[multiple changes]
[gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Nmake; use Nmake;
32 with Snames; use Snames;
33 with Types; use Types;
34 with Uintp; use Uintp;
35 with Urealp; use Urealp;
36
37 package Sem_Util is
38
39 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
40 -- Given a type that implements interfaces look for its associated
41 -- definition node and return its list of interfaces.
42
43 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
44 -- Add A to the list of access types to process when expanding the
45 -- freeze node of E.
46
47 procedure Add_Global_Declaration (N : Node_Id);
48 -- These procedures adds a declaration N at the library level, to be
49 -- elaborated before any other code in the unit. It is used for example
50 -- for the entity that marks whether a unit has been elaborated. The
51 -- declaration is added to the Declarations list of the Aux_Decls_Node
52 -- for the current unit. The declarations are added in the current scope,
53 -- so the caller should push a new scope as required before the call.
54
55 function Addressable (V : Uint) return Boolean;
56 function Addressable (V : Int) return Boolean;
57 pragma Inline (Addressable);
58 -- Returns True if the value of V is the word size of an addressable
59 -- factor of the word size (typically 8, 16, 32 or 64).
60
61 function Alignment_In_Bits (E : Entity_Id) return Uint;
62 -- If the alignment of the type or object E is currently known to the
63 -- compiler, then this function returns the alignment value in bits.
64 -- Otherwise Uint_0 is returned, indicating that the alignment of the
65 -- entity is not yet known to the compiler.
66
67 procedure Apply_Compile_Time_Constraint_Error
68 (N : Node_Id;
69 Msg : String;
70 Reason : RT_Exception_Code;
71 Ent : Entity_Id := Empty;
72 Typ : Entity_Id := Empty;
73 Loc : Source_Ptr := No_Location;
74 Rep : Boolean := True;
75 Warn : Boolean := False);
76 -- N is a subexpression which will raise constraint error when evaluated
77 -- at runtime. Msg is a message that explains the reason for raising the
78 -- exception. The last character is ? if the message is always a warning,
79 -- even in Ada 95, and is not a ? if the message represents an illegality
80 -- (because of violation of static expression rules) in Ada 95 (but not
81 -- in Ada 83). Typically this routine posts all messages at the Sloc of
82 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
83 -- the message. After posting the appropriate message, and if the flag
84 -- Rep is set, this routine replaces the expression with an appropriate
85 -- N_Raise_Constraint_Error node using the given Reason code. This node
86 -- is then marked as being static if the original node is static, but
87 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
88 -- The error message may contain a } or & insertion character. This
89 -- normally references Etype (N), unless the Ent argument is given
90 -- explicitly, in which case it is used instead. The type of the raise
91 -- node that is built is normally Etype (N), but if the Typ parameter
92 -- is present, this is used instead. Warn is normally False. If it is
93 -- True then the message is treated as a warning even though it does
94 -- not end with a ? (this is used when the caller wants to parameterize
95 -- whether an error or warning is given.
96
97 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
98 -- If at the point of declaration an array type has a private or limited
99 -- component, several array operations are not avaiable on the type, and
100 -- the array type is flagged accordingly. If in the immediate scope of
101 -- the array type the component becomes non-private or non-limited, these
102 -- operations become avaiable. This can happen if the scopes of both types
103 -- are open, and the scope of the array is not outside the scope of the
104 -- component.
105
106 procedure Bad_Predicated_Subtype_Use
107 (Msg : String;
108 N : Node_Id;
109 Typ : Entity_Id);
110 -- This is called when Typ, a predicated subtype, is used in a context
111 -- which does not allow the use of a predicated subtype. Msg is passed
112 -- to Error_Msg_FE to output an appropriate message using N as the
113 -- location, and Typ as the entity. The caller must set up any insertions
114 -- other than the & for the type itself. Note that if Typ is a generic
115 -- actual type, then the message will be output as a warning, and a
116 -- raise Program_Error is inserted using Insert_Action with node N as
117 -- the insertion point. Node N also supplies the source location for
118 -- construction of the raise node. If Typ is NOT a type with predicates
119 -- this call has no effect.
120
121 function Build_Actual_Subtype
122 (T : Entity_Id;
123 N : Node_Or_Entity_Id) return Node_Id;
124 -- Build an anonymous subtype for an entity or expression, using the
125 -- bounds of the entity or the discriminants of the enclosing record.
126 -- T is the type for which the actual subtype is required, and N is either
127 -- a defining identifier, or any subexpression.
128
129 function Build_Actual_Subtype_Of_Component
130 (T : Entity_Id;
131 N : Node_Id) return Node_Id;
132 -- Determine whether a selected component has a type that depends on
133 -- discriminants, and build actual subtype for it if so.
134
135 function Build_Default_Subtype
136 (T : Entity_Id;
137 N : Node_Id) return Entity_Id;
138 -- If T is an unconstrained type with defaulted discriminants, build a
139 -- subtype constrained by the default values, insert the subtype
140 -- declaration in the tree before N, and return the entity of that
141 -- subtype. Otherwise, simply return T.
142
143 function Build_Discriminal_Subtype_Of_Component
144 (T : Entity_Id) return Node_Id;
145 -- Determine whether a record component has a type that depends on
146 -- discriminants, and build actual subtype for it if so.
147
148 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
149 -- Given a compilation unit node N, allocate an elaboration counter for
150 -- the compilation unit, and install it in the Elaboration_Entity field
151 -- of Spec_Id, the entity for the compilation unit.
152
153 procedure Build_Explicit_Dereference
154 (Expr : Node_Id;
155 Disc : Entity_Id);
156 -- AI05-139: Names with implicit dereference. If the expression N is a
157 -- reference type and the context imposes the corresponding designated
158 -- type, convert N into N.Disc.all. Such expressions are always over-
159 -- loaded with both interpretations, and the dereference interpretation
160 -- carries the name of the reference discriminant.
161
162 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
163 -- Returns True if the expression cannot possibly raise Constraint_Error.
164 -- The response is conservative in the sense that a result of False does
165 -- not necessarily mean that CE could be raised, but a response of True
166 -- means that for sure CE cannot be raised.
167
168 procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id);
169 -- AI05-139-2: Accessors and iterators for containers. This procedure
170 -- checks whether T is a reference type, and if so it adds an interprettion
171 -- to Expr whose type is the designated type of the reference_discriminant.
172
173 procedure Check_Later_Vs_Basic_Declarations
174 (Decls : List_Id;
175 During_Parsing : Boolean);
176 -- If During_Parsing is True, check for misplacement of later vs basic
177 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
178 -- restriction is set, do the same: although SPARK 95 removes the
179 -- distinction between initial and later declarative items, the distinction
180 -- remains in the Examiner (JB01-005). Note that the Examiner does not
181 -- count package declarations in later declarative items.
182
183 procedure Check_Dynamically_Tagged_Expression
184 (Expr : Node_Id;
185 Typ : Entity_Id;
186 Related_Nod : Node_Id);
187 -- Check wrong use of dynamically tagged expression
188
189 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
190 -- Verify that the full declaration of type T has been seen. If not, place
191 -- error message on node N. Used in object declarations, type conversions
192 -- and qualified expressions.
193
194 procedure Check_Nested_Access (Ent : Entity_Id);
195 -- Check whether Ent denotes an entity declared in an uplevel scope, which
196 -- is accessed inside a nested procedure, and set Has_Up_Level_Access flag
197 -- accordingly. This is currently only enabled for VM_Target /= No_VM.
198
199 procedure Check_Order_Dependence;
200 -- Examine the actuals in a top-level call to determine whether aliasing
201 -- between two actuals, one of which is writable, can make the call
202 -- order-dependent.
203
204 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
205 -- N is one of the statement forms that is a potentially blocking
206 -- operation. If it appears within a protected action, emit warning.
207
208 procedure Check_Unprotected_Access
209 (Context : Node_Id;
210 Expr : Node_Id);
211 -- Check whether the expression is a pointer to a protected component,
212 -- and the context is external to the protected operation, to warn against
213 -- a possible unlocked access to data.
214
215 procedure Check_VMS (Construct : Node_Id);
216 -- Check that this the target is OpenVMS, and if so, return with no effect,
217 -- otherwise post an error noting this can only be used with OpenVMS ports.
218 -- The argument is the construct in question and is used to post the error
219 -- message.
220
221 procedure Collect_Interfaces
222 (T : Entity_Id;
223 Ifaces_List : out Elist_Id;
224 Exclude_Parents : Boolean := False;
225 Use_Full_View : Boolean := True);
226 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
227 -- directly or indirectly implemented by T. Exclude_Parents is used to
228 -- avoid the addition of inherited interfaces to the generated list.
229 -- Use_Full_View is used to collect the interfaces using the full-view
230 -- (if available).
231
232 procedure Collect_Interface_Components
233 (Tagged_Type : Entity_Id;
234 Components_List : out Elist_Id);
235 -- Ada 2005 (AI-251): Collect all the tag components associated with the
236 -- secondary dispatch tables of a tagged type.
237
238 procedure Collect_Interfaces_Info
239 (T : Entity_Id;
240 Ifaces_List : out Elist_Id;
241 Components_List : out Elist_Id;
242 Tags_List : out Elist_Id);
243 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
244 -- the record component and tag associated with each of these interfaces.
245 -- On exit Ifaces_List, Components_List and Tags_List have the same number
246 -- of elements, and elements at the same position on these tables provide
247 -- information on the same interface type.
248
249 procedure Collect_Parents
250 (T : Entity_Id;
251 List : out Elist_Id;
252 Use_Full_View : Boolean := True);
253 -- Collect all the parents of Typ. Use_Full_View is used to collect them
254 -- using the full-view of private parents (if available).
255
256 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
257 -- Called upon type derivation and extension. We scan the declarative part
258 -- in which the type appears, and collect subprograms that have one
259 -- subsidiary subtype of the type. These subprograms can only appear after
260 -- the type itself.
261
262 function Compile_Time_Constraint_Error
263 (N : Node_Id;
264 Msg : String;
265 Ent : Entity_Id := Empty;
266 Loc : Source_Ptr := No_Location;
267 Warn : Boolean := False) return Node_Id;
268 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
269 -- generates a warning (or error) message in the same manner, but it does
270 -- not replace any nodes. For convenience, the function always returns its
271 -- first argument. The message is a warning if the message ends with ?, or
272 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
273
274 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
275 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
276 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
277
278 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
279 -- Utility to create a parameter profile for a new subprogram spec, when
280 -- the subprogram has a body that acts as spec. This is done for some cases
281 -- of inlining, and for private protected ops. Also used to create bodies
282 -- for stubbed subprograms.
283
284 function Copy_Component_List
285 (R_Typ : Entity_Id;
286 Loc : Source_Ptr) return List_Id;
287 -- Copy components from record type R_Typ that come from source. Used to
288 -- create a new compatible record type. Loc is the source location assigned
289 -- to the created nodes.
290
291 function Current_Entity (N : Node_Id) return Entity_Id;
292 pragma Inline (Current_Entity);
293 -- Find the currently visible definition for a given identifier, that is to
294 -- say the first entry in the visibility chain for the Chars of N.
295
296 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
297 -- Find whether there is a previous definition for identifier N in the
298 -- current scope. Because declarations for a scope are not necessarily
299 -- contiguous (e.g. for packages) the first entry on the visibility chain
300 -- for N is not necessarily in the current scope.
301
302 function Current_Scope return Entity_Id;
303 -- Get entity representing current scope
304
305 function Current_Subprogram return Entity_Id;
306 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
307 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
308 -- Current_Scope is returned. The returned value is Empty if this is called
309 -- from a library package which is not within any subprogram.
310
311 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
312 -- Same as Type_Access_Level, except that if the type is the type of an Ada
313 -- 2012 stand-alone object of an anonymous access type, then return the
314 -- static accesssibility level of the object. In that case, the dynamic
315 -- accessibility level of the object may take on values in a range. The low
316 -- bound of of that range is returned by Type_Access_Level; this function
317 -- yields the high bound of that range. Also differs from Type_Access_Level
318 -- in the case of a descendant of a generic formal type (returns Int'Last
319 -- instead of 0).
320
321 function Defining_Entity (N : Node_Id) return Entity_Id;
322 -- Given a declaration N, returns the associated defining entity. If the
323 -- declaration has a specification, the entity is obtained from the
324 -- specification. If the declaration has a defining unit name, then the
325 -- defining entity is obtained from the defining unit name ignoring any
326 -- child unit prefixes.
327
328 function Denotes_Discriminant
329 (N : Node_Id;
330 Check_Concurrent : Boolean := False) return Boolean;
331 -- Returns True if node N is an Entity_Name node for a discriminant. If the
332 -- flag Check_Concurrent is true, function also returns true when N denotes
333 -- the discriminal of the discriminant of a concurrent type. This is needed
334 -- to disable some optimizations on private components of protected types,
335 -- and constraint checks on entry families constrained by discriminants.
336
337 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
338 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
339 -- Functions to detect suspicious overlapping between actuals in a call,
340 -- when one of them is writable. The predicates are those proposed in
341 -- AI05-0144, to detect dangerous order dependence in complex calls.
342 -- I would add a parameter Warn which enables more extensive testing of
343 -- cases as we find appropriate when we are only warning ??? Or perhaps
344 -- return an indication of (Error, Warn, OK) ???
345
346 function Denotes_Variable (N : Node_Id) return Boolean;
347 -- Returns True if node N denotes a single variable without parentheses
348
349 function Depends_On_Discriminant (N : Node_Id) return Boolean;
350 -- Returns True if N denotes a discriminant or if N is a range, a subtype
351 -- indication or a scalar subtype where one of the bounds is a
352 -- discriminant.
353
354 function Designate_Same_Unit
355 (Name1 : Node_Id;
356 Name2 : Node_Id) return Boolean;
357 -- Return true if Name1 and Name2 designate the same unit name; each of
358 -- these names is supposed to be a selected component name, an expanded
359 -- name, a defining program unit name or an identifier.
360
361 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
362 -- Expr should be an expression of an access type. Builds an integer
363 -- literal except in cases involving anonymous access types where
364 -- accessibility levels are tracked at runtime (access parameters and Ada
365 -- 2012 stand-alone objects).
366
367 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
368 -- Same as Einfo.Extra_Accessibility except thtat object renames
369 -- are looked through.
370
371 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
372 -- Returns the closest ancestor of Typ that is a CPP type.
373
374 function Enclosing_Generic_Body
375 (N : Node_Id) return Node_Id;
376 -- Returns the Node_Id associated with the innermost enclosing generic
377 -- body, if any. If none, then returns Empty.
378
379 function Enclosing_Generic_Unit
380 (N : Node_Id) return Node_Id;
381 -- Returns the Node_Id associated with the innermost enclosing generic
382 -- unit, if any. If none, then returns Empty.
383
384 function Enclosing_Lib_Unit_Entity return Entity_Id;
385 -- Returns the entity of enclosing N_Compilation_Unit Node which is the
386 -- root of the current scope (which must not be Standard_Standard, and the
387 -- caller is responsible for ensuring this condition).
388
389 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
390 -- Returns the enclosing N_Compilation_Unit Node that is the root of a
391 -- subtree containing N.
392
393 function Enclosing_Package (E : Entity_Id) return Entity_Id;
394 -- Utility function to return the Ada entity of the package enclosing
395 -- the entity E, if any. Returns Empty if no enclosing package.
396
397 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
398 -- Utility function to return the Ada entity of the subprogram enclosing
399 -- the entity E, if any. Returns Empty if no enclosing subprogram.
400
401 procedure Ensure_Freeze_Node (E : Entity_Id);
402 -- Make sure a freeze node is allocated for entity E. If necessary, build
403 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
404
405 procedure Enter_Name (Def_Id : Entity_Id);
406 -- Insert new name in symbol table of current scope with check for
407 -- duplications (error message is issued if a conflict is found).
408 -- Note: Enter_Name is not used for overloadable entities, instead these
409 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
410
411 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
412 -- This procedure is called after issuing a message complaining about an
413 -- inappropriate use of limited type T. If useful, it adds additional
414 -- continuation lines to the message explaining why type T is limited.
415 -- Messages are placed at node N.
416
417 procedure Find_Actual
418 (N : Node_Id;
419 Formal : out Entity_Id;
420 Call : out Node_Id);
421 -- Determines if the node N is an actual parameter of a function of a
422 -- procedure call. If so, then Formal points to the entity for the formal
423 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
424 -- Call is set to the node for the corresponding call. If the node N is not
425 -- an actual parameter then Formal and Call are set to Empty.
426
427 function Find_Corresponding_Discriminant
428 (Id : Node_Id;
429 Typ : Entity_Id) return Entity_Id;
430 -- Because discriminants may have different names in a generic unit and in
431 -- an instance, they are resolved positionally when possible. A reference
432 -- to a discriminant carries the discriminant that it denotes when it is
433 -- analyzed. Subsequent uses of this id on a different type denotes the
434 -- discriminant at the same position in this new type.
435
436 procedure Find_Overlaid_Entity
437 (N : Node_Id;
438 Ent : out Entity_Id;
439 Off : out Boolean);
440 -- The node N should be an address representation clause. Determines if
441 -- the target expression is the address of an entity with an optional
442 -- offset. If so, set Ent to the entity and, if there is an offset, set
443 -- Off to True, otherwise to False. If N is not an address representation
444 -- clause, or if it is not possible to determine that the address is of
445 -- this form, then set Ent to Empty.
446
447 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
448 -- Return the type of formal parameter Param as determined by its
449 -- specification.
450
451 function Find_Static_Alternative (N : Node_Id) return Node_Id;
452 -- N is a case statement whose expression is a compile-time value.
453 -- Determine the alternative chosen, so that the code of non-selected
454 -- alternatives, and the warnings that may apply to them, are removed.
455
456 function Find_Body_Discriminal
457 (Spec_Discriminant : Entity_Id) return Entity_Id;
458 -- Given a discriminant of the record type that implements a task or
459 -- protected type, return the discriminal of the corresponding discriminant
460 -- of the actual concurrent type.
461
462 function First_Actual (Node : Node_Id) return Node_Id;
463 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
464 -- result returned is the first actual parameter in declaration order
465 -- (not the order of parameters as they appeared in the source, which
466 -- can be quite different as a result of the use of named parameters).
467 -- Empty is returned for a call with no parameters. The procedure for
468 -- iterating through the actuals in declaration order is to use this
469 -- function to find the first actual, and then use Next_Actual to obtain
470 -- the next actual in declaration order. Note that the value returned
471 -- is always the expression (not the N_Parameter_Association nodes,
472 -- even if named association is used).
473
474 procedure Gather_Components
475 (Typ : Entity_Id;
476 Comp_List : Node_Id;
477 Governed_By : List_Id;
478 Into : Elist_Id;
479 Report_Errors : out Boolean);
480 -- The purpose of this procedure is to gather the valid components in a
481 -- record type according to the values of its discriminants, in order to
482 -- validate the components of a record aggregate.
483 --
484 -- Typ is the type of the aggregate when its constrained discriminants
485 -- need to be collected, otherwise it is Empty.
486 --
487 -- Comp_List is an N_Component_List node.
488 --
489 -- Governed_By is a list of N_Component_Association nodes, where each
490 -- choice list contains the name of a discriminant and the expression
491 -- field gives its value. The values of the discriminants governing
492 -- the (possibly nested) variant parts in Comp_List are found in this
493 -- Component_Association List.
494 --
495 -- Into is the list where the valid components are appended. Note that
496 -- Into need not be an Empty list. If it's not, components are attached
497 -- to its tail.
498 --
499 -- Report_Errors is set to True if the values of the discriminants are
500 -- non-static.
501 --
502 -- This procedure is also used when building a record subtype. If the
503 -- discriminant constraint of the subtype is static, the components of the
504 -- subtype are only those of the variants selected by the values of the
505 -- discriminants. Otherwise all components of the parent must be included
506 -- in the subtype for semantic analysis.
507
508 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
509 -- Given a node for an expression, obtain the actual subtype of the
510 -- expression. In the case of a parameter where the formal is an
511 -- unconstrained array or discriminated type, this will be the previously
512 -- constructed subtype of the actual. Note that this is not quite the
513 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
514 -- it is the subtype of the value of the actual. The actual subtype is also
515 -- returned in other cases where it has already been constructed for an
516 -- object. Otherwise the expression type is returned unchanged, except for
517 -- the case of an unconstrained array type, where an actual subtype is
518 -- created, using Insert_Actions if necessary to insert any associated
519 -- actions.
520
521 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
522 -- This is like Get_Actual_Subtype, except that it never constructs an
523 -- actual subtype. If an actual subtype is already available, i.e. the
524 -- Actual_Subtype field of the corresponding entity is set, then it is
525 -- returned. Otherwise the Etype of the node is returned.
526
527 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
528 -- Return the body node for a stub (subprogram or package)
529
530 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
531 -- This is used to construct the string literal node representing a
532 -- default external name, i.e. one that is constructed from the name of an
533 -- entity, or (in the case of extended DEC import/export pragmas, an
534 -- identifier provided as the external name. Letters in the name are
535 -- according to the setting of Opt.External_Name_Default_Casing.
536
537 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
538 -- If expression N references a part of an object, return this object.
539 -- Otherwise return Empty. Expression N should have been resolved already.
540
541 function Get_Ensures_From_Test_Case_Pragma (N : Node_Id) return Node_Id;
542 -- Return the Ensures component of Test_Case pragma N, or Empty otherwise
543
544 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
545 -- Returns the true generic entity in an instantiation. If the name in the
546 -- instantiation is a renaming, the function returns the renamed generic.
547
548 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
549 -- This procedure assigns to L and H respectively the values of the low and
550 -- high bounds of node N, which must be a range, subtype indication, or the
551 -- name of a scalar subtype. The result in L, H may be set to Error if
552 -- there was an earlier error in the range.
553
554 function Get_Enum_Lit_From_Pos
555 (T : Entity_Id;
556 Pos : Uint;
557 Loc : Source_Ptr) return Node_Id;
558 -- This function returns an identifier denoting the E_Enumeration_Literal
559 -- entity for the specified value from the enumeration type or subtype T.
560 -- The second argument is the Pos value, which is assumed to be in range.
561 -- The third argument supplies a source location for constructed nodes
562 -- returned by this function.
563
564 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
565 -- Retrieve the fully expanded name of the library unit declared by
566 -- Decl_Node into the name buffer.
567
568 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
569 pragma Inline (Get_Name_Entity_Id);
570 -- An entity value is associated with each name in the name table. The
571 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
572 -- is the innermost visible entity with the given name. See the body of
573 -- Sem_Ch8 for further details on handling of entity visibility.
574
575 function Get_Name_From_Test_Case_Pragma (N : Node_Id) return String_Id;
576 -- Return the Name component of Test_Case pragma N
577
578 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
579 pragma Inline (Get_Pragma_Id);
580 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
581
582 function Get_Referenced_Object (N : Node_Id) return Node_Id;
583 -- Given a node, return the renamed object if the node represents a renamed
584 -- object, otherwise return the node unchanged. The node may represent an
585 -- arbitrary expression.
586
587 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
588 -- Given an entity for an exception, package, subprogram or generic unit,
589 -- returns the ultimately renamed entity if this is a renaming. If this is
590 -- not a renamed entity, returns its argument. It is an error to call this
591 -- with any other kind of entity.
592
593 function Get_Requires_From_Test_Case_Pragma (N : Node_Id) return Node_Id;
594 -- Return the Requires component of Test_Case pragma N, or Empty otherwise
595
596 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
597 -- Nod is either a procedure call statement, or a function call, or an
598 -- accept statement node. This procedure finds the Entity_Id of the related
599 -- subprogram or entry and returns it, or if no subprogram can be found,
600 -- returns Empty.
601
602 function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
603 -- Given the entity for a subprogram (E_Function or E_Procedure), return
604 -- the corresponding N_Subprogram_Body node. If the corresponding body
605 -- is missing (as for an imported subprogram), return Empty.
606
607 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
608 pragma Inline (Get_Task_Body_Procedure);
609 -- Given an entity for a task type or subtype, retrieves the
610 -- Task_Body_Procedure field from the corresponding task type declaration.
611
612 function Has_Access_Values (T : Entity_Id) return Boolean;
613 -- Returns true if type or subtype T is an access type, or has a component
614 -- (at any recursive level) that is an access type. This is a conservative
615 -- predicate, if it is not known whether or not T contains access values
616 -- (happens for generic formals in some cases), then False is returned.
617 -- Note that tagged types return False. Even though the tag is implemented
618 -- as an access type internally, this function tests only for access types
619 -- known to the programmer. See also Has_Tagged_Component.
620
621 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
622 -- Result of Has_Compatible_Alignment test, description found below. Note
623 -- that the values are arranged in increasing order of problematicness.
624
625 function Has_Compatible_Alignment
626 (Obj : Entity_Id;
627 Expr : Node_Id) return Alignment_Result;
628 -- Obj is an object entity, and expr is a node for an object reference. If
629 -- the alignment of the object referenced by Expr is known to be compatible
630 -- with the alignment of Obj (i.e. is larger or the same), then the result
631 -- is Known_Compatible. If the alignment of the object referenced by Expr
632 -- is known to be less than the alignment of Obj, then Known_Incompatible
633 -- is returned. If neither condition can be reliably established at compile
634 -- time, then Unknown is returned. This is used to determine if alignment
635 -- checks are required for address clauses, and also whether copies must
636 -- be made when objects are passed by reference.
637 --
638 -- Note: Known_Incompatible does not mean that at run time the alignment
639 -- of Expr is known to be wrong for Obj, just that it can be determined
640 -- that alignments have been explicitly or implicitly specified which are
641 -- incompatible (whereas Unknown means that even this is not known). The
642 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
643 -- Unknown, but issue a warning that there may be an alignment error.
644
645 function Has_Declarations (N : Node_Id) return Boolean;
646 -- Determines if the node can have declarations
647
648 function Has_Discriminant_Dependent_Constraint
649 (Comp : Entity_Id) return Boolean;
650 -- Returns True if and only if Comp has a constrained subtype that depends
651 -- on a discriminant.
652
653 function Has_Infinities (E : Entity_Id) return Boolean;
654 -- Determines if the range of the floating-point type E includes
655 -- infinities. Returns False if E is not a floating-point type.
656
657 function Has_Interfaces
658 (T : Entity_Id;
659 Use_Full_View : Boolean := True) return Boolean;
660 -- Where T is a concurrent type or a record type, returns true if T covers
661 -- any abstract interface types. In case of private types the argument
662 -- Use_Full_View controls if the check is done using its full view (if
663 -- available).
664
665 function Has_Null_Exclusion (N : Node_Id) return Boolean;
666 -- Determine whether node N has a null exclusion
667
668 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
669 -- Predicate to determine whether a controlled type has a user-defined
670 -- Initialize primitive (and, in Ada 2012, whether that primitive is
671 -- non-null), which causes the type to not have preelaborable
672 -- initialization.
673
674 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
675 -- Return True iff type E has preelaborable initialization as defined in
676 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
677
678 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
679 -- Check if a type has a (sub)component of a private type that has not
680 -- yet received a full declaration.
681
682 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
683 -- Return whether an array type has static bounds
684
685 function Has_Stream (T : Entity_Id) return Boolean;
686 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
687 -- case of a composite type, has a component for which this predicate is
688 -- True, and if so returns True. Otherwise a result of False means that
689 -- there is no Stream type in sight. For a private type, the test is
690 -- applied to the underlying type (or returns False if there is no
691 -- underlying type).
692
693 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
694 -- Returns true if the last character of E is Suffix. Used in Assertions.
695
696 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
697 -- Returns the name of E adding Suffix
698
699 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
700 -- Returns the name of E without Suffix
701
702 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
703 -- Returns True if Typ is a composite type (array or record) which is
704 -- either itself a tagged type, or has a component (recursively) which is
705 -- a tagged type. Returns False for non-composite type, or if no tagged
706 -- component is present. This function is used to check if "=" has to be
707 -- expanded into a bunch component comparisons.
708
709 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
710 -- Subp is a subprogram marked with pragma Implemented. Return the specific
711 -- implementation requirement which the pragma imposes. The return value is
712 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
713
714 function Implements_Interface
715 (Typ_Ent : Entity_Id;
716 Iface_Ent : Entity_Id;
717 Exclude_Parents : Boolean := False) return Boolean;
718 -- Returns true if the Typ_Ent implements interface Iface_Ent
719
720 function In_Instance return Boolean;
721 -- Returns True if the current scope is within a generic instance
722
723 function In_Instance_Body return Boolean;
724 -- Returns True if current scope is within the body of an instance, where
725 -- several semantic checks (e.g. accessibility checks) are relaxed.
726
727 function In_Instance_Not_Visible return Boolean;
728 -- Returns True if current scope is with the private part or the body of
729 -- an instance. Other semantic checks are suppressed in this context.
730
731 function In_Instance_Visible_Part return Boolean;
732 -- Returns True if current scope is within the visible part of a package
733 -- instance, where several additional semantic checks apply.
734
735 function In_Package_Body return Boolean;
736 -- Returns True if current scope is within a package body
737
738 function In_Parameter_Specification (N : Node_Id) return Boolean;
739 -- Returns True if node N belongs to a parameter specification
740
741 function In_Subprogram_Or_Concurrent_Unit return Boolean;
742 -- Determines if the current scope is within a subprogram compilation unit
743 -- (inside a subprogram declaration, subprogram body, or generic
744 -- subprogram declaration) or within a task or protected body. The test is
745 -- for appearing anywhere within such a construct (that is it does not need
746 -- to be directly within).
747
748 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
749 -- Determine whether a declaration occurs within the visible part of a
750 -- package specification. The package must be on the scope stack, and the
751 -- corresponding private part must not.
752
753 function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id;
754 -- Given the entity of a type, retrieve the incomplete or private view of
755 -- the same type. Note that Typ may not have a partial view to begin with,
756 -- in that case the function returns Empty.
757
758 procedure Insert_Explicit_Dereference (N : Node_Id);
759 -- In a context that requires a composite or subprogram type and where a
760 -- prefix is an access type, rewrite the access type node N (which is the
761 -- prefix, e.g. of an indexed component) as an explicit dereference.
762
763 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
764 -- Examine all deferred constants in the declaration list Decls and check
765 -- whether they have been completed by a full constant declaration or an
766 -- Import pragma. Emit the error message if that is not the case.
767
768 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
769 -- Determines if N is an actual parameter of out mode in a subprogram call
770
771 function Is_Actual_Parameter (N : Node_Id) return Boolean;
772 -- Determines if N is an actual parameter in a subprogram call
773
774 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
775 -- Determines if N is an actual parameter of a formal of tagged type in a
776 -- subprogram call.
777
778 function Is_Aliased_View (Obj : Node_Id) return Boolean;
779 -- Determine if Obj is an aliased view, i.e. the name of an object to which
780 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
781 -- rules of the language, it does not take into account the restriction
782 -- No_Implicit_Aliasing, so it can return True if the restriction is active
783 -- and Obj violates the restriction. The caller is responsible for calling
784 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
785 -- requirement for obeying the restriction in the call context.
786
787 function Is_Ancestor_Package
788 (E1 : Entity_Id;
789 E2 : Entity_Id) return Boolean;
790 -- Determine whether package E1 is an ancestor of E2
791
792 function Is_Atomic_Object (N : Node_Id) return Boolean;
793 -- Determines if the given node denotes an atomic object in the sense of
794 -- the legality checks described in RM C.6(12).
795
796 function Is_Controlling_Limited_Procedure
797 (Proc_Nam : Entity_Id) return Boolean;
798 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
799 -- of a limited interface with a controlling first parameter.
800
801 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
802 -- Returns True if N is a call to a CPP constructor
803
804 function Is_Dependent_Component_Of_Mutable_Object
805 (Object : Node_Id) return Boolean;
806 -- Returns True if Object is the name of a subcomponent that depends on
807 -- discriminants of a variable whose nominal subtype is unconstrained and
808 -- not indefinite, and the variable is not aliased. Otherwise returns
809 -- False. The nodes passed to this function are assumed to denote objects.
810
811 function Is_Dereferenced (N : Node_Id) return Boolean;
812 -- N is a subexpression node of an access type. This function returns true
813 -- if N appears as the prefix of a node that does a dereference of the
814 -- access value (selected/indexed component, explicit dereference or a
815 -- slice), and false otherwise.
816
817 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
818 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
819 -- This is the RM definition, a type is a descendent of another type if it
820 -- is the same type or is derived from a descendent of the other type.
821
822 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
823 -- First determine whether type T is an interface and then check whether
824 -- it is of protected, synchronized or task kind.
825
826 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
827 -- Predicate to determine whether a function entity comes from a rewritten
828 -- expression function, and should be inlined unconditionally.
829
830 function Is_False (U : Uint) return Boolean;
831 pragma Inline (Is_False);
832 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
833 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
834 -- if it is False (i.e. zero).
835
836 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
837 -- Returns True iff the number U is a model number of the fixed-point type
838 -- T, i.e. if it is an exact multiple of Small.
839
840 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
841 -- Typ is a type entity. This function returns true if this type is fully
842 -- initialized, meaning that an object of the type is fully initialized.
843 -- Note that initialization resulting from use of pragma Normalized_Scalars
844 -- does not count. Note that this is only used for the purpose of issuing
845 -- warnings for objects that are potentially referenced uninitialized. This
846 -- means that the result returned is not crucial, but should err on the
847 -- side of thinking things are fully initialized if it does not know.
848
849 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
850 -- E is a subprogram. Return True is E is an implicit operation inherited
851 -- by a derived type declaration.
852
853 function Is_Inherited_Operation_For_Type
854 (E : Entity_Id;
855 Typ : Entity_Id) return Boolean;
856 -- E is a subprogram. Return True is E is an implicit operation inherited
857 -- by the derived type declaration for type Typ.
858
859 function Is_Iterator (Typ : Entity_Id) return Boolean;
860 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
861 -- Ada.Iterator_Interfaces, or it is derived from one.
862
863 function Is_LHS (N : Node_Id) return Boolean;
864 -- Returns True iff N is used as Name in an assignment statement
865
866 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
867 -- A library-level declaration is one that is accessible from Standard,
868 -- i.e. a library unit or an entity declared in a library package.
869
870 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
871 -- Determine whether a given arbitrary type is a limited class-wide type
872
873 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
874 -- Determines whether Expr is a reference to a variable or IN OUT mode
875 -- parameter of the current enclosing subprogram.
876 -- Why are OUT parameters not considered here ???
877
878 function Is_Object_Reference (N : Node_Id) return Boolean;
879 -- Determines if the tree referenced by N represents an object. Both
880 -- variable and constant objects return True (compare Is_Variable).
881
882 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
883 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
884 -- Note that the Is_Variable function is not quite the right test because
885 -- this is a case in which conversions whose expression is a variable (in
886 -- the Is_Variable sense) with a non-tagged type target are considered view
887 -- conversions and hence variables.
888
889 function Is_Partially_Initialized_Type
890 (Typ : Entity_Id;
891 Include_Implicit : Boolean := True) return Boolean;
892 -- Typ is a type entity. This function returns true if this type is partly
893 -- initialized, meaning that an object of the type is at least partly
894 -- initialized (in particular in the record case, that at least one
895 -- component has an initialization expression). Note that initialization
896 -- resulting from the use of pragma Normalized_Scalars does not count.
897 -- Include_Implicit controls whether implicit initialization of access
898 -- values to null, and of discriminant values, is counted as making the
899 -- type be partially initialized. For the default setting of True, these
900 -- implicit cases do count, and discriminated types or types containing
901 -- access values not explicitly initialized will return True. Otherwise
902 -- if Include_Implicit is False, these cases do not count as making the
903 -- type be partially initialized.
904
905 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
906 -- Determines if type T is a potentially persistent type. A potentially
907 -- persistent type is defined (recursively) as a scalar type, a non-tagged
908 -- record whose components are all of a potentially persistent type, or an
909 -- array with all static constraints whose component type is potentially
910 -- persistent. A private type is potentially persistent if the full type
911 -- is potentially persistent.
912
913 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
914 -- Return True if node N denotes a protected type name which represents
915 -- the current instance of a protected object according to RM 9.4(21/2).
916
917 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
918 -- Return True if a compilation unit is the specification or the
919 -- body of a remote call interface package.
920
921 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
922 -- Return True if E is a remote access-to-class-wide type
923
924 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
925 -- Return True if E is a remote access to subprogram type
926
927 function Is_Remote_Call (N : Node_Id) return Boolean;
928 -- Return True if N denotes a potentially remote call
929
930 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
931 -- Return True if Proc_Nam is a procedure renaming of an entry
932
933 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
934 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
935 -- Ada.Iterator_Interfaces.Reversible_Iterator.
936
937 function Is_Selector_Name (N : Node_Id) return Boolean;
938 -- Given an N_Identifier node N, determines if it is a Selector_Name.
939 -- As described in Sinfo, Selector_Names are special because they
940 -- represent use of the N_Identifier node for a true identifier, when
941 -- normally such nodes represent a direct name.
942
943 function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean;
944 -- Determines if the tree referenced by N represents an initialization
945 -- expression in SPARK, suitable for initializing an object in an object
946 -- declaration.
947
948 function Is_SPARK_Object_Reference (N : Node_Id) return Boolean;
949 -- Determines if the tree referenced by N represents an object in SPARK
950
951 function Is_Statement (N : Node_Id) return Boolean;
952 pragma Inline (Is_Statement);
953 -- Check if the node N is a statement node. Note that this includes
954 -- the case of procedure call statements (unlike the direct use of
955 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
956 -- Note that a label is *not* a statement, and will return False.
957
958 function Is_Subprogram_Stub_Without_Prior_Declaration
959 (N : Node_Id) return Boolean;
960 -- Return True if N is a subprogram stub with no prior subprogram
961 -- declaration.
962
963 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
964 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
965
966 function Is_Transfer (N : Node_Id) return Boolean;
967 -- Returns True if the node N is a statement which is known to cause an
968 -- unconditional transfer of control at runtime, i.e. the following
969 -- statement definitely will not be executed.
970
971 function Is_True (U : Uint) return Boolean;
972 pragma Inline (Is_True);
973 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
974 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
975 -- if it is True (i.e. non-zero).
976
977 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
978 pragma Inline (Is_Universal_Numeric_Type);
979 -- True if T is Universal_Integer or Universal_Real
980
981 function Is_Value_Type (T : Entity_Id) return Boolean;
982 -- Returns true if type T represents a value type. This is only relevant to
983 -- CIL, will always return false for other targets. A value type is a CIL
984 -- object that is accessed directly, as opposed to the other CIL objects
985 -- that are accessed through managed pointers.
986
987 function Is_VMS_Operator (Op : Entity_Id) return Boolean;
988 -- Determine whether an operator is one of the intrinsics defined
989 -- in the DEC system extension.
990
991 function Is_Delegate (T : Entity_Id) return Boolean;
992 -- Returns true if type T represents a delegate. A Delegate is the CIL
993 -- object used to represent access-to-subprogram types. This is only
994 -- relevant to CIL, will always return false for other targets.
995
996 function Is_Variable
997 (N : Node_Id;
998 Use_Original_Node : Boolean := True) return Boolean;
999 -- Determines if the tree referenced by N represents a variable, i.e. can
1000 -- appear on the left side of an assignment. There is one situation (formal
1001 -- parameters) in which non-tagged type conversions are also considered
1002 -- variables, but Is_Variable returns False for such cases, since it has
1003 -- no knowledge of the context. Note that this is the point at which
1004 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1005 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1006 -- default is True since this routine is commonly invoked as part of the
1007 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1008
1009 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1010 -- Check whether T is derived from a visibly controlled type. This is true
1011 -- if the root type is declared in Ada.Finalization. If T is derived
1012 -- instead from a private type whose full view is controlled, an explicit
1013 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1014 -- one.
1015
1016 function Is_Volatile_Object (N : Node_Id) return Boolean;
1017 -- Determines if the given node denotes an volatile object in the sense of
1018 -- the legality checks described in RM C.6(12). Note that the test here is
1019 -- for something actually declared as volatile, not for an object that gets
1020 -- treated as volatile (see Einfo.Treat_As_Volatile).
1021
1022 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1023 -- Applies to Itypes. True if the Itype is attached to a declaration for
1024 -- the type through its Parent field, which may or not be present in the
1025 -- tree.
1026
1027 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1028 -- This procedure is called to clear all constant indications from all
1029 -- entities in the current scope and in any parent scopes if the current
1030 -- scope is a block or a package (and that recursion continues to the top
1031 -- scope that is not a block or a package). This is used when the
1032 -- sequential flow-of-control assumption is violated (occurrence of a
1033 -- label, head of a loop, or start of an exception handler). The effect of
1034 -- the call is to clear the Constant_Value field (but we do not need to
1035 -- clear the Is_True_Constant flag, since that only gets reset if there
1036 -- really is an assignment somewhere in the entity scope). This procedure
1037 -- also calls Kill_All_Checks, since this is a special case of needing to
1038 -- forget saved values. This procedure also clears the Is_Known_Null and
1039 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1040 -- parameters since these are also not known to be trustable any more.
1041 --
1042 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1043 -- fields and leave other fields unchanged. This is used when we encounter
1044 -- an unconditional flow of control change (return, goto, raise). In such
1045 -- cases we don't need to clear the current values, since it may be that
1046 -- the flow of control change occurs in a conditional context, and if it
1047 -- is not taken, then it is just fine to keep the current values. But the
1048 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1049 -- conditional-return, assign-to-v, we do not want to complain that the
1050 -- second assignment clobbers the first.
1051
1052 procedure Kill_Current_Values
1053 (Ent : Entity_Id;
1054 Last_Assignment_Only : Boolean := False);
1055 -- This performs the same processing as described above for the form with
1056 -- no argument, but for the specific entity given. The call has no effect
1057 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1058 -- same meaning as for the call with no Ent.
1059
1060 procedure Kill_Size_Check_Code (E : Entity_Id);
1061 -- Called when an address clause or pragma Import is applied to an entity.
1062 -- If the entity is a variable or a constant, and size check code is
1063 -- present, this size check code is killed, since the object will not be
1064 -- allocated by the program.
1065
1066 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1067 -- The node N is an entity reference. This function determines whether the
1068 -- reference is for sure an assignment of the entity, returning True if
1069 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1070 -- direction. Cases which may possibly be assignments but are not known to
1071 -- be may return True from May_Be_Lvalue, but False from this function.
1072
1073 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1074 -- HSS is a handled statement sequence. This function returns the last
1075 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1076 -- such statement exists, Empty is returned.
1077
1078 function Make_Simple_Return_Statement
1079 (Sloc : Source_Ptr;
1080 Expression : Node_Id := Empty) return Node_Id
1081 renames Make_Return_Statement;
1082 -- See Sinfo. We rename Make_Return_Statement to the correct Ada 2005
1083 -- terminology here. Clients should use Make_Simple_Return_Statement.
1084
1085 function Matching_Static_Array_Bounds
1086 (L_Typ : Node_Id;
1087 R_Typ : Node_Id) return Boolean;
1088 -- L_Typ and R_Typ are two array types. Returns True when they have the
1089 -- same number of dimensions, and the same static bounds for each index
1090 -- position.
1091
1092 Make_Return_Statement : constant := -2 ** 33;
1093 -- Attempt to prevent accidental uses of Make_Return_Statement. If this
1094 -- and the one in Nmake are both potentially use-visible, it will cause
1095 -- a compilation error. Note that type and value are irrelevant.
1096
1097 N_Return_Statement : constant := -2 ** 33;
1098 -- Attempt to prevent accidental uses of N_Return_Statement; similar to
1099 -- Make_Return_Statement above.
1100
1101 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1102 -- Given a node which designates the context of analysis and an origin in
1103 -- the tree, traverse from Root_Nod and mark all allocators as either
1104 -- dynamic or static depending on Context_Nod. Any erroneous marking is
1105 -- cleaned up during resolution.
1106
1107 function May_Be_Lvalue (N : Node_Id) return Boolean;
1108 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1109 -- An lvalue is defined as any expression which appears in a context where
1110 -- a name is required by the syntax, and the identity, rather than merely
1111 -- the value of the node is needed (for example, the prefix of an Access
1112 -- attribute is in this category). Note that, as implied by the name, this
1113 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1114 -- it returns True. It tries hard to get the answer right, but it is hard
1115 -- to guarantee this in all cases. Note that it is more possible to give
1116 -- correct answer if the tree is fully analyzed.
1117
1118 function Must_Inline (Subp : Entity_Id) return Boolean;
1119 -- Return true if Subp must be inlined by the frontend
1120
1121 function Needs_One_Actual (E : Entity_Id) return Boolean;
1122 -- Returns True if a function has defaults for all but its first
1123 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1124 -- results from an indexing of a function call written in prefix form.
1125
1126 function New_Copy_List_Tree (List : List_Id) return List_Id;
1127 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1128 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1129 -- nodes (entities) either directly or indirectly using this function.
1130
1131 function New_Copy_Tree
1132 (Source : Node_Id;
1133 Map : Elist_Id := No_Elist;
1134 New_Sloc : Source_Ptr := No_Location;
1135 New_Scope : Entity_Id := Empty) return Node_Id;
1136 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1137 -- syntactic subtree, including recursively any descendents whose parent
1138 -- field references a copied node (descendents not linked to a copied node
1139 -- by the parent field are not copied, instead the copied tree references
1140 -- the same descendent as the original in this case, which is appropriate
1141 -- for non-syntactic fields such as Etype). The parent pointers in the
1142 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1143 -- The one exception to the rule of not copying semantic fields is that
1144 -- any implicit types attached to the subtree are duplicated, so that
1145 -- the copy contains a distinct set of implicit type entities. Thus this
1146 -- function is used when it is necessary to duplicate an analyzed tree,
1147 -- declared in the same or some other compilation unit. This function is
1148 -- declared here rather than in atree because it uses semantic information
1149 -- in particular concerning the structure of itypes and the generation of
1150 -- public symbols.
1151
1152 -- The Map argument, if set to a non-empty Elist, specifies a set of
1153 -- mappings to be applied to entities in the tree. The map has the form:
1154 --
1155 -- old entity 1
1156 -- new entity to replace references to entity 1
1157 -- old entity 2
1158 -- new entity to replace references to entity 2
1159 -- ...
1160 --
1161 -- The call destroys the contents of Map in this case
1162 --
1163 -- The parameter New_Sloc, if set to a value other than No_Location, is
1164 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1165 -- set to its default value No_Location, then the Sloc values of the
1166 -- nodes in the copy are simply copied from the corresponding original.
1167 --
1168 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1169 -- the default No_Location value, but is reset if New_Sloc is given, since
1170 -- in this case the result clearly is neither a source node or an exact
1171 -- copy of a source node.
1172 --
1173 -- The parameter New_Scope, if set to a value other than Empty, is the
1174 -- value to use as the Scope for any Itypes that are copied. The most
1175 -- typical value for this parameter, if given, is Current_Scope.
1176
1177 function New_External_Entity
1178 (Kind : Entity_Kind;
1179 Scope_Id : Entity_Id;
1180 Sloc_Value : Source_Ptr;
1181 Related_Id : Entity_Id;
1182 Suffix : Character;
1183 Suffix_Index : Nat := 0;
1184 Prefix : Character := ' ') return Entity_Id;
1185 -- This function creates an N_Defining_Identifier node for an internal
1186 -- created entity, such as an implicit type or subtype, or a record
1187 -- initialization procedure. The entity name is constructed with a call
1188 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1189 -- that the generated name may be referenced as a public entry, and the
1190 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1191 -- entity is for a type or subtype, the size/align fields are initialized
1192 -- to unknown (Uint_0).
1193
1194 function New_Internal_Entity
1195 (Kind : Entity_Kind;
1196 Scope_Id : Entity_Id;
1197 Sloc_Value : Source_Ptr;
1198 Id_Char : Character) return Entity_Id;
1199 -- This function is similar to New_External_Entity, except that the
1200 -- name is constructed by New_Internal_Name (Id_Char). This is used
1201 -- when the resulting entity does not have to be referenced as a
1202 -- public entity (and in this case Is_Public is not set).
1203
1204 procedure Next_Actual (Actual_Id : in out Node_Id);
1205 pragma Inline (Next_Actual);
1206 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1207 -- inline this procedural form, but not the functional form that follows.
1208
1209 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1210 -- Find next actual parameter in declaration order. As described for
1211 -- First_Actual, this is the next actual in the declaration order, not
1212 -- the call order, so this does not correspond to simply taking the
1213 -- next entry of the Parameter_Associations list. The argument is an
1214 -- actual previously returned by a call to First_Actual or Next_Actual.
1215 -- Note that the result produced is always an expression, not a parameter
1216 -- association node, even if named notation was used.
1217
1218 procedure Normalize_Actuals
1219 (N : Node_Id;
1220 S : Entity_Id;
1221 Report : Boolean;
1222 Success : out Boolean);
1223 -- Reorders lists of actuals according to names of formals, value returned
1224 -- in Success indicates success of reordering. For more details, see body.
1225 -- Errors are reported only if Report is set to True.
1226
1227 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1228 -- This routine is called if the sub-expression N maybe the target of
1229 -- an assignment (e.g. it is the left side of an assignment, used as
1230 -- an out parameters, or used as prefixes of access attributes). It
1231 -- sets May_Be_Modified in the associated entity if there is one,
1232 -- taking into account the rule that in the case of renamed objects,
1233 -- it is the flag in the renamed object that must be set.
1234 --
1235 -- The parameter Sure is set True if the modification is sure to occur
1236 -- (e.g. target of assignment, or out parameter), and to False if the
1237 -- modification is only potential (e.g. address of entity taken).
1238
1239 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1240 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1241 -- or overrides an inherited dispatching primitive S2, the original
1242 -- corresponding operation of S is the original corresponding operation of
1243 -- S2. Otherwise, it is S itself.
1244
1245 function Object_Access_Level (Obj : Node_Id) return Uint;
1246 -- Return the accessibility level of the view of the object Obj.
1247 -- For convenience, qualified expressions applied to object names
1248 -- are also allowed as actuals for this function.
1249
1250 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1251 -- Returns True if the names of both entities correspond with matching
1252 -- primitives. This routine includes support for the case in which one
1253 -- or both entities correspond with entities built by Derive_Subprogram
1254 -- with a special name to avoid being overridden (i.e. return true in case
1255 -- of entities with names "nameP" and "name" or vice versa).
1256
1257 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1258 -- Returns some private component (if any) of the given Type_Id.
1259 -- Used to enforce the rules on visibility of operations on composite
1260 -- types, that depend on the full view of the component type. For a
1261 -- record type there may be several such components, we just return
1262 -- the first one.
1263
1264 procedure Process_End_Label
1265 (N : Node_Id;
1266 Typ : Character;
1267 Ent : Entity_Id);
1268 -- N is a node whose End_Label is to be processed, generating all
1269 -- appropriate cross-reference entries, and performing style checks
1270 -- for any identifier references in the end label. Typ is either
1271 -- 'e' or 't indicating the type of the cross-reference entity
1272 -- (e for spec, t for body, see Lib.Xref spec for details). The
1273 -- parameter Ent gives the entity to which the End_Label refers,
1274 -- and to which cross-references are to be generated.
1275
1276 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1277 -- Returns True if the expression Expr contains any references to a
1278 -- generic type. This can only happen within a generic template.
1279
1280 procedure Remove_Homonym (E : Entity_Id);
1281 -- Removes E from the homonym chain
1282
1283 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1284 -- This is used to construct the second argument in a call to Rep_To_Pos
1285 -- which is Standard_True if range checks are enabled (E is an entity to
1286 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1287 -- if range checks are suppressed. Loc is the location for the node that
1288 -- is returned (which is a New_Occurrence of the appropriate entity).
1289 --
1290 -- Note: one might think that it would be fine to always use True and
1291 -- to ignore the suppress in this case, but it is generally better to
1292 -- believe a request to suppress exceptions if possible, and further
1293 -- more there is at least one case in the generated code (the code for
1294 -- array assignment in a loop) that depends on this suppression.
1295
1296 procedure Require_Entity (N : Node_Id);
1297 -- N is a node which should have an entity value if it is an entity name.
1298 -- If not, then check if there were previous errors. If so, just fill
1299 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1300 -- This is used as a defense mechanism against ill-formed trees caused by
1301 -- previous errors (particularly in -gnatq mode).
1302
1303 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1304 -- Id is a type entity. The result is True when temporaries of this type
1305 -- need to be wrapped in a transient scope to be reclaimed properly when a
1306 -- secondary stack is in use. Examples of types requiring such wrapping are
1307 -- controlled types and variable-sized types including unconstrained
1308 -- arrays.
1309
1310 procedure Reset_Analyzed_Flags (N : Node_Id);
1311 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1312
1313 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
1314 -- Return true if Subp is a function that returns an unconstrained type
1315
1316 function Safe_To_Capture_Value
1317 (N : Node_Id;
1318 Ent : Entity_Id;
1319 Cond : Boolean := False) return Boolean;
1320 -- The caller is interested in capturing a value (either the current value,
1321 -- or an indication that the value is non-null) for the given entity Ent.
1322 -- This value can only be captured if sequential execution semantics can be
1323 -- properly guaranteed so that a subsequent reference will indeed be sure
1324 -- that this current value indication is correct. The node N is the
1325 -- construct which resulted in the possible capture of the value (this
1326 -- is used to check if we are in a conditional).
1327 --
1328 -- Cond is used to skip the test for being inside a conditional. It is used
1329 -- in the case of capturing values from if/while tests, which already do a
1330 -- proper job of handling scoping issues without this help.
1331 --
1332 -- The only entities whose values can be captured are OUT and IN OUT formal
1333 -- parameters, and variables unless Cond is True, in which case we also
1334 -- allow IN formals, loop parameters and constants, where we cannot ever
1335 -- capture actual value information, but we can capture conditional tests.
1336
1337 function Same_Name (N1, N2 : Node_Id) return Boolean;
1338 -- Determine if two (possibly expanded) names are the same name. This is
1339 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1340
1341 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1342 -- Determine if Node1 and Node2 are known to designate the same object.
1343 -- This is a semantic test and both nodes must be fully analyzed. A result
1344 -- of True is decisively correct. A result of False does not necessarily
1345 -- mean that different objects are designated, just that this could not
1346 -- be reliably determined at compile time.
1347
1348 function Same_Type (T1, T2 : Entity_Id) return Boolean;
1349 -- Determines if T1 and T2 represent exactly the same type. Two types
1350 -- are the same if they are identical, or if one is an unconstrained
1351 -- subtype of the other, or they are both common subtypes of the same
1352 -- type with identical constraints. The result returned is conservative.
1353 -- It is True if the types are known to be the same, but a result of
1354 -- False is indecisive (e.g. the compiler may not be able to tell that
1355 -- two constraints are identical).
1356
1357 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1358 -- Determines if Node1 and Node2 are known to be the same value, which is
1359 -- true if they are both compile time known values and have the same value,
1360 -- or if they are the same object (in the sense of function Same_Object).
1361 -- A result of False does not necessarily mean they have different values,
1362 -- just that it is not possible to determine they have the same value.
1363
1364 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1365 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1366 -- inside it, where both entities represent scopes. Note that scopes
1367 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1368 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1369
1370 procedure Save_Actual (N : Node_Id; Writable : Boolean := False);
1371 -- Enter an actual in a call in a table global, for subsequent check of
1372 -- possible order dependence in the presence of IN OUT parameters for
1373 -- functions in Ada 2012 (or access parameters in older language versions).
1374
1375 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1376 -- Like Scope_Within_Or_Same, except that this function returns
1377 -- False in the case where Scope1 and Scope2 are the same scope.
1378
1379 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1380 -- Same as Basic_Set_Convention, but with an extra check for access types.
1381 -- In particular, if E is an access-to-subprogram type, and Val is a
1382 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1383
1384 procedure Set_Current_Entity (E : Entity_Id);
1385 pragma Inline (Set_Current_Entity);
1386 -- Establish the entity E as the currently visible definition of its
1387 -- associated name (i.e. the Node_Id associated with its name).
1388
1389 procedure Set_Debug_Info_Needed (T : Entity_Id);
1390 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1391 -- that are needed by T (for an object, the type of the object is needed,
1392 -- and for a type, various subsidiary types are needed -- see body for
1393 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1394 -- This routine should always be used instead of Set_Needs_Debug_Info to
1395 -- ensure that subsidiary entities are properly handled.
1396
1397 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id);
1398 -- This procedure has the same calling sequence as Set_Entity, but
1399 -- if Style_Check is set, then it calls a style checking routine which
1400 -- can check identifier spelling style.
1401
1402 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1403 pragma Inline (Set_Name_Entity_Id);
1404 -- Sets the Entity_Id value associated with the given name, which is the
1405 -- Id of the innermost visible entity with the given name. See the body
1406 -- of package Sem_Ch8 for further details on the handling of visibility.
1407
1408 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1409 -- The arguments may be parameter associations, whose descendants
1410 -- are the optional formal name and the actual parameter. Positional
1411 -- parameters are already members of a list, and do not need to be
1412 -- chained separately. See also First_Actual and Next_Actual.
1413
1414 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1415 pragma Inline (Set_Optimize_Alignment_Flags);
1416 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
1417
1418 procedure Set_Public_Status (Id : Entity_Id);
1419 -- If an entity (visible or otherwise) is defined in a library
1420 -- package, or a package that is itself public, then this subprogram
1421 -- labels the entity public as well.
1422
1423 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1424 -- N is the node for either a left hand side (Out_Param set to False),
1425 -- or an Out or In_Out parameter (Out_Param set to True). If there is
1426 -- an assignable entity being referenced, then the appropriate flag
1427 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1428 -- if Out_Param is True) is set True, and the other flag set False.
1429
1430 procedure Set_Scope_Is_Transient (V : Boolean := True);
1431 -- Set the flag Is_Transient of the current scope
1432
1433 procedure Set_Size_Info (T1, T2 : Entity_Id);
1434 pragma Inline (Set_Size_Info);
1435 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1436 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1437 -- in the fixed-point and discrete cases, and also copies the alignment
1438 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1439 -- separately set if this is required to be copied also.
1440
1441 function Scope_Is_Transient return Boolean;
1442 -- True if the current scope is transient
1443
1444 function Static_Boolean (N : Node_Id) return Uint;
1445 -- This function analyzes the given expression node and then resolves it
1446 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1447 -- returned corresponding to the value, otherwise an error message is
1448 -- output and No_Uint is returned.
1449
1450 function Static_Integer (N : Node_Id) return Uint;
1451 -- This function analyzes the given expression node and then resolves it
1452 -- as any integer type. If the result is static, then the value of the
1453 -- universal expression is returned, otherwise an error message is output
1454 -- and a value of No_Uint is returned.
1455
1456 function Statically_Different (E1, E2 : Node_Id) return Boolean;
1457 -- Return True if it can be statically determined that the Expressions
1458 -- E1 and E2 refer to different objects
1459
1460 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1461 -- Return the accessibility level of the view denoted by Subp
1462
1463 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1464 -- Print debugging information on entry to each unit being analyzed
1465
1466 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1467 -- Move a list of entities from one scope to another, and recompute
1468 -- Is_Public based upon the new scope.
1469
1470 function Type_Access_Level (Typ : Entity_Id) return Uint;
1471 -- Return the accessibility level of Typ
1472
1473 function Type_Without_Stream_Operation
1474 (T : Entity_Id;
1475 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
1476 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
1477 -- is active then we cannot generate stream subprograms for composite types
1478 -- with elementary subcomponents that lack user-defined stream subprograms.
1479 -- This predicate determines whether a type has such an elementary
1480 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
1481 -- prevents the construction of a composite stream operation. If Op is
1482 -- specified we check only for the given stream operation.
1483
1484 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
1485 -- Return the entity which represents declaration N, so that different
1486 -- views of the same entity have the same unique defining entity:
1487 -- * package spec and body;
1488 -- * subprogram declaration, subprogram stub and subprogram body;
1489 -- * private view and full view of a type;
1490 -- * private view and full view of a deferred constant.
1491 -- In other cases, return the defining entity for N.
1492
1493 function Unique_Entity (E : Entity_Id) return Entity_Id;
1494 -- Return the unique entity for entity E, which would be returned by
1495 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
1496
1497 function Unique_Name (E : Entity_Id) return String;
1498 -- Return a unique name for entity E, which could be used to identify E
1499 -- across compilation units.
1500
1501 function Unit_Is_Visible (U : Entity_Id) return Boolean;
1502 -- Determine whether a compilation unit is visible in the current context,
1503 -- because there is a with_clause that makes the unit available. Used to
1504 -- provide better messages on common visiblity errors on operators.
1505
1506 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1507 -- Yields Universal_Integer or Universal_Real if this is a candidate
1508
1509 function Unqualify (Expr : Node_Id) return Node_Id;
1510 pragma Inline (Unqualify);
1511 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
1512 -- returns X. If Expr is not a qualified expression, returns Expr.
1513
1514 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
1515 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
1516 -- of a type extension or private extension declaration. If the full-view
1517 -- of private parents and progenitors is available then it is used to
1518 -- generate the list of visible ancestors; otherwise their partial
1519 -- view is added to the resulting list.
1520
1521 function Within_Init_Proc return Boolean;
1522 -- Determines if Current_Scope is within an init proc
1523
1524 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1525 -- Output error message for incorrectly typed expression. Expr is the node
1526 -- for the incorrectly typed construct (Etype (Expr) is the type found),
1527 -- and Expected_Type is the entity for the expected type. Note that Expr
1528 -- does not have to be a subexpression, anything with an Etype field may
1529 -- be used.
1530
1531 end Sem_Util;