tree.def (RTL_EXPR): Remove.
[gcc.git] / gcc / ada / utils.c
1 /****************************************************************************
2 * *
3 * GNAT COMPILER COMPONENTS *
4 * *
5 * U T I L S *
6 * *
7 * C Implementation File *
8 * *
9 * Copyright (C) 1992-2004, Free Software Foundation, Inc. *
10 * *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 2, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License distributed with GNAT; see file COPYING. If not, write *
19 * to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, *
20 * MA 02111-1307, USA. *
21 * *
22 * GNAT was originally developed by the GNAT team at New York University. *
23 * Extensive contributions were provided by Ada Core Technologies Inc. *
24 * *
25 ****************************************************************************/
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "tree.h"
32 #include "flags.h"
33 #include "defaults.h"
34 #include "toplev.h"
35 #include "output.h"
36 #include "ggc.h"
37 #include "debug.h"
38 #include "convert.h"
39 #include "target.h"
40 #include "function.h"
41 #include "cgraph.h"
42 #include "tree-inline.h"
43 #include "tree-gimple.h"
44 #include "tree-dump.h"
45
46 #include "ada.h"
47 #include "types.h"
48 #include "atree.h"
49 #include "elists.h"
50 #include "namet.h"
51 #include "nlists.h"
52 #include "stringt.h"
53 #include "uintp.h"
54 #include "fe.h"
55 #include "sinfo.h"
56 #include "einfo.h"
57 #include "ada-tree.h"
58 #include "gigi.h"
59
60 #ifndef MAX_FIXED_MODE_SIZE
61 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
62 #endif
63
64 #ifndef MAX_BITS_PER_WORD
65 #define MAX_BITS_PER_WORD BITS_PER_WORD
66 #endif
67
68 /* If nonzero, pretend we are allocating at global level. */
69 int force_global;
70
71 /* Tree nodes for the various types and decls we create. */
72 tree gnat_std_decls[(int) ADT_LAST];
73
74 /* Functions to call for each of the possible raise reasons. */
75 tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];
76
77 /* Associates a GNAT tree node to a GCC tree node. It is used in
78 `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
79 of `save_gnu_tree' for more info. */
80 static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;
81
82 /* This variable keeps a table for types for each precision so that we only
83 allocate each of them once. Signed and unsigned types are kept separate.
84
85 Note that these types are only used when fold-const requests something
86 special. Perhaps we should NOT share these types; we'll see how it
87 goes later. */
88 static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];
89
90 /* Likewise for float types, but record these by mode. */
91 static GTY(()) tree float_types[NUM_MACHINE_MODES];
92
93 /* For each binding contour we allocate a binding_level structure to indicate
94 the binding depth. */
95
96 struct gnat_binding_level GTY((chain_next ("%h.chain")))
97 {
98 /* The binding level containing this one (the enclosing binding level). */
99 struct gnat_binding_level *chain;
100 /* The BLOCK node for this level. */
101 tree block;
102 /* If nonzero, the setjmp buffer that needs to be updated for any
103 variable-sized definition within this context. */
104 tree jmpbuf_decl;
105 };
106
107 /* The binding level currently in effect. */
108 static GTY(()) struct gnat_binding_level *current_binding_level;
109
110 /* A chain of gnat_binding_level structures awaiting reuse. */
111 static GTY((deletable)) struct gnat_binding_level *free_binding_level;
112
113 /* A chain of unused BLOCK nodes. */
114 static GTY((deletable)) tree free_block_chain;
115
116 struct language_function GTY(())
117 {
118 int unused;
119 };
120
121 static void gnat_define_builtin (const char *, tree, int, const char *, bool);
122 static void gnat_install_builtins (void);
123 static tree merge_sizes (tree, tree, tree, bool, bool);
124 static tree compute_related_constant (tree, tree);
125 static tree split_plus (tree, tree *);
126 static bool value_zerop (tree);
127 static void gnat_gimplify_function (tree);
128 static void gnat_finalize (tree);
129 static tree float_type_for_precision (int, enum machine_mode);
130 static tree convert_to_fat_pointer (tree, tree);
131 static tree convert_to_thin_pointer (tree, tree);
132 static tree make_descriptor_field (const char *,tree, tree, tree);
133 static bool value_factor_p (tree, HOST_WIDE_INT);
134 static bool potential_alignment_gap (tree, tree, tree);
135 \f
136 /* Initialize the association of GNAT nodes to GCC trees. */
137
138 void
139 init_gnat_to_gnu (void)
140 {
141 associate_gnat_to_gnu
142 = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
143 }
144
145 /* GNAT_ENTITY is a GNAT tree node for an entity. GNU_DECL is the GCC tree
146 which is to be associated with GNAT_ENTITY. Such GCC tree node is always
147 a ..._DECL node. If NO_CHECK is nonzero, the latter check is suppressed.
148
149 If GNU_DECL is zero, a previous association is to be reset. */
150
151 void
152 save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, int no_check)
153 {
154 /* Check that GNAT_ENTITY is not already defined and that it is being set
155 to something which is a decl. Raise gigi 401 if not. Usually, this
156 means GNAT_ENTITY is defined twice, but occasionally is due to some
157 Gigi problem. */
158 if (gnu_decl
159 && (associate_gnat_to_gnu[gnat_entity - First_Node_Id]
160 || (! no_check && ! DECL_P (gnu_decl))))
161 gigi_abort (401);
162
163 associate_gnat_to_gnu[gnat_entity - First_Node_Id] = gnu_decl;
164 }
165
166 /* GNAT_ENTITY is a GNAT tree node for a defining identifier.
167 Return the ..._DECL node that was associated with it. If there is no tree
168 node associated with GNAT_ENTITY, abort.
169
170 In some cases, such as delayed elaboration or expressions that need to
171 be elaborated only once, GNAT_ENTITY is really not an entity. */
172
173 tree
174 get_gnu_tree (Entity_Id gnat_entity)
175 {
176 if (! associate_gnat_to_gnu[gnat_entity - First_Node_Id])
177 gigi_abort (402);
178
179 return associate_gnat_to_gnu[gnat_entity - First_Node_Id];
180 }
181
182 /* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */
183
184 int
185 present_gnu_tree (Entity_Id gnat_entity)
186 {
187 return (associate_gnat_to_gnu[gnat_entity - First_Node_Id] != NULL_TREE);
188 }
189
190 \f
191 /* Return non-zero if we are currently in the global binding level. */
192
193 int
194 global_bindings_p (void)
195 {
196 return (force_global != 0 || current_binding_level == 0
197 || current_binding_level->chain == 0 ? -1 : 0);
198 }
199
200 /* Enter a new binding level. */
201
202 void
203 gnat_pushlevel ()
204 {
205 struct gnat_binding_level *newlevel = NULL;
206
207 /* Reuse a struct for this binding level, if there is one. */
208 if (free_binding_level)
209 {
210 newlevel = free_binding_level;
211 free_binding_level = free_binding_level->chain;
212 }
213 else
214 newlevel
215 = (struct gnat_binding_level *)
216 ggc_alloc (sizeof (struct gnat_binding_level));
217
218 /* Use a free BLOCK, if any; otherwise, allocate one. */
219 if (free_block_chain)
220 {
221 newlevel->block = free_block_chain;
222 free_block_chain = TREE_CHAIN (free_block_chain);
223 TREE_CHAIN (newlevel->block) = NULL_TREE;
224 }
225 else
226 newlevel->block = make_node (BLOCK);
227
228 /* Point the BLOCK we just made to its parent. */
229 if (current_binding_level)
230 BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block;
231
232 BLOCK_VARS (newlevel->block) = BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE;
233
234 /* Add this level to the front of the chain (stack) of levels that are
235 active. */
236 newlevel->chain = current_binding_level;
237 newlevel->jmpbuf_decl = NULL_TREE;
238 current_binding_level = newlevel;
239 }
240
241 /* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL
242 and point FNDECL to this BLOCK. */
243
244 void
245 set_current_block_context (tree fndecl)
246 {
247 BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
248 DECL_INITIAL (fndecl) = current_binding_level->block;
249 }
250
251 /* Set the jmpbuf_decl for the current binding level to DECL. */
252
253 void
254 set_block_jmpbuf_decl (tree decl)
255 {
256 current_binding_level->jmpbuf_decl = decl;
257 }
258
259 /* Get the jmpbuf_decl, if any, for the current binding level. */
260
261 tree
262 get_block_jmpbuf_decl ()
263 {
264 return current_binding_level->jmpbuf_decl;
265 }
266
267 /* Exit a binding level. Set any BLOCK into the current code group. */
268
269 void
270 gnat_poplevel ()
271 {
272 struct gnat_binding_level *level = current_binding_level;
273 tree block = level->block;
274
275 BLOCK_VARS (block) = nreverse (BLOCK_VARS (block));
276 BLOCK_SUBBLOCKS (block) = nreverse (BLOCK_SUBBLOCKS (block));
277
278 /* If this is a function-level BLOCK don't do anything. Otherwise, if there
279 are no variables free the block and merge its subblocks into those of its
280 parent block. Otherwise, add it to the list of its parent. */
281 if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)
282 ;
283 else if (BLOCK_VARS (block) == NULL_TREE)
284 {
285 BLOCK_SUBBLOCKS (level->chain->block)
286 = chainon (BLOCK_SUBBLOCKS (block),
287 BLOCK_SUBBLOCKS (level->chain->block));
288 TREE_CHAIN (block) = free_block_chain;
289 free_block_chain = block;
290 }
291 else
292 {
293 TREE_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block);
294 BLOCK_SUBBLOCKS (level->chain->block) = block;
295 TREE_USED (block) = 1;
296 set_block_for_group (block);
297 }
298
299 /* Free this binding structure. */
300 current_binding_level = level->chain;
301 level->chain = free_binding_level;
302 free_binding_level = level;
303 }
304
305 /* Insert BLOCK at the end of the list of subblocks of the
306 current binding level. This is used when a BIND_EXPR is expanded,
307 to handle the BLOCK node inside the BIND_EXPR. */
308
309 void
310 insert_block (tree block)
311 {
312 TREE_USED (block) = 1;
313 TREE_CHAIN (block) = BLOCK_SUBBLOCKS (current_binding_level->block);
314 BLOCK_SUBBLOCKS (current_binding_level->block) = block;
315 }
316 \f
317 /* Records a ..._DECL node DECL as belonging to the current lexical scope
318 and uses GNAT_NODE for location information. */
319
320 void
321 gnat_pushdecl (tree decl, Node_Id gnat_node)
322 {
323 /* If at top level, there is no context. But PARM_DECLs always go in the
324 level of its function. */
325 if (global_bindings_p () && TREE_CODE (decl) != PARM_DECL)
326 DECL_CONTEXT (decl) = 0;
327 else
328 DECL_CONTEXT (decl) = current_function_decl;
329
330 /* Set the location of DECL and emit a declaration for it. */
331 if (Present (gnat_node))
332 Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl));
333 add_decl_expr (decl, gnat_node);
334
335 /* Put the declaration on the list. The list of declarations is in reverse
336 order. The list will be reversed later. We don't do this for global
337 variables. Also, don't put TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE into
338 the list. They will cause trouble with the debugger and aren't needed
339 anyway. */
340 if (!global_bindings_p ()
341 && (TREE_CODE (decl) != TYPE_DECL
342 || TREE_CODE (TREE_TYPE (decl)) != UNCONSTRAINED_ARRAY_TYPE))
343 {
344 TREE_CHAIN (decl) = BLOCK_VARS (current_binding_level->block);
345 BLOCK_VARS (current_binding_level->block) = decl;
346 }
347
348 /* For the declaration of a type, set its name if it either is not already
349 set, was set to an IDENTIFIER_NODE, indicating an internal name,
350 or if the previous type name was not derived from a source name.
351 We'd rather have the type named with a real name and all the pointer
352 types to the same object have the same POINTER_TYPE node. Code in this
353 function in c-decl.c makes a copy of the type node here, but that may
354 cause us trouble with incomplete types, so let's not try it (at least
355 for now). */
356
357 if (TREE_CODE (decl) == TYPE_DECL
358 && DECL_NAME (decl) != 0
359 && (TYPE_NAME (TREE_TYPE (decl)) == 0
360 || TREE_CODE (TYPE_NAME (TREE_TYPE (decl))) == IDENTIFIER_NODE
361 || (TREE_CODE (TYPE_NAME (TREE_TYPE (decl))) == TYPE_DECL
362 && DECL_ARTIFICIAL (TYPE_NAME (TREE_TYPE (decl)))
363 && ! DECL_ARTIFICIAL (decl))))
364 TYPE_NAME (TREE_TYPE (decl)) = decl;
365
366 if (TREE_CODE (decl) != CONST_DECL)
367 rest_of_decl_compilation (decl, NULL, global_bindings_p (), 0);
368 }
369 \f
370 /* Do little here. Set up the standard declarations later after the
371 front end has been run. */
372
373 void
374 gnat_init_decl_processing (void)
375 {
376 input_line = 0;
377
378 /* Make the binding_level structure for global names. */
379 current_function_decl = 0;
380 current_binding_level = 0;
381 free_binding_level = 0;
382 gnat_pushlevel ();
383
384 build_common_tree_nodes (0);
385
386 /* In Ada, we use a signed type for SIZETYPE. Use the signed type
387 corresponding to the size of Pmode. In most cases when ptr_mode and
388 Pmode differ, C will use the width of ptr_mode as sizetype. But we get
389 far better code using the width of Pmode. Make this here since we need
390 this before we can expand the GNAT types. */
391 size_type_node = gnat_type_for_size (GET_MODE_BITSIZE (Pmode), 0);
392 set_sizetype (size_type_node);
393 build_common_tree_nodes_2 (0);
394
395 /* Give names and make TYPE_DECLs for common types. */
396 gnat_pushdecl (build_decl (TYPE_DECL, get_identifier (SIZE_TYPE), sizetype),
397 Empty);
398 gnat_pushdecl (build_decl (TYPE_DECL, get_identifier ("integer"),
399 integer_type_node),
400 Empty);
401 gnat_pushdecl (build_decl (TYPE_DECL, get_identifier ("unsigned char"),
402 char_type_node),
403 Empty);
404 gnat_pushdecl (build_decl (TYPE_DECL, get_identifier ("long integer"),
405 long_integer_type_node),
406 Empty);
407 gnat_pushdecl (build_decl (TYPE_DECL, get_identifier ("void"),
408 void_type_node),
409 Empty);
410
411 ptr_void_type_node = build_pointer_type (void_type_node);
412
413 gnat_install_builtins ();
414 }
415
416 /* Define a builtin function. This is temporary and is just being done
417 to initialize implicit_built_in_decls for the middle-end. We'll want
418 to do full builtin processing soon. */
419
420 static void
421 gnat_define_builtin (const char *name, tree type,
422 int function_code, const char *library_name, bool const_p)
423 {
424 tree decl = build_decl (FUNCTION_DECL, get_identifier (name), type);
425
426 DECL_EXTERNAL (decl) = 1;
427 TREE_PUBLIC (decl) = 1;
428 if (library_name)
429 SET_DECL_ASSEMBLER_NAME (decl, get_identifier (library_name));
430 make_decl_rtl (decl, NULL);
431 gnat_pushdecl (decl, Empty);
432 DECL_BUILT_IN_CLASS (decl) = BUILT_IN_NORMAL;
433 DECL_FUNCTION_CODE (decl) = function_code;
434 TREE_READONLY (decl) = const_p;
435
436 implicit_built_in_decls[function_code] = decl;
437 }
438
439 /* Install the builtin functions the middle-end needs. */
440
441 static void
442 gnat_install_builtins ()
443 {
444 tree ftype;
445 tree tmp;
446
447 tmp = tree_cons (NULL_TREE, long_integer_type_node, void_list_node);
448 tmp = tree_cons (NULL_TREE, long_integer_type_node, tmp);
449 ftype = build_function_type (long_integer_type_node, tmp);
450 gnat_define_builtin ("__builtin_expect", ftype, BUILT_IN_EXPECT,
451 "__builtin_expect", true);
452
453 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
454 tmp = tree_cons (NULL_TREE, ptr_void_type_node, tmp);
455 tmp = tree_cons (NULL_TREE, ptr_void_type_node, tmp);
456 ftype = build_function_type (ptr_void_type_node, tmp);
457 gnat_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
458 "memcpy", false);
459
460 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
461 tmp = tree_cons (NULL_TREE, ptr_void_type_node, tmp);
462 tmp = tree_cons (NULL_TREE, ptr_void_type_node, tmp);
463 ftype = build_function_type (integer_type_node, tmp);
464 gnat_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
465 "memcmp", false);
466
467 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
468 ftype = build_function_type (integer_type_node, tmp);
469 gnat_define_builtin ("__builtin_clz", ftype, BUILT_IN_CLZ, "clz", true);
470
471 tmp = tree_cons (NULL_TREE, long_integer_type_node, void_list_node);
472 ftype = build_function_type (integer_type_node, tmp);
473 gnat_define_builtin ("__builtin_clzl", ftype, BUILT_IN_CLZL, "clzl", true);
474
475 tmp = tree_cons (NULL_TREE, long_long_integer_type_node, void_list_node);
476 ftype = build_function_type (integer_type_node, tmp);
477 gnat_define_builtin ("__builtin_clzll", ftype, BUILT_IN_CLZLL, "clzll",
478 true);
479
480 tmp = tree_cons (NULL_TREE, ptr_void_type_node, void_list_node);
481 tmp = tree_cons (NULL_TREE, ptr_void_type_node, tmp);
482 tmp = tree_cons (NULL_TREE, ptr_void_type_node, tmp);
483 ftype = build_function_type (void_type_node, tmp);
484 gnat_define_builtin ("__builtin_init_trampoline", ftype,
485 BUILT_IN_INIT_TRAMPOLINE, "init_trampoline", false);
486
487 tmp = tree_cons (NULL_TREE, ptr_void_type_node, void_list_node);
488 ftype = build_function_type (ptr_void_type_node, tmp);
489 gnat_define_builtin ("__builtin_adjust_trampoline", ftype,
490 BUILT_IN_ADJUST_TRAMPOLINE, "adjust_trampoline", true);
491
492 tmp = tree_cons (NULL_TREE, ptr_void_type_node, void_list_node);
493 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
494 ftype = build_function_type (ptr_void_type_node, tmp);
495 gnat_define_builtin ("__builtin_stack_alloc", ftype, BUILT_IN_STACK_ALLOC,
496 "stack_alloc", false);
497
498 /* The stack_save and stack_restore builtins aren't used directly. They
499 are inserted during gimplification to implement stack_alloc calls. */
500 ftype = build_function_type (ptr_void_type_node, void_list_node);
501 gnat_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
502 "stack_save", false);
503 tmp = tree_cons (NULL_TREE, ptr_void_type_node, void_list_node);
504 ftype = build_function_type (void_type_node, tmp);
505 gnat_define_builtin ("__builtin_stack_restore", ftype,
506 BUILT_IN_STACK_RESTORE, "stack_restore", false);
507 }
508
509 /* Create the predefined scalar types such as `integer_type_node' needed
510 in the gcc back-end and initialize the global binding level. */
511
512 void
513 init_gigi_decls (tree long_long_float_type, tree exception_type)
514 {
515 tree endlink, decl;
516 unsigned int i;
517
518 /* Set the types that GCC and Gigi use from the front end. We would like
519 to do this for char_type_node, but it needs to correspond to the C
520 char type. */
521 if (TREE_CODE (TREE_TYPE (long_long_float_type)) == INTEGER_TYPE)
522 {
523 /* In this case, the builtin floating point types are VAX float,
524 so make up a type for use. */
525 longest_float_type_node = make_node (REAL_TYPE);
526 TYPE_PRECISION (longest_float_type_node) = LONG_DOUBLE_TYPE_SIZE;
527 layout_type (longest_float_type_node);
528 create_type_decl (get_identifier ("longest float type"),
529 longest_float_type_node, NULL, 0, 1, Empty);
530 }
531 else
532 longest_float_type_node = TREE_TYPE (long_long_float_type);
533
534 except_type_node = TREE_TYPE (exception_type);
535
536 unsigned_type_node = gnat_type_for_size (INT_TYPE_SIZE, 1);
537 create_type_decl (get_identifier ("unsigned int"), unsigned_type_node,
538 NULL, 0, 1, Empty);
539
540 void_type_decl_node = create_type_decl (get_identifier ("void"),
541 void_type_node, NULL, 0, 1, Empty);
542
543 void_ftype = build_function_type (void_type_node, NULL_TREE);
544 ptr_void_ftype = build_pointer_type (void_ftype);
545
546 /* Now declare runtime functions. */
547 endlink = tree_cons (NULL_TREE, void_type_node, NULL_TREE);
548
549 /* malloc is a function declaration tree for a function to allocate
550 memory. */
551 malloc_decl = create_subprog_decl (get_identifier ("__gnat_malloc"),
552 NULL_TREE,
553 build_function_type (ptr_void_type_node,
554 tree_cons (NULL_TREE,
555 sizetype,
556 endlink)),
557 NULL_TREE, 0, 1, 1, 0, Empty);
558
559 /* free is a function declaration tree for a function to free memory. */
560 free_decl
561 = create_subprog_decl (get_identifier ("__gnat_free"), NULL_TREE,
562 build_function_type (void_type_node,
563 tree_cons (NULL_TREE,
564 ptr_void_type_node,
565 endlink)),
566 NULL_TREE, 0, 1, 1, 0, Empty);
567
568 /* Make the types and functions used for exception processing. */
569 jmpbuf_type
570 = build_array_type (gnat_type_for_mode (Pmode, 0),
571 build_index_type (build_int_2 (5, 0)));
572 create_type_decl (get_identifier ("JMPBUF_T"), jmpbuf_type, NULL,
573 0, 1, Empty);
574 jmpbuf_ptr_type = build_pointer_type (jmpbuf_type);
575
576 /* Functions to get and set the jumpbuf pointer for the current thread. */
577 get_jmpbuf_decl
578 = create_subprog_decl
579 (get_identifier ("system__soft_links__get_jmpbuf_address_soft"),
580 NULL_TREE, build_function_type (jmpbuf_ptr_type, NULL_TREE),
581 NULL_TREE, 0, 1, 1, 0, Empty);
582
583 set_jmpbuf_decl
584 = create_subprog_decl
585 (get_identifier ("system__soft_links__set_jmpbuf_address_soft"),
586 NULL_TREE,
587 build_function_type (void_type_node,
588 tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
589 NULL_TREE, 0, 1, 1, 0, Empty);
590
591 /* Function to get the current exception. */
592 get_excptr_decl
593 = create_subprog_decl
594 (get_identifier ("system__soft_links__get_gnat_exception"),
595 NULL_TREE,
596 build_function_type (build_pointer_type (except_type_node), NULL_TREE),
597 NULL_TREE, 0, 1, 1, 0, Empty);
598
599 /* Functions that raise exceptions. */
600 raise_nodefer_decl
601 = create_subprog_decl
602 (get_identifier ("__gnat_raise_nodefer_with_msg"), NULL_TREE,
603 build_function_type (void_type_node,
604 tree_cons (NULL_TREE,
605 build_pointer_type (except_type_node),
606 endlink)),
607 NULL_TREE, 0, 1, 1, 0, Empty);
608
609 /* Hooks to call when entering/leaving an exception handler. */
610 begin_handler_decl
611 = create_subprog_decl (get_identifier ("__gnat_begin_handler"), NULL_TREE,
612 build_function_type (void_type_node,
613 tree_cons (NULL_TREE,
614 ptr_void_type_node,
615 endlink)),
616 NULL_TREE, 0, 1, 1, 0, Empty);
617
618 end_handler_decl
619 = create_subprog_decl (get_identifier ("__gnat_end_handler"), NULL_TREE,
620 build_function_type (void_type_node,
621 tree_cons (NULL_TREE,
622 ptr_void_type_node,
623 endlink)),
624 NULL_TREE, 0, 1, 1, 0, Empty);
625
626 /* If in no exception handlers mode, all raise statements are redirected to
627 __gnat_last_chance_handler. No need to redefine raise_nodefer_decl, since
628 this procedure will never be called in this mode. */
629 if (No_Exception_Handlers_Set ())
630 {
631 decl
632 = create_subprog_decl
633 (get_identifier ("__gnat_last_chance_handler"), NULL_TREE,
634 build_function_type (void_type_node,
635 tree_cons (NULL_TREE,
636 build_pointer_type (char_type_node),
637 tree_cons (NULL_TREE,
638 integer_type_node,
639 endlink))),
640 NULL_TREE, 0, 1, 1, 0, Empty);
641
642 for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
643 gnat_raise_decls[i] = decl;
644 }
645 else
646 /* Otherwise, make one decl for each exception reason. */
647 for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
648 {
649 char name[17];
650
651 sprintf (name, "__gnat_rcheck_%.2d", i);
652 gnat_raise_decls[i]
653 = create_subprog_decl
654 (get_identifier (name), NULL_TREE,
655 build_function_type (void_type_node,
656 tree_cons (NULL_TREE,
657 build_pointer_type
658 (char_type_node),
659 tree_cons (NULL_TREE,
660 integer_type_node,
661 endlink))),
662 NULL_TREE, 0, 1, 1, 0, Empty);
663 }
664
665 /* Indicate that these never return. */
666 TREE_THIS_VOLATILE (raise_nodefer_decl) = 1;
667 TREE_SIDE_EFFECTS (raise_nodefer_decl) = 1;
668 TREE_TYPE (raise_nodefer_decl)
669 = build_qualified_type (TREE_TYPE (raise_nodefer_decl),
670 TYPE_QUAL_VOLATILE);
671
672 for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
673 {
674 TREE_THIS_VOLATILE (gnat_raise_decls[i]) = 1;
675 TREE_SIDE_EFFECTS (gnat_raise_decls[i]) = 1;
676 TREE_TYPE (gnat_raise_decls[i])
677 = build_qualified_type (TREE_TYPE (gnat_raise_decls[i]),
678 TYPE_QUAL_VOLATILE);
679 }
680
681 /* setjmp returns an integer and has one operand, which is a pointer to
682 a jmpbuf. */
683 setjmp_decl
684 = create_subprog_decl
685 (get_identifier ("__builtin_setjmp"), NULL_TREE,
686 build_function_type (integer_type_node,
687 tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
688 NULL_TREE, 0, 1, 1, 0, Empty);
689
690 DECL_BUILT_IN_CLASS (setjmp_decl) = BUILT_IN_NORMAL;
691 DECL_FUNCTION_CODE (setjmp_decl) = BUILT_IN_SETJMP;
692
693 /* update_setjmp_buf updates a setjmp buffer from the current stack pointer
694 address. */
695 update_setjmp_buf_decl
696 = create_subprog_decl
697 (get_identifier ("__builtin_update_setjmp_buf"), NULL_TREE,
698 build_function_type (void_type_node,
699 tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
700 NULL_TREE, 0, 1, 1, 0, Empty);
701
702 DECL_BUILT_IN_CLASS (update_setjmp_buf_decl) = BUILT_IN_NORMAL;
703 DECL_FUNCTION_CODE (update_setjmp_buf_decl) = BUILT_IN_UPDATE_SETJMP_BUF;
704
705 main_identifier_node = get_identifier ("main");
706 }
707 \f
708 /* Given a record type (RECORD_TYPE) and a chain of FIELD_DECL nodes
709 (FIELDLIST), finish constructing the record or union type. If HAS_REP is
710 nonzero, this record has a rep clause; don't call layout_type but merely set
711 the size and alignment ourselves. If DEFER_DEBUG is nonzero, do not call
712 the debugging routines on this type; it will be done later. */
713
714 void
715 finish_record_type (tree record_type, tree fieldlist, int has_rep,
716 int defer_debug)
717 {
718 enum tree_code code = TREE_CODE (record_type);
719 tree ada_size = bitsize_zero_node;
720 tree size = bitsize_zero_node;
721 tree size_unit = size_zero_node;
722 int var_size = 0;
723 tree field;
724
725 TYPE_FIELDS (record_type) = fieldlist;
726 TYPE_STUB_DECL (record_type)
727 = build_decl (TYPE_DECL, NULL_TREE, record_type);
728
729 /* We don't need both the typedef name and the record name output in
730 the debugging information, since they are the same. */
731 DECL_ARTIFICIAL (TYPE_STUB_DECL (record_type)) = 1;
732
733 /* Globally initialize the record first. If this is a rep'ed record,
734 that just means some initializations; otherwise, layout the record. */
735
736 if (has_rep)
737 {
738 TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type));
739 TYPE_MODE (record_type) = BLKmode;
740 if (TYPE_SIZE (record_type) == 0)
741 {
742 TYPE_SIZE (record_type) = bitsize_zero_node;
743 TYPE_SIZE_UNIT (record_type) = size_zero_node;
744 }
745 /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
746 out just like a UNION_TYPE, since the size will be fixed. */
747 else if (code == QUAL_UNION_TYPE)
748 code = UNION_TYPE;
749 }
750 else
751 {
752 /* Ensure there isn't a size already set. There can be in an error
753 case where there is a rep clause but all fields have errors and
754 no longer have a position. */
755 TYPE_SIZE (record_type) = 0;
756 layout_type (record_type);
757 }
758
759 /* At this point, the position and size of each field is known. It was
760 either set before entry by a rep clause, or by laying out the type above.
761
762 We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
763 to compute the Ada size; the GCC size and alignment (for rep'ed records
764 that are not padding types); and the mode (for rep'ed records). We also
765 clear the DECL_BIT_FIELD indication for the cases we know have not been
766 handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */
767
768 if (code == QUAL_UNION_TYPE)
769 fieldlist = nreverse (fieldlist);
770
771 for (field = fieldlist; field; field = TREE_CHAIN (field))
772 {
773 tree pos = bit_position (field);
774
775 tree type = TREE_TYPE (field);
776 tree this_size = DECL_SIZE (field);
777 tree this_size_unit = DECL_SIZE_UNIT (field);
778 tree this_ada_size = DECL_SIZE (field);
779
780 /* We need to make an XVE/XVU record if any field has variable size,
781 whether or not the record does. For example, if we have an union,
782 it may be that all fields, rounded up to the alignment, have the
783 same size, in which case we'll use that size. But the debug
784 output routines (except Dwarf2) won't be able to output the fields,
785 so we need to make the special record. */
786 if (TREE_CODE (this_size) != INTEGER_CST)
787 var_size = 1;
788
789 if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
790 || TREE_CODE (type) == QUAL_UNION_TYPE)
791 && ! TYPE_IS_FAT_POINTER_P (type)
792 && ! TYPE_CONTAINS_TEMPLATE_P (type)
793 && TYPE_ADA_SIZE (type) != 0)
794 this_ada_size = TYPE_ADA_SIZE (type);
795
796 /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */
797 if (DECL_BIT_FIELD (field) && !STRICT_ALIGNMENT
798 && value_factor_p (pos, BITS_PER_UNIT)
799 && operand_equal_p (this_size, TYPE_SIZE (type), 0))
800 DECL_BIT_FIELD (field) = 0;
801
802 /* If we still have DECL_BIT_FIELD set at this point, we know the field
803 is technically not addressable. Except that it can actually be
804 addressed if the field is BLKmode and happens to be properly
805 aligned. */
806 DECL_NONADDRESSABLE_P (field)
807 |= DECL_BIT_FIELD (field) && DECL_MODE (field) != BLKmode;
808
809 if (has_rep && ! DECL_BIT_FIELD (field))
810 TYPE_ALIGN (record_type)
811 = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field));
812
813 switch (code)
814 {
815 case UNION_TYPE:
816 ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
817 size = size_binop (MAX_EXPR, size, this_size);
818 size_unit = size_binop (MAX_EXPR, size_unit, this_size_unit);
819 break;
820
821 case QUAL_UNION_TYPE:
822 ada_size
823 = fold (build (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
824 this_ada_size, ada_size));
825 size = fold (build (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
826 this_size, size));
827 size_unit = fold (build (COND_EXPR, sizetype, DECL_QUALIFIER (field),
828 this_size_unit, size_unit));
829 break;
830
831 case RECORD_TYPE:
832 /* Since we know here that all fields are sorted in order of
833 increasing bit position, the size of the record is one
834 higher than the ending bit of the last field processed
835 unless we have a rep clause, since in that case we might
836 have a field outside a QUAL_UNION_TYPE that has a higher ending
837 position. So use a MAX in that case. Also, if this field is a
838 QUAL_UNION_TYPE, we need to take into account the previous size in
839 the case of empty variants. */
840 ada_size
841 = merge_sizes (ada_size, pos, this_ada_size,
842 TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
843 size = merge_sizes (size, pos, this_size,
844 TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
845 size_unit
846 = merge_sizes (size_unit, byte_position (field), this_size_unit,
847 TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
848 break;
849
850 default:
851 abort ();
852 }
853 }
854
855 if (code == QUAL_UNION_TYPE)
856 nreverse (fieldlist);
857
858 /* If this is a padding record, we never want to make the size smaller than
859 what was specified in it, if any. */
860 if (TREE_CODE (record_type) == RECORD_TYPE
861 && TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type) != 0)
862 {
863 size = TYPE_SIZE (record_type);
864 size_unit = TYPE_SIZE_UNIT (record_type);
865 }
866
867 /* Now set any of the values we've just computed that apply. */
868 if (! TYPE_IS_FAT_POINTER_P (record_type)
869 && ! TYPE_CONTAINS_TEMPLATE_P (record_type))
870 SET_TYPE_ADA_SIZE (record_type, ada_size);
871
872 if (has_rep)
873 {
874 if (! (TREE_CODE (record_type) == RECORD_TYPE
875 && TYPE_IS_PADDING_P (record_type)
876 && CONTAINS_PLACEHOLDER_P (size)))
877 {
878 TYPE_SIZE (record_type) = round_up (size, TYPE_ALIGN (record_type));
879 TYPE_SIZE_UNIT (record_type)
880 = round_up (size_unit,
881 TYPE_ALIGN (record_type) / BITS_PER_UNIT);
882 }
883
884 compute_record_mode (record_type);
885 }
886
887 if (! defer_debug)
888 {
889 /* If this record is of variable size, rename it so that the
890 debugger knows it is and make a new, parallel, record
891 that tells the debugger how the record is laid out. See
892 exp_dbug.ads. But don't do this for records that are padding
893 since they confuse GDB. */
894 if (var_size
895 && ! (TREE_CODE (record_type) == RECORD_TYPE
896 && TYPE_IS_PADDING_P (record_type)))
897 {
898 tree new_record_type
899 = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
900 ? UNION_TYPE : TREE_CODE (record_type));
901 tree orig_name = TYPE_NAME (record_type);
902 tree orig_id
903 = (TREE_CODE (orig_name) == TYPE_DECL ? DECL_NAME (orig_name)
904 : orig_name);
905 tree new_id
906 = concat_id_with_name (orig_id,
907 TREE_CODE (record_type) == QUAL_UNION_TYPE
908 ? "XVU" : "XVE");
909 tree last_pos = bitsize_zero_node;
910 tree old_field;
911 tree prev_old_field = 0;
912
913 TYPE_NAME (new_record_type) = new_id;
914 TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT;
915 TYPE_STUB_DECL (new_record_type)
916 = build_decl (TYPE_DECL, NULL_TREE, new_record_type);
917 DECL_ARTIFICIAL (TYPE_STUB_DECL (new_record_type)) = 1;
918 DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
919 = DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
920 TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
921
922 /* Now scan all the fields, replacing each field with a new
923 field corresponding to the new encoding. */
924 for (old_field = TYPE_FIELDS (record_type); old_field != 0;
925 old_field = TREE_CHAIN (old_field))
926 {
927 tree field_type = TREE_TYPE (old_field);
928 tree field_name = DECL_NAME (old_field);
929 tree new_field;
930 tree curpos = bit_position (old_field);
931 int var = 0;
932 unsigned int align = 0;
933 tree pos;
934
935 /* See how the position was modified from the last position.
936
937 There are two basic cases we support: a value was added
938 to the last position or the last position was rounded to
939 a boundary and they something was added. Check for the
940 first case first. If not, see if there is any evidence
941 of rounding. If so, round the last position and try
942 again.
943
944 If this is a union, the position can be taken as zero. */
945
946 if (TREE_CODE (new_record_type) == UNION_TYPE)
947 pos = bitsize_zero_node, align = 0;
948 else
949 pos = compute_related_constant (curpos, last_pos);
950
951 if (pos == 0 && TREE_CODE (curpos) == MULT_EXPR
952 && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST)
953 {
954 align = TREE_INT_CST_LOW (TREE_OPERAND (curpos, 1));
955 pos = compute_related_constant (curpos,
956 round_up (last_pos, align));
957 }
958 else if (pos == 0 && TREE_CODE (curpos) == PLUS_EXPR
959 && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST
960 && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
961 && host_integerp (TREE_OPERAND
962 (TREE_OPERAND (curpos, 0), 1),
963 1))
964 {
965 align
966 = tree_low_cst
967 (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1);
968 pos = compute_related_constant (curpos,
969 round_up (last_pos, align));
970 }
971 else if (potential_alignment_gap (prev_old_field, old_field,
972 pos))
973 {
974 align = TYPE_ALIGN (field_type);
975 pos = compute_related_constant (curpos,
976 round_up (last_pos, align));
977 }
978
979 /* If we can't compute a position, set it to zero.
980
981 ??? We really should abort here, but it's too much work
982 to get this correct for all cases. */
983
984 if (pos == 0)
985 pos = bitsize_zero_node;
986
987 /* See if this type is variable-size and make a new type
988 and indicate the indirection if so. */
989 if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
990 {
991 field_type = build_pointer_type (field_type);
992 var = 1;
993 }
994
995 /* Make a new field name, if necessary. */
996 if (var || align != 0)
997 {
998 char suffix[6];
999
1000 if (align != 0)
1001 sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
1002 align / BITS_PER_UNIT);
1003 else
1004 strcpy (suffix, "XVL");
1005
1006 field_name = concat_id_with_name (field_name, suffix);
1007 }
1008
1009 new_field = create_field_decl (field_name, field_type,
1010 new_record_type, 0,
1011 DECL_SIZE (old_field), pos, 0);
1012 TREE_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
1013 TYPE_FIELDS (new_record_type) = new_field;
1014
1015 /* If old_field is a QUAL_UNION_TYPE, take its size as being
1016 zero. The only time it's not the last field of the record
1017 is when there are other components at fixed positions after
1018 it (meaning there was a rep clause for every field) and we
1019 want to be able to encode them. */
1020 last_pos = size_binop (PLUS_EXPR, bit_position (old_field),
1021 (TREE_CODE (TREE_TYPE (old_field))
1022 == QUAL_UNION_TYPE)
1023 ? bitsize_zero_node
1024 : DECL_SIZE (old_field));
1025 prev_old_field = old_field;
1026 }
1027
1028 TYPE_FIELDS (new_record_type)
1029 = nreverse (TYPE_FIELDS (new_record_type));
1030
1031 rest_of_type_compilation (new_record_type, global_bindings_p ());
1032 }
1033
1034 rest_of_type_compilation (record_type, global_bindings_p ());
1035 }
1036 }
1037
1038 /* Utility function of above to merge LAST_SIZE, the previous size of a record
1039 with FIRST_BIT and SIZE that describe a field. SPECIAL is nonzero
1040 if this represents a QUAL_UNION_TYPE in which case we must look for
1041 COND_EXPRs and replace a value of zero with the old size. If HAS_REP
1042 is nonzero, we must take the MAX of the end position of this field
1043 with LAST_SIZE. In all other cases, we use FIRST_BIT plus SIZE.
1044
1045 We return an expression for the size. */
1046
1047 static tree
1048 merge_sizes (tree last_size, tree first_bit, tree size, bool special,
1049 bool has_rep)
1050 {
1051 tree type = TREE_TYPE (last_size);
1052 tree new;
1053
1054 if (! special || TREE_CODE (size) != COND_EXPR)
1055 {
1056 new = size_binop (PLUS_EXPR, first_bit, size);
1057 if (has_rep)
1058 new = size_binop (MAX_EXPR, last_size, new);
1059 }
1060
1061 else
1062 new = fold (build (COND_EXPR, type, TREE_OPERAND (size, 0),
1063 integer_zerop (TREE_OPERAND (size, 1))
1064 ? last_size : merge_sizes (last_size, first_bit,
1065 TREE_OPERAND (size, 1),
1066 1, has_rep),
1067 integer_zerop (TREE_OPERAND (size, 2))
1068 ? last_size : merge_sizes (last_size, first_bit,
1069 TREE_OPERAND (size, 2),
1070 1, has_rep)));
1071
1072 /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
1073 when fed through substitute_in_expr) into thinking that a constant
1074 size is not constant. */
1075 while (TREE_CODE (new) == NON_LVALUE_EXPR)
1076 new = TREE_OPERAND (new, 0);
1077
1078 return new;
1079 }
1080
1081 /* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
1082 related by the addition of a constant. Return that constant if so. */
1083
1084 static tree
1085 compute_related_constant (tree op0, tree op1)
1086 {
1087 tree op0_var, op1_var;
1088 tree op0_con = split_plus (op0, &op0_var);
1089 tree op1_con = split_plus (op1, &op1_var);
1090 tree result = size_binop (MINUS_EXPR, op0_con, op1_con);
1091
1092 if (operand_equal_p (op0_var, op1_var, 0))
1093 return result;
1094 else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0))
1095 return result;
1096 else
1097 return 0;
1098 }
1099
1100 /* Utility function of above to split a tree OP which may be a sum, into a
1101 constant part, which is returned, and a variable part, which is stored
1102 in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of
1103 bitsizetype. */
1104
1105 static tree
1106 split_plus (tree in, tree *pvar)
1107 {
1108 /* Strip NOPS in order to ease the tree traversal and maximize the
1109 potential for constant or plus/minus discovery. We need to be careful
1110 to always return and set *pvar to bitsizetype trees, but it's worth
1111 the effort. */
1112 STRIP_NOPS (in);
1113
1114 *pvar = convert (bitsizetype, in);
1115
1116 if (TREE_CODE (in) == INTEGER_CST)
1117 {
1118 *pvar = bitsize_zero_node;
1119 return convert (bitsizetype, in);
1120 }
1121 else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
1122 {
1123 tree lhs_var, rhs_var;
1124 tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
1125 tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);
1126
1127 if (lhs_var == TREE_OPERAND (in, 0)
1128 && rhs_var == TREE_OPERAND (in, 1))
1129 return bitsize_zero_node;
1130
1131 *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
1132 return size_binop (TREE_CODE (in), lhs_con, rhs_con);
1133 }
1134 else
1135 return bitsize_zero_node;
1136 }
1137 \f
1138 /* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the
1139 subprogram. If it is void_type_node, then we are dealing with a procedure,
1140 otherwise we are dealing with a function. PARAM_DECL_LIST is a list of
1141 PARM_DECL nodes that are the subprogram arguments. CICO_LIST is the
1142 copy-in/copy-out list to be stored into TYPE_CICO_LIST.
1143 RETURNS_UNCONSTRAINED is nonzero if the function returns an unconstrained
1144 object. RETURNS_BY_REF is nonzero if the function returns by reference.
1145 RETURNS_WITH_DSP is nonzero if the function is to return with a
1146 depressed stack pointer. */
1147 tree
1148 create_subprog_type (tree return_type, tree param_decl_list, tree cico_list,
1149 int returns_unconstrained, int returns_by_ref,
1150 int returns_with_dsp)
1151 {
1152 /* A chain of TREE_LIST nodes whose TREE_VALUEs are the data type nodes of
1153 the subprogram formal parameters. This list is generated by traversing the
1154 input list of PARM_DECL nodes. */
1155 tree param_type_list = NULL;
1156 tree param_decl;
1157 tree type;
1158
1159 for (param_decl = param_decl_list; param_decl;
1160 param_decl = TREE_CHAIN (param_decl))
1161 param_type_list = tree_cons (NULL_TREE, TREE_TYPE (param_decl),
1162 param_type_list);
1163
1164 /* The list of the function parameter types has to be terminated by the void
1165 type to signal to the back-end that we are not dealing with a variable
1166 parameter subprogram, but that the subprogram has a fixed number of
1167 parameters. */
1168 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
1169
1170 /* The list of argument types has been created in reverse
1171 so nreverse it. */
1172 param_type_list = nreverse (param_type_list);
1173
1174 type = build_function_type (return_type, param_type_list);
1175
1176 /* TYPE may have been shared since GCC hashes types. If it has a CICO_LIST
1177 or the new type should, make a copy of TYPE. Likewise for
1178 RETURNS_UNCONSTRAINED and RETURNS_BY_REF. */
1179 if (TYPE_CI_CO_LIST (type) != 0 || cico_list != 0
1180 || TYPE_RETURNS_UNCONSTRAINED_P (type) != returns_unconstrained
1181 || TYPE_RETURNS_BY_REF_P (type) != returns_by_ref)
1182 type = copy_type (type);
1183
1184 SET_TYPE_CI_CO_LIST (type, cico_list);
1185 TYPE_RETURNS_UNCONSTRAINED_P (type) = returns_unconstrained;
1186 TYPE_RETURNS_STACK_DEPRESSED (type) = returns_with_dsp;
1187 TYPE_RETURNS_BY_REF_P (type) = returns_by_ref;
1188 return type;
1189 }
1190 \f
1191 /* Return a copy of TYPE but safe to modify in any way. */
1192
1193 tree
1194 copy_type (tree type)
1195 {
1196 tree new = copy_node (type);
1197
1198 /* copy_node clears this field instead of copying it, because it is
1199 aliased with TREE_CHAIN. */
1200 TYPE_STUB_DECL (new) = TYPE_STUB_DECL (type);
1201
1202 TYPE_POINTER_TO (new) = 0;
1203 TYPE_REFERENCE_TO (new) = 0;
1204 TYPE_MAIN_VARIANT (new) = new;
1205 TYPE_NEXT_VARIANT (new) = 0;
1206
1207 return new;
1208 }
1209 \f
1210 /* Return an INTEGER_TYPE of SIZETYPE with range MIN to MAX and whose
1211 TYPE_INDEX_TYPE is INDEX. */
1212
1213 tree
1214 create_index_type (tree min, tree max, tree index)
1215 {
1216 /* First build a type for the desired range. */
1217 tree type = build_index_2_type (min, max);
1218
1219 /* If this type has the TYPE_INDEX_TYPE we want, return it. Otherwise, if it
1220 doesn't have TYPE_INDEX_TYPE set, set it to INDEX. If TYPE_INDEX_TYPE
1221 is set, but not to INDEX, make a copy of this type with the requested
1222 index type. Note that we have no way of sharing these types, but that's
1223 only a small hole. */
1224 if (TYPE_INDEX_TYPE (type) == index)
1225 return type;
1226 else if (TYPE_INDEX_TYPE (type) != 0)
1227 type = copy_type (type);
1228
1229 SET_TYPE_INDEX_TYPE (type, index);
1230 create_type_decl (NULL_TREE, type, NULL, 1, 0, Empty);
1231 return type;
1232 }
1233 \f
1234 /* Return a TYPE_DECL node. TYPE_NAME gives the name of the type (a character
1235 string) and TYPE is a ..._TYPE node giving its data type.
1236 ARTIFICIAL_P is nonzero if this is a declaration that was generated
1237 by the compiler. DEBUG_INFO_P is nonzero if we need to write debugging
1238 information about this type. GNAT_NODE is used for the position of
1239 the decl. */
1240
1241 tree
1242 create_type_decl (tree type_name, tree type, struct attrib *attr_list,
1243 int artificial_p, int debug_info_p, Node_Id gnat_node)
1244 {
1245 tree type_decl = build_decl (TYPE_DECL, type_name, type);
1246 enum tree_code code = TREE_CODE (type);
1247
1248 DECL_ARTIFICIAL (type_decl) = artificial_p;
1249
1250 process_attributes (type_decl, attr_list);
1251
1252 /* Pass type declaration information to the debugger unless this is an
1253 UNCONSTRAINED_ARRAY_TYPE, which the debugger does not support,
1254 and ENUMERAL_TYPE or RECORD_TYPE which is handled separately,
1255 a dummy type, which will be completed later, or a type for which
1256 debugging information was not requested. */
1257 if (code == UNCONSTRAINED_ARRAY_TYPE || TYPE_IS_DUMMY_P (type)
1258 || ! debug_info_p)
1259 DECL_IGNORED_P (type_decl) = 1;
1260 else if (code != ENUMERAL_TYPE && code != RECORD_TYPE
1261 && ! ((code == POINTER_TYPE || code == REFERENCE_TYPE)
1262 && TYPE_IS_DUMMY_P (TREE_TYPE (type))))
1263 rest_of_decl_compilation (type_decl, NULL, global_bindings_p (), 0);
1264
1265 if (!TYPE_IS_DUMMY_P (type))
1266 gnat_pushdecl (type_decl, gnat_node);
1267
1268 return type_decl;
1269 }
1270
1271 /* Returns a GCC VAR_DECL node. VAR_NAME gives the name of the variable.
1272 ASM_NAME is its assembler name (if provided). TYPE is its data type
1273 (a GCC ..._TYPE node). VAR_INIT is the GCC tree for an optional initial
1274 expression; NULL_TREE if none.
1275
1276 CONST_FLAG is nonzero if this variable is constant.
1277
1278 PUBLIC_FLAG is nonzero if this definition is to be made visible outside of
1279 the current compilation unit. This flag should be set when processing the
1280 variable definitions in a package specification. EXTERN_FLAG is nonzero
1281 when processing an external variable declaration (as opposed to a
1282 definition: no storage is to be allocated for the variable here).
1283
1284 STATIC_FLAG is only relevant when not at top level. In that case
1285 it indicates whether to always allocate storage to the variable.
1286
1287 GNAT_NODE is used for the position of the decl. */
1288
1289 tree
1290 create_var_decl (tree var_name, tree asm_name, tree type, tree var_init,
1291 int const_flag, int public_flag, int extern_flag,
1292 int static_flag, struct attrib *attr_list, Node_Id gnat_node)
1293 {
1294 int init_const
1295 = (var_init == 0
1296 ? 0
1297 : (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (TREE_TYPE (var_init))
1298 && (global_bindings_p () || static_flag
1299 ? 0 != initializer_constant_valid_p (var_init,
1300 TREE_TYPE (var_init))
1301 : TREE_CONSTANT (var_init))));
1302 tree var_decl
1303 = build_decl ((const_flag && init_const
1304 /* Only make a CONST_DECL for sufficiently-small objects.
1305 We consider complex double "sufficiently-small" */
1306 && TYPE_SIZE (type) != 0
1307 && host_integerp (TYPE_SIZE_UNIT (type), 1)
1308 && 0 >= compare_tree_int (TYPE_SIZE_UNIT (type),
1309 GET_MODE_SIZE (DCmode)))
1310 ? CONST_DECL : VAR_DECL, var_name, type);
1311
1312 /* If this is external, throw away any initializations unless this is a
1313 CONST_DECL (meaning we have a constant); they will be done elsewhere.
1314 If we are defining a global here, leave a constant initialization and
1315 save any variable elaborations for the elaboration routine. If we are
1316 just annotating types, throw away the initialization if it isn't a
1317 constant. */
1318 if ((extern_flag && TREE_CODE (var_decl) != CONST_DECL)
1319 || (type_annotate_only && var_init != 0 && ! TREE_CONSTANT (var_init)))
1320 var_init = 0;
1321
1322 DECL_INITIAL (var_decl) = var_init;
1323 TREE_READONLY (var_decl) = const_flag;
1324 DECL_EXTERNAL (var_decl) = extern_flag;
1325 TREE_PUBLIC (var_decl) = public_flag || extern_flag;
1326 TREE_CONSTANT (var_decl) = TREE_CODE (var_decl) == CONST_DECL;
1327 TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl)
1328 = TYPE_VOLATILE (type);
1329
1330 /* At the global binding level we need to allocate static storage for the
1331 variable if and only if its not external. If we are not at the top level
1332 we allocate automatic storage unless requested not to. */
1333 TREE_STATIC (var_decl) = global_bindings_p () ? !extern_flag : static_flag;
1334
1335 if (asm_name != 0)
1336 SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
1337
1338 process_attributes (var_decl, attr_list);
1339
1340 /* Add this decl to the current binding level. */
1341 gnat_pushdecl (var_decl, gnat_node);
1342
1343 if (TREE_SIDE_EFFECTS (var_decl))
1344 TREE_ADDRESSABLE (var_decl) = 1;
1345
1346 if (TREE_CODE (var_decl) != CONST_DECL)
1347 rest_of_decl_compilation (var_decl, 0, global_bindings_p (), 0);
1348
1349 return var_decl;
1350 }
1351 \f
1352 /* Returns a FIELD_DECL node. FIELD_NAME the field name, FIELD_TYPE is its
1353 type, and RECORD_TYPE is the type of the parent. PACKED is nonzero if
1354 this field is in a record type with a "pragma pack". If SIZE is nonzero
1355 it is the specified size for this field. If POS is nonzero, it is the bit
1356 position. If ADDRESSABLE is nonzero, it means we are allowed to take
1357 the address of this field for aliasing purposes. */
1358
1359 tree
1360 create_field_decl (tree field_name, tree field_type, tree record_type,
1361 int packed, tree size, tree pos, int addressable)
1362 {
1363 tree field_decl = build_decl (FIELD_DECL, field_name, field_type);
1364
1365 DECL_CONTEXT (field_decl) = record_type;
1366 TREE_READONLY (field_decl) = TYPE_READONLY (field_type);
1367
1368 /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
1369 byte boundary since GCC cannot handle less-aligned BLKmode bitfields. */
1370 if (packed && TYPE_MODE (field_type) == BLKmode)
1371 DECL_ALIGN (field_decl) = BITS_PER_UNIT;
1372
1373 /* If a size is specified, use it. Otherwise, if the record type is packed
1374 compute a size to use, which may differ from the object's natural size.
1375 We always set a size in this case to trigger the checks for bitfield
1376 creation below, which is typically required when no position has been
1377 specified. */
1378 if (size != 0)
1379 size = convert (bitsizetype, size);
1380 else if (packed == 1)
1381 {
1382 size = rm_size (field_type);
1383
1384 /* For a constant size larger than MAX_FIXED_MODE_SIZE, round up to
1385 byte. */
1386 if (TREE_CODE (size) == INTEGER_CST
1387 && compare_tree_int (size, MAX_FIXED_MODE_SIZE) > 0)
1388 size = round_up (size, BITS_PER_UNIT);
1389 }
1390
1391 /* Make a bitfield if a size is specified for two reasons: first if the size
1392 differs from the natural size. Second, if the alignment is insufficient.
1393 There are a number of ways the latter can be true.
1394
1395 We never make a bitfield if the type of the field has a nonconstant size,
1396 or if it is claimed to be addressable, because no such entity requiring
1397 bitfield operations should reach here.
1398
1399 We do *preventively* make a bitfield when there might be the need for it
1400 but we don't have all the necessary information to decide, as is the case
1401 of a field with no specified position in a packed record.
1402
1403 We also don't look at STRICT_ALIGNMENT here, and rely on later processing
1404 in layout_decl or finish_record_type to clear the bit_field indication if
1405 it is in fact not needed. */
1406 if (size != 0 && TREE_CODE (size) == INTEGER_CST
1407 && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST
1408 && ! addressable
1409 && (! operand_equal_p (TYPE_SIZE (field_type), size, 0)
1410 || (pos != 0
1411 && ! value_zerop (size_binop (TRUNC_MOD_EXPR, pos,
1412 bitsize_int (TYPE_ALIGN
1413 (field_type)))))
1414 || packed
1415 || (TYPE_ALIGN (record_type) != 0
1416 && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))))
1417 {
1418 DECL_BIT_FIELD (field_decl) = 1;
1419 DECL_SIZE (field_decl) = size;
1420 if (! packed && pos == 0)
1421 DECL_ALIGN (field_decl)
1422 = (TYPE_ALIGN (record_type) != 0
1423 ? MIN (TYPE_ALIGN (record_type), TYPE_ALIGN (field_type))
1424 : TYPE_ALIGN (field_type));
1425 }
1426
1427 DECL_PACKED (field_decl) = pos != 0 ? DECL_BIT_FIELD (field_decl) : packed;
1428 DECL_ALIGN (field_decl)
1429 = MAX (DECL_ALIGN (field_decl),
1430 DECL_BIT_FIELD (field_decl) ? 1
1431 : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT
1432 : TYPE_ALIGN (field_type));
1433
1434 if (pos != 0)
1435 {
1436 /* We need to pass in the alignment the DECL is known to have.
1437 This is the lowest-order bit set in POS, but no more than
1438 the alignment of the record, if one is specified. Note
1439 that an alignment of 0 is taken as infinite. */
1440 unsigned int known_align;
1441
1442 if (host_integerp (pos, 1))
1443 known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1);
1444 else
1445 known_align = BITS_PER_UNIT;
1446
1447 if (TYPE_ALIGN (record_type)
1448 && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
1449 known_align = TYPE_ALIGN (record_type);
1450
1451 layout_decl (field_decl, known_align);
1452 SET_DECL_OFFSET_ALIGN (field_decl,
1453 host_integerp (pos, 1) ? BIGGEST_ALIGNMENT
1454 : BITS_PER_UNIT);
1455 pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
1456 &DECL_FIELD_BIT_OFFSET (field_decl),
1457 DECL_OFFSET_ALIGN (field_decl), pos);
1458
1459 DECL_HAS_REP_P (field_decl) = 1;
1460 }
1461
1462 /* If the field type is passed by reference, we will have pointers to the
1463 field, so it is addressable. */
1464 if (must_pass_by_ref (field_type) || default_pass_by_ref (field_type))
1465 addressable = 1;
1466
1467 /* ??? For now, we say that any field of aggregate type is addressable
1468 because the front end may take 'Reference of it. */
1469 if (AGGREGATE_TYPE_P (field_type))
1470 addressable = 1;
1471
1472 /* Mark the decl as nonaddressable if it is indicated so semantically,
1473 meaning we won't ever attempt to take the address of the field.
1474
1475 It may also be "technically" nonaddressable, meaning that even if we
1476 attempt to take the field's address we will actually get the address of a
1477 copy. This is the case for true bitfields, but the DECL_BIT_FIELD value
1478 we have at this point is not accurate enough, so we don't account for
1479 this here and let finish_record_type decide. */
1480 DECL_NONADDRESSABLE_P (field_decl) = ! addressable;
1481
1482 return field_decl;
1483 }
1484
1485 /* Subroutine of previous function: return nonzero if EXP, ignoring any side
1486 effects, has the value of zero. */
1487
1488 static bool
1489 value_zerop (tree exp)
1490 {
1491 if (TREE_CODE (exp) == COMPOUND_EXPR)
1492 return value_zerop (TREE_OPERAND (exp, 1));
1493
1494 return integer_zerop (exp);
1495 }
1496 \f
1497 /* Returns a PARM_DECL node. PARAM_NAME is the name of the parameter,
1498 PARAM_TYPE is its type. READONLY is nonzero if the parameter is
1499 readonly (either an IN parameter or an address of a pass-by-ref
1500 parameter). */
1501
1502 tree
1503 create_param_decl (tree param_name, tree param_type, int readonly)
1504 {
1505 tree param_decl = build_decl (PARM_DECL, param_name, param_type);
1506
1507 /* Honor targetm.calls.promote_prototypes(), as not doing so can
1508 lead to various ABI violations. */
1509 if (targetm.calls.promote_prototypes (param_type)
1510 && (TREE_CODE (param_type) == INTEGER_TYPE
1511 || TREE_CODE (param_type) == ENUMERAL_TYPE)
1512 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
1513 {
1514 /* We have to be careful about biased types here. Make a subtype
1515 of integer_type_node with the proper biasing. */
1516 if (TREE_CODE (param_type) == INTEGER_TYPE
1517 && TYPE_BIASED_REPRESENTATION_P (param_type))
1518 {
1519 param_type
1520 = copy_type (build_range_type (integer_type_node,
1521 TYPE_MIN_VALUE (param_type),
1522 TYPE_MAX_VALUE (param_type)));
1523
1524 TYPE_BIASED_REPRESENTATION_P (param_type) = 1;
1525 }
1526 else
1527 param_type = integer_type_node;
1528 }
1529
1530 DECL_ARG_TYPE (param_decl) = param_type;
1531 DECL_ARG_TYPE_AS_WRITTEN (param_decl) = param_type;
1532 TREE_READONLY (param_decl) = readonly;
1533 return param_decl;
1534 }
1535 \f
1536 /* Given a DECL and ATTR_LIST, process the listed attributes. */
1537
1538 void
1539 process_attributes (tree decl, struct attrib *attr_list)
1540 {
1541 for (; attr_list; attr_list = attr_list->next)
1542 switch (attr_list->type)
1543 {
1544 case ATTR_MACHINE_ATTRIBUTE:
1545 decl_attributes (&decl, tree_cons (attr_list->name, attr_list->arg,
1546 NULL_TREE),
1547 ATTR_FLAG_TYPE_IN_PLACE);
1548 break;
1549
1550 case ATTR_LINK_ALIAS:
1551 TREE_STATIC (decl) = 1;
1552 assemble_alias (decl, attr_list->name);
1553 break;
1554
1555 case ATTR_WEAK_EXTERNAL:
1556 if (SUPPORTS_WEAK)
1557 declare_weak (decl);
1558 else
1559 post_error ("?weak declarations not supported on this target",
1560 attr_list->error_point);
1561 break;
1562
1563 case ATTR_LINK_SECTION:
1564 if (targetm.have_named_sections)
1565 {
1566 DECL_SECTION_NAME (decl)
1567 = build_string (IDENTIFIER_LENGTH (attr_list->name),
1568 IDENTIFIER_POINTER (attr_list->name));
1569 }
1570 else
1571 post_error ("?section attributes are not supported for this target",
1572 attr_list->error_point);
1573 break;
1574 }
1575 }
1576 \f
1577 /* Return true if VALUE is a known to be a multiple of FACTOR, which must be
1578 a power of 2. */
1579
1580 static bool
1581 value_factor_p (tree value, HOST_WIDE_INT factor)
1582 {
1583 if (host_integerp (value, 1))
1584 return tree_low_cst (value, 1) % factor == 0;
1585
1586 if (TREE_CODE (value) == MULT_EXPR)
1587 return (value_factor_p (TREE_OPERAND (value, 0), factor)
1588 || value_factor_p (TREE_OPERAND (value, 1), factor));
1589
1590 return 0;
1591 }
1592
1593 /* Given 2 consecutive field decls PREV_FIELD and CURR_FIELD, return true
1594 unless we can prove these 2 fields are laid out in such a way that no gap
1595 exist between the end of PREV_FIELD and the begining of CURR_FIELD. OFFSET
1596 is the distance in bits between the end of PREV_FIELD and the starting
1597 position of CURR_FIELD. It is ignored if null. */
1598
1599 static bool
1600 potential_alignment_gap (tree prev_field, tree curr_field, tree offset)
1601 {
1602 /* If this is the first field of the record, there cannot be any gap */
1603 if (!prev_field)
1604 return 0;
1605
1606 /* If the previous field is a union type, then return False: The only
1607 time when such a field is not the last field of the record is when
1608 there are other components at fixed positions after it (meaning there
1609 was a rep clause for every field), in which case we don't want the
1610 alignment constraint to override them. */
1611 if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE)
1612 return 0;
1613
1614 /* If the distance between the end of prev_field and the begining of
1615 curr_field is constant, then there is a gap if the value of this
1616 constant is not null. */
1617 if (offset && host_integerp (offset, 1))
1618 return (!integer_zerop (offset));
1619
1620 /* If the size and position of the previous field are constant,
1621 then check the sum of this size and position. There will be a gap
1622 iff it is not multiple of the current field alignment. */
1623 if (host_integerp (DECL_SIZE (prev_field), 1)
1624 && host_integerp (bit_position (prev_field), 1))
1625 return ((tree_low_cst (bit_position (prev_field), 1)
1626 + tree_low_cst (DECL_SIZE (prev_field), 1))
1627 % DECL_ALIGN (curr_field) != 0);
1628
1629 /* If both the position and size of the previous field are multiples
1630 of the current field alignment, there can not be any gap. */
1631 if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field))
1632 && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field)))
1633 return 0;
1634
1635 /* Fallback, return that there may be a potential gap */
1636 return 1;
1637 }
1638
1639 /* Returns a LABEL_DECL node for LABEL_NAME. */
1640
1641 tree
1642 create_label_decl (tree label_name)
1643 {
1644 tree label_decl = build_decl (LABEL_DECL, label_name, void_type_node);
1645
1646 DECL_CONTEXT (label_decl) = current_function_decl;
1647 DECL_MODE (label_decl) = VOIDmode;
1648 DECL_SOURCE_LOCATION (label_decl) = input_location;
1649
1650 return label_decl;
1651 }
1652 \f
1653 /* Returns a FUNCTION_DECL node. SUBPROG_NAME is the name of the subprogram,
1654 ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE
1655 node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of
1656 PARM_DECL nodes chained through the TREE_CHAIN field).
1657
1658 INLINE_FLAG, PUBLIC_FLAG, EXTERN_FLAG, and ATTR_LIST are used to set the
1659 appropriate fields in the FUNCTION_DECL. GNAT_NODE gives the location. */
1660
1661 tree
1662 create_subprog_decl (tree subprog_name, tree asm_name,
1663 tree subprog_type, tree param_decl_list, int inline_flag,
1664 int public_flag, int extern_flag,
1665 struct attrib *attr_list, Node_Id gnat_node)
1666 {
1667 tree return_type = TREE_TYPE (subprog_type);
1668 tree subprog_decl = build_decl (FUNCTION_DECL, subprog_name, subprog_type);
1669
1670 /* If this is a function nested inside an inlined external function, it
1671 means we aren't going to compile the outer function unless it is
1672 actually inlined, so do the same for us. */
1673 if (current_function_decl != 0 && DECL_INLINE (current_function_decl)
1674 && DECL_EXTERNAL (current_function_decl))
1675 extern_flag = 1;
1676
1677 DECL_EXTERNAL (subprog_decl) = extern_flag;
1678 TREE_PUBLIC (subprog_decl) = public_flag;
1679 TREE_STATIC (subprog_decl) = 1;
1680 TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type);
1681 TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type);
1682 TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type);
1683 DECL_ARGUMENTS (subprog_decl) = param_decl_list;
1684 DECL_RESULT (subprog_decl) = build_decl (RESULT_DECL, 0, return_type);
1685
1686 if (inline_flag)
1687 DECL_DECLARED_INLINE_P (subprog_decl) = 1;
1688
1689 if (asm_name != 0)
1690 SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name);
1691
1692 process_attributes (subprog_decl, attr_list);
1693
1694 /* Add this decl to the current binding level. */
1695 gnat_pushdecl (subprog_decl, gnat_node);
1696
1697 /* Output the assembler code and/or RTL for the declaration. */
1698 rest_of_decl_compilation (subprog_decl, 0, global_bindings_p (), 0);
1699
1700 return subprog_decl;
1701 }
1702 \f
1703 /* Set up the framework for generating code for SUBPROG_DECL, a subprogram
1704 body. This routine needs to be invoked before processing the declarations
1705 appearing in the subprogram. */
1706
1707 void
1708 begin_subprog_body (tree subprog_decl)
1709 {
1710 tree param_decl;
1711
1712 current_function_decl = subprog_decl;
1713 announce_function (subprog_decl);
1714
1715 /* Enter a new binding level and show that all the parameters belong to
1716 this function. */
1717 gnat_pushlevel ();
1718 for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl;
1719 param_decl = TREE_CHAIN (param_decl))
1720 DECL_CONTEXT (param_decl) = subprog_decl;
1721
1722 make_decl_rtl (subprog_decl, NULL);
1723
1724 /* We handle pending sizes via the elaboration of types, so we don't need to
1725 save them. This causes them to be marked as part of the outer function
1726 and then discarded. */
1727 get_pending_sizes ();
1728 }
1729
1730 /* Finish the definition of the current subprogram and compile it all the way
1731 to assembler language output. BODY is the tree corresponding to
1732 the subprogram. */
1733
1734 void
1735 end_subprog_body (tree body)
1736 {
1737 tree fndecl = current_function_decl;
1738
1739 /* Mark the BLOCK for this level as being for this function and pop the
1740 level. Since the vars in it are the parameters, clear them. */
1741 BLOCK_VARS (current_binding_level->block) = 0;
1742 BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
1743 DECL_INITIAL (fndecl) = current_binding_level->block;
1744 gnat_poplevel ();
1745
1746 /* Deal with inline. If declared inline or we should default to inline,
1747 set the flag in the decl. */
1748 DECL_INLINE (fndecl)
1749 = DECL_DECLARED_INLINE_P (fndecl) || flag_inline_trees == 2;
1750
1751 /* We handle pending sizes via the elaboration of types, so we don't
1752 need to save them. */
1753 get_pending_sizes ();
1754
1755 /* Mark the RESULT_DECL as being in this subprogram. */
1756 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
1757
1758 DECL_SAVED_TREE (fndecl) = body;
1759
1760 current_function_decl = DECL_CONTEXT (fndecl);
1761 cfun = NULL;
1762
1763 /* If we're only annotating types, don't actually compile this function. */
1764 if (type_annotate_only)
1765 return;
1766
1767 /* We do different things for nested and non-nested functions.
1768 ??? This should be in cgraph. */
1769 if (!DECL_CONTEXT (fndecl))
1770 {
1771 gnat_gimplify_function (fndecl);
1772 lower_nested_functions (fndecl);
1773 gnat_finalize (fndecl);
1774 }
1775 else
1776 /* Register this function with cgraph just far enough to get it
1777 added to our parent's nested function list. */
1778 (void) cgraph_node (fndecl);
1779 }
1780
1781 /* Convert FNDECL's code to GIMPLE and handle any nested functions. */
1782
1783 static void
1784 gnat_gimplify_function (tree fndecl)
1785 {
1786 struct cgraph_node *cgn;
1787
1788 dump_function (TDI_original, fndecl);
1789 gimplify_function_tree (fndecl);
1790 dump_function (TDI_generic, fndecl);
1791
1792 /* Convert all nested functions to GIMPLE now. We do things in this order
1793 so that items like VLA sizes are expanded properly in the context of the
1794 correct function. */
1795 cgn = cgraph_node (fndecl);
1796 for (cgn = cgn->nested; cgn; cgn = cgn->next_nested)
1797 gnat_gimplify_function (cgn->decl);
1798 }
1799
1800 /* Give FNDECL and all its nested functions to cgraph for compilation. */
1801
1802 static void
1803 gnat_finalize (tree fndecl)
1804 {
1805 struct cgraph_node *cgn;
1806
1807 /* Finalize all nested functions now. */
1808 cgn = cgraph_node (fndecl);
1809 for (cgn = cgn->nested; cgn ; cgn = cgn->next_nested)
1810 gnat_finalize (cgn->decl);
1811
1812 cgraph_finalize_function (fndecl, false);
1813 }
1814 \f
1815 /* Return a definition for a builtin function named NAME and whose data type
1816 is TYPE. TYPE should be a function type with argument types.
1817 FUNCTION_CODE tells later passes how to compile calls to this function.
1818 See tree.h for its possible values.
1819
1820 If LIBRARY_NAME is nonzero, use that for DECL_ASSEMBLER_NAME,
1821 the name to be called if we can't opencode the function. If
1822 ATTRS is nonzero, use that for the function attribute list. */
1823
1824 tree
1825 builtin_function (const char *name, tree type, int function_code,
1826 enum built_in_class class, const char *library_name,
1827 tree attrs)
1828 {
1829 tree decl = build_decl (FUNCTION_DECL, get_identifier (name), type);
1830
1831 DECL_EXTERNAL (decl) = 1;
1832 TREE_PUBLIC (decl) = 1;
1833 if (library_name)
1834 SET_DECL_ASSEMBLER_NAME (decl, get_identifier (library_name));
1835
1836 gnat_pushdecl (decl, Empty);
1837 DECL_BUILT_IN_CLASS (decl) = class;
1838 DECL_FUNCTION_CODE (decl) = function_code;
1839 if (attrs)
1840 decl_attributes (&decl, attrs, ATTR_FLAG_BUILT_IN);
1841 return decl;
1842 }
1843
1844 /* Return an integer type with the number of bits of precision given by
1845 PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise
1846 it is a signed type. */
1847
1848 tree
1849 gnat_type_for_size (unsigned precision, int unsignedp)
1850 {
1851 tree t;
1852 char type_name[20];
1853
1854 if (precision <= 2 * MAX_BITS_PER_WORD
1855 && signed_and_unsigned_types[precision][unsignedp] != 0)
1856 return signed_and_unsigned_types[precision][unsignedp];
1857
1858 if (unsignedp)
1859 t = make_unsigned_type (precision);
1860 else
1861 t = make_signed_type (precision);
1862
1863 if (precision <= 2 * MAX_BITS_PER_WORD)
1864 signed_and_unsigned_types[precision][unsignedp] = t;
1865
1866 if (TYPE_NAME (t) == 0)
1867 {
1868 sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision);
1869 TYPE_NAME (t) = get_identifier (type_name);
1870 }
1871
1872 return t;
1873 }
1874
1875 /* Likewise for floating-point types. */
1876
1877 static tree
1878 float_type_for_precision (int precision, enum machine_mode mode)
1879 {
1880 tree t;
1881 char type_name[20];
1882
1883 if (float_types[(int) mode] != 0)
1884 return float_types[(int) mode];
1885
1886 float_types[(int) mode] = t = make_node (REAL_TYPE);
1887 TYPE_PRECISION (t) = precision;
1888 layout_type (t);
1889
1890 if (TYPE_MODE (t) != mode)
1891 gigi_abort (414);
1892
1893 if (TYPE_NAME (t) == 0)
1894 {
1895 sprintf (type_name, "FLOAT_%d", precision);
1896 TYPE_NAME (t) = get_identifier (type_name);
1897 }
1898
1899 return t;
1900 }
1901
1902 /* Return a data type that has machine mode MODE. UNSIGNEDP selects
1903 an unsigned type; otherwise a signed type is returned. */
1904
1905 tree
1906 gnat_type_for_mode (enum machine_mode mode, int unsignedp)
1907 {
1908 if (mode == BLKmode)
1909 return NULL_TREE;
1910 else if (mode == VOIDmode)
1911 return void_type_node;
1912 else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
1913 return float_type_for_precision (GET_MODE_PRECISION (mode), mode);
1914 else
1915 return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp);
1916 }
1917
1918 /* Return the unsigned version of a TYPE_NODE, a scalar type. */
1919
1920 tree
1921 gnat_unsigned_type (tree type_node)
1922 {
1923 tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1);
1924
1925 if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
1926 {
1927 type = copy_node (type);
1928 TREE_TYPE (type) = type_node;
1929 }
1930 else if (TREE_TYPE (type_node) != 0
1931 && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
1932 && TYPE_MODULAR_P (TREE_TYPE (type_node)))
1933 {
1934 type = copy_node (type);
1935 TREE_TYPE (type) = TREE_TYPE (type_node);
1936 }
1937
1938 return type;
1939 }
1940
1941 /* Return the signed version of a TYPE_NODE, a scalar type. */
1942
1943 tree
1944 gnat_signed_type (tree type_node)
1945 {
1946 tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0);
1947
1948 if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
1949 {
1950 type = copy_node (type);
1951 TREE_TYPE (type) = type_node;
1952 }
1953 else if (TREE_TYPE (type_node) != 0
1954 && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
1955 && TYPE_MODULAR_P (TREE_TYPE (type_node)))
1956 {
1957 type = copy_node (type);
1958 TREE_TYPE (type) = TREE_TYPE (type_node);
1959 }
1960
1961 return type;
1962 }
1963
1964 /* Return a type the same as TYPE except unsigned or signed according to
1965 UNSIGNEDP. */
1966
1967 tree
1968 gnat_signed_or_unsigned_type (int unsignedp, tree type)
1969 {
1970 if (! INTEGRAL_TYPE_P (type) || TYPE_UNSIGNED (type) == unsignedp)
1971 return type;
1972 else
1973 return gnat_type_for_size (TYPE_PRECISION (type), unsignedp);
1974 }
1975 \f
1976 /* EXP is an expression for the size of an object. If this size contains
1977 discriminant references, replace them with the maximum (if MAX_P) or
1978 minimum (if ! MAX_P) possible value of the discriminant. */
1979
1980 tree
1981 max_size (tree exp, int max_p)
1982 {
1983 enum tree_code code = TREE_CODE (exp);
1984 tree type = TREE_TYPE (exp);
1985
1986 switch (TREE_CODE_CLASS (code))
1987 {
1988 case 'd':
1989 case 'c':
1990 return exp;
1991
1992 case 'x':
1993 if (code == TREE_LIST)
1994 return tree_cons (TREE_PURPOSE (exp),
1995 max_size (TREE_VALUE (exp), max_p),
1996 TREE_CHAIN (exp) != 0
1997 ? max_size (TREE_CHAIN (exp), max_p) : 0);
1998 break;
1999
2000 case 'r':
2001 /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
2002 modify. Otherwise, we treat it like a variable. */
2003 if (! CONTAINS_PLACEHOLDER_P (exp))
2004 return exp;
2005
2006 type = TREE_TYPE (TREE_OPERAND (exp, 1));
2007 return
2008 max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), 1);
2009
2010 case '<':
2011 return max_p ? size_one_node : size_zero_node;
2012
2013 case '1':
2014 case '2':
2015 case 'e':
2016 switch (TREE_CODE_LENGTH (code))
2017 {
2018 case 1:
2019 if (code == NON_LVALUE_EXPR)
2020 return max_size (TREE_OPERAND (exp, 0), max_p);
2021 else
2022 return
2023 fold (build1 (code, type,
2024 max_size (TREE_OPERAND (exp, 0),
2025 code == NEGATE_EXPR ? ! max_p : max_p)));
2026
2027 case 2:
2028 if (code == COMPOUND_EXPR)
2029 return max_size (TREE_OPERAND (exp, 1), max_p);
2030
2031 {
2032 tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
2033 tree rhs = max_size (TREE_OPERAND (exp, 1),
2034 code == MINUS_EXPR ? ! max_p : max_p);
2035
2036 /* Special-case wanting the maximum value of a MIN_EXPR.
2037 In that case, if one side overflows, return the other.
2038 sizetype is signed, but we know sizes are non-negative.
2039 Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
2040 overflowing or the maximum possible value and the RHS
2041 a variable. */
2042 if (max_p && code == MIN_EXPR && TREE_OVERFLOW (rhs))
2043 return lhs;
2044 else if (max_p && code == MIN_EXPR && TREE_OVERFLOW (lhs))
2045 return rhs;
2046 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
2047 && ((TREE_CONSTANT (lhs) && TREE_OVERFLOW (lhs))
2048 || operand_equal_p (lhs, TYPE_MAX_VALUE (type), 0))
2049 && ! TREE_CONSTANT (rhs))
2050 return lhs;
2051 else
2052 return fold (build (code, type, lhs, rhs));
2053 }
2054
2055 case 3:
2056 if (code == SAVE_EXPR)
2057 return exp;
2058 else if (code == COND_EXPR)
2059 return fold (build (max_p ? MAX_EXPR : MIN_EXPR, type,
2060 max_size (TREE_OPERAND (exp, 1), max_p),
2061 max_size (TREE_OPERAND (exp, 2), max_p)));
2062 else if (code == CALL_EXPR && TREE_OPERAND (exp, 1) != 0)
2063 return build (CALL_EXPR, type, TREE_OPERAND (exp, 0),
2064 max_size (TREE_OPERAND (exp, 1), max_p), NULL);
2065 }
2066 }
2067
2068 gigi_abort (408);
2069 }
2070 \f
2071 /* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
2072 EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
2073 Return a constructor for the template. */
2074
2075 tree
2076 build_template (tree template_type, tree array_type, tree expr)
2077 {
2078 tree template_elts = NULL_TREE;
2079 tree bound_list = NULL_TREE;
2080 tree field;
2081
2082 if (TREE_CODE (array_type) == RECORD_TYPE
2083 && (TYPE_IS_PADDING_P (array_type)
2084 || TYPE_LEFT_JUSTIFIED_MODULAR_P (array_type)))
2085 array_type = TREE_TYPE (TYPE_FIELDS (array_type));
2086
2087 if (TREE_CODE (array_type) == ARRAY_TYPE
2088 || (TREE_CODE (array_type) == INTEGER_TYPE
2089 && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
2090 bound_list = TYPE_ACTUAL_BOUNDS (array_type);
2091
2092 /* First make the list for a CONSTRUCTOR for the template. Go down the
2093 field list of the template instead of the type chain because this
2094 array might be an Ada array of arrays and we can't tell where the
2095 nested arrays stop being the underlying object. */
2096
2097 for (field = TYPE_FIELDS (template_type); field;
2098 (bound_list != 0
2099 ? (bound_list = TREE_CHAIN (bound_list))
2100 : (array_type = TREE_TYPE (array_type))),
2101 field = TREE_CHAIN (TREE_CHAIN (field)))
2102 {
2103 tree bounds, min, max;
2104
2105 /* If we have a bound list, get the bounds from there. Likewise
2106 for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with
2107 DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
2108 This will give us a maximum range. */
2109 if (bound_list != 0)
2110 bounds = TREE_VALUE (bound_list);
2111 else if (TREE_CODE (array_type) == ARRAY_TYPE)
2112 bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
2113 else if (expr != 0 && TREE_CODE (expr) == PARM_DECL
2114 && DECL_BY_COMPONENT_PTR_P (expr))
2115 bounds = TREE_TYPE (field);
2116 else
2117 gigi_abort (411);
2118
2119 min = convert (TREE_TYPE (TREE_CHAIN (field)), TYPE_MIN_VALUE (bounds));
2120 max = convert (TREE_TYPE (field), TYPE_MAX_VALUE (bounds));
2121
2122 /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
2123 substitute it from OBJECT. */
2124 min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
2125 max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);
2126
2127 template_elts = tree_cons (TREE_CHAIN (field), max,
2128 tree_cons (field, min, template_elts));
2129 }
2130
2131 return gnat_build_constructor (template_type, nreverse (template_elts));
2132 }
2133 \f
2134 /* Build a VMS descriptor from a Mechanism_Type, which must specify
2135 a descriptor type, and the GCC type of an object. Each FIELD_DECL
2136 in the type contains in its DECL_INITIAL the expression to use when
2137 a constructor is made for the type. GNAT_ENTITY is an entity used
2138 to print out an error message if the mechanism cannot be applied to
2139 an object of that type and also for the name. */
2140
2141 tree
2142 build_vms_descriptor (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
2143 {
2144 tree record_type = make_node (RECORD_TYPE);
2145 tree field_list = 0;
2146 int class;
2147 int dtype = 0;
2148 tree inner_type;
2149 int ndim;
2150 int i;
2151 tree *idx_arr;
2152 tree tem;
2153
2154 /* If TYPE is an unconstrained array, use the underlying array type. */
2155 if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
2156 type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
2157
2158 /* If this is an array, compute the number of dimensions in the array,
2159 get the index types, and point to the inner type. */
2160 if (TREE_CODE (type) != ARRAY_TYPE)
2161 ndim = 0;
2162 else
2163 for (ndim = 1, inner_type = type;
2164 TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
2165 && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
2166 ndim++, inner_type = TREE_TYPE (inner_type))
2167 ;
2168
2169 idx_arr = (tree *) alloca (ndim * sizeof (tree));
2170
2171 if (mech != By_Descriptor_NCA
2172 && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
2173 for (i = ndim - 1, inner_type = type;
2174 i >= 0;
2175 i--, inner_type = TREE_TYPE (inner_type))
2176 idx_arr[i] = TYPE_DOMAIN (inner_type);
2177 else
2178 for (i = 0, inner_type = type;
2179 i < ndim;
2180 i++, inner_type = TREE_TYPE (inner_type))
2181 idx_arr[i] = TYPE_DOMAIN (inner_type);
2182
2183 /* Now get the DTYPE value. */
2184 switch (TREE_CODE (type))
2185 {
2186 case INTEGER_TYPE:
2187 case ENUMERAL_TYPE:
2188 if (TYPE_VAX_FLOATING_POINT_P (type))
2189 switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
2190 {
2191 case 6:
2192 dtype = 10;
2193 break;
2194 case 9:
2195 dtype = 11;
2196 break;
2197 case 15:
2198 dtype = 27;
2199 break;
2200 }
2201 else
2202 switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
2203 {
2204 case 8:
2205 dtype = TYPE_UNSIGNED (type) ? 2 : 6;
2206 break;
2207 case 16:
2208 dtype = TYPE_UNSIGNED (type) ? 3 : 7;
2209 break;
2210 case 32:
2211 dtype = TYPE_UNSIGNED (type) ? 4 : 8;
2212 break;
2213 case 64:
2214 dtype = TYPE_UNSIGNED (type) ? 5 : 9;
2215 break;
2216 case 128:
2217 dtype = TYPE_UNSIGNED (type) ? 25 : 26;
2218 break;
2219 }
2220 break;
2221
2222 case REAL_TYPE:
2223 dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
2224 break;
2225
2226 case COMPLEX_TYPE:
2227 if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
2228 && TYPE_VAX_FLOATING_POINT_P (type))
2229 switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
2230 {
2231 case 6:
2232 dtype = 12;
2233 break;
2234 case 9:
2235 dtype = 13;
2236 break;
2237 case 15:
2238 dtype = 29;
2239 }
2240 else
2241 dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
2242 break;
2243
2244 case ARRAY_TYPE:
2245 dtype = 14;
2246 break;
2247
2248 default:
2249 break;
2250 }
2251
2252 /* Get the CLASS value. */
2253 switch (mech)
2254 {
2255 case By_Descriptor_A:
2256 class = 4;
2257 break;
2258 case By_Descriptor_NCA:
2259 class = 10;
2260 break;
2261 case By_Descriptor_SB:
2262 class = 15;
2263 break;
2264 default:
2265 class = 1;
2266 }
2267
2268 /* Make the type for a descriptor for VMS. The first four fields
2269 are the same for all types. */
2270
2271 field_list
2272 = chainon (field_list,
2273 make_descriptor_field
2274 ("LENGTH", gnat_type_for_size (16, 1), record_type,
2275 size_in_bytes (mech == By_Descriptor_A ? inner_type : type)));
2276
2277 field_list = chainon (field_list,
2278 make_descriptor_field ("DTYPE",
2279 gnat_type_for_size (8, 1),
2280 record_type, size_int (dtype)));
2281 field_list = chainon (field_list,
2282 make_descriptor_field ("CLASS",
2283 gnat_type_for_size (8, 1),
2284 record_type, size_int (class)));
2285
2286 field_list
2287 = chainon (field_list,
2288 make_descriptor_field
2289 ("POINTER",
2290 build_pointer_type_for_mode (type, SImode, false), record_type,
2291 build1 (ADDR_EXPR,
2292 build_pointer_type_for_mode (type, SImode, false),
2293 build (PLACEHOLDER_EXPR, type))));
2294
2295 switch (mech)
2296 {
2297 case By_Descriptor:
2298 case By_Descriptor_S:
2299 break;
2300
2301 case By_Descriptor_SB:
2302 field_list
2303 = chainon (field_list,
2304 make_descriptor_field
2305 ("SB_L1", gnat_type_for_size (32, 1), record_type,
2306 TREE_CODE (type) == ARRAY_TYPE
2307 ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
2308 field_list
2309 = chainon (field_list,
2310 make_descriptor_field
2311 ("SB_L2", gnat_type_for_size (32, 1), record_type,
2312 TREE_CODE (type) == ARRAY_TYPE
2313 ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
2314 break;
2315
2316 case By_Descriptor_A:
2317 case By_Descriptor_NCA:
2318 field_list = chainon (field_list,
2319 make_descriptor_field ("SCALE",
2320 gnat_type_for_size (8, 1),
2321 record_type,
2322 size_zero_node));
2323
2324 field_list = chainon (field_list,
2325 make_descriptor_field ("DIGITS",
2326 gnat_type_for_size (8, 1),
2327 record_type,
2328 size_zero_node));
2329
2330 field_list
2331 = chainon (field_list,
2332 make_descriptor_field
2333 ("AFLAGS", gnat_type_for_size (8, 1), record_type,
2334 size_int (mech == By_Descriptor_NCA
2335 ? 0
2336 /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
2337 : (TREE_CODE (type) == ARRAY_TYPE
2338 && TYPE_CONVENTION_FORTRAN_P (type)
2339 ? 224 : 192))));
2340
2341 field_list = chainon (field_list,
2342 make_descriptor_field ("DIMCT",
2343 gnat_type_for_size (8, 1),
2344 record_type,
2345 size_int (ndim)));
2346
2347 field_list = chainon (field_list,
2348 make_descriptor_field ("ARSIZE",
2349 gnat_type_for_size (32, 1),
2350 record_type,
2351 size_in_bytes (type)));
2352
2353 /* Now build a pointer to the 0,0,0... element. */
2354 tem = build (PLACEHOLDER_EXPR, type);
2355 for (i = 0, inner_type = type; i < ndim;
2356 i++, inner_type = TREE_TYPE (inner_type))
2357 tem = build (ARRAY_REF, TREE_TYPE (inner_type), tem,
2358 convert (TYPE_DOMAIN (inner_type), size_zero_node),
2359 NULL_TREE, NULL_TREE);
2360
2361 field_list
2362 = chainon (field_list,
2363 make_descriptor_field
2364 ("A0",
2365 build_pointer_type_for_mode (inner_type, SImode, false),
2366 record_type,
2367 build1 (ADDR_EXPR,
2368 build_pointer_type_for_mode (inner_type, SImode,
2369 false),
2370 tem)));
2371
2372 /* Next come the addressing coefficients. */
2373 tem = size_int (1);
2374 for (i = 0; i < ndim; i++)
2375 {
2376 char fname[3];
2377 tree idx_length
2378 = size_binop (MULT_EXPR, tem,
2379 size_binop (PLUS_EXPR,
2380 size_binop (MINUS_EXPR,
2381 TYPE_MAX_VALUE (idx_arr[i]),
2382 TYPE_MIN_VALUE (idx_arr[i])),
2383 size_int (1)));
2384
2385 fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M');
2386 fname[1] = '0' + i, fname[2] = 0;
2387 field_list
2388 = chainon (field_list,
2389 make_descriptor_field (fname,
2390 gnat_type_for_size (32, 1),
2391 record_type, idx_length));
2392
2393 if (mech == By_Descriptor_NCA)
2394 tem = idx_length;
2395 }
2396
2397 /* Finally here are the bounds. */
2398 for (i = 0; i < ndim; i++)
2399 {
2400 char fname[3];
2401
2402 fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
2403 field_list
2404 = chainon (field_list,
2405 make_descriptor_field
2406 (fname, gnat_type_for_size (32, 1), record_type,
2407 TYPE_MIN_VALUE (idx_arr[i])));
2408
2409 fname[0] = 'U';
2410 field_list
2411 = chainon (field_list,
2412 make_descriptor_field
2413 (fname, gnat_type_for_size (32, 1), record_type,
2414 TYPE_MAX_VALUE (idx_arr[i])));
2415 }
2416 break;
2417
2418 default:
2419 post_error ("unsupported descriptor type for &", gnat_entity);
2420 }
2421
2422 finish_record_type (record_type, field_list, 0, 1);
2423 create_type_decl (create_concat_name (gnat_entity, "DESC"), record_type,
2424 NULL, 1, 0, gnat_entity);
2425
2426 return record_type;
2427 }
2428
2429 /* Utility routine for above code to make a field. */
2430
2431 static tree
2432 make_descriptor_field (const char *name, tree type,
2433 tree rec_type, tree initial)
2434 {
2435 tree field
2436 = create_field_decl (get_identifier (name), type, rec_type, 0, 0, 0, 0);
2437
2438 DECL_INITIAL (field) = initial;
2439 return field;
2440 }
2441 \f
2442 /* Build a type to be used to represent an aliased object whose nominal
2443 type is an unconstrained array. This consists of a RECORD_TYPE containing
2444 a field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an
2445 ARRAY_TYPE. If ARRAY_TYPE is that of the unconstrained array, this
2446 is used to represent an arbitrary unconstrained object. Use NAME
2447 as the name of the record. */
2448
2449 tree
2450 build_unc_object_type (tree template_type, tree object_type, tree name)
2451 {
2452 tree type = make_node (RECORD_TYPE);
2453 tree template_field = create_field_decl (get_identifier ("BOUNDS"),
2454 template_type, type, 0, 0, 0, 1);
2455 tree array_field = create_field_decl (get_identifier ("ARRAY"), object_type,
2456 type, 0, 0, 0, 1);
2457
2458 TYPE_NAME (type) = name;
2459 TYPE_CONTAINS_TEMPLATE_P (type) = 1;
2460 finish_record_type (type,
2461 chainon (chainon (NULL_TREE, template_field),
2462 array_field),
2463 0, 0);
2464
2465 return type;
2466 }
2467 \f
2468 /* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE. In
2469 the normal case this is just two adjustments, but we have more to do
2470 if NEW is an UNCONSTRAINED_ARRAY_TYPE. */
2471
2472 void
2473 update_pointer_to (tree old_type, tree new_type)
2474 {
2475 tree ptr = TYPE_POINTER_TO (old_type);
2476 tree ref = TYPE_REFERENCE_TO (old_type);
2477 tree ptr1, ref1;
2478 tree type;
2479
2480 /* If this is the main variant, process all the other variants first. */
2481 if (TYPE_MAIN_VARIANT (old_type) == old_type)
2482 for (type = TYPE_NEXT_VARIANT (old_type); type != 0;
2483 type = TYPE_NEXT_VARIANT (type))
2484 update_pointer_to (type, new_type);
2485
2486 /* If no pointer or reference, we are done. */
2487 if (ptr == 0 && ref == 0)
2488 return;
2489
2490 /* Merge the old type qualifiers in the new type.
2491
2492 Each old variant has qualifiers for specific reasons, and the new
2493 designated type as well. Each set of qualifiers represents useful
2494 information grabbed at some point, and merging the two simply unifies
2495 these inputs into the final type description.
2496
2497 Consider for instance a volatile type frozen after an access to constant
2498 type designating it. After the designated type freeze, we get here with a
2499 volatile new_type and a dummy old_type with a readonly variant, created
2500 when the access type was processed. We shall make a volatile and readonly
2501 designated type, because that's what it really is.
2502
2503 We might also get here for a non-dummy old_type variant with different
2504 qualifiers than the new_type ones, for instance in some cases of pointers
2505 to private record type elaboration (see the comments around the call to
2506 this routine from gnat_to_gnu_entity/E_Access_Type). We have to merge the
2507 qualifiers in thoses cases too, to avoid accidentally discarding the
2508 initial set, and will often end up with old_type == new_type then. */
2509 new_type = build_qualified_type (new_type,
2510 TYPE_QUALS (old_type)
2511 | TYPE_QUALS (new_type));
2512
2513 /* If the new type and the old one are identical, there is nothing to
2514 update. */
2515 if (old_type == new_type)
2516 return;
2517
2518 /* Otherwise, first handle the simple case. */
2519 if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
2520 {
2521 TYPE_POINTER_TO (new_type) = ptr;
2522 TYPE_REFERENCE_TO (new_type) = ref;
2523
2524 for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr))
2525 for (ptr1 = TYPE_MAIN_VARIANT (ptr); ptr1;
2526 ptr1 = TYPE_NEXT_VARIANT (ptr1))
2527 {
2528 TREE_TYPE (ptr1) = new_type;
2529
2530 if (TYPE_NAME (ptr1) != 0
2531 && TREE_CODE (TYPE_NAME (ptr1)) == TYPE_DECL
2532 && TREE_CODE (new_type) != ENUMERAL_TYPE)
2533 rest_of_decl_compilation (TYPE_NAME (ptr1), NULL,
2534 global_bindings_p (), 0);
2535 }
2536
2537 for (; ref; ref = TYPE_NEXT_PTR_TO (ref))
2538 for (ref1 = TYPE_MAIN_VARIANT (ref); ref1;
2539 ref1 = TYPE_NEXT_VARIANT (ref1))
2540 {
2541 TREE_TYPE (ref1) = new_type;
2542
2543 if (TYPE_NAME (ref1) != 0
2544 && TREE_CODE (TYPE_NAME (ref1)) == TYPE_DECL
2545 && TREE_CODE (new_type) != ENUMERAL_TYPE)
2546 rest_of_decl_compilation (TYPE_NAME (ref1), NULL,
2547 global_bindings_p (), 0);
2548 }
2549 }
2550
2551 /* Now deal with the unconstrained array case. In this case the "pointer"
2552 is actually a RECORD_TYPE where the types of both fields are
2553 pointers to void. In that case, copy the field list from the
2554 old type to the new one and update the fields' context. */
2555 else if (TREE_CODE (ptr) != RECORD_TYPE || ! TYPE_IS_FAT_POINTER_P (ptr))
2556 gigi_abort (412);
2557
2558 else
2559 {
2560 tree new_obj_rec = TYPE_OBJECT_RECORD_TYPE (new_type);
2561 tree ptr_temp_type;
2562 tree new_ref;
2563 tree var;
2564
2565 TYPE_FIELDS (ptr) = TYPE_FIELDS (TYPE_POINTER_TO (new_type));
2566 DECL_CONTEXT (TYPE_FIELDS (ptr)) = ptr;
2567 DECL_CONTEXT (TREE_CHAIN (TYPE_FIELDS (ptr))) = ptr;
2568
2569 /* Rework the PLACEHOLDER_EXPR inside the reference to the
2570 template bounds.
2571
2572 ??? This is now the only use of gnat_substitute_in_type, which
2573 is now a very "heavy" routine to do this, so it should be replaced
2574 at some point. */
2575 ptr_temp_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (ptr)));
2576 new_ref = build (COMPONENT_REF, ptr_temp_type,
2577 build (PLACEHOLDER_EXPR, ptr),
2578 TREE_CHAIN (TYPE_FIELDS (ptr)), NULL_TREE);
2579
2580 update_pointer_to
2581 (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
2582 gnat_substitute_in_type (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
2583 TREE_CHAIN (TYPE_FIELDS (ptr)), new_ref));
2584
2585 for (var = TYPE_MAIN_VARIANT (ptr); var; var = TYPE_NEXT_VARIANT (var))
2586 SET_TYPE_UNCONSTRAINED_ARRAY (var, new_type);
2587
2588 TYPE_POINTER_TO (new_type) = TYPE_REFERENCE_TO (new_type)
2589 = TREE_TYPE (new_type) = ptr;
2590
2591 /* Now handle updating the allocation record, what the thin pointer
2592 points to. Update all pointers from the old record into the new
2593 one, update the types of the fields, and recompute the size. */
2594
2595 update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type), new_obj_rec);
2596
2597 TREE_TYPE (TYPE_FIELDS (new_obj_rec)) = TREE_TYPE (ptr_temp_type);
2598 TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
2599 = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr)));
2600 DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
2601 = TYPE_SIZE (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))));
2602 DECL_SIZE_UNIT (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
2603 = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))));
2604
2605 TYPE_SIZE (new_obj_rec)
2606 = size_binop (PLUS_EXPR,
2607 DECL_SIZE (TYPE_FIELDS (new_obj_rec)),
2608 DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))));
2609 TYPE_SIZE_UNIT (new_obj_rec)
2610 = size_binop (PLUS_EXPR,
2611 DECL_SIZE_UNIT (TYPE_FIELDS (new_obj_rec)),
2612 DECL_SIZE_UNIT (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))));
2613 rest_of_type_compilation (ptr, global_bindings_p ());
2614 }
2615 }
2616 \f
2617 /* Convert a pointer to a constrained array into a pointer to a fat
2618 pointer. This involves making or finding a template. */
2619
2620 static tree
2621 convert_to_fat_pointer (tree type, tree expr)
2622 {
2623 tree template_type = TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type))));
2624 tree template, template_addr;
2625 tree etype = TREE_TYPE (expr);
2626
2627 /* If EXPR is a constant of zero, we make a fat pointer that has a null
2628 pointer to the template and array. */
2629 if (integer_zerop (expr))
2630 return
2631 gnat_build_constructor
2632 (type,
2633 tree_cons (TYPE_FIELDS (type),
2634 convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
2635 tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
2636 convert (build_pointer_type (template_type),
2637 expr),
2638 NULL_TREE)));
2639
2640 /* If EXPR is a thin pointer, make the template and data from the record. */
2641
2642 else if (TYPE_THIN_POINTER_P (etype))
2643 {
2644 tree fields = TYPE_FIELDS (TREE_TYPE (etype));
2645
2646 expr = save_expr (expr);
2647 if (TREE_CODE (expr) == ADDR_EXPR)
2648 expr = TREE_OPERAND (expr, 0);
2649 else
2650 expr = build1 (INDIRECT_REF, TREE_TYPE (etype), expr);
2651
2652 template = build_component_ref (expr, NULL_TREE, fields, 0);
2653 expr = build_unary_op (ADDR_EXPR, NULL_TREE,
2654 build_component_ref (expr, NULL_TREE,
2655 TREE_CHAIN (fields), 0));
2656 }
2657 else
2658 /* Otherwise, build the constructor for the template. */
2659 template = build_template (template_type, TREE_TYPE (etype), expr);
2660
2661 template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template);
2662
2663 /* The result is a CONSTRUCTOR for the fat pointer.
2664
2665 If expr is an argument of a foreign convention subprogram, the type it
2666 points to is directly the component type. In this case, the expression
2667 type may not match the corresponding FIELD_DECL type at this point, so we
2668 call "convert" here to fix that up if necessary. This type consistency is
2669 required, for instance because it ensures that possible later folding of
2670 component_refs against this constructor always yields something of the
2671 same type as the initial reference.
2672
2673 Note that the call to "build_template" above is still fine, because it
2674 will only refer to the provided template_type in this case. */
2675 return
2676 gnat_build_constructor
2677 (type, tree_cons (TYPE_FIELDS (type),
2678 convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
2679 tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
2680 template_addr, NULL_TREE)));
2681 }
2682 \f
2683 /* Convert to a thin pointer type, TYPE. The only thing we know how to convert
2684 is something that is a fat pointer, so convert to it first if it EXPR
2685 is not already a fat pointer. */
2686
2687 static tree
2688 convert_to_thin_pointer (tree type, tree expr)
2689 {
2690 if (! TYPE_FAT_POINTER_P (TREE_TYPE (expr)))
2691 expr
2692 = convert_to_fat_pointer
2693 (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))), expr);
2694
2695 /* We get the pointer to the data and use a NOP_EXPR to make it the
2696 proper GCC type. */
2697 expr
2698 = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (TREE_TYPE (expr)), 0);
2699 expr = build1 (NOP_EXPR, type, expr);
2700
2701 return expr;
2702 }
2703 \f
2704 /* Create an expression whose value is that of EXPR,
2705 converted to type TYPE. The TREE_TYPE of the value
2706 is always TYPE. This function implements all reasonable
2707 conversions; callers should filter out those that are
2708 not permitted by the language being compiled. */
2709
2710 tree
2711 convert (tree type, tree expr)
2712 {
2713 enum tree_code code = TREE_CODE (type);
2714 tree etype = TREE_TYPE (expr);
2715 enum tree_code ecode = TREE_CODE (etype);
2716 tree tem;
2717
2718 /* If EXPR is already the right type, we are done. */
2719 if (type == etype)
2720 return expr;
2721
2722 /* If the input type has padding, remove it by doing a component reference
2723 to the field. If the output type has padding, make a constructor
2724 to build the record. If both input and output have padding and are
2725 of variable size, do this as an unchecked conversion. */
2726 else if (ecode == RECORD_TYPE && code == RECORD_TYPE
2727 && TYPE_IS_PADDING_P (type) && TYPE_IS_PADDING_P (etype)
2728 && (! TREE_CONSTANT (TYPE_SIZE (type))
2729 || ! TREE_CONSTANT (TYPE_SIZE (etype))))
2730 ;
2731 else if (ecode == RECORD_TYPE && TYPE_IS_PADDING_P (etype))
2732 {
2733 /* If we have just converted to this padded type, just get
2734 the inner expression. */
2735 if (TREE_CODE (expr) == CONSTRUCTOR
2736 && CONSTRUCTOR_ELTS (expr) != 0
2737 && TREE_PURPOSE (CONSTRUCTOR_ELTS (expr)) == TYPE_FIELDS (etype))
2738 return TREE_VALUE (CONSTRUCTOR_ELTS (expr));
2739 else
2740 return convert (type, build_component_ref (expr, NULL_TREE,
2741 TYPE_FIELDS (etype), 0));
2742 }
2743 else if (code == RECORD_TYPE && TYPE_IS_PADDING_P (type))
2744 {
2745 /* If we previously converted from another type and our type is
2746 of variable size, remove the conversion to avoid the need for
2747 variable-size temporaries. */
2748 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
2749 && ! TREE_CONSTANT (TYPE_SIZE (type)))
2750 expr = TREE_OPERAND (expr, 0);
2751
2752 /* If we are just removing the padding from expr, convert the original
2753 object if we have variable size. That will avoid the need
2754 for some variable-size temporaries. */
2755 if (TREE_CODE (expr) == COMPONENT_REF
2756 && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == RECORD_TYPE
2757 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
2758 && ! TREE_CONSTANT (TYPE_SIZE (type)))
2759 return convert (type, TREE_OPERAND (expr, 0));
2760
2761 /* If the result type is a padded type with a self-referentially-sized
2762 field and the expression type is a record, do this as an
2763 unchecked converstion. */
2764 else if (TREE_CODE (etype) == RECORD_TYPE
2765 && CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type))))
2766 return unchecked_convert (type, expr, 0);
2767
2768 else
2769 return
2770 gnat_build_constructor (type,
2771 tree_cons (TYPE_FIELDS (type),
2772 convert (TREE_TYPE
2773 (TYPE_FIELDS (type)),
2774 expr),
2775 NULL_TREE));
2776 }
2777
2778 /* If the input is a biased type, adjust first. */
2779 if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
2780 return convert (type, fold (build (PLUS_EXPR, TREE_TYPE (etype),
2781 fold (build1 (NOP_EXPR,
2782 TREE_TYPE (etype), expr)),
2783 TYPE_MIN_VALUE (etype))));
2784
2785 /* If the input is a left-justified modular type, we need to extract
2786 the actual object before converting it to any other type with the
2787 exception of an unconstrained array. */
2788 if (ecode == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (etype)
2789 && code != UNCONSTRAINED_ARRAY_TYPE)
2790 return convert (type, build_component_ref (expr, NULL_TREE,
2791 TYPE_FIELDS (etype), 0));
2792
2793 /* If converting to a type that contains a template, convert to the data
2794 type and then build the template. */
2795 if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type))
2796 {
2797 tree obj_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type)));
2798
2799 /* If the source already has a template, get a reference to the
2800 associated array only, as we are going to rebuild a template
2801 for the target type anyway. */
2802 expr = maybe_unconstrained_array (expr);
2803
2804 return
2805 gnat_build_constructor
2806 (type,
2807 tree_cons (TYPE_FIELDS (type),
2808 build_template (TREE_TYPE (TYPE_FIELDS (type)),
2809 obj_type, NULL_TREE),
2810 tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
2811 convert (obj_type, expr), NULL_TREE)));
2812 }
2813
2814 /* There are some special cases of expressions that we process
2815 specially. */
2816 switch (TREE_CODE (expr))
2817 {
2818 case ERROR_MARK:
2819 return expr;
2820
2821 case NULL_EXPR:
2822 /* Just set its type here. For TRANSFORM_EXPR, we will do the actual
2823 conversion in gnat_expand_expr. NULL_EXPR does not represent
2824 and actual value, so no conversion is needed. */
2825 expr = copy_node (expr);
2826 TREE_TYPE (expr) = type;
2827 return expr;
2828
2829 case STRING_CST:
2830 case CONSTRUCTOR:
2831 /* If we are converting a STRING_CST to another constrained array type,
2832 just make a new one in the proper type. Likewise for
2833 CONSTRUCTOR if the alias sets are the same. */
2834 if (code == ecode && AGGREGATE_TYPE_P (etype)
2835 && ! (TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST
2836 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2837 && (TREE_CODE (expr) == STRING_CST
2838 || get_alias_set (etype) == get_alias_set (type)))
2839 {
2840 expr = copy_node (expr);
2841 TREE_TYPE (expr) = type;
2842 return expr;
2843 }
2844 break;
2845
2846 case COMPONENT_REF:
2847 /* If we are converting between two aggregate types of the same
2848 kind, size, mode, and alignment, just make a new COMPONENT_REF.
2849 This avoid unneeded conversions which makes reference computations
2850 more complex. */
2851 if (code == ecode && TYPE_MODE (type) == TYPE_MODE (etype)
2852 && AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype)
2853 && TYPE_ALIGN (type) == TYPE_ALIGN (etype)
2854 && operand_equal_p (TYPE_SIZE (type), TYPE_SIZE (etype), 0)
2855 && get_alias_set (type) == get_alias_set (etype))
2856 return build (COMPONENT_REF, type, TREE_OPERAND (expr, 0),
2857 TREE_OPERAND (expr, 1), NULL_TREE);
2858
2859 break;
2860
2861 case UNCONSTRAINED_ARRAY_REF:
2862 /* Convert this to the type of the inner array by getting the address of
2863 the array from the template. */
2864 expr = build_unary_op (INDIRECT_REF, NULL_TREE,
2865 build_component_ref (TREE_OPERAND (expr, 0),
2866 get_identifier ("P_ARRAY"),
2867 NULL_TREE, 0));
2868 etype = TREE_TYPE (expr);
2869 ecode = TREE_CODE (etype);
2870 break;
2871
2872 case VIEW_CONVERT_EXPR:
2873 if (AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype)
2874 && ! TYPE_FAT_POINTER_P (type) && ! TYPE_FAT_POINTER_P (etype))
2875 return convert (type, TREE_OPERAND (expr, 0));
2876 break;
2877
2878 case INDIRECT_REF:
2879 /* If both types are record types, just convert the pointer and
2880 make a new INDIRECT_REF.
2881
2882 ??? Disable this for now since it causes problems with the
2883 code in build_binary_op for MODIFY_EXPR which wants to
2884 strip off conversions. But that code really is a mess and
2885 we need to do this a much better way some time. */
2886 if (0
2887 && (TREE_CODE (type) == RECORD_TYPE
2888 || TREE_CODE (type) == UNION_TYPE)
2889 && (TREE_CODE (etype) == RECORD_TYPE
2890 || TREE_CODE (etype) == UNION_TYPE)
2891 && ! TYPE_FAT_POINTER_P (type) && ! TYPE_FAT_POINTER_P (etype))
2892 return build_unary_op (INDIRECT_REF, NULL_TREE,
2893 convert (build_pointer_type (type),
2894 TREE_OPERAND (expr, 0)));
2895 break;
2896
2897 default:
2898 break;
2899 }
2900
2901 /* Check for converting to a pointer to an unconstrained array. */
2902 if (TYPE_FAT_POINTER_P (type) && ! TYPE_FAT_POINTER_P (etype))
2903 return convert_to_fat_pointer (type, expr);
2904
2905 /* If we're converting between two aggregate types that have the same main
2906 variant, just make a VIEW_CONVER_EXPR. */
2907 else if (AGGREGATE_TYPE_P (type)
2908 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype))
2909 return build1 (VIEW_CONVERT_EXPR, type, expr);
2910
2911 /* In all other cases of related types, make a NOP_EXPR. */
2912 else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)
2913 || (code == INTEGER_CST && ecode == INTEGER_CST
2914 && (type == TREE_TYPE (etype) || etype == TREE_TYPE (type))))
2915 return fold (build1 (NOP_EXPR, type, expr));
2916
2917 switch (code)
2918 {
2919 case VOID_TYPE:
2920 return build1 (CONVERT_EXPR, type, expr);
2921
2922 case BOOLEAN_TYPE:
2923 return fold (build1 (NOP_EXPR, type, gnat_truthvalue_conversion (expr)));
2924
2925 case INTEGER_TYPE:
2926 if (TYPE_HAS_ACTUAL_BOUNDS_P (type)
2927 && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE
2928 || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))))
2929 return unchecked_convert (type, expr, 0);
2930 else if (TYPE_BIASED_REPRESENTATION_P (type))
2931 return fold (build1 (CONVERT_EXPR, type,
2932 fold (build (MINUS_EXPR, TREE_TYPE (type),
2933 convert (TREE_TYPE (type), expr),
2934 TYPE_MIN_VALUE (type)))));
2935
2936 /* ... fall through ... */
2937
2938 case ENUMERAL_TYPE:
2939 return fold (convert_to_integer (type, expr));
2940
2941 case POINTER_TYPE:
2942 case REFERENCE_TYPE:
2943 /* If converting between two pointers to records denoting
2944 both a template and type, adjust if needed to account
2945 for any differing offsets, since one might be negative. */
2946 if (TYPE_THIN_POINTER_P (etype) && TYPE_THIN_POINTER_P (type))
2947 {
2948 tree bit_diff
2949 = size_diffop (bit_position (TYPE_FIELDS (TREE_TYPE (etype))),
2950 bit_position (TYPE_FIELDS (TREE_TYPE (type))));
2951 tree byte_diff = size_binop (CEIL_DIV_EXPR, bit_diff,
2952 sbitsize_int (BITS_PER_UNIT));
2953
2954 expr = build1 (NOP_EXPR, type, expr);
2955 TREE_CONSTANT (expr) = TREE_CONSTANT (TREE_OPERAND (expr, 0));
2956 if (integer_zerop (byte_diff))
2957 return expr;
2958
2959 return build_binary_op (PLUS_EXPR, type, expr,
2960 fold (convert_to_pointer (type, byte_diff)));
2961 }
2962
2963 /* If converting to a thin pointer, handle specially. */
2964 if (TYPE_THIN_POINTER_P (type)
2965 && TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)) != 0)
2966 return convert_to_thin_pointer (type, expr);
2967
2968 /* If converting fat pointer to normal pointer, get the pointer to the
2969 array and then convert it. */
2970 else if (TYPE_FAT_POINTER_P (etype))
2971 expr = build_component_ref (expr, get_identifier ("P_ARRAY"),
2972 NULL_TREE, 0);
2973
2974 return fold (convert_to_pointer (type, expr));
2975
2976 case REAL_TYPE:
2977 return fold (convert_to_real (type, expr));
2978
2979 case RECORD_TYPE:
2980 if (TYPE_LEFT_JUSTIFIED_MODULAR_P (type) && ! AGGREGATE_TYPE_P (etype))
2981 return
2982 gnat_build_constructor
2983 (type, tree_cons (TYPE_FIELDS (type),
2984 convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
2985 NULL_TREE));
2986
2987 /* ... fall through ... */
2988
2989 case ARRAY_TYPE:
2990 /* In these cases, assume the front-end has validated the conversion.
2991 If the conversion is valid, it will be a bit-wise conversion, so
2992 it can be viewed as an unchecked conversion. */
2993 return unchecked_convert (type, expr, 0);
2994
2995 case UNION_TYPE:
2996 /* Just validate that the type is indeed that of a field
2997 of the type. Then make the simple conversion. */
2998 for (tem = TYPE_FIELDS (type); tem; tem = TREE_CHAIN (tem))
2999 {
3000 if (TREE_TYPE (tem) == etype)
3001 return build1 (CONVERT_EXPR, type, expr);
3002 else if (TREE_CODE (TREE_TYPE (tem)) == RECORD_TYPE
3003 && (TYPE_LEFT_JUSTIFIED_MODULAR_P (TREE_TYPE (tem))
3004 || TYPE_IS_PADDING_P (TREE_TYPE (tem)))
3005 && TREE_TYPE (TYPE_FIELDS (TREE_TYPE (tem))) == etype)
3006 return build1 (CONVERT_EXPR, type,
3007 convert (TREE_TYPE (tem), expr));
3008 }
3009
3010 gigi_abort (413);
3011
3012 case UNCONSTRAINED_ARRAY_TYPE:
3013 /* If EXPR is a constrained array, take its address, convert it to a
3014 fat pointer, and then dereference it. Likewise if EXPR is a
3015 record containing both a template and a constrained array.
3016 Note that a record representing a left justified modular type
3017 always represents a packed constrained array. */
3018 if (ecode == ARRAY_TYPE
3019 || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype))
3020 || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))
3021 || (ecode == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (etype)))
3022 return
3023 build_unary_op
3024 (INDIRECT_REF, NULL_TREE,
3025 convert_to_fat_pointer (TREE_TYPE (type),
3026 build_unary_op (ADDR_EXPR,
3027 NULL_TREE, expr)));
3028
3029 /* Do something very similar for converting one unconstrained
3030 array to another. */
3031 else if (ecode == UNCONSTRAINED_ARRAY_TYPE)
3032 return
3033 build_unary_op (INDIRECT_REF, NULL_TREE,
3034 convert (TREE_TYPE (type),
3035 build_unary_op (ADDR_EXPR,
3036 NULL_TREE, expr)));
3037 else
3038 gigi_abort (409);
3039
3040 case COMPLEX_TYPE:
3041 return fold (convert_to_complex (type, expr));
3042
3043 default:
3044 gigi_abort (410);
3045 }
3046 }
3047 \f
3048 /* Remove all conversions that are done in EXP. This includes converting
3049 from a padded type or to a left-justified modular type. If TRUE_ADDRESS
3050 is nonzero, always return the address of the containing object even if
3051 the address is not bit-aligned. */
3052
3053 tree
3054 remove_conversions (tree exp, int true_address)
3055 {
3056 switch (TREE_CODE (exp))
3057 {
3058 case CONSTRUCTOR:
3059 if (true_address
3060 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
3061 && TYPE_LEFT_JUSTIFIED_MODULAR_P (TREE_TYPE (exp)))
3062 return remove_conversions (TREE_VALUE (CONSTRUCTOR_ELTS (exp)), 1);
3063 break;
3064
3065 case COMPONENT_REF:
3066 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == RECORD_TYPE
3067 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
3068 return remove_conversions (TREE_OPERAND (exp, 0), true_address);
3069 break;
3070
3071 case VIEW_CONVERT_EXPR: case NON_LVALUE_EXPR:
3072 case NOP_EXPR: case CONVERT_EXPR:
3073 return remove_conversions (TREE_OPERAND (exp, 0), true_address);
3074
3075 default:
3076 break;
3077 }
3078
3079 return exp;
3080 }
3081 \f
3082 /* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that
3083 refers to the underlying array. If its type has TYPE_CONTAINS_TEMPLATE_P,
3084 likewise return an expression pointing to the underlying array. */
3085
3086 tree
3087 maybe_unconstrained_array (tree exp)
3088 {
3089 enum tree_code code = TREE_CODE (exp);
3090 tree new;
3091
3092 switch (TREE_CODE (TREE_TYPE (exp)))
3093 {
3094 case UNCONSTRAINED_ARRAY_TYPE:
3095 if (code == UNCONSTRAINED_ARRAY_REF)
3096 {
3097 new
3098 = build_unary_op (INDIRECT_REF, NULL_TREE,
3099 build_component_ref (TREE_OPERAND (exp, 0),
3100 get_identifier ("P_ARRAY"),
3101 NULL_TREE, 0));
3102 TREE_READONLY (new) = TREE_STATIC (new) = TREE_READONLY (exp);
3103 return new;
3104 }
3105
3106 else if (code == NULL_EXPR)
3107 return build1 (NULL_EXPR,
3108 TREE_TYPE (TREE_TYPE (TYPE_FIELDS
3109 (TREE_TYPE (TREE_TYPE (exp))))),
3110 TREE_OPERAND (exp, 0));
3111
3112 case RECORD_TYPE:
3113 /* If this is a padded type, convert to the unpadded type and see if
3114 it contains a template. */
3115 if (TYPE_IS_PADDING_P (TREE_TYPE (exp)))
3116 {
3117 new = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp);
3118 if (TREE_CODE (TREE_TYPE (new)) == RECORD_TYPE
3119 && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (new)))
3120 return
3121 build_component_ref (new, NULL_TREE,
3122 TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (new))),
3123 0);
3124 }
3125 else if (TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (exp)))
3126 return
3127 build_component_ref (exp, NULL_TREE,
3128 TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (exp))), 0);
3129 break;
3130
3131 default:
3132 break;
3133 }
3134
3135 return exp;
3136 }
3137 \f
3138 /* Return an expression that does an unchecked converstion of EXPR to TYPE.
3139 If NOTRUNC_P is set, truncation operations should be suppressed. */
3140
3141 tree
3142 unchecked_convert (tree type, tree expr, int notrunc_p)
3143 {
3144 tree etype = TREE_TYPE (expr);
3145
3146 /* If the expression is already the right type, we are done. */
3147 if (etype == type)
3148 return expr;
3149
3150 /* If both types types are integral just do a normal conversion.
3151 Likewise for a conversion to an unconstrained array. */
3152 if ((((INTEGRAL_TYPE_P (type)
3153 && ! (TREE_CODE (type) == INTEGER_TYPE
3154 && TYPE_VAX_FLOATING_POINT_P (type)))
3155 || (POINTER_TYPE_P (type) && ! TYPE_THIN_POINTER_P (type))
3156 || (TREE_CODE (type) == RECORD_TYPE
3157 && TYPE_LEFT_JUSTIFIED_MODULAR_P (type)))
3158 && ((INTEGRAL_TYPE_P (etype)
3159 && ! (TREE_CODE (etype) == INTEGER_TYPE
3160 && TYPE_VAX_FLOATING_POINT_P (etype)))
3161 || (POINTER_TYPE_P (etype) && ! TYPE_THIN_POINTER_P (etype))
3162 || (TREE_CODE (etype) == RECORD_TYPE
3163 && TYPE_LEFT_JUSTIFIED_MODULAR_P (etype))))
3164 || TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
3165 {
3166 tree rtype = type;
3167
3168 if (TREE_CODE (etype) == INTEGER_TYPE
3169 && TYPE_BIASED_REPRESENTATION_P (etype))
3170 {
3171 tree ntype = copy_type (etype);
3172
3173 TYPE_BIASED_REPRESENTATION_P (ntype) = 0;
3174 TYPE_MAIN_VARIANT (ntype) = ntype;
3175 expr = build1 (NOP_EXPR, ntype, expr);
3176 }
3177
3178 if (TREE_CODE (type) == INTEGER_TYPE
3179 && TYPE_BIASED_REPRESENTATION_P (type))
3180 {
3181 rtype = copy_type (type);
3182 TYPE_BIASED_REPRESENTATION_P (rtype) = 0;
3183 TYPE_MAIN_VARIANT (rtype) = rtype;
3184 }
3185
3186 expr = convert (rtype, expr);
3187 if (type != rtype)
3188 expr = build1 (NOP_EXPR, type, expr);
3189 }
3190
3191 /* If we are converting TO an integral type whose precision is not the
3192 same as its size, first unchecked convert to a record that contains
3193 an object of the output type. Then extract the field. */
3194 else if (INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type) != 0
3195 && 0 != compare_tree_int (TYPE_RM_SIZE (type),
3196 GET_MODE_BITSIZE (TYPE_MODE (type))))
3197 {
3198 tree rec_type = make_node (RECORD_TYPE);
3199 tree field = create_field_decl (get_identifier ("OBJ"), type,
3200 rec_type, 1, 0, 0, 0);
3201
3202 TYPE_FIELDS (rec_type) = field;
3203 layout_type (rec_type);
3204
3205 expr = unchecked_convert (rec_type, expr, notrunc_p);
3206 expr = build_component_ref (expr, NULL_TREE, field, 0);
3207 }
3208
3209 /* Similarly for integral input type whose precision is not equal to its
3210 size. */
3211 else if (INTEGRAL_TYPE_P (etype) && TYPE_RM_SIZE (etype) != 0
3212 && 0 != compare_tree_int (TYPE_RM_SIZE (etype),
3213 GET_MODE_BITSIZE (TYPE_MODE (etype))))
3214 {
3215 tree rec_type = make_node (RECORD_TYPE);
3216 tree field
3217 = create_field_decl (get_identifier ("OBJ"), etype, rec_type,
3218 1, 0, 0, 0);
3219
3220 TYPE_FIELDS (rec_type) = field;
3221 layout_type (rec_type);
3222
3223 expr = gnat_build_constructor (rec_type, build_tree_list (field, expr));
3224 expr = unchecked_convert (type, expr, notrunc_p);
3225 }
3226
3227 /* We have a special case when we are converting between two
3228 unconstrained array types. In that case, take the address,
3229 convert the fat pointer types, and dereference. */
3230 else if (TREE_CODE (etype) == UNCONSTRAINED_ARRAY_TYPE
3231 && TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
3232 expr = build_unary_op (INDIRECT_REF, NULL_TREE,
3233 build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type),
3234 build_unary_op (ADDR_EXPR, NULL_TREE,
3235 expr)));
3236 else
3237 {
3238 expr = maybe_unconstrained_array (expr);
3239 etype = TREE_TYPE (expr);
3240 expr = build1 (VIEW_CONVERT_EXPR, type, expr);
3241 }
3242
3243 /* If the result is an integral type whose size is not equal to
3244 the size of the underlying machine type, sign- or zero-extend
3245 the result. We need not do this in the case where the input is
3246 an integral type of the same precision and signedness or if the output
3247 is a biased type or if both the input and output are unsigned. */
3248 if (! notrunc_p
3249 && INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type) != 0
3250 && ! (TREE_CODE (type) == INTEGER_TYPE
3251 && TYPE_BIASED_REPRESENTATION_P (type))
3252 && 0 != compare_tree_int (TYPE_RM_SIZE (type),
3253 GET_MODE_BITSIZE (TYPE_MODE (type)))
3254 && ! (INTEGRAL_TYPE_P (etype)
3255 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (etype)
3256 && operand_equal_p (TYPE_RM_SIZE (type),
3257 (TYPE_RM_SIZE (etype) != 0
3258 ? TYPE_RM_SIZE (etype) : TYPE_SIZE (etype)),
3259 0))
3260 && ! (TYPE_UNSIGNED (type) && TYPE_UNSIGNED (etype)))
3261 {
3262 tree base_type = gnat_type_for_mode (TYPE_MODE (type),
3263 TYPE_UNSIGNED (type));
3264 tree shift_expr
3265 = convert (base_type,
3266 size_binop (MINUS_EXPR,
3267 bitsize_int
3268 (GET_MODE_BITSIZE (TYPE_MODE (type))),
3269 TYPE_RM_SIZE (type)));
3270 expr
3271 = convert (type,
3272 build_binary_op (RSHIFT_EXPR, base_type,
3273 build_binary_op (LSHIFT_EXPR, base_type,
3274 convert (base_type, expr),
3275 shift_expr),
3276 shift_expr));
3277 }
3278
3279 /* An unchecked conversion should never raise Constraint_Error. The code
3280 below assumes that GCC's conversion routines overflow the same way that
3281 the underlying hardware does. This is probably true. In the rare case
3282 when it is false, we can rely on the fact that such conversions are
3283 erroneous anyway. */
3284 if (TREE_CODE (expr) == INTEGER_CST)
3285 TREE_OVERFLOW (expr) = TREE_CONSTANT_OVERFLOW (expr) = 0;
3286
3287 /* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR,
3288 show no longer constant. */
3289 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
3290 && ! operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype),
3291 OEP_ONLY_CONST))
3292 TREE_CONSTANT (expr) = 0;
3293
3294 return expr;
3295 }
3296
3297 #include "gt-ada-utils.h"
3298 #include "gtype-ada.h"