re PR tree-optimization/43833 (false warning: array subscript is above array bounds...
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
48 #include "df.h"
49 #include "tree-ssa-alias.h"
50 #include "pointer-set.h"
51 #include "tree-flow.h"
52
53 /* The aliasing API provided here solves related but different problems:
54
55 Say there exists (in c)
56
57 struct X {
58 struct Y y1;
59 struct Z z2;
60 } x1, *px1, *px2;
61
62 struct Y y2, *py;
63 struct Z z2, *pz;
64
65
66 py = &px1.y1;
67 px2 = &x1;
68
69 Consider the four questions:
70
71 Can a store to x1 interfere with px2->y1?
72 Can a store to x1 interfere with px2->z2?
73 (*px2).z2
74 Can a store to x1 change the value pointed to by with py?
75 Can a store to x1 change the value pointed to by with pz?
76
77 The answer to these questions can be yes, yes, yes, and maybe.
78
79 The first two questions can be answered with a simple examination
80 of the type system. If structure X contains a field of type Y then
81 a store thru a pointer to an X can overwrite any field that is
82 contained (recursively) in an X (unless we know that px1 != px2).
83
84 The last two of the questions can be solved in the same way as the
85 first two questions but this is too conservative. The observation
86 is that in some cases analysis we can know if which (if any) fields
87 are addressed and if those addresses are used in bad ways. This
88 analysis may be language specific. In C, arbitrary operations may
89 be applied to pointers. However, there is some indication that
90 this may be too conservative for some C++ types.
91
92 The pass ipa-type-escape does this analysis for the types whose
93 instances do not escape across the compilation boundary.
94
95 Historically in GCC, these two problems were combined and a single
96 data structure was used to represent the solution to these
97 problems. We now have two similar but different data structures,
98 The data structure to solve the last two question is similar to the
99 first, but does not contain have the fields in it whose address are
100 never taken. For types that do escape the compilation unit, the
101 data structures will have identical information.
102 */
103
104 /* The alias sets assigned to MEMs assist the back-end in determining
105 which MEMs can alias which other MEMs. In general, two MEMs in
106 different alias sets cannot alias each other, with one important
107 exception. Consider something like:
108
109 struct S { int i; double d; };
110
111 a store to an `S' can alias something of either type `int' or type
112 `double'. (However, a store to an `int' cannot alias a `double'
113 and vice versa.) We indicate this via a tree structure that looks
114 like:
115 struct S
116 / \
117 / \
118 |/_ _\|
119 int double
120
121 (The arrows are directed and point downwards.)
122 In this situation we say the alias set for `struct S' is the
123 `superset' and that those for `int' and `double' are `subsets'.
124
125 To see whether two alias sets can point to the same memory, we must
126 see if either alias set is a subset of the other. We need not trace
127 past immediate descendants, however, since we propagate all
128 grandchildren up one level.
129
130 Alias set zero is implicitly a superset of all other alias sets.
131 However, this is no actual entry for alias set zero. It is an
132 error to attempt to explicitly construct a subset of zero. */
133
134 struct GTY(()) alias_set_entry_d {
135 /* The alias set number, as stored in MEM_ALIAS_SET. */
136 alias_set_type alias_set;
137
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 int has_zero_child;
141
142 /* The children of the alias set. These are not just the immediate
143 children, but, in fact, all descendants. So, if we have:
144
145 struct T { struct S s; float f; }
146
147 continuing our example above, the children here will be all of
148 `int', `double', `float', and `struct S'. */
149 splay_tree GTY((param1_is (int), param2_is (int))) children;
150 };
151 typedef struct alias_set_entry_d *alias_set_entry;
152
153 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
154 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
155 static void record_set (rtx, const_rtx, void *);
156 static int base_alias_check (rtx, rtx, enum machine_mode,
157 enum machine_mode);
158 static rtx find_base_value (rtx);
159 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
160 static int insert_subset_children (splay_tree_node, void*);
161 static alias_set_entry get_alias_set_entry (alias_set_type);
162 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
163 bool (*) (const_rtx, bool));
164 static int aliases_everything_p (const_rtx);
165 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int write_dependence_p (const_rtx, const_rtx, int);
169
170 static void memory_modified_1 (rtx, const_rtx, void *);
171
172 /* Set up all info needed to perform alias analysis on memory references. */
173
174 /* Returns the size in bytes of the mode of X. */
175 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
176
177 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
180 not legal ANSI C. */
181 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
183
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains. 10 is a completely arbitrary choice. */
186 #define MAX_ALIAS_LOOP_PASSES 10
187
188 /* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
192 of the first set.
193
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
196 the stack, frame, and argument pointers.
197
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
202
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
206
207 static GTY(()) VEC(rtx,gc) *reg_base_value;
208 static rtx *new_reg_base_value;
209
210 /* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
212 array. */
213 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
214
215 /* Static hunks of RTL used by the aliasing code; these are initialized
216 once per function to avoid unnecessary RTL allocations. */
217 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
218
219 #define REG_BASE_VALUE(X) \
220 (REGNO (X) < VEC_length (rtx, reg_base_value) \
221 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
222
223 /* Vector indexed by N giving the initial (unchanging) value known for
224 pseudo-register N. This array is initialized in init_alias_analysis,
225 and does not change until end_alias_analysis is called. */
226 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
227
228 /* Indicates number of valid entries in reg_known_value. */
229 static GTY(()) unsigned int reg_known_value_size;
230
231 /* Vector recording for each reg_known_value whether it is due to a
232 REG_EQUIV note. Future passes (viz., reload) may replace the
233 pseudo with the equivalent expression and so we account for the
234 dependences that would be introduced if that happens.
235
236 The REG_EQUIV notes created in assign_parms may mention the arg
237 pointer, and there are explicit insns in the RTL that modify the
238 arg pointer. Thus we must ensure that such insns don't get
239 scheduled across each other because that would invalidate the
240 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
241 wrong, but solving the problem in the scheduler will likely give
242 better code, so we do it here. */
243 static bool *reg_known_equiv_p;
244
245 /* True when scanning insns from the start of the rtl to the
246 NOTE_INSN_FUNCTION_BEG note. */
247 static bool copying_arguments;
248
249 DEF_VEC_P(alias_set_entry);
250 DEF_VEC_ALLOC_P(alias_set_entry,gc);
251
252 /* The splay-tree used to store the various alias set entries. */
253 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
254 \f
255 /* Build a decomposed reference object for querying the alias-oracle
256 from the MEM rtx and store it in *REF.
257 Returns false if MEM is not suitable for the alias-oracle. */
258
259 static bool
260 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
261 {
262 tree expr = MEM_EXPR (mem);
263 tree base;
264
265 if (!expr)
266 return false;
267
268 ao_ref_init (ref, expr);
269
270 /* Get the base of the reference and see if we have to reject or
271 adjust it. */
272 base = ao_ref_base (ref);
273 if (base == NULL_TREE)
274 return false;
275
276 /* The tree oracle doesn't like to have these. */
277 if (TREE_CODE (base) == FUNCTION_DECL
278 || TREE_CODE (base) == LABEL_DECL)
279 return false;
280
281 /* If this is a pointer dereference of a non-SSA_NAME punt.
282 ??? We could replace it with a pointer to anything. */
283 if (INDIRECT_REF_P (base)
284 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
285 return false;
286
287 /* If this is a reference based on a partitioned decl replace the
288 base with an INDIRECT_REF of the pointer representative we
289 created during stack slot partitioning. */
290 if (TREE_CODE (base) == VAR_DECL
291 && ! TREE_STATIC (base)
292 && cfun->gimple_df->decls_to_pointers != NULL)
293 {
294 void *namep;
295 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
296 if (namep)
297 {
298 ref->base_alias_set = get_alias_set (base);
299 ref->base = build1 (INDIRECT_REF, TREE_TYPE (base), *(tree *)namep);
300 }
301 }
302
303 ref->ref_alias_set = MEM_ALIAS_SET (mem);
304
305 /* If MEM_OFFSET or MEM_SIZE are NULL we have to punt.
306 Keep points-to related information though. */
307 if (!MEM_OFFSET (mem)
308 || !MEM_SIZE (mem))
309 {
310 ref->ref = NULL_TREE;
311 ref->offset = 0;
312 ref->size = -1;
313 ref->max_size = -1;
314 return true;
315 }
316
317 /* If the base decl is a parameter we can have negative MEM_OFFSET in
318 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
319 here. */
320 if (INTVAL (MEM_OFFSET (mem)) < 0
321 && ((INTVAL (MEM_SIZE (mem)) + INTVAL (MEM_OFFSET (mem)))
322 * BITS_PER_UNIT) == ref->size)
323 return true;
324
325 ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
326 ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
327
328 /* The MEM may extend into adjacent fields, so adjust max_size if
329 necessary. */
330 if (ref->max_size != -1
331 && ref->size > ref->max_size)
332 ref->max_size = ref->size;
333
334 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
335 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
336 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
337 && (ref->offset < 0
338 || (DECL_P (ref->base)
339 && (!host_integerp (DECL_SIZE (ref->base), 1)
340 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
341 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
342 return false;
343
344 return true;
345 }
346
347 /* Query the alias-oracle on whether the two memory rtx X and MEM may
348 alias. If TBAA_P is set also apply TBAA. Returns true if the
349 two rtxen may alias, false otherwise. */
350
351 static bool
352 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
353 {
354 ao_ref ref1, ref2;
355
356 if (!ao_ref_from_mem (&ref1, x)
357 || !ao_ref_from_mem (&ref2, mem))
358 return true;
359
360 return refs_may_alias_p_1 (&ref1, &ref2, tbaa_p);
361 }
362
363 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
364 such an entry, or NULL otherwise. */
365
366 static inline alias_set_entry
367 get_alias_set_entry (alias_set_type alias_set)
368 {
369 return VEC_index (alias_set_entry, alias_sets, alias_set);
370 }
371
372 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
373 the two MEMs cannot alias each other. */
374
375 static inline int
376 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
377 {
378 /* Perform a basic sanity check. Namely, that there are no alias sets
379 if we're not using strict aliasing. This helps to catch bugs
380 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
381 where a MEM is allocated in some way other than by the use of
382 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
383 use alias sets to indicate that spilled registers cannot alias each
384 other, we might need to remove this check. */
385 gcc_assert (flag_strict_aliasing
386 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
387
388 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
389 }
390
391 /* Insert the NODE into the splay tree given by DATA. Used by
392 record_alias_subset via splay_tree_foreach. */
393
394 static int
395 insert_subset_children (splay_tree_node node, void *data)
396 {
397 splay_tree_insert ((splay_tree) data, node->key, node->value);
398
399 return 0;
400 }
401
402 /* Return true if the first alias set is a subset of the second. */
403
404 bool
405 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
406 {
407 alias_set_entry ase;
408
409 /* Everything is a subset of the "aliases everything" set. */
410 if (set2 == 0)
411 return true;
412
413 /* Otherwise, check if set1 is a subset of set2. */
414 ase = get_alias_set_entry (set2);
415 if (ase != 0
416 && (ase->has_zero_child
417 || splay_tree_lookup (ase->children,
418 (splay_tree_key) set1)))
419 return true;
420 return false;
421 }
422
423 /* Return 1 if the two specified alias sets may conflict. */
424
425 int
426 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
427 {
428 alias_set_entry ase;
429
430 /* The easy case. */
431 if (alias_sets_must_conflict_p (set1, set2))
432 return 1;
433
434 /* See if the first alias set is a subset of the second. */
435 ase = get_alias_set_entry (set1);
436 if (ase != 0
437 && (ase->has_zero_child
438 || splay_tree_lookup (ase->children,
439 (splay_tree_key) set2)))
440 return 1;
441
442 /* Now do the same, but with the alias sets reversed. */
443 ase = get_alias_set_entry (set2);
444 if (ase != 0
445 && (ase->has_zero_child
446 || splay_tree_lookup (ase->children,
447 (splay_tree_key) set1)))
448 return 1;
449
450 /* The two alias sets are distinct and neither one is the
451 child of the other. Therefore, they cannot conflict. */
452 return 0;
453 }
454
455 static int
456 walk_mems_2 (rtx *x, rtx mem)
457 {
458 if (MEM_P (*x))
459 {
460 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
461 return 1;
462
463 return -1;
464 }
465 return 0;
466 }
467
468 static int
469 walk_mems_1 (rtx *x, rtx *pat)
470 {
471 if (MEM_P (*x))
472 {
473 /* Visit all MEMs in *PAT and check indepedence. */
474 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
475 /* Indicate that dependence was determined and stop traversal. */
476 return 1;
477
478 return -1;
479 }
480 return 0;
481 }
482
483 /* Return 1 if two specified instructions have mem expr with conflict alias sets*/
484 bool
485 insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
486 {
487 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
488 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
489 &PATTERN (insn2));
490 }
491
492 /* Return 1 if the two specified alias sets will always conflict. */
493
494 int
495 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
496 {
497 if (set1 == 0 || set2 == 0 || set1 == set2)
498 return 1;
499
500 return 0;
501 }
502
503 /* Return 1 if any MEM object of type T1 will always conflict (using the
504 dependency routines in this file) with any MEM object of type T2.
505 This is used when allocating temporary storage. If T1 and/or T2 are
506 NULL_TREE, it means we know nothing about the storage. */
507
508 int
509 objects_must_conflict_p (tree t1, tree t2)
510 {
511 alias_set_type set1, set2;
512
513 /* If neither has a type specified, we don't know if they'll conflict
514 because we may be using them to store objects of various types, for
515 example the argument and local variables areas of inlined functions. */
516 if (t1 == 0 && t2 == 0)
517 return 0;
518
519 /* If they are the same type, they must conflict. */
520 if (t1 == t2
521 /* Likewise if both are volatile. */
522 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
523 return 1;
524
525 set1 = t1 ? get_alias_set (t1) : 0;
526 set2 = t2 ? get_alias_set (t2) : 0;
527
528 /* We can't use alias_sets_conflict_p because we must make sure
529 that every subtype of t1 will conflict with every subtype of
530 t2 for which a pair of subobjects of these respective subtypes
531 overlaps on the stack. */
532 return alias_sets_must_conflict_p (set1, set2);
533 }
534 \f
535 /* Return true if all nested component references handled by
536 get_inner_reference in T are such that we should use the alias set
537 provided by the object at the heart of T.
538
539 This is true for non-addressable components (which don't have their
540 own alias set), as well as components of objects in alias set zero.
541 This later point is a special case wherein we wish to override the
542 alias set used by the component, but we don't have per-FIELD_DECL
543 assignable alias sets. */
544
545 bool
546 component_uses_parent_alias_set (const_tree t)
547 {
548 while (1)
549 {
550 /* If we're at the end, it vacuously uses its own alias set. */
551 if (!handled_component_p (t))
552 return false;
553
554 switch (TREE_CODE (t))
555 {
556 case COMPONENT_REF:
557 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
558 return true;
559 break;
560
561 case ARRAY_REF:
562 case ARRAY_RANGE_REF:
563 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
564 return true;
565 break;
566
567 case REALPART_EXPR:
568 case IMAGPART_EXPR:
569 break;
570
571 default:
572 /* Bitfields and casts are never addressable. */
573 return true;
574 }
575
576 t = TREE_OPERAND (t, 0);
577 if (get_alias_set (TREE_TYPE (t)) == 0)
578 return true;
579 }
580 }
581
582 /* Return the alias set for the memory pointed to by T, which may be
583 either a type or an expression. Return -1 if there is nothing
584 special about dereferencing T. */
585
586 static alias_set_type
587 get_deref_alias_set_1 (tree t)
588 {
589 /* If we're not doing any alias analysis, just assume everything
590 aliases everything else. */
591 if (!flag_strict_aliasing)
592 return 0;
593
594 /* All we care about is the type. */
595 if (! TYPE_P (t))
596 t = TREE_TYPE (t);
597
598 /* If we have an INDIRECT_REF via a void pointer, we don't
599 know anything about what that might alias. Likewise if the
600 pointer is marked that way. */
601 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
602 || TYPE_REF_CAN_ALIAS_ALL (t))
603 return 0;
604
605 return -1;
606 }
607
608 /* Return the alias set for the memory pointed to by T, which may be
609 either a type or an expression. */
610
611 alias_set_type
612 get_deref_alias_set (tree t)
613 {
614 alias_set_type set = get_deref_alias_set_1 (t);
615
616 /* Fall back to the alias-set of the pointed-to type. */
617 if (set == -1)
618 {
619 if (! TYPE_P (t))
620 t = TREE_TYPE (t);
621 set = get_alias_set (TREE_TYPE (t));
622 }
623
624 return set;
625 }
626
627 /* Return the alias set for T, which may be either a type or an
628 expression. Call language-specific routine for help, if needed. */
629
630 alias_set_type
631 get_alias_set (tree t)
632 {
633 alias_set_type set;
634
635 /* If we're not doing any alias analysis, just assume everything
636 aliases everything else. Also return 0 if this or its type is
637 an error. */
638 if (! flag_strict_aliasing || t == error_mark_node
639 || (! TYPE_P (t)
640 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
641 return 0;
642
643 /* We can be passed either an expression or a type. This and the
644 language-specific routine may make mutually-recursive calls to each other
645 to figure out what to do. At each juncture, we see if this is a tree
646 that the language may need to handle specially. First handle things that
647 aren't types. */
648 if (! TYPE_P (t))
649 {
650 tree inner;
651
652 /* Remove any nops, then give the language a chance to do
653 something with this tree before we look at it. */
654 STRIP_NOPS (t);
655 set = lang_hooks.get_alias_set (t);
656 if (set != -1)
657 return set;
658
659 /* Retrieve the original memory reference if needed. */
660 if (TREE_CODE (t) == TARGET_MEM_REF)
661 t = TMR_ORIGINAL (t);
662
663 /* First see if the actual object referenced is an INDIRECT_REF from a
664 restrict-qualified pointer or a "void *". */
665 inner = t;
666 while (handled_component_p (inner))
667 {
668 inner = TREE_OPERAND (inner, 0);
669 STRIP_NOPS (inner);
670 }
671
672 if (INDIRECT_REF_P (inner))
673 {
674 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
675 if (set != -1)
676 return set;
677 }
678
679 /* Otherwise, pick up the outermost object that we could have a pointer
680 to, processing conversions as above. */
681 while (component_uses_parent_alias_set (t))
682 {
683 t = TREE_OPERAND (t, 0);
684 STRIP_NOPS (t);
685 }
686
687 /* If we've already determined the alias set for a decl, just return
688 it. This is necessary for C++ anonymous unions, whose component
689 variables don't look like union members (boo!). */
690 if (TREE_CODE (t) == VAR_DECL
691 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
692 return MEM_ALIAS_SET (DECL_RTL (t));
693
694 /* Now all we care about is the type. */
695 t = TREE_TYPE (t);
696 }
697
698 /* Variant qualifiers don't affect the alias set, so get the main
699 variant. */
700 t = TYPE_MAIN_VARIANT (t);
701
702 /* Always use the canonical type as well. If this is a type that
703 requires structural comparisons to identify compatible types
704 use alias set zero. */
705 if (TYPE_STRUCTURAL_EQUALITY_P (t))
706 {
707 /* Allow the language to specify another alias set for this
708 type. */
709 set = lang_hooks.get_alias_set (t);
710 if (set != -1)
711 return set;
712 return 0;
713 }
714 t = TYPE_CANONICAL (t);
715 /* Canonical types shouldn't form a tree nor should the canonical
716 type require structural equality checks. */
717 gcc_assert (!TYPE_STRUCTURAL_EQUALITY_P (t) && TYPE_CANONICAL (t) == t);
718
719 /* If this is a type with a known alias set, return it. */
720 if (TYPE_ALIAS_SET_KNOWN_P (t))
721 return TYPE_ALIAS_SET (t);
722
723 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
724 if (!COMPLETE_TYPE_P (t))
725 {
726 /* For arrays with unknown size the conservative answer is the
727 alias set of the element type. */
728 if (TREE_CODE (t) == ARRAY_TYPE)
729 return get_alias_set (TREE_TYPE (t));
730
731 /* But return zero as a conservative answer for incomplete types. */
732 return 0;
733 }
734
735 /* See if the language has special handling for this type. */
736 set = lang_hooks.get_alias_set (t);
737 if (set != -1)
738 return set;
739
740 /* There are no objects of FUNCTION_TYPE, so there's no point in
741 using up an alias set for them. (There are, of course, pointers
742 and references to functions, but that's different.) */
743 else if (TREE_CODE (t) == FUNCTION_TYPE
744 || TREE_CODE (t) == METHOD_TYPE)
745 set = 0;
746
747 /* Unless the language specifies otherwise, let vector types alias
748 their components. This avoids some nasty type punning issues in
749 normal usage. And indeed lets vectors be treated more like an
750 array slice. */
751 else if (TREE_CODE (t) == VECTOR_TYPE)
752 set = get_alias_set (TREE_TYPE (t));
753
754 /* Unless the language specifies otherwise, treat array types the
755 same as their components. This avoids the asymmetry we get
756 through recording the components. Consider accessing a
757 character(kind=1) through a reference to a character(kind=1)[1:1].
758 Or consider if we want to assign integer(kind=4)[0:D.1387] and
759 integer(kind=4)[4] the same alias set or not.
760 Just be pragmatic here and make sure the array and its element
761 type get the same alias set assigned. */
762 else if (TREE_CODE (t) == ARRAY_TYPE
763 && !TYPE_NONALIASED_COMPONENT (t))
764 set = get_alias_set (TREE_TYPE (t));
765
766 else
767 /* Otherwise make a new alias set for this type. */
768 set = new_alias_set ();
769
770 TYPE_ALIAS_SET (t) = set;
771
772 /* If this is an aggregate type, we must record any component aliasing
773 information. */
774 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
775 record_component_aliases (t);
776
777 return set;
778 }
779
780 /* Return a brand-new alias set. */
781
782 alias_set_type
783 new_alias_set (void)
784 {
785 if (flag_strict_aliasing)
786 {
787 if (alias_sets == 0)
788 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
789 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
790 return VEC_length (alias_set_entry, alias_sets) - 1;
791 }
792 else
793 return 0;
794 }
795
796 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
797 not everything that aliases SUPERSET also aliases SUBSET. For example,
798 in C, a store to an `int' can alias a load of a structure containing an
799 `int', and vice versa. But it can't alias a load of a 'double' member
800 of the same structure. Here, the structure would be the SUPERSET and
801 `int' the SUBSET. This relationship is also described in the comment at
802 the beginning of this file.
803
804 This function should be called only once per SUPERSET/SUBSET pair.
805
806 It is illegal for SUPERSET to be zero; everything is implicitly a
807 subset of alias set zero. */
808
809 void
810 record_alias_subset (alias_set_type superset, alias_set_type subset)
811 {
812 alias_set_entry superset_entry;
813 alias_set_entry subset_entry;
814
815 /* It is possible in complex type situations for both sets to be the same,
816 in which case we can ignore this operation. */
817 if (superset == subset)
818 return;
819
820 gcc_assert (superset);
821
822 superset_entry = get_alias_set_entry (superset);
823 if (superset_entry == 0)
824 {
825 /* Create an entry for the SUPERSET, so that we have a place to
826 attach the SUBSET. */
827 superset_entry = GGC_NEW (struct alias_set_entry_d);
828 superset_entry->alias_set = superset;
829 superset_entry->children
830 = splay_tree_new_ggc (splay_tree_compare_ints);
831 superset_entry->has_zero_child = 0;
832 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
833 }
834
835 if (subset == 0)
836 superset_entry->has_zero_child = 1;
837 else
838 {
839 subset_entry = get_alias_set_entry (subset);
840 /* If there is an entry for the subset, enter all of its children
841 (if they are not already present) as children of the SUPERSET. */
842 if (subset_entry)
843 {
844 if (subset_entry->has_zero_child)
845 superset_entry->has_zero_child = 1;
846
847 splay_tree_foreach (subset_entry->children, insert_subset_children,
848 superset_entry->children);
849 }
850
851 /* Enter the SUBSET itself as a child of the SUPERSET. */
852 splay_tree_insert (superset_entry->children,
853 (splay_tree_key) subset, 0);
854 }
855 }
856
857 /* Record that component types of TYPE, if any, are part of that type for
858 aliasing purposes. For record types, we only record component types
859 for fields that are not marked non-addressable. For array types, we
860 only record the component type if it is not marked non-aliased. */
861
862 void
863 record_component_aliases (tree type)
864 {
865 alias_set_type superset = get_alias_set (type);
866 tree field;
867
868 if (superset == 0)
869 return;
870
871 switch (TREE_CODE (type))
872 {
873 case RECORD_TYPE:
874 case UNION_TYPE:
875 case QUAL_UNION_TYPE:
876 /* Recursively record aliases for the base classes, if there are any. */
877 if (TYPE_BINFO (type))
878 {
879 int i;
880 tree binfo, base_binfo;
881
882 for (binfo = TYPE_BINFO (type), i = 0;
883 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
884 record_alias_subset (superset,
885 get_alias_set (BINFO_TYPE (base_binfo)));
886 }
887 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
888 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
889 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
890 break;
891
892 case COMPLEX_TYPE:
893 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
894 break;
895
896 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
897 element type. */
898
899 default:
900 break;
901 }
902 }
903
904 /* Allocate an alias set for use in storing and reading from the varargs
905 spill area. */
906
907 static GTY(()) alias_set_type varargs_set = -1;
908
909 alias_set_type
910 get_varargs_alias_set (void)
911 {
912 #if 1
913 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
914 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
915 consistently use the varargs alias set for loads from the varargs
916 area. So don't use it anywhere. */
917 return 0;
918 #else
919 if (varargs_set == -1)
920 varargs_set = new_alias_set ();
921
922 return varargs_set;
923 #endif
924 }
925
926 /* Likewise, but used for the fixed portions of the frame, e.g., register
927 save areas. */
928
929 static GTY(()) alias_set_type frame_set = -1;
930
931 alias_set_type
932 get_frame_alias_set (void)
933 {
934 if (frame_set == -1)
935 frame_set = new_alias_set ();
936
937 return frame_set;
938 }
939
940 /* Inside SRC, the source of a SET, find a base address. */
941
942 static rtx
943 find_base_value (rtx src)
944 {
945 unsigned int regno;
946
947 #if defined (FIND_BASE_TERM)
948 /* Try machine-dependent ways to find the base term. */
949 src = FIND_BASE_TERM (src);
950 #endif
951
952 switch (GET_CODE (src))
953 {
954 case SYMBOL_REF:
955 case LABEL_REF:
956 return src;
957
958 case REG:
959 regno = REGNO (src);
960 /* At the start of a function, argument registers have known base
961 values which may be lost later. Returning an ADDRESS
962 expression here allows optimization based on argument values
963 even when the argument registers are used for other purposes. */
964 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
965 return new_reg_base_value[regno];
966
967 /* If a pseudo has a known base value, return it. Do not do this
968 for non-fixed hard regs since it can result in a circular
969 dependency chain for registers which have values at function entry.
970
971 The test above is not sufficient because the scheduler may move
972 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
973 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
974 && regno < VEC_length (rtx, reg_base_value))
975 {
976 /* If we're inside init_alias_analysis, use new_reg_base_value
977 to reduce the number of relaxation iterations. */
978 if (new_reg_base_value && new_reg_base_value[regno]
979 && DF_REG_DEF_COUNT (regno) == 1)
980 return new_reg_base_value[regno];
981
982 if (VEC_index (rtx, reg_base_value, regno))
983 return VEC_index (rtx, reg_base_value, regno);
984 }
985
986 return 0;
987
988 case MEM:
989 /* Check for an argument passed in memory. Only record in the
990 copying-arguments block; it is too hard to track changes
991 otherwise. */
992 if (copying_arguments
993 && (XEXP (src, 0) == arg_pointer_rtx
994 || (GET_CODE (XEXP (src, 0)) == PLUS
995 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
996 return gen_rtx_ADDRESS (VOIDmode, src);
997 return 0;
998
999 case CONST:
1000 src = XEXP (src, 0);
1001 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1002 break;
1003
1004 /* ... fall through ... */
1005
1006 case PLUS:
1007 case MINUS:
1008 {
1009 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1010
1011 /* If either operand is a REG that is a known pointer, then it
1012 is the base. */
1013 if (REG_P (src_0) && REG_POINTER (src_0))
1014 return find_base_value (src_0);
1015 if (REG_P (src_1) && REG_POINTER (src_1))
1016 return find_base_value (src_1);
1017
1018 /* If either operand is a REG, then see if we already have
1019 a known value for it. */
1020 if (REG_P (src_0))
1021 {
1022 temp = find_base_value (src_0);
1023 if (temp != 0)
1024 src_0 = temp;
1025 }
1026
1027 if (REG_P (src_1))
1028 {
1029 temp = find_base_value (src_1);
1030 if (temp!= 0)
1031 src_1 = temp;
1032 }
1033
1034 /* If either base is named object or a special address
1035 (like an argument or stack reference), then use it for the
1036 base term. */
1037 if (src_0 != 0
1038 && (GET_CODE (src_0) == SYMBOL_REF
1039 || GET_CODE (src_0) == LABEL_REF
1040 || (GET_CODE (src_0) == ADDRESS
1041 && GET_MODE (src_0) != VOIDmode)))
1042 return src_0;
1043
1044 if (src_1 != 0
1045 && (GET_CODE (src_1) == SYMBOL_REF
1046 || GET_CODE (src_1) == LABEL_REF
1047 || (GET_CODE (src_1) == ADDRESS
1048 && GET_MODE (src_1) != VOIDmode)))
1049 return src_1;
1050
1051 /* Guess which operand is the base address:
1052 If either operand is a symbol, then it is the base. If
1053 either operand is a CONST_INT, then the other is the base. */
1054 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1055 return find_base_value (src_0);
1056 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1057 return find_base_value (src_1);
1058
1059 return 0;
1060 }
1061
1062 case LO_SUM:
1063 /* The standard form is (lo_sum reg sym) so look only at the
1064 second operand. */
1065 return find_base_value (XEXP (src, 1));
1066
1067 case AND:
1068 /* If the second operand is constant set the base
1069 address to the first operand. */
1070 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1071 return find_base_value (XEXP (src, 0));
1072 return 0;
1073
1074 case TRUNCATE:
1075 /* As we do not know which address space the pointer is refering to, we can
1076 handle this only if the target does not support different pointer or
1077 address modes depending on the address space. */
1078 if (!target_default_pointer_address_modes_p ())
1079 break;
1080 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1081 break;
1082 /* Fall through. */
1083 case HIGH:
1084 case PRE_INC:
1085 case PRE_DEC:
1086 case POST_INC:
1087 case POST_DEC:
1088 case PRE_MODIFY:
1089 case POST_MODIFY:
1090 return find_base_value (XEXP (src, 0));
1091
1092 case ZERO_EXTEND:
1093 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1094 /* As we do not know which address space the pointer is refering to, we can
1095 handle this only if the target does not support different pointer or
1096 address modes depending on the address space. */
1097 if (!target_default_pointer_address_modes_p ())
1098 break;
1099
1100 {
1101 rtx temp = find_base_value (XEXP (src, 0));
1102
1103 if (temp != 0 && CONSTANT_P (temp))
1104 temp = convert_memory_address (Pmode, temp);
1105
1106 return temp;
1107 }
1108
1109 default:
1110 break;
1111 }
1112
1113 return 0;
1114 }
1115
1116 /* Called from init_alias_analysis indirectly through note_stores. */
1117
1118 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1119 register N has been set in this function. */
1120 static char *reg_seen;
1121
1122 /* Addresses which are known not to alias anything else are identified
1123 by a unique integer. */
1124 static int unique_id;
1125
1126 static void
1127 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1128 {
1129 unsigned regno;
1130 rtx src;
1131 int n;
1132
1133 if (!REG_P (dest))
1134 return;
1135
1136 regno = REGNO (dest);
1137
1138 gcc_assert (regno < VEC_length (rtx, reg_base_value));
1139
1140 /* If this spans multiple hard registers, then we must indicate that every
1141 register has an unusable value. */
1142 if (regno < FIRST_PSEUDO_REGISTER)
1143 n = hard_regno_nregs[regno][GET_MODE (dest)];
1144 else
1145 n = 1;
1146 if (n != 1)
1147 {
1148 while (--n >= 0)
1149 {
1150 reg_seen[regno + n] = 1;
1151 new_reg_base_value[regno + n] = 0;
1152 }
1153 return;
1154 }
1155
1156 if (set)
1157 {
1158 /* A CLOBBER wipes out any old value but does not prevent a previously
1159 unset register from acquiring a base address (i.e. reg_seen is not
1160 set). */
1161 if (GET_CODE (set) == CLOBBER)
1162 {
1163 new_reg_base_value[regno] = 0;
1164 return;
1165 }
1166 src = SET_SRC (set);
1167 }
1168 else
1169 {
1170 if (reg_seen[regno])
1171 {
1172 new_reg_base_value[regno] = 0;
1173 return;
1174 }
1175 reg_seen[regno] = 1;
1176 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1177 GEN_INT (unique_id++));
1178 return;
1179 }
1180
1181 /* If this is not the first set of REGNO, see whether the new value
1182 is related to the old one. There are two cases of interest:
1183
1184 (1) The register might be assigned an entirely new value
1185 that has the same base term as the original set.
1186
1187 (2) The set might be a simple self-modification that
1188 cannot change REGNO's base value.
1189
1190 If neither case holds, reject the original base value as invalid.
1191 Note that the following situation is not detected:
1192
1193 extern int x, y; int *p = &x; p += (&y-&x);
1194
1195 ANSI C does not allow computing the difference of addresses
1196 of distinct top level objects. */
1197 if (new_reg_base_value[regno] != 0
1198 && find_base_value (src) != new_reg_base_value[regno])
1199 switch (GET_CODE (src))
1200 {
1201 case LO_SUM:
1202 case MINUS:
1203 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1204 new_reg_base_value[regno] = 0;
1205 break;
1206 case PLUS:
1207 /* If the value we add in the PLUS is also a valid base value,
1208 this might be the actual base value, and the original value
1209 an index. */
1210 {
1211 rtx other = NULL_RTX;
1212
1213 if (XEXP (src, 0) == dest)
1214 other = XEXP (src, 1);
1215 else if (XEXP (src, 1) == dest)
1216 other = XEXP (src, 0);
1217
1218 if (! other || find_base_value (other))
1219 new_reg_base_value[regno] = 0;
1220 break;
1221 }
1222 case AND:
1223 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1224 new_reg_base_value[regno] = 0;
1225 break;
1226 default:
1227 new_reg_base_value[regno] = 0;
1228 break;
1229 }
1230 /* If this is the first set of a register, record the value. */
1231 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1232 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1233 new_reg_base_value[regno] = find_base_value (src);
1234
1235 reg_seen[regno] = 1;
1236 }
1237
1238 /* If a value is known for REGNO, return it. */
1239
1240 rtx
1241 get_reg_known_value (unsigned int regno)
1242 {
1243 if (regno >= FIRST_PSEUDO_REGISTER)
1244 {
1245 regno -= FIRST_PSEUDO_REGISTER;
1246 if (regno < reg_known_value_size)
1247 return reg_known_value[regno];
1248 }
1249 return NULL;
1250 }
1251
1252 /* Set it. */
1253
1254 static void
1255 set_reg_known_value (unsigned int regno, rtx val)
1256 {
1257 if (regno >= FIRST_PSEUDO_REGISTER)
1258 {
1259 regno -= FIRST_PSEUDO_REGISTER;
1260 if (regno < reg_known_value_size)
1261 reg_known_value[regno] = val;
1262 }
1263 }
1264
1265 /* Similarly for reg_known_equiv_p. */
1266
1267 bool
1268 get_reg_known_equiv_p (unsigned int regno)
1269 {
1270 if (regno >= FIRST_PSEUDO_REGISTER)
1271 {
1272 regno -= FIRST_PSEUDO_REGISTER;
1273 if (regno < reg_known_value_size)
1274 return reg_known_equiv_p[regno];
1275 }
1276 return false;
1277 }
1278
1279 static void
1280 set_reg_known_equiv_p (unsigned int regno, bool val)
1281 {
1282 if (regno >= FIRST_PSEUDO_REGISTER)
1283 {
1284 regno -= FIRST_PSEUDO_REGISTER;
1285 if (regno < reg_known_value_size)
1286 reg_known_equiv_p[regno] = val;
1287 }
1288 }
1289
1290
1291 /* Returns a canonical version of X, from the point of view alias
1292 analysis. (For example, if X is a MEM whose address is a register,
1293 and the register has a known value (say a SYMBOL_REF), then a MEM
1294 whose address is the SYMBOL_REF is returned.) */
1295
1296 rtx
1297 canon_rtx (rtx x)
1298 {
1299 /* Recursively look for equivalences. */
1300 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1301 {
1302 rtx t = get_reg_known_value (REGNO (x));
1303 if (t == x)
1304 return x;
1305 if (t)
1306 return canon_rtx (t);
1307 }
1308
1309 if (GET_CODE (x) == PLUS)
1310 {
1311 rtx x0 = canon_rtx (XEXP (x, 0));
1312 rtx x1 = canon_rtx (XEXP (x, 1));
1313
1314 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1315 {
1316 if (CONST_INT_P (x0))
1317 return plus_constant (x1, INTVAL (x0));
1318 else if (CONST_INT_P (x1))
1319 return plus_constant (x0, INTVAL (x1));
1320 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1321 }
1322 }
1323
1324 /* This gives us much better alias analysis when called from
1325 the loop optimizer. Note we want to leave the original
1326 MEM alone, but need to return the canonicalized MEM with
1327 all the flags with their original values. */
1328 else if (MEM_P (x))
1329 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1330
1331 return x;
1332 }
1333
1334 /* Return 1 if X and Y are identical-looking rtx's.
1335 Expect that X and Y has been already canonicalized.
1336
1337 We use the data in reg_known_value above to see if two registers with
1338 different numbers are, in fact, equivalent. */
1339
1340 static int
1341 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1342 {
1343 int i;
1344 int j;
1345 enum rtx_code code;
1346 const char *fmt;
1347
1348 if (x == 0 && y == 0)
1349 return 1;
1350 if (x == 0 || y == 0)
1351 return 0;
1352
1353 if (x == y)
1354 return 1;
1355
1356 code = GET_CODE (x);
1357 /* Rtx's of different codes cannot be equal. */
1358 if (code != GET_CODE (y))
1359 return 0;
1360
1361 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1362 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1363
1364 if (GET_MODE (x) != GET_MODE (y))
1365 return 0;
1366
1367 /* Some RTL can be compared without a recursive examination. */
1368 switch (code)
1369 {
1370 case REG:
1371 return REGNO (x) == REGNO (y);
1372
1373 case LABEL_REF:
1374 return XEXP (x, 0) == XEXP (y, 0);
1375
1376 case SYMBOL_REF:
1377 return XSTR (x, 0) == XSTR (y, 0);
1378
1379 case VALUE:
1380 case CONST_INT:
1381 case CONST_DOUBLE:
1382 case CONST_FIXED:
1383 /* There's no need to compare the contents of CONST_DOUBLEs or
1384 CONST_INTs because pointer equality is a good enough
1385 comparison for these nodes. */
1386 return 0;
1387
1388 default:
1389 break;
1390 }
1391
1392 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1393 if (code == PLUS)
1394 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1395 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1396 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1397 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1398 /* For commutative operations, the RTX match if the operand match in any
1399 order. Also handle the simple binary and unary cases without a loop. */
1400 if (COMMUTATIVE_P (x))
1401 {
1402 rtx xop0 = canon_rtx (XEXP (x, 0));
1403 rtx yop0 = canon_rtx (XEXP (y, 0));
1404 rtx yop1 = canon_rtx (XEXP (y, 1));
1405
1406 return ((rtx_equal_for_memref_p (xop0, yop0)
1407 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1408 || (rtx_equal_for_memref_p (xop0, yop1)
1409 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1410 }
1411 else if (NON_COMMUTATIVE_P (x))
1412 {
1413 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1414 canon_rtx (XEXP (y, 0)))
1415 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1416 canon_rtx (XEXP (y, 1))));
1417 }
1418 else if (UNARY_P (x))
1419 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1420 canon_rtx (XEXP (y, 0)));
1421
1422 /* Compare the elements. If any pair of corresponding elements
1423 fail to match, return 0 for the whole things.
1424
1425 Limit cases to types which actually appear in addresses. */
1426
1427 fmt = GET_RTX_FORMAT (code);
1428 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1429 {
1430 switch (fmt[i])
1431 {
1432 case 'i':
1433 if (XINT (x, i) != XINT (y, i))
1434 return 0;
1435 break;
1436
1437 case 'E':
1438 /* Two vectors must have the same length. */
1439 if (XVECLEN (x, i) != XVECLEN (y, i))
1440 return 0;
1441
1442 /* And the corresponding elements must match. */
1443 for (j = 0; j < XVECLEN (x, i); j++)
1444 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1445 canon_rtx (XVECEXP (y, i, j))) == 0)
1446 return 0;
1447 break;
1448
1449 case 'e':
1450 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1451 canon_rtx (XEXP (y, i))) == 0)
1452 return 0;
1453 break;
1454
1455 /* This can happen for asm operands. */
1456 case 's':
1457 if (strcmp (XSTR (x, i), XSTR (y, i)))
1458 return 0;
1459 break;
1460
1461 /* This can happen for an asm which clobbers memory. */
1462 case '0':
1463 break;
1464
1465 /* It is believed that rtx's at this level will never
1466 contain anything but integers and other rtx's,
1467 except for within LABEL_REFs and SYMBOL_REFs. */
1468 default:
1469 gcc_unreachable ();
1470 }
1471 }
1472 return 1;
1473 }
1474
1475 rtx
1476 find_base_term (rtx x)
1477 {
1478 cselib_val *val;
1479 struct elt_loc_list *l;
1480
1481 #if defined (FIND_BASE_TERM)
1482 /* Try machine-dependent ways to find the base term. */
1483 x = FIND_BASE_TERM (x);
1484 #endif
1485
1486 switch (GET_CODE (x))
1487 {
1488 case REG:
1489 return REG_BASE_VALUE (x);
1490
1491 case TRUNCATE:
1492 /* As we do not know which address space the pointer is refering to, we can
1493 handle this only if the target does not support different pointer or
1494 address modes depending on the address space. */
1495 if (!target_default_pointer_address_modes_p ())
1496 return 0;
1497 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1498 return 0;
1499 /* Fall through. */
1500 case HIGH:
1501 case PRE_INC:
1502 case PRE_DEC:
1503 case POST_INC:
1504 case POST_DEC:
1505 case PRE_MODIFY:
1506 case POST_MODIFY:
1507 return find_base_term (XEXP (x, 0));
1508
1509 case ZERO_EXTEND:
1510 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1511 /* As we do not know which address space the pointer is refering to, we can
1512 handle this only if the target does not support different pointer or
1513 address modes depending on the address space. */
1514 if (!target_default_pointer_address_modes_p ())
1515 return 0;
1516
1517 {
1518 rtx temp = find_base_term (XEXP (x, 0));
1519
1520 if (temp != 0 && CONSTANT_P (temp))
1521 temp = convert_memory_address (Pmode, temp);
1522
1523 return temp;
1524 }
1525
1526 case VALUE:
1527 val = CSELIB_VAL_PTR (x);
1528 if (!val)
1529 return 0;
1530 for (l = val->locs; l; l = l->next)
1531 if ((x = find_base_term (l->loc)) != 0)
1532 return x;
1533 return 0;
1534
1535 case LO_SUM:
1536 /* The standard form is (lo_sum reg sym) so look only at the
1537 second operand. */
1538 return find_base_term (XEXP (x, 1));
1539
1540 case CONST:
1541 x = XEXP (x, 0);
1542 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1543 return 0;
1544 /* Fall through. */
1545 case PLUS:
1546 case MINUS:
1547 {
1548 rtx tmp1 = XEXP (x, 0);
1549 rtx tmp2 = XEXP (x, 1);
1550
1551 /* This is a little bit tricky since we have to determine which of
1552 the two operands represents the real base address. Otherwise this
1553 routine may return the index register instead of the base register.
1554
1555 That may cause us to believe no aliasing was possible, when in
1556 fact aliasing is possible.
1557
1558 We use a few simple tests to guess the base register. Additional
1559 tests can certainly be added. For example, if one of the operands
1560 is a shift or multiply, then it must be the index register and the
1561 other operand is the base register. */
1562
1563 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1564 return find_base_term (tmp2);
1565
1566 /* If either operand is known to be a pointer, then use it
1567 to determine the base term. */
1568 if (REG_P (tmp1) && REG_POINTER (tmp1))
1569 {
1570 rtx base = find_base_term (tmp1);
1571 if (base)
1572 return base;
1573 }
1574
1575 if (REG_P (tmp2) && REG_POINTER (tmp2))
1576 {
1577 rtx base = find_base_term (tmp2);
1578 if (base)
1579 return base;
1580 }
1581
1582 /* Neither operand was known to be a pointer. Go ahead and find the
1583 base term for both operands. */
1584 tmp1 = find_base_term (tmp1);
1585 tmp2 = find_base_term (tmp2);
1586
1587 /* If either base term is named object or a special address
1588 (like an argument or stack reference), then use it for the
1589 base term. */
1590 if (tmp1 != 0
1591 && (GET_CODE (tmp1) == SYMBOL_REF
1592 || GET_CODE (tmp1) == LABEL_REF
1593 || (GET_CODE (tmp1) == ADDRESS
1594 && GET_MODE (tmp1) != VOIDmode)))
1595 return tmp1;
1596
1597 if (tmp2 != 0
1598 && (GET_CODE (tmp2) == SYMBOL_REF
1599 || GET_CODE (tmp2) == LABEL_REF
1600 || (GET_CODE (tmp2) == ADDRESS
1601 && GET_MODE (tmp2) != VOIDmode)))
1602 return tmp2;
1603
1604 /* We could not determine which of the two operands was the
1605 base register and which was the index. So we can determine
1606 nothing from the base alias check. */
1607 return 0;
1608 }
1609
1610 case AND:
1611 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1612 return find_base_term (XEXP (x, 0));
1613 return 0;
1614
1615 case SYMBOL_REF:
1616 case LABEL_REF:
1617 return x;
1618
1619 default:
1620 return 0;
1621 }
1622 }
1623
1624 /* Return 0 if the addresses X and Y are known to point to different
1625 objects, 1 if they might be pointers to the same object. */
1626
1627 static int
1628 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1629 enum machine_mode y_mode)
1630 {
1631 rtx x_base = find_base_term (x);
1632 rtx y_base = find_base_term (y);
1633
1634 /* If the address itself has no known base see if a known equivalent
1635 value has one. If either address still has no known base, nothing
1636 is known about aliasing. */
1637 if (x_base == 0)
1638 {
1639 rtx x_c;
1640
1641 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1642 return 1;
1643
1644 x_base = find_base_term (x_c);
1645 if (x_base == 0)
1646 return 1;
1647 }
1648
1649 if (y_base == 0)
1650 {
1651 rtx y_c;
1652 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1653 return 1;
1654
1655 y_base = find_base_term (y_c);
1656 if (y_base == 0)
1657 return 1;
1658 }
1659
1660 /* If the base addresses are equal nothing is known about aliasing. */
1661 if (rtx_equal_p (x_base, y_base))
1662 return 1;
1663
1664 /* The base addresses are different expressions. If they are not accessed
1665 via AND, there is no conflict. We can bring knowledge of object
1666 alignment into play here. For example, on alpha, "char a, b;" can
1667 alias one another, though "char a; long b;" cannot. AND addesses may
1668 implicitly alias surrounding objects; i.e. unaligned access in DImode
1669 via AND address can alias all surrounding object types except those
1670 with aligment 8 or higher. */
1671 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1672 return 1;
1673 if (GET_CODE (x) == AND
1674 && (!CONST_INT_P (XEXP (x, 1))
1675 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1676 return 1;
1677 if (GET_CODE (y) == AND
1678 && (!CONST_INT_P (XEXP (y, 1))
1679 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1680 return 1;
1681
1682 /* Differing symbols not accessed via AND never alias. */
1683 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1684 return 0;
1685
1686 /* If one address is a stack reference there can be no alias:
1687 stack references using different base registers do not alias,
1688 a stack reference can not alias a parameter, and a stack reference
1689 can not alias a global. */
1690 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1691 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1692 return 0;
1693
1694 return 1;
1695 }
1696
1697 /* Convert the address X into something we can use. This is done by returning
1698 it unchanged unless it is a value; in the latter case we call cselib to get
1699 a more useful rtx. */
1700
1701 rtx
1702 get_addr (rtx x)
1703 {
1704 cselib_val *v;
1705 struct elt_loc_list *l;
1706
1707 if (GET_CODE (x) != VALUE)
1708 return x;
1709 v = CSELIB_VAL_PTR (x);
1710 if (v)
1711 {
1712 for (l = v->locs; l; l = l->next)
1713 if (CONSTANT_P (l->loc))
1714 return l->loc;
1715 for (l = v->locs; l; l = l->next)
1716 if (!REG_P (l->loc) && !MEM_P (l->loc))
1717 return l->loc;
1718 if (v->locs)
1719 return v->locs->loc;
1720 }
1721 return x;
1722 }
1723
1724 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1725 where SIZE is the size in bytes of the memory reference. If ADDR
1726 is not modified by the memory reference then ADDR is returned. */
1727
1728 static rtx
1729 addr_side_effect_eval (rtx addr, int size, int n_refs)
1730 {
1731 int offset = 0;
1732
1733 switch (GET_CODE (addr))
1734 {
1735 case PRE_INC:
1736 offset = (n_refs + 1) * size;
1737 break;
1738 case PRE_DEC:
1739 offset = -(n_refs + 1) * size;
1740 break;
1741 case POST_INC:
1742 offset = n_refs * size;
1743 break;
1744 case POST_DEC:
1745 offset = -n_refs * size;
1746 break;
1747
1748 default:
1749 return addr;
1750 }
1751
1752 if (offset)
1753 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1754 GEN_INT (offset));
1755 else
1756 addr = XEXP (addr, 0);
1757 addr = canon_rtx (addr);
1758
1759 return addr;
1760 }
1761
1762 /* Return one if X and Y (memory addresses) reference the
1763 same location in memory or if the references overlap.
1764 Return zero if they do not overlap, else return
1765 minus one in which case they still might reference the same location.
1766
1767 C is an offset accumulator. When
1768 C is nonzero, we are testing aliases between X and Y + C.
1769 XSIZE is the size in bytes of the X reference,
1770 similarly YSIZE is the size in bytes for Y.
1771 Expect that canon_rtx has been already called for X and Y.
1772
1773 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1774 referenced (the reference was BLKmode), so make the most pessimistic
1775 assumptions.
1776
1777 If XSIZE or YSIZE is negative, we may access memory outside the object
1778 being referenced as a side effect. This can happen when using AND to
1779 align memory references, as is done on the Alpha.
1780
1781 Nice to notice that varying addresses cannot conflict with fp if no
1782 local variables had their addresses taken, but that's too hard now.
1783
1784 ??? Contrary to the tree alias oracle this does not return
1785 one for X + non-constant and Y + non-constant when X and Y are equal.
1786 If that is fixed the TBAA hack for union type-punning can be removed. */
1787
1788 static int
1789 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1790 {
1791 if (GET_CODE (x) == VALUE)
1792 {
1793 if (REG_P (y))
1794 {
1795 struct elt_loc_list *l = NULL;
1796 if (CSELIB_VAL_PTR (x))
1797 for (l = CSELIB_VAL_PTR (x)->locs; l; l = l->next)
1798 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1799 break;
1800 if (l)
1801 x = y;
1802 else
1803 x = get_addr (x);
1804 }
1805 /* Don't call get_addr if y is the same VALUE. */
1806 else if (x != y)
1807 x = get_addr (x);
1808 }
1809 if (GET_CODE (y) == VALUE)
1810 {
1811 if (REG_P (x))
1812 {
1813 struct elt_loc_list *l = NULL;
1814 if (CSELIB_VAL_PTR (y))
1815 for (l = CSELIB_VAL_PTR (y)->locs; l; l = l->next)
1816 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1817 break;
1818 if (l)
1819 y = x;
1820 else
1821 y = get_addr (y);
1822 }
1823 /* Don't call get_addr if x is the same VALUE. */
1824 else if (y != x)
1825 y = get_addr (y);
1826 }
1827 if (GET_CODE (x) == HIGH)
1828 x = XEXP (x, 0);
1829 else if (GET_CODE (x) == LO_SUM)
1830 x = XEXP (x, 1);
1831 else
1832 x = addr_side_effect_eval (x, xsize, 0);
1833 if (GET_CODE (y) == HIGH)
1834 y = XEXP (y, 0);
1835 else if (GET_CODE (y) == LO_SUM)
1836 y = XEXP (y, 1);
1837 else
1838 y = addr_side_effect_eval (y, ysize, 0);
1839
1840 if (rtx_equal_for_memref_p (x, y))
1841 {
1842 if (xsize <= 0 || ysize <= 0)
1843 return 1;
1844 if (c >= 0 && xsize > c)
1845 return 1;
1846 if (c < 0 && ysize+c > 0)
1847 return 1;
1848 return 0;
1849 }
1850
1851 /* This code used to check for conflicts involving stack references and
1852 globals but the base address alias code now handles these cases. */
1853
1854 if (GET_CODE (x) == PLUS)
1855 {
1856 /* The fact that X is canonicalized means that this
1857 PLUS rtx is canonicalized. */
1858 rtx x0 = XEXP (x, 0);
1859 rtx x1 = XEXP (x, 1);
1860
1861 if (GET_CODE (y) == PLUS)
1862 {
1863 /* The fact that Y is canonicalized means that this
1864 PLUS rtx is canonicalized. */
1865 rtx y0 = XEXP (y, 0);
1866 rtx y1 = XEXP (y, 1);
1867
1868 if (rtx_equal_for_memref_p (x1, y1))
1869 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1870 if (rtx_equal_for_memref_p (x0, y0))
1871 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1872 if (CONST_INT_P (x1))
1873 {
1874 if (CONST_INT_P (y1))
1875 return memrefs_conflict_p (xsize, x0, ysize, y0,
1876 c - INTVAL (x1) + INTVAL (y1));
1877 else
1878 return memrefs_conflict_p (xsize, x0, ysize, y,
1879 c - INTVAL (x1));
1880 }
1881 else if (CONST_INT_P (y1))
1882 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1883
1884 return -1;
1885 }
1886 else if (CONST_INT_P (x1))
1887 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1888 }
1889 else if (GET_CODE (y) == PLUS)
1890 {
1891 /* The fact that Y is canonicalized means that this
1892 PLUS rtx is canonicalized. */
1893 rtx y0 = XEXP (y, 0);
1894 rtx y1 = XEXP (y, 1);
1895
1896 if (CONST_INT_P (y1))
1897 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1898 else
1899 return -1;
1900 }
1901
1902 if (GET_CODE (x) == GET_CODE (y))
1903 switch (GET_CODE (x))
1904 {
1905 case MULT:
1906 {
1907 /* Handle cases where we expect the second operands to be the
1908 same, and check only whether the first operand would conflict
1909 or not. */
1910 rtx x0, y0;
1911 rtx x1 = canon_rtx (XEXP (x, 1));
1912 rtx y1 = canon_rtx (XEXP (y, 1));
1913 if (! rtx_equal_for_memref_p (x1, y1))
1914 return -1;
1915 x0 = canon_rtx (XEXP (x, 0));
1916 y0 = canon_rtx (XEXP (y, 0));
1917 if (rtx_equal_for_memref_p (x0, y0))
1918 return (xsize == 0 || ysize == 0
1919 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1920
1921 /* Can't properly adjust our sizes. */
1922 if (!CONST_INT_P (x1))
1923 return -1;
1924 xsize /= INTVAL (x1);
1925 ysize /= INTVAL (x1);
1926 c /= INTVAL (x1);
1927 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1928 }
1929
1930 default:
1931 break;
1932 }
1933
1934 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1935 as an access with indeterminate size. Assume that references
1936 besides AND are aligned, so if the size of the other reference is
1937 at least as large as the alignment, assume no other overlap. */
1938 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
1939 {
1940 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1941 xsize = -1;
1942 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1943 }
1944 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
1945 {
1946 /* ??? If we are indexing far enough into the array/structure, we
1947 may yet be able to determine that we can not overlap. But we
1948 also need to that we are far enough from the end not to overlap
1949 a following reference, so we do nothing with that for now. */
1950 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1951 ysize = -1;
1952 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1953 }
1954
1955 if (CONSTANT_P (x))
1956 {
1957 if (CONST_INT_P (x) && CONST_INT_P (y))
1958 {
1959 c += (INTVAL (y) - INTVAL (x));
1960 return (xsize <= 0 || ysize <= 0
1961 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1962 }
1963
1964 if (GET_CODE (x) == CONST)
1965 {
1966 if (GET_CODE (y) == CONST)
1967 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1968 ysize, canon_rtx (XEXP (y, 0)), c);
1969 else
1970 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1971 ysize, y, c);
1972 }
1973 if (GET_CODE (y) == CONST)
1974 return memrefs_conflict_p (xsize, x, ysize,
1975 canon_rtx (XEXP (y, 0)), c);
1976
1977 if (CONSTANT_P (y))
1978 return (xsize <= 0 || ysize <= 0
1979 || (rtx_equal_for_memref_p (x, y)
1980 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1981
1982 return -1;
1983 }
1984
1985 return -1;
1986 }
1987
1988 /* Functions to compute memory dependencies.
1989
1990 Since we process the insns in execution order, we can build tables
1991 to keep track of what registers are fixed (and not aliased), what registers
1992 are varying in known ways, and what registers are varying in unknown
1993 ways.
1994
1995 If both memory references are volatile, then there must always be a
1996 dependence between the two references, since their order can not be
1997 changed. A volatile and non-volatile reference can be interchanged
1998 though.
1999
2000 A MEM_IN_STRUCT reference at a non-AND varying address can never
2001 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
2002 also must allow AND addresses, because they may generate accesses
2003 outside the object being referenced. This is used to generate
2004 aligned addresses from unaligned addresses, for instance, the alpha
2005 storeqi_unaligned pattern. */
2006
2007 /* Read dependence: X is read after read in MEM takes place. There can
2008 only be a dependence here if both reads are volatile. */
2009
2010 int
2011 read_dependence (const_rtx mem, const_rtx x)
2012 {
2013 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
2014 }
2015
2016 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
2017 MEM2 is a reference to a structure at a varying address, or returns
2018 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
2019 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
2020 to decide whether or not an address may vary; it should return
2021 nonzero whenever variation is possible.
2022 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
2023
2024 static const_rtx
2025 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
2026 rtx mem2_addr,
2027 bool (*varies_p) (const_rtx, bool))
2028 {
2029 if (! flag_strict_aliasing)
2030 return NULL_RTX;
2031
2032 if (MEM_ALIAS_SET (mem2)
2033 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
2034 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
2035 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
2036 varying address. */
2037 return mem1;
2038
2039 if (MEM_ALIAS_SET (mem1)
2040 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
2041 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
2042 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
2043 varying address. */
2044 return mem2;
2045
2046 return NULL_RTX;
2047 }
2048
2049 /* Returns nonzero if something about the mode or address format MEM1
2050 indicates that it might well alias *anything*. */
2051
2052 static int
2053 aliases_everything_p (const_rtx mem)
2054 {
2055 if (GET_CODE (XEXP (mem, 0)) == AND)
2056 /* If the address is an AND, it's very hard to know at what it is
2057 actually pointing. */
2058 return 1;
2059
2060 return 0;
2061 }
2062
2063 /* Return true if we can determine that the fields referenced cannot
2064 overlap for any pair of objects. */
2065
2066 static bool
2067 nonoverlapping_component_refs_p (const_tree x, const_tree y)
2068 {
2069 const_tree fieldx, fieldy, typex, typey, orig_y;
2070
2071 if (!flag_strict_aliasing)
2072 return false;
2073
2074 do
2075 {
2076 /* The comparison has to be done at a common type, since we don't
2077 know how the inheritance hierarchy works. */
2078 orig_y = y;
2079 do
2080 {
2081 fieldx = TREE_OPERAND (x, 1);
2082 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2083
2084 y = orig_y;
2085 do
2086 {
2087 fieldy = TREE_OPERAND (y, 1);
2088 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2089
2090 if (typex == typey)
2091 goto found;
2092
2093 y = TREE_OPERAND (y, 0);
2094 }
2095 while (y && TREE_CODE (y) == COMPONENT_REF);
2096
2097 x = TREE_OPERAND (x, 0);
2098 }
2099 while (x && TREE_CODE (x) == COMPONENT_REF);
2100 /* Never found a common type. */
2101 return false;
2102
2103 found:
2104 /* If we're left with accessing different fields of a structure,
2105 then no overlap. */
2106 if (TREE_CODE (typex) == RECORD_TYPE
2107 && fieldx != fieldy)
2108 return true;
2109
2110 /* The comparison on the current field failed. If we're accessing
2111 a very nested structure, look at the next outer level. */
2112 x = TREE_OPERAND (x, 0);
2113 y = TREE_OPERAND (y, 0);
2114 }
2115 while (x && y
2116 && TREE_CODE (x) == COMPONENT_REF
2117 && TREE_CODE (y) == COMPONENT_REF);
2118
2119 return false;
2120 }
2121
2122 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2123
2124 static tree
2125 decl_for_component_ref (tree x)
2126 {
2127 do
2128 {
2129 x = TREE_OPERAND (x, 0);
2130 }
2131 while (x && TREE_CODE (x) == COMPONENT_REF);
2132
2133 return x && DECL_P (x) ? x : NULL_TREE;
2134 }
2135
2136 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2137 offset of the field reference. */
2138
2139 static rtx
2140 adjust_offset_for_component_ref (tree x, rtx offset)
2141 {
2142 HOST_WIDE_INT ioffset;
2143
2144 if (! offset)
2145 return NULL_RTX;
2146
2147 ioffset = INTVAL (offset);
2148 do
2149 {
2150 tree offset = component_ref_field_offset (x);
2151 tree field = TREE_OPERAND (x, 1);
2152
2153 if (! host_integerp (offset, 1))
2154 return NULL_RTX;
2155 ioffset += (tree_low_cst (offset, 1)
2156 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2157 / BITS_PER_UNIT));
2158
2159 x = TREE_OPERAND (x, 0);
2160 }
2161 while (x && TREE_CODE (x) == COMPONENT_REF);
2162
2163 return GEN_INT (ioffset);
2164 }
2165
2166 /* Return nonzero if we can determine the exprs corresponding to memrefs
2167 X and Y and they do not overlap. */
2168
2169 int
2170 nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
2171 {
2172 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2173 rtx rtlx, rtly;
2174 rtx basex, basey;
2175 rtx moffsetx, moffsety;
2176 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2177
2178 /* Unless both have exprs, we can't tell anything. */
2179 if (exprx == 0 || expry == 0)
2180 return 0;
2181
2182 /* For spill-slot accesses make sure we have valid offsets. */
2183 if ((exprx == get_spill_slot_decl (false)
2184 && ! MEM_OFFSET (x))
2185 || (expry == get_spill_slot_decl (false)
2186 && ! MEM_OFFSET (y)))
2187 return 0;
2188
2189 /* If both are field references, we may be able to determine something. */
2190 if (TREE_CODE (exprx) == COMPONENT_REF
2191 && TREE_CODE (expry) == COMPONENT_REF
2192 && nonoverlapping_component_refs_p (exprx, expry))
2193 return 1;
2194
2195
2196 /* If the field reference test failed, look at the DECLs involved. */
2197 moffsetx = MEM_OFFSET (x);
2198 if (TREE_CODE (exprx) == COMPONENT_REF)
2199 {
2200 if (TREE_CODE (expry) == VAR_DECL
2201 && POINTER_TYPE_P (TREE_TYPE (expry)))
2202 {
2203 tree field = TREE_OPERAND (exprx, 1);
2204 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2205 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2206 TREE_TYPE (field)))
2207 return 1;
2208 }
2209 {
2210 tree t = decl_for_component_ref (exprx);
2211 if (! t)
2212 return 0;
2213 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2214 exprx = t;
2215 }
2216 }
2217
2218 moffsety = MEM_OFFSET (y);
2219 if (TREE_CODE (expry) == COMPONENT_REF)
2220 {
2221 if (TREE_CODE (exprx) == VAR_DECL
2222 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2223 {
2224 tree field = TREE_OPERAND (expry, 1);
2225 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2226 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2227 TREE_TYPE (field)))
2228 return 1;
2229 }
2230 {
2231 tree t = decl_for_component_ref (expry);
2232 if (! t)
2233 return 0;
2234 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2235 expry = t;
2236 }
2237 }
2238
2239 if (! DECL_P (exprx) || ! DECL_P (expry))
2240 return 0;
2241
2242 /* With invalid code we can end up storing into the constant pool.
2243 Bail out to avoid ICEing when creating RTL for this.
2244 See gfortran.dg/lto/20091028-2_0.f90. */
2245 if (TREE_CODE (exprx) == CONST_DECL
2246 || TREE_CODE (expry) == CONST_DECL)
2247 return 1;
2248
2249 rtlx = DECL_RTL (exprx);
2250 rtly = DECL_RTL (expry);
2251
2252 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2253 can't overlap unless they are the same because we never reuse that part
2254 of the stack frame used for locals for spilled pseudos. */
2255 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2256 && ! rtx_equal_p (rtlx, rtly))
2257 return 1;
2258
2259 /* If we have MEMs refering to different address spaces (which can
2260 potentially overlap), we cannot easily tell from the addresses
2261 whether the references overlap. */
2262 if (MEM_P (rtlx) && MEM_P (rtly)
2263 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2264 return 0;
2265
2266 /* Get the base and offsets of both decls. If either is a register, we
2267 know both are and are the same, so use that as the base. The only
2268 we can avoid overlap is if we can deduce that they are nonoverlapping
2269 pieces of that decl, which is very rare. */
2270 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2271 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2272 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2273
2274 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2275 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2276 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2277
2278 /* If the bases are different, we know they do not overlap if both
2279 are constants or if one is a constant and the other a pointer into the
2280 stack frame. Otherwise a different base means we can't tell if they
2281 overlap or not. */
2282 if (! rtx_equal_p (basex, basey))
2283 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2284 || (CONSTANT_P (basex) && REG_P (basey)
2285 && REGNO_PTR_FRAME_P (REGNO (basey)))
2286 || (CONSTANT_P (basey) && REG_P (basex)
2287 && REGNO_PTR_FRAME_P (REGNO (basex))));
2288
2289 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2290 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2291 : -1);
2292 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2293 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2294 -1);
2295
2296 /* If we have an offset for either memref, it can update the values computed
2297 above. */
2298 if (moffsetx)
2299 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2300 if (moffsety)
2301 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2302
2303 /* If a memref has both a size and an offset, we can use the smaller size.
2304 We can't do this if the offset isn't known because we must view this
2305 memref as being anywhere inside the DECL's MEM. */
2306 if (MEM_SIZE (x) && moffsetx)
2307 sizex = INTVAL (MEM_SIZE (x));
2308 if (MEM_SIZE (y) && moffsety)
2309 sizey = INTVAL (MEM_SIZE (y));
2310
2311 /* Put the values of the memref with the lower offset in X's values. */
2312 if (offsetx > offsety)
2313 {
2314 tem = offsetx, offsetx = offsety, offsety = tem;
2315 tem = sizex, sizex = sizey, sizey = tem;
2316 }
2317
2318 /* If we don't know the size of the lower-offset value, we can't tell
2319 if they conflict. Otherwise, we do the test. */
2320 return sizex >= 0 && offsety >= offsetx + sizex;
2321 }
2322
2323 /* True dependence: X is read after store in MEM takes place. */
2324
2325 int
2326 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2327 bool (*varies) (const_rtx, bool))
2328 {
2329 rtx x_addr, mem_addr;
2330 rtx base;
2331 int ret;
2332
2333 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2334 return 1;
2335
2336 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2337 This is used in epilogue deallocation functions, and in cselib. */
2338 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2339 return 1;
2340 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2341 return 1;
2342 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2343 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2344 return 1;
2345
2346 /* Read-only memory is by definition never modified, and therefore can't
2347 conflict with anything. We don't expect to find read-only set on MEM,
2348 but stupid user tricks can produce them, so don't die. */
2349 if (MEM_READONLY_P (x))
2350 return 0;
2351
2352 /* If we have MEMs refering to different address spaces (which can
2353 potentially overlap), we cannot easily tell from the addresses
2354 whether the references overlap. */
2355 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2356 return 1;
2357
2358 if (mem_mode == VOIDmode)
2359 mem_mode = GET_MODE (mem);
2360
2361 x_addr = get_addr (XEXP (x, 0));
2362 mem_addr = get_addr (XEXP (mem, 0));
2363
2364 base = find_base_term (x_addr);
2365 if (base && (GET_CODE (base) == LABEL_REF
2366 || (GET_CODE (base) == SYMBOL_REF
2367 && CONSTANT_POOL_ADDRESS_P (base))))
2368 return 0;
2369
2370 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2371 return 0;
2372
2373 x_addr = canon_rtx (x_addr);
2374 mem_addr = canon_rtx (mem_addr);
2375
2376 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2377 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2378 return ret;
2379
2380 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2381 return 0;
2382
2383 if (nonoverlapping_memrefs_p (mem, x))
2384 return 0;
2385
2386 if (aliases_everything_p (x))
2387 return 1;
2388
2389 /* We cannot use aliases_everything_p to test MEM, since we must look
2390 at MEM_MODE, rather than GET_MODE (MEM). */
2391 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2392 return 1;
2393
2394 /* In true_dependence we also allow BLKmode to alias anything. Why
2395 don't we do this in anti_dependence and output_dependence? */
2396 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2397 return 1;
2398
2399 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2400 return 0;
2401
2402 return rtx_refs_may_alias_p (x, mem, true);
2403 }
2404
2405 /* Canonical true dependence: X is read after store in MEM takes place.
2406 Variant of true_dependence which assumes MEM has already been
2407 canonicalized (hence we no longer do that here).
2408 The mem_addr argument has been added, since true_dependence computed
2409 this value prior to canonicalizing.
2410 If x_addr is non-NULL, it is used in preference of XEXP (x, 0). */
2411
2412 int
2413 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2414 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2415 {
2416 int ret;
2417
2418 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2419 return 1;
2420
2421 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2422 This is used in epilogue deallocation functions. */
2423 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2424 return 1;
2425 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2426 return 1;
2427 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2428 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2429 return 1;
2430
2431 /* Read-only memory is by definition never modified, and therefore can't
2432 conflict with anything. We don't expect to find read-only set on MEM,
2433 but stupid user tricks can produce them, so don't die. */
2434 if (MEM_READONLY_P (x))
2435 return 0;
2436
2437 /* If we have MEMs refering to different address spaces (which can
2438 potentially overlap), we cannot easily tell from the addresses
2439 whether the references overlap. */
2440 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2441 return 1;
2442
2443 if (! x_addr)
2444 x_addr = get_addr (XEXP (x, 0));
2445
2446 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2447 return 0;
2448
2449 x_addr = canon_rtx (x_addr);
2450 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2451 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2452 return ret;
2453
2454 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2455 return 0;
2456
2457 if (nonoverlapping_memrefs_p (x, mem))
2458 return 0;
2459
2460 if (aliases_everything_p (x))
2461 return 1;
2462
2463 /* We cannot use aliases_everything_p to test MEM, since we must look
2464 at MEM_MODE, rather than GET_MODE (MEM). */
2465 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2466 return 1;
2467
2468 /* In true_dependence we also allow BLKmode to alias anything. Why
2469 don't we do this in anti_dependence and output_dependence? */
2470 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2471 return 1;
2472
2473 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2474 return 0;
2475
2476 return rtx_refs_may_alias_p (x, mem, true);
2477 }
2478
2479 /* Returns nonzero if a write to X might alias a previous read from
2480 (or, if WRITEP is nonzero, a write to) MEM. */
2481
2482 static int
2483 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2484 {
2485 rtx x_addr, mem_addr;
2486 const_rtx fixed_scalar;
2487 rtx base;
2488 int ret;
2489
2490 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2491 return 1;
2492
2493 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2494 This is used in epilogue deallocation functions. */
2495 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2496 return 1;
2497 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2498 return 1;
2499 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2500 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2501 return 1;
2502
2503 /* A read from read-only memory can't conflict with read-write memory. */
2504 if (!writep && MEM_READONLY_P (mem))
2505 return 0;
2506
2507 /* If we have MEMs refering to different address spaces (which can
2508 potentially overlap), we cannot easily tell from the addresses
2509 whether the references overlap. */
2510 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2511 return 1;
2512
2513 x_addr = get_addr (XEXP (x, 0));
2514 mem_addr = get_addr (XEXP (mem, 0));
2515
2516 if (! writep)
2517 {
2518 base = find_base_term (mem_addr);
2519 if (base && (GET_CODE (base) == LABEL_REF
2520 || (GET_CODE (base) == SYMBOL_REF
2521 && CONSTANT_POOL_ADDRESS_P (base))))
2522 return 0;
2523 }
2524
2525 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2526 GET_MODE (mem)))
2527 return 0;
2528
2529 x_addr = canon_rtx (x_addr);
2530 mem_addr = canon_rtx (mem_addr);
2531
2532 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2533 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2534 return ret;
2535
2536 if (nonoverlapping_memrefs_p (x, mem))
2537 return 0;
2538
2539 fixed_scalar
2540 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2541 rtx_addr_varies_p);
2542
2543 if ((fixed_scalar == mem && !aliases_everything_p (x))
2544 || (fixed_scalar == x && !aliases_everything_p (mem)))
2545 return 0;
2546
2547 return rtx_refs_may_alias_p (x, mem, false);
2548 }
2549
2550 /* Anti dependence: X is written after read in MEM takes place. */
2551
2552 int
2553 anti_dependence (const_rtx mem, const_rtx x)
2554 {
2555 return write_dependence_p (mem, x, /*writep=*/0);
2556 }
2557
2558 /* Output dependence: X is written after store in MEM takes place. */
2559
2560 int
2561 output_dependence (const_rtx mem, const_rtx x)
2562 {
2563 return write_dependence_p (mem, x, /*writep=*/1);
2564 }
2565 \f
2566
2567 void
2568 init_alias_target (void)
2569 {
2570 int i;
2571
2572 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2573
2574 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2575 /* Check whether this register can hold an incoming pointer
2576 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2577 numbers, so translate if necessary due to register windows. */
2578 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2579 && HARD_REGNO_MODE_OK (i, Pmode))
2580 static_reg_base_value[i]
2581 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2582
2583 static_reg_base_value[STACK_POINTER_REGNUM]
2584 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2585 static_reg_base_value[ARG_POINTER_REGNUM]
2586 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2587 static_reg_base_value[FRAME_POINTER_REGNUM]
2588 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2589 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2590 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2591 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2592 #endif
2593 }
2594
2595 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2596 to be memory reference. */
2597 static bool memory_modified;
2598 static void
2599 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2600 {
2601 if (MEM_P (x))
2602 {
2603 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2604 memory_modified = true;
2605 }
2606 }
2607
2608
2609 /* Return true when INSN possibly modify memory contents of MEM
2610 (i.e. address can be modified). */
2611 bool
2612 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2613 {
2614 if (!INSN_P (insn))
2615 return false;
2616 memory_modified = false;
2617 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2618 return memory_modified;
2619 }
2620
2621 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2622 array. */
2623
2624 void
2625 init_alias_analysis (void)
2626 {
2627 unsigned int maxreg = max_reg_num ();
2628 int changed, pass;
2629 int i;
2630 unsigned int ui;
2631 rtx insn;
2632
2633 timevar_push (TV_ALIAS_ANALYSIS);
2634
2635 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2636 reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2637 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2638
2639 /* If we have memory allocated from the previous run, use it. */
2640 if (old_reg_base_value)
2641 reg_base_value = old_reg_base_value;
2642
2643 if (reg_base_value)
2644 VEC_truncate (rtx, reg_base_value, 0);
2645
2646 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2647
2648 new_reg_base_value = XNEWVEC (rtx, maxreg);
2649 reg_seen = XNEWVEC (char, maxreg);
2650
2651 /* The basic idea is that each pass through this loop will use the
2652 "constant" information from the previous pass to propagate alias
2653 information through another level of assignments.
2654
2655 This could get expensive if the assignment chains are long. Maybe
2656 we should throttle the number of iterations, possibly based on
2657 the optimization level or flag_expensive_optimizations.
2658
2659 We could propagate more information in the first pass by making use
2660 of DF_REG_DEF_COUNT to determine immediately that the alias information
2661 for a pseudo is "constant".
2662
2663 A program with an uninitialized variable can cause an infinite loop
2664 here. Instead of doing a full dataflow analysis to detect such problems
2665 we just cap the number of iterations for the loop.
2666
2667 The state of the arrays for the set chain in question does not matter
2668 since the program has undefined behavior. */
2669
2670 pass = 0;
2671 do
2672 {
2673 /* Assume nothing will change this iteration of the loop. */
2674 changed = 0;
2675
2676 /* We want to assign the same IDs each iteration of this loop, so
2677 start counting from zero each iteration of the loop. */
2678 unique_id = 0;
2679
2680 /* We're at the start of the function each iteration through the
2681 loop, so we're copying arguments. */
2682 copying_arguments = true;
2683
2684 /* Wipe the potential alias information clean for this pass. */
2685 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2686
2687 /* Wipe the reg_seen array clean. */
2688 memset (reg_seen, 0, maxreg);
2689
2690 /* Mark all hard registers which may contain an address.
2691 The stack, frame and argument pointers may contain an address.
2692 An argument register which can hold a Pmode value may contain
2693 an address even if it is not in BASE_REGS.
2694
2695 The address expression is VOIDmode for an argument and
2696 Pmode for other registers. */
2697
2698 memcpy (new_reg_base_value, static_reg_base_value,
2699 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2700
2701 /* Walk the insns adding values to the new_reg_base_value array. */
2702 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2703 {
2704 if (INSN_P (insn))
2705 {
2706 rtx note, set;
2707
2708 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2709 /* The prologue/epilogue insns are not threaded onto the
2710 insn chain until after reload has completed. Thus,
2711 there is no sense wasting time checking if INSN is in
2712 the prologue/epilogue until after reload has completed. */
2713 if (reload_completed
2714 && prologue_epilogue_contains (insn))
2715 continue;
2716 #endif
2717
2718 /* If this insn has a noalias note, process it, Otherwise,
2719 scan for sets. A simple set will have no side effects
2720 which could change the base value of any other register. */
2721
2722 if (GET_CODE (PATTERN (insn)) == SET
2723 && REG_NOTES (insn) != 0
2724 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2725 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2726 else
2727 note_stores (PATTERN (insn), record_set, NULL);
2728
2729 set = single_set (insn);
2730
2731 if (set != 0
2732 && REG_P (SET_DEST (set))
2733 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2734 {
2735 unsigned int regno = REGNO (SET_DEST (set));
2736 rtx src = SET_SRC (set);
2737 rtx t;
2738
2739 note = find_reg_equal_equiv_note (insn);
2740 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2741 && DF_REG_DEF_COUNT (regno) != 1)
2742 note = NULL_RTX;
2743
2744 if (note != NULL_RTX
2745 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2746 && ! rtx_varies_p (XEXP (note, 0), 1)
2747 && ! reg_overlap_mentioned_p (SET_DEST (set),
2748 XEXP (note, 0)))
2749 {
2750 set_reg_known_value (regno, XEXP (note, 0));
2751 set_reg_known_equiv_p (regno,
2752 REG_NOTE_KIND (note) == REG_EQUIV);
2753 }
2754 else if (DF_REG_DEF_COUNT (regno) == 1
2755 && GET_CODE (src) == PLUS
2756 && REG_P (XEXP (src, 0))
2757 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2758 && CONST_INT_P (XEXP (src, 1)))
2759 {
2760 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2761 set_reg_known_value (regno, t);
2762 set_reg_known_equiv_p (regno, 0);
2763 }
2764 else if (DF_REG_DEF_COUNT (regno) == 1
2765 && ! rtx_varies_p (src, 1))
2766 {
2767 set_reg_known_value (regno, src);
2768 set_reg_known_equiv_p (regno, 0);
2769 }
2770 }
2771 }
2772 else if (NOTE_P (insn)
2773 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2774 copying_arguments = false;
2775 }
2776
2777 /* Now propagate values from new_reg_base_value to reg_base_value. */
2778 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2779
2780 for (ui = 0; ui < maxreg; ui++)
2781 {
2782 if (new_reg_base_value[ui]
2783 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2784 && ! rtx_equal_p (new_reg_base_value[ui],
2785 VEC_index (rtx, reg_base_value, ui)))
2786 {
2787 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2788 changed = 1;
2789 }
2790 }
2791 }
2792 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2793
2794 /* Fill in the remaining entries. */
2795 for (i = 0; i < (int)reg_known_value_size; i++)
2796 if (reg_known_value[i] == 0)
2797 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2798
2799 /* Clean up. */
2800 free (new_reg_base_value);
2801 new_reg_base_value = 0;
2802 free (reg_seen);
2803 reg_seen = 0;
2804 timevar_pop (TV_ALIAS_ANALYSIS);
2805 }
2806
2807 void
2808 end_alias_analysis (void)
2809 {
2810 old_reg_base_value = reg_base_value;
2811 ggc_free (reg_known_value);
2812 reg_known_value = 0;
2813 reg_known_value_size = 0;
2814 free (reg_known_equiv_p);
2815 reg_known_equiv_p = 0;
2816 }
2817
2818 #include "gt-alias.h"