gnu.ver: Remove _ZNKSt3tr14hashIgEclEg@@GLIBCXX_3.4.10 and...
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
48 #include "df.h"
49
50 /* The aliasing API provided here solves related but different problems:
51
52 Say there exists (in c)
53
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
58
59 struct Y y2, *py;
60 struct Z z2, *pz;
61
62
63 py = &px1.y1;
64 px2 = &x1;
65
66 Consider the four questions:
67
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
73
74 The answer to these questions can be yes, yes, yes, and maybe.
75
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
80
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
88
89 The pass ipa-type-escape does this analysis for the types whose
90 instances do not escape across the compilation boundary.
91
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
99 */
100
101 /* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
105
106 struct S { int i; double d; };
107
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
112 struct S
113 / \
114 / \
115 |/_ _\|
116 int double
117
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
121
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
124 past immediate descendants, however, since we propagate all
125 grandchildren up one level.
126
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
130
131 struct alias_set_entry GTY(())
132 {
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
135
136 /* The children of the alias set. These are not just the immediate
137 children, but, in fact, all descendants. So, if we have:
138
139 struct T { struct S s; float f; }
140
141 continuing our example above, the children here will be all of
142 `int', `double', `float', and `struct S'. */
143 splay_tree GTY((param1_is (int), param2_is (int))) children;
144
145 /* Nonzero if would have a child of zero: this effectively makes this
146 alias set the same as alias set zero. */
147 int has_zero_child;
148 };
149 typedef struct alias_set_entry *alias_set_entry;
150
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static tree find_base_decl (tree);
160 static alias_set_entry get_alias_set_entry (alias_set_type);
161 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
162 bool (*) (const_rtx, bool));
163 static int aliases_everything_p (const_rtx);
164 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
165 static tree decl_for_component_ref (tree);
166 static rtx adjust_offset_for_component_ref (tree, rtx);
167 static int write_dependence_p (const_rtx, const_rtx, int);
168
169 static void memory_modified_1 (rtx, const_rtx, void *);
170 static void record_alias_subset (alias_set_type, alias_set_type);
171
172 /* Set up all info needed to perform alias analysis on memory references. */
173
174 /* Returns the size in bytes of the mode of X. */
175 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
176
177 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
180 not legal ANSI C. */
181 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
183
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains. 10 is a completely arbitrary choice. */
186 #define MAX_ALIAS_LOOP_PASSES 10
187
188 /* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
192 of the first set.
193
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
196 the stack, frame, and argument pointers.
197
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
202
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
206
207 static GTY(()) VEC(rtx,gc) *reg_base_value;
208 static rtx *new_reg_base_value;
209
210 /* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
212 array. */
213 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
214
215 /* Static hunks of RTL used by the aliasing code; these are initialized
216 once per function to avoid unnecessary RTL allocations. */
217 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
218
219 #define REG_BASE_VALUE(X) \
220 (REGNO (X) < VEC_length (rtx, reg_base_value) \
221 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
222
223 /* Vector indexed by N giving the initial (unchanging) value known for
224 pseudo-register N. This array is initialized in init_alias_analysis,
225 and does not change until end_alias_analysis is called. */
226 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
227
228 /* Indicates number of valid entries in reg_known_value. */
229 static GTY(()) unsigned int reg_known_value_size;
230
231 /* Vector recording for each reg_known_value whether it is due to a
232 REG_EQUIV note. Future passes (viz., reload) may replace the
233 pseudo with the equivalent expression and so we account for the
234 dependences that would be introduced if that happens.
235
236 The REG_EQUIV notes created in assign_parms may mention the arg
237 pointer, and there are explicit insns in the RTL that modify the
238 arg pointer. Thus we must ensure that such insns don't get
239 scheduled across each other because that would invalidate the
240 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
241 wrong, but solving the problem in the scheduler will likely give
242 better code, so we do it here. */
243 static bool *reg_known_equiv_p;
244
245 /* True when scanning insns from the start of the rtl to the
246 NOTE_INSN_FUNCTION_BEG note. */
247 static bool copying_arguments;
248
249 DEF_VEC_P(alias_set_entry);
250 DEF_VEC_ALLOC_P(alias_set_entry,gc);
251
252 /* The splay-tree used to store the various alias set entries. */
253 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
254 \f
255 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
256 such an entry, or NULL otherwise. */
257
258 static inline alias_set_entry
259 get_alias_set_entry (alias_set_type alias_set)
260 {
261 return VEC_index (alias_set_entry, alias_sets, alias_set);
262 }
263
264 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
265 the two MEMs cannot alias each other. */
266
267 static inline int
268 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
269 {
270 /* Perform a basic sanity check. Namely, that there are no alias sets
271 if we're not using strict aliasing. This helps to catch bugs
272 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
273 where a MEM is allocated in some way other than by the use of
274 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
275 use alias sets to indicate that spilled registers cannot alias each
276 other, we might need to remove this check. */
277 gcc_assert (flag_strict_aliasing
278 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
279
280 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
281 }
282
283 /* Insert the NODE into the splay tree given by DATA. Used by
284 record_alias_subset via splay_tree_foreach. */
285
286 static int
287 insert_subset_children (splay_tree_node node, void *data)
288 {
289 splay_tree_insert ((splay_tree) data, node->key, node->value);
290
291 return 0;
292 }
293
294 /* Return true if the first alias set is a subset of the second. */
295
296 bool
297 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
298 {
299 alias_set_entry ase;
300
301 /* Everything is a subset of the "aliases everything" set. */
302 if (set2 == 0)
303 return true;
304
305 /* Otherwise, check if set1 is a subset of set2. */
306 ase = get_alias_set_entry (set2);
307 if (ase != 0
308 && (splay_tree_lookup (ase->children,
309 (splay_tree_key) set1)))
310 return true;
311 return false;
312 }
313
314 /* Return 1 if the two specified alias sets may conflict. */
315
316 int
317 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
318 {
319 alias_set_entry ase;
320
321 /* The easy case. */
322 if (alias_sets_must_conflict_p (set1, set2))
323 return 1;
324
325 /* See if the first alias set is a subset of the second. */
326 ase = get_alias_set_entry (set1);
327 if (ase != 0
328 && (ase->has_zero_child
329 || splay_tree_lookup (ase->children,
330 (splay_tree_key) set2)))
331 return 1;
332
333 /* Now do the same, but with the alias sets reversed. */
334 ase = get_alias_set_entry (set2);
335 if (ase != 0
336 && (ase->has_zero_child
337 || splay_tree_lookup (ase->children,
338 (splay_tree_key) set1)))
339 return 1;
340
341 /* The two alias sets are distinct and neither one is the
342 child of the other. Therefore, they cannot conflict. */
343 return 0;
344 }
345
346 /* Return 1 if the two specified alias sets will always conflict. */
347
348 int
349 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
350 {
351 if (set1 == 0 || set2 == 0 || set1 == set2)
352 return 1;
353
354 return 0;
355 }
356
357 /* Return 1 if any MEM object of type T1 will always conflict (using the
358 dependency routines in this file) with any MEM object of type T2.
359 This is used when allocating temporary storage. If T1 and/or T2 are
360 NULL_TREE, it means we know nothing about the storage. */
361
362 int
363 objects_must_conflict_p (tree t1, tree t2)
364 {
365 alias_set_type set1, set2;
366
367 /* If neither has a type specified, we don't know if they'll conflict
368 because we may be using them to store objects of various types, for
369 example the argument and local variables areas of inlined functions. */
370 if (t1 == 0 && t2 == 0)
371 return 0;
372
373 /* If they are the same type, they must conflict. */
374 if (t1 == t2
375 /* Likewise if both are volatile. */
376 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
377 return 1;
378
379 set1 = t1 ? get_alias_set (t1) : 0;
380 set2 = t2 ? get_alias_set (t2) : 0;
381
382 /* We can't use alias_sets_conflict_p because we must make sure
383 that every subtype of t1 will conflict with every subtype of
384 t2 for which a pair of subobjects of these respective subtypes
385 overlaps on the stack. */
386 return alias_sets_must_conflict_p (set1, set2);
387 }
388 \f
389 /* T is an expression with pointer type. Find the DECL on which this
390 expression is based. (For example, in `a[i]' this would be `a'.)
391 If there is no such DECL, or a unique decl cannot be determined,
392 NULL_TREE is returned. */
393
394 static tree
395 find_base_decl (tree t)
396 {
397 tree d0, d1;
398
399 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
400 return 0;
401
402 /* If this is a declaration, return it. If T is based on a restrict
403 qualified decl, return that decl. */
404 if (DECL_P (t))
405 {
406 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
407 t = DECL_GET_RESTRICT_BASE (t);
408 return t;
409 }
410
411 /* Handle general expressions. It would be nice to deal with
412 COMPONENT_REFs here. If we could tell that `a' and `b' were the
413 same, then `a->f' and `b->f' are also the same. */
414 switch (TREE_CODE_CLASS (TREE_CODE (t)))
415 {
416 case tcc_unary:
417 return find_base_decl (TREE_OPERAND (t, 0));
418
419 case tcc_binary:
420 /* Return 0 if found in neither or both are the same. */
421 d0 = find_base_decl (TREE_OPERAND (t, 0));
422 d1 = find_base_decl (TREE_OPERAND (t, 1));
423 if (d0 == d1)
424 return d0;
425 else if (d0 == 0)
426 return d1;
427 else if (d1 == 0)
428 return d0;
429 else
430 return 0;
431
432 default:
433 return 0;
434 }
435 }
436
437 /* Return true if all nested component references handled by
438 get_inner_reference in T are such that we should use the alias set
439 provided by the object at the heart of T.
440
441 This is true for non-addressable components (which don't have their
442 own alias set), as well as components of objects in alias set zero.
443 This later point is a special case wherein we wish to override the
444 alias set used by the component, but we don't have per-FIELD_DECL
445 assignable alias sets. */
446
447 bool
448 component_uses_parent_alias_set (const_tree t)
449 {
450 while (1)
451 {
452 /* If we're at the end, it vacuously uses its own alias set. */
453 if (!handled_component_p (t))
454 return false;
455
456 switch (TREE_CODE (t))
457 {
458 case COMPONENT_REF:
459 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
460 return true;
461 break;
462
463 case ARRAY_REF:
464 case ARRAY_RANGE_REF:
465 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
466 return true;
467 break;
468
469 case REALPART_EXPR:
470 case IMAGPART_EXPR:
471 break;
472
473 default:
474 /* Bitfields and casts are never addressable. */
475 return true;
476 }
477
478 t = TREE_OPERAND (t, 0);
479 if (get_alias_set (TREE_TYPE (t)) == 0)
480 return true;
481 }
482 }
483
484 /* Return the alias set for T, which may be either a type or an
485 expression. Call language-specific routine for help, if needed. */
486
487 alias_set_type
488 get_alias_set (tree t)
489 {
490 alias_set_type set;
491
492 /* If we're not doing any alias analysis, just assume everything
493 aliases everything else. Also return 0 if this or its type is
494 an error. */
495 if (! flag_strict_aliasing || t == error_mark_node
496 || (! TYPE_P (t)
497 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
498 return 0;
499
500 /* We can be passed either an expression or a type. This and the
501 language-specific routine may make mutually-recursive calls to each other
502 to figure out what to do. At each juncture, we see if this is a tree
503 that the language may need to handle specially. First handle things that
504 aren't types. */
505 if (! TYPE_P (t))
506 {
507 tree inner = t;
508
509 /* Remove any nops, then give the language a chance to do
510 something with this tree before we look at it. */
511 STRIP_NOPS (t);
512 set = lang_hooks.get_alias_set (t);
513 if (set != -1)
514 return set;
515
516 /* First see if the actual object referenced is an INDIRECT_REF from a
517 restrict-qualified pointer or a "void *". */
518 while (handled_component_p (inner))
519 {
520 inner = TREE_OPERAND (inner, 0);
521 STRIP_NOPS (inner);
522 }
523
524 /* Check for accesses through restrict-qualified pointers. */
525 if (INDIRECT_REF_P (inner))
526 {
527 tree decl;
528
529 if (TREE_CODE (TREE_OPERAND (inner, 0)) == SSA_NAME)
530 decl = SSA_NAME_VAR (TREE_OPERAND (inner, 0));
531 else
532 decl = find_base_decl (TREE_OPERAND (inner, 0));
533
534 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
535 {
536 /* If we haven't computed the actual alias set, do it now. */
537 if (DECL_POINTER_ALIAS_SET (decl) == -2)
538 {
539 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
540
541 /* No two restricted pointers can point at the same thing.
542 However, a restricted pointer can point at the same thing
543 as an unrestricted pointer, if that unrestricted pointer
544 is based on the restricted pointer. So, we make the
545 alias set for the restricted pointer a subset of the
546 alias set for the type pointed to by the type of the
547 decl. */
548 alias_set_type pointed_to_alias_set
549 = get_alias_set (pointed_to_type);
550
551 if (pointed_to_alias_set == 0)
552 /* It's not legal to make a subset of alias set zero. */
553 DECL_POINTER_ALIAS_SET (decl) = 0;
554 else if (AGGREGATE_TYPE_P (pointed_to_type))
555 /* For an aggregate, we must treat the restricted
556 pointer the same as an ordinary pointer. If we
557 were to make the type pointed to by the
558 restricted pointer a subset of the pointed-to
559 type, then we would believe that other subsets
560 of the pointed-to type (such as fields of that
561 type) do not conflict with the type pointed to
562 by the restricted pointer. */
563 DECL_POINTER_ALIAS_SET (decl)
564 = pointed_to_alias_set;
565 else
566 {
567 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
568 record_alias_subset (pointed_to_alias_set,
569 DECL_POINTER_ALIAS_SET (decl));
570 }
571 }
572
573 /* We use the alias set indicated in the declaration. */
574 return DECL_POINTER_ALIAS_SET (decl);
575 }
576
577 /* If we have an INDIRECT_REF via a void pointer, we don't
578 know anything about what that might alias. Likewise if the
579 pointer is marked that way. */
580 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
581 || (TYPE_REF_CAN_ALIAS_ALL
582 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
583 return 0;
584 }
585
586 /* For non-addressable fields we return the alias set of the
587 outermost object that could have its address taken. If this
588 is an SFT use the precomputed value. */
589 if (TREE_CODE (t) == STRUCT_FIELD_TAG
590 && SFT_NONADDRESSABLE_P (t))
591 return SFT_ALIAS_SET (t);
592
593 /* Otherwise, pick up the outermost object that we could have a pointer
594 to, processing conversions as above. */
595 while (component_uses_parent_alias_set (t))
596 {
597 t = TREE_OPERAND (t, 0);
598 STRIP_NOPS (t);
599 }
600
601 /* If we've already determined the alias set for a decl, just return
602 it. This is necessary for C++ anonymous unions, whose component
603 variables don't look like union members (boo!). */
604 if (TREE_CODE (t) == VAR_DECL
605 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
606 return MEM_ALIAS_SET (DECL_RTL (t));
607
608 /* Now all we care about is the type. */
609 t = TREE_TYPE (t);
610 }
611
612 /* Variant qualifiers don't affect the alias set, so get the main
613 variant. If this is a type with a known alias set, return it. */
614 t = TYPE_MAIN_VARIANT (t);
615 if (TYPE_ALIAS_SET_KNOWN_P (t))
616 return TYPE_ALIAS_SET (t);
617
618 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
619 if (!COMPLETE_TYPE_P (t))
620 {
621 /* For arrays with unknown size the conservative answer is the
622 alias set of the element type. */
623 if (TREE_CODE (t) == ARRAY_TYPE)
624 return get_alias_set (TREE_TYPE (t));
625
626 /* But return zero as a conservative answer for incomplete types. */
627 return 0;
628 }
629
630 /* See if the language has special handling for this type. */
631 set = lang_hooks.get_alias_set (t);
632 if (set != -1)
633 return set;
634
635 /* There are no objects of FUNCTION_TYPE, so there's no point in
636 using up an alias set for them. (There are, of course, pointers
637 and references to functions, but that's different.) */
638 else if (TREE_CODE (t) == FUNCTION_TYPE
639 || TREE_CODE (t) == METHOD_TYPE)
640 set = 0;
641
642 /* Unless the language specifies otherwise, let vector types alias
643 their components. This avoids some nasty type punning issues in
644 normal usage. And indeed lets vectors be treated more like an
645 array slice. */
646 else if (TREE_CODE (t) == VECTOR_TYPE)
647 set = get_alias_set (TREE_TYPE (t));
648
649 else
650 /* Otherwise make a new alias set for this type. */
651 set = new_alias_set ();
652
653 TYPE_ALIAS_SET (t) = set;
654
655 /* If this is an aggregate type, we must record any component aliasing
656 information. */
657 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
658 record_component_aliases (t);
659
660 return set;
661 }
662
663 /* Return a brand-new alias set. */
664
665 alias_set_type
666 new_alias_set (void)
667 {
668 if (flag_strict_aliasing)
669 {
670 if (alias_sets == 0)
671 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
672 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
673 return VEC_length (alias_set_entry, alias_sets) - 1;
674 }
675 else
676 return 0;
677 }
678
679 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
680 not everything that aliases SUPERSET also aliases SUBSET. For example,
681 in C, a store to an `int' can alias a load of a structure containing an
682 `int', and vice versa. But it can't alias a load of a 'double' member
683 of the same structure. Here, the structure would be the SUPERSET and
684 `int' the SUBSET. This relationship is also described in the comment at
685 the beginning of this file.
686
687 This function should be called only once per SUPERSET/SUBSET pair.
688
689 It is illegal for SUPERSET to be zero; everything is implicitly a
690 subset of alias set zero. */
691
692 static void
693 record_alias_subset (alias_set_type superset, alias_set_type subset)
694 {
695 alias_set_entry superset_entry;
696 alias_set_entry subset_entry;
697
698 /* It is possible in complex type situations for both sets to be the same,
699 in which case we can ignore this operation. */
700 if (superset == subset)
701 return;
702
703 gcc_assert (superset);
704
705 superset_entry = get_alias_set_entry (superset);
706 if (superset_entry == 0)
707 {
708 /* Create an entry for the SUPERSET, so that we have a place to
709 attach the SUBSET. */
710 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
711 superset_entry->alias_set = superset;
712 superset_entry->children
713 = splay_tree_new_ggc (splay_tree_compare_ints);
714 superset_entry->has_zero_child = 0;
715 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
716 }
717
718 if (subset == 0)
719 superset_entry->has_zero_child = 1;
720 else
721 {
722 subset_entry = get_alias_set_entry (subset);
723 /* If there is an entry for the subset, enter all of its children
724 (if they are not already present) as children of the SUPERSET. */
725 if (subset_entry)
726 {
727 if (subset_entry->has_zero_child)
728 superset_entry->has_zero_child = 1;
729
730 splay_tree_foreach (subset_entry->children, insert_subset_children,
731 superset_entry->children);
732 }
733
734 /* Enter the SUBSET itself as a child of the SUPERSET. */
735 splay_tree_insert (superset_entry->children,
736 (splay_tree_key) subset, 0);
737 }
738 }
739
740 /* Record that component types of TYPE, if any, are part of that type for
741 aliasing purposes. For record types, we only record component types
742 for fields that are marked addressable. For array types, we always
743 record the component types, so the front end should not call this
744 function if the individual component aren't addressable. */
745
746 void
747 record_component_aliases (tree type)
748 {
749 alias_set_type superset = get_alias_set (type);
750 tree field;
751
752 if (superset == 0)
753 return;
754
755 switch (TREE_CODE (type))
756 {
757 case ARRAY_TYPE:
758 if (! TYPE_NONALIASED_COMPONENT (type))
759 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
760 break;
761
762 case RECORD_TYPE:
763 case UNION_TYPE:
764 case QUAL_UNION_TYPE:
765 /* Recursively record aliases for the base classes, if there are any. */
766 if (TYPE_BINFO (type))
767 {
768 int i;
769 tree binfo, base_binfo;
770
771 for (binfo = TYPE_BINFO (type), i = 0;
772 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
773 record_alias_subset (superset,
774 get_alias_set (BINFO_TYPE (base_binfo)));
775 }
776 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
777 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
778 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
779 break;
780
781 case COMPLEX_TYPE:
782 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
783 break;
784
785 default:
786 break;
787 }
788 }
789
790 /* Allocate an alias set for use in storing and reading from the varargs
791 spill area. */
792
793 static GTY(()) alias_set_type varargs_set = -1;
794
795 alias_set_type
796 get_varargs_alias_set (void)
797 {
798 #if 1
799 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
800 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
801 consistently use the varargs alias set for loads from the varargs
802 area. So don't use it anywhere. */
803 return 0;
804 #else
805 if (varargs_set == -1)
806 varargs_set = new_alias_set ();
807
808 return varargs_set;
809 #endif
810 }
811
812 /* Likewise, but used for the fixed portions of the frame, e.g., register
813 save areas. */
814
815 static GTY(()) alias_set_type frame_set = -1;
816
817 alias_set_type
818 get_frame_alias_set (void)
819 {
820 if (frame_set == -1)
821 frame_set = new_alias_set ();
822
823 return frame_set;
824 }
825
826 /* Inside SRC, the source of a SET, find a base address. */
827
828 static rtx
829 find_base_value (rtx src)
830 {
831 unsigned int regno;
832
833 switch (GET_CODE (src))
834 {
835 case SYMBOL_REF:
836 case LABEL_REF:
837 return src;
838
839 case REG:
840 regno = REGNO (src);
841 /* At the start of a function, argument registers have known base
842 values which may be lost later. Returning an ADDRESS
843 expression here allows optimization based on argument values
844 even when the argument registers are used for other purposes. */
845 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
846 return new_reg_base_value[regno];
847
848 /* If a pseudo has a known base value, return it. Do not do this
849 for non-fixed hard regs since it can result in a circular
850 dependency chain for registers which have values at function entry.
851
852 The test above is not sufficient because the scheduler may move
853 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
854 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
855 && regno < VEC_length (rtx, reg_base_value))
856 {
857 /* If we're inside init_alias_analysis, use new_reg_base_value
858 to reduce the number of relaxation iterations. */
859 if (new_reg_base_value && new_reg_base_value[regno]
860 && DF_REG_DEF_COUNT (regno) == 1)
861 return new_reg_base_value[regno];
862
863 if (VEC_index (rtx, reg_base_value, regno))
864 return VEC_index (rtx, reg_base_value, regno);
865 }
866
867 return 0;
868
869 case MEM:
870 /* Check for an argument passed in memory. Only record in the
871 copying-arguments block; it is too hard to track changes
872 otherwise. */
873 if (copying_arguments
874 && (XEXP (src, 0) == arg_pointer_rtx
875 || (GET_CODE (XEXP (src, 0)) == PLUS
876 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
877 return gen_rtx_ADDRESS (VOIDmode, src);
878 return 0;
879
880 case CONST:
881 src = XEXP (src, 0);
882 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
883 break;
884
885 /* ... fall through ... */
886
887 case PLUS:
888 case MINUS:
889 {
890 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
891
892 /* If either operand is a REG that is a known pointer, then it
893 is the base. */
894 if (REG_P (src_0) && REG_POINTER (src_0))
895 return find_base_value (src_0);
896 if (REG_P (src_1) && REG_POINTER (src_1))
897 return find_base_value (src_1);
898
899 /* If either operand is a REG, then see if we already have
900 a known value for it. */
901 if (REG_P (src_0))
902 {
903 temp = find_base_value (src_0);
904 if (temp != 0)
905 src_0 = temp;
906 }
907
908 if (REG_P (src_1))
909 {
910 temp = find_base_value (src_1);
911 if (temp!= 0)
912 src_1 = temp;
913 }
914
915 /* If either base is named object or a special address
916 (like an argument or stack reference), then use it for the
917 base term. */
918 if (src_0 != 0
919 && (GET_CODE (src_0) == SYMBOL_REF
920 || GET_CODE (src_0) == LABEL_REF
921 || (GET_CODE (src_0) == ADDRESS
922 && GET_MODE (src_0) != VOIDmode)))
923 return src_0;
924
925 if (src_1 != 0
926 && (GET_CODE (src_1) == SYMBOL_REF
927 || GET_CODE (src_1) == LABEL_REF
928 || (GET_CODE (src_1) == ADDRESS
929 && GET_MODE (src_1) != VOIDmode)))
930 return src_1;
931
932 /* Guess which operand is the base address:
933 If either operand is a symbol, then it is the base. If
934 either operand is a CONST_INT, then the other is the base. */
935 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
936 return find_base_value (src_0);
937 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
938 return find_base_value (src_1);
939
940 return 0;
941 }
942
943 case LO_SUM:
944 /* The standard form is (lo_sum reg sym) so look only at the
945 second operand. */
946 return find_base_value (XEXP (src, 1));
947
948 case AND:
949 /* If the second operand is constant set the base
950 address to the first operand. */
951 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
952 return find_base_value (XEXP (src, 0));
953 return 0;
954
955 case TRUNCATE:
956 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
957 break;
958 /* Fall through. */
959 case HIGH:
960 case PRE_INC:
961 case PRE_DEC:
962 case POST_INC:
963 case POST_DEC:
964 case PRE_MODIFY:
965 case POST_MODIFY:
966 return find_base_value (XEXP (src, 0));
967
968 case ZERO_EXTEND:
969 case SIGN_EXTEND: /* used for NT/Alpha pointers */
970 {
971 rtx temp = find_base_value (XEXP (src, 0));
972
973 if (temp != 0 && CONSTANT_P (temp))
974 temp = convert_memory_address (Pmode, temp);
975
976 return temp;
977 }
978
979 default:
980 break;
981 }
982
983 return 0;
984 }
985
986 /* Called from init_alias_analysis indirectly through note_stores. */
987
988 /* While scanning insns to find base values, reg_seen[N] is nonzero if
989 register N has been set in this function. */
990 static char *reg_seen;
991
992 /* Addresses which are known not to alias anything else are identified
993 by a unique integer. */
994 static int unique_id;
995
996 static void
997 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
998 {
999 unsigned regno;
1000 rtx src;
1001 int n;
1002
1003 if (!REG_P (dest))
1004 return;
1005
1006 regno = REGNO (dest);
1007
1008 gcc_assert (regno < VEC_length (rtx, reg_base_value));
1009
1010 /* If this spans multiple hard registers, then we must indicate that every
1011 register has an unusable value. */
1012 if (regno < FIRST_PSEUDO_REGISTER)
1013 n = hard_regno_nregs[regno][GET_MODE (dest)];
1014 else
1015 n = 1;
1016 if (n != 1)
1017 {
1018 while (--n >= 0)
1019 {
1020 reg_seen[regno + n] = 1;
1021 new_reg_base_value[regno + n] = 0;
1022 }
1023 return;
1024 }
1025
1026 if (set)
1027 {
1028 /* A CLOBBER wipes out any old value but does not prevent a previously
1029 unset register from acquiring a base address (i.e. reg_seen is not
1030 set). */
1031 if (GET_CODE (set) == CLOBBER)
1032 {
1033 new_reg_base_value[regno] = 0;
1034 return;
1035 }
1036 src = SET_SRC (set);
1037 }
1038 else
1039 {
1040 if (reg_seen[regno])
1041 {
1042 new_reg_base_value[regno] = 0;
1043 return;
1044 }
1045 reg_seen[regno] = 1;
1046 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1047 GEN_INT (unique_id++));
1048 return;
1049 }
1050
1051 /* If this is not the first set of REGNO, see whether the new value
1052 is related to the old one. There are two cases of interest:
1053
1054 (1) The register might be assigned an entirely new value
1055 that has the same base term as the original set.
1056
1057 (2) The set might be a simple self-modification that
1058 cannot change REGNO's base value.
1059
1060 If neither case holds, reject the original base value as invalid.
1061 Note that the following situation is not detected:
1062
1063 extern int x, y; int *p = &x; p += (&y-&x);
1064
1065 ANSI C does not allow computing the difference of addresses
1066 of distinct top level objects. */
1067 if (new_reg_base_value[regno] != 0
1068 && find_base_value (src) != new_reg_base_value[regno])
1069 switch (GET_CODE (src))
1070 {
1071 case LO_SUM:
1072 case MINUS:
1073 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1074 new_reg_base_value[regno] = 0;
1075 break;
1076 case PLUS:
1077 /* If the value we add in the PLUS is also a valid base value,
1078 this might be the actual base value, and the original value
1079 an index. */
1080 {
1081 rtx other = NULL_RTX;
1082
1083 if (XEXP (src, 0) == dest)
1084 other = XEXP (src, 1);
1085 else if (XEXP (src, 1) == dest)
1086 other = XEXP (src, 0);
1087
1088 if (! other || find_base_value (other))
1089 new_reg_base_value[regno] = 0;
1090 break;
1091 }
1092 case AND:
1093 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1094 new_reg_base_value[regno] = 0;
1095 break;
1096 default:
1097 new_reg_base_value[regno] = 0;
1098 break;
1099 }
1100 /* If this is the first set of a register, record the value. */
1101 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1102 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1103 new_reg_base_value[regno] = find_base_value (src);
1104
1105 reg_seen[regno] = 1;
1106 }
1107
1108 /* If a value is known for REGNO, return it. */
1109
1110 rtx
1111 get_reg_known_value (unsigned int regno)
1112 {
1113 if (regno >= FIRST_PSEUDO_REGISTER)
1114 {
1115 regno -= FIRST_PSEUDO_REGISTER;
1116 if (regno < reg_known_value_size)
1117 return reg_known_value[regno];
1118 }
1119 return NULL;
1120 }
1121
1122 /* Set it. */
1123
1124 static void
1125 set_reg_known_value (unsigned int regno, rtx val)
1126 {
1127 if (regno >= FIRST_PSEUDO_REGISTER)
1128 {
1129 regno -= FIRST_PSEUDO_REGISTER;
1130 if (regno < reg_known_value_size)
1131 reg_known_value[regno] = val;
1132 }
1133 }
1134
1135 /* Similarly for reg_known_equiv_p. */
1136
1137 bool
1138 get_reg_known_equiv_p (unsigned int regno)
1139 {
1140 if (regno >= FIRST_PSEUDO_REGISTER)
1141 {
1142 regno -= FIRST_PSEUDO_REGISTER;
1143 if (regno < reg_known_value_size)
1144 return reg_known_equiv_p[regno];
1145 }
1146 return false;
1147 }
1148
1149 static void
1150 set_reg_known_equiv_p (unsigned int regno, bool val)
1151 {
1152 if (regno >= FIRST_PSEUDO_REGISTER)
1153 {
1154 regno -= FIRST_PSEUDO_REGISTER;
1155 if (regno < reg_known_value_size)
1156 reg_known_equiv_p[regno] = val;
1157 }
1158 }
1159
1160
1161 /* Returns a canonical version of X, from the point of view alias
1162 analysis. (For example, if X is a MEM whose address is a register,
1163 and the register has a known value (say a SYMBOL_REF), then a MEM
1164 whose address is the SYMBOL_REF is returned.) */
1165
1166 rtx
1167 canon_rtx (rtx x)
1168 {
1169 /* Recursively look for equivalences. */
1170 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1171 {
1172 rtx t = get_reg_known_value (REGNO (x));
1173 if (t == x)
1174 return x;
1175 if (t)
1176 return canon_rtx (t);
1177 }
1178
1179 if (GET_CODE (x) == PLUS)
1180 {
1181 rtx x0 = canon_rtx (XEXP (x, 0));
1182 rtx x1 = canon_rtx (XEXP (x, 1));
1183
1184 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1185 {
1186 if (GET_CODE (x0) == CONST_INT)
1187 return plus_constant (x1, INTVAL (x0));
1188 else if (GET_CODE (x1) == CONST_INT)
1189 return plus_constant (x0, INTVAL (x1));
1190 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1191 }
1192 }
1193
1194 /* This gives us much better alias analysis when called from
1195 the loop optimizer. Note we want to leave the original
1196 MEM alone, but need to return the canonicalized MEM with
1197 all the flags with their original values. */
1198 else if (MEM_P (x))
1199 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1200
1201 return x;
1202 }
1203
1204 /* Return 1 if X and Y are identical-looking rtx's.
1205 Expect that X and Y has been already canonicalized.
1206
1207 We use the data in reg_known_value above to see if two registers with
1208 different numbers are, in fact, equivalent. */
1209
1210 static int
1211 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1212 {
1213 int i;
1214 int j;
1215 enum rtx_code code;
1216 const char *fmt;
1217
1218 if (x == 0 && y == 0)
1219 return 1;
1220 if (x == 0 || y == 0)
1221 return 0;
1222
1223 if (x == y)
1224 return 1;
1225
1226 code = GET_CODE (x);
1227 /* Rtx's of different codes cannot be equal. */
1228 if (code != GET_CODE (y))
1229 return 0;
1230
1231 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1232 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1233
1234 if (GET_MODE (x) != GET_MODE (y))
1235 return 0;
1236
1237 /* Some RTL can be compared without a recursive examination. */
1238 switch (code)
1239 {
1240 case REG:
1241 return REGNO (x) == REGNO (y);
1242
1243 case LABEL_REF:
1244 return XEXP (x, 0) == XEXP (y, 0);
1245
1246 case SYMBOL_REF:
1247 return XSTR (x, 0) == XSTR (y, 0);
1248
1249 case VALUE:
1250 case CONST_INT:
1251 case CONST_DOUBLE:
1252 case CONST_FIXED:
1253 /* There's no need to compare the contents of CONST_DOUBLEs or
1254 CONST_INTs because pointer equality is a good enough
1255 comparison for these nodes. */
1256 return 0;
1257
1258 default:
1259 break;
1260 }
1261
1262 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1263 if (code == PLUS)
1264 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1265 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1266 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1267 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1268 /* For commutative operations, the RTX match if the operand match in any
1269 order. Also handle the simple binary and unary cases without a loop. */
1270 if (COMMUTATIVE_P (x))
1271 {
1272 rtx xop0 = canon_rtx (XEXP (x, 0));
1273 rtx yop0 = canon_rtx (XEXP (y, 0));
1274 rtx yop1 = canon_rtx (XEXP (y, 1));
1275
1276 return ((rtx_equal_for_memref_p (xop0, yop0)
1277 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1278 || (rtx_equal_for_memref_p (xop0, yop1)
1279 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1280 }
1281 else if (NON_COMMUTATIVE_P (x))
1282 {
1283 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1284 canon_rtx (XEXP (y, 0)))
1285 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1286 canon_rtx (XEXP (y, 1))));
1287 }
1288 else if (UNARY_P (x))
1289 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1290 canon_rtx (XEXP (y, 0)));
1291
1292 /* Compare the elements. If any pair of corresponding elements
1293 fail to match, return 0 for the whole things.
1294
1295 Limit cases to types which actually appear in addresses. */
1296
1297 fmt = GET_RTX_FORMAT (code);
1298 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1299 {
1300 switch (fmt[i])
1301 {
1302 case 'i':
1303 if (XINT (x, i) != XINT (y, i))
1304 return 0;
1305 break;
1306
1307 case 'E':
1308 /* Two vectors must have the same length. */
1309 if (XVECLEN (x, i) != XVECLEN (y, i))
1310 return 0;
1311
1312 /* And the corresponding elements must match. */
1313 for (j = 0; j < XVECLEN (x, i); j++)
1314 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1315 canon_rtx (XVECEXP (y, i, j))) == 0)
1316 return 0;
1317 break;
1318
1319 case 'e':
1320 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1321 canon_rtx (XEXP (y, i))) == 0)
1322 return 0;
1323 break;
1324
1325 /* This can happen for asm operands. */
1326 case 's':
1327 if (strcmp (XSTR (x, i), XSTR (y, i)))
1328 return 0;
1329 break;
1330
1331 /* This can happen for an asm which clobbers memory. */
1332 case '0':
1333 break;
1334
1335 /* It is believed that rtx's at this level will never
1336 contain anything but integers and other rtx's,
1337 except for within LABEL_REFs and SYMBOL_REFs. */
1338 default:
1339 gcc_unreachable ();
1340 }
1341 }
1342 return 1;
1343 }
1344
1345 rtx
1346 find_base_term (rtx x)
1347 {
1348 cselib_val *val;
1349 struct elt_loc_list *l;
1350
1351 #if defined (FIND_BASE_TERM)
1352 /* Try machine-dependent ways to find the base term. */
1353 x = FIND_BASE_TERM (x);
1354 #endif
1355
1356 switch (GET_CODE (x))
1357 {
1358 case REG:
1359 return REG_BASE_VALUE (x);
1360
1361 case TRUNCATE:
1362 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1363 return 0;
1364 /* Fall through. */
1365 case HIGH:
1366 case PRE_INC:
1367 case PRE_DEC:
1368 case POST_INC:
1369 case POST_DEC:
1370 case PRE_MODIFY:
1371 case POST_MODIFY:
1372 return find_base_term (XEXP (x, 0));
1373
1374 case ZERO_EXTEND:
1375 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1376 {
1377 rtx temp = find_base_term (XEXP (x, 0));
1378
1379 if (temp != 0 && CONSTANT_P (temp))
1380 temp = convert_memory_address (Pmode, temp);
1381
1382 return temp;
1383 }
1384
1385 case VALUE:
1386 val = CSELIB_VAL_PTR (x);
1387 if (!val)
1388 return 0;
1389 for (l = val->locs; l; l = l->next)
1390 if ((x = find_base_term (l->loc)) != 0)
1391 return x;
1392 return 0;
1393
1394 case CONST:
1395 x = XEXP (x, 0);
1396 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1397 return 0;
1398 /* Fall through. */
1399 case LO_SUM:
1400 case PLUS:
1401 case MINUS:
1402 {
1403 rtx tmp1 = XEXP (x, 0);
1404 rtx tmp2 = XEXP (x, 1);
1405
1406 /* This is a little bit tricky since we have to determine which of
1407 the two operands represents the real base address. Otherwise this
1408 routine may return the index register instead of the base register.
1409
1410 That may cause us to believe no aliasing was possible, when in
1411 fact aliasing is possible.
1412
1413 We use a few simple tests to guess the base register. Additional
1414 tests can certainly be added. For example, if one of the operands
1415 is a shift or multiply, then it must be the index register and the
1416 other operand is the base register. */
1417
1418 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1419 return find_base_term (tmp2);
1420
1421 /* If either operand is known to be a pointer, then use it
1422 to determine the base term. */
1423 if (REG_P (tmp1) && REG_POINTER (tmp1))
1424 return find_base_term (tmp1);
1425
1426 if (REG_P (tmp2) && REG_POINTER (tmp2))
1427 return find_base_term (tmp2);
1428
1429 /* Neither operand was known to be a pointer. Go ahead and find the
1430 base term for both operands. */
1431 tmp1 = find_base_term (tmp1);
1432 tmp2 = find_base_term (tmp2);
1433
1434 /* If either base term is named object or a special address
1435 (like an argument or stack reference), then use it for the
1436 base term. */
1437 if (tmp1 != 0
1438 && (GET_CODE (tmp1) == SYMBOL_REF
1439 || GET_CODE (tmp1) == LABEL_REF
1440 || (GET_CODE (tmp1) == ADDRESS
1441 && GET_MODE (tmp1) != VOIDmode)))
1442 return tmp1;
1443
1444 if (tmp2 != 0
1445 && (GET_CODE (tmp2) == SYMBOL_REF
1446 || GET_CODE (tmp2) == LABEL_REF
1447 || (GET_CODE (tmp2) == ADDRESS
1448 && GET_MODE (tmp2) != VOIDmode)))
1449 return tmp2;
1450
1451 /* We could not determine which of the two operands was the
1452 base register and which was the index. So we can determine
1453 nothing from the base alias check. */
1454 return 0;
1455 }
1456
1457 case AND:
1458 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1459 return find_base_term (XEXP (x, 0));
1460 return 0;
1461
1462 case SYMBOL_REF:
1463 case LABEL_REF:
1464 return x;
1465
1466 default:
1467 return 0;
1468 }
1469 }
1470
1471 /* Return 0 if the addresses X and Y are known to point to different
1472 objects, 1 if they might be pointers to the same object. */
1473
1474 static int
1475 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1476 enum machine_mode y_mode)
1477 {
1478 rtx x_base = find_base_term (x);
1479 rtx y_base = find_base_term (y);
1480
1481 /* If the address itself has no known base see if a known equivalent
1482 value has one. If either address still has no known base, nothing
1483 is known about aliasing. */
1484 if (x_base == 0)
1485 {
1486 rtx x_c;
1487
1488 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1489 return 1;
1490
1491 x_base = find_base_term (x_c);
1492 if (x_base == 0)
1493 return 1;
1494 }
1495
1496 if (y_base == 0)
1497 {
1498 rtx y_c;
1499 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1500 return 1;
1501
1502 y_base = find_base_term (y_c);
1503 if (y_base == 0)
1504 return 1;
1505 }
1506
1507 /* If the base addresses are equal nothing is known about aliasing. */
1508 if (rtx_equal_p (x_base, y_base))
1509 return 1;
1510
1511 /* The base addresses of the read and write are different expressions.
1512 If they are both symbols and they are not accessed via AND, there is
1513 no conflict. We can bring knowledge of object alignment into play
1514 here. For example, on alpha, "char a, b;" can alias one another,
1515 though "char a; long b;" cannot. */
1516 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1517 {
1518 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1519 return 1;
1520 if (GET_CODE (x) == AND
1521 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1522 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1523 return 1;
1524 if (GET_CODE (y) == AND
1525 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1526 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1527 return 1;
1528 /* Differing symbols never alias. */
1529 return 0;
1530 }
1531
1532 /* If one address is a stack reference there can be no alias:
1533 stack references using different base registers do not alias,
1534 a stack reference can not alias a parameter, and a stack reference
1535 can not alias a global. */
1536 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1537 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1538 return 0;
1539
1540 if (! flag_argument_noalias)
1541 return 1;
1542
1543 if (flag_argument_noalias > 1)
1544 return 0;
1545
1546 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1547 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1548 }
1549
1550 /* Convert the address X into something we can use. This is done by returning
1551 it unchanged unless it is a value; in the latter case we call cselib to get
1552 a more useful rtx. */
1553
1554 rtx
1555 get_addr (rtx x)
1556 {
1557 cselib_val *v;
1558 struct elt_loc_list *l;
1559
1560 if (GET_CODE (x) != VALUE)
1561 return x;
1562 v = CSELIB_VAL_PTR (x);
1563 if (v)
1564 {
1565 for (l = v->locs; l; l = l->next)
1566 if (CONSTANT_P (l->loc))
1567 return l->loc;
1568 for (l = v->locs; l; l = l->next)
1569 if (!REG_P (l->loc) && !MEM_P (l->loc))
1570 return l->loc;
1571 if (v->locs)
1572 return v->locs->loc;
1573 }
1574 return x;
1575 }
1576
1577 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1578 where SIZE is the size in bytes of the memory reference. If ADDR
1579 is not modified by the memory reference then ADDR is returned. */
1580
1581 static rtx
1582 addr_side_effect_eval (rtx addr, int size, int n_refs)
1583 {
1584 int offset = 0;
1585
1586 switch (GET_CODE (addr))
1587 {
1588 case PRE_INC:
1589 offset = (n_refs + 1) * size;
1590 break;
1591 case PRE_DEC:
1592 offset = -(n_refs + 1) * size;
1593 break;
1594 case POST_INC:
1595 offset = n_refs * size;
1596 break;
1597 case POST_DEC:
1598 offset = -n_refs * size;
1599 break;
1600
1601 default:
1602 return addr;
1603 }
1604
1605 if (offset)
1606 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1607 GEN_INT (offset));
1608 else
1609 addr = XEXP (addr, 0);
1610 addr = canon_rtx (addr);
1611
1612 return addr;
1613 }
1614
1615 /* Return nonzero if X and Y (memory addresses) could reference the
1616 same location in memory. C is an offset accumulator. When
1617 C is nonzero, we are testing aliases between X and Y + C.
1618 XSIZE is the size in bytes of the X reference,
1619 similarly YSIZE is the size in bytes for Y.
1620 Expect that canon_rtx has been already called for X and Y.
1621
1622 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1623 referenced (the reference was BLKmode), so make the most pessimistic
1624 assumptions.
1625
1626 If XSIZE or YSIZE is negative, we may access memory outside the object
1627 being referenced as a side effect. This can happen when using AND to
1628 align memory references, as is done on the Alpha.
1629
1630 Nice to notice that varying addresses cannot conflict with fp if no
1631 local variables had their addresses taken, but that's too hard now. */
1632
1633 static int
1634 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1635 {
1636 if (GET_CODE (x) == VALUE)
1637 x = get_addr (x);
1638 if (GET_CODE (y) == VALUE)
1639 y = get_addr (y);
1640 if (GET_CODE (x) == HIGH)
1641 x = XEXP (x, 0);
1642 else if (GET_CODE (x) == LO_SUM)
1643 x = XEXP (x, 1);
1644 else
1645 x = addr_side_effect_eval (x, xsize, 0);
1646 if (GET_CODE (y) == HIGH)
1647 y = XEXP (y, 0);
1648 else if (GET_CODE (y) == LO_SUM)
1649 y = XEXP (y, 1);
1650 else
1651 y = addr_side_effect_eval (y, ysize, 0);
1652
1653 if (rtx_equal_for_memref_p (x, y))
1654 {
1655 if (xsize <= 0 || ysize <= 0)
1656 return 1;
1657 if (c >= 0 && xsize > c)
1658 return 1;
1659 if (c < 0 && ysize+c > 0)
1660 return 1;
1661 return 0;
1662 }
1663
1664 /* This code used to check for conflicts involving stack references and
1665 globals but the base address alias code now handles these cases. */
1666
1667 if (GET_CODE (x) == PLUS)
1668 {
1669 /* The fact that X is canonicalized means that this
1670 PLUS rtx is canonicalized. */
1671 rtx x0 = XEXP (x, 0);
1672 rtx x1 = XEXP (x, 1);
1673
1674 if (GET_CODE (y) == PLUS)
1675 {
1676 /* The fact that Y is canonicalized means that this
1677 PLUS rtx is canonicalized. */
1678 rtx y0 = XEXP (y, 0);
1679 rtx y1 = XEXP (y, 1);
1680
1681 if (rtx_equal_for_memref_p (x1, y1))
1682 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1683 if (rtx_equal_for_memref_p (x0, y0))
1684 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1685 if (GET_CODE (x1) == CONST_INT)
1686 {
1687 if (GET_CODE (y1) == CONST_INT)
1688 return memrefs_conflict_p (xsize, x0, ysize, y0,
1689 c - INTVAL (x1) + INTVAL (y1));
1690 else
1691 return memrefs_conflict_p (xsize, x0, ysize, y,
1692 c - INTVAL (x1));
1693 }
1694 else if (GET_CODE (y1) == CONST_INT)
1695 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1696
1697 return 1;
1698 }
1699 else if (GET_CODE (x1) == CONST_INT)
1700 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1701 }
1702 else if (GET_CODE (y) == PLUS)
1703 {
1704 /* The fact that Y is canonicalized means that this
1705 PLUS rtx is canonicalized. */
1706 rtx y0 = XEXP (y, 0);
1707 rtx y1 = XEXP (y, 1);
1708
1709 if (GET_CODE (y1) == CONST_INT)
1710 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1711 else
1712 return 1;
1713 }
1714
1715 if (GET_CODE (x) == GET_CODE (y))
1716 switch (GET_CODE (x))
1717 {
1718 case MULT:
1719 {
1720 /* Handle cases where we expect the second operands to be the
1721 same, and check only whether the first operand would conflict
1722 or not. */
1723 rtx x0, y0;
1724 rtx x1 = canon_rtx (XEXP (x, 1));
1725 rtx y1 = canon_rtx (XEXP (y, 1));
1726 if (! rtx_equal_for_memref_p (x1, y1))
1727 return 1;
1728 x0 = canon_rtx (XEXP (x, 0));
1729 y0 = canon_rtx (XEXP (y, 0));
1730 if (rtx_equal_for_memref_p (x0, y0))
1731 return (xsize == 0 || ysize == 0
1732 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1733
1734 /* Can't properly adjust our sizes. */
1735 if (GET_CODE (x1) != CONST_INT)
1736 return 1;
1737 xsize /= INTVAL (x1);
1738 ysize /= INTVAL (x1);
1739 c /= INTVAL (x1);
1740 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1741 }
1742
1743 default:
1744 break;
1745 }
1746
1747 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1748 as an access with indeterminate size. Assume that references
1749 besides AND are aligned, so if the size of the other reference is
1750 at least as large as the alignment, assume no other overlap. */
1751 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1752 {
1753 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1754 xsize = -1;
1755 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1756 }
1757 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1758 {
1759 /* ??? If we are indexing far enough into the array/structure, we
1760 may yet be able to determine that we can not overlap. But we
1761 also need to that we are far enough from the end not to overlap
1762 a following reference, so we do nothing with that for now. */
1763 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1764 ysize = -1;
1765 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1766 }
1767
1768 if (CONSTANT_P (x))
1769 {
1770 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1771 {
1772 c += (INTVAL (y) - INTVAL (x));
1773 return (xsize <= 0 || ysize <= 0
1774 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1775 }
1776
1777 if (GET_CODE (x) == CONST)
1778 {
1779 if (GET_CODE (y) == CONST)
1780 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1781 ysize, canon_rtx (XEXP (y, 0)), c);
1782 else
1783 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1784 ysize, y, c);
1785 }
1786 if (GET_CODE (y) == CONST)
1787 return memrefs_conflict_p (xsize, x, ysize,
1788 canon_rtx (XEXP (y, 0)), c);
1789
1790 if (CONSTANT_P (y))
1791 return (xsize <= 0 || ysize <= 0
1792 || (rtx_equal_for_memref_p (x, y)
1793 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1794
1795 return 1;
1796 }
1797 return 1;
1798 }
1799
1800 /* Functions to compute memory dependencies.
1801
1802 Since we process the insns in execution order, we can build tables
1803 to keep track of what registers are fixed (and not aliased), what registers
1804 are varying in known ways, and what registers are varying in unknown
1805 ways.
1806
1807 If both memory references are volatile, then there must always be a
1808 dependence between the two references, since their order can not be
1809 changed. A volatile and non-volatile reference can be interchanged
1810 though.
1811
1812 A MEM_IN_STRUCT reference at a non-AND varying address can never
1813 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1814 also must allow AND addresses, because they may generate accesses
1815 outside the object being referenced. This is used to generate
1816 aligned addresses from unaligned addresses, for instance, the alpha
1817 storeqi_unaligned pattern. */
1818
1819 /* Read dependence: X is read after read in MEM takes place. There can
1820 only be a dependence here if both reads are volatile. */
1821
1822 int
1823 read_dependence (const_rtx mem, const_rtx x)
1824 {
1825 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1826 }
1827
1828 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1829 MEM2 is a reference to a structure at a varying address, or returns
1830 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1831 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1832 to decide whether or not an address may vary; it should return
1833 nonzero whenever variation is possible.
1834 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1835
1836 static const_rtx
1837 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
1838 rtx mem2_addr,
1839 bool (*varies_p) (const_rtx, bool))
1840 {
1841 if (! flag_strict_aliasing)
1842 return NULL_RTX;
1843
1844 if (MEM_ALIAS_SET (mem2)
1845 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1846 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1847 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1848 varying address. */
1849 return mem1;
1850
1851 if (MEM_ALIAS_SET (mem1)
1852 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1853 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1854 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1855 varying address. */
1856 return mem2;
1857
1858 return NULL_RTX;
1859 }
1860
1861 /* Returns nonzero if something about the mode or address format MEM1
1862 indicates that it might well alias *anything*. */
1863
1864 static int
1865 aliases_everything_p (const_rtx mem)
1866 {
1867 if (GET_CODE (XEXP (mem, 0)) == AND)
1868 /* If the address is an AND, it's very hard to know at what it is
1869 actually pointing. */
1870 return 1;
1871
1872 return 0;
1873 }
1874
1875 /* Return true if we can determine that the fields referenced cannot
1876 overlap for any pair of objects. */
1877
1878 static bool
1879 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1880 {
1881 const_tree fieldx, fieldy, typex, typey, orig_y;
1882
1883 do
1884 {
1885 /* The comparison has to be done at a common type, since we don't
1886 know how the inheritance hierarchy works. */
1887 orig_y = y;
1888 do
1889 {
1890 fieldx = TREE_OPERAND (x, 1);
1891 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1892
1893 y = orig_y;
1894 do
1895 {
1896 fieldy = TREE_OPERAND (y, 1);
1897 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1898
1899 if (typex == typey)
1900 goto found;
1901
1902 y = TREE_OPERAND (y, 0);
1903 }
1904 while (y && TREE_CODE (y) == COMPONENT_REF);
1905
1906 x = TREE_OPERAND (x, 0);
1907 }
1908 while (x && TREE_CODE (x) == COMPONENT_REF);
1909 /* Never found a common type. */
1910 return false;
1911
1912 found:
1913 /* If we're left with accessing different fields of a structure,
1914 then no overlap. */
1915 if (TREE_CODE (typex) == RECORD_TYPE
1916 && fieldx != fieldy)
1917 return true;
1918
1919 /* The comparison on the current field failed. If we're accessing
1920 a very nested structure, look at the next outer level. */
1921 x = TREE_OPERAND (x, 0);
1922 y = TREE_OPERAND (y, 0);
1923 }
1924 while (x && y
1925 && TREE_CODE (x) == COMPONENT_REF
1926 && TREE_CODE (y) == COMPONENT_REF);
1927
1928 return false;
1929 }
1930
1931 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1932
1933 static tree
1934 decl_for_component_ref (tree x)
1935 {
1936 do
1937 {
1938 x = TREE_OPERAND (x, 0);
1939 }
1940 while (x && TREE_CODE (x) == COMPONENT_REF);
1941
1942 return x && DECL_P (x) ? x : NULL_TREE;
1943 }
1944
1945 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1946 offset of the field reference. */
1947
1948 static rtx
1949 adjust_offset_for_component_ref (tree x, rtx offset)
1950 {
1951 HOST_WIDE_INT ioffset;
1952
1953 if (! offset)
1954 return NULL_RTX;
1955
1956 ioffset = INTVAL (offset);
1957 do
1958 {
1959 tree offset = component_ref_field_offset (x);
1960 tree field = TREE_OPERAND (x, 1);
1961
1962 if (! host_integerp (offset, 1))
1963 return NULL_RTX;
1964 ioffset += (tree_low_cst (offset, 1)
1965 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1966 / BITS_PER_UNIT));
1967
1968 x = TREE_OPERAND (x, 0);
1969 }
1970 while (x && TREE_CODE (x) == COMPONENT_REF);
1971
1972 return GEN_INT (ioffset);
1973 }
1974
1975 /* Return nonzero if we can determine the exprs corresponding to memrefs
1976 X and Y and they do not overlap. */
1977
1978 int
1979 nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
1980 {
1981 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1982 rtx rtlx, rtly;
1983 rtx basex, basey;
1984 rtx moffsetx, moffsety;
1985 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1986
1987 /* Unless both have exprs, we can't tell anything. */
1988 if (exprx == 0 || expry == 0)
1989 return 0;
1990
1991 /* If both are field references, we may be able to determine something. */
1992 if (TREE_CODE (exprx) == COMPONENT_REF
1993 && TREE_CODE (expry) == COMPONENT_REF
1994 && nonoverlapping_component_refs_p (exprx, expry))
1995 return 1;
1996
1997
1998 /* If the field reference test failed, look at the DECLs involved. */
1999 moffsetx = MEM_OFFSET (x);
2000 if (TREE_CODE (exprx) == COMPONENT_REF)
2001 {
2002 if (TREE_CODE (expry) == VAR_DECL
2003 && POINTER_TYPE_P (TREE_TYPE (expry)))
2004 {
2005 tree field = TREE_OPERAND (exprx, 1);
2006 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2007 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2008 TREE_TYPE (field)))
2009 return 1;
2010 }
2011 {
2012 tree t = decl_for_component_ref (exprx);
2013 if (! t)
2014 return 0;
2015 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2016 exprx = t;
2017 }
2018 }
2019 else if (INDIRECT_REF_P (exprx))
2020 {
2021 exprx = TREE_OPERAND (exprx, 0);
2022 if (flag_argument_noalias < 2
2023 || TREE_CODE (exprx) != PARM_DECL)
2024 return 0;
2025 }
2026
2027 moffsety = MEM_OFFSET (y);
2028 if (TREE_CODE (expry) == COMPONENT_REF)
2029 {
2030 if (TREE_CODE (exprx) == VAR_DECL
2031 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2032 {
2033 tree field = TREE_OPERAND (expry, 1);
2034 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2035 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2036 TREE_TYPE (field)))
2037 return 1;
2038 }
2039 {
2040 tree t = decl_for_component_ref (expry);
2041 if (! t)
2042 return 0;
2043 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2044 expry = t;
2045 }
2046 }
2047 else if (INDIRECT_REF_P (expry))
2048 {
2049 expry = TREE_OPERAND (expry, 0);
2050 if (flag_argument_noalias < 2
2051 || TREE_CODE (expry) != PARM_DECL)
2052 return 0;
2053 }
2054
2055 if (! DECL_P (exprx) || ! DECL_P (expry))
2056 return 0;
2057
2058 rtlx = DECL_RTL (exprx);
2059 rtly = DECL_RTL (expry);
2060
2061 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2062 can't overlap unless they are the same because we never reuse that part
2063 of the stack frame used for locals for spilled pseudos. */
2064 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2065 && ! rtx_equal_p (rtlx, rtly))
2066 return 1;
2067
2068 /* Get the base and offsets of both decls. If either is a register, we
2069 know both are and are the same, so use that as the base. The only
2070 we can avoid overlap is if we can deduce that they are nonoverlapping
2071 pieces of that decl, which is very rare. */
2072 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2073 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2074 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2075
2076 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2077 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2078 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2079
2080 /* If the bases are different, we know they do not overlap if both
2081 are constants or if one is a constant and the other a pointer into the
2082 stack frame. Otherwise a different base means we can't tell if they
2083 overlap or not. */
2084 if (! rtx_equal_p (basex, basey))
2085 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2086 || (CONSTANT_P (basex) && REG_P (basey)
2087 && REGNO_PTR_FRAME_P (REGNO (basey)))
2088 || (CONSTANT_P (basey) && REG_P (basex)
2089 && REGNO_PTR_FRAME_P (REGNO (basex))));
2090
2091 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2092 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2093 : -1);
2094 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2095 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2096 -1);
2097
2098 /* If we have an offset for either memref, it can update the values computed
2099 above. */
2100 if (moffsetx)
2101 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2102 if (moffsety)
2103 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2104
2105 /* If a memref has both a size and an offset, we can use the smaller size.
2106 We can't do this if the offset isn't known because we must view this
2107 memref as being anywhere inside the DECL's MEM. */
2108 if (MEM_SIZE (x) && moffsetx)
2109 sizex = INTVAL (MEM_SIZE (x));
2110 if (MEM_SIZE (y) && moffsety)
2111 sizey = INTVAL (MEM_SIZE (y));
2112
2113 /* Put the values of the memref with the lower offset in X's values. */
2114 if (offsetx > offsety)
2115 {
2116 tem = offsetx, offsetx = offsety, offsety = tem;
2117 tem = sizex, sizex = sizey, sizey = tem;
2118 }
2119
2120 /* If we don't know the size of the lower-offset value, we can't tell
2121 if they conflict. Otherwise, we do the test. */
2122 return sizex >= 0 && offsety >= offsetx + sizex;
2123 }
2124
2125 /* True dependence: X is read after store in MEM takes place. */
2126
2127 int
2128 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2129 bool (*varies) (const_rtx, bool))
2130 {
2131 rtx x_addr, mem_addr;
2132 rtx base;
2133
2134 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2135 return 1;
2136
2137 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2138 This is used in epilogue deallocation functions, and in cselib. */
2139 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2140 return 1;
2141 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2142 return 1;
2143 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2144 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2145 return 1;
2146
2147 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2148 return 0;
2149
2150 /* Read-only memory is by definition never modified, and therefore can't
2151 conflict with anything. We don't expect to find read-only set on MEM,
2152 but stupid user tricks can produce them, so don't die. */
2153 if (MEM_READONLY_P (x))
2154 return 0;
2155
2156 if (nonoverlapping_memrefs_p (mem, x))
2157 return 0;
2158
2159 if (mem_mode == VOIDmode)
2160 mem_mode = GET_MODE (mem);
2161
2162 x_addr = get_addr (XEXP (x, 0));
2163 mem_addr = get_addr (XEXP (mem, 0));
2164
2165 base = find_base_term (x_addr);
2166 if (base && (GET_CODE (base) == LABEL_REF
2167 || (GET_CODE (base) == SYMBOL_REF
2168 && CONSTANT_POOL_ADDRESS_P (base))))
2169 return 0;
2170
2171 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2172 return 0;
2173
2174 x_addr = canon_rtx (x_addr);
2175 mem_addr = canon_rtx (mem_addr);
2176
2177 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2178 SIZE_FOR_MODE (x), x_addr, 0))
2179 return 0;
2180
2181 if (aliases_everything_p (x))
2182 return 1;
2183
2184 /* We cannot use aliases_everything_p to test MEM, since we must look
2185 at MEM_MODE, rather than GET_MODE (MEM). */
2186 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2187 return 1;
2188
2189 /* In true_dependence we also allow BLKmode to alias anything. Why
2190 don't we do this in anti_dependence and output_dependence? */
2191 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2192 return 1;
2193
2194 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2195 varies);
2196 }
2197
2198 /* Canonical true dependence: X is read after store in MEM takes place.
2199 Variant of true_dependence which assumes MEM has already been
2200 canonicalized (hence we no longer do that here).
2201 The mem_addr argument has been added, since true_dependence computed
2202 this value prior to canonicalizing. */
2203
2204 int
2205 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2206 const_rtx x, bool (*varies) (const_rtx, bool))
2207 {
2208 rtx x_addr;
2209
2210 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2211 return 1;
2212
2213 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2214 This is used in epilogue deallocation functions. */
2215 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2216 return 1;
2217 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2218 return 1;
2219 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2220 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2221 return 1;
2222
2223 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2224 return 0;
2225
2226 /* Read-only memory is by definition never modified, and therefore can't
2227 conflict with anything. We don't expect to find read-only set on MEM,
2228 but stupid user tricks can produce them, so don't die. */
2229 if (MEM_READONLY_P (x))
2230 return 0;
2231
2232 if (nonoverlapping_memrefs_p (x, mem))
2233 return 0;
2234
2235 x_addr = get_addr (XEXP (x, 0));
2236
2237 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2238 return 0;
2239
2240 x_addr = canon_rtx (x_addr);
2241 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2242 SIZE_FOR_MODE (x), x_addr, 0))
2243 return 0;
2244
2245 if (aliases_everything_p (x))
2246 return 1;
2247
2248 /* We cannot use aliases_everything_p to test MEM, since we must look
2249 at MEM_MODE, rather than GET_MODE (MEM). */
2250 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2251 return 1;
2252
2253 /* In true_dependence we also allow BLKmode to alias anything. Why
2254 don't we do this in anti_dependence and output_dependence? */
2255 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2256 return 1;
2257
2258 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2259 varies);
2260 }
2261
2262 /* Returns nonzero if a write to X might alias a previous read from
2263 (or, if WRITEP is nonzero, a write to) MEM. */
2264
2265 static int
2266 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2267 {
2268 rtx x_addr, mem_addr;
2269 const_rtx fixed_scalar;
2270 rtx base;
2271
2272 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2273 return 1;
2274
2275 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2276 This is used in epilogue deallocation functions. */
2277 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2278 return 1;
2279 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2280 return 1;
2281 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2282 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2283 return 1;
2284
2285 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2286 return 0;
2287
2288 /* A read from read-only memory can't conflict with read-write memory. */
2289 if (!writep && MEM_READONLY_P (mem))
2290 return 0;
2291
2292 if (nonoverlapping_memrefs_p (x, mem))
2293 return 0;
2294
2295 x_addr = get_addr (XEXP (x, 0));
2296 mem_addr = get_addr (XEXP (mem, 0));
2297
2298 if (! writep)
2299 {
2300 base = find_base_term (mem_addr);
2301 if (base && (GET_CODE (base) == LABEL_REF
2302 || (GET_CODE (base) == SYMBOL_REF
2303 && CONSTANT_POOL_ADDRESS_P (base))))
2304 return 0;
2305 }
2306
2307 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2308 GET_MODE (mem)))
2309 return 0;
2310
2311 x_addr = canon_rtx (x_addr);
2312 mem_addr = canon_rtx (mem_addr);
2313
2314 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2315 SIZE_FOR_MODE (x), x_addr, 0))
2316 return 0;
2317
2318 fixed_scalar
2319 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2320 rtx_addr_varies_p);
2321
2322 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2323 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2324 }
2325
2326 /* Anti dependence: X is written after read in MEM takes place. */
2327
2328 int
2329 anti_dependence (const_rtx mem, const_rtx x)
2330 {
2331 return write_dependence_p (mem, x, /*writep=*/0);
2332 }
2333
2334 /* Output dependence: X is written after store in MEM takes place. */
2335
2336 int
2337 output_dependence (const_rtx mem, const_rtx x)
2338 {
2339 return write_dependence_p (mem, x, /*writep=*/1);
2340 }
2341 \f
2342
2343 void
2344 init_alias_target (void)
2345 {
2346 int i;
2347
2348 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2349
2350 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2351 /* Check whether this register can hold an incoming pointer
2352 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2353 numbers, so translate if necessary due to register windows. */
2354 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2355 && HARD_REGNO_MODE_OK (i, Pmode))
2356 static_reg_base_value[i]
2357 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2358
2359 static_reg_base_value[STACK_POINTER_REGNUM]
2360 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2361 static_reg_base_value[ARG_POINTER_REGNUM]
2362 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2363 static_reg_base_value[FRAME_POINTER_REGNUM]
2364 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2365 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2366 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2367 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2368 #endif
2369 }
2370
2371 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2372 to be memory reference. */
2373 static bool memory_modified;
2374 static void
2375 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2376 {
2377 if (MEM_P (x))
2378 {
2379 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2380 memory_modified = true;
2381 }
2382 }
2383
2384
2385 /* Return true when INSN possibly modify memory contents of MEM
2386 (i.e. address can be modified). */
2387 bool
2388 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2389 {
2390 if (!INSN_P (insn))
2391 return false;
2392 memory_modified = false;
2393 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2394 return memory_modified;
2395 }
2396
2397 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2398 array. */
2399
2400 void
2401 init_alias_analysis (void)
2402 {
2403 unsigned int maxreg = max_reg_num ();
2404 int changed, pass;
2405 int i;
2406 unsigned int ui;
2407 rtx insn;
2408
2409 timevar_push (TV_ALIAS_ANALYSIS);
2410
2411 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2412 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2413 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2414
2415 /* If we have memory allocated from the previous run, use it. */
2416 if (old_reg_base_value)
2417 reg_base_value = old_reg_base_value;
2418
2419 if (reg_base_value)
2420 VEC_truncate (rtx, reg_base_value, 0);
2421
2422 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2423
2424 new_reg_base_value = XNEWVEC (rtx, maxreg);
2425 reg_seen = XNEWVEC (char, maxreg);
2426
2427 /* The basic idea is that each pass through this loop will use the
2428 "constant" information from the previous pass to propagate alias
2429 information through another level of assignments.
2430
2431 This could get expensive if the assignment chains are long. Maybe
2432 we should throttle the number of iterations, possibly based on
2433 the optimization level or flag_expensive_optimizations.
2434
2435 We could propagate more information in the first pass by making use
2436 of DF_REG_DEF_COUNT to determine immediately that the alias information
2437 for a pseudo is "constant".
2438
2439 A program with an uninitialized variable can cause an infinite loop
2440 here. Instead of doing a full dataflow analysis to detect such problems
2441 we just cap the number of iterations for the loop.
2442
2443 The state of the arrays for the set chain in question does not matter
2444 since the program has undefined behavior. */
2445
2446 pass = 0;
2447 do
2448 {
2449 /* Assume nothing will change this iteration of the loop. */
2450 changed = 0;
2451
2452 /* We want to assign the same IDs each iteration of this loop, so
2453 start counting from zero each iteration of the loop. */
2454 unique_id = 0;
2455
2456 /* We're at the start of the function each iteration through the
2457 loop, so we're copying arguments. */
2458 copying_arguments = true;
2459
2460 /* Wipe the potential alias information clean for this pass. */
2461 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2462
2463 /* Wipe the reg_seen array clean. */
2464 memset (reg_seen, 0, maxreg);
2465
2466 /* Mark all hard registers which may contain an address.
2467 The stack, frame and argument pointers may contain an address.
2468 An argument register which can hold a Pmode value may contain
2469 an address even if it is not in BASE_REGS.
2470
2471 The address expression is VOIDmode for an argument and
2472 Pmode for other registers. */
2473
2474 memcpy (new_reg_base_value, static_reg_base_value,
2475 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2476
2477 /* Walk the insns adding values to the new_reg_base_value array. */
2478 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2479 {
2480 if (INSN_P (insn))
2481 {
2482 rtx note, set;
2483
2484 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2485 /* The prologue/epilogue insns are not threaded onto the
2486 insn chain until after reload has completed. Thus,
2487 there is no sense wasting time checking if INSN is in
2488 the prologue/epilogue until after reload has completed. */
2489 if (reload_completed
2490 && prologue_epilogue_contains (insn))
2491 continue;
2492 #endif
2493
2494 /* If this insn has a noalias note, process it, Otherwise,
2495 scan for sets. A simple set will have no side effects
2496 which could change the base value of any other register. */
2497
2498 if (GET_CODE (PATTERN (insn)) == SET
2499 && REG_NOTES (insn) != 0
2500 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2501 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2502 else
2503 note_stores (PATTERN (insn), record_set, NULL);
2504
2505 set = single_set (insn);
2506
2507 if (set != 0
2508 && REG_P (SET_DEST (set))
2509 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2510 {
2511 unsigned int regno = REGNO (SET_DEST (set));
2512 rtx src = SET_SRC (set);
2513 rtx t;
2514
2515 note = find_reg_equal_equiv_note (insn);
2516 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2517 && DF_REG_DEF_COUNT (regno) != 1)
2518 note = NULL_RTX;
2519
2520 if (note != NULL_RTX
2521 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2522 && ! rtx_varies_p (XEXP (note, 0), 1)
2523 && ! reg_overlap_mentioned_p (SET_DEST (set),
2524 XEXP (note, 0)))
2525 {
2526 set_reg_known_value (regno, XEXP (note, 0));
2527 set_reg_known_equiv_p (regno,
2528 REG_NOTE_KIND (note) == REG_EQUIV);
2529 }
2530 else if (DF_REG_DEF_COUNT (regno) == 1
2531 && GET_CODE (src) == PLUS
2532 && REG_P (XEXP (src, 0))
2533 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2534 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2535 {
2536 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2537 set_reg_known_value (regno, t);
2538 set_reg_known_equiv_p (regno, 0);
2539 }
2540 else if (DF_REG_DEF_COUNT (regno) == 1
2541 && ! rtx_varies_p (src, 1))
2542 {
2543 set_reg_known_value (regno, src);
2544 set_reg_known_equiv_p (regno, 0);
2545 }
2546 }
2547 }
2548 else if (NOTE_P (insn)
2549 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2550 copying_arguments = false;
2551 }
2552
2553 /* Now propagate values from new_reg_base_value to reg_base_value. */
2554 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2555
2556 for (ui = 0; ui < maxreg; ui++)
2557 {
2558 if (new_reg_base_value[ui]
2559 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2560 && ! rtx_equal_p (new_reg_base_value[ui],
2561 VEC_index (rtx, reg_base_value, ui)))
2562 {
2563 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2564 changed = 1;
2565 }
2566 }
2567 }
2568 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2569
2570 /* Fill in the remaining entries. */
2571 for (i = 0; i < (int)reg_known_value_size; i++)
2572 if (reg_known_value[i] == 0)
2573 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2574
2575 /* Clean up. */
2576 free (new_reg_base_value);
2577 new_reg_base_value = 0;
2578 free (reg_seen);
2579 reg_seen = 0;
2580 timevar_pop (TV_ALIAS_ANALYSIS);
2581 }
2582
2583 void
2584 end_alias_analysis (void)
2585 {
2586 old_reg_base_value = reg_base_value;
2587 ggc_free (reg_known_value);
2588 reg_known_value = 0;
2589 reg_known_value_size = 0;
2590 free (reg_known_equiv_p);
2591 reg_known_equiv_p = 0;
2592 }
2593
2594 #include "gt-alias.h"