Merge dataflow branch into mainline
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "varray.h"
47 #include "tree-pass.h"
48 #include "ipa-type-escape.h"
49 #include "df.h"
50
51 /* The aliasing API provided here solves related but different problems:
52
53 Say there exists (in c)
54
55 struct X {
56 struct Y y1;
57 struct Z z2;
58 } x1, *px1, *px2;
59
60 struct Y y2, *py;
61 struct Z z2, *pz;
62
63
64 py = &px1.y1;
65 px2 = &x1;
66
67 Consider the four questions:
68
69 Can a store to x1 interfere with px2->y1?
70 Can a store to x1 interfere with px2->z2?
71 (*px2).z2
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
74
75 The answer to these questions can be yes, yes, yes, and maybe.
76
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store thru a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
81
82 The last two of the questions can be solved in the same way as the
83 first two questions but this is too conservative. The observation
84 is that in some cases analysis we can know if which (if any) fields
85 are addressed and if those addresses are used in bad ways. This
86 analysis may be language specific. In C, arbitrary operations may
87 be applied to pointers. However, there is some indication that
88 this may be too conservative for some C++ types.
89
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
92
93 Historically in GCC, these two problems were combined and a single
94 data structure was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two question is similar to the
97 first, but does not contain have the fields in it whose address are
98 never taken. For types that do escape the compilation unit, the
99 data structures will have identical information.
100 */
101
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
106
107 struct S { int i; double d; };
108
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
114 / \
115 / \
116 |/_ _\|
117 int double
118
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
122
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
127
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
131
132 struct alias_set_entry GTY(())
133 {
134 /* The alias set number, as stored in MEM_ALIAS_SET. */
135 HOST_WIDE_INT alias_set;
136
137 /* The children of the alias set. These are not just the immediate
138 children, but, in fact, all descendants. So, if we have:
139
140 struct T { struct S s; float f; }
141
142 continuing our example above, the children here will be all of
143 `int', `double', `float', and `struct S'. */
144 splay_tree GTY((param1_is (int), param2_is (int))) children;
145
146 /* Nonzero if would have a child of zero: this effectively makes this
147 alias set the same as alias set zero. */
148 int has_zero_child;
149 };
150 typedef struct alias_set_entry *alias_set_entry;
151
152 static int rtx_equal_for_memref_p (rtx, rtx);
153 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
154 static void record_set (rtx, rtx, void *);
155 static int base_alias_check (rtx, rtx, enum machine_mode,
156 enum machine_mode);
157 static rtx find_base_value (rtx);
158 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
159 static int insert_subset_children (splay_tree_node, void*);
160 static tree find_base_decl (tree);
161 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
162 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
163 int (*) (rtx, int));
164 static int aliases_everything_p (rtx);
165 static bool nonoverlapping_component_refs_p (tree, tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int nonoverlapping_memrefs_p (rtx, rtx);
169 static int write_dependence_p (rtx, rtx, int);
170
171 static void memory_modified_1 (rtx, rtx, void *);
172 static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
173
174 /* Set up all info needed to perform alias analysis on memory references. */
175
176 /* Returns the size in bytes of the mode of X. */
177 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
178
179 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
180 different alias sets. We ignore alias sets in functions making use
181 of variable arguments because the va_arg macros on some systems are
182 not legal ANSI C. */
183 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
184 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
185
186 /* Cap the number of passes we make over the insns propagating alias
187 information through set chains. 10 is a completely arbitrary choice. */
188 #define MAX_ALIAS_LOOP_PASSES 10
189
190 /* reg_base_value[N] gives an address to which register N is related.
191 If all sets after the first add or subtract to the current value
192 or otherwise modify it so it does not point to a different top level
193 object, reg_base_value[N] is equal to the address part of the source
194 of the first set.
195
196 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
197 expressions represent certain special values: function arguments and
198 the stack, frame, and argument pointers.
199
200 The contents of an ADDRESS is not normally used, the mode of the
201 ADDRESS determines whether the ADDRESS is a function argument or some
202 other special value. Pointer equality, not rtx_equal_p, determines whether
203 two ADDRESS expressions refer to the same base address.
204
205 The only use of the contents of an ADDRESS is for determining if the
206 current function performs nonlocal memory memory references for the
207 purposes of marking the function as a constant function. */
208
209 static GTY(()) VEC(rtx,gc) *reg_base_value;
210 static rtx *new_reg_base_value;
211
212 /* We preserve the copy of old array around to avoid amount of garbage
213 produced. About 8% of garbage produced were attributed to this
214 array. */
215 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
216
217 /* Static hunks of RTL used by the aliasing code; these are initialized
218 once per function to avoid unnecessary RTL allocations. */
219 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
220
221 #define REG_BASE_VALUE(X) \
222 (REGNO (X) < VEC_length (rtx, reg_base_value) \
223 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
224
225 /* Vector indexed by N giving the initial (unchanging) value known for
226 pseudo-register N. This array is initialized in init_alias_analysis,
227 and does not change until end_alias_analysis is called. */
228 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
229
230 /* Indicates number of valid entries in reg_known_value. */
231 static GTY(()) unsigned int reg_known_value_size;
232
233 /* Vector recording for each reg_known_value whether it is due to a
234 REG_EQUIV note. Future passes (viz., reload) may replace the
235 pseudo with the equivalent expression and so we account for the
236 dependences that would be introduced if that happens.
237
238 The REG_EQUIV notes created in assign_parms may mention the arg
239 pointer, and there are explicit insns in the RTL that modify the
240 arg pointer. Thus we must ensure that such insns don't get
241 scheduled across each other because that would invalidate the
242 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
243 wrong, but solving the problem in the scheduler will likely give
244 better code, so we do it here. */
245 static bool *reg_known_equiv_p;
246
247 /* True when scanning insns from the start of the rtl to the
248 NOTE_INSN_FUNCTION_BEG note. */
249 static bool copying_arguments;
250
251 DEF_VEC_P(alias_set_entry);
252 DEF_VEC_ALLOC_P(alias_set_entry,gc);
253
254 /* The splay-tree used to store the various alias set entries. */
255 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
256 \f
257 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
258 such an entry, or NULL otherwise. */
259
260 static inline alias_set_entry
261 get_alias_set_entry (HOST_WIDE_INT alias_set)
262 {
263 return VEC_index (alias_set_entry, alias_sets, alias_set);
264 }
265
266 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
267 the two MEMs cannot alias each other. */
268
269 static inline int
270 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
271 {
272 /* Perform a basic sanity check. Namely, that there are no alias sets
273 if we're not using strict aliasing. This helps to catch bugs
274 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
275 where a MEM is allocated in some way other than by the use of
276 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
277 use alias sets to indicate that spilled registers cannot alias each
278 other, we might need to remove this check. */
279 gcc_assert (flag_strict_aliasing
280 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
281
282 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
283 }
284
285 /* Insert the NODE into the splay tree given by DATA. Used by
286 record_alias_subset via splay_tree_foreach. */
287
288 static int
289 insert_subset_children (splay_tree_node node, void *data)
290 {
291 splay_tree_insert ((splay_tree) data, node->key, node->value);
292
293 return 0;
294 }
295
296 /* Return true if the first alias set is a subset of the second. */
297
298 bool
299 alias_set_subset_of (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
300 {
301 alias_set_entry ase;
302
303 /* Everything is a subset of the "aliases everything" set. */
304 if (set2 == 0)
305 return true;
306
307 /* Otherwise, check if set1 is a subset of set2. */
308 ase = get_alias_set_entry (set2);
309 if (ase != 0
310 && (splay_tree_lookup (ase->children,
311 (splay_tree_key) set1)))
312 return true;
313 return false;
314 }
315
316 /* Return 1 if the two specified alias sets may conflict. */
317
318 int
319 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
320 {
321 alias_set_entry ase;
322
323 /* If have no alias set information for one of the operands, we have
324 to assume it can alias anything. */
325 if (set1 == 0 || set2 == 0
326 /* If the two alias sets are the same, they may alias. */
327 || set1 == set2)
328 return 1;
329
330 /* See if the first alias set is a subset of the second. */
331 ase = get_alias_set_entry (set1);
332 if (ase != 0
333 && (ase->has_zero_child
334 || splay_tree_lookup (ase->children,
335 (splay_tree_key) set2)))
336 return 1;
337
338 /* Now do the same, but with the alias sets reversed. */
339 ase = get_alias_set_entry (set2);
340 if (ase != 0
341 && (ase->has_zero_child
342 || splay_tree_lookup (ase->children,
343 (splay_tree_key) set1)))
344 return 1;
345
346 /* The two alias sets are distinct and neither one is the
347 child of the other. Therefore, they cannot alias. */
348 return 0;
349 }
350
351 /* Return 1 if the two specified alias sets might conflict, or if any subtype
352 of these alias sets might conflict. */
353
354 int
355 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
356 {
357 if (set1 == 0 || set2 == 0 || set1 == set2)
358 return 1;
359
360 return 0;
361 }
362
363 \f
364 /* Return 1 if any MEM object of type T1 will always conflict (using the
365 dependency routines in this file) with any MEM object of type T2.
366 This is used when allocating temporary storage. If T1 and/or T2 are
367 NULL_TREE, it means we know nothing about the storage. */
368
369 int
370 objects_must_conflict_p (tree t1, tree t2)
371 {
372 HOST_WIDE_INT set1, set2;
373
374 /* If neither has a type specified, we don't know if they'll conflict
375 because we may be using them to store objects of various types, for
376 example the argument and local variables areas of inlined functions. */
377 if (t1 == 0 && t2 == 0)
378 return 0;
379
380 /* If they are the same type, they must conflict. */
381 if (t1 == t2
382 /* Likewise if both are volatile. */
383 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
384 return 1;
385
386 set1 = t1 ? get_alias_set (t1) : 0;
387 set2 = t2 ? get_alias_set (t2) : 0;
388
389 /* Otherwise they conflict if they have no alias set or the same. We
390 can't simply use alias_sets_conflict_p here, because we must make
391 sure that every subtype of t1 will conflict with every subtype of
392 t2 for which a pair of subobjects of these respective subtypes
393 overlaps on the stack. */
394 return set1 == 0 || set2 == 0 || set1 == set2;
395 }
396 \f
397 /* T is an expression with pointer type. Find the DECL on which this
398 expression is based. (For example, in `a[i]' this would be `a'.)
399 If there is no such DECL, or a unique decl cannot be determined,
400 NULL_TREE is returned. */
401
402 static tree
403 find_base_decl (tree t)
404 {
405 tree d0, d1;
406
407 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
408 return 0;
409
410 /* If this is a declaration, return it. If T is based on a restrict
411 qualified decl, return that decl. */
412 if (DECL_P (t))
413 {
414 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
415 t = DECL_GET_RESTRICT_BASE (t);
416 return t;
417 }
418
419 /* Handle general expressions. It would be nice to deal with
420 COMPONENT_REFs here. If we could tell that `a' and `b' were the
421 same, then `a->f' and `b->f' are also the same. */
422 switch (TREE_CODE_CLASS (TREE_CODE (t)))
423 {
424 case tcc_unary:
425 return find_base_decl (TREE_OPERAND (t, 0));
426
427 case tcc_binary:
428 /* Return 0 if found in neither or both are the same. */
429 d0 = find_base_decl (TREE_OPERAND (t, 0));
430 d1 = find_base_decl (TREE_OPERAND (t, 1));
431 if (d0 == d1)
432 return d0;
433 else if (d0 == 0)
434 return d1;
435 else if (d1 == 0)
436 return d0;
437 else
438 return 0;
439
440 default:
441 return 0;
442 }
443 }
444
445 /* Return true if all nested component references handled by
446 get_inner_reference in T are such that we should use the alias set
447 provided by the object at the heart of T.
448
449 This is true for non-addressable components (which don't have their
450 own alias set), as well as components of objects in alias set zero.
451 This later point is a special case wherein we wish to override the
452 alias set used by the component, but we don't have per-FIELD_DECL
453 assignable alias sets. */
454
455 bool
456 component_uses_parent_alias_set (tree t)
457 {
458 while (1)
459 {
460 /* If we're at the end, it vacuously uses its own alias set. */
461 if (!handled_component_p (t))
462 return false;
463
464 switch (TREE_CODE (t))
465 {
466 case COMPONENT_REF:
467 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
468 return true;
469 break;
470
471 case ARRAY_REF:
472 case ARRAY_RANGE_REF:
473 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
474 return true;
475 break;
476
477 case REALPART_EXPR:
478 case IMAGPART_EXPR:
479 break;
480
481 default:
482 /* Bitfields and casts are never addressable. */
483 return true;
484 }
485
486 t = TREE_OPERAND (t, 0);
487 if (get_alias_set (TREE_TYPE (t)) == 0)
488 return true;
489 }
490 }
491
492 /* Return the alias set for T, which may be either a type or an
493 expression. Call language-specific routine for help, if needed. */
494
495 HOST_WIDE_INT
496 get_alias_set (tree t)
497 {
498 HOST_WIDE_INT set;
499
500 /* If we're not doing any alias analysis, just assume everything
501 aliases everything else. Also return 0 if this or its type is
502 an error. */
503 if (! flag_strict_aliasing || t == error_mark_node
504 || (! TYPE_P (t)
505 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
506 return 0;
507
508 /* We can be passed either an expression or a type. This and the
509 language-specific routine may make mutually-recursive calls to each other
510 to figure out what to do. At each juncture, we see if this is a tree
511 that the language may need to handle specially. First handle things that
512 aren't types. */
513 if (! TYPE_P (t))
514 {
515 tree inner = t;
516
517 /* Remove any nops, then give the language a chance to do
518 something with this tree before we look at it. */
519 STRIP_NOPS (t);
520 set = lang_hooks.get_alias_set (t);
521 if (set != -1)
522 return set;
523
524 /* First see if the actual object referenced is an INDIRECT_REF from a
525 restrict-qualified pointer or a "void *". */
526 while (handled_component_p (inner))
527 {
528 inner = TREE_OPERAND (inner, 0);
529 STRIP_NOPS (inner);
530 }
531
532 /* Check for accesses through restrict-qualified pointers. */
533 if (INDIRECT_REF_P (inner))
534 {
535 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
536
537 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
538 {
539 /* If we haven't computed the actual alias set, do it now. */
540 if (DECL_POINTER_ALIAS_SET (decl) == -2)
541 {
542 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
543
544 /* No two restricted pointers can point at the same thing.
545 However, a restricted pointer can point at the same thing
546 as an unrestricted pointer, if that unrestricted pointer
547 is based on the restricted pointer. So, we make the
548 alias set for the restricted pointer a subset of the
549 alias set for the type pointed to by the type of the
550 decl. */
551 HOST_WIDE_INT pointed_to_alias_set
552 = get_alias_set (pointed_to_type);
553
554 if (pointed_to_alias_set == 0)
555 /* It's not legal to make a subset of alias set zero. */
556 DECL_POINTER_ALIAS_SET (decl) = 0;
557 else if (AGGREGATE_TYPE_P (pointed_to_type))
558 /* For an aggregate, we must treat the restricted
559 pointer the same as an ordinary pointer. If we
560 were to make the type pointed to by the
561 restricted pointer a subset of the pointed-to
562 type, then we would believe that other subsets
563 of the pointed-to type (such as fields of that
564 type) do not conflict with the type pointed to
565 by the restricted pointer. */
566 DECL_POINTER_ALIAS_SET (decl)
567 = pointed_to_alias_set;
568 else
569 {
570 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
571 record_alias_subset (pointed_to_alias_set,
572 DECL_POINTER_ALIAS_SET (decl));
573 }
574 }
575
576 /* We use the alias set indicated in the declaration. */
577 return DECL_POINTER_ALIAS_SET (decl);
578 }
579
580 /* If we have an INDIRECT_REF via a void pointer, we don't
581 know anything about what that might alias. Likewise if the
582 pointer is marked that way. */
583 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
584 || (TYPE_REF_CAN_ALIAS_ALL
585 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
586 return 0;
587 }
588
589 /* Otherwise, pick up the outermost object that we could have a pointer
590 to, processing conversions as above. */
591 while (component_uses_parent_alias_set (t))
592 {
593 t = TREE_OPERAND (t, 0);
594 STRIP_NOPS (t);
595 }
596
597 /* If we've already determined the alias set for a decl, just return
598 it. This is necessary for C++ anonymous unions, whose component
599 variables don't look like union members (boo!). */
600 if (TREE_CODE (t) == VAR_DECL
601 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
602 return MEM_ALIAS_SET (DECL_RTL (t));
603
604 /* Now all we care about is the type. */
605 t = TREE_TYPE (t);
606 }
607
608 /* Variant qualifiers don't affect the alias set, so get the main
609 variant. If this is a type with a known alias set, return it. */
610 t = TYPE_MAIN_VARIANT (t);
611 if (TYPE_ALIAS_SET_KNOWN_P (t))
612 return TYPE_ALIAS_SET (t);
613
614 /* See if the language has special handling for this type. */
615 set = lang_hooks.get_alias_set (t);
616 if (set != -1)
617 return set;
618
619 /* There are no objects of FUNCTION_TYPE, so there's no point in
620 using up an alias set for them. (There are, of course, pointers
621 and references to functions, but that's different.) */
622 else if (TREE_CODE (t) == FUNCTION_TYPE)
623 set = 0;
624
625 /* Unless the language specifies otherwise, let vector types alias
626 their components. This avoids some nasty type punning issues in
627 normal usage. And indeed lets vectors be treated more like an
628 array slice. */
629 else if (TREE_CODE (t) == VECTOR_TYPE)
630 set = get_alias_set (TREE_TYPE (t));
631
632 else
633 /* Otherwise make a new alias set for this type. */
634 set = new_alias_set ();
635
636 TYPE_ALIAS_SET (t) = set;
637
638 /* If this is an aggregate type, we must record any component aliasing
639 information. */
640 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
641 record_component_aliases (t);
642
643 return set;
644 }
645
646 /* Return a brand-new alias set. */
647
648 HOST_WIDE_INT
649 new_alias_set (void)
650 {
651 if (flag_strict_aliasing)
652 {
653 if (alias_sets == 0)
654 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
655 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
656 return VEC_length (alias_set_entry, alias_sets) - 1;
657 }
658 else
659 return 0;
660 }
661
662 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
663 not everything that aliases SUPERSET also aliases SUBSET. For example,
664 in C, a store to an `int' can alias a load of a structure containing an
665 `int', and vice versa. But it can't alias a load of a 'double' member
666 of the same structure. Here, the structure would be the SUPERSET and
667 `int' the SUBSET. This relationship is also described in the comment at
668 the beginning of this file.
669
670 This function should be called only once per SUPERSET/SUBSET pair.
671
672 It is illegal for SUPERSET to be zero; everything is implicitly a
673 subset of alias set zero. */
674
675 static void
676 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
677 {
678 alias_set_entry superset_entry;
679 alias_set_entry subset_entry;
680
681 /* It is possible in complex type situations for both sets to be the same,
682 in which case we can ignore this operation. */
683 if (superset == subset)
684 return;
685
686 gcc_assert (superset);
687
688 superset_entry = get_alias_set_entry (superset);
689 if (superset_entry == 0)
690 {
691 /* Create an entry for the SUPERSET, so that we have a place to
692 attach the SUBSET. */
693 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
694 superset_entry->alias_set = superset;
695 superset_entry->children
696 = splay_tree_new_ggc (splay_tree_compare_ints);
697 superset_entry->has_zero_child = 0;
698 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
699 }
700
701 if (subset == 0)
702 superset_entry->has_zero_child = 1;
703 else
704 {
705 subset_entry = get_alias_set_entry (subset);
706 /* If there is an entry for the subset, enter all of its children
707 (if they are not already present) as children of the SUPERSET. */
708 if (subset_entry)
709 {
710 if (subset_entry->has_zero_child)
711 superset_entry->has_zero_child = 1;
712
713 splay_tree_foreach (subset_entry->children, insert_subset_children,
714 superset_entry->children);
715 }
716
717 /* Enter the SUBSET itself as a child of the SUPERSET. */
718 splay_tree_insert (superset_entry->children,
719 (splay_tree_key) subset, 0);
720 }
721 }
722
723 /* Record that component types of TYPE, if any, are part of that type for
724 aliasing purposes. For record types, we only record component types
725 for fields that are marked addressable. For array types, we always
726 record the component types, so the front end should not call this
727 function if the individual component aren't addressable. */
728
729 void
730 record_component_aliases (tree type)
731 {
732 HOST_WIDE_INT superset = get_alias_set (type);
733 tree field;
734
735 if (superset == 0)
736 return;
737
738 switch (TREE_CODE (type))
739 {
740 case ARRAY_TYPE:
741 if (! TYPE_NONALIASED_COMPONENT (type))
742 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
743 break;
744
745 case RECORD_TYPE:
746 case UNION_TYPE:
747 case QUAL_UNION_TYPE:
748 /* Recursively record aliases for the base classes, if there are any. */
749 if (TYPE_BINFO (type))
750 {
751 int i;
752 tree binfo, base_binfo;
753
754 for (binfo = TYPE_BINFO (type), i = 0;
755 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
756 record_alias_subset (superset,
757 get_alias_set (BINFO_TYPE (base_binfo)));
758 }
759 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
760 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
761 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
762 break;
763
764 case COMPLEX_TYPE:
765 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
766 break;
767
768 default:
769 break;
770 }
771 }
772
773 /* Allocate an alias set for use in storing and reading from the varargs
774 spill area. */
775
776 static GTY(()) HOST_WIDE_INT varargs_set = -1;
777
778 HOST_WIDE_INT
779 get_varargs_alias_set (void)
780 {
781 #if 1
782 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
783 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
784 consistently use the varargs alias set for loads from the varargs
785 area. So don't use it anywhere. */
786 return 0;
787 #else
788 if (varargs_set == -1)
789 varargs_set = new_alias_set ();
790
791 return varargs_set;
792 #endif
793 }
794
795 /* Likewise, but used for the fixed portions of the frame, e.g., register
796 save areas. */
797
798 static GTY(()) HOST_WIDE_INT frame_set = -1;
799
800 HOST_WIDE_INT
801 get_frame_alias_set (void)
802 {
803 if (frame_set == -1)
804 frame_set = new_alias_set ();
805
806 return frame_set;
807 }
808
809 /* Inside SRC, the source of a SET, find a base address. */
810
811 static rtx
812 find_base_value (rtx src)
813 {
814 unsigned int regno;
815
816 switch (GET_CODE (src))
817 {
818 case SYMBOL_REF:
819 case LABEL_REF:
820 return src;
821
822 case REG:
823 regno = REGNO (src);
824 /* At the start of a function, argument registers have known base
825 values which may be lost later. Returning an ADDRESS
826 expression here allows optimization based on argument values
827 even when the argument registers are used for other purposes. */
828 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
829 return new_reg_base_value[regno];
830
831 /* If a pseudo has a known base value, return it. Do not do this
832 for non-fixed hard regs since it can result in a circular
833 dependency chain for registers which have values at function entry.
834
835 The test above is not sufficient because the scheduler may move
836 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
837 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
838 && regno < VEC_length (rtx, reg_base_value))
839 {
840 /* If we're inside init_alias_analysis, use new_reg_base_value
841 to reduce the number of relaxation iterations. */
842 if (new_reg_base_value && new_reg_base_value[regno]
843 && DF_REG_DEF_COUNT (regno) == 1)
844 return new_reg_base_value[regno];
845
846 if (VEC_index (rtx, reg_base_value, regno))
847 return VEC_index (rtx, reg_base_value, regno);
848 }
849
850 return 0;
851
852 case MEM:
853 /* Check for an argument passed in memory. Only record in the
854 copying-arguments block; it is too hard to track changes
855 otherwise. */
856 if (copying_arguments
857 && (XEXP (src, 0) == arg_pointer_rtx
858 || (GET_CODE (XEXP (src, 0)) == PLUS
859 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
860 return gen_rtx_ADDRESS (VOIDmode, src);
861 return 0;
862
863 case CONST:
864 src = XEXP (src, 0);
865 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
866 break;
867
868 /* ... fall through ... */
869
870 case PLUS:
871 case MINUS:
872 {
873 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
874
875 /* If either operand is a REG that is a known pointer, then it
876 is the base. */
877 if (REG_P (src_0) && REG_POINTER (src_0))
878 return find_base_value (src_0);
879 if (REG_P (src_1) && REG_POINTER (src_1))
880 return find_base_value (src_1);
881
882 /* If either operand is a REG, then see if we already have
883 a known value for it. */
884 if (REG_P (src_0))
885 {
886 temp = find_base_value (src_0);
887 if (temp != 0)
888 src_0 = temp;
889 }
890
891 if (REG_P (src_1))
892 {
893 temp = find_base_value (src_1);
894 if (temp!= 0)
895 src_1 = temp;
896 }
897
898 /* If either base is named object or a special address
899 (like an argument or stack reference), then use it for the
900 base term. */
901 if (src_0 != 0
902 && (GET_CODE (src_0) == SYMBOL_REF
903 || GET_CODE (src_0) == LABEL_REF
904 || (GET_CODE (src_0) == ADDRESS
905 && GET_MODE (src_0) != VOIDmode)))
906 return src_0;
907
908 if (src_1 != 0
909 && (GET_CODE (src_1) == SYMBOL_REF
910 || GET_CODE (src_1) == LABEL_REF
911 || (GET_CODE (src_1) == ADDRESS
912 && GET_MODE (src_1) != VOIDmode)))
913 return src_1;
914
915 /* Guess which operand is the base address:
916 If either operand is a symbol, then it is the base. If
917 either operand is a CONST_INT, then the other is the base. */
918 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
919 return find_base_value (src_0);
920 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
921 return find_base_value (src_1);
922
923 return 0;
924 }
925
926 case LO_SUM:
927 /* The standard form is (lo_sum reg sym) so look only at the
928 second operand. */
929 return find_base_value (XEXP (src, 1));
930
931 case AND:
932 /* If the second operand is constant set the base
933 address to the first operand. */
934 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
935 return find_base_value (XEXP (src, 0));
936 return 0;
937
938 case TRUNCATE:
939 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
940 break;
941 /* Fall through. */
942 case HIGH:
943 case PRE_INC:
944 case PRE_DEC:
945 case POST_INC:
946 case POST_DEC:
947 case PRE_MODIFY:
948 case POST_MODIFY:
949 return find_base_value (XEXP (src, 0));
950
951 case ZERO_EXTEND:
952 case SIGN_EXTEND: /* used for NT/Alpha pointers */
953 {
954 rtx temp = find_base_value (XEXP (src, 0));
955
956 if (temp != 0 && CONSTANT_P (temp))
957 temp = convert_memory_address (Pmode, temp);
958
959 return temp;
960 }
961
962 default:
963 break;
964 }
965
966 return 0;
967 }
968
969 /* Called from init_alias_analysis indirectly through note_stores. */
970
971 /* While scanning insns to find base values, reg_seen[N] is nonzero if
972 register N has been set in this function. */
973 static char *reg_seen;
974
975 /* Addresses which are known not to alias anything else are identified
976 by a unique integer. */
977 static int unique_id;
978
979 static void
980 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
981 {
982 unsigned regno;
983 rtx src;
984 int n;
985
986 if (!REG_P (dest))
987 return;
988
989 regno = REGNO (dest);
990
991 gcc_assert (regno < VEC_length (rtx, reg_base_value));
992
993 /* If this spans multiple hard registers, then we must indicate that every
994 register has an unusable value. */
995 if (regno < FIRST_PSEUDO_REGISTER)
996 n = hard_regno_nregs[regno][GET_MODE (dest)];
997 else
998 n = 1;
999 if (n != 1)
1000 {
1001 while (--n >= 0)
1002 {
1003 reg_seen[regno + n] = 1;
1004 new_reg_base_value[regno + n] = 0;
1005 }
1006 return;
1007 }
1008
1009 if (set)
1010 {
1011 /* A CLOBBER wipes out any old value but does not prevent a previously
1012 unset register from acquiring a base address (i.e. reg_seen is not
1013 set). */
1014 if (GET_CODE (set) == CLOBBER)
1015 {
1016 new_reg_base_value[regno] = 0;
1017 return;
1018 }
1019 src = SET_SRC (set);
1020 }
1021 else
1022 {
1023 if (reg_seen[regno])
1024 {
1025 new_reg_base_value[regno] = 0;
1026 return;
1027 }
1028 reg_seen[regno] = 1;
1029 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1030 GEN_INT (unique_id++));
1031 return;
1032 }
1033
1034 /* If this is not the first set of REGNO, see whether the new value
1035 is related to the old one. There are two cases of interest:
1036
1037 (1) The register might be assigned an entirely new value
1038 that has the same base term as the original set.
1039
1040 (2) The set might be a simple self-modification that
1041 cannot change REGNO's base value.
1042
1043 If neither case holds, reject the original base value as invalid.
1044 Note that the following situation is not detected:
1045
1046 extern int x, y; int *p = &x; p += (&y-&x);
1047
1048 ANSI C does not allow computing the difference of addresses
1049 of distinct top level objects. */
1050 if (new_reg_base_value[regno] != 0
1051 && find_base_value (src) != new_reg_base_value[regno])
1052 switch (GET_CODE (src))
1053 {
1054 case LO_SUM:
1055 case MINUS:
1056 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1057 new_reg_base_value[regno] = 0;
1058 break;
1059 case PLUS:
1060 /* If the value we add in the PLUS is also a valid base value,
1061 this might be the actual base value, and the original value
1062 an index. */
1063 {
1064 rtx other = NULL_RTX;
1065
1066 if (XEXP (src, 0) == dest)
1067 other = XEXP (src, 1);
1068 else if (XEXP (src, 1) == dest)
1069 other = XEXP (src, 0);
1070
1071 if (! other || find_base_value (other))
1072 new_reg_base_value[regno] = 0;
1073 break;
1074 }
1075 case AND:
1076 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1077 new_reg_base_value[regno] = 0;
1078 break;
1079 default:
1080 new_reg_base_value[regno] = 0;
1081 break;
1082 }
1083 /* If this is the first set of a register, record the value. */
1084 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1085 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1086 new_reg_base_value[regno] = find_base_value (src);
1087
1088 reg_seen[regno] = 1;
1089 }
1090
1091 /* If a value is known for REGNO, return it. */
1092
1093 rtx
1094 get_reg_known_value (unsigned int regno)
1095 {
1096 if (regno >= FIRST_PSEUDO_REGISTER)
1097 {
1098 regno -= FIRST_PSEUDO_REGISTER;
1099 if (regno < reg_known_value_size)
1100 return reg_known_value[regno];
1101 }
1102 return NULL;
1103 }
1104
1105 /* Set it. */
1106
1107 static void
1108 set_reg_known_value (unsigned int regno, rtx val)
1109 {
1110 if (regno >= FIRST_PSEUDO_REGISTER)
1111 {
1112 regno -= FIRST_PSEUDO_REGISTER;
1113 if (regno < reg_known_value_size)
1114 reg_known_value[regno] = val;
1115 }
1116 }
1117
1118 /* Similarly for reg_known_equiv_p. */
1119
1120 bool
1121 get_reg_known_equiv_p (unsigned int regno)
1122 {
1123 if (regno >= FIRST_PSEUDO_REGISTER)
1124 {
1125 regno -= FIRST_PSEUDO_REGISTER;
1126 if (regno < reg_known_value_size)
1127 return reg_known_equiv_p[regno];
1128 }
1129 return false;
1130 }
1131
1132 static void
1133 set_reg_known_equiv_p (unsigned int regno, bool val)
1134 {
1135 if (regno >= FIRST_PSEUDO_REGISTER)
1136 {
1137 regno -= FIRST_PSEUDO_REGISTER;
1138 if (regno < reg_known_value_size)
1139 reg_known_equiv_p[regno] = val;
1140 }
1141 }
1142
1143
1144 /* Returns a canonical version of X, from the point of view alias
1145 analysis. (For example, if X is a MEM whose address is a register,
1146 and the register has a known value (say a SYMBOL_REF), then a MEM
1147 whose address is the SYMBOL_REF is returned.) */
1148
1149 rtx
1150 canon_rtx (rtx x)
1151 {
1152 /* Recursively look for equivalences. */
1153 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1154 {
1155 rtx t = get_reg_known_value (REGNO (x));
1156 if (t == x)
1157 return x;
1158 if (t)
1159 return canon_rtx (t);
1160 }
1161
1162 if (GET_CODE (x) == PLUS)
1163 {
1164 rtx x0 = canon_rtx (XEXP (x, 0));
1165 rtx x1 = canon_rtx (XEXP (x, 1));
1166
1167 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1168 {
1169 if (GET_CODE (x0) == CONST_INT)
1170 return plus_constant (x1, INTVAL (x0));
1171 else if (GET_CODE (x1) == CONST_INT)
1172 return plus_constant (x0, INTVAL (x1));
1173 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1174 }
1175 }
1176
1177 /* This gives us much better alias analysis when called from
1178 the loop optimizer. Note we want to leave the original
1179 MEM alone, but need to return the canonicalized MEM with
1180 all the flags with their original values. */
1181 else if (MEM_P (x))
1182 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1183
1184 return x;
1185 }
1186
1187 /* Return 1 if X and Y are identical-looking rtx's.
1188 Expect that X and Y has been already canonicalized.
1189
1190 We use the data in reg_known_value above to see if two registers with
1191 different numbers are, in fact, equivalent. */
1192
1193 static int
1194 rtx_equal_for_memref_p (rtx x, rtx y)
1195 {
1196 int i;
1197 int j;
1198 enum rtx_code code;
1199 const char *fmt;
1200
1201 if (x == 0 && y == 0)
1202 return 1;
1203 if (x == 0 || y == 0)
1204 return 0;
1205
1206 if (x == y)
1207 return 1;
1208
1209 code = GET_CODE (x);
1210 /* Rtx's of different codes cannot be equal. */
1211 if (code != GET_CODE (y))
1212 return 0;
1213
1214 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1215 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1216
1217 if (GET_MODE (x) != GET_MODE (y))
1218 return 0;
1219
1220 /* Some RTL can be compared without a recursive examination. */
1221 switch (code)
1222 {
1223 case REG:
1224 return REGNO (x) == REGNO (y);
1225
1226 case LABEL_REF:
1227 return XEXP (x, 0) == XEXP (y, 0);
1228
1229 case SYMBOL_REF:
1230 return XSTR (x, 0) == XSTR (y, 0);
1231
1232 case VALUE:
1233 case CONST_INT:
1234 case CONST_DOUBLE:
1235 /* There's no need to compare the contents of CONST_DOUBLEs or
1236 CONST_INTs because pointer equality is a good enough
1237 comparison for these nodes. */
1238 return 0;
1239
1240 default:
1241 break;
1242 }
1243
1244 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1245 if (code == PLUS)
1246 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1247 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1248 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1249 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1250 /* For commutative operations, the RTX match if the operand match in any
1251 order. Also handle the simple binary and unary cases without a loop. */
1252 if (COMMUTATIVE_P (x))
1253 {
1254 rtx xop0 = canon_rtx (XEXP (x, 0));
1255 rtx yop0 = canon_rtx (XEXP (y, 0));
1256 rtx yop1 = canon_rtx (XEXP (y, 1));
1257
1258 return ((rtx_equal_for_memref_p (xop0, yop0)
1259 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1260 || (rtx_equal_for_memref_p (xop0, yop1)
1261 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1262 }
1263 else if (NON_COMMUTATIVE_P (x))
1264 {
1265 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1266 canon_rtx (XEXP (y, 0)))
1267 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1268 canon_rtx (XEXP (y, 1))));
1269 }
1270 else if (UNARY_P (x))
1271 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1272 canon_rtx (XEXP (y, 0)));
1273
1274 /* Compare the elements. If any pair of corresponding elements
1275 fail to match, return 0 for the whole things.
1276
1277 Limit cases to types which actually appear in addresses. */
1278
1279 fmt = GET_RTX_FORMAT (code);
1280 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1281 {
1282 switch (fmt[i])
1283 {
1284 case 'i':
1285 if (XINT (x, i) != XINT (y, i))
1286 return 0;
1287 break;
1288
1289 case 'E':
1290 /* Two vectors must have the same length. */
1291 if (XVECLEN (x, i) != XVECLEN (y, i))
1292 return 0;
1293
1294 /* And the corresponding elements must match. */
1295 for (j = 0; j < XVECLEN (x, i); j++)
1296 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1297 canon_rtx (XVECEXP (y, i, j))) == 0)
1298 return 0;
1299 break;
1300
1301 case 'e':
1302 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1303 canon_rtx (XEXP (y, i))) == 0)
1304 return 0;
1305 break;
1306
1307 /* This can happen for asm operands. */
1308 case 's':
1309 if (strcmp (XSTR (x, i), XSTR (y, i)))
1310 return 0;
1311 break;
1312
1313 /* This can happen for an asm which clobbers memory. */
1314 case '0':
1315 break;
1316
1317 /* It is believed that rtx's at this level will never
1318 contain anything but integers and other rtx's,
1319 except for within LABEL_REFs and SYMBOL_REFs. */
1320 default:
1321 gcc_unreachable ();
1322 }
1323 }
1324 return 1;
1325 }
1326
1327 rtx
1328 find_base_term (rtx x)
1329 {
1330 cselib_val *val;
1331 struct elt_loc_list *l;
1332
1333 #if defined (FIND_BASE_TERM)
1334 /* Try machine-dependent ways to find the base term. */
1335 x = FIND_BASE_TERM (x);
1336 #endif
1337
1338 switch (GET_CODE (x))
1339 {
1340 case REG:
1341 return REG_BASE_VALUE (x);
1342
1343 case TRUNCATE:
1344 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1345 return 0;
1346 /* Fall through. */
1347 case HIGH:
1348 case PRE_INC:
1349 case PRE_DEC:
1350 case POST_INC:
1351 case POST_DEC:
1352 case PRE_MODIFY:
1353 case POST_MODIFY:
1354 return find_base_term (XEXP (x, 0));
1355
1356 case ZERO_EXTEND:
1357 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1358 {
1359 rtx temp = find_base_term (XEXP (x, 0));
1360
1361 if (temp != 0 && CONSTANT_P (temp))
1362 temp = convert_memory_address (Pmode, temp);
1363
1364 return temp;
1365 }
1366
1367 case VALUE:
1368 val = CSELIB_VAL_PTR (x);
1369 if (!val)
1370 return 0;
1371 for (l = val->locs; l; l = l->next)
1372 if ((x = find_base_term (l->loc)) != 0)
1373 return x;
1374 return 0;
1375
1376 case CONST:
1377 x = XEXP (x, 0);
1378 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1379 return 0;
1380 /* Fall through. */
1381 case LO_SUM:
1382 case PLUS:
1383 case MINUS:
1384 {
1385 rtx tmp1 = XEXP (x, 0);
1386 rtx tmp2 = XEXP (x, 1);
1387
1388 /* This is a little bit tricky since we have to determine which of
1389 the two operands represents the real base address. Otherwise this
1390 routine may return the index register instead of the base register.
1391
1392 That may cause us to believe no aliasing was possible, when in
1393 fact aliasing is possible.
1394
1395 We use a few simple tests to guess the base register. Additional
1396 tests can certainly be added. For example, if one of the operands
1397 is a shift or multiply, then it must be the index register and the
1398 other operand is the base register. */
1399
1400 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1401 return find_base_term (tmp2);
1402
1403 /* If either operand is known to be a pointer, then use it
1404 to determine the base term. */
1405 if (REG_P (tmp1) && REG_POINTER (tmp1))
1406 return find_base_term (tmp1);
1407
1408 if (REG_P (tmp2) && REG_POINTER (tmp2))
1409 return find_base_term (tmp2);
1410
1411 /* Neither operand was known to be a pointer. Go ahead and find the
1412 base term for both operands. */
1413 tmp1 = find_base_term (tmp1);
1414 tmp2 = find_base_term (tmp2);
1415
1416 /* If either base term is named object or a special address
1417 (like an argument or stack reference), then use it for the
1418 base term. */
1419 if (tmp1 != 0
1420 && (GET_CODE (tmp1) == SYMBOL_REF
1421 || GET_CODE (tmp1) == LABEL_REF
1422 || (GET_CODE (tmp1) == ADDRESS
1423 && GET_MODE (tmp1) != VOIDmode)))
1424 return tmp1;
1425
1426 if (tmp2 != 0
1427 && (GET_CODE (tmp2) == SYMBOL_REF
1428 || GET_CODE (tmp2) == LABEL_REF
1429 || (GET_CODE (tmp2) == ADDRESS
1430 && GET_MODE (tmp2) != VOIDmode)))
1431 return tmp2;
1432
1433 /* We could not determine which of the two operands was the
1434 base register and which was the index. So we can determine
1435 nothing from the base alias check. */
1436 return 0;
1437 }
1438
1439 case AND:
1440 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1441 return find_base_term (XEXP (x, 0));
1442 return 0;
1443
1444 case SYMBOL_REF:
1445 case LABEL_REF:
1446 return x;
1447
1448 default:
1449 return 0;
1450 }
1451 }
1452
1453 /* Return 0 if the addresses X and Y are known to point to different
1454 objects, 1 if they might be pointers to the same object. */
1455
1456 static int
1457 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1458 enum machine_mode y_mode)
1459 {
1460 rtx x_base = find_base_term (x);
1461 rtx y_base = find_base_term (y);
1462
1463 /* If the address itself has no known base see if a known equivalent
1464 value has one. If either address still has no known base, nothing
1465 is known about aliasing. */
1466 if (x_base == 0)
1467 {
1468 rtx x_c;
1469
1470 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1471 return 1;
1472
1473 x_base = find_base_term (x_c);
1474 if (x_base == 0)
1475 return 1;
1476 }
1477
1478 if (y_base == 0)
1479 {
1480 rtx y_c;
1481 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1482 return 1;
1483
1484 y_base = find_base_term (y_c);
1485 if (y_base == 0)
1486 return 1;
1487 }
1488
1489 /* If the base addresses are equal nothing is known about aliasing. */
1490 if (rtx_equal_p (x_base, y_base))
1491 return 1;
1492
1493 /* The base addresses of the read and write are different expressions.
1494 If they are both symbols and they are not accessed via AND, there is
1495 no conflict. We can bring knowledge of object alignment into play
1496 here. For example, on alpha, "char a, b;" can alias one another,
1497 though "char a; long b;" cannot. */
1498 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1499 {
1500 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1501 return 1;
1502 if (GET_CODE (x) == AND
1503 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1504 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1505 return 1;
1506 if (GET_CODE (y) == AND
1507 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1508 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1509 return 1;
1510 /* Differing symbols never alias. */
1511 return 0;
1512 }
1513
1514 /* If one address is a stack reference there can be no alias:
1515 stack references using different base registers do not alias,
1516 a stack reference can not alias a parameter, and a stack reference
1517 can not alias a global. */
1518 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1519 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1520 return 0;
1521
1522 if (! flag_argument_noalias)
1523 return 1;
1524
1525 if (flag_argument_noalias > 1)
1526 return 0;
1527
1528 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1529 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1530 }
1531
1532 /* Convert the address X into something we can use. This is done by returning
1533 it unchanged unless it is a value; in the latter case we call cselib to get
1534 a more useful rtx. */
1535
1536 rtx
1537 get_addr (rtx x)
1538 {
1539 cselib_val *v;
1540 struct elt_loc_list *l;
1541
1542 if (GET_CODE (x) != VALUE)
1543 return x;
1544 v = CSELIB_VAL_PTR (x);
1545 if (v)
1546 {
1547 for (l = v->locs; l; l = l->next)
1548 if (CONSTANT_P (l->loc))
1549 return l->loc;
1550 for (l = v->locs; l; l = l->next)
1551 if (!REG_P (l->loc) && !MEM_P (l->loc))
1552 return l->loc;
1553 if (v->locs)
1554 return v->locs->loc;
1555 }
1556 return x;
1557 }
1558
1559 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1560 where SIZE is the size in bytes of the memory reference. If ADDR
1561 is not modified by the memory reference then ADDR is returned. */
1562
1563 static rtx
1564 addr_side_effect_eval (rtx addr, int size, int n_refs)
1565 {
1566 int offset = 0;
1567
1568 switch (GET_CODE (addr))
1569 {
1570 case PRE_INC:
1571 offset = (n_refs + 1) * size;
1572 break;
1573 case PRE_DEC:
1574 offset = -(n_refs + 1) * size;
1575 break;
1576 case POST_INC:
1577 offset = n_refs * size;
1578 break;
1579 case POST_DEC:
1580 offset = -n_refs * size;
1581 break;
1582
1583 default:
1584 return addr;
1585 }
1586
1587 if (offset)
1588 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1589 GEN_INT (offset));
1590 else
1591 addr = XEXP (addr, 0);
1592 addr = canon_rtx (addr);
1593
1594 return addr;
1595 }
1596
1597 /* Return nonzero if X and Y (memory addresses) could reference the
1598 same location in memory. C is an offset accumulator. When
1599 C is nonzero, we are testing aliases between X and Y + C.
1600 XSIZE is the size in bytes of the X reference,
1601 similarly YSIZE is the size in bytes for Y.
1602 Expect that canon_rtx has been already called for X and Y.
1603
1604 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1605 referenced (the reference was BLKmode), so make the most pessimistic
1606 assumptions.
1607
1608 If XSIZE or YSIZE is negative, we may access memory outside the object
1609 being referenced as a side effect. This can happen when using AND to
1610 align memory references, as is done on the Alpha.
1611
1612 Nice to notice that varying addresses cannot conflict with fp if no
1613 local variables had their addresses taken, but that's too hard now. */
1614
1615 static int
1616 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1617 {
1618 if (GET_CODE (x) == VALUE)
1619 x = get_addr (x);
1620 if (GET_CODE (y) == VALUE)
1621 y = get_addr (y);
1622 if (GET_CODE (x) == HIGH)
1623 x = XEXP (x, 0);
1624 else if (GET_CODE (x) == LO_SUM)
1625 x = XEXP (x, 1);
1626 else
1627 x = addr_side_effect_eval (x, xsize, 0);
1628 if (GET_CODE (y) == HIGH)
1629 y = XEXP (y, 0);
1630 else if (GET_CODE (y) == LO_SUM)
1631 y = XEXP (y, 1);
1632 else
1633 y = addr_side_effect_eval (y, ysize, 0);
1634
1635 if (rtx_equal_for_memref_p (x, y))
1636 {
1637 if (xsize <= 0 || ysize <= 0)
1638 return 1;
1639 if (c >= 0 && xsize > c)
1640 return 1;
1641 if (c < 0 && ysize+c > 0)
1642 return 1;
1643 return 0;
1644 }
1645
1646 /* This code used to check for conflicts involving stack references and
1647 globals but the base address alias code now handles these cases. */
1648
1649 if (GET_CODE (x) == PLUS)
1650 {
1651 /* The fact that X is canonicalized means that this
1652 PLUS rtx is canonicalized. */
1653 rtx x0 = XEXP (x, 0);
1654 rtx x1 = XEXP (x, 1);
1655
1656 if (GET_CODE (y) == PLUS)
1657 {
1658 /* The fact that Y is canonicalized means that this
1659 PLUS rtx is canonicalized. */
1660 rtx y0 = XEXP (y, 0);
1661 rtx y1 = XEXP (y, 1);
1662
1663 if (rtx_equal_for_memref_p (x1, y1))
1664 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1665 if (rtx_equal_for_memref_p (x0, y0))
1666 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1667 if (GET_CODE (x1) == CONST_INT)
1668 {
1669 if (GET_CODE (y1) == CONST_INT)
1670 return memrefs_conflict_p (xsize, x0, ysize, y0,
1671 c - INTVAL (x1) + INTVAL (y1));
1672 else
1673 return memrefs_conflict_p (xsize, x0, ysize, y,
1674 c - INTVAL (x1));
1675 }
1676 else if (GET_CODE (y1) == CONST_INT)
1677 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1678
1679 return 1;
1680 }
1681 else if (GET_CODE (x1) == CONST_INT)
1682 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1683 }
1684 else if (GET_CODE (y) == PLUS)
1685 {
1686 /* The fact that Y is canonicalized means that this
1687 PLUS rtx is canonicalized. */
1688 rtx y0 = XEXP (y, 0);
1689 rtx y1 = XEXP (y, 1);
1690
1691 if (GET_CODE (y1) == CONST_INT)
1692 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1693 else
1694 return 1;
1695 }
1696
1697 if (GET_CODE (x) == GET_CODE (y))
1698 switch (GET_CODE (x))
1699 {
1700 case MULT:
1701 {
1702 /* Handle cases where we expect the second operands to be the
1703 same, and check only whether the first operand would conflict
1704 or not. */
1705 rtx x0, y0;
1706 rtx x1 = canon_rtx (XEXP (x, 1));
1707 rtx y1 = canon_rtx (XEXP (y, 1));
1708 if (! rtx_equal_for_memref_p (x1, y1))
1709 return 1;
1710 x0 = canon_rtx (XEXP (x, 0));
1711 y0 = canon_rtx (XEXP (y, 0));
1712 if (rtx_equal_for_memref_p (x0, y0))
1713 return (xsize == 0 || ysize == 0
1714 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1715
1716 /* Can't properly adjust our sizes. */
1717 if (GET_CODE (x1) != CONST_INT)
1718 return 1;
1719 xsize /= INTVAL (x1);
1720 ysize /= INTVAL (x1);
1721 c /= INTVAL (x1);
1722 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1723 }
1724
1725 default:
1726 break;
1727 }
1728
1729 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1730 as an access with indeterminate size. Assume that references
1731 besides AND are aligned, so if the size of the other reference is
1732 at least as large as the alignment, assume no other overlap. */
1733 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1734 {
1735 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1736 xsize = -1;
1737 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1738 }
1739 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1740 {
1741 /* ??? If we are indexing far enough into the array/structure, we
1742 may yet be able to determine that we can not overlap. But we
1743 also need to that we are far enough from the end not to overlap
1744 a following reference, so we do nothing with that for now. */
1745 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1746 ysize = -1;
1747 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1748 }
1749
1750 if (CONSTANT_P (x))
1751 {
1752 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1753 {
1754 c += (INTVAL (y) - INTVAL (x));
1755 return (xsize <= 0 || ysize <= 0
1756 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1757 }
1758
1759 if (GET_CODE (x) == CONST)
1760 {
1761 if (GET_CODE (y) == CONST)
1762 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1763 ysize, canon_rtx (XEXP (y, 0)), c);
1764 else
1765 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1766 ysize, y, c);
1767 }
1768 if (GET_CODE (y) == CONST)
1769 return memrefs_conflict_p (xsize, x, ysize,
1770 canon_rtx (XEXP (y, 0)), c);
1771
1772 if (CONSTANT_P (y))
1773 return (xsize <= 0 || ysize <= 0
1774 || (rtx_equal_for_memref_p (x, y)
1775 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1776
1777 return 1;
1778 }
1779 return 1;
1780 }
1781
1782 /* Functions to compute memory dependencies.
1783
1784 Since we process the insns in execution order, we can build tables
1785 to keep track of what registers are fixed (and not aliased), what registers
1786 are varying in known ways, and what registers are varying in unknown
1787 ways.
1788
1789 If both memory references are volatile, then there must always be a
1790 dependence between the two references, since their order can not be
1791 changed. A volatile and non-volatile reference can be interchanged
1792 though.
1793
1794 A MEM_IN_STRUCT reference at a non-AND varying address can never
1795 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1796 also must allow AND addresses, because they may generate accesses
1797 outside the object being referenced. This is used to generate
1798 aligned addresses from unaligned addresses, for instance, the alpha
1799 storeqi_unaligned pattern. */
1800
1801 /* Read dependence: X is read after read in MEM takes place. There can
1802 only be a dependence here if both reads are volatile. */
1803
1804 int
1805 read_dependence (rtx mem, rtx x)
1806 {
1807 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1808 }
1809
1810 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1811 MEM2 is a reference to a structure at a varying address, or returns
1812 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1813 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1814 to decide whether or not an address may vary; it should return
1815 nonzero whenever variation is possible.
1816 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1817
1818 static rtx
1819 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1820 rtx mem2_addr,
1821 int (*varies_p) (rtx, int))
1822 {
1823 if (! flag_strict_aliasing)
1824 return NULL_RTX;
1825
1826 if (MEM_ALIAS_SET (mem2)
1827 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1828 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1829 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1830 varying address. */
1831 return mem1;
1832
1833 if (MEM_ALIAS_SET (mem1)
1834 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1835 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1836 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1837 varying address. */
1838 return mem2;
1839
1840 return NULL_RTX;
1841 }
1842
1843 /* Returns nonzero if something about the mode or address format MEM1
1844 indicates that it might well alias *anything*. */
1845
1846 static int
1847 aliases_everything_p (rtx mem)
1848 {
1849 if (GET_CODE (XEXP (mem, 0)) == AND)
1850 /* If the address is an AND, it's very hard to know at what it is
1851 actually pointing. */
1852 return 1;
1853
1854 return 0;
1855 }
1856
1857 /* Return true if we can determine that the fields referenced cannot
1858 overlap for any pair of objects. */
1859
1860 static bool
1861 nonoverlapping_component_refs_p (tree x, tree y)
1862 {
1863 tree fieldx, fieldy, typex, typey, orig_y;
1864
1865 do
1866 {
1867 /* The comparison has to be done at a common type, since we don't
1868 know how the inheritance hierarchy works. */
1869 orig_y = y;
1870 do
1871 {
1872 fieldx = TREE_OPERAND (x, 1);
1873 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1874
1875 y = orig_y;
1876 do
1877 {
1878 fieldy = TREE_OPERAND (y, 1);
1879 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1880
1881 if (typex == typey)
1882 goto found;
1883
1884 y = TREE_OPERAND (y, 0);
1885 }
1886 while (y && TREE_CODE (y) == COMPONENT_REF);
1887
1888 x = TREE_OPERAND (x, 0);
1889 }
1890 while (x && TREE_CODE (x) == COMPONENT_REF);
1891 /* Never found a common type. */
1892 return false;
1893
1894 found:
1895 /* If we're left with accessing different fields of a structure,
1896 then no overlap. */
1897 if (TREE_CODE (typex) == RECORD_TYPE
1898 && fieldx != fieldy)
1899 return true;
1900
1901 /* The comparison on the current field failed. If we're accessing
1902 a very nested structure, look at the next outer level. */
1903 x = TREE_OPERAND (x, 0);
1904 y = TREE_OPERAND (y, 0);
1905 }
1906 while (x && y
1907 && TREE_CODE (x) == COMPONENT_REF
1908 && TREE_CODE (y) == COMPONENT_REF);
1909
1910 return false;
1911 }
1912
1913 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1914
1915 static tree
1916 decl_for_component_ref (tree x)
1917 {
1918 do
1919 {
1920 x = TREE_OPERAND (x, 0);
1921 }
1922 while (x && TREE_CODE (x) == COMPONENT_REF);
1923
1924 return x && DECL_P (x) ? x : NULL_TREE;
1925 }
1926
1927 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1928 offset of the field reference. */
1929
1930 static rtx
1931 adjust_offset_for_component_ref (tree x, rtx offset)
1932 {
1933 HOST_WIDE_INT ioffset;
1934
1935 if (! offset)
1936 return NULL_RTX;
1937
1938 ioffset = INTVAL (offset);
1939 do
1940 {
1941 tree offset = component_ref_field_offset (x);
1942 tree field = TREE_OPERAND (x, 1);
1943
1944 if (! host_integerp (offset, 1))
1945 return NULL_RTX;
1946 ioffset += (tree_low_cst (offset, 1)
1947 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1948 / BITS_PER_UNIT));
1949
1950 x = TREE_OPERAND (x, 0);
1951 }
1952 while (x && TREE_CODE (x) == COMPONENT_REF);
1953
1954 return GEN_INT (ioffset);
1955 }
1956
1957 /* Return nonzero if we can determine the exprs corresponding to memrefs
1958 X and Y and they do not overlap. */
1959
1960 static int
1961 nonoverlapping_memrefs_p (rtx x, rtx y)
1962 {
1963 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1964 rtx rtlx, rtly;
1965 rtx basex, basey;
1966 rtx moffsetx, moffsety;
1967 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1968
1969 /* Unless both have exprs, we can't tell anything. */
1970 if (exprx == 0 || expry == 0)
1971 return 0;
1972
1973 /* If both are field references, we may be able to determine something. */
1974 if (TREE_CODE (exprx) == COMPONENT_REF
1975 && TREE_CODE (expry) == COMPONENT_REF
1976 && nonoverlapping_component_refs_p (exprx, expry))
1977 return 1;
1978
1979
1980 /* If the field reference test failed, look at the DECLs involved. */
1981 moffsetx = MEM_OFFSET (x);
1982 if (TREE_CODE (exprx) == COMPONENT_REF)
1983 {
1984 if (TREE_CODE (expry) == VAR_DECL
1985 && POINTER_TYPE_P (TREE_TYPE (expry)))
1986 {
1987 tree field = TREE_OPERAND (exprx, 1);
1988 tree fieldcontext = DECL_FIELD_CONTEXT (field);
1989 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
1990 TREE_TYPE (field)))
1991 return 1;
1992 }
1993 {
1994 tree t = decl_for_component_ref (exprx);
1995 if (! t)
1996 return 0;
1997 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1998 exprx = t;
1999 }
2000 }
2001 else if (INDIRECT_REF_P (exprx))
2002 {
2003 exprx = TREE_OPERAND (exprx, 0);
2004 if (flag_argument_noalias < 2
2005 || TREE_CODE (exprx) != PARM_DECL)
2006 return 0;
2007 }
2008
2009 moffsety = MEM_OFFSET (y);
2010 if (TREE_CODE (expry) == COMPONENT_REF)
2011 {
2012 if (TREE_CODE (exprx) == VAR_DECL
2013 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2014 {
2015 tree field = TREE_OPERAND (expry, 1);
2016 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2017 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2018 TREE_TYPE (field)))
2019 return 1;
2020 }
2021 {
2022 tree t = decl_for_component_ref (expry);
2023 if (! t)
2024 return 0;
2025 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2026 expry = t;
2027 }
2028 }
2029 else if (INDIRECT_REF_P (expry))
2030 {
2031 expry = TREE_OPERAND (expry, 0);
2032 if (flag_argument_noalias < 2
2033 || TREE_CODE (expry) != PARM_DECL)
2034 return 0;
2035 }
2036
2037 if (! DECL_P (exprx) || ! DECL_P (expry))
2038 return 0;
2039
2040 rtlx = DECL_RTL (exprx);
2041 rtly = DECL_RTL (expry);
2042
2043 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2044 can't overlap unless they are the same because we never reuse that part
2045 of the stack frame used for locals for spilled pseudos. */
2046 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2047 && ! rtx_equal_p (rtlx, rtly))
2048 return 1;
2049
2050 /* Get the base and offsets of both decls. If either is a register, we
2051 know both are and are the same, so use that as the base. The only
2052 we can avoid overlap is if we can deduce that they are nonoverlapping
2053 pieces of that decl, which is very rare. */
2054 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2055 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2056 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2057
2058 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2059 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2060 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2061
2062 /* If the bases are different, we know they do not overlap if both
2063 are constants or if one is a constant and the other a pointer into the
2064 stack frame. Otherwise a different base means we can't tell if they
2065 overlap or not. */
2066 if (! rtx_equal_p (basex, basey))
2067 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2068 || (CONSTANT_P (basex) && REG_P (basey)
2069 && REGNO_PTR_FRAME_P (REGNO (basey)))
2070 || (CONSTANT_P (basey) && REG_P (basex)
2071 && REGNO_PTR_FRAME_P (REGNO (basex))));
2072
2073 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2074 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2075 : -1);
2076 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2077 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2078 -1);
2079
2080 /* If we have an offset for either memref, it can update the values computed
2081 above. */
2082 if (moffsetx)
2083 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2084 if (moffsety)
2085 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2086
2087 /* If a memref has both a size and an offset, we can use the smaller size.
2088 We can't do this if the offset isn't known because we must view this
2089 memref as being anywhere inside the DECL's MEM. */
2090 if (MEM_SIZE (x) && moffsetx)
2091 sizex = INTVAL (MEM_SIZE (x));
2092 if (MEM_SIZE (y) && moffsety)
2093 sizey = INTVAL (MEM_SIZE (y));
2094
2095 /* Put the values of the memref with the lower offset in X's values. */
2096 if (offsetx > offsety)
2097 {
2098 tem = offsetx, offsetx = offsety, offsety = tem;
2099 tem = sizex, sizex = sizey, sizey = tem;
2100 }
2101
2102 /* If we don't know the size of the lower-offset value, we can't tell
2103 if they conflict. Otherwise, we do the test. */
2104 return sizex >= 0 && offsety >= offsetx + sizex;
2105 }
2106
2107 /* True dependence: X is read after store in MEM takes place. */
2108
2109 int
2110 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2111 int (*varies) (rtx, int))
2112 {
2113 rtx x_addr, mem_addr;
2114 rtx base;
2115
2116 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2117 return 1;
2118
2119 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2120 This is used in epilogue deallocation functions, and in cselib. */
2121 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2122 return 1;
2123 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2124 return 1;
2125 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2126 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2127 return 1;
2128
2129 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2130 return 0;
2131
2132 /* Read-only memory is by definition never modified, and therefore can't
2133 conflict with anything. We don't expect to find read-only set on MEM,
2134 but stupid user tricks can produce them, so don't die. */
2135 if (MEM_READONLY_P (x))
2136 return 0;
2137
2138 if (nonoverlapping_memrefs_p (mem, x))
2139 return 0;
2140
2141 if (mem_mode == VOIDmode)
2142 mem_mode = GET_MODE (mem);
2143
2144 x_addr = get_addr (XEXP (x, 0));
2145 mem_addr = get_addr (XEXP (mem, 0));
2146
2147 base = find_base_term (x_addr);
2148 if (base && (GET_CODE (base) == LABEL_REF
2149 || (GET_CODE (base) == SYMBOL_REF
2150 && CONSTANT_POOL_ADDRESS_P (base))))
2151 return 0;
2152
2153 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2154 return 0;
2155
2156 x_addr = canon_rtx (x_addr);
2157 mem_addr = canon_rtx (mem_addr);
2158
2159 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2160 SIZE_FOR_MODE (x), x_addr, 0))
2161 return 0;
2162
2163 if (aliases_everything_p (x))
2164 return 1;
2165
2166 /* We cannot use aliases_everything_p to test MEM, since we must look
2167 at MEM_MODE, rather than GET_MODE (MEM). */
2168 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2169 return 1;
2170
2171 /* In true_dependence we also allow BLKmode to alias anything. Why
2172 don't we do this in anti_dependence and output_dependence? */
2173 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2174 return 1;
2175
2176 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2177 varies);
2178 }
2179
2180 /* Canonical true dependence: X is read after store in MEM takes place.
2181 Variant of true_dependence which assumes MEM has already been
2182 canonicalized (hence we no longer do that here).
2183 The mem_addr argument has been added, since true_dependence computed
2184 this value prior to canonicalizing. */
2185
2186 int
2187 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2188 rtx x, int (*varies) (rtx, int))
2189 {
2190 rtx x_addr;
2191
2192 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2193 return 1;
2194
2195 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2196 This is used in epilogue deallocation functions. */
2197 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2198 return 1;
2199 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2200 return 1;
2201 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2202 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2203 return 1;
2204
2205 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2206 return 0;
2207
2208 /* Read-only memory is by definition never modified, and therefore can't
2209 conflict with anything. We don't expect to find read-only set on MEM,
2210 but stupid user tricks can produce them, so don't die. */
2211 if (MEM_READONLY_P (x))
2212 return 0;
2213
2214 if (nonoverlapping_memrefs_p (x, mem))
2215 return 0;
2216
2217 x_addr = get_addr (XEXP (x, 0));
2218
2219 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2220 return 0;
2221
2222 x_addr = canon_rtx (x_addr);
2223 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2224 SIZE_FOR_MODE (x), x_addr, 0))
2225 return 0;
2226
2227 if (aliases_everything_p (x))
2228 return 1;
2229
2230 /* We cannot use aliases_everything_p to test MEM, since we must look
2231 at MEM_MODE, rather than GET_MODE (MEM). */
2232 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2233 return 1;
2234
2235 /* In true_dependence we also allow BLKmode to alias anything. Why
2236 don't we do this in anti_dependence and output_dependence? */
2237 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2238 return 1;
2239
2240 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2241 varies);
2242 }
2243
2244 /* Returns nonzero if a write to X might alias a previous read from
2245 (or, if WRITEP is nonzero, a write to) MEM. */
2246
2247 static int
2248 write_dependence_p (rtx mem, rtx x, int writep)
2249 {
2250 rtx x_addr, mem_addr;
2251 rtx fixed_scalar;
2252 rtx base;
2253
2254 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2255 return 1;
2256
2257 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2258 This is used in epilogue deallocation functions. */
2259 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2260 return 1;
2261 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2262 return 1;
2263 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2264 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2265 return 1;
2266
2267 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2268 return 0;
2269
2270 /* A read from read-only memory can't conflict with read-write memory. */
2271 if (!writep && MEM_READONLY_P (mem))
2272 return 0;
2273
2274 if (nonoverlapping_memrefs_p (x, mem))
2275 return 0;
2276
2277 x_addr = get_addr (XEXP (x, 0));
2278 mem_addr = get_addr (XEXP (mem, 0));
2279
2280 if (! writep)
2281 {
2282 base = find_base_term (mem_addr);
2283 if (base && (GET_CODE (base) == LABEL_REF
2284 || (GET_CODE (base) == SYMBOL_REF
2285 && CONSTANT_POOL_ADDRESS_P (base))))
2286 return 0;
2287 }
2288
2289 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2290 GET_MODE (mem)))
2291 return 0;
2292
2293 x_addr = canon_rtx (x_addr);
2294 mem_addr = canon_rtx (mem_addr);
2295
2296 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2297 SIZE_FOR_MODE (x), x_addr, 0))
2298 return 0;
2299
2300 fixed_scalar
2301 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2302 rtx_addr_varies_p);
2303
2304 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2305 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2306 }
2307
2308 /* Anti dependence: X is written after read in MEM takes place. */
2309
2310 int
2311 anti_dependence (rtx mem, rtx x)
2312 {
2313 return write_dependence_p (mem, x, /*writep=*/0);
2314 }
2315
2316 /* Output dependence: X is written after store in MEM takes place. */
2317
2318 int
2319 output_dependence (rtx mem, rtx x)
2320 {
2321 return write_dependence_p (mem, x, /*writep=*/1);
2322 }
2323 \f
2324
2325 void
2326 init_alias_once (void)
2327 {
2328 int i;
2329
2330 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2331 /* Check whether this register can hold an incoming pointer
2332 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2333 numbers, so translate if necessary due to register windows. */
2334 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2335 && HARD_REGNO_MODE_OK (i, Pmode))
2336 static_reg_base_value[i]
2337 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2338
2339 static_reg_base_value[STACK_POINTER_REGNUM]
2340 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2341 static_reg_base_value[ARG_POINTER_REGNUM]
2342 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2343 static_reg_base_value[FRAME_POINTER_REGNUM]
2344 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2345 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2346 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2347 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2348 #endif
2349 }
2350
2351 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2352 to be memory reference. */
2353 static bool memory_modified;
2354 static void
2355 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2356 {
2357 if (MEM_P (x))
2358 {
2359 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2360 memory_modified = true;
2361 }
2362 }
2363
2364
2365 /* Return true when INSN possibly modify memory contents of MEM
2366 (i.e. address can be modified). */
2367 bool
2368 memory_modified_in_insn_p (rtx mem, rtx insn)
2369 {
2370 if (!INSN_P (insn))
2371 return false;
2372 memory_modified = false;
2373 note_stores (PATTERN (insn), memory_modified_1, mem);
2374 return memory_modified;
2375 }
2376
2377 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2378 array. */
2379
2380 void
2381 init_alias_analysis (void)
2382 {
2383 unsigned int maxreg = max_reg_num ();
2384 int changed, pass;
2385 int i;
2386 unsigned int ui;
2387 rtx insn;
2388
2389 timevar_push (TV_ALIAS_ANALYSIS);
2390
2391 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2392 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2393 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2394
2395 /* If we have memory allocated from the previous run, use it. */
2396 if (old_reg_base_value)
2397 reg_base_value = old_reg_base_value;
2398
2399 if (reg_base_value)
2400 VEC_truncate (rtx, reg_base_value, 0);
2401
2402 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2403
2404 new_reg_base_value = XNEWVEC (rtx, maxreg);
2405 reg_seen = XNEWVEC (char, maxreg);
2406
2407 /* The basic idea is that each pass through this loop will use the
2408 "constant" information from the previous pass to propagate alias
2409 information through another level of assignments.
2410
2411 This could get expensive if the assignment chains are long. Maybe
2412 we should throttle the number of iterations, possibly based on
2413 the optimization level or flag_expensive_optimizations.
2414
2415 We could propagate more information in the first pass by making use
2416 of DF_REG_DEF_COUNT to determine immediately that the alias information
2417 for a pseudo is "constant".
2418
2419 A program with an uninitialized variable can cause an infinite loop
2420 here. Instead of doing a full dataflow analysis to detect such problems
2421 we just cap the number of iterations for the loop.
2422
2423 The state of the arrays for the set chain in question does not matter
2424 since the program has undefined behavior. */
2425
2426 pass = 0;
2427 do
2428 {
2429 /* Assume nothing will change this iteration of the loop. */
2430 changed = 0;
2431
2432 /* We want to assign the same IDs each iteration of this loop, so
2433 start counting from zero each iteration of the loop. */
2434 unique_id = 0;
2435
2436 /* We're at the start of the function each iteration through the
2437 loop, so we're copying arguments. */
2438 copying_arguments = true;
2439
2440 /* Wipe the potential alias information clean for this pass. */
2441 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2442
2443 /* Wipe the reg_seen array clean. */
2444 memset (reg_seen, 0, maxreg);
2445
2446 /* Mark all hard registers which may contain an address.
2447 The stack, frame and argument pointers may contain an address.
2448 An argument register which can hold a Pmode value may contain
2449 an address even if it is not in BASE_REGS.
2450
2451 The address expression is VOIDmode for an argument and
2452 Pmode for other registers. */
2453
2454 memcpy (new_reg_base_value, static_reg_base_value,
2455 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2456
2457 /* Walk the insns adding values to the new_reg_base_value array. */
2458 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2459 {
2460 if (INSN_P (insn))
2461 {
2462 rtx note, set;
2463
2464 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2465 /* The prologue/epilogue insns are not threaded onto the
2466 insn chain until after reload has completed. Thus,
2467 there is no sense wasting time checking if INSN is in
2468 the prologue/epilogue until after reload has completed. */
2469 if (reload_completed
2470 && prologue_epilogue_contains (insn))
2471 continue;
2472 #endif
2473
2474 /* If this insn has a noalias note, process it, Otherwise,
2475 scan for sets. A simple set will have no side effects
2476 which could change the base value of any other register. */
2477
2478 if (GET_CODE (PATTERN (insn)) == SET
2479 && REG_NOTES (insn) != 0
2480 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2481 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2482 else
2483 note_stores (PATTERN (insn), record_set, NULL);
2484
2485 set = single_set (insn);
2486
2487 if (set != 0
2488 && REG_P (SET_DEST (set))
2489 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2490 {
2491 unsigned int regno = REGNO (SET_DEST (set));
2492 rtx src = SET_SRC (set);
2493 rtx t;
2494
2495 note = find_reg_equal_equiv_note (insn);
2496 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2497 && DF_REG_DEF_COUNT (regno) != 1)
2498 note = NULL_RTX;
2499
2500 if (note != NULL_RTX
2501 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2502 && ! rtx_varies_p (XEXP (note, 0), 1)
2503 && ! reg_overlap_mentioned_p (SET_DEST (set),
2504 XEXP (note, 0)))
2505 {
2506 set_reg_known_value (regno, XEXP (note, 0));
2507 set_reg_known_equiv_p (regno,
2508 REG_NOTE_KIND (note) == REG_EQUIV);
2509 }
2510 else if (DF_REG_DEF_COUNT (regno) == 1
2511 && GET_CODE (src) == PLUS
2512 && REG_P (XEXP (src, 0))
2513 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2514 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2515 {
2516 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2517 set_reg_known_value (regno, t);
2518 set_reg_known_equiv_p (regno, 0);
2519 }
2520 else if (DF_REG_DEF_COUNT (regno) == 1
2521 && ! rtx_varies_p (src, 1))
2522 {
2523 set_reg_known_value (regno, src);
2524 set_reg_known_equiv_p (regno, 0);
2525 }
2526 }
2527 }
2528 else if (NOTE_P (insn)
2529 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2530 copying_arguments = false;
2531 }
2532
2533 /* Now propagate values from new_reg_base_value to reg_base_value. */
2534 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2535
2536 for (ui = 0; ui < maxreg; ui++)
2537 {
2538 if (new_reg_base_value[ui]
2539 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2540 && ! rtx_equal_p (new_reg_base_value[ui],
2541 VEC_index (rtx, reg_base_value, ui)))
2542 {
2543 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2544 changed = 1;
2545 }
2546 }
2547 }
2548 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2549
2550 /* Fill in the remaining entries. */
2551 for (i = 0; i < (int)reg_known_value_size; i++)
2552 if (reg_known_value[i] == 0)
2553 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2554
2555 /* Clean up. */
2556 free (new_reg_base_value);
2557 new_reg_base_value = 0;
2558 free (reg_seen);
2559 reg_seen = 0;
2560 timevar_pop (TV_ALIAS_ANALYSIS);
2561 }
2562
2563 void
2564 end_alias_analysis (void)
2565 {
2566 old_reg_base_value = reg_base_value;
2567 ggc_free (reg_known_value);
2568 reg_known_value = 0;
2569 reg_known_value_size = 0;
2570 free (reg_known_equiv_p);
2571 reg_known_equiv_p = 0;
2572 }
2573
2574 #include "gt-alias.h"