inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
48 #include "df.h"
49 #include "tree-ssa-alias.h"
50 #include "pointer-set.h"
51 #include "tree-flow.h"
52
53 /* The aliasing API provided here solves related but different problems:
54
55 Say there exists (in c)
56
57 struct X {
58 struct Y y1;
59 struct Z z2;
60 } x1, *px1, *px2;
61
62 struct Y y2, *py;
63 struct Z z2, *pz;
64
65
66 py = &px1.y1;
67 px2 = &x1;
68
69 Consider the four questions:
70
71 Can a store to x1 interfere with px2->y1?
72 Can a store to x1 interfere with px2->z2?
73 (*px2).z2
74 Can a store to x1 change the value pointed to by with py?
75 Can a store to x1 change the value pointed to by with pz?
76
77 The answer to these questions can be yes, yes, yes, and maybe.
78
79 The first two questions can be answered with a simple examination
80 of the type system. If structure X contains a field of type Y then
81 a store thru a pointer to an X can overwrite any field that is
82 contained (recursively) in an X (unless we know that px1 != px2).
83
84 The last two of the questions can be solved in the same way as the
85 first two questions but this is too conservative. The observation
86 is that in some cases analysis we can know if which (if any) fields
87 are addressed and if those addresses are used in bad ways. This
88 analysis may be language specific. In C, arbitrary operations may
89 be applied to pointers. However, there is some indication that
90 this may be too conservative for some C++ types.
91
92 The pass ipa-type-escape does this analysis for the types whose
93 instances do not escape across the compilation boundary.
94
95 Historically in GCC, these two problems were combined and a single
96 data structure was used to represent the solution to these
97 problems. We now have two similar but different data structures,
98 The data structure to solve the last two question is similar to the
99 first, but does not contain have the fields in it whose address are
100 never taken. For types that do escape the compilation unit, the
101 data structures will have identical information.
102 */
103
104 /* The alias sets assigned to MEMs assist the back-end in determining
105 which MEMs can alias which other MEMs. In general, two MEMs in
106 different alias sets cannot alias each other, with one important
107 exception. Consider something like:
108
109 struct S { int i; double d; };
110
111 a store to an `S' can alias something of either type `int' or type
112 `double'. (However, a store to an `int' cannot alias a `double'
113 and vice versa.) We indicate this via a tree structure that looks
114 like:
115 struct S
116 / \
117 / \
118 |/_ _\|
119 int double
120
121 (The arrows are directed and point downwards.)
122 In this situation we say the alias set for `struct S' is the
123 `superset' and that those for `int' and `double' are `subsets'.
124
125 To see whether two alias sets can point to the same memory, we must
126 see if either alias set is a subset of the other. We need not trace
127 past immediate descendants, however, since we propagate all
128 grandchildren up one level.
129
130 Alias set zero is implicitly a superset of all other alias sets.
131 However, this is no actual entry for alias set zero. It is an
132 error to attempt to explicitly construct a subset of zero. */
133
134 struct GTY(()) alias_set_entry_d {
135 /* The alias set number, as stored in MEM_ALIAS_SET. */
136 alias_set_type alias_set;
137
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 int has_zero_child;
141
142 /* The children of the alias set. These are not just the immediate
143 children, but, in fact, all descendants. So, if we have:
144
145 struct T { struct S s; float f; }
146
147 continuing our example above, the children here will be all of
148 `int', `double', `float', and `struct S'. */
149 splay_tree GTY((param1_is (int), param2_is (int))) children;
150 };
151 typedef struct alias_set_entry_d *alias_set_entry;
152
153 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
154 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
155 static void record_set (rtx, const_rtx, void *);
156 static int base_alias_check (rtx, rtx, enum machine_mode,
157 enum machine_mode);
158 static rtx find_base_value (rtx);
159 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
160 static int insert_subset_children (splay_tree_node, void*);
161 static alias_set_entry get_alias_set_entry (alias_set_type);
162 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
163 bool (*) (const_rtx, bool));
164 static int aliases_everything_p (const_rtx);
165 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int write_dependence_p (const_rtx, const_rtx, int);
169
170 static void memory_modified_1 (rtx, const_rtx, void *);
171
172 /* Set up all info needed to perform alias analysis on memory references. */
173
174 /* Returns the size in bytes of the mode of X. */
175 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
176
177 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
180 not legal ANSI C. */
181 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
183
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains. 10 is a completely arbitrary choice. */
186 #define MAX_ALIAS_LOOP_PASSES 10
187
188 /* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
192 of the first set.
193
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
196 the stack, frame, and argument pointers.
197
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
202
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
206
207 static GTY(()) VEC(rtx,gc) *reg_base_value;
208 static rtx *new_reg_base_value;
209
210 /* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
212 array. */
213 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
214
215 /* Static hunks of RTL used by the aliasing code; these are initialized
216 once per function to avoid unnecessary RTL allocations. */
217 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
218
219 #define REG_BASE_VALUE(X) \
220 (REGNO (X) < VEC_length (rtx, reg_base_value) \
221 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
222
223 /* Vector indexed by N giving the initial (unchanging) value known for
224 pseudo-register N. This array is initialized in init_alias_analysis,
225 and does not change until end_alias_analysis is called. */
226 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
227
228 /* Indicates number of valid entries in reg_known_value. */
229 static GTY(()) unsigned int reg_known_value_size;
230
231 /* Vector recording for each reg_known_value whether it is due to a
232 REG_EQUIV note. Future passes (viz., reload) may replace the
233 pseudo with the equivalent expression and so we account for the
234 dependences that would be introduced if that happens.
235
236 The REG_EQUIV notes created in assign_parms may mention the arg
237 pointer, and there are explicit insns in the RTL that modify the
238 arg pointer. Thus we must ensure that such insns don't get
239 scheduled across each other because that would invalidate the
240 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
241 wrong, but solving the problem in the scheduler will likely give
242 better code, so we do it here. */
243 static bool *reg_known_equiv_p;
244
245 /* True when scanning insns from the start of the rtl to the
246 NOTE_INSN_FUNCTION_BEG note. */
247 static bool copying_arguments;
248
249 DEF_VEC_P(alias_set_entry);
250 DEF_VEC_ALLOC_P(alias_set_entry,gc);
251
252 /* The splay-tree used to store the various alias set entries. */
253 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
254 \f
255 /* Build a decomposed reference object for querying the alias-oracle
256 from the MEM rtx and store it in *REF.
257 Returns false if MEM is not suitable for the alias-oracle. */
258
259 static bool
260 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
261 {
262 tree expr = MEM_EXPR (mem);
263 tree base;
264
265 if (!expr)
266 return false;
267
268 ao_ref_init (ref, expr);
269
270 /* Get the base of the reference and see if we have to reject or
271 adjust it. */
272 base = ao_ref_base (ref);
273 if (base == NULL_TREE)
274 return false;
275
276 /* If this is a pointer dereference of a non-SSA_NAME punt.
277 ??? We could replace it with a pointer to anything. */
278 if (INDIRECT_REF_P (base)
279 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
280 return false;
281
282 /* The tree oracle doesn't like to have these. */
283 if (TREE_CODE (base) == FUNCTION_DECL
284 || TREE_CODE (base) == LABEL_DECL)
285 return false;
286
287 /* If this is a reference based on a partitioned decl replace the
288 base with an INDIRECT_REF of the pointer representative we
289 created during stack slot partitioning. */
290 if (TREE_CODE (base) == VAR_DECL
291 && ! TREE_STATIC (base)
292 && cfun->gimple_df->decls_to_pointers != NULL)
293 {
294 void *namep;
295 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
296 if (namep)
297 {
298 ref->base_alias_set = get_alias_set (base);
299 ref->base = build1 (INDIRECT_REF, TREE_TYPE (base), *(tree *)namep);
300 }
301 }
302
303 ref->ref_alias_set = MEM_ALIAS_SET (mem);
304
305 /* For NULL MEM_OFFSET the MEM_EXPR may have been stripped arbitrarily
306 without recording offset or extent adjustments properly. */
307 if (MEM_OFFSET (mem) == NULL_RTX)
308 {
309 ref->offset = 0;
310 ref->max_size = -1;
311 }
312 else
313 {
314 ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
315 }
316
317 /* NULL MEM_SIZE should not really happen with a non-NULL MEM_EXPR,
318 but just play safe here. The size may have been adjusted together
319 with the offset, so we need to take it if it is set and not rely
320 on MEM_EXPR here (which has the size determining parts potentially
321 stripped anyway). We lose precision for max_size which is only
322 available from the remaining MEM_EXPR. */
323 if (MEM_SIZE (mem) == NULL_RTX)
324 {
325 ref->size = -1;
326 ref->max_size = -1;
327 }
328 else
329 {
330 ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
331 }
332
333 return true;
334 }
335
336 /* Query the alias-oracle on whether the two memory rtx X and MEM may
337 alias. If TBAA_P is set also apply TBAA. Returns true if the
338 two rtxen may alias, false otherwise. */
339
340 static bool
341 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
342 {
343 ao_ref ref1, ref2;
344
345 if (!ao_ref_from_mem (&ref1, x)
346 || !ao_ref_from_mem (&ref2, mem))
347 return true;
348
349 return refs_may_alias_p_1 (&ref1, &ref2, tbaa_p);
350 }
351
352 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
353 such an entry, or NULL otherwise. */
354
355 static inline alias_set_entry
356 get_alias_set_entry (alias_set_type alias_set)
357 {
358 return VEC_index (alias_set_entry, alias_sets, alias_set);
359 }
360
361 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
362 the two MEMs cannot alias each other. */
363
364 static inline int
365 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
366 {
367 /* Perform a basic sanity check. Namely, that there are no alias sets
368 if we're not using strict aliasing. This helps to catch bugs
369 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
370 where a MEM is allocated in some way other than by the use of
371 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
372 use alias sets to indicate that spilled registers cannot alias each
373 other, we might need to remove this check. */
374 gcc_assert (flag_strict_aliasing
375 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
376
377 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
378 }
379
380 /* Insert the NODE into the splay tree given by DATA. Used by
381 record_alias_subset via splay_tree_foreach. */
382
383 static int
384 insert_subset_children (splay_tree_node node, void *data)
385 {
386 splay_tree_insert ((splay_tree) data, node->key, node->value);
387
388 return 0;
389 }
390
391 /* Return true if the first alias set is a subset of the second. */
392
393 bool
394 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
395 {
396 alias_set_entry ase;
397
398 /* Everything is a subset of the "aliases everything" set. */
399 if (set2 == 0)
400 return true;
401
402 /* Otherwise, check if set1 is a subset of set2. */
403 ase = get_alias_set_entry (set2);
404 if (ase != 0
405 && ((ase->has_zero_child && set1 == 0)
406 || splay_tree_lookup (ase->children,
407 (splay_tree_key) set1)))
408 return true;
409 return false;
410 }
411
412 /* Return 1 if the two specified alias sets may conflict. */
413
414 int
415 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
416 {
417 alias_set_entry ase;
418
419 /* The easy case. */
420 if (alias_sets_must_conflict_p (set1, set2))
421 return 1;
422
423 /* See if the first alias set is a subset of the second. */
424 ase = get_alias_set_entry (set1);
425 if (ase != 0
426 && (ase->has_zero_child
427 || splay_tree_lookup (ase->children,
428 (splay_tree_key) set2)))
429 return 1;
430
431 /* Now do the same, but with the alias sets reversed. */
432 ase = get_alias_set_entry (set2);
433 if (ase != 0
434 && (ase->has_zero_child
435 || splay_tree_lookup (ase->children,
436 (splay_tree_key) set1)))
437 return 1;
438
439 /* The two alias sets are distinct and neither one is the
440 child of the other. Therefore, they cannot conflict. */
441 return 0;
442 }
443
444 static int
445 walk_mems_2 (rtx *x, rtx mem)
446 {
447 if (MEM_P (*x))
448 {
449 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
450 return 1;
451
452 return -1;
453 }
454 return 0;
455 }
456
457 static int
458 walk_mems_1 (rtx *x, rtx *pat)
459 {
460 if (MEM_P (*x))
461 {
462 /* Visit all MEMs in *PAT and check indepedence. */
463 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
464 /* Indicate that dependence was determined and stop traversal. */
465 return 1;
466
467 return -1;
468 }
469 return 0;
470 }
471
472 /* Return 1 if two specified instructions have mem expr with conflict alias sets*/
473 bool
474 insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
475 {
476 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
477 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
478 &PATTERN (insn2));
479 }
480
481 /* Return 1 if the two specified alias sets will always conflict. */
482
483 int
484 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
485 {
486 if (set1 == 0 || set2 == 0 || set1 == set2)
487 return 1;
488
489 return 0;
490 }
491
492 /* Return 1 if any MEM object of type T1 will always conflict (using the
493 dependency routines in this file) with any MEM object of type T2.
494 This is used when allocating temporary storage. If T1 and/or T2 are
495 NULL_TREE, it means we know nothing about the storage. */
496
497 int
498 objects_must_conflict_p (tree t1, tree t2)
499 {
500 alias_set_type set1, set2;
501
502 /* If neither has a type specified, we don't know if they'll conflict
503 because we may be using them to store objects of various types, for
504 example the argument and local variables areas of inlined functions. */
505 if (t1 == 0 && t2 == 0)
506 return 0;
507
508 /* If they are the same type, they must conflict. */
509 if (t1 == t2
510 /* Likewise if both are volatile. */
511 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
512 return 1;
513
514 set1 = t1 ? get_alias_set (t1) : 0;
515 set2 = t2 ? get_alias_set (t2) : 0;
516
517 /* We can't use alias_sets_conflict_p because we must make sure
518 that every subtype of t1 will conflict with every subtype of
519 t2 for which a pair of subobjects of these respective subtypes
520 overlaps on the stack. */
521 return alias_sets_must_conflict_p (set1, set2);
522 }
523 \f
524 /* Return true if all nested component references handled by
525 get_inner_reference in T are such that we should use the alias set
526 provided by the object at the heart of T.
527
528 This is true for non-addressable components (which don't have their
529 own alias set), as well as components of objects in alias set zero.
530 This later point is a special case wherein we wish to override the
531 alias set used by the component, but we don't have per-FIELD_DECL
532 assignable alias sets. */
533
534 bool
535 component_uses_parent_alias_set (const_tree t)
536 {
537 while (1)
538 {
539 /* If we're at the end, it vacuously uses its own alias set. */
540 if (!handled_component_p (t))
541 return false;
542
543 switch (TREE_CODE (t))
544 {
545 case COMPONENT_REF:
546 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
547 return true;
548 break;
549
550 case ARRAY_REF:
551 case ARRAY_RANGE_REF:
552 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
553 return true;
554 break;
555
556 case REALPART_EXPR:
557 case IMAGPART_EXPR:
558 break;
559
560 default:
561 /* Bitfields and casts are never addressable. */
562 return true;
563 }
564
565 t = TREE_OPERAND (t, 0);
566 if (get_alias_set (TREE_TYPE (t)) == 0)
567 return true;
568 }
569 }
570
571 /* Return the alias set for the memory pointed to by T, which may be
572 either a type or an expression. Return -1 if there is nothing
573 special about dereferencing T. */
574
575 static alias_set_type
576 get_deref_alias_set_1 (tree t)
577 {
578 /* If we're not doing any alias analysis, just assume everything
579 aliases everything else. */
580 if (!flag_strict_aliasing)
581 return 0;
582
583 /* All we care about is the type. */
584 if (! TYPE_P (t))
585 t = TREE_TYPE (t);
586
587 /* If we have an INDIRECT_REF via a void pointer, we don't
588 know anything about what that might alias. Likewise if the
589 pointer is marked that way. */
590 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
591 || TYPE_REF_CAN_ALIAS_ALL (t))
592 return 0;
593
594 return -1;
595 }
596
597 /* Return the alias set for the memory pointed to by T, which may be
598 either a type or an expression. */
599
600 alias_set_type
601 get_deref_alias_set (tree t)
602 {
603 alias_set_type set = get_deref_alias_set_1 (t);
604
605 /* Fall back to the alias-set of the pointed-to type. */
606 if (set == -1)
607 {
608 if (! TYPE_P (t))
609 t = TREE_TYPE (t);
610 set = get_alias_set (TREE_TYPE (t));
611 }
612
613 return set;
614 }
615
616 /* Return the alias set for T, which may be either a type or an
617 expression. Call language-specific routine for help, if needed. */
618
619 alias_set_type
620 get_alias_set (tree t)
621 {
622 alias_set_type set;
623
624 /* If we're not doing any alias analysis, just assume everything
625 aliases everything else. Also return 0 if this or its type is
626 an error. */
627 if (! flag_strict_aliasing || t == error_mark_node
628 || (! TYPE_P (t)
629 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
630 return 0;
631
632 /* We can be passed either an expression or a type. This and the
633 language-specific routine may make mutually-recursive calls to each other
634 to figure out what to do. At each juncture, we see if this is a tree
635 that the language may need to handle specially. First handle things that
636 aren't types. */
637 if (! TYPE_P (t))
638 {
639 tree inner = t;
640
641 /* Remove any nops, then give the language a chance to do
642 something with this tree before we look at it. */
643 STRIP_NOPS (t);
644 set = lang_hooks.get_alias_set (t);
645 if (set != -1)
646 return set;
647
648 /* First see if the actual object referenced is an INDIRECT_REF from a
649 restrict-qualified pointer or a "void *". */
650 while (handled_component_p (inner))
651 {
652 inner = TREE_OPERAND (inner, 0);
653 STRIP_NOPS (inner);
654 }
655
656 if (INDIRECT_REF_P (inner))
657 {
658 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
659 if (set != -1)
660 return set;
661 }
662
663 /* Otherwise, pick up the outermost object that we could have a pointer
664 to, processing conversions as above. */
665 while (component_uses_parent_alias_set (t))
666 {
667 t = TREE_OPERAND (t, 0);
668 STRIP_NOPS (t);
669 }
670
671 /* If we've already determined the alias set for a decl, just return
672 it. This is necessary for C++ anonymous unions, whose component
673 variables don't look like union members (boo!). */
674 if (TREE_CODE (t) == VAR_DECL
675 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
676 return MEM_ALIAS_SET (DECL_RTL (t));
677
678 /* Now all we care about is the type. */
679 t = TREE_TYPE (t);
680 }
681
682 /* Variant qualifiers don't affect the alias set, so get the main
683 variant. */
684 t = TYPE_MAIN_VARIANT (t);
685
686 /* Always use the canonical type as well. If this is a type that
687 requires structural comparisons to identify compatible types
688 use alias set zero. */
689 if (TYPE_STRUCTURAL_EQUALITY_P (t))
690 return 0;
691 t = TYPE_CANONICAL (t);
692 /* Canonical types shouldn't form a tree nor should the canonical
693 type require structural equality checks. */
694 gcc_assert (!TYPE_STRUCTURAL_EQUALITY_P (t) && TYPE_CANONICAL (t) == t);
695
696 /* If this is a type with a known alias set, return it. */
697 if (TYPE_ALIAS_SET_KNOWN_P (t))
698 return TYPE_ALIAS_SET (t);
699
700 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
701 if (!COMPLETE_TYPE_P (t))
702 {
703 /* For arrays with unknown size the conservative answer is the
704 alias set of the element type. */
705 if (TREE_CODE (t) == ARRAY_TYPE)
706 return get_alias_set (TREE_TYPE (t));
707
708 /* But return zero as a conservative answer for incomplete types. */
709 return 0;
710 }
711
712 /* See if the language has special handling for this type. */
713 set = lang_hooks.get_alias_set (t);
714 if (set != -1)
715 return set;
716
717 /* There are no objects of FUNCTION_TYPE, so there's no point in
718 using up an alias set for them. (There are, of course, pointers
719 and references to functions, but that's different.) */
720 else if (TREE_CODE (t) == FUNCTION_TYPE
721 || TREE_CODE (t) == METHOD_TYPE)
722 set = 0;
723
724 /* Unless the language specifies otherwise, let vector types alias
725 their components. This avoids some nasty type punning issues in
726 normal usage. And indeed lets vectors be treated more like an
727 array slice. */
728 else if (TREE_CODE (t) == VECTOR_TYPE)
729 set = get_alias_set (TREE_TYPE (t));
730
731 /* Unless the language specifies otherwise, treat array types the
732 same as their components. This avoids the asymmetry we get
733 through recording the components. Consider accessing a
734 character(kind=1) through a reference to a character(kind=1)[1:1].
735 Or consider if we want to assign integer(kind=4)[0:D.1387] and
736 integer(kind=4)[4] the same alias set or not.
737 Just be pragmatic here and make sure the array and its element
738 type get the same alias set assigned. */
739 else if (TREE_CODE (t) == ARRAY_TYPE
740 && !TYPE_NONALIASED_COMPONENT (t))
741 set = get_alias_set (TREE_TYPE (t));
742
743 else
744 /* Otherwise make a new alias set for this type. */
745 set = new_alias_set ();
746
747 TYPE_ALIAS_SET (t) = set;
748
749 /* If this is an aggregate type, we must record any component aliasing
750 information. */
751 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
752 record_component_aliases (t);
753
754 return set;
755 }
756
757 /* Return a brand-new alias set. */
758
759 alias_set_type
760 new_alias_set (void)
761 {
762 if (flag_strict_aliasing)
763 {
764 if (alias_sets == 0)
765 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
766 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
767 return VEC_length (alias_set_entry, alias_sets) - 1;
768 }
769 else
770 return 0;
771 }
772
773 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
774 not everything that aliases SUPERSET also aliases SUBSET. For example,
775 in C, a store to an `int' can alias a load of a structure containing an
776 `int', and vice versa. But it can't alias a load of a 'double' member
777 of the same structure. Here, the structure would be the SUPERSET and
778 `int' the SUBSET. This relationship is also described in the comment at
779 the beginning of this file.
780
781 This function should be called only once per SUPERSET/SUBSET pair.
782
783 It is illegal for SUPERSET to be zero; everything is implicitly a
784 subset of alias set zero. */
785
786 void
787 record_alias_subset (alias_set_type superset, alias_set_type subset)
788 {
789 alias_set_entry superset_entry;
790 alias_set_entry subset_entry;
791
792 /* It is possible in complex type situations for both sets to be the same,
793 in which case we can ignore this operation. */
794 if (superset == subset)
795 return;
796
797 gcc_assert (superset);
798
799 superset_entry = get_alias_set_entry (superset);
800 if (superset_entry == 0)
801 {
802 /* Create an entry for the SUPERSET, so that we have a place to
803 attach the SUBSET. */
804 superset_entry = GGC_NEW (struct alias_set_entry_d);
805 superset_entry->alias_set = superset;
806 superset_entry->children
807 = splay_tree_new_ggc (splay_tree_compare_ints);
808 superset_entry->has_zero_child = 0;
809 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
810 }
811
812 if (subset == 0)
813 superset_entry->has_zero_child = 1;
814 else
815 {
816 subset_entry = get_alias_set_entry (subset);
817 /* If there is an entry for the subset, enter all of its children
818 (if they are not already present) as children of the SUPERSET. */
819 if (subset_entry)
820 {
821 if (subset_entry->has_zero_child)
822 superset_entry->has_zero_child = 1;
823
824 splay_tree_foreach (subset_entry->children, insert_subset_children,
825 superset_entry->children);
826 }
827
828 /* Enter the SUBSET itself as a child of the SUPERSET. */
829 splay_tree_insert (superset_entry->children,
830 (splay_tree_key) subset, 0);
831 }
832 }
833
834 /* Record that component types of TYPE, if any, are part of that type for
835 aliasing purposes. For record types, we only record component types
836 for fields that are not marked non-addressable. For array types, we
837 only record the component type if it is not marked non-aliased. */
838
839 void
840 record_component_aliases (tree type)
841 {
842 alias_set_type superset = get_alias_set (type);
843 tree field;
844
845 if (superset == 0)
846 return;
847
848 switch (TREE_CODE (type))
849 {
850 case RECORD_TYPE:
851 case UNION_TYPE:
852 case QUAL_UNION_TYPE:
853 /* Recursively record aliases for the base classes, if there are any. */
854 if (TYPE_BINFO (type))
855 {
856 int i;
857 tree binfo, base_binfo;
858
859 for (binfo = TYPE_BINFO (type), i = 0;
860 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
861 record_alias_subset (superset,
862 get_alias_set (BINFO_TYPE (base_binfo)));
863 }
864 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
865 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
866 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
867 break;
868
869 case COMPLEX_TYPE:
870 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
871 break;
872
873 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
874 element type. */
875
876 default:
877 break;
878 }
879 }
880
881 /* Allocate an alias set for use in storing and reading from the varargs
882 spill area. */
883
884 static GTY(()) alias_set_type varargs_set = -1;
885
886 alias_set_type
887 get_varargs_alias_set (void)
888 {
889 #if 1
890 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
891 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
892 consistently use the varargs alias set for loads from the varargs
893 area. So don't use it anywhere. */
894 return 0;
895 #else
896 if (varargs_set == -1)
897 varargs_set = new_alias_set ();
898
899 return varargs_set;
900 #endif
901 }
902
903 /* Likewise, but used for the fixed portions of the frame, e.g., register
904 save areas. */
905
906 static GTY(()) alias_set_type frame_set = -1;
907
908 alias_set_type
909 get_frame_alias_set (void)
910 {
911 if (frame_set == -1)
912 frame_set = new_alias_set ();
913
914 return frame_set;
915 }
916
917 /* Inside SRC, the source of a SET, find a base address. */
918
919 static rtx
920 find_base_value (rtx src)
921 {
922 unsigned int regno;
923
924 #if defined (FIND_BASE_TERM)
925 /* Try machine-dependent ways to find the base term. */
926 src = FIND_BASE_TERM (src);
927 #endif
928
929 switch (GET_CODE (src))
930 {
931 case SYMBOL_REF:
932 case LABEL_REF:
933 return src;
934
935 case REG:
936 regno = REGNO (src);
937 /* At the start of a function, argument registers have known base
938 values which may be lost later. Returning an ADDRESS
939 expression here allows optimization based on argument values
940 even when the argument registers are used for other purposes. */
941 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
942 return new_reg_base_value[regno];
943
944 /* If a pseudo has a known base value, return it. Do not do this
945 for non-fixed hard regs since it can result in a circular
946 dependency chain for registers which have values at function entry.
947
948 The test above is not sufficient because the scheduler may move
949 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
950 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
951 && regno < VEC_length (rtx, reg_base_value))
952 {
953 /* If we're inside init_alias_analysis, use new_reg_base_value
954 to reduce the number of relaxation iterations. */
955 if (new_reg_base_value && new_reg_base_value[regno]
956 && DF_REG_DEF_COUNT (regno) == 1)
957 return new_reg_base_value[regno];
958
959 if (VEC_index (rtx, reg_base_value, regno))
960 return VEC_index (rtx, reg_base_value, regno);
961 }
962
963 return 0;
964
965 case MEM:
966 /* Check for an argument passed in memory. Only record in the
967 copying-arguments block; it is too hard to track changes
968 otherwise. */
969 if (copying_arguments
970 && (XEXP (src, 0) == arg_pointer_rtx
971 || (GET_CODE (XEXP (src, 0)) == PLUS
972 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
973 return gen_rtx_ADDRESS (VOIDmode, src);
974 return 0;
975
976 case CONST:
977 src = XEXP (src, 0);
978 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
979 break;
980
981 /* ... fall through ... */
982
983 case PLUS:
984 case MINUS:
985 {
986 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
987
988 /* If either operand is a REG that is a known pointer, then it
989 is the base. */
990 if (REG_P (src_0) && REG_POINTER (src_0))
991 return find_base_value (src_0);
992 if (REG_P (src_1) && REG_POINTER (src_1))
993 return find_base_value (src_1);
994
995 /* If either operand is a REG, then see if we already have
996 a known value for it. */
997 if (REG_P (src_0))
998 {
999 temp = find_base_value (src_0);
1000 if (temp != 0)
1001 src_0 = temp;
1002 }
1003
1004 if (REG_P (src_1))
1005 {
1006 temp = find_base_value (src_1);
1007 if (temp!= 0)
1008 src_1 = temp;
1009 }
1010
1011 /* If either base is named object or a special address
1012 (like an argument or stack reference), then use it for the
1013 base term. */
1014 if (src_0 != 0
1015 && (GET_CODE (src_0) == SYMBOL_REF
1016 || GET_CODE (src_0) == LABEL_REF
1017 || (GET_CODE (src_0) == ADDRESS
1018 && GET_MODE (src_0) != VOIDmode)))
1019 return src_0;
1020
1021 if (src_1 != 0
1022 && (GET_CODE (src_1) == SYMBOL_REF
1023 || GET_CODE (src_1) == LABEL_REF
1024 || (GET_CODE (src_1) == ADDRESS
1025 && GET_MODE (src_1) != VOIDmode)))
1026 return src_1;
1027
1028 /* Guess which operand is the base address:
1029 If either operand is a symbol, then it is the base. If
1030 either operand is a CONST_INT, then the other is the base. */
1031 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1032 return find_base_value (src_0);
1033 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1034 return find_base_value (src_1);
1035
1036 return 0;
1037 }
1038
1039 case LO_SUM:
1040 /* The standard form is (lo_sum reg sym) so look only at the
1041 second operand. */
1042 return find_base_value (XEXP (src, 1));
1043
1044 case AND:
1045 /* If the second operand is constant set the base
1046 address to the first operand. */
1047 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1048 return find_base_value (XEXP (src, 0));
1049 return 0;
1050
1051 case TRUNCATE:
1052 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1053 break;
1054 /* Fall through. */
1055 case HIGH:
1056 case PRE_INC:
1057 case PRE_DEC:
1058 case POST_INC:
1059 case POST_DEC:
1060 case PRE_MODIFY:
1061 case POST_MODIFY:
1062 return find_base_value (XEXP (src, 0));
1063
1064 case ZERO_EXTEND:
1065 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1066 {
1067 rtx temp = find_base_value (XEXP (src, 0));
1068
1069 if (temp != 0 && CONSTANT_P (temp))
1070 temp = convert_memory_address (Pmode, temp);
1071
1072 return temp;
1073 }
1074
1075 default:
1076 break;
1077 }
1078
1079 return 0;
1080 }
1081
1082 /* Called from init_alias_analysis indirectly through note_stores. */
1083
1084 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1085 register N has been set in this function. */
1086 static char *reg_seen;
1087
1088 /* Addresses which are known not to alias anything else are identified
1089 by a unique integer. */
1090 static int unique_id;
1091
1092 static void
1093 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1094 {
1095 unsigned regno;
1096 rtx src;
1097 int n;
1098
1099 if (!REG_P (dest))
1100 return;
1101
1102 regno = REGNO (dest);
1103
1104 gcc_assert (regno < VEC_length (rtx, reg_base_value));
1105
1106 /* If this spans multiple hard registers, then we must indicate that every
1107 register has an unusable value. */
1108 if (regno < FIRST_PSEUDO_REGISTER)
1109 n = hard_regno_nregs[regno][GET_MODE (dest)];
1110 else
1111 n = 1;
1112 if (n != 1)
1113 {
1114 while (--n >= 0)
1115 {
1116 reg_seen[regno + n] = 1;
1117 new_reg_base_value[regno + n] = 0;
1118 }
1119 return;
1120 }
1121
1122 if (set)
1123 {
1124 /* A CLOBBER wipes out any old value but does not prevent a previously
1125 unset register from acquiring a base address (i.e. reg_seen is not
1126 set). */
1127 if (GET_CODE (set) == CLOBBER)
1128 {
1129 new_reg_base_value[regno] = 0;
1130 return;
1131 }
1132 src = SET_SRC (set);
1133 }
1134 else
1135 {
1136 if (reg_seen[regno])
1137 {
1138 new_reg_base_value[regno] = 0;
1139 return;
1140 }
1141 reg_seen[regno] = 1;
1142 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1143 GEN_INT (unique_id++));
1144 return;
1145 }
1146
1147 /* If this is not the first set of REGNO, see whether the new value
1148 is related to the old one. There are two cases of interest:
1149
1150 (1) The register might be assigned an entirely new value
1151 that has the same base term as the original set.
1152
1153 (2) The set might be a simple self-modification that
1154 cannot change REGNO's base value.
1155
1156 If neither case holds, reject the original base value as invalid.
1157 Note that the following situation is not detected:
1158
1159 extern int x, y; int *p = &x; p += (&y-&x);
1160
1161 ANSI C does not allow computing the difference of addresses
1162 of distinct top level objects. */
1163 if (new_reg_base_value[regno] != 0
1164 && find_base_value (src) != new_reg_base_value[regno])
1165 switch (GET_CODE (src))
1166 {
1167 case LO_SUM:
1168 case MINUS:
1169 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1170 new_reg_base_value[regno] = 0;
1171 break;
1172 case PLUS:
1173 /* If the value we add in the PLUS is also a valid base value,
1174 this might be the actual base value, and the original value
1175 an index. */
1176 {
1177 rtx other = NULL_RTX;
1178
1179 if (XEXP (src, 0) == dest)
1180 other = XEXP (src, 1);
1181 else if (XEXP (src, 1) == dest)
1182 other = XEXP (src, 0);
1183
1184 if (! other || find_base_value (other))
1185 new_reg_base_value[regno] = 0;
1186 break;
1187 }
1188 case AND:
1189 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1190 new_reg_base_value[regno] = 0;
1191 break;
1192 default:
1193 new_reg_base_value[regno] = 0;
1194 break;
1195 }
1196 /* If this is the first set of a register, record the value. */
1197 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1198 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1199 new_reg_base_value[regno] = find_base_value (src);
1200
1201 reg_seen[regno] = 1;
1202 }
1203
1204 /* If a value is known for REGNO, return it. */
1205
1206 rtx
1207 get_reg_known_value (unsigned int regno)
1208 {
1209 if (regno >= FIRST_PSEUDO_REGISTER)
1210 {
1211 regno -= FIRST_PSEUDO_REGISTER;
1212 if (regno < reg_known_value_size)
1213 return reg_known_value[regno];
1214 }
1215 return NULL;
1216 }
1217
1218 /* Set it. */
1219
1220 static void
1221 set_reg_known_value (unsigned int regno, rtx val)
1222 {
1223 if (regno >= FIRST_PSEUDO_REGISTER)
1224 {
1225 regno -= FIRST_PSEUDO_REGISTER;
1226 if (regno < reg_known_value_size)
1227 reg_known_value[regno] = val;
1228 }
1229 }
1230
1231 /* Similarly for reg_known_equiv_p. */
1232
1233 bool
1234 get_reg_known_equiv_p (unsigned int regno)
1235 {
1236 if (regno >= FIRST_PSEUDO_REGISTER)
1237 {
1238 regno -= FIRST_PSEUDO_REGISTER;
1239 if (regno < reg_known_value_size)
1240 return reg_known_equiv_p[regno];
1241 }
1242 return false;
1243 }
1244
1245 static void
1246 set_reg_known_equiv_p (unsigned int regno, bool val)
1247 {
1248 if (regno >= FIRST_PSEUDO_REGISTER)
1249 {
1250 regno -= FIRST_PSEUDO_REGISTER;
1251 if (regno < reg_known_value_size)
1252 reg_known_equiv_p[regno] = val;
1253 }
1254 }
1255
1256
1257 /* Returns a canonical version of X, from the point of view alias
1258 analysis. (For example, if X is a MEM whose address is a register,
1259 and the register has a known value (say a SYMBOL_REF), then a MEM
1260 whose address is the SYMBOL_REF is returned.) */
1261
1262 rtx
1263 canon_rtx (rtx x)
1264 {
1265 /* Recursively look for equivalences. */
1266 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1267 {
1268 rtx t = get_reg_known_value (REGNO (x));
1269 if (t == x)
1270 return x;
1271 if (t)
1272 return canon_rtx (t);
1273 }
1274
1275 if (GET_CODE (x) == PLUS)
1276 {
1277 rtx x0 = canon_rtx (XEXP (x, 0));
1278 rtx x1 = canon_rtx (XEXP (x, 1));
1279
1280 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1281 {
1282 if (CONST_INT_P (x0))
1283 return plus_constant (x1, INTVAL (x0));
1284 else if (CONST_INT_P (x1))
1285 return plus_constant (x0, INTVAL (x1));
1286 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1287 }
1288 }
1289
1290 /* This gives us much better alias analysis when called from
1291 the loop optimizer. Note we want to leave the original
1292 MEM alone, but need to return the canonicalized MEM with
1293 all the flags with their original values. */
1294 else if (MEM_P (x))
1295 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1296
1297 return x;
1298 }
1299
1300 /* Return 1 if X and Y are identical-looking rtx's.
1301 Expect that X and Y has been already canonicalized.
1302
1303 We use the data in reg_known_value above to see if two registers with
1304 different numbers are, in fact, equivalent. */
1305
1306 static int
1307 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1308 {
1309 int i;
1310 int j;
1311 enum rtx_code code;
1312 const char *fmt;
1313
1314 if (x == 0 && y == 0)
1315 return 1;
1316 if (x == 0 || y == 0)
1317 return 0;
1318
1319 if (x == y)
1320 return 1;
1321
1322 code = GET_CODE (x);
1323 /* Rtx's of different codes cannot be equal. */
1324 if (code != GET_CODE (y))
1325 return 0;
1326
1327 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1328 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1329
1330 if (GET_MODE (x) != GET_MODE (y))
1331 return 0;
1332
1333 /* Some RTL can be compared without a recursive examination. */
1334 switch (code)
1335 {
1336 case REG:
1337 return REGNO (x) == REGNO (y);
1338
1339 case LABEL_REF:
1340 return XEXP (x, 0) == XEXP (y, 0);
1341
1342 case SYMBOL_REF:
1343 return XSTR (x, 0) == XSTR (y, 0);
1344
1345 case VALUE:
1346 case CONST_INT:
1347 case CONST_DOUBLE:
1348 case CONST_FIXED:
1349 /* There's no need to compare the contents of CONST_DOUBLEs or
1350 CONST_INTs because pointer equality is a good enough
1351 comparison for these nodes. */
1352 return 0;
1353
1354 default:
1355 break;
1356 }
1357
1358 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1359 if (code == PLUS)
1360 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1361 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1362 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1363 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1364 /* For commutative operations, the RTX match if the operand match in any
1365 order. Also handle the simple binary and unary cases without a loop. */
1366 if (COMMUTATIVE_P (x))
1367 {
1368 rtx xop0 = canon_rtx (XEXP (x, 0));
1369 rtx yop0 = canon_rtx (XEXP (y, 0));
1370 rtx yop1 = canon_rtx (XEXP (y, 1));
1371
1372 return ((rtx_equal_for_memref_p (xop0, yop0)
1373 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1374 || (rtx_equal_for_memref_p (xop0, yop1)
1375 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1376 }
1377 else if (NON_COMMUTATIVE_P (x))
1378 {
1379 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1380 canon_rtx (XEXP (y, 0)))
1381 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1382 canon_rtx (XEXP (y, 1))));
1383 }
1384 else if (UNARY_P (x))
1385 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1386 canon_rtx (XEXP (y, 0)));
1387
1388 /* Compare the elements. If any pair of corresponding elements
1389 fail to match, return 0 for the whole things.
1390
1391 Limit cases to types which actually appear in addresses. */
1392
1393 fmt = GET_RTX_FORMAT (code);
1394 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1395 {
1396 switch (fmt[i])
1397 {
1398 case 'i':
1399 if (XINT (x, i) != XINT (y, i))
1400 return 0;
1401 break;
1402
1403 case 'E':
1404 /* Two vectors must have the same length. */
1405 if (XVECLEN (x, i) != XVECLEN (y, i))
1406 return 0;
1407
1408 /* And the corresponding elements must match. */
1409 for (j = 0; j < XVECLEN (x, i); j++)
1410 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1411 canon_rtx (XVECEXP (y, i, j))) == 0)
1412 return 0;
1413 break;
1414
1415 case 'e':
1416 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1417 canon_rtx (XEXP (y, i))) == 0)
1418 return 0;
1419 break;
1420
1421 /* This can happen for asm operands. */
1422 case 's':
1423 if (strcmp (XSTR (x, i), XSTR (y, i)))
1424 return 0;
1425 break;
1426
1427 /* This can happen for an asm which clobbers memory. */
1428 case '0':
1429 break;
1430
1431 /* It is believed that rtx's at this level will never
1432 contain anything but integers and other rtx's,
1433 except for within LABEL_REFs and SYMBOL_REFs. */
1434 default:
1435 gcc_unreachable ();
1436 }
1437 }
1438 return 1;
1439 }
1440
1441 rtx
1442 find_base_term (rtx x)
1443 {
1444 cselib_val *val;
1445 struct elt_loc_list *l;
1446
1447 #if defined (FIND_BASE_TERM)
1448 /* Try machine-dependent ways to find the base term. */
1449 x = FIND_BASE_TERM (x);
1450 #endif
1451
1452 switch (GET_CODE (x))
1453 {
1454 case REG:
1455 return REG_BASE_VALUE (x);
1456
1457 case TRUNCATE:
1458 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1459 return 0;
1460 /* Fall through. */
1461 case HIGH:
1462 case PRE_INC:
1463 case PRE_DEC:
1464 case POST_INC:
1465 case POST_DEC:
1466 case PRE_MODIFY:
1467 case POST_MODIFY:
1468 return find_base_term (XEXP (x, 0));
1469
1470 case ZERO_EXTEND:
1471 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1472 {
1473 rtx temp = find_base_term (XEXP (x, 0));
1474
1475 if (temp != 0 && CONSTANT_P (temp))
1476 temp = convert_memory_address (Pmode, temp);
1477
1478 return temp;
1479 }
1480
1481 case VALUE:
1482 val = CSELIB_VAL_PTR (x);
1483 if (!val)
1484 return 0;
1485 for (l = val->locs; l; l = l->next)
1486 if ((x = find_base_term (l->loc)) != 0)
1487 return x;
1488 return 0;
1489
1490 case LO_SUM:
1491 /* The standard form is (lo_sum reg sym) so look only at the
1492 second operand. */
1493 return find_base_term (XEXP (x, 1));
1494
1495 case CONST:
1496 x = XEXP (x, 0);
1497 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1498 return 0;
1499 /* Fall through. */
1500 case PLUS:
1501 case MINUS:
1502 {
1503 rtx tmp1 = XEXP (x, 0);
1504 rtx tmp2 = XEXP (x, 1);
1505
1506 /* This is a little bit tricky since we have to determine which of
1507 the two operands represents the real base address. Otherwise this
1508 routine may return the index register instead of the base register.
1509
1510 That may cause us to believe no aliasing was possible, when in
1511 fact aliasing is possible.
1512
1513 We use a few simple tests to guess the base register. Additional
1514 tests can certainly be added. For example, if one of the operands
1515 is a shift or multiply, then it must be the index register and the
1516 other operand is the base register. */
1517
1518 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1519 return find_base_term (tmp2);
1520
1521 /* If either operand is known to be a pointer, then use it
1522 to determine the base term. */
1523 if (REG_P (tmp1) && REG_POINTER (tmp1))
1524 {
1525 rtx base = find_base_term (tmp1);
1526 if (base)
1527 return base;
1528 }
1529
1530 if (REG_P (tmp2) && REG_POINTER (tmp2))
1531 {
1532 rtx base = find_base_term (tmp2);
1533 if (base)
1534 return base;
1535 }
1536
1537 /* Neither operand was known to be a pointer. Go ahead and find the
1538 base term for both operands. */
1539 tmp1 = find_base_term (tmp1);
1540 tmp2 = find_base_term (tmp2);
1541
1542 /* If either base term is named object or a special address
1543 (like an argument or stack reference), then use it for the
1544 base term. */
1545 if (tmp1 != 0
1546 && (GET_CODE (tmp1) == SYMBOL_REF
1547 || GET_CODE (tmp1) == LABEL_REF
1548 || (GET_CODE (tmp1) == ADDRESS
1549 && GET_MODE (tmp1) != VOIDmode)))
1550 return tmp1;
1551
1552 if (tmp2 != 0
1553 && (GET_CODE (tmp2) == SYMBOL_REF
1554 || GET_CODE (tmp2) == LABEL_REF
1555 || (GET_CODE (tmp2) == ADDRESS
1556 && GET_MODE (tmp2) != VOIDmode)))
1557 return tmp2;
1558
1559 /* We could not determine which of the two operands was the
1560 base register and which was the index. So we can determine
1561 nothing from the base alias check. */
1562 return 0;
1563 }
1564
1565 case AND:
1566 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1567 return find_base_term (XEXP (x, 0));
1568 return 0;
1569
1570 case SYMBOL_REF:
1571 case LABEL_REF:
1572 return x;
1573
1574 default:
1575 return 0;
1576 }
1577 }
1578
1579 /* Return 0 if the addresses X and Y are known to point to different
1580 objects, 1 if they might be pointers to the same object. */
1581
1582 static int
1583 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1584 enum machine_mode y_mode)
1585 {
1586 rtx x_base = find_base_term (x);
1587 rtx y_base = find_base_term (y);
1588
1589 /* If the address itself has no known base see if a known equivalent
1590 value has one. If either address still has no known base, nothing
1591 is known about aliasing. */
1592 if (x_base == 0)
1593 {
1594 rtx x_c;
1595
1596 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1597 return 1;
1598
1599 x_base = find_base_term (x_c);
1600 if (x_base == 0)
1601 return 1;
1602 }
1603
1604 if (y_base == 0)
1605 {
1606 rtx y_c;
1607 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1608 return 1;
1609
1610 y_base = find_base_term (y_c);
1611 if (y_base == 0)
1612 return 1;
1613 }
1614
1615 /* If the base addresses are equal nothing is known about aliasing. */
1616 if (rtx_equal_p (x_base, y_base))
1617 return 1;
1618
1619 /* The base addresses are different expressions. If they are not accessed
1620 via AND, there is no conflict. We can bring knowledge of object
1621 alignment into play here. For example, on alpha, "char a, b;" can
1622 alias one another, though "char a; long b;" cannot. AND addesses may
1623 implicitly alias surrounding objects; i.e. unaligned access in DImode
1624 via AND address can alias all surrounding object types except those
1625 with aligment 8 or higher. */
1626 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1627 return 1;
1628 if (GET_CODE (x) == AND
1629 && (!CONST_INT_P (XEXP (x, 1))
1630 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1631 return 1;
1632 if (GET_CODE (y) == AND
1633 && (!CONST_INT_P (XEXP (y, 1))
1634 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1635 return 1;
1636
1637 /* Differing symbols not accessed via AND never alias. */
1638 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1639 return 0;
1640
1641 /* If one address is a stack reference there can be no alias:
1642 stack references using different base registers do not alias,
1643 a stack reference can not alias a parameter, and a stack reference
1644 can not alias a global. */
1645 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1646 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1647 return 0;
1648
1649 if (! flag_argument_noalias)
1650 return 1;
1651
1652 if (flag_argument_noalias > 1)
1653 return 0;
1654
1655 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1656 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1657 }
1658
1659 /* Convert the address X into something we can use. This is done by returning
1660 it unchanged unless it is a value; in the latter case we call cselib to get
1661 a more useful rtx. */
1662
1663 rtx
1664 get_addr (rtx x)
1665 {
1666 cselib_val *v;
1667 struct elt_loc_list *l;
1668
1669 if (GET_CODE (x) != VALUE)
1670 return x;
1671 v = CSELIB_VAL_PTR (x);
1672 if (v)
1673 {
1674 for (l = v->locs; l; l = l->next)
1675 if (CONSTANT_P (l->loc))
1676 return l->loc;
1677 for (l = v->locs; l; l = l->next)
1678 if (!REG_P (l->loc) && !MEM_P (l->loc))
1679 return l->loc;
1680 if (v->locs)
1681 return v->locs->loc;
1682 }
1683 return x;
1684 }
1685
1686 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1687 where SIZE is the size in bytes of the memory reference. If ADDR
1688 is not modified by the memory reference then ADDR is returned. */
1689
1690 static rtx
1691 addr_side_effect_eval (rtx addr, int size, int n_refs)
1692 {
1693 int offset = 0;
1694
1695 switch (GET_CODE (addr))
1696 {
1697 case PRE_INC:
1698 offset = (n_refs + 1) * size;
1699 break;
1700 case PRE_DEC:
1701 offset = -(n_refs + 1) * size;
1702 break;
1703 case POST_INC:
1704 offset = n_refs * size;
1705 break;
1706 case POST_DEC:
1707 offset = -n_refs * size;
1708 break;
1709
1710 default:
1711 return addr;
1712 }
1713
1714 if (offset)
1715 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1716 GEN_INT (offset));
1717 else
1718 addr = XEXP (addr, 0);
1719 addr = canon_rtx (addr);
1720
1721 return addr;
1722 }
1723
1724 /* Return nonzero if X and Y (memory addresses) could reference the
1725 same location in memory. C is an offset accumulator. When
1726 C is nonzero, we are testing aliases between X and Y + C.
1727 XSIZE is the size in bytes of the X reference,
1728 similarly YSIZE is the size in bytes for Y.
1729 Expect that canon_rtx has been already called for X and Y.
1730
1731 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1732 referenced (the reference was BLKmode), so make the most pessimistic
1733 assumptions.
1734
1735 If XSIZE or YSIZE is negative, we may access memory outside the object
1736 being referenced as a side effect. This can happen when using AND to
1737 align memory references, as is done on the Alpha.
1738
1739 Nice to notice that varying addresses cannot conflict with fp if no
1740 local variables had their addresses taken, but that's too hard now. */
1741
1742 static int
1743 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1744 {
1745 if (GET_CODE (x) == VALUE)
1746 x = get_addr (x);
1747 if (GET_CODE (y) == VALUE)
1748 y = get_addr (y);
1749 if (GET_CODE (x) == HIGH)
1750 x = XEXP (x, 0);
1751 else if (GET_CODE (x) == LO_SUM)
1752 x = XEXP (x, 1);
1753 else
1754 x = addr_side_effect_eval (x, xsize, 0);
1755 if (GET_CODE (y) == HIGH)
1756 y = XEXP (y, 0);
1757 else if (GET_CODE (y) == LO_SUM)
1758 y = XEXP (y, 1);
1759 else
1760 y = addr_side_effect_eval (y, ysize, 0);
1761
1762 if (rtx_equal_for_memref_p (x, y))
1763 {
1764 if (xsize <= 0 || ysize <= 0)
1765 return 1;
1766 if (c >= 0 && xsize > c)
1767 return 1;
1768 if (c < 0 && ysize+c > 0)
1769 return 1;
1770 return 0;
1771 }
1772
1773 /* This code used to check for conflicts involving stack references and
1774 globals but the base address alias code now handles these cases. */
1775
1776 if (GET_CODE (x) == PLUS)
1777 {
1778 /* The fact that X is canonicalized means that this
1779 PLUS rtx is canonicalized. */
1780 rtx x0 = XEXP (x, 0);
1781 rtx x1 = XEXP (x, 1);
1782
1783 if (GET_CODE (y) == PLUS)
1784 {
1785 /* The fact that Y is canonicalized means that this
1786 PLUS rtx is canonicalized. */
1787 rtx y0 = XEXP (y, 0);
1788 rtx y1 = XEXP (y, 1);
1789
1790 if (rtx_equal_for_memref_p (x1, y1))
1791 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1792 if (rtx_equal_for_memref_p (x0, y0))
1793 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1794 if (CONST_INT_P (x1))
1795 {
1796 if (CONST_INT_P (y1))
1797 return memrefs_conflict_p (xsize, x0, ysize, y0,
1798 c - INTVAL (x1) + INTVAL (y1));
1799 else
1800 return memrefs_conflict_p (xsize, x0, ysize, y,
1801 c - INTVAL (x1));
1802 }
1803 else if (CONST_INT_P (y1))
1804 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1805
1806 return 1;
1807 }
1808 else if (CONST_INT_P (x1))
1809 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1810 }
1811 else if (GET_CODE (y) == PLUS)
1812 {
1813 /* The fact that Y is canonicalized means that this
1814 PLUS rtx is canonicalized. */
1815 rtx y0 = XEXP (y, 0);
1816 rtx y1 = XEXP (y, 1);
1817
1818 if (CONST_INT_P (y1))
1819 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1820 else
1821 return 1;
1822 }
1823
1824 if (GET_CODE (x) == GET_CODE (y))
1825 switch (GET_CODE (x))
1826 {
1827 case MULT:
1828 {
1829 /* Handle cases where we expect the second operands to be the
1830 same, and check only whether the first operand would conflict
1831 or not. */
1832 rtx x0, y0;
1833 rtx x1 = canon_rtx (XEXP (x, 1));
1834 rtx y1 = canon_rtx (XEXP (y, 1));
1835 if (! rtx_equal_for_memref_p (x1, y1))
1836 return 1;
1837 x0 = canon_rtx (XEXP (x, 0));
1838 y0 = canon_rtx (XEXP (y, 0));
1839 if (rtx_equal_for_memref_p (x0, y0))
1840 return (xsize == 0 || ysize == 0
1841 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1842
1843 /* Can't properly adjust our sizes. */
1844 if (!CONST_INT_P (x1))
1845 return 1;
1846 xsize /= INTVAL (x1);
1847 ysize /= INTVAL (x1);
1848 c /= INTVAL (x1);
1849 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1850 }
1851
1852 default:
1853 break;
1854 }
1855
1856 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1857 as an access with indeterminate size. Assume that references
1858 besides AND are aligned, so if the size of the other reference is
1859 at least as large as the alignment, assume no other overlap. */
1860 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
1861 {
1862 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1863 xsize = -1;
1864 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1865 }
1866 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
1867 {
1868 /* ??? If we are indexing far enough into the array/structure, we
1869 may yet be able to determine that we can not overlap. But we
1870 also need to that we are far enough from the end not to overlap
1871 a following reference, so we do nothing with that for now. */
1872 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1873 ysize = -1;
1874 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1875 }
1876
1877 if (CONSTANT_P (x))
1878 {
1879 if (CONST_INT_P (x) && CONST_INT_P (y))
1880 {
1881 c += (INTVAL (y) - INTVAL (x));
1882 return (xsize <= 0 || ysize <= 0
1883 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1884 }
1885
1886 if (GET_CODE (x) == CONST)
1887 {
1888 if (GET_CODE (y) == CONST)
1889 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1890 ysize, canon_rtx (XEXP (y, 0)), c);
1891 else
1892 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1893 ysize, y, c);
1894 }
1895 if (GET_CODE (y) == CONST)
1896 return memrefs_conflict_p (xsize, x, ysize,
1897 canon_rtx (XEXP (y, 0)), c);
1898
1899 if (CONSTANT_P (y))
1900 return (xsize <= 0 || ysize <= 0
1901 || (rtx_equal_for_memref_p (x, y)
1902 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1903
1904 return 1;
1905 }
1906 return 1;
1907 }
1908
1909 /* Functions to compute memory dependencies.
1910
1911 Since we process the insns in execution order, we can build tables
1912 to keep track of what registers are fixed (and not aliased), what registers
1913 are varying in known ways, and what registers are varying in unknown
1914 ways.
1915
1916 If both memory references are volatile, then there must always be a
1917 dependence between the two references, since their order can not be
1918 changed. A volatile and non-volatile reference can be interchanged
1919 though.
1920
1921 A MEM_IN_STRUCT reference at a non-AND varying address can never
1922 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1923 also must allow AND addresses, because they may generate accesses
1924 outside the object being referenced. This is used to generate
1925 aligned addresses from unaligned addresses, for instance, the alpha
1926 storeqi_unaligned pattern. */
1927
1928 /* Read dependence: X is read after read in MEM takes place. There can
1929 only be a dependence here if both reads are volatile. */
1930
1931 int
1932 read_dependence (const_rtx mem, const_rtx x)
1933 {
1934 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1935 }
1936
1937 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1938 MEM2 is a reference to a structure at a varying address, or returns
1939 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1940 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1941 to decide whether or not an address may vary; it should return
1942 nonzero whenever variation is possible.
1943 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1944
1945 static const_rtx
1946 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
1947 rtx mem2_addr,
1948 bool (*varies_p) (const_rtx, bool))
1949 {
1950 if (! flag_strict_aliasing)
1951 return NULL_RTX;
1952
1953 if (MEM_ALIAS_SET (mem2)
1954 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1955 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1956 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1957 varying address. */
1958 return mem1;
1959
1960 if (MEM_ALIAS_SET (mem1)
1961 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1962 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1963 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1964 varying address. */
1965 return mem2;
1966
1967 return NULL_RTX;
1968 }
1969
1970 /* Returns nonzero if something about the mode or address format MEM1
1971 indicates that it might well alias *anything*. */
1972
1973 static int
1974 aliases_everything_p (const_rtx mem)
1975 {
1976 if (GET_CODE (XEXP (mem, 0)) == AND)
1977 /* If the address is an AND, it's very hard to know at what it is
1978 actually pointing. */
1979 return 1;
1980
1981 return 0;
1982 }
1983
1984 /* Return true if we can determine that the fields referenced cannot
1985 overlap for any pair of objects. */
1986
1987 static bool
1988 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1989 {
1990 const_tree fieldx, fieldy, typex, typey, orig_y;
1991
1992 if (!flag_strict_aliasing)
1993 return false;
1994
1995 do
1996 {
1997 /* The comparison has to be done at a common type, since we don't
1998 know how the inheritance hierarchy works. */
1999 orig_y = y;
2000 do
2001 {
2002 fieldx = TREE_OPERAND (x, 1);
2003 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2004
2005 y = orig_y;
2006 do
2007 {
2008 fieldy = TREE_OPERAND (y, 1);
2009 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2010
2011 if (typex == typey)
2012 goto found;
2013
2014 y = TREE_OPERAND (y, 0);
2015 }
2016 while (y && TREE_CODE (y) == COMPONENT_REF);
2017
2018 x = TREE_OPERAND (x, 0);
2019 }
2020 while (x && TREE_CODE (x) == COMPONENT_REF);
2021 /* Never found a common type. */
2022 return false;
2023
2024 found:
2025 /* If we're left with accessing different fields of a structure,
2026 then no overlap. */
2027 if (TREE_CODE (typex) == RECORD_TYPE
2028 && fieldx != fieldy)
2029 return true;
2030
2031 /* The comparison on the current field failed. If we're accessing
2032 a very nested structure, look at the next outer level. */
2033 x = TREE_OPERAND (x, 0);
2034 y = TREE_OPERAND (y, 0);
2035 }
2036 while (x && y
2037 && TREE_CODE (x) == COMPONENT_REF
2038 && TREE_CODE (y) == COMPONENT_REF);
2039
2040 return false;
2041 }
2042
2043 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2044
2045 static tree
2046 decl_for_component_ref (tree x)
2047 {
2048 do
2049 {
2050 x = TREE_OPERAND (x, 0);
2051 }
2052 while (x && TREE_CODE (x) == COMPONENT_REF);
2053
2054 return x && DECL_P (x) ? x : NULL_TREE;
2055 }
2056
2057 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2058 offset of the field reference. */
2059
2060 static rtx
2061 adjust_offset_for_component_ref (tree x, rtx offset)
2062 {
2063 HOST_WIDE_INT ioffset;
2064
2065 if (! offset)
2066 return NULL_RTX;
2067
2068 ioffset = INTVAL (offset);
2069 do
2070 {
2071 tree offset = component_ref_field_offset (x);
2072 tree field = TREE_OPERAND (x, 1);
2073
2074 if (! host_integerp (offset, 1))
2075 return NULL_RTX;
2076 ioffset += (tree_low_cst (offset, 1)
2077 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2078 / BITS_PER_UNIT));
2079
2080 x = TREE_OPERAND (x, 0);
2081 }
2082 while (x && TREE_CODE (x) == COMPONENT_REF);
2083
2084 return GEN_INT (ioffset);
2085 }
2086
2087 /* Return nonzero if we can determine the exprs corresponding to memrefs
2088 X and Y and they do not overlap. */
2089
2090 int
2091 nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
2092 {
2093 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2094 rtx rtlx, rtly;
2095 rtx basex, basey;
2096 rtx moffsetx, moffsety;
2097 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2098
2099 /* Unless both have exprs, we can't tell anything. */
2100 if (exprx == 0 || expry == 0)
2101 return 0;
2102
2103 /* If both are field references, we may be able to determine something. */
2104 if (TREE_CODE (exprx) == COMPONENT_REF
2105 && TREE_CODE (expry) == COMPONENT_REF
2106 && nonoverlapping_component_refs_p (exprx, expry))
2107 return 1;
2108
2109
2110 /* If the field reference test failed, look at the DECLs involved. */
2111 moffsetx = MEM_OFFSET (x);
2112 if (TREE_CODE (exprx) == COMPONENT_REF)
2113 {
2114 if (TREE_CODE (expry) == VAR_DECL
2115 && POINTER_TYPE_P (TREE_TYPE (expry)))
2116 {
2117 tree field = TREE_OPERAND (exprx, 1);
2118 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2119 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2120 TREE_TYPE (field)))
2121 return 1;
2122 }
2123 {
2124 tree t = decl_for_component_ref (exprx);
2125 if (! t)
2126 return 0;
2127 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2128 exprx = t;
2129 }
2130 }
2131 else if (INDIRECT_REF_P (exprx))
2132 {
2133 exprx = TREE_OPERAND (exprx, 0);
2134 if (flag_argument_noalias < 2
2135 || TREE_CODE (exprx) != PARM_DECL)
2136 return 0;
2137 }
2138
2139 moffsety = MEM_OFFSET (y);
2140 if (TREE_CODE (expry) == COMPONENT_REF)
2141 {
2142 if (TREE_CODE (exprx) == VAR_DECL
2143 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2144 {
2145 tree field = TREE_OPERAND (expry, 1);
2146 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2147 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2148 TREE_TYPE (field)))
2149 return 1;
2150 }
2151 {
2152 tree t = decl_for_component_ref (expry);
2153 if (! t)
2154 return 0;
2155 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2156 expry = t;
2157 }
2158 }
2159 else if (INDIRECT_REF_P (expry))
2160 {
2161 expry = TREE_OPERAND (expry, 0);
2162 if (flag_argument_noalias < 2
2163 || TREE_CODE (expry) != PARM_DECL)
2164 return 0;
2165 }
2166
2167 if (! DECL_P (exprx) || ! DECL_P (expry))
2168 return 0;
2169
2170 rtlx = DECL_RTL (exprx);
2171 rtly = DECL_RTL (expry);
2172
2173 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2174 can't overlap unless they are the same because we never reuse that part
2175 of the stack frame used for locals for spilled pseudos. */
2176 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2177 && ! rtx_equal_p (rtlx, rtly))
2178 return 1;
2179
2180 /* Get the base and offsets of both decls. If either is a register, we
2181 know both are and are the same, so use that as the base. The only
2182 we can avoid overlap is if we can deduce that they are nonoverlapping
2183 pieces of that decl, which is very rare. */
2184 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2185 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2186 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2187
2188 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2189 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2190 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2191
2192 /* If the bases are different, we know they do not overlap if both
2193 are constants or if one is a constant and the other a pointer into the
2194 stack frame. Otherwise a different base means we can't tell if they
2195 overlap or not. */
2196 if (! rtx_equal_p (basex, basey))
2197 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2198 || (CONSTANT_P (basex) && REG_P (basey)
2199 && REGNO_PTR_FRAME_P (REGNO (basey)))
2200 || (CONSTANT_P (basey) && REG_P (basex)
2201 && REGNO_PTR_FRAME_P (REGNO (basex))));
2202
2203 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2204 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2205 : -1);
2206 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2207 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2208 -1);
2209
2210 /* If we have an offset for either memref, it can update the values computed
2211 above. */
2212 if (moffsetx)
2213 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2214 if (moffsety)
2215 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2216
2217 /* If a memref has both a size and an offset, we can use the smaller size.
2218 We can't do this if the offset isn't known because we must view this
2219 memref as being anywhere inside the DECL's MEM. */
2220 if (MEM_SIZE (x) && moffsetx)
2221 sizex = INTVAL (MEM_SIZE (x));
2222 if (MEM_SIZE (y) && moffsety)
2223 sizey = INTVAL (MEM_SIZE (y));
2224
2225 /* Put the values of the memref with the lower offset in X's values. */
2226 if (offsetx > offsety)
2227 {
2228 tem = offsetx, offsetx = offsety, offsety = tem;
2229 tem = sizex, sizex = sizey, sizey = tem;
2230 }
2231
2232 /* If we don't know the size of the lower-offset value, we can't tell
2233 if they conflict. Otherwise, we do the test. */
2234 return sizex >= 0 && offsety >= offsetx + sizex;
2235 }
2236
2237 /* True dependence: X is read after store in MEM takes place. */
2238
2239 int
2240 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2241 bool (*varies) (const_rtx, bool))
2242 {
2243 rtx x_addr, mem_addr;
2244 rtx base;
2245
2246 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2247 return 1;
2248
2249 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2250 This is used in epilogue deallocation functions, and in cselib. */
2251 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2252 return 1;
2253 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2254 return 1;
2255 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2256 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2257 return 1;
2258
2259 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2260 return 0;
2261
2262 /* Read-only memory is by definition never modified, and therefore can't
2263 conflict with anything. We don't expect to find read-only set on MEM,
2264 but stupid user tricks can produce them, so don't die. */
2265 if (MEM_READONLY_P (x))
2266 return 0;
2267
2268 if (nonoverlapping_memrefs_p (mem, x))
2269 return 0;
2270
2271 if (mem_mode == VOIDmode)
2272 mem_mode = GET_MODE (mem);
2273
2274 x_addr = get_addr (XEXP (x, 0));
2275 mem_addr = get_addr (XEXP (mem, 0));
2276
2277 base = find_base_term (x_addr);
2278 if (base && (GET_CODE (base) == LABEL_REF
2279 || (GET_CODE (base) == SYMBOL_REF
2280 && CONSTANT_POOL_ADDRESS_P (base))))
2281 return 0;
2282
2283 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2284 return 0;
2285
2286 x_addr = canon_rtx (x_addr);
2287 mem_addr = canon_rtx (mem_addr);
2288
2289 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2290 SIZE_FOR_MODE (x), x_addr, 0))
2291 return 0;
2292
2293 if (aliases_everything_p (x))
2294 return 1;
2295
2296 /* We cannot use aliases_everything_p to test MEM, since we must look
2297 at MEM_MODE, rather than GET_MODE (MEM). */
2298 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2299 return 1;
2300
2301 /* In true_dependence we also allow BLKmode to alias anything. Why
2302 don't we do this in anti_dependence and output_dependence? */
2303 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2304 return 1;
2305
2306 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2307 return 0;
2308
2309 return rtx_refs_may_alias_p (x, mem, true);
2310 }
2311
2312 /* Canonical true dependence: X is read after store in MEM takes place.
2313 Variant of true_dependence which assumes MEM has already been
2314 canonicalized (hence we no longer do that here).
2315 The mem_addr argument has been added, since true_dependence computed
2316 this value prior to canonicalizing.
2317 If x_addr is non-NULL, it is used in preference of XEXP (x, 0). */
2318
2319 int
2320 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2321 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2322 {
2323 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2324 return 1;
2325
2326 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2327 This is used in epilogue deallocation functions. */
2328 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2329 return 1;
2330 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2331 return 1;
2332 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2333 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2334 return 1;
2335
2336 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2337 return 0;
2338
2339 /* Read-only memory is by definition never modified, and therefore can't
2340 conflict with anything. We don't expect to find read-only set on MEM,
2341 but stupid user tricks can produce them, so don't die. */
2342 if (MEM_READONLY_P (x))
2343 return 0;
2344
2345 if (nonoverlapping_memrefs_p (x, mem))
2346 return 0;
2347
2348 if (! x_addr)
2349 x_addr = get_addr (XEXP (x, 0));
2350
2351 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2352 return 0;
2353
2354 x_addr = canon_rtx (x_addr);
2355 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2356 SIZE_FOR_MODE (x), x_addr, 0))
2357 return 0;
2358
2359 if (aliases_everything_p (x))
2360 return 1;
2361
2362 /* We cannot use aliases_everything_p to test MEM, since we must look
2363 at MEM_MODE, rather than GET_MODE (MEM). */
2364 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2365 return 1;
2366
2367 /* In true_dependence we also allow BLKmode to alias anything. Why
2368 don't we do this in anti_dependence and output_dependence? */
2369 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2370 return 1;
2371
2372 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2373 return 0;
2374
2375 return rtx_refs_may_alias_p (x, mem, true);
2376 }
2377
2378 /* Returns nonzero if a write to X might alias a previous read from
2379 (or, if WRITEP is nonzero, a write to) MEM. */
2380
2381 static int
2382 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2383 {
2384 rtx x_addr, mem_addr;
2385 const_rtx fixed_scalar;
2386 rtx base;
2387
2388 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2389 return 1;
2390
2391 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2392 This is used in epilogue deallocation functions. */
2393 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2394 return 1;
2395 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2396 return 1;
2397 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2398 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2399 return 1;
2400
2401 /* A read from read-only memory can't conflict with read-write memory. */
2402 if (!writep && MEM_READONLY_P (mem))
2403 return 0;
2404
2405 if (nonoverlapping_memrefs_p (x, mem))
2406 return 0;
2407
2408 x_addr = get_addr (XEXP (x, 0));
2409 mem_addr = get_addr (XEXP (mem, 0));
2410
2411 if (! writep)
2412 {
2413 base = find_base_term (mem_addr);
2414 if (base && (GET_CODE (base) == LABEL_REF
2415 || (GET_CODE (base) == SYMBOL_REF
2416 && CONSTANT_POOL_ADDRESS_P (base))))
2417 return 0;
2418 }
2419
2420 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2421 GET_MODE (mem)))
2422 return 0;
2423
2424 x_addr = canon_rtx (x_addr);
2425 mem_addr = canon_rtx (mem_addr);
2426
2427 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2428 SIZE_FOR_MODE (x), x_addr, 0))
2429 return 0;
2430
2431 fixed_scalar
2432 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2433 rtx_addr_varies_p);
2434
2435 if ((fixed_scalar == mem && !aliases_everything_p (x))
2436 || (fixed_scalar == x && !aliases_everything_p (mem)))
2437 return 0;
2438
2439 return rtx_refs_may_alias_p (x, mem, false);
2440 }
2441
2442 /* Anti dependence: X is written after read in MEM takes place. */
2443
2444 int
2445 anti_dependence (const_rtx mem, const_rtx x)
2446 {
2447 return write_dependence_p (mem, x, /*writep=*/0);
2448 }
2449
2450 /* Output dependence: X is written after store in MEM takes place. */
2451
2452 int
2453 output_dependence (const_rtx mem, const_rtx x)
2454 {
2455 return write_dependence_p (mem, x, /*writep=*/1);
2456 }
2457 \f
2458
2459 void
2460 init_alias_target (void)
2461 {
2462 int i;
2463
2464 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2465
2466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2467 /* Check whether this register can hold an incoming pointer
2468 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2469 numbers, so translate if necessary due to register windows. */
2470 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2471 && HARD_REGNO_MODE_OK (i, Pmode))
2472 static_reg_base_value[i]
2473 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2474
2475 static_reg_base_value[STACK_POINTER_REGNUM]
2476 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2477 static_reg_base_value[ARG_POINTER_REGNUM]
2478 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2479 static_reg_base_value[FRAME_POINTER_REGNUM]
2480 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2481 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2482 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2483 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2484 #endif
2485 }
2486
2487 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2488 to be memory reference. */
2489 static bool memory_modified;
2490 static void
2491 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2492 {
2493 if (MEM_P (x))
2494 {
2495 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2496 memory_modified = true;
2497 }
2498 }
2499
2500
2501 /* Return true when INSN possibly modify memory contents of MEM
2502 (i.e. address can be modified). */
2503 bool
2504 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2505 {
2506 if (!INSN_P (insn))
2507 return false;
2508 memory_modified = false;
2509 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2510 return memory_modified;
2511 }
2512
2513 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2514 array. */
2515
2516 void
2517 init_alias_analysis (void)
2518 {
2519 unsigned int maxreg = max_reg_num ();
2520 int changed, pass;
2521 int i;
2522 unsigned int ui;
2523 rtx insn;
2524
2525 timevar_push (TV_ALIAS_ANALYSIS);
2526
2527 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2528 reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2529 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2530
2531 /* If we have memory allocated from the previous run, use it. */
2532 if (old_reg_base_value)
2533 reg_base_value = old_reg_base_value;
2534
2535 if (reg_base_value)
2536 VEC_truncate (rtx, reg_base_value, 0);
2537
2538 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2539
2540 new_reg_base_value = XNEWVEC (rtx, maxreg);
2541 reg_seen = XNEWVEC (char, maxreg);
2542
2543 /* The basic idea is that each pass through this loop will use the
2544 "constant" information from the previous pass to propagate alias
2545 information through another level of assignments.
2546
2547 This could get expensive if the assignment chains are long. Maybe
2548 we should throttle the number of iterations, possibly based on
2549 the optimization level or flag_expensive_optimizations.
2550
2551 We could propagate more information in the first pass by making use
2552 of DF_REG_DEF_COUNT to determine immediately that the alias information
2553 for a pseudo is "constant".
2554
2555 A program with an uninitialized variable can cause an infinite loop
2556 here. Instead of doing a full dataflow analysis to detect such problems
2557 we just cap the number of iterations for the loop.
2558
2559 The state of the arrays for the set chain in question does not matter
2560 since the program has undefined behavior. */
2561
2562 pass = 0;
2563 do
2564 {
2565 /* Assume nothing will change this iteration of the loop. */
2566 changed = 0;
2567
2568 /* We want to assign the same IDs each iteration of this loop, so
2569 start counting from zero each iteration of the loop. */
2570 unique_id = 0;
2571
2572 /* We're at the start of the function each iteration through the
2573 loop, so we're copying arguments. */
2574 copying_arguments = true;
2575
2576 /* Wipe the potential alias information clean for this pass. */
2577 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2578
2579 /* Wipe the reg_seen array clean. */
2580 memset (reg_seen, 0, maxreg);
2581
2582 /* Mark all hard registers which may contain an address.
2583 The stack, frame and argument pointers may contain an address.
2584 An argument register which can hold a Pmode value may contain
2585 an address even if it is not in BASE_REGS.
2586
2587 The address expression is VOIDmode for an argument and
2588 Pmode for other registers. */
2589
2590 memcpy (new_reg_base_value, static_reg_base_value,
2591 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2592
2593 /* Walk the insns adding values to the new_reg_base_value array. */
2594 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2595 {
2596 if (INSN_P (insn))
2597 {
2598 rtx note, set;
2599
2600 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2601 /* The prologue/epilogue insns are not threaded onto the
2602 insn chain until after reload has completed. Thus,
2603 there is no sense wasting time checking if INSN is in
2604 the prologue/epilogue until after reload has completed. */
2605 if (reload_completed
2606 && prologue_epilogue_contains (insn))
2607 continue;
2608 #endif
2609
2610 /* If this insn has a noalias note, process it, Otherwise,
2611 scan for sets. A simple set will have no side effects
2612 which could change the base value of any other register. */
2613
2614 if (GET_CODE (PATTERN (insn)) == SET
2615 && REG_NOTES (insn) != 0
2616 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2617 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2618 else
2619 note_stores (PATTERN (insn), record_set, NULL);
2620
2621 set = single_set (insn);
2622
2623 if (set != 0
2624 && REG_P (SET_DEST (set))
2625 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2626 {
2627 unsigned int regno = REGNO (SET_DEST (set));
2628 rtx src = SET_SRC (set);
2629 rtx t;
2630
2631 note = find_reg_equal_equiv_note (insn);
2632 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2633 && DF_REG_DEF_COUNT (regno) != 1)
2634 note = NULL_RTX;
2635
2636 if (note != NULL_RTX
2637 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2638 && ! rtx_varies_p (XEXP (note, 0), 1)
2639 && ! reg_overlap_mentioned_p (SET_DEST (set),
2640 XEXP (note, 0)))
2641 {
2642 set_reg_known_value (regno, XEXP (note, 0));
2643 set_reg_known_equiv_p (regno,
2644 REG_NOTE_KIND (note) == REG_EQUIV);
2645 }
2646 else if (DF_REG_DEF_COUNT (regno) == 1
2647 && GET_CODE (src) == PLUS
2648 && REG_P (XEXP (src, 0))
2649 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2650 && CONST_INT_P (XEXP (src, 1)))
2651 {
2652 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2653 set_reg_known_value (regno, t);
2654 set_reg_known_equiv_p (regno, 0);
2655 }
2656 else if (DF_REG_DEF_COUNT (regno) == 1
2657 && ! rtx_varies_p (src, 1))
2658 {
2659 set_reg_known_value (regno, src);
2660 set_reg_known_equiv_p (regno, 0);
2661 }
2662 }
2663 }
2664 else if (NOTE_P (insn)
2665 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2666 copying_arguments = false;
2667 }
2668
2669 /* Now propagate values from new_reg_base_value to reg_base_value. */
2670 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2671
2672 for (ui = 0; ui < maxreg; ui++)
2673 {
2674 if (new_reg_base_value[ui]
2675 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2676 && ! rtx_equal_p (new_reg_base_value[ui],
2677 VEC_index (rtx, reg_base_value, ui)))
2678 {
2679 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2680 changed = 1;
2681 }
2682 }
2683 }
2684 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2685
2686 /* Fill in the remaining entries. */
2687 for (i = 0; i < (int)reg_known_value_size; i++)
2688 if (reg_known_value[i] == 0)
2689 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2690
2691 /* Clean up. */
2692 free (new_reg_base_value);
2693 new_reg_base_value = 0;
2694 free (reg_seen);
2695 reg_seen = 0;
2696 timevar_pop (TV_ALIAS_ANALYSIS);
2697 }
2698
2699 void
2700 end_alias_analysis (void)
2701 {
2702 old_reg_base_value = reg_base_value;
2703 ggc_free (reg_known_value);
2704 reg_known_value = 0;
2705 reg_known_value_size = 0;
2706 free (reg_known_equiv_p);
2707 reg_known_equiv_p = 0;
2708 }
2709
2710 #include "gt-alias.h"