* de.po: Update.
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "diagnostic-core.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "tree-pass.h"
46 #include "df.h"
47 #include "tree-ssa-alias.h"
48 #include "pointer-set.h"
49 #include "tree-flow.h"
50
51 /* The aliasing API provided here solves related but different problems:
52
53 Say there exists (in c)
54
55 struct X {
56 struct Y y1;
57 struct Z z2;
58 } x1, *px1, *px2;
59
60 struct Y y2, *py;
61 struct Z z2, *pz;
62
63
64 py = &px1.y1;
65 px2 = &x1;
66
67 Consider the four questions:
68
69 Can a store to x1 interfere with px2->y1?
70 Can a store to x1 interfere with px2->z2?
71 (*px2).z2
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
74
75 The answer to these questions can be yes, yes, yes, and maybe.
76
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store thru a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
81
82 The last two of the questions can be solved in the same way as the
83 first two questions but this is too conservative. The observation
84 is that in some cases analysis we can know if which (if any) fields
85 are addressed and if those addresses are used in bad ways. This
86 analysis may be language specific. In C, arbitrary operations may
87 be applied to pointers. However, there is some indication that
88 this may be too conservative for some C++ types.
89
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
92
93 Historically in GCC, these two problems were combined and a single
94 data structure was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two question is similar to the
97 first, but does not contain have the fields in it whose address are
98 never taken. For types that do escape the compilation unit, the
99 data structures will have identical information.
100 */
101
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
106
107 struct S { int i; double d; };
108
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
114 / \
115 / \
116 |/_ _\|
117 int double
118
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
122
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
127
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
131
132 struct GTY(()) alias_set_entry_d {
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
135
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
139
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
142
143 struct T { struct S s; float f; }
144
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 splay_tree GTY((param1_is (int), param2_is (int))) children;
148 };
149 typedef struct alias_set_entry_d *alias_set_entry;
150
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static int aliases_everything_p (const_rtx);
161 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
162 static tree decl_for_component_ref (tree);
163 static int write_dependence_p (const_rtx, const_rtx, int);
164
165 static void memory_modified_1 (rtx, const_rtx, void *);
166
167 /* Set up all info needed to perform alias analysis on memory references. */
168
169 /* Returns the size in bytes of the mode of X. */
170 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
171
172 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
173 different alias sets. We ignore alias sets in functions making use
174 of variable arguments because the va_arg macros on some systems are
175 not legal ANSI C. */
176 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
177 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
178
179 /* Cap the number of passes we make over the insns propagating alias
180 information through set chains. 10 is a completely arbitrary choice. */
181 #define MAX_ALIAS_LOOP_PASSES 10
182
183 /* reg_base_value[N] gives an address to which register N is related.
184 If all sets after the first add or subtract to the current value
185 or otherwise modify it so it does not point to a different top level
186 object, reg_base_value[N] is equal to the address part of the source
187 of the first set.
188
189 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
190 expressions represent certain special values: function arguments and
191 the stack, frame, and argument pointers.
192
193 The contents of an ADDRESS is not normally used, the mode of the
194 ADDRESS determines whether the ADDRESS is a function argument or some
195 other special value. Pointer equality, not rtx_equal_p, determines whether
196 two ADDRESS expressions refer to the same base address.
197
198 The only use of the contents of an ADDRESS is for determining if the
199 current function performs nonlocal memory memory references for the
200 purposes of marking the function as a constant function. */
201
202 static GTY(()) VEC(rtx,gc) *reg_base_value;
203 static rtx *new_reg_base_value;
204
205 /* We preserve the copy of old array around to avoid amount of garbage
206 produced. About 8% of garbage produced were attributed to this
207 array. */
208 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
209
210 #define static_reg_base_value \
211 (this_target_rtl->x_static_reg_base_value)
212
213 #define REG_BASE_VALUE(X) \
214 (REGNO (X) < VEC_length (rtx, reg_base_value) \
215 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
216
217 /* Vector indexed by N giving the initial (unchanging) value known for
218 pseudo-register N. This array is initialized in init_alias_analysis,
219 and does not change until end_alias_analysis is called. */
220 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
221
222 /* Indicates number of valid entries in reg_known_value. */
223 static GTY(()) unsigned int reg_known_value_size;
224
225 /* Vector recording for each reg_known_value whether it is due to a
226 REG_EQUIV note. Future passes (viz., reload) may replace the
227 pseudo with the equivalent expression and so we account for the
228 dependences that would be introduced if that happens.
229
230 The REG_EQUIV notes created in assign_parms may mention the arg
231 pointer, and there are explicit insns in the RTL that modify the
232 arg pointer. Thus we must ensure that such insns don't get
233 scheduled across each other because that would invalidate the
234 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
235 wrong, but solving the problem in the scheduler will likely give
236 better code, so we do it here. */
237 static bool *reg_known_equiv_p;
238
239 /* True when scanning insns from the start of the rtl to the
240 NOTE_INSN_FUNCTION_BEG note. */
241 static bool copying_arguments;
242
243 DEF_VEC_P(alias_set_entry);
244 DEF_VEC_ALLOC_P(alias_set_entry,gc);
245
246 /* The splay-tree used to store the various alias set entries. */
247 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
248 \f
249 /* Build a decomposed reference object for querying the alias-oracle
250 from the MEM rtx and store it in *REF.
251 Returns false if MEM is not suitable for the alias-oracle. */
252
253 static bool
254 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
255 {
256 tree expr = MEM_EXPR (mem);
257 tree base;
258
259 if (!expr)
260 return false;
261
262 ao_ref_init (ref, expr);
263
264 /* Get the base of the reference and see if we have to reject or
265 adjust it. */
266 base = ao_ref_base (ref);
267 if (base == NULL_TREE)
268 return false;
269
270 /* The tree oracle doesn't like to have these. */
271 if (TREE_CODE (base) == FUNCTION_DECL
272 || TREE_CODE (base) == LABEL_DECL)
273 return false;
274
275 /* If this is a pointer dereference of a non-SSA_NAME punt.
276 ??? We could replace it with a pointer to anything. */
277 if ((INDIRECT_REF_P (base)
278 || TREE_CODE (base) == MEM_REF)
279 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
280 return false;
281 if (TREE_CODE (base) == TARGET_MEM_REF
282 && TMR_BASE (base)
283 && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
284 return false;
285
286 /* If this is a reference based on a partitioned decl replace the
287 base with an INDIRECT_REF of the pointer representative we
288 created during stack slot partitioning. */
289 if (TREE_CODE (base) == VAR_DECL
290 && ! TREE_STATIC (base)
291 && cfun->gimple_df->decls_to_pointers != NULL)
292 {
293 void *namep;
294 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
295 if (namep)
296 ref->base = build_simple_mem_ref (*(tree *)namep);
297 }
298 else if (TREE_CODE (base) == TARGET_MEM_REF
299 && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
300 && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
301 && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
302 && cfun->gimple_df->decls_to_pointers != NULL)
303 {
304 void *namep;
305 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
306 TREE_OPERAND (TMR_BASE (base), 0));
307 if (namep)
308 ref->base = build_simple_mem_ref (*(tree *)namep);
309 }
310
311 ref->ref_alias_set = MEM_ALIAS_SET (mem);
312
313 /* If MEM_OFFSET or MEM_SIZE are unknown we have to punt.
314 Keep points-to related information though. */
315 if (!MEM_OFFSET_KNOWN_P (mem)
316 || !MEM_SIZE_KNOWN_P (mem))
317 {
318 ref->ref = NULL_TREE;
319 ref->offset = 0;
320 ref->size = -1;
321 ref->max_size = -1;
322 return true;
323 }
324
325 /* If the base decl is a parameter we can have negative MEM_OFFSET in
326 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
327 here. */
328 if (MEM_OFFSET (mem) < 0
329 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
330 return true;
331
332 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
333 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
334
335 /* The MEM may extend into adjacent fields, so adjust max_size if
336 necessary. */
337 if (ref->max_size != -1
338 && ref->size > ref->max_size)
339 ref->max_size = ref->size;
340
341 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
342 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
343 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
344 && (ref->offset < 0
345 || (DECL_P (ref->base)
346 && (!host_integerp (DECL_SIZE (ref->base), 1)
347 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
348 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
349 return false;
350
351 return true;
352 }
353
354 /* Query the alias-oracle on whether the two memory rtx X and MEM may
355 alias. If TBAA_P is set also apply TBAA. Returns true if the
356 two rtxen may alias, false otherwise. */
357
358 static bool
359 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
360 {
361 ao_ref ref1, ref2;
362
363 if (!ao_ref_from_mem (&ref1, x)
364 || !ao_ref_from_mem (&ref2, mem))
365 return true;
366
367 return refs_may_alias_p_1 (&ref1, &ref2,
368 tbaa_p
369 && MEM_ALIAS_SET (x) != 0
370 && MEM_ALIAS_SET (mem) != 0);
371 }
372
373 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
374 such an entry, or NULL otherwise. */
375
376 static inline alias_set_entry
377 get_alias_set_entry (alias_set_type alias_set)
378 {
379 return VEC_index (alias_set_entry, alias_sets, alias_set);
380 }
381
382 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
383 the two MEMs cannot alias each other. */
384
385 static inline int
386 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
387 {
388 /* Perform a basic sanity check. Namely, that there are no alias sets
389 if we're not using strict aliasing. This helps to catch bugs
390 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
391 where a MEM is allocated in some way other than by the use of
392 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
393 use alias sets to indicate that spilled registers cannot alias each
394 other, we might need to remove this check. */
395 gcc_assert (flag_strict_aliasing
396 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
397
398 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
399 }
400
401 /* Insert the NODE into the splay tree given by DATA. Used by
402 record_alias_subset via splay_tree_foreach. */
403
404 static int
405 insert_subset_children (splay_tree_node node, void *data)
406 {
407 splay_tree_insert ((splay_tree) data, node->key, node->value);
408
409 return 0;
410 }
411
412 /* Return true if the first alias set is a subset of the second. */
413
414 bool
415 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
416 {
417 alias_set_entry ase;
418
419 /* Everything is a subset of the "aliases everything" set. */
420 if (set2 == 0)
421 return true;
422
423 /* Otherwise, check if set1 is a subset of set2. */
424 ase = get_alias_set_entry (set2);
425 if (ase != 0
426 && (ase->has_zero_child
427 || splay_tree_lookup (ase->children,
428 (splay_tree_key) set1)))
429 return true;
430 return false;
431 }
432
433 /* Return 1 if the two specified alias sets may conflict. */
434
435 int
436 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
437 {
438 alias_set_entry ase;
439
440 /* The easy case. */
441 if (alias_sets_must_conflict_p (set1, set2))
442 return 1;
443
444 /* See if the first alias set is a subset of the second. */
445 ase = get_alias_set_entry (set1);
446 if (ase != 0
447 && (ase->has_zero_child
448 || splay_tree_lookup (ase->children,
449 (splay_tree_key) set2)))
450 return 1;
451
452 /* Now do the same, but with the alias sets reversed. */
453 ase = get_alias_set_entry (set2);
454 if (ase != 0
455 && (ase->has_zero_child
456 || splay_tree_lookup (ase->children,
457 (splay_tree_key) set1)))
458 return 1;
459
460 /* The two alias sets are distinct and neither one is the
461 child of the other. Therefore, they cannot conflict. */
462 return 0;
463 }
464
465 /* Return 1 if the two specified alias sets will always conflict. */
466
467 int
468 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
469 {
470 if (set1 == 0 || set2 == 0 || set1 == set2)
471 return 1;
472
473 return 0;
474 }
475
476 /* Return 1 if any MEM object of type T1 will always conflict (using the
477 dependency routines in this file) with any MEM object of type T2.
478 This is used when allocating temporary storage. If T1 and/or T2 are
479 NULL_TREE, it means we know nothing about the storage. */
480
481 int
482 objects_must_conflict_p (tree t1, tree t2)
483 {
484 alias_set_type set1, set2;
485
486 /* If neither has a type specified, we don't know if they'll conflict
487 because we may be using them to store objects of various types, for
488 example the argument and local variables areas of inlined functions. */
489 if (t1 == 0 && t2 == 0)
490 return 0;
491
492 /* If they are the same type, they must conflict. */
493 if (t1 == t2
494 /* Likewise if both are volatile. */
495 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
496 return 1;
497
498 set1 = t1 ? get_alias_set (t1) : 0;
499 set2 = t2 ? get_alias_set (t2) : 0;
500
501 /* We can't use alias_sets_conflict_p because we must make sure
502 that every subtype of t1 will conflict with every subtype of
503 t2 for which a pair of subobjects of these respective subtypes
504 overlaps on the stack. */
505 return alias_sets_must_conflict_p (set1, set2);
506 }
507 \f
508 /* Return true if all nested component references handled by
509 get_inner_reference in T are such that we should use the alias set
510 provided by the object at the heart of T.
511
512 This is true for non-addressable components (which don't have their
513 own alias set), as well as components of objects in alias set zero.
514 This later point is a special case wherein we wish to override the
515 alias set used by the component, but we don't have per-FIELD_DECL
516 assignable alias sets. */
517
518 bool
519 component_uses_parent_alias_set (const_tree t)
520 {
521 while (1)
522 {
523 /* If we're at the end, it vacuously uses its own alias set. */
524 if (!handled_component_p (t))
525 return false;
526
527 switch (TREE_CODE (t))
528 {
529 case COMPONENT_REF:
530 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
531 return true;
532 break;
533
534 case ARRAY_REF:
535 case ARRAY_RANGE_REF:
536 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
537 return true;
538 break;
539
540 case REALPART_EXPR:
541 case IMAGPART_EXPR:
542 break;
543
544 default:
545 /* Bitfields and casts are never addressable. */
546 return true;
547 }
548
549 t = TREE_OPERAND (t, 0);
550 if (get_alias_set (TREE_TYPE (t)) == 0)
551 return true;
552 }
553 }
554
555 /* Return the alias set for the memory pointed to by T, which may be
556 either a type or an expression. Return -1 if there is nothing
557 special about dereferencing T. */
558
559 static alias_set_type
560 get_deref_alias_set_1 (tree t)
561 {
562 /* If we're not doing any alias analysis, just assume everything
563 aliases everything else. */
564 if (!flag_strict_aliasing)
565 return 0;
566
567 /* All we care about is the type. */
568 if (! TYPE_P (t))
569 t = TREE_TYPE (t);
570
571 /* If we have an INDIRECT_REF via a void pointer, we don't
572 know anything about what that might alias. Likewise if the
573 pointer is marked that way. */
574 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
575 || TYPE_REF_CAN_ALIAS_ALL (t))
576 return 0;
577
578 return -1;
579 }
580
581 /* Return the alias set for the memory pointed to by T, which may be
582 either a type or an expression. */
583
584 alias_set_type
585 get_deref_alias_set (tree t)
586 {
587 alias_set_type set = get_deref_alias_set_1 (t);
588
589 /* Fall back to the alias-set of the pointed-to type. */
590 if (set == -1)
591 {
592 if (! TYPE_P (t))
593 t = TREE_TYPE (t);
594 set = get_alias_set (TREE_TYPE (t));
595 }
596
597 return set;
598 }
599
600 /* Return the alias set for T, which may be either a type or an
601 expression. Call language-specific routine for help, if needed. */
602
603 alias_set_type
604 get_alias_set (tree t)
605 {
606 alias_set_type set;
607
608 /* If we're not doing any alias analysis, just assume everything
609 aliases everything else. Also return 0 if this or its type is
610 an error. */
611 if (! flag_strict_aliasing || t == error_mark_node
612 || (! TYPE_P (t)
613 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
614 return 0;
615
616 /* We can be passed either an expression or a type. This and the
617 language-specific routine may make mutually-recursive calls to each other
618 to figure out what to do. At each juncture, we see if this is a tree
619 that the language may need to handle specially. First handle things that
620 aren't types. */
621 if (! TYPE_P (t))
622 {
623 tree inner;
624
625 /* Give the language a chance to do something with this tree
626 before we look at it. */
627 STRIP_NOPS (t);
628 set = lang_hooks.get_alias_set (t);
629 if (set != -1)
630 return set;
631
632 /* Get the base object of the reference. */
633 inner = t;
634 while (handled_component_p (inner))
635 {
636 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
637 the type of any component references that wrap it to
638 determine the alias-set. */
639 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
640 t = TREE_OPERAND (inner, 0);
641 inner = TREE_OPERAND (inner, 0);
642 }
643
644 /* Handle pointer dereferences here, they can override the
645 alias-set. */
646 if (INDIRECT_REF_P (inner))
647 {
648 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
649 if (set != -1)
650 return set;
651 }
652 else if (TREE_CODE (inner) == TARGET_MEM_REF)
653 return get_deref_alias_set (TMR_OFFSET (inner));
654 else if (TREE_CODE (inner) == MEM_REF)
655 {
656 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
657 if (set != -1)
658 return set;
659 }
660
661 /* If the innermost reference is a MEM_REF that has a
662 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
663 using the memory access type for determining the alias-set. */
664 if (TREE_CODE (inner) == MEM_REF
665 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
666 != TYPE_MAIN_VARIANT
667 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
668 return get_deref_alias_set (TREE_OPERAND (inner, 1));
669
670 /* Otherwise, pick up the outermost object that we could have a pointer
671 to, processing conversions as above. */
672 while (component_uses_parent_alias_set (t))
673 {
674 t = TREE_OPERAND (t, 0);
675 STRIP_NOPS (t);
676 }
677
678 /* If we've already determined the alias set for a decl, just return
679 it. This is necessary for C++ anonymous unions, whose component
680 variables don't look like union members (boo!). */
681 if (TREE_CODE (t) == VAR_DECL
682 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
683 return MEM_ALIAS_SET (DECL_RTL (t));
684
685 /* Now all we care about is the type. */
686 t = TREE_TYPE (t);
687 }
688
689 /* Variant qualifiers don't affect the alias set, so get the main
690 variant. */
691 t = TYPE_MAIN_VARIANT (t);
692
693 /* Always use the canonical type as well. If this is a type that
694 requires structural comparisons to identify compatible types
695 use alias set zero. */
696 if (TYPE_STRUCTURAL_EQUALITY_P (t))
697 {
698 /* Allow the language to specify another alias set for this
699 type. */
700 set = lang_hooks.get_alias_set (t);
701 if (set != -1)
702 return set;
703 return 0;
704 }
705
706 t = TYPE_CANONICAL (t);
707
708 /* The canonical type should not require structural equality checks. */
709 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
710
711 /* If this is a type with a known alias set, return it. */
712 if (TYPE_ALIAS_SET_KNOWN_P (t))
713 return TYPE_ALIAS_SET (t);
714
715 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
716 if (!COMPLETE_TYPE_P (t))
717 {
718 /* For arrays with unknown size the conservative answer is the
719 alias set of the element type. */
720 if (TREE_CODE (t) == ARRAY_TYPE)
721 return get_alias_set (TREE_TYPE (t));
722
723 /* But return zero as a conservative answer for incomplete types. */
724 return 0;
725 }
726
727 /* See if the language has special handling for this type. */
728 set = lang_hooks.get_alias_set (t);
729 if (set != -1)
730 return set;
731
732 /* There are no objects of FUNCTION_TYPE, so there's no point in
733 using up an alias set for them. (There are, of course, pointers
734 and references to functions, but that's different.) */
735 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
736 set = 0;
737
738 /* Unless the language specifies otherwise, let vector types alias
739 their components. This avoids some nasty type punning issues in
740 normal usage. And indeed lets vectors be treated more like an
741 array slice. */
742 else if (TREE_CODE (t) == VECTOR_TYPE)
743 set = get_alias_set (TREE_TYPE (t));
744
745 /* Unless the language specifies otherwise, treat array types the
746 same as their components. This avoids the asymmetry we get
747 through recording the components. Consider accessing a
748 character(kind=1) through a reference to a character(kind=1)[1:1].
749 Or consider if we want to assign integer(kind=4)[0:D.1387] and
750 integer(kind=4)[4] the same alias set or not.
751 Just be pragmatic here and make sure the array and its element
752 type get the same alias set assigned. */
753 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
754 set = get_alias_set (TREE_TYPE (t));
755
756 /* From the former common C and C++ langhook implementation:
757
758 Unfortunately, there is no canonical form of a pointer type.
759 In particular, if we have `typedef int I', then `int *', and
760 `I *' are different types. So, we have to pick a canonical
761 representative. We do this below.
762
763 Technically, this approach is actually more conservative that
764 it needs to be. In particular, `const int *' and `int *'
765 should be in different alias sets, according to the C and C++
766 standard, since their types are not the same, and so,
767 technically, an `int **' and `const int **' cannot point at
768 the same thing.
769
770 But, the standard is wrong. In particular, this code is
771 legal C++:
772
773 int *ip;
774 int **ipp = &ip;
775 const int* const* cipp = ipp;
776 And, it doesn't make sense for that to be legal unless you
777 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
778 the pointed-to types. This issue has been reported to the
779 C++ committee.
780
781 In addition to the above canonicalization issue, with LTO
782 we should also canonicalize `T (*)[]' to `T *' avoiding
783 alias issues with pointer-to element types and pointer-to
784 array types.
785
786 Likewise we need to deal with the situation of incomplete
787 pointed-to types and make `*(struct X **)&a' and
788 `*(struct X {} **)&a' alias. Otherwise we will have to
789 guarantee that all pointer-to incomplete type variants
790 will be replaced by pointer-to complete type variants if
791 they are available.
792
793 With LTO the convenient situation of using `void *' to
794 access and store any pointer type will also become
795 more apparent (and `void *' is just another pointer-to
796 incomplete type). Assigning alias-set zero to `void *'
797 and all pointer-to incomplete types is a not appealing
798 solution. Assigning an effective alias-set zero only
799 affecting pointers might be - by recording proper subset
800 relationships of all pointer alias-sets.
801
802 Pointer-to function types are another grey area which
803 needs caution. Globbing them all into one alias-set
804 or the above effective zero set would work.
805
806 For now just assign the same alias-set to all pointers.
807 That's simple and avoids all the above problems. */
808 else if (POINTER_TYPE_P (t)
809 && t != ptr_type_node)
810 set = get_alias_set (ptr_type_node);
811
812 /* Otherwise make a new alias set for this type. */
813 else
814 {
815 /* Each canonical type gets its own alias set, so canonical types
816 shouldn't form a tree. It doesn't really matter for types
817 we handle specially above, so only check it where it possibly
818 would result in a bogus alias set. */
819 gcc_checking_assert (TYPE_CANONICAL (t) == t);
820
821 set = new_alias_set ();
822 }
823
824 TYPE_ALIAS_SET (t) = set;
825
826 /* If this is an aggregate type or a complex type, we must record any
827 component aliasing information. */
828 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
829 record_component_aliases (t);
830
831 return set;
832 }
833
834 /* Return a brand-new alias set. */
835
836 alias_set_type
837 new_alias_set (void)
838 {
839 if (flag_strict_aliasing)
840 {
841 if (alias_sets == 0)
842 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
843 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
844 return VEC_length (alias_set_entry, alias_sets) - 1;
845 }
846 else
847 return 0;
848 }
849
850 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
851 not everything that aliases SUPERSET also aliases SUBSET. For example,
852 in C, a store to an `int' can alias a load of a structure containing an
853 `int', and vice versa. But it can't alias a load of a 'double' member
854 of the same structure. Here, the structure would be the SUPERSET and
855 `int' the SUBSET. This relationship is also described in the comment at
856 the beginning of this file.
857
858 This function should be called only once per SUPERSET/SUBSET pair.
859
860 It is illegal for SUPERSET to be zero; everything is implicitly a
861 subset of alias set zero. */
862
863 void
864 record_alias_subset (alias_set_type superset, alias_set_type subset)
865 {
866 alias_set_entry superset_entry;
867 alias_set_entry subset_entry;
868
869 /* It is possible in complex type situations for both sets to be the same,
870 in which case we can ignore this operation. */
871 if (superset == subset)
872 return;
873
874 gcc_assert (superset);
875
876 superset_entry = get_alias_set_entry (superset);
877 if (superset_entry == 0)
878 {
879 /* Create an entry for the SUPERSET, so that we have a place to
880 attach the SUBSET. */
881 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
882 superset_entry->alias_set = superset;
883 superset_entry->children
884 = splay_tree_new_ggc (splay_tree_compare_ints,
885 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
886 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
887 superset_entry->has_zero_child = 0;
888 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
889 }
890
891 if (subset == 0)
892 superset_entry->has_zero_child = 1;
893 else
894 {
895 subset_entry = get_alias_set_entry (subset);
896 /* If there is an entry for the subset, enter all of its children
897 (if they are not already present) as children of the SUPERSET. */
898 if (subset_entry)
899 {
900 if (subset_entry->has_zero_child)
901 superset_entry->has_zero_child = 1;
902
903 splay_tree_foreach (subset_entry->children, insert_subset_children,
904 superset_entry->children);
905 }
906
907 /* Enter the SUBSET itself as a child of the SUPERSET. */
908 splay_tree_insert (superset_entry->children,
909 (splay_tree_key) subset, 0);
910 }
911 }
912
913 /* Record that component types of TYPE, if any, are part of that type for
914 aliasing purposes. For record types, we only record component types
915 for fields that are not marked non-addressable. For array types, we
916 only record the component type if it is not marked non-aliased. */
917
918 void
919 record_component_aliases (tree type)
920 {
921 alias_set_type superset = get_alias_set (type);
922 tree field;
923
924 if (superset == 0)
925 return;
926
927 switch (TREE_CODE (type))
928 {
929 case RECORD_TYPE:
930 case UNION_TYPE:
931 case QUAL_UNION_TYPE:
932 /* Recursively record aliases for the base classes, if there are any. */
933 if (TYPE_BINFO (type))
934 {
935 int i;
936 tree binfo, base_binfo;
937
938 for (binfo = TYPE_BINFO (type), i = 0;
939 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
940 record_alias_subset (superset,
941 get_alias_set (BINFO_TYPE (base_binfo)));
942 }
943 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
944 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
945 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
946 break;
947
948 case COMPLEX_TYPE:
949 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
950 break;
951
952 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
953 element type. */
954
955 default:
956 break;
957 }
958 }
959
960 /* Allocate an alias set for use in storing and reading from the varargs
961 spill area. */
962
963 static GTY(()) alias_set_type varargs_set = -1;
964
965 alias_set_type
966 get_varargs_alias_set (void)
967 {
968 #if 1
969 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
970 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
971 consistently use the varargs alias set for loads from the varargs
972 area. So don't use it anywhere. */
973 return 0;
974 #else
975 if (varargs_set == -1)
976 varargs_set = new_alias_set ();
977
978 return varargs_set;
979 #endif
980 }
981
982 /* Likewise, but used for the fixed portions of the frame, e.g., register
983 save areas. */
984
985 static GTY(()) alias_set_type frame_set = -1;
986
987 alias_set_type
988 get_frame_alias_set (void)
989 {
990 if (frame_set == -1)
991 frame_set = new_alias_set ();
992
993 return frame_set;
994 }
995
996 /* Inside SRC, the source of a SET, find a base address. */
997
998 static rtx
999 find_base_value (rtx src)
1000 {
1001 unsigned int regno;
1002
1003 #if defined (FIND_BASE_TERM)
1004 /* Try machine-dependent ways to find the base term. */
1005 src = FIND_BASE_TERM (src);
1006 #endif
1007
1008 switch (GET_CODE (src))
1009 {
1010 case SYMBOL_REF:
1011 case LABEL_REF:
1012 return src;
1013
1014 case REG:
1015 regno = REGNO (src);
1016 /* At the start of a function, argument registers have known base
1017 values which may be lost later. Returning an ADDRESS
1018 expression here allows optimization based on argument values
1019 even when the argument registers are used for other purposes. */
1020 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1021 return new_reg_base_value[regno];
1022
1023 /* If a pseudo has a known base value, return it. Do not do this
1024 for non-fixed hard regs since it can result in a circular
1025 dependency chain for registers which have values at function entry.
1026
1027 The test above is not sufficient because the scheduler may move
1028 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1029 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1030 && regno < VEC_length (rtx, reg_base_value))
1031 {
1032 /* If we're inside init_alias_analysis, use new_reg_base_value
1033 to reduce the number of relaxation iterations. */
1034 if (new_reg_base_value && new_reg_base_value[regno]
1035 && DF_REG_DEF_COUNT (regno) == 1)
1036 return new_reg_base_value[regno];
1037
1038 if (VEC_index (rtx, reg_base_value, regno))
1039 return VEC_index (rtx, reg_base_value, regno);
1040 }
1041
1042 return 0;
1043
1044 case MEM:
1045 /* Check for an argument passed in memory. Only record in the
1046 copying-arguments block; it is too hard to track changes
1047 otherwise. */
1048 if (copying_arguments
1049 && (XEXP (src, 0) == arg_pointer_rtx
1050 || (GET_CODE (XEXP (src, 0)) == PLUS
1051 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1052 return gen_rtx_ADDRESS (VOIDmode, src);
1053 return 0;
1054
1055 case CONST:
1056 src = XEXP (src, 0);
1057 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1058 break;
1059
1060 /* ... fall through ... */
1061
1062 case PLUS:
1063 case MINUS:
1064 {
1065 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1066
1067 /* If either operand is a REG that is a known pointer, then it
1068 is the base. */
1069 if (REG_P (src_0) && REG_POINTER (src_0))
1070 return find_base_value (src_0);
1071 if (REG_P (src_1) && REG_POINTER (src_1))
1072 return find_base_value (src_1);
1073
1074 /* If either operand is a REG, then see if we already have
1075 a known value for it. */
1076 if (REG_P (src_0))
1077 {
1078 temp = find_base_value (src_0);
1079 if (temp != 0)
1080 src_0 = temp;
1081 }
1082
1083 if (REG_P (src_1))
1084 {
1085 temp = find_base_value (src_1);
1086 if (temp!= 0)
1087 src_1 = temp;
1088 }
1089
1090 /* If either base is named object or a special address
1091 (like an argument or stack reference), then use it for the
1092 base term. */
1093 if (src_0 != 0
1094 && (GET_CODE (src_0) == SYMBOL_REF
1095 || GET_CODE (src_0) == LABEL_REF
1096 || (GET_CODE (src_0) == ADDRESS
1097 && GET_MODE (src_0) != VOIDmode)))
1098 return src_0;
1099
1100 if (src_1 != 0
1101 && (GET_CODE (src_1) == SYMBOL_REF
1102 || GET_CODE (src_1) == LABEL_REF
1103 || (GET_CODE (src_1) == ADDRESS
1104 && GET_MODE (src_1) != VOIDmode)))
1105 return src_1;
1106
1107 /* Guess which operand is the base address:
1108 If either operand is a symbol, then it is the base. If
1109 either operand is a CONST_INT, then the other is the base. */
1110 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1111 return find_base_value (src_0);
1112 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1113 return find_base_value (src_1);
1114
1115 return 0;
1116 }
1117
1118 case LO_SUM:
1119 /* The standard form is (lo_sum reg sym) so look only at the
1120 second operand. */
1121 return find_base_value (XEXP (src, 1));
1122
1123 case AND:
1124 /* If the second operand is constant set the base
1125 address to the first operand. */
1126 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1127 return find_base_value (XEXP (src, 0));
1128 return 0;
1129
1130 case TRUNCATE:
1131 /* As we do not know which address space the pointer is refering to, we can
1132 handle this only if the target does not support different pointer or
1133 address modes depending on the address space. */
1134 if (!target_default_pointer_address_modes_p ())
1135 break;
1136 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1137 break;
1138 /* Fall through. */
1139 case HIGH:
1140 case PRE_INC:
1141 case PRE_DEC:
1142 case POST_INC:
1143 case POST_DEC:
1144 case PRE_MODIFY:
1145 case POST_MODIFY:
1146 return find_base_value (XEXP (src, 0));
1147
1148 case ZERO_EXTEND:
1149 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1150 /* As we do not know which address space the pointer is refering to, we can
1151 handle this only if the target does not support different pointer or
1152 address modes depending on the address space. */
1153 if (!target_default_pointer_address_modes_p ())
1154 break;
1155
1156 {
1157 rtx temp = find_base_value (XEXP (src, 0));
1158
1159 if (temp != 0 && CONSTANT_P (temp))
1160 temp = convert_memory_address (Pmode, temp);
1161
1162 return temp;
1163 }
1164
1165 default:
1166 break;
1167 }
1168
1169 return 0;
1170 }
1171
1172 /* Called from init_alias_analysis indirectly through note_stores. */
1173
1174 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1175 register N has been set in this function. */
1176 static char *reg_seen;
1177
1178 /* Addresses which are known not to alias anything else are identified
1179 by a unique integer. */
1180 static int unique_id;
1181
1182 static void
1183 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1184 {
1185 unsigned regno;
1186 rtx src;
1187 int n;
1188
1189 if (!REG_P (dest))
1190 return;
1191
1192 regno = REGNO (dest);
1193
1194 gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
1195
1196 /* If this spans multiple hard registers, then we must indicate that every
1197 register has an unusable value. */
1198 if (regno < FIRST_PSEUDO_REGISTER)
1199 n = hard_regno_nregs[regno][GET_MODE (dest)];
1200 else
1201 n = 1;
1202 if (n != 1)
1203 {
1204 while (--n >= 0)
1205 {
1206 reg_seen[regno + n] = 1;
1207 new_reg_base_value[regno + n] = 0;
1208 }
1209 return;
1210 }
1211
1212 if (set)
1213 {
1214 /* A CLOBBER wipes out any old value but does not prevent a previously
1215 unset register from acquiring a base address (i.e. reg_seen is not
1216 set). */
1217 if (GET_CODE (set) == CLOBBER)
1218 {
1219 new_reg_base_value[regno] = 0;
1220 return;
1221 }
1222 src = SET_SRC (set);
1223 }
1224 else
1225 {
1226 if (reg_seen[regno])
1227 {
1228 new_reg_base_value[regno] = 0;
1229 return;
1230 }
1231 reg_seen[regno] = 1;
1232 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1233 GEN_INT (unique_id++));
1234 return;
1235 }
1236
1237 /* If this is not the first set of REGNO, see whether the new value
1238 is related to the old one. There are two cases of interest:
1239
1240 (1) The register might be assigned an entirely new value
1241 that has the same base term as the original set.
1242
1243 (2) The set might be a simple self-modification that
1244 cannot change REGNO's base value.
1245
1246 If neither case holds, reject the original base value as invalid.
1247 Note that the following situation is not detected:
1248
1249 extern int x, y; int *p = &x; p += (&y-&x);
1250
1251 ANSI C does not allow computing the difference of addresses
1252 of distinct top level objects. */
1253 if (new_reg_base_value[regno] != 0
1254 && find_base_value (src) != new_reg_base_value[regno])
1255 switch (GET_CODE (src))
1256 {
1257 case LO_SUM:
1258 case MINUS:
1259 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1260 new_reg_base_value[regno] = 0;
1261 break;
1262 case PLUS:
1263 /* If the value we add in the PLUS is also a valid base value,
1264 this might be the actual base value, and the original value
1265 an index. */
1266 {
1267 rtx other = NULL_RTX;
1268
1269 if (XEXP (src, 0) == dest)
1270 other = XEXP (src, 1);
1271 else if (XEXP (src, 1) == dest)
1272 other = XEXP (src, 0);
1273
1274 if (! other || find_base_value (other))
1275 new_reg_base_value[regno] = 0;
1276 break;
1277 }
1278 case AND:
1279 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1280 new_reg_base_value[regno] = 0;
1281 break;
1282 default:
1283 new_reg_base_value[regno] = 0;
1284 break;
1285 }
1286 /* If this is the first set of a register, record the value. */
1287 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1288 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1289 new_reg_base_value[regno] = find_base_value (src);
1290
1291 reg_seen[regno] = 1;
1292 }
1293
1294 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1295 using hard registers with non-null REG_BASE_VALUE for renaming. */
1296 rtx
1297 get_reg_base_value (unsigned int regno)
1298 {
1299 return VEC_index (rtx, reg_base_value, regno);
1300 }
1301
1302 /* If a value is known for REGNO, return it. */
1303
1304 rtx
1305 get_reg_known_value (unsigned int regno)
1306 {
1307 if (regno >= FIRST_PSEUDO_REGISTER)
1308 {
1309 regno -= FIRST_PSEUDO_REGISTER;
1310 if (regno < reg_known_value_size)
1311 return reg_known_value[regno];
1312 }
1313 return NULL;
1314 }
1315
1316 /* Set it. */
1317
1318 static void
1319 set_reg_known_value (unsigned int regno, rtx val)
1320 {
1321 if (regno >= FIRST_PSEUDO_REGISTER)
1322 {
1323 regno -= FIRST_PSEUDO_REGISTER;
1324 if (regno < reg_known_value_size)
1325 reg_known_value[regno] = val;
1326 }
1327 }
1328
1329 /* Similarly for reg_known_equiv_p. */
1330
1331 bool
1332 get_reg_known_equiv_p (unsigned int regno)
1333 {
1334 if (regno >= FIRST_PSEUDO_REGISTER)
1335 {
1336 regno -= FIRST_PSEUDO_REGISTER;
1337 if (regno < reg_known_value_size)
1338 return reg_known_equiv_p[regno];
1339 }
1340 return false;
1341 }
1342
1343 static void
1344 set_reg_known_equiv_p (unsigned int regno, bool val)
1345 {
1346 if (regno >= FIRST_PSEUDO_REGISTER)
1347 {
1348 regno -= FIRST_PSEUDO_REGISTER;
1349 if (regno < reg_known_value_size)
1350 reg_known_equiv_p[regno] = val;
1351 }
1352 }
1353
1354
1355 /* Returns a canonical version of X, from the point of view alias
1356 analysis. (For example, if X is a MEM whose address is a register,
1357 and the register has a known value (say a SYMBOL_REF), then a MEM
1358 whose address is the SYMBOL_REF is returned.) */
1359
1360 rtx
1361 canon_rtx (rtx x)
1362 {
1363 /* Recursively look for equivalences. */
1364 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1365 {
1366 rtx t = get_reg_known_value (REGNO (x));
1367 if (t == x)
1368 return x;
1369 if (t)
1370 return canon_rtx (t);
1371 }
1372
1373 if (GET_CODE (x) == PLUS)
1374 {
1375 rtx x0 = canon_rtx (XEXP (x, 0));
1376 rtx x1 = canon_rtx (XEXP (x, 1));
1377
1378 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1379 {
1380 if (CONST_INT_P (x0))
1381 return plus_constant (x1, INTVAL (x0));
1382 else if (CONST_INT_P (x1))
1383 return plus_constant (x0, INTVAL (x1));
1384 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1385 }
1386 }
1387
1388 /* This gives us much better alias analysis when called from
1389 the loop optimizer. Note we want to leave the original
1390 MEM alone, but need to return the canonicalized MEM with
1391 all the flags with their original values. */
1392 else if (MEM_P (x))
1393 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1394
1395 return x;
1396 }
1397
1398 /* Return 1 if X and Y are identical-looking rtx's.
1399 Expect that X and Y has been already canonicalized.
1400
1401 We use the data in reg_known_value above to see if two registers with
1402 different numbers are, in fact, equivalent. */
1403
1404 static int
1405 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1406 {
1407 int i;
1408 int j;
1409 enum rtx_code code;
1410 const char *fmt;
1411
1412 if (x == 0 && y == 0)
1413 return 1;
1414 if (x == 0 || y == 0)
1415 return 0;
1416
1417 if (x == y)
1418 return 1;
1419
1420 code = GET_CODE (x);
1421 /* Rtx's of different codes cannot be equal. */
1422 if (code != GET_CODE (y))
1423 return 0;
1424
1425 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1426 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1427
1428 if (GET_MODE (x) != GET_MODE (y))
1429 return 0;
1430
1431 /* Some RTL can be compared without a recursive examination. */
1432 switch (code)
1433 {
1434 case REG:
1435 return REGNO (x) == REGNO (y);
1436
1437 case LABEL_REF:
1438 return XEXP (x, 0) == XEXP (y, 0);
1439
1440 case SYMBOL_REF:
1441 return XSTR (x, 0) == XSTR (y, 0);
1442
1443 case VALUE:
1444 case CONST_INT:
1445 case CONST_DOUBLE:
1446 case CONST_FIXED:
1447 /* There's no need to compare the contents of CONST_DOUBLEs or
1448 CONST_INTs because pointer equality is a good enough
1449 comparison for these nodes. */
1450 return 0;
1451
1452 default:
1453 break;
1454 }
1455
1456 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1457 if (code == PLUS)
1458 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1459 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1460 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1461 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1462 /* For commutative operations, the RTX match if the operand match in any
1463 order. Also handle the simple binary and unary cases without a loop. */
1464 if (COMMUTATIVE_P (x))
1465 {
1466 rtx xop0 = canon_rtx (XEXP (x, 0));
1467 rtx yop0 = canon_rtx (XEXP (y, 0));
1468 rtx yop1 = canon_rtx (XEXP (y, 1));
1469
1470 return ((rtx_equal_for_memref_p (xop0, yop0)
1471 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1472 || (rtx_equal_for_memref_p (xop0, yop1)
1473 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1474 }
1475 else if (NON_COMMUTATIVE_P (x))
1476 {
1477 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1478 canon_rtx (XEXP (y, 0)))
1479 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1480 canon_rtx (XEXP (y, 1))));
1481 }
1482 else if (UNARY_P (x))
1483 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1484 canon_rtx (XEXP (y, 0)));
1485
1486 /* Compare the elements. If any pair of corresponding elements
1487 fail to match, return 0 for the whole things.
1488
1489 Limit cases to types which actually appear in addresses. */
1490
1491 fmt = GET_RTX_FORMAT (code);
1492 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1493 {
1494 switch (fmt[i])
1495 {
1496 case 'i':
1497 if (XINT (x, i) != XINT (y, i))
1498 return 0;
1499 break;
1500
1501 case 'E':
1502 /* Two vectors must have the same length. */
1503 if (XVECLEN (x, i) != XVECLEN (y, i))
1504 return 0;
1505
1506 /* And the corresponding elements must match. */
1507 for (j = 0; j < XVECLEN (x, i); j++)
1508 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1509 canon_rtx (XVECEXP (y, i, j))) == 0)
1510 return 0;
1511 break;
1512
1513 case 'e':
1514 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1515 canon_rtx (XEXP (y, i))) == 0)
1516 return 0;
1517 break;
1518
1519 /* This can happen for asm operands. */
1520 case 's':
1521 if (strcmp (XSTR (x, i), XSTR (y, i)))
1522 return 0;
1523 break;
1524
1525 /* This can happen for an asm which clobbers memory. */
1526 case '0':
1527 break;
1528
1529 /* It is believed that rtx's at this level will never
1530 contain anything but integers and other rtx's,
1531 except for within LABEL_REFs and SYMBOL_REFs. */
1532 default:
1533 gcc_unreachable ();
1534 }
1535 }
1536 return 1;
1537 }
1538
1539 rtx
1540 find_base_term (rtx x)
1541 {
1542 cselib_val *val;
1543 struct elt_loc_list *l, *f;
1544 rtx ret;
1545
1546 #if defined (FIND_BASE_TERM)
1547 /* Try machine-dependent ways to find the base term. */
1548 x = FIND_BASE_TERM (x);
1549 #endif
1550
1551 switch (GET_CODE (x))
1552 {
1553 case REG:
1554 return REG_BASE_VALUE (x);
1555
1556 case TRUNCATE:
1557 /* As we do not know which address space the pointer is refering to, we can
1558 handle this only if the target does not support different pointer or
1559 address modes depending on the address space. */
1560 if (!target_default_pointer_address_modes_p ())
1561 return 0;
1562 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1563 return 0;
1564 /* Fall through. */
1565 case HIGH:
1566 case PRE_INC:
1567 case PRE_DEC:
1568 case POST_INC:
1569 case POST_DEC:
1570 case PRE_MODIFY:
1571 case POST_MODIFY:
1572 return find_base_term (XEXP (x, 0));
1573
1574 case ZERO_EXTEND:
1575 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1576 /* As we do not know which address space the pointer is refering to, we can
1577 handle this only if the target does not support different pointer or
1578 address modes depending on the address space. */
1579 if (!target_default_pointer_address_modes_p ())
1580 return 0;
1581
1582 {
1583 rtx temp = find_base_term (XEXP (x, 0));
1584
1585 if (temp != 0 && CONSTANT_P (temp))
1586 temp = convert_memory_address (Pmode, temp);
1587
1588 return temp;
1589 }
1590
1591 case VALUE:
1592 val = CSELIB_VAL_PTR (x);
1593 ret = NULL_RTX;
1594
1595 if (!val)
1596 return ret;
1597
1598 f = val->locs;
1599 /* Temporarily reset val->locs to avoid infinite recursion. */
1600 val->locs = NULL;
1601
1602 for (l = f; l; l = l->next)
1603 if (GET_CODE (l->loc) == VALUE
1604 && CSELIB_VAL_PTR (l->loc)->locs
1605 && !CSELIB_VAL_PTR (l->loc)->locs->next
1606 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1607 continue;
1608 else if ((ret = find_base_term (l->loc)) != 0)
1609 break;
1610
1611 val->locs = f;
1612 return ret;
1613
1614 case LO_SUM:
1615 /* The standard form is (lo_sum reg sym) so look only at the
1616 second operand. */
1617 return find_base_term (XEXP (x, 1));
1618
1619 case CONST:
1620 x = XEXP (x, 0);
1621 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1622 return 0;
1623 /* Fall through. */
1624 case PLUS:
1625 case MINUS:
1626 {
1627 rtx tmp1 = XEXP (x, 0);
1628 rtx tmp2 = XEXP (x, 1);
1629
1630 /* This is a little bit tricky since we have to determine which of
1631 the two operands represents the real base address. Otherwise this
1632 routine may return the index register instead of the base register.
1633
1634 That may cause us to believe no aliasing was possible, when in
1635 fact aliasing is possible.
1636
1637 We use a few simple tests to guess the base register. Additional
1638 tests can certainly be added. For example, if one of the operands
1639 is a shift or multiply, then it must be the index register and the
1640 other operand is the base register. */
1641
1642 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1643 return find_base_term (tmp2);
1644
1645 /* If either operand is known to be a pointer, then use it
1646 to determine the base term. */
1647 if (REG_P (tmp1) && REG_POINTER (tmp1))
1648 {
1649 rtx base = find_base_term (tmp1);
1650 if (base)
1651 return base;
1652 }
1653
1654 if (REG_P (tmp2) && REG_POINTER (tmp2))
1655 {
1656 rtx base = find_base_term (tmp2);
1657 if (base)
1658 return base;
1659 }
1660
1661 /* Neither operand was known to be a pointer. Go ahead and find the
1662 base term for both operands. */
1663 tmp1 = find_base_term (tmp1);
1664 tmp2 = find_base_term (tmp2);
1665
1666 /* If either base term is named object or a special address
1667 (like an argument or stack reference), then use it for the
1668 base term. */
1669 if (tmp1 != 0
1670 && (GET_CODE (tmp1) == SYMBOL_REF
1671 || GET_CODE (tmp1) == LABEL_REF
1672 || (GET_CODE (tmp1) == ADDRESS
1673 && GET_MODE (tmp1) != VOIDmode)))
1674 return tmp1;
1675
1676 if (tmp2 != 0
1677 && (GET_CODE (tmp2) == SYMBOL_REF
1678 || GET_CODE (tmp2) == LABEL_REF
1679 || (GET_CODE (tmp2) == ADDRESS
1680 && GET_MODE (tmp2) != VOIDmode)))
1681 return tmp2;
1682
1683 /* We could not determine which of the two operands was the
1684 base register and which was the index. So we can determine
1685 nothing from the base alias check. */
1686 return 0;
1687 }
1688
1689 case AND:
1690 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1691 return find_base_term (XEXP (x, 0));
1692 return 0;
1693
1694 case SYMBOL_REF:
1695 case LABEL_REF:
1696 return x;
1697
1698 default:
1699 return 0;
1700 }
1701 }
1702
1703 /* Return 0 if the addresses X and Y are known to point to different
1704 objects, 1 if they might be pointers to the same object. */
1705
1706 static int
1707 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1708 enum machine_mode y_mode)
1709 {
1710 rtx x_base = find_base_term (x);
1711 rtx y_base = find_base_term (y);
1712
1713 /* If the address itself has no known base see if a known equivalent
1714 value has one. If either address still has no known base, nothing
1715 is known about aliasing. */
1716 if (x_base == 0)
1717 {
1718 rtx x_c;
1719
1720 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1721 return 1;
1722
1723 x_base = find_base_term (x_c);
1724 if (x_base == 0)
1725 return 1;
1726 }
1727
1728 if (y_base == 0)
1729 {
1730 rtx y_c;
1731 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1732 return 1;
1733
1734 y_base = find_base_term (y_c);
1735 if (y_base == 0)
1736 return 1;
1737 }
1738
1739 /* If the base addresses are equal nothing is known about aliasing. */
1740 if (rtx_equal_p (x_base, y_base))
1741 return 1;
1742
1743 /* The base addresses are different expressions. If they are not accessed
1744 via AND, there is no conflict. We can bring knowledge of object
1745 alignment into play here. For example, on alpha, "char a, b;" can
1746 alias one another, though "char a; long b;" cannot. AND addesses may
1747 implicitly alias surrounding objects; i.e. unaligned access in DImode
1748 via AND address can alias all surrounding object types except those
1749 with aligment 8 or higher. */
1750 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1751 return 1;
1752 if (GET_CODE (x) == AND
1753 && (!CONST_INT_P (XEXP (x, 1))
1754 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1755 return 1;
1756 if (GET_CODE (y) == AND
1757 && (!CONST_INT_P (XEXP (y, 1))
1758 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1759 return 1;
1760
1761 /* Differing symbols not accessed via AND never alias. */
1762 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1763 return 0;
1764
1765 /* If one address is a stack reference there can be no alias:
1766 stack references using different base registers do not alias,
1767 a stack reference can not alias a parameter, and a stack reference
1768 can not alias a global. */
1769 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1770 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1771 return 0;
1772
1773 return 1;
1774 }
1775
1776 /* Convert the address X into something we can use. This is done by returning
1777 it unchanged unless it is a value; in the latter case we call cselib to get
1778 a more useful rtx. */
1779
1780 rtx
1781 get_addr (rtx x)
1782 {
1783 cselib_val *v;
1784 struct elt_loc_list *l;
1785
1786 if (GET_CODE (x) != VALUE)
1787 return x;
1788 v = CSELIB_VAL_PTR (x);
1789 if (v)
1790 {
1791 for (l = v->locs; l; l = l->next)
1792 if (CONSTANT_P (l->loc))
1793 return l->loc;
1794 for (l = v->locs; l; l = l->next)
1795 if (!REG_P (l->loc) && !MEM_P (l->loc))
1796 return l->loc;
1797 if (v->locs)
1798 return v->locs->loc;
1799 }
1800 return x;
1801 }
1802
1803 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1804 where SIZE is the size in bytes of the memory reference. If ADDR
1805 is not modified by the memory reference then ADDR is returned. */
1806
1807 static rtx
1808 addr_side_effect_eval (rtx addr, int size, int n_refs)
1809 {
1810 int offset = 0;
1811
1812 switch (GET_CODE (addr))
1813 {
1814 case PRE_INC:
1815 offset = (n_refs + 1) * size;
1816 break;
1817 case PRE_DEC:
1818 offset = -(n_refs + 1) * size;
1819 break;
1820 case POST_INC:
1821 offset = n_refs * size;
1822 break;
1823 case POST_DEC:
1824 offset = -n_refs * size;
1825 break;
1826
1827 default:
1828 return addr;
1829 }
1830
1831 if (offset)
1832 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1833 GEN_INT (offset));
1834 else
1835 addr = XEXP (addr, 0);
1836 addr = canon_rtx (addr);
1837
1838 return addr;
1839 }
1840
1841 /* Return one if X and Y (memory addresses) reference the
1842 same location in memory or if the references overlap.
1843 Return zero if they do not overlap, else return
1844 minus one in which case they still might reference the same location.
1845
1846 C is an offset accumulator. When
1847 C is nonzero, we are testing aliases between X and Y + C.
1848 XSIZE is the size in bytes of the X reference,
1849 similarly YSIZE is the size in bytes for Y.
1850 Expect that canon_rtx has been already called for X and Y.
1851
1852 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1853 referenced (the reference was BLKmode), so make the most pessimistic
1854 assumptions.
1855
1856 If XSIZE or YSIZE is negative, we may access memory outside the object
1857 being referenced as a side effect. This can happen when using AND to
1858 align memory references, as is done on the Alpha.
1859
1860 Nice to notice that varying addresses cannot conflict with fp if no
1861 local variables had their addresses taken, but that's too hard now.
1862
1863 ??? Contrary to the tree alias oracle this does not return
1864 one for X + non-constant and Y + non-constant when X and Y are equal.
1865 If that is fixed the TBAA hack for union type-punning can be removed. */
1866
1867 static int
1868 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1869 {
1870 if (GET_CODE (x) == VALUE)
1871 {
1872 if (REG_P (y))
1873 {
1874 struct elt_loc_list *l = NULL;
1875 if (CSELIB_VAL_PTR (x))
1876 for (l = CSELIB_VAL_PTR (x)->locs; l; l = l->next)
1877 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1878 break;
1879 if (l)
1880 x = y;
1881 else
1882 x = get_addr (x);
1883 }
1884 /* Don't call get_addr if y is the same VALUE. */
1885 else if (x != y)
1886 x = get_addr (x);
1887 }
1888 if (GET_CODE (y) == VALUE)
1889 {
1890 if (REG_P (x))
1891 {
1892 struct elt_loc_list *l = NULL;
1893 if (CSELIB_VAL_PTR (y))
1894 for (l = CSELIB_VAL_PTR (y)->locs; l; l = l->next)
1895 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1896 break;
1897 if (l)
1898 y = x;
1899 else
1900 y = get_addr (y);
1901 }
1902 /* Don't call get_addr if x is the same VALUE. */
1903 else if (y != x)
1904 y = get_addr (y);
1905 }
1906 if (GET_CODE (x) == HIGH)
1907 x = XEXP (x, 0);
1908 else if (GET_CODE (x) == LO_SUM)
1909 x = XEXP (x, 1);
1910 else
1911 x = addr_side_effect_eval (x, xsize, 0);
1912 if (GET_CODE (y) == HIGH)
1913 y = XEXP (y, 0);
1914 else if (GET_CODE (y) == LO_SUM)
1915 y = XEXP (y, 1);
1916 else
1917 y = addr_side_effect_eval (y, ysize, 0);
1918
1919 if (rtx_equal_for_memref_p (x, y))
1920 {
1921 if (xsize <= 0 || ysize <= 0)
1922 return 1;
1923 if (c >= 0 && xsize > c)
1924 return 1;
1925 if (c < 0 && ysize+c > 0)
1926 return 1;
1927 return 0;
1928 }
1929
1930 /* This code used to check for conflicts involving stack references and
1931 globals but the base address alias code now handles these cases. */
1932
1933 if (GET_CODE (x) == PLUS)
1934 {
1935 /* The fact that X is canonicalized means that this
1936 PLUS rtx is canonicalized. */
1937 rtx x0 = XEXP (x, 0);
1938 rtx x1 = XEXP (x, 1);
1939
1940 if (GET_CODE (y) == PLUS)
1941 {
1942 /* The fact that Y is canonicalized means that this
1943 PLUS rtx is canonicalized. */
1944 rtx y0 = XEXP (y, 0);
1945 rtx y1 = XEXP (y, 1);
1946
1947 if (rtx_equal_for_memref_p (x1, y1))
1948 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1949 if (rtx_equal_for_memref_p (x0, y0))
1950 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1951 if (CONST_INT_P (x1))
1952 {
1953 if (CONST_INT_P (y1))
1954 return memrefs_conflict_p (xsize, x0, ysize, y0,
1955 c - INTVAL (x1) + INTVAL (y1));
1956 else
1957 return memrefs_conflict_p (xsize, x0, ysize, y,
1958 c - INTVAL (x1));
1959 }
1960 else if (CONST_INT_P (y1))
1961 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1962
1963 return -1;
1964 }
1965 else if (CONST_INT_P (x1))
1966 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1967 }
1968 else if (GET_CODE (y) == PLUS)
1969 {
1970 /* The fact that Y is canonicalized means that this
1971 PLUS rtx is canonicalized. */
1972 rtx y0 = XEXP (y, 0);
1973 rtx y1 = XEXP (y, 1);
1974
1975 if (CONST_INT_P (y1))
1976 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1977 else
1978 return -1;
1979 }
1980
1981 if (GET_CODE (x) == GET_CODE (y))
1982 switch (GET_CODE (x))
1983 {
1984 case MULT:
1985 {
1986 /* Handle cases where we expect the second operands to be the
1987 same, and check only whether the first operand would conflict
1988 or not. */
1989 rtx x0, y0;
1990 rtx x1 = canon_rtx (XEXP (x, 1));
1991 rtx y1 = canon_rtx (XEXP (y, 1));
1992 if (! rtx_equal_for_memref_p (x1, y1))
1993 return -1;
1994 x0 = canon_rtx (XEXP (x, 0));
1995 y0 = canon_rtx (XEXP (y, 0));
1996 if (rtx_equal_for_memref_p (x0, y0))
1997 return (xsize == 0 || ysize == 0
1998 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1999
2000 /* Can't properly adjust our sizes. */
2001 if (!CONST_INT_P (x1))
2002 return -1;
2003 xsize /= INTVAL (x1);
2004 ysize /= INTVAL (x1);
2005 c /= INTVAL (x1);
2006 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2007 }
2008
2009 default:
2010 break;
2011 }
2012
2013 /* Treat an access through an AND (e.g. a subword access on an Alpha)
2014 as an access with indeterminate size. Assume that references
2015 besides AND are aligned, so if the size of the other reference is
2016 at least as large as the alignment, assume no other overlap. */
2017 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2018 {
2019 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
2020 xsize = -1;
2021 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
2022 }
2023 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2024 {
2025 /* ??? If we are indexing far enough into the array/structure, we
2026 may yet be able to determine that we can not overlap. But we
2027 also need to that we are far enough from the end not to overlap
2028 a following reference, so we do nothing with that for now. */
2029 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
2030 ysize = -1;
2031 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
2032 }
2033
2034 if (CONSTANT_P (x))
2035 {
2036 if (CONST_INT_P (x) && CONST_INT_P (y))
2037 {
2038 c += (INTVAL (y) - INTVAL (x));
2039 return (xsize <= 0 || ysize <= 0
2040 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2041 }
2042
2043 if (GET_CODE (x) == CONST)
2044 {
2045 if (GET_CODE (y) == CONST)
2046 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2047 ysize, canon_rtx (XEXP (y, 0)), c);
2048 else
2049 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2050 ysize, y, c);
2051 }
2052 if (GET_CODE (y) == CONST)
2053 return memrefs_conflict_p (xsize, x, ysize,
2054 canon_rtx (XEXP (y, 0)), c);
2055
2056 if (CONSTANT_P (y))
2057 return (xsize <= 0 || ysize <= 0
2058 || (rtx_equal_for_memref_p (x, y)
2059 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2060
2061 return -1;
2062 }
2063
2064 return -1;
2065 }
2066
2067 /* Functions to compute memory dependencies.
2068
2069 Since we process the insns in execution order, we can build tables
2070 to keep track of what registers are fixed (and not aliased), what registers
2071 are varying in known ways, and what registers are varying in unknown
2072 ways.
2073
2074 If both memory references are volatile, then there must always be a
2075 dependence between the two references, since their order can not be
2076 changed. A volatile and non-volatile reference can be interchanged
2077 though.
2078
2079 We also must allow AND addresses, because they may generate accesses
2080 outside the object being referenced. This is used to generate aligned
2081 addresses from unaligned addresses, for instance, the alpha
2082 storeqi_unaligned pattern. */
2083
2084 /* Read dependence: X is read after read in MEM takes place. There can
2085 only be a dependence here if both reads are volatile. */
2086
2087 int
2088 read_dependence (const_rtx mem, const_rtx x)
2089 {
2090 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
2091 }
2092
2093 /* Returns nonzero if something about the mode or address format MEM1
2094 indicates that it might well alias *anything*. */
2095
2096 static int
2097 aliases_everything_p (const_rtx mem)
2098 {
2099 if (GET_CODE (XEXP (mem, 0)) == AND)
2100 /* If the address is an AND, it's very hard to know at what it is
2101 actually pointing. */
2102 return 1;
2103
2104 return 0;
2105 }
2106
2107 /* Return true if we can determine that the fields referenced cannot
2108 overlap for any pair of objects. */
2109
2110 static bool
2111 nonoverlapping_component_refs_p (const_tree x, const_tree y)
2112 {
2113 const_tree fieldx, fieldy, typex, typey, orig_y;
2114
2115 if (!flag_strict_aliasing)
2116 return false;
2117
2118 do
2119 {
2120 /* The comparison has to be done at a common type, since we don't
2121 know how the inheritance hierarchy works. */
2122 orig_y = y;
2123 do
2124 {
2125 fieldx = TREE_OPERAND (x, 1);
2126 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2127
2128 y = orig_y;
2129 do
2130 {
2131 fieldy = TREE_OPERAND (y, 1);
2132 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2133
2134 if (typex == typey)
2135 goto found;
2136
2137 y = TREE_OPERAND (y, 0);
2138 }
2139 while (y && TREE_CODE (y) == COMPONENT_REF);
2140
2141 x = TREE_OPERAND (x, 0);
2142 }
2143 while (x && TREE_CODE (x) == COMPONENT_REF);
2144 /* Never found a common type. */
2145 return false;
2146
2147 found:
2148 /* If we're left with accessing different fields of a structure,
2149 then no overlap. */
2150 if (TREE_CODE (typex) == RECORD_TYPE
2151 && fieldx != fieldy)
2152 return true;
2153
2154 /* The comparison on the current field failed. If we're accessing
2155 a very nested structure, look at the next outer level. */
2156 x = TREE_OPERAND (x, 0);
2157 y = TREE_OPERAND (y, 0);
2158 }
2159 while (x && y
2160 && TREE_CODE (x) == COMPONENT_REF
2161 && TREE_CODE (y) == COMPONENT_REF);
2162
2163 return false;
2164 }
2165
2166 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2167
2168 static tree
2169 decl_for_component_ref (tree x)
2170 {
2171 do
2172 {
2173 x = TREE_OPERAND (x, 0);
2174 }
2175 while (x && TREE_CODE (x) == COMPONENT_REF);
2176
2177 return x && DECL_P (x) ? x : NULL_TREE;
2178 }
2179
2180 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2181 for the offset of the field reference. *KNOWN_P says whether the
2182 offset is known. */
2183
2184 static void
2185 adjust_offset_for_component_ref (tree x, bool *known_p,
2186 HOST_WIDE_INT *offset)
2187 {
2188 if (!*known_p)
2189 return;
2190 do
2191 {
2192 tree xoffset = component_ref_field_offset (x);
2193 tree field = TREE_OPERAND (x, 1);
2194
2195 if (! host_integerp (xoffset, 1))
2196 {
2197 *known_p = false;
2198 return;
2199 }
2200 *offset += (tree_low_cst (xoffset, 1)
2201 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2202 / BITS_PER_UNIT));
2203
2204 x = TREE_OPERAND (x, 0);
2205 }
2206 while (x && TREE_CODE (x) == COMPONENT_REF);
2207 }
2208
2209 /* Return nonzero if we can determine the exprs corresponding to memrefs
2210 X and Y and they do not overlap.
2211 If LOOP_VARIANT is set, skip offset-based disambiguation */
2212
2213 int
2214 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2215 {
2216 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2217 rtx rtlx, rtly;
2218 rtx basex, basey;
2219 bool moffsetx_known_p, moffsety_known_p;
2220 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2221 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2222
2223 /* Unless both have exprs, we can't tell anything. */
2224 if (exprx == 0 || expry == 0)
2225 return 0;
2226
2227 /* For spill-slot accesses make sure we have valid offsets. */
2228 if ((exprx == get_spill_slot_decl (false)
2229 && ! MEM_OFFSET_KNOWN_P (x))
2230 || (expry == get_spill_slot_decl (false)
2231 && ! MEM_OFFSET_KNOWN_P (y)))
2232 return 0;
2233
2234 /* If both are field references, we may be able to determine something. */
2235 if (TREE_CODE (exprx) == COMPONENT_REF
2236 && TREE_CODE (expry) == COMPONENT_REF
2237 && nonoverlapping_component_refs_p (exprx, expry))
2238 return 1;
2239
2240
2241 /* If the field reference test failed, look at the DECLs involved. */
2242 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2243 if (moffsetx_known_p)
2244 moffsetx = MEM_OFFSET (x);
2245 if (TREE_CODE (exprx) == COMPONENT_REF)
2246 {
2247 tree t = decl_for_component_ref (exprx);
2248 if (! t)
2249 return 0;
2250 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2251 exprx = t;
2252 }
2253
2254 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2255 if (moffsety_known_p)
2256 moffsety = MEM_OFFSET (y);
2257 if (TREE_CODE (expry) == COMPONENT_REF)
2258 {
2259 tree t = decl_for_component_ref (expry);
2260 if (! t)
2261 return 0;
2262 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2263 expry = t;
2264 }
2265
2266 if (! DECL_P (exprx) || ! DECL_P (expry))
2267 return 0;
2268
2269 /* With invalid code we can end up storing into the constant pool.
2270 Bail out to avoid ICEing when creating RTL for this.
2271 See gfortran.dg/lto/20091028-2_0.f90. */
2272 if (TREE_CODE (exprx) == CONST_DECL
2273 || TREE_CODE (expry) == CONST_DECL)
2274 return 1;
2275
2276 rtlx = DECL_RTL (exprx);
2277 rtly = DECL_RTL (expry);
2278
2279 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2280 can't overlap unless they are the same because we never reuse that part
2281 of the stack frame used for locals for spilled pseudos. */
2282 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2283 && ! rtx_equal_p (rtlx, rtly))
2284 return 1;
2285
2286 /* If we have MEMs refering to different address spaces (which can
2287 potentially overlap), we cannot easily tell from the addresses
2288 whether the references overlap. */
2289 if (MEM_P (rtlx) && MEM_P (rtly)
2290 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2291 return 0;
2292
2293 /* Get the base and offsets of both decls. If either is a register, we
2294 know both are and are the same, so use that as the base. The only
2295 we can avoid overlap is if we can deduce that they are nonoverlapping
2296 pieces of that decl, which is very rare. */
2297 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2298 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2299 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2300
2301 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2302 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2303 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2304
2305 /* If the bases are different, we know they do not overlap if both
2306 are constants or if one is a constant and the other a pointer into the
2307 stack frame. Otherwise a different base means we can't tell if they
2308 overlap or not. */
2309 if (! rtx_equal_p (basex, basey))
2310 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2311 || (CONSTANT_P (basex) && REG_P (basey)
2312 && REGNO_PTR_FRAME_P (REGNO (basey)))
2313 || (CONSTANT_P (basey) && REG_P (basex)
2314 && REGNO_PTR_FRAME_P (REGNO (basex))));
2315
2316 /* Offset based disambiguation not appropriate for loop invariant */
2317 if (loop_invariant)
2318 return 0;
2319
2320 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2321 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2322 : -1);
2323 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2324 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2325 : -1);
2326
2327 /* If we have an offset for either memref, it can update the values computed
2328 above. */
2329 if (moffsetx_known_p)
2330 offsetx += moffsetx, sizex -= moffsetx;
2331 if (moffsety_known_p)
2332 offsety += moffsety, sizey -= moffsety;
2333
2334 /* If a memref has both a size and an offset, we can use the smaller size.
2335 We can't do this if the offset isn't known because we must view this
2336 memref as being anywhere inside the DECL's MEM. */
2337 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2338 sizex = MEM_SIZE (x);
2339 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2340 sizey = MEM_SIZE (y);
2341
2342 /* Put the values of the memref with the lower offset in X's values. */
2343 if (offsetx > offsety)
2344 {
2345 tem = offsetx, offsetx = offsety, offsety = tem;
2346 tem = sizex, sizex = sizey, sizey = tem;
2347 }
2348
2349 /* If we don't know the size of the lower-offset value, we can't tell
2350 if they conflict. Otherwise, we do the test. */
2351 return sizex >= 0 && offsety >= offsetx + sizex;
2352 }
2353
2354 /* Helper for true_dependence and canon_true_dependence.
2355 Checks for true dependence: X is read after store in MEM takes place.
2356
2357 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2358 NULL_RTX, and the canonical addresses of MEM and X are both computed
2359 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2360
2361 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2362
2363 Returns 1 if there is a true dependence, 0 otherwise. */
2364
2365 static int
2366 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2367 const_rtx x, rtx x_addr, bool mem_canonicalized)
2368 {
2369 rtx base;
2370 int ret;
2371
2372 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2373 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2374
2375 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2376 return 1;
2377
2378 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2379 This is used in epilogue deallocation functions, and in cselib. */
2380 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2381 return 1;
2382 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2383 return 1;
2384 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2385 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2386 return 1;
2387
2388 /* Read-only memory is by definition never modified, and therefore can't
2389 conflict with anything. We don't expect to find read-only set on MEM,
2390 but stupid user tricks can produce them, so don't die. */
2391 if (MEM_READONLY_P (x))
2392 return 0;
2393
2394 /* If we have MEMs refering to different address spaces (which can
2395 potentially overlap), we cannot easily tell from the addresses
2396 whether the references overlap. */
2397 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2398 return 1;
2399
2400 if (! mem_addr)
2401 {
2402 mem_addr = XEXP (mem, 0);
2403 if (mem_mode == VOIDmode)
2404 mem_mode = GET_MODE (mem);
2405 }
2406
2407 if (! x_addr)
2408 {
2409 x_addr = XEXP (x, 0);
2410 if (!((GET_CODE (x_addr) == VALUE
2411 && GET_CODE (mem_addr) != VALUE
2412 && reg_mentioned_p (x_addr, mem_addr))
2413 || (GET_CODE (x_addr) != VALUE
2414 && GET_CODE (mem_addr) == VALUE
2415 && reg_mentioned_p (mem_addr, x_addr))))
2416 {
2417 x_addr = get_addr (x_addr);
2418 if (! mem_canonicalized)
2419 mem_addr = get_addr (mem_addr);
2420 }
2421 }
2422
2423 base = find_base_term (x_addr);
2424 if (base && (GET_CODE (base) == LABEL_REF
2425 || (GET_CODE (base) == SYMBOL_REF
2426 && CONSTANT_POOL_ADDRESS_P (base))))
2427 return 0;
2428
2429 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2430 return 0;
2431
2432 x_addr = canon_rtx (x_addr);
2433 if (!mem_canonicalized)
2434 mem_addr = canon_rtx (mem_addr);
2435
2436 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2437 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2438 return ret;
2439
2440 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2441 return 0;
2442
2443 if (nonoverlapping_memrefs_p (mem, x, false))
2444 return 0;
2445
2446 if (aliases_everything_p (x))
2447 return 1;
2448
2449 /* We cannot use aliases_everything_p to test MEM, since we must look
2450 at MEM_ADDR, rather than XEXP (mem, 0). */
2451 if (GET_CODE (mem_addr) == AND)
2452 return 1;
2453
2454 /* ??? In true_dependence we also allow BLKmode to alias anything. Why
2455 don't we do this in anti_dependence and output_dependence? */
2456 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2457 return 1;
2458
2459 return rtx_refs_may_alias_p (x, mem, true);
2460 }
2461
2462 /* True dependence: X is read after store in MEM takes place. */
2463
2464 int
2465 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2466 {
2467 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2468 x, NULL_RTX, /*mem_canonicalized=*/false);
2469 }
2470
2471 /* Canonical true dependence: X is read after store in MEM takes place.
2472 Variant of true_dependence which assumes MEM has already been
2473 canonicalized (hence we no longer do that here).
2474 The mem_addr argument has been added, since true_dependence_1 computed
2475 this value prior to canonicalizing. */
2476
2477 int
2478 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2479 const_rtx x, rtx x_addr)
2480 {
2481 return true_dependence_1 (mem, mem_mode, mem_addr,
2482 x, x_addr, /*mem_canonicalized=*/true);
2483 }
2484
2485 /* Returns nonzero if a write to X might alias a previous read from
2486 (or, if WRITEP is nonzero, a write to) MEM. */
2487
2488 static int
2489 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2490 {
2491 rtx x_addr, mem_addr;
2492 rtx base;
2493 int ret;
2494
2495 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2496 return 1;
2497
2498 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2499 This is used in epilogue deallocation functions. */
2500 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2501 return 1;
2502 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2503 return 1;
2504 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2505 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2506 return 1;
2507
2508 /* A read from read-only memory can't conflict with read-write memory. */
2509 if (!writep && MEM_READONLY_P (mem))
2510 return 0;
2511
2512 /* If we have MEMs refering to different address spaces (which can
2513 potentially overlap), we cannot easily tell from the addresses
2514 whether the references overlap. */
2515 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2516 return 1;
2517
2518 x_addr = XEXP (x, 0);
2519 mem_addr = XEXP (mem, 0);
2520 if (!((GET_CODE (x_addr) == VALUE
2521 && GET_CODE (mem_addr) != VALUE
2522 && reg_mentioned_p (x_addr, mem_addr))
2523 || (GET_CODE (x_addr) != VALUE
2524 && GET_CODE (mem_addr) == VALUE
2525 && reg_mentioned_p (mem_addr, x_addr))))
2526 {
2527 x_addr = get_addr (x_addr);
2528 mem_addr = get_addr (mem_addr);
2529 }
2530
2531 if (! writep)
2532 {
2533 base = find_base_term (mem_addr);
2534 if (base && (GET_CODE (base) == LABEL_REF
2535 || (GET_CODE (base) == SYMBOL_REF
2536 && CONSTANT_POOL_ADDRESS_P (base))))
2537 return 0;
2538 }
2539
2540 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2541 GET_MODE (mem)))
2542 return 0;
2543
2544 x_addr = canon_rtx (x_addr);
2545 mem_addr = canon_rtx (mem_addr);
2546
2547 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2548 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2549 return ret;
2550
2551 if (nonoverlapping_memrefs_p (x, mem, false))
2552 return 0;
2553
2554 return rtx_refs_may_alias_p (x, mem, false);
2555 }
2556
2557 /* Anti dependence: X is written after read in MEM takes place. */
2558
2559 int
2560 anti_dependence (const_rtx mem, const_rtx x)
2561 {
2562 return write_dependence_p (mem, x, /*writep=*/0);
2563 }
2564
2565 /* Output dependence: X is written after store in MEM takes place. */
2566
2567 int
2568 output_dependence (const_rtx mem, const_rtx x)
2569 {
2570 return write_dependence_p (mem, x, /*writep=*/1);
2571 }
2572 \f
2573
2574
2575 /* Check whether X may be aliased with MEM. Don't do offset-based
2576 memory disambiguation & TBAA. */
2577 int
2578 may_alias_p (const_rtx mem, const_rtx x)
2579 {
2580 rtx x_addr, mem_addr;
2581
2582 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2583 return 1;
2584
2585 /* ??? In true_dependence we also allow BLKmode to alias anything. */
2586 if (GET_MODE (mem) == BLKmode || GET_MODE (x) == BLKmode)
2587 return 1;
2588
2589 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2590 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2591 return 1;
2592
2593 /* Read-only memory is by definition never modified, and therefore can't
2594 conflict with anything. We don't expect to find read-only set on MEM,
2595 but stupid user tricks can produce them, so don't die. */
2596 if (MEM_READONLY_P (x))
2597 return 0;
2598
2599 /* If we have MEMs refering to different address spaces (which can
2600 potentially overlap), we cannot easily tell from the addresses
2601 whether the references overlap. */
2602 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2603 return 1;
2604
2605 x_addr = XEXP (x, 0);
2606 mem_addr = XEXP (mem, 0);
2607 if (!((GET_CODE (x_addr) == VALUE
2608 && GET_CODE (mem_addr) != VALUE
2609 && reg_mentioned_p (x_addr, mem_addr))
2610 || (GET_CODE (x_addr) != VALUE
2611 && GET_CODE (mem_addr) == VALUE
2612 && reg_mentioned_p (mem_addr, x_addr))))
2613 {
2614 x_addr = get_addr (x_addr);
2615 mem_addr = get_addr (mem_addr);
2616 }
2617
2618 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2619 return 0;
2620
2621 x_addr = canon_rtx (x_addr);
2622 mem_addr = canon_rtx (mem_addr);
2623
2624 if (nonoverlapping_memrefs_p (mem, x, true))
2625 return 0;
2626
2627 if (aliases_everything_p (x))
2628 return 1;
2629
2630 /* We cannot use aliases_everything_p to test MEM, since we must look
2631 at MEM_ADDR, rather than XEXP (mem, 0). */
2632 if (GET_CODE (mem_addr) == AND)
2633 return 1;
2634
2635 /* TBAA not valid for loop_invarint */
2636 return rtx_refs_may_alias_p (x, mem, false);
2637 }
2638
2639 void
2640 init_alias_target (void)
2641 {
2642 int i;
2643
2644 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2645
2646 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2647 /* Check whether this register can hold an incoming pointer
2648 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2649 numbers, so translate if necessary due to register windows. */
2650 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2651 && HARD_REGNO_MODE_OK (i, Pmode))
2652 static_reg_base_value[i]
2653 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2654
2655 static_reg_base_value[STACK_POINTER_REGNUM]
2656 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2657 static_reg_base_value[ARG_POINTER_REGNUM]
2658 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2659 static_reg_base_value[FRAME_POINTER_REGNUM]
2660 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2661 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2662 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2663 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2664 #endif
2665 }
2666
2667 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2668 to be memory reference. */
2669 static bool memory_modified;
2670 static void
2671 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2672 {
2673 if (MEM_P (x))
2674 {
2675 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2676 memory_modified = true;
2677 }
2678 }
2679
2680
2681 /* Return true when INSN possibly modify memory contents of MEM
2682 (i.e. address can be modified). */
2683 bool
2684 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2685 {
2686 if (!INSN_P (insn))
2687 return false;
2688 memory_modified = false;
2689 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2690 return memory_modified;
2691 }
2692
2693 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2694 array. */
2695
2696 void
2697 init_alias_analysis (void)
2698 {
2699 unsigned int maxreg = max_reg_num ();
2700 int changed, pass;
2701 int i;
2702 unsigned int ui;
2703 rtx insn;
2704
2705 timevar_push (TV_ALIAS_ANALYSIS);
2706
2707 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2708 reg_known_value = ggc_alloc_cleared_vec_rtx (reg_known_value_size);
2709 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2710
2711 /* If we have memory allocated from the previous run, use it. */
2712 if (old_reg_base_value)
2713 reg_base_value = old_reg_base_value;
2714
2715 if (reg_base_value)
2716 VEC_truncate (rtx, reg_base_value, 0);
2717
2718 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2719
2720 new_reg_base_value = XNEWVEC (rtx, maxreg);
2721 reg_seen = XNEWVEC (char, maxreg);
2722
2723 /* The basic idea is that each pass through this loop will use the
2724 "constant" information from the previous pass to propagate alias
2725 information through another level of assignments.
2726
2727 This could get expensive if the assignment chains are long. Maybe
2728 we should throttle the number of iterations, possibly based on
2729 the optimization level or flag_expensive_optimizations.
2730
2731 We could propagate more information in the first pass by making use
2732 of DF_REG_DEF_COUNT to determine immediately that the alias information
2733 for a pseudo is "constant".
2734
2735 A program with an uninitialized variable can cause an infinite loop
2736 here. Instead of doing a full dataflow analysis to detect such problems
2737 we just cap the number of iterations for the loop.
2738
2739 The state of the arrays for the set chain in question does not matter
2740 since the program has undefined behavior. */
2741
2742 pass = 0;
2743 do
2744 {
2745 /* Assume nothing will change this iteration of the loop. */
2746 changed = 0;
2747
2748 /* We want to assign the same IDs each iteration of this loop, so
2749 start counting from zero each iteration of the loop. */
2750 unique_id = 0;
2751
2752 /* We're at the start of the function each iteration through the
2753 loop, so we're copying arguments. */
2754 copying_arguments = true;
2755
2756 /* Wipe the potential alias information clean for this pass. */
2757 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2758
2759 /* Wipe the reg_seen array clean. */
2760 memset (reg_seen, 0, maxreg);
2761
2762 /* Mark all hard registers which may contain an address.
2763 The stack, frame and argument pointers may contain an address.
2764 An argument register which can hold a Pmode value may contain
2765 an address even if it is not in BASE_REGS.
2766
2767 The address expression is VOIDmode for an argument and
2768 Pmode for other registers. */
2769
2770 memcpy (new_reg_base_value, static_reg_base_value,
2771 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2772
2773 /* Walk the insns adding values to the new_reg_base_value array. */
2774 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2775 {
2776 if (INSN_P (insn))
2777 {
2778 rtx note, set;
2779
2780 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2781 /* The prologue/epilogue insns are not threaded onto the
2782 insn chain until after reload has completed. Thus,
2783 there is no sense wasting time checking if INSN is in
2784 the prologue/epilogue until after reload has completed. */
2785 if (reload_completed
2786 && prologue_epilogue_contains (insn))
2787 continue;
2788 #endif
2789
2790 /* If this insn has a noalias note, process it, Otherwise,
2791 scan for sets. A simple set will have no side effects
2792 which could change the base value of any other register. */
2793
2794 if (GET_CODE (PATTERN (insn)) == SET
2795 && REG_NOTES (insn) != 0
2796 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2797 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2798 else
2799 note_stores (PATTERN (insn), record_set, NULL);
2800
2801 set = single_set (insn);
2802
2803 if (set != 0
2804 && REG_P (SET_DEST (set))
2805 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2806 {
2807 unsigned int regno = REGNO (SET_DEST (set));
2808 rtx src = SET_SRC (set);
2809 rtx t;
2810
2811 note = find_reg_equal_equiv_note (insn);
2812 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2813 && DF_REG_DEF_COUNT (regno) != 1)
2814 note = NULL_RTX;
2815
2816 if (note != NULL_RTX
2817 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2818 && ! rtx_varies_p (XEXP (note, 0), 1)
2819 && ! reg_overlap_mentioned_p (SET_DEST (set),
2820 XEXP (note, 0)))
2821 {
2822 set_reg_known_value (regno, XEXP (note, 0));
2823 set_reg_known_equiv_p (regno,
2824 REG_NOTE_KIND (note) == REG_EQUIV);
2825 }
2826 else if (DF_REG_DEF_COUNT (regno) == 1
2827 && GET_CODE (src) == PLUS
2828 && REG_P (XEXP (src, 0))
2829 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2830 && CONST_INT_P (XEXP (src, 1)))
2831 {
2832 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2833 set_reg_known_value (regno, t);
2834 set_reg_known_equiv_p (regno, 0);
2835 }
2836 else if (DF_REG_DEF_COUNT (regno) == 1
2837 && ! rtx_varies_p (src, 1))
2838 {
2839 set_reg_known_value (regno, src);
2840 set_reg_known_equiv_p (regno, 0);
2841 }
2842 }
2843 }
2844 else if (NOTE_P (insn)
2845 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2846 copying_arguments = false;
2847 }
2848
2849 /* Now propagate values from new_reg_base_value to reg_base_value. */
2850 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2851
2852 for (ui = 0; ui < maxreg; ui++)
2853 {
2854 if (new_reg_base_value[ui]
2855 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2856 && ! rtx_equal_p (new_reg_base_value[ui],
2857 VEC_index (rtx, reg_base_value, ui)))
2858 {
2859 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2860 changed = 1;
2861 }
2862 }
2863 }
2864 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2865
2866 /* Fill in the remaining entries. */
2867 for (i = 0; i < (int)reg_known_value_size; i++)
2868 if (reg_known_value[i] == 0)
2869 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2870
2871 /* Clean up. */
2872 free (new_reg_base_value);
2873 new_reg_base_value = 0;
2874 free (reg_seen);
2875 reg_seen = 0;
2876 timevar_pop (TV_ALIAS_ANALYSIS);
2877 }
2878
2879 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2880 Special API for var-tracking pass purposes. */
2881
2882 void
2883 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2884 {
2885 VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
2886 }
2887
2888 void
2889 end_alias_analysis (void)
2890 {
2891 old_reg_base_value = reg_base_value;
2892 ggc_free (reg_known_value);
2893 reg_known_value = 0;
2894 reg_known_value_size = 0;
2895 free (reg_known_equiv_p);
2896 reg_known_equiv_p = 0;
2897 }
2898
2899 #include "gt-alias.h"