return True. If N is a subprogram body, this is
2326 -- about whether execution of that body can raise.
2327
2328 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2329 -- Return the entity of the nearest enclosing instance which encapsulates
2330 -- entity E. If no such instance exits, return Empty.
2331
2332 function Needs_Finalization (Typ : Entity_Id) return Boolean;
2333 -- Determine whether type Typ is controlled and this requires finalization
2334 -- actions.
2335
2336 function Needs_One_Actual (E : Entity_Id) return Boolean;
2337 -- Returns True if a function has defaults for all but its first formal,
2338 -- which is a controlling formal. Used in Ada 2005 mode to solve the
2339 -- syntactic ambiguity that results from an indexing of a function call
2340 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2341
2342 function Needs_Result_Accessibility_Level
2343 (Func_Id : Entity_Id) return Boolean;
2344 -- Ada 2012 (AI05-0234): Return True if the function needs an implicit
2345 -- parameter to identify the accessibility level of the function result
2346 -- "determined by the point of call".
2347
2348 function Needs_Simple_Initialization
2349 (Typ : Entity_Id;
2350 Consider_IS : Boolean := True) return Boolean;
2351 -- Certain types need initialization even though there is no specific
2352 -- initialization routine:
2353 -- Access types (which need initializing to null)
2354 -- All scalar types if Normalize_Scalars mode set
2355 -- Descendants of standard string types if Normalize_Scalars mode set
2356 -- Scalar types having a Default_Value attribute
2357 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2358 -- set to False, but if Consider_IS is set to True, then the cases above
2359 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2360
2361 function Needs_Variable_Reference_Marker
2362 (N : Node_Id;
2363 Calls_OK : Boolean) return Boolean;
2364 -- Determine whether arbitrary node N denotes a reference to a variable
2365 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should
2366 -- be set when the reference is allowed to appear within calls.
2367
2368 function New_Copy_List_Tree (List : List_Id) return List_Id;
2369 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2370 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2371 -- nodes (entities) either directly or indirectly using this function.
2372
2373 function New_Copy_Separate_List (List : List_Id) return List_Id;
2374 -- Copy recursively a list of nodes using New_Copy_Separate_Tree
2375
2376 function New_Copy_Separate_Tree (Source : Node_Id) return Node_Id;
2377 -- Perform a deep copy of the subtree rooted at Source using New_Copy_Tree
2378 -- replacing entities of local declarations by new entities. This behavior
2379 -- is required by the backend to ensure entities uniqueness when a copy of
2380 -- a subtree is attached to the tree. The new entities keep their original
2381 -- names to facilitate debugging the tree copy.
2382
2383 function New_Copy_Tree
2384 (Source : Node_Id;
2385 Map : Elist_Id := No_Elist;
2386 New_Sloc : Source_Ptr := No_Location;
2387 New_Scope : Entity_Id := Empty;
2388 Scopes_In_EWA_OK : Boolean := False) return Node_Id;
2389 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2390 -- and nodes are handled separately as follows:
2391 --
2392 -- * A node is replicated by first creating a shallow copy, then copying
2393 -- its syntactic fields, where all Parent pointers of the fields are
2394 -- updated to refer to the copy. In addition, the following semantic
2395 -- fields are recreated after the replication takes place.
2396 --
2397 -- First_Named_Actual
2398 -- First_Real_Statement
2399 -- Next_Named_Actual
2400 --
2401 -- If applicable, the Etype field (if any) is updated to refer to a
2402 -- local itype or type (see below).
2403 --
2404 -- * An entity defined within an N_Expression_With_Actions node in the
2405 -- subtree is given a new entity, and all references to the original
2406 -- entity are updated to refer to the new entity. In addition, the
2407 -- following semantic fields are replicated and/or updated to refer
2408 -- to a local entity or itype.
2409 --
2410 -- Discriminant_Constraint
2411 -- Etype
2412 -- First_Index
2413 -- Next_Entity
2414 -- Packed_Array_Impl_Type
2415 -- Scalar_Range
2416 -- Scope
2417 --
2418 -- Note that currently no other expression can define entities.
2419 --
2420 -- * An itype whose Associated_Node_For_Itype node is in the subtree
2421 -- is given a new entity, and all references to the original itype
2422 -- are updated to refer to the new itype. In addition, the following
2423 -- semantic fields are replicated and/or updated to refer to a local
2424 -- entity or itype.
2425 --
2426 -- Discriminant_Constraint
2427 -- Etype
2428 -- First_Index
2429 -- Next_Entity
2430 -- Packed_Array_Impl_Type
2431 -- Scalar_Range
2432 -- Scope
2433 --
2434 -- The Associated_Node_For_Itype is updated to refer to a replicated
2435 -- node.
2436 --
2437 -- The routine can replicate both analyzed and unanalyzed trees. Copying an
2438 -- Empty or Error node yields the same node.
2439 --
2440 -- Parameter Map may be used to specify a set of mappings between entities.
2441 -- These mappings are then taken into account when replicating entities.
2442 -- The format of Map must be as follows:
2443 --
2444 -- old entity 1
2445 -- new entity to replace references to entity 1
2446 -- old entity 2
2447 -- new entity to replace references to entity 2
2448 -- ...
2449 --
2450 -- Map and its contents are left unchanged.
2451 --
2452 -- Parameter New_Sloc may be used to specify a new source location for all
2453 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator
2454 -- is defaulted if a new source location is provided.
2455 --
2456 -- Parameter New_Scope may be used to specify a new scope for all copied
2457 -- entities and itypes.
2458 --
2459 -- Parameter Scopes_In_EWA_OK may be used to force the replication of both
2460 -- scoping entities and non-scoping entities found within expression with
2461 -- actions nodes.
2462
2463 function New_External_Entity
2464 (Kind : Entity_Kind;
2465 Scope_Id : Entity_Id;
2466 Sloc_Value : Source_Ptr;
2467 Related_Id : Entity_Id;
2468 Suffix : Character;
2469 Suffix_Index : Int := 0;
2470 Prefix : Character := ' ') return Entity_Id;
2471 -- This function creates an N_Defining_Identifier node for an internal
2472 -- created entity, such as an implicit type or subtype, or a record
2473 -- initialization procedure. The entity name is constructed with a call
2474 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2475 -- that the generated name may be referenced as a public entry, and the
2476 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2477 -- entity is for a type or subtype, the size/align fields are initialized
2478 -- to unknown (Uint_0).
2479
2480 function New_Internal_Entity
2481 (Kind : Entity_Kind;
2482 Scope_Id : Entity_Id;
2483 Sloc_Value : Source_Ptr;
2484 Id_Char : Character) return Entity_Id;
2485 -- This function is similar to New_External_Entity, except that the
2486 -- name is constructed by New_Internal_Name (Id_Char). This is used
2487 -- when the resulting entity does not have to be referenced as a
2488 -- public entity (and in this case Is_Public is not set).
2489
2490 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2491 -- Find next actual parameter in declaration order. As described for
2492 -- First_Actual, this is the next actual in the declaration order, not
2493 -- the call order, so this does not correspond to simply taking the
2494 -- next entry of the Parameter_Associations list. The argument is an
2495 -- actual previously returned by a call to First_Actual or Next_Actual.
2496 -- Note that the result produced is always an expression, not a parameter
2497 -- association node, even if named notation was used.
2498
2499 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2500
2501 procedure Next_Actual (Actual_Id : in out Node_Id);
2502 pragma Inline (Next_Actual);
2503 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2504 -- inline this procedural form, but not the functional form above.
2505
2506 function Next_Global (Node : Node_Id) return Node_Id;
2507 -- Node is a global item from a list, obtained through calling First_Global
2508 -- and possibly Next_Global a number of times. Returns the next global item
2509 -- with the same mode.
2510
2511 procedure Next_Global (Node : in out Node_Id);
2512 pragma Inline (Next_Actual);
2513 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2514 -- inline this procedural form, but not the functional form above.
2515
2516 function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2517 -- Given the entity of a variable, determine whether Id is subject to
2518 -- volatility property No_Caching and if it is, the related expression
2519 -- evaluates to True.
2520
2521 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2522 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2523
2524 procedure Normalize_Actuals
2525 (N : Node_Id;
2526 S : Entity_Id;
2527 Report : Boolean;
2528 Success : out Boolean);
2529 -- Reorders lists of actuals according to names of formals, value returned
2530 -- in Success indicates success of reordering. For more details, see body.
2531 -- Errors are reported only if Report is set to True.
2532
2533 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2534 -- This routine is called if the sub-expression N maybe the target of
2535 -- an assignment (e.g. it is the left side of an assignment, used as
2536 -- an out parameters, or used as prefixes of access attributes). It
2537 -- sets May_Be_Modified in the associated entity if there is one,
2538 -- taking into account the rule that in the case of renamed objects,
2539 -- it is the flag in the renamed object that must be set.
2540 --
2541 -- The parameter Sure is set True if the modification is sure to occur
2542 -- (e.g. target of assignment, or out parameter), and to False if the
2543 -- modification is only potential (e.g. address of entity taken).
2544
2545 function Null_To_Null_Address_Convert_OK
2546 (N : Node_Id;
2547 Typ : Entity_Id := Empty) return Boolean;
2548 -- Return True if we are compiling in relaxed RM semantics mode and:
2549 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2550 -- 2) N is a comparison operator, one of the operands is null, and the
2551 -- type of the other operand is a descendant of System.Address.
2552
2553 function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2554 -- Returns the number of elements in the array T if the index bounds of T
2555 -- is known at compile time. If the bounds are not known at compile time,
2556 -- the function returns the value zero.
2557
2558 function Object_Access_Level (Obj : Node_Id) return Uint;
2559 -- Return the accessibility level of the view of the object Obj. For
2560 -- convenience, qualified expressions applied to object names are also
2561 -- allowed as actuals for this function.
2562
2563 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2564 -- Retrieve the name of aspect or pragma N, taking into account a possible
2565 -- rewrite and whether the pragma is generated from an aspect as the names
2566 -- may be different. The routine also deals with 'Class in which case it
2567 -- returns the following values:
2568 --
2569 -- Invariant -> Name_uInvariant
2570 -- Post'Class -> Name_uPost
2571 -- Pre'Class -> Name_uPre
2572 -- Type_Invariant -> Name_uType_Invariant
2573 -- Type_Invariant'Class -> Name_uType_Invariant
2574
2575 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2576 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2577 -- or overrides an inherited dispatching primitive S2, the original
2578 -- corresponding operation of S is the original corresponding operation of
2579 -- S2. Otherwise, it is S itself.
2580
2581 procedure Output_Entity (Id : Entity_Id);
2582 -- Print entity Id to standard output. The name of the entity appears in
2583 -- fully qualified form.
2584 --
2585 -- WARNING: this routine should be used in debugging scenarios such as
2586 -- tracking down undefined symbols as it is fairly low level.
2587
2588 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2589 -- Print name Nam to standard output. The name appears in fully qualified
2590 -- form assuming it appears in scope Scop. Note that this may not reflect
2591 -- the final qualification as the entity which carries the name may be
2592 -- relocated to a different scope.
2593 --
2594 -- WARNING: this routine should be used in debugging scenarios such as
2595 -- tracking down undefined symbols as it is fairly low level.
2596
2597 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2598 -- Given a policy, return the policy identifier associated with it. If no
2599 -- such policy is in effect, the value returned is No_Name.
2600
2601 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2602 -- Subp is the entity for a subprogram call. This function returns True if
2603 -- predicate tests are required for the arguments in this call (this is the
2604 -- normal case). It returns False for special cases where these predicate
2605 -- tests should be skipped (see body for details).
2606
2607 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2608 -- Returns True if the names of both entities correspond with matching
2609 -- primitives. This routine includes support for the case in which one
2610 -- or both entities correspond with entities built by Derive_Subprogram
2611 -- with a special name to avoid being overridden (i.e. return true in case
2612 -- of entities with names "nameP" and "name" or vice versa).
2613
2614 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2615 -- Returns some private component (if any) of the given Type_Id.
2616 -- Used to enforce the rules on visibility of operations on composite
2617 -- types, that depend on the full view of the component type. For a
2618 -- record type there may be several such components, we just return
2619 -- the first one.
2620
2621 procedure Process_End_Label
2622 (N : Node_Id;
2623 Typ : Character;
2624 Ent : Entity_Id);
2625 -- N is a node whose End_Label is to be processed, generating all
2626 -- appropriate cross-reference entries, and performing style checks
2627 -- for any identifier references in the end label. Typ is either
2628 -- 'e' or 't indicating the type of the cross-reference entity
2629 -- (e for spec, t for body, see Lib.Xref spec for details). The
2630 -- parameter Ent gives the entity to which the End_Label refers,
2631 -- and to which cross-references are to be generated.
2632
2633 procedure Propagate_Concurrent_Flags
2634 (Typ : Entity_Id;
2635 Comp_Typ : Entity_Id);
2636 -- Set Has_Task, Has_Protected and Has_Timing_Event on Typ when the flags
2637 -- are set on Comp_Typ. This follows the definition of these flags which
2638 -- are set (recursively) on any composite type which has a component marked
2639 -- by one of these flags. This procedure can only set flags for Typ, and
2640 -- never clear them. Comp_Typ is the type of a component or a parent.
2641
2642 procedure Propagate_DIC_Attributes
2643 (Typ : Entity_Id;
2644 From_Typ : Entity_Id);
2645 -- Inherit all Default_Initial_Condition-related attributes from type
2646 -- From_Typ. Typ is the destination type.
2647
2648 procedure Propagate_Invariant_Attributes
2649 (Typ : Entity_Id;
2650 From_Typ : Entity_Id);
2651 -- Inherit all invariant-related attributes form type From_Typ. Typ is the
2652 -- destination type.
2653
2654 procedure Propagate_Predicate_Attributes
2655 (Typ : Entity_Id;
2656 From_Typ : Entity_Id);
2657 -- Inherit some predicate-related attributes form type From_Typ. Typ is the
2658 -- destination type. Probably to be completed with more attributes???
2659
2660 procedure Record_Possible_Part_Of_Reference
2661 (Var_Id : Entity_Id;
2662 Ref : Node_Id);
2663 -- Save reference Ref to variable Var_Id when the variable is subject to
2664 -- pragma Part_Of. If the variable is known to be a constituent of a single
2665 -- protected/task type, the legality of the reference is verified and the
2666 -- save does not take place.
2667
2668 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2669 -- Determine whether entity Id is referenced within expression Expr
2670
2671 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2672 -- Returns True if the expression Expr contains any references to a generic
2673 -- type. This can only happen within a generic template.
2674
2675 procedure Remove_Entity_And_Homonym (Id : Entity_Id);
2676 -- Remove arbitrary entity Id from both the homonym and scope chains. Use
2677 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal
2678 -- performed by this routine does not affect the visibility of existing
2679 -- homonyms.
2680
2681 procedure Remove_Homonym (Id : Entity_Id);
2682 -- Removes entity Id from the homonym chain
2683
2684 procedure Remove_Overloaded_Entity (Id : Entity_Id);
2685 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
2686 -- the primitive operations list of the associated controlling type. Use
2687 -- Remove_Entity for non-overloadable entities. Note: the removal performed
2688 -- by this routine does not affect the visibility of existing homonyms.
2689
2690 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2691 -- Returns the name of E without Suffix
2692
2693 procedure Replace_Null_By_Null_Address (N : Node_Id);
2694 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
2695 -- RM semantics mode, and one of the operands is null. Replace null with
2696 -- System.Null_Address.
2697
2698 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2699 -- This is used to construct the second argument in a call to Rep_To_Pos
2700 -- which is Standard_True if range checks are enabled (E is an entity to
2701 -- which the Range_Checks_Suppressed test is applied), and Standard_False
2702 -- if range checks are suppressed. Loc is the location for the node that
2703 -- is returned (which is a New_Occurrence of the appropriate entity).
2704 --
2705 -- Note: one might think that it would be fine to always use True and
2706 -- to ignore the suppress in this case, but it is generally better to
2707 -- believe a request to suppress exceptions if possible, and further
2708 -- more there is at least one case in the generated code (the code for
2709 -- array assignment in a loop) that depends on this suppression.
2710
2711 procedure Require_Entity (N : Node_Id);
2712 -- N is a node which should have an entity value if it is an entity name.
2713 -- If not, then check if there were previous errors. If so, just fill
2714 -- in with Any_Id and ignore. Otherwise signal a program error exception.
2715 -- This is used as a defense mechanism against ill-formed trees caused by
2716 -- previous errors (particularly in -gnatq mode).
2717
2718 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
2719 -- Id is a type entity. The result is True when temporaries of this type
2720 -- need to be wrapped in a transient scope to be reclaimed properly when a
2721 -- secondary stack is in use. Examples of types requiring such wrapping are
2722 -- controlled types and variable-sized types including unconstrained
2723 -- arrays.
2724
2725 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2726
2727 procedure Reset_Analyzed_Flags (N : Node_Id);
2728 -- Reset the Analyzed flags in all nodes of the tree whose root is N
2729
2730 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
2731 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
2732 -- routine must be used in tandem with Set_SPARK_Mode.
2733
2734 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2735 -- Return true if Subp is a function that returns an unconstrained type
2736
2737 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
2738 -- Similar to attribute Root_Type, but this version always follows the
2739 -- Full_View of a private type (if available) while searching for the
2740 -- ultimate derivation ancestor.
2741
2742 function Safe_To_Capture_Value
2743 (N : Node_Id;
2744 Ent : Entity_Id;
2745 Cond : Boolean := False) return Boolean;
2746 -- The caller is interested in capturing a value (either the current value,
2747 -- or an indication that the value is non-null) for the given entity Ent.
2748 -- This value can only be captured if sequential execution semantics can be
2749 -- properly guaranteed so that a subsequent reference will indeed be sure
2750 -- that this current value indication is correct. The node N is the
2751 -- construct which resulted in the possible capture of the value (this
2752 -- is used to check if we are in a conditional).
2753 --
2754 -- Cond is used to skip the test for being inside a conditional. It is used
2755 -- in the case of capturing values from if/while tests, which already do a
2756 -- proper job of handling scoping issues without this help.
2757 --
2758 -- The only entities whose values can be captured are OUT and IN OUT formal
2759 -- parameters, and variables unless Cond is True, in which case we also
2760 -- allow IN formals, loop parameters and constants, where we cannot ever
2761 -- capture actual value information, but we can capture conditional tests.
2762
2763 function Same_Name (N1, N2 : Node_Id) return Boolean;
2764 -- Determine if two (possibly expanded) names are the same name. This is
2765 -- a purely syntactic test, and N1 and N2 need not be analyzed.
2766
2767 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
2768 -- Determine if Node1 and Node2 are known to designate the same object.
2769 -- This is a semantic test and both nodes must be fully analyzed. A result
2770 -- of True is decisively correct. A result of False does not necessarily
2771 -- mean that different objects are designated, just that this could not
2772 -- be reliably determined at compile time.
2773
2774 function Same_Type (T1, T2 : Entity_Id) return Boolean;
2775 -- Determines if T1 and T2 represent exactly the same type. Two types
2776 -- are the same if they are identical, or if one is an unconstrained
2777 -- subtype of the other, or they are both common subtypes of the same
2778 -- type with identical constraints. The result returned is conservative.
2779 -- It is True if the types are known to be the same, but a result of
2780 -- False is indecisive (e.g. the compiler may not be able to tell that
2781 -- two constraints are identical).
2782
2783 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
2784 -- Determines if Node1 and Node2 are known to be the same value, which is
2785 -- true if they are both compile time known values and have the same value,
2786 -- or if they are the same object (in the sense of function Same_Object).
2787 -- A result of False does not necessarily mean they have different values,
2788 -- just that it is not possible to determine they have the same value.
2789
2790 function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
2791 -- Determine whether arbitrary type Typ is a scalar type, or contains at
2792 -- least one scalar subcomponent.
2793
2794 function Scope_Within
2795 (Inner : Entity_Id;
2796 Outer : Entity_Id) return Boolean;
2797 -- Determine whether scope Inner appears within scope Outer. Note that
2798 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
2799 -- (B, A) may both return False.
2800
2801 function Scope_Within_Or_Same
2802 (Inner : Entity_Id;
2803 Outer : Entity_Id) return Boolean;
2804 -- Determine whether scope Inner appears within scope Outer or both denote
2805 -- the same scope. Note that scopes are partially ordered, so Scope_Within
2806 -- (A, B) and Scope_Within (B, A) may both return False.
2807
2808 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
2809 -- Same as Basic_Set_Convention, but with an extra check for access types.
2810 -- In particular, if E is an access-to-subprogram type, and Val is a
2811 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
2812 -- Also, if the Etype of E is set and is an anonymous access type with
2813 -- no convention set, this anonymous type inherits the convention of E.
2814
2815 procedure Set_Current_Entity (E : Entity_Id);
2816 pragma Inline (Set_Current_Entity);
2817 -- Establish the entity E as the currently visible definition of its
2818 -- associated name (i.e. the Node_Id associated with its name).
2819
2820 procedure Set_Debug_Info_Defining_Id (N : Node_Id);
2821 -- Call Set_Debug_Info_Needed on Defining_Identifier (N) if it comes
2822 -- from source.
2823
2824 procedure Set_Debug_Info_Needed (T : Entity_Id);
2825 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
2826 -- that are needed by T (for an object, the type of the object is needed,
2827 -- and for a type, various subsidiary types are needed -- see body for
2828 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
2829 -- This routine should always be used instead of Set_Needs_Debug_Info to
2830 -- ensure that subsidiary entities are properly handled.
2831
2832 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
2833 -- This procedure has the same calling sequence as Set_Entity, but it
2834 -- performs additional checks as follows:
2835 --
2836 -- If Style_Check is set, then it calls a style checking routine which
2837 -- can check identifier spelling style. This procedure also takes care
2838 -- of checking the restriction No_Implementation_Identifiers.
2839 --
2840 -- If restriction No_Abort_Statements is set, then it checks that the
2841 -- entity is not Ada.Task_Identification.Abort_Task.
2842 --
2843 -- If restriction No_Dynamic_Attachment is set, then it checks that the
2844 -- entity is not one of the restricted names for this restriction.
2845 --
2846 -- If restriction No_Long_Long_Integers is set, then it checks that the
2847 -- entity is not Standard.Long_Long_Integer.
2848 --
2849 -- If restriction No_Implementation_Identifiers is set, then it checks
2850 -- that the entity is not implementation defined.
2851
2852 procedure Set_Invalid_Scalar_Value
2853 (Scal_Typ : Float_Scalar_Id;
2854 Value : Ureal);
2855 -- Associate invalid value Value with scalar type Scal_Typ as specified by
2856 -- pragma Initialize_Scalars.
2857
2858 procedure Set_Invalid_Scalar_Value
2859 (Scal_Typ : Integer_Scalar_Id;
2860 Value : Uint);
2861 -- Associate invalid value Value with scalar type Scal_Typ as specified by
2862 -- pragma Initialize_Scalars.
2863
2864 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
2865 pragma Inline (Set_Name_Entity_Id);
2866 -- Sets the Entity_Id value associated with the given name, which is the
2867 -- Id of the innermost visible entity with the given name. See the body
2868 -- of package Sem_Ch8 for further details on the handling of visibility.
2869
2870 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
2871 -- The arguments may be parameter associations, whose descendants
2872 -- are the optional formal name and the actual parameter. Positional
2873 -- parameters are already members of a list, and do not need to be
2874 -- chained separately. See also First_Actual and Next_Actual.
2875
2876 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
2877 pragma Inline (Set_Optimize_Alignment_Flags);
2878 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
2879
2880 procedure Set_Public_Status (Id : Entity_Id);
2881 -- If an entity (visible or otherwise) is defined in a library
2882 -- package, or a package that is itself public, then this subprogram
2883 -- labels the entity public as well.
2884
2885 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
2886 -- N is the node for either a left hand side (Out_Param set to False),
2887 -- or an Out or In_Out parameter (Out_Param set to True). If there is
2888 -- an assignable entity being referenced, then the appropriate flag
2889 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
2890 -- if Out_Param is True) is set True, and the other flag set False.
2891
2892 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
2893 pragma Inline (Set_Rep_Info);
2894 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
2895 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
2896 -- if T1 is a base type.
2897
2898 procedure Set_Scope_Is_Transient (V : Boolean := True);
2899 -- Set the flag Is_Transient of the current scope
2900
2901 procedure Set_Size_Info (T1, T2 : Entity_Id);
2902 pragma Inline (Set_Size_Info);
2903 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
2904 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
2905 -- in the fixed-point and discrete cases, and also copies the alignment
2906 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
2907 -- separately set if this is required to be copied also.
2908
2909 procedure Set_SPARK_Mode (Context : Entity_Id);
2910 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
2911 -- a subprogram denoted by Context. This routine must be used in tandem
2912 -- with Restore_SPARK_Mode.
2913
2914 function Scope_Is_Transient return Boolean;
2915 -- True if the current scope is transient
2916
2917 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
2918 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
2919 -- True if we should ignore pragmas with the specified name. In particular,
2920 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
2921 -- predefined unit. The _Par version should be called only from the parser;
2922 -- the _Sem version should be called only during semantic analysis.
2923
2924 function Static_Boolean (N : Node_Id) return Uint;
2925 -- This function analyzes the given expression node and then resolves it
2926 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
2927 -- returned corresponding to the value, otherwise an error message is
2928 -- output and No_Uint is returned.
2929
2930 function Static_Integer (N : Node_Id) return Uint;
2931 -- This function analyzes the given expression node and then resolves it
2932 -- as any integer type. If the result is static, then the value of the
2933 -- universal expression is returned, otherwise an error message is output
2934 -- and a value of No_Uint is returned.
2935
2936 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
2937 -- Return True iff N is a name that "statically denotes" an entity.
2938
2939 function Statically_Denotes_Object (N : Node_Id) return Boolean;
2940 -- Return True iff N is a name that "statically denotes" an object.
2941
2942 function Statically_Different (E1, E2 : Node_Id) return Boolean;
2943 -- Return True if it can be statically determined that the Expressions
2944 -- E1 and E2 refer to different objects
2945
2946 function Statically_Names_Object (N : Node_Id) return Boolean;
2947 -- Return True iff N is a name that "statically names" an object.
2948
2949 function String_From_Numeric_Literal (N : Node_Id) return String_Id;
2950 -- Return the string that corresponds to the numeric literal N as it
2951 -- appears in the source.
2952
2953 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
2954 -- Determine whether node N is a loop statement subject to at least one
2955 -- 'Loop_Entry attribute.
2956
2957 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
2958 -- Return the accessibility level of the view denoted by Subp
2959
2960 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
2961 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
2962 -- Typ is properly sized and aligned).
2963
2964 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
2965 -- Print debugging information on entry to each unit being analyzed
2966
2967 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
2968 -- Move a list of entities from one scope to another, and recompute
2969 -- Is_Public based upon the new scope.
2970
2971 generic
2972 with function Process (N : Node_Id) return Traverse_Result is <>;
2973 Process_Itypes : Boolean := False;
2974 function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
2975 -- This is a version of Atree.Traverse_Func that not only traverses
2976 -- syntactic children of nodes, but also semantic children which are
2977 -- logically children of the node. This concerns currently lists of
2978 -- action nodes and ranges under Itypes, both inserted by the compiler.
2979 -- Itypes are only traversed when Process_Itypes is True.
2980
2981 generic
2982 with function Process (N : Node_Id) return Traverse_Result is <>;
2983 Process_Itypes : Boolean := False;
2984 procedure Traverse_More_Proc (Node : Node_Id);
2985 pragma Inline (Traverse_More_Proc);
2986 -- This is the same as Traverse_More_Func except that no result is
2987 -- returned, i.e. Traverse_More_Func is called and the result is simply
2988 -- discarded.
2989
2990 function Type_Access_Level (Typ : Entity_Id) return Uint;
2991 -- Return the accessibility level of Typ
2992
2993 function Type_Without_Stream_Operation
2994 (T : Entity_Id;
2995 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
2996 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2997 -- is active then we cannot generate stream subprograms for composite types
2998 -- with elementary subcomponents that lack user-defined stream subprograms.
2999 -- This predicate determines whether a type has such an elementary
3000 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
3001 -- prevents the construction of a composite stream operation. If Op is
3002 -- specified we check only for the given stream operation.
3003
3004 function Ultimate_Prefix (N : Node_Id) return Node_Id;
3005 -- Obtain the "outermost" prefix of arbitrary node N. Return N if no such
3006 -- prefix exists.
3007
3008 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
3009 -- Return the entity that represents declaration N, so that different
3010 -- views of the same entity have the same unique defining entity:
3011 -- * private view and full view of a deferred constant
3012 -- --> full view
3013 -- * entry spec and entry body
3014 -- --> entry spec
3015 -- * formal parameter on spec and body
3016 -- --> formal parameter on spec
3017 -- * package spec, body, and body stub
3018 -- --> package spec
3019 -- * protected type, protected body, and protected body stub
3020 -- --> protected type (full view if private)
3021 -- * subprogram spec, body, and body stub
3022 -- --> subprogram spec
3023 -- * task type, task body, and task body stub
3024 -- --> task type (full view if private)
3025 -- * private or incomplete view and full view of a type
3026 -- --> full view
3027 -- In other cases, return the defining entity for N.
3028
3029 function Unique_Entity (E : Entity_Id) return Entity_Id;
3030 -- Return the unique entity for entity E, which would be returned by
3031 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
3032
3033 function Unique_Name (E : Entity_Id) return String;
3034 -- Return a unique name for entity E, which could be used to identify E
3035 -- across compilation units.
3036
3037 Child_Prefix : constant String := "ada___";
3038 -- Prefix for child packages when building a unique name for an entity. It
3039 -- is included here to share between Unique_Name and gnatprove.
3040
3041 function Unit_Is_Visible (U : Entity_Id) return Boolean;
3042 -- Determine whether a compilation unit is visible in the current context,
3043 -- because there is a with_clause that makes the unit available. Used to
3044 -- provide better messages on common visiblity errors on operators.
3045
3046 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
3047 -- Yields Universal_Integer or Universal_Real if this is a candidate
3048
3049 function Unqualify (Expr : Node_Id) return Node_Id;
3050 pragma Inline (Unqualify);
3051 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
3052 -- returns X. If Expr is not a qualified expression, returns Expr.
3053
3054 function Unqual_Conv (Expr : Node_Id) return Node_Id;
3055 pragma Inline (Unqual_Conv);
3056 -- Similar to Unqualify, but removes qualified expressions, type
3057 -- conversions, and unchecked conversions.
3058
3059 function Validated_View (Typ : Entity_Id) return Entity_Id;
3060 -- Obtain the "validated view" of arbitrary type Typ which is suitable for
3061 -- verification by attributes 'Valid_Scalars. This view is the type itself
3062 -- or its full view while stripping away concurrency, derivations, and
3063 -- privacy.
3064
3065 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
3066 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
3067 -- of a type extension or private extension declaration. If the full-view
3068 -- of private parents and progenitors is available then it is used to
3069 -- generate the list of visible ancestors; otherwise their partial
3070 -- view is added to the resulting list.
3071
3072 function Within_Init_Proc return Boolean;
3073 -- Determines if Current_Scope is within an init proc
3074
3075 function Within_Protected_Type (E : Entity_Id) return Boolean;
3076 -- Returns True if entity E is declared within a protected type
3077
3078 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
3079 -- Returns True if entity E is declared within scope S
3080
3081 function Within_Subprogram_Call (N : Node_Id) return Boolean;
3082 -- Determine whether arbitrary node N appears in an entry, function, or
3083 -- procedure call.
3084
3085 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
3086 -- Output error message for incorrectly typed expression. Expr is the node
3087 -- for the incorrectly typed construct (Etype (Expr) is the type found),
3088 -- and Expected_Type is the entity for the expected type. Note that Expr
3089 -- does not have to be a subexpression, anything with an Etype field may
3090 -- be used.
3091
3092 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
3093 -- Determine whether type Typ "yields synchronized object" as specified by
3094 -- SPARK RM 9.1. To qualify as such, a type must be
3095 -- * An array type whose element type yields a synchronized object
3096 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
3097 -- * A protected type
3098 -- * A record type or type extension without defaulted discriminants
3099 -- whose components are of a type that yields a synchronized object.
3100 -- * A synchronized interface type
3101 -- * A task type
3102
3103 function Yields_Universal_Type (N : Node_Id) return Boolean;
3104 -- Determine whether unanalyzed node N yields a universal type
3105
3106 package Interval_Lists is
3107 type Discrete_Interval is
3108 record
3109 Low, High : Uint;
3110 end record;
3111
3112 type Discrete_Interval_List is
3113 array (Pos range <>) of Discrete_Interval;
3114 -- A sorted (in ascending order) list of non-empty pairwise-disjoint
3115 -- intervals, always with a gap of at least one value between
3116 -- successive intervals (i.e., mergeable intervals are merged).
3117 -- Low bound is one; high bound is nonnegative.
3118
3119 function Aggregate_Intervals (N : Node_Id) return Discrete_Interval_List;
3120 -- Given an array aggregate N, returns the (unique) interval list
3121 -- representing the values of the aggregate choices; if all the array
3122 -- components are covered by the others choice then the length of the
3123 -- result is zero.
3124
3125 function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
3126 -- Given a static discrete type or subtype, returns the (unique)
3127 -- interval list representing the values of the type/subtype.
3128 -- If no static predicates are involved, the length of the result
3129 -- will be at most one.
3130
3131 function Choice_List_Intervals (Discrete_Choices : List_Id)
3132 return Discrete_Interval_List;
3133 -- Given a discrete choice list, returns the (unique) interval
3134 -- list representing the chosen values.
3135
3136 function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
3137 return Boolean;
3138 -- Returns True iff every value belonging to some interval of
3139 -- Subset also belongs to some interval of Of_Set.
3140
3141 -- TBD: When we get around to implementing "is statically compatible"
3142 -- correctly for real types with static predicates, we may need
3143 -- an analogous Real_Interval_List type. Most of the language
3144 -- rules that reference "is statically compatible" pertain to
3145 -- discriminants and therefore do require support for real types;
3146 -- the exception is 12.5.1(8).
3147
3148 Intervals_Error : exception;
3149 -- Raised when the list of non-empty pair-wise disjoint intervals cannot
3150 -- be built.
3151 end Interval_Lists;
3152 end Sem_Util;