sem_prag.adb, [...]: Minor reformatting.
[gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Snames; use Snames;
32 with Types; use Types;
33 with Uintp; use Uintp;
34 with Urealp; use Urealp;
35
36 package Sem_Util is
37
38 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
39 -- Given a type that implements interfaces look for its associated
40 -- definition node and return its list of interfaces.
41
42 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
43 -- Add A to the list of access types to process when expanding the
44 -- freeze node of E.
45
46 procedure Add_Global_Declaration (N : Node_Id);
47 -- These procedures adds a declaration N at the library level, to be
48 -- elaborated before any other code in the unit. It is used for example
49 -- for the entity that marks whether a unit has been elaborated. The
50 -- declaration is added to the Declarations list of the Aux_Decls_Node
51 -- for the current unit. The declarations are added in the current scope,
52 -- so the caller should push a new scope as required before the call.
53
54 function Addressable (V : Uint) return Boolean;
55 function Addressable (V : Int) return Boolean;
56 pragma Inline (Addressable);
57 -- Returns True if the value of V is the word size of an addressable
58 -- factor of the word size (typically 8, 16, 32 or 64).
59
60 function Alignment_In_Bits (E : Entity_Id) return Uint;
61 -- If the alignment of the type or object E is currently known to the
62 -- compiler, then this function returns the alignment value in bits.
63 -- Otherwise Uint_0 is returned, indicating that the alignment of the
64 -- entity is not yet known to the compiler.
65
66 procedure Append_Inherited_Subprogram (S : Entity_Id);
67 -- If the parent of the operation is declared in the visible part of
68 -- the current scope, the inherited operation is visible even though the
69 -- derived type that inherits the operation may be completed in the private
70 -- part of the current package.
71
72 procedure Apply_Compile_Time_Constraint_Error
73 (N : Node_Id;
74 Msg : String;
75 Reason : RT_Exception_Code;
76 Ent : Entity_Id := Empty;
77 Typ : Entity_Id := Empty;
78 Loc : Source_Ptr := No_Location;
79 Rep : Boolean := True;
80 Warn : Boolean := False);
81 -- N is a subexpression which will raise constraint error when evaluated
82 -- at runtime. Msg is a message that explains the reason for raising the
83 -- exception. The last character is ? if the message is always a warning,
84 -- even in Ada 95, and is not a ? if the message represents an illegality
85 -- (because of violation of static expression rules) in Ada 95 (but not
86 -- in Ada 83). Typically this routine posts all messages at the Sloc of
87 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
88 -- the message. After posting the appropriate message, and if the flag
89 -- Rep is set, this routine replaces the expression with an appropriate
90 -- N_Raise_Constraint_Error node using the given Reason code. This node
91 -- is then marked as being static if the original node is static, but
92 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
93 -- The error message may contain a } or & insertion character. This
94 -- normally references Etype (N), unless the Ent argument is given
95 -- explicitly, in which case it is used instead. The type of the raise
96 -- node that is built is normally Etype (N), but if the Typ parameter
97 -- is present, this is used instead. Warn is normally False. If it is
98 -- True then the message is treated as a warning even though it does
99 -- not end with a ? (this is used when the caller wants to parameterize
100 -- whether an error or warning is given.
101
102 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
103 -- If at the point of declaration an array type has a private or limited
104 -- component, several array operations are not avaiable on the type, and
105 -- the array type is flagged accordingly. If in the immediate scope of
106 -- the array type the component becomes non-private or non-limited, these
107 -- operations become avaiable. This can happen if the scopes of both types
108 -- are open, and the scope of the array is not outside the scope of the
109 -- component.
110
111 procedure Bad_Attribute
112 (N : Node_Id;
113 Nam : Name_Id;
114 Warn : Boolean := False);
115 -- Called when node N is expected to contain a valid attribute name, and
116 -- Nam is found instead. If Warn is set True this is a warning, else this
117 -- is an error.
118
119 procedure Bad_Predicated_Subtype_Use
120 (Msg : String;
121 N : Node_Id;
122 Typ : Entity_Id);
123 -- This is called when Typ, a predicated subtype, is used in a context
124 -- which does not allow the use of a predicated subtype. Msg is passed
125 -- to Error_Msg_FE to output an appropriate message using N as the
126 -- location, and Typ as the entity. The caller must set up any insertions
127 -- other than the & for the type itself. Note that if Typ is a generic
128 -- actual type, then the message will be output as a warning, and a
129 -- raise Program_Error is inserted using Insert_Action with node N as
130 -- the insertion point. Node N also supplies the source location for
131 -- construction of the raise node. If Typ is NOT a type with predicates
132 -- this call has no effect.
133
134 function Build_Actual_Subtype
135 (T : Entity_Id;
136 N : Node_Or_Entity_Id) return Node_Id;
137 -- Build an anonymous subtype for an entity or expression, using the
138 -- bounds of the entity or the discriminants of the enclosing record.
139 -- T is the type for which the actual subtype is required, and N is either
140 -- a defining identifier, or any subexpression.
141
142 function Build_Actual_Subtype_Of_Component
143 (T : Entity_Id;
144 N : Node_Id) return Node_Id;
145 -- Determine whether a selected component has a type that depends on
146 -- discriminants, and build actual subtype for it if so.
147
148 function Build_Default_Subtype
149 (T : Entity_Id;
150 N : Node_Id) return Entity_Id;
151 -- If T is an unconstrained type with defaulted discriminants, build a
152 -- subtype constrained by the default values, insert the subtype
153 -- declaration in the tree before N, and return the entity of that
154 -- subtype. Otherwise, simply return T.
155
156 function Build_Discriminal_Subtype_Of_Component
157 (T : Entity_Id) return Node_Id;
158 -- Determine whether a record component has a type that depends on
159 -- discriminants, and build actual subtype for it if so.
160
161 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
162 -- Given a compilation unit node N, allocate an elaboration counter for
163 -- the compilation unit, and install it in the Elaboration_Entity field
164 -- of Spec_Id, the entity for the compilation unit.
165
166 procedure Build_Explicit_Dereference
167 (Expr : Node_Id;
168 Disc : Entity_Id);
169 -- AI05-139: Names with implicit dereference. If the expression N is a
170 -- reference type and the context imposes the corresponding designated
171 -- type, convert N into N.Disc.all. Such expressions are always over-
172 -- loaded with both interpretations, and the dereference interpretation
173 -- carries the name of the reference discriminant.
174
175 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
176 -- Returns True if the expression cannot possibly raise Constraint_Error.
177 -- The response is conservative in the sense that a result of False does
178 -- not necessarily mean that CE could be raised, but a response of True
179 -- means that for sure CE cannot be raised.
180
181 procedure Check_Dynamically_Tagged_Expression
182 (Expr : Node_Id;
183 Typ : Entity_Id;
184 Related_Nod : Node_Id);
185 -- Check wrong use of dynamically tagged expression
186
187 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
188 -- Verify that the full declaration of type T has been seen. If not, place
189 -- error message on node N. Used in object declarations, type conversions
190 -- and qualified expressions.
191
192 procedure Check_Function_Writable_Actuals (N : Node_Id);
193 -- (Ada 2012): If the construct N has two or more direct constituents that
194 -- are names or expressions whose evaluation may occur in an arbitrary
195 -- order, at least one of which contains a function call with an in out or
196 -- out parameter, then the construct is legal only if: for each name that
197 -- is passed as a parameter of mode in out or out to some inner function
198 -- call C2 (not including the construct N itself), there is no other name
199 -- anywhere within a direct constituent of the construct C other than
200 -- the one containing C2, that is known to refer to the same object (RM
201 -- 6.4.1(6.17/3)).
202
203 procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id);
204 -- AI05-139-2: Accessors and iterators for containers. This procedure
205 -- checks whether T is a reference type, and if so it adds an interprettion
206 -- to Expr whose type is the designated type of the reference_discriminant.
207
208 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
209 -- Within a protected function, the current object is a constant, and
210 -- internal calls to a procedure or entry are illegal. Similarly, other
211 -- uses of a protected procedure in a renaming or a generic instantiation
212 -- in the context of a protected function are illegal (AI05-0225).
213
214 procedure Check_Later_Vs_Basic_Declarations
215 (Decls : List_Id;
216 During_Parsing : Boolean);
217 -- If During_Parsing is True, check for misplacement of later vs basic
218 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
219 -- restriction is set, do the same: although SPARK 95 removes the
220 -- distinction between initial and later declarative items, the distinction
221 -- remains in the Examiner (JB01-005). Note that the Examiner does not
222 -- count package declarations in later declarative items.
223
224 procedure Check_Nested_Access (Ent : Entity_Id);
225 -- Check whether Ent denotes an entity declared in an uplevel scope, which
226 -- is accessed inside a nested procedure, and set Has_Up_Level_Access flag
227 -- accordingly. This is currently only enabled for VM_Target /= No_VM.
228
229 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
230 -- N is one of the statement forms that is a potentially blocking
231 -- operation. If it appears within a protected action, emit warning.
232
233 procedure Check_Unprotected_Access
234 (Context : Node_Id;
235 Expr : Node_Id);
236 -- Check whether the expression is a pointer to a protected component,
237 -- and the context is external to the protected operation, to warn against
238 -- a possible unlocked access to data.
239
240 procedure Check_VMS (Construct : Node_Id);
241 -- Check that this the target is OpenVMS, and if so, return with no effect,
242 -- otherwise post an error noting this can only be used with OpenVMS ports.
243 -- The argument is the construct in question and is used to post the error
244 -- message.
245
246 procedure Collect_Interfaces
247 (T : Entity_Id;
248 Ifaces_List : out Elist_Id;
249 Exclude_Parents : Boolean := False;
250 Use_Full_View : Boolean := True);
251 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
252 -- directly or indirectly implemented by T. Exclude_Parents is used to
253 -- avoid the addition of inherited interfaces to the generated list.
254 -- Use_Full_View is used to collect the interfaces using the full-view
255 -- (if available).
256
257 procedure Collect_Interface_Components
258 (Tagged_Type : Entity_Id;
259 Components_List : out Elist_Id);
260 -- Ada 2005 (AI-251): Collect all the tag components associated with the
261 -- secondary dispatch tables of a tagged type.
262
263 procedure Collect_Interfaces_Info
264 (T : Entity_Id;
265 Ifaces_List : out Elist_Id;
266 Components_List : out Elist_Id;
267 Tags_List : out Elist_Id);
268 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
269 -- the record component and tag associated with each of these interfaces.
270 -- On exit Ifaces_List, Components_List and Tags_List have the same number
271 -- of elements, and elements at the same position on these tables provide
272 -- information on the same interface type.
273
274 procedure Collect_Parents
275 (T : Entity_Id;
276 List : out Elist_Id;
277 Use_Full_View : Boolean := True);
278 -- Collect all the parents of Typ. Use_Full_View is used to collect them
279 -- using the full-view of private parents (if available).
280
281 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
282 -- Called upon type derivation and extension. We scan the declarative part
283 -- in which the type appears, and collect subprograms that have one
284 -- subsidiary subtype of the type. These subprograms can only appear after
285 -- the type itself.
286
287 function Compile_Time_Constraint_Error
288 (N : Node_Id;
289 Msg : String;
290 Ent : Entity_Id := Empty;
291 Loc : Source_Ptr := No_Location;
292 Warn : Boolean := False) return Node_Id;
293 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
294 -- generates a warning (or error) message in the same manner, but it does
295 -- not replace any nodes. For convenience, the function always returns its
296 -- first argument. The message is a warning if the message ends with ?, or
297 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
298
299 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
300 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
301 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
302
303 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
304 -- Utility to create a parameter profile for a new subprogram spec, when
305 -- the subprogram has a body that acts as spec. This is done for some cases
306 -- of inlining, and for private protected ops. Also used to create bodies
307 -- for stubbed subprograms.
308
309 function Copy_Component_List
310 (R_Typ : Entity_Id;
311 Loc : Source_Ptr) return List_Id;
312 -- Copy components from record type R_Typ that come from source. Used to
313 -- create a new compatible record type. Loc is the source location assigned
314 -- to the created nodes.
315
316 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
317 -- If a type is a generic actual type, return the corresponding formal in
318 -- the generic parent unit. There is no direct link in the tree for this
319 -- attribute, except in the case of formal private and derived types.
320 -- Possible optimization???
321
322 function Current_Entity (N : Node_Id) return Entity_Id;
323 pragma Inline (Current_Entity);
324 -- Find the currently visible definition for a given identifier, that is to
325 -- say the first entry in the visibility chain for the Chars of N.
326
327 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
328 -- Find whether there is a previous definition for identifier N in the
329 -- current scope. Because declarations for a scope are not necessarily
330 -- contiguous (e.g. for packages) the first entry on the visibility chain
331 -- for N is not necessarily in the current scope.
332
333 function Current_Scope return Entity_Id;
334 -- Get entity representing current scope
335
336 function Current_Subprogram return Entity_Id;
337 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
338 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
339 -- Current_Scope is returned. The returned value is Empty if this is called
340 -- from a library package which is not within any subprogram.
341
342 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
343 -- Same as Type_Access_Level, except that if the type is the type of an Ada
344 -- 2012 stand-alone object of an anonymous access type, then return the
345 -- static accesssibility level of the object. In that case, the dynamic
346 -- accessibility level of the object may take on values in a range. The low
347 -- bound of of that range is returned by Type_Access_Level; this function
348 -- yields the high bound of that range. Also differs from Type_Access_Level
349 -- in the case of a descendant of a generic formal type (returns Int'Last
350 -- instead of 0).
351
352 function Defining_Entity (N : Node_Id) return Entity_Id;
353 -- Given a declaration N, returns the associated defining entity. If the
354 -- declaration has a specification, the entity is obtained from the
355 -- specification. If the declaration has a defining unit name, then the
356 -- defining entity is obtained from the defining unit name ignoring any
357 -- child unit prefixes.
358
359 function Denotes_Discriminant
360 (N : Node_Id;
361 Check_Concurrent : Boolean := False) return Boolean;
362 -- Returns True if node N is an Entity_Name node for a discriminant. If the
363 -- flag Check_Concurrent is true, function also returns true when N denotes
364 -- the discriminal of the discriminant of a concurrent type. This is needed
365 -- to disable some optimizations on private components of protected types,
366 -- and constraint checks on entry families constrained by discriminants.
367
368 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
369 -- Detect suspicious overlapping between actuals in a call, when both are
370 -- writable (RM 2012 6.4.1(6.4/3))
371
372 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
373 -- Functions to detect suspicious overlapping between actuals in a call,
374 -- when one of them is writable. The predicates are those proposed in
375 -- AI05-0144, to detect dangerous order dependence in complex calls.
376 -- I would add a parameter Warn which enables more extensive testing of
377 -- cases as we find appropriate when we are only warning ??? Or perhaps
378 -- return an indication of (Error, Warn, OK) ???
379
380 function Denotes_Variable (N : Node_Id) return Boolean;
381 -- Returns True if node N denotes a single variable without parentheses
382
383 function Depends_On_Discriminant (N : Node_Id) return Boolean;
384 -- Returns True if N denotes a discriminant or if N is a range, a subtype
385 -- indication or a scalar subtype where one of the bounds is a
386 -- discriminant.
387
388 function Designate_Same_Unit
389 (Name1 : Node_Id;
390 Name2 : Node_Id) return Boolean;
391 -- Return true if Name1 and Name2 designate the same unit name; each of
392 -- these names is supposed to be a selected component name, an expanded
393 -- name, a defining program unit name or an identifier.
394
395 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
396 -- Expr should be an expression of an access type. Builds an integer
397 -- literal except in cases involving anonymous access types where
398 -- accessibility levels are tracked at runtime (access parameters and Ada
399 -- 2012 stand-alone objects).
400
401 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
402 -- Same as Einfo.Extra_Accessibility except thtat object renames
403 -- are looked through.
404
405 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
406 -- Returns the enclosing N_Compilation_Unit Node that is the root of a
407 -- subtree containing N.
408
409 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
410 -- Returns the closest ancestor of Typ that is a CPP type.
411
412 function Enclosing_Generic_Body
413 (N : Node_Id) return Node_Id;
414 -- Returns the Node_Id associated with the innermost enclosing generic
415 -- body, if any. If none, then returns Empty.
416
417 function Enclosing_Generic_Unit
418 (N : Node_Id) return Node_Id;
419 -- Returns the Node_Id associated with the innermost enclosing generic
420 -- unit, if any. If none, then returns Empty.
421
422 function Enclosing_Lib_Unit_Entity
423 (E : Entity_Id := Current_Scope) return Entity_Id;
424 -- Returns the entity of enclosing library unit node which is the
425 -- root of the current scope (which must not be Standard_Standard, and the
426 -- caller is responsible for ensuring this condition) or other specified
427 -- entity.
428
429 function Enclosing_Package (E : Entity_Id) return Entity_Id;
430 -- Utility function to return the Ada entity of the package enclosing
431 -- the entity E, if any. Returns Empty if no enclosing package.
432
433 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
434 -- Utility function to return the Ada entity of the subprogram enclosing
435 -- the entity E, if any. Returns Empty if no enclosing subprogram.
436
437 procedure Ensure_Freeze_Node (E : Entity_Id);
438 -- Make sure a freeze node is allocated for entity E. If necessary, build
439 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
440
441 procedure Enter_Name (Def_Id : Entity_Id);
442 -- Insert new name in symbol table of current scope with check for
443 -- duplications (error message is issued if a conflict is found).
444 -- Note: Enter_Name is not used for overloadable entities, instead these
445 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
446
447 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
448 -- This procedure is called after issuing a message complaining about an
449 -- inappropriate use of limited type T. If useful, it adds additional
450 -- continuation lines to the message explaining why type T is limited.
451 -- Messages are placed at node N.
452
453 procedure Find_Actual
454 (N : Node_Id;
455 Formal : out Entity_Id;
456 Call : out Node_Id);
457 -- Determines if the node N is an actual parameter of a function of a
458 -- procedure call. If so, then Formal points to the entity for the formal
459 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
460 -- Call is set to the node for the corresponding call. If the node N is not
461 -- an actual parameter then Formal and Call are set to Empty.
462
463 function Find_Corresponding_Discriminant
464 (Id : Node_Id;
465 Typ : Entity_Id) return Entity_Id;
466 -- Because discriminants may have different names in a generic unit and in
467 -- an instance, they are resolved positionally when possible. A reference
468 -- to a discriminant carries the discriminant that it denotes when it is
469 -- analyzed. Subsequent uses of this id on a different type denotes the
470 -- discriminant at the same position in this new type.
471
472 procedure Find_Overlaid_Entity
473 (N : Node_Id;
474 Ent : out Entity_Id;
475 Off : out Boolean);
476 -- The node N should be an address representation clause. Determines if
477 -- the target expression is the address of an entity with an optional
478 -- offset. If so, set Ent to the entity and, if there is an offset, set
479 -- Off to True, otherwise to False. If N is not an address representation
480 -- clause, or if it is not possible to determine that the address is of
481 -- this form, then set Ent to Empty.
482
483 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
484 -- Return the type of formal parameter Param as determined by its
485 -- specification.
486
487 function Find_Static_Alternative (N : Node_Id) return Node_Id;
488 -- N is a case statement whose expression is a compile-time value.
489 -- Determine the alternative chosen, so that the code of non-selected
490 -- alternatives, and the warnings that may apply to them, are removed.
491
492 function Find_Body_Discriminal
493 (Spec_Discriminant : Entity_Id) return Entity_Id;
494 -- Given a discriminant of the record type that implements a task or
495 -- protected type, return the discriminal of the corresponding discriminant
496 -- of the actual concurrent type.
497
498 function First_Actual (Node : Node_Id) return Node_Id;
499 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
500 -- result returned is the first actual parameter in declaration order
501 -- (not the order of parameters as they appeared in the source, which
502 -- can be quite different as a result of the use of named parameters).
503 -- Empty is returned for a call with no parameters. The procedure for
504 -- iterating through the actuals in declaration order is to use this
505 -- function to find the first actual, and then use Next_Actual to obtain
506 -- the next actual in declaration order. Note that the value returned
507 -- is always the expression (not the N_Parameter_Association nodes,
508 -- even if named association is used).
509
510 procedure Gather_Components
511 (Typ : Entity_Id;
512 Comp_List : Node_Id;
513 Governed_By : List_Id;
514 Into : Elist_Id;
515 Report_Errors : out Boolean);
516 -- The purpose of this procedure is to gather the valid components in a
517 -- record type according to the values of its discriminants, in order to
518 -- validate the components of a record aggregate.
519 --
520 -- Typ is the type of the aggregate when its constrained discriminants
521 -- need to be collected, otherwise it is Empty.
522 --
523 -- Comp_List is an N_Component_List node.
524 --
525 -- Governed_By is a list of N_Component_Association nodes, where each
526 -- choice list contains the name of a discriminant and the expression
527 -- field gives its value. The values of the discriminants governing
528 -- the (possibly nested) variant parts in Comp_List are found in this
529 -- Component_Association List.
530 --
531 -- Into is the list where the valid components are appended. Note that
532 -- Into need not be an Empty list. If it's not, components are attached
533 -- to its tail.
534 --
535 -- Report_Errors is set to True if the values of the discriminants are
536 -- non-static.
537 --
538 -- This procedure is also used when building a record subtype. If the
539 -- discriminant constraint of the subtype is static, the components of the
540 -- subtype are only those of the variants selected by the values of the
541 -- discriminants. Otherwise all components of the parent must be included
542 -- in the subtype for semantic analysis.
543
544 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
545 -- Given a node for an expression, obtain the actual subtype of the
546 -- expression. In the case of a parameter where the formal is an
547 -- unconstrained array or discriminated type, this will be the previously
548 -- constructed subtype of the actual. Note that this is not quite the
549 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
550 -- it is the subtype of the value of the actual. The actual subtype is also
551 -- returned in other cases where it has already been constructed for an
552 -- object. Otherwise the expression type is returned unchanged, except for
553 -- the case of an unconstrained array type, where an actual subtype is
554 -- created, using Insert_Actions if necessary to insert any associated
555 -- actions.
556
557 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
558 -- This is like Get_Actual_Subtype, except that it never constructs an
559 -- actual subtype. If an actual subtype is already available, i.e. the
560 -- Actual_Subtype field of the corresponding entity is set, then it is
561 -- returned. Otherwise the Etype of the node is returned.
562
563 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
564 -- Return the body node for a stub (subprogram or package)
565
566 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
567 -- This is used to construct the string literal node representing a
568 -- default external name, i.e. one that is constructed from the name of an
569 -- entity, or (in the case of extended DEC import/export pragmas, an
570 -- identifier provided as the external name. Letters in the name are
571 -- according to the setting of Opt.External_Name_Default_Casing.
572
573 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
574 -- If expression N references a part of an object, return this object.
575 -- Otherwise return Empty. Expression N should have been resolved already.
576
577 function Get_Ensures_From_CTC_Pragma (N : Node_Id) return Node_Id;
578 -- Return the Ensures component of Test_Case pragma N, or Empty otherwise
579 -- Bad name now that this no longer applies to Contract_Case ???
580
581 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
582 -- Returns the true generic entity in an instantiation. If the name in the
583 -- instantiation is a renaming, the function returns the renamed generic.
584
585 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
586 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
587 -- in a child unit a derived type is within the derivation class of an
588 -- ancestor declared in a parent unit, even if there is an intermediate
589 -- derivation that does not see the full view of that ancestor.
590
591 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
592 -- This procedure assigns to L and H respectively the values of the low and
593 -- high bounds of node N, which must be a range, subtype indication, or the
594 -- name of a scalar subtype. The result in L, H may be set to Error if
595 -- there was an earlier error in the range.
596
597 function Get_Enum_Lit_From_Pos
598 (T : Entity_Id;
599 Pos : Uint;
600 Loc : Source_Ptr) return Node_Id;
601 -- This function returns an identifier denoting the E_Enumeration_Literal
602 -- entity for the specified value from the enumeration type or subtype T.
603 -- The second argument is the Pos value, which is assumed to be in range.
604 -- The third argument supplies a source location for constructed nodes
605 -- returned by this function.
606
607 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
608 -- Retrieve the fully expanded name of the library unit declared by
609 -- Decl_Node into the name buffer.
610
611 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
612 pragma Inline (Get_Name_Entity_Id);
613 -- An entity value is associated with each name in the name table. The
614 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
615 -- is the innermost visible entity with the given name. See the body of
616 -- Sem_Ch8 for further details on handling of entity visibility.
617
618 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
619 -- Return the Name component of Test_Case pragma N
620 -- Bad name now that this no longer applies to Contract_Case ???
621
622 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
623 pragma Inline (Get_Pragma_Id);
624 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
625
626 function Get_Referenced_Object (N : Node_Id) return Node_Id;
627 -- Given a node, return the renamed object if the node represents a renamed
628 -- object, otherwise return the node unchanged. The node may represent an
629 -- arbitrary expression.
630
631 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
632 -- Given an entity for an exception, package, subprogram or generic unit,
633 -- returns the ultimately renamed entity if this is a renaming. If this is
634 -- not a renamed entity, returns its argument. It is an error to call this
635 -- with any other kind of entity.
636
637 function Get_Requires_From_CTC_Pragma (N : Node_Id) return Node_Id;
638 -- Return the Requires component of Test_Case pragma N, or Empty otherwise
639 -- Bad name now that this no longer applies to Contract_Case ???
640
641 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
642 -- Nod is either a procedure call statement, or a function call, or an
643 -- accept statement node. This procedure finds the Entity_Id of the related
644 -- subprogram or entry and returns it, or if no subprogram can be found,
645 -- returns Empty.
646
647 function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
648 -- Given the entity for a subprogram (E_Function or E_Procedure), return
649 -- the corresponding N_Subprogram_Body node. If the corresponding body
650 -- is missing (as for an imported subprogram), return Empty.
651
652 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
653 pragma Inline (Get_Task_Body_Procedure);
654 -- Given an entity for a task type or subtype, retrieves the
655 -- Task_Body_Procedure field from the corresponding task type declaration.
656
657 function Has_Access_Values (T : Entity_Id) return Boolean;
658 -- Returns true if type or subtype T is an access type, or has a component
659 -- (at any recursive level) that is an access type. This is a conservative
660 -- predicate, if it is not known whether or not T contains access values
661 -- (happens for generic formals in some cases), then False is returned.
662 -- Note that tagged types return False. Even though the tag is implemented
663 -- as an access type internally, this function tests only for access types
664 -- known to the programmer. See also Has_Tagged_Component.
665
666 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
667 -- Result of Has_Compatible_Alignment test, description found below. Note
668 -- that the values are arranged in increasing order of problematicness.
669
670 function Has_Compatible_Alignment
671 (Obj : Entity_Id;
672 Expr : Node_Id) return Alignment_Result;
673 -- Obj is an object entity, and expr is a node for an object reference. If
674 -- the alignment of the object referenced by Expr is known to be compatible
675 -- with the alignment of Obj (i.e. is larger or the same), then the result
676 -- is Known_Compatible. If the alignment of the object referenced by Expr
677 -- is known to be less than the alignment of Obj, then Known_Incompatible
678 -- is returned. If neither condition can be reliably established at compile
679 -- time, then Unknown is returned. This is used to determine if alignment
680 -- checks are required for address clauses, and also whether copies must
681 -- be made when objects are passed by reference.
682 --
683 -- Note: Known_Incompatible does not mean that at run time the alignment
684 -- of Expr is known to be wrong for Obj, just that it can be determined
685 -- that alignments have been explicitly or implicitly specified which are
686 -- incompatible (whereas Unknown means that even this is not known). The
687 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
688 -- Unknown, but issue a warning that there may be an alignment error.
689
690 function Has_Declarations (N : Node_Id) return Boolean;
691 -- Determines if the node can have declarations
692
693 function Has_Denormals (E : Entity_Id) return Boolean;
694 -- Determines if the floating-point type E supports denormal numbers.
695 -- Returns False if E is not a floating-point type.
696
697 function Has_Discriminant_Dependent_Constraint
698 (Comp : Entity_Id) return Boolean;
699 -- Returns True if and only if Comp has a constrained subtype that depends
700 -- on a discriminant.
701
702 function Has_Infinities (E : Entity_Id) return Boolean;
703 -- Determines if the range of the floating-point type E includes
704 -- infinities. Returns False if E is not a floating-point type.
705
706 function Has_Interfaces
707 (T : Entity_Id;
708 Use_Full_View : Boolean := True) return Boolean;
709 -- Where T is a concurrent type or a record type, returns true if T covers
710 -- any abstract interface types. In case of private types the argument
711 -- Use_Full_View controls if the check is done using its full view (if
712 -- available).
713
714 function Has_Null_Exclusion (N : Node_Id) return Boolean;
715 -- Determine whether node N has a null exclusion
716
717 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
718 -- Predicate to determine whether a controlled type has a user-defined
719 -- Initialize primitive (and, in Ada 2012, whether that primitive is
720 -- non-null), which causes the type to not have preelaborable
721 -- initialization.
722
723 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
724 -- Return True iff type E has preelaborable initialization as defined in
725 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
726
727 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
728 -- Check if a type has a (sub)component of a private type that has not
729 -- yet received a full declaration.
730
731 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
732 -- Determines if the floating-point type E supports signed zeros.
733 -- Returns False if E is not a floating-point type.
734
735 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
736 -- Return whether an array type has static bounds
737
738 function Has_Stream (T : Entity_Id) return Boolean;
739 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
740 -- case of a composite type, has a component for which this predicate is
741 -- True, and if so returns True. Otherwise a result of False means that
742 -- there is no Stream type in sight. For a private type, the test is
743 -- applied to the underlying type (or returns False if there is no
744 -- underlying type).
745
746 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
747 -- Returns true if the last character of E is Suffix. Used in Assertions.
748
749 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
750 -- Returns the name of E adding Suffix
751
752 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
753 -- Returns the name of E without Suffix
754
755 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
756 -- Returns True if Typ is a composite type (array or record) which is
757 -- either itself a tagged type, or has a component (recursively) which is
758 -- a tagged type. Returns False for non-composite type, or if no tagged
759 -- component is present. This function is used to check if "=" has to be
760 -- expanded into a bunch component comparisons.
761
762 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
763 -- Subp is a subprogram marked with pragma Implemented. Return the specific
764 -- implementation requirement which the pragma imposes. The return value is
765 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
766
767 function Implements_Interface
768 (Typ_Ent : Entity_Id;
769 Iface_Ent : Entity_Id;
770 Exclude_Parents : Boolean := False) return Boolean;
771 -- Returns true if the Typ_Ent implements interface Iface_Ent
772
773 function In_Instance return Boolean;
774 -- Returns True if the current scope is within a generic instance
775
776 function In_Instance_Body return Boolean;
777 -- Returns True if current scope is within the body of an instance, where
778 -- several semantic checks (e.g. accessibility checks) are relaxed.
779
780 function In_Instance_Not_Visible return Boolean;
781 -- Returns True if current scope is with the private part or the body of
782 -- an instance. Other semantic checks are suppressed in this context.
783
784 function In_Instance_Visible_Part return Boolean;
785 -- Returns True if current scope is within the visible part of a package
786 -- instance, where several additional semantic checks apply.
787
788 function In_Package_Body return Boolean;
789 -- Returns True if current scope is within a package body
790
791 function In_Parameter_Specification (N : Node_Id) return Boolean;
792 -- Returns True if node N belongs to a parameter specification
793
794 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
795 -- Returns True if N denotes a component or subcomponent in a record or
796 -- array that has Reverse_Storage_Order.
797
798 function In_Subprogram_Or_Concurrent_Unit return Boolean;
799 -- Determines if the current scope is within a subprogram compilation unit
800 -- (inside a subprogram declaration, subprogram body, or generic
801 -- subprogram declaration) or within a task or protected body. The test is
802 -- for appearing anywhere within such a construct (that is it does not need
803 -- to be directly within).
804
805 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
806 -- Determine whether a declaration occurs within the visible part of a
807 -- package specification. The package must be on the scope stack, and the
808 -- corresponding private part must not.
809
810 function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id;
811 -- Given the entity of a type, retrieve the incomplete or private view of
812 -- the same type. Note that Typ may not have a partial view to begin with,
813 -- in that case the function returns Empty.
814
815 procedure Insert_Explicit_Dereference (N : Node_Id);
816 -- In a context that requires a composite or subprogram type and where a
817 -- prefix is an access type, rewrite the access type node N (which is the
818 -- prefix, e.g. of an indexed component) as an explicit dereference.
819
820 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
821 -- Examine all deferred constants in the declaration list Decls and check
822 -- whether they have been completed by a full constant declaration or an
823 -- Import pragma. Emit the error message if that is not the case.
824
825 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
826 -- Determines if N is an actual parameter of out mode in a subprogram call
827
828 function Is_Actual_Parameter (N : Node_Id) return Boolean;
829 -- Determines if N is an actual parameter in a subprogram call
830
831 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
832 -- Determines if N is an actual parameter of a formal of tagged type in a
833 -- subprogram call.
834
835 function Is_Aliased_View (Obj : Node_Id) return Boolean;
836 -- Determine if Obj is an aliased view, i.e. the name of an object to which
837 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
838 -- rules of the language, it does not take into account the restriction
839 -- No_Implicit_Aliasing, so it can return True if the restriction is active
840 -- and Obj violates the restriction. The caller is responsible for calling
841 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
842 -- requirement for obeying the restriction in the call context.
843
844 function Is_Ancestor_Package
845 (E1 : Entity_Id;
846 E2 : Entity_Id) return Boolean;
847 -- Determine whether package E1 is an ancestor of E2
848
849 function Is_Atomic_Object (N : Node_Id) return Boolean;
850 -- Determines if the given node denotes an atomic object in the sense of
851 -- the legality checks described in RM C.6(12).
852
853 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
854 -- Determine whether node N denotes a body or a package declaration
855
856 function Is_Bounded_String (T : Entity_Id) return Boolean;
857 -- True if T is a bounded string type. Used to make sure "=" composes
858 -- properly for bounded string types.
859
860 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
861 -- Exp is the expression for an array bound. Determines whether the
862 -- bound is a compile-time known value, or a constant entity, or an
863 -- enumeration literal, or an expression composed of constant-bound
864 -- subexpressions which are evaluated by means of standard operators.
865
866 function Is_Controlling_Limited_Procedure
867 (Proc_Nam : Entity_Id) return Boolean;
868 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
869 -- of a limited interface with a controlling first parameter.
870
871 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
872 -- Returns True if N is a call to a CPP constructor
873
874 function Is_Dependent_Component_Of_Mutable_Object
875 (Object : Node_Id) return Boolean;
876 -- Returns True if Object is the name of a subcomponent that depends on
877 -- discriminants of a variable whose nominal subtype is unconstrained and
878 -- not indefinite, and the variable is not aliased. Otherwise returns
879 -- False. The nodes passed to this function are assumed to denote objects.
880
881 function Is_Dereferenced (N : Node_Id) return Boolean;
882 -- N is a subexpression node of an access type. This function returns true
883 -- if N appears as the prefix of a node that does a dereference of the
884 -- access value (selected/indexed component, explicit dereference or a
885 -- slice), and false otherwise.
886
887 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
888 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
889 -- This is the RM definition, a type is a descendent of another type if it
890 -- is the same type or is derived from a descendent of the other type.
891
892 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
893 -- First determine whether type T is an interface and then check whether
894 -- it is of protected, synchronized or task kind.
895
896 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
897 -- Predicate to determine whether a function entity comes from a rewritten
898 -- expression function, and should be inlined unconditionally.
899
900 function Is_False (U : Uint) return Boolean;
901 pragma Inline (Is_False);
902 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
903 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
904 -- if it is False (i.e. zero).
905
906 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
907 -- Returns True iff the number U is a model number of the fixed-point type
908 -- T, i.e. if it is an exact multiple of Small.
909
910 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
911 -- Typ is a type entity. This function returns true if this type is fully
912 -- initialized, meaning that an object of the type is fully initialized.
913 -- Note that initialization resulting from use of pragma Normalized_Scalars
914 -- does not count. Note that this is only used for the purpose of issuing
915 -- warnings for objects that are potentially referenced uninitialized. This
916 -- means that the result returned is not crucial, but should err on the
917 -- side of thinking things are fully initialized if it does not know.
918
919 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
920 -- E is a subprogram. Return True is E is an implicit operation inherited
921 -- by a derived type declaration.
922
923 function Is_Inherited_Operation_For_Type
924 (E : Entity_Id;
925 Typ : Entity_Id) return Boolean;
926 -- E is a subprogram. Return True is E is an implicit operation inherited
927 -- by the derived type declaration for type Typ.
928
929 function Is_Iterator (Typ : Entity_Id) return Boolean;
930 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
931 -- Ada.Iterator_Interfaces, or it is derived from one.
932
933 function Is_LHS (N : Node_Id) return Boolean;
934 -- Returns True iff N is used as Name in an assignment statement
935
936 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
937 -- A library-level declaration is one that is accessible from Standard,
938 -- i.e. a library unit or an entity declared in a library package.
939
940 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
941 -- Determine whether a given arbitrary type is a limited class-wide type
942
943 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
944 -- Determines whether Expr is a reference to a variable or IN OUT mode
945 -- parameter of the current enclosing subprogram.
946 -- Why are OUT parameters not considered here ???
947
948 function Is_Object_Reference (N : Node_Id) return Boolean;
949 -- Determines if the tree referenced by N represents an object. Both
950 -- variable and constant objects return True (compare Is_Variable).
951
952 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
953 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
954 -- Note that the Is_Variable function is not quite the right test because
955 -- this is a case in which conversions whose expression is a variable (in
956 -- the Is_Variable sense) with a non-tagged type target are considered view
957 -- conversions and hence variables.
958
959 function Is_Partially_Initialized_Type
960 (Typ : Entity_Id;
961 Include_Implicit : Boolean := True) return Boolean;
962 -- Typ is a type entity. This function returns true if this type is partly
963 -- initialized, meaning that an object of the type is at least partly
964 -- initialized (in particular in the record case, that at least one
965 -- component has an initialization expression). Note that initialization
966 -- resulting from the use of pragma Normalized_Scalars does not count.
967 -- Include_Implicit controls whether implicit initialization of access
968 -- values to null, and of discriminant values, is counted as making the
969 -- type be partially initialized. For the default setting of True, these
970 -- implicit cases do count, and discriminated types or types containing
971 -- access values not explicitly initialized will return True. Otherwise
972 -- if Include_Implicit is False, these cases do not count as making the
973 -- type be partially initialized.
974
975 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
976 -- Determines if type T is a potentially persistent type. A potentially
977 -- persistent type is defined (recursively) as a scalar type, a non-tagged
978 -- record whose components are all of a potentially persistent type, or an
979 -- array with all static constraints whose component type is potentially
980 -- persistent. A private type is potentially persistent if the full type
981 -- is potentially persistent.
982
983 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
984 -- Return True if node N denotes a protected type name which represents
985 -- the current instance of a protected object according to RM 9.4(21/2).
986
987 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
988 -- Return True if a compilation unit is the specification or the
989 -- body of a remote call interface package.
990
991 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
992 -- Return True if E is a remote access-to-class-wide type
993
994 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
995 -- Return True if E is a remote access to subprogram type
996
997 function Is_Remote_Call (N : Node_Id) return Boolean;
998 -- Return True if N denotes a potentially remote call
999
1000 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1001 -- Return True if Proc_Nam is a procedure renaming of an entry
1002
1003 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1004 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1005 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1006
1007 function Is_Selector_Name (N : Node_Id) return Boolean;
1008 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1009 -- As described in Sinfo, Selector_Names are special because they
1010 -- represent use of the N_Identifier node for a true identifier, when
1011 -- normally such nodes represent a direct name.
1012
1013 function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean;
1014 -- Determines if the tree referenced by N represents an initialization
1015 -- expression in SPARK, suitable for initializing an object in an object
1016 -- declaration.
1017
1018 function Is_SPARK_Object_Reference (N : Node_Id) return Boolean;
1019 -- Determines if the tree referenced by N represents an object in SPARK
1020
1021 function Is_Statement (N : Node_Id) return Boolean;
1022 pragma Inline (Is_Statement);
1023 -- Check if the node N is a statement node. Note that this includes
1024 -- the case of procedure call statements (unlike the direct use of
1025 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1026 -- Note that a label is *not* a statement, and will return False.
1027
1028 function Is_Subprogram_Stub_Without_Prior_Declaration
1029 (N : Node_Id) return Boolean;
1030 -- Return True if N is a subprogram stub with no prior subprogram
1031 -- declaration.
1032
1033 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1034 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1035
1036 function Is_Transfer (N : Node_Id) return Boolean;
1037 -- Returns True if the node N is a statement which is known to cause an
1038 -- unconditional transfer of control at runtime, i.e. the following
1039 -- statement definitely will not be executed.
1040
1041 function Is_True (U : Uint) return Boolean;
1042 pragma Inline (Is_True);
1043 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1044 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1045 -- if it is True (i.e. non-zero).
1046
1047 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1048 pragma Inline (Is_Universal_Numeric_Type);
1049 -- True if T is Universal_Integer or Universal_Real
1050
1051 function Is_Value_Type (T : Entity_Id) return Boolean;
1052 -- Returns true if type T represents a value type. This is only relevant to
1053 -- CIL, will always return false for other targets. A value type is a CIL
1054 -- object that is accessed directly, as opposed to the other CIL objects
1055 -- that are accessed through managed pointers.
1056
1057 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1058 -- Returns true if E has variable size components
1059
1060 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1061 -- Returns true if E has variable size components
1062
1063 function Is_VMS_Operator (Op : Entity_Id) return Boolean;
1064 -- Determine whether an operator is one of the intrinsics defined
1065 -- in the DEC system extension.
1066
1067 function Is_Delegate (T : Entity_Id) return Boolean;
1068 -- Returns true if type T represents a delegate. A Delegate is the CIL
1069 -- object used to represent access-to-subprogram types. This is only
1070 -- relevant to CIL, will always return false for other targets.
1071
1072 function Is_Variable
1073 (N : Node_Id;
1074 Use_Original_Node : Boolean := True) return Boolean;
1075 -- Determines if the tree referenced by N represents a variable, i.e. can
1076 -- appear on the left side of an assignment. There is one situation (formal
1077 -- parameters) in which non-tagged type conversions are also considered
1078 -- variables, but Is_Variable returns False for such cases, since it has
1079 -- no knowledge of the context. Note that this is the point at which
1080 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1081 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1082 -- default is True since this routine is commonly invoked as part of the
1083 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1084
1085 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1086 -- Check whether T is derived from a visibly controlled type. This is true
1087 -- if the root type is declared in Ada.Finalization. If T is derived
1088 -- instead from a private type whose full view is controlled, an explicit
1089 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1090 -- one.
1091
1092 function Is_Volatile_Object (N : Node_Id) return Boolean;
1093 -- Determines if the given node denotes an volatile object in the sense of
1094 -- the legality checks described in RM C.6(12). Note that the test here is
1095 -- for something actually declared as volatile, not for an object that gets
1096 -- treated as volatile (see Einfo.Treat_As_Volatile).
1097
1098 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1099 -- Applies to Itypes. True if the Itype is attached to a declaration for
1100 -- the type through its Parent field, which may or not be present in the
1101 -- tree.
1102
1103 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1104 -- This procedure is called to clear all constant indications from all
1105 -- entities in the current scope and in any parent scopes if the current
1106 -- scope is a block or a package (and that recursion continues to the top
1107 -- scope that is not a block or a package). This is used when the
1108 -- sequential flow-of-control assumption is violated (occurrence of a
1109 -- label, head of a loop, or start of an exception handler). The effect of
1110 -- the call is to clear the Current_Value field (but we do not need to
1111 -- clear the Is_True_Constant flag, since that only gets reset if there
1112 -- really is an assignment somewhere in the entity scope). This procedure
1113 -- also calls Kill_All_Checks, since this is a special case of needing to
1114 -- forget saved values. This procedure also clears the Is_Known_Null and
1115 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1116 -- parameters since these are also not known to be trustable any more.
1117 --
1118 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1119 -- fields and leave other fields unchanged. This is used when we encounter
1120 -- an unconditional flow of control change (return, goto, raise). In such
1121 -- cases we don't need to clear the current values, since it may be that
1122 -- the flow of control change occurs in a conditional context, and if it
1123 -- is not taken, then it is just fine to keep the current values. But the
1124 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1125 -- conditional-return, assign-to-v, we do not want to complain that the
1126 -- second assignment clobbers the first.
1127
1128 procedure Kill_Current_Values
1129 (Ent : Entity_Id;
1130 Last_Assignment_Only : Boolean := False);
1131 -- This performs the same processing as described above for the form with
1132 -- no argument, but for the specific entity given. The call has no effect
1133 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1134 -- same meaning as for the call with no Ent.
1135
1136 procedure Kill_Size_Check_Code (E : Entity_Id);
1137 -- Called when an address clause or pragma Import is applied to an entity.
1138 -- If the entity is a variable or a constant, and size check code is
1139 -- present, this size check code is killed, since the object will not be
1140 -- allocated by the program.
1141
1142 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1143 -- The node N is an entity reference. This function determines whether the
1144 -- reference is for sure an assignment of the entity, returning True if
1145 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1146 -- direction. Cases which may possibly be assignments but are not known to
1147 -- be may return True from May_Be_Lvalue, but False from this function.
1148
1149 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1150 -- HSS is a handled statement sequence. This function returns the last
1151 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1152 -- such statement exists, Empty is returned.
1153
1154 function Matching_Static_Array_Bounds
1155 (L_Typ : Node_Id;
1156 R_Typ : Node_Id) return Boolean;
1157 -- L_Typ and R_Typ are two array types. Returns True when they have the
1158 -- same number of dimensions, and the same static bounds for each index
1159 -- position.
1160
1161 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1162 -- Given a node which designates the context of analysis and an origin in
1163 -- the tree, traverse from Root_Nod and mark all allocators as either
1164 -- dynamic or static depending on Context_Nod. Any erroneous marking is
1165 -- cleaned up during resolution.
1166
1167 function May_Be_Lvalue (N : Node_Id) return Boolean;
1168 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1169 -- An lvalue is defined as any expression which appears in a context where
1170 -- a name is required by the syntax, and the identity, rather than merely
1171 -- the value of the node is needed (for example, the prefix of an Access
1172 -- attribute is in this category). Note that, as implied by the name, this
1173 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1174 -- it returns True. It tries hard to get the answer right, but it is hard
1175 -- to guarantee this in all cases. Note that it is more possible to give
1176 -- correct answer if the tree is fully analyzed.
1177
1178 function Must_Inline (Subp : Entity_Id) return Boolean;
1179 -- Return true if Subp must be inlined by the frontend
1180
1181 function Needs_One_Actual (E : Entity_Id) return Boolean;
1182 -- Returns True if a function has defaults for all but its first
1183 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1184 -- results from an indexing of a function call written in prefix form.
1185
1186 function New_Copy_List_Tree (List : List_Id) return List_Id;
1187 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1188 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1189 -- nodes (entities) either directly or indirectly using this function.
1190
1191 function New_Copy_Tree
1192 (Source : Node_Id;
1193 Map : Elist_Id := No_Elist;
1194 New_Sloc : Source_Ptr := No_Location;
1195 New_Scope : Entity_Id := Empty) return Node_Id;
1196 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1197 -- syntactic subtree, including recursively any descendents whose parent
1198 -- field references a copied node (descendents not linked to a copied node
1199 -- by the parent field are not copied, instead the copied tree references
1200 -- the same descendent as the original in this case, which is appropriate
1201 -- for non-syntactic fields such as Etype). The parent pointers in the
1202 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1203 -- The one exception to the rule of not copying semantic fields is that
1204 -- any implicit types attached to the subtree are duplicated, so that
1205 -- the copy contains a distinct set of implicit type entities. Thus this
1206 -- function is used when it is necessary to duplicate an analyzed tree,
1207 -- declared in the same or some other compilation unit. This function is
1208 -- declared here rather than in atree because it uses semantic information
1209 -- in particular concerning the structure of itypes and the generation of
1210 -- public symbols.
1211
1212 -- The Map argument, if set to a non-empty Elist, specifies a set of
1213 -- mappings to be applied to entities in the tree. The map has the form:
1214 --
1215 -- old entity 1
1216 -- new entity to replace references to entity 1
1217 -- old entity 2
1218 -- new entity to replace references to entity 2
1219 -- ...
1220 --
1221 -- The call destroys the contents of Map in this case
1222 --
1223 -- The parameter New_Sloc, if set to a value other than No_Location, is
1224 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1225 -- set to its default value No_Location, then the Sloc values of the
1226 -- nodes in the copy are simply copied from the corresponding original.
1227 --
1228 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1229 -- the default No_Location value, but is reset if New_Sloc is given, since
1230 -- in this case the result clearly is neither a source node or an exact
1231 -- copy of a source node.
1232 --
1233 -- The parameter New_Scope, if set to a value other than Empty, is the
1234 -- value to use as the Scope for any Itypes that are copied. The most
1235 -- typical value for this parameter, if given, is Current_Scope.
1236
1237 function New_External_Entity
1238 (Kind : Entity_Kind;
1239 Scope_Id : Entity_Id;
1240 Sloc_Value : Source_Ptr;
1241 Related_Id : Entity_Id;
1242 Suffix : Character;
1243 Suffix_Index : Nat := 0;
1244 Prefix : Character := ' ') return Entity_Id;
1245 -- This function creates an N_Defining_Identifier node for an internal
1246 -- created entity, such as an implicit type or subtype, or a record
1247 -- initialization procedure. The entity name is constructed with a call
1248 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1249 -- that the generated name may be referenced as a public entry, and the
1250 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1251 -- entity is for a type or subtype, the size/align fields are initialized
1252 -- to unknown (Uint_0).
1253
1254 function New_Internal_Entity
1255 (Kind : Entity_Kind;
1256 Scope_Id : Entity_Id;
1257 Sloc_Value : Source_Ptr;
1258 Id_Char : Character) return Entity_Id;
1259 -- This function is similar to New_External_Entity, except that the
1260 -- name is constructed by New_Internal_Name (Id_Char). This is used
1261 -- when the resulting entity does not have to be referenced as a
1262 -- public entity (and in this case Is_Public is not set).
1263
1264 procedure Next_Actual (Actual_Id : in out Node_Id);
1265 pragma Inline (Next_Actual);
1266 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1267 -- inline this procedural form, but not the functional form that follows.
1268
1269 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1270 -- Find next actual parameter in declaration order. As described for
1271 -- First_Actual, this is the next actual in the declaration order, not
1272 -- the call order, so this does not correspond to simply taking the
1273 -- next entry of the Parameter_Associations list. The argument is an
1274 -- actual previously returned by a call to First_Actual or Next_Actual.
1275 -- Note that the result produced is always an expression, not a parameter
1276 -- association node, even if named notation was used.
1277
1278 function No_Scalar_Parts (T : Entity_Id) return Boolean;
1279 -- Tests if type T can be determined at compile time to have no scalar
1280 -- parts in the sense of the Valid_Scalars attribute. Returns True if
1281 -- this is the case, meaning that the result of Valid_Scalars is True.
1282
1283 procedure Normalize_Actuals
1284 (N : Node_Id;
1285 S : Entity_Id;
1286 Report : Boolean;
1287 Success : out Boolean);
1288 -- Reorders lists of actuals according to names of formals, value returned
1289 -- in Success indicates success of reordering. For more details, see body.
1290 -- Errors are reported only if Report is set to True.
1291
1292 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1293 -- This routine is called if the sub-expression N maybe the target of
1294 -- an assignment (e.g. it is the left side of an assignment, used as
1295 -- an out parameters, or used as prefixes of access attributes). It
1296 -- sets May_Be_Modified in the associated entity if there is one,
1297 -- taking into account the rule that in the case of renamed objects,
1298 -- it is the flag in the renamed object that must be set.
1299 --
1300 -- The parameter Sure is set True if the modification is sure to occur
1301 -- (e.g. target of assignment, or out parameter), and to False if the
1302 -- modification is only potential (e.g. address of entity taken).
1303
1304 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1305 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1306 -- or overrides an inherited dispatching primitive S2, the original
1307 -- corresponding operation of S is the original corresponding operation of
1308 -- S2. Otherwise, it is S itself.
1309
1310 function Object_Access_Level (Obj : Node_Id) return Uint;
1311 -- Return the accessibility level of the view of the object Obj. For
1312 -- convenience, qualified expressions applied to object names are also
1313 -- allowed as actuals for this function.
1314
1315 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1316 -- Returns True if the names of both entities correspond with matching
1317 -- primitives. This routine includes support for the case in which one
1318 -- or both entities correspond with entities built by Derive_Subprogram
1319 -- with a special name to avoid being overridden (i.e. return true in case
1320 -- of entities with names "nameP" and "name" or vice versa).
1321
1322 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1323 -- Returns some private component (if any) of the given Type_Id.
1324 -- Used to enforce the rules on visibility of operations on composite
1325 -- types, that depend on the full view of the component type. For a
1326 -- record type there may be several such components, we just return
1327 -- the first one.
1328
1329 procedure Process_End_Label
1330 (N : Node_Id;
1331 Typ : Character;
1332 Ent : Entity_Id);
1333 -- N is a node whose End_Label is to be processed, generating all
1334 -- appropriate cross-reference entries, and performing style checks
1335 -- for any identifier references in the end label. Typ is either
1336 -- 'e' or 't indicating the type of the cross-reference entity
1337 -- (e for spec, t for body, see Lib.Xref spec for details). The
1338 -- parameter Ent gives the entity to which the End_Label refers,
1339 -- and to which cross-references are to be generated.
1340
1341 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1342 -- Returns True if the expression Expr contains any references to a
1343 -- generic type. This can only happen within a generic template.
1344
1345 procedure Remove_Homonym (E : Entity_Id);
1346 -- Removes E from the homonym chain
1347
1348 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1349 -- This is used to construct the second argument in a call to Rep_To_Pos
1350 -- which is Standard_True if range checks are enabled (E is an entity to
1351 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1352 -- if range checks are suppressed. Loc is the location for the node that
1353 -- is returned (which is a New_Occurrence of the appropriate entity).
1354 --
1355 -- Note: one might think that it would be fine to always use True and
1356 -- to ignore the suppress in this case, but it is generally better to
1357 -- believe a request to suppress exceptions if possible, and further
1358 -- more there is at least one case in the generated code (the code for
1359 -- array assignment in a loop) that depends on this suppression.
1360
1361 procedure Require_Entity (N : Node_Id);
1362 -- N is a node which should have an entity value if it is an entity name.
1363 -- If not, then check if there were previous errors. If so, just fill
1364 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1365 -- This is used as a defense mechanism against ill-formed trees caused by
1366 -- previous errors (particularly in -gnatq mode).
1367
1368 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1369 -- Id is a type entity. The result is True when temporaries of this type
1370 -- need to be wrapped in a transient scope to be reclaimed properly when a
1371 -- secondary stack is in use. Examples of types requiring such wrapping are
1372 -- controlled types and variable-sized types including unconstrained
1373 -- arrays.
1374
1375 procedure Reset_Analyzed_Flags (N : Node_Id);
1376 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1377
1378 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
1379 -- Return true if Subp is a function that returns an unconstrained type
1380
1381 function Safe_To_Capture_Value
1382 (N : Node_Id;
1383 Ent : Entity_Id;
1384 Cond : Boolean := False) return Boolean;
1385 -- The caller is interested in capturing a value (either the current value,
1386 -- or an indication that the value is non-null) for the given entity Ent.
1387 -- This value can only be captured if sequential execution semantics can be
1388 -- properly guaranteed so that a subsequent reference will indeed be sure
1389 -- that this current value indication is correct. The node N is the
1390 -- construct which resulted in the possible capture of the value (this
1391 -- is used to check if we are in a conditional).
1392 --
1393 -- Cond is used to skip the test for being inside a conditional. It is used
1394 -- in the case of capturing values from if/while tests, which already do a
1395 -- proper job of handling scoping issues without this help.
1396 --
1397 -- The only entities whose values can be captured are OUT and IN OUT formal
1398 -- parameters, and variables unless Cond is True, in which case we also
1399 -- allow IN formals, loop parameters and constants, where we cannot ever
1400 -- capture actual value information, but we can capture conditional tests.
1401
1402 function Same_Name (N1, N2 : Node_Id) return Boolean;
1403 -- Determine if two (possibly expanded) names are the same name. This is
1404 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1405
1406 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1407 -- Determine if Node1 and Node2 are known to designate the same object.
1408 -- This is a semantic test and both nodes must be fully analyzed. A result
1409 -- of True is decisively correct. A result of False does not necessarily
1410 -- mean that different objects are designated, just that this could not
1411 -- be reliably determined at compile time.
1412
1413 function Same_Type (T1, T2 : Entity_Id) return Boolean;
1414 -- Determines if T1 and T2 represent exactly the same type. Two types
1415 -- are the same if they are identical, or if one is an unconstrained
1416 -- subtype of the other, or they are both common subtypes of the same
1417 -- type with identical constraints. The result returned is conservative.
1418 -- It is True if the types are known to be the same, but a result of
1419 -- False is indecisive (e.g. the compiler may not be able to tell that
1420 -- two constraints are identical).
1421
1422 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1423 -- Determines if Node1 and Node2 are known to be the same value, which is
1424 -- true if they are both compile time known values and have the same value,
1425 -- or if they are the same object (in the sense of function Same_Object).
1426 -- A result of False does not necessarily mean they have different values,
1427 -- just that it is not possible to determine they have the same value.
1428
1429 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1430 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1431 -- inside it, where both entities represent scopes. Note that scopes
1432 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1433 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1434
1435 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1436 -- Like Scope_Within_Or_Same, except that this function returns
1437 -- False in the case where Scope1 and Scope2 are the same scope.
1438
1439 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1440 -- Same as Basic_Set_Convention, but with an extra check for access types.
1441 -- In particular, if E is an access-to-subprogram type, and Val is a
1442 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1443
1444 procedure Set_Current_Entity (E : Entity_Id);
1445 pragma Inline (Set_Current_Entity);
1446 -- Establish the entity E as the currently visible definition of its
1447 -- associated name (i.e. the Node_Id associated with its name).
1448
1449 procedure Set_Debug_Info_Needed (T : Entity_Id);
1450 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1451 -- that are needed by T (for an object, the type of the object is needed,
1452 -- and for a type, various subsidiary types are needed -- see body for
1453 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1454 -- This routine should always be used instead of Set_Needs_Debug_Info to
1455 -- ensure that subsidiary entities are properly handled.
1456
1457 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id);
1458 -- This procedure has the same calling sequence as Set_Entity, but
1459 -- if Style_Check is set, then it calls a style checking routine which
1460 -- can check identifier spelling style. This procedure also takes care
1461 -- of checking the restriction No_Implementation_Identifiers.
1462
1463 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1464 pragma Inline (Set_Name_Entity_Id);
1465 -- Sets the Entity_Id value associated with the given name, which is the
1466 -- Id of the innermost visible entity with the given name. See the body
1467 -- of package Sem_Ch8 for further details on the handling of visibility.
1468
1469 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1470 -- The arguments may be parameter associations, whose descendants
1471 -- are the optional formal name and the actual parameter. Positional
1472 -- parameters are already members of a list, and do not need to be
1473 -- chained separately. See also First_Actual and Next_Actual.
1474
1475 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1476 pragma Inline (Set_Optimize_Alignment_Flags);
1477 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
1478
1479 procedure Set_Public_Status (Id : Entity_Id);
1480 -- If an entity (visible or otherwise) is defined in a library
1481 -- package, or a package that is itself public, then this subprogram
1482 -- labels the entity public as well.
1483
1484 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1485 -- N is the node for either a left hand side (Out_Param set to False),
1486 -- or an Out or In_Out parameter (Out_Param set to True). If there is
1487 -- an assignable entity being referenced, then the appropriate flag
1488 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1489 -- if Out_Param is True) is set True, and the other flag set False.
1490
1491 procedure Set_Scope_Is_Transient (V : Boolean := True);
1492 -- Set the flag Is_Transient of the current scope
1493
1494 procedure Set_Size_Info (T1, T2 : Entity_Id);
1495 pragma Inline (Set_Size_Info);
1496 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1497 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1498 -- in the fixed-point and discrete cases, and also copies the alignment
1499 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1500 -- separately set if this is required to be copied also.
1501
1502 function Scope_Is_Transient return Boolean;
1503 -- True if the current scope is transient
1504
1505 function Static_Boolean (N : Node_Id) return Uint;
1506 -- This function analyzes the given expression node and then resolves it
1507 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1508 -- returned corresponding to the value, otherwise an error message is
1509 -- output and No_Uint is returned.
1510
1511 function Static_Integer (N : Node_Id) return Uint;
1512 -- This function analyzes the given expression node and then resolves it
1513 -- as any integer type. If the result is static, then the value of the
1514 -- universal expression is returned, otherwise an error message is output
1515 -- and a value of No_Uint is returned.
1516
1517 function Statically_Different (E1, E2 : Node_Id) return Boolean;
1518 -- Return True if it can be statically determined that the Expressions
1519 -- E1 and E2 refer to different objects
1520
1521 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1522 -- Return the accessibility level of the view denoted by Subp
1523
1524 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
1525 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
1526 -- Typ is properly sized and aligned).
1527
1528 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1529 -- Print debugging information on entry to each unit being analyzed
1530
1531 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1532 -- Move a list of entities from one scope to another, and recompute
1533 -- Is_Public based upon the new scope.
1534
1535 function Type_Access_Level (Typ : Entity_Id) return Uint;
1536 -- Return the accessibility level of Typ
1537
1538 function Type_Without_Stream_Operation
1539 (T : Entity_Id;
1540 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
1541 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
1542 -- is active then we cannot generate stream subprograms for composite types
1543 -- with elementary subcomponents that lack user-defined stream subprograms.
1544 -- This predicate determines whether a type has such an elementary
1545 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
1546 -- prevents the construction of a composite stream operation. If Op is
1547 -- specified we check only for the given stream operation.
1548
1549 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
1550 -- Return the entity which represents declaration N, so that different
1551 -- views of the same entity have the same unique defining entity:
1552 -- * package spec and body;
1553 -- * subprogram declaration, subprogram stub and subprogram body;
1554 -- * private view and full view of a type;
1555 -- * private view and full view of a deferred constant.
1556 -- In other cases, return the defining entity for N.
1557
1558 function Unique_Entity (E : Entity_Id) return Entity_Id;
1559 -- Return the unique entity for entity E, which would be returned by
1560 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
1561
1562 function Unique_Name (E : Entity_Id) return String;
1563 -- Return a unique name for entity E, which could be used to identify E
1564 -- across compilation units.
1565
1566 function Unit_Is_Visible (U : Entity_Id) return Boolean;
1567 -- Determine whether a compilation unit is visible in the current context,
1568 -- because there is a with_clause that makes the unit available. Used to
1569 -- provide better messages on common visiblity errors on operators.
1570
1571 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1572 -- Yields Universal_Integer or Universal_Real if this is a candidate
1573
1574 function Unqualify (Expr : Node_Id) return Node_Id;
1575 pragma Inline (Unqualify);
1576 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
1577 -- returns X. If Expr is not a qualified expression, returns Expr.
1578
1579 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
1580 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
1581 -- of a type extension or private extension declaration. If the full-view
1582 -- of private parents and progenitors is available then it is used to
1583 -- generate the list of visible ancestors; otherwise their partial
1584 -- view is added to the resulting list.
1585
1586 function Within_Init_Proc return Boolean;
1587 -- Determines if Current_Scope is within an init proc
1588
1589 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1590 -- Output error message for incorrectly typed expression. Expr is the node
1591 -- for the incorrectly typed construct (Etype (Expr) is the type found),
1592 -- and Expected_Type is the entity for the expected type. Note that Expr
1593 -- does not have to be a subexpression, anything with an Etype field may
1594 -- be used.
1595
1596 end Sem_Util;