Add missing phi args in create_parallel_loop
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "gimple-ssa.h"
32 #include "emit-rtl.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "varasm.h"
36 #include "cselib.h"
37 #include "langhooks.h"
38 #include "cfganal.h"
39 #include "rtl-iter.h"
40 #include "cgraph.h"
41
42 /* The aliasing API provided here solves related but different problems:
43
44 Say there exists (in c)
45
46 struct X {
47 struct Y y1;
48 struct Z z2;
49 } x1, *px1, *px2;
50
51 struct Y y2, *py;
52 struct Z z2, *pz;
53
54
55 py = &x1.y1;
56 px2 = &x1;
57
58 Consider the four questions:
59
60 Can a store to x1 interfere with px2->y1?
61 Can a store to x1 interfere with px2->z2?
62 Can a store to x1 change the value pointed to by with py?
63 Can a store to x1 change the value pointed to by with pz?
64
65 The answer to these questions can be yes, yes, yes, and maybe.
66
67 The first two questions can be answered with a simple examination
68 of the type system. If structure X contains a field of type Y then
69 a store through a pointer to an X can overwrite any field that is
70 contained (recursively) in an X (unless we know that px1 != px2).
71
72 The last two questions can be solved in the same way as the first
73 two questions but this is too conservative. The observation is
74 that in some cases we can know which (if any) fields are addressed
75 and if those addresses are used in bad ways. This analysis may be
76 language specific. In C, arbitrary operations may be applied to
77 pointers. However, there is some indication that this may be too
78 conservative for some C++ types.
79
80 The pass ipa-type-escape does this analysis for the types whose
81 instances do not escape across the compilation boundary.
82
83 Historically in GCC, these two problems were combined and a single
84 data structure that was used to represent the solution to these
85 problems. We now have two similar but different data structures,
86 The data structure to solve the last two questions is similar to
87 the first, but does not contain the fields whose address are never
88 taken. For types that do escape the compilation unit, the data
89 structures will have identical information.
90 */
91
92 /* The alias sets assigned to MEMs assist the back-end in determining
93 which MEMs can alias which other MEMs. In general, two MEMs in
94 different alias sets cannot alias each other, with one important
95 exception. Consider something like:
96
97 struct S { int i; double d; };
98
99 a store to an `S' can alias something of either type `int' or type
100 `double'. (However, a store to an `int' cannot alias a `double'
101 and vice versa.) We indicate this via a tree structure that looks
102 like:
103 struct S
104 / \
105 / \
106 |/_ _\|
107 int double
108
109 (The arrows are directed and point downwards.)
110 In this situation we say the alias set for `struct S' is the
111 `superset' and that those for `int' and `double' are `subsets'.
112
113 To see whether two alias sets can point to the same memory, we must
114 see if either alias set is a subset of the other. We need not trace
115 past immediate descendants, however, since we propagate all
116 grandchildren up one level.
117
118 Alias set zero is implicitly a superset of all other alias sets.
119 However, this is no actual entry for alias set zero. It is an
120 error to attempt to explicitly construct a subset of zero. */
121
122 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
123
124 struct GTY(()) alias_set_entry {
125 /* The alias set number, as stored in MEM_ALIAS_SET. */
126 alias_set_type alias_set;
127
128 /* The children of the alias set. These are not just the immediate
129 children, but, in fact, all descendants. So, if we have:
130
131 struct T { struct S s; float f; }
132
133 continuing our example above, the children here will be all of
134 `int', `double', `float', and `struct S'. */
135 hash_map<alias_set_hash, int> *children;
136
137 /* Nonzero if would have a child of zero: this effectively makes this
138 alias set the same as alias set zero. */
139 bool has_zero_child;
140 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
141 aggregate contaiing pointer.
142 This is used for a special case where we need an universal pointer type
143 compatible with all other pointer types. */
144 bool is_pointer;
145 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
146 bool has_pointer;
147 };
148
149 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
150 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
151 static void record_set (rtx, const_rtx, void *);
152 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
153 machine_mode);
154 static rtx find_base_value (rtx);
155 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
156 static alias_set_entry *get_alias_set_entry (alias_set_type);
157 static tree decl_for_component_ref (tree);
158 static int write_dependence_p (const_rtx,
159 const_rtx, machine_mode, rtx,
160 bool, bool, bool);
161
162 static void memory_modified_1 (rtx, const_rtx, void *);
163
164 /* Query statistics for the different low-level disambiguators.
165 A high-level query may trigger multiple of them. */
166
167 static struct {
168 unsigned long long num_alias_zero;
169 unsigned long long num_same_alias_set;
170 unsigned long long num_same_objects;
171 unsigned long long num_volatile;
172 unsigned long long num_dag;
173 unsigned long long num_universal;
174 unsigned long long num_disambiguated;
175 } alias_stats;
176
177
178 /* Set up all info needed to perform alias analysis on memory references. */
179
180 /* Returns the size in bytes of the mode of X. */
181 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
182
183 /* Cap the number of passes we make over the insns propagating alias
184 information through set chains.
185 ??? 10 is a completely arbitrary choice. This should be based on the
186 maximum loop depth in the CFG, but we do not have this information
187 available (even if current_loops _is_ available). */
188 #define MAX_ALIAS_LOOP_PASSES 10
189
190 /* reg_base_value[N] gives an address to which register N is related.
191 If all sets after the first add or subtract to the current value
192 or otherwise modify it so it does not point to a different top level
193 object, reg_base_value[N] is equal to the address part of the source
194 of the first set.
195
196 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
197 expressions represent three types of base:
198
199 1. incoming arguments. There is just one ADDRESS to represent all
200 arguments, since we do not know at this level whether accesses
201 based on different arguments can alias. The ADDRESS has id 0.
202
203 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
204 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
205 Each of these rtxes has a separate ADDRESS associated with it,
206 each with a negative id.
207
208 GCC is (and is required to be) precise in which register it
209 chooses to access a particular region of stack. We can therefore
210 assume that accesses based on one of these rtxes do not alias
211 accesses based on another of these rtxes.
212
213 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
214 Each such piece of memory has a separate ADDRESS associated
215 with it, each with an id greater than 0.
216
217 Accesses based on one ADDRESS do not alias accesses based on other
218 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
219 alias globals either; the ADDRESSes have Pmode to indicate this.
220 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
221 indicate this. */
222
223 static GTY(()) vec<rtx, va_gc> *reg_base_value;
224 static rtx *new_reg_base_value;
225
226 /* The single VOIDmode ADDRESS that represents all argument bases.
227 It has id 0. */
228 static GTY(()) rtx arg_base_value;
229
230 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
231 static int unique_id;
232
233 /* We preserve the copy of old array around to avoid amount of garbage
234 produced. About 8% of garbage produced were attributed to this
235 array. */
236 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
237
238 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
239 registers. */
240 #define UNIQUE_BASE_VALUE_SP -1
241 #define UNIQUE_BASE_VALUE_ARGP -2
242 #define UNIQUE_BASE_VALUE_FP -3
243 #define UNIQUE_BASE_VALUE_HFP -4
244
245 #define static_reg_base_value \
246 (this_target_rtl->x_static_reg_base_value)
247
248 #define REG_BASE_VALUE(X) \
249 (REGNO (X) < vec_safe_length (reg_base_value) \
250 ? (*reg_base_value)[REGNO (X)] : 0)
251
252 /* Vector indexed by N giving the initial (unchanging) value known for
253 pseudo-register N. This vector is initialized in init_alias_analysis,
254 and does not change until end_alias_analysis is called. */
255 static GTY(()) vec<rtx, va_gc> *reg_known_value;
256
257 /* Vector recording for each reg_known_value whether it is due to a
258 REG_EQUIV note. Future passes (viz., reload) may replace the
259 pseudo with the equivalent expression and so we account for the
260 dependences that would be introduced if that happens.
261
262 The REG_EQUIV notes created in assign_parms may mention the arg
263 pointer, and there are explicit insns in the RTL that modify the
264 arg pointer. Thus we must ensure that such insns don't get
265 scheduled across each other because that would invalidate the
266 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
267 wrong, but solving the problem in the scheduler will likely give
268 better code, so we do it here. */
269 static sbitmap reg_known_equiv_p;
270
271 /* True when scanning insns from the start of the rtl to the
272 NOTE_INSN_FUNCTION_BEG note. */
273 static bool copying_arguments;
274
275
276 /* The splay-tree used to store the various alias set entries. */
277 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
278 \f
279 /* Build a decomposed reference object for querying the alias-oracle
280 from the MEM rtx and store it in *REF.
281 Returns false if MEM is not suitable for the alias-oracle. */
282
283 static bool
284 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
285 {
286 tree expr = MEM_EXPR (mem);
287 tree base;
288
289 if (!expr)
290 return false;
291
292 ao_ref_init (ref, expr);
293
294 /* Get the base of the reference and see if we have to reject or
295 adjust it. */
296 base = ao_ref_base (ref);
297 if (base == NULL_TREE)
298 return false;
299
300 /* The tree oracle doesn't like bases that are neither decls
301 nor indirect references of SSA names. */
302 if (!(DECL_P (base)
303 || (TREE_CODE (base) == MEM_REF
304 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
305 || (TREE_CODE (base) == TARGET_MEM_REF
306 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
307 return false;
308
309 /* If this is a reference based on a partitioned decl replace the
310 base with a MEM_REF of the pointer representative we
311 created during stack slot partitioning. */
312 if (TREE_CODE (base) == VAR_DECL
313 && ! is_global_var (base)
314 && cfun->gimple_df->decls_to_pointers != NULL)
315 {
316 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
317 if (namep)
318 ref->base = build_simple_mem_ref (*namep);
319 }
320
321 ref->ref_alias_set = MEM_ALIAS_SET (mem);
322
323 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
324 is conservative, so trust it. */
325 if (!MEM_OFFSET_KNOWN_P (mem)
326 || !MEM_SIZE_KNOWN_P (mem))
327 return true;
328
329 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
330 drop ref->ref. */
331 if (MEM_OFFSET (mem) < 0
332 || (ref->max_size != -1
333 && ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
334 > ref->max_size)))
335 ref->ref = NULL_TREE;
336
337 /* Refine size and offset we got from analyzing MEM_EXPR by using
338 MEM_SIZE and MEM_OFFSET. */
339
340 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
341 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
342
343 /* The MEM may extend into adjacent fields, so adjust max_size if
344 necessary. */
345 if (ref->max_size != -1
346 && ref->size > ref->max_size)
347 ref->max_size = ref->size;
348
349 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
350 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
351 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
352 && (ref->offset < 0
353 || (DECL_P (ref->base)
354 && (DECL_SIZE (ref->base) == NULL_TREE
355 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
356 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
357 ref->offset + ref->size)))))
358 return false;
359
360 return true;
361 }
362
363 /* Query the alias-oracle on whether the two memory rtx X and MEM may
364 alias. If TBAA_P is set also apply TBAA. Returns true if the
365 two rtxen may alias, false otherwise. */
366
367 static bool
368 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
369 {
370 ao_ref ref1, ref2;
371
372 if (!ao_ref_from_mem (&ref1, x)
373 || !ao_ref_from_mem (&ref2, mem))
374 return true;
375
376 return refs_may_alias_p_1 (&ref1, &ref2,
377 tbaa_p
378 && MEM_ALIAS_SET (x) != 0
379 && MEM_ALIAS_SET (mem) != 0);
380 }
381
382 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
383 such an entry, or NULL otherwise. */
384
385 static inline alias_set_entry *
386 get_alias_set_entry (alias_set_type alias_set)
387 {
388 return (*alias_sets)[alias_set];
389 }
390
391 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
392 the two MEMs cannot alias each other. */
393
394 static inline int
395 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
396 {
397 return (flag_strict_aliasing
398 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
399 MEM_ALIAS_SET (mem2)));
400 }
401
402 /* Return true if the first alias set is a subset of the second. */
403
404 bool
405 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
406 {
407 alias_set_entry *ase2;
408
409 /* Disable TBAA oracle with !flag_strict_aliasing. */
410 if (!flag_strict_aliasing)
411 return true;
412
413 /* Everything is a subset of the "aliases everything" set. */
414 if (set2 == 0)
415 return true;
416
417 /* Check if set1 is a subset of set2. */
418 ase2 = get_alias_set_entry (set2);
419 if (ase2 != 0
420 && (ase2->has_zero_child
421 || (ase2->children && ase2->children->get (set1))))
422 return true;
423
424 /* As a special case we consider alias set of "void *" to be both subset
425 and superset of every alias set of a pointer. This extra symmetry does
426 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
427 to return true on the following testcase:
428
429 void *ptr;
430 char **ptr2=(char **)&ptr;
431 *ptr2 = ...
432
433 Additionally if a set contains universal pointer, we consider every pointer
434 to be a subset of it, but we do not represent this explicitely - doing so
435 would require us to update transitive closure each time we introduce new
436 pointer type. This makes aliasing_component_refs_p to return true
437 on the following testcase:
438
439 struct a {void *ptr;}
440 char **ptr = (char **)&a.ptr;
441 ptr = ...
442
443 This makes void * truly universal pointer type. See pointer handling in
444 get_alias_set for more details. */
445 if (ase2 && ase2->has_pointer)
446 {
447 alias_set_entry *ase1 = get_alias_set_entry (set1);
448
449 if (ase1 && ase1->is_pointer)
450 {
451 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
452 /* If one is ptr_type_node and other is pointer, then we consider
453 them subset of each other. */
454 if (set1 == voidptr_set || set2 == voidptr_set)
455 return true;
456 /* If SET2 contains universal pointer's alias set, then we consdier
457 every (non-universal) pointer. */
458 if (ase2->children && set1 != voidptr_set
459 && ase2->children->get (voidptr_set))
460 return true;
461 }
462 }
463 return false;
464 }
465
466 /* Return 1 if the two specified alias sets may conflict. */
467
468 int
469 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
470 {
471 alias_set_entry *ase1;
472 alias_set_entry *ase2;
473
474 /* The easy case. */
475 if (alias_sets_must_conflict_p (set1, set2))
476 return 1;
477
478 /* See if the first alias set is a subset of the second. */
479 ase1 = get_alias_set_entry (set1);
480 if (ase1 != 0
481 && ase1->children && ase1->children->get (set2))
482 {
483 ++alias_stats.num_dag;
484 return 1;
485 }
486
487 /* Now do the same, but with the alias sets reversed. */
488 ase2 = get_alias_set_entry (set2);
489 if (ase2 != 0
490 && ase2->children && ase2->children->get (set1))
491 {
492 ++alias_stats.num_dag;
493 return 1;
494 }
495
496 /* We want void * to be compatible with any other pointer without
497 really dropping it to alias set 0. Doing so would make it
498 compatible with all non-pointer types too.
499
500 This is not strictly necessary by the C/C++ language
501 standards, but avoids common type punning mistakes. In
502 addition to that, we need the existence of such universal
503 pointer to implement Fortran's C_PTR type (which is defined as
504 type compatible with all C pointers). */
505 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
506 {
507 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
508
509 /* If one of the sets corresponds to universal pointer,
510 we consider it to conflict with anything that is
511 or contains pointer. */
512 if (set1 == voidptr_set || set2 == voidptr_set)
513 {
514 ++alias_stats.num_universal;
515 return true;
516 }
517 /* If one of sets is (non-universal) pointer and the other
518 contains universal pointer, we also get conflict. */
519 if (ase1->is_pointer && set2 != voidptr_set
520 && ase2->children && ase2->children->get (voidptr_set))
521 {
522 ++alias_stats.num_universal;
523 return true;
524 }
525 if (ase2->is_pointer && set1 != voidptr_set
526 && ase1->children && ase1->children->get (voidptr_set))
527 {
528 ++alias_stats.num_universal;
529 return true;
530 }
531 }
532
533 ++alias_stats.num_disambiguated;
534
535 /* The two alias sets are distinct and neither one is the
536 child of the other. Therefore, they cannot conflict. */
537 return 0;
538 }
539
540 /* Return 1 if the two specified alias sets will always conflict. */
541
542 int
543 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
544 {
545 /* Disable TBAA oracle with !flag_strict_aliasing. */
546 if (!flag_strict_aliasing)
547 return 1;
548 if (set1 == 0 || set2 == 0)
549 {
550 ++alias_stats.num_alias_zero;
551 return 1;
552 }
553 if (set1 == set2)
554 {
555 ++alias_stats.num_same_alias_set;
556 return 1;
557 }
558
559 return 0;
560 }
561
562 /* Return 1 if any MEM object of type T1 will always conflict (using the
563 dependency routines in this file) with any MEM object of type T2.
564 This is used when allocating temporary storage. If T1 and/or T2 are
565 NULL_TREE, it means we know nothing about the storage. */
566
567 int
568 objects_must_conflict_p (tree t1, tree t2)
569 {
570 alias_set_type set1, set2;
571
572 /* If neither has a type specified, we don't know if they'll conflict
573 because we may be using them to store objects of various types, for
574 example the argument and local variables areas of inlined functions. */
575 if (t1 == 0 && t2 == 0)
576 return 0;
577
578 /* If they are the same type, they must conflict. */
579 if (t1 == t2)
580 {
581 ++alias_stats.num_same_objects;
582 return 1;
583 }
584 /* Likewise if both are volatile. */
585 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
586 {
587 ++alias_stats.num_volatile;
588 return 1;
589 }
590
591 set1 = t1 ? get_alias_set (t1) : 0;
592 set2 = t2 ? get_alias_set (t2) : 0;
593
594 /* We can't use alias_sets_conflict_p because we must make sure
595 that every subtype of t1 will conflict with every subtype of
596 t2 for which a pair of subobjects of these respective subtypes
597 overlaps on the stack. */
598 return alias_sets_must_conflict_p (set1, set2);
599 }
600 \f
601 /* Return the outermost parent of component present in the chain of
602 component references handled by get_inner_reference in T with the
603 following property:
604 - the component is non-addressable, or
605 - the parent has alias set zero,
606 or NULL_TREE if no such parent exists. In the former cases, the alias
607 set of this parent is the alias set that must be used for T itself. */
608
609 tree
610 component_uses_parent_alias_set_from (const_tree t)
611 {
612 const_tree found = NULL_TREE;
613
614 while (handled_component_p (t))
615 {
616 switch (TREE_CODE (t))
617 {
618 case COMPONENT_REF:
619 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
620 found = t;
621 break;
622
623 case ARRAY_REF:
624 case ARRAY_RANGE_REF:
625 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
626 found = t;
627 break;
628
629 case REALPART_EXPR:
630 case IMAGPART_EXPR:
631 break;
632
633 case BIT_FIELD_REF:
634 case VIEW_CONVERT_EXPR:
635 /* Bitfields and casts are never addressable. */
636 found = t;
637 break;
638
639 default:
640 gcc_unreachable ();
641 }
642
643 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
644 found = t;
645
646 t = TREE_OPERAND (t, 0);
647 }
648
649 if (found)
650 return TREE_OPERAND (found, 0);
651
652 return NULL_TREE;
653 }
654
655
656 /* Return whether the pointer-type T effective for aliasing may
657 access everything and thus the reference has to be assigned
658 alias-set zero. */
659
660 static bool
661 ref_all_alias_ptr_type_p (const_tree t)
662 {
663 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
664 || TYPE_REF_CAN_ALIAS_ALL (t));
665 }
666
667 /* Return the alias set for the memory pointed to by T, which may be
668 either a type or an expression. Return -1 if there is nothing
669 special about dereferencing T. */
670
671 static alias_set_type
672 get_deref_alias_set_1 (tree t)
673 {
674 /* All we care about is the type. */
675 if (! TYPE_P (t))
676 t = TREE_TYPE (t);
677
678 /* If we have an INDIRECT_REF via a void pointer, we don't
679 know anything about what that might alias. Likewise if the
680 pointer is marked that way. */
681 if (ref_all_alias_ptr_type_p (t))
682 return 0;
683
684 return -1;
685 }
686
687 /* Return the alias set for the memory pointed to by T, which may be
688 either a type or an expression. */
689
690 alias_set_type
691 get_deref_alias_set (tree t)
692 {
693 /* If we're not doing any alias analysis, just assume everything
694 aliases everything else. */
695 if (!flag_strict_aliasing)
696 return 0;
697
698 alias_set_type set = get_deref_alias_set_1 (t);
699
700 /* Fall back to the alias-set of the pointed-to type. */
701 if (set == -1)
702 {
703 if (! TYPE_P (t))
704 t = TREE_TYPE (t);
705 set = get_alias_set (TREE_TYPE (t));
706 }
707
708 return set;
709 }
710
711 /* Return the pointer-type relevant for TBAA purposes from the
712 memory reference tree *T or NULL_TREE in which case *T is
713 adjusted to point to the outermost component reference that
714 can be used for assigning an alias set. */
715
716 static tree
717 reference_alias_ptr_type_1 (tree *t)
718 {
719 tree inner;
720
721 /* Get the base object of the reference. */
722 inner = *t;
723 while (handled_component_p (inner))
724 {
725 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
726 the type of any component references that wrap it to
727 determine the alias-set. */
728 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
729 *t = TREE_OPERAND (inner, 0);
730 inner = TREE_OPERAND (inner, 0);
731 }
732
733 /* Handle pointer dereferences here, they can override the
734 alias-set. */
735 if (INDIRECT_REF_P (inner)
736 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
737 return TREE_TYPE (TREE_OPERAND (inner, 0));
738 else if (TREE_CODE (inner) == TARGET_MEM_REF)
739 return TREE_TYPE (TMR_OFFSET (inner));
740 else if (TREE_CODE (inner) == MEM_REF
741 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
742 return TREE_TYPE (TREE_OPERAND (inner, 1));
743
744 /* If the innermost reference is a MEM_REF that has a
745 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
746 using the memory access type for determining the alias-set. */
747 if (TREE_CODE (inner) == MEM_REF
748 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
749 != TYPE_MAIN_VARIANT
750 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
751 return TREE_TYPE (TREE_OPERAND (inner, 1));
752
753 /* Otherwise, pick up the outermost object that we could have
754 a pointer to. */
755 tree tem = component_uses_parent_alias_set_from (*t);
756 if (tem)
757 *t = tem;
758
759 return NULL_TREE;
760 }
761
762 /* Return the pointer-type relevant for TBAA purposes from the
763 gimple memory reference tree T. This is the type to be used for
764 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
765 and guarantees that get_alias_set will return the same alias
766 set for T and the replacement. */
767
768 tree
769 reference_alias_ptr_type (tree t)
770 {
771 tree ptype = reference_alias_ptr_type_1 (&t);
772 /* If there is a given pointer type for aliasing purposes, return it. */
773 if (ptype != NULL_TREE)
774 return ptype;
775
776 /* Otherwise build one from the outermost component reference we
777 may use. */
778 if (TREE_CODE (t) == MEM_REF
779 || TREE_CODE (t) == TARGET_MEM_REF)
780 return TREE_TYPE (TREE_OPERAND (t, 1));
781 else
782 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
783 }
784
785 /* Return whether the pointer-types T1 and T2 used to determine
786 two alias sets of two references will yield the same answer
787 from get_deref_alias_set. */
788
789 bool
790 alias_ptr_types_compatible_p (tree t1, tree t2)
791 {
792 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
793 return true;
794
795 if (ref_all_alias_ptr_type_p (t1)
796 || ref_all_alias_ptr_type_p (t2))
797 return false;
798
799 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
800 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
801 }
802
803 /* Create emptry alias set entry. */
804
805 alias_set_entry *
806 init_alias_set_entry (alias_set_type set)
807 {
808 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
809 ase->alias_set = set;
810 ase->children = NULL;
811 ase->has_zero_child = false;
812 ase->is_pointer = false;
813 ase->has_pointer = false;
814 gcc_checking_assert (!get_alias_set_entry (set));
815 (*alias_sets)[set] = ase;
816 return ase;
817 }
818
819 /* Return the alias set for T, which may be either a type or an
820 expression. Call language-specific routine for help, if needed. */
821
822 alias_set_type
823 get_alias_set (tree t)
824 {
825 alias_set_type set;
826
827 /* We can not give up with -fno-strict-aliasing because we need to build
828 proper type representation for possible functions which are build with
829 -fstirct-aliasing. */
830
831 /* return 0 if this or its type is an error. */
832 if (t == error_mark_node
833 || (! TYPE_P (t)
834 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
835 return 0;
836
837 /* We can be passed either an expression or a type. This and the
838 language-specific routine may make mutually-recursive calls to each other
839 to figure out what to do. At each juncture, we see if this is a tree
840 that the language may need to handle specially. First handle things that
841 aren't types. */
842 if (! TYPE_P (t))
843 {
844 /* Give the language a chance to do something with this tree
845 before we look at it. */
846 STRIP_NOPS (t);
847 set = lang_hooks.get_alias_set (t);
848 if (set != -1)
849 return set;
850
851 /* Get the alias pointer-type to use or the outermost object
852 that we could have a pointer to. */
853 tree ptype = reference_alias_ptr_type_1 (&t);
854 if (ptype != NULL)
855 return get_deref_alias_set (ptype);
856
857 /* If we've already determined the alias set for a decl, just return
858 it. This is necessary for C++ anonymous unions, whose component
859 variables don't look like union members (boo!). */
860 if (TREE_CODE (t) == VAR_DECL
861 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
862 return MEM_ALIAS_SET (DECL_RTL (t));
863
864 /* Now all we care about is the type. */
865 t = TREE_TYPE (t);
866 }
867
868 /* Variant qualifiers don't affect the alias set, so get the main
869 variant. */
870 t = TYPE_MAIN_VARIANT (t);
871
872 /* Always use the canonical type as well. If this is a type that
873 requires structural comparisons to identify compatible types
874 use alias set zero. */
875 if (TYPE_STRUCTURAL_EQUALITY_P (t))
876 {
877 /* Allow the language to specify another alias set for this
878 type. */
879 set = lang_hooks.get_alias_set (t);
880 if (set != -1)
881 return set;
882 /* Handle structure type equality for pointer types, arrays and vectors.
883 This is easy to do, because the code bellow ignore canonical types on
884 these anyway. This is important for LTO, where TYPE_CANONICAL for
885 pointers can not be meaningfuly computed by the frotnend. */
886 if (canonical_type_used_p (t))
887 {
888 /* In LTO we set canonical types for all types where it makes
889 sense to do so. Double check we did not miss some type. */
890 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
891 return 0;
892 }
893 }
894 else
895 {
896 t = TYPE_CANONICAL (t);
897 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
898 }
899
900 /* If this is a type with a known alias set, return it. */
901 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
902 if (TYPE_ALIAS_SET_KNOWN_P (t))
903 return TYPE_ALIAS_SET (t);
904
905 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
906 if (!COMPLETE_TYPE_P (t))
907 {
908 /* For arrays with unknown size the conservative answer is the
909 alias set of the element type. */
910 if (TREE_CODE (t) == ARRAY_TYPE)
911 return get_alias_set (TREE_TYPE (t));
912
913 /* But return zero as a conservative answer for incomplete types. */
914 return 0;
915 }
916
917 /* See if the language has special handling for this type. */
918 set = lang_hooks.get_alias_set (t);
919 if (set != -1)
920 return set;
921
922 /* There are no objects of FUNCTION_TYPE, so there's no point in
923 using up an alias set for them. (There are, of course, pointers
924 and references to functions, but that's different.) */
925 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
926 set = 0;
927
928 /* Unless the language specifies otherwise, let vector types alias
929 their components. This avoids some nasty type punning issues in
930 normal usage. And indeed lets vectors be treated more like an
931 array slice. */
932 else if (TREE_CODE (t) == VECTOR_TYPE)
933 set = get_alias_set (TREE_TYPE (t));
934
935 /* Unless the language specifies otherwise, treat array types the
936 same as their components. This avoids the asymmetry we get
937 through recording the components. Consider accessing a
938 character(kind=1) through a reference to a character(kind=1)[1:1].
939 Or consider if we want to assign integer(kind=4)[0:D.1387] and
940 integer(kind=4)[4] the same alias set or not.
941 Just be pragmatic here and make sure the array and its element
942 type get the same alias set assigned. */
943 else if (TREE_CODE (t) == ARRAY_TYPE
944 && (!TYPE_NONALIASED_COMPONENT (t)
945 || TYPE_STRUCTURAL_EQUALITY_P (t)))
946 set = get_alias_set (TREE_TYPE (t));
947
948 /* From the former common C and C++ langhook implementation:
949
950 Unfortunately, there is no canonical form of a pointer type.
951 In particular, if we have `typedef int I', then `int *', and
952 `I *' are different types. So, we have to pick a canonical
953 representative. We do this below.
954
955 Technically, this approach is actually more conservative that
956 it needs to be. In particular, `const int *' and `int *'
957 should be in different alias sets, according to the C and C++
958 standard, since their types are not the same, and so,
959 technically, an `int **' and `const int **' cannot point at
960 the same thing.
961
962 But, the standard is wrong. In particular, this code is
963 legal C++:
964
965 int *ip;
966 int **ipp = &ip;
967 const int* const* cipp = ipp;
968 And, it doesn't make sense for that to be legal unless you
969 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
970 the pointed-to types. This issue has been reported to the
971 C++ committee.
972
973 For this reason go to canonical type of the unqalified pointer type.
974 Until GCC 6 this code set all pointers sets to have alias set of
975 ptr_type_node but that is a bad idea, because it prevents disabiguations
976 in between pointers. For Firefox this accounts about 20% of all
977 disambiguations in the program. */
978 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
979 {
980 tree p;
981 auto_vec <bool, 8> reference;
982
983 /* Unnest all pointers and references.
984 We also want to make pointer to array/vector equivalent to pointer to
985 its element (see the reasoning above). Skip all those types, too. */
986 for (p = t; POINTER_TYPE_P (p)
987 || (TREE_CODE (p) == ARRAY_TYPE
988 && (!TYPE_NONALIASED_COMPONENT (p)
989 || !COMPLETE_TYPE_P (p)
990 || TYPE_STRUCTURAL_EQUALITY_P (p)))
991 || TREE_CODE (p) == VECTOR_TYPE;
992 p = TREE_TYPE (p))
993 {
994 /* Ada supports recusive pointers. Instead of doing recrusion check
995 just give up once the preallocated space of 8 elements is up.
996 In this case just punt to void * alias set. */
997 if (reference.length () == 8)
998 {
999 p = ptr_type_node;
1000 break;
1001 }
1002 if (TREE_CODE (p) == REFERENCE_TYPE)
1003 /* In LTO we want languages that use references to be compatible
1004 with languages that use pointers. */
1005 reference.safe_push (true && !in_lto_p);
1006 if (TREE_CODE (p) == POINTER_TYPE)
1007 reference.safe_push (false);
1008 }
1009 p = TYPE_MAIN_VARIANT (p);
1010
1011 /* Make void * compatible with char * and also void **.
1012 Programs are commonly violating TBAA by this.
1013
1014 We also make void * to conflict with every pointer
1015 (see record_component_aliases) and thus it is safe it to use it for
1016 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1017 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1018 set = get_alias_set (ptr_type_node);
1019 else
1020 {
1021 /* Rebuild pointer type starting from canonical types using
1022 unqualified pointers and references only. This way all such
1023 pointers will have the same alias set and will conflict with
1024 each other.
1025
1026 Most of time we already have pointers or references of a given type.
1027 If not we build new one just to be sure that if someone later
1028 (probably only middle-end can, as we should assign all alias
1029 classes only after finishing translation unit) builds the pointer
1030 type, the canonical type will match. */
1031 p = TYPE_CANONICAL (p);
1032 while (!reference.is_empty ())
1033 {
1034 if (reference.pop ())
1035 p = build_reference_type (p);
1036 else
1037 p = build_pointer_type (p);
1038 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1039 /* build_pointer_type should always return the canonical type.
1040 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1041 them. Be sure that frontends do not glob canonical types of
1042 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1043 in all other cases. */
1044 gcc_checking_assert (!TYPE_CANONICAL (p)
1045 || p == TYPE_CANONICAL (p));
1046 }
1047
1048 /* Assign the alias set to both p and t.
1049 We can not call get_alias_set (p) here as that would trigger
1050 infinite recursion when p == t. In other cases it would just
1051 trigger unnecesary legwork of rebuilding the pointer again. */
1052 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1053 if (TYPE_ALIAS_SET_KNOWN_P (p))
1054 set = TYPE_ALIAS_SET (p);
1055 else
1056 {
1057 set = new_alias_set ();
1058 TYPE_ALIAS_SET (p) = set;
1059 }
1060 }
1061 }
1062 /* Alias set of ptr_type_node is special and serve as universal pointer which
1063 is TBAA compatible with every other pointer type. Be sure we have the
1064 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1065 of pointer types NULL. */
1066 else if (t == ptr_type_node)
1067 set = new_alias_set ();
1068
1069 /* Otherwise make a new alias set for this type. */
1070 else
1071 {
1072 /* Each canonical type gets its own alias set, so canonical types
1073 shouldn't form a tree. It doesn't really matter for types
1074 we handle specially above, so only check it where it possibly
1075 would result in a bogus alias set. */
1076 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1077
1078 set = new_alias_set ();
1079 }
1080
1081 TYPE_ALIAS_SET (t) = set;
1082
1083 /* If this is an aggregate type or a complex type, we must record any
1084 component aliasing information. */
1085 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1086 record_component_aliases (t);
1087
1088 /* We treat pointer types specially in alias_set_subset_of. */
1089 if (POINTER_TYPE_P (t) && set)
1090 {
1091 alias_set_entry *ase = get_alias_set_entry (set);
1092 if (!ase)
1093 ase = init_alias_set_entry (set);
1094 ase->is_pointer = true;
1095 ase->has_pointer = true;
1096 }
1097
1098 return set;
1099 }
1100
1101 /* Return a brand-new alias set. */
1102
1103 alias_set_type
1104 new_alias_set (void)
1105 {
1106 if (alias_sets == 0)
1107 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1108 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1109 return alias_sets->length () - 1;
1110 }
1111
1112 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1113 not everything that aliases SUPERSET also aliases SUBSET. For example,
1114 in C, a store to an `int' can alias a load of a structure containing an
1115 `int', and vice versa. But it can't alias a load of a 'double' member
1116 of the same structure. Here, the structure would be the SUPERSET and
1117 `int' the SUBSET. This relationship is also described in the comment at
1118 the beginning of this file.
1119
1120 This function should be called only once per SUPERSET/SUBSET pair.
1121
1122 It is illegal for SUPERSET to be zero; everything is implicitly a
1123 subset of alias set zero. */
1124
1125 void
1126 record_alias_subset (alias_set_type superset, alias_set_type subset)
1127 {
1128 alias_set_entry *superset_entry;
1129 alias_set_entry *subset_entry;
1130
1131 /* It is possible in complex type situations for both sets to be the same,
1132 in which case we can ignore this operation. */
1133 if (superset == subset)
1134 return;
1135
1136 gcc_assert (superset);
1137
1138 superset_entry = get_alias_set_entry (superset);
1139 if (superset_entry == 0)
1140 {
1141 /* Create an entry for the SUPERSET, so that we have a place to
1142 attach the SUBSET. */
1143 superset_entry = init_alias_set_entry (superset);
1144 }
1145
1146 if (subset == 0)
1147 superset_entry->has_zero_child = 1;
1148 else
1149 {
1150 subset_entry = get_alias_set_entry (subset);
1151 if (!superset_entry->children)
1152 superset_entry->children
1153 = hash_map<alias_set_hash, int>::create_ggc (64);
1154 /* If there is an entry for the subset, enter all of its children
1155 (if they are not already present) as children of the SUPERSET. */
1156 if (subset_entry)
1157 {
1158 if (subset_entry->has_zero_child)
1159 superset_entry->has_zero_child = true;
1160 if (subset_entry->has_pointer)
1161 superset_entry->has_pointer = true;
1162
1163 if (subset_entry->children)
1164 {
1165 hash_map<alias_set_hash, int>::iterator iter
1166 = subset_entry->children->begin ();
1167 for (; iter != subset_entry->children->end (); ++iter)
1168 superset_entry->children->put ((*iter).first, (*iter).second);
1169 }
1170 }
1171
1172 /* Enter the SUBSET itself as a child of the SUPERSET. */
1173 superset_entry->children->put (subset, 0);
1174 }
1175 }
1176
1177 /* Record that component types of TYPE, if any, are part of that type for
1178 aliasing purposes. For record types, we only record component types
1179 for fields that are not marked non-addressable. For array types, we
1180 only record the component type if it is not marked non-aliased. */
1181
1182 void
1183 record_component_aliases (tree type)
1184 {
1185 alias_set_type superset = get_alias_set (type);
1186 tree field;
1187
1188 if (superset == 0)
1189 return;
1190
1191 switch (TREE_CODE (type))
1192 {
1193 case RECORD_TYPE:
1194 case UNION_TYPE:
1195 case QUAL_UNION_TYPE:
1196 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1197 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1198 {
1199 /* LTO type merging does not make any difference between
1200 component pointer types. We may have
1201
1202 struct foo {int *a;};
1203
1204 as TYPE_CANONICAL of
1205
1206 struct bar {float *a;};
1207
1208 Because accesses to int * and float * do not alias, we would get
1209 false negative when accessing the same memory location by
1210 float ** and bar *. We thus record the canonical type as:
1211
1212 struct {void *a;};
1213
1214 void * is special cased and works as a universal pointer type.
1215 Accesses to it conflicts with accesses to any other pointer
1216 type. */
1217 tree t = TREE_TYPE (field);
1218 if (in_lto_p)
1219 {
1220 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1221 element type and that type has to be normalized to void *,
1222 too, in the case it is a pointer. */
1223 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1224 {
1225 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1226 t = TREE_TYPE (t);
1227 }
1228 if (POINTER_TYPE_P (t))
1229 t = ptr_type_node;
1230 else if (flag_checking)
1231 gcc_checking_assert (get_alias_set (t)
1232 == get_alias_set (TREE_TYPE (field)));
1233 }
1234
1235 record_alias_subset (superset, get_alias_set (t));
1236 }
1237 break;
1238
1239 case COMPLEX_TYPE:
1240 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1241 break;
1242
1243 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1244 element type. */
1245
1246 default:
1247 break;
1248 }
1249 }
1250
1251 /* Allocate an alias set for use in storing and reading from the varargs
1252 spill area. */
1253
1254 static GTY(()) alias_set_type varargs_set = -1;
1255
1256 alias_set_type
1257 get_varargs_alias_set (void)
1258 {
1259 #if 1
1260 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1261 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1262 consistently use the varargs alias set for loads from the varargs
1263 area. So don't use it anywhere. */
1264 return 0;
1265 #else
1266 if (varargs_set == -1)
1267 varargs_set = new_alias_set ();
1268
1269 return varargs_set;
1270 #endif
1271 }
1272
1273 /* Likewise, but used for the fixed portions of the frame, e.g., register
1274 save areas. */
1275
1276 static GTY(()) alias_set_type frame_set = -1;
1277
1278 alias_set_type
1279 get_frame_alias_set (void)
1280 {
1281 if (frame_set == -1)
1282 frame_set = new_alias_set ();
1283
1284 return frame_set;
1285 }
1286
1287 /* Create a new, unique base with id ID. */
1288
1289 static rtx
1290 unique_base_value (HOST_WIDE_INT id)
1291 {
1292 return gen_rtx_ADDRESS (Pmode, id);
1293 }
1294
1295 /* Return true if accesses based on any other base value cannot alias
1296 those based on X. */
1297
1298 static bool
1299 unique_base_value_p (rtx x)
1300 {
1301 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1302 }
1303
1304 /* Return true if X is known to be a base value. */
1305
1306 static bool
1307 known_base_value_p (rtx x)
1308 {
1309 switch (GET_CODE (x))
1310 {
1311 case LABEL_REF:
1312 case SYMBOL_REF:
1313 return true;
1314
1315 case ADDRESS:
1316 /* Arguments may or may not be bases; we don't know for sure. */
1317 return GET_MODE (x) != VOIDmode;
1318
1319 default:
1320 return false;
1321 }
1322 }
1323
1324 /* Inside SRC, the source of a SET, find a base address. */
1325
1326 static rtx
1327 find_base_value (rtx src)
1328 {
1329 unsigned int regno;
1330
1331 #if defined (FIND_BASE_TERM)
1332 /* Try machine-dependent ways to find the base term. */
1333 src = FIND_BASE_TERM (src);
1334 #endif
1335
1336 switch (GET_CODE (src))
1337 {
1338 case SYMBOL_REF:
1339 case LABEL_REF:
1340 return src;
1341
1342 case REG:
1343 regno = REGNO (src);
1344 /* At the start of a function, argument registers have known base
1345 values which may be lost later. Returning an ADDRESS
1346 expression here allows optimization based on argument values
1347 even when the argument registers are used for other purposes. */
1348 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1349 return new_reg_base_value[regno];
1350
1351 /* If a pseudo has a known base value, return it. Do not do this
1352 for non-fixed hard regs since it can result in a circular
1353 dependency chain for registers which have values at function entry.
1354
1355 The test above is not sufficient because the scheduler may move
1356 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1357 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1358 && regno < vec_safe_length (reg_base_value))
1359 {
1360 /* If we're inside init_alias_analysis, use new_reg_base_value
1361 to reduce the number of relaxation iterations. */
1362 if (new_reg_base_value && new_reg_base_value[regno]
1363 && DF_REG_DEF_COUNT (regno) == 1)
1364 return new_reg_base_value[regno];
1365
1366 if ((*reg_base_value)[regno])
1367 return (*reg_base_value)[regno];
1368 }
1369
1370 return 0;
1371
1372 case MEM:
1373 /* Check for an argument passed in memory. Only record in the
1374 copying-arguments block; it is too hard to track changes
1375 otherwise. */
1376 if (copying_arguments
1377 && (XEXP (src, 0) == arg_pointer_rtx
1378 || (GET_CODE (XEXP (src, 0)) == PLUS
1379 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1380 return arg_base_value;
1381 return 0;
1382
1383 case CONST:
1384 src = XEXP (src, 0);
1385 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1386 break;
1387
1388 /* ... fall through ... */
1389
1390 case PLUS:
1391 case MINUS:
1392 {
1393 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1394
1395 /* If either operand is a REG that is a known pointer, then it
1396 is the base. */
1397 if (REG_P (src_0) && REG_POINTER (src_0))
1398 return find_base_value (src_0);
1399 if (REG_P (src_1) && REG_POINTER (src_1))
1400 return find_base_value (src_1);
1401
1402 /* If either operand is a REG, then see if we already have
1403 a known value for it. */
1404 if (REG_P (src_0))
1405 {
1406 temp = find_base_value (src_0);
1407 if (temp != 0)
1408 src_0 = temp;
1409 }
1410
1411 if (REG_P (src_1))
1412 {
1413 temp = find_base_value (src_1);
1414 if (temp!= 0)
1415 src_1 = temp;
1416 }
1417
1418 /* If either base is named object or a special address
1419 (like an argument or stack reference), then use it for the
1420 base term. */
1421 if (src_0 != 0 && known_base_value_p (src_0))
1422 return src_0;
1423
1424 if (src_1 != 0 && known_base_value_p (src_1))
1425 return src_1;
1426
1427 /* Guess which operand is the base address:
1428 If either operand is a symbol, then it is the base. If
1429 either operand is a CONST_INT, then the other is the base. */
1430 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1431 return find_base_value (src_0);
1432 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1433 return find_base_value (src_1);
1434
1435 return 0;
1436 }
1437
1438 case LO_SUM:
1439 /* The standard form is (lo_sum reg sym) so look only at the
1440 second operand. */
1441 return find_base_value (XEXP (src, 1));
1442
1443 case AND:
1444 /* If the second operand is constant set the base
1445 address to the first operand. */
1446 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1447 return find_base_value (XEXP (src, 0));
1448 return 0;
1449
1450 case TRUNCATE:
1451 /* As we do not know which address space the pointer is referring to, we can
1452 handle this only if the target does not support different pointer or
1453 address modes depending on the address space. */
1454 if (!target_default_pointer_address_modes_p ())
1455 break;
1456 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1457 break;
1458 /* Fall through. */
1459 case HIGH:
1460 case PRE_INC:
1461 case PRE_DEC:
1462 case POST_INC:
1463 case POST_DEC:
1464 case PRE_MODIFY:
1465 case POST_MODIFY:
1466 return find_base_value (XEXP (src, 0));
1467
1468 case ZERO_EXTEND:
1469 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1470 /* As we do not know which address space the pointer is referring to, we can
1471 handle this only if the target does not support different pointer or
1472 address modes depending on the address space. */
1473 if (!target_default_pointer_address_modes_p ())
1474 break;
1475
1476 {
1477 rtx temp = find_base_value (XEXP (src, 0));
1478
1479 if (temp != 0 && CONSTANT_P (temp))
1480 temp = convert_memory_address (Pmode, temp);
1481
1482 return temp;
1483 }
1484
1485 default:
1486 break;
1487 }
1488
1489 return 0;
1490 }
1491
1492 /* Called from init_alias_analysis indirectly through note_stores,
1493 or directly if DEST is a register with a REG_NOALIAS note attached.
1494 SET is null in the latter case. */
1495
1496 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1497 register N has been set in this function. */
1498 static sbitmap reg_seen;
1499
1500 static void
1501 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1502 {
1503 unsigned regno;
1504 rtx src;
1505 int n;
1506
1507 if (!REG_P (dest))
1508 return;
1509
1510 regno = REGNO (dest);
1511
1512 gcc_checking_assert (regno < reg_base_value->length ());
1513
1514 n = REG_NREGS (dest);
1515 if (n != 1)
1516 {
1517 while (--n >= 0)
1518 {
1519 bitmap_set_bit (reg_seen, regno + n);
1520 new_reg_base_value[regno + n] = 0;
1521 }
1522 return;
1523 }
1524
1525 if (set)
1526 {
1527 /* A CLOBBER wipes out any old value but does not prevent a previously
1528 unset register from acquiring a base address (i.e. reg_seen is not
1529 set). */
1530 if (GET_CODE (set) == CLOBBER)
1531 {
1532 new_reg_base_value[regno] = 0;
1533 return;
1534 }
1535 src = SET_SRC (set);
1536 }
1537 else
1538 {
1539 /* There's a REG_NOALIAS note against DEST. */
1540 if (bitmap_bit_p (reg_seen, regno))
1541 {
1542 new_reg_base_value[regno] = 0;
1543 return;
1544 }
1545 bitmap_set_bit (reg_seen, regno);
1546 new_reg_base_value[regno] = unique_base_value (unique_id++);
1547 return;
1548 }
1549
1550 /* If this is not the first set of REGNO, see whether the new value
1551 is related to the old one. There are two cases of interest:
1552
1553 (1) The register might be assigned an entirely new value
1554 that has the same base term as the original set.
1555
1556 (2) The set might be a simple self-modification that
1557 cannot change REGNO's base value.
1558
1559 If neither case holds, reject the original base value as invalid.
1560 Note that the following situation is not detected:
1561
1562 extern int x, y; int *p = &x; p += (&y-&x);
1563
1564 ANSI C does not allow computing the difference of addresses
1565 of distinct top level objects. */
1566 if (new_reg_base_value[regno] != 0
1567 && find_base_value (src) != new_reg_base_value[regno])
1568 switch (GET_CODE (src))
1569 {
1570 case LO_SUM:
1571 case MINUS:
1572 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1573 new_reg_base_value[regno] = 0;
1574 break;
1575 case PLUS:
1576 /* If the value we add in the PLUS is also a valid base value,
1577 this might be the actual base value, and the original value
1578 an index. */
1579 {
1580 rtx other = NULL_RTX;
1581
1582 if (XEXP (src, 0) == dest)
1583 other = XEXP (src, 1);
1584 else if (XEXP (src, 1) == dest)
1585 other = XEXP (src, 0);
1586
1587 if (! other || find_base_value (other))
1588 new_reg_base_value[regno] = 0;
1589 break;
1590 }
1591 case AND:
1592 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1593 new_reg_base_value[regno] = 0;
1594 break;
1595 default:
1596 new_reg_base_value[regno] = 0;
1597 break;
1598 }
1599 /* If this is the first set of a register, record the value. */
1600 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1601 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1602 new_reg_base_value[regno] = find_base_value (src);
1603
1604 bitmap_set_bit (reg_seen, regno);
1605 }
1606
1607 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1608 using hard registers with non-null REG_BASE_VALUE for renaming. */
1609 rtx
1610 get_reg_base_value (unsigned int regno)
1611 {
1612 return (*reg_base_value)[regno];
1613 }
1614
1615 /* If a value is known for REGNO, return it. */
1616
1617 rtx
1618 get_reg_known_value (unsigned int regno)
1619 {
1620 if (regno >= FIRST_PSEUDO_REGISTER)
1621 {
1622 regno -= FIRST_PSEUDO_REGISTER;
1623 if (regno < vec_safe_length (reg_known_value))
1624 return (*reg_known_value)[regno];
1625 }
1626 return NULL;
1627 }
1628
1629 /* Set it. */
1630
1631 static void
1632 set_reg_known_value (unsigned int regno, rtx val)
1633 {
1634 if (regno >= FIRST_PSEUDO_REGISTER)
1635 {
1636 regno -= FIRST_PSEUDO_REGISTER;
1637 if (regno < vec_safe_length (reg_known_value))
1638 (*reg_known_value)[regno] = val;
1639 }
1640 }
1641
1642 /* Similarly for reg_known_equiv_p. */
1643
1644 bool
1645 get_reg_known_equiv_p (unsigned int regno)
1646 {
1647 if (regno >= FIRST_PSEUDO_REGISTER)
1648 {
1649 regno -= FIRST_PSEUDO_REGISTER;
1650 if (regno < vec_safe_length (reg_known_value))
1651 return bitmap_bit_p (reg_known_equiv_p, regno);
1652 }
1653 return false;
1654 }
1655
1656 static void
1657 set_reg_known_equiv_p (unsigned int regno, bool val)
1658 {
1659 if (regno >= FIRST_PSEUDO_REGISTER)
1660 {
1661 regno -= FIRST_PSEUDO_REGISTER;
1662 if (regno < vec_safe_length (reg_known_value))
1663 {
1664 if (val)
1665 bitmap_set_bit (reg_known_equiv_p, regno);
1666 else
1667 bitmap_clear_bit (reg_known_equiv_p, regno);
1668 }
1669 }
1670 }
1671
1672
1673 /* Returns a canonical version of X, from the point of view alias
1674 analysis. (For example, if X is a MEM whose address is a register,
1675 and the register has a known value (say a SYMBOL_REF), then a MEM
1676 whose address is the SYMBOL_REF is returned.) */
1677
1678 rtx
1679 canon_rtx (rtx x)
1680 {
1681 /* Recursively look for equivalences. */
1682 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1683 {
1684 rtx t = get_reg_known_value (REGNO (x));
1685 if (t == x)
1686 return x;
1687 if (t)
1688 return canon_rtx (t);
1689 }
1690
1691 if (GET_CODE (x) == PLUS)
1692 {
1693 rtx x0 = canon_rtx (XEXP (x, 0));
1694 rtx x1 = canon_rtx (XEXP (x, 1));
1695
1696 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1697 {
1698 if (CONST_INT_P (x0))
1699 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1700 else if (CONST_INT_P (x1))
1701 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1702 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1703 }
1704 }
1705
1706 /* This gives us much better alias analysis when called from
1707 the loop optimizer. Note we want to leave the original
1708 MEM alone, but need to return the canonicalized MEM with
1709 all the flags with their original values. */
1710 else if (MEM_P (x))
1711 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1712
1713 return x;
1714 }
1715
1716 /* Return 1 if X and Y are identical-looking rtx's.
1717 Expect that X and Y has been already canonicalized.
1718
1719 We use the data in reg_known_value above to see if two registers with
1720 different numbers are, in fact, equivalent. */
1721
1722 static int
1723 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1724 {
1725 int i;
1726 int j;
1727 enum rtx_code code;
1728 const char *fmt;
1729
1730 if (x == 0 && y == 0)
1731 return 1;
1732 if (x == 0 || y == 0)
1733 return 0;
1734
1735 if (x == y)
1736 return 1;
1737
1738 code = GET_CODE (x);
1739 /* Rtx's of different codes cannot be equal. */
1740 if (code != GET_CODE (y))
1741 return 0;
1742
1743 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1744 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1745
1746 if (GET_MODE (x) != GET_MODE (y))
1747 return 0;
1748
1749 /* Some RTL can be compared without a recursive examination. */
1750 switch (code)
1751 {
1752 case REG:
1753 return REGNO (x) == REGNO (y);
1754
1755 case LABEL_REF:
1756 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1757
1758 case SYMBOL_REF:
1759 {
1760 tree x_decl = SYMBOL_REF_DECL (x);
1761 tree y_decl = SYMBOL_REF_DECL (y);
1762
1763 if (!x_decl || !y_decl)
1764 return XSTR (x, 0) == XSTR (y, 0);
1765 else
1766 return compare_base_decls (x_decl, y_decl) == 1;
1767 }
1768
1769 case ENTRY_VALUE:
1770 /* This is magic, don't go through canonicalization et al. */
1771 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1772
1773 case VALUE:
1774 CASE_CONST_UNIQUE:
1775 /* Pointer equality guarantees equality for these nodes. */
1776 return 0;
1777
1778 default:
1779 break;
1780 }
1781
1782 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1783 if (code == PLUS)
1784 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1785 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1786 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1787 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1788 /* For commutative operations, the RTX match if the operand match in any
1789 order. Also handle the simple binary and unary cases without a loop. */
1790 if (COMMUTATIVE_P (x))
1791 {
1792 rtx xop0 = canon_rtx (XEXP (x, 0));
1793 rtx yop0 = canon_rtx (XEXP (y, 0));
1794 rtx yop1 = canon_rtx (XEXP (y, 1));
1795
1796 return ((rtx_equal_for_memref_p (xop0, yop0)
1797 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1798 || (rtx_equal_for_memref_p (xop0, yop1)
1799 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1800 }
1801 else if (NON_COMMUTATIVE_P (x))
1802 {
1803 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1804 canon_rtx (XEXP (y, 0)))
1805 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1806 canon_rtx (XEXP (y, 1))));
1807 }
1808 else if (UNARY_P (x))
1809 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1810 canon_rtx (XEXP (y, 0)));
1811
1812 /* Compare the elements. If any pair of corresponding elements
1813 fail to match, return 0 for the whole things.
1814
1815 Limit cases to types which actually appear in addresses. */
1816
1817 fmt = GET_RTX_FORMAT (code);
1818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1819 {
1820 switch (fmt[i])
1821 {
1822 case 'i':
1823 if (XINT (x, i) != XINT (y, i))
1824 return 0;
1825 break;
1826
1827 case 'E':
1828 /* Two vectors must have the same length. */
1829 if (XVECLEN (x, i) != XVECLEN (y, i))
1830 return 0;
1831
1832 /* And the corresponding elements must match. */
1833 for (j = 0; j < XVECLEN (x, i); j++)
1834 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1835 canon_rtx (XVECEXP (y, i, j))) == 0)
1836 return 0;
1837 break;
1838
1839 case 'e':
1840 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1841 canon_rtx (XEXP (y, i))) == 0)
1842 return 0;
1843 break;
1844
1845 /* This can happen for asm operands. */
1846 case 's':
1847 if (strcmp (XSTR (x, i), XSTR (y, i)))
1848 return 0;
1849 break;
1850
1851 /* This can happen for an asm which clobbers memory. */
1852 case '0':
1853 break;
1854
1855 /* It is believed that rtx's at this level will never
1856 contain anything but integers and other rtx's,
1857 except for within LABEL_REFs and SYMBOL_REFs. */
1858 default:
1859 gcc_unreachable ();
1860 }
1861 }
1862 return 1;
1863 }
1864
1865 static rtx
1866 find_base_term (rtx x)
1867 {
1868 cselib_val *val;
1869 struct elt_loc_list *l, *f;
1870 rtx ret;
1871
1872 #if defined (FIND_BASE_TERM)
1873 /* Try machine-dependent ways to find the base term. */
1874 x = FIND_BASE_TERM (x);
1875 #endif
1876
1877 switch (GET_CODE (x))
1878 {
1879 case REG:
1880 return REG_BASE_VALUE (x);
1881
1882 case TRUNCATE:
1883 /* As we do not know which address space the pointer is referring to, we can
1884 handle this only if the target does not support different pointer or
1885 address modes depending on the address space. */
1886 if (!target_default_pointer_address_modes_p ())
1887 return 0;
1888 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1889 return 0;
1890 /* Fall through. */
1891 case HIGH:
1892 case PRE_INC:
1893 case PRE_DEC:
1894 case POST_INC:
1895 case POST_DEC:
1896 case PRE_MODIFY:
1897 case POST_MODIFY:
1898 return find_base_term (XEXP (x, 0));
1899
1900 case ZERO_EXTEND:
1901 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1902 /* As we do not know which address space the pointer is referring to, we can
1903 handle this only if the target does not support different pointer or
1904 address modes depending on the address space. */
1905 if (!target_default_pointer_address_modes_p ())
1906 return 0;
1907
1908 {
1909 rtx temp = find_base_term (XEXP (x, 0));
1910
1911 if (temp != 0 && CONSTANT_P (temp))
1912 temp = convert_memory_address (Pmode, temp);
1913
1914 return temp;
1915 }
1916
1917 case VALUE:
1918 val = CSELIB_VAL_PTR (x);
1919 ret = NULL_RTX;
1920
1921 if (!val)
1922 return ret;
1923
1924 if (cselib_sp_based_value_p (val))
1925 return static_reg_base_value[STACK_POINTER_REGNUM];
1926
1927 f = val->locs;
1928 /* Temporarily reset val->locs to avoid infinite recursion. */
1929 val->locs = NULL;
1930
1931 for (l = f; l; l = l->next)
1932 if (GET_CODE (l->loc) == VALUE
1933 && CSELIB_VAL_PTR (l->loc)->locs
1934 && !CSELIB_VAL_PTR (l->loc)->locs->next
1935 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1936 continue;
1937 else if ((ret = find_base_term (l->loc)) != 0)
1938 break;
1939
1940 val->locs = f;
1941 return ret;
1942
1943 case LO_SUM:
1944 /* The standard form is (lo_sum reg sym) so look only at the
1945 second operand. */
1946 return find_base_term (XEXP (x, 1));
1947
1948 case CONST:
1949 x = XEXP (x, 0);
1950 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1951 return 0;
1952 /* Fall through. */
1953 case PLUS:
1954 case MINUS:
1955 {
1956 rtx tmp1 = XEXP (x, 0);
1957 rtx tmp2 = XEXP (x, 1);
1958
1959 /* This is a little bit tricky since we have to determine which of
1960 the two operands represents the real base address. Otherwise this
1961 routine may return the index register instead of the base register.
1962
1963 That may cause us to believe no aliasing was possible, when in
1964 fact aliasing is possible.
1965
1966 We use a few simple tests to guess the base register. Additional
1967 tests can certainly be added. For example, if one of the operands
1968 is a shift or multiply, then it must be the index register and the
1969 other operand is the base register. */
1970
1971 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1972 return find_base_term (tmp2);
1973
1974 /* If either operand is known to be a pointer, then prefer it
1975 to determine the base term. */
1976 if (REG_P (tmp1) && REG_POINTER (tmp1))
1977 ;
1978 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1979 std::swap (tmp1, tmp2);
1980 /* If second argument is constant which has base term, prefer it
1981 over variable tmp1. See PR64025. */
1982 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1983 std::swap (tmp1, tmp2);
1984
1985 /* Go ahead and find the base term for both operands. If either base
1986 term is from a pointer or is a named object or a special address
1987 (like an argument or stack reference), then use it for the
1988 base term. */
1989 rtx base = find_base_term (tmp1);
1990 if (base != NULL_RTX
1991 && ((REG_P (tmp1) && REG_POINTER (tmp1))
1992 || known_base_value_p (base)))
1993 return base;
1994 base = find_base_term (tmp2);
1995 if (base != NULL_RTX
1996 && ((REG_P (tmp2) && REG_POINTER (tmp2))
1997 || known_base_value_p (base)))
1998 return base;
1999
2000 /* We could not determine which of the two operands was the
2001 base register and which was the index. So we can determine
2002 nothing from the base alias check. */
2003 return 0;
2004 }
2005
2006 case AND:
2007 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2008 return find_base_term (XEXP (x, 0));
2009 return 0;
2010
2011 case SYMBOL_REF:
2012 case LABEL_REF:
2013 return x;
2014
2015 default:
2016 return 0;
2017 }
2018 }
2019
2020 /* Return true if accesses to address X may alias accesses based
2021 on the stack pointer. */
2022
2023 bool
2024 may_be_sp_based_p (rtx x)
2025 {
2026 rtx base = find_base_term (x);
2027 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2028 }
2029
2030 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2031 if they refer to different objects and -1 if we can not decide. */
2032
2033 int
2034 compare_base_decls (tree base1, tree base2)
2035 {
2036 int ret;
2037 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2038 if (base1 == base2)
2039 return 1;
2040
2041 /* Declarations of non-automatic variables may have aliases. All other
2042 decls are unique. */
2043 if (!decl_in_symtab_p (base1)
2044 || !decl_in_symtab_p (base2))
2045 return 0;
2046
2047 /* Don't cause symbols to be inserted by the act of checking. */
2048 symtab_node *node1 = symtab_node::get (base1);
2049 if (!node1)
2050 return 0;
2051 symtab_node *node2 = symtab_node::get (base2);
2052 if (!node2)
2053 return 0;
2054
2055 ret = node1->equal_address_to (node2, true);
2056 return ret;
2057 }
2058
2059 /* Return 0 if the addresses X and Y are known to point to different
2060 objects, 1 if they might be pointers to the same object. */
2061
2062 static int
2063 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2064 machine_mode x_mode, machine_mode y_mode)
2065 {
2066 /* If the address itself has no known base see if a known equivalent
2067 value has one. If either address still has no known base, nothing
2068 is known about aliasing. */
2069 if (x_base == 0)
2070 {
2071 rtx x_c;
2072
2073 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2074 return 1;
2075
2076 x_base = find_base_term (x_c);
2077 if (x_base == 0)
2078 return 1;
2079 }
2080
2081 if (y_base == 0)
2082 {
2083 rtx y_c;
2084 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2085 return 1;
2086
2087 y_base = find_base_term (y_c);
2088 if (y_base == 0)
2089 return 1;
2090 }
2091
2092 /* If the base addresses are equal nothing is known about aliasing. */
2093 if (rtx_equal_p (x_base, y_base))
2094 return 1;
2095
2096 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2097 {
2098 tree x_decl = SYMBOL_REF_DECL (x_base);
2099 tree y_decl = SYMBOL_REF_DECL (y_base);
2100
2101 /* We can assume that no stores are made to labels. */
2102 if (!x_decl || !y_decl)
2103 return 0;
2104 return compare_base_decls (x_decl, y_decl) != 0;
2105 }
2106
2107 /* The base addresses are different expressions. If they are not accessed
2108 via AND, there is no conflict. We can bring knowledge of object
2109 alignment into play here. For example, on alpha, "char a, b;" can
2110 alias one another, though "char a; long b;" cannot. AND addesses may
2111 implicitly alias surrounding objects; i.e. unaligned access in DImode
2112 via AND address can alias all surrounding object types except those
2113 with aligment 8 or higher. */
2114 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2115 return 1;
2116 if (GET_CODE (x) == AND
2117 && (!CONST_INT_P (XEXP (x, 1))
2118 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2119 return 1;
2120 if (GET_CODE (y) == AND
2121 && (!CONST_INT_P (XEXP (y, 1))
2122 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2123 return 1;
2124
2125 /* Differing symbols not accessed via AND never alias. */
2126 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2127 return 0;
2128
2129 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2130 return 0;
2131
2132 return 1;
2133 }
2134
2135 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2136 (or equal to) that of V. */
2137
2138 static bool
2139 refs_newer_value_p (const_rtx expr, rtx v)
2140 {
2141 int minuid = CSELIB_VAL_PTR (v)->uid;
2142 subrtx_iterator::array_type array;
2143 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2144 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2145 return true;
2146 return false;
2147 }
2148
2149 /* Convert the address X into something we can use. This is done by returning
2150 it unchanged unless it is a value; in the latter case we call cselib to get
2151 a more useful rtx. */
2152
2153 rtx
2154 get_addr (rtx x)
2155 {
2156 cselib_val *v;
2157 struct elt_loc_list *l;
2158
2159 if (GET_CODE (x) != VALUE)
2160 return x;
2161 v = CSELIB_VAL_PTR (x);
2162 if (v)
2163 {
2164 bool have_equivs = cselib_have_permanent_equivalences ();
2165 if (have_equivs)
2166 v = canonical_cselib_val (v);
2167 for (l = v->locs; l; l = l->next)
2168 if (CONSTANT_P (l->loc))
2169 return l->loc;
2170 for (l = v->locs; l; l = l->next)
2171 if (!REG_P (l->loc) && !MEM_P (l->loc)
2172 /* Avoid infinite recursion when potentially dealing with
2173 var-tracking artificial equivalences, by skipping the
2174 equivalences themselves, and not choosing expressions
2175 that refer to newer VALUEs. */
2176 && (!have_equivs
2177 || (GET_CODE (l->loc) != VALUE
2178 && !refs_newer_value_p (l->loc, x))))
2179 return l->loc;
2180 if (have_equivs)
2181 {
2182 for (l = v->locs; l; l = l->next)
2183 if (REG_P (l->loc)
2184 || (GET_CODE (l->loc) != VALUE
2185 && !refs_newer_value_p (l->loc, x)))
2186 return l->loc;
2187 /* Return the canonical value. */
2188 return v->val_rtx;
2189 }
2190 if (v->locs)
2191 return v->locs->loc;
2192 }
2193 return x;
2194 }
2195
2196 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2197 where SIZE is the size in bytes of the memory reference. If ADDR
2198 is not modified by the memory reference then ADDR is returned. */
2199
2200 static rtx
2201 addr_side_effect_eval (rtx addr, int size, int n_refs)
2202 {
2203 int offset = 0;
2204
2205 switch (GET_CODE (addr))
2206 {
2207 case PRE_INC:
2208 offset = (n_refs + 1) * size;
2209 break;
2210 case PRE_DEC:
2211 offset = -(n_refs + 1) * size;
2212 break;
2213 case POST_INC:
2214 offset = n_refs * size;
2215 break;
2216 case POST_DEC:
2217 offset = -n_refs * size;
2218 break;
2219
2220 default:
2221 return addr;
2222 }
2223
2224 if (offset)
2225 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
2226 gen_int_mode (offset, GET_MODE (addr)));
2227 else
2228 addr = XEXP (addr, 0);
2229 addr = canon_rtx (addr);
2230
2231 return addr;
2232 }
2233
2234 /* Return TRUE if an object X sized at XSIZE bytes and another object
2235 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2236 any of the sizes is zero, assume an overlap, otherwise use the
2237 absolute value of the sizes as the actual sizes. */
2238
2239 static inline bool
2240 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
2241 {
2242 return (xsize == 0 || ysize == 0
2243 || (c >= 0
2244 ? (abs (xsize) > c)
2245 : (abs (ysize) > -c)));
2246 }
2247
2248 /* Return one if X and Y (memory addresses) reference the
2249 same location in memory or if the references overlap.
2250 Return zero if they do not overlap, else return
2251 minus one in which case they still might reference the same location.
2252
2253 C is an offset accumulator. When
2254 C is nonzero, we are testing aliases between X and Y + C.
2255 XSIZE is the size in bytes of the X reference,
2256 similarly YSIZE is the size in bytes for Y.
2257 Expect that canon_rtx has been already called for X and Y.
2258
2259 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2260 referenced (the reference was BLKmode), so make the most pessimistic
2261 assumptions.
2262
2263 If XSIZE or YSIZE is negative, we may access memory outside the object
2264 being referenced as a side effect. This can happen when using AND to
2265 align memory references, as is done on the Alpha.
2266
2267 Nice to notice that varying addresses cannot conflict with fp if no
2268 local variables had their addresses taken, but that's too hard now.
2269
2270 ??? Contrary to the tree alias oracle this does not return
2271 one for X + non-constant and Y + non-constant when X and Y are equal.
2272 If that is fixed the TBAA hack for union type-punning can be removed. */
2273
2274 static int
2275 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2276 {
2277 if (GET_CODE (x) == VALUE)
2278 {
2279 if (REG_P (y))
2280 {
2281 struct elt_loc_list *l = NULL;
2282 if (CSELIB_VAL_PTR (x))
2283 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2284 l; l = l->next)
2285 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2286 break;
2287 if (l)
2288 x = y;
2289 else
2290 x = get_addr (x);
2291 }
2292 /* Don't call get_addr if y is the same VALUE. */
2293 else if (x != y)
2294 x = get_addr (x);
2295 }
2296 if (GET_CODE (y) == VALUE)
2297 {
2298 if (REG_P (x))
2299 {
2300 struct elt_loc_list *l = NULL;
2301 if (CSELIB_VAL_PTR (y))
2302 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2303 l; l = l->next)
2304 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2305 break;
2306 if (l)
2307 y = x;
2308 else
2309 y = get_addr (y);
2310 }
2311 /* Don't call get_addr if x is the same VALUE. */
2312 else if (y != x)
2313 y = get_addr (y);
2314 }
2315 if (GET_CODE (x) == HIGH)
2316 x = XEXP (x, 0);
2317 else if (GET_CODE (x) == LO_SUM)
2318 x = XEXP (x, 1);
2319 else
2320 x = addr_side_effect_eval (x, abs (xsize), 0);
2321 if (GET_CODE (y) == HIGH)
2322 y = XEXP (y, 0);
2323 else if (GET_CODE (y) == LO_SUM)
2324 y = XEXP (y, 1);
2325 else
2326 y = addr_side_effect_eval (y, abs (ysize), 0);
2327
2328 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2329 {
2330 tree x_decl = SYMBOL_REF_DECL (x);
2331 tree y_decl = SYMBOL_REF_DECL (y);
2332 int cmp;
2333
2334 if (!x_decl || !y_decl)
2335 {
2336 /* Label and normal symbol are never the same. */
2337 if (x_decl != y_decl)
2338 return 0;
2339 return offset_overlap_p (c, xsize, ysize);
2340 }
2341 else
2342 cmp = compare_base_decls (x_decl, y_decl);
2343
2344 /* If both decls are the same, decide by offsets. */
2345 if (cmp == 1)
2346 return offset_overlap_p (c, xsize, ysize);
2347 /* If decls are different or we know by offsets that there is no overlap,
2348 we win. */
2349 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2350 return 0;
2351 /* Decls may or may not be different and offsets overlap....*/
2352 return -1;
2353 }
2354 else if (rtx_equal_for_memref_p (x, y))
2355 {
2356 return offset_overlap_p (c, xsize, ysize);
2357 }
2358
2359 /* This code used to check for conflicts involving stack references and
2360 globals but the base address alias code now handles these cases. */
2361
2362 if (GET_CODE (x) == PLUS)
2363 {
2364 /* The fact that X is canonicalized means that this
2365 PLUS rtx is canonicalized. */
2366 rtx x0 = XEXP (x, 0);
2367 rtx x1 = XEXP (x, 1);
2368
2369 /* However, VALUEs might end up in different positions even in
2370 canonical PLUSes. Comparing their addresses is enough. */
2371 if (x0 == y)
2372 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2373 else if (x1 == y)
2374 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2375
2376 if (GET_CODE (y) == PLUS)
2377 {
2378 /* The fact that Y is canonicalized means that this
2379 PLUS rtx is canonicalized. */
2380 rtx y0 = XEXP (y, 0);
2381 rtx y1 = XEXP (y, 1);
2382
2383 if (x0 == y1)
2384 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2385 if (x1 == y0)
2386 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2387
2388 if (rtx_equal_for_memref_p (x1, y1))
2389 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2390 if (rtx_equal_for_memref_p (x0, y0))
2391 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2392 if (CONST_INT_P (x1))
2393 {
2394 if (CONST_INT_P (y1))
2395 return memrefs_conflict_p (xsize, x0, ysize, y0,
2396 c - INTVAL (x1) + INTVAL (y1));
2397 else
2398 return memrefs_conflict_p (xsize, x0, ysize, y,
2399 c - INTVAL (x1));
2400 }
2401 else if (CONST_INT_P (y1))
2402 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2403
2404 return -1;
2405 }
2406 else if (CONST_INT_P (x1))
2407 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2408 }
2409 else if (GET_CODE (y) == PLUS)
2410 {
2411 /* The fact that Y is canonicalized means that this
2412 PLUS rtx is canonicalized. */
2413 rtx y0 = XEXP (y, 0);
2414 rtx y1 = XEXP (y, 1);
2415
2416 if (x == y0)
2417 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2418 if (x == y1)
2419 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2420
2421 if (CONST_INT_P (y1))
2422 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2423 else
2424 return -1;
2425 }
2426
2427 if (GET_CODE (x) == GET_CODE (y))
2428 switch (GET_CODE (x))
2429 {
2430 case MULT:
2431 {
2432 /* Handle cases where we expect the second operands to be the
2433 same, and check only whether the first operand would conflict
2434 or not. */
2435 rtx x0, y0;
2436 rtx x1 = canon_rtx (XEXP (x, 1));
2437 rtx y1 = canon_rtx (XEXP (y, 1));
2438 if (! rtx_equal_for_memref_p (x1, y1))
2439 return -1;
2440 x0 = canon_rtx (XEXP (x, 0));
2441 y0 = canon_rtx (XEXP (y, 0));
2442 if (rtx_equal_for_memref_p (x0, y0))
2443 return offset_overlap_p (c, xsize, ysize);
2444
2445 /* Can't properly adjust our sizes. */
2446 if (!CONST_INT_P (x1))
2447 return -1;
2448 xsize /= INTVAL (x1);
2449 ysize /= INTVAL (x1);
2450 c /= INTVAL (x1);
2451 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2452 }
2453
2454 default:
2455 break;
2456 }
2457
2458 /* Deal with alignment ANDs by adjusting offset and size so as to
2459 cover the maximum range, without taking any previously known
2460 alignment into account. Make a size negative after such an
2461 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2462 assume a potential overlap, because they may end up in contiguous
2463 memory locations and the stricter-alignment access may span over
2464 part of both. */
2465 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2466 {
2467 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2468 unsigned HOST_WIDE_INT uc = sc;
2469 if (sc < 0 && -uc == (uc & -uc))
2470 {
2471 if (xsize > 0)
2472 xsize = -xsize;
2473 if (xsize)
2474 xsize += sc + 1;
2475 c -= sc + 1;
2476 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2477 ysize, y, c);
2478 }
2479 }
2480 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2481 {
2482 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2483 unsigned HOST_WIDE_INT uc = sc;
2484 if (sc < 0 && -uc == (uc & -uc))
2485 {
2486 if (ysize > 0)
2487 ysize = -ysize;
2488 if (ysize)
2489 ysize += sc + 1;
2490 c += sc + 1;
2491 return memrefs_conflict_p (xsize, x,
2492 ysize, canon_rtx (XEXP (y, 0)), c);
2493 }
2494 }
2495
2496 if (CONSTANT_P (x))
2497 {
2498 if (CONST_INT_P (x) && CONST_INT_P (y))
2499 {
2500 c += (INTVAL (y) - INTVAL (x));
2501 return offset_overlap_p (c, xsize, ysize);
2502 }
2503
2504 if (GET_CODE (x) == CONST)
2505 {
2506 if (GET_CODE (y) == CONST)
2507 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2508 ysize, canon_rtx (XEXP (y, 0)), c);
2509 else
2510 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2511 ysize, y, c);
2512 }
2513 if (GET_CODE (y) == CONST)
2514 return memrefs_conflict_p (xsize, x, ysize,
2515 canon_rtx (XEXP (y, 0)), c);
2516
2517 /* Assume a potential overlap for symbolic addresses that went
2518 through alignment adjustments (i.e., that have negative
2519 sizes), because we can't know how far they are from each
2520 other. */
2521 if (CONSTANT_P (y))
2522 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2523
2524 return -1;
2525 }
2526
2527 return -1;
2528 }
2529
2530 /* Functions to compute memory dependencies.
2531
2532 Since we process the insns in execution order, we can build tables
2533 to keep track of what registers are fixed (and not aliased), what registers
2534 are varying in known ways, and what registers are varying in unknown
2535 ways.
2536
2537 If both memory references are volatile, then there must always be a
2538 dependence between the two references, since their order can not be
2539 changed. A volatile and non-volatile reference can be interchanged
2540 though.
2541
2542 We also must allow AND addresses, because they may generate accesses
2543 outside the object being referenced. This is used to generate aligned
2544 addresses from unaligned addresses, for instance, the alpha
2545 storeqi_unaligned pattern. */
2546
2547 /* Read dependence: X is read after read in MEM takes place. There can
2548 only be a dependence here if both reads are volatile, or if either is
2549 an explicit barrier. */
2550
2551 int
2552 read_dependence (const_rtx mem, const_rtx x)
2553 {
2554 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2555 return true;
2556 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2557 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2558 return true;
2559 return false;
2560 }
2561
2562 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2563
2564 static tree
2565 decl_for_component_ref (tree x)
2566 {
2567 do
2568 {
2569 x = TREE_OPERAND (x, 0);
2570 }
2571 while (x && TREE_CODE (x) == COMPONENT_REF);
2572
2573 return x && DECL_P (x) ? x : NULL_TREE;
2574 }
2575
2576 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2577 for the offset of the field reference. *KNOWN_P says whether the
2578 offset is known. */
2579
2580 static void
2581 adjust_offset_for_component_ref (tree x, bool *known_p,
2582 HOST_WIDE_INT *offset)
2583 {
2584 if (!*known_p)
2585 return;
2586 do
2587 {
2588 tree xoffset = component_ref_field_offset (x);
2589 tree field = TREE_OPERAND (x, 1);
2590 if (TREE_CODE (xoffset) != INTEGER_CST)
2591 {
2592 *known_p = false;
2593 return;
2594 }
2595
2596 offset_int woffset
2597 = (wi::to_offset (xoffset)
2598 + wi::lrshift (wi::to_offset (DECL_FIELD_BIT_OFFSET (field)),
2599 LOG2_BITS_PER_UNIT));
2600 if (!wi::fits_uhwi_p (woffset))
2601 {
2602 *known_p = false;
2603 return;
2604 }
2605 *offset += woffset.to_uhwi ();
2606
2607 x = TREE_OPERAND (x, 0);
2608 }
2609 while (x && TREE_CODE (x) == COMPONENT_REF);
2610 }
2611
2612 /* Return nonzero if we can determine the exprs corresponding to memrefs
2613 X and Y and they do not overlap.
2614 If LOOP_VARIANT is set, skip offset-based disambiguation */
2615
2616 int
2617 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2618 {
2619 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2620 rtx rtlx, rtly;
2621 rtx basex, basey;
2622 bool moffsetx_known_p, moffsety_known_p;
2623 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2624 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey;
2625
2626 /* Unless both have exprs, we can't tell anything. */
2627 if (exprx == 0 || expry == 0)
2628 return 0;
2629
2630 /* For spill-slot accesses make sure we have valid offsets. */
2631 if ((exprx == get_spill_slot_decl (false)
2632 && ! MEM_OFFSET_KNOWN_P (x))
2633 || (expry == get_spill_slot_decl (false)
2634 && ! MEM_OFFSET_KNOWN_P (y)))
2635 return 0;
2636
2637 /* If the field reference test failed, look at the DECLs involved. */
2638 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2639 if (moffsetx_known_p)
2640 moffsetx = MEM_OFFSET (x);
2641 if (TREE_CODE (exprx) == COMPONENT_REF)
2642 {
2643 tree t = decl_for_component_ref (exprx);
2644 if (! t)
2645 return 0;
2646 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2647 exprx = t;
2648 }
2649
2650 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2651 if (moffsety_known_p)
2652 moffsety = MEM_OFFSET (y);
2653 if (TREE_CODE (expry) == COMPONENT_REF)
2654 {
2655 tree t = decl_for_component_ref (expry);
2656 if (! t)
2657 return 0;
2658 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2659 expry = t;
2660 }
2661
2662 if (! DECL_P (exprx) || ! DECL_P (expry))
2663 return 0;
2664
2665 /* If we refer to different gimple registers, or one gimple register
2666 and one non-gimple-register, we know they can't overlap. First,
2667 gimple registers don't have their addresses taken. Now, there
2668 could be more than one stack slot for (different versions of) the
2669 same gimple register, but we can presumably tell they don't
2670 overlap based on offsets from stack base addresses elsewhere.
2671 It's important that we don't proceed to DECL_RTL, because gimple
2672 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2673 able to do anything about them since no SSA information will have
2674 remained to guide it. */
2675 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2676 return exprx != expry
2677 || (moffsetx_known_p && moffsety_known_p
2678 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2679 && !offset_overlap_p (moffsety - moffsetx,
2680 MEM_SIZE (x), MEM_SIZE (y)));
2681
2682 /* With invalid code we can end up storing into the constant pool.
2683 Bail out to avoid ICEing when creating RTL for this.
2684 See gfortran.dg/lto/20091028-2_0.f90. */
2685 if (TREE_CODE (exprx) == CONST_DECL
2686 || TREE_CODE (expry) == CONST_DECL)
2687 return 1;
2688
2689 rtlx = DECL_RTL (exprx);
2690 rtly = DECL_RTL (expry);
2691
2692 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2693 can't overlap unless they are the same because we never reuse that part
2694 of the stack frame used for locals for spilled pseudos. */
2695 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2696 && ! rtx_equal_p (rtlx, rtly))
2697 return 1;
2698
2699 /* If we have MEMs referring to different address spaces (which can
2700 potentially overlap), we cannot easily tell from the addresses
2701 whether the references overlap. */
2702 if (MEM_P (rtlx) && MEM_P (rtly)
2703 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2704 return 0;
2705
2706 /* Get the base and offsets of both decls. If either is a register, we
2707 know both are and are the same, so use that as the base. The only
2708 we can avoid overlap is if we can deduce that they are nonoverlapping
2709 pieces of that decl, which is very rare. */
2710 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2711 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2712 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2713
2714 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2715 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2716 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2717
2718 /* If the bases are different, we know they do not overlap if both
2719 are constants or if one is a constant and the other a pointer into the
2720 stack frame. Otherwise a different base means we can't tell if they
2721 overlap or not. */
2722 if (compare_base_decls (exprx, expry) == 0)
2723 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2724 || (CONSTANT_P (basex) && REG_P (basey)
2725 && REGNO_PTR_FRAME_P (REGNO (basey)))
2726 || (CONSTANT_P (basey) && REG_P (basex)
2727 && REGNO_PTR_FRAME_P (REGNO (basex))));
2728
2729 /* Offset based disambiguation not appropriate for loop invariant */
2730 if (loop_invariant)
2731 return 0;
2732
2733 /* Offset based disambiguation is OK even if we do not know that the
2734 declarations are necessarily different
2735 (i.e. compare_base_decls (exprx, expry) == -1) */
2736
2737 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2738 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2739 : -1);
2740 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2741 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2742 : -1);
2743
2744 /* If we have an offset for either memref, it can update the values computed
2745 above. */
2746 if (moffsetx_known_p)
2747 offsetx += moffsetx, sizex -= moffsetx;
2748 if (moffsety_known_p)
2749 offsety += moffsety, sizey -= moffsety;
2750
2751 /* If a memref has both a size and an offset, we can use the smaller size.
2752 We can't do this if the offset isn't known because we must view this
2753 memref as being anywhere inside the DECL's MEM. */
2754 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2755 sizex = MEM_SIZE (x);
2756 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2757 sizey = MEM_SIZE (y);
2758
2759 /* Put the values of the memref with the lower offset in X's values. */
2760 if (offsetx > offsety)
2761 {
2762 std::swap (offsetx, offsety);
2763 std::swap (sizex, sizey);
2764 }
2765
2766 /* If we don't know the size of the lower-offset value, we can't tell
2767 if they conflict. Otherwise, we do the test. */
2768 return sizex >= 0 && offsety >= offsetx + sizex;
2769 }
2770
2771 /* Helper for true_dependence and canon_true_dependence.
2772 Checks for true dependence: X is read after store in MEM takes place.
2773
2774 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2775 NULL_RTX, and the canonical addresses of MEM and X are both computed
2776 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2777
2778 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2779
2780 Returns 1 if there is a true dependence, 0 otherwise. */
2781
2782 static int
2783 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2784 const_rtx x, rtx x_addr, bool mem_canonicalized)
2785 {
2786 rtx true_mem_addr;
2787 rtx base;
2788 int ret;
2789
2790 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2791 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2792
2793 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2794 return 1;
2795
2796 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2797 This is used in epilogue deallocation functions, and in cselib. */
2798 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2799 return 1;
2800 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2801 return 1;
2802 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2803 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2804 return 1;
2805
2806 if (! x_addr)
2807 x_addr = XEXP (x, 0);
2808 x_addr = get_addr (x_addr);
2809
2810 if (! mem_addr)
2811 {
2812 mem_addr = XEXP (mem, 0);
2813 if (mem_mode == VOIDmode)
2814 mem_mode = GET_MODE (mem);
2815 }
2816 true_mem_addr = get_addr (mem_addr);
2817
2818 /* Read-only memory is by definition never modified, and therefore can't
2819 conflict with anything. However, don't assume anything when AND
2820 addresses are involved and leave to the code below to determine
2821 dependence. We don't expect to find read-only set on MEM, but
2822 stupid user tricks can produce them, so don't die. */
2823 if (MEM_READONLY_P (x)
2824 && GET_CODE (x_addr) != AND
2825 && GET_CODE (true_mem_addr) != AND)
2826 return 0;
2827
2828 /* If we have MEMs referring to different address spaces (which can
2829 potentially overlap), we cannot easily tell from the addresses
2830 whether the references overlap. */
2831 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2832 return 1;
2833
2834 base = find_base_term (x_addr);
2835 if (base && (GET_CODE (base) == LABEL_REF
2836 || (GET_CODE (base) == SYMBOL_REF
2837 && CONSTANT_POOL_ADDRESS_P (base))))
2838 return 0;
2839
2840 rtx mem_base = find_base_term (true_mem_addr);
2841 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2842 GET_MODE (x), mem_mode))
2843 return 0;
2844
2845 x_addr = canon_rtx (x_addr);
2846 if (!mem_canonicalized)
2847 mem_addr = canon_rtx (true_mem_addr);
2848
2849 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2850 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2851 return ret;
2852
2853 if (mems_in_disjoint_alias_sets_p (x, mem))
2854 return 0;
2855
2856 if (nonoverlapping_memrefs_p (mem, x, false))
2857 return 0;
2858
2859 return rtx_refs_may_alias_p (x, mem, true);
2860 }
2861
2862 /* True dependence: X is read after store in MEM takes place. */
2863
2864 int
2865 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2866 {
2867 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2868 x, NULL_RTX, /*mem_canonicalized=*/false);
2869 }
2870
2871 /* Canonical true dependence: X is read after store in MEM takes place.
2872 Variant of true_dependence which assumes MEM has already been
2873 canonicalized (hence we no longer do that here).
2874 The mem_addr argument has been added, since true_dependence_1 computed
2875 this value prior to canonicalizing. */
2876
2877 int
2878 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2879 const_rtx x, rtx x_addr)
2880 {
2881 return true_dependence_1 (mem, mem_mode, mem_addr,
2882 x, x_addr, /*mem_canonicalized=*/true);
2883 }
2884
2885 /* Returns nonzero if a write to X might alias a previous read from
2886 (or, if WRITEP is true, a write to) MEM.
2887 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2888 and X_MODE the mode for that access.
2889 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2890
2891 static int
2892 write_dependence_p (const_rtx mem,
2893 const_rtx x, machine_mode x_mode, rtx x_addr,
2894 bool mem_canonicalized, bool x_canonicalized, bool writep)
2895 {
2896 rtx mem_addr;
2897 rtx true_mem_addr, true_x_addr;
2898 rtx base;
2899 int ret;
2900
2901 gcc_checking_assert (x_canonicalized
2902 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2903 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2904
2905 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2906 return 1;
2907
2908 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2909 This is used in epilogue deallocation functions. */
2910 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2911 return 1;
2912 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2913 return 1;
2914 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2915 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2916 return 1;
2917
2918 if (!x_addr)
2919 x_addr = XEXP (x, 0);
2920 true_x_addr = get_addr (x_addr);
2921
2922 mem_addr = XEXP (mem, 0);
2923 true_mem_addr = get_addr (mem_addr);
2924
2925 /* A read from read-only memory can't conflict with read-write memory.
2926 Don't assume anything when AND addresses are involved and leave to
2927 the code below to determine dependence. */
2928 if (!writep
2929 && MEM_READONLY_P (mem)
2930 && GET_CODE (true_x_addr) != AND
2931 && GET_CODE (true_mem_addr) != AND)
2932 return 0;
2933
2934 /* If we have MEMs referring to different address spaces (which can
2935 potentially overlap), we cannot easily tell from the addresses
2936 whether the references overlap. */
2937 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2938 return 1;
2939
2940 base = find_base_term (true_mem_addr);
2941 if (! writep
2942 && base
2943 && (GET_CODE (base) == LABEL_REF
2944 || (GET_CODE (base) == SYMBOL_REF
2945 && CONSTANT_POOL_ADDRESS_P (base))))
2946 return 0;
2947
2948 rtx x_base = find_base_term (true_x_addr);
2949 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
2950 GET_MODE (x), GET_MODE (mem)))
2951 return 0;
2952
2953 if (!x_canonicalized)
2954 {
2955 x_addr = canon_rtx (true_x_addr);
2956 x_mode = GET_MODE (x);
2957 }
2958 if (!mem_canonicalized)
2959 mem_addr = canon_rtx (true_mem_addr);
2960
2961 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2962 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
2963 return ret;
2964
2965 if (nonoverlapping_memrefs_p (x, mem, false))
2966 return 0;
2967
2968 return rtx_refs_may_alias_p (x, mem, false);
2969 }
2970
2971 /* Anti dependence: X is written after read in MEM takes place. */
2972
2973 int
2974 anti_dependence (const_rtx mem, const_rtx x)
2975 {
2976 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2977 /*mem_canonicalized=*/false,
2978 /*x_canonicalized*/false, /*writep=*/false);
2979 }
2980
2981 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2982 Also, consider X in X_MODE (which might be from an enclosing
2983 STRICT_LOW_PART / ZERO_EXTRACT).
2984 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2985
2986 int
2987 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
2988 const_rtx x, machine_mode x_mode, rtx x_addr)
2989 {
2990 return write_dependence_p (mem, x, x_mode, x_addr,
2991 mem_canonicalized, /*x_canonicalized=*/true,
2992 /*writep=*/false);
2993 }
2994
2995 /* Output dependence: X is written after store in MEM takes place. */
2996
2997 int
2998 output_dependence (const_rtx mem, const_rtx x)
2999 {
3000 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3001 /*mem_canonicalized=*/false,
3002 /*x_canonicalized*/false, /*writep=*/true);
3003 }
3004 \f
3005
3006
3007 /* Check whether X may be aliased with MEM. Don't do offset-based
3008 memory disambiguation & TBAA. */
3009 int
3010 may_alias_p (const_rtx mem, const_rtx x)
3011 {
3012 rtx x_addr, mem_addr;
3013
3014 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3015 return 1;
3016
3017 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3018 This is used in epilogue deallocation functions. */
3019 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3020 return 1;
3021 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3022 return 1;
3023 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3024 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3025 return 1;
3026
3027 x_addr = XEXP (x, 0);
3028 x_addr = get_addr (x_addr);
3029
3030 mem_addr = XEXP (mem, 0);
3031 mem_addr = get_addr (mem_addr);
3032
3033 /* Read-only memory is by definition never modified, and therefore can't
3034 conflict with anything. However, don't assume anything when AND
3035 addresses are involved and leave to the code below to determine
3036 dependence. We don't expect to find read-only set on MEM, but
3037 stupid user tricks can produce them, so don't die. */
3038 if (MEM_READONLY_P (x)
3039 && GET_CODE (x_addr) != AND
3040 && GET_CODE (mem_addr) != AND)
3041 return 0;
3042
3043 /* If we have MEMs referring to different address spaces (which can
3044 potentially overlap), we cannot easily tell from the addresses
3045 whether the references overlap. */
3046 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3047 return 1;
3048
3049 rtx x_base = find_base_term (x_addr);
3050 rtx mem_base = find_base_term (mem_addr);
3051 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3052 GET_MODE (x), GET_MODE (mem_addr)))
3053 return 0;
3054
3055 if (nonoverlapping_memrefs_p (mem, x, true))
3056 return 0;
3057
3058 /* TBAA not valid for loop_invarint */
3059 return rtx_refs_may_alias_p (x, mem, false);
3060 }
3061
3062 void
3063 init_alias_target (void)
3064 {
3065 int i;
3066
3067 if (!arg_base_value)
3068 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3069
3070 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3071
3072 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3073 /* Check whether this register can hold an incoming pointer
3074 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3075 numbers, so translate if necessary due to register windows. */
3076 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3077 && HARD_REGNO_MODE_OK (i, Pmode))
3078 static_reg_base_value[i] = arg_base_value;
3079
3080 static_reg_base_value[STACK_POINTER_REGNUM]
3081 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3082 static_reg_base_value[ARG_POINTER_REGNUM]
3083 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3084 static_reg_base_value[FRAME_POINTER_REGNUM]
3085 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3086 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3087 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3088 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3089 }
3090
3091 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3092 to be memory reference. */
3093 static bool memory_modified;
3094 static void
3095 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3096 {
3097 if (MEM_P (x))
3098 {
3099 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3100 memory_modified = true;
3101 }
3102 }
3103
3104
3105 /* Return true when INSN possibly modify memory contents of MEM
3106 (i.e. address can be modified). */
3107 bool
3108 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3109 {
3110 if (!INSN_P (insn))
3111 return false;
3112 memory_modified = false;
3113 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3114 return memory_modified;
3115 }
3116
3117 /* Return TRUE if the destination of a set is rtx identical to
3118 ITEM. */
3119 static inline bool
3120 set_dest_equal_p (const_rtx set, const_rtx item)
3121 {
3122 rtx dest = SET_DEST (set);
3123 return rtx_equal_p (dest, item);
3124 }
3125
3126 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3127 array. */
3128
3129 void
3130 init_alias_analysis (void)
3131 {
3132 unsigned int maxreg = max_reg_num ();
3133 int changed, pass;
3134 int i;
3135 unsigned int ui;
3136 rtx_insn *insn;
3137 rtx val;
3138 int rpo_cnt;
3139 int *rpo;
3140
3141 timevar_push (TV_ALIAS_ANALYSIS);
3142
3143 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3144 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3145 bitmap_clear (reg_known_equiv_p);
3146
3147 /* If we have memory allocated from the previous run, use it. */
3148 if (old_reg_base_value)
3149 reg_base_value = old_reg_base_value;
3150
3151 if (reg_base_value)
3152 reg_base_value->truncate (0);
3153
3154 vec_safe_grow_cleared (reg_base_value, maxreg);
3155
3156 new_reg_base_value = XNEWVEC (rtx, maxreg);
3157 reg_seen = sbitmap_alloc (maxreg);
3158
3159 /* The basic idea is that each pass through this loop will use the
3160 "constant" information from the previous pass to propagate alias
3161 information through another level of assignments.
3162
3163 The propagation is done on the CFG in reverse post-order, to propagate
3164 things forward as far as possible in each iteration.
3165
3166 This could get expensive if the assignment chains are long. Maybe
3167 we should throttle the number of iterations, possibly based on
3168 the optimization level or flag_expensive_optimizations.
3169
3170 We could propagate more information in the first pass by making use
3171 of DF_REG_DEF_COUNT to determine immediately that the alias information
3172 for a pseudo is "constant".
3173
3174 A program with an uninitialized variable can cause an infinite loop
3175 here. Instead of doing a full dataflow analysis to detect such problems
3176 we just cap the number of iterations for the loop.
3177
3178 The state of the arrays for the set chain in question does not matter
3179 since the program has undefined behavior. */
3180
3181 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3182 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3183
3184 /* The prologue/epilogue insns are not threaded onto the
3185 insn chain until after reload has completed. Thus,
3186 there is no sense wasting time checking if INSN is in
3187 the prologue/epilogue until after reload has completed. */
3188 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3189 || targetm.have_epilogue ())
3190 && reload_completed);
3191
3192 pass = 0;
3193 do
3194 {
3195 /* Assume nothing will change this iteration of the loop. */
3196 changed = 0;
3197
3198 /* We want to assign the same IDs each iteration of this loop, so
3199 start counting from one each iteration of the loop. */
3200 unique_id = 1;
3201
3202 /* We're at the start of the function each iteration through the
3203 loop, so we're copying arguments. */
3204 copying_arguments = true;
3205
3206 /* Wipe the potential alias information clean for this pass. */
3207 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3208
3209 /* Wipe the reg_seen array clean. */
3210 bitmap_clear (reg_seen);
3211
3212 /* Initialize the alias information for this pass. */
3213 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3214 if (static_reg_base_value[i])
3215 {
3216 new_reg_base_value[i] = static_reg_base_value[i];
3217 bitmap_set_bit (reg_seen, i);
3218 }
3219
3220 /* Walk the insns adding values to the new_reg_base_value array. */
3221 for (i = 0; i < rpo_cnt; i++)
3222 {
3223 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3224 FOR_BB_INSNS (bb, insn)
3225 {
3226 if (NONDEBUG_INSN_P (insn))
3227 {
3228 rtx note, set;
3229
3230 if (could_be_prologue_epilogue
3231 && prologue_epilogue_contains (insn))
3232 continue;
3233
3234 /* If this insn has a noalias note, process it, Otherwise,
3235 scan for sets. A simple set will have no side effects
3236 which could change the base value of any other register. */
3237
3238 if (GET_CODE (PATTERN (insn)) == SET
3239 && REG_NOTES (insn) != 0
3240 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3241 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3242 else
3243 note_stores (PATTERN (insn), record_set, NULL);
3244
3245 set = single_set (insn);
3246
3247 if (set != 0
3248 && REG_P (SET_DEST (set))
3249 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3250 {
3251 unsigned int regno = REGNO (SET_DEST (set));
3252 rtx src = SET_SRC (set);
3253 rtx t;
3254
3255 note = find_reg_equal_equiv_note (insn);
3256 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3257 && DF_REG_DEF_COUNT (regno) != 1)
3258 note = NULL_RTX;
3259
3260 if (note != NULL_RTX
3261 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3262 && ! rtx_varies_p (XEXP (note, 0), 1)
3263 && ! reg_overlap_mentioned_p (SET_DEST (set),
3264 XEXP (note, 0)))
3265 {
3266 set_reg_known_value (regno, XEXP (note, 0));
3267 set_reg_known_equiv_p (regno,
3268 REG_NOTE_KIND (note) == REG_EQUIV);
3269 }
3270 else if (DF_REG_DEF_COUNT (regno) == 1
3271 && GET_CODE (src) == PLUS
3272 && REG_P (XEXP (src, 0))
3273 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3274 && CONST_INT_P (XEXP (src, 1)))
3275 {
3276 t = plus_constant (GET_MODE (src), t,
3277 INTVAL (XEXP (src, 1)));
3278 set_reg_known_value (regno, t);
3279 set_reg_known_equiv_p (regno, false);
3280 }
3281 else if (DF_REG_DEF_COUNT (regno) == 1
3282 && ! rtx_varies_p (src, 1))
3283 {
3284 set_reg_known_value (regno, src);
3285 set_reg_known_equiv_p (regno, false);
3286 }
3287 }
3288 }
3289 else if (NOTE_P (insn)
3290 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3291 copying_arguments = false;
3292 }
3293 }
3294
3295 /* Now propagate values from new_reg_base_value to reg_base_value. */
3296 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3297
3298 for (ui = 0; ui < maxreg; ui++)
3299 {
3300 if (new_reg_base_value[ui]
3301 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3302 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3303 {
3304 (*reg_base_value)[ui] = new_reg_base_value[ui];
3305 changed = 1;
3306 }
3307 }
3308 }
3309 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3310 XDELETEVEC (rpo);
3311
3312 /* Fill in the remaining entries. */
3313 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3314 {
3315 int regno = i + FIRST_PSEUDO_REGISTER;
3316 if (! val)
3317 set_reg_known_value (regno, regno_reg_rtx[regno]);
3318 }
3319
3320 /* Clean up. */
3321 free (new_reg_base_value);
3322 new_reg_base_value = 0;
3323 sbitmap_free (reg_seen);
3324 reg_seen = 0;
3325 timevar_pop (TV_ALIAS_ANALYSIS);
3326 }
3327
3328 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3329 Special API for var-tracking pass purposes. */
3330
3331 void
3332 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3333 {
3334 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3335 }
3336
3337 void
3338 end_alias_analysis (void)
3339 {
3340 old_reg_base_value = reg_base_value;
3341 vec_free (reg_known_value);
3342 sbitmap_free (reg_known_equiv_p);
3343 }
3344
3345 void
3346 dump_alias_stats_in_alias_c (FILE *s)
3347 {
3348 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3349 " %llu are in alias set 0\n"
3350 " %llu queries asked about the same object\n"
3351 " %llu queries asked about the same alias set\n"
3352 " %llu access volatile\n"
3353 " %llu are dependent in the DAG\n"
3354 " %llu are aritificially in conflict with void *\n",
3355 alias_stats.num_disambiguated,
3356 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3357 + alias_stats.num_same_objects + alias_stats.num_volatile
3358 + alias_stats.num_dag + alias_stats.num_disambiguated
3359 + alias_stats.num_universal,
3360 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3361 alias_stats.num_same_objects, alias_stats.num_volatile,
3362 alias_stats.num_dag, alias_stats.num_universal);
3363 }
3364 #include "gt-alias.h"