e4485375975bf03b1b0567a4f65c29402f8fff13
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45
46 /* The alias sets assigned to MEMs assist the back-end in determining
47 which MEMs can alias which other MEMs. In general, two MEMs in
48 different alias sets cannot alias each other, with one important
49 exception. Consider something like:
50
51 struct S { int i; double d; };
52
53 a store to an `S' can alias something of either type `int' or type
54 `double'. (However, a store to an `int' cannot alias a `double'
55 and vice versa.) We indicate this via a tree structure that looks
56 like:
57 struct S
58 / \
59 / \
60 |/_ _\|
61 int double
62
63 (The arrows are directed and point downwards.)
64 In this situation we say the alias set for `struct S' is the
65 `superset' and that those for `int' and `double' are `subsets'.
66
67 To see whether two alias sets can point to the same memory, we must
68 see if either alias set is a subset of the other. We need not trace
69 past immediate descendants, however, since we propagate all
70 grandchildren up one level.
71
72 Alias set zero is implicitly a superset of all other alias sets.
73 However, this is no actual entry for alias set zero. It is an
74 error to attempt to explicitly construct a subset of zero. */
75
76 typedef struct alias_set_entry
77 {
78 /* The alias set number, as stored in MEM_ALIAS_SET. */
79 HOST_WIDE_INT alias_set;
80
81 /* The children of the alias set. These are not just the immediate
82 children, but, in fact, all descendants. So, if we have:
83
84 struct T { struct S s; float f; }
85
86 continuing our example above, the children here will be all of
87 `int', `double', `float', and `struct S'. */
88 splay_tree children;
89
90 /* Nonzero if would have a child of zero: this effectively makes this
91 alias set the same as alias set zero. */
92 int has_zero_child;
93 } *alias_set_entry;
94
95 static int rtx_equal_for_memref_p (rtx, rtx);
96 static rtx find_symbolic_term (rtx);
97 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
98 static void record_set (rtx, rtx, void *);
99 static int base_alias_check (rtx, rtx, enum machine_mode,
100 enum machine_mode);
101 static rtx find_base_value (rtx);
102 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
103 static int insert_subset_children (splay_tree_node, void*);
104 static tree find_base_decl (tree);
105 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
106 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
107 int (*) (rtx, int));
108 static int aliases_everything_p (rtx);
109 static bool nonoverlapping_component_refs_p (tree, tree);
110 static tree decl_for_component_ref (tree);
111 static rtx adjust_offset_for_component_ref (tree, rtx);
112 static int nonoverlapping_memrefs_p (rtx, rtx);
113 static int write_dependence_p (rtx, rtx, int, int);
114
115 static int nonlocal_mentioned_p_1 (rtx *, void *);
116 static int nonlocal_mentioned_p (rtx);
117 static int nonlocal_referenced_p_1 (rtx *, void *);
118 static int nonlocal_referenced_p (rtx);
119 static int nonlocal_set_p_1 (rtx *, void *);
120 static int nonlocal_set_p (rtx);
121 static void memory_modified_1 (rtx, rtx, void *);
122
123 /* Set up all info needed to perform alias analysis on memory references. */
124
125 /* Returns the size in bytes of the mode of X. */
126 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
127
128 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
129 different alias sets. We ignore alias sets in functions making use
130 of variable arguments because the va_arg macros on some systems are
131 not legal ANSI C. */
132 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
133 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
134
135 /* Cap the number of passes we make over the insns propagating alias
136 information through set chains. 10 is a completely arbitrary choice. */
137 #define MAX_ALIAS_LOOP_PASSES 10
138
139 /* reg_base_value[N] gives an address to which register N is related.
140 If all sets after the first add or subtract to the current value
141 or otherwise modify it so it does not point to a different top level
142 object, reg_base_value[N] is equal to the address part of the source
143 of the first set.
144
145 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
146 expressions represent certain special values: function arguments and
147 the stack, frame, and argument pointers.
148
149 The contents of an ADDRESS is not normally used, the mode of the
150 ADDRESS determines whether the ADDRESS is a function argument or some
151 other special value. Pointer equality, not rtx_equal_p, determines whether
152 two ADDRESS expressions refer to the same base address.
153
154 The only use of the contents of an ADDRESS is for determining if the
155 current function performs nonlocal memory memory references for the
156 purposes of marking the function as a constant function. */
157
158 static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
159 static rtx *new_reg_base_value;
160 static unsigned int reg_base_value_size; /* size of reg_base_value array */
161
162 /* Static hunks of RTL used by the aliasing code; these are initialized
163 once per function to avoid unnecessary RTL allocations. */
164 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
165
166 #define REG_BASE_VALUE(X) \
167 (REGNO (X) < reg_base_value_size \
168 ? reg_base_value[REGNO (X)] : 0)
169
170 /* Vector of known invariant relationships between registers. Set in
171 loop unrolling. Indexed by register number, if nonzero the value
172 is an expression describing this register in terms of another.
173
174 The length of this array is REG_BASE_VALUE_SIZE.
175
176 Because this array contains only pseudo registers it has no effect
177 after reload. */
178 static rtx *alias_invariant;
179
180 /* Vector indexed by N giving the initial (unchanging) value known for
181 pseudo-register N. This array is initialized in
182 init_alias_analysis, and does not change until end_alias_analysis
183 is called. */
184 rtx *reg_known_value;
185
186 /* Indicates number of valid entries in reg_known_value. */
187 static unsigned int reg_known_value_size;
188
189 /* Vector recording for each reg_known_value whether it is due to a
190 REG_EQUIV note. Future passes (viz., reload) may replace the
191 pseudo with the equivalent expression and so we account for the
192 dependences that would be introduced if that happens.
193
194 The REG_EQUIV notes created in assign_parms may mention the arg
195 pointer, and there are explicit insns in the RTL that modify the
196 arg pointer. Thus we must ensure that such insns don't get
197 scheduled across each other because that would invalidate the
198 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
199 wrong, but solving the problem in the scheduler will likely give
200 better code, so we do it here. */
201 char *reg_known_equiv_p;
202
203 /* True when scanning insns from the start of the rtl to the
204 NOTE_INSN_FUNCTION_BEG note. */
205 static bool copying_arguments;
206
207 /* The splay-tree used to store the various alias set entries. */
208 static splay_tree alias_sets;
209 \f
210 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
211 such an entry, or NULL otherwise. */
212
213 static alias_set_entry
214 get_alias_set_entry (HOST_WIDE_INT alias_set)
215 {
216 splay_tree_node sn
217 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
218
219 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
220 }
221
222 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
223 the two MEMs cannot alias each other. */
224
225 static int
226 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
227 {
228 #ifdef ENABLE_CHECKING
229 /* Perform a basic sanity check. Namely, that there are no alias sets
230 if we're not using strict aliasing. This helps to catch bugs
231 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
232 where a MEM is allocated in some way other than by the use of
233 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
234 use alias sets to indicate that spilled registers cannot alias each
235 other, we might need to remove this check. */
236 if (! flag_strict_aliasing
237 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
238 abort ();
239 #endif
240
241 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
242 }
243
244 /* Insert the NODE into the splay tree given by DATA. Used by
245 record_alias_subset via splay_tree_foreach. */
246
247 static int
248 insert_subset_children (splay_tree_node node, void *data)
249 {
250 splay_tree_insert ((splay_tree) data, node->key, node->value);
251
252 return 0;
253 }
254
255 /* Return 1 if the two specified alias sets may conflict. */
256
257 int
258 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
259 {
260 alias_set_entry ase;
261
262 /* If have no alias set information for one of the operands, we have
263 to assume it can alias anything. */
264 if (set1 == 0 || set2 == 0
265 /* If the two alias sets are the same, they may alias. */
266 || set1 == set2)
267 return 1;
268
269 /* See if the first alias set is a subset of the second. */
270 ase = get_alias_set_entry (set1);
271 if (ase != 0
272 && (ase->has_zero_child
273 || splay_tree_lookup (ase->children,
274 (splay_tree_key) set2)))
275 return 1;
276
277 /* Now do the same, but with the alias sets reversed. */
278 ase = get_alias_set_entry (set2);
279 if (ase != 0
280 && (ase->has_zero_child
281 || splay_tree_lookup (ase->children,
282 (splay_tree_key) set1)))
283 return 1;
284
285 /* The two alias sets are distinct and neither one is the
286 child of the other. Therefore, they cannot alias. */
287 return 0;
288 }
289 \f
290 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
291 has any readonly fields. If any of the fields have types that
292 contain readonly fields, return true as well. */
293
294 int
295 readonly_fields_p (tree type)
296 {
297 tree field;
298
299 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
300 && TREE_CODE (type) != QUAL_UNION_TYPE)
301 return 0;
302
303 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
304 if (TREE_CODE (field) == FIELD_DECL
305 && (TREE_READONLY (field)
306 || readonly_fields_p (TREE_TYPE (field))))
307 return 1;
308
309 return 0;
310 }
311 \f
312 /* Return 1 if any MEM object of type T1 will always conflict (using the
313 dependency routines in this file) with any MEM object of type T2.
314 This is used when allocating temporary storage. If T1 and/or T2 are
315 NULL_TREE, it means we know nothing about the storage. */
316
317 int
318 objects_must_conflict_p (tree t1, tree t2)
319 {
320 HOST_WIDE_INT set1, set2;
321
322 /* If neither has a type specified, we don't know if they'll conflict
323 because we may be using them to store objects of various types, for
324 example the argument and local variables areas of inlined functions. */
325 if (t1 == 0 && t2 == 0)
326 return 0;
327
328 /* If one or the other has readonly fields or is readonly,
329 then they may not conflict. */
330 if ((t1 != 0 && readonly_fields_p (t1))
331 || (t2 != 0 && readonly_fields_p (t2))
332 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
333 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
334 return 0;
335
336 /* If they are the same type, they must conflict. */
337 if (t1 == t2
338 /* Likewise if both are volatile. */
339 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
340 return 1;
341
342 set1 = t1 ? get_alias_set (t1) : 0;
343 set2 = t2 ? get_alias_set (t2) : 0;
344
345 /* Otherwise they conflict if they have no alias set or the same. We
346 can't simply use alias_sets_conflict_p here, because we must make
347 sure that every subtype of t1 will conflict with every subtype of
348 t2 for which a pair of subobjects of these respective subtypes
349 overlaps on the stack. */
350 return set1 == 0 || set2 == 0 || set1 == set2;
351 }
352 \f
353 /* T is an expression with pointer type. Find the DECL on which this
354 expression is based. (For example, in `a[i]' this would be `a'.)
355 If there is no such DECL, or a unique decl cannot be determined,
356 NULL_TREE is returned. */
357
358 static tree
359 find_base_decl (tree t)
360 {
361 tree d0, d1, d2;
362
363 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
364 return 0;
365
366 /* If this is a declaration, return it. */
367 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
368 return t;
369
370 /* Handle general expressions. It would be nice to deal with
371 COMPONENT_REFs here. If we could tell that `a' and `b' were the
372 same, then `a->f' and `b->f' are also the same. */
373 switch (TREE_CODE_CLASS (TREE_CODE (t)))
374 {
375 case '1':
376 return find_base_decl (TREE_OPERAND (t, 0));
377
378 case '2':
379 /* Return 0 if found in neither or both are the same. */
380 d0 = find_base_decl (TREE_OPERAND (t, 0));
381 d1 = find_base_decl (TREE_OPERAND (t, 1));
382 if (d0 == d1)
383 return d0;
384 else if (d0 == 0)
385 return d1;
386 else if (d1 == 0)
387 return d0;
388 else
389 return 0;
390
391 case '3':
392 d0 = find_base_decl (TREE_OPERAND (t, 0));
393 d1 = find_base_decl (TREE_OPERAND (t, 1));
394 d2 = find_base_decl (TREE_OPERAND (t, 2));
395
396 /* Set any nonzero values from the last, then from the first. */
397 if (d1 == 0) d1 = d2;
398 if (d0 == 0) d0 = d1;
399 if (d1 == 0) d1 = d0;
400 if (d2 == 0) d2 = d1;
401
402 /* At this point all are nonzero or all are zero. If all three are the
403 same, return it. Otherwise, return zero. */
404 return (d0 == d1 && d1 == d2) ? d0 : 0;
405
406 default:
407 return 0;
408 }
409 }
410
411 /* Return 1 if all the nested component references handled by
412 get_inner_reference in T are such that we can address the object in T. */
413
414 int
415 can_address_p (tree t)
416 {
417 /* If we're at the end, it is vacuously addressable. */
418 if (! handled_component_p (t))
419 return 1;
420
421 /* Bitfields are never addressable. */
422 else if (TREE_CODE (t) == BIT_FIELD_REF)
423 return 0;
424
425 /* Fields are addressable unless they are marked as nonaddressable or
426 the containing type has alias set 0. */
427 else if (TREE_CODE (t) == COMPONENT_REF
428 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
429 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
430 && can_address_p (TREE_OPERAND (t, 0)))
431 return 1;
432
433 /* Likewise for arrays. */
434 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
435 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
436 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
437 && can_address_p (TREE_OPERAND (t, 0)))
438 return 1;
439
440 return 0;
441 }
442
443 /* Return the alias set for T, which may be either a type or an
444 expression. Call language-specific routine for help, if needed. */
445
446 HOST_WIDE_INT
447 get_alias_set (tree t)
448 {
449 HOST_WIDE_INT set;
450
451 /* If we're not doing any alias analysis, just assume everything
452 aliases everything else. Also return 0 if this or its type is
453 an error. */
454 if (! flag_strict_aliasing || t == error_mark_node
455 || (! TYPE_P (t)
456 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
457 return 0;
458
459 /* We can be passed either an expression or a type. This and the
460 language-specific routine may make mutually-recursive calls to each other
461 to figure out what to do. At each juncture, we see if this is a tree
462 that the language may need to handle specially. First handle things that
463 aren't types. */
464 if (! TYPE_P (t))
465 {
466 tree inner = t;
467 tree placeholder_ptr = 0;
468
469 /* Remove any nops, then give the language a chance to do
470 something with this tree before we look at it. */
471 STRIP_NOPS (t);
472 set = (*lang_hooks.get_alias_set) (t);
473 if (set != -1)
474 return set;
475
476 /* First see if the actual object referenced is an INDIRECT_REF from a
477 restrict-qualified pointer or a "void *". Replace
478 PLACEHOLDER_EXPRs. */
479 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
480 || handled_component_p (inner))
481 {
482 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
483 inner = find_placeholder (inner, &placeholder_ptr);
484 else
485 inner = TREE_OPERAND (inner, 0);
486
487 STRIP_NOPS (inner);
488 }
489
490 /* Check for accesses through restrict-qualified pointers. */
491 if (TREE_CODE (inner) == INDIRECT_REF)
492 {
493 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
494
495 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
496 {
497 /* If we haven't computed the actual alias set, do it now. */
498 if (DECL_POINTER_ALIAS_SET (decl) == -2)
499 {
500 /* No two restricted pointers can point at the same thing.
501 However, a restricted pointer can point at the same thing
502 as an unrestricted pointer, if that unrestricted pointer
503 is based on the restricted pointer. So, we make the
504 alias set for the restricted pointer a subset of the
505 alias set for the type pointed to by the type of the
506 decl. */
507 HOST_WIDE_INT pointed_to_alias_set
508 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
509
510 if (pointed_to_alias_set == 0)
511 /* It's not legal to make a subset of alias set zero. */
512 ;
513 else
514 {
515 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
516 record_alias_subset (pointed_to_alias_set,
517 DECL_POINTER_ALIAS_SET (decl));
518 }
519 }
520
521 /* We use the alias set indicated in the declaration. */
522 return DECL_POINTER_ALIAS_SET (decl);
523 }
524
525 /* If we have an INDIRECT_REF via a void pointer, we don't
526 know anything about what that might alias. */
527 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
528 return 0;
529 }
530
531 /* Otherwise, pick up the outermost object that we could have a pointer
532 to, processing conversion and PLACEHOLDER_EXPR as above. */
533 placeholder_ptr = 0;
534 while (TREE_CODE (t) == PLACEHOLDER_EXPR
535 || (handled_component_p (t) && ! can_address_p (t)))
536 {
537 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
538 t = find_placeholder (t, &placeholder_ptr);
539 else
540 t = TREE_OPERAND (t, 0);
541
542 STRIP_NOPS (t);
543 }
544
545 /* If we've already determined the alias set for a decl, just return
546 it. This is necessary for C++ anonymous unions, whose component
547 variables don't look like union members (boo!). */
548 if (TREE_CODE (t) == VAR_DECL
549 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
550 return MEM_ALIAS_SET (DECL_RTL (t));
551
552 /* Now all we care about is the type. */
553 t = TREE_TYPE (t);
554 }
555
556 /* Variant qualifiers don't affect the alias set, so get the main
557 variant. If this is a type with a known alias set, return it. */
558 t = TYPE_MAIN_VARIANT (t);
559 if (TYPE_ALIAS_SET_KNOWN_P (t))
560 return TYPE_ALIAS_SET (t);
561
562 /* See if the language has special handling for this type. */
563 set = (*lang_hooks.get_alias_set) (t);
564 if (set != -1)
565 return set;
566
567 /* There are no objects of FUNCTION_TYPE, so there's no point in
568 using up an alias set for them. (There are, of course, pointers
569 and references to functions, but that's different.) */
570 else if (TREE_CODE (t) == FUNCTION_TYPE)
571 set = 0;
572
573 /* Unless the language specifies otherwise, let vector types alias
574 their components. This avoids some nasty type punning issues in
575 normal usage. And indeed lets vectors be treated more like an
576 array slice. */
577 else if (TREE_CODE (t) == VECTOR_TYPE)
578 set = get_alias_set (TREE_TYPE (t));
579
580 else
581 /* Otherwise make a new alias set for this type. */
582 set = new_alias_set ();
583
584 TYPE_ALIAS_SET (t) = set;
585
586 /* If this is an aggregate type, we must record any component aliasing
587 information. */
588 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
589 record_component_aliases (t);
590
591 return set;
592 }
593
594 /* Return a brand-new alias set. */
595
596 HOST_WIDE_INT
597 new_alias_set (void)
598 {
599 static HOST_WIDE_INT last_alias_set;
600
601 if (flag_strict_aliasing)
602 return ++last_alias_set;
603 else
604 return 0;
605 }
606
607 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
608 not everything that aliases SUPERSET also aliases SUBSET. For example,
609 in C, a store to an `int' can alias a load of a structure containing an
610 `int', and vice versa. But it can't alias a load of a 'double' member
611 of the same structure. Here, the structure would be the SUPERSET and
612 `int' the SUBSET. This relationship is also described in the comment at
613 the beginning of this file.
614
615 This function should be called only once per SUPERSET/SUBSET pair.
616
617 It is illegal for SUPERSET to be zero; everything is implicitly a
618 subset of alias set zero. */
619
620 void
621 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
622 {
623 alias_set_entry superset_entry;
624 alias_set_entry subset_entry;
625
626 /* It is possible in complex type situations for both sets to be the same,
627 in which case we can ignore this operation. */
628 if (superset == subset)
629 return;
630
631 if (superset == 0)
632 abort ();
633
634 superset_entry = get_alias_set_entry (superset);
635 if (superset_entry == 0)
636 {
637 /* Create an entry for the SUPERSET, so that we have a place to
638 attach the SUBSET. */
639 superset_entry = xmalloc (sizeof (struct alias_set_entry));
640 superset_entry->alias_set = superset;
641 superset_entry->children
642 = splay_tree_new (splay_tree_compare_ints, 0, 0);
643 superset_entry->has_zero_child = 0;
644 splay_tree_insert (alias_sets, (splay_tree_key) superset,
645 (splay_tree_value) superset_entry);
646 }
647
648 if (subset == 0)
649 superset_entry->has_zero_child = 1;
650 else
651 {
652 subset_entry = get_alias_set_entry (subset);
653 /* If there is an entry for the subset, enter all of its children
654 (if they are not already present) as children of the SUPERSET. */
655 if (subset_entry)
656 {
657 if (subset_entry->has_zero_child)
658 superset_entry->has_zero_child = 1;
659
660 splay_tree_foreach (subset_entry->children, insert_subset_children,
661 superset_entry->children);
662 }
663
664 /* Enter the SUBSET itself as a child of the SUPERSET. */
665 splay_tree_insert (superset_entry->children,
666 (splay_tree_key) subset, 0);
667 }
668 }
669
670 /* Record that component types of TYPE, if any, are part of that type for
671 aliasing purposes. For record types, we only record component types
672 for fields that are marked addressable. For array types, we always
673 record the component types, so the front end should not call this
674 function if the individual component aren't addressable. */
675
676 void
677 record_component_aliases (tree type)
678 {
679 HOST_WIDE_INT superset = get_alias_set (type);
680 tree field;
681
682 if (superset == 0)
683 return;
684
685 switch (TREE_CODE (type))
686 {
687 case ARRAY_TYPE:
688 if (! TYPE_NONALIASED_COMPONENT (type))
689 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
690 break;
691
692 case RECORD_TYPE:
693 case UNION_TYPE:
694 case QUAL_UNION_TYPE:
695 /* Recursively record aliases for the base classes, if there are any. */
696 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
697 {
698 int i;
699 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
700 {
701 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
702 record_alias_subset (superset,
703 get_alias_set (BINFO_TYPE (binfo)));
704 }
705 }
706 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
707 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
708 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
709 break;
710
711 case COMPLEX_TYPE:
712 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
713 break;
714
715 default:
716 break;
717 }
718 }
719
720 /* Allocate an alias set for use in storing and reading from the varargs
721 spill area. */
722
723 HOST_WIDE_INT
724 get_varargs_alias_set (void)
725 {
726 static HOST_WIDE_INT set = -1;
727
728 if (set == -1)
729 set = new_alias_set ();
730
731 return set;
732 }
733
734 /* Likewise, but used for the fixed portions of the frame, e.g., register
735 save areas. */
736
737 HOST_WIDE_INT
738 get_frame_alias_set (void)
739 {
740 static HOST_WIDE_INT set = -1;
741
742 if (set == -1)
743 set = new_alias_set ();
744
745 return set;
746 }
747
748 /* Inside SRC, the source of a SET, find a base address. */
749
750 static rtx
751 find_base_value (rtx src)
752 {
753 unsigned int regno;
754
755 switch (GET_CODE (src))
756 {
757 case SYMBOL_REF:
758 case LABEL_REF:
759 return src;
760
761 case REG:
762 regno = REGNO (src);
763 /* At the start of a function, argument registers have known base
764 values which may be lost later. Returning an ADDRESS
765 expression here allows optimization based on argument values
766 even when the argument registers are used for other purposes. */
767 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
768 return new_reg_base_value[regno];
769
770 /* If a pseudo has a known base value, return it. Do not do this
771 for non-fixed hard regs since it can result in a circular
772 dependency chain for registers which have values at function entry.
773
774 The test above is not sufficient because the scheduler may move
775 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
776 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
777 && regno < reg_base_value_size)
778 {
779 /* If we're inside init_alias_analysis, use new_reg_base_value
780 to reduce the number of relaxation iterations. */
781 if (new_reg_base_value && new_reg_base_value[regno]
782 && REG_N_SETS (regno) == 1)
783 return new_reg_base_value[regno];
784
785 if (reg_base_value[regno])
786 return reg_base_value[regno];
787 }
788
789 return 0;
790
791 case MEM:
792 /* Check for an argument passed in memory. Only record in the
793 copying-arguments block; it is too hard to track changes
794 otherwise. */
795 if (copying_arguments
796 && (XEXP (src, 0) == arg_pointer_rtx
797 || (GET_CODE (XEXP (src, 0)) == PLUS
798 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
799 return gen_rtx_ADDRESS (VOIDmode, src);
800 return 0;
801
802 case CONST:
803 src = XEXP (src, 0);
804 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
805 break;
806
807 /* ... fall through ... */
808
809 case PLUS:
810 case MINUS:
811 {
812 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
813
814 /* If either operand is a REG that is a known pointer, then it
815 is the base. */
816 if (REG_P (src_0) && REG_POINTER (src_0))
817 return find_base_value (src_0);
818 if (REG_P (src_1) && REG_POINTER (src_1))
819 return find_base_value (src_1);
820
821 /* If either operand is a REG, then see if we already have
822 a known value for it. */
823 if (REG_P (src_0))
824 {
825 temp = find_base_value (src_0);
826 if (temp != 0)
827 src_0 = temp;
828 }
829
830 if (REG_P (src_1))
831 {
832 temp = find_base_value (src_1);
833 if (temp!= 0)
834 src_1 = temp;
835 }
836
837 /* If either base is named object or a special address
838 (like an argument or stack reference), then use it for the
839 base term. */
840 if (src_0 != 0
841 && (GET_CODE (src_0) == SYMBOL_REF
842 || GET_CODE (src_0) == LABEL_REF
843 || (GET_CODE (src_0) == ADDRESS
844 && GET_MODE (src_0) != VOIDmode)))
845 return src_0;
846
847 if (src_1 != 0
848 && (GET_CODE (src_1) == SYMBOL_REF
849 || GET_CODE (src_1) == LABEL_REF
850 || (GET_CODE (src_1) == ADDRESS
851 && GET_MODE (src_1) != VOIDmode)))
852 return src_1;
853
854 /* Guess which operand is the base address:
855 If either operand is a symbol, then it is the base. If
856 either operand is a CONST_INT, then the other is the base. */
857 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
858 return find_base_value (src_0);
859 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
860 return find_base_value (src_1);
861
862 return 0;
863 }
864
865 case LO_SUM:
866 /* The standard form is (lo_sum reg sym) so look only at the
867 second operand. */
868 return find_base_value (XEXP (src, 1));
869
870 case AND:
871 /* If the second operand is constant set the base
872 address to the first operand. */
873 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
874 return find_base_value (XEXP (src, 0));
875 return 0;
876
877 case TRUNCATE:
878 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
879 break;
880 /* Fall through. */
881 case HIGH:
882 case PRE_INC:
883 case PRE_DEC:
884 case POST_INC:
885 case POST_DEC:
886 case PRE_MODIFY:
887 case POST_MODIFY:
888 return find_base_value (XEXP (src, 0));
889
890 case ZERO_EXTEND:
891 case SIGN_EXTEND: /* used for NT/Alpha pointers */
892 {
893 rtx temp = find_base_value (XEXP (src, 0));
894
895 if (temp != 0 && CONSTANT_P (temp))
896 temp = convert_memory_address (Pmode, temp);
897
898 return temp;
899 }
900
901 default:
902 break;
903 }
904
905 return 0;
906 }
907
908 /* Called from init_alias_analysis indirectly through note_stores. */
909
910 /* While scanning insns to find base values, reg_seen[N] is nonzero if
911 register N has been set in this function. */
912 static char *reg_seen;
913
914 /* Addresses which are known not to alias anything else are identified
915 by a unique integer. */
916 static int unique_id;
917
918 static void
919 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
920 {
921 unsigned regno;
922 rtx src;
923 int n;
924
925 if (GET_CODE (dest) != REG)
926 return;
927
928 regno = REGNO (dest);
929
930 if (regno >= reg_base_value_size)
931 abort ();
932
933 /* If this spans multiple hard registers, then we must indicate that every
934 register has an unusable value. */
935 if (regno < FIRST_PSEUDO_REGISTER)
936 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
937 else
938 n = 1;
939 if (n != 1)
940 {
941 while (--n >= 0)
942 {
943 reg_seen[regno + n] = 1;
944 new_reg_base_value[regno + n] = 0;
945 }
946 return;
947 }
948
949 if (set)
950 {
951 /* A CLOBBER wipes out any old value but does not prevent a previously
952 unset register from acquiring a base address (i.e. reg_seen is not
953 set). */
954 if (GET_CODE (set) == CLOBBER)
955 {
956 new_reg_base_value[regno] = 0;
957 return;
958 }
959 src = SET_SRC (set);
960 }
961 else
962 {
963 if (reg_seen[regno])
964 {
965 new_reg_base_value[regno] = 0;
966 return;
967 }
968 reg_seen[regno] = 1;
969 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
970 GEN_INT (unique_id++));
971 return;
972 }
973
974 /* This is not the first set. If the new value is not related to the
975 old value, forget the base value. Note that the following code is
976 not detected:
977 extern int x, y; int *p = &x; p += (&y-&x);
978 ANSI C does not allow computing the difference of addresses
979 of distinct top level objects. */
980 if (new_reg_base_value[regno])
981 switch (GET_CODE (src))
982 {
983 case LO_SUM:
984 case MINUS:
985 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
986 new_reg_base_value[regno] = 0;
987 break;
988 case PLUS:
989 /* If the value we add in the PLUS is also a valid base value,
990 this might be the actual base value, and the original value
991 an index. */
992 {
993 rtx other = NULL_RTX;
994
995 if (XEXP (src, 0) == dest)
996 other = XEXP (src, 1);
997 else if (XEXP (src, 1) == dest)
998 other = XEXP (src, 0);
999
1000 if (! other || find_base_value (other))
1001 new_reg_base_value[regno] = 0;
1002 break;
1003 }
1004 case AND:
1005 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1006 new_reg_base_value[regno] = 0;
1007 break;
1008 default:
1009 new_reg_base_value[regno] = 0;
1010 break;
1011 }
1012 /* If this is the first set of a register, record the value. */
1013 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1014 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1015 new_reg_base_value[regno] = find_base_value (src);
1016
1017 reg_seen[regno] = 1;
1018 }
1019
1020 /* Called from loop optimization when a new pseudo-register is
1021 created. It indicates that REGNO is being set to VAL. f INVARIANT
1022 is true then this value also describes an invariant relationship
1023 which can be used to deduce that two registers with unknown values
1024 are different. */
1025
1026 void
1027 record_base_value (unsigned int regno, rtx val, int invariant)
1028 {
1029 if (regno >= reg_base_value_size)
1030 return;
1031
1032 if (invariant && alias_invariant)
1033 alias_invariant[regno] = val;
1034
1035 if (GET_CODE (val) == REG)
1036 {
1037 if (REGNO (val) < reg_base_value_size)
1038 reg_base_value[regno] = reg_base_value[REGNO (val)];
1039
1040 return;
1041 }
1042
1043 reg_base_value[regno] = find_base_value (val);
1044 }
1045
1046 /* Clear alias info for a register. This is used if an RTL transformation
1047 changes the value of a register. This is used in flow by AUTO_INC_DEC
1048 optimizations. We don't need to clear reg_base_value, since flow only
1049 changes the offset. */
1050
1051 void
1052 clear_reg_alias_info (rtx reg)
1053 {
1054 unsigned int regno = REGNO (reg);
1055
1056 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1057 reg_known_value[regno] = reg;
1058 }
1059
1060 /* Returns a canonical version of X, from the point of view alias
1061 analysis. (For example, if X is a MEM whose address is a register,
1062 and the register has a known value (say a SYMBOL_REF), then a MEM
1063 whose address is the SYMBOL_REF is returned.) */
1064
1065 rtx
1066 canon_rtx (rtx x)
1067 {
1068 /* Recursively look for equivalences. */
1069 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1070 && REGNO (x) < reg_known_value_size)
1071 return reg_known_value[REGNO (x)] == x
1072 ? x : canon_rtx (reg_known_value[REGNO (x)]);
1073 else if (GET_CODE (x) == PLUS)
1074 {
1075 rtx x0 = canon_rtx (XEXP (x, 0));
1076 rtx x1 = canon_rtx (XEXP (x, 1));
1077
1078 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1079 {
1080 if (GET_CODE (x0) == CONST_INT)
1081 return plus_constant (x1, INTVAL (x0));
1082 else if (GET_CODE (x1) == CONST_INT)
1083 return plus_constant (x0, INTVAL (x1));
1084 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1085 }
1086 }
1087
1088 /* This gives us much better alias analysis when called from
1089 the loop optimizer. Note we want to leave the original
1090 MEM alone, but need to return the canonicalized MEM with
1091 all the flags with their original values. */
1092 else if (GET_CODE (x) == MEM)
1093 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1094
1095 return x;
1096 }
1097
1098 /* Return 1 if X and Y are identical-looking rtx's.
1099 Expect that X and Y has been already canonicalized.
1100
1101 We use the data in reg_known_value above to see if two registers with
1102 different numbers are, in fact, equivalent. */
1103
1104 static int
1105 rtx_equal_for_memref_p (rtx x, rtx y)
1106 {
1107 int i;
1108 int j;
1109 enum rtx_code code;
1110 const char *fmt;
1111
1112 if (x == 0 && y == 0)
1113 return 1;
1114 if (x == 0 || y == 0)
1115 return 0;
1116
1117 if (x == y)
1118 return 1;
1119
1120 code = GET_CODE (x);
1121 /* Rtx's of different codes cannot be equal. */
1122 if (code != GET_CODE (y))
1123 return 0;
1124
1125 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1126 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1127
1128 if (GET_MODE (x) != GET_MODE (y))
1129 return 0;
1130
1131 /* Some RTL can be compared without a recursive examination. */
1132 switch (code)
1133 {
1134 case VALUE:
1135 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1136
1137 case REG:
1138 return REGNO (x) == REGNO (y);
1139
1140 case LABEL_REF:
1141 return XEXP (x, 0) == XEXP (y, 0);
1142
1143 case SYMBOL_REF:
1144 return XSTR (x, 0) == XSTR (y, 0);
1145
1146 case CONST_INT:
1147 case CONST_DOUBLE:
1148 /* There's no need to compare the contents of CONST_DOUBLEs or
1149 CONST_INTs because pointer equality is a good enough
1150 comparison for these nodes. */
1151 return 0;
1152
1153 case ADDRESSOF:
1154 return (XINT (x, 1) == XINT (y, 1)
1155 && rtx_equal_for_memref_p (XEXP (x, 0),
1156 XEXP (y, 0)));
1157
1158 default:
1159 break;
1160 }
1161
1162 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1163 if (code == PLUS)
1164 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1165 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1166 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1167 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1168 /* For commutative operations, the RTX match if the operand match in any
1169 order. Also handle the simple binary and unary cases without a loop. */
1170 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1171 {
1172 rtx xop0 = canon_rtx (XEXP (x, 0));
1173 rtx yop0 = canon_rtx (XEXP (y, 0));
1174 rtx yop1 = canon_rtx (XEXP (y, 1));
1175
1176 return ((rtx_equal_for_memref_p (xop0, yop0)
1177 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1178 || (rtx_equal_for_memref_p (xop0, yop1)
1179 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1180 }
1181 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1182 {
1183 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1184 canon_rtx (XEXP (y, 0)))
1185 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1186 canon_rtx (XEXP (y, 1))));
1187 }
1188 else if (GET_RTX_CLASS (code) == '1')
1189 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1190 canon_rtx (XEXP (y, 0)));
1191
1192 /* Compare the elements. If any pair of corresponding elements
1193 fail to match, return 0 for the whole things.
1194
1195 Limit cases to types which actually appear in addresses. */
1196
1197 fmt = GET_RTX_FORMAT (code);
1198 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1199 {
1200 switch (fmt[i])
1201 {
1202 case 'i':
1203 if (XINT (x, i) != XINT (y, i))
1204 return 0;
1205 break;
1206
1207 case 'E':
1208 /* Two vectors must have the same length. */
1209 if (XVECLEN (x, i) != XVECLEN (y, i))
1210 return 0;
1211
1212 /* And the corresponding elements must match. */
1213 for (j = 0; j < XVECLEN (x, i); j++)
1214 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1215 canon_rtx (XVECEXP (y, i, j))) == 0)
1216 return 0;
1217 break;
1218
1219 case 'e':
1220 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1221 canon_rtx (XEXP (y, i))) == 0)
1222 return 0;
1223 break;
1224
1225 /* This can happen for asm operands. */
1226 case 's':
1227 if (strcmp (XSTR (x, i), XSTR (y, i)))
1228 return 0;
1229 break;
1230
1231 /* This can happen for an asm which clobbers memory. */
1232 case '0':
1233 break;
1234
1235 /* It is believed that rtx's at this level will never
1236 contain anything but integers and other rtx's,
1237 except for within LABEL_REFs and SYMBOL_REFs. */
1238 default:
1239 abort ();
1240 }
1241 }
1242 return 1;
1243 }
1244
1245 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1246 X and return it, or return 0 if none found. */
1247
1248 static rtx
1249 find_symbolic_term (rtx x)
1250 {
1251 int i;
1252 enum rtx_code code;
1253 const char *fmt;
1254
1255 code = GET_CODE (x);
1256 if (code == SYMBOL_REF || code == LABEL_REF)
1257 return x;
1258 if (GET_RTX_CLASS (code) == 'o')
1259 return 0;
1260
1261 fmt = GET_RTX_FORMAT (code);
1262 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1263 {
1264 rtx t;
1265
1266 if (fmt[i] == 'e')
1267 {
1268 t = find_symbolic_term (XEXP (x, i));
1269 if (t != 0)
1270 return t;
1271 }
1272 else if (fmt[i] == 'E')
1273 break;
1274 }
1275 return 0;
1276 }
1277
1278 rtx
1279 find_base_term (rtx x)
1280 {
1281 cselib_val *val;
1282 struct elt_loc_list *l;
1283
1284 #if defined (FIND_BASE_TERM)
1285 /* Try machine-dependent ways to find the base term. */
1286 x = FIND_BASE_TERM (x);
1287 #endif
1288
1289 switch (GET_CODE (x))
1290 {
1291 case REG:
1292 return REG_BASE_VALUE (x);
1293
1294 case TRUNCATE:
1295 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1296 return 0;
1297 /* Fall through. */
1298 case HIGH:
1299 case PRE_INC:
1300 case PRE_DEC:
1301 case POST_INC:
1302 case POST_DEC:
1303 case PRE_MODIFY:
1304 case POST_MODIFY:
1305 return find_base_term (XEXP (x, 0));
1306
1307 case ZERO_EXTEND:
1308 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1309 {
1310 rtx temp = find_base_term (XEXP (x, 0));
1311
1312 if (temp != 0 && CONSTANT_P (temp))
1313 temp = convert_memory_address (Pmode, temp);
1314
1315 return temp;
1316 }
1317
1318 case VALUE:
1319 val = CSELIB_VAL_PTR (x);
1320 for (l = val->locs; l; l = l->next)
1321 if ((x = find_base_term (l->loc)) != 0)
1322 return x;
1323 return 0;
1324
1325 case CONST:
1326 x = XEXP (x, 0);
1327 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1328 return 0;
1329 /* Fall through. */
1330 case LO_SUM:
1331 case PLUS:
1332 case MINUS:
1333 {
1334 rtx tmp1 = XEXP (x, 0);
1335 rtx tmp2 = XEXP (x, 1);
1336
1337 /* This is a little bit tricky since we have to determine which of
1338 the two operands represents the real base address. Otherwise this
1339 routine may return the index register instead of the base register.
1340
1341 That may cause us to believe no aliasing was possible, when in
1342 fact aliasing is possible.
1343
1344 We use a few simple tests to guess the base register. Additional
1345 tests can certainly be added. For example, if one of the operands
1346 is a shift or multiply, then it must be the index register and the
1347 other operand is the base register. */
1348
1349 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1350 return find_base_term (tmp2);
1351
1352 /* If either operand is known to be a pointer, then use it
1353 to determine the base term. */
1354 if (REG_P (tmp1) && REG_POINTER (tmp1))
1355 return find_base_term (tmp1);
1356
1357 if (REG_P (tmp2) && REG_POINTER (tmp2))
1358 return find_base_term (tmp2);
1359
1360 /* Neither operand was known to be a pointer. Go ahead and find the
1361 base term for both operands. */
1362 tmp1 = find_base_term (tmp1);
1363 tmp2 = find_base_term (tmp2);
1364
1365 /* If either base term is named object or a special address
1366 (like an argument or stack reference), then use it for the
1367 base term. */
1368 if (tmp1 != 0
1369 && (GET_CODE (tmp1) == SYMBOL_REF
1370 || GET_CODE (tmp1) == LABEL_REF
1371 || (GET_CODE (tmp1) == ADDRESS
1372 && GET_MODE (tmp1) != VOIDmode)))
1373 return tmp1;
1374
1375 if (tmp2 != 0
1376 && (GET_CODE (tmp2) == SYMBOL_REF
1377 || GET_CODE (tmp2) == LABEL_REF
1378 || (GET_CODE (tmp2) == ADDRESS
1379 && GET_MODE (tmp2) != VOIDmode)))
1380 return tmp2;
1381
1382 /* We could not determine which of the two operands was the
1383 base register and which was the index. So we can determine
1384 nothing from the base alias check. */
1385 return 0;
1386 }
1387
1388 case AND:
1389 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1390 return find_base_term (XEXP (x, 0));
1391 return 0;
1392
1393 case SYMBOL_REF:
1394 case LABEL_REF:
1395 return x;
1396
1397 case ADDRESSOF:
1398 return REG_BASE_VALUE (frame_pointer_rtx);
1399
1400 default:
1401 return 0;
1402 }
1403 }
1404
1405 /* Return 0 if the addresses X and Y are known to point to different
1406 objects, 1 if they might be pointers to the same object. */
1407
1408 static int
1409 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1410 enum machine_mode y_mode)
1411 {
1412 rtx x_base = find_base_term (x);
1413 rtx y_base = find_base_term (y);
1414
1415 /* If the address itself has no known base see if a known equivalent
1416 value has one. If either address still has no known base, nothing
1417 is known about aliasing. */
1418 if (x_base == 0)
1419 {
1420 rtx x_c;
1421
1422 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1423 return 1;
1424
1425 x_base = find_base_term (x_c);
1426 if (x_base == 0)
1427 return 1;
1428 }
1429
1430 if (y_base == 0)
1431 {
1432 rtx y_c;
1433 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1434 return 1;
1435
1436 y_base = find_base_term (y_c);
1437 if (y_base == 0)
1438 return 1;
1439 }
1440
1441 /* If the base addresses are equal nothing is known about aliasing. */
1442 if (rtx_equal_p (x_base, y_base))
1443 return 1;
1444
1445 /* The base addresses of the read and write are different expressions.
1446 If they are both symbols and they are not accessed via AND, there is
1447 no conflict. We can bring knowledge of object alignment into play
1448 here. For example, on alpha, "char a, b;" can alias one another,
1449 though "char a; long b;" cannot. */
1450 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1451 {
1452 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1453 return 1;
1454 if (GET_CODE (x) == AND
1455 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1456 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1457 return 1;
1458 if (GET_CODE (y) == AND
1459 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1460 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1461 return 1;
1462 /* Differing symbols never alias. */
1463 return 0;
1464 }
1465
1466 /* If one address is a stack reference there can be no alias:
1467 stack references using different base registers do not alias,
1468 a stack reference can not alias a parameter, and a stack reference
1469 can not alias a global. */
1470 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1471 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1472 return 0;
1473
1474 if (! flag_argument_noalias)
1475 return 1;
1476
1477 if (flag_argument_noalias > 1)
1478 return 0;
1479
1480 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1481 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1482 }
1483
1484 /* Convert the address X into something we can use. This is done by returning
1485 it unchanged unless it is a value; in the latter case we call cselib to get
1486 a more useful rtx. */
1487
1488 rtx
1489 get_addr (rtx x)
1490 {
1491 cselib_val *v;
1492 struct elt_loc_list *l;
1493
1494 if (GET_CODE (x) != VALUE)
1495 return x;
1496 v = CSELIB_VAL_PTR (x);
1497 for (l = v->locs; l; l = l->next)
1498 if (CONSTANT_P (l->loc))
1499 return l->loc;
1500 for (l = v->locs; l; l = l->next)
1501 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1502 return l->loc;
1503 if (v->locs)
1504 return v->locs->loc;
1505 return x;
1506 }
1507
1508 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1509 where SIZE is the size in bytes of the memory reference. If ADDR
1510 is not modified by the memory reference then ADDR is returned. */
1511
1512 rtx
1513 addr_side_effect_eval (rtx addr, int size, int n_refs)
1514 {
1515 int offset = 0;
1516
1517 switch (GET_CODE (addr))
1518 {
1519 case PRE_INC:
1520 offset = (n_refs + 1) * size;
1521 break;
1522 case PRE_DEC:
1523 offset = -(n_refs + 1) * size;
1524 break;
1525 case POST_INC:
1526 offset = n_refs * size;
1527 break;
1528 case POST_DEC:
1529 offset = -n_refs * size;
1530 break;
1531
1532 default:
1533 return addr;
1534 }
1535
1536 if (offset)
1537 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1538 GEN_INT (offset));
1539 else
1540 addr = XEXP (addr, 0);
1541 addr = canon_rtx (addr);
1542
1543 return addr;
1544 }
1545
1546 /* Return nonzero if X and Y (memory addresses) could reference the
1547 same location in memory. C is an offset accumulator. When
1548 C is nonzero, we are testing aliases between X and Y + C.
1549 XSIZE is the size in bytes of the X reference,
1550 similarly YSIZE is the size in bytes for Y.
1551 Expect that canon_rtx has been already called for X and Y.
1552
1553 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1554 referenced (the reference was BLKmode), so make the most pessimistic
1555 assumptions.
1556
1557 If XSIZE or YSIZE is negative, we may access memory outside the object
1558 being referenced as a side effect. This can happen when using AND to
1559 align memory references, as is done on the Alpha.
1560
1561 Nice to notice that varying addresses cannot conflict with fp if no
1562 local variables had their addresses taken, but that's too hard now. */
1563
1564 static int
1565 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1566 {
1567 if (GET_CODE (x) == VALUE)
1568 x = get_addr (x);
1569 if (GET_CODE (y) == VALUE)
1570 y = get_addr (y);
1571 if (GET_CODE (x) == HIGH)
1572 x = XEXP (x, 0);
1573 else if (GET_CODE (x) == LO_SUM)
1574 x = XEXP (x, 1);
1575 else
1576 x = addr_side_effect_eval (x, xsize, 0);
1577 if (GET_CODE (y) == HIGH)
1578 y = XEXP (y, 0);
1579 else if (GET_CODE (y) == LO_SUM)
1580 y = XEXP (y, 1);
1581 else
1582 y = addr_side_effect_eval (y, ysize, 0);
1583
1584 if (rtx_equal_for_memref_p (x, y))
1585 {
1586 if (xsize <= 0 || ysize <= 0)
1587 return 1;
1588 if (c >= 0 && xsize > c)
1589 return 1;
1590 if (c < 0 && ysize+c > 0)
1591 return 1;
1592 return 0;
1593 }
1594
1595 /* This code used to check for conflicts involving stack references and
1596 globals but the base address alias code now handles these cases. */
1597
1598 if (GET_CODE (x) == PLUS)
1599 {
1600 /* The fact that X is canonicalized means that this
1601 PLUS rtx is canonicalized. */
1602 rtx x0 = XEXP (x, 0);
1603 rtx x1 = XEXP (x, 1);
1604
1605 if (GET_CODE (y) == PLUS)
1606 {
1607 /* The fact that Y is canonicalized means that this
1608 PLUS rtx is canonicalized. */
1609 rtx y0 = XEXP (y, 0);
1610 rtx y1 = XEXP (y, 1);
1611
1612 if (rtx_equal_for_memref_p (x1, y1))
1613 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1614 if (rtx_equal_for_memref_p (x0, y0))
1615 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1616 if (GET_CODE (x1) == CONST_INT)
1617 {
1618 if (GET_CODE (y1) == CONST_INT)
1619 return memrefs_conflict_p (xsize, x0, ysize, y0,
1620 c - INTVAL (x1) + INTVAL (y1));
1621 else
1622 return memrefs_conflict_p (xsize, x0, ysize, y,
1623 c - INTVAL (x1));
1624 }
1625 else if (GET_CODE (y1) == CONST_INT)
1626 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1627
1628 return 1;
1629 }
1630 else if (GET_CODE (x1) == CONST_INT)
1631 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1632 }
1633 else if (GET_CODE (y) == PLUS)
1634 {
1635 /* The fact that Y is canonicalized means that this
1636 PLUS rtx is canonicalized. */
1637 rtx y0 = XEXP (y, 0);
1638 rtx y1 = XEXP (y, 1);
1639
1640 if (GET_CODE (y1) == CONST_INT)
1641 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1642 else
1643 return 1;
1644 }
1645
1646 if (GET_CODE (x) == GET_CODE (y))
1647 switch (GET_CODE (x))
1648 {
1649 case MULT:
1650 {
1651 /* Handle cases where we expect the second operands to be the
1652 same, and check only whether the first operand would conflict
1653 or not. */
1654 rtx x0, y0;
1655 rtx x1 = canon_rtx (XEXP (x, 1));
1656 rtx y1 = canon_rtx (XEXP (y, 1));
1657 if (! rtx_equal_for_memref_p (x1, y1))
1658 return 1;
1659 x0 = canon_rtx (XEXP (x, 0));
1660 y0 = canon_rtx (XEXP (y, 0));
1661 if (rtx_equal_for_memref_p (x0, y0))
1662 return (xsize == 0 || ysize == 0
1663 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1664
1665 /* Can't properly adjust our sizes. */
1666 if (GET_CODE (x1) != CONST_INT)
1667 return 1;
1668 xsize /= INTVAL (x1);
1669 ysize /= INTVAL (x1);
1670 c /= INTVAL (x1);
1671 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1672 }
1673
1674 case REG:
1675 /* Are these registers known not to be equal? */
1676 if (alias_invariant)
1677 {
1678 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1679 rtx i_x, i_y; /* invariant relationships of X and Y */
1680
1681 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1682 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1683
1684 if (i_x == 0 && i_y == 0)
1685 break;
1686
1687 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1688 ysize, i_y ? i_y : y, c))
1689 return 0;
1690 }
1691 break;
1692
1693 default:
1694 break;
1695 }
1696
1697 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1698 as an access with indeterminate size. Assume that references
1699 besides AND are aligned, so if the size of the other reference is
1700 at least as large as the alignment, assume no other overlap. */
1701 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1702 {
1703 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1704 xsize = -1;
1705 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1706 }
1707 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1708 {
1709 /* ??? If we are indexing far enough into the array/structure, we
1710 may yet be able to determine that we can not overlap. But we
1711 also need to that we are far enough from the end not to overlap
1712 a following reference, so we do nothing with that for now. */
1713 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1714 ysize = -1;
1715 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1716 }
1717
1718 if (GET_CODE (x) == ADDRESSOF)
1719 {
1720 if (y == frame_pointer_rtx
1721 || GET_CODE (y) == ADDRESSOF)
1722 return xsize <= 0 || ysize <= 0;
1723 }
1724 if (GET_CODE (y) == ADDRESSOF)
1725 {
1726 if (x == frame_pointer_rtx)
1727 return xsize <= 0 || ysize <= 0;
1728 }
1729
1730 if (CONSTANT_P (x))
1731 {
1732 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1733 {
1734 c += (INTVAL (y) - INTVAL (x));
1735 return (xsize <= 0 || ysize <= 0
1736 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1737 }
1738
1739 if (GET_CODE (x) == CONST)
1740 {
1741 if (GET_CODE (y) == CONST)
1742 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1743 ysize, canon_rtx (XEXP (y, 0)), c);
1744 else
1745 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1746 ysize, y, c);
1747 }
1748 if (GET_CODE (y) == CONST)
1749 return memrefs_conflict_p (xsize, x, ysize,
1750 canon_rtx (XEXP (y, 0)), c);
1751
1752 if (CONSTANT_P (y))
1753 return (xsize <= 0 || ysize <= 0
1754 || (rtx_equal_for_memref_p (x, y)
1755 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1756
1757 return 1;
1758 }
1759 return 1;
1760 }
1761
1762 /* Functions to compute memory dependencies.
1763
1764 Since we process the insns in execution order, we can build tables
1765 to keep track of what registers are fixed (and not aliased), what registers
1766 are varying in known ways, and what registers are varying in unknown
1767 ways.
1768
1769 If both memory references are volatile, then there must always be a
1770 dependence between the two references, since their order can not be
1771 changed. A volatile and non-volatile reference can be interchanged
1772 though.
1773
1774 A MEM_IN_STRUCT reference at a non-AND varying address can never
1775 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1776 also must allow AND addresses, because they may generate accesses
1777 outside the object being referenced. This is used to generate
1778 aligned addresses from unaligned addresses, for instance, the alpha
1779 storeqi_unaligned pattern. */
1780
1781 /* Read dependence: X is read after read in MEM takes place. There can
1782 only be a dependence here if both reads are volatile. */
1783
1784 int
1785 read_dependence (rtx mem, rtx x)
1786 {
1787 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1788 }
1789
1790 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1791 MEM2 is a reference to a structure at a varying address, or returns
1792 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1793 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1794 to decide whether or not an address may vary; it should return
1795 nonzero whenever variation is possible.
1796 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1797
1798 static rtx
1799 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1800 rtx mem2_addr,
1801 int (*varies_p) (rtx, int))
1802 {
1803 if (! flag_strict_aliasing)
1804 return NULL_RTX;
1805
1806 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1807 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1808 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1809 varying address. */
1810 return mem1;
1811
1812 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1813 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1814 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1815 varying address. */
1816 return mem2;
1817
1818 return NULL_RTX;
1819 }
1820
1821 /* Returns nonzero if something about the mode or address format MEM1
1822 indicates that it might well alias *anything*. */
1823
1824 static int
1825 aliases_everything_p (rtx mem)
1826 {
1827 if (GET_CODE (XEXP (mem, 0)) == AND)
1828 /* If the address is an AND, its very hard to know at what it is
1829 actually pointing. */
1830 return 1;
1831
1832 return 0;
1833 }
1834
1835 /* Return true if we can determine that the fields referenced cannot
1836 overlap for any pair of objects. */
1837
1838 static bool
1839 nonoverlapping_component_refs_p (tree x, tree y)
1840 {
1841 tree fieldx, fieldy, typex, typey, orig_y;
1842
1843 do
1844 {
1845 /* The comparison has to be done at a common type, since we don't
1846 know how the inheritance hierarchy works. */
1847 orig_y = y;
1848 do
1849 {
1850 fieldx = TREE_OPERAND (x, 1);
1851 typex = DECL_FIELD_CONTEXT (fieldx);
1852
1853 y = orig_y;
1854 do
1855 {
1856 fieldy = TREE_OPERAND (y, 1);
1857 typey = DECL_FIELD_CONTEXT (fieldy);
1858
1859 if (typex == typey)
1860 goto found;
1861
1862 y = TREE_OPERAND (y, 0);
1863 }
1864 while (y && TREE_CODE (y) == COMPONENT_REF);
1865
1866 x = TREE_OPERAND (x, 0);
1867 }
1868 while (x && TREE_CODE (x) == COMPONENT_REF);
1869
1870 /* Never found a common type. */
1871 return false;
1872
1873 found:
1874 /* If we're left with accessing different fields of a structure,
1875 then no overlap. */
1876 if (TREE_CODE (typex) == RECORD_TYPE
1877 && fieldx != fieldy)
1878 return true;
1879
1880 /* The comparison on the current field failed. If we're accessing
1881 a very nested structure, look at the next outer level. */
1882 x = TREE_OPERAND (x, 0);
1883 y = TREE_OPERAND (y, 0);
1884 }
1885 while (x && y
1886 && TREE_CODE (x) == COMPONENT_REF
1887 && TREE_CODE (y) == COMPONENT_REF);
1888
1889 return false;
1890 }
1891
1892 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1893
1894 static tree
1895 decl_for_component_ref (tree x)
1896 {
1897 do
1898 {
1899 x = TREE_OPERAND (x, 0);
1900 }
1901 while (x && TREE_CODE (x) == COMPONENT_REF);
1902
1903 return x && DECL_P (x) ? x : NULL_TREE;
1904 }
1905
1906 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1907 offset of the field reference. */
1908
1909 static rtx
1910 adjust_offset_for_component_ref (tree x, rtx offset)
1911 {
1912 HOST_WIDE_INT ioffset;
1913
1914 if (! offset)
1915 return NULL_RTX;
1916
1917 ioffset = INTVAL (offset);
1918 do
1919 {
1920 tree field = TREE_OPERAND (x, 1);
1921
1922 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1923 return NULL_RTX;
1924 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1925 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1926 / BITS_PER_UNIT));
1927
1928 x = TREE_OPERAND (x, 0);
1929 }
1930 while (x && TREE_CODE (x) == COMPONENT_REF);
1931
1932 return GEN_INT (ioffset);
1933 }
1934
1935 /* Return nonzero if we can determine the exprs corresponding to memrefs
1936 X and Y and they do not overlap. */
1937
1938 static int
1939 nonoverlapping_memrefs_p (rtx x, rtx y)
1940 {
1941 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1942 rtx rtlx, rtly;
1943 rtx basex, basey;
1944 rtx moffsetx, moffsety;
1945 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1946
1947 /* Unless both have exprs, we can't tell anything. */
1948 if (exprx == 0 || expry == 0)
1949 return 0;
1950
1951 /* If both are field references, we may be able to determine something. */
1952 if (TREE_CODE (exprx) == COMPONENT_REF
1953 && TREE_CODE (expry) == COMPONENT_REF
1954 && nonoverlapping_component_refs_p (exprx, expry))
1955 return 1;
1956
1957 /* If the field reference test failed, look at the DECLs involved. */
1958 moffsetx = MEM_OFFSET (x);
1959 if (TREE_CODE (exprx) == COMPONENT_REF)
1960 {
1961 tree t = decl_for_component_ref (exprx);
1962 if (! t)
1963 return 0;
1964 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1965 exprx = t;
1966 }
1967 else if (TREE_CODE (exprx) == INDIRECT_REF)
1968 {
1969 exprx = TREE_OPERAND (exprx, 0);
1970 if (flag_argument_noalias < 2
1971 || TREE_CODE (exprx) != PARM_DECL)
1972 return 0;
1973 }
1974
1975 moffsety = MEM_OFFSET (y);
1976 if (TREE_CODE (expry) == COMPONENT_REF)
1977 {
1978 tree t = decl_for_component_ref (expry);
1979 if (! t)
1980 return 0;
1981 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1982 expry = t;
1983 }
1984 else if (TREE_CODE (expry) == INDIRECT_REF)
1985 {
1986 expry = TREE_OPERAND (expry, 0);
1987 if (flag_argument_noalias < 2
1988 || TREE_CODE (expry) != PARM_DECL)
1989 return 0;
1990 }
1991
1992 if (! DECL_P (exprx) || ! DECL_P (expry))
1993 return 0;
1994
1995 rtlx = DECL_RTL (exprx);
1996 rtly = DECL_RTL (expry);
1997
1998 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1999 can't overlap unless they are the same because we never reuse that part
2000 of the stack frame used for locals for spilled pseudos. */
2001 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2002 && ! rtx_equal_p (rtlx, rtly))
2003 return 1;
2004
2005 /* Get the base and offsets of both decls. If either is a register, we
2006 know both are and are the same, so use that as the base. The only
2007 we can avoid overlap is if we can deduce that they are nonoverlapping
2008 pieces of that decl, which is very rare. */
2009 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2010 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2011 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2012
2013 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2014 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2015 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2016
2017 /* If the bases are different, we know they do not overlap if both
2018 are constants or if one is a constant and the other a pointer into the
2019 stack frame. Otherwise a different base means we can't tell if they
2020 overlap or not. */
2021 if (! rtx_equal_p (basex, basey))
2022 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2023 || (CONSTANT_P (basex) && REG_P (basey)
2024 && REGNO_PTR_FRAME_P (REGNO (basey)))
2025 || (CONSTANT_P (basey) && REG_P (basex)
2026 && REGNO_PTR_FRAME_P (REGNO (basex))));
2027
2028 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2029 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2030 : -1);
2031 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2032 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2033 -1);
2034
2035 /* If we have an offset for either memref, it can update the values computed
2036 above. */
2037 if (moffsetx)
2038 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2039 if (moffsety)
2040 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2041
2042 /* If a memref has both a size and an offset, we can use the smaller size.
2043 We can't do this if the offset isn't known because we must view this
2044 memref as being anywhere inside the DECL's MEM. */
2045 if (MEM_SIZE (x) && moffsetx)
2046 sizex = INTVAL (MEM_SIZE (x));
2047 if (MEM_SIZE (y) && moffsety)
2048 sizey = INTVAL (MEM_SIZE (y));
2049
2050 /* Put the values of the memref with the lower offset in X's values. */
2051 if (offsetx > offsety)
2052 {
2053 tem = offsetx, offsetx = offsety, offsety = tem;
2054 tem = sizex, sizex = sizey, sizey = tem;
2055 }
2056
2057 /* If we don't know the size of the lower-offset value, we can't tell
2058 if they conflict. Otherwise, we do the test. */
2059 return sizex >= 0 && offsety >= offsetx + sizex;
2060 }
2061
2062 /* True dependence: X is read after store in MEM takes place. */
2063
2064 int
2065 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2066 int (*varies) (rtx, int))
2067 {
2068 rtx x_addr, mem_addr;
2069 rtx base;
2070
2071 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2072 return 1;
2073
2074 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2075 This is used in epilogue deallocation functions. */
2076 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2077 return 1;
2078 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2079 return 1;
2080
2081 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2082 return 0;
2083
2084 /* Unchanging memory can't conflict with non-unchanging memory.
2085 A non-unchanging read can conflict with a non-unchanging write.
2086 An unchanging read can conflict with an unchanging write since
2087 there may be a single store to this address to initialize it.
2088 Note that an unchanging store can conflict with a non-unchanging read
2089 since we have to make conservative assumptions when we have a
2090 record with readonly fields and we are copying the whole thing.
2091 Just fall through to the code below to resolve potential conflicts.
2092 This won't handle all cases optimally, but the possible performance
2093 loss should be negligible. */
2094 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2095 return 0;
2096
2097 if (nonoverlapping_memrefs_p (mem, x))
2098 return 0;
2099
2100 if (mem_mode == VOIDmode)
2101 mem_mode = GET_MODE (mem);
2102
2103 x_addr = get_addr (XEXP (x, 0));
2104 mem_addr = get_addr (XEXP (mem, 0));
2105
2106 base = find_base_term (x_addr);
2107 if (base && (GET_CODE (base) == LABEL_REF
2108 || (GET_CODE (base) == SYMBOL_REF
2109 && CONSTANT_POOL_ADDRESS_P (base))))
2110 return 0;
2111
2112 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2113 return 0;
2114
2115 x_addr = canon_rtx (x_addr);
2116 mem_addr = canon_rtx (mem_addr);
2117
2118 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2119 SIZE_FOR_MODE (x), x_addr, 0))
2120 return 0;
2121
2122 if (aliases_everything_p (x))
2123 return 1;
2124
2125 /* We cannot use aliases_everything_p to test MEM, since we must look
2126 at MEM_MODE, rather than GET_MODE (MEM). */
2127 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2128 return 1;
2129
2130 /* In true_dependence we also allow BLKmode to alias anything. Why
2131 don't we do this in anti_dependence and output_dependence? */
2132 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2133 return 1;
2134
2135 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2136 varies);
2137 }
2138
2139 /* Canonical true dependence: X is read after store in MEM takes place.
2140 Variant of true_dependence which assumes MEM has already been
2141 canonicalized (hence we no longer do that here).
2142 The mem_addr argument has been added, since true_dependence computed
2143 this value prior to canonicalizing. */
2144
2145 int
2146 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2147 rtx x, int (*varies) (rtx, int))
2148 {
2149 rtx x_addr;
2150
2151 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2152 return 1;
2153
2154 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2155 This is used in epilogue deallocation functions. */
2156 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2157 return 1;
2158 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2159 return 1;
2160
2161 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2162 return 0;
2163
2164 /* If X is an unchanging read, then it can't possibly conflict with any
2165 non-unchanging store. It may conflict with an unchanging write though,
2166 because there may be a single store to this address to initialize it.
2167 Just fall through to the code below to resolve the case where we have
2168 both an unchanging read and an unchanging write. This won't handle all
2169 cases optimally, but the possible performance loss should be
2170 negligible. */
2171 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2172 return 0;
2173
2174 if (nonoverlapping_memrefs_p (x, mem))
2175 return 0;
2176
2177 x_addr = get_addr (XEXP (x, 0));
2178
2179 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2180 return 0;
2181
2182 x_addr = canon_rtx (x_addr);
2183 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2184 SIZE_FOR_MODE (x), x_addr, 0))
2185 return 0;
2186
2187 if (aliases_everything_p (x))
2188 return 1;
2189
2190 /* We cannot use aliases_everything_p to test MEM, since we must look
2191 at MEM_MODE, rather than GET_MODE (MEM). */
2192 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2193 return 1;
2194
2195 /* In true_dependence we also allow BLKmode to alias anything. Why
2196 don't we do this in anti_dependence and output_dependence? */
2197 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2198 return 1;
2199
2200 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2201 varies);
2202 }
2203
2204 /* Returns nonzero if a write to X might alias a previous read from
2205 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
2206 honor the RTX_UNCHANGING_P flags on X and MEM. */
2207
2208 static int
2209 write_dependence_p (rtx mem, rtx x, int writep, int constp)
2210 {
2211 rtx x_addr, mem_addr;
2212 rtx fixed_scalar;
2213 rtx base;
2214
2215 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2216 return 1;
2217
2218 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2219 This is used in epilogue deallocation functions. */
2220 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2221 return 1;
2222 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2223 return 1;
2224
2225 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2226 return 0;
2227
2228 if (constp)
2229 {
2230 /* Unchanging memory can't conflict with non-unchanging memory. */
2231 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2232 return 0;
2233
2234 /* If MEM is an unchanging read, then it can't possibly conflict with
2235 the store to X, because there is at most one store to MEM, and it
2236 must have occurred somewhere before MEM. */
2237 if (! writep && RTX_UNCHANGING_P (mem))
2238 return 0;
2239 }
2240
2241 if (nonoverlapping_memrefs_p (x, mem))
2242 return 0;
2243
2244 x_addr = get_addr (XEXP (x, 0));
2245 mem_addr = get_addr (XEXP (mem, 0));
2246
2247 if (! writep)
2248 {
2249 base = find_base_term (mem_addr);
2250 if (base && (GET_CODE (base) == LABEL_REF
2251 || (GET_CODE (base) == SYMBOL_REF
2252 && CONSTANT_POOL_ADDRESS_P (base))))
2253 return 0;
2254 }
2255
2256 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2257 GET_MODE (mem)))
2258 return 0;
2259
2260 x_addr = canon_rtx (x_addr);
2261 mem_addr = canon_rtx (mem_addr);
2262
2263 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2264 SIZE_FOR_MODE (x), x_addr, 0))
2265 return 0;
2266
2267 fixed_scalar
2268 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2269 rtx_addr_varies_p);
2270
2271 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2272 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2273 }
2274
2275 /* Anti dependence: X is written after read in MEM takes place. */
2276
2277 int
2278 anti_dependence (rtx mem, rtx x)
2279 {
2280 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
2281 }
2282
2283 /* Output dependence: X is written after store in MEM takes place. */
2284
2285 int
2286 output_dependence (rtx mem, rtx x)
2287 {
2288 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2289 }
2290
2291 /* Unchanging anti dependence: Like anti_dependence but ignores
2292 the UNCHANGING_RTX_P property on const variable references. */
2293
2294 int
2295 unchanging_anti_dependence (rtx mem, rtx x)
2296 {
2297 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
2298 }
2299 \f
2300 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2301 something which is not local to the function and is not constant. */
2302
2303 static int
2304 nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2305 {
2306 rtx x = *loc;
2307 rtx base;
2308 int regno;
2309
2310 if (! x)
2311 return 0;
2312
2313 switch (GET_CODE (x))
2314 {
2315 case SUBREG:
2316 if (GET_CODE (SUBREG_REG (x)) == REG)
2317 {
2318 /* Global registers are not local. */
2319 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2320 && global_regs[subreg_regno (x)])
2321 return 1;
2322 return 0;
2323 }
2324 break;
2325
2326 case REG:
2327 regno = REGNO (x);
2328 /* Global registers are not local. */
2329 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2330 return 1;
2331 return 0;
2332
2333 case SCRATCH:
2334 case PC:
2335 case CC0:
2336 case CONST_INT:
2337 case CONST_DOUBLE:
2338 case CONST_VECTOR:
2339 case CONST:
2340 case LABEL_REF:
2341 return 0;
2342
2343 case SYMBOL_REF:
2344 /* Constants in the function's constants pool are constant. */
2345 if (CONSTANT_POOL_ADDRESS_P (x))
2346 return 0;
2347 return 1;
2348
2349 case CALL:
2350 /* Non-constant calls and recursion are not local. */
2351 return 1;
2352
2353 case MEM:
2354 /* Be overly conservative and consider any volatile memory
2355 reference as not local. */
2356 if (MEM_VOLATILE_P (x))
2357 return 1;
2358 base = find_base_term (XEXP (x, 0));
2359 if (base)
2360 {
2361 /* A Pmode ADDRESS could be a reference via the structure value
2362 address or static chain. Such memory references are nonlocal.
2363
2364 Thus, we have to examine the contents of the ADDRESS to find
2365 out if this is a local reference or not. */
2366 if (GET_CODE (base) == ADDRESS
2367 && GET_MODE (base) == Pmode
2368 && (XEXP (base, 0) == stack_pointer_rtx
2369 || XEXP (base, 0) == arg_pointer_rtx
2370 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2371 || XEXP (base, 0) == hard_frame_pointer_rtx
2372 #endif
2373 || XEXP (base, 0) == frame_pointer_rtx))
2374 return 0;
2375 /* Constants in the function's constant pool are constant. */
2376 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2377 return 0;
2378 }
2379 return 1;
2380
2381 case UNSPEC_VOLATILE:
2382 case ASM_INPUT:
2383 return 1;
2384
2385 case ASM_OPERANDS:
2386 if (MEM_VOLATILE_P (x))
2387 return 1;
2388
2389 /* FALLTHROUGH */
2390
2391 default:
2392 break;
2393 }
2394
2395 return 0;
2396 }
2397
2398 /* Returns nonzero if X might mention something which is not
2399 local to the function and is not constant. */
2400
2401 static int
2402 nonlocal_mentioned_p (rtx x)
2403 {
2404 if (INSN_P (x))
2405 {
2406 if (GET_CODE (x) == CALL_INSN)
2407 {
2408 if (! CONST_OR_PURE_CALL_P (x))
2409 return 1;
2410 x = CALL_INSN_FUNCTION_USAGE (x);
2411 if (x == 0)
2412 return 0;
2413 }
2414 else
2415 x = PATTERN (x);
2416 }
2417
2418 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2419 }
2420
2421 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2422 something which is not local to the function and is not constant. */
2423
2424 static int
2425 nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2426 {
2427 rtx x = *loc;
2428
2429 if (! x)
2430 return 0;
2431
2432 switch (GET_CODE (x))
2433 {
2434 case MEM:
2435 case REG:
2436 case SYMBOL_REF:
2437 case SUBREG:
2438 return nonlocal_mentioned_p (x);
2439
2440 case CALL:
2441 /* Non-constant calls and recursion are not local. */
2442 return 1;
2443
2444 case SET:
2445 if (nonlocal_mentioned_p (SET_SRC (x)))
2446 return 1;
2447
2448 if (GET_CODE (SET_DEST (x)) == MEM)
2449 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2450
2451 /* If the destination is anything other than a CC0, PC,
2452 MEM, REG, or a SUBREG of a REG that occupies all of
2453 the REG, then X references nonlocal memory if it is
2454 mentioned in the destination. */
2455 if (GET_CODE (SET_DEST (x)) != CC0
2456 && GET_CODE (SET_DEST (x)) != PC
2457 && GET_CODE (SET_DEST (x)) != REG
2458 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2459 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2460 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2461 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2462 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2463 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2464 return nonlocal_mentioned_p (SET_DEST (x));
2465 return 0;
2466
2467 case CLOBBER:
2468 if (GET_CODE (XEXP (x, 0)) == MEM)
2469 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2470 return 0;
2471
2472 case USE:
2473 return nonlocal_mentioned_p (XEXP (x, 0));
2474
2475 case ASM_INPUT:
2476 case UNSPEC_VOLATILE:
2477 return 1;
2478
2479 case ASM_OPERANDS:
2480 if (MEM_VOLATILE_P (x))
2481 return 1;
2482
2483 /* FALLTHROUGH */
2484
2485 default:
2486 break;
2487 }
2488
2489 return 0;
2490 }
2491
2492 /* Returns nonzero if X might reference something which is not
2493 local to the function and is not constant. */
2494
2495 static int
2496 nonlocal_referenced_p (rtx x)
2497 {
2498 if (INSN_P (x))
2499 {
2500 if (GET_CODE (x) == CALL_INSN)
2501 {
2502 if (! CONST_OR_PURE_CALL_P (x))
2503 return 1;
2504 x = CALL_INSN_FUNCTION_USAGE (x);
2505 if (x == 0)
2506 return 0;
2507 }
2508 else
2509 x = PATTERN (x);
2510 }
2511
2512 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2513 }
2514
2515 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2516 something which is not local to the function and is not constant. */
2517
2518 static int
2519 nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2520 {
2521 rtx x = *loc;
2522
2523 if (! x)
2524 return 0;
2525
2526 switch (GET_CODE (x))
2527 {
2528 case CALL:
2529 /* Non-constant calls and recursion are not local. */
2530 return 1;
2531
2532 case PRE_INC:
2533 case PRE_DEC:
2534 case POST_INC:
2535 case POST_DEC:
2536 case PRE_MODIFY:
2537 case POST_MODIFY:
2538 return nonlocal_mentioned_p (XEXP (x, 0));
2539
2540 case SET:
2541 if (nonlocal_mentioned_p (SET_DEST (x)))
2542 return 1;
2543 return nonlocal_set_p (SET_SRC (x));
2544
2545 case CLOBBER:
2546 return nonlocal_mentioned_p (XEXP (x, 0));
2547
2548 case USE:
2549 return 0;
2550
2551 case ASM_INPUT:
2552 case UNSPEC_VOLATILE:
2553 return 1;
2554
2555 case ASM_OPERANDS:
2556 if (MEM_VOLATILE_P (x))
2557 return 1;
2558
2559 /* FALLTHROUGH */
2560
2561 default:
2562 break;
2563 }
2564
2565 return 0;
2566 }
2567
2568 /* Returns nonzero if X might set something which is not
2569 local to the function and is not constant. */
2570
2571 static int
2572 nonlocal_set_p (rtx x)
2573 {
2574 if (INSN_P (x))
2575 {
2576 if (GET_CODE (x) == CALL_INSN)
2577 {
2578 if (! CONST_OR_PURE_CALL_P (x))
2579 return 1;
2580 x = CALL_INSN_FUNCTION_USAGE (x);
2581 if (x == 0)
2582 return 0;
2583 }
2584 else
2585 x = PATTERN (x);
2586 }
2587
2588 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2589 }
2590
2591 /* Mark the function if it is pure or constant. */
2592
2593 void
2594 mark_constant_function (void)
2595 {
2596 rtx insn;
2597 int nonlocal_memory_referenced;
2598
2599 if (TREE_READONLY (current_function_decl)
2600 || DECL_IS_PURE (current_function_decl)
2601 || TREE_THIS_VOLATILE (current_function_decl)
2602 || current_function_has_nonlocal_goto
2603 || !(*targetm.binds_local_p) (current_function_decl))
2604 return;
2605
2606 /* A loop might not return which counts as a side effect. */
2607 if (mark_dfs_back_edges ())
2608 return;
2609
2610 nonlocal_memory_referenced = 0;
2611
2612 init_alias_analysis ();
2613
2614 /* Determine if this is a constant or pure function. */
2615
2616 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2617 {
2618 if (! INSN_P (insn))
2619 continue;
2620
2621 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2622 || volatile_refs_p (PATTERN (insn)))
2623 break;
2624
2625 if (! nonlocal_memory_referenced)
2626 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2627 }
2628
2629 end_alias_analysis ();
2630
2631 /* Mark the function. */
2632
2633 if (insn)
2634 ;
2635 else if (nonlocal_memory_referenced)
2636 {
2637 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2638 DECL_IS_PURE (current_function_decl) = 1;
2639 }
2640 else
2641 {
2642 cgraph_rtl_info (current_function_decl)->const_function = 1;
2643 TREE_READONLY (current_function_decl) = 1;
2644 }
2645 }
2646 \f
2647
2648 void
2649 init_alias_once (void)
2650 {
2651 int i;
2652
2653 #ifndef OUTGOING_REGNO
2654 #define OUTGOING_REGNO(N) N
2655 #endif
2656 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2657 /* Check whether this register can hold an incoming pointer
2658 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2659 numbers, so translate if necessary due to register windows. */
2660 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2661 && HARD_REGNO_MODE_OK (i, Pmode))
2662 static_reg_base_value[i]
2663 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2664
2665 static_reg_base_value[STACK_POINTER_REGNUM]
2666 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2667 static_reg_base_value[ARG_POINTER_REGNUM]
2668 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2669 static_reg_base_value[FRAME_POINTER_REGNUM]
2670 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2671 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2672 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2673 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2674 #endif
2675
2676 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
2677 }
2678
2679 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2680 to be memory reference. */
2681 static bool memory_modified;
2682 static void
2683 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2684 {
2685 if (GET_CODE (x) == MEM)
2686 {
2687 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2688 memory_modified = true;
2689 }
2690 }
2691
2692
2693 /* Return true when INSN possibly modify memory contents of MEM
2694 (ie address can be modified). */
2695 bool
2696 memory_modified_in_insn_p (rtx mem, rtx insn)
2697 {
2698 if (!INSN_P (insn))
2699 return false;
2700 memory_modified = false;
2701 note_stores (PATTERN (insn), memory_modified_1, mem);
2702 return memory_modified;
2703 }
2704
2705 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2706 array. */
2707
2708 void
2709 init_alias_analysis (void)
2710 {
2711 int maxreg = max_reg_num ();
2712 int changed, pass;
2713 int i;
2714 unsigned int ui;
2715 rtx insn;
2716
2717 timevar_push (TV_ALIAS_ANALYSIS);
2718
2719 reg_known_value_size = maxreg;
2720
2721 reg_known_value
2722 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2723 - FIRST_PSEUDO_REGISTER;
2724 reg_known_equiv_p
2725 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2726 - FIRST_PSEUDO_REGISTER;
2727
2728 /* Overallocate reg_base_value to allow some growth during loop
2729 optimization. Loop unrolling can create a large number of
2730 registers. */
2731 reg_base_value_size = maxreg * 2;
2732 reg_base_value = ggc_alloc_cleared (reg_base_value_size * sizeof (rtx));
2733
2734 new_reg_base_value = xmalloc (reg_base_value_size * sizeof (rtx));
2735 reg_seen = xmalloc (reg_base_value_size);
2736 if (! reload_completed && flag_old_unroll_loops)
2737 {
2738 /* ??? Why are we realloc'ing if we're just going to zero it? */
2739 alias_invariant = xrealloc (alias_invariant,
2740 reg_base_value_size * sizeof (rtx));
2741 memset (alias_invariant, 0, reg_base_value_size * sizeof (rtx));
2742 }
2743
2744 /* The basic idea is that each pass through this loop will use the
2745 "constant" information from the previous pass to propagate alias
2746 information through another level of assignments.
2747
2748 This could get expensive if the assignment chains are long. Maybe
2749 we should throttle the number of iterations, possibly based on
2750 the optimization level or flag_expensive_optimizations.
2751
2752 We could propagate more information in the first pass by making use
2753 of REG_N_SETS to determine immediately that the alias information
2754 for a pseudo is "constant".
2755
2756 A program with an uninitialized variable can cause an infinite loop
2757 here. Instead of doing a full dataflow analysis to detect such problems
2758 we just cap the number of iterations for the loop.
2759
2760 The state of the arrays for the set chain in question does not matter
2761 since the program has undefined behavior. */
2762
2763 pass = 0;
2764 do
2765 {
2766 /* Assume nothing will change this iteration of the loop. */
2767 changed = 0;
2768
2769 /* We want to assign the same IDs each iteration of this loop, so
2770 start counting from zero each iteration of the loop. */
2771 unique_id = 0;
2772
2773 /* We're at the start of the function each iteration through the
2774 loop, so we're copying arguments. */
2775 copying_arguments = true;
2776
2777 /* Wipe the potential alias information clean for this pass. */
2778 memset (new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
2779
2780 /* Wipe the reg_seen array clean. */
2781 memset (reg_seen, 0, reg_base_value_size);
2782
2783 /* Mark all hard registers which may contain an address.
2784 The stack, frame and argument pointers may contain an address.
2785 An argument register which can hold a Pmode value may contain
2786 an address even if it is not in BASE_REGS.
2787
2788 The address expression is VOIDmode for an argument and
2789 Pmode for other registers. */
2790
2791 memcpy (new_reg_base_value, static_reg_base_value,
2792 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2793
2794 /* Walk the insns adding values to the new_reg_base_value array. */
2795 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2796 {
2797 if (INSN_P (insn))
2798 {
2799 rtx note, set;
2800
2801 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2802 /* The prologue/epilogue insns are not threaded onto the
2803 insn chain until after reload has completed. Thus,
2804 there is no sense wasting time checking if INSN is in
2805 the prologue/epilogue until after reload has completed. */
2806 if (reload_completed
2807 && prologue_epilogue_contains (insn))
2808 continue;
2809 #endif
2810
2811 /* If this insn has a noalias note, process it, Otherwise,
2812 scan for sets. A simple set will have no side effects
2813 which could change the base value of any other register. */
2814
2815 if (GET_CODE (PATTERN (insn)) == SET
2816 && REG_NOTES (insn) != 0
2817 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2818 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2819 else
2820 note_stores (PATTERN (insn), record_set, NULL);
2821
2822 set = single_set (insn);
2823
2824 if (set != 0
2825 && GET_CODE (SET_DEST (set)) == REG
2826 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2827 {
2828 unsigned int regno = REGNO (SET_DEST (set));
2829 rtx src = SET_SRC (set);
2830
2831 if (REG_NOTES (insn) != 0
2832 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2833 && REG_N_SETS (regno) == 1)
2834 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2835 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2836 && ! rtx_varies_p (XEXP (note, 0), 1)
2837 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2838 {
2839 reg_known_value[regno] = XEXP (note, 0);
2840 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2841 }
2842 else if (REG_N_SETS (regno) == 1
2843 && GET_CODE (src) == PLUS
2844 && GET_CODE (XEXP (src, 0)) == REG
2845 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2846 && (reg_known_value[REGNO (XEXP (src, 0))])
2847 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2848 {
2849 rtx op0 = XEXP (src, 0);
2850 op0 = reg_known_value[REGNO (op0)];
2851 reg_known_value[regno]
2852 = plus_constant (op0, INTVAL (XEXP (src, 1)));
2853 reg_known_equiv_p[regno] = 0;
2854 }
2855 else if (REG_N_SETS (regno) == 1
2856 && ! rtx_varies_p (src, 1))
2857 {
2858 reg_known_value[regno] = src;
2859 reg_known_equiv_p[regno] = 0;
2860 }
2861 }
2862 }
2863 else if (GET_CODE (insn) == NOTE
2864 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2865 copying_arguments = false;
2866 }
2867
2868 /* Now propagate values from new_reg_base_value to reg_base_value. */
2869 for (ui = 0; ui < reg_base_value_size; ui++)
2870 {
2871 if (new_reg_base_value[ui]
2872 && new_reg_base_value[ui] != reg_base_value[ui]
2873 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2874 {
2875 reg_base_value[ui] = new_reg_base_value[ui];
2876 changed = 1;
2877 }
2878 }
2879 }
2880 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2881
2882 /* Fill in the remaining entries. */
2883 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2884 if (reg_known_value[i] == 0)
2885 reg_known_value[i] = regno_reg_rtx[i];
2886
2887 /* Simplify the reg_base_value array so that no register refers to
2888 another register, except to special registers indirectly through
2889 ADDRESS expressions.
2890
2891 In theory this loop can take as long as O(registers^2), but unless
2892 there are very long dependency chains it will run in close to linear
2893 time.
2894
2895 This loop may not be needed any longer now that the main loop does
2896 a better job at propagating alias information. */
2897 pass = 0;
2898 do
2899 {
2900 changed = 0;
2901 pass++;
2902 for (ui = 0; ui < reg_base_value_size; ui++)
2903 {
2904 rtx base = reg_base_value[ui];
2905 if (base && GET_CODE (base) == REG)
2906 {
2907 unsigned int base_regno = REGNO (base);
2908 if (base_regno == ui) /* register set from itself */
2909 reg_base_value[ui] = 0;
2910 else
2911 reg_base_value[ui] = reg_base_value[base_regno];
2912 changed = 1;
2913 }
2914 }
2915 }
2916 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2917
2918 /* Clean up. */
2919 free (new_reg_base_value);
2920 new_reg_base_value = 0;
2921 free (reg_seen);
2922 reg_seen = 0;
2923 timevar_pop (TV_ALIAS_ANALYSIS);
2924 }
2925
2926 void
2927 end_alias_analysis (void)
2928 {
2929 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2930 reg_known_value = 0;
2931 reg_known_value_size = 0;
2932 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2933 reg_known_equiv_p = 0;
2934 reg_base_value = 0;
2935 reg_base_value_size = 0;
2936 if (alias_invariant)
2937 {
2938 free (alias_invariant);
2939 alias_invariant = 0;
2940 }
2941 }
2942
2943 #include "gt-alias.h"