efaa63cac0c3f7e597c7c81efddd15fa0003527c
[gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Opt; use Opt;
32 with Snames; use Snames;
33 with Types; use Types;
34 with Uintp; use Uintp;
35 with Urealp; use Urealp;
36
37 package Sem_Util is
38
39 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
40 -- Given a type that implements interfaces look for its associated
41 -- definition node and return its list of interfaces.
42
43 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
44 -- Add A to the list of access types to process when expanding the
45 -- freeze node of E.
46
47 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
48 -- Given a block statement N, generate an internal E_Block label and make
49 -- it the identifier of the block. Id denotes the generated entity. If the
50 -- block already has an identifier, Id returns the entity of its label.
51
52 procedure Add_Contract_Item (Prag : Node_Id; Id : Entity_Id);
53 -- Add pragma Prag to the contract of an entry, a package [body], a
54 -- subprogram [body] or variable denoted by Id. The following are valid
55 -- pragmas:
56 -- Abstract_States
57 -- Async_Readers
58 -- Async_Writers
59 -- Contract_Cases
60 -- Depends
61 -- Effective_Reads
62 -- Effective_Writes
63 -- Global
64 -- Initial_Condition
65 -- Initializes
66 -- Part_Of
67 -- Postcondition
68 -- Precondition
69 -- Refined_Depends
70 -- Refined_Global
71 -- Refined_Post
72 -- Refined_States
73 -- Test_Case
74
75 procedure Add_Global_Declaration (N : Node_Id);
76 -- These procedures adds a declaration N at the library level, to be
77 -- elaborated before any other code in the unit. It is used for example
78 -- for the entity that marks whether a unit has been elaborated. The
79 -- declaration is added to the Declarations list of the Aux_Decls_Node
80 -- for the current unit. The declarations are added in the current scope,
81 -- so the caller should push a new scope as required before the call.
82
83 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
84 -- Given two types, returns True if we are in Allow_Integer_Address mode
85 -- and one of the types is (a descendent of) System.Address (and this type
86 -- is private), and the other type is any integer type.
87
88 function Addressable (V : Uint) return Boolean;
89 function Addressable (V : Int) return Boolean;
90 pragma Inline (Addressable);
91 -- Returns True if the value of V is the word size of an addressable
92 -- factor of the word size (typically 8, 16, 32 or 64).
93
94 function Alignment_In_Bits (E : Entity_Id) return Uint;
95 -- If the alignment of the type or object E is currently known to the
96 -- compiler, then this function returns the alignment value in bits.
97 -- Otherwise Uint_0 is returned, indicating that the alignment of the
98 -- entity is not yet known to the compiler.
99
100 procedure Append_Inherited_Subprogram (S : Entity_Id);
101 -- If the parent of the operation is declared in the visible part of
102 -- the current scope, the inherited operation is visible even though the
103 -- derived type that inherits the operation may be completed in the private
104 -- part of the current package.
105
106 procedure Apply_Compile_Time_Constraint_Error
107 (N : Node_Id;
108 Msg : String;
109 Reason : RT_Exception_Code;
110 Ent : Entity_Id := Empty;
111 Typ : Entity_Id := Empty;
112 Loc : Source_Ptr := No_Location;
113 Rep : Boolean := True;
114 Warn : Boolean := False);
115 -- N is a subexpression which will raise constraint error when evaluated
116 -- at runtime. Msg is a message that explains the reason for raising the
117 -- exception. The last character is ? if the message is always a warning,
118 -- even in Ada 95, and is not a ? if the message represents an illegality
119 -- (because of violation of static expression rules) in Ada 95 (but not
120 -- in Ada 83). Typically this routine posts all messages at the Sloc of
121 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
122 -- the message. After posting the appropriate message, and if the flag
123 -- Rep is set, this routine replaces the expression with an appropriate
124 -- N_Raise_Constraint_Error node using the given Reason code. This node
125 -- is then marked as being static if the original node is static, but
126 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
127 -- The error message may contain a } or & insertion character. This
128 -- normally references Etype (N), unless the Ent argument is given
129 -- explicitly, in which case it is used instead. The type of the raise
130 -- node that is built is normally Etype (N), but if the Typ parameter
131 -- is present, this is used instead. Warn is normally False. If it is
132 -- True then the message is treated as a warning even though it does
133 -- not end with a ? (this is used when the caller wants to parameterize
134 -- whether an error or warning is given).
135
136 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
137 -- Given the entity of an abstract state or a variable, determine whether
138 -- Id is subject to external property Async_Readers and if it is, the
139 -- related expression evaluates to True.
140
141 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
142 -- Given the entity of an abstract state or a variable, determine whether
143 -- Id is subject to external property Async_Writers and if it is, the
144 -- related expression evaluates to True.
145
146 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
147 -- If at the point of declaration an array type has a private or limited
148 -- component, several array operations are not avaiable on the type, and
149 -- the array type is flagged accordingly. If in the immediate scope of
150 -- the array type the component becomes non-private or non-limited, these
151 -- operations become avaiable. This can happen if the scopes of both types
152 -- are open, and the scope of the array is not outside the scope of the
153 -- component.
154
155 procedure Bad_Attribute
156 (N : Node_Id;
157 Nam : Name_Id;
158 Warn : Boolean := False);
159 -- Called when node N is expected to contain a valid attribute name, and
160 -- Nam is found instead. If Warn is set True this is a warning, else this
161 -- is an error.
162
163 procedure Bad_Predicated_Subtype_Use
164 (Msg : String;
165 N : Node_Id;
166 Typ : Entity_Id;
167 Suggest_Static : Boolean := False);
168 -- This is called when Typ, a predicated subtype, is used in a context
169 -- which does not allow the use of a predicated subtype. Msg is passed to
170 -- Error_Msg_FE to output an appropriate message using N as the location,
171 -- and Typ as the entity. The caller must set up any insertions other than
172 -- the & for the type itself. Note that if Typ is a generic actual type,
173 -- then the message will be output as a warning, and a raise Program_Error
174 -- is inserted using Insert_Action with node N as the insertion point. Node
175 -- N also supplies the source location for construction of the raise node.
176 -- If Typ does not have any predicates, the call has no effect. Set flag
177 -- Suggest_Static when the context warrants an advice on how to avoid the
178 -- use error.
179
180 function Bad_Unordered_Enumeration_Reference
181 (N : Node_Id;
182 T : Entity_Id) return Boolean;
183 -- Node N contains a potentially dubious reference to type T, either an
184 -- explicit comparison, or an explicit range. This function returns True
185 -- if the type T is an enumeration type for which No pragma Order has been
186 -- given, and the reference N is not in the same extended source unit as
187 -- the declaration of T.
188
189 function Build_Actual_Subtype
190 (T : Entity_Id;
191 N : Node_Or_Entity_Id) return Node_Id;
192 -- Build an anonymous subtype for an entity or expression, using the
193 -- bounds of the entity or the discriminants of the enclosing record.
194 -- T is the type for which the actual subtype is required, and N is either
195 -- a defining identifier, or any subexpression.
196
197 function Build_Actual_Subtype_Of_Component
198 (T : Entity_Id;
199 N : Node_Id) return Node_Id;
200 -- Determine whether a selected component has a type that depends on
201 -- discriminants, and build actual subtype for it if so.
202
203 function Build_Default_Subtype
204 (T : Entity_Id;
205 N : Node_Id) return Entity_Id;
206 -- If T is an unconstrained type with defaulted discriminants, build a
207 -- subtype constrained by the default values, insert the subtype
208 -- declaration in the tree before N, and return the entity of that
209 -- subtype. Otherwise, simply return T.
210
211 function Build_Discriminal_Subtype_Of_Component
212 (T : Entity_Id) return Node_Id;
213 -- Determine whether a record component has a type that depends on
214 -- discriminants, and build actual subtype for it if so.
215
216 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
217 -- Given a compilation unit node N, allocate an elaboration counter for
218 -- the compilation unit, and install it in the Elaboration_Entity field
219 -- of Spec_Id, the entity for the compilation unit.
220
221 procedure Build_Explicit_Dereference
222 (Expr : Node_Id;
223 Disc : Entity_Id);
224 -- AI05-139: Names with implicit dereference. If the expression N is a
225 -- reference type and the context imposes the corresponding designated
226 -- type, convert N into N.Disc.all. Such expressions are always over-
227 -- loaded with both interpretations, and the dereference interpretation
228 -- carries the name of the reference discriminant.
229
230 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
231 -- Returns True if the expression cannot possibly raise Constraint_Error.
232 -- The response is conservative in the sense that a result of False does
233 -- not necessarily mean that CE could be raised, but a response of True
234 -- means that for sure CE cannot be raised.
235
236 procedure Check_Dynamically_Tagged_Expression
237 (Expr : Node_Id;
238 Typ : Entity_Id;
239 Related_Nod : Node_Id);
240 -- Check wrong use of dynamically tagged expression
241
242 procedure Check_Expression_Against_Static_Predicate
243 (Expr : Node_Id;
244 Typ : Entity_Id);
245 -- Determine whether an arbitrary expression satisfies the static predicate
246 -- of a type. The routine does nothing if Expr is not known at compile time
247 -- or Typ lacks a static predicate, otherwise it may emit a warning if the
248 -- expression is prohibited by the predicate.
249
250 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
251 -- Verify that the full declaration of type T has been seen. If not, place
252 -- error message on node N. Used in object declarations, type conversions
253 -- and qualified expressions.
254
255 procedure Check_Function_Writable_Actuals (N : Node_Id);
256 -- (Ada 2012): If the construct N has two or more direct constituents that
257 -- are names or expressions whose evaluation may occur in an arbitrary
258 -- order, at least one of which contains a function call with an in out or
259 -- out parameter, then the construct is legal only if: for each name that
260 -- is passed as a parameter of mode in out or out to some inner function
261 -- call C2 (not including the construct N itself), there is no other name
262 -- anywhere within a direct constituent of the construct C other than
263 -- the one containing C2, that is known to refer to the same object (RM
264 -- 6.4.1(6.17/3)).
265
266 procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id);
267 -- AI05-139-2: Accessors and iterators for containers. This procedure
268 -- checks whether T is a reference type, and if so it adds an interprettion
269 -- to Expr whose type is the designated type of the reference_discriminant.
270
271 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
272 -- Within a protected function, the current object is a constant, and
273 -- internal calls to a procedure or entry are illegal. Similarly, other
274 -- uses of a protected procedure in a renaming or a generic instantiation
275 -- in the context of a protected function are illegal (AI05-0225).
276
277 procedure Check_Later_Vs_Basic_Declarations
278 (Decls : List_Id;
279 During_Parsing : Boolean);
280 -- If During_Parsing is True, check for misplacement of later vs basic
281 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
282 -- restriction is set, do the same: although SPARK 95 removes the
283 -- distinction between initial and later declarative items, the distinction
284 -- remains in the Examiner (JB01-005). Note that the Examiner does not
285 -- count package declarations in later declarative items.
286
287 procedure Check_Nested_Access (Ent : Entity_Id);
288 -- Check whether Ent denotes an entity declared in an uplevel scope, which
289 -- is accessed inside a nested procedure, and set Has_Up_Level_Access flag
290 -- accordingly. This is currently only enabled for VM_Target /= No_VM.
291
292 procedure Check_No_Hidden_State (Id : Entity_Id);
293 -- Determine whether object or state Id introduces a hidden state. If this
294 -- is the case, emit an error.
295
296 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
297 -- N is one of the statement forms that is a potentially blocking
298 -- operation. If it appears within a protected action, emit warning.
299
300 procedure Check_Result_And_Post_State
301 (Prag : Node_Id;
302 Result_Seen : in out Boolean);
303 -- Determine whether pragma Prag mentions attribute 'Result and whether
304 -- the pragma contains an expression that evaluates differently in pre-
305 -- and post-state. Prag is a [refined] postcondition or a contract-cases
306 -- pragma. Result_Seen is set when the pragma mentions attribute 'Result.
307
308 procedure Check_SPARK_Mode_In_Generic (N : Node_Id);
309 -- Given a generic package [body] or a generic subprogram [body], inspect
310 -- the aspect specifications (if any) and flag SPARK_Mode as illegal.
311
312 procedure Check_Unprotected_Access
313 (Context : Node_Id;
314 Expr : Node_Id);
315 -- Check whether the expression is a pointer to a protected component,
316 -- and the context is external to the protected operation, to warn against
317 -- a possible unlocked access to data.
318
319 procedure Check_VMS (Construct : Node_Id);
320 -- Check that this the target is OpenVMS, and if so, return with no effect,
321 -- otherwise post an error noting this can only be used with OpenVMS ports.
322 -- The argument is the construct in question and is used to post the error
323 -- message.
324
325 procedure Collect_Interfaces
326 (T : Entity_Id;
327 Ifaces_List : out Elist_Id;
328 Exclude_Parents : Boolean := False;
329 Use_Full_View : Boolean := True);
330 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
331 -- directly or indirectly implemented by T. Exclude_Parents is used to
332 -- avoid the addition of inherited interfaces to the generated list.
333 -- Use_Full_View is used to collect the interfaces using the full-view
334 -- (if available).
335
336 procedure Collect_Interface_Components
337 (Tagged_Type : Entity_Id;
338 Components_List : out Elist_Id);
339 -- Ada 2005 (AI-251): Collect all the tag components associated with the
340 -- secondary dispatch tables of a tagged type.
341
342 procedure Collect_Interfaces_Info
343 (T : Entity_Id;
344 Ifaces_List : out Elist_Id;
345 Components_List : out Elist_Id;
346 Tags_List : out Elist_Id);
347 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
348 -- the record component and tag associated with each of these interfaces.
349 -- On exit Ifaces_List, Components_List and Tags_List have the same number
350 -- of elements, and elements at the same position on these tables provide
351 -- information on the same interface type.
352
353 procedure Collect_Parents
354 (T : Entity_Id;
355 List : out Elist_Id;
356 Use_Full_View : Boolean := True);
357 -- Collect all the parents of Typ. Use_Full_View is used to collect them
358 -- using the full-view of private parents (if available).
359
360 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
361 -- Called upon type derivation and extension. We scan the declarative part
362 -- in which the type appears, and collect subprograms that have one
363 -- subsidiary subtype of the type. These subprograms can only appear after
364 -- the type itself.
365
366 function Compile_Time_Constraint_Error
367 (N : Node_Id;
368 Msg : String;
369 Ent : Entity_Id := Empty;
370 Loc : Source_Ptr := No_Location;
371 Warn : Boolean := False) return Node_Id;
372 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
373 -- generates a warning (or error) message in the same manner, but it does
374 -- not replace any nodes. For convenience, the function always returns its
375 -- first argument. The message is a warning if the message ends with ?, or
376 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
377
378 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
379 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
380 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
381
382 function Contains_Refined_State (Prag : Node_Id) return Boolean;
383 -- Determine whether pragma Prag contains a reference to the entity of an
384 -- abstract state with a visible refinement. Prag must denote one of the
385 -- following pragmas:
386 -- Depends
387 -- Global
388
389 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
390 -- Utility to create a parameter profile for a new subprogram spec, when
391 -- the subprogram has a body that acts as spec. This is done for some cases
392 -- of inlining, and for private protected ops. Also used to create bodies
393 -- for stubbed subprograms.
394
395 function Copy_Component_List
396 (R_Typ : Entity_Id;
397 Loc : Source_Ptr) return List_Id;
398 -- Copy components from record type R_Typ that come from source. Used to
399 -- create a new compatible record type. Loc is the source location assigned
400 -- to the created nodes.
401
402 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
403 -- If a type is a generic actual type, return the corresponding formal in
404 -- the generic parent unit. There is no direct link in the tree for this
405 -- attribute, except in the case of formal private and derived types.
406 -- Possible optimization???
407
408 function Current_Entity (N : Node_Id) return Entity_Id;
409 pragma Inline (Current_Entity);
410 -- Find the currently visible definition for a given identifier, that is to
411 -- say the first entry in the visibility chain for the Chars of N.
412
413 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
414 -- Find whether there is a previous definition for identifier N in the
415 -- current scope. Because declarations for a scope are not necessarily
416 -- contiguous (e.g. for packages) the first entry on the visibility chain
417 -- for N is not necessarily in the current scope.
418
419 function Current_Scope return Entity_Id;
420 -- Get entity representing current scope
421
422 function Current_Subprogram return Entity_Id;
423 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
424 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
425 -- Current_Scope is returned. The returned value is Empty if this is called
426 -- from a library package which is not within any subprogram.
427
428 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
429 -- Same as Type_Access_Level, except that if the type is the type of an Ada
430 -- 2012 stand-alone object of an anonymous access type, then return the
431 -- static accesssibility level of the object. In that case, the dynamic
432 -- accessibility level of the object may take on values in a range. The low
433 -- bound of of that range is returned by Type_Access_Level; this function
434 -- yields the high bound of that range. Also differs from Type_Access_Level
435 -- in the case of a descendant of a generic formal type (returns Int'Last
436 -- instead of 0).
437
438 function Defining_Entity (N : Node_Id) return Entity_Id;
439 -- Given a declaration N, returns the associated defining entity. If the
440 -- declaration has a specification, the entity is obtained from the
441 -- specification. If the declaration has a defining unit name, then the
442 -- defining entity is obtained from the defining unit name ignoring any
443 -- child unit prefixes.
444
445 function Denotes_Discriminant
446 (N : Node_Id;
447 Check_Concurrent : Boolean := False) return Boolean;
448 -- Returns True if node N is an Entity_Name node for a discriminant. If the
449 -- flag Check_Concurrent is true, function also returns true when N denotes
450 -- the discriminal of the discriminant of a concurrent type. This is needed
451 -- to disable some optimizations on private components of protected types,
452 -- and constraint checks on entry families constrained by discriminants.
453
454 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
455 -- Detect suspicious overlapping between actuals in a call, when both are
456 -- writable (RM 2012 6.4.1(6.4/3))
457
458 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
459 -- Functions to detect suspicious overlapping between actuals in a call,
460 -- when one of them is writable. The predicates are those proposed in
461 -- AI05-0144, to detect dangerous order dependence in complex calls.
462 -- I would add a parameter Warn which enables more extensive testing of
463 -- cases as we find appropriate when we are only warning ??? Or perhaps
464 -- return an indication of (Error, Warn, OK) ???
465
466 function Denotes_Variable (N : Node_Id) return Boolean;
467 -- Returns True if node N denotes a single variable without parentheses
468
469 function Depends_On_Discriminant (N : Node_Id) return Boolean;
470 -- Returns True if N denotes a discriminant or if N is a range, a subtype
471 -- indication or a scalar subtype where one of the bounds is a
472 -- discriminant.
473
474 function Designate_Same_Unit
475 (Name1 : Node_Id;
476 Name2 : Node_Id) return Boolean;
477 -- Return true if Name1 and Name2 designate the same unit name; each of
478 -- these names is supposed to be a selected component name, an expanded
479 -- name, a defining program unit name or an identifier.
480
481 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
482 -- Expr should be an expression of an access type. Builds an integer
483 -- literal except in cases involving anonymous access types where
484 -- accessibility levels are tracked at runtime (access parameters and Ada
485 -- 2012 stand-alone objects).
486
487 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
488 -- Same as Einfo.Extra_Accessibility except thtat object renames
489 -- are looked through.
490
491 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
492 -- Given the entity of an abstract state or a variable, determine whether
493 -- Id is subject to external property Effective_Reads and if it is, the
494 -- related expression evaluates to True.
495
496 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
497 -- Given the entity of an abstract state or a variable, determine whether
498 -- Id is subject to external property Effective_Writes and if it is, the
499 -- related expression evaluates to True.
500
501 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
502 -- Returns the enclosing N_Compilation_Unit Node that is the root of a
503 -- subtree containing N.
504
505 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
506 -- Returns the closest ancestor of Typ that is a CPP type.
507
508 function Enclosing_Generic_Body
509 (N : Node_Id) return Node_Id;
510 -- Returns the Node_Id associated with the innermost enclosing generic
511 -- body, if any. If none, then returns Empty.
512
513 function Enclosing_Generic_Unit
514 (N : Node_Id) return Node_Id;
515 -- Returns the Node_Id associated with the innermost enclosing generic
516 -- unit, if any. If none, then returns Empty.
517
518 function Enclosing_Lib_Unit_Entity
519 (E : Entity_Id := Current_Scope) return Entity_Id;
520 -- Returns the entity of enclosing library unit node which is the
521 -- root of the current scope (which must not be Standard_Standard, and the
522 -- caller is responsible for ensuring this condition) or other specified
523 -- entity.
524
525 function Enclosing_Package (E : Entity_Id) return Entity_Id;
526 -- Utility function to return the Ada entity of the package enclosing
527 -- the entity E, if any. Returns Empty if no enclosing package.
528
529 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
530 -- Utility function to return the Ada entity of the subprogram enclosing
531 -- the entity E, if any. Returns Empty if no enclosing subprogram.
532
533 procedure Ensure_Freeze_Node (E : Entity_Id);
534 -- Make sure a freeze node is allocated for entity E. If necessary, build
535 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
536
537 procedure Enter_Name (Def_Id : Entity_Id);
538 -- Insert new name in symbol table of current scope with check for
539 -- duplications (error message is issued if a conflict is found).
540 -- Note: Enter_Name is not used for overloadable entities, instead these
541 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
542
543 function Entity_Of (N : Node_Id) return Entity_Id;
544 -- Return the entity of N or Empty. If N is a renaming, return the entity
545 -- of the root renamed object.
546
547 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
548 -- This procedure is called after issuing a message complaining about an
549 -- inappropriate use of limited type T. If useful, it adds additional
550 -- continuation lines to the message explaining why type T is limited.
551 -- Messages are placed at node N.
552
553 procedure Find_Actual
554 (N : Node_Id;
555 Formal : out Entity_Id;
556 Call : out Node_Id);
557 -- Determines if the node N is an actual parameter of a function of a
558 -- procedure call. If so, then Formal points to the entity for the formal
559 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
560 -- Call is set to the node for the corresponding call. If the node N is not
561 -- an actual parameter then Formal and Call are set to Empty.
562
563 function Find_Body_Discriminal
564 (Spec_Discriminant : Entity_Id) return Entity_Id;
565 -- Given a discriminant of the record type that implements a task or
566 -- protected type, return the discriminal of the corresponding discriminant
567 -- of the actual concurrent type.
568
569 function Find_Corresponding_Discriminant
570 (Id : Node_Id;
571 Typ : Entity_Id) return Entity_Id;
572 -- Because discriminants may have different names in a generic unit and in
573 -- an instance, they are resolved positionally when possible. A reference
574 -- to a discriminant carries the discriminant that it denotes when it is
575 -- analyzed. Subsequent uses of this id on a different type denotes the
576 -- discriminant at the same position in this new type.
577
578 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
579 -- Given an arbitrary entity, try to find the nearest enclosing iterator
580 -- loop. If such a loop is found, return the entity of its identifier (the
581 -- E_Loop scope), otherwise return Empty.
582
583 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
584 -- Find the nested loop statement in a conditional block. Loops subject to
585 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
586 -- loop are nested within the block.
587
588 procedure Find_Overlaid_Entity
589 (N : Node_Id;
590 Ent : out Entity_Id;
591 Off : out Boolean);
592 -- The node N should be an address representation clause. Determines if
593 -- the target expression is the address of an entity with an optional
594 -- offset. If so, set Ent to the entity and, if there is an offset, set
595 -- Off to True, otherwise to False. If N is not an address representation
596 -- clause, or if it is not possible to determine that the address is of
597 -- this form, then set Ent to Empty.
598
599 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
600 -- Return the type of formal parameter Param as determined by its
601 -- specification.
602
603 -- The following type describes the placement of an arbitrary entity with
604 -- respect to SPARK visible / hidden state space.
605
606 type State_Space_Kind is
607 (Not_In_Package,
608 -- An entity is not in the visible, private or body state space when
609 -- the immediate enclosing construct is not a package.
610
611 Visible_State_Space,
612 -- An entity is in the visible state space when it appears immediately
613 -- within the visible declarations of a package or when it appears in
614 -- the visible state space of a nested package which in turn is declared
615 -- in the visible declarations of an enclosing package:
616
617 -- package Pack is
618 -- Visible_Variable : ...
619 -- package Nested
620 -- with Abstract_State => Visible_State
621 -- is
622 -- Visible_Nested_Variable : ...
623 -- end Nested;
624 -- end Pack;
625
626 -- Entities associated with a package instantiation inherit the state
627 -- space from the instance placement:
628
629 -- generic
630 -- package Gen is
631 -- Generic_Variable : ...
632 -- end Gen;
633
634 -- with Gen;
635 -- package Pack is
636 -- package Inst is new Gen;
637 -- -- Generic_Variable is in the visible state space of Pack
638 -- end Pack;
639
640 Private_State_Space,
641 -- An entity is in the private state space when it appears immediately
642 -- within the private declarations of a package or when it appears in
643 -- the visible state space of a nested package which in turn is declared
644 -- in the private declarations of an enclosing package:
645
646 -- package Pack is
647 -- private
648 -- Private_Variable : ...
649 -- package Nested
650 -- with Abstract_State => Private_State
651 -- is
652 -- Private_Nested_Variable : ...
653 -- end Nested;
654 -- end Pack;
655
656 -- The same placement principle applies to package instantiations
657
658 Body_State_Space);
659 -- An entity is in the body state space when it appears immediately
660 -- within the declarations of a package body or when it appears in the
661 -- visible state space of a nested package which in turn is declared in
662 -- the declarations of an enclosing package body:
663
664 -- package body Pack is
665 -- Body_Variable : ...
666 -- package Nested
667 -- with Abstract_State => Body_State
668 -- is
669 -- Body_Nested_Variable : ...
670 -- end Nested;
671 -- end Pack;
672
673 -- The same placement principle applies to package instantiations
674
675 procedure Find_Placement_In_State_Space
676 (Item_Id : Entity_Id;
677 Placement : out State_Space_Kind;
678 Pack_Id : out Entity_Id);
679 -- Determine the state space placement of an item. Item_Id denotes the
680 -- entity of an abstract state, variable or package instantiation.
681 -- Placement captures the precise placement of the item in the enclosing
682 -- state space. If the state space is that of a package, Pack_Id denotes
683 -- its entity, otherwise Pack_Id is Empty.
684
685 function Find_Static_Alternative (N : Node_Id) return Node_Id;
686 -- N is a case statement whose expression is a compile-time value.
687 -- Determine the alternative chosen, so that the code of non-selected
688 -- alternatives, and the warnings that may apply to them, are removed.
689
690 function First_Actual (Node : Node_Id) return Node_Id;
691 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
692 -- result returned is the first actual parameter in declaration order
693 -- (not the order of parameters as they appeared in the source, which
694 -- can be quite different as a result of the use of named parameters).
695 -- Empty is returned for a call with no parameters. The procedure for
696 -- iterating through the actuals in declaration order is to use this
697 -- function to find the first actual, and then use Next_Actual to obtain
698 -- the next actual in declaration order. Note that the value returned
699 -- is always the expression (not the N_Parameter_Association nodes,
700 -- even if named association is used).
701
702 procedure Gather_Components
703 (Typ : Entity_Id;
704 Comp_List : Node_Id;
705 Governed_By : List_Id;
706 Into : Elist_Id;
707 Report_Errors : out Boolean);
708 -- The purpose of this procedure is to gather the valid components in a
709 -- record type according to the values of its discriminants, in order to
710 -- validate the components of a record aggregate.
711 --
712 -- Typ is the type of the aggregate when its constrained discriminants
713 -- need to be collected, otherwise it is Empty.
714 --
715 -- Comp_List is an N_Component_List node.
716 --
717 -- Governed_By is a list of N_Component_Association nodes, where each
718 -- choice list contains the name of a discriminant and the expression
719 -- field gives its value. The values of the discriminants governing
720 -- the (possibly nested) variant parts in Comp_List are found in this
721 -- Component_Association List.
722 --
723 -- Into is the list where the valid components are appended. Note that
724 -- Into need not be an Empty list. If it's not, components are attached
725 -- to its tail.
726 --
727 -- Report_Errors is set to True if the values of the discriminants are
728 -- non-static.
729 --
730 -- This procedure is also used when building a record subtype. If the
731 -- discriminant constraint of the subtype is static, the components of the
732 -- subtype are only those of the variants selected by the values of the
733 -- discriminants. Otherwise all components of the parent must be included
734 -- in the subtype for semantic analysis.
735
736 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
737 -- Given a node for an expression, obtain the actual subtype of the
738 -- expression. In the case of a parameter where the formal is an
739 -- unconstrained array or discriminated type, this will be the previously
740 -- constructed subtype of the actual. Note that this is not quite the
741 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
742 -- it is the subtype of the value of the actual. The actual subtype is also
743 -- returned in other cases where it has already been constructed for an
744 -- object. Otherwise the expression type is returned unchanged, except for
745 -- the case of an unconstrained array type, where an actual subtype is
746 -- created, using Insert_Actions if necessary to insert any associated
747 -- actions.
748
749 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
750 -- This is like Get_Actual_Subtype, except that it never constructs an
751 -- actual subtype. If an actual subtype is already available, i.e. the
752 -- Actual_Subtype field of the corresponding entity is set, then it is
753 -- returned. Otherwise the Etype of the node is returned.
754
755 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
756 -- Return the body node for a stub (subprogram or package)
757
758 function Get_Cursor_Type
759 (Aspect : Node_Id;
760 Typ : Entity_Id) return Entity_Id;
761 -- Find Cursor type in scope of formal container Typ, by locating primitive
762 -- operation First. For use in resolving the other primitive operations
763 -- of an Iterable type and expanding loops and quantified expressions
764 -- over formal containers.
765
766 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
767 -- This is used to construct the string literal node representing a
768 -- default external name, i.e. one that is constructed from the name of an
769 -- entity, or (in the case of extended DEC import/export pragmas, an
770 -- identifier provided as the external name. Letters in the name are
771 -- according to the setting of Opt.External_Name_Default_Casing.
772
773 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
774 -- If expression N references a part of an object, return this object.
775 -- Otherwise return Empty. Expression N should have been resolved already.
776
777 function Get_Ensures_From_CTC_Pragma (N : Node_Id) return Node_Id;
778 -- Return the Ensures component of Test_Case pragma N, or Empty otherwise
779 -- Bad name now that this no longer applies to Contract_Case ???
780
781 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
782 -- Returns the true generic entity in an instantiation. If the name in the
783 -- instantiation is a renaming, the function returns the renamed generic.
784
785 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
786 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
787 -- in a child unit a derived type is within the derivation class of an
788 -- ancestor declared in a parent unit, even if there is an intermediate
789 -- derivation that does not see the full view of that ancestor.
790
791 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
792 -- This procedure assigns to L and H respectively the values of the low and
793 -- high bounds of node N, which must be a range, subtype indication, or the
794 -- name of a scalar subtype. The result in L, H may be set to Error if
795 -- there was an earlier error in the range.
796
797 function Get_Enum_Lit_From_Pos
798 (T : Entity_Id;
799 Pos : Uint;
800 Loc : Source_Ptr) return Node_Id;
801 -- This function returns an identifier denoting the E_Enumeration_Literal
802 -- entity for the specified value from the enumeration type or subtype T.
803 -- The second argument is the Pos value, which is assumed to be in range.
804 -- The third argument supplies a source location for constructed nodes
805 -- returned by this function.
806
807 function Get_Iterable_Type_Primitive
808 (Typ : Entity_Id;
809 Nam : Name_Id) return Entity_Id;
810 -- Retrieve one of the primitives First, Next, Has_Element, Element from
811 -- the value of the Iterable aspect of a formal type.
812
813 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
814 -- Retrieve the fully expanded name of the library unit declared by
815 -- Decl_Node into the name buffer.
816
817 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
818 pragma Inline (Get_Name_Entity_Id);
819 -- An entity value is associated with each name in the name table. The
820 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
821 -- is the innermost visible entity with the given name. See the body of
822 -- Sem_Ch8 for further details on handling of entity visibility.
823
824 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
825 -- Return the Name component of Test_Case pragma N
826 -- Bad name now that this no longer applies to Contract_Case ???
827
828 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
829 pragma Inline (Get_Pragma_Id);
830 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
831
832 procedure Get_Reason_String (N : Node_Id);
833 -- Recursive routine to analyze reason argument for pragma Warnings. The
834 -- value of the reason argument is appended to the current string using
835 -- Store_String_Chars. The reason argument is expected to be a string
836 -- literal or concatenation of string literals. An error is given for
837 -- any other form.
838
839 function Get_Referenced_Object (N : Node_Id) return Node_Id;
840 -- Given a node, return the renamed object if the node represents a renamed
841 -- object, otherwise return the node unchanged. The node may represent an
842 -- arbitrary expression.
843
844 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
845 -- Given an entity for an exception, package, subprogram or generic unit,
846 -- returns the ultimately renamed entity if this is a renaming. If this is
847 -- not a renamed entity, returns its argument. It is an error to call this
848 -- with any other kind of entity.
849
850 function Get_Requires_From_CTC_Pragma (N : Node_Id) return Node_Id;
851 -- Return the Requires component of Test_Case pragma N, or Empty otherwise
852 -- Bad name now that this no longer applies to Contract_Case ???
853
854 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
855 -- Nod is either a procedure call statement, or a function call, or an
856 -- accept statement node. This procedure finds the Entity_Id of the related
857 -- subprogram or entry and returns it, or if no subprogram can be found,
858 -- returns Empty.
859
860 function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
861 -- Given the entity for a subprogram (E_Function or E_Procedure), return
862 -- the corresponding N_Subprogram_Body node. If the corresponding body
863 -- is missing (as for an imported subprogram), return Empty.
864
865 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
866 pragma Inline (Get_Task_Body_Procedure);
867 -- Given an entity for a task type or subtype, retrieves the
868 -- Task_Body_Procedure field from the corresponding task type declaration.
869
870 function Has_Access_Values (T : Entity_Id) return Boolean;
871 -- Returns true if type or subtype T is an access type, or has a component
872 -- (at any recursive level) that is an access type. This is a conservative
873 -- predicate, if it is not known whether or not T contains access values
874 -- (happens for generic formals in some cases), then False is returned.
875 -- Note that tagged types return False. Even though the tag is implemented
876 -- as an access type internally, this function tests only for access types
877 -- known to the programmer. See also Has_Tagged_Component.
878
879 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
880 -- Result of Has_Compatible_Alignment test, description found below. Note
881 -- that the values are arranged in increasing order of problematicness.
882
883 function Has_Compatible_Alignment
884 (Obj : Entity_Id;
885 Expr : Node_Id) return Alignment_Result;
886 -- Obj is an object entity, and expr is a node for an object reference. If
887 -- the alignment of the object referenced by Expr is known to be compatible
888 -- with the alignment of Obj (i.e. is larger or the same), then the result
889 -- is Known_Compatible. If the alignment of the object referenced by Expr
890 -- is known to be less than the alignment of Obj, then Known_Incompatible
891 -- is returned. If neither condition can be reliably established at compile
892 -- time, then Unknown is returned. This is used to determine if alignment
893 -- checks are required for address clauses, and also whether copies must
894 -- be made when objects are passed by reference.
895 --
896 -- Note: Known_Incompatible does not mean that at run time the alignment
897 -- of Expr is known to be wrong for Obj, just that it can be determined
898 -- that alignments have been explicitly or implicitly specified which are
899 -- incompatible (whereas Unknown means that even this is not known). The
900 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
901 -- Unknown, but issue a warning that there may be an alignment error.
902
903 function Has_Declarations (N : Node_Id) return Boolean;
904 -- Determines if the node can have declarations
905
906 function Has_Denormals (E : Entity_Id) return Boolean;
907 -- Determines if the floating-point type E supports denormal numbers.
908 -- Returns False if E is not a floating-point type.
909
910 function Has_Discriminant_Dependent_Constraint
911 (Comp : Entity_Id) return Boolean;
912 -- Returns True if and only if Comp has a constrained subtype that depends
913 -- on a discriminant.
914
915 function Has_Infinities (E : Entity_Id) return Boolean;
916 -- Determines if the range of the floating-point type E includes
917 -- infinities. Returns False if E is not a floating-point type.
918
919 function Has_Interfaces
920 (T : Entity_Id;
921 Use_Full_View : Boolean := True) return Boolean;
922 -- Where T is a concurrent type or a record type, returns true if T covers
923 -- any abstract interface types. In case of private types the argument
924 -- Use_Full_View controls if the check is done using its full view (if
925 -- available).
926
927 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
928 -- This is a simple minded function for determining whether an expression
929 -- has no obvious side effects. It is used only for determining whether
930 -- warnings are needed in certain situations, and is not guaranteed to
931 -- be accurate in either direction. Exceptions may mean an expression
932 -- does in fact have side effects, but this may be ignored and True is
933 -- returned, or a complex expression may in fact be side effect free
934 -- but we don't recognize it here and return False. The Side_Effect_Free
935 -- routine in Remove_Side_Effects is much more extensive and perhaps could
936 -- be shared, so that this routine would be more accurate.
937
938 function Has_Null_Exclusion (N : Node_Id) return Boolean;
939 -- Determine whether node N has a null exclusion
940
941 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
942 -- Predicate to determine whether a controlled type has a user-defined
943 -- Initialize primitive (and, in Ada 2012, whether that primitive is
944 -- non-null), which causes the type to not have preelaborable
945 -- initialization.
946
947 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
948 -- Return True iff type E has preelaborable initialization as defined in
949 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
950
951 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
952 -- Check if a type has a (sub)component of a private type that has not
953 -- yet received a full declaration.
954
955 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
956 -- Determines if the floating-point type E supports signed zeros.
957 -- Returns False if E is not a floating-point type.
958
959 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
960 -- Return whether an array type has static bounds
961
962 function Has_Stream (T : Entity_Id) return Boolean;
963 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
964 -- case of a composite type, has a component for which this predicate is
965 -- True, and if so returns True. Otherwise a result of False means that
966 -- there is no Stream type in sight. For a private type, the test is
967 -- applied to the underlying type (or returns False if there is no
968 -- underlying type).
969
970 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
971 -- Returns true if the last character of E is Suffix. Used in Assertions.
972
973 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
974 -- Returns the name of E adding Suffix
975
976 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
977 -- Returns the name of E without Suffix
978
979 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
980 -- Returns True if Typ is a composite type (array or record) which is
981 -- either itself a tagged type, or has a component (recursively) which is
982 -- a tagged type. Returns False for non-composite type, or if no tagged
983 -- component is present. This function is used to check if "=" has to be
984 -- expanded into a bunch component comparisons.
985
986 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
987 -- Given an arbitrary type, determine whether it contains at least one
988 -- volatile component.
989
990 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
991 -- Subp is a subprogram marked with pragma Implemented. Return the specific
992 -- implementation requirement which the pragma imposes. The return value is
993 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
994
995 function Implements_Interface
996 (Typ_Ent : Entity_Id;
997 Iface_Ent : Entity_Id;
998 Exclude_Parents : Boolean := False) return Boolean;
999 -- Returns true if the Typ_Ent implements interface Iface_Ent
1000
1001 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1002 -- Determine whether an arbitrary node appears in a pragma that acts as an
1003 -- assertion expression. See Sem_Prag for the list of qualifying pragmas.
1004
1005 function In_Instance return Boolean;
1006 -- Returns True if the current scope is within a generic instance
1007
1008 function In_Instance_Body return Boolean;
1009 -- Returns True if current scope is within the body of an instance, where
1010 -- several semantic checks (e.g. accessibility checks) are relaxed.
1011
1012 function In_Instance_Not_Visible return Boolean;
1013 -- Returns True if current scope is with the private part or the body of
1014 -- an instance. Other semantic checks are suppressed in this context.
1015
1016 function In_Instance_Visible_Part return Boolean;
1017 -- Returns True if current scope is within the visible part of a package
1018 -- instance, where several additional semantic checks apply.
1019
1020 function In_Package_Body return Boolean;
1021 -- Returns True if current scope is within a package body
1022
1023 function In_Parameter_Specification (N : Node_Id) return Boolean;
1024 -- Returns True if node N belongs to a parameter specification
1025
1026 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1027 -- Returns true if the expression N occurs within a pragma with name Nam
1028
1029 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1030 -- Returns True if N denotes a component or subcomponent in a record or
1031 -- array that has Reverse_Storage_Order.
1032
1033 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1034 -- Determines if the current scope is within a subprogram compilation unit
1035 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1036 -- declaration) or within a task or protected body. The test is for
1037 -- appearing anywhere within such a construct (that is it does not need
1038 -- to be directly within).
1039
1040 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1041 -- Determine whether a declaration occurs within the visible part of a
1042 -- package specification. The package must be on the scope stack, and the
1043 -- corresponding private part must not.
1044
1045 function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id;
1046 -- Given the entity of a type, retrieve the incomplete or private view of
1047 -- the same type. Note that Typ may not have a partial view to begin with,
1048 -- in that case the function returns Empty.
1049
1050 procedure Insert_Explicit_Dereference (N : Node_Id);
1051 -- In a context that requires a composite or subprogram type and where a
1052 -- prefix is an access type, rewrite the access type node N (which is the
1053 -- prefix, e.g. of an indexed component) as an explicit dereference.
1054
1055 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1056 -- Examine all deferred constants in the declaration list Decls and check
1057 -- whether they have been completed by a full constant declaration or an
1058 -- Import pragma. Emit the error message if that is not the case.
1059
1060 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1061 -- Determines if N is an actual parameter of out mode in a subprogram call
1062
1063 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1064 -- Determines if N is an actual parameter in a subprogram call
1065
1066 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1067 -- Determines if N is an actual parameter of a formal of tagged type in a
1068 -- subprogram call.
1069
1070 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1071 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1072 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1073 -- rules of the language, it does not take into account the restriction
1074 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1075 -- and Obj violates the restriction. The caller is responsible for calling
1076 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1077 -- requirement for obeying the restriction in the call context.
1078
1079 function Is_Ancestor_Package
1080 (E1 : Entity_Id;
1081 E2 : Entity_Id) return Boolean;
1082 -- Determine whether package E1 is an ancestor of E2
1083
1084 function Is_Atomic_Object (N : Node_Id) return Boolean;
1085 -- Determines if the given node denotes an atomic object in the sense of
1086 -- the legality checks described in RM C.6(12).
1087
1088 function Is_Attribute_Result (N : Node_Id) return Boolean;
1089 -- Determine whether node N denotes attribute 'Result
1090
1091 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1092 -- Determine whether node N denotes a body or a package declaration
1093
1094 function Is_Bounded_String (T : Entity_Id) return Boolean;
1095 -- True if T is a bounded string type. Used to make sure "=" composes
1096 -- properly for bounded string types.
1097
1098 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1099 -- Exp is the expression for an array bound. Determines whether the
1100 -- bound is a compile-time known value, or a constant entity, or an
1101 -- enumeration literal, or an expression composed of constant-bound
1102 -- subexpressions which are evaluated by means of standard operators.
1103
1104 function Is_Container_Element (Exp : Node_Id) return Boolean;
1105 -- This routine recognizes expressions that denote an element of one of
1106 -- the predefined containers, when the source only contains an indexing
1107 -- operation and an implicit dereference is inserted by the compiler.
1108 -- In the absence of this optimization, the indexing creates a temporary
1109 -- controlled cursor that sets the tampering bit of the container, and
1110 -- restricts the use of the convenient notation C (X) to contexts that
1111 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1112 -- explicit dereference. The transformation applies when it has the form
1113 -- F (X).Discr.all.
1114
1115 function Is_Controlling_Limited_Procedure
1116 (Proc_Nam : Entity_Id) return Boolean;
1117 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1118 -- of a limited interface with a controlling first parameter.
1119
1120 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1121 -- Returns True if N is a call to a CPP constructor
1122
1123 function Is_Child_Or_Sibling
1124 (Pack_1 : Entity_Id;
1125 Pack_2 : Entity_Id) return Boolean;
1126 -- Determine the following relations between two arbitrary packages:
1127 -- 1) One package is the parent of a child package
1128 -- 2) Both packages are siblings and share a common parent
1129
1130 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1131 -- First determine whether type T is an interface and then check whether
1132 -- it is of protected, synchronized or task kind.
1133
1134 function Is_Delegate (T : Entity_Id) return Boolean;
1135 -- Returns true if type T represents a delegate. A Delegate is the CIL
1136 -- object used to represent access-to-subprogram types. This is only
1137 -- relevant to CIL, will always return false for other targets.
1138
1139 function Is_Dependent_Component_Of_Mutable_Object
1140 (Object : Node_Id) return Boolean;
1141 -- Returns True if Object is the name of a subcomponent that depends on
1142 -- discriminants of a variable whose nominal subtype is unconstrained and
1143 -- not indefinite, and the variable is not aliased. Otherwise returns
1144 -- False. The nodes passed to this function are assumed to denote objects.
1145
1146 function Is_Dereferenced (N : Node_Id) return Boolean;
1147 -- N is a subexpression node of an access type. This function returns true
1148 -- if N appears as the prefix of a node that does a dereference of the
1149 -- access value (selected/indexed component, explicit dereference or a
1150 -- slice), and false otherwise.
1151
1152 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1153 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
1154 -- This is the RM definition, a type is a descendent of another type if it
1155 -- is the same type or is derived from a descendent of the other type.
1156
1157 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1158 -- Predicate to determine whether a scope entity comes from a rewritten
1159 -- expression function call, and should be inlined unconditionally. Also
1160 -- used to determine that such a call does not constitute a freeze point.
1161
1162 function Is_False (U : Uint) return Boolean;
1163 pragma Inline (Is_False);
1164 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1165 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1166 -- if it is False (i.e. zero).
1167
1168 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1169 -- Returns True iff the number U is a model number of the fixed-point type
1170 -- T, i.e. if it is an exact multiple of Small.
1171
1172 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1173 -- Typ is a type entity. This function returns true if this type is fully
1174 -- initialized, meaning that an object of the type is fully initialized.
1175 -- Note that initialization resulting from use of pragma Normalized_Scalars
1176 -- does not count. Note that this is only used for the purpose of issuing
1177 -- warnings for objects that are potentially referenced uninitialized. This
1178 -- means that the result returned is not crucial, but should err on the
1179 -- side of thinking things are fully initialized if it does not know.
1180
1181 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1182 -- E is a subprogram. Return True is E is an implicit operation inherited
1183 -- by a derived type declaration.
1184
1185 function Is_Inherited_Operation_For_Type
1186 (E : Entity_Id;
1187 Typ : Entity_Id) return Boolean;
1188 -- E is a subprogram. Return True is E is an implicit operation inherited
1189 -- by the derived type declaration for type Typ.
1190
1191 function Is_Iterator (Typ : Entity_Id) return Boolean;
1192 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1193 -- Ada.Iterator_Interfaces, or it is derived from one.
1194
1195 function Is_Junk_Name (N : Name_Id) return Boolean;
1196 -- Returns True if the given name contains any of the following substrings
1197 -- discard
1198 -- dummy
1199 -- ignore
1200 -- junk
1201 -- unused
1202 -- Used to suppress warnings on names matching these patterns. The contents
1203 -- of Name_Buffer and Name_Len are desteoyed by this call.
1204
1205 type Is_LHS_Result is (Yes, No, Unknown);
1206 function Is_LHS (N : Node_Id) return Is_LHS_Result;
1207 -- Returns Yes if N is definitely used as Name in an assignment statement.
1208 -- Returns No if N is definitely NOT used as a Name in an assignment
1209 -- statement. Returns Unknown if we can't tell at this stage (happens in
1210 -- the case where we don't know the type of N yet, and we have something
1211 -- like N.A := 3, where this counts as N being used on the left side of
1212 -- an assignment only if N is not an access type. If it is an access type
1213 -- then it is N.all.A that is assigned, not N.
1214
1215 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1216 -- A library-level declaration is one that is accessible from Standard,
1217 -- i.e. a library unit or an entity declared in a library package.
1218
1219 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1220 -- Determine whether a given type is a limited class-wide type, in which
1221 -- case it needs a Master_Id, because extensions of its designated type
1222 -- may include task components. A class-wide type that comes from a
1223 -- limited view must be treated in the same way.
1224
1225 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1226 -- Determines whether Expr is a reference to a variable or IN OUT mode
1227 -- parameter of the current enclosing subprogram.
1228 -- Why are OUT parameters not considered here ???
1229
1230 function Is_Object_Reference (N : Node_Id) return Boolean;
1231 -- Determines if the tree referenced by N represents an object. Both
1232 -- variable and constant objects return True (compare Is_Variable).
1233
1234 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1235 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1236 -- Note that the Is_Variable function is not quite the right test because
1237 -- this is a case in which conversions whose expression is a variable (in
1238 -- the Is_Variable sense) with a non-tagged type target are considered view
1239 -- conversions and hence variables.
1240
1241 function Is_Partially_Initialized_Type
1242 (Typ : Entity_Id;
1243 Include_Implicit : Boolean := True) return Boolean;
1244 -- Typ is a type entity. This function returns true if this type is partly
1245 -- initialized, meaning that an object of the type is at least partly
1246 -- initialized (in particular in the record case, that at least one
1247 -- component has an initialization expression). Note that initialization
1248 -- resulting from the use of pragma Normalized_Scalars does not count.
1249 -- Include_Implicit controls whether implicit initialization of access
1250 -- values to null, and of discriminant values, is counted as making the
1251 -- type be partially initialized. For the default setting of True, these
1252 -- implicit cases do count, and discriminated types or types containing
1253 -- access values not explicitly initialized will return True. Otherwise
1254 -- if Include_Implicit is False, these cases do not count as making the
1255 -- type be partially initialized.
1256
1257 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1258 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1259
1260 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1261 -- Determines if type T is a potentially persistent type. A potentially
1262 -- persistent type is defined (recursively) as a scalar type, a non-tagged
1263 -- record whose components are all of a potentially persistent type, or an
1264 -- array with all static constraints whose component type is potentially
1265 -- persistent. A private type is potentially persistent if the full type
1266 -- is potentially persistent.
1267
1268 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1269 -- Return True if node N denotes a protected type name which represents
1270 -- the current instance of a protected object according to RM 9.4(21/2).
1271
1272 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1273 -- Return True if a compilation unit is the specification or the
1274 -- body of a remote call interface package.
1275
1276 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1277 -- Return True if E is a remote access-to-class-wide type
1278
1279 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1280 -- Return True if E is a remote access to subprogram type
1281
1282 function Is_Remote_Call (N : Node_Id) return Boolean;
1283 -- Return True if N denotes a potentially remote call
1284
1285 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1286 -- Return True if Proc_Nam is a procedure renaming of an entry
1287
1288 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1289 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1290 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1291
1292 function Is_Selector_Name (N : Node_Id) return Boolean;
1293 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1294 -- As described in Sinfo, Selector_Names are special because they
1295 -- represent use of the N_Identifier node for a true identifier, when
1296 -- normally such nodes represent a direct name.
1297
1298 function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean;
1299 -- Determines if the tree referenced by N represents an initialization
1300 -- expression in SPARK, suitable for initializing an object in an object
1301 -- declaration.
1302
1303 function Is_SPARK_Object_Reference (N : Node_Id) return Boolean;
1304 -- Determines if the tree referenced by N represents an object in SPARK
1305
1306 function Is_SPARK_Volatile (Id : Entity_Id) return Boolean;
1307 -- This routine is similar to predicate Is_Volatile, but it takes SPARK
1308 -- semantics into account. In SPARK volatile components to not render a
1309 -- type volatile.
1310
1311 function Is_SPARK_Volatile_Object (N : Node_Id) return Boolean;
1312 -- Determine whether an arbitrary node denotes a volatile object reference
1313 -- according to the semantics of SPARK. To qualify as volatile, an object
1314 -- must be subject to aspect/pragma Volatile or Atomic, or have a [sub]type
1315 -- subject to the same attributes. Note that volatile components do not
1316 -- render an object volatile.
1317
1318 function Is_Statement (N : Node_Id) return Boolean;
1319 pragma Inline (Is_Statement);
1320 -- Check if the node N is a statement node. Note that this includes
1321 -- the case of procedure call statements (unlike the direct use of
1322 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1323 -- Note that a label is *not* a statement, and will return False.
1324
1325 function Is_Subprogram_Stub_Without_Prior_Declaration
1326 (N : Node_Id) return Boolean;
1327 -- Return True if N is a subprogram stub with no prior subprogram
1328 -- declaration.
1329
1330 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1331 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1332
1333 function Is_Transfer (N : Node_Id) return Boolean;
1334 -- Returns True if the node N is a statement which is known to cause an
1335 -- unconditional transfer of control at runtime, i.e. the following
1336 -- statement definitely will not be executed.
1337
1338 function Is_True (U : Uint) return Boolean;
1339 pragma Inline (Is_True);
1340 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1341 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1342 -- if it is True (i.e. non-zero).
1343
1344 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
1345 -- Determine whether an arbitrary entity denotes an instance of function
1346 -- Ada.Unchecked_Conversion.
1347
1348 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1349 pragma Inline (Is_Universal_Numeric_Type);
1350 -- True if T is Universal_Integer or Universal_Real
1351
1352 function Is_Value_Type (T : Entity_Id) return Boolean;
1353 -- Returns true if type T represents a value type. This is only relevant to
1354 -- CIL, will always return false for other targets. A value type is a CIL
1355 -- object that is accessed directly, as opposed to the other CIL objects
1356 -- that are accessed through managed pointers.
1357
1358 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1359 -- Returns true if E has variable size components
1360
1361 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1362 -- Returns true if E has variable size components
1363
1364 function Is_VMS_Operator (Op : Entity_Id) return Boolean;
1365 -- Determine whether an operator is one of the intrinsics defined
1366 -- in the DEC system extension.
1367
1368 function Is_Variable
1369 (N : Node_Id;
1370 Use_Original_Node : Boolean := True) return Boolean;
1371 -- Determines if the tree referenced by N represents a variable, i.e. can
1372 -- appear on the left side of an assignment. There is one situation (formal
1373 -- parameters) in which non-tagged type conversions are also considered
1374 -- variables, but Is_Variable returns False for such cases, since it has
1375 -- no knowledge of the context. Note that this is the point at which
1376 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1377 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1378 -- default is True since this routine is commonly invoked as part of the
1379 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1380
1381 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1382 -- Check whether T is derived from a visibly controlled type. This is true
1383 -- if the root type is declared in Ada.Finalization. If T is derived
1384 -- instead from a private type whose full view is controlled, an explicit
1385 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1386 -- one.
1387
1388 function Is_Volatile_Object (N : Node_Id) return Boolean;
1389 -- Determines if the given node denotes an volatile object in the sense of
1390 -- the legality checks described in RM C.6(12). Note that the test here is
1391 -- for something actually declared as volatile, not for an object that gets
1392 -- treated as volatile (see Einfo.Treat_As_Volatile).
1393
1394 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1395 -- Applies to Itypes. True if the Itype is attached to a declaration for
1396 -- the type through its Parent field, which may or not be present in the
1397 -- tree.
1398
1399 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1400 -- This procedure is called to clear all constant indications from all
1401 -- entities in the current scope and in any parent scopes if the current
1402 -- scope is a block or a package (and that recursion continues to the top
1403 -- scope that is not a block or a package). This is used when the
1404 -- sequential flow-of-control assumption is violated (occurrence of a
1405 -- label, head of a loop, or start of an exception handler). The effect of
1406 -- the call is to clear the Current_Value field (but we do not need to
1407 -- clear the Is_True_Constant flag, since that only gets reset if there
1408 -- really is an assignment somewhere in the entity scope). This procedure
1409 -- also calls Kill_All_Checks, since this is a special case of needing to
1410 -- forget saved values. This procedure also clears the Is_Known_Null and
1411 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1412 -- parameters since these are also not known to be trustable any more.
1413 --
1414 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1415 -- fields and leave other fields unchanged. This is used when we encounter
1416 -- an unconditional flow of control change (return, goto, raise). In such
1417 -- cases we don't need to clear the current values, since it may be that
1418 -- the flow of control change occurs in a conditional context, and if it
1419 -- is not taken, then it is just fine to keep the current values. But the
1420 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1421 -- conditional-return, assign-to-v, we do not want to complain that the
1422 -- second assignment clobbers the first.
1423
1424 procedure Kill_Current_Values
1425 (Ent : Entity_Id;
1426 Last_Assignment_Only : Boolean := False);
1427 -- This performs the same processing as described above for the form with
1428 -- no argument, but for the specific entity given. The call has no effect
1429 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1430 -- same meaning as for the call with no Ent.
1431
1432 procedure Kill_Size_Check_Code (E : Entity_Id);
1433 -- Called when an address clause or pragma Import is applied to an entity.
1434 -- If the entity is a variable or a constant, and size check code is
1435 -- present, this size check code is killed, since the object will not be
1436 -- allocated by the program.
1437
1438 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1439 -- The node N is an entity reference. This function determines whether the
1440 -- reference is for sure an assignment of the entity, returning True if
1441 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1442 -- direction. Cases which may possibly be assignments but are not known to
1443 -- be may return True from May_Be_Lvalue, but False from this function.
1444
1445 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1446 -- HSS is a handled statement sequence. This function returns the last
1447 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1448 -- such statement exists, Empty is returned.
1449
1450 function Matching_Static_Array_Bounds
1451 (L_Typ : Node_Id;
1452 R_Typ : Node_Id) return Boolean;
1453 -- L_Typ and R_Typ are two array types. Returns True when they have the
1454 -- same number of dimensions, and the same static bounds for each index
1455 -- position.
1456
1457 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1458 -- Given a node which designates the context of analysis and an origin in
1459 -- the tree, traverse from Root_Nod and mark all allocators as either
1460 -- dynamic or static depending on Context_Nod. Any incorrect marking is
1461 -- cleaned up during resolution.
1462
1463 function May_Be_Lvalue (N : Node_Id) return Boolean;
1464 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1465 -- An lvalue is defined as any expression which appears in a context where
1466 -- a name is required by the syntax, and the identity, rather than merely
1467 -- the value of the node is needed (for example, the prefix of an Access
1468 -- attribute is in this category). Note that, as implied by the name, this
1469 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1470 -- it returns True. It tries hard to get the answer right, but it is hard
1471 -- to guarantee this in all cases. Note that it is more possible to give
1472 -- correct answer if the tree is fully analyzed.
1473
1474 function Must_Inline (Subp : Entity_Id) return Boolean;
1475 -- Return true if Subp must be inlined by the frontend
1476
1477 function Needs_One_Actual (E : Entity_Id) return Boolean;
1478 -- Returns True if a function has defaults for all but its first
1479 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1480 -- results from an indexing of a function call written in prefix form.
1481
1482 function New_Copy_List_Tree (List : List_Id) return List_Id;
1483 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1484 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1485 -- nodes (entities) either directly or indirectly using this function.
1486
1487 function New_Copy_Tree
1488 (Source : Node_Id;
1489 Map : Elist_Id := No_Elist;
1490 New_Sloc : Source_Ptr := No_Location;
1491 New_Scope : Entity_Id := Empty) return Node_Id;
1492 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1493 -- syntactic subtree, including recursively any descendents whose parent
1494 -- field references a copied node (descendents not linked to a copied node
1495 -- by the parent field are not copied, instead the copied tree references
1496 -- the same descendent as the original in this case, which is appropriate
1497 -- for non-syntactic fields such as Etype). The parent pointers in the
1498 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1499 -- The one exception to the rule of not copying semantic fields is that
1500 -- any implicit types attached to the subtree are duplicated, so that
1501 -- the copy contains a distinct set of implicit type entities. Thus this
1502 -- function is used when it is necessary to duplicate an analyzed tree,
1503 -- declared in the same or some other compilation unit. This function is
1504 -- declared here rather than in atree because it uses semantic information
1505 -- in particular concerning the structure of itypes and the generation of
1506 -- public symbols.
1507
1508 -- The Map argument, if set to a non-empty Elist, specifies a set of
1509 -- mappings to be applied to entities in the tree. The map has the form:
1510 --
1511 -- old entity 1
1512 -- new entity to replace references to entity 1
1513 -- old entity 2
1514 -- new entity to replace references to entity 2
1515 -- ...
1516 --
1517 -- The call destroys the contents of Map in this case
1518 --
1519 -- The parameter New_Sloc, if set to a value other than No_Location, is
1520 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1521 -- set to its default value No_Location, then the Sloc values of the
1522 -- nodes in the copy are simply copied from the corresponding original.
1523 --
1524 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1525 -- the default No_Location value, but is reset if New_Sloc is given, since
1526 -- in this case the result clearly is neither a source node or an exact
1527 -- copy of a source node.
1528 --
1529 -- The parameter New_Scope, if set to a value other than Empty, is the
1530 -- value to use as the Scope for any Itypes that are copied. The most
1531 -- typical value for this parameter, if given, is Current_Scope.
1532
1533 function New_External_Entity
1534 (Kind : Entity_Kind;
1535 Scope_Id : Entity_Id;
1536 Sloc_Value : Source_Ptr;
1537 Related_Id : Entity_Id;
1538 Suffix : Character;
1539 Suffix_Index : Nat := 0;
1540 Prefix : Character := ' ') return Entity_Id;
1541 -- This function creates an N_Defining_Identifier node for an internal
1542 -- created entity, such as an implicit type or subtype, or a record
1543 -- initialization procedure. The entity name is constructed with a call
1544 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1545 -- that the generated name may be referenced as a public entry, and the
1546 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1547 -- entity is for a type or subtype, the size/align fields are initialized
1548 -- to unknown (Uint_0).
1549
1550 function New_Internal_Entity
1551 (Kind : Entity_Kind;
1552 Scope_Id : Entity_Id;
1553 Sloc_Value : Source_Ptr;
1554 Id_Char : Character) return Entity_Id;
1555 -- This function is similar to New_External_Entity, except that the
1556 -- name is constructed by New_Internal_Name (Id_Char). This is used
1557 -- when the resulting entity does not have to be referenced as a
1558 -- public entity (and in this case Is_Public is not set).
1559
1560 procedure Next_Actual (Actual_Id : in out Node_Id);
1561 pragma Inline (Next_Actual);
1562 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1563 -- inline this procedural form, but not the functional form that follows.
1564
1565 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1566 -- Find next actual parameter in declaration order. As described for
1567 -- First_Actual, this is the next actual in the declaration order, not
1568 -- the call order, so this does not correspond to simply taking the
1569 -- next entry of the Parameter_Associations list. The argument is an
1570 -- actual previously returned by a call to First_Actual or Next_Actual.
1571 -- Note that the result produced is always an expression, not a parameter
1572 -- association node, even if named notation was used.
1573
1574 function No_Scalar_Parts (T : Entity_Id) return Boolean;
1575 -- Tests if type T can be determined at compile time to have no scalar
1576 -- parts in the sense of the Valid_Scalars attribute. Returns True if
1577 -- this is the case, meaning that the result of Valid_Scalars is True.
1578
1579 procedure Normalize_Actuals
1580 (N : Node_Id;
1581 S : Entity_Id;
1582 Report : Boolean;
1583 Success : out Boolean);
1584 -- Reorders lists of actuals according to names of formals, value returned
1585 -- in Success indicates success of reordering. For more details, see body.
1586 -- Errors are reported only if Report is set to True.
1587
1588 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1589 -- This routine is called if the sub-expression N maybe the target of
1590 -- an assignment (e.g. it is the left side of an assignment, used as
1591 -- an out parameters, or used as prefixes of access attributes). It
1592 -- sets May_Be_Modified in the associated entity if there is one,
1593 -- taking into account the rule that in the case of renamed objects,
1594 -- it is the flag in the renamed object that must be set.
1595 --
1596 -- The parameter Sure is set True if the modification is sure to occur
1597 -- (e.g. target of assignment, or out parameter), and to False if the
1598 -- modification is only potential (e.g. address of entity taken).
1599
1600 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1601 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1602 -- or overrides an inherited dispatching primitive S2, the original
1603 -- corresponding operation of S is the original corresponding operation of
1604 -- S2. Otherwise, it is S itself.
1605
1606 function Object_Access_Level (Obj : Node_Id) return Uint;
1607 -- Return the accessibility level of the view of the object Obj. For
1608 -- convenience, qualified expressions applied to object names are also
1609 -- allowed as actuals for this function.
1610
1611 function Original_Aspect_Name (N : Node_Id) return Name_Id;
1612 -- N is a pragma node or aspect specification node. This function returns
1613 -- the name of the pragma or aspect in original source form, taking into
1614 -- account possible rewrites, and also cases where a pragma comes from an
1615 -- aspect (in such cases, the name can be different from the pragma name,
1616 -- e.g. a Pre aspect generates a Precondition pragma). This also deals with
1617 -- the presence of 'Class, which results in one of the special names
1618 -- Name_uPre, Name_uPost, Name_uInvariant, or Name_uType_Invariant being
1619 -- returned to represent the corresponding aspects with x'Class names.
1620
1621 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1622 -- Returns True if the names of both entities correspond with matching
1623 -- primitives. This routine includes support for the case in which one
1624 -- or both entities correspond with entities built by Derive_Subprogram
1625 -- with a special name to avoid being overridden (i.e. return true in case
1626 -- of entities with names "nameP" and "name" or vice versa).
1627
1628 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1629 -- Returns some private component (if any) of the given Type_Id.
1630 -- Used to enforce the rules on visibility of operations on composite
1631 -- types, that depend on the full view of the component type. For a
1632 -- record type there may be several such components, we just return
1633 -- the first one.
1634
1635 procedure Process_End_Label
1636 (N : Node_Id;
1637 Typ : Character;
1638 Ent : Entity_Id);
1639 -- N is a node whose End_Label is to be processed, generating all
1640 -- appropriate cross-reference entries, and performing style checks
1641 -- for any identifier references in the end label. Typ is either
1642 -- 'e' or 't indicating the type of the cross-reference entity
1643 -- (e for spec, t for body, see Lib.Xref spec for details). The
1644 -- parameter Ent gives the entity to which the End_Label refers,
1645 -- and to which cross-references are to be generated.
1646
1647 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
1648 -- Determine whether entity Id is referenced within expression Expr
1649
1650 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1651 -- Returns True if the expression Expr contains any references to a
1652 -- generic type. This can only happen within a generic template.
1653
1654 procedure Remove_Homonym (E : Entity_Id);
1655 -- Removes E from the homonym chain
1656
1657 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1658 -- This is used to construct the second argument in a call to Rep_To_Pos
1659 -- which is Standard_True if range checks are enabled (E is an entity to
1660 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1661 -- if range checks are suppressed. Loc is the location for the node that
1662 -- is returned (which is a New_Occurrence of the appropriate entity).
1663 --
1664 -- Note: one might think that it would be fine to always use True and
1665 -- to ignore the suppress in this case, but it is generally better to
1666 -- believe a request to suppress exceptions if possible, and further
1667 -- more there is at least one case in the generated code (the code for
1668 -- array assignment in a loop) that depends on this suppression.
1669
1670 procedure Require_Entity (N : Node_Id);
1671 -- N is a node which should have an entity value if it is an entity name.
1672 -- If not, then check if there were previous errors. If so, just fill
1673 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1674 -- This is used as a defense mechanism against ill-formed trees caused by
1675 -- previous errors (particularly in -gnatq mode).
1676
1677 function Requires_State_Refinement
1678 (Spec_Id : Entity_Id;
1679 Body_Id : Entity_Id) return Boolean;
1680 -- Determine whether a package denoted by its spec and body entities
1681 -- requires refinement of abstract states.
1682
1683 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1684 -- Id is a type entity. The result is True when temporaries of this type
1685 -- need to be wrapped in a transient scope to be reclaimed properly when a
1686 -- secondary stack is in use. Examples of types requiring such wrapping are
1687 -- controlled types and variable-sized types including unconstrained
1688 -- arrays.
1689
1690 procedure Reset_Analyzed_Flags (N : Node_Id);
1691 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1692
1693 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type);
1694 -- Set the current SPARK_Mode to whatever Mode denotes. This routime must
1695 -- be used in tandem with Save_SPARK_Mode_And_Set.
1696
1697 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
1698 -- Return true if Subp is a function that returns an unconstrained type
1699
1700 function Safe_To_Capture_Value
1701 (N : Node_Id;
1702 Ent : Entity_Id;
1703 Cond : Boolean := False) return Boolean;
1704 -- The caller is interested in capturing a value (either the current value,
1705 -- or an indication that the value is non-null) for the given entity Ent.
1706 -- This value can only be captured if sequential execution semantics can be
1707 -- properly guaranteed so that a subsequent reference will indeed be sure
1708 -- that this current value indication is correct. The node N is the
1709 -- construct which resulted in the possible capture of the value (this
1710 -- is used to check if we are in a conditional).
1711 --
1712 -- Cond is used to skip the test for being inside a conditional. It is used
1713 -- in the case of capturing values from if/while tests, which already do a
1714 -- proper job of handling scoping issues without this help.
1715 --
1716 -- The only entities whose values can be captured are OUT and IN OUT formal
1717 -- parameters, and variables unless Cond is True, in which case we also
1718 -- allow IN formals, loop parameters and constants, where we cannot ever
1719 -- capture actual value information, but we can capture conditional tests.
1720
1721 function Same_Name (N1, N2 : Node_Id) return Boolean;
1722 -- Determine if two (possibly expanded) names are the same name. This is
1723 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1724
1725 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1726 -- Determine if Node1 and Node2 are known to designate the same object.
1727 -- This is a semantic test and both nodes must be fully analyzed. A result
1728 -- of True is decisively correct. A result of False does not necessarily
1729 -- mean that different objects are designated, just that this could not
1730 -- be reliably determined at compile time.
1731
1732 function Same_Type (T1, T2 : Entity_Id) return Boolean;
1733 -- Determines if T1 and T2 represent exactly the same type. Two types
1734 -- are the same if they are identical, or if one is an unconstrained
1735 -- subtype of the other, or they are both common subtypes of the same
1736 -- type with identical constraints. The result returned is conservative.
1737 -- It is True if the types are known to be the same, but a result of
1738 -- False is indecisive (e.g. the compiler may not be able to tell that
1739 -- two constraints are identical).
1740
1741 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1742 -- Determines if Node1 and Node2 are known to be the same value, which is
1743 -- true if they are both compile time known values and have the same value,
1744 -- or if they are the same object (in the sense of function Same_Object).
1745 -- A result of False does not necessarily mean they have different values,
1746 -- just that it is not possible to determine they have the same value.
1747
1748 procedure Save_SPARK_Mode_And_Set
1749 (Context : Entity_Id;
1750 Mode : out SPARK_Mode_Type);
1751 -- Save the current SPARK_Mode in effect in Mode. Establish the SPARK_Mode
1752 -- (if any) of a package or a subprogram denoted by Context. This routine
1753 -- must be used in tandem with Restore_SPARK_Mode.
1754
1755 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1756 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1757 -- inside it, where both entities represent scopes. Note that scopes
1758 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1759 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1760
1761 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1762 -- Like Scope_Within_Or_Same, except that this function returns
1763 -- False in the case where Scope1 and Scope2 are the same scope.
1764
1765 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1766 -- Same as Basic_Set_Convention, but with an extra check for access types.
1767 -- In particular, if E is an access-to-subprogram type, and Val is a
1768 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1769 -- Also, if the Etype of E is set and is an anonymous access type with
1770 -- no convention set, this anonymous type inherits the convention of E.
1771
1772 procedure Set_Current_Entity (E : Entity_Id);
1773 pragma Inline (Set_Current_Entity);
1774 -- Establish the entity E as the currently visible definition of its
1775 -- associated name (i.e. the Node_Id associated with its name).
1776
1777 procedure Set_Debug_Info_Needed (T : Entity_Id);
1778 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1779 -- that are needed by T (for an object, the type of the object is needed,
1780 -- and for a type, various subsidiary types are needed -- see body for
1781 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1782 -- This routine should always be used instead of Set_Needs_Debug_Info to
1783 -- ensure that subsidiary entities are properly handled.
1784
1785 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
1786 -- This procedure has the same calling sequence as Set_Entity, but it
1787 -- performs additional checks as follows:
1788 --
1789 -- If Style_Check is set, then it calls a style checking routine which
1790 -- can check identifier spelling style. This procedure also takes care
1791 -- of checking the restriction No_Implementation_Identifiers.
1792 --
1793 -- If restriction No_Abort_Statements is set, then it checks that the
1794 -- entity is not Ada.Task_Identification.Abort_Task.
1795 --
1796 -- If restriction No_Dynamic_Attachment is set, then it checks that the
1797 -- entity is not one of the restricted names for this restriction.
1798 --
1799 -- If restriction No_Long_Long_Integer is set, then it checks that the
1800 -- entity is not Standard.Long_Long_Integer.
1801 --
1802 -- If restriction No_Implementation_Identifiers is set, then it checks
1803 -- that the entity is not implementation defined.
1804
1805 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1806 pragma Inline (Set_Name_Entity_Id);
1807 -- Sets the Entity_Id value associated with the given name, which is the
1808 -- Id of the innermost visible entity with the given name. See the body
1809 -- of package Sem_Ch8 for further details on the handling of visibility.
1810
1811 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1812 -- The arguments may be parameter associations, whose descendants
1813 -- are the optional formal name and the actual parameter. Positional
1814 -- parameters are already members of a list, and do not need to be
1815 -- chained separately. See also First_Actual and Next_Actual.
1816
1817 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1818 pragma Inline (Set_Optimize_Alignment_Flags);
1819 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
1820
1821 procedure Set_Public_Status (Id : Entity_Id);
1822 -- If an entity (visible or otherwise) is defined in a library
1823 -- package, or a package that is itself public, then this subprogram
1824 -- labels the entity public as well.
1825
1826 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1827 -- N is the node for either a left hand side (Out_Param set to False),
1828 -- or an Out or In_Out parameter (Out_Param set to True). If there is
1829 -- an assignable entity being referenced, then the appropriate flag
1830 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1831 -- if Out_Param is True) is set True, and the other flag set False.
1832
1833 procedure Set_Scope_Is_Transient (V : Boolean := True);
1834 -- Set the flag Is_Transient of the current scope
1835
1836 procedure Set_Size_Info (T1, T2 : Entity_Id);
1837 pragma Inline (Set_Size_Info);
1838 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1839 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1840 -- in the fixed-point and discrete cases, and also copies the alignment
1841 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1842 -- separately set if this is required to be copied also.
1843
1844 function Scope_Is_Transient return Boolean;
1845 -- True if the current scope is transient
1846
1847 function Static_Boolean (N : Node_Id) return Uint;
1848 -- This function analyzes the given expression node and then resolves it
1849 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1850 -- returned corresponding to the value, otherwise an error message is
1851 -- output and No_Uint is returned.
1852
1853 function Static_Integer (N : Node_Id) return Uint;
1854 -- This function analyzes the given expression node and then resolves it
1855 -- as any integer type. If the result is static, then the value of the
1856 -- universal expression is returned, otherwise an error message is output
1857 -- and a value of No_Uint is returned.
1858
1859 function Statically_Different (E1, E2 : Node_Id) return Boolean;
1860 -- Return True if it can be statically determined that the Expressions
1861 -- E1 and E2 refer to different objects
1862
1863 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
1864 -- Determine whether node N is a loop statement subject to at least one
1865 -- 'Loop_Entry attribute.
1866
1867 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1868 -- Return the accessibility level of the view denoted by Subp
1869
1870 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
1871 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
1872 -- Typ is properly sized and aligned).
1873
1874 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1875 -- Print debugging information on entry to each unit being analyzed
1876
1877 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1878 -- Move a list of entities from one scope to another, and recompute
1879 -- Is_Public based upon the new scope.
1880
1881 function Type_Access_Level (Typ : Entity_Id) return Uint;
1882 -- Return the accessibility level of Typ
1883
1884 function Type_Without_Stream_Operation
1885 (T : Entity_Id;
1886 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
1887 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
1888 -- is active then we cannot generate stream subprograms for composite types
1889 -- with elementary subcomponents that lack user-defined stream subprograms.
1890 -- This predicate determines whether a type has such an elementary
1891 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
1892 -- prevents the construction of a composite stream operation. If Op is
1893 -- specified we check only for the given stream operation.
1894
1895 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
1896 -- Return the entity which represents declaration N, so that different
1897 -- views of the same entity have the same unique defining entity:
1898 -- * package spec and body;
1899 -- * subprogram declaration, subprogram stub and subprogram body;
1900 -- * private view and full view of a type;
1901 -- * private view and full view of a deferred constant.
1902 -- In other cases, return the defining entity for N.
1903
1904 function Unique_Entity (E : Entity_Id) return Entity_Id;
1905 -- Return the unique entity for entity E, which would be returned by
1906 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
1907
1908 function Unique_Name (E : Entity_Id) return String;
1909 -- Return a unique name for entity E, which could be used to identify E
1910 -- across compilation units.
1911
1912 function Unit_Is_Visible (U : Entity_Id) return Boolean;
1913 -- Determine whether a compilation unit is visible in the current context,
1914 -- because there is a with_clause that makes the unit available. Used to
1915 -- provide better messages on common visiblity errors on operators.
1916
1917 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1918 -- Yields Universal_Integer or Universal_Real if this is a candidate
1919
1920 function Unqualify (Expr : Node_Id) return Node_Id;
1921 pragma Inline (Unqualify);
1922 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
1923 -- returns X. If Expr is not a qualified expression, returns Expr.
1924
1925 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
1926 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
1927 -- of a type extension or private extension declaration. If the full-view
1928 -- of private parents and progenitors is available then it is used to
1929 -- generate the list of visible ancestors; otherwise their partial
1930 -- view is added to the resulting list.
1931
1932 function Within_Init_Proc return Boolean;
1933 -- Determines if Current_Scope is within an init proc
1934
1935 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
1936 -- Returns True if entity Id is declared within scope S
1937
1938 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1939 -- Output error message for incorrectly typed expression. Expr is the node
1940 -- for the incorrectly typed construct (Etype (Expr) is the type found),
1941 -- and Expected_Type is the entity for the expected type. Note that Expr
1942 -- does not have to be a subexpression, anything with an Etype field may
1943 -- be used.
1944
1945 end Sem_Util;