Clean up of new format of -falign-FOO.
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2018 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42
43 /* The aliasing API provided here solves related but different problems:
44
45 Say there exists (in c)
46
47 struct X {
48 struct Y y1;
49 struct Z z2;
50 } x1, *px1, *px2;
51
52 struct Y y2, *py;
53 struct Z z2, *pz;
54
55
56 py = &x1.y1;
57 px2 = &x1;
58
59 Consider the four questions:
60
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
65
66 The answer to these questions can be yes, yes, yes, and maybe.
67
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
70 a store through a pointer to an X can overwrite any field that is
71 contained (recursively) in an X (unless we know that px1 != px2).
72
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
80
81 The pass ipa-type-escape does this analysis for the types whose
82 instances do not escape across the compilation boundary.
83
84 Historically in GCC, these two problems were combined and a single
85 data structure that was used to represent the solution to these
86 problems. We now have two similar but different data structures,
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
91 */
92
93 /* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
97
98 struct S { int i; double d; };
99
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
103 like:
104 struct S
105 / \
106 / \
107 |/_ _\|
108 int double
109
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
113
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
116 past immediate descendants, however, since we propagate all
117 grandchildren up one level.
118
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
122
123 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
124
125 struct GTY(()) alias_set_entry {
126 /* The alias set number, as stored in MEM_ALIAS_SET. */
127 alias_set_type alias_set;
128
129 /* Nonzero if would have a child of zero: this effectively makes this
130 alias set the same as alias set zero. */
131 bool has_zero_child;
132 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
133 aggregate contaiing pointer.
134 This is used for a special case where we need an universal pointer type
135 compatible with all other pointer types. */
136 bool is_pointer;
137 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
138 bool has_pointer;
139
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
142
143 struct T { struct S s; float f; }
144
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 hash_map<alias_set_hash, int> *children;
148 };
149
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static void record_set (rtx, const_rtx, void *);
152 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
153 machine_mode);
154 static rtx find_base_value (rtx);
155 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
156 static alias_set_entry *get_alias_set_entry (alias_set_type);
157 static tree decl_for_component_ref (tree);
158 static int write_dependence_p (const_rtx,
159 const_rtx, machine_mode, rtx,
160 bool, bool, bool);
161 static int compare_base_symbol_refs (const_rtx, const_rtx);
162
163 static void memory_modified_1 (rtx, const_rtx, void *);
164
165 /* Query statistics for the different low-level disambiguators.
166 A high-level query may trigger multiple of them. */
167
168 static struct {
169 unsigned long long num_alias_zero;
170 unsigned long long num_same_alias_set;
171 unsigned long long num_same_objects;
172 unsigned long long num_volatile;
173 unsigned long long num_dag;
174 unsigned long long num_universal;
175 unsigned long long num_disambiguated;
176 } alias_stats;
177
178
179 /* Set up all info needed to perform alias analysis on memory references. */
180
181 /* Returns the size in bytes of the mode of X. */
182 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
183
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains.
186 ??? 10 is a completely arbitrary choice. This should be based on the
187 maximum loop depth in the CFG, but we do not have this information
188 available (even if current_loops _is_ available). */
189 #define MAX_ALIAS_LOOP_PASSES 10
190
191 /* reg_base_value[N] gives an address to which register N is related.
192 If all sets after the first add or subtract to the current value
193 or otherwise modify it so it does not point to a different top level
194 object, reg_base_value[N] is equal to the address part of the source
195 of the first set.
196
197 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
198 expressions represent three types of base:
199
200 1. incoming arguments. There is just one ADDRESS to represent all
201 arguments, since we do not know at this level whether accesses
202 based on different arguments can alias. The ADDRESS has id 0.
203
204 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
205 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
206 Each of these rtxes has a separate ADDRESS associated with it,
207 each with a negative id.
208
209 GCC is (and is required to be) precise in which register it
210 chooses to access a particular region of stack. We can therefore
211 assume that accesses based on one of these rtxes do not alias
212 accesses based on another of these rtxes.
213
214 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
215 Each such piece of memory has a separate ADDRESS associated
216 with it, each with an id greater than 0.
217
218 Accesses based on one ADDRESS do not alias accesses based on other
219 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
220 alias globals either; the ADDRESSes have Pmode to indicate this.
221 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
222 indicate this. */
223
224 static GTY(()) vec<rtx, va_gc> *reg_base_value;
225 static rtx *new_reg_base_value;
226
227 /* The single VOIDmode ADDRESS that represents all argument bases.
228 It has id 0. */
229 static GTY(()) rtx arg_base_value;
230
231 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
232 static int unique_id;
233
234 /* We preserve the copy of old array around to avoid amount of garbage
235 produced. About 8% of garbage produced were attributed to this
236 array. */
237 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
238
239 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
240 registers. */
241 #define UNIQUE_BASE_VALUE_SP -1
242 #define UNIQUE_BASE_VALUE_ARGP -2
243 #define UNIQUE_BASE_VALUE_FP -3
244 #define UNIQUE_BASE_VALUE_HFP -4
245
246 #define static_reg_base_value \
247 (this_target_rtl->x_static_reg_base_value)
248
249 #define REG_BASE_VALUE(X) \
250 (REGNO (X) < vec_safe_length (reg_base_value) \
251 ? (*reg_base_value)[REGNO (X)] : 0)
252
253 /* Vector indexed by N giving the initial (unchanging) value known for
254 pseudo-register N. This vector is initialized in init_alias_analysis,
255 and does not change until end_alias_analysis is called. */
256 static GTY(()) vec<rtx, va_gc> *reg_known_value;
257
258 /* Vector recording for each reg_known_value whether it is due to a
259 REG_EQUIV note. Future passes (viz., reload) may replace the
260 pseudo with the equivalent expression and so we account for the
261 dependences that would be introduced if that happens.
262
263 The REG_EQUIV notes created in assign_parms may mention the arg
264 pointer, and there are explicit insns in the RTL that modify the
265 arg pointer. Thus we must ensure that such insns don't get
266 scheduled across each other because that would invalidate the
267 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
268 wrong, but solving the problem in the scheduler will likely give
269 better code, so we do it here. */
270 static sbitmap reg_known_equiv_p;
271
272 /* True when scanning insns from the start of the rtl to the
273 NOTE_INSN_FUNCTION_BEG note. */
274 static bool copying_arguments;
275
276
277 /* The splay-tree used to store the various alias set entries. */
278 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
279 \f
280 /* Build a decomposed reference object for querying the alias-oracle
281 from the MEM rtx and store it in *REF.
282 Returns false if MEM is not suitable for the alias-oracle. */
283
284 static bool
285 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
286 {
287 tree expr = MEM_EXPR (mem);
288 tree base;
289
290 if (!expr)
291 return false;
292
293 ao_ref_init (ref, expr);
294
295 /* Get the base of the reference and see if we have to reject or
296 adjust it. */
297 base = ao_ref_base (ref);
298 if (base == NULL_TREE)
299 return false;
300
301 /* The tree oracle doesn't like bases that are neither decls
302 nor indirect references of SSA names. */
303 if (!(DECL_P (base)
304 || (TREE_CODE (base) == MEM_REF
305 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
306 || (TREE_CODE (base) == TARGET_MEM_REF
307 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
308 return false;
309
310 /* If this is a reference based on a partitioned decl replace the
311 base with a MEM_REF of the pointer representative we
312 created during stack slot partitioning. */
313 if (VAR_P (base)
314 && ! is_global_var (base)
315 && cfun->gimple_df->decls_to_pointers != NULL)
316 {
317 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
318 if (namep)
319 ref->base = build_simple_mem_ref (*namep);
320 }
321
322 ref->ref_alias_set = MEM_ALIAS_SET (mem);
323
324 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
325 is conservative, so trust it. */
326 if (!MEM_OFFSET_KNOWN_P (mem)
327 || !MEM_SIZE_KNOWN_P (mem))
328 return true;
329
330 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
331 drop ref->ref. */
332 if (maybe_lt (MEM_OFFSET (mem), 0)
333 || (ref->max_size_known_p ()
334 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
335 ref->max_size)))
336 ref->ref = NULL_TREE;
337
338 /* Refine size and offset we got from analyzing MEM_EXPR by using
339 MEM_SIZE and MEM_OFFSET. */
340
341 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
342 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
343
344 /* The MEM may extend into adjacent fields, so adjust max_size if
345 necessary. */
346 if (ref->max_size_known_p ())
347 ref->max_size = upper_bound (ref->max_size, ref->size);
348
349 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
350 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
351 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
352 && (maybe_lt (ref->offset, 0)
353 || (DECL_P (ref->base)
354 && (DECL_SIZE (ref->base) == NULL_TREE
355 || !poly_int_tree_p (DECL_SIZE (ref->base))
356 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
357 ref->offset + ref->size)))))
358 return false;
359
360 return true;
361 }
362
363 /* Query the alias-oracle on whether the two memory rtx X and MEM may
364 alias. If TBAA_P is set also apply TBAA. Returns true if the
365 two rtxen may alias, false otherwise. */
366
367 static bool
368 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
369 {
370 ao_ref ref1, ref2;
371
372 if (!ao_ref_from_mem (&ref1, x)
373 || !ao_ref_from_mem (&ref2, mem))
374 return true;
375
376 return refs_may_alias_p_1 (&ref1, &ref2,
377 tbaa_p
378 && MEM_ALIAS_SET (x) != 0
379 && MEM_ALIAS_SET (mem) != 0);
380 }
381
382 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
383 such an entry, or NULL otherwise. */
384
385 static inline alias_set_entry *
386 get_alias_set_entry (alias_set_type alias_set)
387 {
388 return (*alias_sets)[alias_set];
389 }
390
391 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
392 the two MEMs cannot alias each other. */
393
394 static inline int
395 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
396 {
397 return (flag_strict_aliasing
398 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
399 MEM_ALIAS_SET (mem2)));
400 }
401
402 /* Return true if the first alias set is a subset of the second. */
403
404 bool
405 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
406 {
407 alias_set_entry *ase2;
408
409 /* Disable TBAA oracle with !flag_strict_aliasing. */
410 if (!flag_strict_aliasing)
411 return true;
412
413 /* Everything is a subset of the "aliases everything" set. */
414 if (set2 == 0)
415 return true;
416
417 /* Check if set1 is a subset of set2. */
418 ase2 = get_alias_set_entry (set2);
419 if (ase2 != 0
420 && (ase2->has_zero_child
421 || (ase2->children && ase2->children->get (set1))))
422 return true;
423
424 /* As a special case we consider alias set of "void *" to be both subset
425 and superset of every alias set of a pointer. This extra symmetry does
426 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
427 to return true on the following testcase:
428
429 void *ptr;
430 char **ptr2=(char **)&ptr;
431 *ptr2 = ...
432
433 Additionally if a set contains universal pointer, we consider every pointer
434 to be a subset of it, but we do not represent this explicitely - doing so
435 would require us to update transitive closure each time we introduce new
436 pointer type. This makes aliasing_component_refs_p to return true
437 on the following testcase:
438
439 struct a {void *ptr;}
440 char **ptr = (char **)&a.ptr;
441 ptr = ...
442
443 This makes void * truly universal pointer type. See pointer handling in
444 get_alias_set for more details. */
445 if (ase2 && ase2->has_pointer)
446 {
447 alias_set_entry *ase1 = get_alias_set_entry (set1);
448
449 if (ase1 && ase1->is_pointer)
450 {
451 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
452 /* If one is ptr_type_node and other is pointer, then we consider
453 them subset of each other. */
454 if (set1 == voidptr_set || set2 == voidptr_set)
455 return true;
456 /* If SET2 contains universal pointer's alias set, then we consdier
457 every (non-universal) pointer. */
458 if (ase2->children && set1 != voidptr_set
459 && ase2->children->get (voidptr_set))
460 return true;
461 }
462 }
463 return false;
464 }
465
466 /* Return 1 if the two specified alias sets may conflict. */
467
468 int
469 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
470 {
471 alias_set_entry *ase1;
472 alias_set_entry *ase2;
473
474 /* The easy case. */
475 if (alias_sets_must_conflict_p (set1, set2))
476 return 1;
477
478 /* See if the first alias set is a subset of the second. */
479 ase1 = get_alias_set_entry (set1);
480 if (ase1 != 0
481 && ase1->children && ase1->children->get (set2))
482 {
483 ++alias_stats.num_dag;
484 return 1;
485 }
486
487 /* Now do the same, but with the alias sets reversed. */
488 ase2 = get_alias_set_entry (set2);
489 if (ase2 != 0
490 && ase2->children && ase2->children->get (set1))
491 {
492 ++alias_stats.num_dag;
493 return 1;
494 }
495
496 /* We want void * to be compatible with any other pointer without
497 really dropping it to alias set 0. Doing so would make it
498 compatible with all non-pointer types too.
499
500 This is not strictly necessary by the C/C++ language
501 standards, but avoids common type punning mistakes. In
502 addition to that, we need the existence of such universal
503 pointer to implement Fortran's C_PTR type (which is defined as
504 type compatible with all C pointers). */
505 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
506 {
507 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
508
509 /* If one of the sets corresponds to universal pointer,
510 we consider it to conflict with anything that is
511 or contains pointer. */
512 if (set1 == voidptr_set || set2 == voidptr_set)
513 {
514 ++alias_stats.num_universal;
515 return true;
516 }
517 /* If one of sets is (non-universal) pointer and the other
518 contains universal pointer, we also get conflict. */
519 if (ase1->is_pointer && set2 != voidptr_set
520 && ase2->children && ase2->children->get (voidptr_set))
521 {
522 ++alias_stats.num_universal;
523 return true;
524 }
525 if (ase2->is_pointer && set1 != voidptr_set
526 && ase1->children && ase1->children->get (voidptr_set))
527 {
528 ++alias_stats.num_universal;
529 return true;
530 }
531 }
532
533 ++alias_stats.num_disambiguated;
534
535 /* The two alias sets are distinct and neither one is the
536 child of the other. Therefore, they cannot conflict. */
537 return 0;
538 }
539
540 /* Return 1 if the two specified alias sets will always conflict. */
541
542 int
543 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
544 {
545 /* Disable TBAA oracle with !flag_strict_aliasing. */
546 if (!flag_strict_aliasing)
547 return 1;
548 if (set1 == 0 || set2 == 0)
549 {
550 ++alias_stats.num_alias_zero;
551 return 1;
552 }
553 if (set1 == set2)
554 {
555 ++alias_stats.num_same_alias_set;
556 return 1;
557 }
558
559 return 0;
560 }
561
562 /* Return 1 if any MEM object of type T1 will always conflict (using the
563 dependency routines in this file) with any MEM object of type T2.
564 This is used when allocating temporary storage. If T1 and/or T2 are
565 NULL_TREE, it means we know nothing about the storage. */
566
567 int
568 objects_must_conflict_p (tree t1, tree t2)
569 {
570 alias_set_type set1, set2;
571
572 /* If neither has a type specified, we don't know if they'll conflict
573 because we may be using them to store objects of various types, for
574 example the argument and local variables areas of inlined functions. */
575 if (t1 == 0 && t2 == 0)
576 return 0;
577
578 /* If they are the same type, they must conflict. */
579 if (t1 == t2)
580 {
581 ++alias_stats.num_same_objects;
582 return 1;
583 }
584 /* Likewise if both are volatile. */
585 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
586 {
587 ++alias_stats.num_volatile;
588 return 1;
589 }
590
591 set1 = t1 ? get_alias_set (t1) : 0;
592 set2 = t2 ? get_alias_set (t2) : 0;
593
594 /* We can't use alias_sets_conflict_p because we must make sure
595 that every subtype of t1 will conflict with every subtype of
596 t2 for which a pair of subobjects of these respective subtypes
597 overlaps on the stack. */
598 return alias_sets_must_conflict_p (set1, set2);
599 }
600 \f
601 /* Return the outermost parent of component present in the chain of
602 component references handled by get_inner_reference in T with the
603 following property:
604 - the component is non-addressable, or
605 - the parent has alias set zero,
606 or NULL_TREE if no such parent exists. In the former cases, the alias
607 set of this parent is the alias set that must be used for T itself. */
608
609 tree
610 component_uses_parent_alias_set_from (const_tree t)
611 {
612 const_tree found = NULL_TREE;
613
614 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
615 && TYPE_TYPELESS_STORAGE (TREE_TYPE (t)))
616 return const_cast <tree> (t);
617
618 while (handled_component_p (t))
619 {
620 switch (TREE_CODE (t))
621 {
622 case COMPONENT_REF:
623 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
624 found = t;
625 /* Permit type-punning when accessing a union, provided the access
626 is directly through the union. For example, this code does not
627 permit taking the address of a union member and then storing
628 through it. Even the type-punning allowed here is a GCC
629 extension, albeit a common and useful one; the C standard says
630 that such accesses have implementation-defined behavior. */
631 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
632 found = t;
633 break;
634
635 case ARRAY_REF:
636 case ARRAY_RANGE_REF:
637 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
638 found = t;
639 break;
640
641 case REALPART_EXPR:
642 case IMAGPART_EXPR:
643 break;
644
645 case BIT_FIELD_REF:
646 case VIEW_CONVERT_EXPR:
647 /* Bitfields and casts are never addressable. */
648 found = t;
649 break;
650
651 default:
652 gcc_unreachable ();
653 }
654
655 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
656 found = t;
657
658 t = TREE_OPERAND (t, 0);
659 }
660
661 if (found)
662 return TREE_OPERAND (found, 0);
663
664 return NULL_TREE;
665 }
666
667
668 /* Return whether the pointer-type T effective for aliasing may
669 access everything and thus the reference has to be assigned
670 alias-set zero. */
671
672 static bool
673 ref_all_alias_ptr_type_p (const_tree t)
674 {
675 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
676 || TYPE_REF_CAN_ALIAS_ALL (t));
677 }
678
679 /* Return the alias set for the memory pointed to by T, which may be
680 either a type or an expression. Return -1 if there is nothing
681 special about dereferencing T. */
682
683 static alias_set_type
684 get_deref_alias_set_1 (tree t)
685 {
686 /* All we care about is the type. */
687 if (! TYPE_P (t))
688 t = TREE_TYPE (t);
689
690 /* If we have an INDIRECT_REF via a void pointer, we don't
691 know anything about what that might alias. Likewise if the
692 pointer is marked that way. */
693 if (ref_all_alias_ptr_type_p (t))
694 return 0;
695
696 return -1;
697 }
698
699 /* Return the alias set for the memory pointed to by T, which may be
700 either a type or an expression. */
701
702 alias_set_type
703 get_deref_alias_set (tree t)
704 {
705 /* If we're not doing any alias analysis, just assume everything
706 aliases everything else. */
707 if (!flag_strict_aliasing)
708 return 0;
709
710 alias_set_type set = get_deref_alias_set_1 (t);
711
712 /* Fall back to the alias-set of the pointed-to type. */
713 if (set == -1)
714 {
715 if (! TYPE_P (t))
716 t = TREE_TYPE (t);
717 set = get_alias_set (TREE_TYPE (t));
718 }
719
720 return set;
721 }
722
723 /* Return the pointer-type relevant for TBAA purposes from the
724 memory reference tree *T or NULL_TREE in which case *T is
725 adjusted to point to the outermost component reference that
726 can be used for assigning an alias set. */
727
728 static tree
729 reference_alias_ptr_type_1 (tree *t)
730 {
731 tree inner;
732
733 /* Get the base object of the reference. */
734 inner = *t;
735 while (handled_component_p (inner))
736 {
737 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
738 the type of any component references that wrap it to
739 determine the alias-set. */
740 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
741 *t = TREE_OPERAND (inner, 0);
742 inner = TREE_OPERAND (inner, 0);
743 }
744
745 /* Handle pointer dereferences here, they can override the
746 alias-set. */
747 if (INDIRECT_REF_P (inner)
748 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
749 return TREE_TYPE (TREE_OPERAND (inner, 0));
750 else if (TREE_CODE (inner) == TARGET_MEM_REF)
751 return TREE_TYPE (TMR_OFFSET (inner));
752 else if (TREE_CODE (inner) == MEM_REF
753 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
754 return TREE_TYPE (TREE_OPERAND (inner, 1));
755
756 /* If the innermost reference is a MEM_REF that has a
757 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
758 using the memory access type for determining the alias-set. */
759 if (TREE_CODE (inner) == MEM_REF
760 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
761 != TYPE_MAIN_VARIANT
762 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
763 return TREE_TYPE (TREE_OPERAND (inner, 1));
764
765 /* Otherwise, pick up the outermost object that we could have
766 a pointer to. */
767 tree tem = component_uses_parent_alias_set_from (*t);
768 if (tem)
769 *t = tem;
770
771 return NULL_TREE;
772 }
773
774 /* Return the pointer-type relevant for TBAA purposes from the
775 gimple memory reference tree T. This is the type to be used for
776 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
777 and guarantees that get_alias_set will return the same alias
778 set for T and the replacement. */
779
780 tree
781 reference_alias_ptr_type (tree t)
782 {
783 /* If the frontend assigns this alias-set zero, preserve that. */
784 if (lang_hooks.get_alias_set (t) == 0)
785 return ptr_type_node;
786
787 tree ptype = reference_alias_ptr_type_1 (&t);
788 /* If there is a given pointer type for aliasing purposes, return it. */
789 if (ptype != NULL_TREE)
790 return ptype;
791
792 /* Otherwise build one from the outermost component reference we
793 may use. */
794 if (TREE_CODE (t) == MEM_REF
795 || TREE_CODE (t) == TARGET_MEM_REF)
796 return TREE_TYPE (TREE_OPERAND (t, 1));
797 else
798 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
799 }
800
801 /* Return whether the pointer-types T1 and T2 used to determine
802 two alias sets of two references will yield the same answer
803 from get_deref_alias_set. */
804
805 bool
806 alias_ptr_types_compatible_p (tree t1, tree t2)
807 {
808 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
809 return true;
810
811 if (ref_all_alias_ptr_type_p (t1)
812 || ref_all_alias_ptr_type_p (t2))
813 return false;
814
815 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
816 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
817 }
818
819 /* Create emptry alias set entry. */
820
821 alias_set_entry *
822 init_alias_set_entry (alias_set_type set)
823 {
824 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
825 ase->alias_set = set;
826 ase->children = NULL;
827 ase->has_zero_child = false;
828 ase->is_pointer = false;
829 ase->has_pointer = false;
830 gcc_checking_assert (!get_alias_set_entry (set));
831 (*alias_sets)[set] = ase;
832 return ase;
833 }
834
835 /* Return the alias set for T, which may be either a type or an
836 expression. Call language-specific routine for help, if needed. */
837
838 alias_set_type
839 get_alias_set (tree t)
840 {
841 alias_set_type set;
842
843 /* We can not give up with -fno-strict-aliasing because we need to build
844 proper type representation for possible functions which are build with
845 -fstrict-aliasing. */
846
847 /* return 0 if this or its type is an error. */
848 if (t == error_mark_node
849 || (! TYPE_P (t)
850 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
851 return 0;
852
853 /* We can be passed either an expression or a type. This and the
854 language-specific routine may make mutually-recursive calls to each other
855 to figure out what to do. At each juncture, we see if this is a tree
856 that the language may need to handle specially. First handle things that
857 aren't types. */
858 if (! TYPE_P (t))
859 {
860 /* Give the language a chance to do something with this tree
861 before we look at it. */
862 STRIP_NOPS (t);
863 set = lang_hooks.get_alias_set (t);
864 if (set != -1)
865 return set;
866
867 /* Get the alias pointer-type to use or the outermost object
868 that we could have a pointer to. */
869 tree ptype = reference_alias_ptr_type_1 (&t);
870 if (ptype != NULL)
871 return get_deref_alias_set (ptype);
872
873 /* If we've already determined the alias set for a decl, just return
874 it. This is necessary for C++ anonymous unions, whose component
875 variables don't look like union members (boo!). */
876 if (VAR_P (t)
877 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
878 return MEM_ALIAS_SET (DECL_RTL (t));
879
880 /* Now all we care about is the type. */
881 t = TREE_TYPE (t);
882 }
883
884 /* Variant qualifiers don't affect the alias set, so get the main
885 variant. */
886 t = TYPE_MAIN_VARIANT (t);
887
888 if (AGGREGATE_TYPE_P (t)
889 && TYPE_TYPELESS_STORAGE (t))
890 return 0;
891
892 /* Always use the canonical type as well. If this is a type that
893 requires structural comparisons to identify compatible types
894 use alias set zero. */
895 if (TYPE_STRUCTURAL_EQUALITY_P (t))
896 {
897 /* Allow the language to specify another alias set for this
898 type. */
899 set = lang_hooks.get_alias_set (t);
900 if (set != -1)
901 return set;
902 /* Handle structure type equality for pointer types, arrays and vectors.
903 This is easy to do, because the code bellow ignore canonical types on
904 these anyway. This is important for LTO, where TYPE_CANONICAL for
905 pointers can not be meaningfuly computed by the frotnend. */
906 if (canonical_type_used_p (t))
907 {
908 /* In LTO we set canonical types for all types where it makes
909 sense to do so. Double check we did not miss some type. */
910 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
911 return 0;
912 }
913 }
914 else
915 {
916 t = TYPE_CANONICAL (t);
917 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
918 }
919
920 /* If this is a type with a known alias set, return it. */
921 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
922 if (TYPE_ALIAS_SET_KNOWN_P (t))
923 return TYPE_ALIAS_SET (t);
924
925 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
926 if (!COMPLETE_TYPE_P (t))
927 {
928 /* For arrays with unknown size the conservative answer is the
929 alias set of the element type. */
930 if (TREE_CODE (t) == ARRAY_TYPE)
931 return get_alias_set (TREE_TYPE (t));
932
933 /* But return zero as a conservative answer for incomplete types. */
934 return 0;
935 }
936
937 /* See if the language has special handling for this type. */
938 set = lang_hooks.get_alias_set (t);
939 if (set != -1)
940 return set;
941
942 /* There are no objects of FUNCTION_TYPE, so there's no point in
943 using up an alias set for them. (There are, of course, pointers
944 and references to functions, but that's different.) */
945 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
946 set = 0;
947
948 /* Unless the language specifies otherwise, let vector types alias
949 their components. This avoids some nasty type punning issues in
950 normal usage. And indeed lets vectors be treated more like an
951 array slice. */
952 else if (TREE_CODE (t) == VECTOR_TYPE)
953 set = get_alias_set (TREE_TYPE (t));
954
955 /* Unless the language specifies otherwise, treat array types the
956 same as their components. This avoids the asymmetry we get
957 through recording the components. Consider accessing a
958 character(kind=1) through a reference to a character(kind=1)[1:1].
959 Or consider if we want to assign integer(kind=4)[0:D.1387] and
960 integer(kind=4)[4] the same alias set or not.
961 Just be pragmatic here and make sure the array and its element
962 type get the same alias set assigned. */
963 else if (TREE_CODE (t) == ARRAY_TYPE
964 && (!TYPE_NONALIASED_COMPONENT (t)
965 || TYPE_STRUCTURAL_EQUALITY_P (t)))
966 set = get_alias_set (TREE_TYPE (t));
967
968 /* From the former common C and C++ langhook implementation:
969
970 Unfortunately, there is no canonical form of a pointer type.
971 In particular, if we have `typedef int I', then `int *', and
972 `I *' are different types. So, we have to pick a canonical
973 representative. We do this below.
974
975 Technically, this approach is actually more conservative that
976 it needs to be. In particular, `const int *' and `int *'
977 should be in different alias sets, according to the C and C++
978 standard, since their types are not the same, and so,
979 technically, an `int **' and `const int **' cannot point at
980 the same thing.
981
982 But, the standard is wrong. In particular, this code is
983 legal C++:
984
985 int *ip;
986 int **ipp = &ip;
987 const int* const* cipp = ipp;
988 And, it doesn't make sense for that to be legal unless you
989 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
990 the pointed-to types. This issue has been reported to the
991 C++ committee.
992
993 For this reason go to canonical type of the unqalified pointer type.
994 Until GCC 6 this code set all pointers sets to have alias set of
995 ptr_type_node but that is a bad idea, because it prevents disabiguations
996 in between pointers. For Firefox this accounts about 20% of all
997 disambiguations in the program. */
998 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
999 {
1000 tree p;
1001 auto_vec <bool, 8> reference;
1002
1003 /* Unnest all pointers and references.
1004 We also want to make pointer to array/vector equivalent to pointer to
1005 its element (see the reasoning above). Skip all those types, too. */
1006 for (p = t; POINTER_TYPE_P (p)
1007 || (TREE_CODE (p) == ARRAY_TYPE
1008 && (!TYPE_NONALIASED_COMPONENT (p)
1009 || !COMPLETE_TYPE_P (p)
1010 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1011 || TREE_CODE (p) == VECTOR_TYPE;
1012 p = TREE_TYPE (p))
1013 {
1014 /* Ada supports recusive pointers. Instead of doing recrusion check
1015 just give up once the preallocated space of 8 elements is up.
1016 In this case just punt to void * alias set. */
1017 if (reference.length () == 8)
1018 {
1019 p = ptr_type_node;
1020 break;
1021 }
1022 if (TREE_CODE (p) == REFERENCE_TYPE)
1023 /* In LTO we want languages that use references to be compatible
1024 with languages that use pointers. */
1025 reference.safe_push (true && !in_lto_p);
1026 if (TREE_CODE (p) == POINTER_TYPE)
1027 reference.safe_push (false);
1028 }
1029 p = TYPE_MAIN_VARIANT (p);
1030
1031 /* Make void * compatible with char * and also void **.
1032 Programs are commonly violating TBAA by this.
1033
1034 We also make void * to conflict with every pointer
1035 (see record_component_aliases) and thus it is safe it to use it for
1036 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1037 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1038 set = get_alias_set (ptr_type_node);
1039 else
1040 {
1041 /* Rebuild pointer type starting from canonical types using
1042 unqualified pointers and references only. This way all such
1043 pointers will have the same alias set and will conflict with
1044 each other.
1045
1046 Most of time we already have pointers or references of a given type.
1047 If not we build new one just to be sure that if someone later
1048 (probably only middle-end can, as we should assign all alias
1049 classes only after finishing translation unit) builds the pointer
1050 type, the canonical type will match. */
1051 p = TYPE_CANONICAL (p);
1052 while (!reference.is_empty ())
1053 {
1054 if (reference.pop ())
1055 p = build_reference_type (p);
1056 else
1057 p = build_pointer_type (p);
1058 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1059 /* build_pointer_type should always return the canonical type.
1060 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1061 them. Be sure that frontends do not glob canonical types of
1062 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1063 in all other cases. */
1064 gcc_checking_assert (!TYPE_CANONICAL (p)
1065 || p == TYPE_CANONICAL (p));
1066 }
1067
1068 /* Assign the alias set to both p and t.
1069 We can not call get_alias_set (p) here as that would trigger
1070 infinite recursion when p == t. In other cases it would just
1071 trigger unnecesary legwork of rebuilding the pointer again. */
1072 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1073 if (TYPE_ALIAS_SET_KNOWN_P (p))
1074 set = TYPE_ALIAS_SET (p);
1075 else
1076 {
1077 set = new_alias_set ();
1078 TYPE_ALIAS_SET (p) = set;
1079 }
1080 }
1081 }
1082 /* Alias set of ptr_type_node is special and serve as universal pointer which
1083 is TBAA compatible with every other pointer type. Be sure we have the
1084 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1085 of pointer types NULL. */
1086 else if (t == ptr_type_node)
1087 set = new_alias_set ();
1088
1089 /* Otherwise make a new alias set for this type. */
1090 else
1091 {
1092 /* Each canonical type gets its own alias set, so canonical types
1093 shouldn't form a tree. It doesn't really matter for types
1094 we handle specially above, so only check it where it possibly
1095 would result in a bogus alias set. */
1096 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1097
1098 set = new_alias_set ();
1099 }
1100
1101 TYPE_ALIAS_SET (t) = set;
1102
1103 /* If this is an aggregate type or a complex type, we must record any
1104 component aliasing information. */
1105 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1106 record_component_aliases (t);
1107
1108 /* We treat pointer types specially in alias_set_subset_of. */
1109 if (POINTER_TYPE_P (t) && set)
1110 {
1111 alias_set_entry *ase = get_alias_set_entry (set);
1112 if (!ase)
1113 ase = init_alias_set_entry (set);
1114 ase->is_pointer = true;
1115 ase->has_pointer = true;
1116 }
1117
1118 return set;
1119 }
1120
1121 /* Return a brand-new alias set. */
1122
1123 alias_set_type
1124 new_alias_set (void)
1125 {
1126 if (alias_sets == 0)
1127 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1128 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1129 return alias_sets->length () - 1;
1130 }
1131
1132 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1133 not everything that aliases SUPERSET also aliases SUBSET. For example,
1134 in C, a store to an `int' can alias a load of a structure containing an
1135 `int', and vice versa. But it can't alias a load of a 'double' member
1136 of the same structure. Here, the structure would be the SUPERSET and
1137 `int' the SUBSET. This relationship is also described in the comment at
1138 the beginning of this file.
1139
1140 This function should be called only once per SUPERSET/SUBSET pair.
1141
1142 It is illegal for SUPERSET to be zero; everything is implicitly a
1143 subset of alias set zero. */
1144
1145 void
1146 record_alias_subset (alias_set_type superset, alias_set_type subset)
1147 {
1148 alias_set_entry *superset_entry;
1149 alias_set_entry *subset_entry;
1150
1151 /* It is possible in complex type situations for both sets to be the same,
1152 in which case we can ignore this operation. */
1153 if (superset == subset)
1154 return;
1155
1156 gcc_assert (superset);
1157
1158 superset_entry = get_alias_set_entry (superset);
1159 if (superset_entry == 0)
1160 {
1161 /* Create an entry for the SUPERSET, so that we have a place to
1162 attach the SUBSET. */
1163 superset_entry = init_alias_set_entry (superset);
1164 }
1165
1166 if (subset == 0)
1167 superset_entry->has_zero_child = 1;
1168 else
1169 {
1170 subset_entry = get_alias_set_entry (subset);
1171 if (!superset_entry->children)
1172 superset_entry->children
1173 = hash_map<alias_set_hash, int>::create_ggc (64);
1174 /* If there is an entry for the subset, enter all of its children
1175 (if they are not already present) as children of the SUPERSET. */
1176 if (subset_entry)
1177 {
1178 if (subset_entry->has_zero_child)
1179 superset_entry->has_zero_child = true;
1180 if (subset_entry->has_pointer)
1181 superset_entry->has_pointer = true;
1182
1183 if (subset_entry->children)
1184 {
1185 hash_map<alias_set_hash, int>::iterator iter
1186 = subset_entry->children->begin ();
1187 for (; iter != subset_entry->children->end (); ++iter)
1188 superset_entry->children->put ((*iter).first, (*iter).second);
1189 }
1190 }
1191
1192 /* Enter the SUBSET itself as a child of the SUPERSET. */
1193 superset_entry->children->put (subset, 0);
1194 }
1195 }
1196
1197 /* Record that component types of TYPE, if any, are part of that type for
1198 aliasing purposes. For record types, we only record component types
1199 for fields that are not marked non-addressable. For array types, we
1200 only record the component type if it is not marked non-aliased. */
1201
1202 void
1203 record_component_aliases (tree type)
1204 {
1205 alias_set_type superset = get_alias_set (type);
1206 tree field;
1207
1208 if (superset == 0)
1209 return;
1210
1211 switch (TREE_CODE (type))
1212 {
1213 case RECORD_TYPE:
1214 case UNION_TYPE:
1215 case QUAL_UNION_TYPE:
1216 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1217 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1218 {
1219 /* LTO type merging does not make any difference between
1220 component pointer types. We may have
1221
1222 struct foo {int *a;};
1223
1224 as TYPE_CANONICAL of
1225
1226 struct bar {float *a;};
1227
1228 Because accesses to int * and float * do not alias, we would get
1229 false negative when accessing the same memory location by
1230 float ** and bar *. We thus record the canonical type as:
1231
1232 struct {void *a;};
1233
1234 void * is special cased and works as a universal pointer type.
1235 Accesses to it conflicts with accesses to any other pointer
1236 type. */
1237 tree t = TREE_TYPE (field);
1238 if (in_lto_p)
1239 {
1240 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1241 element type and that type has to be normalized to void *,
1242 too, in the case it is a pointer. */
1243 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1244 {
1245 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1246 t = TREE_TYPE (t);
1247 }
1248 if (POINTER_TYPE_P (t))
1249 t = ptr_type_node;
1250 else if (flag_checking)
1251 gcc_checking_assert (get_alias_set (t)
1252 == get_alias_set (TREE_TYPE (field)));
1253 }
1254
1255 record_alias_subset (superset, get_alias_set (t));
1256 }
1257 break;
1258
1259 case COMPLEX_TYPE:
1260 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1261 break;
1262
1263 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1264 element type. */
1265
1266 default:
1267 break;
1268 }
1269 }
1270
1271 /* Allocate an alias set for use in storing and reading from the varargs
1272 spill area. */
1273
1274 static GTY(()) alias_set_type varargs_set = -1;
1275
1276 alias_set_type
1277 get_varargs_alias_set (void)
1278 {
1279 #if 1
1280 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1281 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1282 consistently use the varargs alias set for loads from the varargs
1283 area. So don't use it anywhere. */
1284 return 0;
1285 #else
1286 if (varargs_set == -1)
1287 varargs_set = new_alias_set ();
1288
1289 return varargs_set;
1290 #endif
1291 }
1292
1293 /* Likewise, but used for the fixed portions of the frame, e.g., register
1294 save areas. */
1295
1296 static GTY(()) alias_set_type frame_set = -1;
1297
1298 alias_set_type
1299 get_frame_alias_set (void)
1300 {
1301 if (frame_set == -1)
1302 frame_set = new_alias_set ();
1303
1304 return frame_set;
1305 }
1306
1307 /* Create a new, unique base with id ID. */
1308
1309 static rtx
1310 unique_base_value (HOST_WIDE_INT id)
1311 {
1312 return gen_rtx_ADDRESS (Pmode, id);
1313 }
1314
1315 /* Return true if accesses based on any other base value cannot alias
1316 those based on X. */
1317
1318 static bool
1319 unique_base_value_p (rtx x)
1320 {
1321 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1322 }
1323
1324 /* Return true if X is known to be a base value. */
1325
1326 static bool
1327 known_base_value_p (rtx x)
1328 {
1329 switch (GET_CODE (x))
1330 {
1331 case LABEL_REF:
1332 case SYMBOL_REF:
1333 return true;
1334
1335 case ADDRESS:
1336 /* Arguments may or may not be bases; we don't know for sure. */
1337 return GET_MODE (x) != VOIDmode;
1338
1339 default:
1340 return false;
1341 }
1342 }
1343
1344 /* Inside SRC, the source of a SET, find a base address. */
1345
1346 static rtx
1347 find_base_value (rtx src)
1348 {
1349 unsigned int regno;
1350 scalar_int_mode int_mode;
1351
1352 #if defined (FIND_BASE_TERM)
1353 /* Try machine-dependent ways to find the base term. */
1354 src = FIND_BASE_TERM (src);
1355 #endif
1356
1357 switch (GET_CODE (src))
1358 {
1359 case SYMBOL_REF:
1360 case LABEL_REF:
1361 return src;
1362
1363 case REG:
1364 regno = REGNO (src);
1365 /* At the start of a function, argument registers have known base
1366 values which may be lost later. Returning an ADDRESS
1367 expression here allows optimization based on argument values
1368 even when the argument registers are used for other purposes. */
1369 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1370 return new_reg_base_value[regno];
1371
1372 /* If a pseudo has a known base value, return it. Do not do this
1373 for non-fixed hard regs since it can result in a circular
1374 dependency chain for registers which have values at function entry.
1375
1376 The test above is not sufficient because the scheduler may move
1377 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1378 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1379 && regno < vec_safe_length (reg_base_value))
1380 {
1381 /* If we're inside init_alias_analysis, use new_reg_base_value
1382 to reduce the number of relaxation iterations. */
1383 if (new_reg_base_value && new_reg_base_value[regno]
1384 && DF_REG_DEF_COUNT (regno) == 1)
1385 return new_reg_base_value[regno];
1386
1387 if ((*reg_base_value)[regno])
1388 return (*reg_base_value)[regno];
1389 }
1390
1391 return 0;
1392
1393 case MEM:
1394 /* Check for an argument passed in memory. Only record in the
1395 copying-arguments block; it is too hard to track changes
1396 otherwise. */
1397 if (copying_arguments
1398 && (XEXP (src, 0) == arg_pointer_rtx
1399 || (GET_CODE (XEXP (src, 0)) == PLUS
1400 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1401 return arg_base_value;
1402 return 0;
1403
1404 case CONST:
1405 src = XEXP (src, 0);
1406 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1407 break;
1408
1409 /* fall through */
1410
1411 case PLUS:
1412 case MINUS:
1413 {
1414 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1415
1416 /* If either operand is a REG that is a known pointer, then it
1417 is the base. */
1418 if (REG_P (src_0) && REG_POINTER (src_0))
1419 return find_base_value (src_0);
1420 if (REG_P (src_1) && REG_POINTER (src_1))
1421 return find_base_value (src_1);
1422
1423 /* If either operand is a REG, then see if we already have
1424 a known value for it. */
1425 if (REG_P (src_0))
1426 {
1427 temp = find_base_value (src_0);
1428 if (temp != 0)
1429 src_0 = temp;
1430 }
1431
1432 if (REG_P (src_1))
1433 {
1434 temp = find_base_value (src_1);
1435 if (temp!= 0)
1436 src_1 = temp;
1437 }
1438
1439 /* If either base is named object or a special address
1440 (like an argument or stack reference), then use it for the
1441 base term. */
1442 if (src_0 != 0 && known_base_value_p (src_0))
1443 return src_0;
1444
1445 if (src_1 != 0 && known_base_value_p (src_1))
1446 return src_1;
1447
1448 /* Guess which operand is the base address:
1449 If either operand is a symbol, then it is the base. If
1450 either operand is a CONST_INT, then the other is the base. */
1451 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1452 return find_base_value (src_0);
1453 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1454 return find_base_value (src_1);
1455
1456 return 0;
1457 }
1458
1459 case LO_SUM:
1460 /* The standard form is (lo_sum reg sym) so look only at the
1461 second operand. */
1462 return find_base_value (XEXP (src, 1));
1463
1464 case AND:
1465 /* If the second operand is constant set the base
1466 address to the first operand. */
1467 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1468 return find_base_value (XEXP (src, 0));
1469 return 0;
1470
1471 case TRUNCATE:
1472 /* As we do not know which address space the pointer is referring to, we can
1473 handle this only if the target does not support different pointer or
1474 address modes depending on the address space. */
1475 if (!target_default_pointer_address_modes_p ())
1476 break;
1477 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1478 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1479 break;
1480 /* Fall through. */
1481 case HIGH:
1482 case PRE_INC:
1483 case PRE_DEC:
1484 case POST_INC:
1485 case POST_DEC:
1486 case PRE_MODIFY:
1487 case POST_MODIFY:
1488 return find_base_value (XEXP (src, 0));
1489
1490 case ZERO_EXTEND:
1491 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1492 /* As we do not know which address space the pointer is referring to, we can
1493 handle this only if the target does not support different pointer or
1494 address modes depending on the address space. */
1495 if (!target_default_pointer_address_modes_p ())
1496 break;
1497
1498 {
1499 rtx temp = find_base_value (XEXP (src, 0));
1500
1501 if (temp != 0 && CONSTANT_P (temp))
1502 temp = convert_memory_address (Pmode, temp);
1503
1504 return temp;
1505 }
1506
1507 default:
1508 break;
1509 }
1510
1511 return 0;
1512 }
1513
1514 /* Called from init_alias_analysis indirectly through note_stores,
1515 or directly if DEST is a register with a REG_NOALIAS note attached.
1516 SET is null in the latter case. */
1517
1518 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1519 register N has been set in this function. */
1520 static sbitmap reg_seen;
1521
1522 static void
1523 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1524 {
1525 unsigned regno;
1526 rtx src;
1527 int n;
1528
1529 if (!REG_P (dest))
1530 return;
1531
1532 regno = REGNO (dest);
1533
1534 gcc_checking_assert (regno < reg_base_value->length ());
1535
1536 n = REG_NREGS (dest);
1537 if (n != 1)
1538 {
1539 while (--n >= 0)
1540 {
1541 bitmap_set_bit (reg_seen, regno + n);
1542 new_reg_base_value[regno + n] = 0;
1543 }
1544 return;
1545 }
1546
1547 if (set)
1548 {
1549 /* A CLOBBER wipes out any old value but does not prevent a previously
1550 unset register from acquiring a base address (i.e. reg_seen is not
1551 set). */
1552 if (GET_CODE (set) == CLOBBER)
1553 {
1554 new_reg_base_value[regno] = 0;
1555 return;
1556 }
1557 src = SET_SRC (set);
1558 }
1559 else
1560 {
1561 /* There's a REG_NOALIAS note against DEST. */
1562 if (bitmap_bit_p (reg_seen, regno))
1563 {
1564 new_reg_base_value[regno] = 0;
1565 return;
1566 }
1567 bitmap_set_bit (reg_seen, regno);
1568 new_reg_base_value[regno] = unique_base_value (unique_id++);
1569 return;
1570 }
1571
1572 /* If this is not the first set of REGNO, see whether the new value
1573 is related to the old one. There are two cases of interest:
1574
1575 (1) The register might be assigned an entirely new value
1576 that has the same base term as the original set.
1577
1578 (2) The set might be a simple self-modification that
1579 cannot change REGNO's base value.
1580
1581 If neither case holds, reject the original base value as invalid.
1582 Note that the following situation is not detected:
1583
1584 extern int x, y; int *p = &x; p += (&y-&x);
1585
1586 ANSI C does not allow computing the difference of addresses
1587 of distinct top level objects. */
1588 if (new_reg_base_value[regno] != 0
1589 && find_base_value (src) != new_reg_base_value[regno])
1590 switch (GET_CODE (src))
1591 {
1592 case LO_SUM:
1593 case MINUS:
1594 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1595 new_reg_base_value[regno] = 0;
1596 break;
1597 case PLUS:
1598 /* If the value we add in the PLUS is also a valid base value,
1599 this might be the actual base value, and the original value
1600 an index. */
1601 {
1602 rtx other = NULL_RTX;
1603
1604 if (XEXP (src, 0) == dest)
1605 other = XEXP (src, 1);
1606 else if (XEXP (src, 1) == dest)
1607 other = XEXP (src, 0);
1608
1609 if (! other || find_base_value (other))
1610 new_reg_base_value[regno] = 0;
1611 break;
1612 }
1613 case AND:
1614 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1615 new_reg_base_value[regno] = 0;
1616 break;
1617 default:
1618 new_reg_base_value[regno] = 0;
1619 break;
1620 }
1621 /* If this is the first set of a register, record the value. */
1622 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1623 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1624 new_reg_base_value[regno] = find_base_value (src);
1625
1626 bitmap_set_bit (reg_seen, regno);
1627 }
1628
1629 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1630 using hard registers with non-null REG_BASE_VALUE for renaming. */
1631 rtx
1632 get_reg_base_value (unsigned int regno)
1633 {
1634 return (*reg_base_value)[regno];
1635 }
1636
1637 /* If a value is known for REGNO, return it. */
1638
1639 rtx
1640 get_reg_known_value (unsigned int regno)
1641 {
1642 if (regno >= FIRST_PSEUDO_REGISTER)
1643 {
1644 regno -= FIRST_PSEUDO_REGISTER;
1645 if (regno < vec_safe_length (reg_known_value))
1646 return (*reg_known_value)[regno];
1647 }
1648 return NULL;
1649 }
1650
1651 /* Set it. */
1652
1653 static void
1654 set_reg_known_value (unsigned int regno, rtx val)
1655 {
1656 if (regno >= FIRST_PSEUDO_REGISTER)
1657 {
1658 regno -= FIRST_PSEUDO_REGISTER;
1659 if (regno < vec_safe_length (reg_known_value))
1660 (*reg_known_value)[regno] = val;
1661 }
1662 }
1663
1664 /* Similarly for reg_known_equiv_p. */
1665
1666 bool
1667 get_reg_known_equiv_p (unsigned int regno)
1668 {
1669 if (regno >= FIRST_PSEUDO_REGISTER)
1670 {
1671 regno -= FIRST_PSEUDO_REGISTER;
1672 if (regno < vec_safe_length (reg_known_value))
1673 return bitmap_bit_p (reg_known_equiv_p, regno);
1674 }
1675 return false;
1676 }
1677
1678 static void
1679 set_reg_known_equiv_p (unsigned int regno, bool val)
1680 {
1681 if (regno >= FIRST_PSEUDO_REGISTER)
1682 {
1683 regno -= FIRST_PSEUDO_REGISTER;
1684 if (regno < vec_safe_length (reg_known_value))
1685 {
1686 if (val)
1687 bitmap_set_bit (reg_known_equiv_p, regno);
1688 else
1689 bitmap_clear_bit (reg_known_equiv_p, regno);
1690 }
1691 }
1692 }
1693
1694
1695 /* Returns a canonical version of X, from the point of view alias
1696 analysis. (For example, if X is a MEM whose address is a register,
1697 and the register has a known value (say a SYMBOL_REF), then a MEM
1698 whose address is the SYMBOL_REF is returned.) */
1699
1700 rtx
1701 canon_rtx (rtx x)
1702 {
1703 /* Recursively look for equivalences. */
1704 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1705 {
1706 rtx t = get_reg_known_value (REGNO (x));
1707 if (t == x)
1708 return x;
1709 if (t)
1710 return canon_rtx (t);
1711 }
1712
1713 if (GET_CODE (x) == PLUS)
1714 {
1715 rtx x0 = canon_rtx (XEXP (x, 0));
1716 rtx x1 = canon_rtx (XEXP (x, 1));
1717
1718 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1719 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1720 }
1721
1722 /* This gives us much better alias analysis when called from
1723 the loop optimizer. Note we want to leave the original
1724 MEM alone, but need to return the canonicalized MEM with
1725 all the flags with their original values. */
1726 else if (MEM_P (x))
1727 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1728
1729 return x;
1730 }
1731
1732 /* Return 1 if X and Y are identical-looking rtx's.
1733 Expect that X and Y has been already canonicalized.
1734
1735 We use the data in reg_known_value above to see if two registers with
1736 different numbers are, in fact, equivalent. */
1737
1738 static int
1739 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1740 {
1741 int i;
1742 int j;
1743 enum rtx_code code;
1744 const char *fmt;
1745
1746 if (x == 0 && y == 0)
1747 return 1;
1748 if (x == 0 || y == 0)
1749 return 0;
1750
1751 if (x == y)
1752 return 1;
1753
1754 code = GET_CODE (x);
1755 /* Rtx's of different codes cannot be equal. */
1756 if (code != GET_CODE (y))
1757 return 0;
1758
1759 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1760 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1761
1762 if (GET_MODE (x) != GET_MODE (y))
1763 return 0;
1764
1765 /* Some RTL can be compared without a recursive examination. */
1766 switch (code)
1767 {
1768 case REG:
1769 return REGNO (x) == REGNO (y);
1770
1771 case LABEL_REF:
1772 return label_ref_label (x) == label_ref_label (y);
1773
1774 case SYMBOL_REF:
1775 return compare_base_symbol_refs (x, y) == 1;
1776
1777 case ENTRY_VALUE:
1778 /* This is magic, don't go through canonicalization et al. */
1779 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1780
1781 case VALUE:
1782 CASE_CONST_UNIQUE:
1783 /* Pointer equality guarantees equality for these nodes. */
1784 return 0;
1785
1786 default:
1787 break;
1788 }
1789
1790 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1791 if (code == PLUS)
1792 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1793 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1794 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1795 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1796 /* For commutative operations, the RTX match if the operand match in any
1797 order. Also handle the simple binary and unary cases without a loop. */
1798 if (COMMUTATIVE_P (x))
1799 {
1800 rtx xop0 = canon_rtx (XEXP (x, 0));
1801 rtx yop0 = canon_rtx (XEXP (y, 0));
1802 rtx yop1 = canon_rtx (XEXP (y, 1));
1803
1804 return ((rtx_equal_for_memref_p (xop0, yop0)
1805 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1806 || (rtx_equal_for_memref_p (xop0, yop1)
1807 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1808 }
1809 else if (NON_COMMUTATIVE_P (x))
1810 {
1811 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1812 canon_rtx (XEXP (y, 0)))
1813 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1814 canon_rtx (XEXP (y, 1))));
1815 }
1816 else if (UNARY_P (x))
1817 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1818 canon_rtx (XEXP (y, 0)));
1819
1820 /* Compare the elements. If any pair of corresponding elements
1821 fail to match, return 0 for the whole things.
1822
1823 Limit cases to types which actually appear in addresses. */
1824
1825 fmt = GET_RTX_FORMAT (code);
1826 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1827 {
1828 switch (fmt[i])
1829 {
1830 case 'i':
1831 if (XINT (x, i) != XINT (y, i))
1832 return 0;
1833 break;
1834
1835 case 'p':
1836 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1837 return 0;
1838 break;
1839
1840 case 'E':
1841 /* Two vectors must have the same length. */
1842 if (XVECLEN (x, i) != XVECLEN (y, i))
1843 return 0;
1844
1845 /* And the corresponding elements must match. */
1846 for (j = 0; j < XVECLEN (x, i); j++)
1847 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1848 canon_rtx (XVECEXP (y, i, j))) == 0)
1849 return 0;
1850 break;
1851
1852 case 'e':
1853 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1854 canon_rtx (XEXP (y, i))) == 0)
1855 return 0;
1856 break;
1857
1858 /* This can happen for asm operands. */
1859 case 's':
1860 if (strcmp (XSTR (x, i), XSTR (y, i)))
1861 return 0;
1862 break;
1863
1864 /* This can happen for an asm which clobbers memory. */
1865 case '0':
1866 break;
1867
1868 /* It is believed that rtx's at this level will never
1869 contain anything but integers and other rtx's,
1870 except for within LABEL_REFs and SYMBOL_REFs. */
1871 default:
1872 gcc_unreachable ();
1873 }
1874 }
1875 return 1;
1876 }
1877
1878 static rtx
1879 find_base_term (rtx x, vec<std::pair<cselib_val *,
1880 struct elt_loc_list *> > &visited_vals)
1881 {
1882 cselib_val *val;
1883 struct elt_loc_list *l, *f;
1884 rtx ret;
1885 scalar_int_mode int_mode;
1886
1887 #if defined (FIND_BASE_TERM)
1888 /* Try machine-dependent ways to find the base term. */
1889 x = FIND_BASE_TERM (x);
1890 #endif
1891
1892 switch (GET_CODE (x))
1893 {
1894 case REG:
1895 return REG_BASE_VALUE (x);
1896
1897 case TRUNCATE:
1898 /* As we do not know which address space the pointer is referring to, we can
1899 handle this only if the target does not support different pointer or
1900 address modes depending on the address space. */
1901 if (!target_default_pointer_address_modes_p ())
1902 return 0;
1903 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1904 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1905 return 0;
1906 /* Fall through. */
1907 case HIGH:
1908 case PRE_INC:
1909 case PRE_DEC:
1910 case POST_INC:
1911 case POST_DEC:
1912 case PRE_MODIFY:
1913 case POST_MODIFY:
1914 return find_base_term (XEXP (x, 0), visited_vals);
1915
1916 case ZERO_EXTEND:
1917 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1918 /* As we do not know which address space the pointer is referring to, we can
1919 handle this only if the target does not support different pointer or
1920 address modes depending on the address space. */
1921 if (!target_default_pointer_address_modes_p ())
1922 return 0;
1923
1924 {
1925 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1926
1927 if (temp != 0 && CONSTANT_P (temp))
1928 temp = convert_memory_address (Pmode, temp);
1929
1930 return temp;
1931 }
1932
1933 case VALUE:
1934 val = CSELIB_VAL_PTR (x);
1935 ret = NULL_RTX;
1936
1937 if (!val)
1938 return ret;
1939
1940 if (cselib_sp_based_value_p (val))
1941 return static_reg_base_value[STACK_POINTER_REGNUM];
1942
1943 f = val->locs;
1944 /* Reset val->locs to avoid infinite recursion. */
1945 if (f)
1946 visited_vals.safe_push (std::make_pair (val, f));
1947 val->locs = NULL;
1948
1949 for (l = f; l; l = l->next)
1950 if (GET_CODE (l->loc) == VALUE
1951 && CSELIB_VAL_PTR (l->loc)->locs
1952 && !CSELIB_VAL_PTR (l->loc)->locs->next
1953 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1954 continue;
1955 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
1956 break;
1957
1958 return ret;
1959
1960 case LO_SUM:
1961 /* The standard form is (lo_sum reg sym) so look only at the
1962 second operand. */
1963 return find_base_term (XEXP (x, 1), visited_vals);
1964
1965 case CONST:
1966 x = XEXP (x, 0);
1967 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1968 return 0;
1969 /* Fall through. */
1970 case PLUS:
1971 case MINUS:
1972 {
1973 rtx tmp1 = XEXP (x, 0);
1974 rtx tmp2 = XEXP (x, 1);
1975
1976 /* This is a little bit tricky since we have to determine which of
1977 the two operands represents the real base address. Otherwise this
1978 routine may return the index register instead of the base register.
1979
1980 That may cause us to believe no aliasing was possible, when in
1981 fact aliasing is possible.
1982
1983 We use a few simple tests to guess the base register. Additional
1984 tests can certainly be added. For example, if one of the operands
1985 is a shift or multiply, then it must be the index register and the
1986 other operand is the base register. */
1987
1988 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1989 return find_base_term (tmp2, visited_vals);
1990
1991 /* If either operand is known to be a pointer, then prefer it
1992 to determine the base term. */
1993 if (REG_P (tmp1) && REG_POINTER (tmp1))
1994 ;
1995 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1996 std::swap (tmp1, tmp2);
1997 /* If second argument is constant which has base term, prefer it
1998 over variable tmp1. See PR64025. */
1999 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2000 std::swap (tmp1, tmp2);
2001
2002 /* Go ahead and find the base term for both operands. If either base
2003 term is from a pointer or is a named object or a special address
2004 (like an argument or stack reference), then use it for the
2005 base term. */
2006 rtx base = find_base_term (tmp1, visited_vals);
2007 if (base != NULL_RTX
2008 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2009 || known_base_value_p (base)))
2010 return base;
2011 base = find_base_term (tmp2, visited_vals);
2012 if (base != NULL_RTX
2013 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2014 || known_base_value_p (base)))
2015 return base;
2016
2017 /* We could not determine which of the two operands was the
2018 base register and which was the index. So we can determine
2019 nothing from the base alias check. */
2020 return 0;
2021 }
2022
2023 case AND:
2024 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2025 return find_base_term (XEXP (x, 0), visited_vals);
2026 return 0;
2027
2028 case SYMBOL_REF:
2029 case LABEL_REF:
2030 return x;
2031
2032 default:
2033 return 0;
2034 }
2035 }
2036
2037 /* Wrapper around the worker above which removes locs from visited VALUEs
2038 to avoid visiting them multiple times. We unwind that changes here. */
2039
2040 static rtx
2041 find_base_term (rtx x)
2042 {
2043 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2044 rtx res = find_base_term (x, visited_vals);
2045 for (unsigned i = 0; i < visited_vals.length (); ++i)
2046 visited_vals[i].first->locs = visited_vals[i].second;
2047 return res;
2048 }
2049
2050 /* Return true if accesses to address X may alias accesses based
2051 on the stack pointer. */
2052
2053 bool
2054 may_be_sp_based_p (rtx x)
2055 {
2056 rtx base = find_base_term (x);
2057 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2058 }
2059
2060 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2061 if they refer to different objects and -1 if we can not decide. */
2062
2063 int
2064 compare_base_decls (tree base1, tree base2)
2065 {
2066 int ret;
2067 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2068 if (base1 == base2)
2069 return 1;
2070
2071 /* If we have two register decls with register specification we
2072 cannot decide unless their assembler names are the same. */
2073 if (DECL_REGISTER (base1)
2074 && DECL_REGISTER (base2)
2075 && HAS_DECL_ASSEMBLER_NAME_P (base1)
2076 && HAS_DECL_ASSEMBLER_NAME_P (base2)
2077 && DECL_ASSEMBLER_NAME_SET_P (base1)
2078 && DECL_ASSEMBLER_NAME_SET_P (base2))
2079 {
2080 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2081 return 1;
2082 return -1;
2083 }
2084
2085 /* Declarations of non-automatic variables may have aliases. All other
2086 decls are unique. */
2087 if (!decl_in_symtab_p (base1)
2088 || !decl_in_symtab_p (base2))
2089 return 0;
2090
2091 /* Don't cause symbols to be inserted by the act of checking. */
2092 symtab_node *node1 = symtab_node::get (base1);
2093 if (!node1)
2094 return 0;
2095 symtab_node *node2 = symtab_node::get (base2);
2096 if (!node2)
2097 return 0;
2098
2099 ret = node1->equal_address_to (node2, true);
2100 return ret;
2101 }
2102
2103 /* Same as compare_base_decls but for SYMBOL_REF. */
2104
2105 static int
2106 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2107 {
2108 tree x_decl = SYMBOL_REF_DECL (x_base);
2109 tree y_decl = SYMBOL_REF_DECL (y_base);
2110 bool binds_def = true;
2111
2112 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2113 return 1;
2114 if (x_decl && y_decl)
2115 return compare_base_decls (x_decl, y_decl);
2116 if (x_decl || y_decl)
2117 {
2118 if (!x_decl)
2119 {
2120 std::swap (x_decl, y_decl);
2121 std::swap (x_base, y_base);
2122 }
2123 /* We handle specially only section anchors and assume that other
2124 labels may overlap with user variables in an arbitrary way. */
2125 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2126 return -1;
2127 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2128 to ignore CONST_DECLs because they are readonly. */
2129 if (!VAR_P (x_decl)
2130 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2131 return 0;
2132
2133 symtab_node *x_node = symtab_node::get_create (x_decl)
2134 ->ultimate_alias_target ();
2135 /* External variable can not be in section anchor. */
2136 if (!x_node->definition)
2137 return 0;
2138 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2139 /* If not in anchor, we can disambiguate. */
2140 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2141 return 0;
2142
2143 /* We have an alias of anchored variable. If it can be interposed;
2144 we must assume it may or may not alias its anchor. */
2145 binds_def = decl_binds_to_current_def_p (x_decl);
2146 }
2147 /* If we have variable in section anchor, we can compare by offset. */
2148 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2149 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2150 {
2151 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2152 return 0;
2153 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2154 return binds_def ? 1 : -1;
2155 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2156 return -1;
2157 return 0;
2158 }
2159 /* In general we assume that memory locations pointed to by different labels
2160 may overlap in undefined ways. */
2161 return -1;
2162 }
2163
2164 /* Return 0 if the addresses X and Y are known to point to different
2165 objects, 1 if they might be pointers to the same object. */
2166
2167 static int
2168 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2169 machine_mode x_mode, machine_mode y_mode)
2170 {
2171 /* If the address itself has no known base see if a known equivalent
2172 value has one. If either address still has no known base, nothing
2173 is known about aliasing. */
2174 if (x_base == 0)
2175 {
2176 rtx x_c;
2177
2178 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2179 return 1;
2180
2181 x_base = find_base_term (x_c);
2182 if (x_base == 0)
2183 return 1;
2184 }
2185
2186 if (y_base == 0)
2187 {
2188 rtx y_c;
2189 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2190 return 1;
2191
2192 y_base = find_base_term (y_c);
2193 if (y_base == 0)
2194 return 1;
2195 }
2196
2197 /* If the base addresses are equal nothing is known about aliasing. */
2198 if (rtx_equal_p (x_base, y_base))
2199 return 1;
2200
2201 /* The base addresses are different expressions. If they are not accessed
2202 via AND, there is no conflict. We can bring knowledge of object
2203 alignment into play here. For example, on alpha, "char a, b;" can
2204 alias one another, though "char a; long b;" cannot. AND addresses may
2205 implicitly alias surrounding objects; i.e. unaligned access in DImode
2206 via AND address can alias all surrounding object types except those
2207 with aligment 8 or higher. */
2208 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2209 return 1;
2210 if (GET_CODE (x) == AND
2211 && (!CONST_INT_P (XEXP (x, 1))
2212 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2213 return 1;
2214 if (GET_CODE (y) == AND
2215 && (!CONST_INT_P (XEXP (y, 1))
2216 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2217 return 1;
2218
2219 /* Differing symbols not accessed via AND never alias. */
2220 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2221 return compare_base_symbol_refs (x_base, y_base) != 0;
2222
2223 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2224 return 0;
2225
2226 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2227 return 0;
2228
2229 return 1;
2230 }
2231
2232 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2233 (or equal to) that of V. */
2234
2235 static bool
2236 refs_newer_value_p (const_rtx expr, rtx v)
2237 {
2238 int minuid = CSELIB_VAL_PTR (v)->uid;
2239 subrtx_iterator::array_type array;
2240 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2241 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2242 return true;
2243 return false;
2244 }
2245
2246 /* Convert the address X into something we can use. This is done by returning
2247 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2248 we call cselib to get a more useful rtx. */
2249
2250 rtx
2251 get_addr (rtx x)
2252 {
2253 cselib_val *v;
2254 struct elt_loc_list *l;
2255
2256 if (GET_CODE (x) != VALUE)
2257 {
2258 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2259 && GET_CODE (XEXP (x, 0)) == VALUE
2260 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2261 {
2262 rtx op0 = get_addr (XEXP (x, 0));
2263 if (op0 != XEXP (x, 0))
2264 {
2265 poly_int64 c;
2266 if (GET_CODE (x) == PLUS
2267 && poly_int_rtx_p (XEXP (x, 1), &c))
2268 return plus_constant (GET_MODE (x), op0, c);
2269 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2270 op0, XEXP (x, 1));
2271 }
2272 }
2273 return x;
2274 }
2275 v = CSELIB_VAL_PTR (x);
2276 if (v)
2277 {
2278 bool have_equivs = cselib_have_permanent_equivalences ();
2279 if (have_equivs)
2280 v = canonical_cselib_val (v);
2281 for (l = v->locs; l; l = l->next)
2282 if (CONSTANT_P (l->loc))
2283 return l->loc;
2284 for (l = v->locs; l; l = l->next)
2285 if (!REG_P (l->loc) && !MEM_P (l->loc)
2286 /* Avoid infinite recursion when potentially dealing with
2287 var-tracking artificial equivalences, by skipping the
2288 equivalences themselves, and not choosing expressions
2289 that refer to newer VALUEs. */
2290 && (!have_equivs
2291 || (GET_CODE (l->loc) != VALUE
2292 && !refs_newer_value_p (l->loc, x))))
2293 return l->loc;
2294 if (have_equivs)
2295 {
2296 for (l = v->locs; l; l = l->next)
2297 if (REG_P (l->loc)
2298 || (GET_CODE (l->loc) != VALUE
2299 && !refs_newer_value_p (l->loc, x)))
2300 return l->loc;
2301 /* Return the canonical value. */
2302 return v->val_rtx;
2303 }
2304 if (v->locs)
2305 return v->locs->loc;
2306 }
2307 return x;
2308 }
2309
2310 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2311 where SIZE is the size in bytes of the memory reference. If ADDR
2312 is not modified by the memory reference then ADDR is returned. */
2313
2314 static rtx
2315 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2316 {
2317 poly_int64 offset = 0;
2318
2319 switch (GET_CODE (addr))
2320 {
2321 case PRE_INC:
2322 offset = (n_refs + 1) * size;
2323 break;
2324 case PRE_DEC:
2325 offset = -(n_refs + 1) * size;
2326 break;
2327 case POST_INC:
2328 offset = n_refs * size;
2329 break;
2330 case POST_DEC:
2331 offset = -n_refs * size;
2332 break;
2333
2334 default:
2335 return addr;
2336 }
2337
2338 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2339 addr = canon_rtx (addr);
2340
2341 return addr;
2342 }
2343
2344 /* Return TRUE if an object X sized at XSIZE bytes and another object
2345 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2346 any of the sizes is zero, assume an overlap, otherwise use the
2347 absolute value of the sizes as the actual sizes. */
2348
2349 static inline bool
2350 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2351 {
2352 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2353 return true;
2354
2355 if (maybe_ge (c, 0))
2356 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2357 else
2358 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2359 }
2360
2361 /* Return one if X and Y (memory addresses) reference the
2362 same location in memory or if the references overlap.
2363 Return zero if they do not overlap, else return
2364 minus one in which case they still might reference the same location.
2365
2366 C is an offset accumulator. When
2367 C is nonzero, we are testing aliases between X and Y + C.
2368 XSIZE is the size in bytes of the X reference,
2369 similarly YSIZE is the size in bytes for Y.
2370 Expect that canon_rtx has been already called for X and Y.
2371
2372 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2373 referenced (the reference was BLKmode), so make the most pessimistic
2374 assumptions.
2375
2376 If XSIZE or YSIZE is negative, we may access memory outside the object
2377 being referenced as a side effect. This can happen when using AND to
2378 align memory references, as is done on the Alpha.
2379
2380 Nice to notice that varying addresses cannot conflict with fp if no
2381 local variables had their addresses taken, but that's too hard now.
2382
2383 ??? Contrary to the tree alias oracle this does not return
2384 one for X + non-constant and Y + non-constant when X and Y are equal.
2385 If that is fixed the TBAA hack for union type-punning can be removed. */
2386
2387 static int
2388 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2389 poly_int64 c)
2390 {
2391 if (GET_CODE (x) == VALUE)
2392 {
2393 if (REG_P (y))
2394 {
2395 struct elt_loc_list *l = NULL;
2396 if (CSELIB_VAL_PTR (x))
2397 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2398 l; l = l->next)
2399 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2400 break;
2401 if (l)
2402 x = y;
2403 else
2404 x = get_addr (x);
2405 }
2406 /* Don't call get_addr if y is the same VALUE. */
2407 else if (x != y)
2408 x = get_addr (x);
2409 }
2410 if (GET_CODE (y) == VALUE)
2411 {
2412 if (REG_P (x))
2413 {
2414 struct elt_loc_list *l = NULL;
2415 if (CSELIB_VAL_PTR (y))
2416 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2417 l; l = l->next)
2418 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2419 break;
2420 if (l)
2421 y = x;
2422 else
2423 y = get_addr (y);
2424 }
2425 /* Don't call get_addr if x is the same VALUE. */
2426 else if (y != x)
2427 y = get_addr (y);
2428 }
2429 if (GET_CODE (x) == HIGH)
2430 x = XEXP (x, 0);
2431 else if (GET_CODE (x) == LO_SUM)
2432 x = XEXP (x, 1);
2433 else
2434 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2435 if (GET_CODE (y) == HIGH)
2436 y = XEXP (y, 0);
2437 else if (GET_CODE (y) == LO_SUM)
2438 y = XEXP (y, 1);
2439 else
2440 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2441
2442 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2443 {
2444 int cmp = compare_base_symbol_refs (x,y);
2445
2446 /* If both decls are the same, decide by offsets. */
2447 if (cmp == 1)
2448 return offset_overlap_p (c, xsize, ysize);
2449 /* Assume a potential overlap for symbolic addresses that went
2450 through alignment adjustments (i.e., that have negative
2451 sizes), because we can't know how far they are from each
2452 other. */
2453 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2454 return -1;
2455 /* If decls are different or we know by offsets that there is no overlap,
2456 we win. */
2457 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2458 return 0;
2459 /* Decls may or may not be different and offsets overlap....*/
2460 return -1;
2461 }
2462 else if (rtx_equal_for_memref_p (x, y))
2463 {
2464 return offset_overlap_p (c, xsize, ysize);
2465 }
2466
2467 /* This code used to check for conflicts involving stack references and
2468 globals but the base address alias code now handles these cases. */
2469
2470 if (GET_CODE (x) == PLUS)
2471 {
2472 /* The fact that X is canonicalized means that this
2473 PLUS rtx is canonicalized. */
2474 rtx x0 = XEXP (x, 0);
2475 rtx x1 = XEXP (x, 1);
2476
2477 /* However, VALUEs might end up in different positions even in
2478 canonical PLUSes. Comparing their addresses is enough. */
2479 if (x0 == y)
2480 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2481 else if (x1 == y)
2482 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2483
2484 poly_int64 cx1, cy1;
2485 if (GET_CODE (y) == PLUS)
2486 {
2487 /* The fact that Y is canonicalized means that this
2488 PLUS rtx is canonicalized. */
2489 rtx y0 = XEXP (y, 0);
2490 rtx y1 = XEXP (y, 1);
2491
2492 if (x0 == y1)
2493 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2494 if (x1 == y0)
2495 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2496
2497 if (rtx_equal_for_memref_p (x1, y1))
2498 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2499 if (rtx_equal_for_memref_p (x0, y0))
2500 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2501 if (poly_int_rtx_p (x1, &cx1))
2502 {
2503 if (poly_int_rtx_p (y1, &cy1))
2504 return memrefs_conflict_p (xsize, x0, ysize, y0,
2505 c - cx1 + cy1);
2506 else
2507 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2508 }
2509 else if (poly_int_rtx_p (y1, &cy1))
2510 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2511
2512 return -1;
2513 }
2514 else if (poly_int_rtx_p (x1, &cx1))
2515 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2516 }
2517 else if (GET_CODE (y) == PLUS)
2518 {
2519 /* The fact that Y is canonicalized means that this
2520 PLUS rtx is canonicalized. */
2521 rtx y0 = XEXP (y, 0);
2522 rtx y1 = XEXP (y, 1);
2523
2524 if (x == y0)
2525 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2526 if (x == y1)
2527 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2528
2529 poly_int64 cy1;
2530 if (poly_int_rtx_p (y1, &cy1))
2531 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2532 else
2533 return -1;
2534 }
2535
2536 if (GET_CODE (x) == GET_CODE (y))
2537 switch (GET_CODE (x))
2538 {
2539 case MULT:
2540 {
2541 /* Handle cases where we expect the second operands to be the
2542 same, and check only whether the first operand would conflict
2543 or not. */
2544 rtx x0, y0;
2545 rtx x1 = canon_rtx (XEXP (x, 1));
2546 rtx y1 = canon_rtx (XEXP (y, 1));
2547 if (! rtx_equal_for_memref_p (x1, y1))
2548 return -1;
2549 x0 = canon_rtx (XEXP (x, 0));
2550 y0 = canon_rtx (XEXP (y, 0));
2551 if (rtx_equal_for_memref_p (x0, y0))
2552 return offset_overlap_p (c, xsize, ysize);
2553
2554 /* Can't properly adjust our sizes. */
2555 poly_int64 c1;
2556 if (!poly_int_rtx_p (x1, &c1)
2557 || !can_div_trunc_p (xsize, c1, &xsize)
2558 || !can_div_trunc_p (ysize, c1, &ysize)
2559 || !can_div_trunc_p (c, c1, &c))
2560 return -1;
2561 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2562 }
2563
2564 default:
2565 break;
2566 }
2567
2568 /* Deal with alignment ANDs by adjusting offset and size so as to
2569 cover the maximum range, without taking any previously known
2570 alignment into account. Make a size negative after such an
2571 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2572 assume a potential overlap, because they may end up in contiguous
2573 memory locations and the stricter-alignment access may span over
2574 part of both. */
2575 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2576 {
2577 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2578 unsigned HOST_WIDE_INT uc = sc;
2579 if (sc < 0 && pow2_or_zerop (-uc))
2580 {
2581 if (maybe_gt (xsize, 0))
2582 xsize = -xsize;
2583 if (maybe_ne (xsize, 0))
2584 xsize += sc + 1;
2585 c -= sc + 1;
2586 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2587 ysize, y, c);
2588 }
2589 }
2590 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2591 {
2592 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2593 unsigned HOST_WIDE_INT uc = sc;
2594 if (sc < 0 && pow2_or_zerop (-uc))
2595 {
2596 if (maybe_gt (ysize, 0))
2597 ysize = -ysize;
2598 if (maybe_ne (ysize, 0))
2599 ysize += sc + 1;
2600 c += sc + 1;
2601 return memrefs_conflict_p (xsize, x,
2602 ysize, canon_rtx (XEXP (y, 0)), c);
2603 }
2604 }
2605
2606 if (CONSTANT_P (x))
2607 {
2608 poly_int64 cx, cy;
2609 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2610 {
2611 c += cy - cx;
2612 return offset_overlap_p (c, xsize, ysize);
2613 }
2614
2615 if (GET_CODE (x) == CONST)
2616 {
2617 if (GET_CODE (y) == CONST)
2618 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2619 ysize, canon_rtx (XEXP (y, 0)), c);
2620 else
2621 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2622 ysize, y, c);
2623 }
2624 if (GET_CODE (y) == CONST)
2625 return memrefs_conflict_p (xsize, x, ysize,
2626 canon_rtx (XEXP (y, 0)), c);
2627
2628 /* Assume a potential overlap for symbolic addresses that went
2629 through alignment adjustments (i.e., that have negative
2630 sizes), because we can't know how far they are from each
2631 other. */
2632 if (CONSTANT_P (y))
2633 return (maybe_lt (xsize, 0)
2634 || maybe_lt (ysize, 0)
2635 || offset_overlap_p (c, xsize, ysize));
2636
2637 return -1;
2638 }
2639
2640 return -1;
2641 }
2642
2643 /* Functions to compute memory dependencies.
2644
2645 Since we process the insns in execution order, we can build tables
2646 to keep track of what registers are fixed (and not aliased), what registers
2647 are varying in known ways, and what registers are varying in unknown
2648 ways.
2649
2650 If both memory references are volatile, then there must always be a
2651 dependence between the two references, since their order can not be
2652 changed. A volatile and non-volatile reference can be interchanged
2653 though.
2654
2655 We also must allow AND addresses, because they may generate accesses
2656 outside the object being referenced. This is used to generate aligned
2657 addresses from unaligned addresses, for instance, the alpha
2658 storeqi_unaligned pattern. */
2659
2660 /* Read dependence: X is read after read in MEM takes place. There can
2661 only be a dependence here if both reads are volatile, or if either is
2662 an explicit barrier. */
2663
2664 int
2665 read_dependence (const_rtx mem, const_rtx x)
2666 {
2667 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2668 return true;
2669 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2670 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2671 return true;
2672 return false;
2673 }
2674
2675 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2676
2677 static tree
2678 decl_for_component_ref (tree x)
2679 {
2680 do
2681 {
2682 x = TREE_OPERAND (x, 0);
2683 }
2684 while (x && TREE_CODE (x) == COMPONENT_REF);
2685
2686 return x && DECL_P (x) ? x : NULL_TREE;
2687 }
2688
2689 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2690 for the offset of the field reference. *KNOWN_P says whether the
2691 offset is known. */
2692
2693 static void
2694 adjust_offset_for_component_ref (tree x, bool *known_p,
2695 poly_int64 *offset)
2696 {
2697 if (!*known_p)
2698 return;
2699 do
2700 {
2701 tree xoffset = component_ref_field_offset (x);
2702 tree field = TREE_OPERAND (x, 1);
2703 if (!poly_int_tree_p (xoffset))
2704 {
2705 *known_p = false;
2706 return;
2707 }
2708
2709 poly_offset_int woffset
2710 = (wi::to_poly_offset (xoffset)
2711 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2712 >> LOG2_BITS_PER_UNIT)
2713 + *offset);
2714 if (!woffset.to_shwi (offset))
2715 {
2716 *known_p = false;
2717 return;
2718 }
2719
2720 x = TREE_OPERAND (x, 0);
2721 }
2722 while (x && TREE_CODE (x) == COMPONENT_REF);
2723 }
2724
2725 /* Return nonzero if we can determine the exprs corresponding to memrefs
2726 X and Y and they do not overlap.
2727 If LOOP_VARIANT is set, skip offset-based disambiguation */
2728
2729 int
2730 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2731 {
2732 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2733 rtx rtlx, rtly;
2734 rtx basex, basey;
2735 bool moffsetx_known_p, moffsety_known_p;
2736 poly_int64 moffsetx = 0, moffsety = 0;
2737 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2738
2739 /* Unless both have exprs, we can't tell anything. */
2740 if (exprx == 0 || expry == 0)
2741 return 0;
2742
2743 /* For spill-slot accesses make sure we have valid offsets. */
2744 if ((exprx == get_spill_slot_decl (false)
2745 && ! MEM_OFFSET_KNOWN_P (x))
2746 || (expry == get_spill_slot_decl (false)
2747 && ! MEM_OFFSET_KNOWN_P (y)))
2748 return 0;
2749
2750 /* If the field reference test failed, look at the DECLs involved. */
2751 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2752 if (moffsetx_known_p)
2753 moffsetx = MEM_OFFSET (x);
2754 if (TREE_CODE (exprx) == COMPONENT_REF)
2755 {
2756 tree t = decl_for_component_ref (exprx);
2757 if (! t)
2758 return 0;
2759 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2760 exprx = t;
2761 }
2762
2763 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2764 if (moffsety_known_p)
2765 moffsety = MEM_OFFSET (y);
2766 if (TREE_CODE (expry) == COMPONENT_REF)
2767 {
2768 tree t = decl_for_component_ref (expry);
2769 if (! t)
2770 return 0;
2771 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2772 expry = t;
2773 }
2774
2775 if (! DECL_P (exprx) || ! DECL_P (expry))
2776 return 0;
2777
2778 /* If we refer to different gimple registers, or one gimple register
2779 and one non-gimple-register, we know they can't overlap. First,
2780 gimple registers don't have their addresses taken. Now, there
2781 could be more than one stack slot for (different versions of) the
2782 same gimple register, but we can presumably tell they don't
2783 overlap based on offsets from stack base addresses elsewhere.
2784 It's important that we don't proceed to DECL_RTL, because gimple
2785 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2786 able to do anything about them since no SSA information will have
2787 remained to guide it. */
2788 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2789 return exprx != expry
2790 || (moffsetx_known_p && moffsety_known_p
2791 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2792 && !offset_overlap_p (moffsety - moffsetx,
2793 MEM_SIZE (x), MEM_SIZE (y)));
2794
2795 /* With invalid code we can end up storing into the constant pool.
2796 Bail out to avoid ICEing when creating RTL for this.
2797 See gfortran.dg/lto/20091028-2_0.f90. */
2798 if (TREE_CODE (exprx) == CONST_DECL
2799 || TREE_CODE (expry) == CONST_DECL)
2800 return 1;
2801
2802 /* If one decl is known to be a function or label in a function and
2803 the other is some kind of data, they can't overlap. */
2804 if ((TREE_CODE (exprx) == FUNCTION_DECL
2805 || TREE_CODE (exprx) == LABEL_DECL)
2806 != (TREE_CODE (expry) == FUNCTION_DECL
2807 || TREE_CODE (expry) == LABEL_DECL))
2808 return 1;
2809
2810 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2811 living in multiple places), we can't tell anything. Exception
2812 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2813 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2814 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2815 return 0;
2816
2817 rtlx = DECL_RTL (exprx);
2818 rtly = DECL_RTL (expry);
2819
2820 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2821 can't overlap unless they are the same because we never reuse that part
2822 of the stack frame used for locals for spilled pseudos. */
2823 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2824 && ! rtx_equal_p (rtlx, rtly))
2825 return 1;
2826
2827 /* If we have MEMs referring to different address spaces (which can
2828 potentially overlap), we cannot easily tell from the addresses
2829 whether the references overlap. */
2830 if (MEM_P (rtlx) && MEM_P (rtly)
2831 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2832 return 0;
2833
2834 /* Get the base and offsets of both decls. If either is a register, we
2835 know both are and are the same, so use that as the base. The only
2836 we can avoid overlap is if we can deduce that they are nonoverlapping
2837 pieces of that decl, which is very rare. */
2838 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2839 basex = strip_offset_and_add (basex, &offsetx);
2840
2841 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2842 basey = strip_offset_and_add (basey, &offsety);
2843
2844 /* If the bases are different, we know they do not overlap if both
2845 are constants or if one is a constant and the other a pointer into the
2846 stack frame. Otherwise a different base means we can't tell if they
2847 overlap or not. */
2848 if (compare_base_decls (exprx, expry) == 0)
2849 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2850 || (CONSTANT_P (basex) && REG_P (basey)
2851 && REGNO_PTR_FRAME_P (REGNO (basey)))
2852 || (CONSTANT_P (basey) && REG_P (basex)
2853 && REGNO_PTR_FRAME_P (REGNO (basex))));
2854
2855 /* Offset based disambiguation not appropriate for loop invariant */
2856 if (loop_invariant)
2857 return 0;
2858
2859 /* Offset based disambiguation is OK even if we do not know that the
2860 declarations are necessarily different
2861 (i.e. compare_base_decls (exprx, expry) == -1) */
2862
2863 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2864 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2865 : -1);
2866 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2867 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2868 : -1);
2869
2870 /* If we have an offset for either memref, it can update the values computed
2871 above. */
2872 if (moffsetx_known_p)
2873 offsetx += moffsetx, sizex -= moffsetx;
2874 if (moffsety_known_p)
2875 offsety += moffsety, sizey -= moffsety;
2876
2877 /* If a memref has both a size and an offset, we can use the smaller size.
2878 We can't do this if the offset isn't known because we must view this
2879 memref as being anywhere inside the DECL's MEM. */
2880 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2881 sizex = MEM_SIZE (x);
2882 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2883 sizey = MEM_SIZE (y);
2884
2885 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2886 }
2887
2888 /* Helper for true_dependence and canon_true_dependence.
2889 Checks for true dependence: X is read after store in MEM takes place.
2890
2891 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2892 NULL_RTX, and the canonical addresses of MEM and X are both computed
2893 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2894
2895 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2896
2897 Returns 1 if there is a true dependence, 0 otherwise. */
2898
2899 static int
2900 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2901 const_rtx x, rtx x_addr, bool mem_canonicalized)
2902 {
2903 rtx true_mem_addr;
2904 rtx base;
2905 int ret;
2906
2907 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2908 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2909
2910 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2911 return 1;
2912
2913 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2914 This is used in epilogue deallocation functions, and in cselib. */
2915 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2916 return 1;
2917 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2918 return 1;
2919 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2920 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2921 return 1;
2922
2923 if (! x_addr)
2924 x_addr = XEXP (x, 0);
2925 x_addr = get_addr (x_addr);
2926
2927 if (! mem_addr)
2928 {
2929 mem_addr = XEXP (mem, 0);
2930 if (mem_mode == VOIDmode)
2931 mem_mode = GET_MODE (mem);
2932 }
2933 true_mem_addr = get_addr (mem_addr);
2934
2935 /* Read-only memory is by definition never modified, and therefore can't
2936 conflict with anything. However, don't assume anything when AND
2937 addresses are involved and leave to the code below to determine
2938 dependence. We don't expect to find read-only set on MEM, but
2939 stupid user tricks can produce them, so don't die. */
2940 if (MEM_READONLY_P (x)
2941 && GET_CODE (x_addr) != AND
2942 && GET_CODE (true_mem_addr) != AND)
2943 return 0;
2944
2945 /* If we have MEMs referring to different address spaces (which can
2946 potentially overlap), we cannot easily tell from the addresses
2947 whether the references overlap. */
2948 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2949 return 1;
2950
2951 base = find_base_term (x_addr);
2952 if (base && (GET_CODE (base) == LABEL_REF
2953 || (GET_CODE (base) == SYMBOL_REF
2954 && CONSTANT_POOL_ADDRESS_P (base))))
2955 return 0;
2956
2957 rtx mem_base = find_base_term (true_mem_addr);
2958 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2959 GET_MODE (x), mem_mode))
2960 return 0;
2961
2962 x_addr = canon_rtx (x_addr);
2963 if (!mem_canonicalized)
2964 mem_addr = canon_rtx (true_mem_addr);
2965
2966 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2967 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2968 return ret;
2969
2970 if (mems_in_disjoint_alias_sets_p (x, mem))
2971 return 0;
2972
2973 if (nonoverlapping_memrefs_p (mem, x, false))
2974 return 0;
2975
2976 return rtx_refs_may_alias_p (x, mem, true);
2977 }
2978
2979 /* True dependence: X is read after store in MEM takes place. */
2980
2981 int
2982 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2983 {
2984 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2985 x, NULL_RTX, /*mem_canonicalized=*/false);
2986 }
2987
2988 /* Canonical true dependence: X is read after store in MEM takes place.
2989 Variant of true_dependence which assumes MEM has already been
2990 canonicalized (hence we no longer do that here).
2991 The mem_addr argument has been added, since true_dependence_1 computed
2992 this value prior to canonicalizing. */
2993
2994 int
2995 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2996 const_rtx x, rtx x_addr)
2997 {
2998 return true_dependence_1 (mem, mem_mode, mem_addr,
2999 x, x_addr, /*mem_canonicalized=*/true);
3000 }
3001
3002 /* Returns nonzero if a write to X might alias a previous read from
3003 (or, if WRITEP is true, a write to) MEM.
3004 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3005 and X_MODE the mode for that access.
3006 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3007
3008 static int
3009 write_dependence_p (const_rtx mem,
3010 const_rtx x, machine_mode x_mode, rtx x_addr,
3011 bool mem_canonicalized, bool x_canonicalized, bool writep)
3012 {
3013 rtx mem_addr;
3014 rtx true_mem_addr, true_x_addr;
3015 rtx base;
3016 int ret;
3017
3018 gcc_checking_assert (x_canonicalized
3019 ? (x_addr != NULL_RTX
3020 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3021 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3022
3023 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3024 return 1;
3025
3026 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3027 This is used in epilogue deallocation functions. */
3028 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3029 return 1;
3030 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3031 return 1;
3032 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3033 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3034 return 1;
3035
3036 if (!x_addr)
3037 x_addr = XEXP (x, 0);
3038 true_x_addr = get_addr (x_addr);
3039
3040 mem_addr = XEXP (mem, 0);
3041 true_mem_addr = get_addr (mem_addr);
3042
3043 /* A read from read-only memory can't conflict with read-write memory.
3044 Don't assume anything when AND addresses are involved and leave to
3045 the code below to determine dependence. */
3046 if (!writep
3047 && MEM_READONLY_P (mem)
3048 && GET_CODE (true_x_addr) != AND
3049 && GET_CODE (true_mem_addr) != AND)
3050 return 0;
3051
3052 /* If we have MEMs referring to different address spaces (which can
3053 potentially overlap), we cannot easily tell from the addresses
3054 whether the references overlap. */
3055 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3056 return 1;
3057
3058 base = find_base_term (true_mem_addr);
3059 if (! writep
3060 && base
3061 && (GET_CODE (base) == LABEL_REF
3062 || (GET_CODE (base) == SYMBOL_REF
3063 && CONSTANT_POOL_ADDRESS_P (base))))
3064 return 0;
3065
3066 rtx x_base = find_base_term (true_x_addr);
3067 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3068 GET_MODE (x), GET_MODE (mem)))
3069 return 0;
3070
3071 if (!x_canonicalized)
3072 {
3073 x_addr = canon_rtx (true_x_addr);
3074 x_mode = GET_MODE (x);
3075 }
3076 if (!mem_canonicalized)
3077 mem_addr = canon_rtx (true_mem_addr);
3078
3079 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3080 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3081 return ret;
3082
3083 if (nonoverlapping_memrefs_p (x, mem, false))
3084 return 0;
3085
3086 return rtx_refs_may_alias_p (x, mem, false);
3087 }
3088
3089 /* Anti dependence: X is written after read in MEM takes place. */
3090
3091 int
3092 anti_dependence (const_rtx mem, const_rtx x)
3093 {
3094 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3095 /*mem_canonicalized=*/false,
3096 /*x_canonicalized*/false, /*writep=*/false);
3097 }
3098
3099 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3100 Also, consider X in X_MODE (which might be from an enclosing
3101 STRICT_LOW_PART / ZERO_EXTRACT).
3102 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3103
3104 int
3105 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3106 const_rtx x, machine_mode x_mode, rtx x_addr)
3107 {
3108 return write_dependence_p (mem, x, x_mode, x_addr,
3109 mem_canonicalized, /*x_canonicalized=*/true,
3110 /*writep=*/false);
3111 }
3112
3113 /* Output dependence: X is written after store in MEM takes place. */
3114
3115 int
3116 output_dependence (const_rtx mem, const_rtx x)
3117 {
3118 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3119 /*mem_canonicalized=*/false,
3120 /*x_canonicalized*/false, /*writep=*/true);
3121 }
3122
3123 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3124 Also, consider X in X_MODE (which might be from an enclosing
3125 STRICT_LOW_PART / ZERO_EXTRACT).
3126 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3127
3128 int
3129 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3130 const_rtx x, machine_mode x_mode, rtx x_addr)
3131 {
3132 return write_dependence_p (mem, x, x_mode, x_addr,
3133 mem_canonicalized, /*x_canonicalized=*/true,
3134 /*writep=*/true);
3135 }
3136 \f
3137
3138
3139 /* Check whether X may be aliased with MEM. Don't do offset-based
3140 memory disambiguation & TBAA. */
3141 int
3142 may_alias_p (const_rtx mem, const_rtx x)
3143 {
3144 rtx x_addr, mem_addr;
3145
3146 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3147 return 1;
3148
3149 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3150 This is used in epilogue deallocation functions. */
3151 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3152 return 1;
3153 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3154 return 1;
3155 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3156 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3157 return 1;
3158
3159 x_addr = XEXP (x, 0);
3160 x_addr = get_addr (x_addr);
3161
3162 mem_addr = XEXP (mem, 0);
3163 mem_addr = get_addr (mem_addr);
3164
3165 /* Read-only memory is by definition never modified, and therefore can't
3166 conflict with anything. However, don't assume anything when AND
3167 addresses are involved and leave to the code below to determine
3168 dependence. We don't expect to find read-only set on MEM, but
3169 stupid user tricks can produce them, so don't die. */
3170 if (MEM_READONLY_P (x)
3171 && GET_CODE (x_addr) != AND
3172 && GET_CODE (mem_addr) != AND)
3173 return 0;
3174
3175 /* If we have MEMs referring to different address spaces (which can
3176 potentially overlap), we cannot easily tell from the addresses
3177 whether the references overlap. */
3178 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3179 return 1;
3180
3181 rtx x_base = find_base_term (x_addr);
3182 rtx mem_base = find_base_term (mem_addr);
3183 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3184 GET_MODE (x), GET_MODE (mem_addr)))
3185 return 0;
3186
3187 if (nonoverlapping_memrefs_p (mem, x, true))
3188 return 0;
3189
3190 /* TBAA not valid for loop_invarint */
3191 return rtx_refs_may_alias_p (x, mem, false);
3192 }
3193
3194 void
3195 init_alias_target (void)
3196 {
3197 int i;
3198
3199 if (!arg_base_value)
3200 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3201
3202 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3203
3204 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3205 /* Check whether this register can hold an incoming pointer
3206 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3207 numbers, so translate if necessary due to register windows. */
3208 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3209 && targetm.hard_regno_mode_ok (i, Pmode))
3210 static_reg_base_value[i] = arg_base_value;
3211
3212 /* RTL code is required to be consistent about whether it uses the
3213 stack pointer, the frame pointer or the argument pointer to
3214 access a given area of the frame. We can therefore use the
3215 base address to distinguish between the different areas. */
3216 static_reg_base_value[STACK_POINTER_REGNUM]
3217 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3218 static_reg_base_value[ARG_POINTER_REGNUM]
3219 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3220 static_reg_base_value[FRAME_POINTER_REGNUM]
3221 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3222
3223 /* The above rules extend post-reload, with eliminations applying
3224 consistently to each of the three pointers. Cope with cases in
3225 which the frame pointer is eliminated to the hard frame pointer
3226 rather than the stack pointer. */
3227 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3228 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3229 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3230 }
3231
3232 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3233 to be memory reference. */
3234 static bool memory_modified;
3235 static void
3236 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3237 {
3238 if (MEM_P (x))
3239 {
3240 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3241 memory_modified = true;
3242 }
3243 }
3244
3245
3246 /* Return true when INSN possibly modify memory contents of MEM
3247 (i.e. address can be modified). */
3248 bool
3249 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3250 {
3251 if (!INSN_P (insn))
3252 return false;
3253 /* Conservatively assume all non-readonly MEMs might be modified in
3254 calls. */
3255 if (CALL_P (insn))
3256 return true;
3257 memory_modified = false;
3258 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3259 return memory_modified;
3260 }
3261
3262 /* Return TRUE if the destination of a set is rtx identical to
3263 ITEM. */
3264 static inline bool
3265 set_dest_equal_p (const_rtx set, const_rtx item)
3266 {
3267 rtx dest = SET_DEST (set);
3268 return rtx_equal_p (dest, item);
3269 }
3270
3271 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3272 array. */
3273
3274 void
3275 init_alias_analysis (void)
3276 {
3277 unsigned int maxreg = max_reg_num ();
3278 int changed, pass;
3279 int i;
3280 unsigned int ui;
3281 rtx_insn *insn;
3282 rtx val;
3283 int rpo_cnt;
3284 int *rpo;
3285
3286 timevar_push (TV_ALIAS_ANALYSIS);
3287
3288 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3289 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3290 bitmap_clear (reg_known_equiv_p);
3291
3292 /* If we have memory allocated from the previous run, use it. */
3293 if (old_reg_base_value)
3294 reg_base_value = old_reg_base_value;
3295
3296 if (reg_base_value)
3297 reg_base_value->truncate (0);
3298
3299 vec_safe_grow_cleared (reg_base_value, maxreg);
3300
3301 new_reg_base_value = XNEWVEC (rtx, maxreg);
3302 reg_seen = sbitmap_alloc (maxreg);
3303
3304 /* The basic idea is that each pass through this loop will use the
3305 "constant" information from the previous pass to propagate alias
3306 information through another level of assignments.
3307
3308 The propagation is done on the CFG in reverse post-order, to propagate
3309 things forward as far as possible in each iteration.
3310
3311 This could get expensive if the assignment chains are long. Maybe
3312 we should throttle the number of iterations, possibly based on
3313 the optimization level or flag_expensive_optimizations.
3314
3315 We could propagate more information in the first pass by making use
3316 of DF_REG_DEF_COUNT to determine immediately that the alias information
3317 for a pseudo is "constant".
3318
3319 A program with an uninitialized variable can cause an infinite loop
3320 here. Instead of doing a full dataflow analysis to detect such problems
3321 we just cap the number of iterations for the loop.
3322
3323 The state of the arrays for the set chain in question does not matter
3324 since the program has undefined behavior. */
3325
3326 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3327 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3328
3329 /* The prologue/epilogue insns are not threaded onto the
3330 insn chain until after reload has completed. Thus,
3331 there is no sense wasting time checking if INSN is in
3332 the prologue/epilogue until after reload has completed. */
3333 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3334 || targetm.have_epilogue ())
3335 && reload_completed);
3336
3337 pass = 0;
3338 do
3339 {
3340 /* Assume nothing will change this iteration of the loop. */
3341 changed = 0;
3342
3343 /* We want to assign the same IDs each iteration of this loop, so
3344 start counting from one each iteration of the loop. */
3345 unique_id = 1;
3346
3347 /* We're at the start of the function each iteration through the
3348 loop, so we're copying arguments. */
3349 copying_arguments = true;
3350
3351 /* Wipe the potential alias information clean for this pass. */
3352 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3353
3354 /* Wipe the reg_seen array clean. */
3355 bitmap_clear (reg_seen);
3356
3357 /* Initialize the alias information for this pass. */
3358 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3359 if (static_reg_base_value[i]
3360 /* Don't treat the hard frame pointer as special if we
3361 eliminated the frame pointer to the stack pointer instead. */
3362 && !(i == HARD_FRAME_POINTER_REGNUM
3363 && reload_completed
3364 && !frame_pointer_needed
3365 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3366 STACK_POINTER_REGNUM)))
3367 {
3368 new_reg_base_value[i] = static_reg_base_value[i];
3369 bitmap_set_bit (reg_seen, i);
3370 }
3371
3372 /* Walk the insns adding values to the new_reg_base_value array. */
3373 for (i = 0; i < rpo_cnt; i++)
3374 {
3375 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3376 FOR_BB_INSNS (bb, insn)
3377 {
3378 if (NONDEBUG_INSN_P (insn))
3379 {
3380 rtx note, set;
3381
3382 if (could_be_prologue_epilogue
3383 && prologue_epilogue_contains (insn))
3384 continue;
3385
3386 /* If this insn has a noalias note, process it, Otherwise,
3387 scan for sets. A simple set will have no side effects
3388 which could change the base value of any other register. */
3389
3390 if (GET_CODE (PATTERN (insn)) == SET
3391 && REG_NOTES (insn) != 0
3392 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3393 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3394 else
3395 note_stores (PATTERN (insn), record_set, NULL);
3396
3397 set = single_set (insn);
3398
3399 if (set != 0
3400 && REG_P (SET_DEST (set))
3401 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3402 {
3403 unsigned int regno = REGNO (SET_DEST (set));
3404 rtx src = SET_SRC (set);
3405 rtx t;
3406
3407 note = find_reg_equal_equiv_note (insn);
3408 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3409 && DF_REG_DEF_COUNT (regno) != 1)
3410 note = NULL_RTX;
3411
3412 poly_int64 offset;
3413 if (note != NULL_RTX
3414 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3415 && ! rtx_varies_p (XEXP (note, 0), 1)
3416 && ! reg_overlap_mentioned_p (SET_DEST (set),
3417 XEXP (note, 0)))
3418 {
3419 set_reg_known_value (regno, XEXP (note, 0));
3420 set_reg_known_equiv_p (regno,
3421 REG_NOTE_KIND (note) == REG_EQUIV);
3422 }
3423 else if (DF_REG_DEF_COUNT (regno) == 1
3424 && GET_CODE (src) == PLUS
3425 && REG_P (XEXP (src, 0))
3426 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3427 && poly_int_rtx_p (XEXP (src, 1), &offset))
3428 {
3429 t = plus_constant (GET_MODE (src), t, offset);
3430 set_reg_known_value (regno, t);
3431 set_reg_known_equiv_p (regno, false);
3432 }
3433 else if (DF_REG_DEF_COUNT (regno) == 1
3434 && ! rtx_varies_p (src, 1))
3435 {
3436 set_reg_known_value (regno, src);
3437 set_reg_known_equiv_p (regno, false);
3438 }
3439 }
3440 }
3441 else if (NOTE_P (insn)
3442 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3443 copying_arguments = false;
3444 }
3445 }
3446
3447 /* Now propagate values from new_reg_base_value to reg_base_value. */
3448 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3449
3450 for (ui = 0; ui < maxreg; ui++)
3451 {
3452 if (new_reg_base_value[ui]
3453 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3454 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3455 {
3456 (*reg_base_value)[ui] = new_reg_base_value[ui];
3457 changed = 1;
3458 }
3459 }
3460 }
3461 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3462 XDELETEVEC (rpo);
3463
3464 /* Fill in the remaining entries. */
3465 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3466 {
3467 int regno = i + FIRST_PSEUDO_REGISTER;
3468 if (! val)
3469 set_reg_known_value (regno, regno_reg_rtx[regno]);
3470 }
3471
3472 /* Clean up. */
3473 free (new_reg_base_value);
3474 new_reg_base_value = 0;
3475 sbitmap_free (reg_seen);
3476 reg_seen = 0;
3477 timevar_pop (TV_ALIAS_ANALYSIS);
3478 }
3479
3480 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3481 Special API for var-tracking pass purposes. */
3482
3483 void
3484 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3485 {
3486 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3487 }
3488
3489 void
3490 end_alias_analysis (void)
3491 {
3492 old_reg_base_value = reg_base_value;
3493 vec_free (reg_known_value);
3494 sbitmap_free (reg_known_equiv_p);
3495 }
3496
3497 void
3498 dump_alias_stats_in_alias_c (FILE *s)
3499 {
3500 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3501 " %llu are in alias set 0\n"
3502 " %llu queries asked about the same object\n"
3503 " %llu queries asked about the same alias set\n"
3504 " %llu access volatile\n"
3505 " %llu are dependent in the DAG\n"
3506 " %llu are aritificially in conflict with void *\n",
3507 alias_stats.num_disambiguated,
3508 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3509 + alias_stats.num_same_objects + alias_stats.num_volatile
3510 + alias_stats.num_dag + alias_stats.num_disambiguated
3511 + alias_stats.num_universal,
3512 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3513 alias_stats.num_same_objects, alias_stats.num_volatile,
3514 alias_stats.num_dag, alias_stats.num_universal);
3515 }
3516 #include "gt-alias.h"