[multiple changes]
[gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Einfo; use Einfo;
29 with Namet; use Namet;
30 with Nmake; use Nmake;
31 with Snames; use Snames;
32 with Types; use Types;
33 with Uintp; use Uintp;
34 with Urealp; use Urealp;
35
36 package Sem_Util is
37
38 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
39 -- Given a type that implements interfaces look for its associated
40 -- definition node and return its list of interfaces.
41
42 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
43 -- Add A to the list of access types to process when expanding the
44 -- freeze node of E.
45
46 procedure Add_Global_Declaration (N : Node_Id);
47 -- These procedures adds a declaration N at the library level, to be
48 -- elaborated before any other code in the unit. It is used for example
49 -- for the entity that marks whether a unit has been elaborated. The
50 -- declaration is added to the Declarations list of the Aux_Decls_Node
51 -- for the current unit. The declarations are added in the current scope,
52 -- so the caller should push a new scope as required before the call.
53
54 function Alignment_In_Bits (E : Entity_Id) return Uint;
55 -- If the alignment of the type or object E is currently known to the
56 -- compiler, then this function returns the alignment value in bits.
57 -- Otherwise Uint_0 is returned, indicating that the alignment of the
58 -- entity is not yet known to the compiler.
59
60 procedure Apply_Compile_Time_Constraint_Error
61 (N : Node_Id;
62 Msg : String;
63 Reason : RT_Exception_Code;
64 Ent : Entity_Id := Empty;
65 Typ : Entity_Id := Empty;
66 Loc : Source_Ptr := No_Location;
67 Rep : Boolean := True;
68 Warn : Boolean := False);
69 -- N is a subexpression which will raise constraint error when evaluated
70 -- at runtime. Msg is a message that explains the reason for raising the
71 -- exception. The last character is ? if the message is always a warning,
72 -- even in Ada 95, and is not a ? if the message represents an illegality
73 -- (because of violation of static expression rules) in Ada 95 (but not
74 -- in Ada 83). Typically this routine posts all messages at the Sloc of
75 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
76 -- the message. After posting the appropriate message, and if the flag
77 -- Rep is set, this routine replaces the expression with an appropriate
78 -- N_Raise_Constraint_Error node using the given Reason code. This node
79 -- is then marked as being static if the original node is static, but
80 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
81 -- The error message may contain a } or & insertion character. This
82 -- normally references Etype (N), unless the Ent argument is given
83 -- explicitly, in which case it is used instead. The type of the raise
84 -- node that is built is normally Etype (N), but if the Typ parameter
85 -- is present, this is used instead. Warn is normally False. If it is
86 -- True then the message is treated as a warning even though it does
87 -- not end with a ? (this is used when the caller wants to parametrize
88 -- whether an error or warning is given.
89
90 function Build_Actual_Subtype
91 (T : Entity_Id;
92 N : Node_Or_Entity_Id) return Node_Id;
93 -- Build an anonymous subtype for an entity or expression, using the
94 -- bounds of the entity or the discriminants of the enclosing record.
95 -- T is the type for which the actual subtype is required, and N is either
96 -- a defining identifier, or any subexpression.
97
98 function Build_Actual_Subtype_Of_Component
99 (T : Entity_Id;
100 N : Node_Id) return Node_Id;
101 -- Determine whether a selected component has a type that depends on
102 -- discriminants, and build actual subtype for it if so.
103
104 function Build_Default_Subtype
105 (T : Entity_Id;
106 N : Node_Id) return Entity_Id;
107 -- If T is an unconstrained type with defaulted discriminants, build a
108 -- subtype constrained by the default values, insert the subtype
109 -- declaration in the tree before N, and return the entity of that
110 -- subtype. Otherwise, simply return T.
111
112 function Build_Discriminal_Subtype_Of_Component
113 (T : Entity_Id) return Node_Id;
114 -- Determine whether a record component has a type that depends on
115 -- discriminants, and build actual subtype for it if so.
116
117 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
118 -- Given a compilation unit node N, allocate an elaboration boolean for
119 -- the compilation unit, and install it in the Elaboration_Entity field
120 -- of Spec_Id, the entity for the compilation unit.
121
122 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
123 -- Returns True if the expression cannot possibly raise Constraint_Error.
124 -- The response is conservative in the sense that a result of False does
125 -- not necessarily mean that CE could be raised, but a response of True
126 -- means that for sure CE cannot be raised.
127
128 procedure Check_Dynamically_Tagged_Expression
129 (Expr : Node_Id;
130 Typ : Entity_Id;
131 Related_Nod : Node_Id);
132 -- Check wrong use of dynamically tagged expression
133
134 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
135 -- Verify that the full declaration of type T has been seen. If not,
136 -- place error message on node N. Used in object declarations, type
137 -- conversions, qualified expressions.
138
139 procedure Check_Nested_Access (Ent : Entity_Id);
140 -- Check whether Ent denotes an entity declared in an uplevel scope, which
141 -- is accessed inside a nested procedure, and set Has_Up_Level_Access flag
142 -- accordingly. This is currently only enabled for VM_Target /= No_VM.
143
144 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
145 -- N is one of the statement forms that is a potentially blocking
146 -- operation. If it appears within a protected action, emit warning.
147
148 procedure Check_Unprotected_Access
149 (Context : Node_Id;
150 Expr : Node_Id);
151 -- Check whether the expression is a pointer to a protected component,
152 -- and the context is external to the protected operation, to warn against
153 -- a possible unlocked access to data.
154
155 procedure Check_VMS (Construct : Node_Id);
156 -- Check that this the target is OpenVMS, and if so, return with
157 -- no effect, otherwise post an error noting this can only be used
158 -- with OpenVMS ports. The argument is the construct in question
159 -- and is used to post the error message.
160
161 procedure Collect_Interfaces
162 (T : Entity_Id;
163 Ifaces_List : out Elist_Id;
164 Exclude_Parents : Boolean := False;
165 Use_Full_View : Boolean := True);
166 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
167 -- directly or indirectly implemented by T. Exclude_Parents is used to
168 -- avoid the addition of inherited interfaces to the generated list.
169 -- Use_Full_View is used to collect the interfaces using the full-view
170 -- (if available).
171
172 procedure Collect_Interface_Components
173 (Tagged_Type : Entity_Id;
174 Components_List : out Elist_Id);
175 -- Ada 2005 (AI-251): Collect all the tag components associated with the
176 -- secondary dispatch tables of a tagged type.
177
178 procedure Collect_Interfaces_Info
179 (T : Entity_Id;
180 Ifaces_List : out Elist_Id;
181 Components_List : out Elist_Id;
182 Tags_List : out Elist_Id);
183 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
184 -- the record component and tag associated with each of these interfaces.
185 -- On exit Ifaces_List, Components_List and Tags_List have the same number
186 -- of elements, and elements at the same position on these tables provide
187 -- information on the same interface type.
188
189 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
190 -- Called upon type derivation and extension. We scan the declarative
191 -- part in which the type appears, and collect subprograms that have
192 -- one subsidiary subtype of the type. These subprograms can only
193 -- appear after the type itself.
194
195 function Compile_Time_Constraint_Error
196 (N : Node_Id;
197 Msg : String;
198 Ent : Entity_Id := Empty;
199 Loc : Source_Ptr := No_Location;
200 Warn : Boolean := False) return Node_Id;
201 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
202 -- generates a warning (or error) message in the same manner, but it does
203 -- not replace any nodes. For convenience, the function always returns its
204 -- first argument. The message is a warning if the message ends with ?, or
205 -- we are operating in Ada 83 mode, or if the Warn parameter is set to
206 -- True.
207
208 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
209 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag
210 -- of Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false);
211
212 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
213 -- Utility to create a parameter profile for a new subprogram spec,
214 -- when the subprogram has a body that acts as spec. This is done for
215 -- some cases of inlining, and for private protected ops. Also used
216 -- to create bodies for stubbed subprograms.
217
218 function Current_Entity (N : Node_Id) return Entity_Id;
219 -- Find the currently visible definition for a given identifier, that is to
220 -- say the first entry in the visibility chain for the Chars of N.
221
222 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
223 -- Find whether there is a previous definition for identifier N in the
224 -- current scope. Because declarations for a scope are not necessarily
225 -- contiguous (e.g. for packages) the first entry on the visibility chain
226 -- for N is not necessarily in the current scope.
227
228 function Current_Scope return Entity_Id;
229 -- Get entity representing current scope
230
231 function Current_Subprogram return Entity_Id;
232 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
233 -- then that is what is returned, otherwise the Enclosing_Subprogram of
234 -- the Current_Scope is returned. The returned value is Empty if this
235 -- is called from a library package which is not within any subprogram.
236
237 function Defining_Entity (N : Node_Id) return Entity_Id;
238 -- Given a declaration N, returns the associated defining entity. If
239 -- the declaration has a specification, the entity is obtained from
240 -- the specification. If the declaration has a defining unit name,
241 -- then the defining entity is obtained from the defining unit name
242 -- ignoring any child unit prefixes.
243
244 function Denotes_Discriminant
245 (N : Node_Id;
246 Check_Concurrent : Boolean := False) return Boolean;
247 -- Returns True if node N is an Entity_Name node for a discriminant.
248 -- If the flag Check_Concurrent is true, function also returns true
249 -- when N denotes the discriminal of the discriminant of a concurrent
250 -- type. This is necessary to disable some optimizations on private
251 -- components of protected types, and constraint checks on entry
252 -- families constrained by discriminants.
253
254 function Denotes_Variable (N : Node_Id) return Boolean;
255 -- Returns True if node N denotes a single variable without parentheses
256
257 function Depends_On_Discriminant (N : Node_Id) return Boolean;
258 -- Returns True if N denotes a discriminant or if N is a range, a subtype
259 -- indication or a scalar subtype where one of the bounds is a
260 -- discriminant.
261
262 function Designate_Same_Unit
263 (Name1 : Node_Id;
264 Name2 : Node_Id) return Boolean;
265 -- Return true if Name1 and Name2 designate the same unit name;
266 -- each of these names is supposed to be a selected component name,
267 -- an expanded name, a defining program unit name or an identifier
268
269 function Enclosing_Generic_Body
270 (N : Node_Id) return Node_Id;
271 -- Returns the Node_Id associated with the innermost enclosing
272 -- generic body, if any. If none, then returns Empty.
273
274 function Enclosing_Generic_Unit
275 (N : Node_Id) return Node_Id;
276 -- Returns the Node_Id associated with the innermost enclosing
277 -- generic unit, if any. If none, then returns Empty.
278
279 function Enclosing_Lib_Unit_Entity return Entity_Id;
280 -- Returns the entity of enclosing N_Compilation_Unit Node which is the
281 -- root of the current scope (which must not be Standard_Standard, and
282 -- the caller is responsible for ensuring this condition).
283
284 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
285 -- Returns the enclosing N_Compilation_Unit Node that is the root
286 -- of a subtree containing N.
287
288 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
289 -- Utility function to return the Ada entity of the subprogram enclosing
290 -- the entity E, if any. Returns Empty if no enclosing subprogram.
291
292 procedure Ensure_Freeze_Node (E : Entity_Id);
293 -- Make sure a freeze node is allocated for entity E. If necessary,
294 -- build and initialize a new freeze node and set Has_Delayed_Freeze
295 -- true for entity E.
296
297 procedure Enter_Name (Def_Id : Entity_Id);
298 -- Insert new name in symbol table of current scope with check for
299 -- duplications (error message is issued if a conflict is found)
300 -- Note: Enter_Name is not used for overloadable entities, instead
301 -- these are entered using Sem_Ch6.Enter_Overloadable_Entity.
302
303 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
304 -- This procedure is called after issuing a message complaining
305 -- about an inappropriate use of limited type T. If useful, it
306 -- adds additional continuation lines to the message explaining
307 -- why type T is limited. Messages are placed at node N.
308
309 procedure Find_Actual
310 (N : Node_Id;
311 Formal : out Entity_Id;
312 Call : out Node_Id);
313 -- Determines if the node N is an actual parameter of a procedure call. If
314 -- so, then Formal points to the entity for the formal (whose Ekind is one
315 -- of E_In_Parameter, E_Out_Parameter, E_In_Out_Parameter) and Call is set
316 -- to the node for the corresponding call. If the node N is not an actual
317 -- parameter, or is an actual parameter of a function call, then Formal and
318 -- Call are set to Empty.
319
320 function Find_Corresponding_Discriminant
321 (Id : Node_Id;
322 Typ : Entity_Id) return Entity_Id;
323 -- Because discriminants may have different names in a generic unit
324 -- and in an instance, they are resolved positionally when possible.
325 -- A reference to a discriminant carries the discriminant that it
326 -- denotes when analyzed. Subsequent uses of this id on a different
327 -- type denote the discriminant at the same position in this new type.
328
329 procedure Find_Overlaid_Entity
330 (N : Node_Id;
331 Ent : out Entity_Id;
332 Off : out Boolean);
333 -- The node N should be an address representation clause. Determines if the
334 -- target expression is the address of an entity with an optional offset.
335 -- If so, Ent is set to the entity and, if there is an offset, Off is set
336 -- to True, otherwise to False. If N is not an address representation
337 -- clause, or if it is not possible to determine that the address is of
338 -- this form, then Ent is set to Empty, and Off is set to False.
339
340 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
341 -- Return the type of formal parameter Param as determined by its
342 -- specification.
343
344 function Find_Static_Alternative (N : Node_Id) return Node_Id;
345 -- N is a case statement whose expression is a compile-time value.
346 -- Determine the alternative chosen, so that the code of non-selected
347 -- alternatives, and the warnings that may apply to them, are removed.
348
349 function First_Actual (Node : Node_Id) return Node_Id;
350 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
351 -- result returned is the first actual parameter in declaration order
352 -- (not the order of parameters as they appeared in the source, which
353 -- can be quite different as a result of the use of named parameters).
354 -- Empty is returned for a call with no parameters. The procedure for
355 -- iterating through the actuals in declaration order is to use this
356 -- function to find the first actual, and then use Next_Actual to obtain
357 -- the next actual in declaration order. Note that the value returned
358 -- is always the expression (not the N_Parameter_Association nodes
359 -- even if named association is used).
360
361 function Full_Qualified_Name (E : Entity_Id) return String_Id;
362 -- Generates the string literal corresponding to the E's full qualified
363 -- name in upper case. An ASCII.NUL is appended as the last character.
364 -- The names in the string are generated by Namet.Get_Decoded_Name_String.
365
366 procedure Gather_Components
367 (Typ : Entity_Id;
368 Comp_List : Node_Id;
369 Governed_By : List_Id;
370 Into : Elist_Id;
371 Report_Errors : out Boolean);
372 -- The purpose of this procedure is to gather the valid components in a
373 -- record type according to the values of its discriminants, in order to
374 -- validate the components of a record aggregate.
375 --
376 -- Typ is the type of the aggregate when its constrained discriminants
377 -- need to be collected, otherwise it is Empty.
378 --
379 -- Comp_List is an N_Component_List node.
380 --
381 -- Governed_By is a list of N_Component_Association nodes, where each
382 -- choice list contains the name of a discriminant and the expression
383 -- field gives its value. The values of the discriminants governing
384 -- the (possibly nested) variant parts in Comp_List are found in this
385 -- Component_Association List.
386 --
387 -- Into is the list where the valid components are appended. Note that
388 -- Into need not be an Empty list. If it's not, components are attached
389 -- to its tail.
390 --
391 -- Report_Errors is set to True if the values of the discriminants are
392 -- non-static.
393 --
394 -- This procedure is also used when building a record subtype. If the
395 -- discriminant constraint of the subtype is static, the components of the
396 -- subtype are only those of the variants selected by the values of the
397 -- discriminants. Otherwise all components of the parent must be included
398 -- in the subtype for semantic analysis.
399
400 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
401 -- Given a node for an expression, obtain the actual subtype of the
402 -- expression. In the case of a parameter where the formal is an
403 -- unconstrained array or discriminated type, this will be the
404 -- previously constructed subtype of the actual. Note that this is
405 -- not quite the "Actual Subtype" of the RM, since it is always
406 -- a constrained type, i.e. it is the subtype of the value of the
407 -- actual. The actual subtype is also returned in other cases where
408 -- it has already been constructed for an object. Otherwise the
409 -- expression type is returned unchanged, except for the case of an
410 -- unconstrained array type, where an actual subtype is created, using
411 -- Insert_Actions if necessary to insert any associated actions.
412
413 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
414 -- This is like Get_Actual_Subtype, except that it never constructs an
415 -- actual subtype. If an actual subtype is already available, i.e. the
416 -- Actual_Subtype field of the corresponding entity is set, then it is
417 -- returned. Otherwise the Etype of the node is returned.
418
419 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
420 -- This is used to construct the string literal node representing a
421 -- default external name, i.e. one that is constructed from the name
422 -- of an entity, or (in the case of extended DEC import/export pragmas,
423 -- an identifier provided as the external name. Letters in the name are
424 -- according to the setting of Opt.External_Name_Default_Casing.
425
426 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
427 -- Returns the true generic entity in an instantiation. If the name in
428 -- the instantiation is a renaming, the function returns the renamed
429 -- generic.
430
431 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
432 -- This procedure assigns to L and H respectively the values of the
433 -- low and high bounds of node N, which must be a range, subtype
434 -- indication, or the name of a scalar subtype. The result in L, H
435 -- may be set to Error if there was an earlier error in the range.
436
437 function Get_Enum_Lit_From_Pos
438 (T : Entity_Id;
439 Pos : Uint;
440 Loc : Source_Ptr) return Entity_Id;
441 -- This function obtains the E_Enumeration_Literal entity for the
442 -- specified value from the enumeration type or subtype T. The
443 -- second argument is the Pos value, which is assumed to be in range.
444 -- The third argument supplies a source location for constructed
445 -- nodes returned by this function.
446
447 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
448 -- Retrieve the fully expanded name of the library unit declared by
449 -- Decl_Node into the name buffer.
450
451 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
452 -- An entity value is associated with each name in the name table. The
453 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity,
454 -- which is the innermost visible entity with the given name. See the
455 -- body of Sem_Ch8 for further details on handling of entity visibility.
456
457 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
458 pragma Inline (Get_Pragma_Id);
459 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
460
461 function Get_Referenced_Object (N : Node_Id) return Node_Id;
462 -- Given a node, return the renamed object if the node represents a renamed
463 -- object, otherwise return the node unchanged. The node may represent an
464 -- arbitrary expression.
465
466 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
467 -- Given an entity for an exception, package, subprogram or generic unit,
468 -- returns the ultimately renamed entity if this is a renaming. If this is
469 -- not a renamed entity, returns its argument. It is an error to call this
470 -- with any other kind of entity.
471
472 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
473 -- Nod is either a procedure call statement, or a function call, or
474 -- an accept statement node. This procedure finds the Entity_Id of the
475 -- related subprogram or entry and returns it, or if no subprogram can
476 -- be found, returns Empty.
477
478 function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
479 -- Given the entity for a subprogram (E_Function or E_Procedure),
480 -- return the corresponding N_Subprogram_Body node. If the corresponding
481 -- body of the declaration is missing (as for an imported subprogram)
482 -- return Empty.
483
484 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
485 pragma Inline (Get_Task_Body_Procedure);
486 -- Given an entity for a task type or subtype, retrieves the
487 -- Task_Body_Procedure field from the corresponding task type
488 -- declaration.
489
490 function Has_Access_Values (T : Entity_Id) return Boolean;
491 -- Returns true if type or subtype T is an access type, or has a component
492 -- (at any recursive level) that is an access type. This is a conservative
493 -- predicate, if it is not known whether or not T contains access values
494 -- (happens for generic formals in some cases), then False is returned.
495 -- Note that tagged types return False. Even though the tag is implemented
496 -- as an access type internally, this function tests only for access types
497 -- known to the programmer. See also Has_Tagged_Component.
498
499 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
500 -- Result of Has_Compatible_Alignment test, description found below. Note
501 -- that the values are arranged in increasing order of problematicness.
502
503 function Has_Compatible_Alignment
504 (Obj : Entity_Id;
505 Expr : Node_Id) return Alignment_Result;
506 -- Obj is an object entity, and expr is a node for an object reference. If
507 -- the alignment of the object referenced by Expr is known to be compatible
508 -- with the alignment of Obj (i.e. is larger or the same), then the result
509 -- is Known_Compatible. If the alignment of the object referenced by Expr
510 -- is known to be less than the alignment of Obj, then Known_Incompatible
511 -- is returned. If neither condition can be reliably established at compile
512 -- time, then Unknown is returned. This is used to determine if alignment
513 -- checks are required for address clauses, and also whether copies must
514 -- be made when objects are passed by reference.
515 --
516 -- Note: Known_Incompatible does not mean that at run time the alignment
517 -- of Expr is known to be wrong for Obj, just that it can be determined
518 -- that alignments have been explicitly or implicitly specified which
519 -- are incompatible (whereas Unknown means that even this is not known).
520 -- The appropriate reaction of a caller to Known_Incompatible is to treat
521 -- it as Unknown, but issue a warning that there may be an alignment error.
522
523 function Has_Declarations (N : Node_Id) return Boolean;
524 -- Determines if the node can have declarations
525
526 function Has_Discriminant_Dependent_Constraint
527 (Comp : Entity_Id) return Boolean;
528 -- Returns True if and only if Comp has a constrained subtype
529 -- that depends on a discriminant.
530
531 function Has_Infinities (E : Entity_Id) return Boolean;
532 -- Determines if the range of the floating-point type E includes
533 -- infinities. Returns False if E is not a floating-point type.
534
535 function Has_Interfaces
536 (T : Entity_Id;
537 Use_Full_View : Boolean := True) return Boolean;
538 -- Where T is a concurrent type or a record type, returns true if T covers
539 -- any abstract interface types. In case of private types the argument
540 -- Use_Full_View controls if the check is done using its full view (if
541 -- available).
542
543 function Has_Null_Exclusion (N : Node_Id) return Boolean;
544 -- Determine whether node N has a null exclusion
545
546 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
547 -- Predicate to determine whether a controlled type has a user-defined
548 -- Initialize primitive, which makes the type not preelaborable.
549
550 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
551 -- Return True iff type E has preelaborable initialization as defined in
552 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
553
554 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
555 -- Check if a type has a (sub)component of a private type that has not
556 -- yet received a full declaration.
557
558 function Has_Stream (T : Entity_Id) return Boolean;
559 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or
560 -- in the case of a composite type, has a component for which this
561 -- predicate is True, and if so returns True. Otherwise a result of
562 -- False means that there is no Stream type in sight. For a private
563 -- type, the test is applied to the underlying type (or returns False
564 -- if there is no underlying type).
565
566 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
567 -- Returns True if Typ is a composite type (array or record) which is
568 -- either itself a tagged type, or has a component (recursively) which is
569 -- a tagged type. Returns False for non-composite type, or if no tagged
570 -- component is present. This function is used to check if '=' has to be
571 -- expanded into a bunch component comparisons.
572
573 function Implements_Interface
574 (Typ_Ent : Entity_Id;
575 Iface_Ent : Entity_Id;
576 Exclude_Parents : Boolean := False) return Boolean;
577 -- Returns true if the Typ implements interface Iface
578
579 function In_Instance return Boolean;
580 -- Returns True if the current scope is within a generic instance
581
582 function In_Instance_Body return Boolean;
583 -- Returns True if current scope is within the body of an instance, where
584 -- several semantic checks (e.g. accessibility checks) are relaxed.
585
586 function In_Instance_Not_Visible return Boolean;
587 -- Returns True if current scope is with the private part or the body of
588 -- an instance. Other semantic checks are suppressed in this context.
589
590 function In_Instance_Visible_Part return Boolean;
591 -- Returns True if current scope is within the visible part of a package
592 -- instance, where several additional semantic checks apply.
593
594 function In_Package_Body return Boolean;
595 -- Returns True if current scope is within a package body
596
597 function In_Parameter_Specification (N : Node_Id) return Boolean;
598 -- Returns True if node N belongs to a parameter specification
599
600 function In_Subprogram_Or_Concurrent_Unit return Boolean;
601 -- Determines if the current scope is within a subprogram compilation
602 -- unit (inside a subprogram declaration, subprogram body, or generic
603 -- subprogram declaration) or within a task or protected body. The test
604 -- is for appearing anywhere within such a construct (that is it does not
605 -- need to be directly within).
606
607 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
608 -- Determine whether a declaration occurs within the visible part of a
609 -- package specification. The package must be on the scope stack, and the
610 -- corresponding private part must not.
611
612 procedure Insert_Explicit_Dereference (N : Node_Id);
613 -- In a context that requires a composite or subprogram type and
614 -- where a prefix is an access type, rewrite the access type node
615 -- N (which is the prefix, e.g. of an indexed component) as an
616 -- explicit dereference.
617
618 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
619 -- Examine all deferred constants in the declaration list Decls and check
620 -- whether they have been completed by a full constant declaration or an
621 -- Import pragma. Emit the error message if that is not the case.
622
623 function Is_AAMP_Float (E : Entity_Id) return Boolean;
624 -- Defined for all type entities. Returns True only for the base type
625 -- of float types with AAMP format. The particular format is determined
626 -- by the Digits_Value value which is 6 for the 32-bit floating point type,
627 -- or 9 for the 48-bit type. This is not an attribute function (like
628 -- VAX_Float) in order to not use up an extra flag and to prevent
629 -- the dependency of Einfo on Targparm which would be required for a
630 -- synthesized attribute.
631
632 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
633 -- Determines if N is an actual parameter of out mode in a subprogram call
634
635 function Is_Actual_Parameter (N : Node_Id) return Boolean;
636 -- Determines if N is an actual parameter in a subprogram call
637
638 function Is_Aliased_View (Obj : Node_Id) return Boolean;
639 -- Determine if Obj is an aliased view, i.e. the name of an
640 -- object to which 'Access or 'Unchecked_Access can apply.
641
642 function Is_Ancestor_Package
643 (E1 : Entity_Id;
644 E2 : Entity_Id) return Boolean;
645 -- Determine whether package E1 is an ancestor of E2
646
647 function Is_Atomic_Object (N : Node_Id) return Boolean;
648 -- Determines if the given node denotes an atomic object in the sense
649 -- of the legality checks described in RM C.6(12).
650
651 function Is_Coextension_Root (N : Node_Id) return Boolean;
652 -- Determine whether node N is an allocator which acts as a coextension
653 -- root.
654
655 function Is_Controlling_Limited_Procedure
656 (Proc_Nam : Entity_Id) return Boolean;
657 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
658 -- of a limited interface with a controlling first parameter.
659
660 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
661 -- Returns True if N is a call to a CPP constructor
662
663 function Is_Dependent_Component_Of_Mutable_Object
664 (Object : Node_Id) return Boolean;
665 -- Returns True if Object is the name of a subcomponent that depends on
666 -- discriminants of a variable whose nominal subtype is unconstrained and
667 -- not indefinite, and the variable is not aliased. Otherwise returns
668 -- False. The nodes passed to this function are assumed to denote objects.
669
670 function Is_Dereferenced (N : Node_Id) return Boolean;
671 -- N is a subexpression node of an access type. This function returns
672 -- true if N appears as the prefix of a node that does a dereference
673 -- of the access value (selected/indexed component, explicit dereference
674 -- or a slice), and false otherwise.
675
676 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
677 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
678 -- This is the RM definition, a type is a descendent of another type if it
679 -- is the same type or is derived from a descendent of the other type.
680
681 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
682 -- First determine whether type T is an interface and then check whether
683 -- it is of protected, synchronized or task kind.
684
685 function Is_False (U : Uint) return Boolean;
686 -- The argument is a Uint value which is the Boolean'Pos value of a
687 -- Boolean operand (i.e. is either 0 for False, or 1 for True). This
688 -- function simply tests if it is False (i.e. zero)
689
690 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
691 -- Returns True iff the number U is a model number of the fixed-
692 -- point type T, i.e. if it is an exact multiple of Small.
693
694 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
695 -- Typ is a type entity. This function returns true if this type is fully
696 -- initialized, meaning that an object of the type is fully initialized.
697 -- Note that initialization resulting from use of pragma Normalized_Scalars
698 -- does not count. Note that this is only used for the purpose of issuing
699 -- warnings for objects that are potentially referenced uninitialized. This
700 -- means that the result returned is not crucial, but should err on the
701 -- side of thinking things are fully initialized if it does not know.
702
703 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
704 -- E is a subprogram. Return True is E is an implicit operation inherited
705 -- by a derived type declarations.
706
707 function Is_LHS (N : Node_Id) return Boolean;
708 -- Returns True iff N is an identifier used as Name in an assignment
709 -- statement.
710 -- Which is true, the spec or the body???
711 -- The body does not restrict N to be an identifier, it can be any
712 -- expression on the left side of an assignment ???
713
714 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
715 -- A library-level declaration is one that is accessible from Standard,
716 -- i.e. a library unit or an entity declared in a library package.
717
718 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
719 -- Determines whether Expr is a reference to a variable or IN OUT
720 -- mode parameter of the current enclosing subprogram.
721 -- Why are OUT parameters not considered here ???
722
723 function Is_Object_Reference (N : Node_Id) return Boolean;
724 -- Determines if the tree referenced by N represents an object. Both
725 -- variable and constant objects return True (compare Is_Variable).
726
727 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
728 -- Used to test if AV is an acceptable formal for an OUT or IN OUT
729 -- formal. Note that the Is_Variable function is not quite the right
730 -- test because this is a case in which conversions whose expression
731 -- is a variable (in the Is_Variable sense) with a non-tagged type
732 -- target are considered view conversions and hence variables.
733
734 function Is_Partially_Initialized_Type (Typ : Entity_Id) return Boolean;
735 -- Typ is a type entity. This function returns true if this type is
736 -- partly initialized, meaning that an object of the type is at least
737 -- partly initialized (in particular in the record case, that at least
738 -- one component has an initialization expression). Note that
739 -- initialization resulting from the use of pragma Normalized_Scalars does
740 -- not count.
741
742 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
743 -- Determines if type T is a potentially persistent type. A potentially
744 -- persistent type is defined (recursively) as a scalar type, a non-tagged
745 -- record whose components are all of a potentially persistent type, or an
746 -- array with all static constraints whose component type is potentially
747 -- persistent. A private type is potentially persistent if the full type
748 -- is potentially persistent.
749
750 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
751 -- Return True if node N denotes a protected type name which represents
752 -- the current instance of a protected object according to RM 9.4(21/2).
753
754 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
755 -- Return True if a compilation unit is the specification or the
756 -- body of a remote call interface package.
757
758 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
759 -- Return True if E is a remote access-to-class-wide type
760
761 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
762 -- Return True if E is a remote access to subprogram type
763
764 function Is_Remote_Call (N : Node_Id) return Boolean;
765 -- Return True if N denotes a potentially remote call
766
767 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
768 -- Return True if Proc_Nam is a procedure renaming of an entry
769
770 function Is_Selector_Name (N : Node_Id) return Boolean;
771 -- Given an N_Identifier node N, determines if it is a Selector_Name.
772 -- As described in Sinfo, Selector_Names are special because they
773 -- represent use of the N_Identifier node for a true identifier, when
774 -- normally such nodes represent a direct name.
775
776 function Is_Statement (N : Node_Id) return Boolean;
777 -- Check if the node N is a statement node. Note that this includes
778 -- the case of procedure call statements (unlike the direct use of
779 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
780 -- Note that a label is *not* a statement, and will return False.
781
782 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
783 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
784
785 function Is_Transfer (N : Node_Id) return Boolean;
786 -- Returns True if the node N is a statement which is known to cause
787 -- an unconditional transfer of control at runtime, i.e. the following
788 -- statement definitely will not be executed.
789
790 function Is_True (U : Uint) return Boolean;
791 -- The argument is a Uint value which is the Boolean'Pos value of a
792 -- Boolean operand (i.e. is either 0 for False, or 1 for True). This
793 -- function simply tests if it is True (i.e. non-zero)
794
795 function Is_Value_Type (T : Entity_Id) return Boolean;
796 -- Returns true if type T represents a value type. This is only relevant to
797 -- CIL, will always return false for other targets.
798 -- What is a "value type", since this is not an Ada term, it should be
799 -- defined here ???
800
801 function Is_Variable (N : Node_Id) return Boolean;
802 -- Determines if the tree referenced by N represents a variable, i.e.
803 -- can appear on the left side of an assignment. There is one situation,
804 -- namely formal parameters, in which non-tagged type conversions are
805 -- also considered variables, but Is_Variable returns False for such
806 -- cases, since it has no knowledge of the context. Note that this is
807 -- the point at which Assignment_OK is checked, and True is returned
808 -- for any tree thus marked.
809
810 function Is_Volatile_Object (N : Node_Id) return Boolean;
811 -- Determines if the given node denotes an volatile object in the sense
812 -- of the legality checks described in RM C.6(12). Note that the test
813 -- here is for something actually declared as volatile, not for an object
814 -- that gets treated as volatile (see Einfo.Treat_As_Volatile).
815
816 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
817 -- This procedure is called to clear all constant indications from all
818 -- entities in the current scope and in any parent scopes if the current
819 -- scope is a block or a package (and that recursion continues to the top
820 -- scope that is not a block or a package). This is used when the
821 -- sequential flow-of-control assumption is violated (occurrence of a
822 -- label, head of a loop, or start of an exception handler). The effect of
823 -- the call is to clear the Constant_Value field (but we do not need to
824 -- clear the Is_True_Constant flag, since that only gets reset if there
825 -- really is an assignment somewhere in the entity scope). This procedure
826 -- also calls Kill_All_Checks, since this is a special case of needing to
827 -- forget saved values. This procedure also clears Is_Known_Non_Null flags
828 -- in variables, constants or parameters since these are also not known to
829 -- be valid.
830 --
831 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
832 -- fields and leave other fields unchanged. This is used when we encounter
833 -- an unconditional flow of control change (return, goto, raise). In such
834 -- cases we don't need to clear the current values, since it may be that
835 -- the flow of control change occurs in a conditional context, and if it
836 -- is not taken, then it is just fine to keep the current values. But the
837 -- Last_Assignment field is different, if we have a sequence assign-to-v,
838 -- conditional-return, assign-to-v, we do not want to complain that the
839 -- second assignment clobbers the first.
840
841 procedure Kill_Current_Values
842 (Ent : Entity_Id;
843 Last_Assignment_Only : Boolean := False);
844 -- This performs the same processing as described above for the form with
845 -- no argument, but for the specific entity given. The call has no effect
846 -- if the entity Ent is not for an object. Again, Last_Assignment_Only is
847 -- set if you want to clear only the Last_Assignment field (see above).
848
849 procedure Kill_Size_Check_Code (E : Entity_Id);
850 -- Called when an address clause or pragma Import is applied to an entity.
851 -- If the entity is a variable or a constant, and size check code is
852 -- present, this size check code is killed, since the object will not
853 -- be allocated by the program.
854
855 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
856 -- The node N is an entity reference. This function determines whether the
857 -- reference is for sure an assignment of the entity, returning True if
858 -- so. This differs from May_Be_Lvalue in that it defaults in the other
859 -- direction. Cases which may possibly be assignments but are not known to
860 -- be may return True from May_Be_Lvalue, but False from this function.
861
862 function Make_Simple_Return_Statement
863 (Sloc : Source_Ptr;
864 Expression : Node_Id := Empty) return Node_Id
865 renames Make_Return_Statement;
866 -- See Sinfo. We rename Make_Return_Statement to the correct Ada 2005
867 -- terminology here. Clients should use Make_Simple_Return_Statement.
868
869 Make_Return_Statement : constant := -2 ** 33;
870 -- Attempt to prevent accidental uses of Make_Return_Statement. If this
871 -- and the one in Nmake are both potentially use-visible, it will cause
872 -- a compilation error. Note that type and value are irrelevant.
873
874 N_Return_Statement : constant := -2**33;
875 -- Attempt to prevent accidental uses of N_Return_Statement; similar to
876 -- Make_Return_Statement above.
877
878 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
879 -- Given a node which designates the context of analysis and an origin in
880 -- the tree, traverse from Root_Nod and mark all allocators as either
881 -- dynamic or static depending on Context_Nod. Any erroneous marking is
882 -- cleaned up during resolution.
883
884 function May_Be_Lvalue (N : Node_Id) return Boolean;
885 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
886 -- An lvalue is defined as any expression which appears in a context where
887 -- a name is required by the syntax, and the identity, rather than merely
888 -- the value of the node is needed (for example, the prefix of an Access
889 -- attribute is in this category). Note that, as implied by the name, this
890 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
891 -- it returns True. It tries hard to get the answer right, but it is hard
892 -- to guarantee this in all cases. Note that it is more possible to give
893 -- correct answer if the tree is fully analyzed.
894
895 function Needs_One_Actual (E : Entity_Id) return Boolean;
896 -- Returns True if a function has defaults for all but its first
897 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
898 -- results from an indexing of a function call written in prefix form.
899
900 function New_Copy_List_Tree (List : List_Id) return List_Id;
901 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
902 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
903 -- nodes (entities) either directly or indirectly using this function.
904
905 function New_Copy_Tree
906 (Source : Node_Id;
907 Map : Elist_Id := No_Elist;
908 New_Sloc : Source_Ptr := No_Location;
909 New_Scope : Entity_Id := Empty) return Node_Id;
910 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
911 -- syntactic subtree, including recursively any descendents whose parent
912 -- field references a copied node (descendents not linked to a copied node
913 -- by the parent field are not copied, instead the copied tree references
914 -- the same descendent as the original in this case, which is appropriate
915 -- for non-syntactic fields such as Etype). The parent pointers in the
916 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
917 -- The one exception to the rule of not copying semantic fields is that
918 -- any implicit types attached to the subtree are duplicated, so that
919 -- the copy contains a distinct set of implicit type entities. Thus this
920 -- function is used when it is necessary to duplicate an analyzed tree,
921 -- declared in the same or some other compilation unit. This function is
922 -- declared here rather than in atree because it uses semantic information
923 -- in particular concerning the structure of itypes and the generation of
924 -- public symbols.
925
926 -- The Map argument, if set to a non-empty Elist, specifies a set of
927 -- mappings to be applied to entities in the tree. The map has the form:
928 --
929 -- old entity 1
930 -- new entity to replace references to entity 1
931 -- old entity 2
932 -- new entity to replace references to entity 2
933 -- ...
934 --
935 -- The call destroys the contents of Map in this case
936 --
937 -- The parameter New_Sloc, if set to a value other than No_Location, is
938 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
939 -- set to its default value No_Location, then the Sloc values of the
940 -- nodes in the copy are simply copied from the corresponding original.
941 --
942 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
943 -- the default No_Location value, but is reset if New_Sloc is given, since
944 -- in this case the result clearly is neither a source node or an exact
945 -- copy of a source node.
946 --
947 -- The parameter New_Scope, if set to a value other than Empty, is the
948 -- value to use as the Scope for any Itypes that are copied. The most
949 -- typical value for this parameter, if given, is Current_Scope.
950
951 function New_External_Entity
952 (Kind : Entity_Kind;
953 Scope_Id : Entity_Id;
954 Sloc_Value : Source_Ptr;
955 Related_Id : Entity_Id;
956 Suffix : Character;
957 Suffix_Index : Nat := 0;
958 Prefix : Character := ' ') return Entity_Id;
959 -- This function creates an N_Defining_Identifier node for an internal
960 -- created entity, such as an implicit type or subtype, or a record
961 -- initialization procedure. The entity name is constructed with a call
962 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
963 -- that the generated name may be referenced as a public entry, and the
964 -- Is_Public flag is set if needed (using Set_Public_Status). If the
965 -- entity is for a type or subtype, the size/align fields are initialized
966 -- to unknown (Uint_0).
967
968 function New_Internal_Entity
969 (Kind : Entity_Kind;
970 Scope_Id : Entity_Id;
971 Sloc_Value : Source_Ptr;
972 Id_Char : Character) return Entity_Id;
973 -- This function is similar to New_External_Entity, except that the
974 -- name is constructed by New_Internal_Name (Id_Char). This is used
975 -- when the resulting entity does not have to be referenced as a
976 -- public entity (and in this case Is_Public is not set).
977
978 procedure Next_Actual (Actual_Id : in out Node_Id);
979 pragma Inline (Next_Actual);
980 -- Next_Actual (N) is equivalent to N := Next_Actual (N)
981
982 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
983 -- Find next actual parameter in declaration order. As described for
984 -- First_Actual, this is the next actual in the declaration order, not
985 -- the call order, so this does not correspond to simply taking the
986 -- next entry of the Parameter_Associations list. The argument is an
987 -- actual previously returned by a call to First_Actual or Next_Actual.
988 -- Note that the result produced is always an expression, not a parameter
989 -- association node, even if named notation was used.
990
991 procedure Normalize_Actuals
992 (N : Node_Id;
993 S : Entity_Id;
994 Report : Boolean;
995 Success : out Boolean);
996 -- Reorders lists of actuals according to names of formals, value returned
997 -- in Success indicates success of reordering. For more details, see body.
998 -- Errors are reported only if Report is set to True.
999
1000 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1001 -- This routine is called if the sub-expression N maybe the target of
1002 -- an assignment (e.g. it is the left side of an assignment, used as
1003 -- an out parameters, or used as prefixes of access attributes). It
1004 -- sets May_Be_Modified in the associated entity if there is one,
1005 -- taking into account the rule that in the case of renamed objects,
1006 -- it is the flag in the renamed object that must be set.
1007 --
1008 -- The parameter Sure is set True if the modification is sure to occur
1009 -- (e.g. target of assignment, or out parameter), and to False if the
1010 -- modification is only potential (e.g. address of entity taken).
1011
1012 function Object_Access_Level (Obj : Node_Id) return Uint;
1013 -- Return the accessibility level of the view of the object Obj.
1014 -- For convenience, qualified expressions applied to object names
1015 -- are also allowed as actuals for this function.
1016
1017 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1018 -- Returns True if the names of both entities correspond with matching
1019 -- primitives. This routine includes support for the case in which one
1020 -- or both entities correspond with entities built by Derive_Subprogram
1021 -- with a special name to avoid being overridden (i.e. return true in case
1022 -- of entities with names "nameP" and "name" or vice versa).
1023
1024 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1025 -- Returns some private component (if any) of the given Type_Id.
1026 -- Used to enforce the rules on visibility of operations on composite
1027 -- types, that depend on the full view of the component type. For a
1028 -- record type there may be several such components, we just return
1029 -- the first one.
1030
1031 procedure Process_End_Label
1032 (N : Node_Id;
1033 Typ : Character;
1034 Ent : Entity_Id);
1035 -- N is a node whose End_Label is to be processed, generating all
1036 -- appropriate cross-reference entries, and performing style checks
1037 -- for any identifier references in the end label. Typ is either
1038 -- 'e' or 't indicating the type of the cross-reference entity
1039 -- (e for spec, t for body, see Lib.Xref spec for details). The
1040 -- parameter Ent gives the entity to which the End_Label refers,
1041 -- and to which cross-references are to be generated.
1042
1043 function Real_Convert (S : String) return Node_Id;
1044 -- S is a possibly signed syntactically valid real literal. The result
1045 -- returned is an N_Real_Literal node representing the literal value.
1046
1047 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1048 -- Returns True if the expression Expr contains any references to a
1049 -- generic type. This can only happen within a generic template.
1050
1051 procedure Remove_Homonym (E : Entity_Id);
1052 -- Removes E from the homonym chain
1053
1054 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1055 -- This is used to construct the second argument in a call to Rep_To_Pos
1056 -- which is Standard_True if range checks are enabled (E is an entity to
1057 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1058 -- if range checks are suppressed. Loc is the location for the node that
1059 -- is returned (which is a New_Occurrence of the appropriate entity).
1060 --
1061 -- Note: one might think that it would be fine to always use True and
1062 -- to ignore the suppress in this case, but it is generally better to
1063 -- believe a request to suppress exceptions if possible, and further
1064 -- more there is at least one case in the generated code (the code for
1065 -- array assignment in a loop) that depends on this suppression.
1066
1067 procedure Require_Entity (N : Node_Id);
1068 -- N is a node which should have an entity value if it is an entity name.
1069 -- If not, then check if there were previous errors. If so, just fill
1070 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1071 -- This is used as a defense mechanism against ill-formed trees caused by
1072 -- previous errors (particularly in -gnatq mode).
1073
1074 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1075 -- E is a type entity. The result is True when temporaries of this
1076 -- type need to be wrapped in a transient scope to be reclaimed
1077 -- properly when a secondary stack is in use. Examples of types
1078 -- requiring such wrapping are controlled types and variable-sized
1079 -- types including unconstrained arrays
1080
1081 procedure Reset_Analyzed_Flags (N : Node_Id);
1082 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1083
1084 function Safe_To_Capture_Value
1085 (N : Node_Id;
1086 Ent : Entity_Id;
1087 Cond : Boolean := False) return Boolean;
1088 -- The caller is interested in capturing a value (either the current value,
1089 -- or an indication that the value is non-null) for the given entity Ent.
1090 -- This value can only be captured if sequential execution semantics can be
1091 -- properly guaranteed so that a subsequent reference will indeed be sure
1092 -- that this current value indication is correct. The node N is the
1093 -- construct which resulted in the possible capture of the value (this
1094 -- is used to check if we are in a conditional).
1095 --
1096 -- Cond is used to skip the test for being inside a conditional. It is used
1097 -- in the case of capturing values from if/while tests, which already do a
1098 -- proper job of handling scoping issues without this help.
1099 --
1100 -- The only entities whose values can be captured are OUT and IN OUT formal
1101 -- parameters, and variables unless Cond is True, in which case we also
1102 -- allow IN formals, loop parameters and constants, where we cannot ever
1103 -- capture actual value information, but we can capture conditional tests.
1104
1105 function Same_Name (N1, N2 : Node_Id) return Boolean;
1106 -- Determine if two (possibly expanded) names are the same name. This is
1107 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1108
1109 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1110 -- Determine if Node1 and Node2 are known to designate the same object.
1111 -- This is a semantic test and both nodes must be fully analyzed. A result
1112 -- of True is decisively correct. A result of False does not necessarily
1113 -- mean that different objects are designated, just that this could not
1114 -- be reliably determined at compile time.
1115
1116 function Same_Type (T1, T2 : Entity_Id) return Boolean;
1117 -- Determines if T1 and T2 represent exactly the same type. Two types
1118 -- are the same if they are identical, or if one is an unconstrained
1119 -- subtype of the other, or they are both common subtypes of the same
1120 -- type with identical constraints. The result returned is conservative.
1121 -- It is True if the types are known to be the same, but a result of
1122 -- False is indecisive (e.g. the compiler may not be able to tell that
1123 -- two constraints are identical).
1124
1125 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1126 -- Determines if Node1 and Node2 are known to be the same value, which is
1127 -- true if they are both compile time known values and have the same value,
1128 -- or if they are the same object (in the sense of function Same_Object).
1129 -- A result of False does not necessarily mean they have different values,
1130 -- just that it is not possible to determine they have the same value.
1131
1132 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1133 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1134 -- inside it, where both entities represent scopes. Note that scopes
1135 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1136 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1137
1138 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1139 -- Like Scope_Within_Or_Same, except that this function returns
1140 -- False in the case where Scope1 and Scope2 are the same scope.
1141
1142 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1143 -- Same as Basic_Set_Convention, but with an extra check for access types.
1144 -- In particular, if E is an access-to-subprogram type, and Val is a
1145 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1146
1147 procedure Set_Current_Entity (E : Entity_Id);
1148 -- Establish the entity E as the currently visible definition of its
1149 -- associated name (i.e. the Node_Id associated with its name)
1150
1151 procedure Set_Debug_Info_Needed (T : Entity_Id);
1152 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1153 -- that are needed by T (for an object, the type of the object is needed,
1154 -- and for a type, various subsidiary types are needed -- see body for
1155 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1156 -- This routine should always be used instead of Set_Needs_Debug_Info to
1157 -- ensure that subsidiary entities are properly handled.
1158
1159 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id);
1160 -- This procedure has the same calling sequence as Set_Entity, but
1161 -- if Style_Check is set, then it calls a style checking routine which
1162 -- can check identifier spelling style.
1163
1164 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1165 -- Sets the Entity_Id value associated with the given name, which is the
1166 -- Id of the innermost visible entity with the given name. See the body
1167 -- of package Sem_Ch8 for further details on the handling of visibility.
1168
1169 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1170 -- The arguments may be parameter associations, whose descendants
1171 -- are the optional formal name and the actual parameter. Positional
1172 -- parameters are already members of a list, and do not need to be
1173 -- chained separately. See also First_Actual and Next_Actual.
1174
1175 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1176 pragma Inline (Set_Optimize_Alignment_Flags);
1177 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
1178
1179 procedure Set_Public_Status (Id : Entity_Id);
1180 -- If an entity (visible or otherwise) is defined in a library
1181 -- package, or a package that is itself public, then this subprogram
1182 -- labels the entity public as well.
1183
1184 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1185 -- N is the node for either a left hand side (Out_Param set to False),
1186 -- or an Out or In_Out parameter (Out_Param set to True). If there is
1187 -- an assignable entity being referenced, then the appropriate flag
1188 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1189 -- if Out_Param is True) is set True, and the other flag set False.
1190
1191 procedure Set_Scope_Is_Transient (V : Boolean := True);
1192 -- Set the flag Is_Transient of the current scope
1193
1194 procedure Set_Size_Info (T1, T2 : Entity_Id);
1195 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1196 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1197 -- in the fixed-point and discrete cases, and also copies the alignment
1198 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1199 -- separately set if this is required to be copied also.
1200
1201 function Scope_Is_Transient return Boolean;
1202 -- True if the current scope is transient
1203
1204 function Static_Integer (N : Node_Id) return Uint;
1205 -- This function analyzes the given expression node and then resolves it
1206 -- as any integer type. If the result is static, then the value of the
1207 -- universal expression is returned, otherwise an error message is output
1208 -- and a value of No_Uint is returned.
1209
1210 function Statically_Different (E1, E2 : Node_Id) return Boolean;
1211 -- Return True if it can be statically determined that the Expressions
1212 -- E1 and E2 refer to different objects
1213
1214 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1215 -- Return the accessibility level of the view denoted by Subp
1216
1217 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1218 -- Print debugging information on entry to each unit being analyzed
1219
1220 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1221 -- Move a list of entities from one scope to another, and recompute
1222 -- Is_Public based upon the new scope.
1223
1224 function Type_Access_Level (Typ : Entity_Id) return Uint;
1225 -- Return the accessibility level of Typ
1226
1227 function Ultimate_Alias (Prim : Entity_Id) return Entity_Id;
1228 -- Return the last entity in the chain of aliased entities of Prim.
1229 -- If Prim has no alias return Prim.
1230
1231 function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id;
1232 -- Unit_Id is the simple name of a program unit, this function returns the
1233 -- corresponding xxx_Declaration node for the entity. Also applies to the
1234 -- body entities for subprograms, tasks and protected units, in which case
1235 -- it returns the subprogram, task or protected body node for it. The unit
1236 -- may be a child unit with any number of ancestors.
1237
1238 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1239 -- Yields universal_Integer or Universal_Real if this is a candidate
1240
1241 function Unqualify (Expr : Node_Id) return Node_Id;
1242 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)),
1243 -- this returns X. If Expr is not a qualified expression, returns Expr.
1244
1245 function Within_Init_Proc return Boolean;
1246 -- Determines if Current_Scope is within an init proc
1247
1248 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1249 -- Output error message for incorrectly typed expression. Expr is the
1250 -- node for the incorrectly typed construct (Etype (Expr) is the type
1251 -- found), and Expected_Type is the entity for the expected type. Note
1252 -- that Expr does not have to be a subexpression, anything with an
1253 -- Etype field may be used.
1254
1255 private
1256 pragma Inline (Current_Entity);
1257 pragma Inline (Get_Name_Entity_Id);
1258 pragma Inline (Is_False);
1259 pragma Inline (Is_Statement);
1260 pragma Inline (Is_True);
1261 pragma Inline (Set_Current_Entity);
1262 pragma Inline (Set_Name_Entity_Id);
1263 pragma Inline (Set_Size_Info);
1264 pragma Inline (Unqualify);
1265
1266 end Sem_Util;