re PR tree-optimization/54570 (FAIL: gcc.dg/builtin-object-size-8.c execution test)
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "diagnostic-core.h"
37 #include "cselib.h"
38 #include "splay-tree.h"
39 #include "ggc.h"
40 #include "langhooks.h"
41 #include "timevar.h"
42 #include "dumpfile.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "df.h"
46 #include "tree-ssa-alias.h"
47 #include "pointer-set.h"
48 #include "tree-flow.h"
49
50 /* The aliasing API provided here solves related but different problems:
51
52 Say there exists (in c)
53
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
58
59 struct Y y2, *py;
60 struct Z z2, *pz;
61
62
63 py = &x1.y1;
64 px2 = &x1;
65
66 Consider the four questions:
67
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 Can a store to x1 change the value pointed to by with py?
71 Can a store to x1 change the value pointed to by with pz?
72
73 The answer to these questions can be yes, yes, yes, and maybe.
74
75 The first two questions can be answered with a simple examination
76 of the type system. If structure X contains a field of type Y then
77 a store through a pointer to an X can overwrite any field that is
78 contained (recursively) in an X (unless we know that px1 != px2).
79
80 The last two questions can be solved in the same way as the first
81 two questions but this is too conservative. The observation is
82 that in some cases we can know which (if any) fields are addressed
83 and if those addresses are used in bad ways. This analysis may be
84 language specific. In C, arbitrary operations may be applied to
85 pointers. However, there is some indication that this may be too
86 conservative for some C++ types.
87
88 The pass ipa-type-escape does this analysis for the types whose
89 instances do not escape across the compilation boundary.
90
91 Historically in GCC, these two problems were combined and a single
92 data structure that was used to represent the solution to these
93 problems. We now have two similar but different data structures,
94 The data structure to solve the last two questions is similar to
95 the first, but does not contain the fields whose address are never
96 taken. For types that do escape the compilation unit, the data
97 structures will have identical information.
98 */
99
100 /* The alias sets assigned to MEMs assist the back-end in determining
101 which MEMs can alias which other MEMs. In general, two MEMs in
102 different alias sets cannot alias each other, with one important
103 exception. Consider something like:
104
105 struct S { int i; double d; };
106
107 a store to an `S' can alias something of either type `int' or type
108 `double'. (However, a store to an `int' cannot alias a `double'
109 and vice versa.) We indicate this via a tree structure that looks
110 like:
111 struct S
112 / \
113 / \
114 |/_ _\|
115 int double
116
117 (The arrows are directed and point downwards.)
118 In this situation we say the alias set for `struct S' is the
119 `superset' and that those for `int' and `double' are `subsets'.
120
121 To see whether two alias sets can point to the same memory, we must
122 see if either alias set is a subset of the other. We need not trace
123 past immediate descendants, however, since we propagate all
124 grandchildren up one level.
125
126 Alias set zero is implicitly a superset of all other alias sets.
127 However, this is no actual entry for alias set zero. It is an
128 error to attempt to explicitly construct a subset of zero. */
129
130 struct GTY(()) alias_set_entry_d {
131 /* The alias set number, as stored in MEM_ALIAS_SET. */
132 alias_set_type alias_set;
133
134 /* Nonzero if would have a child of zero: this effectively makes this
135 alias set the same as alias set zero. */
136 int has_zero_child;
137
138 /* The children of the alias set. These are not just the immediate
139 children, but, in fact, all descendants. So, if we have:
140
141 struct T { struct S s; float f; }
142
143 continuing our example above, the children here will be all of
144 `int', `double', `float', and `struct S'. */
145 splay_tree GTY((param1_is (int), param2_is (int))) children;
146 };
147 typedef struct alias_set_entry_d *alias_set_entry;
148
149 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
150 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
151 static void record_set (rtx, const_rtx, void *);
152 static int base_alias_check (rtx, rtx, enum machine_mode,
153 enum machine_mode);
154 static rtx find_base_value (rtx);
155 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
156 static int insert_subset_children (splay_tree_node, void*);
157 static alias_set_entry get_alias_set_entry (alias_set_type);
158 static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
159 static tree decl_for_component_ref (tree);
160 static int write_dependence_p (const_rtx, const_rtx, int);
161
162 static void memory_modified_1 (rtx, const_rtx, void *);
163
164 /* Set up all info needed to perform alias analysis on memory references. */
165
166 /* Returns the size in bytes of the mode of X. */
167 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
168
169 /* Cap the number of passes we make over the insns propagating alias
170 information through set chains.
171 ??? 10 is a completely arbitrary choice. This should be based on the
172 maximum loop depth in the CFG, but we do not have this information
173 available (even if current_loops _is_ available). */
174 #define MAX_ALIAS_LOOP_PASSES 10
175
176 /* reg_base_value[N] gives an address to which register N is related.
177 If all sets after the first add or subtract to the current value
178 or otherwise modify it so it does not point to a different top level
179 object, reg_base_value[N] is equal to the address part of the source
180 of the first set.
181
182 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
183 expressions represent three types of base:
184
185 1. incoming arguments. There is just one ADDRESS to represent all
186 arguments, since we do not know at this level whether accesses
187 based on different arguments can alias. The ADDRESS has id 0.
188
189 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
190 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
191 Each of these rtxes has a separate ADDRESS associated with it,
192 each with a negative id.
193
194 GCC is (and is required to be) precise in which register it
195 chooses to access a particular region of stack. We can therefore
196 assume that accesses based on one of these rtxes do not alias
197 accesses based on another of these rtxes.
198
199 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
200 Each such piece of memory has a separate ADDRESS associated
201 with it, each with an id greater than 0.
202
203 Accesses based on one ADDRESS do not alias accesses based on other
204 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
205 alias globals either; the ADDRESSes have Pmode to indicate this.
206 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
207 indicate this. */
208
209 static GTY(()) vec<rtx, va_gc> *reg_base_value;
210 static rtx *new_reg_base_value;
211
212 /* The single VOIDmode ADDRESS that represents all argument bases.
213 It has id 0. */
214 static GTY(()) rtx arg_base_value;
215
216 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
217 static int unique_id;
218
219 /* We preserve the copy of old array around to avoid amount of garbage
220 produced. About 8% of garbage produced were attributed to this
221 array. */
222 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
223
224 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
225 registers. */
226 #define UNIQUE_BASE_VALUE_SP -1
227 #define UNIQUE_BASE_VALUE_ARGP -2
228 #define UNIQUE_BASE_VALUE_FP -3
229 #define UNIQUE_BASE_VALUE_HFP -4
230
231 #define static_reg_base_value \
232 (this_target_rtl->x_static_reg_base_value)
233
234 #define REG_BASE_VALUE(X) \
235 (REGNO (X) < vec_safe_length (reg_base_value) \
236 ? (*reg_base_value)[REGNO (X)] : 0)
237
238 /* Vector indexed by N giving the initial (unchanging) value known for
239 pseudo-register N. This vector is initialized in init_alias_analysis,
240 and does not change until end_alias_analysis is called. */
241 static GTY(()) vec<rtx, va_gc> *reg_known_value;
242
243 /* Vector recording for each reg_known_value whether it is due to a
244 REG_EQUIV note. Future passes (viz., reload) may replace the
245 pseudo with the equivalent expression and so we account for the
246 dependences that would be introduced if that happens.
247
248 The REG_EQUIV notes created in assign_parms may mention the arg
249 pointer, and there are explicit insns in the RTL that modify the
250 arg pointer. Thus we must ensure that such insns don't get
251 scheduled across each other because that would invalidate the
252 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
253 wrong, but solving the problem in the scheduler will likely give
254 better code, so we do it here. */
255 static sbitmap reg_known_equiv_p;
256
257 /* True when scanning insns from the start of the rtl to the
258 NOTE_INSN_FUNCTION_BEG note. */
259 static bool copying_arguments;
260
261
262 /* The splay-tree used to store the various alias set entries. */
263 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
264 \f
265 /* Build a decomposed reference object for querying the alias-oracle
266 from the MEM rtx and store it in *REF.
267 Returns false if MEM is not suitable for the alias-oracle. */
268
269 static bool
270 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
271 {
272 tree expr = MEM_EXPR (mem);
273 tree base;
274
275 if (!expr)
276 return false;
277
278 ao_ref_init (ref, expr);
279
280 /* Get the base of the reference and see if we have to reject or
281 adjust it. */
282 base = ao_ref_base (ref);
283 if (base == NULL_TREE)
284 return false;
285
286 /* The tree oracle doesn't like to have these. */
287 if (TREE_CODE (base) == FUNCTION_DECL
288 || TREE_CODE (base) == LABEL_DECL)
289 return false;
290
291 /* If this is a pointer dereference of a non-SSA_NAME punt.
292 ??? We could replace it with a pointer to anything. */
293 if ((INDIRECT_REF_P (base)
294 || TREE_CODE (base) == MEM_REF)
295 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
296 return false;
297 if (TREE_CODE (base) == TARGET_MEM_REF
298 && TMR_BASE (base)
299 && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
300 return false;
301
302 /* If this is a reference based on a partitioned decl replace the
303 base with an INDIRECT_REF of the pointer representative we
304 created during stack slot partitioning. */
305 if (TREE_CODE (base) == VAR_DECL
306 && ! TREE_STATIC (base)
307 && cfun->gimple_df->decls_to_pointers != NULL)
308 {
309 void *namep;
310 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
311 if (namep)
312 ref->base = build_simple_mem_ref (*(tree *)namep);
313 }
314 else if (TREE_CODE (base) == TARGET_MEM_REF
315 && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
316 && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
317 && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
318 && cfun->gimple_df->decls_to_pointers != NULL)
319 {
320 void *namep;
321 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
322 TREE_OPERAND (TMR_BASE (base), 0));
323 if (namep)
324 ref->base = build_simple_mem_ref (*(tree *)namep);
325 }
326
327 ref->ref_alias_set = MEM_ALIAS_SET (mem);
328
329 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
330 is conservative, so trust it. */
331 if (!MEM_OFFSET_KNOWN_P (mem)
332 || !MEM_SIZE_KNOWN_P (mem))
333 return true;
334
335 /* If the base decl is a parameter we can have negative MEM_OFFSET in
336 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
337 here. */
338 if (MEM_OFFSET (mem) < 0
339 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
340 return true;
341
342 /* Otherwise continue and refine size and offset we got from analyzing
343 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
344
345 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
346 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
347
348 /* The MEM may extend into adjacent fields, so adjust max_size if
349 necessary. */
350 if (ref->max_size != -1
351 && ref->size > ref->max_size)
352 ref->max_size = ref->size;
353
354 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
355 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
356 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
357 && (ref->offset < 0
358 || (DECL_P (ref->base)
359 && (!host_integerp (DECL_SIZE (ref->base), 1)
360 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
361 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
362 return false;
363
364 return true;
365 }
366
367 /* Query the alias-oracle on whether the two memory rtx X and MEM may
368 alias. If TBAA_P is set also apply TBAA. Returns true if the
369 two rtxen may alias, false otherwise. */
370
371 static bool
372 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
373 {
374 ao_ref ref1, ref2;
375
376 if (!ao_ref_from_mem (&ref1, x)
377 || !ao_ref_from_mem (&ref2, mem))
378 return true;
379
380 return refs_may_alias_p_1 (&ref1, &ref2,
381 tbaa_p
382 && MEM_ALIAS_SET (x) != 0
383 && MEM_ALIAS_SET (mem) != 0);
384 }
385
386 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
387 such an entry, or NULL otherwise. */
388
389 static inline alias_set_entry
390 get_alias_set_entry (alias_set_type alias_set)
391 {
392 return (*alias_sets)[alias_set];
393 }
394
395 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
396 the two MEMs cannot alias each other. */
397
398 static inline int
399 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
400 {
401 /* Perform a basic sanity check. Namely, that there are no alias sets
402 if we're not using strict aliasing. This helps to catch bugs
403 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
404 where a MEM is allocated in some way other than by the use of
405 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
406 use alias sets to indicate that spilled registers cannot alias each
407 other, we might need to remove this check. */
408 gcc_assert (flag_strict_aliasing
409 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
410
411 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
412 }
413
414 /* Insert the NODE into the splay tree given by DATA. Used by
415 record_alias_subset via splay_tree_foreach. */
416
417 static int
418 insert_subset_children (splay_tree_node node, void *data)
419 {
420 splay_tree_insert ((splay_tree) data, node->key, node->value);
421
422 return 0;
423 }
424
425 /* Return true if the first alias set is a subset of the second. */
426
427 bool
428 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
429 {
430 alias_set_entry ase;
431
432 /* Everything is a subset of the "aliases everything" set. */
433 if (set2 == 0)
434 return true;
435
436 /* Otherwise, check if set1 is a subset of set2. */
437 ase = get_alias_set_entry (set2);
438 if (ase != 0
439 && (ase->has_zero_child
440 || splay_tree_lookup (ase->children,
441 (splay_tree_key) set1)))
442 return true;
443 return false;
444 }
445
446 /* Return 1 if the two specified alias sets may conflict. */
447
448 int
449 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
450 {
451 alias_set_entry ase;
452
453 /* The easy case. */
454 if (alias_sets_must_conflict_p (set1, set2))
455 return 1;
456
457 /* See if the first alias set is a subset of the second. */
458 ase = get_alias_set_entry (set1);
459 if (ase != 0
460 && (ase->has_zero_child
461 || splay_tree_lookup (ase->children,
462 (splay_tree_key) set2)))
463 return 1;
464
465 /* Now do the same, but with the alias sets reversed. */
466 ase = get_alias_set_entry (set2);
467 if (ase != 0
468 && (ase->has_zero_child
469 || splay_tree_lookup (ase->children,
470 (splay_tree_key) set1)))
471 return 1;
472
473 /* The two alias sets are distinct and neither one is the
474 child of the other. Therefore, they cannot conflict. */
475 return 0;
476 }
477
478 /* Return 1 if the two specified alias sets will always conflict. */
479
480 int
481 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
482 {
483 if (set1 == 0 || set2 == 0 || set1 == set2)
484 return 1;
485
486 return 0;
487 }
488
489 /* Return 1 if any MEM object of type T1 will always conflict (using the
490 dependency routines in this file) with any MEM object of type T2.
491 This is used when allocating temporary storage. If T1 and/or T2 are
492 NULL_TREE, it means we know nothing about the storage. */
493
494 int
495 objects_must_conflict_p (tree t1, tree t2)
496 {
497 alias_set_type set1, set2;
498
499 /* If neither has a type specified, we don't know if they'll conflict
500 because we may be using them to store objects of various types, for
501 example the argument and local variables areas of inlined functions. */
502 if (t1 == 0 && t2 == 0)
503 return 0;
504
505 /* If they are the same type, they must conflict. */
506 if (t1 == t2
507 /* Likewise if both are volatile. */
508 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
509 return 1;
510
511 set1 = t1 ? get_alias_set (t1) : 0;
512 set2 = t2 ? get_alias_set (t2) : 0;
513
514 /* We can't use alias_sets_conflict_p because we must make sure
515 that every subtype of t1 will conflict with every subtype of
516 t2 for which a pair of subobjects of these respective subtypes
517 overlaps on the stack. */
518 return alias_sets_must_conflict_p (set1, set2);
519 }
520 \f
521 /* Return true if all nested component references handled by
522 get_inner_reference in T are such that we should use the alias set
523 provided by the object at the heart of T.
524
525 This is true for non-addressable components (which don't have their
526 own alias set), as well as components of objects in alias set zero.
527 This later point is a special case wherein we wish to override the
528 alias set used by the component, but we don't have per-FIELD_DECL
529 assignable alias sets. */
530
531 bool
532 component_uses_parent_alias_set (const_tree t)
533 {
534 while (1)
535 {
536 /* If we're at the end, it vacuously uses its own alias set. */
537 if (!handled_component_p (t))
538 return false;
539
540 switch (TREE_CODE (t))
541 {
542 case COMPONENT_REF:
543 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
544 return true;
545 break;
546
547 case ARRAY_REF:
548 case ARRAY_RANGE_REF:
549 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
550 return true;
551 break;
552
553 case REALPART_EXPR:
554 case IMAGPART_EXPR:
555 break;
556
557 default:
558 /* Bitfields and casts are never addressable. */
559 return true;
560 }
561
562 t = TREE_OPERAND (t, 0);
563 if (get_alias_set (TREE_TYPE (t)) == 0)
564 return true;
565 }
566 }
567
568 /* Return the alias set for the memory pointed to by T, which may be
569 either a type or an expression. Return -1 if there is nothing
570 special about dereferencing T. */
571
572 static alias_set_type
573 get_deref_alias_set_1 (tree t)
574 {
575 /* If we're not doing any alias analysis, just assume everything
576 aliases everything else. */
577 if (!flag_strict_aliasing)
578 return 0;
579
580 /* All we care about is the type. */
581 if (! TYPE_P (t))
582 t = TREE_TYPE (t);
583
584 /* If we have an INDIRECT_REF via a void pointer, we don't
585 know anything about what that might alias. Likewise if the
586 pointer is marked that way. */
587 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
588 || TYPE_REF_CAN_ALIAS_ALL (t))
589 return 0;
590
591 return -1;
592 }
593
594 /* Return the alias set for the memory pointed to by T, which may be
595 either a type or an expression. */
596
597 alias_set_type
598 get_deref_alias_set (tree t)
599 {
600 alias_set_type set = get_deref_alias_set_1 (t);
601
602 /* Fall back to the alias-set of the pointed-to type. */
603 if (set == -1)
604 {
605 if (! TYPE_P (t))
606 t = TREE_TYPE (t);
607 set = get_alias_set (TREE_TYPE (t));
608 }
609
610 return set;
611 }
612
613 /* Return the alias set for T, which may be either a type or an
614 expression. Call language-specific routine for help, if needed. */
615
616 alias_set_type
617 get_alias_set (tree t)
618 {
619 alias_set_type set;
620
621 /* If we're not doing any alias analysis, just assume everything
622 aliases everything else. Also return 0 if this or its type is
623 an error. */
624 if (! flag_strict_aliasing || t == error_mark_node
625 || (! TYPE_P (t)
626 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
627 return 0;
628
629 /* We can be passed either an expression or a type. This and the
630 language-specific routine may make mutually-recursive calls to each other
631 to figure out what to do. At each juncture, we see if this is a tree
632 that the language may need to handle specially. First handle things that
633 aren't types. */
634 if (! TYPE_P (t))
635 {
636 tree inner;
637
638 /* Give the language a chance to do something with this tree
639 before we look at it. */
640 STRIP_NOPS (t);
641 set = lang_hooks.get_alias_set (t);
642 if (set != -1)
643 return set;
644
645 /* Get the base object of the reference. */
646 inner = t;
647 while (handled_component_p (inner))
648 {
649 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
650 the type of any component references that wrap it to
651 determine the alias-set. */
652 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
653 t = TREE_OPERAND (inner, 0);
654 inner = TREE_OPERAND (inner, 0);
655 }
656
657 /* Handle pointer dereferences here, they can override the
658 alias-set. */
659 if (INDIRECT_REF_P (inner))
660 {
661 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
662 if (set != -1)
663 return set;
664 }
665 else if (TREE_CODE (inner) == TARGET_MEM_REF)
666 return get_deref_alias_set (TMR_OFFSET (inner));
667 else if (TREE_CODE (inner) == MEM_REF)
668 {
669 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
670 if (set != -1)
671 return set;
672 }
673
674 /* If the innermost reference is a MEM_REF that has a
675 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
676 using the memory access type for determining the alias-set. */
677 if (TREE_CODE (inner) == MEM_REF
678 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
679 != TYPE_MAIN_VARIANT
680 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
681 return get_deref_alias_set (TREE_OPERAND (inner, 1));
682
683 /* Otherwise, pick up the outermost object that we could have a pointer
684 to, processing conversions as above. */
685 while (component_uses_parent_alias_set (t))
686 {
687 t = TREE_OPERAND (t, 0);
688 STRIP_NOPS (t);
689 }
690
691 /* If we've already determined the alias set for a decl, just return
692 it. This is necessary for C++ anonymous unions, whose component
693 variables don't look like union members (boo!). */
694 if (TREE_CODE (t) == VAR_DECL
695 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
696 return MEM_ALIAS_SET (DECL_RTL (t));
697
698 /* Now all we care about is the type. */
699 t = TREE_TYPE (t);
700 }
701
702 /* Variant qualifiers don't affect the alias set, so get the main
703 variant. */
704 t = TYPE_MAIN_VARIANT (t);
705
706 /* Always use the canonical type as well. If this is a type that
707 requires structural comparisons to identify compatible types
708 use alias set zero. */
709 if (TYPE_STRUCTURAL_EQUALITY_P (t))
710 {
711 /* Allow the language to specify another alias set for this
712 type. */
713 set = lang_hooks.get_alias_set (t);
714 if (set != -1)
715 return set;
716 return 0;
717 }
718
719 t = TYPE_CANONICAL (t);
720
721 /* The canonical type should not require structural equality checks. */
722 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
723
724 /* If this is a type with a known alias set, return it. */
725 if (TYPE_ALIAS_SET_KNOWN_P (t))
726 return TYPE_ALIAS_SET (t);
727
728 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
729 if (!COMPLETE_TYPE_P (t))
730 {
731 /* For arrays with unknown size the conservative answer is the
732 alias set of the element type. */
733 if (TREE_CODE (t) == ARRAY_TYPE)
734 return get_alias_set (TREE_TYPE (t));
735
736 /* But return zero as a conservative answer for incomplete types. */
737 return 0;
738 }
739
740 /* See if the language has special handling for this type. */
741 set = lang_hooks.get_alias_set (t);
742 if (set != -1)
743 return set;
744
745 /* There are no objects of FUNCTION_TYPE, so there's no point in
746 using up an alias set for them. (There are, of course, pointers
747 and references to functions, but that's different.) */
748 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
749 set = 0;
750
751 /* Unless the language specifies otherwise, let vector types alias
752 their components. This avoids some nasty type punning issues in
753 normal usage. And indeed lets vectors be treated more like an
754 array slice. */
755 else if (TREE_CODE (t) == VECTOR_TYPE)
756 set = get_alias_set (TREE_TYPE (t));
757
758 /* Unless the language specifies otherwise, treat array types the
759 same as their components. This avoids the asymmetry we get
760 through recording the components. Consider accessing a
761 character(kind=1) through a reference to a character(kind=1)[1:1].
762 Or consider if we want to assign integer(kind=4)[0:D.1387] and
763 integer(kind=4)[4] the same alias set or not.
764 Just be pragmatic here and make sure the array and its element
765 type get the same alias set assigned. */
766 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
767 set = get_alias_set (TREE_TYPE (t));
768
769 /* From the former common C and C++ langhook implementation:
770
771 Unfortunately, there is no canonical form of a pointer type.
772 In particular, if we have `typedef int I', then `int *', and
773 `I *' are different types. So, we have to pick a canonical
774 representative. We do this below.
775
776 Technically, this approach is actually more conservative that
777 it needs to be. In particular, `const int *' and `int *'
778 should be in different alias sets, according to the C and C++
779 standard, since their types are not the same, and so,
780 technically, an `int **' and `const int **' cannot point at
781 the same thing.
782
783 But, the standard is wrong. In particular, this code is
784 legal C++:
785
786 int *ip;
787 int **ipp = &ip;
788 const int* const* cipp = ipp;
789 And, it doesn't make sense for that to be legal unless you
790 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
791 the pointed-to types. This issue has been reported to the
792 C++ committee.
793
794 In addition to the above canonicalization issue, with LTO
795 we should also canonicalize `T (*)[]' to `T *' avoiding
796 alias issues with pointer-to element types and pointer-to
797 array types.
798
799 Likewise we need to deal with the situation of incomplete
800 pointed-to types and make `*(struct X **)&a' and
801 `*(struct X {} **)&a' alias. Otherwise we will have to
802 guarantee that all pointer-to incomplete type variants
803 will be replaced by pointer-to complete type variants if
804 they are available.
805
806 With LTO the convenient situation of using `void *' to
807 access and store any pointer type will also become
808 more apparent (and `void *' is just another pointer-to
809 incomplete type). Assigning alias-set zero to `void *'
810 and all pointer-to incomplete types is a not appealing
811 solution. Assigning an effective alias-set zero only
812 affecting pointers might be - by recording proper subset
813 relationships of all pointer alias-sets.
814
815 Pointer-to function types are another grey area which
816 needs caution. Globbing them all into one alias-set
817 or the above effective zero set would work.
818
819 For now just assign the same alias-set to all pointers.
820 That's simple and avoids all the above problems. */
821 else if (POINTER_TYPE_P (t)
822 && t != ptr_type_node)
823 set = get_alias_set (ptr_type_node);
824
825 /* Otherwise make a new alias set for this type. */
826 else
827 {
828 /* Each canonical type gets its own alias set, so canonical types
829 shouldn't form a tree. It doesn't really matter for types
830 we handle specially above, so only check it where it possibly
831 would result in a bogus alias set. */
832 gcc_checking_assert (TYPE_CANONICAL (t) == t);
833
834 set = new_alias_set ();
835 }
836
837 TYPE_ALIAS_SET (t) = set;
838
839 /* If this is an aggregate type or a complex type, we must record any
840 component aliasing information. */
841 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
842 record_component_aliases (t);
843
844 return set;
845 }
846
847 /* Return a brand-new alias set. */
848
849 alias_set_type
850 new_alias_set (void)
851 {
852 if (flag_strict_aliasing)
853 {
854 if (alias_sets == 0)
855 vec_safe_push (alias_sets, (alias_set_entry) 0);
856 vec_safe_push (alias_sets, (alias_set_entry) 0);
857 return alias_sets->length () - 1;
858 }
859 else
860 return 0;
861 }
862
863 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
864 not everything that aliases SUPERSET also aliases SUBSET. For example,
865 in C, a store to an `int' can alias a load of a structure containing an
866 `int', and vice versa. But it can't alias a load of a 'double' member
867 of the same structure. Here, the structure would be the SUPERSET and
868 `int' the SUBSET. This relationship is also described in the comment at
869 the beginning of this file.
870
871 This function should be called only once per SUPERSET/SUBSET pair.
872
873 It is illegal for SUPERSET to be zero; everything is implicitly a
874 subset of alias set zero. */
875
876 void
877 record_alias_subset (alias_set_type superset, alias_set_type subset)
878 {
879 alias_set_entry superset_entry;
880 alias_set_entry subset_entry;
881
882 /* It is possible in complex type situations for both sets to be the same,
883 in which case we can ignore this operation. */
884 if (superset == subset)
885 return;
886
887 gcc_assert (superset);
888
889 superset_entry = get_alias_set_entry (superset);
890 if (superset_entry == 0)
891 {
892 /* Create an entry for the SUPERSET, so that we have a place to
893 attach the SUBSET. */
894 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
895 superset_entry->alias_set = superset;
896 superset_entry->children
897 = splay_tree_new_ggc (splay_tree_compare_ints,
898 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
899 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
900 superset_entry->has_zero_child = 0;
901 (*alias_sets)[superset] = superset_entry;
902 }
903
904 if (subset == 0)
905 superset_entry->has_zero_child = 1;
906 else
907 {
908 subset_entry = get_alias_set_entry (subset);
909 /* If there is an entry for the subset, enter all of its children
910 (if they are not already present) as children of the SUPERSET. */
911 if (subset_entry)
912 {
913 if (subset_entry->has_zero_child)
914 superset_entry->has_zero_child = 1;
915
916 splay_tree_foreach (subset_entry->children, insert_subset_children,
917 superset_entry->children);
918 }
919
920 /* Enter the SUBSET itself as a child of the SUPERSET. */
921 splay_tree_insert (superset_entry->children,
922 (splay_tree_key) subset, 0);
923 }
924 }
925
926 /* Record that component types of TYPE, if any, are part of that type for
927 aliasing purposes. For record types, we only record component types
928 for fields that are not marked non-addressable. For array types, we
929 only record the component type if it is not marked non-aliased. */
930
931 void
932 record_component_aliases (tree type)
933 {
934 alias_set_type superset = get_alias_set (type);
935 tree field;
936
937 if (superset == 0)
938 return;
939
940 switch (TREE_CODE (type))
941 {
942 case RECORD_TYPE:
943 case UNION_TYPE:
944 case QUAL_UNION_TYPE:
945 /* Recursively record aliases for the base classes, if there are any. */
946 if (TYPE_BINFO (type))
947 {
948 int i;
949 tree binfo, base_binfo;
950
951 for (binfo = TYPE_BINFO (type), i = 0;
952 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
953 record_alias_subset (superset,
954 get_alias_set (BINFO_TYPE (base_binfo)));
955 }
956 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
957 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
958 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
959 break;
960
961 case COMPLEX_TYPE:
962 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
963 break;
964
965 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
966 element type. */
967
968 default:
969 break;
970 }
971 }
972
973 /* Allocate an alias set for use in storing and reading from the varargs
974 spill area. */
975
976 static GTY(()) alias_set_type varargs_set = -1;
977
978 alias_set_type
979 get_varargs_alias_set (void)
980 {
981 #if 1
982 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
983 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
984 consistently use the varargs alias set for loads from the varargs
985 area. So don't use it anywhere. */
986 return 0;
987 #else
988 if (varargs_set == -1)
989 varargs_set = new_alias_set ();
990
991 return varargs_set;
992 #endif
993 }
994
995 /* Likewise, but used for the fixed portions of the frame, e.g., register
996 save areas. */
997
998 static GTY(()) alias_set_type frame_set = -1;
999
1000 alias_set_type
1001 get_frame_alias_set (void)
1002 {
1003 if (frame_set == -1)
1004 frame_set = new_alias_set ();
1005
1006 return frame_set;
1007 }
1008
1009 /* Create a new, unique base with id ID. */
1010
1011 static rtx
1012 unique_base_value (HOST_WIDE_INT id)
1013 {
1014 return gen_rtx_ADDRESS (Pmode, id);
1015 }
1016
1017 /* Return true if accesses based on any other base value cannot alias
1018 those based on X. */
1019
1020 static bool
1021 unique_base_value_p (rtx x)
1022 {
1023 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1024 }
1025
1026 /* Return true if X is known to be a base value. */
1027
1028 static bool
1029 known_base_value_p (rtx x)
1030 {
1031 switch (GET_CODE (x))
1032 {
1033 case LABEL_REF:
1034 case SYMBOL_REF:
1035 return true;
1036
1037 case ADDRESS:
1038 /* Arguments may or may not be bases; we don't know for sure. */
1039 return GET_MODE (x) != VOIDmode;
1040
1041 default:
1042 return false;
1043 }
1044 }
1045
1046 /* Inside SRC, the source of a SET, find a base address. */
1047
1048 static rtx
1049 find_base_value (rtx src)
1050 {
1051 unsigned int regno;
1052
1053 #if defined (FIND_BASE_TERM)
1054 /* Try machine-dependent ways to find the base term. */
1055 src = FIND_BASE_TERM (src);
1056 #endif
1057
1058 switch (GET_CODE (src))
1059 {
1060 case SYMBOL_REF:
1061 case LABEL_REF:
1062 return src;
1063
1064 case REG:
1065 regno = REGNO (src);
1066 /* At the start of a function, argument registers have known base
1067 values which may be lost later. Returning an ADDRESS
1068 expression here allows optimization based on argument values
1069 even when the argument registers are used for other purposes. */
1070 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1071 return new_reg_base_value[regno];
1072
1073 /* If a pseudo has a known base value, return it. Do not do this
1074 for non-fixed hard regs since it can result in a circular
1075 dependency chain for registers which have values at function entry.
1076
1077 The test above is not sufficient because the scheduler may move
1078 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1079 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1080 && regno < vec_safe_length (reg_base_value))
1081 {
1082 /* If we're inside init_alias_analysis, use new_reg_base_value
1083 to reduce the number of relaxation iterations. */
1084 if (new_reg_base_value && new_reg_base_value[regno]
1085 && DF_REG_DEF_COUNT (regno) == 1)
1086 return new_reg_base_value[regno];
1087
1088 if ((*reg_base_value)[regno])
1089 return (*reg_base_value)[regno];
1090 }
1091
1092 return 0;
1093
1094 case MEM:
1095 /* Check for an argument passed in memory. Only record in the
1096 copying-arguments block; it is too hard to track changes
1097 otherwise. */
1098 if (copying_arguments
1099 && (XEXP (src, 0) == arg_pointer_rtx
1100 || (GET_CODE (XEXP (src, 0)) == PLUS
1101 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1102 return arg_base_value;
1103 return 0;
1104
1105 case CONST:
1106 src = XEXP (src, 0);
1107 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1108 break;
1109
1110 /* ... fall through ... */
1111
1112 case PLUS:
1113 case MINUS:
1114 {
1115 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1116
1117 /* If either operand is a REG that is a known pointer, then it
1118 is the base. */
1119 if (REG_P (src_0) && REG_POINTER (src_0))
1120 return find_base_value (src_0);
1121 if (REG_P (src_1) && REG_POINTER (src_1))
1122 return find_base_value (src_1);
1123
1124 /* If either operand is a REG, then see if we already have
1125 a known value for it. */
1126 if (REG_P (src_0))
1127 {
1128 temp = find_base_value (src_0);
1129 if (temp != 0)
1130 src_0 = temp;
1131 }
1132
1133 if (REG_P (src_1))
1134 {
1135 temp = find_base_value (src_1);
1136 if (temp!= 0)
1137 src_1 = temp;
1138 }
1139
1140 /* If either base is named object or a special address
1141 (like an argument or stack reference), then use it for the
1142 base term. */
1143 if (src_0 != 0 && known_base_value_p (src_0))
1144 return src_0;
1145
1146 if (src_1 != 0 && known_base_value_p (src_1))
1147 return src_1;
1148
1149 /* Guess which operand is the base address:
1150 If either operand is a symbol, then it is the base. If
1151 either operand is a CONST_INT, then the other is the base. */
1152 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1153 return find_base_value (src_0);
1154 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1155 return find_base_value (src_1);
1156
1157 return 0;
1158 }
1159
1160 case LO_SUM:
1161 /* The standard form is (lo_sum reg sym) so look only at the
1162 second operand. */
1163 return find_base_value (XEXP (src, 1));
1164
1165 case AND:
1166 /* If the second operand is constant set the base
1167 address to the first operand. */
1168 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1169 return find_base_value (XEXP (src, 0));
1170 return 0;
1171
1172 case TRUNCATE:
1173 /* As we do not know which address space the pointer is referring to, we can
1174 handle this only if the target does not support different pointer or
1175 address modes depending on the address space. */
1176 if (!target_default_pointer_address_modes_p ())
1177 break;
1178 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1179 break;
1180 /* Fall through. */
1181 case HIGH:
1182 case PRE_INC:
1183 case PRE_DEC:
1184 case POST_INC:
1185 case POST_DEC:
1186 case PRE_MODIFY:
1187 case POST_MODIFY:
1188 return find_base_value (XEXP (src, 0));
1189
1190 case ZERO_EXTEND:
1191 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1192 /* As we do not know which address space the pointer is referring to, we can
1193 handle this only if the target does not support different pointer or
1194 address modes depending on the address space. */
1195 if (!target_default_pointer_address_modes_p ())
1196 break;
1197
1198 {
1199 rtx temp = find_base_value (XEXP (src, 0));
1200
1201 if (temp != 0 && CONSTANT_P (temp))
1202 temp = convert_memory_address (Pmode, temp);
1203
1204 return temp;
1205 }
1206
1207 default:
1208 break;
1209 }
1210
1211 return 0;
1212 }
1213
1214 /* Called from init_alias_analysis indirectly through note_stores,
1215 or directly if DEST is a register with a REG_NOALIAS note attached.
1216 SET is null in the latter case. */
1217
1218 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1219 register N has been set in this function. */
1220 static sbitmap reg_seen;
1221
1222 static void
1223 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1224 {
1225 unsigned regno;
1226 rtx src;
1227 int n;
1228
1229 if (!REG_P (dest))
1230 return;
1231
1232 regno = REGNO (dest);
1233
1234 gcc_checking_assert (regno < reg_base_value->length ());
1235
1236 /* If this spans multiple hard registers, then we must indicate that every
1237 register has an unusable value. */
1238 if (regno < FIRST_PSEUDO_REGISTER)
1239 n = hard_regno_nregs[regno][GET_MODE (dest)];
1240 else
1241 n = 1;
1242 if (n != 1)
1243 {
1244 while (--n >= 0)
1245 {
1246 bitmap_set_bit (reg_seen, regno + n);
1247 new_reg_base_value[regno + n] = 0;
1248 }
1249 return;
1250 }
1251
1252 if (set)
1253 {
1254 /* A CLOBBER wipes out any old value but does not prevent a previously
1255 unset register from acquiring a base address (i.e. reg_seen is not
1256 set). */
1257 if (GET_CODE (set) == CLOBBER)
1258 {
1259 new_reg_base_value[regno] = 0;
1260 return;
1261 }
1262 src = SET_SRC (set);
1263 }
1264 else
1265 {
1266 /* There's a REG_NOALIAS note against DEST. */
1267 if (bitmap_bit_p (reg_seen, regno))
1268 {
1269 new_reg_base_value[regno] = 0;
1270 return;
1271 }
1272 bitmap_set_bit (reg_seen, regno);
1273 new_reg_base_value[regno] = unique_base_value (unique_id++);
1274 return;
1275 }
1276
1277 /* If this is not the first set of REGNO, see whether the new value
1278 is related to the old one. There are two cases of interest:
1279
1280 (1) The register might be assigned an entirely new value
1281 that has the same base term as the original set.
1282
1283 (2) The set might be a simple self-modification that
1284 cannot change REGNO's base value.
1285
1286 If neither case holds, reject the original base value as invalid.
1287 Note that the following situation is not detected:
1288
1289 extern int x, y; int *p = &x; p += (&y-&x);
1290
1291 ANSI C does not allow computing the difference of addresses
1292 of distinct top level objects. */
1293 if (new_reg_base_value[regno] != 0
1294 && find_base_value (src) != new_reg_base_value[regno])
1295 switch (GET_CODE (src))
1296 {
1297 case LO_SUM:
1298 case MINUS:
1299 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1300 new_reg_base_value[regno] = 0;
1301 break;
1302 case PLUS:
1303 /* If the value we add in the PLUS is also a valid base value,
1304 this might be the actual base value, and the original value
1305 an index. */
1306 {
1307 rtx other = NULL_RTX;
1308
1309 if (XEXP (src, 0) == dest)
1310 other = XEXP (src, 1);
1311 else if (XEXP (src, 1) == dest)
1312 other = XEXP (src, 0);
1313
1314 if (! other || find_base_value (other))
1315 new_reg_base_value[regno] = 0;
1316 break;
1317 }
1318 case AND:
1319 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1320 new_reg_base_value[regno] = 0;
1321 break;
1322 default:
1323 new_reg_base_value[regno] = 0;
1324 break;
1325 }
1326 /* If this is the first set of a register, record the value. */
1327 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1328 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1329 new_reg_base_value[regno] = find_base_value (src);
1330
1331 bitmap_set_bit (reg_seen, regno);
1332 }
1333
1334 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1335 using hard registers with non-null REG_BASE_VALUE for renaming. */
1336 rtx
1337 get_reg_base_value (unsigned int regno)
1338 {
1339 return (*reg_base_value)[regno];
1340 }
1341
1342 /* If a value is known for REGNO, return it. */
1343
1344 rtx
1345 get_reg_known_value (unsigned int regno)
1346 {
1347 if (regno >= FIRST_PSEUDO_REGISTER)
1348 {
1349 regno -= FIRST_PSEUDO_REGISTER;
1350 if (regno < vec_safe_length (reg_known_value))
1351 return (*reg_known_value)[regno];
1352 }
1353 return NULL;
1354 }
1355
1356 /* Set it. */
1357
1358 static void
1359 set_reg_known_value (unsigned int regno, rtx val)
1360 {
1361 if (regno >= FIRST_PSEUDO_REGISTER)
1362 {
1363 regno -= FIRST_PSEUDO_REGISTER;
1364 if (regno < vec_safe_length (reg_known_value))
1365 (*reg_known_value)[regno] = val;
1366 }
1367 }
1368
1369 /* Similarly for reg_known_equiv_p. */
1370
1371 bool
1372 get_reg_known_equiv_p (unsigned int regno)
1373 {
1374 if (regno >= FIRST_PSEUDO_REGISTER)
1375 {
1376 regno -= FIRST_PSEUDO_REGISTER;
1377 if (regno < vec_safe_length (reg_known_value))
1378 return bitmap_bit_p (reg_known_equiv_p, regno);
1379 }
1380 return false;
1381 }
1382
1383 static void
1384 set_reg_known_equiv_p (unsigned int regno, bool val)
1385 {
1386 if (regno >= FIRST_PSEUDO_REGISTER)
1387 {
1388 regno -= FIRST_PSEUDO_REGISTER;
1389 if (regno < vec_safe_length (reg_known_value))
1390 {
1391 if (val)
1392 bitmap_set_bit (reg_known_equiv_p, regno);
1393 else
1394 bitmap_clear_bit (reg_known_equiv_p, regno);
1395 }
1396 }
1397 }
1398
1399
1400 /* Returns a canonical version of X, from the point of view alias
1401 analysis. (For example, if X is a MEM whose address is a register,
1402 and the register has a known value (say a SYMBOL_REF), then a MEM
1403 whose address is the SYMBOL_REF is returned.) */
1404
1405 rtx
1406 canon_rtx (rtx x)
1407 {
1408 /* Recursively look for equivalences. */
1409 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1410 {
1411 rtx t = get_reg_known_value (REGNO (x));
1412 if (t == x)
1413 return x;
1414 if (t)
1415 return canon_rtx (t);
1416 }
1417
1418 if (GET_CODE (x) == PLUS)
1419 {
1420 rtx x0 = canon_rtx (XEXP (x, 0));
1421 rtx x1 = canon_rtx (XEXP (x, 1));
1422
1423 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1424 {
1425 if (CONST_INT_P (x0))
1426 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1427 else if (CONST_INT_P (x1))
1428 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1429 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1430 }
1431 }
1432
1433 /* This gives us much better alias analysis when called from
1434 the loop optimizer. Note we want to leave the original
1435 MEM alone, but need to return the canonicalized MEM with
1436 all the flags with their original values. */
1437 else if (MEM_P (x))
1438 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1439
1440 return x;
1441 }
1442
1443 /* Return 1 if X and Y are identical-looking rtx's.
1444 Expect that X and Y has been already canonicalized.
1445
1446 We use the data in reg_known_value above to see if two registers with
1447 different numbers are, in fact, equivalent. */
1448
1449 static int
1450 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1451 {
1452 int i;
1453 int j;
1454 enum rtx_code code;
1455 const char *fmt;
1456
1457 if (x == 0 && y == 0)
1458 return 1;
1459 if (x == 0 || y == 0)
1460 return 0;
1461
1462 if (x == y)
1463 return 1;
1464
1465 code = GET_CODE (x);
1466 /* Rtx's of different codes cannot be equal. */
1467 if (code != GET_CODE (y))
1468 return 0;
1469
1470 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1471 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1472
1473 if (GET_MODE (x) != GET_MODE (y))
1474 return 0;
1475
1476 /* Some RTL can be compared without a recursive examination. */
1477 switch (code)
1478 {
1479 case REG:
1480 return REGNO (x) == REGNO (y);
1481
1482 case LABEL_REF:
1483 return XEXP (x, 0) == XEXP (y, 0);
1484
1485 case SYMBOL_REF:
1486 return XSTR (x, 0) == XSTR (y, 0);
1487
1488 case VALUE:
1489 CASE_CONST_UNIQUE:
1490 /* There's no need to compare the contents of CONST_DOUBLEs or
1491 CONST_INTs because pointer equality is a good enough
1492 comparison for these nodes. */
1493 return 0;
1494
1495 default:
1496 break;
1497 }
1498
1499 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1500 if (code == PLUS)
1501 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1502 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1503 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1504 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1505 /* For commutative operations, the RTX match if the operand match in any
1506 order. Also handle the simple binary and unary cases without a loop. */
1507 if (COMMUTATIVE_P (x))
1508 {
1509 rtx xop0 = canon_rtx (XEXP (x, 0));
1510 rtx yop0 = canon_rtx (XEXP (y, 0));
1511 rtx yop1 = canon_rtx (XEXP (y, 1));
1512
1513 return ((rtx_equal_for_memref_p (xop0, yop0)
1514 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1515 || (rtx_equal_for_memref_p (xop0, yop1)
1516 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1517 }
1518 else if (NON_COMMUTATIVE_P (x))
1519 {
1520 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1521 canon_rtx (XEXP (y, 0)))
1522 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1523 canon_rtx (XEXP (y, 1))));
1524 }
1525 else if (UNARY_P (x))
1526 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1527 canon_rtx (XEXP (y, 0)));
1528
1529 /* Compare the elements. If any pair of corresponding elements
1530 fail to match, return 0 for the whole things.
1531
1532 Limit cases to types which actually appear in addresses. */
1533
1534 fmt = GET_RTX_FORMAT (code);
1535 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1536 {
1537 switch (fmt[i])
1538 {
1539 case 'i':
1540 if (XINT (x, i) != XINT (y, i))
1541 return 0;
1542 break;
1543
1544 case 'E':
1545 /* Two vectors must have the same length. */
1546 if (XVECLEN (x, i) != XVECLEN (y, i))
1547 return 0;
1548
1549 /* And the corresponding elements must match. */
1550 for (j = 0; j < XVECLEN (x, i); j++)
1551 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1552 canon_rtx (XVECEXP (y, i, j))) == 0)
1553 return 0;
1554 break;
1555
1556 case 'e':
1557 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1558 canon_rtx (XEXP (y, i))) == 0)
1559 return 0;
1560 break;
1561
1562 /* This can happen for asm operands. */
1563 case 's':
1564 if (strcmp (XSTR (x, i), XSTR (y, i)))
1565 return 0;
1566 break;
1567
1568 /* This can happen for an asm which clobbers memory. */
1569 case '0':
1570 break;
1571
1572 /* It is believed that rtx's at this level will never
1573 contain anything but integers and other rtx's,
1574 except for within LABEL_REFs and SYMBOL_REFs. */
1575 default:
1576 gcc_unreachable ();
1577 }
1578 }
1579 return 1;
1580 }
1581
1582 static rtx
1583 find_base_term (rtx x)
1584 {
1585 cselib_val *val;
1586 struct elt_loc_list *l, *f;
1587 rtx ret;
1588
1589 #if defined (FIND_BASE_TERM)
1590 /* Try machine-dependent ways to find the base term. */
1591 x = FIND_BASE_TERM (x);
1592 #endif
1593
1594 switch (GET_CODE (x))
1595 {
1596 case REG:
1597 return REG_BASE_VALUE (x);
1598
1599 case TRUNCATE:
1600 /* As we do not know which address space the pointer is referring to, we can
1601 handle this only if the target does not support different pointer or
1602 address modes depending on the address space. */
1603 if (!target_default_pointer_address_modes_p ())
1604 return 0;
1605 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1606 return 0;
1607 /* Fall through. */
1608 case HIGH:
1609 case PRE_INC:
1610 case PRE_DEC:
1611 case POST_INC:
1612 case POST_DEC:
1613 case PRE_MODIFY:
1614 case POST_MODIFY:
1615 return find_base_term (XEXP (x, 0));
1616
1617 case ZERO_EXTEND:
1618 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1619 /* As we do not know which address space the pointer is referring to, we can
1620 handle this only if the target does not support different pointer or
1621 address modes depending on the address space. */
1622 if (!target_default_pointer_address_modes_p ())
1623 return 0;
1624
1625 {
1626 rtx temp = find_base_term (XEXP (x, 0));
1627
1628 if (temp != 0 && CONSTANT_P (temp))
1629 temp = convert_memory_address (Pmode, temp);
1630
1631 return temp;
1632 }
1633
1634 case VALUE:
1635 val = CSELIB_VAL_PTR (x);
1636 ret = NULL_RTX;
1637
1638 if (!val)
1639 return ret;
1640
1641 if (cselib_sp_based_value_p (val))
1642 return static_reg_base_value[STACK_POINTER_REGNUM];
1643
1644 f = val->locs;
1645 /* Temporarily reset val->locs to avoid infinite recursion. */
1646 val->locs = NULL;
1647
1648 for (l = f; l; l = l->next)
1649 if (GET_CODE (l->loc) == VALUE
1650 && CSELIB_VAL_PTR (l->loc)->locs
1651 && !CSELIB_VAL_PTR (l->loc)->locs->next
1652 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1653 continue;
1654 else if ((ret = find_base_term (l->loc)) != 0)
1655 break;
1656
1657 val->locs = f;
1658 return ret;
1659
1660 case LO_SUM:
1661 /* The standard form is (lo_sum reg sym) so look only at the
1662 second operand. */
1663 return find_base_term (XEXP (x, 1));
1664
1665 case CONST:
1666 x = XEXP (x, 0);
1667 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1668 return 0;
1669 /* Fall through. */
1670 case PLUS:
1671 case MINUS:
1672 {
1673 rtx tmp1 = XEXP (x, 0);
1674 rtx tmp2 = XEXP (x, 1);
1675
1676 /* This is a little bit tricky since we have to determine which of
1677 the two operands represents the real base address. Otherwise this
1678 routine may return the index register instead of the base register.
1679
1680 That may cause us to believe no aliasing was possible, when in
1681 fact aliasing is possible.
1682
1683 We use a few simple tests to guess the base register. Additional
1684 tests can certainly be added. For example, if one of the operands
1685 is a shift or multiply, then it must be the index register and the
1686 other operand is the base register. */
1687
1688 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1689 return find_base_term (tmp2);
1690
1691 /* If either operand is known to be a pointer, then use it
1692 to determine the base term. */
1693 if (REG_P (tmp1) && REG_POINTER (tmp1))
1694 {
1695 rtx base = find_base_term (tmp1);
1696 if (base)
1697 return base;
1698 }
1699
1700 if (REG_P (tmp2) && REG_POINTER (tmp2))
1701 {
1702 rtx base = find_base_term (tmp2);
1703 if (base)
1704 return base;
1705 }
1706
1707 /* Neither operand was known to be a pointer. Go ahead and find the
1708 base term for both operands. */
1709 tmp1 = find_base_term (tmp1);
1710 tmp2 = find_base_term (tmp2);
1711
1712 /* If either base term is named object or a special address
1713 (like an argument or stack reference), then use it for the
1714 base term. */
1715 if (tmp1 != 0 && known_base_value_p (tmp1))
1716 return tmp1;
1717
1718 if (tmp2 != 0 && known_base_value_p (tmp2))
1719 return tmp2;
1720
1721 /* We could not determine which of the two operands was the
1722 base register and which was the index. So we can determine
1723 nothing from the base alias check. */
1724 return 0;
1725 }
1726
1727 case AND:
1728 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1729 return find_base_term (XEXP (x, 0));
1730 return 0;
1731
1732 case SYMBOL_REF:
1733 case LABEL_REF:
1734 return x;
1735
1736 default:
1737 return 0;
1738 }
1739 }
1740
1741 /* Return true if accesses to address X may alias accesses based
1742 on the stack pointer. */
1743
1744 bool
1745 may_be_sp_based_p (rtx x)
1746 {
1747 rtx base = find_base_term (x);
1748 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1749 }
1750
1751 /* Return 0 if the addresses X and Y are known to point to different
1752 objects, 1 if they might be pointers to the same object. */
1753
1754 static int
1755 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1756 enum machine_mode y_mode)
1757 {
1758 rtx x_base = find_base_term (x);
1759 rtx y_base = find_base_term (y);
1760
1761 /* If the address itself has no known base see if a known equivalent
1762 value has one. If either address still has no known base, nothing
1763 is known about aliasing. */
1764 if (x_base == 0)
1765 {
1766 rtx x_c;
1767
1768 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1769 return 1;
1770
1771 x_base = find_base_term (x_c);
1772 if (x_base == 0)
1773 return 1;
1774 }
1775
1776 if (y_base == 0)
1777 {
1778 rtx y_c;
1779 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1780 return 1;
1781
1782 y_base = find_base_term (y_c);
1783 if (y_base == 0)
1784 return 1;
1785 }
1786
1787 /* If the base addresses are equal nothing is known about aliasing. */
1788 if (rtx_equal_p (x_base, y_base))
1789 return 1;
1790
1791 /* The base addresses are different expressions. If they are not accessed
1792 via AND, there is no conflict. We can bring knowledge of object
1793 alignment into play here. For example, on alpha, "char a, b;" can
1794 alias one another, though "char a; long b;" cannot. AND addesses may
1795 implicitly alias surrounding objects; i.e. unaligned access in DImode
1796 via AND address can alias all surrounding object types except those
1797 with aligment 8 or higher. */
1798 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1799 return 1;
1800 if (GET_CODE (x) == AND
1801 && (!CONST_INT_P (XEXP (x, 1))
1802 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1803 return 1;
1804 if (GET_CODE (y) == AND
1805 && (!CONST_INT_P (XEXP (y, 1))
1806 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1807 return 1;
1808
1809 /* Differing symbols not accessed via AND never alias. */
1810 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1811 return 0;
1812
1813 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1814 return 0;
1815
1816 return 1;
1817 }
1818
1819 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1820 whose UID is greater than the int uid that D points to. */
1821
1822 static int
1823 refs_newer_value_cb (rtx *x, void *d)
1824 {
1825 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1826 return 1;
1827
1828 return 0;
1829 }
1830
1831 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1832 that of V. */
1833
1834 static bool
1835 refs_newer_value_p (rtx expr, rtx v)
1836 {
1837 int minuid = CSELIB_VAL_PTR (v)->uid;
1838
1839 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1840 }
1841
1842 /* Convert the address X into something we can use. This is done by returning
1843 it unchanged unless it is a value; in the latter case we call cselib to get
1844 a more useful rtx. */
1845
1846 rtx
1847 get_addr (rtx x)
1848 {
1849 cselib_val *v;
1850 struct elt_loc_list *l;
1851
1852 if (GET_CODE (x) != VALUE)
1853 return x;
1854 v = CSELIB_VAL_PTR (x);
1855 if (v)
1856 {
1857 bool have_equivs = cselib_have_permanent_equivalences ();
1858 if (have_equivs)
1859 v = canonical_cselib_val (v);
1860 for (l = v->locs; l; l = l->next)
1861 if (CONSTANT_P (l->loc))
1862 return l->loc;
1863 for (l = v->locs; l; l = l->next)
1864 if (!REG_P (l->loc) && !MEM_P (l->loc)
1865 /* Avoid infinite recursion when potentially dealing with
1866 var-tracking artificial equivalences, by skipping the
1867 equivalences themselves, and not choosing expressions
1868 that refer to newer VALUEs. */
1869 && (!have_equivs
1870 || (GET_CODE (l->loc) != VALUE
1871 && !refs_newer_value_p (l->loc, x))))
1872 return l->loc;
1873 if (have_equivs)
1874 {
1875 for (l = v->locs; l; l = l->next)
1876 if (REG_P (l->loc)
1877 || (GET_CODE (l->loc) != VALUE
1878 && !refs_newer_value_p (l->loc, x)))
1879 return l->loc;
1880 /* Return the canonical value. */
1881 return v->val_rtx;
1882 }
1883 if (v->locs)
1884 return v->locs->loc;
1885 }
1886 return x;
1887 }
1888
1889 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1890 where SIZE is the size in bytes of the memory reference. If ADDR
1891 is not modified by the memory reference then ADDR is returned. */
1892
1893 static rtx
1894 addr_side_effect_eval (rtx addr, int size, int n_refs)
1895 {
1896 int offset = 0;
1897
1898 switch (GET_CODE (addr))
1899 {
1900 case PRE_INC:
1901 offset = (n_refs + 1) * size;
1902 break;
1903 case PRE_DEC:
1904 offset = -(n_refs + 1) * size;
1905 break;
1906 case POST_INC:
1907 offset = n_refs * size;
1908 break;
1909 case POST_DEC:
1910 offset = -n_refs * size;
1911 break;
1912
1913 default:
1914 return addr;
1915 }
1916
1917 if (offset)
1918 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1919 GEN_INT (offset));
1920 else
1921 addr = XEXP (addr, 0);
1922 addr = canon_rtx (addr);
1923
1924 return addr;
1925 }
1926
1927 /* Return one if X and Y (memory addresses) reference the
1928 same location in memory or if the references overlap.
1929 Return zero if they do not overlap, else return
1930 minus one in which case they still might reference the same location.
1931
1932 C is an offset accumulator. When
1933 C is nonzero, we are testing aliases between X and Y + C.
1934 XSIZE is the size in bytes of the X reference,
1935 similarly YSIZE is the size in bytes for Y.
1936 Expect that canon_rtx has been already called for X and Y.
1937
1938 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1939 referenced (the reference was BLKmode), so make the most pessimistic
1940 assumptions.
1941
1942 If XSIZE or YSIZE is negative, we may access memory outside the object
1943 being referenced as a side effect. This can happen when using AND to
1944 align memory references, as is done on the Alpha.
1945
1946 Nice to notice that varying addresses cannot conflict with fp if no
1947 local variables had their addresses taken, but that's too hard now.
1948
1949 ??? Contrary to the tree alias oracle this does not return
1950 one for X + non-constant and Y + non-constant when X and Y are equal.
1951 If that is fixed the TBAA hack for union type-punning can be removed. */
1952
1953 static int
1954 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1955 {
1956 if (GET_CODE (x) == VALUE)
1957 {
1958 if (REG_P (y))
1959 {
1960 struct elt_loc_list *l = NULL;
1961 if (CSELIB_VAL_PTR (x))
1962 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
1963 l; l = l->next)
1964 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1965 break;
1966 if (l)
1967 x = y;
1968 else
1969 x = get_addr (x);
1970 }
1971 /* Don't call get_addr if y is the same VALUE. */
1972 else if (x != y)
1973 x = get_addr (x);
1974 }
1975 if (GET_CODE (y) == VALUE)
1976 {
1977 if (REG_P (x))
1978 {
1979 struct elt_loc_list *l = NULL;
1980 if (CSELIB_VAL_PTR (y))
1981 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
1982 l; l = l->next)
1983 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1984 break;
1985 if (l)
1986 y = x;
1987 else
1988 y = get_addr (y);
1989 }
1990 /* Don't call get_addr if x is the same VALUE. */
1991 else if (y != x)
1992 y = get_addr (y);
1993 }
1994 if (GET_CODE (x) == HIGH)
1995 x = XEXP (x, 0);
1996 else if (GET_CODE (x) == LO_SUM)
1997 x = XEXP (x, 1);
1998 else
1999 x = addr_side_effect_eval (x, xsize, 0);
2000 if (GET_CODE (y) == HIGH)
2001 y = XEXP (y, 0);
2002 else if (GET_CODE (y) == LO_SUM)
2003 y = XEXP (y, 1);
2004 else
2005 y = addr_side_effect_eval (y, ysize, 0);
2006
2007 if (rtx_equal_for_memref_p (x, y))
2008 {
2009 if (xsize <= 0 || ysize <= 0)
2010 return 1;
2011 if (c >= 0 && xsize > c)
2012 return 1;
2013 if (c < 0 && ysize+c > 0)
2014 return 1;
2015 return 0;
2016 }
2017
2018 /* This code used to check for conflicts involving stack references and
2019 globals but the base address alias code now handles these cases. */
2020
2021 if (GET_CODE (x) == PLUS)
2022 {
2023 /* The fact that X is canonicalized means that this
2024 PLUS rtx is canonicalized. */
2025 rtx x0 = XEXP (x, 0);
2026 rtx x1 = XEXP (x, 1);
2027
2028 if (GET_CODE (y) == PLUS)
2029 {
2030 /* The fact that Y is canonicalized means that this
2031 PLUS rtx is canonicalized. */
2032 rtx y0 = XEXP (y, 0);
2033 rtx y1 = XEXP (y, 1);
2034
2035 if (rtx_equal_for_memref_p (x1, y1))
2036 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2037 if (rtx_equal_for_memref_p (x0, y0))
2038 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2039 if (CONST_INT_P (x1))
2040 {
2041 if (CONST_INT_P (y1))
2042 return memrefs_conflict_p (xsize, x0, ysize, y0,
2043 c - INTVAL (x1) + INTVAL (y1));
2044 else
2045 return memrefs_conflict_p (xsize, x0, ysize, y,
2046 c - INTVAL (x1));
2047 }
2048 else if (CONST_INT_P (y1))
2049 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2050
2051 return -1;
2052 }
2053 else if (CONST_INT_P (x1))
2054 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2055 }
2056 else if (GET_CODE (y) == PLUS)
2057 {
2058 /* The fact that Y is canonicalized means that this
2059 PLUS rtx is canonicalized. */
2060 rtx y0 = XEXP (y, 0);
2061 rtx y1 = XEXP (y, 1);
2062
2063 if (CONST_INT_P (y1))
2064 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2065 else
2066 return -1;
2067 }
2068
2069 if (GET_CODE (x) == GET_CODE (y))
2070 switch (GET_CODE (x))
2071 {
2072 case MULT:
2073 {
2074 /* Handle cases where we expect the second operands to be the
2075 same, and check only whether the first operand would conflict
2076 or not. */
2077 rtx x0, y0;
2078 rtx x1 = canon_rtx (XEXP (x, 1));
2079 rtx y1 = canon_rtx (XEXP (y, 1));
2080 if (! rtx_equal_for_memref_p (x1, y1))
2081 return -1;
2082 x0 = canon_rtx (XEXP (x, 0));
2083 y0 = canon_rtx (XEXP (y, 0));
2084 if (rtx_equal_for_memref_p (x0, y0))
2085 return (xsize == 0 || ysize == 0
2086 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2087
2088 /* Can't properly adjust our sizes. */
2089 if (!CONST_INT_P (x1))
2090 return -1;
2091 xsize /= INTVAL (x1);
2092 ysize /= INTVAL (x1);
2093 c /= INTVAL (x1);
2094 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2095 }
2096
2097 default:
2098 break;
2099 }
2100
2101 /* Deal with alignment ANDs by adjusting offset and size so as to
2102 cover the maximum range, without taking any previously known
2103 alignment into account. */
2104 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2105 {
2106 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2107 unsigned HOST_WIDE_INT uc = sc;
2108 if (xsize > 0 && sc < 0 && -uc == (uc & -uc))
2109 {
2110 xsize -= sc + 1;
2111 c -= sc + 1;
2112 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2113 ysize, y, c);
2114 }
2115 }
2116 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2117 {
2118 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2119 unsigned HOST_WIDE_INT uc = sc;
2120 if (ysize > 0 && sc < 0 && -uc == (uc & -uc))
2121 {
2122 ysize -= sc + 1;
2123 c += sc + 1;
2124 return memrefs_conflict_p (xsize, x,
2125 ysize, canon_rtx (XEXP (y, 0)), c);
2126 }
2127 }
2128
2129 if (CONSTANT_P (x))
2130 {
2131 if (CONST_INT_P (x) && CONST_INT_P (y))
2132 {
2133 c += (INTVAL (y) - INTVAL (x));
2134 return (xsize <= 0 || ysize <= 0
2135 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2136 }
2137
2138 if (GET_CODE (x) == CONST)
2139 {
2140 if (GET_CODE (y) == CONST)
2141 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2142 ysize, canon_rtx (XEXP (y, 0)), c);
2143 else
2144 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2145 ysize, y, c);
2146 }
2147 if (GET_CODE (y) == CONST)
2148 return memrefs_conflict_p (xsize, x, ysize,
2149 canon_rtx (XEXP (y, 0)), c);
2150
2151 if (CONSTANT_P (y))
2152 return (xsize <= 0 || ysize <= 0
2153 || (rtx_equal_for_memref_p (x, y)
2154 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2155
2156 return -1;
2157 }
2158
2159 return -1;
2160 }
2161
2162 /* Functions to compute memory dependencies.
2163
2164 Since we process the insns in execution order, we can build tables
2165 to keep track of what registers are fixed (and not aliased), what registers
2166 are varying in known ways, and what registers are varying in unknown
2167 ways.
2168
2169 If both memory references are volatile, then there must always be a
2170 dependence between the two references, since their order can not be
2171 changed. A volatile and non-volatile reference can be interchanged
2172 though.
2173
2174 We also must allow AND addresses, because they may generate accesses
2175 outside the object being referenced. This is used to generate aligned
2176 addresses from unaligned addresses, for instance, the alpha
2177 storeqi_unaligned pattern. */
2178
2179 /* Read dependence: X is read after read in MEM takes place. There can
2180 only be a dependence here if both reads are volatile, or if either is
2181 an explicit barrier. */
2182
2183 int
2184 read_dependence (const_rtx mem, const_rtx x)
2185 {
2186 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2187 return true;
2188 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2189 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2190 return true;
2191 return false;
2192 }
2193
2194 /* Return true if we can determine that the fields referenced cannot
2195 overlap for any pair of objects. */
2196
2197 static bool
2198 nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
2199 {
2200 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
2201 const_tree fieldx, fieldy, typex, typey, orig_y;
2202
2203 if (!flag_strict_aliasing
2204 || !x || !y
2205 || TREE_CODE (x) != COMPONENT_REF
2206 || TREE_CODE (y) != COMPONENT_REF)
2207 return false;
2208
2209 do
2210 {
2211 /* The comparison has to be done at a common type, since we don't
2212 know how the inheritance hierarchy works. */
2213 orig_y = y;
2214 do
2215 {
2216 fieldx = TREE_OPERAND (x, 1);
2217 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2218
2219 y = orig_y;
2220 do
2221 {
2222 fieldy = TREE_OPERAND (y, 1);
2223 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2224
2225 if (typex == typey)
2226 goto found;
2227
2228 y = TREE_OPERAND (y, 0);
2229 }
2230 while (y && TREE_CODE (y) == COMPONENT_REF);
2231
2232 x = TREE_OPERAND (x, 0);
2233 }
2234 while (x && TREE_CODE (x) == COMPONENT_REF);
2235 /* Never found a common type. */
2236 return false;
2237
2238 found:
2239 /* If we're left with accessing different fields of a structure, then no
2240 possible overlap, unless they are both bitfields. */
2241 if (TREE_CODE (typex) == RECORD_TYPE && fieldx != fieldy)
2242 return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
2243
2244 /* The comparison on the current field failed. If we're accessing
2245 a very nested structure, look at the next outer level. */
2246 x = TREE_OPERAND (x, 0);
2247 y = TREE_OPERAND (y, 0);
2248 }
2249 while (x && y
2250 && TREE_CODE (x) == COMPONENT_REF
2251 && TREE_CODE (y) == COMPONENT_REF);
2252
2253 return false;
2254 }
2255
2256 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2257
2258 static tree
2259 decl_for_component_ref (tree x)
2260 {
2261 do
2262 {
2263 x = TREE_OPERAND (x, 0);
2264 }
2265 while (x && TREE_CODE (x) == COMPONENT_REF);
2266
2267 return x && DECL_P (x) ? x : NULL_TREE;
2268 }
2269
2270 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2271 for the offset of the field reference. *KNOWN_P says whether the
2272 offset is known. */
2273
2274 static void
2275 adjust_offset_for_component_ref (tree x, bool *known_p,
2276 HOST_WIDE_INT *offset)
2277 {
2278 if (!*known_p)
2279 return;
2280 do
2281 {
2282 tree xoffset = component_ref_field_offset (x);
2283 tree field = TREE_OPERAND (x, 1);
2284
2285 if (! host_integerp (xoffset, 1))
2286 {
2287 *known_p = false;
2288 return;
2289 }
2290 *offset += (tree_low_cst (xoffset, 1)
2291 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2292 / BITS_PER_UNIT));
2293
2294 x = TREE_OPERAND (x, 0);
2295 }
2296 while (x && TREE_CODE (x) == COMPONENT_REF);
2297 }
2298
2299 /* Return nonzero if we can determine the exprs corresponding to memrefs
2300 X and Y and they do not overlap.
2301 If LOOP_VARIANT is set, skip offset-based disambiguation */
2302
2303 int
2304 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2305 {
2306 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2307 rtx rtlx, rtly;
2308 rtx basex, basey;
2309 bool moffsetx_known_p, moffsety_known_p;
2310 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2311 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2312
2313 /* Unless both have exprs, we can't tell anything. */
2314 if (exprx == 0 || expry == 0)
2315 return 0;
2316
2317 /* For spill-slot accesses make sure we have valid offsets. */
2318 if ((exprx == get_spill_slot_decl (false)
2319 && ! MEM_OFFSET_KNOWN_P (x))
2320 || (expry == get_spill_slot_decl (false)
2321 && ! MEM_OFFSET_KNOWN_P (y)))
2322 return 0;
2323
2324 /* If the field reference test failed, look at the DECLs involved. */
2325 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2326 if (moffsetx_known_p)
2327 moffsetx = MEM_OFFSET (x);
2328 if (TREE_CODE (exprx) == COMPONENT_REF)
2329 {
2330 tree t = decl_for_component_ref (exprx);
2331 if (! t)
2332 return 0;
2333 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2334 exprx = t;
2335 }
2336
2337 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2338 if (moffsety_known_p)
2339 moffsety = MEM_OFFSET (y);
2340 if (TREE_CODE (expry) == COMPONENT_REF)
2341 {
2342 tree t = decl_for_component_ref (expry);
2343 if (! t)
2344 return 0;
2345 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2346 expry = t;
2347 }
2348
2349 if (! DECL_P (exprx) || ! DECL_P (expry))
2350 return 0;
2351
2352 /* With invalid code we can end up storing into the constant pool.
2353 Bail out to avoid ICEing when creating RTL for this.
2354 See gfortran.dg/lto/20091028-2_0.f90. */
2355 if (TREE_CODE (exprx) == CONST_DECL
2356 || TREE_CODE (expry) == CONST_DECL)
2357 return 1;
2358
2359 rtlx = DECL_RTL (exprx);
2360 rtly = DECL_RTL (expry);
2361
2362 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2363 can't overlap unless they are the same because we never reuse that part
2364 of the stack frame used for locals for spilled pseudos. */
2365 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2366 && ! rtx_equal_p (rtlx, rtly))
2367 return 1;
2368
2369 /* If we have MEMs referring to different address spaces (which can
2370 potentially overlap), we cannot easily tell from the addresses
2371 whether the references overlap. */
2372 if (MEM_P (rtlx) && MEM_P (rtly)
2373 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2374 return 0;
2375
2376 /* Get the base and offsets of both decls. If either is a register, we
2377 know both are and are the same, so use that as the base. The only
2378 we can avoid overlap is if we can deduce that they are nonoverlapping
2379 pieces of that decl, which is very rare. */
2380 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2381 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2382 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2383
2384 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2385 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2386 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2387
2388 /* If the bases are different, we know they do not overlap if both
2389 are constants or if one is a constant and the other a pointer into the
2390 stack frame. Otherwise a different base means we can't tell if they
2391 overlap or not. */
2392 if (! rtx_equal_p (basex, basey))
2393 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2394 || (CONSTANT_P (basex) && REG_P (basey)
2395 && REGNO_PTR_FRAME_P (REGNO (basey)))
2396 || (CONSTANT_P (basey) && REG_P (basex)
2397 && REGNO_PTR_FRAME_P (REGNO (basex))));
2398
2399 /* Offset based disambiguation not appropriate for loop invariant */
2400 if (loop_invariant)
2401 return 0;
2402
2403 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2404 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2405 : -1);
2406 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2407 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2408 : -1);
2409
2410 /* If we have an offset for either memref, it can update the values computed
2411 above. */
2412 if (moffsetx_known_p)
2413 offsetx += moffsetx, sizex -= moffsetx;
2414 if (moffsety_known_p)
2415 offsety += moffsety, sizey -= moffsety;
2416
2417 /* If a memref has both a size and an offset, we can use the smaller size.
2418 We can't do this if the offset isn't known because we must view this
2419 memref as being anywhere inside the DECL's MEM. */
2420 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2421 sizex = MEM_SIZE (x);
2422 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2423 sizey = MEM_SIZE (y);
2424
2425 /* Put the values of the memref with the lower offset in X's values. */
2426 if (offsetx > offsety)
2427 {
2428 tem = offsetx, offsetx = offsety, offsety = tem;
2429 tem = sizex, sizex = sizey, sizey = tem;
2430 }
2431
2432 /* If we don't know the size of the lower-offset value, we can't tell
2433 if they conflict. Otherwise, we do the test. */
2434 return sizex >= 0 && offsety >= offsetx + sizex;
2435 }
2436
2437 /* Helper for true_dependence and canon_true_dependence.
2438 Checks for true dependence: X is read after store in MEM takes place.
2439
2440 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2441 NULL_RTX, and the canonical addresses of MEM and X are both computed
2442 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2443
2444 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2445
2446 Returns 1 if there is a true dependence, 0 otherwise. */
2447
2448 static int
2449 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2450 const_rtx x, rtx x_addr, bool mem_canonicalized)
2451 {
2452 rtx base;
2453 int ret;
2454
2455 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2456 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2457
2458 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2459 return 1;
2460
2461 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2462 This is used in epilogue deallocation functions, and in cselib. */
2463 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2464 return 1;
2465 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2466 return 1;
2467 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2468 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2469 return 1;
2470
2471 /* Read-only memory is by definition never modified, and therefore can't
2472 conflict with anything. We don't expect to find read-only set on MEM,
2473 but stupid user tricks can produce them, so don't die. */
2474 if (MEM_READONLY_P (x))
2475 return 0;
2476
2477 /* If we have MEMs referring to different address spaces (which can
2478 potentially overlap), we cannot easily tell from the addresses
2479 whether the references overlap. */
2480 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2481 return 1;
2482
2483 if (! mem_addr)
2484 {
2485 mem_addr = XEXP (mem, 0);
2486 if (mem_mode == VOIDmode)
2487 mem_mode = GET_MODE (mem);
2488 }
2489
2490 if (! x_addr)
2491 {
2492 x_addr = XEXP (x, 0);
2493 if (!((GET_CODE (x_addr) == VALUE
2494 && GET_CODE (mem_addr) != VALUE
2495 && reg_mentioned_p (x_addr, mem_addr))
2496 || (GET_CODE (x_addr) != VALUE
2497 && GET_CODE (mem_addr) == VALUE
2498 && reg_mentioned_p (mem_addr, x_addr))))
2499 {
2500 x_addr = get_addr (x_addr);
2501 if (! mem_canonicalized)
2502 mem_addr = get_addr (mem_addr);
2503 }
2504 }
2505
2506 base = find_base_term (x_addr);
2507 if (base && (GET_CODE (base) == LABEL_REF
2508 || (GET_CODE (base) == SYMBOL_REF
2509 && CONSTANT_POOL_ADDRESS_P (base))))
2510 return 0;
2511
2512 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2513 return 0;
2514
2515 x_addr = canon_rtx (x_addr);
2516 if (!mem_canonicalized)
2517 mem_addr = canon_rtx (mem_addr);
2518
2519 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2520 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2521 return ret;
2522
2523 if (mems_in_disjoint_alias_sets_p (x, mem))
2524 return 0;
2525
2526 if (nonoverlapping_memrefs_p (mem, x, false))
2527 return 0;
2528
2529 if (nonoverlapping_component_refs_p (mem, x))
2530 return 0;
2531
2532 return rtx_refs_may_alias_p (x, mem, true);
2533 }
2534
2535 /* True dependence: X is read after store in MEM takes place. */
2536
2537 int
2538 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2539 {
2540 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2541 x, NULL_RTX, /*mem_canonicalized=*/false);
2542 }
2543
2544 /* Canonical true dependence: X is read after store in MEM takes place.
2545 Variant of true_dependence which assumes MEM has already been
2546 canonicalized (hence we no longer do that here).
2547 The mem_addr argument has been added, since true_dependence_1 computed
2548 this value prior to canonicalizing. */
2549
2550 int
2551 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2552 const_rtx x, rtx x_addr)
2553 {
2554 return true_dependence_1 (mem, mem_mode, mem_addr,
2555 x, x_addr, /*mem_canonicalized=*/true);
2556 }
2557
2558 /* Returns nonzero if a write to X might alias a previous read from
2559 (or, if WRITEP is nonzero, a write to) MEM. */
2560
2561 static int
2562 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2563 {
2564 rtx x_addr, mem_addr;
2565 rtx base;
2566 int ret;
2567
2568 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2569 return 1;
2570
2571 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2572 This is used in epilogue deallocation functions. */
2573 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2574 return 1;
2575 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2576 return 1;
2577 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2578 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2579 return 1;
2580
2581 /* A read from read-only memory can't conflict with read-write memory. */
2582 if (!writep && MEM_READONLY_P (mem))
2583 return 0;
2584
2585 /* If we have MEMs referring to different address spaces (which can
2586 potentially overlap), we cannot easily tell from the addresses
2587 whether the references overlap. */
2588 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2589 return 1;
2590
2591 x_addr = XEXP (x, 0);
2592 mem_addr = XEXP (mem, 0);
2593 if (!((GET_CODE (x_addr) == VALUE
2594 && GET_CODE (mem_addr) != VALUE
2595 && reg_mentioned_p (x_addr, mem_addr))
2596 || (GET_CODE (x_addr) != VALUE
2597 && GET_CODE (mem_addr) == VALUE
2598 && reg_mentioned_p (mem_addr, x_addr))))
2599 {
2600 x_addr = get_addr (x_addr);
2601 mem_addr = get_addr (mem_addr);
2602 }
2603
2604 if (! writep)
2605 {
2606 base = find_base_term (mem_addr);
2607 if (base && (GET_CODE (base) == LABEL_REF
2608 || (GET_CODE (base) == SYMBOL_REF
2609 && CONSTANT_POOL_ADDRESS_P (base))))
2610 return 0;
2611 }
2612
2613 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2614 GET_MODE (mem)))
2615 return 0;
2616
2617 x_addr = canon_rtx (x_addr);
2618 mem_addr = canon_rtx (mem_addr);
2619
2620 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2621 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2622 return ret;
2623
2624 if (nonoverlapping_memrefs_p (x, mem, false))
2625 return 0;
2626
2627 return rtx_refs_may_alias_p (x, mem, false);
2628 }
2629
2630 /* Anti dependence: X is written after read in MEM takes place. */
2631
2632 int
2633 anti_dependence (const_rtx mem, const_rtx x)
2634 {
2635 return write_dependence_p (mem, x, /*writep=*/0);
2636 }
2637
2638 /* Output dependence: X is written after store in MEM takes place. */
2639
2640 int
2641 output_dependence (const_rtx mem, const_rtx x)
2642 {
2643 return write_dependence_p (mem, x, /*writep=*/1);
2644 }
2645 \f
2646
2647
2648 /* Check whether X may be aliased with MEM. Don't do offset-based
2649 memory disambiguation & TBAA. */
2650 int
2651 may_alias_p (const_rtx mem, const_rtx x)
2652 {
2653 rtx x_addr, mem_addr;
2654
2655 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2656 return 1;
2657
2658 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2659 This is used in epilogue deallocation functions. */
2660 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2661 return 1;
2662 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2663 return 1;
2664 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2665 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2666 return 1;
2667
2668 /* Read-only memory is by definition never modified, and therefore can't
2669 conflict with anything. We don't expect to find read-only set on MEM,
2670 but stupid user tricks can produce them, so don't die. */
2671 if (MEM_READONLY_P (x))
2672 return 0;
2673
2674 /* If we have MEMs referring to different address spaces (which can
2675 potentially overlap), we cannot easily tell from the addresses
2676 whether the references overlap. */
2677 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2678 return 1;
2679
2680 x_addr = XEXP (x, 0);
2681 mem_addr = XEXP (mem, 0);
2682 if (!((GET_CODE (x_addr) == VALUE
2683 && GET_CODE (mem_addr) != VALUE
2684 && reg_mentioned_p (x_addr, mem_addr))
2685 || (GET_CODE (x_addr) != VALUE
2686 && GET_CODE (mem_addr) == VALUE
2687 && reg_mentioned_p (mem_addr, x_addr))))
2688 {
2689 x_addr = get_addr (x_addr);
2690 mem_addr = get_addr (mem_addr);
2691 }
2692
2693 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2694 return 0;
2695
2696 x_addr = canon_rtx (x_addr);
2697 mem_addr = canon_rtx (mem_addr);
2698
2699 if (nonoverlapping_memrefs_p (mem, x, true))
2700 return 0;
2701
2702 /* TBAA not valid for loop_invarint */
2703 return rtx_refs_may_alias_p (x, mem, false);
2704 }
2705
2706 void
2707 init_alias_target (void)
2708 {
2709 int i;
2710
2711 if (!arg_base_value)
2712 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2713
2714 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2715
2716 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2717 /* Check whether this register can hold an incoming pointer
2718 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2719 numbers, so translate if necessary due to register windows. */
2720 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2721 && HARD_REGNO_MODE_OK (i, Pmode))
2722 static_reg_base_value[i] = arg_base_value;
2723
2724 static_reg_base_value[STACK_POINTER_REGNUM]
2725 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2726 static_reg_base_value[ARG_POINTER_REGNUM]
2727 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2728 static_reg_base_value[FRAME_POINTER_REGNUM]
2729 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2730 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2731 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2732 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2733 #endif
2734 }
2735
2736 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2737 to be memory reference. */
2738 static bool memory_modified;
2739 static void
2740 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2741 {
2742 if (MEM_P (x))
2743 {
2744 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2745 memory_modified = true;
2746 }
2747 }
2748
2749
2750 /* Return true when INSN possibly modify memory contents of MEM
2751 (i.e. address can be modified). */
2752 bool
2753 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2754 {
2755 if (!INSN_P (insn))
2756 return false;
2757 memory_modified = false;
2758 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2759 return memory_modified;
2760 }
2761
2762 /* Return TRUE if the destination of a set is rtx identical to
2763 ITEM. */
2764 static inline bool
2765 set_dest_equal_p (const_rtx set, const_rtx item)
2766 {
2767 rtx dest = SET_DEST (set);
2768 return rtx_equal_p (dest, item);
2769 }
2770
2771 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2772 *DEFINITELY* modify the memory contents of MEM. */
2773 bool
2774 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2775 {
2776 if (!INSN_P (insn))
2777 return false;
2778 insn = PATTERN (insn);
2779 if (GET_CODE (insn) == SET)
2780 return set_dest_equal_p (insn, mem);
2781 else if (GET_CODE (insn) == PARALLEL)
2782 {
2783 int i;
2784 for (i = 0; i < XVECLEN (insn, 0); i++)
2785 {
2786 rtx sub = XVECEXP (insn, 0, i);
2787 if (GET_CODE (sub) == SET
2788 && set_dest_equal_p (sub, mem))
2789 return true;
2790 }
2791 }
2792 return false;
2793 }
2794
2795 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2796 array. */
2797
2798 void
2799 init_alias_analysis (void)
2800 {
2801 unsigned int maxreg = max_reg_num ();
2802 int changed, pass;
2803 int i;
2804 unsigned int ui;
2805 rtx insn, val;
2806 int rpo_cnt;
2807 int *rpo;
2808
2809 timevar_push (TV_ALIAS_ANALYSIS);
2810
2811 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2812 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2813
2814 /* If we have memory allocated from the previous run, use it. */
2815 if (old_reg_base_value)
2816 reg_base_value = old_reg_base_value;
2817
2818 if (reg_base_value)
2819 reg_base_value->truncate (0);
2820
2821 vec_safe_grow_cleared (reg_base_value, maxreg);
2822
2823 new_reg_base_value = XNEWVEC (rtx, maxreg);
2824 reg_seen = sbitmap_alloc (maxreg);
2825
2826 /* The basic idea is that each pass through this loop will use the
2827 "constant" information from the previous pass to propagate alias
2828 information through another level of assignments.
2829
2830 The propagation is done on the CFG in reverse post-order, to propagate
2831 things forward as far as possible in each iteration.
2832
2833 This could get expensive if the assignment chains are long. Maybe
2834 we should throttle the number of iterations, possibly based on
2835 the optimization level or flag_expensive_optimizations.
2836
2837 We could propagate more information in the first pass by making use
2838 of DF_REG_DEF_COUNT to determine immediately that the alias information
2839 for a pseudo is "constant".
2840
2841 A program with an uninitialized variable can cause an infinite loop
2842 here. Instead of doing a full dataflow analysis to detect such problems
2843 we just cap the number of iterations for the loop.
2844
2845 The state of the arrays for the set chain in question does not matter
2846 since the program has undefined behavior. */
2847
2848 rpo = XNEWVEC (int, n_basic_blocks);
2849 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2850
2851 pass = 0;
2852 do
2853 {
2854 /* Assume nothing will change this iteration of the loop. */
2855 changed = 0;
2856
2857 /* We want to assign the same IDs each iteration of this loop, so
2858 start counting from one each iteration of the loop. */
2859 unique_id = 1;
2860
2861 /* We're at the start of the function each iteration through the
2862 loop, so we're copying arguments. */
2863 copying_arguments = true;
2864
2865 /* Wipe the potential alias information clean for this pass. */
2866 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2867
2868 /* Wipe the reg_seen array clean. */
2869 bitmap_clear (reg_seen);
2870
2871 /* Mark all hard registers which may contain an address.
2872 The stack, frame and argument pointers may contain an address.
2873 An argument register which can hold a Pmode value may contain
2874 an address even if it is not in BASE_REGS.
2875
2876 The address expression is VOIDmode for an argument and
2877 Pmode for other registers. */
2878
2879 memcpy (new_reg_base_value, static_reg_base_value,
2880 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2881
2882 /* Walk the insns adding values to the new_reg_base_value array. */
2883 for (i = 0; i < rpo_cnt; i++)
2884 {
2885 basic_block bb = BASIC_BLOCK (rpo[i]);
2886 FOR_BB_INSNS (bb, insn)
2887 {
2888 if (NONDEBUG_INSN_P (insn))
2889 {
2890 rtx note, set;
2891
2892 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2893 /* The prologue/epilogue insns are not threaded onto the
2894 insn chain until after reload has completed. Thus,
2895 there is no sense wasting time checking if INSN is in
2896 the prologue/epilogue until after reload has completed. */
2897 if (reload_completed
2898 && prologue_epilogue_contains (insn))
2899 continue;
2900 #endif
2901
2902 /* If this insn has a noalias note, process it, Otherwise,
2903 scan for sets. A simple set will have no side effects
2904 which could change the base value of any other register. */
2905
2906 if (GET_CODE (PATTERN (insn)) == SET
2907 && REG_NOTES (insn) != 0
2908 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2909 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2910 else
2911 note_stores (PATTERN (insn), record_set, NULL);
2912
2913 set = single_set (insn);
2914
2915 if (set != 0
2916 && REG_P (SET_DEST (set))
2917 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2918 {
2919 unsigned int regno = REGNO (SET_DEST (set));
2920 rtx src = SET_SRC (set);
2921 rtx t;
2922
2923 note = find_reg_equal_equiv_note (insn);
2924 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2925 && DF_REG_DEF_COUNT (regno) != 1)
2926 note = NULL_RTX;
2927
2928 if (note != NULL_RTX
2929 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2930 && ! rtx_varies_p (XEXP (note, 0), 1)
2931 && ! reg_overlap_mentioned_p (SET_DEST (set),
2932 XEXP (note, 0)))
2933 {
2934 set_reg_known_value (regno, XEXP (note, 0));
2935 set_reg_known_equiv_p (regno,
2936 REG_NOTE_KIND (note) == REG_EQUIV);
2937 }
2938 else if (DF_REG_DEF_COUNT (regno) == 1
2939 && GET_CODE (src) == PLUS
2940 && REG_P (XEXP (src, 0))
2941 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2942 && CONST_INT_P (XEXP (src, 1)))
2943 {
2944 t = plus_constant (GET_MODE (src), t,
2945 INTVAL (XEXP (src, 1)));
2946 set_reg_known_value (regno, t);
2947 set_reg_known_equiv_p (regno, false);
2948 }
2949 else if (DF_REG_DEF_COUNT (regno) == 1
2950 && ! rtx_varies_p (src, 1))
2951 {
2952 set_reg_known_value (regno, src);
2953 set_reg_known_equiv_p (regno, false);
2954 }
2955 }
2956 }
2957 else if (NOTE_P (insn)
2958 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2959 copying_arguments = false;
2960 }
2961 }
2962
2963 /* Now propagate values from new_reg_base_value to reg_base_value. */
2964 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2965
2966 for (ui = 0; ui < maxreg; ui++)
2967 {
2968 if (new_reg_base_value[ui]
2969 && new_reg_base_value[ui] != (*reg_base_value)[ui]
2970 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
2971 {
2972 (*reg_base_value)[ui] = new_reg_base_value[ui];
2973 changed = 1;
2974 }
2975 }
2976 }
2977 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2978 XDELETEVEC (rpo);
2979
2980 /* Fill in the remaining entries. */
2981 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
2982 {
2983 int regno = i + FIRST_PSEUDO_REGISTER;
2984 if (! val)
2985 set_reg_known_value (regno, regno_reg_rtx[regno]);
2986 }
2987
2988 /* Clean up. */
2989 free (new_reg_base_value);
2990 new_reg_base_value = 0;
2991 sbitmap_free (reg_seen);
2992 reg_seen = 0;
2993 timevar_pop (TV_ALIAS_ANALYSIS);
2994 }
2995
2996 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2997 Special API for var-tracking pass purposes. */
2998
2999 void
3000 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3001 {
3002 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3003 }
3004
3005 void
3006 end_alias_analysis (void)
3007 {
3008 old_reg_base_value = reg_base_value;
3009 vec_free (reg_known_value);
3010 sbitmap_free (reg_known_equiv_p);
3011 }
3012
3013 #include "gt-alias.h"