6803dfb9b661753b955bb194082e73d0e70b0d67
[gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Einfo; use Einfo;
29 with Namet; use Namet;
30 with Nmake; use Nmake;
31 with Snames; use Snames;
32 with Types; use Types;
33 with Uintp; use Uintp;
34 with Urealp; use Urealp;
35
36 package Sem_Util is
37
38 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
39 -- Given a type that implements interfaces look for its associated
40 -- definition node and return its list of interfaces.
41
42 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
43 -- Add A to the list of access types to process when expanding the
44 -- freeze node of E.
45
46 procedure Add_Global_Declaration (N : Node_Id);
47 -- These procedures adds a declaration N at the library level, to be
48 -- elaborated before any other code in the unit. It is used for example
49 -- for the entity that marks whether a unit has been elaborated. The
50 -- declaration is added to the Declarations list of the Aux_Decls_Node
51 -- for the current unit. The declarations are added in the current scope,
52 -- so the caller should push a new scope as required before the call.
53
54 function Addressable (V : Uint) return Boolean;
55 function Addressable (V : Int) return Boolean;
56 pragma Inline (Addressable);
57 -- Returns True if the value of V is the word size of an addressable
58 -- factor of the word size (typically 8, 16, 32 or 64).
59
60 function Alignment_In_Bits (E : Entity_Id) return Uint;
61 -- If the alignment of the type or object E is currently known to the
62 -- compiler, then this function returns the alignment value in bits.
63 -- Otherwise Uint_0 is returned, indicating that the alignment of the
64 -- entity is not yet known to the compiler.
65
66 procedure Apply_Compile_Time_Constraint_Error
67 (N : Node_Id;
68 Msg : String;
69 Reason : RT_Exception_Code;
70 Ent : Entity_Id := Empty;
71 Typ : Entity_Id := Empty;
72 Loc : Source_Ptr := No_Location;
73 Rep : Boolean := True;
74 Warn : Boolean := False);
75 -- N is a subexpression which will raise constraint error when evaluated
76 -- at runtime. Msg is a message that explains the reason for raising the
77 -- exception. The last character is ? if the message is always a warning,
78 -- even in Ada 95, and is not a ? if the message represents an illegality
79 -- (because of violation of static expression rules) in Ada 95 (but not
80 -- in Ada 83). Typically this routine posts all messages at the Sloc of
81 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
82 -- the message. After posting the appropriate message, and if the flag
83 -- Rep is set, this routine replaces the expression with an appropriate
84 -- N_Raise_Constraint_Error node using the given Reason code. This node
85 -- is then marked as being static if the original node is static, but
86 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
87 -- The error message may contain a } or & insertion character. This
88 -- normally references Etype (N), unless the Ent argument is given
89 -- explicitly, in which case it is used instead. The type of the raise
90 -- node that is built is normally Etype (N), but if the Typ parameter
91 -- is present, this is used instead. Warn is normally False. If it is
92 -- True then the message is treated as a warning even though it does
93 -- not end with a ? (this is used when the caller wants to parameterize
94 -- whether an error or warning is given.
95
96 procedure Bad_Predicated_Subtype_Use
97 (Msg : String;
98 N : Node_Id;
99 Typ : Entity_Id);
100 -- This is called when Typ, a predicated subtype, is used in a context
101 -- which does not allow the use of a predicated subtype. Msg is passed
102 -- to Error_Msg_FE to output an appropriate message using N as the
103 -- location, and Typ as the entity. The caller must set up any insertions
104 -- other than the & for the type itself. Note that if Typ is a generic
105 -- actual type, then the message will be output as a warning, and a
106 -- raise Program_Error is inserted using Insert_Action with node N as
107 -- the insertion point. Node N also supplies the source location for
108 -- construction of the raise node. If Typ is NOT a type with predicates
109 -- this call has no effect.
110
111 function Build_Actual_Subtype
112 (T : Entity_Id;
113 N : Node_Or_Entity_Id) return Node_Id;
114 -- Build an anonymous subtype for an entity or expression, using the
115 -- bounds of the entity or the discriminants of the enclosing record.
116 -- T is the type for which the actual subtype is required, and N is either
117 -- a defining identifier, or any subexpression.
118
119 function Build_Actual_Subtype_Of_Component
120 (T : Entity_Id;
121 N : Node_Id) return Node_Id;
122 -- Determine whether a selected component has a type that depends on
123 -- discriminants, and build actual subtype for it if so.
124
125 function Build_Default_Subtype
126 (T : Entity_Id;
127 N : Node_Id) return Entity_Id;
128 -- If T is an unconstrained type with defaulted discriminants, build a
129 -- subtype constrained by the default values, insert the subtype
130 -- declaration in the tree before N, and return the entity of that
131 -- subtype. Otherwise, simply return T.
132
133 function Build_Discriminal_Subtype_Of_Component
134 (T : Entity_Id) return Node_Id;
135 -- Determine whether a record component has a type that depends on
136 -- discriminants, and build actual subtype for it if so.
137
138 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
139 -- Given a compilation unit node N, allocate an elaboration boolean for
140 -- the compilation unit, and install it in the Elaboration_Entity field
141 -- of Spec_Id, the entity for the compilation unit.
142
143 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
144 -- Returns True if the expression cannot possibly raise Constraint_Error.
145 -- The response is conservative in the sense that a result of False does
146 -- not necessarily mean that CE could be raised, but a response of True
147 -- means that for sure CE cannot be raised.
148
149 procedure Check_Dynamically_Tagged_Expression
150 (Expr : Node_Id;
151 Typ : Entity_Id;
152 Related_Nod : Node_Id);
153 -- Check wrong use of dynamically tagged expression
154
155 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
156 -- Verify that the full declaration of type T has been seen. If not, place
157 -- error message on node N. Used in object declarations, type conversions
158 -- and qualified expressions.
159
160 procedure Check_Nested_Access (Ent : Entity_Id);
161 -- Check whether Ent denotes an entity declared in an uplevel scope, which
162 -- is accessed inside a nested procedure, and set Has_Up_Level_Access flag
163 -- accordingly. This is currently only enabled for VM_Target /= No_VM.
164
165 procedure Check_Order_Dependence;
166 -- Examine the actuals in a top-level call to determine whether aliasing
167 -- between two actuals, one of which is writable, can make the call
168 -- order-dependent.
169
170 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
171 -- N is one of the statement forms that is a potentially blocking
172 -- operation. If it appears within a protected action, emit warning.
173
174 procedure Check_Unprotected_Access
175 (Context : Node_Id;
176 Expr : Node_Id);
177 -- Check whether the expression is a pointer to a protected component,
178 -- and the context is external to the protected operation, to warn against
179 -- a possible unlocked access to data.
180
181 procedure Check_VMS (Construct : Node_Id);
182 -- Check that this the target is OpenVMS, and if so, return with no effect,
183 -- otherwise post an error noting this can only be used with OpenVMS ports.
184 -- The argument is the construct in question and is used to post the error
185 -- message.
186
187 procedure Collect_Interfaces
188 (T : Entity_Id;
189 Ifaces_List : out Elist_Id;
190 Exclude_Parents : Boolean := False;
191 Use_Full_View : Boolean := True);
192 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
193 -- directly or indirectly implemented by T. Exclude_Parents is used to
194 -- avoid the addition of inherited interfaces to the generated list.
195 -- Use_Full_View is used to collect the interfaces using the full-view
196 -- (if available).
197
198 procedure Collect_Interface_Components
199 (Tagged_Type : Entity_Id;
200 Components_List : out Elist_Id);
201 -- Ada 2005 (AI-251): Collect all the tag components associated with the
202 -- secondary dispatch tables of a tagged type.
203
204 procedure Collect_Interfaces_Info
205 (T : Entity_Id;
206 Ifaces_List : out Elist_Id;
207 Components_List : out Elist_Id;
208 Tags_List : out Elist_Id);
209 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
210 -- the record component and tag associated with each of these interfaces.
211 -- On exit Ifaces_List, Components_List and Tags_List have the same number
212 -- of elements, and elements at the same position on these tables provide
213 -- information on the same interface type.
214
215 procedure Collect_Parents
216 (T : Entity_Id;
217 List : out Elist_Id;
218 Use_Full_View : Boolean := True);
219 -- Collect all the parents of Typ. Use_Full_View is used to collect them
220 -- using the full-view of private parents (if available).
221
222 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
223 -- Called upon type derivation and extension. We scan the declarative part
224 -- in which the type appears, and collect subprograms that have one
225 -- subsidiary subtype of the type. These subprograms can only appear after
226 -- the type itself.
227
228 function Compile_Time_Constraint_Error
229 (N : Node_Id;
230 Msg : String;
231 Ent : Entity_Id := Empty;
232 Loc : Source_Ptr := No_Location;
233 Warn : Boolean := False) return Node_Id;
234 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
235 -- generates a warning (or error) message in the same manner, but it does
236 -- not replace any nodes. For convenience, the function always returns its
237 -- first argument. The message is a warning if the message ends with ?, or
238 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
239
240 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
241 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
242 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
243
244 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
245 -- Utility to create a parameter profile for a new subprogram spec, when
246 -- the subprogram has a body that acts as spec. This is done for some cases
247 -- of inlining, and for private protected ops. Also used to create bodies
248 -- for stubbed subprograms.
249
250 function Current_Entity (N : Node_Id) return Entity_Id;
251 pragma Inline (Current_Entity);
252 -- Find the currently visible definition for a given identifier, that is to
253 -- say the first entry in the visibility chain for the Chars of N.
254
255 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
256 -- Find whether there is a previous definition for identifier N in the
257 -- current scope. Because declarations for a scope are not necessarily
258 -- contiguous (e.g. for packages) the first entry on the visibility chain
259 -- for N is not necessarily in the current scope.
260
261 function Current_Scope return Entity_Id;
262 -- Get entity representing current scope
263
264 function Current_Subprogram return Entity_Id;
265 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
266 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
267 -- Current_Scope is returned. The returned value is Empty if this is called
268 -- from a library package which is not within any subprogram.
269
270 function Defining_Entity (N : Node_Id) return Entity_Id;
271 -- Given a declaration N, returns the associated defining entity. If the
272 -- declaration has a specification, the entity is obtained from the
273 -- specification. If the declaration has a defining unit name, then the
274 -- defining entity is obtained from the defining unit name ignoring any
275 -- child unit prefixes.
276
277 function Denotes_Discriminant
278 (N : Node_Id;
279 Check_Concurrent : Boolean := False) return Boolean;
280 -- Returns True if node N is an Entity_Name node for a discriminant. If the
281 -- flag Check_Concurrent is true, function also returns true when N denotes
282 -- the discriminal of the discriminant of a concurrent type. This is needed
283 -- to disable some optimizations on private components of protected types,
284 -- and constraint checks on entry families constrained by discriminants.
285
286 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
287 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
288 -- Functions to detect suspicious overlapping between actuals in a call,
289 -- when one of them is writable. The predicates are those proposed in
290 -- AI05-0144, to detect dangerous order dependence in complex calls.
291 -- I would add a parameter Warn which enables more extensive testing of
292 -- cases as we find appropriate when we are only warning ??? Or perhaps
293 -- return an indication of (Error, Warn, OK) ???
294
295 function Denotes_Variable (N : Node_Id) return Boolean;
296 -- Returns True if node N denotes a single variable without parentheses
297
298 function Depends_On_Discriminant (N : Node_Id) return Boolean;
299 -- Returns True if N denotes a discriminant or if N is a range, a subtype
300 -- indication or a scalar subtype where one of the bounds is a
301 -- discriminant.
302
303 function Designate_Same_Unit
304 (Name1 : Node_Id;
305 Name2 : Node_Id) return Boolean;
306 -- Return true if Name1 and Name2 designate the same unit name; each of
307 -- these names is supposed to be a selected component name, an expanded
308 -- name, a defining program unit name or an identifier.
309
310 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
311 -- Returns the closest ancestor of Typ that is a CPP type.
312
313 function Enclosing_Generic_Body
314 (N : Node_Id) return Node_Id;
315 -- Returns the Node_Id associated with the innermost enclosing generic
316 -- body, if any. If none, then returns Empty.
317
318 function Enclosing_Generic_Unit
319 (N : Node_Id) return Node_Id;
320 -- Returns the Node_Id associated with the innermost enclosing generic
321 -- unit, if any. If none, then returns Empty.
322
323 function Enclosing_Lib_Unit_Entity return Entity_Id;
324 -- Returns the entity of enclosing N_Compilation_Unit Node which is the
325 -- root of the current scope (which must not be Standard_Standard, and the
326 -- caller is responsible for ensuring this condition).
327
328 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
329 -- Returns the enclosing N_Compilation_Unit Node that is the root of a
330 -- subtree containing N.
331
332 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
333 -- Utility function to return the Ada entity of the subprogram enclosing
334 -- the entity E, if any. Returns Empty if no enclosing subprogram.
335
336 procedure Ensure_Freeze_Node (E : Entity_Id);
337 -- Make sure a freeze node is allocated for entity E. If necessary, build
338 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
339
340 procedure Enter_Name (Def_Id : Entity_Id);
341 -- Insert new name in symbol table of current scope with check for
342 -- duplications (error message is issued if a conflict is found).
343 -- Note: Enter_Name is not used for overloadable entities, instead these
344 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
345
346 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
347 -- This procedure is called after issuing a message complaining about an
348 -- inappropriate use of limited type T. If useful, it adds additional
349 -- continuation lines to the message explaining why type T is limited.
350 -- Messages are placed at node N.
351
352 procedure Find_Actual
353 (N : Node_Id;
354 Formal : out Entity_Id;
355 Call : out Node_Id);
356 -- Determines if the node N is an actual parameter of a function of a
357 -- procedure call. If so, then Formal points to the entity for the formal
358 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
359 -- Call is set to the node for the corresponding call. If the node N is not
360 -- an actual parameter then Formal and Call are set to Empty.
361
362 function Find_Corresponding_Discriminant
363 (Id : Node_Id;
364 Typ : Entity_Id) return Entity_Id;
365 -- Because discriminants may have different names in a generic unit and in
366 -- an instance, they are resolved positionally when possible. A reference
367 -- to a discriminant carries the discriminant that it denotes when it is
368 -- analyzed. Subsequent uses of this id on a different type denotes the
369 -- discriminant at the same position in this new type.
370
371 procedure Find_Overlaid_Entity
372 (N : Node_Id;
373 Ent : out Entity_Id;
374 Off : out Boolean);
375 -- The node N should be an address representation clause. Determines if the
376 -- target expression is the address of an entity with an optional offset.
377 -- If so, Ent is set to the entity and, if there is an offset, Off is set
378 -- to True, otherwise to False. If N is not an address representation
379 -- clause, or if it is not possible to determine that the address is of
380 -- this form, then Ent is set to Empty, and Off is set to False.
381
382 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
383 -- Return the type of formal parameter Param as determined by its
384 -- specification.
385
386 function Find_Static_Alternative (N : Node_Id) return Node_Id;
387 -- N is a case statement whose expression is a compile-time value.
388 -- Determine the alternative chosen, so that the code of non-selected
389 -- alternatives, and the warnings that may apply to them, are removed.
390
391 function Find_Body_Discriminal
392 (Spec_Discriminant : Entity_Id) return Entity_Id;
393 -- Given a discriminant of the record type that implements a task or
394 -- protected type, return the discriminal of the corresponding discriminant
395 -- of the actual concurrent type.
396
397 function First_Actual (Node : Node_Id) return Node_Id;
398 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
399 -- result returned is the first actual parameter in declaration order
400 -- (not the order of parameters as they appeared in the source, which
401 -- can be quite different as a result of the use of named parameters).
402 -- Empty is returned for a call with no parameters. The procedure for
403 -- iterating through the actuals in declaration order is to use this
404 -- function to find the first actual, and then use Next_Actual to obtain
405 -- the next actual in declaration order. Note that the value returned
406 -- is always the expression (not the N_Parameter_Association nodes,
407 -- even if named association is used).
408
409 procedure Gather_Components
410 (Typ : Entity_Id;
411 Comp_List : Node_Id;
412 Governed_By : List_Id;
413 Into : Elist_Id;
414 Report_Errors : out Boolean);
415 -- The purpose of this procedure is to gather the valid components in a
416 -- record type according to the values of its discriminants, in order to
417 -- validate the components of a record aggregate.
418 --
419 -- Typ is the type of the aggregate when its constrained discriminants
420 -- need to be collected, otherwise it is Empty.
421 --
422 -- Comp_List is an N_Component_List node.
423 --
424 -- Governed_By is a list of N_Component_Association nodes, where each
425 -- choice list contains the name of a discriminant and the expression
426 -- field gives its value. The values of the discriminants governing
427 -- the (possibly nested) variant parts in Comp_List are found in this
428 -- Component_Association List.
429 --
430 -- Into is the list where the valid components are appended. Note that
431 -- Into need not be an Empty list. If it's not, components are attached
432 -- to its tail.
433 --
434 -- Report_Errors is set to True if the values of the discriminants are
435 -- non-static.
436 --
437 -- This procedure is also used when building a record subtype. If the
438 -- discriminant constraint of the subtype is static, the components of the
439 -- subtype are only those of the variants selected by the values of the
440 -- discriminants. Otherwise all components of the parent must be included
441 -- in the subtype for semantic analysis.
442
443 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
444 -- Given a node for an expression, obtain the actual subtype of the
445 -- expression. In the case of a parameter where the formal is an
446 -- unconstrained array or discriminated type, this will be the previously
447 -- constructed subtype of the actual. Note that this is not quite the
448 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
449 -- it is the subtype of the value of the actual. The actual subtype is also
450 -- returned in other cases where it has already been constructed for an
451 -- object. Otherwise the expression type is returned unchanged, except for
452 -- the case of an unconstrained array type, where an actual subtype is
453 -- created, using Insert_Actions if necessary to insert any associated
454 -- actions.
455
456 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
457 -- This is like Get_Actual_Subtype, except that it never constructs an
458 -- actual subtype. If an actual subtype is already available, i.e. the
459 -- Actual_Subtype field of the corresponding entity is set, then it is
460 -- returned. Otherwise the Etype of the node is returned.
461
462 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
463 -- This is used to construct the string literal node representing a
464 -- default external name, i.e. one that is constructed from the name of an
465 -- entity, or (in the case of extended DEC import/export pragmas, an
466 -- identifier provided as the external name. Letters in the name are
467 -- according to the setting of Opt.External_Name_Default_Casing.
468
469 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
470 -- Returns the true generic entity in an instantiation. If the name in the
471 -- instantiation is a renaming, the function returns the renamed generic.
472
473 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
474 -- This procedure assigns to L and H respectively the values of the low and
475 -- high bounds of node N, which must be a range, subtype indication, or the
476 -- name of a scalar subtype. The result in L, H may be set to Error if
477 -- there was an earlier error in the range.
478
479 function Get_Enum_Lit_From_Pos
480 (T : Entity_Id;
481 Pos : Uint;
482 Loc : Source_Ptr) return Node_Id;
483 -- This function obtains the E_Enumeration_Literal entity for the specified
484 -- value from the enumeration type or subtype T and returns an identifier
485 -- node referencing this value. The second argument is the Pos value, which
486 -- is assumed to be in range. The third argument supplies a source location
487 -- for constructed nodes returned by this function.
488
489 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
490 -- Retrieve the fully expanded name of the library unit declared by
491 -- Decl_Node into the name buffer.
492
493 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
494 pragma Inline (Get_Name_Entity_Id);
495 -- An entity value is associated with each name in the name table. The
496 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
497 -- is the innermost visible entity with the given name. See the body of
498 -- Sem_Ch8 for further details on handling of entity visibility.
499
500 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
501 pragma Inline (Get_Pragma_Id);
502 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
503
504 function Get_Referenced_Object (N : Node_Id) return Node_Id;
505 -- Given a node, return the renamed object if the node represents a renamed
506 -- object, otherwise return the node unchanged. The node may represent an
507 -- arbitrary expression.
508
509 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
510 -- Given an entity for an exception, package, subprogram or generic unit,
511 -- returns the ultimately renamed entity if this is a renaming. If this is
512 -- not a renamed entity, returns its argument. It is an error to call this
513 -- with any other kind of entity.
514
515 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
516 -- Nod is either a procedure call statement, or a function call, or an
517 -- accept statement node. This procedure finds the Entity_Id of the related
518 -- subprogram or entry and returns it, or if no subprogram can be found,
519 -- returns Empty.
520
521 function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
522 -- Given the entity for a subprogram (E_Function or E_Procedure), return
523 -- the corresponding N_Subprogram_Body node. If the corresponding body
524 -- is missing (as for an imported subprogram), return Empty.
525
526 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
527 pragma Inline (Get_Task_Body_Procedure);
528 -- Given an entity for a task type or subtype, retrieves the
529 -- Task_Body_Procedure field from the corresponding task type declaration.
530
531 function Has_Access_Values (T : Entity_Id) return Boolean;
532 -- Returns true if type or subtype T is an access type, or has a component
533 -- (at any recursive level) that is an access type. This is a conservative
534 -- predicate, if it is not known whether or not T contains access values
535 -- (happens for generic formals in some cases), then False is returned.
536 -- Note that tagged types return False. Even though the tag is implemented
537 -- as an access type internally, this function tests only for access types
538 -- known to the programmer. See also Has_Tagged_Component.
539
540 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
541 -- Result of Has_Compatible_Alignment test, description found below. Note
542 -- that the values are arranged in increasing order of problematicness.
543
544 function Has_Compatible_Alignment
545 (Obj : Entity_Id;
546 Expr : Node_Id) return Alignment_Result;
547 -- Obj is an object entity, and expr is a node for an object reference. If
548 -- the alignment of the object referenced by Expr is known to be compatible
549 -- with the alignment of Obj (i.e. is larger or the same), then the result
550 -- is Known_Compatible. If the alignment of the object referenced by Expr
551 -- is known to be less than the alignment of Obj, then Known_Incompatible
552 -- is returned. If neither condition can be reliably established at compile
553 -- time, then Unknown is returned. This is used to determine if alignment
554 -- checks are required for address clauses, and also whether copies must
555 -- be made when objects are passed by reference.
556 --
557 -- Note: Known_Incompatible does not mean that at run time the alignment
558 -- of Expr is known to be wrong for Obj, just that it can be determined
559 -- that alignments have been explicitly or implicitly specified which are
560 -- incompatible (whereas Unknown means that even this is not known). The
561 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
562 -- Unknown, but issue a warning that there may be an alignment error.
563
564 function Has_Declarations (N : Node_Id) return Boolean;
565 -- Determines if the node can have declarations
566
567 function Has_Discriminant_Dependent_Constraint
568 (Comp : Entity_Id) return Boolean;
569 -- Returns True if and only if Comp has a constrained subtype that depends
570 -- on a discriminant.
571
572 function Has_Infinities (E : Entity_Id) return Boolean;
573 -- Determines if the range of the floating-point type E includes
574 -- infinities. Returns False if E is not a floating-point type.
575
576 function Has_Interfaces
577 (T : Entity_Id;
578 Use_Full_View : Boolean := True) return Boolean;
579 -- Where T is a concurrent type or a record type, returns true if T covers
580 -- any abstract interface types. In case of private types the argument
581 -- Use_Full_View controls if the check is done using its full view (if
582 -- available).
583
584 function Has_Null_Exclusion (N : Node_Id) return Boolean;
585 -- Determine whether node N has a null exclusion
586
587 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
588 -- Predicate to determine whether a controlled type has a user-defined
589 -- Initialize primitive (and, in Ada 2012, whether that primitive is
590 -- non-null), which causes the type to not have preelaborable
591 -- initialization.
592
593 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
594 -- Return True iff type E has preelaborable initialization as defined in
595 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
596
597 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
598 -- Check if a type has a (sub)component of a private type that has not
599 -- yet received a full declaration.
600
601 function Has_Stream (T : Entity_Id) return Boolean;
602 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
603 -- case of a composite type, has a component for which this predicate is
604 -- True, and if so returns True. Otherwise a result of False means that
605 -- there is no Stream type in sight. For a private type, the test is
606 -- applied to the underlying type (or returns False if there is no
607 -- underlying type).
608
609 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
610 -- Returns true if the last character of E is Suffix. Used in Assertions.
611
612 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
613 -- Returns True if Typ is a composite type (array or record) which is
614 -- either itself a tagged type, or has a component (recursively) which is
615 -- a tagged type. Returns False for non-composite type, or if no tagged
616 -- component is present. This function is used to check if "=" has to be
617 -- expanded into a bunch component comparisons.
618
619 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
620 -- Subp is a subprogram marked with pragma Implemented. Return the specific
621 -- implementation requirement which the pragma imposes. The return value is
622 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
623
624 function Implements_Interface
625 (Typ_Ent : Entity_Id;
626 Iface_Ent : Entity_Id;
627 Exclude_Parents : Boolean := False) return Boolean;
628 -- Returns true if the Typ_Ent implements interface Iface_Ent
629
630 function In_Instance return Boolean;
631 -- Returns True if the current scope is within a generic instance
632
633 function In_Instance_Body return Boolean;
634 -- Returns True if current scope is within the body of an instance, where
635 -- several semantic checks (e.g. accessibility checks) are relaxed.
636
637 function In_Instance_Not_Visible return Boolean;
638 -- Returns True if current scope is with the private part or the body of
639 -- an instance. Other semantic checks are suppressed in this context.
640
641 function In_Instance_Visible_Part return Boolean;
642 -- Returns True if current scope is within the visible part of a package
643 -- instance, where several additional semantic checks apply.
644
645 function In_Package_Body return Boolean;
646 -- Returns True if current scope is within a package body
647
648 function In_Parameter_Specification (N : Node_Id) return Boolean;
649 -- Returns True if node N belongs to a parameter specification
650
651 function In_Subprogram_Or_Concurrent_Unit return Boolean;
652 -- Determines if the current scope is within a subprogram compilation unit
653 -- (inside a subprogram declaration, subprogram body, or generic
654 -- subprogram declaration) or within a task or protected body. The test is
655 -- for appearing anywhere within such a construct (that is it does not need
656 -- to be directly within).
657
658 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
659 -- Determine whether a declaration occurs within the visible part of a
660 -- package specification. The package must be on the scope stack, and the
661 -- corresponding private part must not.
662
663 procedure Insert_Explicit_Dereference (N : Node_Id);
664 -- In a context that requires a composite or subprogram type and where a
665 -- prefix is an access type, rewrite the access type node N (which is the
666 -- prefix, e.g. of an indexed component) as an explicit dereference.
667
668 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
669 -- Examine all deferred constants in the declaration list Decls and check
670 -- whether they have been completed by a full constant declaration or an
671 -- Import pragma. Emit the error message if that is not the case.
672
673 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
674 -- Determines if N is an actual parameter of out mode in a subprogram call
675
676 function Is_Actual_Parameter (N : Node_Id) return Boolean;
677 -- Determines if N is an actual parameter in a subprogram call
678
679 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
680 -- Determines if N is an actual parameter of a formal of tagged type in a
681 -- subprogram call.
682
683 function Is_Aliased_View (Obj : Node_Id) return Boolean;
684 -- Determine if Obj is an aliased view, i.e. the name of an object to which
685 -- 'Access or 'Unchecked_Access can apply.
686
687 function Is_Ancestor_Package
688 (E1 : Entity_Id;
689 E2 : Entity_Id) return Boolean;
690 -- Determine whether package E1 is an ancestor of E2
691
692 function Is_Atomic_Object (N : Node_Id) return Boolean;
693 -- Determines if the given node denotes an atomic object in the sense of
694 -- the legality checks described in RM C.6(12).
695
696 function Is_Coextension_Root (N : Node_Id) return Boolean;
697 -- Determine whether node N is an allocator which acts as a coextension
698 -- root.
699
700 function Is_Controlling_Limited_Procedure
701 (Proc_Nam : Entity_Id) return Boolean;
702 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
703 -- of a limited interface with a controlling first parameter.
704
705 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
706 -- Returns True if N is a call to a CPP constructor
707
708 function Is_Dependent_Component_Of_Mutable_Object
709 (Object : Node_Id) return Boolean;
710 -- Returns True if Object is the name of a subcomponent that depends on
711 -- discriminants of a variable whose nominal subtype is unconstrained and
712 -- not indefinite, and the variable is not aliased. Otherwise returns
713 -- False. The nodes passed to this function are assumed to denote objects.
714
715 function Is_Dereferenced (N : Node_Id) return Boolean;
716 -- N is a subexpression node of an access type. This function returns true
717 -- if N appears as the prefix of a node that does a dereference of the
718 -- access value (selected/indexed component, explicit dereference or a
719 -- slice), and false otherwise.
720
721 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
722 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
723 -- This is the RM definition, a type is a descendent of another type if it
724 -- is the same type or is derived from a descendent of the other type.
725
726 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
727 -- First determine whether type T is an interface and then check whether
728 -- it is of protected, synchronized or task kind.
729
730 function Is_False (U : Uint) return Boolean;
731 pragma Inline (Is_False);
732 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
733 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
734 -- if it is False (i.e. zero).
735
736 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
737 -- Returns True iff the number U is a model number of the fixed-
738 -- point type T, i.e. if it is an exact multiple of Small.
739
740 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
741 -- Typ is a type entity. This function returns true if this type is fully
742 -- initialized, meaning that an object of the type is fully initialized.
743 -- Note that initialization resulting from use of pragma Normalized_Scalars
744 -- does not count. Note that this is only used for the purpose of issuing
745 -- warnings for objects that are potentially referenced uninitialized. This
746 -- means that the result returned is not crucial, but should err on the
747 -- side of thinking things are fully initialized if it does not know.
748
749 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
750 -- E is a subprogram. Return True is E is an implicit operation inherited
751 -- by a derived type declaration.
752
753 function Is_Inherited_Operation_For_Type
754 (E, Typ : Entity_Id) return Boolean;
755 -- E is a subprogram. Return True is E is an implicit operation inherited
756 -- by the derived type declaration for type Typ.
757
758 function Is_LHS (N : Node_Id) return Boolean;
759 -- Returns True iff N is used as Name in an assignment statement
760
761 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
762 -- A library-level declaration is one that is accessible from Standard,
763 -- i.e. a library unit or an entity declared in a library package.
764
765 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
766 -- Determines whether Expr is a reference to a variable or IN OUT mode
767 -- parameter of the current enclosing subprogram.
768 -- Why are OUT parameters not considered here ???
769
770 function Is_Object_Reference (N : Node_Id) return Boolean;
771 -- Determines if the tree referenced by N represents an object. Both
772 -- variable and constant objects return True (compare Is_Variable).
773
774 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
775 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
776 -- Note that the Is_Variable function is not quite the right test because
777 -- this is a case in which conversions whose expression is a variable (in
778 -- the Is_Variable sense) with a non-tagged type target are considered view
779 -- conversions and hence variables.
780
781 function Is_Partially_Initialized_Type
782 (Typ : Entity_Id;
783 Include_Implicit : Boolean := True) return Boolean;
784 -- Typ is a type entity. This function returns true if this type is partly
785 -- initialized, meaning that an object of the type is at least partly
786 -- initialized (in particular in the record case, that at least one
787 -- component has an initialization expression). Note that initialization
788 -- resulting from the use of pragma Normalized_Scalars does not count.
789 -- Include_Implicit controls whether implicit initialization of access
790 -- values to null, and of discriminant values, is counted as making the
791 -- type be partially initialized. For the default setting of True, these
792 -- implicit cases do count, and discriminated types or types containing
793 -- access values not explicitly initialized will return True. Otherwise
794 -- if Include_Implicit is False, these cases do not count as making the
795 -- type be partially initialized.
796
797 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
798 -- Determines if type T is a potentially persistent type. A potentially
799 -- persistent type is defined (recursively) as a scalar type, a non-tagged
800 -- record whose components are all of a potentially persistent type, or an
801 -- array with all static constraints whose component type is potentially
802 -- persistent. A private type is potentially persistent if the full type
803 -- is potentially persistent.
804
805 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
806 -- Return True if node N denotes a protected type name which represents
807 -- the current instance of a protected object according to RM 9.4(21/2).
808
809 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
810 -- Return True if a compilation unit is the specification or the
811 -- body of a remote call interface package.
812
813 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
814 -- Return True if E is a remote access-to-class-wide type
815
816 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
817 -- Return True if E is a remote access to subprogram type
818
819 function Is_Remote_Call (N : Node_Id) return Boolean;
820 -- Return True if N denotes a potentially remote call
821
822 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
823 -- Return True if Proc_Nam is a procedure renaming of an entry
824
825 function Is_Selector_Name (N : Node_Id) return Boolean;
826 -- Given an N_Identifier node N, determines if it is a Selector_Name.
827 -- As described in Sinfo, Selector_Names are special because they
828 -- represent use of the N_Identifier node for a true identifier, when
829 -- normally such nodes represent a direct name.
830
831 function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean;
832 -- Determines if the tree referenced by N represents an initialization
833 -- expression in SPARK, suitable for initializing an object in an object
834 -- declaration.
835
836 function Is_SPARK_Object_Reference (N : Node_Id) return Boolean;
837 -- Determines if the tree referenced by N represents an object in SPARK
838
839 function Is_Statement (N : Node_Id) return Boolean;
840 pragma Inline (Is_Statement);
841 -- Check if the node N is a statement node. Note that this includes
842 -- the case of procedure call statements (unlike the direct use of
843 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
844 -- Note that a label is *not* a statement, and will return False.
845
846 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
847 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
848
849 function Is_Transfer (N : Node_Id) return Boolean;
850 -- Returns True if the node N is a statement which is known to cause an
851 -- unconditional transfer of control at runtime, i.e. the following
852 -- statement definitely will not be executed.
853
854 function Is_True (U : Uint) return Boolean;
855 pragma Inline (Is_True);
856 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
857 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
858 -- if it is True (i.e. non-zero).
859
860 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
861 pragma Inline (Is_Universal_Numeric_Type);
862 -- True if T is Universal_Integer or Universal_Real
863
864 function Is_Value_Type (T : Entity_Id) return Boolean;
865 -- Returns true if type T represents a value type. This is only relevant to
866 -- CIL, will always return false for other targets. A value type is a CIL
867 -- object that is accessed directly, as opposed to the other CIL objects
868 -- that are accessed through managed pointers.
869
870 function Is_VMS_Operator (Op : Entity_Id) return Boolean;
871 -- Determine whether an operator is one of the intrinsics defined
872 -- in the DEC system extension.
873
874 function Is_Delegate (T : Entity_Id) return Boolean;
875 -- Returns true if type T represents a delegate. A Delegate is the CIL
876 -- object used to represent access-to-subprogram types. This is only
877 -- relevant to CIL, will always return false for other targets.
878
879 function Is_Variable
880 (N : Node_Id;
881 Use_Original_Node : Boolean := True) return Boolean;
882 -- Determines if the tree referenced by N represents a variable, i.e. can
883 -- appear on the left side of an assignment. There is one situation (formal
884 -- parameters) in which non-tagged type conversions are also considered
885 -- variables, but Is_Variable returns False for such cases, since it has
886 -- no knowledge of the context. Note that this is the point at which
887 -- Assignment_OK is checked, and True is returned for any tree thus marked.
888 -- Use_Original_Node is used to perform the test on Original_Node (N). By
889 -- default is True since this routine is commonly invoked as part of the
890 -- semantic analysis and it must not be disturbed by the rewriten nodes.
891
892 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
893 -- Check whether T is derived from a visibly controlled type. This is true
894 -- if the root type is declared in Ada.Finalization. If T is derived
895 -- instead from a private type whose full view is controlled, an explicit
896 -- Initialize/Adjust/Finalize subprogram does not override the inherited
897 -- one.
898
899 function Is_Volatile_Object (N : Node_Id) return Boolean;
900 -- Determines if the given node denotes an volatile object in the sense of
901 -- the legality checks described in RM C.6(12). Note that the test here is
902 -- for something actually declared as volatile, not for an object that gets
903 -- treated as volatile (see Einfo.Treat_As_Volatile).
904
905 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
906 -- This procedure is called to clear all constant indications from all
907 -- entities in the current scope and in any parent scopes if the current
908 -- scope is a block or a package (and that recursion continues to the top
909 -- scope that is not a block or a package). This is used when the
910 -- sequential flow-of-control assumption is violated (occurrence of a
911 -- label, head of a loop, or start of an exception handler). The effect of
912 -- the call is to clear the Constant_Value field (but we do not need to
913 -- clear the Is_True_Constant flag, since that only gets reset if there
914 -- really is an assignment somewhere in the entity scope). This procedure
915 -- also calls Kill_All_Checks, since this is a special case of needing to
916 -- forget saved values. This procedure also clears the Is_Known_Null and
917 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
918 -- parameters since these are also not known to be trustable any more.
919 --
920 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
921 -- fields and leave other fields unchanged. This is used when we encounter
922 -- an unconditional flow of control change (return, goto, raise). In such
923 -- cases we don't need to clear the current values, since it may be that
924 -- the flow of control change occurs in a conditional context, and if it
925 -- is not taken, then it is just fine to keep the current values. But the
926 -- Last_Assignment field is different, if we have a sequence assign-to-v,
927 -- conditional-return, assign-to-v, we do not want to complain that the
928 -- second assignment clobbers the first.
929
930 procedure Kill_Current_Values
931 (Ent : Entity_Id;
932 Last_Assignment_Only : Boolean := False);
933 -- This performs the same processing as described above for the form with
934 -- no argument, but for the specific entity given. The call has no effect
935 -- if the entity Ent is not for an object. Last_Assignment_Only has the
936 -- same meaning as for the call with no Ent.
937
938 procedure Kill_Size_Check_Code (E : Entity_Id);
939 -- Called when an address clause or pragma Import is applied to an entity.
940 -- If the entity is a variable or a constant, and size check code is
941 -- present, this size check code is killed, since the object will not be
942 -- allocated by the program.
943
944 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
945 -- The node N is an entity reference. This function determines whether the
946 -- reference is for sure an assignment of the entity, returning True if
947 -- so. This differs from May_Be_Lvalue in that it defaults in the other
948 -- direction. Cases which may possibly be assignments but are not known to
949 -- be may return True from May_Be_Lvalue, but False from this function.
950
951 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
952 -- HSS is a handled statement sequence. This function returns the last
953 -- statement in Statements (HSS) that has Comes_From_Source set. If no
954 -- such statement exists, Empty is returned.
955
956 function Make_Simple_Return_Statement
957 (Sloc : Source_Ptr;
958 Expression : Node_Id := Empty) return Node_Id
959 renames Make_Return_Statement;
960 -- See Sinfo. We rename Make_Return_Statement to the correct Ada 2005
961 -- terminology here. Clients should use Make_Simple_Return_Statement.
962
963 function Matching_Static_Array_Bounds
964 (L_Typ : Node_Id;
965 R_Typ : Node_Id) return Boolean;
966 -- L_Typ and R_Typ are two array types. Returns True when they have the
967 -- same number of dimensions, and the same static bounds for each index
968 -- position.
969
970 Make_Return_Statement : constant := -2 ** 33;
971 -- Attempt to prevent accidental uses of Make_Return_Statement. If this
972 -- and the one in Nmake are both potentially use-visible, it will cause
973 -- a compilation error. Note that type and value are irrelevant.
974
975 N_Return_Statement : constant := -2**33;
976 -- Attempt to prevent accidental uses of N_Return_Statement; similar to
977 -- Make_Return_Statement above.
978
979 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
980 -- Given a node which designates the context of analysis and an origin in
981 -- the tree, traverse from Root_Nod and mark all allocators as either
982 -- dynamic or static depending on Context_Nod. Any erroneous marking is
983 -- cleaned up during resolution.
984
985 function May_Be_Lvalue (N : Node_Id) return Boolean;
986 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
987 -- An lvalue is defined as any expression which appears in a context where
988 -- a name is required by the syntax, and the identity, rather than merely
989 -- the value of the node is needed (for example, the prefix of an Access
990 -- attribute is in this category). Note that, as implied by the name, this
991 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
992 -- it returns True. It tries hard to get the answer right, but it is hard
993 -- to guarantee this in all cases. Note that it is more possible to give
994 -- correct answer if the tree is fully analyzed.
995
996 function Needs_One_Actual (E : Entity_Id) return Boolean;
997 -- Returns True if a function has defaults for all but its first
998 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
999 -- results from an indexing of a function call written in prefix form.
1000
1001 function New_Copy_List_Tree (List : List_Id) return List_Id;
1002 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1003 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1004 -- nodes (entities) either directly or indirectly using this function.
1005
1006 function New_Copy_Tree
1007 (Source : Node_Id;
1008 Map : Elist_Id := No_Elist;
1009 New_Sloc : Source_Ptr := No_Location;
1010 New_Scope : Entity_Id := Empty) return Node_Id;
1011 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1012 -- syntactic subtree, including recursively any descendents whose parent
1013 -- field references a copied node (descendents not linked to a copied node
1014 -- by the parent field are not copied, instead the copied tree references
1015 -- the same descendent as the original in this case, which is appropriate
1016 -- for non-syntactic fields such as Etype). The parent pointers in the
1017 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1018 -- The one exception to the rule of not copying semantic fields is that
1019 -- any implicit types attached to the subtree are duplicated, so that
1020 -- the copy contains a distinct set of implicit type entities. Thus this
1021 -- function is used when it is necessary to duplicate an analyzed tree,
1022 -- declared in the same or some other compilation unit. This function is
1023 -- declared here rather than in atree because it uses semantic information
1024 -- in particular concerning the structure of itypes and the generation of
1025 -- public symbols.
1026
1027 -- The Map argument, if set to a non-empty Elist, specifies a set of
1028 -- mappings to be applied to entities in the tree. The map has the form:
1029 --
1030 -- old entity 1
1031 -- new entity to replace references to entity 1
1032 -- old entity 2
1033 -- new entity to replace references to entity 2
1034 -- ...
1035 --
1036 -- The call destroys the contents of Map in this case
1037 --
1038 -- The parameter New_Sloc, if set to a value other than No_Location, is
1039 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1040 -- set to its default value No_Location, then the Sloc values of the
1041 -- nodes in the copy are simply copied from the corresponding original.
1042 --
1043 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1044 -- the default No_Location value, but is reset if New_Sloc is given, since
1045 -- in this case the result clearly is neither a source node or an exact
1046 -- copy of a source node.
1047 --
1048 -- The parameter New_Scope, if set to a value other than Empty, is the
1049 -- value to use as the Scope for any Itypes that are copied. The most
1050 -- typical value for this parameter, if given, is Current_Scope.
1051
1052 function New_External_Entity
1053 (Kind : Entity_Kind;
1054 Scope_Id : Entity_Id;
1055 Sloc_Value : Source_Ptr;
1056 Related_Id : Entity_Id;
1057 Suffix : Character;
1058 Suffix_Index : Nat := 0;
1059 Prefix : Character := ' ') return Entity_Id;
1060 -- This function creates an N_Defining_Identifier node for an internal
1061 -- created entity, such as an implicit type or subtype, or a record
1062 -- initialization procedure. The entity name is constructed with a call
1063 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1064 -- that the generated name may be referenced as a public entry, and the
1065 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1066 -- entity is for a type or subtype, the size/align fields are initialized
1067 -- to unknown (Uint_0).
1068
1069 function New_Internal_Entity
1070 (Kind : Entity_Kind;
1071 Scope_Id : Entity_Id;
1072 Sloc_Value : Source_Ptr;
1073 Id_Char : Character) return Entity_Id;
1074 -- This function is similar to New_External_Entity, except that the
1075 -- name is constructed by New_Internal_Name (Id_Char). This is used
1076 -- when the resulting entity does not have to be referenced as a
1077 -- public entity (and in this case Is_Public is not set).
1078
1079 procedure Next_Actual (Actual_Id : in out Node_Id);
1080 pragma Inline (Next_Actual);
1081 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1082 -- inline this procedural form, but not the functional form that follows.
1083
1084 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1085 -- Find next actual parameter in declaration order. As described for
1086 -- First_Actual, this is the next actual in the declaration order, not
1087 -- the call order, so this does not correspond to simply taking the
1088 -- next entry of the Parameter_Associations list. The argument is an
1089 -- actual previously returned by a call to First_Actual or Next_Actual.
1090 -- Note that the result produced is always an expression, not a parameter
1091 -- association node, even if named notation was used.
1092
1093 procedure Normalize_Actuals
1094 (N : Node_Id;
1095 S : Entity_Id;
1096 Report : Boolean;
1097 Success : out Boolean);
1098 -- Reorders lists of actuals according to names of formals, value returned
1099 -- in Success indicates success of reordering. For more details, see body.
1100 -- Errors are reported only if Report is set to True.
1101
1102 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1103 -- This routine is called if the sub-expression N maybe the target of
1104 -- an assignment (e.g. it is the left side of an assignment, used as
1105 -- an out parameters, or used as prefixes of access attributes). It
1106 -- sets May_Be_Modified in the associated entity if there is one,
1107 -- taking into account the rule that in the case of renamed objects,
1108 -- it is the flag in the renamed object that must be set.
1109 --
1110 -- The parameter Sure is set True if the modification is sure to occur
1111 -- (e.g. target of assignment, or out parameter), and to False if the
1112 -- modification is only potential (e.g. address of entity taken).
1113
1114 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1115 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1116 -- or overrides an inherited dispatching primitive S2, the original
1117 -- corresponding operation of S is the original corresponding operation of
1118 -- S2. Otherwise, it is S itself.
1119
1120 function Object_Access_Level (Obj : Node_Id) return Uint;
1121 -- Return the accessibility level of the view of the object Obj.
1122 -- For convenience, qualified expressions applied to object names
1123 -- are also allowed as actuals for this function.
1124
1125 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1126 -- Returns True if the names of both entities correspond with matching
1127 -- primitives. This routine includes support for the case in which one
1128 -- or both entities correspond with entities built by Derive_Subprogram
1129 -- with a special name to avoid being overridden (i.e. return true in case
1130 -- of entities with names "nameP" and "name" or vice versa).
1131
1132 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1133 -- Returns some private component (if any) of the given Type_Id.
1134 -- Used to enforce the rules on visibility of operations on composite
1135 -- types, that depend on the full view of the component type. For a
1136 -- record type there may be several such components, we just return
1137 -- the first one.
1138
1139 procedure Process_End_Label
1140 (N : Node_Id;
1141 Typ : Character;
1142 Ent : Entity_Id);
1143 -- N is a node whose End_Label is to be processed, generating all
1144 -- appropriate cross-reference entries, and performing style checks
1145 -- for any identifier references in the end label. Typ is either
1146 -- 'e' or 't indicating the type of the cross-reference entity
1147 -- (e for spec, t for body, see Lib.Xref spec for details). The
1148 -- parameter Ent gives the entity to which the End_Label refers,
1149 -- and to which cross-references are to be generated.
1150
1151 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1152 -- Returns True if the expression Expr contains any references to a
1153 -- generic type. This can only happen within a generic template.
1154
1155 procedure Remove_Homonym (E : Entity_Id);
1156 -- Removes E from the homonym chain
1157
1158 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1159 -- This is used to construct the second argument in a call to Rep_To_Pos
1160 -- which is Standard_True if range checks are enabled (E is an entity to
1161 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1162 -- if range checks are suppressed. Loc is the location for the node that
1163 -- is returned (which is a New_Occurrence of the appropriate entity).
1164 --
1165 -- Note: one might think that it would be fine to always use True and
1166 -- to ignore the suppress in this case, but it is generally better to
1167 -- believe a request to suppress exceptions if possible, and further
1168 -- more there is at least one case in the generated code (the code for
1169 -- array assignment in a loop) that depends on this suppression.
1170
1171 procedure Require_Entity (N : Node_Id);
1172 -- N is a node which should have an entity value if it is an entity name.
1173 -- If not, then check if there were previous errors. If so, just fill
1174 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1175 -- This is used as a defense mechanism against ill-formed trees caused by
1176 -- previous errors (particularly in -gnatq mode).
1177
1178 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1179 -- E is a type entity. The result is True when temporaries of this
1180 -- type need to be wrapped in a transient scope to be reclaimed
1181 -- properly when a secondary stack is in use. Examples of types
1182 -- requiring such wrapping are controlled types and variable-sized
1183 -- types including unconstrained arrays
1184
1185 procedure Reset_Analyzed_Flags (N : Node_Id);
1186 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1187
1188 function Safe_To_Capture_Value
1189 (N : Node_Id;
1190 Ent : Entity_Id;
1191 Cond : Boolean := False) return Boolean;
1192 -- The caller is interested in capturing a value (either the current value,
1193 -- or an indication that the value is non-null) for the given entity Ent.
1194 -- This value can only be captured if sequential execution semantics can be
1195 -- properly guaranteed so that a subsequent reference will indeed be sure
1196 -- that this current value indication is correct. The node N is the
1197 -- construct which resulted in the possible capture of the value (this
1198 -- is used to check if we are in a conditional).
1199 --
1200 -- Cond is used to skip the test for being inside a conditional. It is used
1201 -- in the case of capturing values from if/while tests, which already do a
1202 -- proper job of handling scoping issues without this help.
1203 --
1204 -- The only entities whose values can be captured are OUT and IN OUT formal
1205 -- parameters, and variables unless Cond is True, in which case we also
1206 -- allow IN formals, loop parameters and constants, where we cannot ever
1207 -- capture actual value information, but we can capture conditional tests.
1208
1209 function Same_Name (N1, N2 : Node_Id) return Boolean;
1210 -- Determine if two (possibly expanded) names are the same name. This is
1211 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1212
1213 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1214 -- Determine if Node1 and Node2 are known to designate the same object.
1215 -- This is a semantic test and both nodes must be fully analyzed. A result
1216 -- of True is decisively correct. A result of False does not necessarily
1217 -- mean that different objects are designated, just that this could not
1218 -- be reliably determined at compile time.
1219
1220 function Same_Type (T1, T2 : Entity_Id) return Boolean;
1221 -- Determines if T1 and T2 represent exactly the same type. Two types
1222 -- are the same if they are identical, or if one is an unconstrained
1223 -- subtype of the other, or they are both common subtypes of the same
1224 -- type with identical constraints. The result returned is conservative.
1225 -- It is True if the types are known to be the same, but a result of
1226 -- False is indecisive (e.g. the compiler may not be able to tell that
1227 -- two constraints are identical).
1228
1229 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1230 -- Determines if Node1 and Node2 are known to be the same value, which is
1231 -- true if they are both compile time known values and have the same value,
1232 -- or if they are the same object (in the sense of function Same_Object).
1233 -- A result of False does not necessarily mean they have different values,
1234 -- just that it is not possible to determine they have the same value.
1235
1236 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1237 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1238 -- inside it, where both entities represent scopes. Note that scopes
1239 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1240 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1241
1242 procedure Save_Actual (N : Node_Id; Writable : Boolean := False);
1243 -- Enter an actual in a call in a table global, for subsequent check of
1244 -- possible order dependence in the presence of IN OUT parameters for
1245 -- functions in Ada 2012 (or access parameters in older language versions).
1246
1247 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1248 -- Like Scope_Within_Or_Same, except that this function returns
1249 -- False in the case where Scope1 and Scope2 are the same scope.
1250
1251 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1252 -- Same as Basic_Set_Convention, but with an extra check for access types.
1253 -- In particular, if E is an access-to-subprogram type, and Val is a
1254 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1255
1256 procedure Set_Current_Entity (E : Entity_Id);
1257 pragma Inline (Set_Current_Entity);
1258 -- Establish the entity E as the currently visible definition of its
1259 -- associated name (i.e. the Node_Id associated with its name)
1260
1261 procedure Set_Debug_Info_Needed (T : Entity_Id);
1262 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1263 -- that are needed by T (for an object, the type of the object is needed,
1264 -- and for a type, various subsidiary types are needed -- see body for
1265 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1266 -- This routine should always be used instead of Set_Needs_Debug_Info to
1267 -- ensure that subsidiary entities are properly handled.
1268
1269 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id);
1270 -- This procedure has the same calling sequence as Set_Entity, but
1271 -- if Style_Check is set, then it calls a style checking routine which
1272 -- can check identifier spelling style.
1273
1274 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1275 pragma Inline (Set_Name_Entity_Id);
1276 -- Sets the Entity_Id value associated with the given name, which is the
1277 -- Id of the innermost visible entity with the given name. See the body
1278 -- of package Sem_Ch8 for further details on the handling of visibility.
1279
1280 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1281 -- The arguments may be parameter associations, whose descendants
1282 -- are the optional formal name and the actual parameter. Positional
1283 -- parameters are already members of a list, and do not need to be
1284 -- chained separately. See also First_Actual and Next_Actual.
1285
1286 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1287 pragma Inline (Set_Optimize_Alignment_Flags);
1288 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
1289
1290 procedure Set_Public_Status (Id : Entity_Id);
1291 -- If an entity (visible or otherwise) is defined in a library
1292 -- package, or a package that is itself public, then this subprogram
1293 -- labels the entity public as well.
1294
1295 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1296 -- N is the node for either a left hand side (Out_Param set to False),
1297 -- or an Out or In_Out parameter (Out_Param set to True). If there is
1298 -- an assignable entity being referenced, then the appropriate flag
1299 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1300 -- if Out_Param is True) is set True, and the other flag set False.
1301
1302 procedure Set_Scope_Is_Transient (V : Boolean := True);
1303 -- Set the flag Is_Transient of the current scope
1304
1305 procedure Set_Size_Info (T1, T2 : Entity_Id);
1306 pragma Inline (Set_Size_Info);
1307 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1308 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1309 -- in the fixed-point and discrete cases, and also copies the alignment
1310 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1311 -- separately set if this is required to be copied also.
1312
1313 function Scope_Is_Transient return Boolean;
1314 -- True if the current scope is transient
1315
1316 function Static_Boolean (N : Node_Id) return Uint;
1317 -- This function analyzes the given expression node and then resolves it
1318 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1319 -- returned corresponding to the value, otherwise an error message is
1320 -- output and No_Uint is returned.
1321
1322 function Static_Integer (N : Node_Id) return Uint;
1323 -- This function analyzes the given expression node and then resolves it
1324 -- as any integer type. If the result is static, then the value of the
1325 -- universal expression is returned, otherwise an error message is output
1326 -- and a value of No_Uint is returned.
1327
1328 function Statically_Different (E1, E2 : Node_Id) return Boolean;
1329 -- Return True if it can be statically determined that the Expressions
1330 -- E1 and E2 refer to different objects
1331
1332 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1333 -- Return the accessibility level of the view denoted by Subp
1334
1335 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1336 -- Print debugging information on entry to each unit being analyzed
1337
1338 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1339 -- Move a list of entities from one scope to another, and recompute
1340 -- Is_Public based upon the new scope.
1341
1342 function Type_Access_Level (Typ : Entity_Id) return Uint;
1343 -- Return the accessibility level of Typ
1344
1345 function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id;
1346 -- Unit_Id is the simple name of a program unit, this function returns the
1347 -- corresponding xxx_Declaration node for the entity. Also applies to the
1348 -- body entities for subprograms, tasks and protected units, in which case
1349 -- it returns the subprogram, task or protected body node for it. The unit
1350 -- may be a child unit with any number of ancestors.
1351
1352 function Unit_Is_Visible (U : Entity_Id) return Boolean;
1353 -- Determine whether a compilation unit is visible in the current context,
1354 -- because there is a with_clause that makes the unit available. Used to
1355 -- provide better messages on common visiblity errors on operators.
1356
1357 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1358 -- Yields Universal_Integer or Universal_Real if this is a candidate
1359
1360 function Unqualify (Expr : Node_Id) return Node_Id;
1361 pragma Inline (Unqualify);
1362 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
1363 -- returns X. If Expr is not a qualified expression, returns Expr.
1364
1365 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
1366 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
1367 -- of a type extension or private extension declaration. If the full-view
1368 -- of private parents and progenitors is available then it is used to
1369 -- generate the list of visible ancestors; otherwise their partial
1370 -- view is added to the resulting list.
1371
1372 function Within_Init_Proc return Boolean;
1373 -- Determines if Current_Scope is within an init proc
1374
1375 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1376 -- Output error message for incorrectly typed expression. Expr is the node
1377 -- for the incorrectly typed construct (Etype (Expr) is the type found),
1378 -- and Expected_Type is the entity for the expected type. Note that Expr
1379 -- does not have to be a subexpression, anything with an Etype field may
1380 -- be used.
1381
1382 end Sem_Util;