alias.c (memrefs_conflict_p): Distinguish must-alias from don't know.
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
48 #include "df.h"
49 #include "tree-ssa-alias.h"
50 #include "pointer-set.h"
51 #include "tree-flow.h"
52
53 /* The aliasing API provided here solves related but different problems:
54
55 Say there exists (in c)
56
57 struct X {
58 struct Y y1;
59 struct Z z2;
60 } x1, *px1, *px2;
61
62 struct Y y2, *py;
63 struct Z z2, *pz;
64
65
66 py = &px1.y1;
67 px2 = &x1;
68
69 Consider the four questions:
70
71 Can a store to x1 interfere with px2->y1?
72 Can a store to x1 interfere with px2->z2?
73 (*px2).z2
74 Can a store to x1 change the value pointed to by with py?
75 Can a store to x1 change the value pointed to by with pz?
76
77 The answer to these questions can be yes, yes, yes, and maybe.
78
79 The first two questions can be answered with a simple examination
80 of the type system. If structure X contains a field of type Y then
81 a store thru a pointer to an X can overwrite any field that is
82 contained (recursively) in an X (unless we know that px1 != px2).
83
84 The last two of the questions can be solved in the same way as the
85 first two questions but this is too conservative. The observation
86 is that in some cases analysis we can know if which (if any) fields
87 are addressed and if those addresses are used in bad ways. This
88 analysis may be language specific. In C, arbitrary operations may
89 be applied to pointers. However, there is some indication that
90 this may be too conservative for some C++ types.
91
92 The pass ipa-type-escape does this analysis for the types whose
93 instances do not escape across the compilation boundary.
94
95 Historically in GCC, these two problems were combined and a single
96 data structure was used to represent the solution to these
97 problems. We now have two similar but different data structures,
98 The data structure to solve the last two question is similar to the
99 first, but does not contain have the fields in it whose address are
100 never taken. For types that do escape the compilation unit, the
101 data structures will have identical information.
102 */
103
104 /* The alias sets assigned to MEMs assist the back-end in determining
105 which MEMs can alias which other MEMs. In general, two MEMs in
106 different alias sets cannot alias each other, with one important
107 exception. Consider something like:
108
109 struct S { int i; double d; };
110
111 a store to an `S' can alias something of either type `int' or type
112 `double'. (However, a store to an `int' cannot alias a `double'
113 and vice versa.) We indicate this via a tree structure that looks
114 like:
115 struct S
116 / \
117 / \
118 |/_ _\|
119 int double
120
121 (The arrows are directed and point downwards.)
122 In this situation we say the alias set for `struct S' is the
123 `superset' and that those for `int' and `double' are `subsets'.
124
125 To see whether two alias sets can point to the same memory, we must
126 see if either alias set is a subset of the other. We need not trace
127 past immediate descendants, however, since we propagate all
128 grandchildren up one level.
129
130 Alias set zero is implicitly a superset of all other alias sets.
131 However, this is no actual entry for alias set zero. It is an
132 error to attempt to explicitly construct a subset of zero. */
133
134 struct GTY(()) alias_set_entry_d {
135 /* The alias set number, as stored in MEM_ALIAS_SET. */
136 alias_set_type alias_set;
137
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 int has_zero_child;
141
142 /* The children of the alias set. These are not just the immediate
143 children, but, in fact, all descendants. So, if we have:
144
145 struct T { struct S s; float f; }
146
147 continuing our example above, the children here will be all of
148 `int', `double', `float', and `struct S'. */
149 splay_tree GTY((param1_is (int), param2_is (int))) children;
150 };
151 typedef struct alias_set_entry_d *alias_set_entry;
152
153 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
154 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
155 static void record_set (rtx, const_rtx, void *);
156 static int base_alias_check (rtx, rtx, enum machine_mode,
157 enum machine_mode);
158 static rtx find_base_value (rtx);
159 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
160 static int insert_subset_children (splay_tree_node, void*);
161 static alias_set_entry get_alias_set_entry (alias_set_type);
162 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
163 bool (*) (const_rtx, bool));
164 static int aliases_everything_p (const_rtx);
165 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int write_dependence_p (const_rtx, const_rtx, int);
169
170 static void memory_modified_1 (rtx, const_rtx, void *);
171
172 /* Set up all info needed to perform alias analysis on memory references. */
173
174 /* Returns the size in bytes of the mode of X. */
175 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
176
177 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
180 not legal ANSI C. */
181 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
183
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains. 10 is a completely arbitrary choice. */
186 #define MAX_ALIAS_LOOP_PASSES 10
187
188 /* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
192 of the first set.
193
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
196 the stack, frame, and argument pointers.
197
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
202
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
206
207 static GTY(()) VEC(rtx,gc) *reg_base_value;
208 static rtx *new_reg_base_value;
209
210 /* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
212 array. */
213 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
214
215 /* Static hunks of RTL used by the aliasing code; these are initialized
216 once per function to avoid unnecessary RTL allocations. */
217 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
218
219 #define REG_BASE_VALUE(X) \
220 (REGNO (X) < VEC_length (rtx, reg_base_value) \
221 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
222
223 /* Vector indexed by N giving the initial (unchanging) value known for
224 pseudo-register N. This array is initialized in init_alias_analysis,
225 and does not change until end_alias_analysis is called. */
226 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
227
228 /* Indicates number of valid entries in reg_known_value. */
229 static GTY(()) unsigned int reg_known_value_size;
230
231 /* Vector recording for each reg_known_value whether it is due to a
232 REG_EQUIV note. Future passes (viz., reload) may replace the
233 pseudo with the equivalent expression and so we account for the
234 dependences that would be introduced if that happens.
235
236 The REG_EQUIV notes created in assign_parms may mention the arg
237 pointer, and there are explicit insns in the RTL that modify the
238 arg pointer. Thus we must ensure that such insns don't get
239 scheduled across each other because that would invalidate the
240 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
241 wrong, but solving the problem in the scheduler will likely give
242 better code, so we do it here. */
243 static bool *reg_known_equiv_p;
244
245 /* True when scanning insns from the start of the rtl to the
246 NOTE_INSN_FUNCTION_BEG note. */
247 static bool copying_arguments;
248
249 DEF_VEC_P(alias_set_entry);
250 DEF_VEC_ALLOC_P(alias_set_entry,gc);
251
252 /* The splay-tree used to store the various alias set entries. */
253 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
254 \f
255 /* Build a decomposed reference object for querying the alias-oracle
256 from the MEM rtx and store it in *REF.
257 Returns false if MEM is not suitable for the alias-oracle. */
258
259 static bool
260 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
261 {
262 tree expr = MEM_EXPR (mem);
263 tree base;
264
265 if (!expr)
266 return false;
267
268 /* If MEM_OFFSET or MEM_SIZE are NULL punt. */
269 if (!MEM_OFFSET (mem)
270 || !MEM_SIZE (mem))
271 return false;
272
273 ao_ref_init (ref, expr);
274
275 /* Get the base of the reference and see if we have to reject or
276 adjust it. */
277 base = ao_ref_base (ref);
278 if (base == NULL_TREE)
279 return false;
280
281 /* If this is a pointer dereference of a non-SSA_NAME punt.
282 ??? We could replace it with a pointer to anything. */
283 if (INDIRECT_REF_P (base)
284 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
285 return false;
286
287 /* The tree oracle doesn't like to have these. */
288 if (TREE_CODE (base) == FUNCTION_DECL
289 || TREE_CODE (base) == LABEL_DECL)
290 return false;
291
292 /* If this is a reference based on a partitioned decl replace the
293 base with an INDIRECT_REF of the pointer representative we
294 created during stack slot partitioning. */
295 if (TREE_CODE (base) == VAR_DECL
296 && ! TREE_STATIC (base)
297 && cfun->gimple_df->decls_to_pointers != NULL)
298 {
299 void *namep;
300 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
301 if (namep)
302 {
303 ref->base_alias_set = get_alias_set (base);
304 ref->base = build1 (INDIRECT_REF, TREE_TYPE (base), *(tree *)namep);
305 }
306 }
307
308 ref->ref_alias_set = MEM_ALIAS_SET (mem);
309
310 /* If the base decl is a parameter we can have negative MEM_OFFSET in
311 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
312 here. */
313 if (INTVAL (MEM_OFFSET (mem)) < 0
314 && ((INTVAL (MEM_SIZE (mem)) + INTVAL (MEM_OFFSET (mem)))
315 * BITS_PER_UNIT) == ref->size)
316 return true;
317
318 ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
319 ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
320
321 /* The MEM may extend into adjacent fields, so adjust max_size if
322 necessary. */
323 if (ref->max_size != -1
324 && ref->size > ref->max_size)
325 ref->max_size = ref->size;
326
327 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
328 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
329 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
330 && (ref->offset < 0
331 || (DECL_P (ref->base)
332 && (!host_integerp (DECL_SIZE (ref->base), 1)
333 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
334 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
335 return false;
336
337 return true;
338 }
339
340 /* Query the alias-oracle on whether the two memory rtx X and MEM may
341 alias. If TBAA_P is set also apply TBAA. Returns true if the
342 two rtxen may alias, false otherwise. */
343
344 static bool
345 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
346 {
347 ao_ref ref1, ref2;
348
349 if (!ao_ref_from_mem (&ref1, x)
350 || !ao_ref_from_mem (&ref2, mem))
351 return true;
352
353 return refs_may_alias_p_1 (&ref1, &ref2, tbaa_p);
354 }
355
356 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
357 such an entry, or NULL otherwise. */
358
359 static inline alias_set_entry
360 get_alias_set_entry (alias_set_type alias_set)
361 {
362 return VEC_index (alias_set_entry, alias_sets, alias_set);
363 }
364
365 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
366 the two MEMs cannot alias each other. */
367
368 static inline int
369 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
370 {
371 /* Perform a basic sanity check. Namely, that there are no alias sets
372 if we're not using strict aliasing. This helps to catch bugs
373 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
374 where a MEM is allocated in some way other than by the use of
375 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
376 use alias sets to indicate that spilled registers cannot alias each
377 other, we might need to remove this check. */
378 gcc_assert (flag_strict_aliasing
379 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
380
381 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
382 }
383
384 /* Insert the NODE into the splay tree given by DATA. Used by
385 record_alias_subset via splay_tree_foreach. */
386
387 static int
388 insert_subset_children (splay_tree_node node, void *data)
389 {
390 splay_tree_insert ((splay_tree) data, node->key, node->value);
391
392 return 0;
393 }
394
395 /* Return true if the first alias set is a subset of the second. */
396
397 bool
398 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
399 {
400 alias_set_entry ase;
401
402 /* Everything is a subset of the "aliases everything" set. */
403 if (set2 == 0)
404 return true;
405
406 /* Otherwise, check if set1 is a subset of set2. */
407 ase = get_alias_set_entry (set2);
408 if (ase != 0
409 && ((ase->has_zero_child && set1 == 0)
410 || splay_tree_lookup (ase->children,
411 (splay_tree_key) set1)))
412 return true;
413 return false;
414 }
415
416 /* Return 1 if the two specified alias sets may conflict. */
417
418 int
419 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
420 {
421 alias_set_entry ase;
422
423 /* The easy case. */
424 if (alias_sets_must_conflict_p (set1, set2))
425 return 1;
426
427 /* See if the first alias set is a subset of the second. */
428 ase = get_alias_set_entry (set1);
429 if (ase != 0
430 && (ase->has_zero_child
431 || splay_tree_lookup (ase->children,
432 (splay_tree_key) set2)))
433 return 1;
434
435 /* Now do the same, but with the alias sets reversed. */
436 ase = get_alias_set_entry (set2);
437 if (ase != 0
438 && (ase->has_zero_child
439 || splay_tree_lookup (ase->children,
440 (splay_tree_key) set1)))
441 return 1;
442
443 /* The two alias sets are distinct and neither one is the
444 child of the other. Therefore, they cannot conflict. */
445 return 0;
446 }
447
448 static int
449 walk_mems_2 (rtx *x, rtx mem)
450 {
451 if (MEM_P (*x))
452 {
453 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
454 return 1;
455
456 return -1;
457 }
458 return 0;
459 }
460
461 static int
462 walk_mems_1 (rtx *x, rtx *pat)
463 {
464 if (MEM_P (*x))
465 {
466 /* Visit all MEMs in *PAT and check indepedence. */
467 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
468 /* Indicate that dependence was determined and stop traversal. */
469 return 1;
470
471 return -1;
472 }
473 return 0;
474 }
475
476 /* Return 1 if two specified instructions have mem expr with conflict alias sets*/
477 bool
478 insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
479 {
480 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
481 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
482 &PATTERN (insn2));
483 }
484
485 /* Return 1 if the two specified alias sets will always conflict. */
486
487 int
488 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
489 {
490 if (set1 == 0 || set2 == 0 || set1 == set2)
491 return 1;
492
493 return 0;
494 }
495
496 /* Return 1 if any MEM object of type T1 will always conflict (using the
497 dependency routines in this file) with any MEM object of type T2.
498 This is used when allocating temporary storage. If T1 and/or T2 are
499 NULL_TREE, it means we know nothing about the storage. */
500
501 int
502 objects_must_conflict_p (tree t1, tree t2)
503 {
504 alias_set_type set1, set2;
505
506 /* If neither has a type specified, we don't know if they'll conflict
507 because we may be using them to store objects of various types, for
508 example the argument and local variables areas of inlined functions. */
509 if (t1 == 0 && t2 == 0)
510 return 0;
511
512 /* If they are the same type, they must conflict. */
513 if (t1 == t2
514 /* Likewise if both are volatile. */
515 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
516 return 1;
517
518 set1 = t1 ? get_alias_set (t1) : 0;
519 set2 = t2 ? get_alias_set (t2) : 0;
520
521 /* We can't use alias_sets_conflict_p because we must make sure
522 that every subtype of t1 will conflict with every subtype of
523 t2 for which a pair of subobjects of these respective subtypes
524 overlaps on the stack. */
525 return alias_sets_must_conflict_p (set1, set2);
526 }
527 \f
528 /* Return true if all nested component references handled by
529 get_inner_reference in T are such that we should use the alias set
530 provided by the object at the heart of T.
531
532 This is true for non-addressable components (which don't have their
533 own alias set), as well as components of objects in alias set zero.
534 This later point is a special case wherein we wish to override the
535 alias set used by the component, but we don't have per-FIELD_DECL
536 assignable alias sets. */
537
538 bool
539 component_uses_parent_alias_set (const_tree t)
540 {
541 while (1)
542 {
543 /* If we're at the end, it vacuously uses its own alias set. */
544 if (!handled_component_p (t))
545 return false;
546
547 switch (TREE_CODE (t))
548 {
549 case COMPONENT_REF:
550 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
551 return true;
552 break;
553
554 case ARRAY_REF:
555 case ARRAY_RANGE_REF:
556 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
557 return true;
558 break;
559
560 case REALPART_EXPR:
561 case IMAGPART_EXPR:
562 break;
563
564 default:
565 /* Bitfields and casts are never addressable. */
566 return true;
567 }
568
569 t = TREE_OPERAND (t, 0);
570 if (get_alias_set (TREE_TYPE (t)) == 0)
571 return true;
572 }
573 }
574
575 /* Return the alias set for the memory pointed to by T, which may be
576 either a type or an expression. Return -1 if there is nothing
577 special about dereferencing T. */
578
579 static alias_set_type
580 get_deref_alias_set_1 (tree t)
581 {
582 /* If we're not doing any alias analysis, just assume everything
583 aliases everything else. */
584 if (!flag_strict_aliasing)
585 return 0;
586
587 /* All we care about is the type. */
588 if (! TYPE_P (t))
589 t = TREE_TYPE (t);
590
591 /* If we have an INDIRECT_REF via a void pointer, we don't
592 know anything about what that might alias. Likewise if the
593 pointer is marked that way. */
594 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
595 || TYPE_REF_CAN_ALIAS_ALL (t))
596 return 0;
597
598 return -1;
599 }
600
601 /* Return the alias set for the memory pointed to by T, which may be
602 either a type or an expression. */
603
604 alias_set_type
605 get_deref_alias_set (tree t)
606 {
607 alias_set_type set = get_deref_alias_set_1 (t);
608
609 /* Fall back to the alias-set of the pointed-to type. */
610 if (set == -1)
611 {
612 if (! TYPE_P (t))
613 t = TREE_TYPE (t);
614 set = get_alias_set (TREE_TYPE (t));
615 }
616
617 return set;
618 }
619
620 /* Return the alias set for T, which may be either a type or an
621 expression. Call language-specific routine for help, if needed. */
622
623 alias_set_type
624 get_alias_set (tree t)
625 {
626 alias_set_type set;
627
628 /* If we're not doing any alias analysis, just assume everything
629 aliases everything else. Also return 0 if this or its type is
630 an error. */
631 if (! flag_strict_aliasing || t == error_mark_node
632 || (! TYPE_P (t)
633 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
634 return 0;
635
636 /* We can be passed either an expression or a type. This and the
637 language-specific routine may make mutually-recursive calls to each other
638 to figure out what to do. At each juncture, we see if this is a tree
639 that the language may need to handle specially. First handle things that
640 aren't types. */
641 if (! TYPE_P (t))
642 {
643 tree inner;
644
645 /* Remove any nops, then give the language a chance to do
646 something with this tree before we look at it. */
647 STRIP_NOPS (t);
648 set = lang_hooks.get_alias_set (t);
649 if (set != -1)
650 return set;
651
652 /* Retrieve the original memory reference if needed. */
653 if (TREE_CODE (t) == TARGET_MEM_REF)
654 t = TMR_ORIGINAL (t);
655
656 /* First see if the actual object referenced is an INDIRECT_REF from a
657 restrict-qualified pointer or a "void *". */
658 inner = t;
659 while (handled_component_p (inner))
660 {
661 inner = TREE_OPERAND (inner, 0);
662 STRIP_NOPS (inner);
663 }
664
665 if (INDIRECT_REF_P (inner))
666 {
667 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
668 if (set != -1)
669 return set;
670 }
671
672 /* Otherwise, pick up the outermost object that we could have a pointer
673 to, processing conversions as above. */
674 while (component_uses_parent_alias_set (t))
675 {
676 t = TREE_OPERAND (t, 0);
677 STRIP_NOPS (t);
678 }
679
680 /* If we've already determined the alias set for a decl, just return
681 it. This is necessary for C++ anonymous unions, whose component
682 variables don't look like union members (boo!). */
683 if (TREE_CODE (t) == VAR_DECL
684 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
685 return MEM_ALIAS_SET (DECL_RTL (t));
686
687 /* Now all we care about is the type. */
688 t = TREE_TYPE (t);
689 }
690
691 /* Variant qualifiers don't affect the alias set, so get the main
692 variant. */
693 t = TYPE_MAIN_VARIANT (t);
694
695 /* Always use the canonical type as well. If this is a type that
696 requires structural comparisons to identify compatible types
697 use alias set zero. */
698 if (TYPE_STRUCTURAL_EQUALITY_P (t))
699 {
700 /* Allow the language to specify another alias set for this
701 type. */
702 set = lang_hooks.get_alias_set (t);
703 if (set != -1)
704 return set;
705 return 0;
706 }
707 t = TYPE_CANONICAL (t);
708 /* Canonical types shouldn't form a tree nor should the canonical
709 type require structural equality checks. */
710 gcc_assert (!TYPE_STRUCTURAL_EQUALITY_P (t) && TYPE_CANONICAL (t) == t);
711
712 /* If this is a type with a known alias set, return it. */
713 if (TYPE_ALIAS_SET_KNOWN_P (t))
714 return TYPE_ALIAS_SET (t);
715
716 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
717 if (!COMPLETE_TYPE_P (t))
718 {
719 /* For arrays with unknown size the conservative answer is the
720 alias set of the element type. */
721 if (TREE_CODE (t) == ARRAY_TYPE)
722 return get_alias_set (TREE_TYPE (t));
723
724 /* But return zero as a conservative answer for incomplete types. */
725 return 0;
726 }
727
728 /* See if the language has special handling for this type. */
729 set = lang_hooks.get_alias_set (t);
730 if (set != -1)
731 return set;
732
733 /* There are no objects of FUNCTION_TYPE, so there's no point in
734 using up an alias set for them. (There are, of course, pointers
735 and references to functions, but that's different.) */
736 else if (TREE_CODE (t) == FUNCTION_TYPE
737 || TREE_CODE (t) == METHOD_TYPE)
738 set = 0;
739
740 /* Unless the language specifies otherwise, let vector types alias
741 their components. This avoids some nasty type punning issues in
742 normal usage. And indeed lets vectors be treated more like an
743 array slice. */
744 else if (TREE_CODE (t) == VECTOR_TYPE)
745 set = get_alias_set (TREE_TYPE (t));
746
747 /* Unless the language specifies otherwise, treat array types the
748 same as their components. This avoids the asymmetry we get
749 through recording the components. Consider accessing a
750 character(kind=1) through a reference to a character(kind=1)[1:1].
751 Or consider if we want to assign integer(kind=4)[0:D.1387] and
752 integer(kind=4)[4] the same alias set or not.
753 Just be pragmatic here and make sure the array and its element
754 type get the same alias set assigned. */
755 else if (TREE_CODE (t) == ARRAY_TYPE
756 && !TYPE_NONALIASED_COMPONENT (t))
757 set = get_alias_set (TREE_TYPE (t));
758
759 else
760 /* Otherwise make a new alias set for this type. */
761 set = new_alias_set ();
762
763 TYPE_ALIAS_SET (t) = set;
764
765 /* If this is an aggregate type, we must record any component aliasing
766 information. */
767 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
768 record_component_aliases (t);
769
770 return set;
771 }
772
773 /* Return a brand-new alias set. */
774
775 alias_set_type
776 new_alias_set (void)
777 {
778 if (flag_strict_aliasing)
779 {
780 if (alias_sets == 0)
781 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
782 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
783 return VEC_length (alias_set_entry, alias_sets) - 1;
784 }
785 else
786 return 0;
787 }
788
789 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
790 not everything that aliases SUPERSET also aliases SUBSET. For example,
791 in C, a store to an `int' can alias a load of a structure containing an
792 `int', and vice versa. But it can't alias a load of a 'double' member
793 of the same structure. Here, the structure would be the SUPERSET and
794 `int' the SUBSET. This relationship is also described in the comment at
795 the beginning of this file.
796
797 This function should be called only once per SUPERSET/SUBSET pair.
798
799 It is illegal for SUPERSET to be zero; everything is implicitly a
800 subset of alias set zero. */
801
802 void
803 record_alias_subset (alias_set_type superset, alias_set_type subset)
804 {
805 alias_set_entry superset_entry;
806 alias_set_entry subset_entry;
807
808 /* It is possible in complex type situations for both sets to be the same,
809 in which case we can ignore this operation. */
810 if (superset == subset)
811 return;
812
813 gcc_assert (superset);
814
815 superset_entry = get_alias_set_entry (superset);
816 if (superset_entry == 0)
817 {
818 /* Create an entry for the SUPERSET, so that we have a place to
819 attach the SUBSET. */
820 superset_entry = GGC_NEW (struct alias_set_entry_d);
821 superset_entry->alias_set = superset;
822 superset_entry->children
823 = splay_tree_new_ggc (splay_tree_compare_ints);
824 superset_entry->has_zero_child = 0;
825 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
826 }
827
828 if (subset == 0)
829 superset_entry->has_zero_child = 1;
830 else
831 {
832 subset_entry = get_alias_set_entry (subset);
833 /* If there is an entry for the subset, enter all of its children
834 (if they are not already present) as children of the SUPERSET. */
835 if (subset_entry)
836 {
837 if (subset_entry->has_zero_child)
838 superset_entry->has_zero_child = 1;
839
840 splay_tree_foreach (subset_entry->children, insert_subset_children,
841 superset_entry->children);
842 }
843
844 /* Enter the SUBSET itself as a child of the SUPERSET. */
845 splay_tree_insert (superset_entry->children,
846 (splay_tree_key) subset, 0);
847 }
848 }
849
850 /* Record that component types of TYPE, if any, are part of that type for
851 aliasing purposes. For record types, we only record component types
852 for fields that are not marked non-addressable. For array types, we
853 only record the component type if it is not marked non-aliased. */
854
855 void
856 record_component_aliases (tree type)
857 {
858 alias_set_type superset = get_alias_set (type);
859 tree field;
860
861 if (superset == 0)
862 return;
863
864 switch (TREE_CODE (type))
865 {
866 case RECORD_TYPE:
867 case UNION_TYPE:
868 case QUAL_UNION_TYPE:
869 /* Recursively record aliases for the base classes, if there are any. */
870 if (TYPE_BINFO (type))
871 {
872 int i;
873 tree binfo, base_binfo;
874
875 for (binfo = TYPE_BINFO (type), i = 0;
876 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
877 record_alias_subset (superset,
878 get_alias_set (BINFO_TYPE (base_binfo)));
879 }
880 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
881 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
882 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
883 break;
884
885 case COMPLEX_TYPE:
886 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
887 break;
888
889 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
890 element type. */
891
892 default:
893 break;
894 }
895 }
896
897 /* Allocate an alias set for use in storing and reading from the varargs
898 spill area. */
899
900 static GTY(()) alias_set_type varargs_set = -1;
901
902 alias_set_type
903 get_varargs_alias_set (void)
904 {
905 #if 1
906 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
907 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
908 consistently use the varargs alias set for loads from the varargs
909 area. So don't use it anywhere. */
910 return 0;
911 #else
912 if (varargs_set == -1)
913 varargs_set = new_alias_set ();
914
915 return varargs_set;
916 #endif
917 }
918
919 /* Likewise, but used for the fixed portions of the frame, e.g., register
920 save areas. */
921
922 static GTY(()) alias_set_type frame_set = -1;
923
924 alias_set_type
925 get_frame_alias_set (void)
926 {
927 if (frame_set == -1)
928 frame_set = new_alias_set ();
929
930 return frame_set;
931 }
932
933 /* Inside SRC, the source of a SET, find a base address. */
934
935 static rtx
936 find_base_value (rtx src)
937 {
938 unsigned int regno;
939
940 #if defined (FIND_BASE_TERM)
941 /* Try machine-dependent ways to find the base term. */
942 src = FIND_BASE_TERM (src);
943 #endif
944
945 switch (GET_CODE (src))
946 {
947 case SYMBOL_REF:
948 case LABEL_REF:
949 return src;
950
951 case REG:
952 regno = REGNO (src);
953 /* At the start of a function, argument registers have known base
954 values which may be lost later. Returning an ADDRESS
955 expression here allows optimization based on argument values
956 even when the argument registers are used for other purposes. */
957 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
958 return new_reg_base_value[regno];
959
960 /* If a pseudo has a known base value, return it. Do not do this
961 for non-fixed hard regs since it can result in a circular
962 dependency chain for registers which have values at function entry.
963
964 The test above is not sufficient because the scheduler may move
965 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
966 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
967 && regno < VEC_length (rtx, reg_base_value))
968 {
969 /* If we're inside init_alias_analysis, use new_reg_base_value
970 to reduce the number of relaxation iterations. */
971 if (new_reg_base_value && new_reg_base_value[regno]
972 && DF_REG_DEF_COUNT (regno) == 1)
973 return new_reg_base_value[regno];
974
975 if (VEC_index (rtx, reg_base_value, regno))
976 return VEC_index (rtx, reg_base_value, regno);
977 }
978
979 return 0;
980
981 case MEM:
982 /* Check for an argument passed in memory. Only record in the
983 copying-arguments block; it is too hard to track changes
984 otherwise. */
985 if (copying_arguments
986 && (XEXP (src, 0) == arg_pointer_rtx
987 || (GET_CODE (XEXP (src, 0)) == PLUS
988 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
989 return gen_rtx_ADDRESS (VOIDmode, src);
990 return 0;
991
992 case CONST:
993 src = XEXP (src, 0);
994 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
995 break;
996
997 /* ... fall through ... */
998
999 case PLUS:
1000 case MINUS:
1001 {
1002 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1003
1004 /* If either operand is a REG that is a known pointer, then it
1005 is the base. */
1006 if (REG_P (src_0) && REG_POINTER (src_0))
1007 return find_base_value (src_0);
1008 if (REG_P (src_1) && REG_POINTER (src_1))
1009 return find_base_value (src_1);
1010
1011 /* If either operand is a REG, then see if we already have
1012 a known value for it. */
1013 if (REG_P (src_0))
1014 {
1015 temp = find_base_value (src_0);
1016 if (temp != 0)
1017 src_0 = temp;
1018 }
1019
1020 if (REG_P (src_1))
1021 {
1022 temp = find_base_value (src_1);
1023 if (temp!= 0)
1024 src_1 = temp;
1025 }
1026
1027 /* If either base is named object or a special address
1028 (like an argument or stack reference), then use it for the
1029 base term. */
1030 if (src_0 != 0
1031 && (GET_CODE (src_0) == SYMBOL_REF
1032 || GET_CODE (src_0) == LABEL_REF
1033 || (GET_CODE (src_0) == ADDRESS
1034 && GET_MODE (src_0) != VOIDmode)))
1035 return src_0;
1036
1037 if (src_1 != 0
1038 && (GET_CODE (src_1) == SYMBOL_REF
1039 || GET_CODE (src_1) == LABEL_REF
1040 || (GET_CODE (src_1) == ADDRESS
1041 && GET_MODE (src_1) != VOIDmode)))
1042 return src_1;
1043
1044 /* Guess which operand is the base address:
1045 If either operand is a symbol, then it is the base. If
1046 either operand is a CONST_INT, then the other is the base. */
1047 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1048 return find_base_value (src_0);
1049 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1050 return find_base_value (src_1);
1051
1052 return 0;
1053 }
1054
1055 case LO_SUM:
1056 /* The standard form is (lo_sum reg sym) so look only at the
1057 second operand. */
1058 return find_base_value (XEXP (src, 1));
1059
1060 case AND:
1061 /* If the second operand is constant set the base
1062 address to the first operand. */
1063 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1064 return find_base_value (XEXP (src, 0));
1065 return 0;
1066
1067 case TRUNCATE:
1068 /* As we do not know which address space the pointer is refering to, we can
1069 handle this only if the target does not support different pointer or
1070 address modes depending on the address space. */
1071 if (!target_default_pointer_address_modes_p ())
1072 break;
1073 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1074 break;
1075 /* Fall through. */
1076 case HIGH:
1077 case PRE_INC:
1078 case PRE_DEC:
1079 case POST_INC:
1080 case POST_DEC:
1081 case PRE_MODIFY:
1082 case POST_MODIFY:
1083 return find_base_value (XEXP (src, 0));
1084
1085 case ZERO_EXTEND:
1086 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1087 /* As we do not know which address space the pointer is refering to, we can
1088 handle this only if the target does not support different pointer or
1089 address modes depending on the address space. */
1090 if (!target_default_pointer_address_modes_p ())
1091 break;
1092
1093 {
1094 rtx temp = find_base_value (XEXP (src, 0));
1095
1096 if (temp != 0 && CONSTANT_P (temp))
1097 temp = convert_memory_address (Pmode, temp);
1098
1099 return temp;
1100 }
1101
1102 default:
1103 break;
1104 }
1105
1106 return 0;
1107 }
1108
1109 /* Called from init_alias_analysis indirectly through note_stores. */
1110
1111 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1112 register N has been set in this function. */
1113 static char *reg_seen;
1114
1115 /* Addresses which are known not to alias anything else are identified
1116 by a unique integer. */
1117 static int unique_id;
1118
1119 static void
1120 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1121 {
1122 unsigned regno;
1123 rtx src;
1124 int n;
1125
1126 if (!REG_P (dest))
1127 return;
1128
1129 regno = REGNO (dest);
1130
1131 gcc_assert (regno < VEC_length (rtx, reg_base_value));
1132
1133 /* If this spans multiple hard registers, then we must indicate that every
1134 register has an unusable value. */
1135 if (regno < FIRST_PSEUDO_REGISTER)
1136 n = hard_regno_nregs[regno][GET_MODE (dest)];
1137 else
1138 n = 1;
1139 if (n != 1)
1140 {
1141 while (--n >= 0)
1142 {
1143 reg_seen[regno + n] = 1;
1144 new_reg_base_value[regno + n] = 0;
1145 }
1146 return;
1147 }
1148
1149 if (set)
1150 {
1151 /* A CLOBBER wipes out any old value but does not prevent a previously
1152 unset register from acquiring a base address (i.e. reg_seen is not
1153 set). */
1154 if (GET_CODE (set) == CLOBBER)
1155 {
1156 new_reg_base_value[regno] = 0;
1157 return;
1158 }
1159 src = SET_SRC (set);
1160 }
1161 else
1162 {
1163 if (reg_seen[regno])
1164 {
1165 new_reg_base_value[regno] = 0;
1166 return;
1167 }
1168 reg_seen[regno] = 1;
1169 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1170 GEN_INT (unique_id++));
1171 return;
1172 }
1173
1174 /* If this is not the first set of REGNO, see whether the new value
1175 is related to the old one. There are two cases of interest:
1176
1177 (1) The register might be assigned an entirely new value
1178 that has the same base term as the original set.
1179
1180 (2) The set might be a simple self-modification that
1181 cannot change REGNO's base value.
1182
1183 If neither case holds, reject the original base value as invalid.
1184 Note that the following situation is not detected:
1185
1186 extern int x, y; int *p = &x; p += (&y-&x);
1187
1188 ANSI C does not allow computing the difference of addresses
1189 of distinct top level objects. */
1190 if (new_reg_base_value[regno] != 0
1191 && find_base_value (src) != new_reg_base_value[regno])
1192 switch (GET_CODE (src))
1193 {
1194 case LO_SUM:
1195 case MINUS:
1196 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1197 new_reg_base_value[regno] = 0;
1198 break;
1199 case PLUS:
1200 /* If the value we add in the PLUS is also a valid base value,
1201 this might be the actual base value, and the original value
1202 an index. */
1203 {
1204 rtx other = NULL_RTX;
1205
1206 if (XEXP (src, 0) == dest)
1207 other = XEXP (src, 1);
1208 else if (XEXP (src, 1) == dest)
1209 other = XEXP (src, 0);
1210
1211 if (! other || find_base_value (other))
1212 new_reg_base_value[regno] = 0;
1213 break;
1214 }
1215 case AND:
1216 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1217 new_reg_base_value[regno] = 0;
1218 break;
1219 default:
1220 new_reg_base_value[regno] = 0;
1221 break;
1222 }
1223 /* If this is the first set of a register, record the value. */
1224 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1225 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1226 new_reg_base_value[regno] = find_base_value (src);
1227
1228 reg_seen[regno] = 1;
1229 }
1230
1231 /* If a value is known for REGNO, return it. */
1232
1233 rtx
1234 get_reg_known_value (unsigned int regno)
1235 {
1236 if (regno >= FIRST_PSEUDO_REGISTER)
1237 {
1238 regno -= FIRST_PSEUDO_REGISTER;
1239 if (regno < reg_known_value_size)
1240 return reg_known_value[regno];
1241 }
1242 return NULL;
1243 }
1244
1245 /* Set it. */
1246
1247 static void
1248 set_reg_known_value (unsigned int regno, rtx val)
1249 {
1250 if (regno >= FIRST_PSEUDO_REGISTER)
1251 {
1252 regno -= FIRST_PSEUDO_REGISTER;
1253 if (regno < reg_known_value_size)
1254 reg_known_value[regno] = val;
1255 }
1256 }
1257
1258 /* Similarly for reg_known_equiv_p. */
1259
1260 bool
1261 get_reg_known_equiv_p (unsigned int regno)
1262 {
1263 if (regno >= FIRST_PSEUDO_REGISTER)
1264 {
1265 regno -= FIRST_PSEUDO_REGISTER;
1266 if (regno < reg_known_value_size)
1267 return reg_known_equiv_p[regno];
1268 }
1269 return false;
1270 }
1271
1272 static void
1273 set_reg_known_equiv_p (unsigned int regno, bool val)
1274 {
1275 if (regno >= FIRST_PSEUDO_REGISTER)
1276 {
1277 regno -= FIRST_PSEUDO_REGISTER;
1278 if (regno < reg_known_value_size)
1279 reg_known_equiv_p[regno] = val;
1280 }
1281 }
1282
1283
1284 /* Returns a canonical version of X, from the point of view alias
1285 analysis. (For example, if X is a MEM whose address is a register,
1286 and the register has a known value (say a SYMBOL_REF), then a MEM
1287 whose address is the SYMBOL_REF is returned.) */
1288
1289 rtx
1290 canon_rtx (rtx x)
1291 {
1292 /* Recursively look for equivalences. */
1293 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1294 {
1295 rtx t = get_reg_known_value (REGNO (x));
1296 if (t == x)
1297 return x;
1298 if (t)
1299 return canon_rtx (t);
1300 }
1301
1302 if (GET_CODE (x) == PLUS)
1303 {
1304 rtx x0 = canon_rtx (XEXP (x, 0));
1305 rtx x1 = canon_rtx (XEXP (x, 1));
1306
1307 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1308 {
1309 if (CONST_INT_P (x0))
1310 return plus_constant (x1, INTVAL (x0));
1311 else if (CONST_INT_P (x1))
1312 return plus_constant (x0, INTVAL (x1));
1313 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1314 }
1315 }
1316
1317 /* This gives us much better alias analysis when called from
1318 the loop optimizer. Note we want to leave the original
1319 MEM alone, but need to return the canonicalized MEM with
1320 all the flags with their original values. */
1321 else if (MEM_P (x))
1322 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1323
1324 return x;
1325 }
1326
1327 /* Return 1 if X and Y are identical-looking rtx's.
1328 Expect that X and Y has been already canonicalized.
1329
1330 We use the data in reg_known_value above to see if two registers with
1331 different numbers are, in fact, equivalent. */
1332
1333 static int
1334 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1335 {
1336 int i;
1337 int j;
1338 enum rtx_code code;
1339 const char *fmt;
1340
1341 if (x == 0 && y == 0)
1342 return 1;
1343 if (x == 0 || y == 0)
1344 return 0;
1345
1346 if (x == y)
1347 return 1;
1348
1349 code = GET_CODE (x);
1350 /* Rtx's of different codes cannot be equal. */
1351 if (code != GET_CODE (y))
1352 return 0;
1353
1354 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1355 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1356
1357 if (GET_MODE (x) != GET_MODE (y))
1358 return 0;
1359
1360 /* Some RTL can be compared without a recursive examination. */
1361 switch (code)
1362 {
1363 case REG:
1364 return REGNO (x) == REGNO (y);
1365
1366 case LABEL_REF:
1367 return XEXP (x, 0) == XEXP (y, 0);
1368
1369 case SYMBOL_REF:
1370 return XSTR (x, 0) == XSTR (y, 0);
1371
1372 case VALUE:
1373 case CONST_INT:
1374 case CONST_DOUBLE:
1375 case CONST_FIXED:
1376 /* There's no need to compare the contents of CONST_DOUBLEs or
1377 CONST_INTs because pointer equality is a good enough
1378 comparison for these nodes. */
1379 return 0;
1380
1381 default:
1382 break;
1383 }
1384
1385 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1386 if (code == PLUS)
1387 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1388 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1389 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1390 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1391 /* For commutative operations, the RTX match if the operand match in any
1392 order. Also handle the simple binary and unary cases without a loop. */
1393 if (COMMUTATIVE_P (x))
1394 {
1395 rtx xop0 = canon_rtx (XEXP (x, 0));
1396 rtx yop0 = canon_rtx (XEXP (y, 0));
1397 rtx yop1 = canon_rtx (XEXP (y, 1));
1398
1399 return ((rtx_equal_for_memref_p (xop0, yop0)
1400 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1401 || (rtx_equal_for_memref_p (xop0, yop1)
1402 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1403 }
1404 else if (NON_COMMUTATIVE_P (x))
1405 {
1406 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1407 canon_rtx (XEXP (y, 0)))
1408 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1409 canon_rtx (XEXP (y, 1))));
1410 }
1411 else if (UNARY_P (x))
1412 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1413 canon_rtx (XEXP (y, 0)));
1414
1415 /* Compare the elements. If any pair of corresponding elements
1416 fail to match, return 0 for the whole things.
1417
1418 Limit cases to types which actually appear in addresses. */
1419
1420 fmt = GET_RTX_FORMAT (code);
1421 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1422 {
1423 switch (fmt[i])
1424 {
1425 case 'i':
1426 if (XINT (x, i) != XINT (y, i))
1427 return 0;
1428 break;
1429
1430 case 'E':
1431 /* Two vectors must have the same length. */
1432 if (XVECLEN (x, i) != XVECLEN (y, i))
1433 return 0;
1434
1435 /* And the corresponding elements must match. */
1436 for (j = 0; j < XVECLEN (x, i); j++)
1437 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1438 canon_rtx (XVECEXP (y, i, j))) == 0)
1439 return 0;
1440 break;
1441
1442 case 'e':
1443 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1444 canon_rtx (XEXP (y, i))) == 0)
1445 return 0;
1446 break;
1447
1448 /* This can happen for asm operands. */
1449 case 's':
1450 if (strcmp (XSTR (x, i), XSTR (y, i)))
1451 return 0;
1452 break;
1453
1454 /* This can happen for an asm which clobbers memory. */
1455 case '0':
1456 break;
1457
1458 /* It is believed that rtx's at this level will never
1459 contain anything but integers and other rtx's,
1460 except for within LABEL_REFs and SYMBOL_REFs. */
1461 default:
1462 gcc_unreachable ();
1463 }
1464 }
1465 return 1;
1466 }
1467
1468 rtx
1469 find_base_term (rtx x)
1470 {
1471 cselib_val *val;
1472 struct elt_loc_list *l;
1473
1474 #if defined (FIND_BASE_TERM)
1475 /* Try machine-dependent ways to find the base term. */
1476 x = FIND_BASE_TERM (x);
1477 #endif
1478
1479 switch (GET_CODE (x))
1480 {
1481 case REG:
1482 return REG_BASE_VALUE (x);
1483
1484 case TRUNCATE:
1485 /* As we do not know which address space the pointer is refering to, we can
1486 handle this only if the target does not support different pointer or
1487 address modes depending on the address space. */
1488 if (!target_default_pointer_address_modes_p ())
1489 return 0;
1490 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1491 return 0;
1492 /* Fall through. */
1493 case HIGH:
1494 case PRE_INC:
1495 case PRE_DEC:
1496 case POST_INC:
1497 case POST_DEC:
1498 case PRE_MODIFY:
1499 case POST_MODIFY:
1500 return find_base_term (XEXP (x, 0));
1501
1502 case ZERO_EXTEND:
1503 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1504 /* As we do not know which address space the pointer is refering to, we can
1505 handle this only if the target does not support different pointer or
1506 address modes depending on the address space. */
1507 if (!target_default_pointer_address_modes_p ())
1508 return 0;
1509
1510 {
1511 rtx temp = find_base_term (XEXP (x, 0));
1512
1513 if (temp != 0 && CONSTANT_P (temp))
1514 temp = convert_memory_address (Pmode, temp);
1515
1516 return temp;
1517 }
1518
1519 case VALUE:
1520 val = CSELIB_VAL_PTR (x);
1521 if (!val)
1522 return 0;
1523 for (l = val->locs; l; l = l->next)
1524 if ((x = find_base_term (l->loc)) != 0)
1525 return x;
1526 return 0;
1527
1528 case LO_SUM:
1529 /* The standard form is (lo_sum reg sym) so look only at the
1530 second operand. */
1531 return find_base_term (XEXP (x, 1));
1532
1533 case CONST:
1534 x = XEXP (x, 0);
1535 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1536 return 0;
1537 /* Fall through. */
1538 case PLUS:
1539 case MINUS:
1540 {
1541 rtx tmp1 = XEXP (x, 0);
1542 rtx tmp2 = XEXP (x, 1);
1543
1544 /* This is a little bit tricky since we have to determine which of
1545 the two operands represents the real base address. Otherwise this
1546 routine may return the index register instead of the base register.
1547
1548 That may cause us to believe no aliasing was possible, when in
1549 fact aliasing is possible.
1550
1551 We use a few simple tests to guess the base register. Additional
1552 tests can certainly be added. For example, if one of the operands
1553 is a shift or multiply, then it must be the index register and the
1554 other operand is the base register. */
1555
1556 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1557 return find_base_term (tmp2);
1558
1559 /* If either operand is known to be a pointer, then use it
1560 to determine the base term. */
1561 if (REG_P (tmp1) && REG_POINTER (tmp1))
1562 {
1563 rtx base = find_base_term (tmp1);
1564 if (base)
1565 return base;
1566 }
1567
1568 if (REG_P (tmp2) && REG_POINTER (tmp2))
1569 {
1570 rtx base = find_base_term (tmp2);
1571 if (base)
1572 return base;
1573 }
1574
1575 /* Neither operand was known to be a pointer. Go ahead and find the
1576 base term for both operands. */
1577 tmp1 = find_base_term (tmp1);
1578 tmp2 = find_base_term (tmp2);
1579
1580 /* If either base term is named object or a special address
1581 (like an argument or stack reference), then use it for the
1582 base term. */
1583 if (tmp1 != 0
1584 && (GET_CODE (tmp1) == SYMBOL_REF
1585 || GET_CODE (tmp1) == LABEL_REF
1586 || (GET_CODE (tmp1) == ADDRESS
1587 && GET_MODE (tmp1) != VOIDmode)))
1588 return tmp1;
1589
1590 if (tmp2 != 0
1591 && (GET_CODE (tmp2) == SYMBOL_REF
1592 || GET_CODE (tmp2) == LABEL_REF
1593 || (GET_CODE (tmp2) == ADDRESS
1594 && GET_MODE (tmp2) != VOIDmode)))
1595 return tmp2;
1596
1597 /* We could not determine which of the two operands was the
1598 base register and which was the index. So we can determine
1599 nothing from the base alias check. */
1600 return 0;
1601 }
1602
1603 case AND:
1604 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1605 return find_base_term (XEXP (x, 0));
1606 return 0;
1607
1608 case SYMBOL_REF:
1609 case LABEL_REF:
1610 return x;
1611
1612 default:
1613 return 0;
1614 }
1615 }
1616
1617 /* Return 0 if the addresses X and Y are known to point to different
1618 objects, 1 if they might be pointers to the same object. */
1619
1620 static int
1621 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1622 enum machine_mode y_mode)
1623 {
1624 rtx x_base = find_base_term (x);
1625 rtx y_base = find_base_term (y);
1626
1627 /* If the address itself has no known base see if a known equivalent
1628 value has one. If either address still has no known base, nothing
1629 is known about aliasing. */
1630 if (x_base == 0)
1631 {
1632 rtx x_c;
1633
1634 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1635 return 1;
1636
1637 x_base = find_base_term (x_c);
1638 if (x_base == 0)
1639 return 1;
1640 }
1641
1642 if (y_base == 0)
1643 {
1644 rtx y_c;
1645 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1646 return 1;
1647
1648 y_base = find_base_term (y_c);
1649 if (y_base == 0)
1650 return 1;
1651 }
1652
1653 /* If the base addresses are equal nothing is known about aliasing. */
1654 if (rtx_equal_p (x_base, y_base))
1655 return 1;
1656
1657 /* The base addresses are different expressions. If they are not accessed
1658 via AND, there is no conflict. We can bring knowledge of object
1659 alignment into play here. For example, on alpha, "char a, b;" can
1660 alias one another, though "char a; long b;" cannot. AND addesses may
1661 implicitly alias surrounding objects; i.e. unaligned access in DImode
1662 via AND address can alias all surrounding object types except those
1663 with aligment 8 or higher. */
1664 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1665 return 1;
1666 if (GET_CODE (x) == AND
1667 && (!CONST_INT_P (XEXP (x, 1))
1668 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1669 return 1;
1670 if (GET_CODE (y) == AND
1671 && (!CONST_INT_P (XEXP (y, 1))
1672 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1673 return 1;
1674
1675 /* Differing symbols not accessed via AND never alias. */
1676 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1677 return 0;
1678
1679 /* If one address is a stack reference there can be no alias:
1680 stack references using different base registers do not alias,
1681 a stack reference can not alias a parameter, and a stack reference
1682 can not alias a global. */
1683 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1684 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1685 return 0;
1686
1687 if (! flag_argument_noalias)
1688 return 1;
1689
1690 if (flag_argument_noalias > 1)
1691 return 0;
1692
1693 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1694 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1695 }
1696
1697 /* Convert the address X into something we can use. This is done by returning
1698 it unchanged unless it is a value; in the latter case we call cselib to get
1699 a more useful rtx. */
1700
1701 rtx
1702 get_addr (rtx x)
1703 {
1704 cselib_val *v;
1705 struct elt_loc_list *l;
1706
1707 if (GET_CODE (x) != VALUE)
1708 return x;
1709 v = CSELIB_VAL_PTR (x);
1710 if (v)
1711 {
1712 for (l = v->locs; l; l = l->next)
1713 if (CONSTANT_P (l->loc))
1714 return l->loc;
1715 for (l = v->locs; l; l = l->next)
1716 if (!REG_P (l->loc) && !MEM_P (l->loc))
1717 return l->loc;
1718 if (v->locs)
1719 return v->locs->loc;
1720 }
1721 return x;
1722 }
1723
1724 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1725 where SIZE is the size in bytes of the memory reference. If ADDR
1726 is not modified by the memory reference then ADDR is returned. */
1727
1728 static rtx
1729 addr_side_effect_eval (rtx addr, int size, int n_refs)
1730 {
1731 int offset = 0;
1732
1733 switch (GET_CODE (addr))
1734 {
1735 case PRE_INC:
1736 offset = (n_refs + 1) * size;
1737 break;
1738 case PRE_DEC:
1739 offset = -(n_refs + 1) * size;
1740 break;
1741 case POST_INC:
1742 offset = n_refs * size;
1743 break;
1744 case POST_DEC:
1745 offset = -n_refs * size;
1746 break;
1747
1748 default:
1749 return addr;
1750 }
1751
1752 if (offset)
1753 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1754 GEN_INT (offset));
1755 else
1756 addr = XEXP (addr, 0);
1757 addr = canon_rtx (addr);
1758
1759 return addr;
1760 }
1761
1762 /* Return one if X and Y (memory addresses) reference the
1763 same location in memory or if the references overlap.
1764 Return zero if they do not overlap, else return
1765 minus one in which case they still might reference the same location.
1766
1767 C is an offset accumulator. When
1768 C is nonzero, we are testing aliases between X and Y + C.
1769 XSIZE is the size in bytes of the X reference,
1770 similarly YSIZE is the size in bytes for Y.
1771 Expect that canon_rtx has been already called for X and Y.
1772
1773 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1774 referenced (the reference was BLKmode), so make the most pessimistic
1775 assumptions.
1776
1777 If XSIZE or YSIZE is negative, we may access memory outside the object
1778 being referenced as a side effect. This can happen when using AND to
1779 align memory references, as is done on the Alpha.
1780
1781 Nice to notice that varying addresses cannot conflict with fp if no
1782 local variables had their addresses taken, but that's too hard now.
1783
1784 ??? Contrary to the tree alias oracle this does not return
1785 one for X + non-constant and Y + non-constant when X and Y are equal.
1786 If that is fixed the TBAA hack for union type-punning can be removed. */
1787
1788 static int
1789 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1790 {
1791 if (GET_CODE (x) == VALUE)
1792 x = get_addr (x);
1793 if (GET_CODE (y) == VALUE)
1794 y = get_addr (y);
1795 if (GET_CODE (x) == HIGH)
1796 x = XEXP (x, 0);
1797 else if (GET_CODE (x) == LO_SUM)
1798 x = XEXP (x, 1);
1799 else
1800 x = addr_side_effect_eval (x, xsize, 0);
1801 if (GET_CODE (y) == HIGH)
1802 y = XEXP (y, 0);
1803 else if (GET_CODE (y) == LO_SUM)
1804 y = XEXP (y, 1);
1805 else
1806 y = addr_side_effect_eval (y, ysize, 0);
1807
1808 if (rtx_equal_for_memref_p (x, y))
1809 {
1810 if (xsize <= 0 || ysize <= 0)
1811 return 1;
1812 if (c >= 0 && xsize > c)
1813 return 1;
1814 if (c < 0 && ysize+c > 0)
1815 return 1;
1816 return 0;
1817 }
1818
1819 /* This code used to check for conflicts involving stack references and
1820 globals but the base address alias code now handles these cases. */
1821
1822 if (GET_CODE (x) == PLUS)
1823 {
1824 /* The fact that X is canonicalized means that this
1825 PLUS rtx is canonicalized. */
1826 rtx x0 = XEXP (x, 0);
1827 rtx x1 = XEXP (x, 1);
1828
1829 if (GET_CODE (y) == PLUS)
1830 {
1831 /* The fact that Y is canonicalized means that this
1832 PLUS rtx is canonicalized. */
1833 rtx y0 = XEXP (y, 0);
1834 rtx y1 = XEXP (y, 1);
1835
1836 if (rtx_equal_for_memref_p (x1, y1))
1837 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1838 if (rtx_equal_for_memref_p (x0, y0))
1839 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1840 if (CONST_INT_P (x1))
1841 {
1842 if (CONST_INT_P (y1))
1843 return memrefs_conflict_p (xsize, x0, ysize, y0,
1844 c - INTVAL (x1) + INTVAL (y1));
1845 else
1846 return memrefs_conflict_p (xsize, x0, ysize, y,
1847 c - INTVAL (x1));
1848 }
1849 else if (CONST_INT_P (y1))
1850 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1851
1852 return -1;
1853 }
1854 else if (CONST_INT_P (x1))
1855 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1856 }
1857 else if (GET_CODE (y) == PLUS)
1858 {
1859 /* The fact that Y is canonicalized means that this
1860 PLUS rtx is canonicalized. */
1861 rtx y0 = XEXP (y, 0);
1862 rtx y1 = XEXP (y, 1);
1863
1864 if (CONST_INT_P (y1))
1865 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1866 else
1867 return -1;
1868 }
1869
1870 if (GET_CODE (x) == GET_CODE (y))
1871 switch (GET_CODE (x))
1872 {
1873 case MULT:
1874 {
1875 /* Handle cases where we expect the second operands to be the
1876 same, and check only whether the first operand would conflict
1877 or not. */
1878 rtx x0, y0;
1879 rtx x1 = canon_rtx (XEXP (x, 1));
1880 rtx y1 = canon_rtx (XEXP (y, 1));
1881 if (! rtx_equal_for_memref_p (x1, y1))
1882 return -1;
1883 x0 = canon_rtx (XEXP (x, 0));
1884 y0 = canon_rtx (XEXP (y, 0));
1885 if (rtx_equal_for_memref_p (x0, y0))
1886 return (xsize == 0 || ysize == 0
1887 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1888
1889 /* Can't properly adjust our sizes. */
1890 if (!CONST_INT_P (x1))
1891 return -1;
1892 xsize /= INTVAL (x1);
1893 ysize /= INTVAL (x1);
1894 c /= INTVAL (x1);
1895 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1896 }
1897
1898 default:
1899 break;
1900 }
1901
1902 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1903 as an access with indeterminate size. Assume that references
1904 besides AND are aligned, so if the size of the other reference is
1905 at least as large as the alignment, assume no other overlap. */
1906 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
1907 {
1908 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1909 xsize = -1;
1910 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1911 }
1912 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
1913 {
1914 /* ??? If we are indexing far enough into the array/structure, we
1915 may yet be able to determine that we can not overlap. But we
1916 also need to that we are far enough from the end not to overlap
1917 a following reference, so we do nothing with that for now. */
1918 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1919 ysize = -1;
1920 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1921 }
1922
1923 if (CONSTANT_P (x))
1924 {
1925 if (CONST_INT_P (x) && CONST_INT_P (y))
1926 {
1927 c += (INTVAL (y) - INTVAL (x));
1928 return (xsize <= 0 || ysize <= 0
1929 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1930 }
1931
1932 if (GET_CODE (x) == CONST)
1933 {
1934 if (GET_CODE (y) == CONST)
1935 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1936 ysize, canon_rtx (XEXP (y, 0)), c);
1937 else
1938 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1939 ysize, y, c);
1940 }
1941 if (GET_CODE (y) == CONST)
1942 return memrefs_conflict_p (xsize, x, ysize,
1943 canon_rtx (XEXP (y, 0)), c);
1944
1945 if (CONSTANT_P (y))
1946 return (xsize <= 0 || ysize <= 0
1947 || (rtx_equal_for_memref_p (x, y)
1948 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1949
1950 return -1;
1951 }
1952
1953 return -1;
1954 }
1955
1956 /* Functions to compute memory dependencies.
1957
1958 Since we process the insns in execution order, we can build tables
1959 to keep track of what registers are fixed (and not aliased), what registers
1960 are varying in known ways, and what registers are varying in unknown
1961 ways.
1962
1963 If both memory references are volatile, then there must always be a
1964 dependence between the two references, since their order can not be
1965 changed. A volatile and non-volatile reference can be interchanged
1966 though.
1967
1968 A MEM_IN_STRUCT reference at a non-AND varying address can never
1969 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1970 also must allow AND addresses, because they may generate accesses
1971 outside the object being referenced. This is used to generate
1972 aligned addresses from unaligned addresses, for instance, the alpha
1973 storeqi_unaligned pattern. */
1974
1975 /* Read dependence: X is read after read in MEM takes place. There can
1976 only be a dependence here if both reads are volatile. */
1977
1978 int
1979 read_dependence (const_rtx mem, const_rtx x)
1980 {
1981 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1982 }
1983
1984 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1985 MEM2 is a reference to a structure at a varying address, or returns
1986 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1987 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1988 to decide whether or not an address may vary; it should return
1989 nonzero whenever variation is possible.
1990 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1991
1992 static const_rtx
1993 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
1994 rtx mem2_addr,
1995 bool (*varies_p) (const_rtx, bool))
1996 {
1997 if (! flag_strict_aliasing)
1998 return NULL_RTX;
1999
2000 if (MEM_ALIAS_SET (mem2)
2001 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
2002 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
2003 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
2004 varying address. */
2005 return mem1;
2006
2007 if (MEM_ALIAS_SET (mem1)
2008 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
2009 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
2010 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
2011 varying address. */
2012 return mem2;
2013
2014 return NULL_RTX;
2015 }
2016
2017 /* Returns nonzero if something about the mode or address format MEM1
2018 indicates that it might well alias *anything*. */
2019
2020 static int
2021 aliases_everything_p (const_rtx mem)
2022 {
2023 if (GET_CODE (XEXP (mem, 0)) == AND)
2024 /* If the address is an AND, it's very hard to know at what it is
2025 actually pointing. */
2026 return 1;
2027
2028 return 0;
2029 }
2030
2031 /* Return true if we can determine that the fields referenced cannot
2032 overlap for any pair of objects. */
2033
2034 static bool
2035 nonoverlapping_component_refs_p (const_tree x, const_tree y)
2036 {
2037 const_tree fieldx, fieldy, typex, typey, orig_y;
2038
2039 if (!flag_strict_aliasing)
2040 return false;
2041
2042 do
2043 {
2044 /* The comparison has to be done at a common type, since we don't
2045 know how the inheritance hierarchy works. */
2046 orig_y = y;
2047 do
2048 {
2049 fieldx = TREE_OPERAND (x, 1);
2050 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2051
2052 y = orig_y;
2053 do
2054 {
2055 fieldy = TREE_OPERAND (y, 1);
2056 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2057
2058 if (typex == typey)
2059 goto found;
2060
2061 y = TREE_OPERAND (y, 0);
2062 }
2063 while (y && TREE_CODE (y) == COMPONENT_REF);
2064
2065 x = TREE_OPERAND (x, 0);
2066 }
2067 while (x && TREE_CODE (x) == COMPONENT_REF);
2068 /* Never found a common type. */
2069 return false;
2070
2071 found:
2072 /* If we're left with accessing different fields of a structure,
2073 then no overlap. */
2074 if (TREE_CODE (typex) == RECORD_TYPE
2075 && fieldx != fieldy)
2076 return true;
2077
2078 /* The comparison on the current field failed. If we're accessing
2079 a very nested structure, look at the next outer level. */
2080 x = TREE_OPERAND (x, 0);
2081 y = TREE_OPERAND (y, 0);
2082 }
2083 while (x && y
2084 && TREE_CODE (x) == COMPONENT_REF
2085 && TREE_CODE (y) == COMPONENT_REF);
2086
2087 return false;
2088 }
2089
2090 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2091
2092 static tree
2093 decl_for_component_ref (tree x)
2094 {
2095 do
2096 {
2097 x = TREE_OPERAND (x, 0);
2098 }
2099 while (x && TREE_CODE (x) == COMPONENT_REF);
2100
2101 return x && DECL_P (x) ? x : NULL_TREE;
2102 }
2103
2104 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2105 offset of the field reference. */
2106
2107 static rtx
2108 adjust_offset_for_component_ref (tree x, rtx offset)
2109 {
2110 HOST_WIDE_INT ioffset;
2111
2112 if (! offset)
2113 return NULL_RTX;
2114
2115 ioffset = INTVAL (offset);
2116 do
2117 {
2118 tree offset = component_ref_field_offset (x);
2119 tree field = TREE_OPERAND (x, 1);
2120
2121 if (! host_integerp (offset, 1))
2122 return NULL_RTX;
2123 ioffset += (tree_low_cst (offset, 1)
2124 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2125 / BITS_PER_UNIT));
2126
2127 x = TREE_OPERAND (x, 0);
2128 }
2129 while (x && TREE_CODE (x) == COMPONENT_REF);
2130
2131 return GEN_INT (ioffset);
2132 }
2133
2134 /* Return nonzero if we can determine the exprs corresponding to memrefs
2135 X and Y and they do not overlap. */
2136
2137 int
2138 nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
2139 {
2140 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2141 rtx rtlx, rtly;
2142 rtx basex, basey;
2143 rtx moffsetx, moffsety;
2144 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2145
2146 /* Unless both have exprs, we can't tell anything. */
2147 if (exprx == 0 || expry == 0)
2148 return 0;
2149
2150 /* If both are field references, we may be able to determine something. */
2151 if (TREE_CODE (exprx) == COMPONENT_REF
2152 && TREE_CODE (expry) == COMPONENT_REF
2153 && nonoverlapping_component_refs_p (exprx, expry))
2154 return 1;
2155
2156
2157 /* If the field reference test failed, look at the DECLs involved. */
2158 moffsetx = MEM_OFFSET (x);
2159 if (TREE_CODE (exprx) == COMPONENT_REF)
2160 {
2161 if (TREE_CODE (expry) == VAR_DECL
2162 && POINTER_TYPE_P (TREE_TYPE (expry)))
2163 {
2164 tree field = TREE_OPERAND (exprx, 1);
2165 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2166 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2167 TREE_TYPE (field)))
2168 return 1;
2169 }
2170 {
2171 tree t = decl_for_component_ref (exprx);
2172 if (! t)
2173 return 0;
2174 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2175 exprx = t;
2176 }
2177 }
2178 else if (INDIRECT_REF_P (exprx))
2179 {
2180 exprx = TREE_OPERAND (exprx, 0);
2181 if (flag_argument_noalias < 2
2182 || TREE_CODE (exprx) != PARM_DECL)
2183 return 0;
2184 }
2185
2186 moffsety = MEM_OFFSET (y);
2187 if (TREE_CODE (expry) == COMPONENT_REF)
2188 {
2189 if (TREE_CODE (exprx) == VAR_DECL
2190 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2191 {
2192 tree field = TREE_OPERAND (expry, 1);
2193 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2194 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2195 TREE_TYPE (field)))
2196 return 1;
2197 }
2198 {
2199 tree t = decl_for_component_ref (expry);
2200 if (! t)
2201 return 0;
2202 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2203 expry = t;
2204 }
2205 }
2206 else if (INDIRECT_REF_P (expry))
2207 {
2208 expry = TREE_OPERAND (expry, 0);
2209 if (flag_argument_noalias < 2
2210 || TREE_CODE (expry) != PARM_DECL)
2211 return 0;
2212 }
2213
2214 if (! DECL_P (exprx) || ! DECL_P (expry))
2215 return 0;
2216
2217 /* With invalid code we can end up storing into the constant pool.
2218 Bail out to avoid ICEing when creating RTL for this.
2219 See gfortran.dg/lto/20091028-2_0.f90. */
2220 if (TREE_CODE (exprx) == CONST_DECL
2221 || TREE_CODE (expry) == CONST_DECL)
2222 return 1;
2223
2224 rtlx = DECL_RTL (exprx);
2225 rtly = DECL_RTL (expry);
2226
2227 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2228 can't overlap unless they are the same because we never reuse that part
2229 of the stack frame used for locals for spilled pseudos. */
2230 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2231 && ! rtx_equal_p (rtlx, rtly))
2232 return 1;
2233
2234 /* If we have MEMs refering to different address spaces (which can
2235 potentially overlap), we cannot easily tell from the addresses
2236 whether the references overlap. */
2237 if (MEM_P (rtlx) && MEM_P (rtly)
2238 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2239 return 0;
2240
2241 /* Get the base and offsets of both decls. If either is a register, we
2242 know both are and are the same, so use that as the base. The only
2243 we can avoid overlap is if we can deduce that they are nonoverlapping
2244 pieces of that decl, which is very rare. */
2245 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2246 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2247 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2248
2249 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2250 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2251 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2252
2253 /* If the bases are different, we know they do not overlap if both
2254 are constants or if one is a constant and the other a pointer into the
2255 stack frame. Otherwise a different base means we can't tell if they
2256 overlap or not. */
2257 if (! rtx_equal_p (basex, basey))
2258 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2259 || (CONSTANT_P (basex) && REG_P (basey)
2260 && REGNO_PTR_FRAME_P (REGNO (basey)))
2261 || (CONSTANT_P (basey) && REG_P (basex)
2262 && REGNO_PTR_FRAME_P (REGNO (basex))));
2263
2264 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2265 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2266 : -1);
2267 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2268 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2269 -1);
2270
2271 /* If we have an offset for either memref, it can update the values computed
2272 above. */
2273 if (moffsetx)
2274 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2275 if (moffsety)
2276 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2277
2278 /* If a memref has both a size and an offset, we can use the smaller size.
2279 We can't do this if the offset isn't known because we must view this
2280 memref as being anywhere inside the DECL's MEM. */
2281 if (MEM_SIZE (x) && moffsetx)
2282 sizex = INTVAL (MEM_SIZE (x));
2283 if (MEM_SIZE (y) && moffsety)
2284 sizey = INTVAL (MEM_SIZE (y));
2285
2286 /* Put the values of the memref with the lower offset in X's values. */
2287 if (offsetx > offsety)
2288 {
2289 tem = offsetx, offsetx = offsety, offsety = tem;
2290 tem = sizex, sizex = sizey, sizey = tem;
2291 }
2292
2293 /* If we don't know the size of the lower-offset value, we can't tell
2294 if they conflict. Otherwise, we do the test. */
2295 return sizex >= 0 && offsety >= offsetx + sizex;
2296 }
2297
2298 /* True dependence: X is read after store in MEM takes place. */
2299
2300 int
2301 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2302 bool (*varies) (const_rtx, bool))
2303 {
2304 rtx x_addr, mem_addr;
2305 rtx base;
2306 int ret;
2307
2308 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2309 return 1;
2310
2311 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2312 This is used in epilogue deallocation functions, and in cselib. */
2313 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2314 return 1;
2315 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2316 return 1;
2317 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2318 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2319 return 1;
2320
2321 /* Read-only memory is by definition never modified, and therefore can't
2322 conflict with anything. We don't expect to find read-only set on MEM,
2323 but stupid user tricks can produce them, so don't die. */
2324 if (MEM_READONLY_P (x))
2325 return 0;
2326
2327 /* If we have MEMs refering to different address spaces (which can
2328 potentially overlap), we cannot easily tell from the addresses
2329 whether the references overlap. */
2330 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2331 return 1;
2332
2333 if (mem_mode == VOIDmode)
2334 mem_mode = GET_MODE (mem);
2335
2336 x_addr = get_addr (XEXP (x, 0));
2337 mem_addr = get_addr (XEXP (mem, 0));
2338
2339 base = find_base_term (x_addr);
2340 if (base && (GET_CODE (base) == LABEL_REF
2341 || (GET_CODE (base) == SYMBOL_REF
2342 && CONSTANT_POOL_ADDRESS_P (base))))
2343 return 0;
2344
2345 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2346 return 0;
2347
2348 x_addr = canon_rtx (x_addr);
2349 mem_addr = canon_rtx (mem_addr);
2350
2351 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2352 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2353 return ret;
2354
2355 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2356 return 0;
2357
2358 if (nonoverlapping_memrefs_p (mem, x))
2359 return 0;
2360
2361 if (aliases_everything_p (x))
2362 return 1;
2363
2364 /* We cannot use aliases_everything_p to test MEM, since we must look
2365 at MEM_MODE, rather than GET_MODE (MEM). */
2366 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2367 return 1;
2368
2369 /* In true_dependence we also allow BLKmode to alias anything. Why
2370 don't we do this in anti_dependence and output_dependence? */
2371 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2372 return 1;
2373
2374 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2375 return 0;
2376
2377 return rtx_refs_may_alias_p (x, mem, true);
2378 }
2379
2380 /* Canonical true dependence: X is read after store in MEM takes place.
2381 Variant of true_dependence which assumes MEM has already been
2382 canonicalized (hence we no longer do that here).
2383 The mem_addr argument has been added, since true_dependence computed
2384 this value prior to canonicalizing.
2385 If x_addr is non-NULL, it is used in preference of XEXP (x, 0). */
2386
2387 int
2388 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2389 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2390 {
2391 int ret;
2392
2393 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2394 return 1;
2395
2396 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2397 This is used in epilogue deallocation functions. */
2398 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2399 return 1;
2400 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2401 return 1;
2402 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2403 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2404 return 1;
2405
2406 /* Read-only memory is by definition never modified, and therefore can't
2407 conflict with anything. We don't expect to find read-only set on MEM,
2408 but stupid user tricks can produce them, so don't die. */
2409 if (MEM_READONLY_P (x))
2410 return 0;
2411
2412 /* If we have MEMs refering to different address spaces (which can
2413 potentially overlap), we cannot easily tell from the addresses
2414 whether the references overlap. */
2415 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2416 return 1;
2417
2418 if (! x_addr)
2419 x_addr = get_addr (XEXP (x, 0));
2420
2421 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2422 return 0;
2423
2424 x_addr = canon_rtx (x_addr);
2425 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2426 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2427 return ret;
2428
2429 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2430 return 0;
2431
2432 if (nonoverlapping_memrefs_p (x, mem))
2433 return 0;
2434
2435 if (aliases_everything_p (x))
2436 return 1;
2437
2438 /* We cannot use aliases_everything_p to test MEM, since we must look
2439 at MEM_MODE, rather than GET_MODE (MEM). */
2440 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2441 return 1;
2442
2443 /* In true_dependence we also allow BLKmode to alias anything. Why
2444 don't we do this in anti_dependence and output_dependence? */
2445 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2446 return 1;
2447
2448 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2449 return 0;
2450
2451 return rtx_refs_may_alias_p (x, mem, true);
2452 }
2453
2454 /* Returns nonzero if a write to X might alias a previous read from
2455 (or, if WRITEP is nonzero, a write to) MEM. */
2456
2457 static int
2458 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2459 {
2460 rtx x_addr, mem_addr;
2461 const_rtx fixed_scalar;
2462 rtx base;
2463 int ret;
2464
2465 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2466 return 1;
2467
2468 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2469 This is used in epilogue deallocation functions. */
2470 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2471 return 1;
2472 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2473 return 1;
2474 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2475 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2476 return 1;
2477
2478 /* A read from read-only memory can't conflict with read-write memory. */
2479 if (!writep && MEM_READONLY_P (mem))
2480 return 0;
2481
2482 /* If we have MEMs refering to different address spaces (which can
2483 potentially overlap), we cannot easily tell from the addresses
2484 whether the references overlap. */
2485 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2486 return 1;
2487
2488 x_addr = get_addr (XEXP (x, 0));
2489 mem_addr = get_addr (XEXP (mem, 0));
2490
2491 if (! writep)
2492 {
2493 base = find_base_term (mem_addr);
2494 if (base && (GET_CODE (base) == LABEL_REF
2495 || (GET_CODE (base) == SYMBOL_REF
2496 && CONSTANT_POOL_ADDRESS_P (base))))
2497 return 0;
2498 }
2499
2500 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2501 GET_MODE (mem)))
2502 return 0;
2503
2504 x_addr = canon_rtx (x_addr);
2505 mem_addr = canon_rtx (mem_addr);
2506
2507 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2508 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2509 return ret;
2510
2511 if (nonoverlapping_memrefs_p (x, mem))
2512 return 0;
2513
2514 fixed_scalar
2515 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2516 rtx_addr_varies_p);
2517
2518 if ((fixed_scalar == mem && !aliases_everything_p (x))
2519 || (fixed_scalar == x && !aliases_everything_p (mem)))
2520 return 0;
2521
2522 return rtx_refs_may_alias_p (x, mem, false);
2523 }
2524
2525 /* Anti dependence: X is written after read in MEM takes place. */
2526
2527 int
2528 anti_dependence (const_rtx mem, const_rtx x)
2529 {
2530 return write_dependence_p (mem, x, /*writep=*/0);
2531 }
2532
2533 /* Output dependence: X is written after store in MEM takes place. */
2534
2535 int
2536 output_dependence (const_rtx mem, const_rtx x)
2537 {
2538 return write_dependence_p (mem, x, /*writep=*/1);
2539 }
2540 \f
2541
2542 void
2543 init_alias_target (void)
2544 {
2545 int i;
2546
2547 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2548
2549 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2550 /* Check whether this register can hold an incoming pointer
2551 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2552 numbers, so translate if necessary due to register windows. */
2553 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2554 && HARD_REGNO_MODE_OK (i, Pmode))
2555 static_reg_base_value[i]
2556 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2557
2558 static_reg_base_value[STACK_POINTER_REGNUM]
2559 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2560 static_reg_base_value[ARG_POINTER_REGNUM]
2561 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2562 static_reg_base_value[FRAME_POINTER_REGNUM]
2563 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2564 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2565 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2566 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2567 #endif
2568 }
2569
2570 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2571 to be memory reference. */
2572 static bool memory_modified;
2573 static void
2574 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2575 {
2576 if (MEM_P (x))
2577 {
2578 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2579 memory_modified = true;
2580 }
2581 }
2582
2583
2584 /* Return true when INSN possibly modify memory contents of MEM
2585 (i.e. address can be modified). */
2586 bool
2587 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2588 {
2589 if (!INSN_P (insn))
2590 return false;
2591 memory_modified = false;
2592 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2593 return memory_modified;
2594 }
2595
2596 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2597 array. */
2598
2599 void
2600 init_alias_analysis (void)
2601 {
2602 unsigned int maxreg = max_reg_num ();
2603 int changed, pass;
2604 int i;
2605 unsigned int ui;
2606 rtx insn;
2607
2608 timevar_push (TV_ALIAS_ANALYSIS);
2609
2610 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2611 reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2612 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2613
2614 /* If we have memory allocated from the previous run, use it. */
2615 if (old_reg_base_value)
2616 reg_base_value = old_reg_base_value;
2617
2618 if (reg_base_value)
2619 VEC_truncate (rtx, reg_base_value, 0);
2620
2621 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2622
2623 new_reg_base_value = XNEWVEC (rtx, maxreg);
2624 reg_seen = XNEWVEC (char, maxreg);
2625
2626 /* The basic idea is that each pass through this loop will use the
2627 "constant" information from the previous pass to propagate alias
2628 information through another level of assignments.
2629
2630 This could get expensive if the assignment chains are long. Maybe
2631 we should throttle the number of iterations, possibly based on
2632 the optimization level or flag_expensive_optimizations.
2633
2634 We could propagate more information in the first pass by making use
2635 of DF_REG_DEF_COUNT to determine immediately that the alias information
2636 for a pseudo is "constant".
2637
2638 A program with an uninitialized variable can cause an infinite loop
2639 here. Instead of doing a full dataflow analysis to detect such problems
2640 we just cap the number of iterations for the loop.
2641
2642 The state of the arrays for the set chain in question does not matter
2643 since the program has undefined behavior. */
2644
2645 pass = 0;
2646 do
2647 {
2648 /* Assume nothing will change this iteration of the loop. */
2649 changed = 0;
2650
2651 /* We want to assign the same IDs each iteration of this loop, so
2652 start counting from zero each iteration of the loop. */
2653 unique_id = 0;
2654
2655 /* We're at the start of the function each iteration through the
2656 loop, so we're copying arguments. */
2657 copying_arguments = true;
2658
2659 /* Wipe the potential alias information clean for this pass. */
2660 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2661
2662 /* Wipe the reg_seen array clean. */
2663 memset (reg_seen, 0, maxreg);
2664
2665 /* Mark all hard registers which may contain an address.
2666 The stack, frame and argument pointers may contain an address.
2667 An argument register which can hold a Pmode value may contain
2668 an address even if it is not in BASE_REGS.
2669
2670 The address expression is VOIDmode for an argument and
2671 Pmode for other registers. */
2672
2673 memcpy (new_reg_base_value, static_reg_base_value,
2674 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2675
2676 /* Walk the insns adding values to the new_reg_base_value array. */
2677 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2678 {
2679 if (INSN_P (insn))
2680 {
2681 rtx note, set;
2682
2683 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2684 /* The prologue/epilogue insns are not threaded onto the
2685 insn chain until after reload has completed. Thus,
2686 there is no sense wasting time checking if INSN is in
2687 the prologue/epilogue until after reload has completed. */
2688 if (reload_completed
2689 && prologue_epilogue_contains (insn))
2690 continue;
2691 #endif
2692
2693 /* If this insn has a noalias note, process it, Otherwise,
2694 scan for sets. A simple set will have no side effects
2695 which could change the base value of any other register. */
2696
2697 if (GET_CODE (PATTERN (insn)) == SET
2698 && REG_NOTES (insn) != 0
2699 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2700 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2701 else
2702 note_stores (PATTERN (insn), record_set, NULL);
2703
2704 set = single_set (insn);
2705
2706 if (set != 0
2707 && REG_P (SET_DEST (set))
2708 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2709 {
2710 unsigned int regno = REGNO (SET_DEST (set));
2711 rtx src = SET_SRC (set);
2712 rtx t;
2713
2714 note = find_reg_equal_equiv_note (insn);
2715 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2716 && DF_REG_DEF_COUNT (regno) != 1)
2717 note = NULL_RTX;
2718
2719 if (note != NULL_RTX
2720 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2721 && ! rtx_varies_p (XEXP (note, 0), 1)
2722 && ! reg_overlap_mentioned_p (SET_DEST (set),
2723 XEXP (note, 0)))
2724 {
2725 set_reg_known_value (regno, XEXP (note, 0));
2726 set_reg_known_equiv_p (regno,
2727 REG_NOTE_KIND (note) == REG_EQUIV);
2728 }
2729 else if (DF_REG_DEF_COUNT (regno) == 1
2730 && GET_CODE (src) == PLUS
2731 && REG_P (XEXP (src, 0))
2732 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2733 && CONST_INT_P (XEXP (src, 1)))
2734 {
2735 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2736 set_reg_known_value (regno, t);
2737 set_reg_known_equiv_p (regno, 0);
2738 }
2739 else if (DF_REG_DEF_COUNT (regno) == 1
2740 && ! rtx_varies_p (src, 1))
2741 {
2742 set_reg_known_value (regno, src);
2743 set_reg_known_equiv_p (regno, 0);
2744 }
2745 }
2746 }
2747 else if (NOTE_P (insn)
2748 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2749 copying_arguments = false;
2750 }
2751
2752 /* Now propagate values from new_reg_base_value to reg_base_value. */
2753 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2754
2755 for (ui = 0; ui < maxreg; ui++)
2756 {
2757 if (new_reg_base_value[ui]
2758 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2759 && ! rtx_equal_p (new_reg_base_value[ui],
2760 VEC_index (rtx, reg_base_value, ui)))
2761 {
2762 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2763 changed = 1;
2764 }
2765 }
2766 }
2767 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2768
2769 /* Fill in the remaining entries. */
2770 for (i = 0; i < (int)reg_known_value_size; i++)
2771 if (reg_known_value[i] == 0)
2772 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2773
2774 /* Clean up. */
2775 free (new_reg_base_value);
2776 new_reg_base_value = 0;
2777 free (reg_seen);
2778 reg_seen = 0;
2779 timevar_pop (TV_ALIAS_ANALYSIS);
2780 }
2781
2782 void
2783 end_alias_analysis (void)
2784 {
2785 old_reg_base_value = reg_base_value;
2786 ggc_free (reg_known_value);
2787 reg_known_value = 0;
2788 reg_known_value_size = 0;
2789 free (reg_known_equiv_p);
2790 reg_known_equiv_p = 0;
2791 }
2792
2793 #include "gt-alias.h"