f1a12a9380e871ceaa239ba9096411253d83da1c
[gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Opt; use Opt;
32 with Snames; use Snames;
33 with Types; use Types;
34 with Uintp; use Uintp;
35 with Urealp; use Urealp;
36
37 package Sem_Util is
38
39 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
40 -- Given a type that implements interfaces look for its associated
41 -- definition node and return its list of interfaces.
42
43 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
44 -- Add A to the list of access types to process when expanding the
45 -- freeze node of E.
46
47 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
48 -- Given a block statement N, generate an internal E_Block label and make
49 -- it the identifier of the block. Id denotes the generated entity. If the
50 -- block already has an identifier, Id returns the entity of its label.
51
52 procedure Add_Global_Declaration (N : Node_Id);
53 -- These procedures adds a declaration N at the library level, to be
54 -- elaborated before any other code in the unit. It is used for example
55 -- for the entity that marks whether a unit has been elaborated. The
56 -- declaration is added to the Declarations list of the Aux_Decls_Node
57 -- for the current unit. The declarations are added in the current scope,
58 -- so the caller should push a new scope as required before the call.
59
60 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
61 -- Returns the name of E adding Suffix
62
63 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
64 -- Given two types, returns True if we are in Allow_Integer_Address mode
65 -- and one of the types is (a descendant of) System.Address (and this type
66 -- is private), and the other type is any integer type.
67
68 function Address_Value (N : Node_Id) return Node_Id;
69 -- Return the underlying value of the expression N of an address clause
70
71 function Addressable (V : Uint) return Boolean;
72 function Addressable (V : Int) return Boolean;
73 pragma Inline (Addressable);
74 -- Returns True if the value of V is the word size or an addressable factor
75 -- of the word size (typically 8, 16, 32 or 64).
76
77 procedure Aggregate_Constraint_Checks
78 (Exp : Node_Id;
79 Check_Typ : Entity_Id);
80 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
81 -- and Check_Typ a constrained record type with discriminants, we generate
82 -- the appropriate discriminant checks. If Exp is an array aggregate then
83 -- emit the appropriate length checks. If Exp is a scalar type, or a string
84 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
85 -- are performed at run time. Also used for expressions in the argument of
86 -- 'Update, which shares some of the features of an aggregate.
87
88 function Alignment_In_Bits (E : Entity_Id) return Uint;
89 -- If the alignment of the type or object E is currently known to the
90 -- compiler, then this function returns the alignment value in bits.
91 -- Otherwise Uint_0 is returned, indicating that the alignment of the
92 -- entity is not yet known to the compiler.
93
94 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
95 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
96 -- Given a constraint or subtree of a constraint on a composite
97 -- subtype/object, returns True if there are no nonstatic constraints,
98 -- which might cause objects to be created with dynamic size.
99 -- Called for subtype declarations (including implicit ones created for
100 -- subtype indications in object declarations, as well as discriminated
101 -- record aggregate cases). For record aggregates, only records containing
102 -- discriminant-dependent arrays matter, because the discriminants must be
103 -- static when governing a variant part. Access discriminants are
104 -- irrelevant. Also called for array aggregates, but only named notation,
105 -- because those are the only dynamic cases.
106
107 procedure Append_Inherited_Subprogram (S : Entity_Id);
108 -- If the parent of the operation is declared in the visible part of
109 -- the current scope, the inherited operation is visible even though the
110 -- derived type that inherits the operation may be completed in the private
111 -- part of the current package.
112
113 procedure Apply_Compile_Time_Constraint_Error
114 (N : Node_Id;
115 Msg : String;
116 Reason : RT_Exception_Code;
117 Ent : Entity_Id := Empty;
118 Typ : Entity_Id := Empty;
119 Loc : Source_Ptr := No_Location;
120 Rep : Boolean := True;
121 Warn : Boolean := False);
122 -- N is a subexpression which will raise constraint error when evaluated
123 -- at runtime. Msg is a message that explains the reason for raising the
124 -- exception. The last character is ? if the message is always a warning,
125 -- even in Ada 95, and is not a ? if the message represents an illegality
126 -- (because of violation of static expression rules) in Ada 95 (but not
127 -- in Ada 83). Typically this routine posts all messages at the Sloc of
128 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
129 -- the message. After posting the appropriate message, and if the flag
130 -- Rep is set, this routine replaces the expression with an appropriate
131 -- N_Raise_Constraint_Error node using the given Reason code. This node
132 -- is then marked as being static if the original node is static, but
133 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
134 -- The error message may contain a } or & insertion character. This
135 -- normally references Etype (N), unless the Ent argument is given
136 -- explicitly, in which case it is used instead. The type of the raise
137 -- node that is built is normally Etype (N), but if the Typ parameter
138 -- is present, this is used instead. Warn is normally False. If it is
139 -- True then the message is treated as a warning even though it does
140 -- not end with a ? (this is used when the caller wants to parameterize
141 -- whether an error or warning is given), or when the message should be
142 -- treated as a warning even when SPARK_Mode is On (which otherwise would
143 -- force an error).
144
145 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
146 -- Given the entity of an abstract state or a variable, determine whether
147 -- Id is subject to external property Async_Readers and if it is, the
148 -- related expression evaluates to True.
149
150 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
151 -- Given the entity of an abstract state or a variable, determine whether
152 -- Id is subject to external property Async_Writers and if it is, the
153 -- related expression evaluates to True.
154
155 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
156 -- If at the point of declaration an array type has a private or limited
157 -- component, several array operations are not avaiable on the type, and
158 -- the array type is flagged accordingly. If in the immediate scope of
159 -- the array type the component becomes non-private or non-limited, these
160 -- operations become avaiable. This can happen if the scopes of both types
161 -- are open, and the scope of the array is not outside the scope of the
162 -- component.
163
164 procedure Bad_Attribute
165 (N : Node_Id;
166 Nam : Name_Id;
167 Warn : Boolean := False);
168 -- Called when node N is expected to contain a valid attribute name, and
169 -- Nam is found instead. If Warn is set True this is a warning, else this
170 -- is an error.
171
172 procedure Bad_Predicated_Subtype_Use
173 (Msg : String;
174 N : Node_Id;
175 Typ : Entity_Id;
176 Suggest_Static : Boolean := False);
177 -- This is called when Typ, a predicated subtype, is used in a context
178 -- which does not allow the use of a predicated subtype. Msg is passed to
179 -- Error_Msg_FE to output an appropriate message using N as the location,
180 -- and Typ as the entity. The caller must set up any insertions other than
181 -- the & for the type itself. Note that if Typ is a generic actual type,
182 -- then the message will be output as a warning, and a raise Program_Error
183 -- is inserted using Insert_Action with node N as the insertion point. Node
184 -- N also supplies the source location for construction of the raise node.
185 -- If Typ does not have any predicates, the call has no effect. Set flag
186 -- Suggest_Static when the context warrants an advice on how to avoid the
187 -- use error.
188
189 function Bad_Unordered_Enumeration_Reference
190 (N : Node_Id;
191 T : Entity_Id) return Boolean;
192 -- Node N contains a potentially dubious reference to type T, either an
193 -- explicit comparison, or an explicit range. This function returns True
194 -- if the type T is an enumeration type for which No pragma Order has been
195 -- given, and the reference N is not in the same extended source unit as
196 -- the declaration of T.
197
198 function Build_Actual_Subtype
199 (T : Entity_Id;
200 N : Node_Or_Entity_Id) return Node_Id;
201 -- Build an anonymous subtype for an entity or expression, using the
202 -- bounds of the entity or the discriminants of the enclosing record.
203 -- T is the type for which the actual subtype is required, and N is either
204 -- a defining identifier, or any subexpression.
205
206 function Build_Actual_Subtype_Of_Component
207 (T : Entity_Id;
208 N : Node_Id) return Node_Id;
209 -- Determine whether a selected component has a type that depends on
210 -- discriminants, and build actual subtype for it if so.
211
212 function Build_Default_Subtype
213 (T : Entity_Id;
214 N : Node_Id) return Entity_Id;
215 -- If T is an unconstrained type with defaulted discriminants, build a
216 -- subtype constrained by the default values, insert the subtype
217 -- declaration in the tree before N, and return the entity of that
218 -- subtype. Otherwise, simply return T.
219
220 function Build_Discriminal_Subtype_Of_Component
221 (T : Entity_Id) return Node_Id;
222 -- Determine whether a record component has a type that depends on
223 -- discriminants, and build actual subtype for it if so.
224
225 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
226 -- Given a compilation unit node N, allocate an elaboration counter for
227 -- the compilation unit, and install it in the Elaboration_Entity field
228 -- of Spec_Id, the entity for the compilation unit.
229
230 procedure Build_Explicit_Dereference
231 (Expr : Node_Id;
232 Disc : Entity_Id);
233 -- AI05-139: Names with implicit dereference. If the expression N is a
234 -- reference type and the context imposes the corresponding designated
235 -- type, convert N into N.Disc.all. Such expressions are always over-
236 -- loaded with both interpretations, and the dereference interpretation
237 -- carries the name of the reference discriminant.
238
239 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
240 -- Returns True if the expression cannot possibly raise Constraint_Error.
241 -- The response is conservative in the sense that a result of False does
242 -- not necessarily mean that CE could be raised, but a response of True
243 -- means that for sure CE cannot be raised.
244
245 procedure Check_Dynamically_Tagged_Expression
246 (Expr : Node_Id;
247 Typ : Entity_Id;
248 Related_Nod : Node_Id);
249 -- Check wrong use of dynamically tagged expression
250
251 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
252 -- Verify that the full declaration of type T has been seen. If not, place
253 -- error message on node N. Used in object declarations, type conversions
254 -- and qualified expressions.
255
256 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
257 -- A subprogram that has an Address parameter and is declared in a Pure
258 -- package is not considered Pure, because the parameter may be used as a
259 -- pointer and the referenced data may change even if the address value
260 -- itself does not.
261 -- If the programmer gave an explicit Pure_Function pragma, then we respect
262 -- the pragma and leave the subprogram Pure.
263
264 procedure Check_Function_Writable_Actuals (N : Node_Id);
265 -- (Ada 2012): If the construct N has two or more direct constituents that
266 -- are names or expressions whose evaluation may occur in an arbitrary
267 -- order, at least one of which contains a function call with an in out or
268 -- out parameter, then the construct is legal only if: for each name that
269 -- is passed as a parameter of mode in out or out to some inner function
270 -- call C2 (not including the construct N itself), there is no other name
271 -- anywhere within a direct constituent of the construct C other than
272 -- the one containing C2, that is known to refer to the same object (RM
273 -- 6.4.1(6.17/3)).
274
275 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
276 -- AI05-139-2: Accessors and iterators for containers. This procedure
277 -- checks whether T is a reference type, and if so it adds an interprettion
278 -- to N whose type is the designated type of the reference_discriminant.
279 -- If N is a generalized indexing operation, the interpretation is added
280 -- both to the corresponding function call, and to the indexing node.
281
282 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
283 -- Within a protected function, the current object is a constant, and
284 -- internal calls to a procedure or entry are illegal. Similarly, other
285 -- uses of a protected procedure in a renaming or a generic instantiation
286 -- in the context of a protected function are illegal (AI05-0225).
287
288 procedure Check_Later_Vs_Basic_Declarations
289 (Decls : List_Id;
290 During_Parsing : Boolean);
291 -- If During_Parsing is True, check for misplacement of later vs basic
292 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
293 -- restriction is set, do the same: although SPARK 95 removes the
294 -- distinction between initial and later declarative items, the distinction
295 -- remains in the Examiner (JB01-005). Note that the Examiner does not
296 -- count package declarations in later declarative items.
297
298 procedure Check_No_Hidden_State (Id : Entity_Id);
299 -- Determine whether object or state Id introduces a hidden state. If this
300 -- is the case, emit an error.
301
302 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
303 -- Verify that the profile of nonvolatile function Func_Id does not contain
304 -- effectively volatile parameters or return type.
305
306 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
307 -- Verify the legality of reference Ref to variable Var_Id when the
308 -- variable is a constituent of a single protected/task type.
309
310 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
311 -- N is one of the statement forms that is a potentially blocking
312 -- operation. If it appears within a protected action, emit warning.
313
314 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
315 -- Determine whether the contract of subprogram Subp_Id mentions attribute
316 -- 'Result and it contains an expression that evaluates differently in pre-
317 -- and post-state.
318
319 procedure Check_State_Refinements
320 (Context : Node_Id;
321 Is_Main_Unit : Boolean := False);
322 -- Verify that all abstract states declared in a block statement, entry
323 -- body, package body, protected body, subprogram body, task body, or a
324 -- package declaration denoted by Context have proper refinement. Emit an
325 -- error if this is not the case. Flag Is_Main_Unit should be set when
326 -- Context denotes the main compilation unit.
327
328 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
329 -- Verify that all abstract states and objects declared in the state space
330 -- of package body Body_Id are used as constituents. Emit an error if this
331 -- is not the case.
332
333 procedure Check_Unprotected_Access
334 (Context : Node_Id;
335 Expr : Node_Id);
336 -- Check whether the expression is a pointer to a protected component,
337 -- and the context is external to the protected operation, to warn against
338 -- a possible unlocked access to data.
339
340 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
341 -- Gather the entities of all abstract states and objects declared in the
342 -- body state space of package body Body_Id.
343
344 procedure Collect_Interfaces
345 (T : Entity_Id;
346 Ifaces_List : out Elist_Id;
347 Exclude_Parents : Boolean := False;
348 Use_Full_View : Boolean := True);
349 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
350 -- directly or indirectly implemented by T. Exclude_Parents is used to
351 -- avoid the addition of inherited interfaces to the generated list.
352 -- Use_Full_View is used to collect the interfaces using the full-view
353 -- (if available).
354
355 procedure Collect_Interface_Components
356 (Tagged_Type : Entity_Id;
357 Components_List : out Elist_Id);
358 -- Ada 2005 (AI-251): Collect all the tag components associated with the
359 -- secondary dispatch tables of a tagged type.
360
361 procedure Collect_Interfaces_Info
362 (T : Entity_Id;
363 Ifaces_List : out Elist_Id;
364 Components_List : out Elist_Id;
365 Tags_List : out Elist_Id);
366 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
367 -- the record component and tag associated with each of these interfaces.
368 -- On exit Ifaces_List, Components_List and Tags_List have the same number
369 -- of elements, and elements at the same position on these tables provide
370 -- information on the same interface type.
371
372 procedure Collect_Parents
373 (T : Entity_Id;
374 List : out Elist_Id;
375 Use_Full_View : Boolean := True);
376 -- Collect all the parents of Typ. Use_Full_View is used to collect them
377 -- using the full-view of private parents (if available).
378
379 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
380 -- Called upon type derivation and extension. We scan the declarative part
381 -- in which the type appears, and collect subprograms that have one
382 -- subsidiary subtype of the type. These subprograms can only appear after
383 -- the type itself.
384
385 function Compile_Time_Constraint_Error
386 (N : Node_Id;
387 Msg : String;
388 Ent : Entity_Id := Empty;
389 Loc : Source_Ptr := No_Location;
390 Warn : Boolean := False) return Node_Id;
391 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
392 -- generates a warning (or error) message in the same manner, but it does
393 -- not replace any nodes. For convenience, the function always returns its
394 -- first argument. The message is a warning if the message ends with ?, or
395 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
396
397 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
398 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
399 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
400
401 function Contains_Refined_State (Prag : Node_Id) return Boolean;
402 -- Determine whether pragma Prag contains a reference to the entity of an
403 -- abstract state with a visible refinement. Prag must denote one of the
404 -- following pragmas:
405 -- Depends
406 -- Global
407
408 function Copy_Component_List
409 (R_Typ : Entity_Id;
410 Loc : Source_Ptr) return List_Id;
411 -- Copy components from record type R_Typ that come from source. Used to
412 -- create a new compatible record type. Loc is the source location assigned
413 -- to the created nodes.
414
415 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
416 -- Utility to create a parameter profile for a new subprogram spec, when
417 -- the subprogram has a body that acts as spec. This is done for some cases
418 -- of inlining, and for private protected ops. Also used to create bodies
419 -- for stubbed subprograms.
420
421 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
422 -- Replicate a function or a procedure specification denoted by Spec. The
423 -- resulting tree is an exact duplicate of the original tree. New entities
424 -- are created for the unit name and the formal parameters.
425
426 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
427 -- If a type is a generic actual type, return the corresponding formal in
428 -- the generic parent unit. There is no direct link in the tree for this
429 -- attribute, except in the case of formal private and derived types.
430 -- Possible optimization???
431
432 function Current_Entity (N : Node_Id) return Entity_Id;
433 pragma Inline (Current_Entity);
434 -- Find the currently visible definition for a given identifier, that is to
435 -- say the first entry in the visibility chain for the Chars of N.
436
437 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
438 -- Find whether there is a previous definition for identifier N in the
439 -- current scope. Because declarations for a scope are not necessarily
440 -- contiguous (e.g. for packages) the first entry on the visibility chain
441 -- for N is not necessarily in the current scope.
442
443 function Current_Scope return Entity_Id;
444 -- Get entity representing current scope
445
446 function Current_Scope_No_Loops return Entity_Id;
447 -- Return the current scope ignoring internally generated loops
448
449 function Current_Subprogram return Entity_Id;
450 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
451 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
452 -- Current_Scope is returned. The returned value is Empty if this is called
453 -- from a library package which is not within any subprogram.
454
455 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
456 -- Same as Type_Access_Level, except that if the type is the type of an Ada
457 -- 2012 stand-alone object of an anonymous access type, then return the
458 -- static accesssibility level of the object. In that case, the dynamic
459 -- accessibility level of the object may take on values in a range. The low
460 -- bound of that range is returned by Type_Access_Level; this function
461 -- yields the high bound of that range. Also differs from Type_Access_Level
462 -- in the case of a descendant of a generic formal type (returns Int'Last
463 -- instead of 0).
464
465 function Defining_Entity
466 (N : Node_Id;
467 Empty_On_Errors : Boolean := False) return Entity_Id;
468 -- Given a declaration N, returns the associated defining entity. If the
469 -- declaration has a specification, the entity is obtained from the
470 -- specification. If the declaration has a defining unit name, then the
471 -- defining entity is obtained from the defining unit name ignoring any
472 -- child unit prefixes.
473 --
474 -- Iterator loops also have a defining entity, which holds the list of
475 -- local entities declared during loop expansion. These entities need
476 -- debugging information, generated through Qualify_Entity_Names, and
477 -- the loop declaration must be placed in the table Name_Qualify_Units.
478 --
479 -- Set flag Empty_On_Error to change the behavior of this routine as
480 -- follows:
481 --
482 -- * True - A declaration that lacks a defining entity returns Empty.
483 -- A node that does not allow for a defining entity returns Empty.
484 --
485 -- * False - A declaration that lacks a defining entity is given a new
486 -- internally generated entity which is subsequently returned. A node
487 -- that does not allow for a defining entity raises Program_Error.
488 --
489 -- The former semantics is appropriate for the back end; the latter
490 -- semantics is appropriate for the front end.
491
492 function Denotes_Discriminant
493 (N : Node_Id;
494 Check_Concurrent : Boolean := False) return Boolean;
495 -- Returns True if node N is an Entity_Name node for a discriminant. If the
496 -- flag Check_Concurrent is true, function also returns true when N denotes
497 -- the discriminal of the discriminant of a concurrent type. This is needed
498 -- to disable some optimizations on private components of protected types,
499 -- and constraint checks on entry families constrained by discriminants.
500
501 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
502 -- Detect suspicious overlapping between actuals in a call, when both are
503 -- writable (RM 2012 6.4.1(6.4/3))
504
505 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
506 -- Functions to detect suspicious overlapping between actuals in a call,
507 -- when one of them is writable. The predicates are those proposed in
508 -- AI05-0144, to detect dangerous order dependence in complex calls.
509 -- I would add a parameter Warn which enables more extensive testing of
510 -- cases as we find appropriate when we are only warning ??? Or perhaps
511 -- return an indication of (Error, Warn, OK) ???
512
513 function Denotes_Variable (N : Node_Id) return Boolean;
514 -- Returns True if node N denotes a single variable without parentheses
515
516 function Depends_On_Discriminant (N : Node_Id) return Boolean;
517 -- Returns True if N denotes a discriminant or if N is a range, a subtype
518 -- indication or a scalar subtype where one of the bounds is a
519 -- discriminant.
520
521 function Designate_Same_Unit
522 (Name1 : Node_Id;
523 Name2 : Node_Id) return Boolean;
524 -- Returns True if Name1 and Name2 designate the same unit name; each of
525 -- these names is supposed to be a selected component name, an expanded
526 -- name, a defining program unit name or an identifier.
527
528 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
529 -- Expr should be an expression of an access type. Builds an integer
530 -- literal except in cases involving anonymous access types where
531 -- accessibility levels are tracked at runtime (access parameters and Ada
532 -- 2012 stand-alone objects).
533
534 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
535 -- Same as Einfo.Extra_Accessibility except thtat object renames
536 -- are looked through.
537
538 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
539 -- Given the entity of an abstract state or a variable, determine whether
540 -- Id is subject to external property Effective_Reads and if it is, the
541 -- related expression evaluates to True.
542
543 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
544 -- Given the entity of an abstract state or a variable, determine whether
545 -- Id is subject to external property Effective_Writes and if it is, the
546 -- related expression evaluates to True.
547
548 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
549 -- Returns the enclosing N_Compilation_Unit node that is the root of a
550 -- subtree containing N.
551
552 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
553 -- Returns the closest ancestor of Typ that is a CPP type.
554
555 function Enclosing_Declaration (N : Node_Id) return Node_Id;
556 -- Returns the declaration node enclosing N (including possibly N itself),
557 -- if any, or Empty otherwise.
558
559 function Enclosing_Generic_Body
560 (N : Node_Id) return Node_Id;
561 -- Returns the Node_Id associated with the innermost enclosing generic
562 -- body, if any. If none, then returns Empty.
563
564 function Enclosing_Generic_Unit
565 (N : Node_Id) return Node_Id;
566 -- Returns the Node_Id associated with the innermost enclosing generic
567 -- unit, if any. If none, then returns Empty.
568
569 function Enclosing_Lib_Unit_Entity
570 (E : Entity_Id := Current_Scope) return Entity_Id;
571 -- Returns the entity of enclosing library unit node which is the root of
572 -- the current scope (which must not be Standard_Standard, and the caller
573 -- is responsible for ensuring this condition) or other specified entity.
574
575 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
576 -- Returns the N_Compilation_Unit node of the library unit that is directly
577 -- or indirectly (through a subunit) at the root of a subtree containing
578 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
579 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
580 -- library unit. If no such item is found, returns Empty.
581
582 function Enclosing_Package (E : Entity_Id) return Entity_Id;
583 -- Utility function to return the Ada entity of the package enclosing
584 -- the entity E, if any. Returns Empty if no enclosing package.
585
586 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
587 -- Returns the entity of the package or subprogram enclosing E, if any.
588 -- Returns Empty if no enclosing package or subprogram.
589
590 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
591 -- Utility function to return the Ada entity of the subprogram enclosing
592 -- the entity E, if any. Returns Empty if no enclosing subprogram.
593
594 procedure Ensure_Freeze_Node (E : Entity_Id);
595 -- Make sure a freeze node is allocated for entity E. If necessary, build
596 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
597
598 procedure Enter_Name (Def_Id : Entity_Id);
599 -- Insert new name in symbol table of current scope with check for
600 -- duplications (error message is issued if a conflict is found).
601 -- Note: Enter_Name is not used for overloadable entities, instead these
602 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
603
604 function Entity_Of (N : Node_Id) return Entity_Id;
605 -- Return the entity of N or Empty. If N is a renaming, return the entity
606 -- of the root renamed object.
607
608 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
609 -- This procedure is called after issuing a message complaining about an
610 -- inappropriate use of limited type T. If useful, it adds additional
611 -- continuation lines to the message explaining why type T is limited.
612 -- Messages are placed at node N.
613
614 type Extensions_Visible_Mode is
615 (Extensions_Visible_None,
616 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
617 -- value acts as a default in a non-SPARK compilation.
618
619 Extensions_Visible_False,
620 -- A value of "False" signifies that Extensions_Visible is either
621 -- missing or the pragma is present and the value of its Boolean
622 -- expression is False.
623
624 Extensions_Visible_True);
625 -- A value of "True" signifies that Extensions_Visible is present and
626 -- the value of its Boolean expression is True.
627
628 function Extensions_Visible_Status
629 (Id : Entity_Id) return Extensions_Visible_Mode;
630 -- Given the entity of a subprogram or formal parameter subject to pragma
631 -- Extensions_Visible, return the Boolean value denoted by the expression
632 -- of the pragma.
633
634 procedure Find_Actual
635 (N : Node_Id;
636 Formal : out Entity_Id;
637 Call : out Node_Id);
638 -- Determines if the node N is an actual parameter of a function or a
639 -- procedure call. If so, then Formal points to the entity for the formal
640 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
641 -- Call is set to the node for the corresponding call. If the node N is not
642 -- an actual parameter then Formal and Call are set to Empty.
643
644 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
645 -- Find specific type of a class-wide type, and handle the case of an
646 -- incomplete type coming either from a limited_with clause or from an
647 -- incomplete type declaration. If resulting type is private return its
648 -- full view.
649
650 function Find_Body_Discriminal
651 (Spec_Discriminant : Entity_Id) return Entity_Id;
652 -- Given a discriminant of the record type that implements a task or
653 -- protected type, return the discriminal of the corresponding discriminant
654 -- of the actual concurrent type.
655
656 function Find_Corresponding_Discriminant
657 (Id : Node_Id;
658 Typ : Entity_Id) return Entity_Id;
659 -- Because discriminants may have different names in a generic unit and in
660 -- an instance, they are resolved positionally when possible. A reference
661 -- to a discriminant carries the discriminant that it denotes when it is
662 -- analyzed. Subsequent uses of this id on a different type denotes the
663 -- discriminant at the same position in this new type.
664
665 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
666 -- Given an arbitrary entity, try to find the nearest enclosing iterator
667 -- loop. If such a loop is found, return the entity of its identifier (the
668 -- E_Loop scope), otherwise return Empty.
669
670 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
671 -- Find the nested loop statement in a conditional block. Loops subject to
672 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
673 -- loop are nested within the block.
674
675 procedure Find_Overlaid_Entity
676 (N : Node_Id;
677 Ent : out Entity_Id;
678 Off : out Boolean);
679 -- The node N should be an address representation clause. Determines if
680 -- the target expression is the address of an entity with an optional
681 -- offset. If so, set Ent to the entity and, if there is an offset, set
682 -- Off to True, otherwise to False. If N is not an address representation
683 -- clause, or if it is not possible to determine that the address is of
684 -- this form, then set Ent to Empty.
685
686 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
687 -- Return the type of formal parameter Param as determined by its
688 -- specification.
689
690 -- The following type describes the placement of an arbitrary entity with
691 -- respect to SPARK visible / hidden state space.
692
693 type State_Space_Kind is
694 (Not_In_Package,
695 -- An entity is not in the visible, private or body state space when
696 -- the immediate enclosing construct is not a package.
697
698 Visible_State_Space,
699 -- An entity is in the visible state space when it appears immediately
700 -- within the visible declarations of a package or when it appears in
701 -- the visible state space of a nested package which in turn is declared
702 -- in the visible declarations of an enclosing package:
703
704 -- package Pack is
705 -- Visible_Variable : ...
706 -- package Nested
707 -- with Abstract_State => Visible_State
708 -- is
709 -- Visible_Nested_Variable : ...
710 -- end Nested;
711 -- end Pack;
712
713 -- Entities associated with a package instantiation inherit the state
714 -- space from the instance placement:
715
716 -- generic
717 -- package Gen is
718 -- Generic_Variable : ...
719 -- end Gen;
720
721 -- with Gen;
722 -- package Pack is
723 -- package Inst is new Gen;
724 -- -- Generic_Variable is in the visible state space of Pack
725 -- end Pack;
726
727 Private_State_Space,
728 -- An entity is in the private state space when it appears immediately
729 -- within the private declarations of a package or when it appears in
730 -- the visible state space of a nested package which in turn is declared
731 -- in the private declarations of an enclosing package:
732
733 -- package Pack is
734 -- private
735 -- Private_Variable : ...
736 -- package Nested
737 -- with Abstract_State => Private_State
738 -- is
739 -- Private_Nested_Variable : ...
740 -- end Nested;
741 -- end Pack;
742
743 -- The same placement principle applies to package instantiations
744
745 Body_State_Space);
746 -- An entity is in the body state space when it appears immediately
747 -- within the declarations of a package body or when it appears in the
748 -- visible state space of a nested package which in turn is declared in
749 -- the declarations of an enclosing package body:
750
751 -- package body Pack is
752 -- Body_Variable : ...
753 -- package Nested
754 -- with Abstract_State => Body_State
755 -- is
756 -- Body_Nested_Variable : ...
757 -- end Nested;
758 -- end Pack;
759
760 -- The same placement principle applies to package instantiations
761
762 procedure Find_Placement_In_State_Space
763 (Item_Id : Entity_Id;
764 Placement : out State_Space_Kind;
765 Pack_Id : out Entity_Id);
766 -- Determine the state space placement of an item. Item_Id denotes the
767 -- entity of an abstract state, object or package instantiation. Placement
768 -- captures the precise placement of the item in the enclosing state space.
769 -- If the state space is that of a package, Pack_Id denotes its entity,
770 -- otherwise Pack_Id is Empty.
771
772 function Find_Static_Alternative (N : Node_Id) return Node_Id;
773 -- N is a case statement whose expression is a compile-time value.
774 -- Determine the alternative chosen, so that the code of non-selected
775 -- alternatives, and the warnings that may apply to them, are removed.
776
777 function First_Actual (Node : Node_Id) return Node_Id;
778 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
779 -- N_Entry_Call_Statement node. The result returned is the first actual
780 -- parameter in declaration order (not the order of parameters as they
781 -- appeared in the source, which can be quite different as a result of the
782 -- use of named parameters). Empty is returned for a call with no
783 -- parameters. The procedure for iterating through the actuals in
784 -- declaration order is to use this function to find the first actual, and
785 -- then use Next_Actual to obtain the next actual in declaration order.
786 -- Note that the value returned is always the expression (not the
787 -- N_Parameter_Association nodes, even if named association is used).
788
789 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
790 -- Replace all occurrences of a particular word in string Msg depending on
791 -- the Ekind of Id as follows:
792 -- * Replace "subprogram" with
793 -- - "entry" when Id is an entry [family]
794 -- - "task type" when Id is a single task object, task type or task
795 -- body.
796 -- * Replace "protected" with
797 -- - "task" when Id is a single task object, task type or task body
798 -- All other non-matching words remain as is
799
800 procedure Gather_Components
801 (Typ : Entity_Id;
802 Comp_List : Node_Id;
803 Governed_By : List_Id;
804 Into : Elist_Id;
805 Report_Errors : out Boolean);
806 -- The purpose of this procedure is to gather the valid components in a
807 -- record type according to the values of its discriminants, in order to
808 -- validate the components of a record aggregate.
809 --
810 -- Typ is the type of the aggregate when its constrained discriminants
811 -- need to be collected, otherwise it is Empty.
812 --
813 -- Comp_List is an N_Component_List node.
814 --
815 -- Governed_By is a list of N_Component_Association nodes, where each
816 -- choice list contains the name of a discriminant and the expression
817 -- field gives its value. The values of the discriminants governing
818 -- the (possibly nested) variant parts in Comp_List are found in this
819 -- Component_Association List.
820 --
821 -- Into is the list where the valid components are appended. Note that
822 -- Into need not be an Empty list. If it's not, components are attached
823 -- to its tail.
824 --
825 -- Report_Errors is set to True if the values of the discriminants are
826 -- non-static.
827 --
828 -- This procedure is also used when building a record subtype. If the
829 -- discriminant constraint of the subtype is static, the components of the
830 -- subtype are only those of the variants selected by the values of the
831 -- discriminants. Otherwise all components of the parent must be included
832 -- in the subtype for semantic analysis.
833
834 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
835 -- Given a node for an expression, obtain the actual subtype of the
836 -- expression. In the case of a parameter where the formal is an
837 -- unconstrained array or discriminated type, this will be the previously
838 -- constructed subtype of the actual. Note that this is not quite the
839 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
840 -- it is the subtype of the value of the actual. The actual subtype is also
841 -- returned in other cases where it has already been constructed for an
842 -- object. Otherwise the expression type is returned unchanged, except for
843 -- the case of an unconstrained array type, where an actual subtype is
844 -- created, using Insert_Actions if necessary to insert any associated
845 -- actions.
846
847 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
848 -- This is like Get_Actual_Subtype, except that it never constructs an
849 -- actual subtype. If an actual subtype is already available, i.e. the
850 -- Actual_Subtype field of the corresponding entity is set, then it is
851 -- returned. Otherwise the Etype of the node is returned.
852
853 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
854 -- Return the body node for a stub
855
856 function Get_Cursor_Type
857 (Aspect : Node_Id;
858 Typ : Entity_Id) return Entity_Id;
859 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
860 -- primitive operation First. For use in resolving the other primitive
861 -- operations of an Iterable type and expanding loops and quantified
862 -- expressions over formal containers.
863
864 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
865 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
866 -- primitive operation First. For use after resolving the primitive
867 -- operations of an Iterable type.
868
869 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
870 -- This is used to construct the string literal node representing a
871 -- default external name, i.e. one that is constructed from the name of an
872 -- entity, or (in the case of extended DEC import/export pragmas, an
873 -- identifier provided as the external name. Letters in the name are
874 -- according to the setting of Opt.External_Name_Default_Casing.
875
876 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
877 -- If expression N references a part of an object, return this object.
878 -- Otherwise return Empty. Expression N should have been resolved already.
879
880 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
881 -- Returns the true generic entity in an instantiation. If the name in the
882 -- instantiation is a renaming, the function returns the renamed generic.
883
884 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
885 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
886 -- in a child unit a derived type is within the derivation class of an
887 -- ancestor declared in a parent unit, even if there is an intermediate
888 -- derivation that does not see the full view of that ancestor.
889
890 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
891 -- This procedure assigns to L and H respectively the values of the low and
892 -- high bounds of node N, which must be a range, subtype indication, or the
893 -- name of a scalar subtype. The result in L, H may be set to Error if
894 -- there was an earlier error in the range.
895
896 function Get_Enum_Lit_From_Pos
897 (T : Entity_Id;
898 Pos : Uint;
899 Loc : Source_Ptr) return Node_Id;
900 -- This function returns an identifier denoting the E_Enumeration_Literal
901 -- entity for the specified value from the enumeration type or subtype T.
902 -- The second argument is the Pos value. Constraint_Error is raised if
903 -- argument Pos is not in range. The third argument supplies a source
904 -- location for constructed nodes returned by this function. If No_Location
905 -- is supplied as source location, the location of the returned node is
906 -- copied from the original source location for the enumeration literal,
907 -- when available.
908
909 function Get_Iterable_Type_Primitive
910 (Typ : Entity_Id;
911 Nam : Name_Id) return Entity_Id;
912 -- Retrieve one of the primitives First, Next, Has_Element, Element from
913 -- the value of the Iterable aspect of a formal type.
914
915 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
916 -- Retrieve the fully expanded name of the library unit declared by
917 -- Decl_Node into the name buffer.
918
919 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
920 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
921 -- is not present. It is assumed that Id denotes an entry.
922
923 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
924 pragma Inline (Get_Name_Entity_Id);
925 -- An entity value is associated with each name in the name table. The
926 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
927 -- is the innermost visible entity with the given name. See the body of
928 -- Sem_Ch8 for further details on handling of entity visibility.
929
930 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
931 -- Return the Name component of Test_Case pragma N
932 -- Bad name now that this no longer applies to Contract_Case ???
933
934 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
935 -- Get defining entity of parent unit of a child unit. In most cases this
936 -- is the defining entity of the unit, but for a child instance whose
937 -- parent needs a body for inlining, the instantiation node of the parent
938 -- has not yet been rewritten as a package declaration, and the entity has
939 -- to be retrieved from the Instance_Spec of the unit.
940
941 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
942 pragma Inline (Get_Pragma_Id);
943 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
944
945 function Get_Qualified_Name
946 (Id : Entity_Id;
947 Suffix : Entity_Id := Empty) return Name_Id;
948 -- Obtain the fully qualified form of entity Id. The format is:
949 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
950
951 function Get_Qualified_Name
952 (Nam : Name_Id;
953 Suffix : Name_Id := No_Name;
954 Scop : Entity_Id := Current_Scope) return Name_Id;
955 -- Obtain the fully qualified form of name Nam assuming it appears in scope
956 -- Scop. The format is:
957 -- scop-1__scop__nam__suffix
958
959 procedure Get_Reason_String (N : Node_Id);
960 -- Recursive routine to analyze reason argument for pragma Warnings. The
961 -- value of the reason argument is appended to the current string using
962 -- Store_String_Chars. The reason argument is expected to be a string
963 -- literal or concatenation of string literals. An error is given for
964 -- any other form.
965
966 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
967 -- If Typ has Implicit_Dereference, return discriminant specified in the
968 -- corresponding aspect.
969
970 function Get_Referenced_Object (N : Node_Id) return Node_Id;
971 -- Given a node, return the renamed object if the node represents a renamed
972 -- object, otherwise return the node unchanged. The node may represent an
973 -- arbitrary expression.
974
975 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
976 -- Given an entity for an exception, package, subprogram or generic unit,
977 -- returns the ultimately renamed entity if this is a renaming. If this is
978 -- not a renamed entity, returns its argument. It is an error to call this
979 -- with any other kind of entity.
980
981 function Get_Return_Object (N : Node_Id) return Entity_Id;
982 -- Given an extended return statement, return the corresponding return
983 -- object, identified as the one for which Is_Return_Object = True.
984
985 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
986 -- Nod is either a procedure call statement, or a function call, or an
987 -- accept statement node. This procedure finds the Entity_Id of the related
988 -- subprogram or entry and returns it, or if no subprogram can be found,
989 -- returns Empty.
990
991 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
992 pragma Inline (Get_Task_Body_Procedure);
993 -- Given an entity for a task type or subtype, retrieves the
994 -- Task_Body_Procedure field from the corresponding task type declaration.
995
996 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
997 -- For a type entity, return the entity of the primitive equality function
998 -- for the type if it exists, otherwise return Empty.
999
1000 procedure Get_Views
1001 (Typ : Entity_Id;
1002 Priv_Typ : out Entity_Id;
1003 Full_Typ : out Entity_Id;
1004 Full_Base : out Entity_Id;
1005 CRec_Typ : out Entity_Id);
1006 -- Obtain the partial and full view of type Typ and in addition any extra
1007 -- types the full view may have. The return entities are as follows:
1008 --
1009 -- Priv_Typ - the partial view (a private type)
1010 -- Full_Typ - the full view
1011 -- Full_Base - the base type of the full view
1012 -- CRec_Typ - the corresponding record type of the full view
1013
1014 function Has_Access_Values (T : Entity_Id) return Boolean;
1015 -- Returns true if type or subtype T is an access type, or has a component
1016 -- (at any recursive level) that is an access type. This is a conservative
1017 -- predicate, if it is not known whether or not T contains access values
1018 -- (happens for generic formals in some cases), then False is returned.
1019 -- Note that tagged types return False. Even though the tag is implemented
1020 -- as an access type internally, this function tests only for access types
1021 -- known to the programmer. See also Has_Tagged_Component.
1022
1023 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1024 -- Result of Has_Compatible_Alignment test, description found below. Note
1025 -- that the values are arranged in increasing order of problematicness.
1026
1027 function Has_Compatible_Alignment
1028 (Obj : Entity_Id;
1029 Expr : Node_Id;
1030 Layout_Done : Boolean) return Alignment_Result;
1031 -- Obj is an object entity, and expr is a node for an object reference. If
1032 -- the alignment of the object referenced by Expr is known to be compatible
1033 -- with the alignment of Obj (i.e. is larger or the same), then the result
1034 -- is Known_Compatible. If the alignment of the object referenced by Expr
1035 -- is known to be less than the alignment of Obj, then Known_Incompatible
1036 -- is returned. If neither condition can be reliably established at compile
1037 -- time, then Unknown is returned. If Layout_Done is True, the function can
1038 -- assume that the information on size and alignment of types and objects
1039 -- is present in the tree. This is used to determine if alignment checks
1040 -- are required for address clauses (Layout_Done is False in this case) as
1041 -- well as to issue appropriate warnings for them in the post compilation
1042 -- phase (Layout_Done is True in this case).
1043 --
1044 -- Note: Known_Incompatible does not mean that at run time the alignment
1045 -- of Expr is known to be wrong for Obj, just that it can be determined
1046 -- that alignments have been explicitly or implicitly specified which are
1047 -- incompatible (whereas Unknown means that even this is not known). The
1048 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1049 -- Unknown, but issue a warning that there may be an alignment error.
1050
1051 function Has_Declarations (N : Node_Id) return Boolean;
1052 -- Determines if the node can have declarations
1053
1054 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1055 -- Simple predicate to test for defaulted discriminants
1056
1057 function Has_Denormals (E : Entity_Id) return Boolean;
1058 -- Determines if the floating-point type E supports denormal numbers.
1059 -- Returns False if E is not a floating-point type.
1060
1061 function Has_Discriminant_Dependent_Constraint
1062 (Comp : Entity_Id) return Boolean;
1063 -- Returns True if and only if Comp has a constrained subtype that depends
1064 -- on a discriminant.
1065
1066 function Has_Effectively_Volatile_Profile
1067 (Subp_Id : Entity_Id) return Boolean;
1068 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1069 -- parameter or returns an effectively volatile value.
1070
1071 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1072 -- Determine whether type Typ defines "full default initialization" as
1073 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1074 -- * A scalar type with specified Default_Value
1075 -- * An array-of-scalar type with specified Default_Component_Value
1076 -- * An array type whose element type defines full default initialization
1077 -- * A protected type, record type or type extension whose components
1078 -- either include a default expression or have a type which defines
1079 -- full default initialization. In the case of type extensions, the
1080 -- parent type defines full default initialization.
1081 -- * A task type
1082 -- * A private type whose Default_Initial_Condition is non-null
1083
1084 function Has_Infinities (E : Entity_Id) return Boolean;
1085 -- Determines if the range of the floating-point type E includes
1086 -- infinities. Returns False if E is not a floating-point type.
1087
1088 function Has_Interfaces
1089 (T : Entity_Id;
1090 Use_Full_View : Boolean := True) return Boolean;
1091 -- Where T is a concurrent type or a record type, returns true if T covers
1092 -- any abstract interface types. In case of private types the argument
1093 -- Use_Full_View controls if the check is done using its full view (if
1094 -- available).
1095
1096 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1097 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1098 -- assumed that Id denotes an entry.
1099
1100 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1101 -- This is a simple minded function for determining whether an expression
1102 -- has no obvious side effects. It is used only for determining whether
1103 -- warnings are needed in certain situations, and is not guaranteed to
1104 -- be accurate in either direction. Exceptions may mean an expression
1105 -- does in fact have side effects, but this may be ignored and True is
1106 -- returned, or a complex expression may in fact be side effect free
1107 -- but we don't recognize it here and return False. The Side_Effect_Free
1108 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1109 -- be shared, so that this routine would be more accurate.
1110
1111 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1112 -- Determine whether abstract state Id has at least one nonnull constituent
1113 -- as expressed in pragma Refined_State. This function does not take into
1114 -- account the visible refinement region of abstract state Id.
1115
1116 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1117 -- Determine whether the body of procedure Proc_Id contains a sole
1118 -- null statement, possibly followed by an optional return. Used to
1119 -- optimize useless calls to assertion checks.
1120
1121 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1122 -- Determine whether node N has a null exclusion
1123
1124 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1125 -- Determine whether abstract state Id has a null refinement as expressed
1126 -- in pragma Refined_State. This function does not take into account the
1127 -- visible refinement region of abstract state Id.
1128
1129 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1130 -- Predicate to determine whether a controlled type has a user-defined
1131 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1132 -- non-null), which causes the type to not have preelaborable
1133 -- initialization.
1134
1135 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1136 -- Return True iff type E has preelaborable initialization as defined in
1137 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1138
1139 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1140 -- Check if a type has a (sub)component of a private type that has not
1141 -- yet received a full declaration.
1142
1143 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1144 -- Determines if the floating-point type E supports signed zeros.
1145 -- Returns False if E is not a floating-point type.
1146
1147 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1148 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1149 -- All subprograms have a N_Contract node, but this does not mean that the
1150 -- contract is useful.
1151
1152 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1153 -- Return whether an array type has static bounds
1154
1155 function Has_Stream (T : Entity_Id) return Boolean;
1156 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1157 -- case of a composite type, has a component for which this predicate is
1158 -- True, and if so returns True. Otherwise a result of False means that
1159 -- there is no Stream type in sight. For a private type, the test is
1160 -- applied to the underlying type (or returns False if there is no
1161 -- underlying type).
1162
1163 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1164 -- Returns true if the last character of E is Suffix. Used in Assertions.
1165
1166 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1167 -- Returns True if Typ is a composite type (array or record) which is
1168 -- either itself a tagged type, or has a component (recursively) which is
1169 -- a tagged type. Returns False for non-composite type, or if no tagged
1170 -- component is present. This function is used to check if "=" has to be
1171 -- expanded into a bunch component comparisons.
1172
1173 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1174 -- Given arbitrary expression Expr, determine whether it contains at
1175 -- least one name whose entity is Any_Id.
1176
1177 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1178 -- Given arbitrary type Typ, determine whether it contains at least one
1179 -- volatile component.
1180
1181 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1182 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1183 -- implementation requirement which the pragma imposes. The return value is
1184 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1185
1186 function Implements_Interface
1187 (Typ_Ent : Entity_Id;
1188 Iface_Ent : Entity_Id;
1189 Exclude_Parents : Boolean := False) return Boolean;
1190 -- Returns true if the Typ_Ent implements interface Iface_Ent
1191
1192 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1193 -- Returns True if node N appears within a pragma that acts as an assertion
1194 -- expression. See Sem_Prag for the list of qualifying pragmas.
1195
1196 function In_Instance return Boolean;
1197 -- Returns True if the current scope is within a generic instance
1198
1199 function In_Instance_Body return Boolean;
1200 -- Returns True if current scope is within the body of an instance, where
1201 -- several semantic checks (e.g. accessibility checks) are relaxed.
1202
1203 function In_Instance_Not_Visible return Boolean;
1204 -- Returns True if current scope is with the private part or the body of
1205 -- an instance. Other semantic checks are suppressed in this context.
1206
1207 function In_Instance_Visible_Part return Boolean;
1208 -- Returns True if current scope is within the visible part of a package
1209 -- instance, where several additional semantic checks apply.
1210
1211 function In_Package_Body return Boolean;
1212 -- Returns True if current scope is within a package body
1213
1214 function In_Parameter_Specification (N : Node_Id) return Boolean;
1215 -- Returns True if node N belongs to a parameter specification
1216
1217 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1218 -- Returns true if the expression N occurs within a pragma with name Nam
1219
1220 function In_Pre_Post_Condition (N : Node_Id) return Boolean;
1221 -- Returns True if node N appears within a pre/postcondition pragma. Note
1222 -- the pragma Check equivalents are NOT considered.
1223
1224 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1225 -- Returns True if N denotes a component or subcomponent in a record or
1226 -- array that has Reverse_Storage_Order.
1227
1228 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1229 -- Determines if the current scope is within a subprogram compilation unit
1230 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1231 -- declaration) or within a task or protected body. The test is for
1232 -- appearing anywhere within such a construct (that is it does not need
1233 -- to be directly within).
1234
1235 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1236 -- Determine whether a declaration occurs within the visible part of a
1237 -- package specification. The package must be on the scope stack, and the
1238 -- corresponding private part must not.
1239
1240 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1241 -- Given the entity of a constant or a type, retrieve the incomplete or
1242 -- partial view of the same entity. Note that Id may not have a partial
1243 -- view in which case the function returns Empty.
1244
1245 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1246 -- Given an N_Indexed_Component node, return the first bit position of the
1247 -- component if it is known at compile time. A value of No_Uint means that
1248 -- either the value is not yet known before back-end processing or it is
1249 -- not known at compile time after back-end processing.
1250
1251 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1252 -- Inherit the rep item chain of type From_Typ without clobbering any
1253 -- existing rep items on Typ's chain. Typ is the destination type.
1254
1255 procedure Insert_Explicit_Dereference (N : Node_Id);
1256 -- In a context that requires a composite or subprogram type and where a
1257 -- prefix is an access type, rewrite the access type node N (which is the
1258 -- prefix, e.g. of an indexed component) as an explicit dereference.
1259
1260 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1261 -- Examine all deferred constants in the declaration list Decls and check
1262 -- whether they have been completed by a full constant declaration or an
1263 -- Import pragma. Emit the error message if that is not the case.
1264
1265 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1266 -- Install both the generic formal parameters and the formal parameters of
1267 -- generic subprogram Subp_Id into visibility.
1268
1269 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1270 -- Determines if N is an actual parameter of out mode in a subprogram call
1271
1272 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1273 -- Determines if N is an actual parameter in a subprogram call
1274
1275 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1276 -- Determines if N is an actual parameter of a formal of tagged type in a
1277 -- subprogram call.
1278
1279 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1280 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1281 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1282 -- rules of the language, it does not take into account the restriction
1283 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1284 -- and Obj violates the restriction. The caller is responsible for calling
1285 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1286 -- requirement for obeying the restriction in the call context.
1287
1288 function Is_Ancestor_Package
1289 (E1 : Entity_Id;
1290 E2 : Entity_Id) return Boolean;
1291 -- Determine whether package E1 is an ancestor of E2
1292
1293 function Is_Atomic_Object (N : Node_Id) return Boolean;
1294 -- Determines if the given node denotes an atomic object in the sense of
1295 -- the legality checks described in RM C.6(12).
1296
1297 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean;
1298 -- Determines if the given node is an atomic object (Is_Atomic_Object true)
1299 -- or else is an object for which VFA is present.
1300
1301 function Is_Attribute_Result (N : Node_Id) return Boolean;
1302 -- Determine whether node N denotes attribute 'Result
1303
1304 function Is_Attribute_Update (N : Node_Id) return Boolean;
1305 -- Determine whether node N denotes attribute 'Update
1306
1307 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1308 -- Determine whether node N denotes a body or a package declaration
1309
1310 function Is_Bounded_String (T : Entity_Id) return Boolean;
1311 -- True if T is a bounded string type. Used to make sure "=" composes
1312 -- properly for bounded string types.
1313
1314 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1315 -- Exp is the expression for an array bound. Determines whether the
1316 -- bound is a compile-time known value, or a constant entity, or an
1317 -- enumeration literal, or an expression composed of constant-bound
1318 -- subexpressions which are evaluated by means of standard operators.
1319
1320 function Is_Container_Element (Exp : Node_Id) return Boolean;
1321 -- This routine recognizes expressions that denote an element of one of
1322 -- the predefined containers, when the source only contains an indexing
1323 -- operation and an implicit dereference is inserted by the compiler.
1324 -- In the absence of this optimization, the indexing creates a temporary
1325 -- controlled cursor that sets the tampering bit of the container, and
1326 -- restricts the use of the convenient notation C (X) to contexts that
1327 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1328 -- explicit dereference. The transformation applies when it has the form
1329 -- F (X).Discr.all.
1330
1331 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1332 -- Determine whether aspect specification or pragma Item is a contract
1333 -- annotation.
1334
1335 function Is_Controlling_Limited_Procedure
1336 (Proc_Nam : Entity_Id) return Boolean;
1337 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1338 -- of a limited interface with a controlling first parameter.
1339
1340 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1341 -- Returns True if N is a call to a CPP constructor
1342
1343 function Is_Child_Or_Sibling
1344 (Pack_1 : Entity_Id;
1345 Pack_2 : Entity_Id) return Boolean;
1346 -- Determine the following relations between two arbitrary packages:
1347 -- 1) One package is the parent of a child package
1348 -- 2) Both packages are siblings and share a common parent
1349
1350 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1351 -- First determine whether type T is an interface and then check whether
1352 -- it is of protected, synchronized or task kind.
1353
1354 function Is_Current_Instance (N : Node_Id) return Boolean;
1355 -- Predicate is true if N legally denotes a type name within its own
1356 -- declaration. Prior to Ada 2012 this covered only synchronized type
1357 -- declarations. In Ada 2012 it also covers type and subtype declarations
1358 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1359
1360 function Is_Declaration (N : Node_Id) return Boolean;
1361 -- Determine whether arbitrary node N denotes a declaration
1362
1363 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1364 -- Returns True iff component Comp is declared within a variant part
1365
1366 function Is_Dependent_Component_Of_Mutable_Object
1367 (Object : Node_Id) return Boolean;
1368 -- Returns True if Object is the name of a subcomponent that depends on
1369 -- discriminants of a variable whose nominal subtype is unconstrained and
1370 -- not indefinite, and the variable is not aliased. Otherwise returns
1371 -- False. The nodes passed to this function are assumed to denote objects.
1372
1373 function Is_Dereferenced (N : Node_Id) return Boolean;
1374 -- N is a subexpression node of an access type. This function returns true
1375 -- if N appears as the prefix of a node that does a dereference of the
1376 -- access value (selected/indexed component, explicit dereference or a
1377 -- slice), and false otherwise.
1378
1379 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1380 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
1381 -- This is the RM definition, a type is a descendant of another type if it
1382 -- is the same type or is derived from a descendant of the other type.
1383
1384 function Is_Descendant_Of_Suspension_Object
1385 (Typ : Entity_Id) return Boolean;
1386 -- Determine whether type Typ is a descendant of type Suspension_Object
1387 -- defined in Ada.Synchronous_Task_Control. This version is different from
1388 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
1389 -- an entity and by extension a call to RTSfind.
1390
1391 function Is_Double_Precision_Floating_Point_Type
1392 (E : Entity_Id) return Boolean;
1393 -- Return whether E is a double precision floating point type,
1394 -- characterized by:
1395 -- . machine_radix = 2
1396 -- . machine_mantissa = 53
1397 -- . machine_emax = 2**10
1398 -- . machine_emin = 3 - machine_emax
1399
1400 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1401 -- Determine whether a type or object denoted by entity Id is effectively
1402 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1403 -- * Volatile
1404 -- * An array type subject to aspect Volatile_Components
1405 -- * An array type whose component type is effectively volatile
1406 -- * A protected type
1407 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1408
1409 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1410 -- Determine whether an arbitrary node denotes an effectively volatile
1411 -- object (SPARK RM 7.1.2).
1412
1413 function Is_Entry_Body (Id : Entity_Id) return Boolean;
1414 -- Determine whether entity Id is the body entity of an entry [family]
1415
1416 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1417 -- Determine whether entity Id is the spec entity of an entry [family]
1418
1419 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
1420 -- Check whether a function in a call is an expanded priority attribute,
1421 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
1422 -- does not take place in a configurable runtime.
1423
1424 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1425 -- Determine whether subprogram [body] Subp denotes an expression function
1426
1427 function Is_Expression_Function_Or_Completion
1428 (Subp : Entity_Id) return Boolean;
1429 -- Determine whether subprogram [body] Subp denotes an expression function
1430 -- or is completed by an expression function body.
1431
1432 function Is_EVF_Expression (N : Node_Id) return Boolean;
1433 -- Determine whether node N denotes a reference to a formal parameter of
1434 -- a specific tagged type whose related subprogram is subject to pragma
1435 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
1436 -- constructs fall under this category:
1437 -- 1) A qualified expression whose operand is EVF
1438 -- 2) A type conversion whose operand is EVF
1439 -- 3) An if expression with at least one EVF dependent_expression
1440 -- 4) A case expression with at least one EVF dependent_expression
1441
1442 function Is_False (U : Uint) return Boolean;
1443 pragma Inline (Is_False);
1444 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1445 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1446 -- if it is False (i.e. zero).
1447
1448 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1449 -- Returns True iff the number U is a model number of the fixed-point type
1450 -- T, i.e. if it is an exact multiple of Small.
1451
1452 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1453 -- Typ is a type entity. This function returns true if this type is fully
1454 -- initialized, meaning that an object of the type is fully initialized.
1455 -- Note that initialization resulting from use of pragma Normalize_Scalars
1456 -- does not count. Note that this is only used for the purpose of issuing
1457 -- warnings for objects that are potentially referenced uninitialized. This
1458 -- means that the result returned is not crucial, but should err on the
1459 -- side of thinking things are fully initialized if it does not know.
1460
1461 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1462 -- Determine whether arbitrary declaration Decl denotes a generic package,
1463 -- a generic subprogram or a generic body.
1464
1465 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1466 -- E is a subprogram. Return True is E is an implicit operation inherited
1467 -- by a derived type declaration.
1468
1469 function Is_Inherited_Operation_For_Type
1470 (E : Entity_Id;
1471 Typ : Entity_Id) return Boolean;
1472 -- E is a subprogram. Return True is E is an implicit operation inherited
1473 -- by the derived type declaration for type Typ.
1474
1475 function Is_Iterator (Typ : Entity_Id) return Boolean;
1476 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1477 -- Ada.Iterator_Interfaces, or it is derived from one.
1478
1479 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
1480 -- N is an iterator specification. Returns True iff N is an iterator over
1481 -- an array, either inside a loop of the form 'for X of A' or a quantified
1482 -- expression of the form 'for all/some X of A' where A is of array type.
1483
1484 type Is_LHS_Result is (Yes, No, Unknown);
1485 function Is_LHS (N : Node_Id) return Is_LHS_Result;
1486 -- Returns Yes if N is definitely used as Name in an assignment statement.
1487 -- Returns No if N is definitely NOT used as a Name in an assignment
1488 -- statement. Returns Unknown if we can't tell at this stage (happens in
1489 -- the case where we don't know the type of N yet, and we have something
1490 -- like N.A := 3, where this counts as N being used on the left side of
1491 -- an assignment only if N is not an access type. If it is an access type
1492 -- then it is N.all.A that is assigned, not N.
1493
1494 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1495 -- A library-level declaration is one that is accessible from Standard,
1496 -- i.e. a library unit or an entity declared in a library package.
1497
1498 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1499 -- Determine whether a given type is a limited class-wide type, in which
1500 -- case it needs a Master_Id, because extensions of its designated type
1501 -- may include task components. A class-wide type that comes from a
1502 -- limited view must be treated in the same way.
1503
1504 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1505 -- Determines whether Expr is a reference to a variable or IN OUT mode
1506 -- parameter of the current enclosing subprogram.
1507 -- Why are OUT parameters not considered here ???
1508
1509 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
1510 -- Determine whether entity Id denotes the procedure that verifies the
1511 -- assertion expression of pragma Default_Initial_Condition and if it does,
1512 -- the encapsulated expression is nontrivial.
1513
1514 function Is_Null_Record_Type (T : Entity_Id) return Boolean;
1515 -- Determine whether T is declared with a null record definition or a
1516 -- null component list.
1517
1518 function Is_Object_Reference (N : Node_Id) return Boolean;
1519 -- Determines if the tree referenced by N represents an object. Both
1520 -- variable and constant objects return True (compare Is_Variable).
1521
1522 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1523 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1524 -- Note that the Is_Variable function is not quite the right test because
1525 -- this is a case in which conversions whose expression is a variable (in
1526 -- the Is_Variable sense) with an untagged type target are considered view
1527 -- conversions and hence variables.
1528
1529 function Is_OK_Volatile_Context
1530 (Context : Node_Id;
1531 Obj_Ref : Node_Id) return Boolean;
1532 -- Determine whether node Context denotes a "non-interfering context" (as
1533 -- defined in SPARK RM 7.1.3(12)) where volatile reference Obj_Ref can
1534 -- safely reside.
1535
1536 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
1537 -- Determine whether aspect specification or pragma Item is one of the
1538 -- following package contract annotations:
1539 -- Abstract_State
1540 -- Initial_Condition
1541 -- Initializes
1542 -- Refined_State
1543
1544 function Is_Partially_Initialized_Type
1545 (Typ : Entity_Id;
1546 Include_Implicit : Boolean := True) return Boolean;
1547 -- Typ is a type entity. This function returns true if this type is partly
1548 -- initialized, meaning that an object of the type is at least partly
1549 -- initialized (in particular in the record case, that at least one
1550 -- component has an initialization expression). Note that initialization
1551 -- resulting from the use of pragma Normalize_Scalars does not count.
1552 -- Include_Implicit controls whether implicit initialization of access
1553 -- values to null, and of discriminant values, is counted as making the
1554 -- type be partially initialized. For the default setting of True, these
1555 -- implicit cases do count, and discriminated types or types containing
1556 -- access values not explicitly initialized will return True. Otherwise
1557 -- if Include_Implicit is False, these cases do not count as making the
1558 -- type be partially initialized.
1559
1560 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1561 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1562
1563 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1564 -- Determines if type T is a potentially persistent type. A potentially
1565 -- persistent type is defined (recursively) as a scalar type, an untagged
1566 -- record whose components are all of a potentially persistent type, or an
1567 -- array with all static constraints whose component type is potentially
1568 -- persistent. A private type is potentially persistent if the full type
1569 -- is potentially persistent.
1570
1571 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1572 -- Return True if node N denotes a protected type name which represents
1573 -- the current instance of a protected object according to RM 9.4(21/2).
1574
1575 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1576 -- Return True if a compilation unit is the specification or the
1577 -- body of a remote call interface package.
1578
1579 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1580 -- Return True if E is a remote access-to-class-wide type
1581
1582 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1583 -- Return True if E is a remote access to subprogram type
1584
1585 function Is_Remote_Call (N : Node_Id) return Boolean;
1586 -- Return True if N denotes a potentially remote call
1587
1588 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1589 -- Return True if Proc_Nam is a procedure renaming of an entry
1590
1591 function Is_Renaming_Declaration (N : Node_Id) return Boolean;
1592 -- Determine whether arbitrary node N denotes a renaming declaration
1593
1594 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1595 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1596 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1597
1598 function Is_Selector_Name (N : Node_Id) return Boolean;
1599 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1600 -- As described in Sinfo, Selector_Names are special because they
1601 -- represent use of the N_Identifier node for a true identifier, when
1602 -- normally such nodes represent a direct name.
1603
1604 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
1605 -- Determine whether arbitrary entity Id denotes the anonymous object
1606 -- created for a single protected or single task type.
1607
1608 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
1609 -- Determine whether arbitrary entity Id denotes a single protected or
1610 -- single task type.
1611
1612 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
1613 -- Determine whether arbitrary node N denotes the declaration of a single
1614 -- protected type or single task type.
1615
1616 function Is_Single_Precision_Floating_Point_Type
1617 (E : Entity_Id) return Boolean;
1618 -- Return whether E is a single precision floating point type,
1619 -- characterized by:
1620 -- . machine_radix = 2
1621 -- . machine_mantissa = 24
1622 -- . machine_emax = 2**7
1623 -- . machine_emin = 3 - machine_emax
1624
1625 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
1626 -- Determine whether arbitrary entity Id denotes the anonymous object
1627 -- created for a single protected type.
1628
1629 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
1630 -- Determine whether arbitrary entity Id denotes the anonymous object
1631 -- created for a single task type.
1632
1633 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean;
1634 -- Determines if the tree referenced by N represents an initialization
1635 -- expression in SPARK 2005, suitable for initializing an object in an
1636 -- object declaration.
1637
1638 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean;
1639 -- Determines if the tree referenced by N represents an object in SPARK
1640 -- 2005. This differs from Is_Object_Reference in that only variables,
1641 -- constants, formal parameters, and selected_components of those are
1642 -- valid objects in SPARK 2005.
1643
1644 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
1645 -- Determine whether an arbitrary [private] type is specifically tagged
1646
1647 function Is_Statement (N : Node_Id) return Boolean;
1648 pragma Inline (Is_Statement);
1649 -- Check if the node N is a statement node. Note that this includes
1650 -- the case of procedure call statements (unlike the direct use of
1651 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1652 -- Note that a label is *not* a statement, and will return False.
1653
1654 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
1655 -- Determine whether aspect specification or pragma Item is one of the
1656 -- following subprogram contract annotations:
1657 -- Contract_Cases
1658 -- Depends
1659 -- Extensions_Visible
1660 -- Global
1661 -- Post
1662 -- Post_Class
1663 -- Postcondition
1664 -- Pre
1665 -- Pre_Class
1666 -- Precondition
1667 -- Refined_Depends
1668 -- Refined_Global
1669 -- Refined_Post
1670 -- Test_Case
1671
1672 function Is_Subprogram_Stub_Without_Prior_Declaration
1673 (N : Node_Id) return Boolean;
1674 -- Return True if N is a subprogram stub with no prior subprogram
1675 -- declaration.
1676
1677 function Is_Suspension_Object (Id : Entity_Id) return Boolean;
1678 -- Determine whether arbitrary entity Id denotes Suspension_Object defined
1679 -- in Ada.Synchronous_Task_Control.
1680
1681 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
1682 -- Determine whether entity Id denotes an object and if it does, whether
1683 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
1684 -- such, the object must be
1685 -- * Of a type that yields a synchronized object
1686 -- * An atomic object with enabled Async_Writers
1687 -- * A constant
1688 -- * A variable subject to pragma Constant_After_Elaboration
1689
1690 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1691 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1692
1693 function Is_Transfer (N : Node_Id) return Boolean;
1694 -- Returns True if the node N is a statement which is known to cause an
1695 -- unconditional transfer of control at runtime, i.e. the following
1696 -- statement definitely will not be executed.
1697
1698 function Is_True (U : Uint) return Boolean;
1699 pragma Inline (Is_True);
1700 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1701 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1702 -- if it is True (i.e. non-zero).
1703
1704 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
1705 -- Determine whether an arbitrary entity denotes an instance of function
1706 -- Ada.Unchecked_Conversion.
1707
1708 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1709 pragma Inline (Is_Universal_Numeric_Type);
1710 -- True if T is Universal_Integer or Universal_Real
1711
1712 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1713 -- Returns true if E has variable size components
1714
1715 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1716 -- Returns true if E has variable size components
1717
1718 function Is_Variable
1719 (N : Node_Id;
1720 Use_Original_Node : Boolean := True) return Boolean;
1721 -- Determines if the tree referenced by N represents a variable, i.e. can
1722 -- appear on the left side of an assignment. There is one situation (formal
1723 -- parameters) in which untagged type conversions are also considered
1724 -- variables, but Is_Variable returns False for such cases, since it has
1725 -- no knowledge of the context. Note that this is the point at which
1726 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1727 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1728 -- default is True since this routine is commonly invoked as part of the
1729 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1730
1731 function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean;
1732 -- Determine whether pragma Default_Initial_Condition denoted by Prag has
1733 -- an assertion expression which should be verified at runtime.
1734
1735 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1736 -- Check whether T is derived from a visibly controlled type. This is true
1737 -- if the root type is declared in Ada.Finalization. If T is derived
1738 -- instead from a private type whose full view is controlled, an explicit
1739 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1740 -- one.
1741
1742 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
1743 -- Determine whether [generic] function Func_Id is subject to enabled
1744 -- pragma Volatile_Function. Protected functions are treated as volatile
1745 -- (SPARK RM 7.1.2).
1746
1747 function Is_Volatile_Object (N : Node_Id) return Boolean;
1748 -- Determines if the given node denotes an volatile object in the sense of
1749 -- the legality checks described in RM C.6(12). Note that the test here is
1750 -- for something actually declared as volatile, not for an object that gets
1751 -- treated as volatile (see Einfo.Treat_As_Volatile).
1752
1753 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1754 -- Applies to Itypes. True if the Itype is attached to a declaration for
1755 -- the type through its Parent field, which may or not be present in the
1756 -- tree.
1757
1758 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1759 -- This procedure is called to clear all constant indications from all
1760 -- entities in the current scope and in any parent scopes if the current
1761 -- scope is a block or a package (and that recursion continues to the top
1762 -- scope that is not a block or a package). This is used when the
1763 -- sequential flow-of-control assumption is violated (occurrence of a
1764 -- label, head of a loop, or start of an exception handler). The effect of
1765 -- the call is to clear the Current_Value field (but we do not need to
1766 -- clear the Is_True_Constant flag, since that only gets reset if there
1767 -- really is an assignment somewhere in the entity scope). This procedure
1768 -- also calls Kill_All_Checks, since this is a special case of needing to
1769 -- forget saved values. This procedure also clears the Is_Known_Null and
1770 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1771 -- parameters since these are also not known to be trustable any more.
1772 --
1773 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1774 -- fields and leave other fields unchanged. This is used when we encounter
1775 -- an unconditional flow of control change (return, goto, raise). In such
1776 -- cases we don't need to clear the current values, since it may be that
1777 -- the flow of control change occurs in a conditional context, and if it
1778 -- is not taken, then it is just fine to keep the current values. But the
1779 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1780 -- conditional-return, assign-to-v, we do not want to complain that the
1781 -- second assignment clobbers the first.
1782
1783 procedure Kill_Current_Values
1784 (Ent : Entity_Id;
1785 Last_Assignment_Only : Boolean := False);
1786 -- This performs the same processing as described above for the form with
1787 -- no argument, but for the specific entity given. The call has no effect
1788 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1789 -- same meaning as for the call with no Ent.
1790
1791 procedure Kill_Size_Check_Code (E : Entity_Id);
1792 -- Called when an address clause or pragma Import is applied to an entity.
1793 -- If the entity is a variable or a constant, and size check code is
1794 -- present, this size check code is killed, since the object will not be
1795 -- allocated by the program.
1796
1797 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1798 -- The node N is an entity reference. This function determines whether the
1799 -- reference is for sure an assignment of the entity, returning True if
1800 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1801 -- direction. Cases which may possibly be assignments but are not known to
1802 -- be may return True from May_Be_Lvalue, but False from this function.
1803
1804 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1805 -- HSS is a handled statement sequence. This function returns the last
1806 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1807 -- such statement exists, Empty is returned.
1808
1809 function Matching_Static_Array_Bounds
1810 (L_Typ : Node_Id;
1811 R_Typ : Node_Id) return Boolean;
1812 -- L_Typ and R_Typ are two array types. Returns True when they have the
1813 -- same number of dimensions, and the same static bounds for each index
1814 -- position.
1815
1816 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1817 -- Given a node which designates the context of analysis and an origin in
1818 -- the tree, traverse from Root_Nod and mark all allocators as either
1819 -- dynamic or static depending on Context_Nod. Any incorrect marking is
1820 -- cleaned up during resolution.
1821
1822 function May_Be_Lvalue (N : Node_Id) return Boolean;
1823 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1824 -- An lvalue is defined as any expression which appears in a context where
1825 -- a name is required by the syntax, and the identity, rather than merely
1826 -- the value of the node is needed (for example, the prefix of an Access
1827 -- attribute is in this category). Note that, as implied by the name, this
1828 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1829 -- it returns True. It tries hard to get the answer right, but it is hard
1830 -- to guarantee this in all cases. Note that it is more possible to give
1831 -- correct answer if the tree is fully analyzed.
1832
1833 function Needs_One_Actual (E : Entity_Id) return Boolean;
1834 -- Returns True if a function has defaults for all but its first
1835 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1836 -- results from an indexing of a function call written in prefix form.
1837
1838 function New_Copy_List_Tree (List : List_Id) return List_Id;
1839 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1840 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1841 -- nodes (entities) either directly or indirectly using this function.
1842
1843 function New_Copy_Tree
1844 (Source : Node_Id;
1845 Map : Elist_Id := No_Elist;
1846 New_Sloc : Source_Ptr := No_Location;
1847 New_Scope : Entity_Id := Empty) return Node_Id;
1848 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1849 -- syntactic subtree, including recursively any descendants whose parent
1850 -- field references a copied node (descendants not linked to a copied node
1851 -- by the parent field are not copied, instead the copied tree references
1852 -- the same descendant as the original in this case, which is appropriate
1853 -- for non-syntactic fields such as Etype). The parent pointers in the
1854 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1855 -- The one exception to the rule of not copying semantic fields is that
1856 -- any implicit types attached to the subtree are duplicated, so that
1857 -- the copy contains a distinct set of implicit type entities. Thus this
1858 -- function is used when it is necessary to duplicate an analyzed tree,
1859 -- declared in the same or some other compilation unit. This function is
1860 -- declared here rather than in atree because it uses semantic information
1861 -- in particular concerning the structure of itypes and the generation of
1862 -- public symbols.
1863
1864 -- The Map argument, if set to a non-empty Elist, specifies a set of
1865 -- mappings to be applied to entities in the tree. The map has the form:
1866 --
1867 -- old entity 1
1868 -- new entity to replace references to entity 1
1869 -- old entity 2
1870 -- new entity to replace references to entity 2
1871 -- ...
1872 --
1873 -- The call destroys the contents of Map in this case
1874 --
1875 -- The parameter New_Sloc, if set to a value other than No_Location, is
1876 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1877 -- set to its default value No_Location, then the Sloc values of the
1878 -- nodes in the copy are simply copied from the corresponding original.
1879 --
1880 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1881 -- the default No_Location value, but is reset if New_Sloc is given, since
1882 -- in this case the result clearly is neither a source node or an exact
1883 -- copy of a source node.
1884 --
1885 -- The parameter New_Scope, if set to a value other than Empty, is the
1886 -- value to use as the Scope for any Itypes that are copied. The most
1887 -- typical value for this parameter, if given, is Current_Scope.
1888
1889 function New_External_Entity
1890 (Kind : Entity_Kind;
1891 Scope_Id : Entity_Id;
1892 Sloc_Value : Source_Ptr;
1893 Related_Id : Entity_Id;
1894 Suffix : Character;
1895 Suffix_Index : Nat := 0;
1896 Prefix : Character := ' ') return Entity_Id;
1897 -- This function creates an N_Defining_Identifier node for an internal
1898 -- created entity, such as an implicit type or subtype, or a record
1899 -- initialization procedure. The entity name is constructed with a call
1900 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1901 -- that the generated name may be referenced as a public entry, and the
1902 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1903 -- entity is for a type or subtype, the size/align fields are initialized
1904 -- to unknown (Uint_0).
1905
1906 function New_Internal_Entity
1907 (Kind : Entity_Kind;
1908 Scope_Id : Entity_Id;
1909 Sloc_Value : Source_Ptr;
1910 Id_Char : Character) return Entity_Id;
1911 -- This function is similar to New_External_Entity, except that the
1912 -- name is constructed by New_Internal_Name (Id_Char). This is used
1913 -- when the resulting entity does not have to be referenced as a
1914 -- public entity (and in this case Is_Public is not set).
1915
1916 procedure Next_Actual (Actual_Id : in out Node_Id);
1917 pragma Inline (Next_Actual);
1918 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1919 -- inline this procedural form, but not the functional form that follows.
1920
1921 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1922 -- Find next actual parameter in declaration order. As described for
1923 -- First_Actual, this is the next actual in the declaration order, not
1924 -- the call order, so this does not correspond to simply taking the
1925 -- next entry of the Parameter_Associations list. The argument is an
1926 -- actual previously returned by a call to First_Actual or Next_Actual.
1927 -- Note that the result produced is always an expression, not a parameter
1928 -- association node, even if named notation was used.
1929
1930 procedure Normalize_Actuals
1931 (N : Node_Id;
1932 S : Entity_Id;
1933 Report : Boolean;
1934 Success : out Boolean);
1935 -- Reorders lists of actuals according to names of formals, value returned
1936 -- in Success indicates success of reordering. For more details, see body.
1937 -- Errors are reported only if Report is set to True.
1938
1939 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1940 -- This routine is called if the sub-expression N maybe the target of
1941 -- an assignment (e.g. it is the left side of an assignment, used as
1942 -- an out parameters, or used as prefixes of access attributes). It
1943 -- sets May_Be_Modified in the associated entity if there is one,
1944 -- taking into account the rule that in the case of renamed objects,
1945 -- it is the flag in the renamed object that must be set.
1946 --
1947 -- The parameter Sure is set True if the modification is sure to occur
1948 -- (e.g. target of assignment, or out parameter), and to False if the
1949 -- modification is only potential (e.g. address of entity taken).
1950
1951 function Null_To_Null_Address_Convert_OK
1952 (N : Node_Id;
1953 Typ : Entity_Id := Empty) return Boolean;
1954 -- Return True if we are compiling in relaxed RM semantics mode and:
1955 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
1956 -- 2) N is a comparison operator, one of the operands is null, and the
1957 -- type of the other operand is a descendant of System.Address.
1958
1959 function Object_Access_Level (Obj : Node_Id) return Uint;
1960 -- Return the accessibility level of the view of the object Obj. For
1961 -- convenience, qualified expressions applied to object names are also
1962 -- allowed as actuals for this function.
1963
1964 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
1965 -- Retrieve the name of aspect or pragma N taking into account a possible
1966 -- rewrite and whether the pragma is generated from an aspect as the names
1967 -- may be different. The routine also deals with 'Class in which case it
1968 -- returns the following values:
1969 --
1970 -- Invariant -> Name_uInvariant
1971 -- Post'Class -> Name_uPost
1972 -- Pre'Class -> Name_uPre
1973 -- Type_Invariant -> Name_uType_Invariant
1974 -- Type_Invariant'Class -> Name_uType_Invariant
1975
1976 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1977 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1978 -- or overrides an inherited dispatching primitive S2, the original
1979 -- corresponding operation of S is the original corresponding operation of
1980 -- S2. Otherwise, it is S itself.
1981
1982 procedure Output_Entity (Id : Entity_Id);
1983 -- Print entity Id to standard output. The name of the entity appears in
1984 -- fully qualified form.
1985 --
1986 -- WARNING: this routine should be used in debugging scenarios such as
1987 -- tracking down undefined symbols as it is fairly low level.
1988
1989 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
1990 -- Print name Nam to standard output. The name appears in fully qualified
1991 -- form assuming it appears in scope Scop. Note that this may not reflect
1992 -- the final qualification as the entity which carries the name may be
1993 -- relocated to a different scope.
1994 --
1995 -- WARNING: this routine should be used in debugging scenarios such as
1996 -- tracking down undefined symbols as it is fairly low level.
1997
1998 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
1999 -- Given a policy, return the policy identifier associated with it. If no
2000 -- such policy is in effect, the value returned is No_Name.
2001
2002 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2003 -- Subp is the entity for a subprogram call. This function returns True if
2004 -- predicate tests are required for the arguments in this call (this is the
2005 -- normal case). It returns False for special cases where these predicate
2006 -- tests should be skipped (see body for details).
2007
2008 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2009 -- Returns True if the names of both entities correspond with matching
2010 -- primitives. This routine includes support for the case in which one
2011 -- or both entities correspond with entities built by Derive_Subprogram
2012 -- with a special name to avoid being overridden (i.e. return true in case
2013 -- of entities with names "nameP" and "name" or vice versa).
2014
2015 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2016 -- Returns some private component (if any) of the given Type_Id.
2017 -- Used to enforce the rules on visibility of operations on composite
2018 -- types, that depend on the full view of the component type. For a
2019 -- record type there may be several such components, we just return
2020 -- the first one.
2021
2022 procedure Process_End_Label
2023 (N : Node_Id;
2024 Typ : Character;
2025 Ent : Entity_Id);
2026 -- N is a node whose End_Label is to be processed, generating all
2027 -- appropriate cross-reference entries, and performing style checks
2028 -- for any identifier references in the end label. Typ is either
2029 -- 'e' or 't indicating the type of the cross-reference entity
2030 -- (e for spec, t for body, see Lib.Xref spec for details). The
2031 -- parameter Ent gives the entity to which the End_Label refers,
2032 -- and to which cross-references are to be generated.
2033
2034 procedure Propagate_Concurrent_Flags
2035 (Typ : Entity_Id;
2036 Comp_Typ : Entity_Id);
2037 -- Set Has_Task, Has_Protected and Has_Timing_Event on Typ when the flags
2038 -- are set on Comp_Typ. This follows the definition of these flags which
2039 -- are set (recursively) on any composite type which has a component marked
2040 -- by one of these flags. This procedure can only set flags for Typ, and
2041 -- never clear them. Comp_Typ is the type of a component or a parent.
2042
2043 procedure Propagate_DIC_Attributes
2044 (Typ : Entity_Id;
2045 From_Typ : Entity_Id);
2046 -- Inherit all Default_Initial_Condition-related attributes from type
2047 -- From_Typ. Typ is the destination type.
2048
2049 procedure Propagate_Invariant_Attributes
2050 (Typ : Entity_Id;
2051 From_Typ : Entity_Id);
2052 -- Inherit all invariant-related attributes form type From_Typ. Typ is the
2053 -- destination type.
2054
2055 procedure Record_Possible_Part_Of_Reference
2056 (Var_Id : Entity_Id;
2057 Ref : Node_Id);
2058 -- Save reference Ref to variable Var_Id when the variable is subject to
2059 -- pragma Part_Of. If the variable is known to be a constituent of a single
2060 -- protected/task type, the legality of the reference is verified and the
2061 -- save does not take place.
2062
2063 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2064 -- Determine whether entity Id is referenced within expression Expr
2065
2066 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2067 -- Returns True if the expression Expr contains any references to a generic
2068 -- type. This can only happen within a generic template.
2069
2070 procedure Remove_Homonym (E : Entity_Id);
2071 -- Removes E from the homonym chain
2072
2073 procedure Remove_Overloaded_Entity (Id : Entity_Id);
2074 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
2075 -- the primitive operations list of the associated controlling type. NOTE:
2076 -- the removal performed by this routine does not affect the visibility of
2077 -- existing homonyms.
2078
2079 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2080 -- Returns the name of E without Suffix
2081
2082 procedure Replace_Null_By_Null_Address (N : Node_Id);
2083 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
2084 -- RM semantics mode, and one of the operands is null. Replace null with
2085 -- System.Null_Address.
2086
2087 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2088 -- This is used to construct the second argument in a call to Rep_To_Pos
2089 -- which is Standard_True if range checks are enabled (E is an entity to
2090 -- which the Range_Checks_Suppressed test is applied), and Standard_False
2091 -- if range checks are suppressed. Loc is the location for the node that
2092 -- is returned (which is a New_Occurrence of the appropriate entity).
2093 --
2094 -- Note: one might think that it would be fine to always use True and
2095 -- to ignore the suppress in this case, but it is generally better to
2096 -- believe a request to suppress exceptions if possible, and further
2097 -- more there is at least one case in the generated code (the code for
2098 -- array assignment in a loop) that depends on this suppression.
2099
2100 procedure Require_Entity (N : Node_Id);
2101 -- N is a node which should have an entity value if it is an entity name.
2102 -- If not, then check if there were previous errors. If so, just fill
2103 -- in with Any_Id and ignore. Otherwise signal a program error exception.
2104 -- This is used as a defense mechanism against ill-formed trees caused by
2105 -- previous errors (particularly in -gnatq mode).
2106
2107 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
2108 -- Id is a type entity. The result is True when temporaries of this type
2109 -- need to be wrapped in a transient scope to be reclaimed properly when a
2110 -- secondary stack is in use. Examples of types requiring such wrapping are
2111 -- controlled types and variable-sized types including unconstrained
2112 -- arrays.
2113
2114 procedure Reset_Analyzed_Flags (N : Node_Id);
2115 -- Reset the Analyzed flags in all nodes of the tree whose root is N
2116
2117 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type);
2118 -- Set the current SPARK_Mode to whatever Mode denotes. This routime must
2119 -- be used in tandem with Save_SPARK_Mode_And_Set.
2120
2121 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2122 -- Return true if Subp is a function that returns an unconstrained type
2123
2124 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
2125 -- Similar to attribute Root_Type, but this version always follows the
2126 -- Full_View of a private type (if available) while searching for the
2127 -- ultimate derivation ancestor.
2128
2129 function Safe_To_Capture_Value
2130 (N : Node_Id;
2131 Ent : Entity_Id;
2132 Cond : Boolean := False) return Boolean;
2133 -- The caller is interested in capturing a value (either the current value,
2134 -- or an indication that the value is non-null) for the given entity Ent.
2135 -- This value can only be captured if sequential execution semantics can be
2136 -- properly guaranteed so that a subsequent reference will indeed be sure
2137 -- that this current value indication is correct. The node N is the
2138 -- construct which resulted in the possible capture of the value (this
2139 -- is used to check if we are in a conditional).
2140 --
2141 -- Cond is used to skip the test for being inside a conditional. It is used
2142 -- in the case of capturing values from if/while tests, which already do a
2143 -- proper job of handling scoping issues without this help.
2144 --
2145 -- The only entities whose values can be captured are OUT and IN OUT formal
2146 -- parameters, and variables unless Cond is True, in which case we also
2147 -- allow IN formals, loop parameters and constants, where we cannot ever
2148 -- capture actual value information, but we can capture conditional tests.
2149
2150 function Same_Name (N1, N2 : Node_Id) return Boolean;
2151 -- Determine if two (possibly expanded) names are the same name. This is
2152 -- a purely syntactic test, and N1 and N2 need not be analyzed.
2153
2154 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
2155 -- Determine if Node1 and Node2 are known to designate the same object.
2156 -- This is a semantic test and both nodes must be fully analyzed. A result
2157 -- of True is decisively correct. A result of False does not necessarily
2158 -- mean that different objects are designated, just that this could not
2159 -- be reliably determined at compile time.
2160
2161 function Same_Type (T1, T2 : Entity_Id) return Boolean;
2162 -- Determines if T1 and T2 represent exactly the same type. Two types
2163 -- are the same if they are identical, or if one is an unconstrained
2164 -- subtype of the other, or they are both common subtypes of the same
2165 -- type with identical constraints. The result returned is conservative.
2166 -- It is True if the types are known to be the same, but a result of
2167 -- False is indecisive (e.g. the compiler may not be able to tell that
2168 -- two constraints are identical).
2169
2170 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
2171 -- Determines if Node1 and Node2 are known to be the same value, which is
2172 -- true if they are both compile time known values and have the same value,
2173 -- or if they are the same object (in the sense of function Same_Object).
2174 -- A result of False does not necessarily mean they have different values,
2175 -- just that it is not possible to determine they have the same value.
2176
2177 procedure Save_SPARK_Mode_And_Set
2178 (Context : Entity_Id;
2179 Mode : out SPARK_Mode_Type);
2180 -- Save the current SPARK_Mode in effect in Mode. Establish the SPARK_Mode
2181 -- (if any) of a package or a subprogram denoted by Context. This routine
2182 -- must be used in tandem with Restore_SPARK_Mode.
2183
2184 function Scalar_Part_Present (T : Entity_Id) return Boolean;
2185 -- Tests if type T can be determined at compile time to have at least one
2186 -- scalar part in the sense of the Valid_Scalars attribute. Returns True if
2187 -- this is the case, and False if no scalar parts are present (meaning that
2188 -- the result of Valid_Scalars applied to T is always vacuously True).
2189
2190 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
2191 -- Determines if the entity Scope1 is the same as Scope2, or if it is
2192 -- inside it, where both entities represent scopes. Note that scopes
2193 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
2194 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
2195
2196 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
2197 -- Like Scope_Within_Or_Same, except that this function returns
2198 -- False in the case where Scope1 and Scope2 are the same scope.
2199
2200 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
2201 -- Same as Basic_Set_Convention, but with an extra check for access types.
2202 -- In particular, if E is an access-to-subprogram type, and Val is a
2203 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
2204 -- Also, if the Etype of E is set and is an anonymous access type with
2205 -- no convention set, this anonymous type inherits the convention of E.
2206
2207 procedure Set_Current_Entity (E : Entity_Id);
2208 pragma Inline (Set_Current_Entity);
2209 -- Establish the entity E as the currently visible definition of its
2210 -- associated name (i.e. the Node_Id associated with its name).
2211
2212 procedure Set_Debug_Info_Needed (T : Entity_Id);
2213 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
2214 -- that are needed by T (for an object, the type of the object is needed,
2215 -- and for a type, various subsidiary types are needed -- see body for
2216 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
2217 -- This routine should always be used instead of Set_Needs_Debug_Info to
2218 -- ensure that subsidiary entities are properly handled.
2219
2220 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
2221 -- This procedure has the same calling sequence as Set_Entity, but it
2222 -- performs additional checks as follows:
2223 --
2224 -- If Style_Check is set, then it calls a style checking routine which
2225 -- can check identifier spelling style. This procedure also takes care
2226 -- of checking the restriction No_Implementation_Identifiers.
2227 --
2228 -- If restriction No_Abort_Statements is set, then it checks that the
2229 -- entity is not Ada.Task_Identification.Abort_Task.
2230 --
2231 -- If restriction No_Dynamic_Attachment is set, then it checks that the
2232 -- entity is not one of the restricted names for this restriction.
2233 --
2234 -- If restriction No_Long_Long_Integers is set, then it checks that the
2235 -- entity is not Standard.Long_Long_Integer.
2236 --
2237 -- If restriction No_Implementation_Identifiers is set, then it checks
2238 -- that the entity is not implementation defined.
2239
2240 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
2241 pragma Inline (Set_Name_Entity_Id);
2242 -- Sets the Entity_Id value associated with the given name, which is the
2243 -- Id of the innermost visible entity with the given name. See the body
2244 -- of package Sem_Ch8 for further details on the handling of visibility.
2245
2246 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
2247 -- The arguments may be parameter associations, whose descendants
2248 -- are the optional formal name and the actual parameter. Positional
2249 -- parameters are already members of a list, and do not need to be
2250 -- chained separately. See also First_Actual and Next_Actual.
2251
2252 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
2253 pragma Inline (Set_Optimize_Alignment_Flags);
2254 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
2255
2256 procedure Set_Public_Status (Id : Entity_Id);
2257 -- If an entity (visible or otherwise) is defined in a library
2258 -- package, or a package that is itself public, then this subprogram
2259 -- labels the entity public as well.
2260
2261 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
2262 -- N is the node for either a left hand side (Out_Param set to False),
2263 -- or an Out or In_Out parameter (Out_Param set to True). If there is
2264 -- an assignable entity being referenced, then the appropriate flag
2265 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
2266 -- if Out_Param is True) is set True, and the other flag set False.
2267
2268 procedure Set_Scope_Is_Transient (V : Boolean := True);
2269 -- Set the flag Is_Transient of the current scope
2270
2271 procedure Set_Size_Info (T1, T2 : Entity_Id);
2272 pragma Inline (Set_Size_Info);
2273 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
2274 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
2275 -- in the fixed-point and discrete cases, and also copies the alignment
2276 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
2277 -- separately set if this is required to be copied also.
2278
2279 function Scope_Is_Transient return Boolean;
2280 -- True if the current scope is transient
2281
2282 function Static_Boolean (N : Node_Id) return Uint;
2283 -- This function analyzes the given expression node and then resolves it
2284 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
2285 -- returned corresponding to the value, otherwise an error message is
2286 -- output and No_Uint is returned.
2287
2288 function Static_Integer (N : Node_Id) return Uint;
2289 -- This function analyzes the given expression node and then resolves it
2290 -- as any integer type. If the result is static, then the value of the
2291 -- universal expression is returned, otherwise an error message is output
2292 -- and a value of No_Uint is returned.
2293
2294 function Statically_Different (E1, E2 : Node_Id) return Boolean;
2295 -- Return True if it can be statically determined that the Expressions
2296 -- E1 and E2 refer to different objects
2297
2298 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
2299 -- Determine whether node N is a loop statement subject to at least one
2300 -- 'Loop_Entry attribute.
2301
2302 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
2303 -- Return the accessibility level of the view denoted by Subp
2304
2305 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
2306 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
2307 -- Typ is properly sized and aligned).
2308
2309 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
2310 -- Print debugging information on entry to each unit being analyzed
2311
2312 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
2313 -- Move a list of entities from one scope to another, and recompute
2314 -- Is_Public based upon the new scope.
2315
2316 function Type_Access_Level (Typ : Entity_Id) return Uint;
2317 -- Return the accessibility level of Typ
2318
2319 function Type_Without_Stream_Operation
2320 (T : Entity_Id;
2321 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
2322 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2323 -- is active then we cannot generate stream subprograms for composite types
2324 -- with elementary subcomponents that lack user-defined stream subprograms.
2325 -- This predicate determines whether a type has such an elementary
2326 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
2327 -- prevents the construction of a composite stream operation. If Op is
2328 -- specified we check only for the given stream operation.
2329
2330 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
2331 -- Return the entity which represents declaration N, so that different
2332 -- views of the same entity have the same unique defining entity:
2333 -- * entry declaration and entry body
2334 -- * package spec, package body, and package body stub
2335 -- * protected type declaration, protected body, and protected body stub
2336 -- * private view and full view of a deferred constant
2337 -- * private view and full view of a type
2338 -- * subprogram declaration, subprogram, and subprogram body stub
2339 -- * task type declaration, task body, and task body stub
2340 -- In other cases, return the defining entity for N.
2341
2342 function Unique_Entity (E : Entity_Id) return Entity_Id;
2343 -- Return the unique entity for entity E, which would be returned by
2344 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
2345
2346 function Unique_Name (E : Entity_Id) return String;
2347 -- Return a unique name for entity E, which could be used to identify E
2348 -- across compilation units.
2349
2350 function Unit_Is_Visible (U : Entity_Id) return Boolean;
2351 -- Determine whether a compilation unit is visible in the current context,
2352 -- because there is a with_clause that makes the unit available. Used to
2353 -- provide better messages on common visiblity errors on operators.
2354
2355 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
2356 -- Yields Universal_Integer or Universal_Real if this is a candidate
2357
2358 function Unqualify (Expr : Node_Id) return Node_Id;
2359 pragma Inline (Unqualify);
2360 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2361 -- returns X. If Expr is not a qualified expression, returns Expr.
2362
2363 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
2364 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2365 -- of a type extension or private extension declaration. If the full-view
2366 -- of private parents and progenitors is available then it is used to
2367 -- generate the list of visible ancestors; otherwise their partial
2368 -- view is added to the resulting list.
2369
2370 function Within_Init_Proc return Boolean;
2371 -- Determines if Current_Scope is within an init proc
2372
2373 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
2374 -- Returns True if entity E is declared within scope S
2375
2376 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
2377 -- Output error message for incorrectly typed expression. Expr is the node
2378 -- for the incorrectly typed construct (Etype (Expr) is the type found),
2379 -- and Expected_Type is the entity for the expected type. Note that Expr
2380 -- does not have to be a subexpression, anything with an Etype field may
2381 -- be used.
2382
2383 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
2384 -- Determine whether type Typ "yields synchronized object" as specified by
2385 -- SPARK RM 9.1. To qualify as such, a type must be
2386 -- * An array type whose element type yields a synchronized object
2387 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2388 -- * A protected type
2389 -- * A record type or type extension without defaulted discriminants
2390 -- whose components are of a type that yields a synchronized object.
2391 -- * A synchronized interface type
2392 -- * A task type
2393
2394 function Yields_Universal_Type (N : Node_Id) return Boolean;
2395 -- Determine whether unanalyzed node N yields a universal type
2396
2397 end Sem_Util;