[multiple changes]
[gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Einfo; use Einfo;
29 with Namet; use Namet;
30 with Nmake; use Nmake;
31 with Snames; use Snames;
32 with Types; use Types;
33 with Uintp; use Uintp;
34 with Urealp; use Urealp;
35
36 package Sem_Util is
37
38 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
39 -- Given a type that implements interfaces look for its associated
40 -- definition node and return its list of interfaces.
41
42 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
43 -- Add A to the list of access types to process when expanding the
44 -- freeze node of E.
45
46 procedure Add_Global_Declaration (N : Node_Id);
47 -- These procedures adds a declaration N at the library level, to be
48 -- elaborated before any other code in the unit. It is used for example
49 -- for the entity that marks whether a unit has been elaborated. The
50 -- declaration is added to the Declarations list of the Aux_Decls_Node
51 -- for the current unit. The declarations are added in the current scope,
52 -- so the caller should push a new scope as required before the call.
53
54 function Addressable (V : Uint) return Boolean;
55 function Addressable (V : Int) return Boolean;
56 pragma Inline (Addressable);
57 -- Returns True if the value of V is the word size of an addressable
58 -- factor of the word size (typically 8, 16, 32 or 64).
59
60 function Alignment_In_Bits (E : Entity_Id) return Uint;
61 -- If the alignment of the type or object E is currently known to the
62 -- compiler, then this function returns the alignment value in bits.
63 -- Otherwise Uint_0 is returned, indicating that the alignment of the
64 -- entity is not yet known to the compiler.
65
66 procedure Apply_Compile_Time_Constraint_Error
67 (N : Node_Id;
68 Msg : String;
69 Reason : RT_Exception_Code;
70 Ent : Entity_Id := Empty;
71 Typ : Entity_Id := Empty;
72 Loc : Source_Ptr := No_Location;
73 Rep : Boolean := True;
74 Warn : Boolean := False);
75 -- N is a subexpression which will raise constraint error when evaluated
76 -- at runtime. Msg is a message that explains the reason for raising the
77 -- exception. The last character is ? if the message is always a warning,
78 -- even in Ada 95, and is not a ? if the message represents an illegality
79 -- (because of violation of static expression rules) in Ada 95 (but not
80 -- in Ada 83). Typically this routine posts all messages at the Sloc of
81 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
82 -- the message. After posting the appropriate message, and if the flag
83 -- Rep is set, this routine replaces the expression with an appropriate
84 -- N_Raise_Constraint_Error node using the given Reason code. This node
85 -- is then marked as being static if the original node is static, but
86 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
87 -- The error message may contain a } or & insertion character. This
88 -- normally references Etype (N), unless the Ent argument is given
89 -- explicitly, in which case it is used instead. The type of the raise
90 -- node that is built is normally Etype (N), but if the Typ parameter
91 -- is present, this is used instead. Warn is normally False. If it is
92 -- True then the message is treated as a warning even though it does
93 -- not end with a ? (this is used when the caller wants to parameterize
94 -- whether an error or warning is given.
95
96 procedure Bad_Predicated_Subtype_Use
97 (Msg : String;
98 N : Node_Id;
99 Typ : Entity_Id);
100 -- This is called when Typ, a predicated subtype, is used in a context
101 -- which does not allow the use of a predicated subtype. Msg is passed
102 -- to Error_Msg_FE to output an appropriate message using N as the
103 -- location, and Typ as the entity. The caller must set up any insertions
104 -- other than the & for the type itself. Note that if Typ is a generic
105 -- actual type, then the message will be output as a warning, and a
106 -- raise Program_Error is inserted using Insert_Action with node N as
107 -- the insertion point. Node N also supplies the source location for
108 -- construction of the raise node. If Typ is NOT a type with predicates
109 -- this call has no effect.
110
111 function Build_Actual_Subtype
112 (T : Entity_Id;
113 N : Node_Or_Entity_Id) return Node_Id;
114 -- Build an anonymous subtype for an entity or expression, using the
115 -- bounds of the entity or the discriminants of the enclosing record.
116 -- T is the type for which the actual subtype is required, and N is either
117 -- a defining identifier, or any subexpression.
118
119 function Build_Actual_Subtype_Of_Component
120 (T : Entity_Id;
121 N : Node_Id) return Node_Id;
122 -- Determine whether a selected component has a type that depends on
123 -- discriminants, and build actual subtype for it if so.
124
125 function Build_Default_Subtype
126 (T : Entity_Id;
127 N : Node_Id) return Entity_Id;
128 -- If T is an unconstrained type with defaulted discriminants, build a
129 -- subtype constrained by the default values, insert the subtype
130 -- declaration in the tree before N, and return the entity of that
131 -- subtype. Otherwise, simply return T.
132
133 function Build_Discriminal_Subtype_Of_Component
134 (T : Entity_Id) return Node_Id;
135 -- Determine whether a record component has a type that depends on
136 -- discriminants, and build actual subtype for it if so.
137
138 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
139 -- Given a compilation unit node N, allocate an elaboration boolean for
140 -- the compilation unit, and install it in the Elaboration_Entity field
141 -- of Spec_Id, the entity for the compilation unit.
142
143 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
144 -- Returns True if the expression cannot possibly raise Constraint_Error.
145 -- The response is conservative in the sense that a result of False does
146 -- not necessarily mean that CE could be raised, but a response of True
147 -- means that for sure CE cannot be raised.
148
149 procedure Check_Later_Vs_Basic_Declarations
150 (Decls : List_Id;
151 During_Parsing : Boolean);
152 -- If During_Parsing is True, check for misplacement of later vs basic
153 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
154 -- restriction is set, do the same: although SPARK 95 removes the
155 -- distinction between initial and later declarative items, the distinction
156 -- remains in the Examiner (JB01-005). Note that the Examiner does not
157 -- count package declarations in later declarative items.
158
159 procedure Check_Dynamically_Tagged_Expression
160 (Expr : Node_Id;
161 Typ : Entity_Id;
162 Related_Nod : Node_Id);
163 -- Check wrong use of dynamically tagged expression
164
165 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
166 -- Verify that the full declaration of type T has been seen. If not, place
167 -- error message on node N. Used in object declarations, type conversions
168 -- and qualified expressions.
169
170 procedure Check_Nested_Access (Ent : Entity_Id);
171 -- Check whether Ent denotes an entity declared in an uplevel scope, which
172 -- is accessed inside a nested procedure, and set Has_Up_Level_Access flag
173 -- accordingly. This is currently only enabled for VM_Target /= No_VM.
174
175 procedure Check_Order_Dependence;
176 -- Examine the actuals in a top-level call to determine whether aliasing
177 -- between two actuals, one of which is writable, can make the call
178 -- order-dependent.
179
180 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
181 -- N is one of the statement forms that is a potentially blocking
182 -- operation. If it appears within a protected action, emit warning.
183
184 procedure Check_Unprotected_Access
185 (Context : Node_Id;
186 Expr : Node_Id);
187 -- Check whether the expression is a pointer to a protected component,
188 -- and the context is external to the protected operation, to warn against
189 -- a possible unlocked access to data.
190
191 procedure Check_VMS (Construct : Node_Id);
192 -- Check that this the target is OpenVMS, and if so, return with no effect,
193 -- otherwise post an error noting this can only be used with OpenVMS ports.
194 -- The argument is the construct in question and is used to post the error
195 -- message.
196
197 procedure Collect_Interfaces
198 (T : Entity_Id;
199 Ifaces_List : out Elist_Id;
200 Exclude_Parents : Boolean := False;
201 Use_Full_View : Boolean := True);
202 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
203 -- directly or indirectly implemented by T. Exclude_Parents is used to
204 -- avoid the addition of inherited interfaces to the generated list.
205 -- Use_Full_View is used to collect the interfaces using the full-view
206 -- (if available).
207
208 procedure Collect_Interface_Components
209 (Tagged_Type : Entity_Id;
210 Components_List : out Elist_Id);
211 -- Ada 2005 (AI-251): Collect all the tag components associated with the
212 -- secondary dispatch tables of a tagged type.
213
214 procedure Collect_Interfaces_Info
215 (T : Entity_Id;
216 Ifaces_List : out Elist_Id;
217 Components_List : out Elist_Id;
218 Tags_List : out Elist_Id);
219 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
220 -- the record component and tag associated with each of these interfaces.
221 -- On exit Ifaces_List, Components_List and Tags_List have the same number
222 -- of elements, and elements at the same position on these tables provide
223 -- information on the same interface type.
224
225 procedure Collect_Parents
226 (T : Entity_Id;
227 List : out Elist_Id;
228 Use_Full_View : Boolean := True);
229 -- Collect all the parents of Typ. Use_Full_View is used to collect them
230 -- using the full-view of private parents (if available).
231
232 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
233 -- Called upon type derivation and extension. We scan the declarative part
234 -- in which the type appears, and collect subprograms that have one
235 -- subsidiary subtype of the type. These subprograms can only appear after
236 -- the type itself.
237
238 function Compile_Time_Constraint_Error
239 (N : Node_Id;
240 Msg : String;
241 Ent : Entity_Id := Empty;
242 Loc : Source_Ptr := No_Location;
243 Warn : Boolean := False) return Node_Id;
244 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
245 -- generates a warning (or error) message in the same manner, but it does
246 -- not replace any nodes. For convenience, the function always returns its
247 -- first argument. The message is a warning if the message ends with ?, or
248 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
249
250 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
251 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
252 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
253
254 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
255 -- Utility to create a parameter profile for a new subprogram spec, when
256 -- the subprogram has a body that acts as spec. This is done for some cases
257 -- of inlining, and for private protected ops. Also used to create bodies
258 -- for stubbed subprograms.
259
260 function Current_Entity (N : Node_Id) return Entity_Id;
261 pragma Inline (Current_Entity);
262 -- Find the currently visible definition for a given identifier, that is to
263 -- say the first entry in the visibility chain for the Chars of N.
264
265 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
266 -- Find whether there is a previous definition for identifier N in the
267 -- current scope. Because declarations for a scope are not necessarily
268 -- contiguous (e.g. for packages) the first entry on the visibility chain
269 -- for N is not necessarily in the current scope.
270
271 function Current_Scope return Entity_Id;
272 -- Get entity representing current scope
273
274 function Current_Subprogram return Entity_Id;
275 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
276 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
277 -- Current_Scope is returned. The returned value is Empty if this is called
278 -- from a library package which is not within any subprogram.
279
280 procedure Mark_Non_ALFA_Subprogram;
281 -- If Current_Subprogram is not Empty, mark either its specification or its
282 -- body as not being in ALFA. This procedure may be called during the
283 -- analysis of a precondition or postcondition, as indicated by the flag
284 -- In_Pre_Post_Expression, or during the analysis of a subprogram's body.
285 -- In the first case, the specification of Current_Subprogram must be
286 -- marked as not being in ALFA, as the contract is considered to be part of
287 -- the specification, so that calls to this subprogram are not in ALFA. In
288 -- the second case, mark the body as not being in ALFA, which does not
289 -- prevent the subprogram's specification, and calls to the subprogram,
290 -- from being in ALFA.
291
292 function Defining_Entity (N : Node_Id) return Entity_Id;
293 -- Given a declaration N, returns the associated defining entity. If the
294 -- declaration has a specification, the entity is obtained from the
295 -- specification. If the declaration has a defining unit name, then the
296 -- defining entity is obtained from the defining unit name ignoring any
297 -- child unit prefixes.
298
299 function Denotes_Discriminant
300 (N : Node_Id;
301 Check_Concurrent : Boolean := False) return Boolean;
302 -- Returns True if node N is an Entity_Name node for a discriminant. If the
303 -- flag Check_Concurrent is true, function also returns true when N denotes
304 -- the discriminal of the discriminant of a concurrent type. This is needed
305 -- to disable some optimizations on private components of protected types,
306 -- and constraint checks on entry families constrained by discriminants.
307
308 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
309 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
310 -- Functions to detect suspicious overlapping between actuals in a call,
311 -- when one of them is writable. The predicates are those proposed in
312 -- AI05-0144, to detect dangerous order dependence in complex calls.
313 -- I would add a parameter Warn which enables more extensive testing of
314 -- cases as we find appropriate when we are only warning ??? Or perhaps
315 -- return an indication of (Error, Warn, OK) ???
316
317 function Denotes_Variable (N : Node_Id) return Boolean;
318 -- Returns True if node N denotes a single variable without parentheses
319
320 function Depends_On_Discriminant (N : Node_Id) return Boolean;
321 -- Returns True if N denotes a discriminant or if N is a range, a subtype
322 -- indication or a scalar subtype where one of the bounds is a
323 -- discriminant.
324
325 function Designate_Same_Unit
326 (Name1 : Node_Id;
327 Name2 : Node_Id) return Boolean;
328 -- Return true if Name1 and Name2 designate the same unit name; each of
329 -- these names is supposed to be a selected component name, an expanded
330 -- name, a defining program unit name or an identifier.
331
332 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
333 -- Returns the closest ancestor of Typ that is a CPP type.
334
335 function Enclosing_Generic_Body
336 (N : Node_Id) return Node_Id;
337 -- Returns the Node_Id associated with the innermost enclosing generic
338 -- body, if any. If none, then returns Empty.
339
340 function Enclosing_Generic_Unit
341 (N : Node_Id) return Node_Id;
342 -- Returns the Node_Id associated with the innermost enclosing generic
343 -- unit, if any. If none, then returns Empty.
344
345 function Enclosing_Lib_Unit_Entity return Entity_Id;
346 -- Returns the entity of enclosing N_Compilation_Unit Node which is the
347 -- root of the current scope (which must not be Standard_Standard, and the
348 -- caller is responsible for ensuring this condition).
349
350 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
351 -- Returns the enclosing N_Compilation_Unit Node that is the root of a
352 -- subtree containing N.
353
354 function Enclosing_Package (E : Entity_Id) return Entity_Id;
355 -- Utility function to return the Ada entity of the package enclosing
356 -- the entity E, if any. Returns Empty if no enclosing package.
357
358 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
359 -- Utility function to return the Ada entity of the subprogram enclosing
360 -- the entity E, if any. Returns Empty if no enclosing subprogram.
361
362 procedure Ensure_Freeze_Node (E : Entity_Id);
363 -- Make sure a freeze node is allocated for entity E. If necessary, build
364 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
365
366 procedure Enter_Name (Def_Id : Entity_Id);
367 -- Insert new name in symbol table of current scope with check for
368 -- duplications (error message is issued if a conflict is found).
369 -- Note: Enter_Name is not used for overloadable entities, instead these
370 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
371
372 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
373 -- This procedure is called after issuing a message complaining about an
374 -- inappropriate use of limited type T. If useful, it adds additional
375 -- continuation lines to the message explaining why type T is limited.
376 -- Messages are placed at node N.
377
378 procedure Find_Actual
379 (N : Node_Id;
380 Formal : out Entity_Id;
381 Call : out Node_Id);
382 -- Determines if the node N is an actual parameter of a function of a
383 -- procedure call. If so, then Formal points to the entity for the formal
384 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
385 -- Call is set to the node for the corresponding call. If the node N is not
386 -- an actual parameter then Formal and Call are set to Empty.
387
388 function Find_Corresponding_Discriminant
389 (Id : Node_Id;
390 Typ : Entity_Id) return Entity_Id;
391 -- Because discriminants may have different names in a generic unit and in
392 -- an instance, they are resolved positionally when possible. A reference
393 -- to a discriminant carries the discriminant that it denotes when it is
394 -- analyzed. Subsequent uses of this id on a different type denotes the
395 -- discriminant at the same position in this new type.
396
397 procedure Find_Overlaid_Entity
398 (N : Node_Id;
399 Ent : out Entity_Id;
400 Off : out Boolean);
401 -- The node N should be an address representation clause. Determines if the
402 -- target expression is the address of an entity with an optional offset.
403 -- If so, Ent is set to the entity and, if there is an offset, Off is set
404 -- to True, otherwise to False. If N is not an address representation
405 -- clause, or if it is not possible to determine that the address is of
406 -- this form, then Ent is set to Empty, and Off is set to False.
407
408 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
409 -- Return the type of formal parameter Param as determined by its
410 -- specification.
411
412 function Find_Static_Alternative (N : Node_Id) return Node_Id;
413 -- N is a case statement whose expression is a compile-time value.
414 -- Determine the alternative chosen, so that the code of non-selected
415 -- alternatives, and the warnings that may apply to them, are removed.
416
417 function Find_Body_Discriminal
418 (Spec_Discriminant : Entity_Id) return Entity_Id;
419 -- Given a discriminant of the record type that implements a task or
420 -- protected type, return the discriminal of the corresponding discriminant
421 -- of the actual concurrent type.
422
423 function First_Actual (Node : Node_Id) return Node_Id;
424 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
425 -- result returned is the first actual parameter in declaration order
426 -- (not the order of parameters as they appeared in the source, which
427 -- can be quite different as a result of the use of named parameters).
428 -- Empty is returned for a call with no parameters. The procedure for
429 -- iterating through the actuals in declaration order is to use this
430 -- function to find the first actual, and then use Next_Actual to obtain
431 -- the next actual in declaration order. Note that the value returned
432 -- is always the expression (not the N_Parameter_Association nodes,
433 -- even if named association is used).
434
435 procedure Gather_Components
436 (Typ : Entity_Id;
437 Comp_List : Node_Id;
438 Governed_By : List_Id;
439 Into : Elist_Id;
440 Report_Errors : out Boolean);
441 -- The purpose of this procedure is to gather the valid components in a
442 -- record type according to the values of its discriminants, in order to
443 -- validate the components of a record aggregate.
444 --
445 -- Typ is the type of the aggregate when its constrained discriminants
446 -- need to be collected, otherwise it is Empty.
447 --
448 -- Comp_List is an N_Component_List node.
449 --
450 -- Governed_By is a list of N_Component_Association nodes, where each
451 -- choice list contains the name of a discriminant and the expression
452 -- field gives its value. The values of the discriminants governing
453 -- the (possibly nested) variant parts in Comp_List are found in this
454 -- Component_Association List.
455 --
456 -- Into is the list where the valid components are appended. Note that
457 -- Into need not be an Empty list. If it's not, components are attached
458 -- to its tail.
459 --
460 -- Report_Errors is set to True if the values of the discriminants are
461 -- non-static.
462 --
463 -- This procedure is also used when building a record subtype. If the
464 -- discriminant constraint of the subtype is static, the components of the
465 -- subtype are only those of the variants selected by the values of the
466 -- discriminants. Otherwise all components of the parent must be included
467 -- in the subtype for semantic analysis.
468
469 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
470 -- Given a node for an expression, obtain the actual subtype of the
471 -- expression. In the case of a parameter where the formal is an
472 -- unconstrained array or discriminated type, this will be the previously
473 -- constructed subtype of the actual. Note that this is not quite the
474 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
475 -- it is the subtype of the value of the actual. The actual subtype is also
476 -- returned in other cases where it has already been constructed for an
477 -- object. Otherwise the expression type is returned unchanged, except for
478 -- the case of an unconstrained array type, where an actual subtype is
479 -- created, using Insert_Actions if necessary to insert any associated
480 -- actions.
481
482 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
483 -- This is like Get_Actual_Subtype, except that it never constructs an
484 -- actual subtype. If an actual subtype is already available, i.e. the
485 -- Actual_Subtype field of the corresponding entity is set, then it is
486 -- returned. Otherwise the Etype of the node is returned.
487
488 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
489 -- This is used to construct the string literal node representing a
490 -- default external name, i.e. one that is constructed from the name of an
491 -- entity, or (in the case of extended DEC import/export pragmas, an
492 -- identifier provided as the external name. Letters in the name are
493 -- according to the setting of Opt.External_Name_Default_Casing.
494
495 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
496 -- Returns the true generic entity in an instantiation. If the name in the
497 -- instantiation is a renaming, the function returns the renamed generic.
498
499 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
500 -- This procedure assigns to L and H respectively the values of the low and
501 -- high bounds of node N, which must be a range, subtype indication, or the
502 -- name of a scalar subtype. The result in L, H may be set to Error if
503 -- there was an earlier error in the range.
504
505 function Get_Enum_Lit_From_Pos
506 (T : Entity_Id;
507 Pos : Uint;
508 Loc : Source_Ptr) return Node_Id;
509 -- This function obtains the E_Enumeration_Literal entity for the specified
510 -- value from the enumeration type or subtype T and returns an identifier
511 -- node referencing this value. The second argument is the Pos value, which
512 -- is assumed to be in range. The third argument supplies a source location
513 -- for constructed nodes returned by this function.
514
515 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
516 -- Retrieve the fully expanded name of the library unit declared by
517 -- Decl_Node into the name buffer.
518
519 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
520 pragma Inline (Get_Name_Entity_Id);
521 -- An entity value is associated with each name in the name table. The
522 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
523 -- is the innermost visible entity with the given name. See the body of
524 -- Sem_Ch8 for further details on handling of entity visibility.
525
526 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
527 pragma Inline (Get_Pragma_Id);
528 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
529
530 function Get_Referenced_Object (N : Node_Id) return Node_Id;
531 -- Given a node, return the renamed object if the node represents a renamed
532 -- object, otherwise return the node unchanged. The node may represent an
533 -- arbitrary expression.
534
535 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
536 -- Given an entity for an exception, package, subprogram or generic unit,
537 -- returns the ultimately renamed entity if this is a renaming. If this is
538 -- not a renamed entity, returns its argument. It is an error to call this
539 -- with any other kind of entity.
540
541 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
542 -- Nod is either a procedure call statement, or a function call, or an
543 -- accept statement node. This procedure finds the Entity_Id of the related
544 -- subprogram or entry and returns it, or if no subprogram can be found,
545 -- returns Empty.
546
547 function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
548 -- Given the entity for a subprogram (E_Function or E_Procedure), return
549 -- the corresponding N_Subprogram_Body node. If the corresponding body
550 -- is missing (as for an imported subprogram), return Empty.
551
552 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
553 pragma Inline (Get_Task_Body_Procedure);
554 -- Given an entity for a task type or subtype, retrieves the
555 -- Task_Body_Procedure field from the corresponding task type declaration.
556
557 function Has_Access_Values (T : Entity_Id) return Boolean;
558 -- Returns true if type or subtype T is an access type, or has a component
559 -- (at any recursive level) that is an access type. This is a conservative
560 -- predicate, if it is not known whether or not T contains access values
561 -- (happens for generic formals in some cases), then False is returned.
562 -- Note that tagged types return False. Even though the tag is implemented
563 -- as an access type internally, this function tests only for access types
564 -- known to the programmer. See also Has_Tagged_Component.
565
566 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
567 -- Result of Has_Compatible_Alignment test, description found below. Note
568 -- that the values are arranged in increasing order of problematicness.
569
570 function Has_Compatible_Alignment
571 (Obj : Entity_Id;
572 Expr : Node_Id) return Alignment_Result;
573 -- Obj is an object entity, and expr is a node for an object reference. If
574 -- the alignment of the object referenced by Expr is known to be compatible
575 -- with the alignment of Obj (i.e. is larger or the same), then the result
576 -- is Known_Compatible. If the alignment of the object referenced by Expr
577 -- is known to be less than the alignment of Obj, then Known_Incompatible
578 -- is returned. If neither condition can be reliably established at compile
579 -- time, then Unknown is returned. This is used to determine if alignment
580 -- checks are required for address clauses, and also whether copies must
581 -- be made when objects are passed by reference.
582 --
583 -- Note: Known_Incompatible does not mean that at run time the alignment
584 -- of Expr is known to be wrong for Obj, just that it can be determined
585 -- that alignments have been explicitly or implicitly specified which are
586 -- incompatible (whereas Unknown means that even this is not known). The
587 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
588 -- Unknown, but issue a warning that there may be an alignment error.
589
590 function Has_Declarations (N : Node_Id) return Boolean;
591 -- Determines if the node can have declarations
592
593 function Has_Discriminant_Dependent_Constraint
594 (Comp : Entity_Id) return Boolean;
595 -- Returns True if and only if Comp has a constrained subtype that depends
596 -- on a discriminant.
597
598 function Has_Infinities (E : Entity_Id) return Boolean;
599 -- Determines if the range of the floating-point type E includes
600 -- infinities. Returns False if E is not a floating-point type.
601
602 function Has_Interfaces
603 (T : Entity_Id;
604 Use_Full_View : Boolean := True) return Boolean;
605 -- Where T is a concurrent type or a record type, returns true if T covers
606 -- any abstract interface types. In case of private types the argument
607 -- Use_Full_View controls if the check is done using its full view (if
608 -- available).
609
610 function Has_Null_Exclusion (N : Node_Id) return Boolean;
611 -- Determine whether node N has a null exclusion
612
613 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
614 -- Predicate to determine whether a controlled type has a user-defined
615 -- Initialize primitive (and, in Ada 2012, whether that primitive is
616 -- non-null), which causes the type to not have preelaborable
617 -- initialization.
618
619 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
620 -- Return True iff type E has preelaborable initialization as defined in
621 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
622
623 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
624 -- Check if a type has a (sub)component of a private type that has not
625 -- yet received a full declaration.
626
627 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
628 -- Return whether an array type has static bounds
629
630 function Has_Stream (T : Entity_Id) return Boolean;
631 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
632 -- case of a composite type, has a component for which this predicate is
633 -- True, and if so returns True. Otherwise a result of False means that
634 -- there is no Stream type in sight. For a private type, the test is
635 -- applied to the underlying type (or returns False if there is no
636 -- underlying type).
637
638 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
639 -- Returns true if the last character of E is Suffix. Used in Assertions.
640
641 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
642 -- Returns True if Typ is a composite type (array or record) which is
643 -- either itself a tagged type, or has a component (recursively) which is
644 -- a tagged type. Returns False for non-composite type, or if no tagged
645 -- component is present. This function is used to check if "=" has to be
646 -- expanded into a bunch component comparisons.
647
648 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
649 -- Subp is a subprogram marked with pragma Implemented. Return the specific
650 -- implementation requirement which the pragma imposes. The return value is
651 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
652
653 function Implements_Interface
654 (Typ_Ent : Entity_Id;
655 Iface_Ent : Entity_Id;
656 Exclude_Parents : Boolean := False) return Boolean;
657 -- Returns true if the Typ_Ent implements interface Iface_Ent
658
659 function In_Instance return Boolean;
660 -- Returns True if the current scope is within a generic instance
661
662 function In_Instance_Body return Boolean;
663 -- Returns True if current scope is within the body of an instance, where
664 -- several semantic checks (e.g. accessibility checks) are relaxed.
665
666 function In_Instance_Not_Visible return Boolean;
667 -- Returns True if current scope is with the private part or the body of
668 -- an instance. Other semantic checks are suppressed in this context.
669
670 function In_Instance_Visible_Part return Boolean;
671 -- Returns True if current scope is within the visible part of a package
672 -- instance, where several additional semantic checks apply.
673
674 function In_Package_Body return Boolean;
675 -- Returns True if current scope is within a package body
676
677 function In_Parameter_Specification (N : Node_Id) return Boolean;
678 -- Returns True if node N belongs to a parameter specification
679
680 function In_Subprogram_Or_Concurrent_Unit return Boolean;
681 -- Determines if the current scope is within a subprogram compilation unit
682 -- (inside a subprogram declaration, subprogram body, or generic
683 -- subprogram declaration) or within a task or protected body. The test is
684 -- for appearing anywhere within such a construct (that is it does not need
685 -- to be directly within).
686
687 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
688 -- Determine whether a declaration occurs within the visible part of a
689 -- package specification. The package must be on the scope stack, and the
690 -- corresponding private part must not.
691
692 procedure Insert_Explicit_Dereference (N : Node_Id);
693 -- In a context that requires a composite or subprogram type and where a
694 -- prefix is an access type, rewrite the access type node N (which is the
695 -- prefix, e.g. of an indexed component) as an explicit dereference.
696
697 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
698 -- Examine all deferred constants in the declaration list Decls and check
699 -- whether they have been completed by a full constant declaration or an
700 -- Import pragma. Emit the error message if that is not the case.
701
702 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
703 -- Determines if N is an actual parameter of out mode in a subprogram call
704
705 function Is_Actual_Parameter (N : Node_Id) return Boolean;
706 -- Determines if N is an actual parameter in a subprogram call
707
708 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
709 -- Determines if N is an actual parameter of a formal of tagged type in a
710 -- subprogram call.
711
712 function Is_Aliased_View (Obj : Node_Id) return Boolean;
713 -- Determine if Obj is an aliased view, i.e. the name of an object to which
714 -- 'Access or 'Unchecked_Access can apply.
715
716 function Is_Ancestor_Package
717 (E1 : Entity_Id;
718 E2 : Entity_Id) return Boolean;
719 -- Determine whether package E1 is an ancestor of E2
720
721 function Is_Atomic_Object (N : Node_Id) return Boolean;
722 -- Determines if the given node denotes an atomic object in the sense of
723 -- the legality checks described in RM C.6(12).
724
725 function Is_Coextension_Root (N : Node_Id) return Boolean;
726 -- Determine whether node N is an allocator which acts as a coextension
727 -- root.
728
729 function Is_Controlling_Limited_Procedure
730 (Proc_Nam : Entity_Id) return Boolean;
731 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
732 -- of a limited interface with a controlling first parameter.
733
734 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
735 -- Returns True if N is a call to a CPP constructor
736
737 function Is_Dependent_Component_Of_Mutable_Object
738 (Object : Node_Id) return Boolean;
739 -- Returns True if Object is the name of a subcomponent that depends on
740 -- discriminants of a variable whose nominal subtype is unconstrained and
741 -- not indefinite, and the variable is not aliased. Otherwise returns
742 -- False. The nodes passed to this function are assumed to denote objects.
743
744 function Is_Dereferenced (N : Node_Id) return Boolean;
745 -- N is a subexpression node of an access type. This function returns true
746 -- if N appears as the prefix of a node that does a dereference of the
747 -- access value (selected/indexed component, explicit dereference or a
748 -- slice), and false otherwise.
749
750 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
751 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
752 -- This is the RM definition, a type is a descendent of another type if it
753 -- is the same type or is derived from a descendent of the other type.
754
755 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
756 -- First determine whether type T is an interface and then check whether
757 -- it is of protected, synchronized or task kind.
758
759 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
760 -- Predicate to determine whether a function entity comes from a rewritten
761 -- expression function, and should be inlined unconditionally.
762
763 function Is_False (U : Uint) return Boolean;
764 pragma Inline (Is_False);
765 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
766 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
767 -- if it is False (i.e. zero).
768
769 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
770 -- Returns True iff the number U is a model number of the fixed-point type
771 -- T, i.e. if it is an exact multiple of Small.
772
773 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
774 -- Typ is a type entity. This function returns true if this type is fully
775 -- initialized, meaning that an object of the type is fully initialized.
776 -- Note that initialization resulting from use of pragma Normalized_Scalars
777 -- does not count. Note that this is only used for the purpose of issuing
778 -- warnings for objects that are potentially referenced uninitialized. This
779 -- means that the result returned is not crucial, but should err on the
780 -- side of thinking things are fully initialized if it does not know.
781
782 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
783 -- E is a subprogram. Return True is E is an implicit operation inherited
784 -- by a derived type declaration.
785
786 function Is_Inherited_Operation_For_Type
787 (E : Entity_Id; Typ : Entity_Id) return Boolean;
788 -- E is a subprogram. Return True is E is an implicit operation inherited
789 -- by the derived type declaration for type Typ.
790
791 function Is_LHS (N : Node_Id) return Boolean;
792 -- Returns True iff N is used as Name in an assignment statement
793
794 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
795 -- A library-level declaration is one that is accessible from Standard,
796 -- i.e. a library unit or an entity declared in a library package.
797
798 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
799 -- Determines whether Expr is a reference to a variable or IN OUT mode
800 -- parameter of the current enclosing subprogram.
801 -- Why are OUT parameters not considered here ???
802
803 function Is_Object_Reference (N : Node_Id) return Boolean;
804 -- Determines if the tree referenced by N represents an object. Both
805 -- variable and constant objects return True (compare Is_Variable).
806
807 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
808 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
809 -- Note that the Is_Variable function is not quite the right test because
810 -- this is a case in which conversions whose expression is a variable (in
811 -- the Is_Variable sense) with a non-tagged type target are considered view
812 -- conversions and hence variables.
813
814 function Is_Partially_Initialized_Type
815 (Typ : Entity_Id;
816 Include_Implicit : Boolean := True) return Boolean;
817 -- Typ is a type entity. This function returns true if this type is partly
818 -- initialized, meaning that an object of the type is at least partly
819 -- initialized (in particular in the record case, that at least one
820 -- component has an initialization expression). Note that initialization
821 -- resulting from the use of pragma Normalized_Scalars does not count.
822 -- Include_Implicit controls whether implicit initialization of access
823 -- values to null, and of discriminant values, is counted as making the
824 -- type be partially initialized. For the default setting of True, these
825 -- implicit cases do count, and discriminated types or types containing
826 -- access values not explicitly initialized will return True. Otherwise
827 -- if Include_Implicit is False, these cases do not count as making the
828 -- type be partially initialized.
829
830 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
831 -- Determines if type T is a potentially persistent type. A potentially
832 -- persistent type is defined (recursively) as a scalar type, a non-tagged
833 -- record whose components are all of a potentially persistent type, or an
834 -- array with all static constraints whose component type is potentially
835 -- persistent. A private type is potentially persistent if the full type
836 -- is potentially persistent.
837
838 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
839 -- Return True if node N denotes a protected type name which represents
840 -- the current instance of a protected object according to RM 9.4(21/2).
841
842 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
843 -- Return True if a compilation unit is the specification or the
844 -- body of a remote call interface package.
845
846 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
847 -- Return True if E is a remote access-to-class-wide type
848
849 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
850 -- Return True if E is a remote access to subprogram type
851
852 function Is_Remote_Call (N : Node_Id) return Boolean;
853 -- Return True if N denotes a potentially remote call
854
855 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
856 -- Return True if Proc_Nam is a procedure renaming of an entry
857
858 function Is_Selector_Name (N : Node_Id) return Boolean;
859 -- Given an N_Identifier node N, determines if it is a Selector_Name.
860 -- As described in Sinfo, Selector_Names are special because they
861 -- represent use of the N_Identifier node for a true identifier, when
862 -- normally such nodes represent a direct name.
863
864 function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean;
865 -- Determines if the tree referenced by N represents an initialization
866 -- expression in SPARK, suitable for initializing an object in an object
867 -- declaration.
868
869 function Is_SPARK_Object_Reference (N : Node_Id) return Boolean;
870 -- Determines if the tree referenced by N represents an object in SPARK
871
872 function Is_Statement (N : Node_Id) return Boolean;
873 pragma Inline (Is_Statement);
874 -- Check if the node N is a statement node. Note that this includes
875 -- the case of procedure call statements (unlike the direct use of
876 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
877 -- Note that a label is *not* a statement, and will return False.
878
879 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
880 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
881
882 function Is_Transfer (N : Node_Id) return Boolean;
883 -- Returns True if the node N is a statement which is known to cause an
884 -- unconditional transfer of control at runtime, i.e. the following
885 -- statement definitely will not be executed.
886
887 function Is_True (U : Uint) return Boolean;
888 pragma Inline (Is_True);
889 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
890 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
891 -- if it is True (i.e. non-zero).
892
893 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
894 pragma Inline (Is_Universal_Numeric_Type);
895 -- True if T is Universal_Integer or Universal_Real
896
897 function Is_Value_Type (T : Entity_Id) return Boolean;
898 -- Returns true if type T represents a value type. This is only relevant to
899 -- CIL, will always return false for other targets. A value type is a CIL
900 -- object that is accessed directly, as opposed to the other CIL objects
901 -- that are accessed through managed pointers.
902
903 function Is_VMS_Operator (Op : Entity_Id) return Boolean;
904 -- Determine whether an operator is one of the intrinsics defined
905 -- in the DEC system extension.
906
907 function Is_Delegate (T : Entity_Id) return Boolean;
908 -- Returns true if type T represents a delegate. A Delegate is the CIL
909 -- object used to represent access-to-subprogram types. This is only
910 -- relevant to CIL, will always return false for other targets.
911
912 function Is_Variable
913 (N : Node_Id;
914 Use_Original_Node : Boolean := True) return Boolean;
915 -- Determines if the tree referenced by N represents a variable, i.e. can
916 -- appear on the left side of an assignment. There is one situation (formal
917 -- parameters) in which non-tagged type conversions are also considered
918 -- variables, but Is_Variable returns False for such cases, since it has
919 -- no knowledge of the context. Note that this is the point at which
920 -- Assignment_OK is checked, and True is returned for any tree thus marked.
921 -- Use_Original_Node is used to perform the test on Original_Node (N). By
922 -- default is True since this routine is commonly invoked as part of the
923 -- semantic analysis and it must not be disturbed by the rewriten nodes.
924
925 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
926 -- Check whether T is derived from a visibly controlled type. This is true
927 -- if the root type is declared in Ada.Finalization. If T is derived
928 -- instead from a private type whose full view is controlled, an explicit
929 -- Initialize/Adjust/Finalize subprogram does not override the inherited
930 -- one.
931
932 function Is_Volatile_Object (N : Node_Id) return Boolean;
933 -- Determines if the given node denotes an volatile object in the sense of
934 -- the legality checks described in RM C.6(12). Note that the test here is
935 -- for something actually declared as volatile, not for an object that gets
936 -- treated as volatile (see Einfo.Treat_As_Volatile).
937
938 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
939 -- This procedure is called to clear all constant indications from all
940 -- entities in the current scope and in any parent scopes if the current
941 -- scope is a block or a package (and that recursion continues to the top
942 -- scope that is not a block or a package). This is used when the
943 -- sequential flow-of-control assumption is violated (occurrence of a
944 -- label, head of a loop, or start of an exception handler). The effect of
945 -- the call is to clear the Constant_Value field (but we do not need to
946 -- clear the Is_True_Constant flag, since that only gets reset if there
947 -- really is an assignment somewhere in the entity scope). This procedure
948 -- also calls Kill_All_Checks, since this is a special case of needing to
949 -- forget saved values. This procedure also clears the Is_Known_Null and
950 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
951 -- parameters since these are also not known to be trustable any more.
952 --
953 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
954 -- fields and leave other fields unchanged. This is used when we encounter
955 -- an unconditional flow of control change (return, goto, raise). In such
956 -- cases we don't need to clear the current values, since it may be that
957 -- the flow of control change occurs in a conditional context, and if it
958 -- is not taken, then it is just fine to keep the current values. But the
959 -- Last_Assignment field is different, if we have a sequence assign-to-v,
960 -- conditional-return, assign-to-v, we do not want to complain that the
961 -- second assignment clobbers the first.
962
963 procedure Kill_Current_Values
964 (Ent : Entity_Id;
965 Last_Assignment_Only : Boolean := False);
966 -- This performs the same processing as described above for the form with
967 -- no argument, but for the specific entity given. The call has no effect
968 -- if the entity Ent is not for an object. Last_Assignment_Only has the
969 -- same meaning as for the call with no Ent.
970
971 procedure Kill_Size_Check_Code (E : Entity_Id);
972 -- Called when an address clause or pragma Import is applied to an entity.
973 -- If the entity is a variable or a constant, and size check code is
974 -- present, this size check code is killed, since the object will not be
975 -- allocated by the program.
976
977 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
978 -- The node N is an entity reference. This function determines whether the
979 -- reference is for sure an assignment of the entity, returning True if
980 -- so. This differs from May_Be_Lvalue in that it defaults in the other
981 -- direction. Cases which may possibly be assignments but are not known to
982 -- be may return True from May_Be_Lvalue, but False from this function.
983
984 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
985 -- HSS is a handled statement sequence. This function returns the last
986 -- statement in Statements (HSS) that has Comes_From_Source set. If no
987 -- such statement exists, Empty is returned.
988
989 function Make_Simple_Return_Statement
990 (Sloc : Source_Ptr;
991 Expression : Node_Id := Empty) return Node_Id
992 renames Make_Return_Statement;
993 -- See Sinfo. We rename Make_Return_Statement to the correct Ada 2005
994 -- terminology here. Clients should use Make_Simple_Return_Statement.
995
996 function Matching_Static_Array_Bounds
997 (L_Typ : Node_Id;
998 R_Typ : Node_Id) return Boolean;
999 -- L_Typ and R_Typ are two array types. Returns True when they have the
1000 -- same number of dimensions, and the same static bounds for each index
1001 -- position.
1002
1003 Make_Return_Statement : constant := -2 ** 33;
1004 -- Attempt to prevent accidental uses of Make_Return_Statement. If this
1005 -- and the one in Nmake are both potentially use-visible, it will cause
1006 -- a compilation error. Note that type and value are irrelevant.
1007
1008 N_Return_Statement : constant := -2**33;
1009 -- Attempt to prevent accidental uses of N_Return_Statement; similar to
1010 -- Make_Return_Statement above.
1011
1012 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1013 -- Given a node which designates the context of analysis and an origin in
1014 -- the tree, traverse from Root_Nod and mark all allocators as either
1015 -- dynamic or static depending on Context_Nod. Any erroneous marking is
1016 -- cleaned up during resolution.
1017
1018 function May_Be_Lvalue (N : Node_Id) return Boolean;
1019 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1020 -- An lvalue is defined as any expression which appears in a context where
1021 -- a name is required by the syntax, and the identity, rather than merely
1022 -- the value of the node is needed (for example, the prefix of an Access
1023 -- attribute is in this category). Note that, as implied by the name, this
1024 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1025 -- it returns True. It tries hard to get the answer right, but it is hard
1026 -- to guarantee this in all cases. Note that it is more possible to give
1027 -- correct answer if the tree is fully analyzed.
1028
1029 function Needs_One_Actual (E : Entity_Id) return Boolean;
1030 -- Returns True if a function has defaults for all but its first
1031 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1032 -- results from an indexing of a function call written in prefix form.
1033
1034 function New_Copy_List_Tree (List : List_Id) return List_Id;
1035 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1036 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1037 -- nodes (entities) either directly or indirectly using this function.
1038
1039 function New_Copy_Tree
1040 (Source : Node_Id;
1041 Map : Elist_Id := No_Elist;
1042 New_Sloc : Source_Ptr := No_Location;
1043 New_Scope : Entity_Id := Empty) return Node_Id;
1044 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1045 -- syntactic subtree, including recursively any descendents whose parent
1046 -- field references a copied node (descendents not linked to a copied node
1047 -- by the parent field are not copied, instead the copied tree references
1048 -- the same descendent as the original in this case, which is appropriate
1049 -- for non-syntactic fields such as Etype). The parent pointers in the
1050 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1051 -- The one exception to the rule of not copying semantic fields is that
1052 -- any implicit types attached to the subtree are duplicated, so that
1053 -- the copy contains a distinct set of implicit type entities. Thus this
1054 -- function is used when it is necessary to duplicate an analyzed tree,
1055 -- declared in the same or some other compilation unit. This function is
1056 -- declared here rather than in atree because it uses semantic information
1057 -- in particular concerning the structure of itypes and the generation of
1058 -- public symbols.
1059
1060 -- The Map argument, if set to a non-empty Elist, specifies a set of
1061 -- mappings to be applied to entities in the tree. The map has the form:
1062 --
1063 -- old entity 1
1064 -- new entity to replace references to entity 1
1065 -- old entity 2
1066 -- new entity to replace references to entity 2
1067 -- ...
1068 --
1069 -- The call destroys the contents of Map in this case
1070 --
1071 -- The parameter New_Sloc, if set to a value other than No_Location, is
1072 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1073 -- set to its default value No_Location, then the Sloc values of the
1074 -- nodes in the copy are simply copied from the corresponding original.
1075 --
1076 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1077 -- the default No_Location value, but is reset if New_Sloc is given, since
1078 -- in this case the result clearly is neither a source node or an exact
1079 -- copy of a source node.
1080 --
1081 -- The parameter New_Scope, if set to a value other than Empty, is the
1082 -- value to use as the Scope for any Itypes that are copied. The most
1083 -- typical value for this parameter, if given, is Current_Scope.
1084
1085 function New_External_Entity
1086 (Kind : Entity_Kind;
1087 Scope_Id : Entity_Id;
1088 Sloc_Value : Source_Ptr;
1089 Related_Id : Entity_Id;
1090 Suffix : Character;
1091 Suffix_Index : Nat := 0;
1092 Prefix : Character := ' ') return Entity_Id;
1093 -- This function creates an N_Defining_Identifier node for an internal
1094 -- created entity, such as an implicit type or subtype, or a record
1095 -- initialization procedure. The entity name is constructed with a call
1096 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1097 -- that the generated name may be referenced as a public entry, and the
1098 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1099 -- entity is for a type or subtype, the size/align fields are initialized
1100 -- to unknown (Uint_0).
1101
1102 function New_Internal_Entity
1103 (Kind : Entity_Kind;
1104 Scope_Id : Entity_Id;
1105 Sloc_Value : Source_Ptr;
1106 Id_Char : Character) return Entity_Id;
1107 -- This function is similar to New_External_Entity, except that the
1108 -- name is constructed by New_Internal_Name (Id_Char). This is used
1109 -- when the resulting entity does not have to be referenced as a
1110 -- public entity (and in this case Is_Public is not set).
1111
1112 procedure Next_Actual (Actual_Id : in out Node_Id);
1113 pragma Inline (Next_Actual);
1114 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1115 -- inline this procedural form, but not the functional form that follows.
1116
1117 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1118 -- Find next actual parameter in declaration order. As described for
1119 -- First_Actual, this is the next actual in the declaration order, not
1120 -- the call order, so this does not correspond to simply taking the
1121 -- next entry of the Parameter_Associations list. The argument is an
1122 -- actual previously returned by a call to First_Actual or Next_Actual.
1123 -- Note that the result produced is always an expression, not a parameter
1124 -- association node, even if named notation was used.
1125
1126 procedure Normalize_Actuals
1127 (N : Node_Id;
1128 S : Entity_Id;
1129 Report : Boolean;
1130 Success : out Boolean);
1131 -- Reorders lists of actuals according to names of formals, value returned
1132 -- in Success indicates success of reordering. For more details, see body.
1133 -- Errors are reported only if Report is set to True.
1134
1135 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1136 -- This routine is called if the sub-expression N maybe the target of
1137 -- an assignment (e.g. it is the left side of an assignment, used as
1138 -- an out parameters, or used as prefixes of access attributes). It
1139 -- sets May_Be_Modified in the associated entity if there is one,
1140 -- taking into account the rule that in the case of renamed objects,
1141 -- it is the flag in the renamed object that must be set.
1142 --
1143 -- The parameter Sure is set True if the modification is sure to occur
1144 -- (e.g. target of assignment, or out parameter), and to False if the
1145 -- modification is only potential (e.g. address of entity taken).
1146
1147 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1148 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1149 -- or overrides an inherited dispatching primitive S2, the original
1150 -- corresponding operation of S is the original corresponding operation of
1151 -- S2. Otherwise, it is S itself.
1152
1153 function Object_Access_Level (Obj : Node_Id) return Uint;
1154 -- Return the accessibility level of the view of the object Obj.
1155 -- For convenience, qualified expressions applied to object names
1156 -- are also allowed as actuals for this function.
1157
1158 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1159 -- Returns True if the names of both entities correspond with matching
1160 -- primitives. This routine includes support for the case in which one
1161 -- or both entities correspond with entities built by Derive_Subprogram
1162 -- with a special name to avoid being overridden (i.e. return true in case
1163 -- of entities with names "nameP" and "name" or vice versa).
1164
1165 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1166 -- Returns some private component (if any) of the given Type_Id.
1167 -- Used to enforce the rules on visibility of operations on composite
1168 -- types, that depend on the full view of the component type. For a
1169 -- record type there may be several such components, we just return
1170 -- the first one.
1171
1172 procedure Process_End_Label
1173 (N : Node_Id;
1174 Typ : Character;
1175 Ent : Entity_Id);
1176 -- N is a node whose End_Label is to be processed, generating all
1177 -- appropriate cross-reference entries, and performing style checks
1178 -- for any identifier references in the end label. Typ is either
1179 -- 'e' or 't indicating the type of the cross-reference entity
1180 -- (e for spec, t for body, see Lib.Xref spec for details). The
1181 -- parameter Ent gives the entity to which the End_Label refers,
1182 -- and to which cross-references are to be generated.
1183
1184 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1185 -- Returns True if the expression Expr contains any references to a
1186 -- generic type. This can only happen within a generic template.
1187
1188 procedure Remove_Homonym (E : Entity_Id);
1189 -- Removes E from the homonym chain
1190
1191 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1192 -- This is used to construct the second argument in a call to Rep_To_Pos
1193 -- which is Standard_True if range checks are enabled (E is an entity to
1194 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1195 -- if range checks are suppressed. Loc is the location for the node that
1196 -- is returned (which is a New_Occurrence of the appropriate entity).
1197 --
1198 -- Note: one might think that it would be fine to always use True and
1199 -- to ignore the suppress in this case, but it is generally better to
1200 -- believe a request to suppress exceptions if possible, and further
1201 -- more there is at least one case in the generated code (the code for
1202 -- array assignment in a loop) that depends on this suppression.
1203
1204 procedure Require_Entity (N : Node_Id);
1205 -- N is a node which should have an entity value if it is an entity name.
1206 -- If not, then check if there were previous errors. If so, just fill
1207 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1208 -- This is used as a defense mechanism against ill-formed trees caused by
1209 -- previous errors (particularly in -gnatq mode).
1210
1211 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1212 -- E is a type entity. The result is True when temporaries of this
1213 -- type need to be wrapped in a transient scope to be reclaimed
1214 -- properly when a secondary stack is in use. Examples of types
1215 -- requiring such wrapping are controlled types and variable-sized
1216 -- types including unconstrained arrays
1217
1218 procedure Reset_Analyzed_Flags (N : Node_Id);
1219 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1220
1221 function Safe_To_Capture_Value
1222 (N : Node_Id;
1223 Ent : Entity_Id;
1224 Cond : Boolean := False) return Boolean;
1225 -- The caller is interested in capturing a value (either the current value,
1226 -- or an indication that the value is non-null) for the given entity Ent.
1227 -- This value can only be captured if sequential execution semantics can be
1228 -- properly guaranteed so that a subsequent reference will indeed be sure
1229 -- that this current value indication is correct. The node N is the
1230 -- construct which resulted in the possible capture of the value (this
1231 -- is used to check if we are in a conditional).
1232 --
1233 -- Cond is used to skip the test for being inside a conditional. It is used
1234 -- in the case of capturing values from if/while tests, which already do a
1235 -- proper job of handling scoping issues without this help.
1236 --
1237 -- The only entities whose values can be captured are OUT and IN OUT formal
1238 -- parameters, and variables unless Cond is True, in which case we also
1239 -- allow IN formals, loop parameters and constants, where we cannot ever
1240 -- capture actual value information, but we can capture conditional tests.
1241
1242 function Same_Name (N1, N2 : Node_Id) return Boolean;
1243 -- Determine if two (possibly expanded) names are the same name. This is
1244 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1245
1246 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1247 -- Determine if Node1 and Node2 are known to designate the same object.
1248 -- This is a semantic test and both nodes must be fully analyzed. A result
1249 -- of True is decisively correct. A result of False does not necessarily
1250 -- mean that different objects are designated, just that this could not
1251 -- be reliably determined at compile time.
1252
1253 function Same_Type (T1, T2 : Entity_Id) return Boolean;
1254 -- Determines if T1 and T2 represent exactly the same type. Two types
1255 -- are the same if they are identical, or if one is an unconstrained
1256 -- subtype of the other, or they are both common subtypes of the same
1257 -- type with identical constraints. The result returned is conservative.
1258 -- It is True if the types are known to be the same, but a result of
1259 -- False is indecisive (e.g. the compiler may not be able to tell that
1260 -- two constraints are identical).
1261
1262 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1263 -- Determines if Node1 and Node2 are known to be the same value, which is
1264 -- true if they are both compile time known values and have the same value,
1265 -- or if they are the same object (in the sense of function Same_Object).
1266 -- A result of False does not necessarily mean they have different values,
1267 -- just that it is not possible to determine they have the same value.
1268
1269 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1270 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1271 -- inside it, where both entities represent scopes. Note that scopes
1272 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1273 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1274
1275 procedure Save_Actual (N : Node_Id; Writable : Boolean := False);
1276 -- Enter an actual in a call in a table global, for subsequent check of
1277 -- possible order dependence in the presence of IN OUT parameters for
1278 -- functions in Ada 2012 (or access parameters in older language versions).
1279
1280 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1281 -- Like Scope_Within_Or_Same, except that this function returns
1282 -- False in the case where Scope1 and Scope2 are the same scope.
1283
1284 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1285 -- Same as Basic_Set_Convention, but with an extra check for access types.
1286 -- In particular, if E is an access-to-subprogram type, and Val is a
1287 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1288
1289 procedure Set_Current_Entity (E : Entity_Id);
1290 pragma Inline (Set_Current_Entity);
1291 -- Establish the entity E as the currently visible definition of its
1292 -- associated name (i.e. the Node_Id associated with its name)
1293
1294 procedure Set_Debug_Info_Needed (T : Entity_Id);
1295 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1296 -- that are needed by T (for an object, the type of the object is needed,
1297 -- and for a type, various subsidiary types are needed -- see body for
1298 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1299 -- This routine should always be used instead of Set_Needs_Debug_Info to
1300 -- ensure that subsidiary entities are properly handled.
1301
1302 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id);
1303 -- This procedure has the same calling sequence as Set_Entity, but
1304 -- if Style_Check is set, then it calls a style checking routine which
1305 -- can check identifier spelling style.
1306
1307 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1308 pragma Inline (Set_Name_Entity_Id);
1309 -- Sets the Entity_Id value associated with the given name, which is the
1310 -- Id of the innermost visible entity with the given name. See the body
1311 -- of package Sem_Ch8 for further details on the handling of visibility.
1312
1313 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1314 -- The arguments may be parameter associations, whose descendants
1315 -- are the optional formal name and the actual parameter. Positional
1316 -- parameters are already members of a list, and do not need to be
1317 -- chained separately. See also First_Actual and Next_Actual.
1318
1319 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1320 pragma Inline (Set_Optimize_Alignment_Flags);
1321 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
1322
1323 procedure Set_Public_Status (Id : Entity_Id);
1324 -- If an entity (visible or otherwise) is defined in a library
1325 -- package, or a package that is itself public, then this subprogram
1326 -- labels the entity public as well.
1327
1328 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1329 -- N is the node for either a left hand side (Out_Param set to False),
1330 -- or an Out or In_Out parameter (Out_Param set to True). If there is
1331 -- an assignable entity being referenced, then the appropriate flag
1332 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1333 -- if Out_Param is True) is set True, and the other flag set False.
1334
1335 procedure Set_Scope_Is_Transient (V : Boolean := True);
1336 -- Set the flag Is_Transient of the current scope
1337
1338 procedure Set_Size_Info (T1, T2 : Entity_Id);
1339 pragma Inline (Set_Size_Info);
1340 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1341 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1342 -- in the fixed-point and discrete cases, and also copies the alignment
1343 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1344 -- separately set if this is required to be copied also.
1345
1346 function Scope_Is_Transient return Boolean;
1347 -- True if the current scope is transient
1348
1349 function Static_Boolean (N : Node_Id) return Uint;
1350 -- This function analyzes the given expression node and then resolves it
1351 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1352 -- returned corresponding to the value, otherwise an error message is
1353 -- output and No_Uint is returned.
1354
1355 function Static_Integer (N : Node_Id) return Uint;
1356 -- This function analyzes the given expression node and then resolves it
1357 -- as any integer type. If the result is static, then the value of the
1358 -- universal expression is returned, otherwise an error message is output
1359 -- and a value of No_Uint is returned.
1360
1361 function Statically_Different (E1, E2 : Node_Id) return Boolean;
1362 -- Return True if it can be statically determined that the Expressions
1363 -- E1 and E2 refer to different objects
1364
1365 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1366 -- Return the accessibility level of the view denoted by Subp
1367
1368 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1369 -- Print debugging information on entry to each unit being analyzed
1370
1371 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1372 -- Move a list of entities from one scope to another, and recompute
1373 -- Is_Public based upon the new scope.
1374
1375 function Type_Access_Level (Typ : Entity_Id) return Uint;
1376 -- Return the accessibility level of Typ
1377
1378 function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id;
1379 -- Unit_Id is the simple name of a program unit, this function returns the
1380 -- corresponding xxx_Declaration node for the entity. Also applies to the
1381 -- body entities for subprograms, tasks and protected units, in which case
1382 -- it returns the subprogram, task or protected body node for it. The unit
1383 -- may be a child unit with any number of ancestors.
1384
1385 function Unit_Is_Visible (U : Entity_Id) return Boolean;
1386 -- Determine whether a compilation unit is visible in the current context,
1387 -- because there is a with_clause that makes the unit available. Used to
1388 -- provide better messages on common visiblity errors on operators.
1389
1390 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1391 -- Yields Universal_Integer or Universal_Real if this is a candidate
1392
1393 function Unqualify (Expr : Node_Id) return Node_Id;
1394 pragma Inline (Unqualify);
1395 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
1396 -- returns X. If Expr is not a qualified expression, returns Expr.
1397
1398 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
1399 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
1400 -- of a type extension or private extension declaration. If the full-view
1401 -- of private parents and progenitors is available then it is used to
1402 -- generate the list of visible ancestors; otherwise their partial
1403 -- view is added to the resulting list.
1404
1405 function Within_Init_Proc return Boolean;
1406 -- Determines if Current_Scope is within an init proc
1407
1408 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1409 -- Output error message for incorrectly typed expression. Expr is the node
1410 -- for the incorrectly typed construct (Etype (Expr) is the type found),
1411 -- and Expected_Type is the entity for the expected type. Note that Expr
1412 -- does not have to be a subexpression, anything with an Etype field may
1413 -- be used.
1414
1415 end Sem_Util;