[multiple changes]
[gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Snames; use Snames;
32 with Types; use Types;
33 with Uintp; use Uintp;
34 with Urealp; use Urealp;
35
36 package Sem_Util is
37
38 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
39 -- Given a type that implements interfaces look for its associated
40 -- definition node and return its list of interfaces.
41
42 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
43 -- Add A to the list of access types to process when expanding the
44 -- freeze node of E.
45
46 procedure Add_Contract_Item (Prag : Node_Id; Id : Entity_Id);
47 -- Add pragma Prag to the contract of an entry, a package [body], a
48 -- subprogram [body] or variable denoted by Id. The following are valid
49 -- pragmas:
50 -- Abstract_States
51 -- Async_Readers
52 -- Async_Writers
53 -- Contract_Cases
54 -- Depends
55 -- Effective_Reads
56 -- Effective_Writes
57 -- Global
58 -- Initial_Condition
59 -- Initializes
60 -- Part_Of
61 -- Postcondition
62 -- Precondition
63 -- Refined_Depends
64 -- Refined_Global
65 -- Refined_Post
66 -- Refined_States
67 -- Test_Case
68
69 procedure Add_Global_Declaration (N : Node_Id);
70 -- These procedures adds a declaration N at the library level, to be
71 -- elaborated before any other code in the unit. It is used for example
72 -- for the entity that marks whether a unit has been elaborated. The
73 -- declaration is added to the Declarations list of the Aux_Decls_Node
74 -- for the current unit. The declarations are added in the current scope,
75 -- so the caller should push a new scope as required before the call.
76
77 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
78 -- Given two types, returns True if we are in Allow_Integer_Address mode
79 -- and one of the types is (a descendent of) System.Address (and this type
80 -- is private), and the other type is any integer type.
81
82 function Addressable (V : Uint) return Boolean;
83 function Addressable (V : Int) return Boolean;
84 pragma Inline (Addressable);
85 -- Returns True if the value of V is the word size of an addressable
86 -- factor of the word size (typically 8, 16, 32 or 64).
87
88 function Alignment_In_Bits (E : Entity_Id) return Uint;
89 -- If the alignment of the type or object E is currently known to the
90 -- compiler, then this function returns the alignment value in bits.
91 -- Otherwise Uint_0 is returned, indicating that the alignment of the
92 -- entity is not yet known to the compiler.
93
94 procedure Append_Inherited_Subprogram (S : Entity_Id);
95 -- If the parent of the operation is declared in the visible part of
96 -- the current scope, the inherited operation is visible even though the
97 -- derived type that inherits the operation may be completed in the private
98 -- part of the current package.
99
100 procedure Apply_Compile_Time_Constraint_Error
101 (N : Node_Id;
102 Msg : String;
103 Reason : RT_Exception_Code;
104 Ent : Entity_Id := Empty;
105 Typ : Entity_Id := Empty;
106 Loc : Source_Ptr := No_Location;
107 Rep : Boolean := True;
108 Warn : Boolean := False);
109 -- N is a subexpression which will raise constraint error when evaluated
110 -- at runtime. Msg is a message that explains the reason for raising the
111 -- exception. The last character is ? if the message is always a warning,
112 -- even in Ada 95, and is not a ? if the message represents an illegality
113 -- (because of violation of static expression rules) in Ada 95 (but not
114 -- in Ada 83). Typically this routine posts all messages at the Sloc of
115 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
116 -- the message. After posting the appropriate message, and if the flag
117 -- Rep is set, this routine replaces the expression with an appropriate
118 -- N_Raise_Constraint_Error node using the given Reason code. This node
119 -- is then marked as being static if the original node is static, but
120 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
121 -- The error message may contain a } or & insertion character. This
122 -- normally references Etype (N), unless the Ent argument is given
123 -- explicitly, in which case it is used instead. The type of the raise
124 -- node that is built is normally Etype (N), but if the Typ parameter
125 -- is present, this is used instead. Warn is normally False. If it is
126 -- True then the message is treated as a warning even though it does
127 -- not end with a ? (this is used when the caller wants to parameterize
128 -- whether an error or warning is given).
129
130 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
131 -- Given the entity of an abstract state or a variable, determine whether
132 -- Id is subject to external property Async_Readers and if it is, the
133 -- related expression evaluates to True.
134
135 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
136 -- Given the entity of an abstract state or a variable, determine whether
137 -- Id is subject to external property Async_Writers and if it is, the
138 -- related expression evaluates to True.
139
140 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
141 -- If at the point of declaration an array type has a private or limited
142 -- component, several array operations are not avaiable on the type, and
143 -- the array type is flagged accordingly. If in the immediate scope of
144 -- the array type the component becomes non-private or non-limited, these
145 -- operations become avaiable. This can happen if the scopes of both types
146 -- are open, and the scope of the array is not outside the scope of the
147 -- component.
148
149 procedure Bad_Attribute
150 (N : Node_Id;
151 Nam : Name_Id;
152 Warn : Boolean := False);
153 -- Called when node N is expected to contain a valid attribute name, and
154 -- Nam is found instead. If Warn is set True this is a warning, else this
155 -- is an error.
156
157 procedure Bad_Predicated_Subtype_Use
158 (Msg : String;
159 N : Node_Id;
160 Typ : Entity_Id;
161 Suggest_Static : Boolean := False);
162 -- This is called when Typ, a predicated subtype, is used in a context
163 -- which does not allow the use of a predicated subtype. Msg is passed to
164 -- Error_Msg_FE to output an appropriate message using N as the location,
165 -- and Typ as the entity. The caller must set up any insertions other than
166 -- the & for the type itself. Note that if Typ is a generic actual type,
167 -- then the message will be output as a warning, and a raise Program_Error
168 -- is inserted using Insert_Action with node N as the insertion point. Node
169 -- N also supplies the source location for construction of the raise node.
170 -- If Typ does not have any predicates, the call has no effect. Set flag
171 -- Suggest_Static when the context warrants an advice on how to avoid the
172 -- use error.
173
174 function Bad_Unordered_Enumeration_Reference
175 (N : Node_Id;
176 T : Entity_Id) return Boolean;
177 -- Node N contains a potentially dubious reference to type T, either an
178 -- explicit comparison, or an explicit range. This function returns True
179 -- if the type T is an enumeration type for which No pragma Order has been
180 -- given, and the reference N is not in the same extended source unit as
181 -- the declaration of T.
182
183 function Build_Actual_Subtype
184 (T : Entity_Id;
185 N : Node_Or_Entity_Id) return Node_Id;
186 -- Build an anonymous subtype for an entity or expression, using the
187 -- bounds of the entity or the discriminants of the enclosing record.
188 -- T is the type for which the actual subtype is required, and N is either
189 -- a defining identifier, or any subexpression.
190
191 function Build_Actual_Subtype_Of_Component
192 (T : Entity_Id;
193 N : Node_Id) return Node_Id;
194 -- Determine whether a selected component has a type that depends on
195 -- discriminants, and build actual subtype for it if so.
196
197 function Build_Default_Subtype
198 (T : Entity_Id;
199 N : Node_Id) return Entity_Id;
200 -- If T is an unconstrained type with defaulted discriminants, build a
201 -- subtype constrained by the default values, insert the subtype
202 -- declaration in the tree before N, and return the entity of that
203 -- subtype. Otherwise, simply return T.
204
205 function Build_Discriminal_Subtype_Of_Component
206 (T : Entity_Id) return Node_Id;
207 -- Determine whether a record component has a type that depends on
208 -- discriminants, and build actual subtype for it if so.
209
210 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
211 -- Given a compilation unit node N, allocate an elaboration counter for
212 -- the compilation unit, and install it in the Elaboration_Entity field
213 -- of Spec_Id, the entity for the compilation unit.
214
215 procedure Build_Explicit_Dereference
216 (Expr : Node_Id;
217 Disc : Entity_Id);
218 -- AI05-139: Names with implicit dereference. If the expression N is a
219 -- reference type and the context imposes the corresponding designated
220 -- type, convert N into N.Disc.all. Such expressions are always over-
221 -- loaded with both interpretations, and the dereference interpretation
222 -- carries the name of the reference discriminant.
223
224 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
225 -- Returns True if the expression cannot possibly raise Constraint_Error.
226 -- The response is conservative in the sense that a result of False does
227 -- not necessarily mean that CE could be raised, but a response of True
228 -- means that for sure CE cannot be raised.
229
230 procedure Check_Dynamically_Tagged_Expression
231 (Expr : Node_Id;
232 Typ : Entity_Id;
233 Related_Nod : Node_Id);
234 -- Check wrong use of dynamically tagged expression
235
236 procedure Check_Expression_Against_Static_Predicate
237 (Expr : Node_Id;
238 Typ : Entity_Id);
239 -- Determine whether an arbitrary expression satisfies the static predicate
240 -- of a type. The routine does nothing if Expr is not known at compile time
241 -- or Typ lacks a static predicate, otherwise it may emit a warning if the
242 -- expression is prohibited by the predicate.
243
244 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
245 -- Verify that the full declaration of type T has been seen. If not, place
246 -- error message on node N. Used in object declarations, type conversions
247 -- and qualified expressions.
248
249 procedure Check_Function_Writable_Actuals (N : Node_Id);
250 -- (Ada 2012): If the construct N has two or more direct constituents that
251 -- are names or expressions whose evaluation may occur in an arbitrary
252 -- order, at least one of which contains a function call with an in out or
253 -- out parameter, then the construct is legal only if: for each name that
254 -- is passed as a parameter of mode in out or out to some inner function
255 -- call C2 (not including the construct N itself), there is no other name
256 -- anywhere within a direct constituent of the construct C other than
257 -- the one containing C2, that is known to refer to the same object (RM
258 -- 6.4.1(6.17/3)).
259
260 procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id);
261 -- AI05-139-2: Accessors and iterators for containers. This procedure
262 -- checks whether T is a reference type, and if so it adds an interprettion
263 -- to Expr whose type is the designated type of the reference_discriminant.
264
265 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
266 -- Within a protected function, the current object is a constant, and
267 -- internal calls to a procedure or entry are illegal. Similarly, other
268 -- uses of a protected procedure in a renaming or a generic instantiation
269 -- in the context of a protected function are illegal (AI05-0225).
270
271 procedure Check_Later_Vs_Basic_Declarations
272 (Decls : List_Id;
273 During_Parsing : Boolean);
274 -- If During_Parsing is True, check for misplacement of later vs basic
275 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
276 -- restriction is set, do the same: although SPARK 95 removes the
277 -- distinction between initial and later declarative items, the distinction
278 -- remains in the Examiner (JB01-005). Note that the Examiner does not
279 -- count package declarations in later declarative items.
280
281 procedure Check_Nested_Access (Ent : Entity_Id);
282 -- Check whether Ent denotes an entity declared in an uplevel scope, which
283 -- is accessed inside a nested procedure, and set Has_Up_Level_Access flag
284 -- accordingly. This is currently only enabled for VM_Target /= No_VM.
285
286 procedure Check_No_Hidden_State (Id : Entity_Id);
287 -- Determine whether object or state Id introduces a hidden state. If this
288 -- is the case, emit an error.
289
290 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
291 -- N is one of the statement forms that is a potentially blocking
292 -- operation. If it appears within a protected action, emit warning.
293
294 procedure Check_Result_And_Post_State
295 (Prag : Node_Id;
296 Result_Seen : in out Boolean);
297 -- Determine whether pragma Prag mentions attribute 'Result and whether
298 -- the pragma contains an expression that evaluates differently in pre-
299 -- and post-state. Prag is a [refined] postcondition or a contract-cases
300 -- pragma. Result_Seen is set when the pragma mentions attribute 'Result.
301
302 procedure Check_SPARK_Mode_In_Generic (N : Node_Id);
303 -- Given a generic package [body] or a generic subprogram [body], inspect
304 -- the aspect specifications (if any) and flag SPARK_Mode as illegal.
305
306 procedure Check_Unprotected_Access
307 (Context : Node_Id;
308 Expr : Node_Id);
309 -- Check whether the expression is a pointer to a protected component,
310 -- and the context is external to the protected operation, to warn against
311 -- a possible unlocked access to data.
312
313 procedure Check_VMS (Construct : Node_Id);
314 -- Check that this the target is OpenVMS, and if so, return with no effect,
315 -- otherwise post an error noting this can only be used with OpenVMS ports.
316 -- The argument is the construct in question and is used to post the error
317 -- message.
318
319 procedure Collect_Interfaces
320 (T : Entity_Id;
321 Ifaces_List : out Elist_Id;
322 Exclude_Parents : Boolean := False;
323 Use_Full_View : Boolean := True);
324 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
325 -- directly or indirectly implemented by T. Exclude_Parents is used to
326 -- avoid the addition of inherited interfaces to the generated list.
327 -- Use_Full_View is used to collect the interfaces using the full-view
328 -- (if available).
329
330 procedure Collect_Interface_Components
331 (Tagged_Type : Entity_Id;
332 Components_List : out Elist_Id);
333 -- Ada 2005 (AI-251): Collect all the tag components associated with the
334 -- secondary dispatch tables of a tagged type.
335
336 procedure Collect_Interfaces_Info
337 (T : Entity_Id;
338 Ifaces_List : out Elist_Id;
339 Components_List : out Elist_Id;
340 Tags_List : out Elist_Id);
341 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
342 -- the record component and tag associated with each of these interfaces.
343 -- On exit Ifaces_List, Components_List and Tags_List have the same number
344 -- of elements, and elements at the same position on these tables provide
345 -- information on the same interface type.
346
347 procedure Collect_Parents
348 (T : Entity_Id;
349 List : out Elist_Id;
350 Use_Full_View : Boolean := True);
351 -- Collect all the parents of Typ. Use_Full_View is used to collect them
352 -- using the full-view of private parents (if available).
353
354 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
355 -- Called upon type derivation and extension. We scan the declarative part
356 -- in which the type appears, and collect subprograms that have one
357 -- subsidiary subtype of the type. These subprograms can only appear after
358 -- the type itself.
359
360 function Compile_Time_Constraint_Error
361 (N : Node_Id;
362 Msg : String;
363 Ent : Entity_Id := Empty;
364 Loc : Source_Ptr := No_Location;
365 Warn : Boolean := False) return Node_Id;
366 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
367 -- generates a warning (or error) message in the same manner, but it does
368 -- not replace any nodes. For convenience, the function always returns its
369 -- first argument. The message is a warning if the message ends with ?, or
370 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
371
372 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
373 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
374 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
375
376 function Contains_Refined_State (Prag : Node_Id) return Boolean;
377 -- Determine whether pragma Prag contains a reference to the entity of an
378 -- abstract state with a visible refinement. Prag must denote one of the
379 -- following pragmas:
380 -- Depends
381 -- Global
382
383 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
384 -- Utility to create a parameter profile for a new subprogram spec, when
385 -- the subprogram has a body that acts as spec. This is done for some cases
386 -- of inlining, and for private protected ops. Also used to create bodies
387 -- for stubbed subprograms.
388
389 function Copy_Component_List
390 (R_Typ : Entity_Id;
391 Loc : Source_Ptr) return List_Id;
392 -- Copy components from record type R_Typ that come from source. Used to
393 -- create a new compatible record type. Loc is the source location assigned
394 -- to the created nodes.
395
396 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
397 -- If a type is a generic actual type, return the corresponding formal in
398 -- the generic parent unit. There is no direct link in the tree for this
399 -- attribute, except in the case of formal private and derived types.
400 -- Possible optimization???
401
402 function Current_Entity (N : Node_Id) return Entity_Id;
403 pragma Inline (Current_Entity);
404 -- Find the currently visible definition for a given identifier, that is to
405 -- say the first entry in the visibility chain for the Chars of N.
406
407 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
408 -- Find whether there is a previous definition for identifier N in the
409 -- current scope. Because declarations for a scope are not necessarily
410 -- contiguous (e.g. for packages) the first entry on the visibility chain
411 -- for N is not necessarily in the current scope.
412
413 function Current_Scope return Entity_Id;
414 -- Get entity representing current scope
415
416 function Current_Subprogram return Entity_Id;
417 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
418 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
419 -- Current_Scope is returned. The returned value is Empty if this is called
420 -- from a library package which is not within any subprogram.
421
422 -- The following type lists all possible forms of default initialization
423 -- that may apply to a type.
424
425 type Default_Initialization_Kind is
426 (No_Possible_Initialization,
427 -- This value signifies that a type cannot possibly be initialized
428 -- because it has no content, for example - a null record.
429
430 Full_Default_Initialization,
431 -- This value covers the following combinations of types and content:
432 -- * Access type
433 -- * Array-of-scalars with specified Default_Component_Value
434 -- * Array type with fully default initialized component type
435 -- * Record or protected type with components that either have a
436 -- default expression or their related types are fully default
437 -- initialized.
438 -- * Scalar type with specified Default_Value
439 -- * Task type
440 -- * Type extension of a type with full default initialization where
441 -- the extension components are also fully default initialized.
442
443 Mixed_Initialization,
444 -- This value applies to a type where some of its internals are fully
445 -- default initialized and some are not.
446
447 No_Default_Initialization);
448 -- This value reflects a type where none of its content is fully
449 -- default initialized.
450
451 function Default_Initialization
452 (Typ : Entity_Id) return Default_Initialization_Kind;
453 -- Determine default initialization kind that applies to a particular type
454
455 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
456 -- Same as Type_Access_Level, except that if the type is the type of an Ada
457 -- 2012 stand-alone object of an anonymous access type, then return the
458 -- static accesssibility level of the object. In that case, the dynamic
459 -- accessibility level of the object may take on values in a range. The low
460 -- bound of of that range is returned by Type_Access_Level; this function
461 -- yields the high bound of that range. Also differs from Type_Access_Level
462 -- in the case of a descendant of a generic formal type (returns Int'Last
463 -- instead of 0).
464
465 function Defining_Entity (N : Node_Id) return Entity_Id;
466 -- Given a declaration N, returns the associated defining entity. If the
467 -- declaration has a specification, the entity is obtained from the
468 -- specification. If the declaration has a defining unit name, then the
469 -- defining entity is obtained from the defining unit name ignoring any
470 -- child unit prefixes.
471
472 function Denotes_Discriminant
473 (N : Node_Id;
474 Check_Concurrent : Boolean := False) return Boolean;
475 -- Returns True if node N is an Entity_Name node for a discriminant. If the
476 -- flag Check_Concurrent is true, function also returns true when N denotes
477 -- the discriminal of the discriminant of a concurrent type. This is needed
478 -- to disable some optimizations on private components of protected types,
479 -- and constraint checks on entry families constrained by discriminants.
480
481 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
482 -- Detect suspicious overlapping between actuals in a call, when both are
483 -- writable (RM 2012 6.4.1(6.4/3))
484
485 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
486 -- Functions to detect suspicious overlapping between actuals in a call,
487 -- when one of them is writable. The predicates are those proposed in
488 -- AI05-0144, to detect dangerous order dependence in complex calls.
489 -- I would add a parameter Warn which enables more extensive testing of
490 -- cases as we find appropriate when we are only warning ??? Or perhaps
491 -- return an indication of (Error, Warn, OK) ???
492
493 function Denotes_Variable (N : Node_Id) return Boolean;
494 -- Returns True if node N denotes a single variable without parentheses
495
496 function Depends_On_Discriminant (N : Node_Id) return Boolean;
497 -- Returns True if N denotes a discriminant or if N is a range, a subtype
498 -- indication or a scalar subtype where one of the bounds is a
499 -- discriminant.
500
501 function Designate_Same_Unit
502 (Name1 : Node_Id;
503 Name2 : Node_Id) return Boolean;
504 -- Return true if Name1 and Name2 designate the same unit name; each of
505 -- these names is supposed to be a selected component name, an expanded
506 -- name, a defining program unit name or an identifier.
507
508 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
509 -- Expr should be an expression of an access type. Builds an integer
510 -- literal except in cases involving anonymous access types where
511 -- accessibility levels are tracked at runtime (access parameters and Ada
512 -- 2012 stand-alone objects).
513
514 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
515 -- Same as Einfo.Extra_Accessibility except thtat object renames
516 -- are looked through.
517
518 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
519 -- Given the entity of an abstract state or a variable, determine whether
520 -- Id is subject to external property Effective_Reads and if it is, the
521 -- related expression evaluates to True.
522
523 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
524 -- Given the entity of an abstract state or a variable, determine whether
525 -- Id is subject to external property Effective_Writes and if it is, the
526 -- related expression evaluates to True.
527
528 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
529 -- Returns the enclosing N_Compilation_Unit Node that is the root of a
530 -- subtree containing N.
531
532 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
533 -- Returns the closest ancestor of Typ that is a CPP type.
534
535 function Enclosing_Generic_Body
536 (N : Node_Id) return Node_Id;
537 -- Returns the Node_Id associated with the innermost enclosing generic
538 -- body, if any. If none, then returns Empty.
539
540 function Enclosing_Generic_Unit
541 (N : Node_Id) return Node_Id;
542 -- Returns the Node_Id associated with the innermost enclosing generic
543 -- unit, if any. If none, then returns Empty.
544
545 function Enclosing_Lib_Unit_Entity
546 (E : Entity_Id := Current_Scope) return Entity_Id;
547 -- Returns the entity of enclosing library unit node which is the
548 -- root of the current scope (which must not be Standard_Standard, and the
549 -- caller is responsible for ensuring this condition) or other specified
550 -- entity.
551
552 function Enclosing_Package (E : Entity_Id) return Entity_Id;
553 -- Utility function to return the Ada entity of the package enclosing
554 -- the entity E, if any. Returns Empty if no enclosing package.
555
556 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
557 -- Utility function to return the Ada entity of the subprogram enclosing
558 -- the entity E, if any. Returns Empty if no enclosing subprogram.
559
560 procedure Ensure_Freeze_Node (E : Entity_Id);
561 -- Make sure a freeze node is allocated for entity E. If necessary, build
562 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
563
564 procedure Enter_Name (Def_Id : Entity_Id);
565 -- Insert new name in symbol table of current scope with check for
566 -- duplications (error message is issued if a conflict is found).
567 -- Note: Enter_Name is not used for overloadable entities, instead these
568 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
569
570 function Entity_Of (N : Node_Id) return Entity_Id;
571 -- Return the entity of N or Empty. If N is a renaming, return the entity
572 -- of the root renamed object.
573
574 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
575 -- This procedure is called after issuing a message complaining about an
576 -- inappropriate use of limited type T. If useful, it adds additional
577 -- continuation lines to the message explaining why type T is limited.
578 -- Messages are placed at node N.
579
580 procedure Find_Actual
581 (N : Node_Id;
582 Formal : out Entity_Id;
583 Call : out Node_Id);
584 -- Determines if the node N is an actual parameter of a function of a
585 -- procedure call. If so, then Formal points to the entity for the formal
586 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
587 -- Call is set to the node for the corresponding call. If the node N is not
588 -- an actual parameter then Formal and Call are set to Empty.
589
590 function Find_Body_Discriminal
591 (Spec_Discriminant : Entity_Id) return Entity_Id;
592 -- Given a discriminant of the record type that implements a task or
593 -- protected type, return the discriminal of the corresponding discriminant
594 -- of the actual concurrent type.
595
596 function Find_Corresponding_Discriminant
597 (Id : Node_Id;
598 Typ : Entity_Id) return Entity_Id;
599 -- Because discriminants may have different names in a generic unit and in
600 -- an instance, they are resolved positionally when possible. A reference
601 -- to a discriminant carries the discriminant that it denotes when it is
602 -- analyzed. Subsequent uses of this id on a different type denotes the
603 -- discriminant at the same position in this new type.
604
605 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
606 -- Find the nested loop statement in a conditional block. Loops subject to
607 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
608 -- loop are nested within the block.
609
610 procedure Find_Overlaid_Entity
611 (N : Node_Id;
612 Ent : out Entity_Id;
613 Off : out Boolean);
614 -- The node N should be an address representation clause. Determines if
615 -- the target expression is the address of an entity with an optional
616 -- offset. If so, set Ent to the entity and, if there is an offset, set
617 -- Off to True, otherwise to False. If N is not an address representation
618 -- clause, or if it is not possible to determine that the address is of
619 -- this form, then set Ent to Empty.
620
621 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
622 -- Return the type of formal parameter Param as determined by its
623 -- specification.
624
625 -- The following type describes the placement of an arbitrary entity with
626 -- respect to SPARK visible / hidden state space.
627
628 type State_Space_Kind is
629 (Not_In_Package,
630 -- An entity is not in the visible, private or body state space when
631 -- the immediate enclosing construct is not a package.
632
633 Visible_State_Space,
634 -- An entity is in the visible state space when it appears immediately
635 -- within the visible declarations of a package or when it appears in
636 -- the visible state space of a nested package which in turn is declared
637 -- in the visible declarations of an enclosing package:
638
639 -- package Pack is
640 -- Visible_Variable : ...
641 -- package Nested
642 -- with Abstract_State => Visible_State
643 -- is
644 -- Visible_Nested_Variable : ...
645 -- end Nested;
646 -- end Pack;
647
648 -- Entities associated with a package instantiation inherit the state
649 -- space from the instance placement:
650
651 -- generic
652 -- package Gen is
653 -- Generic_Variable : ...
654 -- end Gen;
655
656 -- with Gen;
657 -- package Pack is
658 -- package Inst is new Gen;
659 -- -- Generic_Variable is in the visible state space of Pack
660 -- end Pack;
661
662 Private_State_Space,
663 -- An entity is in the private state space when it appears immediately
664 -- within the private declarations of a package or when it appears in
665 -- the visible state space of a nested package which in turn is declared
666 -- in the private declarations of an enclosing package:
667
668 -- package Pack is
669 -- private
670 -- Private_Variable : ...
671 -- package Nested
672 -- with Abstract_State => Private_State
673 -- is
674 -- Private_Nested_Variable : ...
675 -- end Nested;
676 -- end Pack;
677
678 -- The same placement principle applies to package instantiations
679
680 Body_State_Space);
681 -- An entity is in the body state space when it appears immediately
682 -- within the declarations of a package body or when it appears in the
683 -- visible state space of a nested package which in turn is declared in
684 -- the declarations of an enclosing package body:
685
686 -- package body Pack is
687 -- Body_Variable : ...
688 -- package Nested
689 -- with Abstract_State => Body_State
690 -- is
691 -- Body_Nested_Variable : ...
692 -- end Nested;
693 -- end Pack;
694
695 -- The same placement principle applies to package instantiations
696
697 procedure Find_Placement_In_State_Space
698 (Item_Id : Entity_Id;
699 Placement : out State_Space_Kind;
700 Pack_Id : out Entity_Id);
701 -- Determine the state space placement of an item. Item_Id denotes the
702 -- entity of an abstract state, variable or package instantiation.
703 -- Placement captures the precise placement of the item in the enclosing
704 -- state space. If the state space is that of a package, Pack_Id denotes
705 -- its entity, otherwise Pack_Id is Empty.
706
707 function Find_Static_Alternative (N : Node_Id) return Node_Id;
708 -- N is a case statement whose expression is a compile-time value.
709 -- Determine the alternative chosen, so that the code of non-selected
710 -- alternatives, and the warnings that may apply to them, are removed.
711
712 function First_Actual (Node : Node_Id) return Node_Id;
713 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
714 -- result returned is the first actual parameter in declaration order
715 -- (not the order of parameters as they appeared in the source, which
716 -- can be quite different as a result of the use of named parameters).
717 -- Empty is returned for a call with no parameters. The procedure for
718 -- iterating through the actuals in declaration order is to use this
719 -- function to find the first actual, and then use Next_Actual to obtain
720 -- the next actual in declaration order. Note that the value returned
721 -- is always the expression (not the N_Parameter_Association nodes,
722 -- even if named association is used).
723
724 procedure Gather_Components
725 (Typ : Entity_Id;
726 Comp_List : Node_Id;
727 Governed_By : List_Id;
728 Into : Elist_Id;
729 Report_Errors : out Boolean);
730 -- The purpose of this procedure is to gather the valid components in a
731 -- record type according to the values of its discriminants, in order to
732 -- validate the components of a record aggregate.
733 --
734 -- Typ is the type of the aggregate when its constrained discriminants
735 -- need to be collected, otherwise it is Empty.
736 --
737 -- Comp_List is an N_Component_List node.
738 --
739 -- Governed_By is a list of N_Component_Association nodes, where each
740 -- choice list contains the name of a discriminant and the expression
741 -- field gives its value. The values of the discriminants governing
742 -- the (possibly nested) variant parts in Comp_List are found in this
743 -- Component_Association List.
744 --
745 -- Into is the list where the valid components are appended. Note that
746 -- Into need not be an Empty list. If it's not, components are attached
747 -- to its tail.
748 --
749 -- Report_Errors is set to True if the values of the discriminants are
750 -- non-static.
751 --
752 -- This procedure is also used when building a record subtype. If the
753 -- discriminant constraint of the subtype is static, the components of the
754 -- subtype are only those of the variants selected by the values of the
755 -- discriminants. Otherwise all components of the parent must be included
756 -- in the subtype for semantic analysis.
757
758 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
759 -- Given a node for an expression, obtain the actual subtype of the
760 -- expression. In the case of a parameter where the formal is an
761 -- unconstrained array or discriminated type, this will be the previously
762 -- constructed subtype of the actual. Note that this is not quite the
763 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
764 -- it is the subtype of the value of the actual. The actual subtype is also
765 -- returned in other cases where it has already been constructed for an
766 -- object. Otherwise the expression type is returned unchanged, except for
767 -- the case of an unconstrained array type, where an actual subtype is
768 -- created, using Insert_Actions if necessary to insert any associated
769 -- actions.
770
771 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
772 -- This is like Get_Actual_Subtype, except that it never constructs an
773 -- actual subtype. If an actual subtype is already available, i.e. the
774 -- Actual_Subtype field of the corresponding entity is set, then it is
775 -- returned. Otherwise the Etype of the node is returned.
776
777 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
778 -- Return the body node for a stub (subprogram or package)
779
780 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
781 -- This is used to construct the string literal node representing a
782 -- default external name, i.e. one that is constructed from the name of an
783 -- entity, or (in the case of extended DEC import/export pragmas, an
784 -- identifier provided as the external name. Letters in the name are
785 -- according to the setting of Opt.External_Name_Default_Casing.
786
787 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
788 -- If expression N references a part of an object, return this object.
789 -- Otherwise return Empty. Expression N should have been resolved already.
790
791 function Get_Ensures_From_CTC_Pragma (N : Node_Id) return Node_Id;
792 -- Return the Ensures component of Test_Case pragma N, or Empty otherwise
793 -- Bad name now that this no longer applies to Contract_Case ???
794
795 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
796 -- Returns the true generic entity in an instantiation. If the name in the
797 -- instantiation is a renaming, the function returns the renamed generic.
798
799 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
800 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
801 -- in a child unit a derived type is within the derivation class of an
802 -- ancestor declared in a parent unit, even if there is an intermediate
803 -- derivation that does not see the full view of that ancestor.
804
805 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
806 -- This procedure assigns to L and H respectively the values of the low and
807 -- high bounds of node N, which must be a range, subtype indication, or the
808 -- name of a scalar subtype. The result in L, H may be set to Error if
809 -- there was an earlier error in the range.
810
811 function Get_Enum_Lit_From_Pos
812 (T : Entity_Id;
813 Pos : Uint;
814 Loc : Source_Ptr) return Node_Id;
815 -- This function returns an identifier denoting the E_Enumeration_Literal
816 -- entity for the specified value from the enumeration type or subtype T.
817 -- The second argument is the Pos value, which is assumed to be in range.
818 -- The third argument supplies a source location for constructed nodes
819 -- returned by this function.
820
821 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
822 -- Retrieve the fully expanded name of the library unit declared by
823 -- Decl_Node into the name buffer.
824
825 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
826 pragma Inline (Get_Name_Entity_Id);
827 -- An entity value is associated with each name in the name table. The
828 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
829 -- is the innermost visible entity with the given name. See the body of
830 -- Sem_Ch8 for further details on handling of entity visibility.
831
832 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
833 -- Return the Name component of Test_Case pragma N
834 -- Bad name now that this no longer applies to Contract_Case ???
835
836 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
837 pragma Inline (Get_Pragma_Id);
838 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
839
840 function Get_Referenced_Object (N : Node_Id) return Node_Id;
841 -- Given a node, return the renamed object if the node represents a renamed
842 -- object, otherwise return the node unchanged. The node may represent an
843 -- arbitrary expression.
844
845 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
846 -- Given an entity for an exception, package, subprogram or generic unit,
847 -- returns the ultimately renamed entity if this is a renaming. If this is
848 -- not a renamed entity, returns its argument. It is an error to call this
849 -- with any other kind of entity.
850
851 function Get_Requires_From_CTC_Pragma (N : Node_Id) return Node_Id;
852 -- Return the Requires component of Test_Case pragma N, or Empty otherwise
853 -- Bad name now that this no longer applies to Contract_Case ???
854
855 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
856 -- Nod is either a procedure call statement, or a function call, or an
857 -- accept statement node. This procedure finds the Entity_Id of the related
858 -- subprogram or entry and returns it, or if no subprogram can be found,
859 -- returns Empty.
860
861 function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
862 -- Given the entity for a subprogram (E_Function or E_Procedure), return
863 -- the corresponding N_Subprogram_Body node. If the corresponding body
864 -- is missing (as for an imported subprogram), return Empty.
865
866 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
867 pragma Inline (Get_Task_Body_Procedure);
868 -- Given an entity for a task type or subtype, retrieves the
869 -- Task_Body_Procedure field from the corresponding task type declaration.
870
871 function Has_Access_Values (T : Entity_Id) return Boolean;
872 -- Returns true if type or subtype T is an access type, or has a component
873 -- (at any recursive level) that is an access type. This is a conservative
874 -- predicate, if it is not known whether or not T contains access values
875 -- (happens for generic formals in some cases), then False is returned.
876 -- Note that tagged types return False. Even though the tag is implemented
877 -- as an access type internally, this function tests only for access types
878 -- known to the programmer. See also Has_Tagged_Component.
879
880 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
881 -- Result of Has_Compatible_Alignment test, description found below. Note
882 -- that the values are arranged in increasing order of problematicness.
883
884 function Has_Compatible_Alignment
885 (Obj : Entity_Id;
886 Expr : Node_Id) return Alignment_Result;
887 -- Obj is an object entity, and expr is a node for an object reference. If
888 -- the alignment of the object referenced by Expr is known to be compatible
889 -- with the alignment of Obj (i.e. is larger or the same), then the result
890 -- is Known_Compatible. If the alignment of the object referenced by Expr
891 -- is known to be less than the alignment of Obj, then Known_Incompatible
892 -- is returned. If neither condition can be reliably established at compile
893 -- time, then Unknown is returned. This is used to determine if alignment
894 -- checks are required for address clauses, and also whether copies must
895 -- be made when objects are passed by reference.
896 --
897 -- Note: Known_Incompatible does not mean that at run time the alignment
898 -- of Expr is known to be wrong for Obj, just that it can be determined
899 -- that alignments have been explicitly or implicitly specified which are
900 -- incompatible (whereas Unknown means that even this is not known). The
901 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
902 -- Unknown, but issue a warning that there may be an alignment error.
903
904 function Has_Declarations (N : Node_Id) return Boolean;
905 -- Determines if the node can have declarations
906
907 function Has_Denormals (E : Entity_Id) return Boolean;
908 -- Determines if the floating-point type E supports denormal numbers.
909 -- Returns False if E is not a floating-point type.
910
911 function Has_Discriminant_Dependent_Constraint
912 (Comp : Entity_Id) return Boolean;
913 -- Returns True if and only if Comp has a constrained subtype that depends
914 -- on a discriminant.
915
916 function Has_Infinities (E : Entity_Id) return Boolean;
917 -- Determines if the range of the floating-point type E includes
918 -- infinities. Returns False if E is not a floating-point type.
919
920 function Has_Interfaces
921 (T : Entity_Id;
922 Use_Full_View : Boolean := True) return Boolean;
923 -- Where T is a concurrent type or a record type, returns true if T covers
924 -- any abstract interface types. In case of private types the argument
925 -- Use_Full_View controls if the check is done using its full view (if
926 -- available).
927
928 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
929 -- This is a simple minded function for determining whether an expression
930 -- has no obvious side effects. It is used only for determining whether
931 -- warnings are needed in certain situations, and is not guaranteed to
932 -- be accurate in either direction. Exceptions may mean an expression
933 -- does in fact have side effects, but this may be ignored and True is
934 -- returned, or a complex expression may in fact be side effect free
935 -- but we don't recognize it here and return False. The Side_Effect_Free
936 -- routine in Remove_Side_Effects is much more extensive and perhaps could
937 -- be shared, so that this routine would be more accurate.
938
939 function Has_Null_Exclusion (N : Node_Id) return Boolean;
940 -- Determine whether node N has a null exclusion
941
942 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
943 -- Predicate to determine whether a controlled type has a user-defined
944 -- Initialize primitive (and, in Ada 2012, whether that primitive is
945 -- non-null), which causes the type to not have preelaborable
946 -- initialization.
947
948 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
949 -- Return True iff type E has preelaborable initialization as defined in
950 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
951
952 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
953 -- Check if a type has a (sub)component of a private type that has not
954 -- yet received a full declaration.
955
956 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
957 -- Determines if the floating-point type E supports signed zeros.
958 -- Returns False if E is not a floating-point type.
959
960 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
961 -- Return whether an array type has static bounds
962
963 function Has_Stream (T : Entity_Id) return Boolean;
964 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
965 -- case of a composite type, has a component for which this predicate is
966 -- True, and if so returns True. Otherwise a result of False means that
967 -- there is no Stream type in sight. For a private type, the test is
968 -- applied to the underlying type (or returns False if there is no
969 -- underlying type).
970
971 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
972 -- Returns true if the last character of E is Suffix. Used in Assertions.
973
974 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
975 -- Returns the name of E adding Suffix
976
977 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
978 -- Returns the name of E without Suffix
979
980 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
981 -- Returns True if Typ is a composite type (array or record) which is
982 -- either itself a tagged type, or has a component (recursively) which is
983 -- a tagged type. Returns False for non-composite type, or if no tagged
984 -- component is present. This function is used to check if "=" has to be
985 -- expanded into a bunch component comparisons.
986
987 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
988 -- Given an arbitrary type, determine whether it contains at least one
989 -- volatile component.
990
991 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
992 -- Subp is a subprogram marked with pragma Implemented. Return the specific
993 -- implementation requirement which the pragma imposes. The return value is
994 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
995
996 function Implements_Interface
997 (Typ_Ent : Entity_Id;
998 Iface_Ent : Entity_Id;
999 Exclude_Parents : Boolean := False) return Boolean;
1000 -- Returns true if the Typ_Ent implements interface Iface_Ent
1001
1002 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1003 -- Determine whether an arbitrary node appears in a pragma that acts as an
1004 -- assertion expression. See Sem_Prag for the list of qualifying pragmas.
1005
1006 function In_Instance return Boolean;
1007 -- Returns True if the current scope is within a generic instance
1008
1009 function In_Instance_Body return Boolean;
1010 -- Returns True if current scope is within the body of an instance, where
1011 -- several semantic checks (e.g. accessibility checks) are relaxed.
1012
1013 function In_Instance_Not_Visible return Boolean;
1014 -- Returns True if current scope is with the private part or the body of
1015 -- an instance. Other semantic checks are suppressed in this context.
1016
1017 function In_Instance_Visible_Part return Boolean;
1018 -- Returns True if current scope is within the visible part of a package
1019 -- instance, where several additional semantic checks apply.
1020
1021 function In_Package_Body return Boolean;
1022 -- Returns True if current scope is within a package body
1023
1024 function In_Parameter_Specification (N : Node_Id) return Boolean;
1025 -- Returns True if node N belongs to a parameter specification
1026
1027 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1028 -- Returns true if the expression N occurs within a pragma with name Nam
1029
1030 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1031 -- Returns True if N denotes a component or subcomponent in a record or
1032 -- array that has Reverse_Storage_Order.
1033
1034 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1035 -- Determines if the current scope is within a subprogram compilation unit
1036 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1037 -- declaration) or within a task or protected body. The test is for
1038 -- appearing anywhere within such a construct (that is it does not need
1039 -- to be directly within).
1040
1041 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1042 -- Determine whether a declaration occurs within the visible part of a
1043 -- package specification. The package must be on the scope stack, and the
1044 -- corresponding private part must not.
1045
1046 function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id;
1047 -- Given the entity of a type, retrieve the incomplete or private view of
1048 -- the same type. Note that Typ may not have a partial view to begin with,
1049 -- in that case the function returns Empty.
1050
1051 procedure Insert_Explicit_Dereference (N : Node_Id);
1052 -- In a context that requires a composite or subprogram type and where a
1053 -- prefix is an access type, rewrite the access type node N (which is the
1054 -- prefix, e.g. of an indexed component) as an explicit dereference.
1055
1056 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1057 -- Examine all deferred constants in the declaration list Decls and check
1058 -- whether they have been completed by a full constant declaration or an
1059 -- Import pragma. Emit the error message if that is not the case.
1060
1061 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1062 -- Determines if N is an actual parameter of out mode in a subprogram call
1063
1064 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1065 -- Determines if N is an actual parameter in a subprogram call
1066
1067 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1068 -- Determines if N is an actual parameter of a formal of tagged type in a
1069 -- subprogram call.
1070
1071 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1072 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1073 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1074 -- rules of the language, it does not take into account the restriction
1075 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1076 -- and Obj violates the restriction. The caller is responsible for calling
1077 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1078 -- requirement for obeying the restriction in the call context.
1079
1080 function Is_Ancestor_Package
1081 (E1 : Entity_Id;
1082 E2 : Entity_Id) return Boolean;
1083 -- Determine whether package E1 is an ancestor of E2
1084
1085 function Is_Atomic_Object (N : Node_Id) return Boolean;
1086 -- Determines if the given node denotes an atomic object in the sense of
1087 -- the legality checks described in RM C.6(12).
1088
1089 function Is_Attribute_Result (N : Node_Id) return Boolean;
1090 -- Determine whether node N denotes attribute 'Result
1091
1092 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1093 -- Determine whether node N denotes a body or a package declaration
1094
1095 function Is_Bounded_String (T : Entity_Id) return Boolean;
1096 -- True if T is a bounded string type. Used to make sure "=" composes
1097 -- properly for bounded string types.
1098
1099 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1100 -- Exp is the expression for an array bound. Determines whether the
1101 -- bound is a compile-time known value, or a constant entity, or an
1102 -- enumeration literal, or an expression composed of constant-bound
1103 -- subexpressions which are evaluated by means of standard operators.
1104
1105 function Is_Controlling_Limited_Procedure
1106 (Proc_Nam : Entity_Id) return Boolean;
1107 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1108 -- of a limited interface with a controlling first parameter.
1109
1110 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1111 -- Returns True if N is a call to a CPP constructor
1112
1113 function Is_Child_Or_Sibling
1114 (Pack_1 : Entity_Id;
1115 Pack_2 : Entity_Id) return Boolean;
1116 -- Determine the following relations between two arbitrary packages:
1117 -- 1) One package is the parent of a child package
1118 -- 2) Both packages are siblings and share a common parent
1119
1120 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1121 -- First determine whether type T is an interface and then check whether
1122 -- it is of protected, synchronized or task kind.
1123
1124 function Is_Delegate (T : Entity_Id) return Boolean;
1125 -- Returns true if type T represents a delegate. A Delegate is the CIL
1126 -- object used to represent access-to-subprogram types. This is only
1127 -- relevant to CIL, will always return false for other targets.
1128
1129 function Is_Dependent_Component_Of_Mutable_Object
1130 (Object : Node_Id) return Boolean;
1131 -- Returns True if Object is the name of a subcomponent that depends on
1132 -- discriminants of a variable whose nominal subtype is unconstrained and
1133 -- not indefinite, and the variable is not aliased. Otherwise returns
1134 -- False. The nodes passed to this function are assumed to denote objects.
1135
1136 function Is_Dereferenced (N : Node_Id) return Boolean;
1137 -- N is a subexpression node of an access type. This function returns true
1138 -- if N appears as the prefix of a node that does a dereference of the
1139 -- access value (selected/indexed component, explicit dereference or a
1140 -- slice), and false otherwise.
1141
1142 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1143 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
1144 -- This is the RM definition, a type is a descendent of another type if it
1145 -- is the same type or is derived from a descendent of the other type.
1146
1147 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1148 -- Predicate to determine whether a scope entity comes from a rewritten
1149 -- expression function call, and should be inlined unconditionally. Also
1150 -- used to determine that such a call does not constitute a freeze point.
1151
1152 function Is_False (U : Uint) return Boolean;
1153 pragma Inline (Is_False);
1154 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1155 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1156 -- if it is False (i.e. zero).
1157
1158 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1159 -- Returns True iff the number U is a model number of the fixed-point type
1160 -- T, i.e. if it is an exact multiple of Small.
1161
1162 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1163 -- Typ is a type entity. This function returns true if this type is fully
1164 -- initialized, meaning that an object of the type is fully initialized.
1165 -- Note that initialization resulting from use of pragma Normalized_Scalars
1166 -- does not count. Note that this is only used for the purpose of issuing
1167 -- warnings for objects that are potentially referenced uninitialized. This
1168 -- means that the result returned is not crucial, but should err on the
1169 -- side of thinking things are fully initialized if it does not know.
1170
1171 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1172 -- E is a subprogram. Return True is E is an implicit operation inherited
1173 -- by a derived type declaration.
1174
1175 function Is_Inherited_Operation_For_Type
1176 (E : Entity_Id;
1177 Typ : Entity_Id) return Boolean;
1178 -- E is a subprogram. Return True is E is an implicit operation inherited
1179 -- by the derived type declaration for type Typ.
1180
1181 function Is_Iterator (Typ : Entity_Id) return Boolean;
1182 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1183 -- Ada.Iterator_Interfaces, or it is derived from one.
1184
1185 type Is_LHS_Result is (Yes, No, Unknown);
1186 function Is_LHS (N : Node_Id) return Is_LHS_Result;
1187 -- Returns Yes if N is definitely used as Name in an assignment statement.
1188 -- Returns No if N is definitely NOT used as a Name in an assignment
1189 -- statement. Returns Unknown if we can't tell at this stage (happens in
1190 -- the case where we don't know the type of N yet, and we have something
1191 -- like N.A := 3, where this counts as N being used on the left side of
1192 -- an assignment only if N is not an access type. If it is an access type
1193 -- then it is N.all.A that is assigned, not N.
1194
1195 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1196 -- A library-level declaration is one that is accessible from Standard,
1197 -- i.e. a library unit or an entity declared in a library package.
1198
1199 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1200 -- Determine whether a given type is a limited class-wide type, in which
1201 -- case it needs a Master_Id, because extensions of its designated type
1202 -- may include task components. A class-wide type that comes from a
1203 -- limited view must be treated in the same way.
1204
1205 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1206 -- Determines whether Expr is a reference to a variable or IN OUT mode
1207 -- parameter of the current enclosing subprogram.
1208 -- Why are OUT parameters not considered here ???
1209
1210 function Is_Object_Reference (N : Node_Id) return Boolean;
1211 -- Determines if the tree referenced by N represents an object. Both
1212 -- variable and constant objects return True (compare Is_Variable).
1213
1214 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1215 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1216 -- Note that the Is_Variable function is not quite the right test because
1217 -- this is a case in which conversions whose expression is a variable (in
1218 -- the Is_Variable sense) with a non-tagged type target are considered view
1219 -- conversions and hence variables.
1220
1221 function Is_Partially_Initialized_Type
1222 (Typ : Entity_Id;
1223 Include_Implicit : Boolean := True) return Boolean;
1224 -- Typ is a type entity. This function returns true if this type is partly
1225 -- initialized, meaning that an object of the type is at least partly
1226 -- initialized (in particular in the record case, that at least one
1227 -- component has an initialization expression). Note that initialization
1228 -- resulting from the use of pragma Normalized_Scalars does not count.
1229 -- Include_Implicit controls whether implicit initialization of access
1230 -- values to null, and of discriminant values, is counted as making the
1231 -- type be partially initialized. For the default setting of True, these
1232 -- implicit cases do count, and discriminated types or types containing
1233 -- access values not explicitly initialized will return True. Otherwise
1234 -- if Include_Implicit is False, these cases do not count as making the
1235 -- type be partially initialized.
1236
1237 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1238 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1239
1240 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1241 -- Determines if type T is a potentially persistent type. A potentially
1242 -- persistent type is defined (recursively) as a scalar type, a non-tagged
1243 -- record whose components are all of a potentially persistent type, or an
1244 -- array with all static constraints whose component type is potentially
1245 -- persistent. A private type is potentially persistent if the full type
1246 -- is potentially persistent.
1247
1248 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1249 -- Return True if node N denotes a protected type name which represents
1250 -- the current instance of a protected object according to RM 9.4(21/2).
1251
1252 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1253 -- Return True if a compilation unit is the specification or the
1254 -- body of a remote call interface package.
1255
1256 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1257 -- Return True if E is a remote access-to-class-wide type
1258
1259 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1260 -- Return True if E is a remote access to subprogram type
1261
1262 function Is_Remote_Call (N : Node_Id) return Boolean;
1263 -- Return True if N denotes a potentially remote call
1264
1265 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1266 -- Return True if Proc_Nam is a procedure renaming of an entry
1267
1268 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1269 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1270 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1271
1272 function Is_Selector_Name (N : Node_Id) return Boolean;
1273 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1274 -- As described in Sinfo, Selector_Names are special because they
1275 -- represent use of the N_Identifier node for a true identifier, when
1276 -- normally such nodes represent a direct name.
1277
1278 function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean;
1279 -- Determines if the tree referenced by N represents an initialization
1280 -- expression in SPARK, suitable for initializing an object in an object
1281 -- declaration.
1282
1283 function Is_SPARK_Object_Reference (N : Node_Id) return Boolean;
1284 -- Determines if the tree referenced by N represents an object in SPARK
1285
1286 function Is_SPARK_Volatile_Object (N : Node_Id) return Boolean;
1287 -- Determine whether an arbitrary node denotes a volatile object reference
1288 -- according to the semantics of SPARK. To qualify as volatile, an object
1289 -- must be subject to aspect/pragma Volatile or Atomic or have a [sub]type
1290 -- subject to the same attributes. Note that volatile components do not
1291 -- render an object volatile.
1292
1293 function Is_Statement (N : Node_Id) return Boolean;
1294 pragma Inline (Is_Statement);
1295 -- Check if the node N is a statement node. Note that this includes
1296 -- the case of procedure call statements (unlike the direct use of
1297 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1298 -- Note that a label is *not* a statement, and will return False.
1299
1300 function Is_Subprogram_Stub_Without_Prior_Declaration
1301 (N : Node_Id) return Boolean;
1302 -- Return True if N is a subprogram stub with no prior subprogram
1303 -- declaration.
1304
1305 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1306 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1307
1308 function Is_Transfer (N : Node_Id) return Boolean;
1309 -- Returns True if the node N is a statement which is known to cause an
1310 -- unconditional transfer of control at runtime, i.e. the following
1311 -- statement definitely will not be executed.
1312
1313 function Is_True (U : Uint) return Boolean;
1314 pragma Inline (Is_True);
1315 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1316 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1317 -- if it is True (i.e. non-zero).
1318
1319 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
1320 -- Determine whether an arbitrary entity denotes an instance of function
1321 -- Ada.Unchecked_Conversion.
1322
1323 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1324 pragma Inline (Is_Universal_Numeric_Type);
1325 -- True if T is Universal_Integer or Universal_Real
1326
1327 function Is_Value_Type (T : Entity_Id) return Boolean;
1328 -- Returns true if type T represents a value type. This is only relevant to
1329 -- CIL, will always return false for other targets. A value type is a CIL
1330 -- object that is accessed directly, as opposed to the other CIL objects
1331 -- that are accessed through managed pointers.
1332
1333 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1334 -- Returns true if E has variable size components
1335
1336 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1337 -- Returns true if E has variable size components
1338
1339 function Is_VMS_Operator (Op : Entity_Id) return Boolean;
1340 -- Determine whether an operator is one of the intrinsics defined
1341 -- in the DEC system extension.
1342
1343 function Is_Variable
1344 (N : Node_Id;
1345 Use_Original_Node : Boolean := True) return Boolean;
1346 -- Determines if the tree referenced by N represents a variable, i.e. can
1347 -- appear on the left side of an assignment. There is one situation (formal
1348 -- parameters) in which non-tagged type conversions are also considered
1349 -- variables, but Is_Variable returns False for such cases, since it has
1350 -- no knowledge of the context. Note that this is the point at which
1351 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1352 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1353 -- default is True since this routine is commonly invoked as part of the
1354 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1355
1356 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1357 -- Check whether T is derived from a visibly controlled type. This is true
1358 -- if the root type is declared in Ada.Finalization. If T is derived
1359 -- instead from a private type whose full view is controlled, an explicit
1360 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1361 -- one.
1362
1363 function Is_Volatile_Object (N : Node_Id) return Boolean;
1364 -- Determines if the given node denotes an volatile object in the sense of
1365 -- the legality checks described in RM C.6(12). Note that the test here is
1366 -- for something actually declared as volatile, not for an object that gets
1367 -- treated as volatile (see Einfo.Treat_As_Volatile).
1368
1369 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1370 -- Applies to Itypes. True if the Itype is attached to a declaration for
1371 -- the type through its Parent field, which may or not be present in the
1372 -- tree.
1373
1374 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1375 -- This procedure is called to clear all constant indications from all
1376 -- entities in the current scope and in any parent scopes if the current
1377 -- scope is a block or a package (and that recursion continues to the top
1378 -- scope that is not a block or a package). This is used when the
1379 -- sequential flow-of-control assumption is violated (occurrence of a
1380 -- label, head of a loop, or start of an exception handler). The effect of
1381 -- the call is to clear the Current_Value field (but we do not need to
1382 -- clear the Is_True_Constant flag, since that only gets reset if there
1383 -- really is an assignment somewhere in the entity scope). This procedure
1384 -- also calls Kill_All_Checks, since this is a special case of needing to
1385 -- forget saved values. This procedure also clears the Is_Known_Null and
1386 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1387 -- parameters since these are also not known to be trustable any more.
1388 --
1389 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1390 -- fields and leave other fields unchanged. This is used when we encounter
1391 -- an unconditional flow of control change (return, goto, raise). In such
1392 -- cases we don't need to clear the current values, since it may be that
1393 -- the flow of control change occurs in a conditional context, and if it
1394 -- is not taken, then it is just fine to keep the current values. But the
1395 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1396 -- conditional-return, assign-to-v, we do not want to complain that the
1397 -- second assignment clobbers the first.
1398
1399 procedure Kill_Current_Values
1400 (Ent : Entity_Id;
1401 Last_Assignment_Only : Boolean := False);
1402 -- This performs the same processing as described above for the form with
1403 -- no argument, but for the specific entity given. The call has no effect
1404 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1405 -- same meaning as for the call with no Ent.
1406
1407 procedure Kill_Size_Check_Code (E : Entity_Id);
1408 -- Called when an address clause or pragma Import is applied to an entity.
1409 -- If the entity is a variable or a constant, and size check code is
1410 -- present, this size check code is killed, since the object will not be
1411 -- allocated by the program.
1412
1413 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1414 -- The node N is an entity reference. This function determines whether the
1415 -- reference is for sure an assignment of the entity, returning True if
1416 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1417 -- direction. Cases which may possibly be assignments but are not known to
1418 -- be may return True from May_Be_Lvalue, but False from this function.
1419
1420 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1421 -- HSS is a handled statement sequence. This function returns the last
1422 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1423 -- such statement exists, Empty is returned.
1424
1425 function Matching_Static_Array_Bounds
1426 (L_Typ : Node_Id;
1427 R_Typ : Node_Id) return Boolean;
1428 -- L_Typ and R_Typ are two array types. Returns True when they have the
1429 -- same number of dimensions, and the same static bounds for each index
1430 -- position.
1431
1432 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1433 -- Given a node which designates the context of analysis and an origin in
1434 -- the tree, traverse from Root_Nod and mark all allocators as either
1435 -- dynamic or static depending on Context_Nod. Any erroneous marking is
1436 -- cleaned up during resolution.
1437
1438 function May_Be_Lvalue (N : Node_Id) return Boolean;
1439 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1440 -- An lvalue is defined as any expression which appears in a context where
1441 -- a name is required by the syntax, and the identity, rather than merely
1442 -- the value of the node is needed (for example, the prefix of an Access
1443 -- attribute is in this category). Note that, as implied by the name, this
1444 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1445 -- it returns True. It tries hard to get the answer right, but it is hard
1446 -- to guarantee this in all cases. Note that it is more possible to give
1447 -- correct answer if the tree is fully analyzed.
1448
1449 function Must_Inline (Subp : Entity_Id) return Boolean;
1450 -- Return true if Subp must be inlined by the frontend
1451
1452 function Needs_One_Actual (E : Entity_Id) return Boolean;
1453 -- Returns True if a function has defaults for all but its first
1454 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1455 -- results from an indexing of a function call written in prefix form.
1456
1457 function New_Copy_List_Tree (List : List_Id) return List_Id;
1458 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1459 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1460 -- nodes (entities) either directly or indirectly using this function.
1461
1462 function New_Copy_Tree
1463 (Source : Node_Id;
1464 Map : Elist_Id := No_Elist;
1465 New_Sloc : Source_Ptr := No_Location;
1466 New_Scope : Entity_Id := Empty) return Node_Id;
1467 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1468 -- syntactic subtree, including recursively any descendents whose parent
1469 -- field references a copied node (descendents not linked to a copied node
1470 -- by the parent field are not copied, instead the copied tree references
1471 -- the same descendent as the original in this case, which is appropriate
1472 -- for non-syntactic fields such as Etype). The parent pointers in the
1473 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1474 -- The one exception to the rule of not copying semantic fields is that
1475 -- any implicit types attached to the subtree are duplicated, so that
1476 -- the copy contains a distinct set of implicit type entities. Thus this
1477 -- function is used when it is necessary to duplicate an analyzed tree,
1478 -- declared in the same or some other compilation unit. This function is
1479 -- declared here rather than in atree because it uses semantic information
1480 -- in particular concerning the structure of itypes and the generation of
1481 -- public symbols.
1482
1483 -- The Map argument, if set to a non-empty Elist, specifies a set of
1484 -- mappings to be applied to entities in the tree. The map has the form:
1485 --
1486 -- old entity 1
1487 -- new entity to replace references to entity 1
1488 -- old entity 2
1489 -- new entity to replace references to entity 2
1490 -- ...
1491 --
1492 -- The call destroys the contents of Map in this case
1493 --
1494 -- The parameter New_Sloc, if set to a value other than No_Location, is
1495 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1496 -- set to its default value No_Location, then the Sloc values of the
1497 -- nodes in the copy are simply copied from the corresponding original.
1498 --
1499 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1500 -- the default No_Location value, but is reset if New_Sloc is given, since
1501 -- in this case the result clearly is neither a source node or an exact
1502 -- copy of a source node.
1503 --
1504 -- The parameter New_Scope, if set to a value other than Empty, is the
1505 -- value to use as the Scope for any Itypes that are copied. The most
1506 -- typical value for this parameter, if given, is Current_Scope.
1507
1508 function New_External_Entity
1509 (Kind : Entity_Kind;
1510 Scope_Id : Entity_Id;
1511 Sloc_Value : Source_Ptr;
1512 Related_Id : Entity_Id;
1513 Suffix : Character;
1514 Suffix_Index : Nat := 0;
1515 Prefix : Character := ' ') return Entity_Id;
1516 -- This function creates an N_Defining_Identifier node for an internal
1517 -- created entity, such as an implicit type or subtype, or a record
1518 -- initialization procedure. The entity name is constructed with a call
1519 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1520 -- that the generated name may be referenced as a public entry, and the
1521 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1522 -- entity is for a type or subtype, the size/align fields are initialized
1523 -- to unknown (Uint_0).
1524
1525 function New_Internal_Entity
1526 (Kind : Entity_Kind;
1527 Scope_Id : Entity_Id;
1528 Sloc_Value : Source_Ptr;
1529 Id_Char : Character) return Entity_Id;
1530 -- This function is similar to New_External_Entity, except that the
1531 -- name is constructed by New_Internal_Name (Id_Char). This is used
1532 -- when the resulting entity does not have to be referenced as a
1533 -- public entity (and in this case Is_Public is not set).
1534
1535 procedure Next_Actual (Actual_Id : in out Node_Id);
1536 pragma Inline (Next_Actual);
1537 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1538 -- inline this procedural form, but not the functional form that follows.
1539
1540 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1541 -- Find next actual parameter in declaration order. As described for
1542 -- First_Actual, this is the next actual in the declaration order, not
1543 -- the call order, so this does not correspond to simply taking the
1544 -- next entry of the Parameter_Associations list. The argument is an
1545 -- actual previously returned by a call to First_Actual or Next_Actual.
1546 -- Note that the result produced is always an expression, not a parameter
1547 -- association node, even if named notation was used.
1548
1549 function No_Scalar_Parts (T : Entity_Id) return Boolean;
1550 -- Tests if type T can be determined at compile time to have no scalar
1551 -- parts in the sense of the Valid_Scalars attribute. Returns True if
1552 -- this is the case, meaning that the result of Valid_Scalars is True.
1553
1554 procedure Normalize_Actuals
1555 (N : Node_Id;
1556 S : Entity_Id;
1557 Report : Boolean;
1558 Success : out Boolean);
1559 -- Reorders lists of actuals according to names of formals, value returned
1560 -- in Success indicates success of reordering. For more details, see body.
1561 -- Errors are reported only if Report is set to True.
1562
1563 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1564 -- This routine is called if the sub-expression N maybe the target of
1565 -- an assignment (e.g. it is the left side of an assignment, used as
1566 -- an out parameters, or used as prefixes of access attributes). It
1567 -- sets May_Be_Modified in the associated entity if there is one,
1568 -- taking into account the rule that in the case of renamed objects,
1569 -- it is the flag in the renamed object that must be set.
1570 --
1571 -- The parameter Sure is set True if the modification is sure to occur
1572 -- (e.g. target of assignment, or out parameter), and to False if the
1573 -- modification is only potential (e.g. address of entity taken).
1574
1575 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1576 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1577 -- or overrides an inherited dispatching primitive S2, the original
1578 -- corresponding operation of S is the original corresponding operation of
1579 -- S2. Otherwise, it is S itself.
1580
1581 function Object_Access_Level (Obj : Node_Id) return Uint;
1582 -- Return the accessibility level of the view of the object Obj. For
1583 -- convenience, qualified expressions applied to object names are also
1584 -- allowed as actuals for this function.
1585
1586 function Original_Aspect_Name (N : Node_Id) return Name_Id;
1587 -- N is a pragma node or aspect specification node. This function returns
1588 -- the name of the pragma or aspect in original source form, taking into
1589 -- account possible rewrites, and also cases where a pragma comes from an
1590 -- aspect (in such cases, the name can be different from the pragma name,
1591 -- e.g. a Pre aspect generates a Precondition pragma). This also deals with
1592 -- the presence of 'Class, which results in one of the special names
1593 -- Name_uPre, Name_uPost, Name_uInvariant, or Name_uType_Invariant being
1594 -- returned to represent the corresponding aspects with x'Class names.
1595
1596 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1597 -- Returns True if the names of both entities correspond with matching
1598 -- primitives. This routine includes support for the case in which one
1599 -- or both entities correspond with entities built by Derive_Subprogram
1600 -- with a special name to avoid being overridden (i.e. return true in case
1601 -- of entities with names "nameP" and "name" or vice versa).
1602
1603 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1604 -- Returns some private component (if any) of the given Type_Id.
1605 -- Used to enforce the rules on visibility of operations on composite
1606 -- types, that depend on the full view of the component type. For a
1607 -- record type there may be several such components, we just return
1608 -- the first one.
1609
1610 procedure Process_End_Label
1611 (N : Node_Id;
1612 Typ : Character;
1613 Ent : Entity_Id);
1614 -- N is a node whose End_Label is to be processed, generating all
1615 -- appropriate cross-reference entries, and performing style checks
1616 -- for any identifier references in the end label. Typ is either
1617 -- 'e' or 't indicating the type of the cross-reference entity
1618 -- (e for spec, t for body, see Lib.Xref spec for details). The
1619 -- parameter Ent gives the entity to which the End_Label refers,
1620 -- and to which cross-references are to be generated.
1621
1622 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
1623 -- Determine whether entity Id is referenced within expression Expr
1624
1625 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1626 -- Returns True if the expression Expr contains any references to a
1627 -- generic type. This can only happen within a generic template.
1628
1629 procedure Remove_Homonym (E : Entity_Id);
1630 -- Removes E from the homonym chain
1631
1632 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1633 -- This is used to construct the second argument in a call to Rep_To_Pos
1634 -- which is Standard_True if range checks are enabled (E is an entity to
1635 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1636 -- if range checks are suppressed. Loc is the location for the node that
1637 -- is returned (which is a New_Occurrence of the appropriate entity).
1638 --
1639 -- Note: one might think that it would be fine to always use True and
1640 -- to ignore the suppress in this case, but it is generally better to
1641 -- believe a request to suppress exceptions if possible, and further
1642 -- more there is at least one case in the generated code (the code for
1643 -- array assignment in a loop) that depends on this suppression.
1644
1645 procedure Require_Entity (N : Node_Id);
1646 -- N is a node which should have an entity value if it is an entity name.
1647 -- If not, then check if there were previous errors. If so, just fill
1648 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1649 -- This is used as a defense mechanism against ill-formed trees caused by
1650 -- previous errors (particularly in -gnatq mode).
1651
1652 function Requires_State_Refinement
1653 (Spec_Id : Entity_Id;
1654 Body_Id : Entity_Id) return Boolean;
1655 -- Determine whether a package denoted by its spec and body entities
1656 -- requires refinement of abstract states.
1657
1658 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1659 -- Id is a type entity. The result is True when temporaries of this type
1660 -- need to be wrapped in a transient scope to be reclaimed properly when a
1661 -- secondary stack is in use. Examples of types requiring such wrapping are
1662 -- controlled types and variable-sized types including unconstrained
1663 -- arrays.
1664
1665 procedure Reset_Analyzed_Flags (N : Node_Id);
1666 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1667
1668 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
1669 -- Return true if Subp is a function that returns an unconstrained type
1670
1671 function Safe_To_Capture_Value
1672 (N : Node_Id;
1673 Ent : Entity_Id;
1674 Cond : Boolean := False) return Boolean;
1675 -- The caller is interested in capturing a value (either the current value,
1676 -- or an indication that the value is non-null) for the given entity Ent.
1677 -- This value can only be captured if sequential execution semantics can be
1678 -- properly guaranteed so that a subsequent reference will indeed be sure
1679 -- that this current value indication is correct. The node N is the
1680 -- construct which resulted in the possible capture of the value (this
1681 -- is used to check if we are in a conditional).
1682 --
1683 -- Cond is used to skip the test for being inside a conditional. It is used
1684 -- in the case of capturing values from if/while tests, which already do a
1685 -- proper job of handling scoping issues without this help.
1686 --
1687 -- The only entities whose values can be captured are OUT and IN OUT formal
1688 -- parameters, and variables unless Cond is True, in which case we also
1689 -- allow IN formals, loop parameters and constants, where we cannot ever
1690 -- capture actual value information, but we can capture conditional tests.
1691
1692 function Same_Name (N1, N2 : Node_Id) return Boolean;
1693 -- Determine if two (possibly expanded) names are the same name. This is
1694 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1695
1696 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1697 -- Determine if Node1 and Node2 are known to designate the same object.
1698 -- This is a semantic test and both nodes must be fully analyzed. A result
1699 -- of True is decisively correct. A result of False does not necessarily
1700 -- mean that different objects are designated, just that this could not
1701 -- be reliably determined at compile time.
1702
1703 function Same_Type (T1, T2 : Entity_Id) return Boolean;
1704 -- Determines if T1 and T2 represent exactly the same type. Two types
1705 -- are the same if they are identical, or if one is an unconstrained
1706 -- subtype of the other, or they are both common subtypes of the same
1707 -- type with identical constraints. The result returned is conservative.
1708 -- It is True if the types are known to be the same, but a result of
1709 -- False is indecisive (e.g. the compiler may not be able to tell that
1710 -- two constraints are identical).
1711
1712 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1713 -- Determines if Node1 and Node2 are known to be the same value, which is
1714 -- true if they are both compile time known values and have the same value,
1715 -- or if they are the same object (in the sense of function Same_Object).
1716 -- A result of False does not necessarily mean they have different values,
1717 -- just that it is not possible to determine they have the same value.
1718
1719 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1720 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1721 -- inside it, where both entities represent scopes. Note that scopes
1722 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1723 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1724
1725 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1726 -- Like Scope_Within_Or_Same, except that this function returns
1727 -- False in the case where Scope1 and Scope2 are the same scope.
1728
1729 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1730 -- Same as Basic_Set_Convention, but with an extra check for access types.
1731 -- In particular, if E is an access-to-subprogram type, and Val is a
1732 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1733
1734 procedure Set_Current_Entity (E : Entity_Id);
1735 pragma Inline (Set_Current_Entity);
1736 -- Establish the entity E as the currently visible definition of its
1737 -- associated name (i.e. the Node_Id associated with its name).
1738
1739 procedure Set_Debug_Info_Needed (T : Entity_Id);
1740 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1741 -- that are needed by T (for an object, the type of the object is needed,
1742 -- and for a type, various subsidiary types are needed -- see body for
1743 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1744 -- This routine should always be used instead of Set_Needs_Debug_Info to
1745 -- ensure that subsidiary entities are properly handled.
1746
1747 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id);
1748 -- This procedure has the same calling sequence as Set_Entity, but
1749 -- if Style_Check is set, then it calls a style checking routine which
1750 -- can check identifier spelling style. This procedure also takes care
1751 -- of checking the restriction No_Implementation_Identifiers.
1752
1753 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1754 pragma Inline (Set_Name_Entity_Id);
1755 -- Sets the Entity_Id value associated with the given name, which is the
1756 -- Id of the innermost visible entity with the given name. See the body
1757 -- of package Sem_Ch8 for further details on the handling of visibility.
1758
1759 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1760 -- The arguments may be parameter associations, whose descendants
1761 -- are the optional formal name and the actual parameter. Positional
1762 -- parameters are already members of a list, and do not need to be
1763 -- chained separately. See also First_Actual and Next_Actual.
1764
1765 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1766 pragma Inline (Set_Optimize_Alignment_Flags);
1767 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
1768
1769 procedure Set_Public_Status (Id : Entity_Id);
1770 -- If an entity (visible or otherwise) is defined in a library
1771 -- package, or a package that is itself public, then this subprogram
1772 -- labels the entity public as well.
1773
1774 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1775 -- N is the node for either a left hand side (Out_Param set to False),
1776 -- or an Out or In_Out parameter (Out_Param set to True). If there is
1777 -- an assignable entity being referenced, then the appropriate flag
1778 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1779 -- if Out_Param is True) is set True, and the other flag set False.
1780
1781 procedure Set_Scope_Is_Transient (V : Boolean := True);
1782 -- Set the flag Is_Transient of the current scope
1783
1784 procedure Set_Size_Info (T1, T2 : Entity_Id);
1785 pragma Inline (Set_Size_Info);
1786 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1787 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1788 -- in the fixed-point and discrete cases, and also copies the alignment
1789 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1790 -- separately set if this is required to be copied also.
1791
1792 function Scope_Is_Transient return Boolean;
1793 -- True if the current scope is transient
1794
1795 function Static_Boolean (N : Node_Id) return Uint;
1796 -- This function analyzes the given expression node and then resolves it
1797 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1798 -- returned corresponding to the value, otherwise an error message is
1799 -- output and No_Uint is returned.
1800
1801 function Static_Integer (N : Node_Id) return Uint;
1802 -- This function analyzes the given expression node and then resolves it
1803 -- as any integer type. If the result is static, then the value of the
1804 -- universal expression is returned, otherwise an error message is output
1805 -- and a value of No_Uint is returned.
1806
1807 function Statically_Different (E1, E2 : Node_Id) return Boolean;
1808 -- Return True if it can be statically determined that the Expressions
1809 -- E1 and E2 refer to different objects
1810
1811 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
1812 -- Determine whether node N is a loop statement subject to at least one
1813 -- 'Loop_Entry attribute.
1814
1815 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1816 -- Return the accessibility level of the view denoted by Subp
1817
1818 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
1819 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
1820 -- Typ is properly sized and aligned).
1821
1822 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1823 -- Print debugging information on entry to each unit being analyzed
1824
1825 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1826 -- Move a list of entities from one scope to another, and recompute
1827 -- Is_Public based upon the new scope.
1828
1829 function Type_Access_Level (Typ : Entity_Id) return Uint;
1830 -- Return the accessibility level of Typ
1831
1832 function Type_Without_Stream_Operation
1833 (T : Entity_Id;
1834 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
1835 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
1836 -- is active then we cannot generate stream subprograms for composite types
1837 -- with elementary subcomponents that lack user-defined stream subprograms.
1838 -- This predicate determines whether a type has such an elementary
1839 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
1840 -- prevents the construction of a composite stream operation. If Op is
1841 -- specified we check only for the given stream operation.
1842
1843 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
1844 -- Return the entity which represents declaration N, so that different
1845 -- views of the same entity have the same unique defining entity:
1846 -- * package spec and body;
1847 -- * subprogram declaration, subprogram stub and subprogram body;
1848 -- * private view and full view of a type;
1849 -- * private view and full view of a deferred constant.
1850 -- In other cases, return the defining entity for N.
1851
1852 function Unique_Entity (E : Entity_Id) return Entity_Id;
1853 -- Return the unique entity for entity E, which would be returned by
1854 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
1855
1856 function Unique_Name (E : Entity_Id) return String;
1857 -- Return a unique name for entity E, which could be used to identify E
1858 -- across compilation units.
1859
1860 function Unit_Is_Visible (U : Entity_Id) return Boolean;
1861 -- Determine whether a compilation unit is visible in the current context,
1862 -- because there is a with_clause that makes the unit available. Used to
1863 -- provide better messages on common visiblity errors on operators.
1864
1865 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1866 -- Yields Universal_Integer or Universal_Real if this is a candidate
1867
1868 function Unqualify (Expr : Node_Id) return Node_Id;
1869 pragma Inline (Unqualify);
1870 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
1871 -- returns X. If Expr is not a qualified expression, returns Expr.
1872
1873 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
1874 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
1875 -- of a type extension or private extension declaration. If the full-view
1876 -- of private parents and progenitors is available then it is used to
1877 -- generate the list of visible ancestors; otherwise their partial
1878 -- view is added to the resulting list.
1879
1880 function Within_Init_Proc return Boolean;
1881 -- Determines if Current_Scope is within an init proc
1882
1883 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
1884 -- Returns True if entity Id is declared within scope S
1885
1886 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1887 -- Output error message for incorrectly typed expression. Expr is the node
1888 -- for the incorrectly typed construct (Etype (Expr) is the type found),
1889 -- and Expected_Type is the entity for the expected type. Note that Expr
1890 -- does not have to be a subexpression, anything with an Etype field may
1891 -- be used.
1892
1893 end Sem_Util;