Introduce LABEL_REF_LABEL
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "varasm.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "flags.h"
36 #include "diagnostic-core.h"
37 #include "cselib.h"
38 #include "splay-tree.h"
39 #include "langhooks.h"
40 #include "timevar.h"
41 #include "dumpfile.h"
42 #include "target.h"
43 #include "df.h"
44 #include "tree-ssa-alias.h"
45 #include "internal-fn.h"
46 #include "gimple-expr.h"
47 #include "is-a.h"
48 #include "gimple.h"
49 #include "gimple-ssa.h"
50 #include "rtl-iter.h"
51
52 /* The aliasing API provided here solves related but different problems:
53
54 Say there exists (in c)
55
56 struct X {
57 struct Y y1;
58 struct Z z2;
59 } x1, *px1, *px2;
60
61 struct Y y2, *py;
62 struct Z z2, *pz;
63
64
65 py = &x1.y1;
66 px2 = &x1;
67
68 Consider the four questions:
69
70 Can a store to x1 interfere with px2->y1?
71 Can a store to x1 interfere with px2->z2?
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
74
75 The answer to these questions can be yes, yes, yes, and maybe.
76
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store through a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
81
82 The last two questions can be solved in the same way as the first
83 two questions but this is too conservative. The observation is
84 that in some cases we can know which (if any) fields are addressed
85 and if those addresses are used in bad ways. This analysis may be
86 language specific. In C, arbitrary operations may be applied to
87 pointers. However, there is some indication that this may be too
88 conservative for some C++ types.
89
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
92
93 Historically in GCC, these two problems were combined and a single
94 data structure that was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two questions is similar to
97 the first, but does not contain the fields whose address are never
98 taken. For types that do escape the compilation unit, the data
99 structures will have identical information.
100 */
101
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
106
107 struct S { int i; double d; };
108
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
114 / \
115 / \
116 |/_ _\|
117 int double
118
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
122
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
127
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
131
132 struct GTY(()) alias_set_entry_d {
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
135
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
139
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
142
143 struct T { struct S s; float f; }
144
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 splay_tree GTY((param1_is (int), param2_is (int))) children;
148 };
149 typedef struct alias_set_entry_d *alias_set_entry;
150
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static tree decl_for_component_ref (tree);
161 static int write_dependence_p (const_rtx,
162 const_rtx, enum machine_mode, rtx,
163 bool, bool, bool);
164
165 static void memory_modified_1 (rtx, const_rtx, void *);
166
167 /* Set up all info needed to perform alias analysis on memory references. */
168
169 /* Returns the size in bytes of the mode of X. */
170 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
171
172 /* Cap the number of passes we make over the insns propagating alias
173 information through set chains.
174 ??? 10 is a completely arbitrary choice. This should be based on the
175 maximum loop depth in the CFG, but we do not have this information
176 available (even if current_loops _is_ available). */
177 #define MAX_ALIAS_LOOP_PASSES 10
178
179 /* reg_base_value[N] gives an address to which register N is related.
180 If all sets after the first add or subtract to the current value
181 or otherwise modify it so it does not point to a different top level
182 object, reg_base_value[N] is equal to the address part of the source
183 of the first set.
184
185 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
186 expressions represent three types of base:
187
188 1. incoming arguments. There is just one ADDRESS to represent all
189 arguments, since we do not know at this level whether accesses
190 based on different arguments can alias. The ADDRESS has id 0.
191
192 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
193 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
194 Each of these rtxes has a separate ADDRESS associated with it,
195 each with a negative id.
196
197 GCC is (and is required to be) precise in which register it
198 chooses to access a particular region of stack. We can therefore
199 assume that accesses based on one of these rtxes do not alias
200 accesses based on another of these rtxes.
201
202 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
203 Each such piece of memory has a separate ADDRESS associated
204 with it, each with an id greater than 0.
205
206 Accesses based on one ADDRESS do not alias accesses based on other
207 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
208 alias globals either; the ADDRESSes have Pmode to indicate this.
209 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
210 indicate this. */
211
212 static GTY(()) vec<rtx, va_gc> *reg_base_value;
213 static rtx *new_reg_base_value;
214
215 /* The single VOIDmode ADDRESS that represents all argument bases.
216 It has id 0. */
217 static GTY(()) rtx arg_base_value;
218
219 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
220 static int unique_id;
221
222 /* We preserve the copy of old array around to avoid amount of garbage
223 produced. About 8% of garbage produced were attributed to this
224 array. */
225 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
226
227 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
228 registers. */
229 #define UNIQUE_BASE_VALUE_SP -1
230 #define UNIQUE_BASE_VALUE_ARGP -2
231 #define UNIQUE_BASE_VALUE_FP -3
232 #define UNIQUE_BASE_VALUE_HFP -4
233
234 #define static_reg_base_value \
235 (this_target_rtl->x_static_reg_base_value)
236
237 #define REG_BASE_VALUE(X) \
238 (REGNO (X) < vec_safe_length (reg_base_value) \
239 ? (*reg_base_value)[REGNO (X)] : 0)
240
241 /* Vector indexed by N giving the initial (unchanging) value known for
242 pseudo-register N. This vector is initialized in init_alias_analysis,
243 and does not change until end_alias_analysis is called. */
244 static GTY(()) vec<rtx, va_gc> *reg_known_value;
245
246 /* Vector recording for each reg_known_value whether it is due to a
247 REG_EQUIV note. Future passes (viz., reload) may replace the
248 pseudo with the equivalent expression and so we account for the
249 dependences that would be introduced if that happens.
250
251 The REG_EQUIV notes created in assign_parms may mention the arg
252 pointer, and there are explicit insns in the RTL that modify the
253 arg pointer. Thus we must ensure that such insns don't get
254 scheduled across each other because that would invalidate the
255 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
256 wrong, but solving the problem in the scheduler will likely give
257 better code, so we do it here. */
258 static sbitmap reg_known_equiv_p;
259
260 /* True when scanning insns from the start of the rtl to the
261 NOTE_INSN_FUNCTION_BEG note. */
262 static bool copying_arguments;
263
264
265 /* The splay-tree used to store the various alias set entries. */
266 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
267 \f
268 /* Build a decomposed reference object for querying the alias-oracle
269 from the MEM rtx and store it in *REF.
270 Returns false if MEM is not suitable for the alias-oracle. */
271
272 static bool
273 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
274 {
275 tree expr = MEM_EXPR (mem);
276 tree base;
277
278 if (!expr)
279 return false;
280
281 ao_ref_init (ref, expr);
282
283 /* Get the base of the reference and see if we have to reject or
284 adjust it. */
285 base = ao_ref_base (ref);
286 if (base == NULL_TREE)
287 return false;
288
289 /* The tree oracle doesn't like bases that are neither decls
290 nor indirect references of SSA names. */
291 if (!(DECL_P (base)
292 || (TREE_CODE (base) == MEM_REF
293 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
294 || (TREE_CODE (base) == TARGET_MEM_REF
295 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
296 return false;
297
298 /* If this is a reference based on a partitioned decl replace the
299 base with a MEM_REF of the pointer representative we
300 created during stack slot partitioning. */
301 if (TREE_CODE (base) == VAR_DECL
302 && ! is_global_var (base)
303 && cfun->gimple_df->decls_to_pointers != NULL)
304 {
305 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
306 if (namep)
307 ref->base = build_simple_mem_ref (*namep);
308 }
309
310 ref->ref_alias_set = MEM_ALIAS_SET (mem);
311
312 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
313 is conservative, so trust it. */
314 if (!MEM_OFFSET_KNOWN_P (mem)
315 || !MEM_SIZE_KNOWN_P (mem))
316 return true;
317
318 /* If the base decl is a parameter we can have negative MEM_OFFSET in
319 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
320 here. */
321 if (MEM_OFFSET (mem) < 0
322 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
323 return true;
324
325 /* Otherwise continue and refine size and offset we got from analyzing
326 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
327
328 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
329 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
330
331 /* The MEM may extend into adjacent fields, so adjust max_size if
332 necessary. */
333 if (ref->max_size != -1
334 && ref->size > ref->max_size)
335 ref->max_size = ref->size;
336
337 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
338 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
339 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
340 && (ref->offset < 0
341 || (DECL_P (ref->base)
342 && (DECL_SIZE (ref->base) == NULL_TREE
343 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
344 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
345 ref->offset + ref->size)))))
346 return false;
347
348 return true;
349 }
350
351 /* Query the alias-oracle on whether the two memory rtx X and MEM may
352 alias. If TBAA_P is set also apply TBAA. Returns true if the
353 two rtxen may alias, false otherwise. */
354
355 static bool
356 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
357 {
358 ao_ref ref1, ref2;
359
360 if (!ao_ref_from_mem (&ref1, x)
361 || !ao_ref_from_mem (&ref2, mem))
362 return true;
363
364 return refs_may_alias_p_1 (&ref1, &ref2,
365 tbaa_p
366 && MEM_ALIAS_SET (x) != 0
367 && MEM_ALIAS_SET (mem) != 0);
368 }
369
370 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
371 such an entry, or NULL otherwise. */
372
373 static inline alias_set_entry
374 get_alias_set_entry (alias_set_type alias_set)
375 {
376 return (*alias_sets)[alias_set];
377 }
378
379 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
380 the two MEMs cannot alias each other. */
381
382 static inline int
383 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
384 {
385 /* Perform a basic sanity check. Namely, that there are no alias sets
386 if we're not using strict aliasing. This helps to catch bugs
387 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
388 where a MEM is allocated in some way other than by the use of
389 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
390 use alias sets to indicate that spilled registers cannot alias each
391 other, we might need to remove this check. */
392 gcc_assert (flag_strict_aliasing
393 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
394
395 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
396 }
397
398 /* Insert the NODE into the splay tree given by DATA. Used by
399 record_alias_subset via splay_tree_foreach. */
400
401 static int
402 insert_subset_children (splay_tree_node node, void *data)
403 {
404 splay_tree_insert ((splay_tree) data, node->key, node->value);
405
406 return 0;
407 }
408
409 /* Return true if the first alias set is a subset of the second. */
410
411 bool
412 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
413 {
414 alias_set_entry ase;
415
416 /* Everything is a subset of the "aliases everything" set. */
417 if (set2 == 0)
418 return true;
419
420 /* Otherwise, check if set1 is a subset of set2. */
421 ase = get_alias_set_entry (set2);
422 if (ase != 0
423 && (ase->has_zero_child
424 || splay_tree_lookup (ase->children,
425 (splay_tree_key) set1)))
426 return true;
427 return false;
428 }
429
430 /* Return 1 if the two specified alias sets may conflict. */
431
432 int
433 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
434 {
435 alias_set_entry ase;
436
437 /* The easy case. */
438 if (alias_sets_must_conflict_p (set1, set2))
439 return 1;
440
441 /* See if the first alias set is a subset of the second. */
442 ase = get_alias_set_entry (set1);
443 if (ase != 0
444 && (ase->has_zero_child
445 || splay_tree_lookup (ase->children,
446 (splay_tree_key) set2)))
447 return 1;
448
449 /* Now do the same, but with the alias sets reversed. */
450 ase = get_alias_set_entry (set2);
451 if (ase != 0
452 && (ase->has_zero_child
453 || splay_tree_lookup (ase->children,
454 (splay_tree_key) set1)))
455 return 1;
456
457 /* The two alias sets are distinct and neither one is the
458 child of the other. Therefore, they cannot conflict. */
459 return 0;
460 }
461
462 /* Return 1 if the two specified alias sets will always conflict. */
463
464 int
465 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
466 {
467 if (set1 == 0 || set2 == 0 || set1 == set2)
468 return 1;
469
470 return 0;
471 }
472
473 /* Return 1 if any MEM object of type T1 will always conflict (using the
474 dependency routines in this file) with any MEM object of type T2.
475 This is used when allocating temporary storage. If T1 and/or T2 are
476 NULL_TREE, it means we know nothing about the storage. */
477
478 int
479 objects_must_conflict_p (tree t1, tree t2)
480 {
481 alias_set_type set1, set2;
482
483 /* If neither has a type specified, we don't know if they'll conflict
484 because we may be using them to store objects of various types, for
485 example the argument and local variables areas of inlined functions. */
486 if (t1 == 0 && t2 == 0)
487 return 0;
488
489 /* If they are the same type, they must conflict. */
490 if (t1 == t2
491 /* Likewise if both are volatile. */
492 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
493 return 1;
494
495 set1 = t1 ? get_alias_set (t1) : 0;
496 set2 = t2 ? get_alias_set (t2) : 0;
497
498 /* We can't use alias_sets_conflict_p because we must make sure
499 that every subtype of t1 will conflict with every subtype of
500 t2 for which a pair of subobjects of these respective subtypes
501 overlaps on the stack. */
502 return alias_sets_must_conflict_p (set1, set2);
503 }
504 \f
505 /* Return the outermost parent of component present in the chain of
506 component references handled by get_inner_reference in T with the
507 following property:
508 - the component is non-addressable, or
509 - the parent has alias set zero,
510 or NULL_TREE if no such parent exists. In the former cases, the alias
511 set of this parent is the alias set that must be used for T itself. */
512
513 tree
514 component_uses_parent_alias_set_from (const_tree t)
515 {
516 const_tree found = NULL_TREE;
517
518 while (handled_component_p (t))
519 {
520 switch (TREE_CODE (t))
521 {
522 case COMPONENT_REF:
523 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
524 found = t;
525 break;
526
527 case ARRAY_REF:
528 case ARRAY_RANGE_REF:
529 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
530 found = t;
531 break;
532
533 case REALPART_EXPR:
534 case IMAGPART_EXPR:
535 break;
536
537 case BIT_FIELD_REF:
538 case VIEW_CONVERT_EXPR:
539 /* Bitfields and casts are never addressable. */
540 found = t;
541 break;
542
543 default:
544 gcc_unreachable ();
545 }
546
547 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
548 found = t;
549
550 t = TREE_OPERAND (t, 0);
551 }
552
553 if (found)
554 return TREE_OPERAND (found, 0);
555
556 return NULL_TREE;
557 }
558
559
560 /* Return whether the pointer-type T effective for aliasing may
561 access everything and thus the reference has to be assigned
562 alias-set zero. */
563
564 static bool
565 ref_all_alias_ptr_type_p (const_tree t)
566 {
567 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
568 || TYPE_REF_CAN_ALIAS_ALL (t));
569 }
570
571 /* Return the alias set for the memory pointed to by T, which may be
572 either a type or an expression. Return -1 if there is nothing
573 special about dereferencing T. */
574
575 static alias_set_type
576 get_deref_alias_set_1 (tree t)
577 {
578 /* All we care about is the type. */
579 if (! TYPE_P (t))
580 t = TREE_TYPE (t);
581
582 /* If we have an INDIRECT_REF via a void pointer, we don't
583 know anything about what that might alias. Likewise if the
584 pointer is marked that way. */
585 if (ref_all_alias_ptr_type_p (t))
586 return 0;
587
588 return -1;
589 }
590
591 /* Return the alias set for the memory pointed to by T, which may be
592 either a type or an expression. */
593
594 alias_set_type
595 get_deref_alias_set (tree t)
596 {
597 /* If we're not doing any alias analysis, just assume everything
598 aliases everything else. */
599 if (!flag_strict_aliasing)
600 return 0;
601
602 alias_set_type set = get_deref_alias_set_1 (t);
603
604 /* Fall back to the alias-set of the pointed-to type. */
605 if (set == -1)
606 {
607 if (! TYPE_P (t))
608 t = TREE_TYPE (t);
609 set = get_alias_set (TREE_TYPE (t));
610 }
611
612 return set;
613 }
614
615 /* Return the pointer-type relevant for TBAA purposes from the
616 memory reference tree *T or NULL_TREE in which case *T is
617 adjusted to point to the outermost component reference that
618 can be used for assigning an alias set. */
619
620 static tree
621 reference_alias_ptr_type_1 (tree *t)
622 {
623 tree inner;
624
625 /* Get the base object of the reference. */
626 inner = *t;
627 while (handled_component_p (inner))
628 {
629 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
630 the type of any component references that wrap it to
631 determine the alias-set. */
632 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
633 *t = TREE_OPERAND (inner, 0);
634 inner = TREE_OPERAND (inner, 0);
635 }
636
637 /* Handle pointer dereferences here, they can override the
638 alias-set. */
639 if (INDIRECT_REF_P (inner)
640 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
641 return TREE_TYPE (TREE_OPERAND (inner, 0));
642 else if (TREE_CODE (inner) == TARGET_MEM_REF)
643 return TREE_TYPE (TMR_OFFSET (inner));
644 else if (TREE_CODE (inner) == MEM_REF
645 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
646 return TREE_TYPE (TREE_OPERAND (inner, 1));
647
648 /* If the innermost reference is a MEM_REF that has a
649 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
650 using the memory access type for determining the alias-set. */
651 if (TREE_CODE (inner) == MEM_REF
652 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
653 != TYPE_MAIN_VARIANT
654 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
655 return TREE_TYPE (TREE_OPERAND (inner, 1));
656
657 /* Otherwise, pick up the outermost object that we could have
658 a pointer to. */
659 tree tem = component_uses_parent_alias_set_from (*t);
660 if (tem)
661 *t = tem;
662
663 return NULL_TREE;
664 }
665
666 /* Return the pointer-type relevant for TBAA purposes from the
667 gimple memory reference tree T. This is the type to be used for
668 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
669 and guarantees that get_alias_set will return the same alias
670 set for T and the replacement. */
671
672 tree
673 reference_alias_ptr_type (tree t)
674 {
675 tree ptype = reference_alias_ptr_type_1 (&t);
676 /* If there is a given pointer type for aliasing purposes, return it. */
677 if (ptype != NULL_TREE)
678 return ptype;
679
680 /* Otherwise build one from the outermost component reference we
681 may use. */
682 if (TREE_CODE (t) == MEM_REF
683 || TREE_CODE (t) == TARGET_MEM_REF)
684 return TREE_TYPE (TREE_OPERAND (t, 1));
685 else
686 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
687 }
688
689 /* Return whether the pointer-types T1 and T2 used to determine
690 two alias sets of two references will yield the same answer
691 from get_deref_alias_set. */
692
693 bool
694 alias_ptr_types_compatible_p (tree t1, tree t2)
695 {
696 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
697 return true;
698
699 if (ref_all_alias_ptr_type_p (t1)
700 || ref_all_alias_ptr_type_p (t2))
701 return false;
702
703 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
704 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
705 }
706
707 /* Return the alias set for T, which may be either a type or an
708 expression. Call language-specific routine for help, if needed. */
709
710 alias_set_type
711 get_alias_set (tree t)
712 {
713 alias_set_type set;
714
715 /* If we're not doing any alias analysis, just assume everything
716 aliases everything else. Also return 0 if this or its type is
717 an error. */
718 if (! flag_strict_aliasing || t == error_mark_node
719 || (! TYPE_P (t)
720 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
721 return 0;
722
723 /* We can be passed either an expression or a type. This and the
724 language-specific routine may make mutually-recursive calls to each other
725 to figure out what to do. At each juncture, we see if this is a tree
726 that the language may need to handle specially. First handle things that
727 aren't types. */
728 if (! TYPE_P (t))
729 {
730 /* Give the language a chance to do something with this tree
731 before we look at it. */
732 STRIP_NOPS (t);
733 set = lang_hooks.get_alias_set (t);
734 if (set != -1)
735 return set;
736
737 /* Get the alias pointer-type to use or the outermost object
738 that we could have a pointer to. */
739 tree ptype = reference_alias_ptr_type_1 (&t);
740 if (ptype != NULL)
741 return get_deref_alias_set (ptype);
742
743 /* If we've already determined the alias set for a decl, just return
744 it. This is necessary for C++ anonymous unions, whose component
745 variables don't look like union members (boo!). */
746 if (TREE_CODE (t) == VAR_DECL
747 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
748 return MEM_ALIAS_SET (DECL_RTL (t));
749
750 /* Now all we care about is the type. */
751 t = TREE_TYPE (t);
752 }
753
754 /* Variant qualifiers don't affect the alias set, so get the main
755 variant. */
756 t = TYPE_MAIN_VARIANT (t);
757
758 /* Always use the canonical type as well. If this is a type that
759 requires structural comparisons to identify compatible types
760 use alias set zero. */
761 if (TYPE_STRUCTURAL_EQUALITY_P (t))
762 {
763 /* Allow the language to specify another alias set for this
764 type. */
765 set = lang_hooks.get_alias_set (t);
766 if (set != -1)
767 return set;
768 return 0;
769 }
770
771 t = TYPE_CANONICAL (t);
772
773 /* The canonical type should not require structural equality checks. */
774 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
775
776 /* If this is a type with a known alias set, return it. */
777 if (TYPE_ALIAS_SET_KNOWN_P (t))
778 return TYPE_ALIAS_SET (t);
779
780 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
781 if (!COMPLETE_TYPE_P (t))
782 {
783 /* For arrays with unknown size the conservative answer is the
784 alias set of the element type. */
785 if (TREE_CODE (t) == ARRAY_TYPE)
786 return get_alias_set (TREE_TYPE (t));
787
788 /* But return zero as a conservative answer for incomplete types. */
789 return 0;
790 }
791
792 /* See if the language has special handling for this type. */
793 set = lang_hooks.get_alias_set (t);
794 if (set != -1)
795 return set;
796
797 /* There are no objects of FUNCTION_TYPE, so there's no point in
798 using up an alias set for them. (There are, of course, pointers
799 and references to functions, but that's different.) */
800 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
801 set = 0;
802
803 /* Unless the language specifies otherwise, let vector types alias
804 their components. This avoids some nasty type punning issues in
805 normal usage. And indeed lets vectors be treated more like an
806 array slice. */
807 else if (TREE_CODE (t) == VECTOR_TYPE)
808 set = get_alias_set (TREE_TYPE (t));
809
810 /* Unless the language specifies otherwise, treat array types the
811 same as their components. This avoids the asymmetry we get
812 through recording the components. Consider accessing a
813 character(kind=1) through a reference to a character(kind=1)[1:1].
814 Or consider if we want to assign integer(kind=4)[0:D.1387] and
815 integer(kind=4)[4] the same alias set or not.
816 Just be pragmatic here and make sure the array and its element
817 type get the same alias set assigned. */
818 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
819 set = get_alias_set (TREE_TYPE (t));
820
821 /* From the former common C and C++ langhook implementation:
822
823 Unfortunately, there is no canonical form of a pointer type.
824 In particular, if we have `typedef int I', then `int *', and
825 `I *' are different types. So, we have to pick a canonical
826 representative. We do this below.
827
828 Technically, this approach is actually more conservative that
829 it needs to be. In particular, `const int *' and `int *'
830 should be in different alias sets, according to the C and C++
831 standard, since their types are not the same, and so,
832 technically, an `int **' and `const int **' cannot point at
833 the same thing.
834
835 But, the standard is wrong. In particular, this code is
836 legal C++:
837
838 int *ip;
839 int **ipp = &ip;
840 const int* const* cipp = ipp;
841 And, it doesn't make sense for that to be legal unless you
842 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
843 the pointed-to types. This issue has been reported to the
844 C++ committee.
845
846 In addition to the above canonicalization issue, with LTO
847 we should also canonicalize `T (*)[]' to `T *' avoiding
848 alias issues with pointer-to element types and pointer-to
849 array types.
850
851 Likewise we need to deal with the situation of incomplete
852 pointed-to types and make `*(struct X **)&a' and
853 `*(struct X {} **)&a' alias. Otherwise we will have to
854 guarantee that all pointer-to incomplete type variants
855 will be replaced by pointer-to complete type variants if
856 they are available.
857
858 With LTO the convenient situation of using `void *' to
859 access and store any pointer type will also become
860 more apparent (and `void *' is just another pointer-to
861 incomplete type). Assigning alias-set zero to `void *'
862 and all pointer-to incomplete types is a not appealing
863 solution. Assigning an effective alias-set zero only
864 affecting pointers might be - by recording proper subset
865 relationships of all pointer alias-sets.
866
867 Pointer-to function types are another grey area which
868 needs caution. Globbing them all into one alias-set
869 or the above effective zero set would work.
870
871 For now just assign the same alias-set to all pointers.
872 That's simple and avoids all the above problems. */
873 else if (POINTER_TYPE_P (t)
874 && t != ptr_type_node)
875 set = get_alias_set (ptr_type_node);
876
877 /* Otherwise make a new alias set for this type. */
878 else
879 {
880 /* Each canonical type gets its own alias set, so canonical types
881 shouldn't form a tree. It doesn't really matter for types
882 we handle specially above, so only check it where it possibly
883 would result in a bogus alias set. */
884 gcc_checking_assert (TYPE_CANONICAL (t) == t);
885
886 set = new_alias_set ();
887 }
888
889 TYPE_ALIAS_SET (t) = set;
890
891 /* If this is an aggregate type or a complex type, we must record any
892 component aliasing information. */
893 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
894 record_component_aliases (t);
895
896 return set;
897 }
898
899 /* Return a brand-new alias set. */
900
901 alias_set_type
902 new_alias_set (void)
903 {
904 if (flag_strict_aliasing)
905 {
906 if (alias_sets == 0)
907 vec_safe_push (alias_sets, (alias_set_entry) 0);
908 vec_safe_push (alias_sets, (alias_set_entry) 0);
909 return alias_sets->length () - 1;
910 }
911 else
912 return 0;
913 }
914
915 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
916 not everything that aliases SUPERSET also aliases SUBSET. For example,
917 in C, a store to an `int' can alias a load of a structure containing an
918 `int', and vice versa. But it can't alias a load of a 'double' member
919 of the same structure. Here, the structure would be the SUPERSET and
920 `int' the SUBSET. This relationship is also described in the comment at
921 the beginning of this file.
922
923 This function should be called only once per SUPERSET/SUBSET pair.
924
925 It is illegal for SUPERSET to be zero; everything is implicitly a
926 subset of alias set zero. */
927
928 void
929 record_alias_subset (alias_set_type superset, alias_set_type subset)
930 {
931 alias_set_entry superset_entry;
932 alias_set_entry subset_entry;
933
934 /* It is possible in complex type situations for both sets to be the same,
935 in which case we can ignore this operation. */
936 if (superset == subset)
937 return;
938
939 gcc_assert (superset);
940
941 superset_entry = get_alias_set_entry (superset);
942 if (superset_entry == 0)
943 {
944 /* Create an entry for the SUPERSET, so that we have a place to
945 attach the SUBSET. */
946 superset_entry = ggc_cleared_alloc<alias_set_entry_d> ();
947 superset_entry->alias_set = superset;
948 superset_entry->children
949 = splay_tree_new_ggc (splay_tree_compare_ints,
950 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
951 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
952 superset_entry->has_zero_child = 0;
953 (*alias_sets)[superset] = superset_entry;
954 }
955
956 if (subset == 0)
957 superset_entry->has_zero_child = 1;
958 else
959 {
960 subset_entry = get_alias_set_entry (subset);
961 /* If there is an entry for the subset, enter all of its children
962 (if they are not already present) as children of the SUPERSET. */
963 if (subset_entry)
964 {
965 if (subset_entry->has_zero_child)
966 superset_entry->has_zero_child = 1;
967
968 splay_tree_foreach (subset_entry->children, insert_subset_children,
969 superset_entry->children);
970 }
971
972 /* Enter the SUBSET itself as a child of the SUPERSET. */
973 splay_tree_insert (superset_entry->children,
974 (splay_tree_key) subset, 0);
975 }
976 }
977
978 /* Record that component types of TYPE, if any, are part of that type for
979 aliasing purposes. For record types, we only record component types
980 for fields that are not marked non-addressable. For array types, we
981 only record the component type if it is not marked non-aliased. */
982
983 void
984 record_component_aliases (tree type)
985 {
986 alias_set_type superset = get_alias_set (type);
987 tree field;
988
989 if (superset == 0)
990 return;
991
992 switch (TREE_CODE (type))
993 {
994 case RECORD_TYPE:
995 case UNION_TYPE:
996 case QUAL_UNION_TYPE:
997 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
998 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
999 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
1000 break;
1001
1002 case COMPLEX_TYPE:
1003 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1004 break;
1005
1006 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1007 element type. */
1008
1009 default:
1010 break;
1011 }
1012 }
1013
1014 /* Allocate an alias set for use in storing and reading from the varargs
1015 spill area. */
1016
1017 static GTY(()) alias_set_type varargs_set = -1;
1018
1019 alias_set_type
1020 get_varargs_alias_set (void)
1021 {
1022 #if 1
1023 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1024 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1025 consistently use the varargs alias set for loads from the varargs
1026 area. So don't use it anywhere. */
1027 return 0;
1028 #else
1029 if (varargs_set == -1)
1030 varargs_set = new_alias_set ();
1031
1032 return varargs_set;
1033 #endif
1034 }
1035
1036 /* Likewise, but used for the fixed portions of the frame, e.g., register
1037 save areas. */
1038
1039 static GTY(()) alias_set_type frame_set = -1;
1040
1041 alias_set_type
1042 get_frame_alias_set (void)
1043 {
1044 if (frame_set == -1)
1045 frame_set = new_alias_set ();
1046
1047 return frame_set;
1048 }
1049
1050 /* Create a new, unique base with id ID. */
1051
1052 static rtx
1053 unique_base_value (HOST_WIDE_INT id)
1054 {
1055 return gen_rtx_ADDRESS (Pmode, id);
1056 }
1057
1058 /* Return true if accesses based on any other base value cannot alias
1059 those based on X. */
1060
1061 static bool
1062 unique_base_value_p (rtx x)
1063 {
1064 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1065 }
1066
1067 /* Return true if X is known to be a base value. */
1068
1069 static bool
1070 known_base_value_p (rtx x)
1071 {
1072 switch (GET_CODE (x))
1073 {
1074 case LABEL_REF:
1075 case SYMBOL_REF:
1076 return true;
1077
1078 case ADDRESS:
1079 /* Arguments may or may not be bases; we don't know for sure. */
1080 return GET_MODE (x) != VOIDmode;
1081
1082 default:
1083 return false;
1084 }
1085 }
1086
1087 /* Inside SRC, the source of a SET, find a base address. */
1088
1089 static rtx
1090 find_base_value (rtx src)
1091 {
1092 unsigned int regno;
1093
1094 #if defined (FIND_BASE_TERM)
1095 /* Try machine-dependent ways to find the base term. */
1096 src = FIND_BASE_TERM (src);
1097 #endif
1098
1099 switch (GET_CODE (src))
1100 {
1101 case SYMBOL_REF:
1102 case LABEL_REF:
1103 return src;
1104
1105 case REG:
1106 regno = REGNO (src);
1107 /* At the start of a function, argument registers have known base
1108 values which may be lost later. Returning an ADDRESS
1109 expression here allows optimization based on argument values
1110 even when the argument registers are used for other purposes. */
1111 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1112 return new_reg_base_value[regno];
1113
1114 /* If a pseudo has a known base value, return it. Do not do this
1115 for non-fixed hard regs since it can result in a circular
1116 dependency chain for registers which have values at function entry.
1117
1118 The test above is not sufficient because the scheduler may move
1119 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1120 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1121 && regno < vec_safe_length (reg_base_value))
1122 {
1123 /* If we're inside init_alias_analysis, use new_reg_base_value
1124 to reduce the number of relaxation iterations. */
1125 if (new_reg_base_value && new_reg_base_value[regno]
1126 && DF_REG_DEF_COUNT (regno) == 1)
1127 return new_reg_base_value[regno];
1128
1129 if ((*reg_base_value)[regno])
1130 return (*reg_base_value)[regno];
1131 }
1132
1133 return 0;
1134
1135 case MEM:
1136 /* Check for an argument passed in memory. Only record in the
1137 copying-arguments block; it is too hard to track changes
1138 otherwise. */
1139 if (copying_arguments
1140 && (XEXP (src, 0) == arg_pointer_rtx
1141 || (GET_CODE (XEXP (src, 0)) == PLUS
1142 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1143 return arg_base_value;
1144 return 0;
1145
1146 case CONST:
1147 src = XEXP (src, 0);
1148 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1149 break;
1150
1151 /* ... fall through ... */
1152
1153 case PLUS:
1154 case MINUS:
1155 {
1156 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1157
1158 /* If either operand is a REG that is a known pointer, then it
1159 is the base. */
1160 if (REG_P (src_0) && REG_POINTER (src_0))
1161 return find_base_value (src_0);
1162 if (REG_P (src_1) && REG_POINTER (src_1))
1163 return find_base_value (src_1);
1164
1165 /* If either operand is a REG, then see if we already have
1166 a known value for it. */
1167 if (REG_P (src_0))
1168 {
1169 temp = find_base_value (src_0);
1170 if (temp != 0)
1171 src_0 = temp;
1172 }
1173
1174 if (REG_P (src_1))
1175 {
1176 temp = find_base_value (src_1);
1177 if (temp!= 0)
1178 src_1 = temp;
1179 }
1180
1181 /* If either base is named object or a special address
1182 (like an argument or stack reference), then use it for the
1183 base term. */
1184 if (src_0 != 0 && known_base_value_p (src_0))
1185 return src_0;
1186
1187 if (src_1 != 0 && known_base_value_p (src_1))
1188 return src_1;
1189
1190 /* Guess which operand is the base address:
1191 If either operand is a symbol, then it is the base. If
1192 either operand is a CONST_INT, then the other is the base. */
1193 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1194 return find_base_value (src_0);
1195 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1196 return find_base_value (src_1);
1197
1198 return 0;
1199 }
1200
1201 case LO_SUM:
1202 /* The standard form is (lo_sum reg sym) so look only at the
1203 second operand. */
1204 return find_base_value (XEXP (src, 1));
1205
1206 case AND:
1207 /* If the second operand is constant set the base
1208 address to the first operand. */
1209 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1210 return find_base_value (XEXP (src, 0));
1211 return 0;
1212
1213 case TRUNCATE:
1214 /* As we do not know which address space the pointer is referring to, we can
1215 handle this only if the target does not support different pointer or
1216 address modes depending on the address space. */
1217 if (!target_default_pointer_address_modes_p ())
1218 break;
1219 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1220 break;
1221 /* Fall through. */
1222 case HIGH:
1223 case PRE_INC:
1224 case PRE_DEC:
1225 case POST_INC:
1226 case POST_DEC:
1227 case PRE_MODIFY:
1228 case POST_MODIFY:
1229 return find_base_value (XEXP (src, 0));
1230
1231 case ZERO_EXTEND:
1232 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1233 /* As we do not know which address space the pointer is referring to, we can
1234 handle this only if the target does not support different pointer or
1235 address modes depending on the address space. */
1236 if (!target_default_pointer_address_modes_p ())
1237 break;
1238
1239 {
1240 rtx temp = find_base_value (XEXP (src, 0));
1241
1242 if (temp != 0 && CONSTANT_P (temp))
1243 temp = convert_memory_address (Pmode, temp);
1244
1245 return temp;
1246 }
1247
1248 default:
1249 break;
1250 }
1251
1252 return 0;
1253 }
1254
1255 /* Called from init_alias_analysis indirectly through note_stores,
1256 or directly if DEST is a register with a REG_NOALIAS note attached.
1257 SET is null in the latter case. */
1258
1259 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1260 register N has been set in this function. */
1261 static sbitmap reg_seen;
1262
1263 static void
1264 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1265 {
1266 unsigned regno;
1267 rtx src;
1268 int n;
1269
1270 if (!REG_P (dest))
1271 return;
1272
1273 regno = REGNO (dest);
1274
1275 gcc_checking_assert (regno < reg_base_value->length ());
1276
1277 /* If this spans multiple hard registers, then we must indicate that every
1278 register has an unusable value. */
1279 if (regno < FIRST_PSEUDO_REGISTER)
1280 n = hard_regno_nregs[regno][GET_MODE (dest)];
1281 else
1282 n = 1;
1283 if (n != 1)
1284 {
1285 while (--n >= 0)
1286 {
1287 bitmap_set_bit (reg_seen, regno + n);
1288 new_reg_base_value[regno + n] = 0;
1289 }
1290 return;
1291 }
1292
1293 if (set)
1294 {
1295 /* A CLOBBER wipes out any old value but does not prevent a previously
1296 unset register from acquiring a base address (i.e. reg_seen is not
1297 set). */
1298 if (GET_CODE (set) == CLOBBER)
1299 {
1300 new_reg_base_value[regno] = 0;
1301 return;
1302 }
1303 src = SET_SRC (set);
1304 }
1305 else
1306 {
1307 /* There's a REG_NOALIAS note against DEST. */
1308 if (bitmap_bit_p (reg_seen, regno))
1309 {
1310 new_reg_base_value[regno] = 0;
1311 return;
1312 }
1313 bitmap_set_bit (reg_seen, regno);
1314 new_reg_base_value[regno] = unique_base_value (unique_id++);
1315 return;
1316 }
1317
1318 /* If this is not the first set of REGNO, see whether the new value
1319 is related to the old one. There are two cases of interest:
1320
1321 (1) The register might be assigned an entirely new value
1322 that has the same base term as the original set.
1323
1324 (2) The set might be a simple self-modification that
1325 cannot change REGNO's base value.
1326
1327 If neither case holds, reject the original base value as invalid.
1328 Note that the following situation is not detected:
1329
1330 extern int x, y; int *p = &x; p += (&y-&x);
1331
1332 ANSI C does not allow computing the difference of addresses
1333 of distinct top level objects. */
1334 if (new_reg_base_value[regno] != 0
1335 && find_base_value (src) != new_reg_base_value[regno])
1336 switch (GET_CODE (src))
1337 {
1338 case LO_SUM:
1339 case MINUS:
1340 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1341 new_reg_base_value[regno] = 0;
1342 break;
1343 case PLUS:
1344 /* If the value we add in the PLUS is also a valid base value,
1345 this might be the actual base value, and the original value
1346 an index. */
1347 {
1348 rtx other = NULL_RTX;
1349
1350 if (XEXP (src, 0) == dest)
1351 other = XEXP (src, 1);
1352 else if (XEXP (src, 1) == dest)
1353 other = XEXP (src, 0);
1354
1355 if (! other || find_base_value (other))
1356 new_reg_base_value[regno] = 0;
1357 break;
1358 }
1359 case AND:
1360 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1361 new_reg_base_value[regno] = 0;
1362 break;
1363 default:
1364 new_reg_base_value[regno] = 0;
1365 break;
1366 }
1367 /* If this is the first set of a register, record the value. */
1368 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1369 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1370 new_reg_base_value[regno] = find_base_value (src);
1371
1372 bitmap_set_bit (reg_seen, regno);
1373 }
1374
1375 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1376 using hard registers with non-null REG_BASE_VALUE for renaming. */
1377 rtx
1378 get_reg_base_value (unsigned int regno)
1379 {
1380 return (*reg_base_value)[regno];
1381 }
1382
1383 /* If a value is known for REGNO, return it. */
1384
1385 rtx
1386 get_reg_known_value (unsigned int regno)
1387 {
1388 if (regno >= FIRST_PSEUDO_REGISTER)
1389 {
1390 regno -= FIRST_PSEUDO_REGISTER;
1391 if (regno < vec_safe_length (reg_known_value))
1392 return (*reg_known_value)[regno];
1393 }
1394 return NULL;
1395 }
1396
1397 /* Set it. */
1398
1399 static void
1400 set_reg_known_value (unsigned int regno, rtx val)
1401 {
1402 if (regno >= FIRST_PSEUDO_REGISTER)
1403 {
1404 regno -= FIRST_PSEUDO_REGISTER;
1405 if (regno < vec_safe_length (reg_known_value))
1406 (*reg_known_value)[regno] = val;
1407 }
1408 }
1409
1410 /* Similarly for reg_known_equiv_p. */
1411
1412 bool
1413 get_reg_known_equiv_p (unsigned int regno)
1414 {
1415 if (regno >= FIRST_PSEUDO_REGISTER)
1416 {
1417 regno -= FIRST_PSEUDO_REGISTER;
1418 if (regno < vec_safe_length (reg_known_value))
1419 return bitmap_bit_p (reg_known_equiv_p, regno);
1420 }
1421 return false;
1422 }
1423
1424 static void
1425 set_reg_known_equiv_p (unsigned int regno, bool val)
1426 {
1427 if (regno >= FIRST_PSEUDO_REGISTER)
1428 {
1429 regno -= FIRST_PSEUDO_REGISTER;
1430 if (regno < vec_safe_length (reg_known_value))
1431 {
1432 if (val)
1433 bitmap_set_bit (reg_known_equiv_p, regno);
1434 else
1435 bitmap_clear_bit (reg_known_equiv_p, regno);
1436 }
1437 }
1438 }
1439
1440
1441 /* Returns a canonical version of X, from the point of view alias
1442 analysis. (For example, if X is a MEM whose address is a register,
1443 and the register has a known value (say a SYMBOL_REF), then a MEM
1444 whose address is the SYMBOL_REF is returned.) */
1445
1446 rtx
1447 canon_rtx (rtx x)
1448 {
1449 /* Recursively look for equivalences. */
1450 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1451 {
1452 rtx t = get_reg_known_value (REGNO (x));
1453 if (t == x)
1454 return x;
1455 if (t)
1456 return canon_rtx (t);
1457 }
1458
1459 if (GET_CODE (x) == PLUS)
1460 {
1461 rtx x0 = canon_rtx (XEXP (x, 0));
1462 rtx x1 = canon_rtx (XEXP (x, 1));
1463
1464 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1465 {
1466 if (CONST_INT_P (x0))
1467 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1468 else if (CONST_INT_P (x1))
1469 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1470 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1471 }
1472 }
1473
1474 /* This gives us much better alias analysis when called from
1475 the loop optimizer. Note we want to leave the original
1476 MEM alone, but need to return the canonicalized MEM with
1477 all the flags with their original values. */
1478 else if (MEM_P (x))
1479 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1480
1481 return x;
1482 }
1483
1484 /* Return 1 if X and Y are identical-looking rtx's.
1485 Expect that X and Y has been already canonicalized.
1486
1487 We use the data in reg_known_value above to see if two registers with
1488 different numbers are, in fact, equivalent. */
1489
1490 static int
1491 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1492 {
1493 int i;
1494 int j;
1495 enum rtx_code code;
1496 const char *fmt;
1497
1498 if (x == 0 && y == 0)
1499 return 1;
1500 if (x == 0 || y == 0)
1501 return 0;
1502
1503 if (x == y)
1504 return 1;
1505
1506 code = GET_CODE (x);
1507 /* Rtx's of different codes cannot be equal. */
1508 if (code != GET_CODE (y))
1509 return 0;
1510
1511 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1512 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1513
1514 if (GET_MODE (x) != GET_MODE (y))
1515 return 0;
1516
1517 /* Some RTL can be compared without a recursive examination. */
1518 switch (code)
1519 {
1520 case REG:
1521 return REGNO (x) == REGNO (y);
1522
1523 case LABEL_REF:
1524 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1525
1526 case SYMBOL_REF:
1527 return XSTR (x, 0) == XSTR (y, 0);
1528
1529 case ENTRY_VALUE:
1530 /* This is magic, don't go through canonicalization et al. */
1531 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1532
1533 case VALUE:
1534 CASE_CONST_UNIQUE:
1535 /* Pointer equality guarantees equality for these nodes. */
1536 return 0;
1537
1538 default:
1539 break;
1540 }
1541
1542 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1543 if (code == PLUS)
1544 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1545 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1546 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1547 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1548 /* For commutative operations, the RTX match if the operand match in any
1549 order. Also handle the simple binary and unary cases without a loop. */
1550 if (COMMUTATIVE_P (x))
1551 {
1552 rtx xop0 = canon_rtx (XEXP (x, 0));
1553 rtx yop0 = canon_rtx (XEXP (y, 0));
1554 rtx yop1 = canon_rtx (XEXP (y, 1));
1555
1556 return ((rtx_equal_for_memref_p (xop0, yop0)
1557 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1558 || (rtx_equal_for_memref_p (xop0, yop1)
1559 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1560 }
1561 else if (NON_COMMUTATIVE_P (x))
1562 {
1563 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1564 canon_rtx (XEXP (y, 0)))
1565 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1566 canon_rtx (XEXP (y, 1))));
1567 }
1568 else if (UNARY_P (x))
1569 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1570 canon_rtx (XEXP (y, 0)));
1571
1572 /* Compare the elements. If any pair of corresponding elements
1573 fail to match, return 0 for the whole things.
1574
1575 Limit cases to types which actually appear in addresses. */
1576
1577 fmt = GET_RTX_FORMAT (code);
1578 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1579 {
1580 switch (fmt[i])
1581 {
1582 case 'i':
1583 if (XINT (x, i) != XINT (y, i))
1584 return 0;
1585 break;
1586
1587 case 'E':
1588 /* Two vectors must have the same length. */
1589 if (XVECLEN (x, i) != XVECLEN (y, i))
1590 return 0;
1591
1592 /* And the corresponding elements must match. */
1593 for (j = 0; j < XVECLEN (x, i); j++)
1594 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1595 canon_rtx (XVECEXP (y, i, j))) == 0)
1596 return 0;
1597 break;
1598
1599 case 'e':
1600 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1601 canon_rtx (XEXP (y, i))) == 0)
1602 return 0;
1603 break;
1604
1605 /* This can happen for asm operands. */
1606 case 's':
1607 if (strcmp (XSTR (x, i), XSTR (y, i)))
1608 return 0;
1609 break;
1610
1611 /* This can happen for an asm which clobbers memory. */
1612 case '0':
1613 break;
1614
1615 /* It is believed that rtx's at this level will never
1616 contain anything but integers and other rtx's,
1617 except for within LABEL_REFs and SYMBOL_REFs. */
1618 default:
1619 gcc_unreachable ();
1620 }
1621 }
1622 return 1;
1623 }
1624
1625 static rtx
1626 find_base_term (rtx x)
1627 {
1628 cselib_val *val;
1629 struct elt_loc_list *l, *f;
1630 rtx ret;
1631
1632 #if defined (FIND_BASE_TERM)
1633 /* Try machine-dependent ways to find the base term. */
1634 x = FIND_BASE_TERM (x);
1635 #endif
1636
1637 switch (GET_CODE (x))
1638 {
1639 case REG:
1640 return REG_BASE_VALUE (x);
1641
1642 case TRUNCATE:
1643 /* As we do not know which address space the pointer is referring to, we can
1644 handle this only if the target does not support different pointer or
1645 address modes depending on the address space. */
1646 if (!target_default_pointer_address_modes_p ())
1647 return 0;
1648 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1649 return 0;
1650 /* Fall through. */
1651 case HIGH:
1652 case PRE_INC:
1653 case PRE_DEC:
1654 case POST_INC:
1655 case POST_DEC:
1656 case PRE_MODIFY:
1657 case POST_MODIFY:
1658 return find_base_term (XEXP (x, 0));
1659
1660 case ZERO_EXTEND:
1661 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1662 /* As we do not know which address space the pointer is referring to, we can
1663 handle this only if the target does not support different pointer or
1664 address modes depending on the address space. */
1665 if (!target_default_pointer_address_modes_p ())
1666 return 0;
1667
1668 {
1669 rtx temp = find_base_term (XEXP (x, 0));
1670
1671 if (temp != 0 && CONSTANT_P (temp))
1672 temp = convert_memory_address (Pmode, temp);
1673
1674 return temp;
1675 }
1676
1677 case VALUE:
1678 val = CSELIB_VAL_PTR (x);
1679 ret = NULL_RTX;
1680
1681 if (!val)
1682 return ret;
1683
1684 if (cselib_sp_based_value_p (val))
1685 return static_reg_base_value[STACK_POINTER_REGNUM];
1686
1687 f = val->locs;
1688 /* Temporarily reset val->locs to avoid infinite recursion. */
1689 val->locs = NULL;
1690
1691 for (l = f; l; l = l->next)
1692 if (GET_CODE (l->loc) == VALUE
1693 && CSELIB_VAL_PTR (l->loc)->locs
1694 && !CSELIB_VAL_PTR (l->loc)->locs->next
1695 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1696 continue;
1697 else if ((ret = find_base_term (l->loc)) != 0)
1698 break;
1699
1700 val->locs = f;
1701 return ret;
1702
1703 case LO_SUM:
1704 /* The standard form is (lo_sum reg sym) so look only at the
1705 second operand. */
1706 return find_base_term (XEXP (x, 1));
1707
1708 case CONST:
1709 x = XEXP (x, 0);
1710 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1711 return 0;
1712 /* Fall through. */
1713 case PLUS:
1714 case MINUS:
1715 {
1716 rtx tmp1 = XEXP (x, 0);
1717 rtx tmp2 = XEXP (x, 1);
1718
1719 /* This is a little bit tricky since we have to determine which of
1720 the two operands represents the real base address. Otherwise this
1721 routine may return the index register instead of the base register.
1722
1723 That may cause us to believe no aliasing was possible, when in
1724 fact aliasing is possible.
1725
1726 We use a few simple tests to guess the base register. Additional
1727 tests can certainly be added. For example, if one of the operands
1728 is a shift or multiply, then it must be the index register and the
1729 other operand is the base register. */
1730
1731 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1732 return find_base_term (tmp2);
1733
1734 /* If either operand is known to be a pointer, then prefer it
1735 to determine the base term. */
1736 if (REG_P (tmp1) && REG_POINTER (tmp1))
1737 ;
1738 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1739 {
1740 rtx tem = tmp1;
1741 tmp1 = tmp2;
1742 tmp2 = tem;
1743 }
1744
1745 /* Go ahead and find the base term for both operands. If either base
1746 term is from a pointer or is a named object or a special address
1747 (like an argument or stack reference), then use it for the
1748 base term. */
1749 rtx base = find_base_term (tmp1);
1750 if (base != NULL_RTX
1751 && ((REG_P (tmp1) && REG_POINTER (tmp1))
1752 || known_base_value_p (base)))
1753 return base;
1754 base = find_base_term (tmp2);
1755 if (base != NULL_RTX
1756 && ((REG_P (tmp2) && REG_POINTER (tmp2))
1757 || known_base_value_p (base)))
1758 return base;
1759
1760 /* We could not determine which of the two operands was the
1761 base register and which was the index. So we can determine
1762 nothing from the base alias check. */
1763 return 0;
1764 }
1765
1766 case AND:
1767 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1768 return find_base_term (XEXP (x, 0));
1769 return 0;
1770
1771 case SYMBOL_REF:
1772 case LABEL_REF:
1773 return x;
1774
1775 default:
1776 return 0;
1777 }
1778 }
1779
1780 /* Return true if accesses to address X may alias accesses based
1781 on the stack pointer. */
1782
1783 bool
1784 may_be_sp_based_p (rtx x)
1785 {
1786 rtx base = find_base_term (x);
1787 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1788 }
1789
1790 /* Return 0 if the addresses X and Y are known to point to different
1791 objects, 1 if they might be pointers to the same object. */
1792
1793 static int
1794 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
1795 enum machine_mode x_mode, enum machine_mode y_mode)
1796 {
1797 /* If the address itself has no known base see if a known equivalent
1798 value has one. If either address still has no known base, nothing
1799 is known about aliasing. */
1800 if (x_base == 0)
1801 {
1802 rtx x_c;
1803
1804 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1805 return 1;
1806
1807 x_base = find_base_term (x_c);
1808 if (x_base == 0)
1809 return 1;
1810 }
1811
1812 if (y_base == 0)
1813 {
1814 rtx y_c;
1815 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1816 return 1;
1817
1818 y_base = find_base_term (y_c);
1819 if (y_base == 0)
1820 return 1;
1821 }
1822
1823 /* If the base addresses are equal nothing is known about aliasing. */
1824 if (rtx_equal_p (x_base, y_base))
1825 return 1;
1826
1827 /* The base addresses are different expressions. If they are not accessed
1828 via AND, there is no conflict. We can bring knowledge of object
1829 alignment into play here. For example, on alpha, "char a, b;" can
1830 alias one another, though "char a; long b;" cannot. AND addesses may
1831 implicitly alias surrounding objects; i.e. unaligned access in DImode
1832 via AND address can alias all surrounding object types except those
1833 with aligment 8 or higher. */
1834 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1835 return 1;
1836 if (GET_CODE (x) == AND
1837 && (!CONST_INT_P (XEXP (x, 1))
1838 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1839 return 1;
1840 if (GET_CODE (y) == AND
1841 && (!CONST_INT_P (XEXP (y, 1))
1842 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1843 return 1;
1844
1845 /* Differing symbols not accessed via AND never alias. */
1846 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1847 return 0;
1848
1849 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1850 return 0;
1851
1852 return 1;
1853 }
1854
1855 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1856 that of V. */
1857
1858 static bool
1859 refs_newer_value_p (const_rtx expr, rtx v)
1860 {
1861 int minuid = CSELIB_VAL_PTR (v)->uid;
1862 subrtx_iterator::array_type array;
1863 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
1864 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid > minuid)
1865 return true;
1866 return false;
1867 }
1868
1869 /* Convert the address X into something we can use. This is done by returning
1870 it unchanged unless it is a value; in the latter case we call cselib to get
1871 a more useful rtx. */
1872
1873 rtx
1874 get_addr (rtx x)
1875 {
1876 cselib_val *v;
1877 struct elt_loc_list *l;
1878
1879 if (GET_CODE (x) != VALUE)
1880 return x;
1881 v = CSELIB_VAL_PTR (x);
1882 if (v)
1883 {
1884 bool have_equivs = cselib_have_permanent_equivalences ();
1885 if (have_equivs)
1886 v = canonical_cselib_val (v);
1887 for (l = v->locs; l; l = l->next)
1888 if (CONSTANT_P (l->loc))
1889 return l->loc;
1890 for (l = v->locs; l; l = l->next)
1891 if (!REG_P (l->loc) && !MEM_P (l->loc)
1892 /* Avoid infinite recursion when potentially dealing with
1893 var-tracking artificial equivalences, by skipping the
1894 equivalences themselves, and not choosing expressions
1895 that refer to newer VALUEs. */
1896 && (!have_equivs
1897 || (GET_CODE (l->loc) != VALUE
1898 && !refs_newer_value_p (l->loc, x))))
1899 return l->loc;
1900 if (have_equivs)
1901 {
1902 for (l = v->locs; l; l = l->next)
1903 if (REG_P (l->loc)
1904 || (GET_CODE (l->loc) != VALUE
1905 && !refs_newer_value_p (l->loc, x)))
1906 return l->loc;
1907 /* Return the canonical value. */
1908 return v->val_rtx;
1909 }
1910 if (v->locs)
1911 return v->locs->loc;
1912 }
1913 return x;
1914 }
1915
1916 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1917 where SIZE is the size in bytes of the memory reference. If ADDR
1918 is not modified by the memory reference then ADDR is returned. */
1919
1920 static rtx
1921 addr_side_effect_eval (rtx addr, int size, int n_refs)
1922 {
1923 int offset = 0;
1924
1925 switch (GET_CODE (addr))
1926 {
1927 case PRE_INC:
1928 offset = (n_refs + 1) * size;
1929 break;
1930 case PRE_DEC:
1931 offset = -(n_refs + 1) * size;
1932 break;
1933 case POST_INC:
1934 offset = n_refs * size;
1935 break;
1936 case POST_DEC:
1937 offset = -n_refs * size;
1938 break;
1939
1940 default:
1941 return addr;
1942 }
1943
1944 if (offset)
1945 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1946 gen_int_mode (offset, GET_MODE (addr)));
1947 else
1948 addr = XEXP (addr, 0);
1949 addr = canon_rtx (addr);
1950
1951 return addr;
1952 }
1953
1954 /* Return TRUE if an object X sized at XSIZE bytes and another object
1955 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
1956 any of the sizes is zero, assume an overlap, otherwise use the
1957 absolute value of the sizes as the actual sizes. */
1958
1959 static inline bool
1960 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
1961 {
1962 return (xsize == 0 || ysize == 0
1963 || (c >= 0
1964 ? (abs (xsize) > c)
1965 : (abs (ysize) > -c)));
1966 }
1967
1968 /* Return one if X and Y (memory addresses) reference the
1969 same location in memory or if the references overlap.
1970 Return zero if they do not overlap, else return
1971 minus one in which case they still might reference the same location.
1972
1973 C is an offset accumulator. When
1974 C is nonzero, we are testing aliases between X and Y + C.
1975 XSIZE is the size in bytes of the X reference,
1976 similarly YSIZE is the size in bytes for Y.
1977 Expect that canon_rtx has been already called for X and Y.
1978
1979 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1980 referenced (the reference was BLKmode), so make the most pessimistic
1981 assumptions.
1982
1983 If XSIZE or YSIZE is negative, we may access memory outside the object
1984 being referenced as a side effect. This can happen when using AND to
1985 align memory references, as is done on the Alpha.
1986
1987 Nice to notice that varying addresses cannot conflict with fp if no
1988 local variables had their addresses taken, but that's too hard now.
1989
1990 ??? Contrary to the tree alias oracle this does not return
1991 one for X + non-constant and Y + non-constant when X and Y are equal.
1992 If that is fixed the TBAA hack for union type-punning can be removed. */
1993
1994 static int
1995 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1996 {
1997 if (GET_CODE (x) == VALUE)
1998 {
1999 if (REG_P (y))
2000 {
2001 struct elt_loc_list *l = NULL;
2002 if (CSELIB_VAL_PTR (x))
2003 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2004 l; l = l->next)
2005 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2006 break;
2007 if (l)
2008 x = y;
2009 else
2010 x = get_addr (x);
2011 }
2012 /* Don't call get_addr if y is the same VALUE. */
2013 else if (x != y)
2014 x = get_addr (x);
2015 }
2016 if (GET_CODE (y) == VALUE)
2017 {
2018 if (REG_P (x))
2019 {
2020 struct elt_loc_list *l = NULL;
2021 if (CSELIB_VAL_PTR (y))
2022 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2023 l; l = l->next)
2024 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2025 break;
2026 if (l)
2027 y = x;
2028 else
2029 y = get_addr (y);
2030 }
2031 /* Don't call get_addr if x is the same VALUE. */
2032 else if (y != x)
2033 y = get_addr (y);
2034 }
2035 if (GET_CODE (x) == HIGH)
2036 x = XEXP (x, 0);
2037 else if (GET_CODE (x) == LO_SUM)
2038 x = XEXP (x, 1);
2039 else
2040 x = addr_side_effect_eval (x, abs (xsize), 0);
2041 if (GET_CODE (y) == HIGH)
2042 y = XEXP (y, 0);
2043 else if (GET_CODE (y) == LO_SUM)
2044 y = XEXP (y, 1);
2045 else
2046 y = addr_side_effect_eval (y, abs (ysize), 0);
2047
2048 if (rtx_equal_for_memref_p (x, y))
2049 {
2050 return offset_overlap_p (c, xsize, ysize);
2051 }
2052
2053 /* This code used to check for conflicts involving stack references and
2054 globals but the base address alias code now handles these cases. */
2055
2056 if (GET_CODE (x) == PLUS)
2057 {
2058 /* The fact that X is canonicalized means that this
2059 PLUS rtx is canonicalized. */
2060 rtx x0 = XEXP (x, 0);
2061 rtx x1 = XEXP (x, 1);
2062
2063 if (GET_CODE (y) == PLUS)
2064 {
2065 /* The fact that Y is canonicalized means that this
2066 PLUS rtx is canonicalized. */
2067 rtx y0 = XEXP (y, 0);
2068 rtx y1 = XEXP (y, 1);
2069
2070 if (rtx_equal_for_memref_p (x1, y1))
2071 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2072 if (rtx_equal_for_memref_p (x0, y0))
2073 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2074 if (CONST_INT_P (x1))
2075 {
2076 if (CONST_INT_P (y1))
2077 return memrefs_conflict_p (xsize, x0, ysize, y0,
2078 c - INTVAL (x1) + INTVAL (y1));
2079 else
2080 return memrefs_conflict_p (xsize, x0, ysize, y,
2081 c - INTVAL (x1));
2082 }
2083 else if (CONST_INT_P (y1))
2084 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2085
2086 return -1;
2087 }
2088 else if (CONST_INT_P (x1))
2089 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2090 }
2091 else if (GET_CODE (y) == PLUS)
2092 {
2093 /* The fact that Y is canonicalized means that this
2094 PLUS rtx is canonicalized. */
2095 rtx y0 = XEXP (y, 0);
2096 rtx y1 = XEXP (y, 1);
2097
2098 if (CONST_INT_P (y1))
2099 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2100 else
2101 return -1;
2102 }
2103
2104 if (GET_CODE (x) == GET_CODE (y))
2105 switch (GET_CODE (x))
2106 {
2107 case MULT:
2108 {
2109 /* Handle cases where we expect the second operands to be the
2110 same, and check only whether the first operand would conflict
2111 or not. */
2112 rtx x0, y0;
2113 rtx x1 = canon_rtx (XEXP (x, 1));
2114 rtx y1 = canon_rtx (XEXP (y, 1));
2115 if (! rtx_equal_for_memref_p (x1, y1))
2116 return -1;
2117 x0 = canon_rtx (XEXP (x, 0));
2118 y0 = canon_rtx (XEXP (y, 0));
2119 if (rtx_equal_for_memref_p (x0, y0))
2120 return offset_overlap_p (c, xsize, ysize);
2121
2122 /* Can't properly adjust our sizes. */
2123 if (!CONST_INT_P (x1))
2124 return -1;
2125 xsize /= INTVAL (x1);
2126 ysize /= INTVAL (x1);
2127 c /= INTVAL (x1);
2128 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2129 }
2130
2131 default:
2132 break;
2133 }
2134
2135 /* Deal with alignment ANDs by adjusting offset and size so as to
2136 cover the maximum range, without taking any previously known
2137 alignment into account. Make a size negative after such an
2138 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2139 assume a potential overlap, because they may end up in contiguous
2140 memory locations and the stricter-alignment access may span over
2141 part of both. */
2142 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2143 {
2144 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2145 unsigned HOST_WIDE_INT uc = sc;
2146 if (sc < 0 && -uc == (uc & -uc))
2147 {
2148 if (xsize > 0)
2149 xsize = -xsize;
2150 if (xsize)
2151 xsize += sc + 1;
2152 c -= sc + 1;
2153 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2154 ysize, y, c);
2155 }
2156 }
2157 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2158 {
2159 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2160 unsigned HOST_WIDE_INT uc = sc;
2161 if (sc < 0 && -uc == (uc & -uc))
2162 {
2163 if (ysize > 0)
2164 ysize = -ysize;
2165 if (ysize)
2166 ysize += sc + 1;
2167 c += sc + 1;
2168 return memrefs_conflict_p (xsize, x,
2169 ysize, canon_rtx (XEXP (y, 0)), c);
2170 }
2171 }
2172
2173 if (CONSTANT_P (x))
2174 {
2175 if (CONST_INT_P (x) && CONST_INT_P (y))
2176 {
2177 c += (INTVAL (y) - INTVAL (x));
2178 return offset_overlap_p (c, xsize, ysize);
2179 }
2180
2181 if (GET_CODE (x) == CONST)
2182 {
2183 if (GET_CODE (y) == CONST)
2184 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2185 ysize, canon_rtx (XEXP (y, 0)), c);
2186 else
2187 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2188 ysize, y, c);
2189 }
2190 if (GET_CODE (y) == CONST)
2191 return memrefs_conflict_p (xsize, x, ysize,
2192 canon_rtx (XEXP (y, 0)), c);
2193
2194 /* Assume a potential overlap for symbolic addresses that went
2195 through alignment adjustments (i.e., that have negative
2196 sizes), because we can't know how far they are from each
2197 other. */
2198 if (CONSTANT_P (y))
2199 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2200
2201 return -1;
2202 }
2203
2204 return -1;
2205 }
2206
2207 /* Functions to compute memory dependencies.
2208
2209 Since we process the insns in execution order, we can build tables
2210 to keep track of what registers are fixed (and not aliased), what registers
2211 are varying in known ways, and what registers are varying in unknown
2212 ways.
2213
2214 If both memory references are volatile, then there must always be a
2215 dependence between the two references, since their order can not be
2216 changed. A volatile and non-volatile reference can be interchanged
2217 though.
2218
2219 We also must allow AND addresses, because they may generate accesses
2220 outside the object being referenced. This is used to generate aligned
2221 addresses from unaligned addresses, for instance, the alpha
2222 storeqi_unaligned pattern. */
2223
2224 /* Read dependence: X is read after read in MEM takes place. There can
2225 only be a dependence here if both reads are volatile, or if either is
2226 an explicit barrier. */
2227
2228 int
2229 read_dependence (const_rtx mem, const_rtx x)
2230 {
2231 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2232 return true;
2233 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2234 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2235 return true;
2236 return false;
2237 }
2238
2239 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2240
2241 static tree
2242 decl_for_component_ref (tree x)
2243 {
2244 do
2245 {
2246 x = TREE_OPERAND (x, 0);
2247 }
2248 while (x && TREE_CODE (x) == COMPONENT_REF);
2249
2250 return x && DECL_P (x) ? x : NULL_TREE;
2251 }
2252
2253 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2254 for the offset of the field reference. *KNOWN_P says whether the
2255 offset is known. */
2256
2257 static void
2258 adjust_offset_for_component_ref (tree x, bool *known_p,
2259 HOST_WIDE_INT *offset)
2260 {
2261 if (!*known_p)
2262 return;
2263 do
2264 {
2265 tree xoffset = component_ref_field_offset (x);
2266 tree field = TREE_OPERAND (x, 1);
2267 if (TREE_CODE (xoffset) != INTEGER_CST)
2268 {
2269 *known_p = false;
2270 return;
2271 }
2272
2273 offset_int woffset
2274 = (wi::to_offset (xoffset)
2275 + wi::lrshift (wi::to_offset (DECL_FIELD_BIT_OFFSET (field)),
2276 LOG2_BITS_PER_UNIT));
2277 if (!wi::fits_uhwi_p (woffset))
2278 {
2279 *known_p = false;
2280 return;
2281 }
2282 *offset += woffset.to_uhwi ();
2283
2284 x = TREE_OPERAND (x, 0);
2285 }
2286 while (x && TREE_CODE (x) == COMPONENT_REF);
2287 }
2288
2289 /* Return nonzero if we can determine the exprs corresponding to memrefs
2290 X and Y and they do not overlap.
2291 If LOOP_VARIANT is set, skip offset-based disambiguation */
2292
2293 int
2294 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2295 {
2296 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2297 rtx rtlx, rtly;
2298 rtx basex, basey;
2299 bool moffsetx_known_p, moffsety_known_p;
2300 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2301 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2302
2303 /* Unless both have exprs, we can't tell anything. */
2304 if (exprx == 0 || expry == 0)
2305 return 0;
2306
2307 /* For spill-slot accesses make sure we have valid offsets. */
2308 if ((exprx == get_spill_slot_decl (false)
2309 && ! MEM_OFFSET_KNOWN_P (x))
2310 || (expry == get_spill_slot_decl (false)
2311 && ! MEM_OFFSET_KNOWN_P (y)))
2312 return 0;
2313
2314 /* If the field reference test failed, look at the DECLs involved. */
2315 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2316 if (moffsetx_known_p)
2317 moffsetx = MEM_OFFSET (x);
2318 if (TREE_CODE (exprx) == COMPONENT_REF)
2319 {
2320 tree t = decl_for_component_ref (exprx);
2321 if (! t)
2322 return 0;
2323 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2324 exprx = t;
2325 }
2326
2327 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2328 if (moffsety_known_p)
2329 moffsety = MEM_OFFSET (y);
2330 if (TREE_CODE (expry) == COMPONENT_REF)
2331 {
2332 tree t = decl_for_component_ref (expry);
2333 if (! t)
2334 return 0;
2335 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2336 expry = t;
2337 }
2338
2339 if (! DECL_P (exprx) || ! DECL_P (expry))
2340 return 0;
2341
2342 /* With invalid code we can end up storing into the constant pool.
2343 Bail out to avoid ICEing when creating RTL for this.
2344 See gfortran.dg/lto/20091028-2_0.f90. */
2345 if (TREE_CODE (exprx) == CONST_DECL
2346 || TREE_CODE (expry) == CONST_DECL)
2347 return 1;
2348
2349 rtlx = DECL_RTL (exprx);
2350 rtly = DECL_RTL (expry);
2351
2352 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2353 can't overlap unless they are the same because we never reuse that part
2354 of the stack frame used for locals for spilled pseudos. */
2355 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2356 && ! rtx_equal_p (rtlx, rtly))
2357 return 1;
2358
2359 /* If we have MEMs referring to different address spaces (which can
2360 potentially overlap), we cannot easily tell from the addresses
2361 whether the references overlap. */
2362 if (MEM_P (rtlx) && MEM_P (rtly)
2363 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2364 return 0;
2365
2366 /* Get the base and offsets of both decls. If either is a register, we
2367 know both are and are the same, so use that as the base. The only
2368 we can avoid overlap is if we can deduce that they are nonoverlapping
2369 pieces of that decl, which is very rare. */
2370 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2371 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2372 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2373
2374 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2375 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2376 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2377
2378 /* If the bases are different, we know they do not overlap if both
2379 are constants or if one is a constant and the other a pointer into the
2380 stack frame. Otherwise a different base means we can't tell if they
2381 overlap or not. */
2382 if (! rtx_equal_p (basex, basey))
2383 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2384 || (CONSTANT_P (basex) && REG_P (basey)
2385 && REGNO_PTR_FRAME_P (REGNO (basey)))
2386 || (CONSTANT_P (basey) && REG_P (basex)
2387 && REGNO_PTR_FRAME_P (REGNO (basex))));
2388
2389 /* Offset based disambiguation not appropriate for loop invariant */
2390 if (loop_invariant)
2391 return 0;
2392
2393 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2394 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2395 : -1);
2396 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2397 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2398 : -1);
2399
2400 /* If we have an offset for either memref, it can update the values computed
2401 above. */
2402 if (moffsetx_known_p)
2403 offsetx += moffsetx, sizex -= moffsetx;
2404 if (moffsety_known_p)
2405 offsety += moffsety, sizey -= moffsety;
2406
2407 /* If a memref has both a size and an offset, we can use the smaller size.
2408 We can't do this if the offset isn't known because we must view this
2409 memref as being anywhere inside the DECL's MEM. */
2410 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2411 sizex = MEM_SIZE (x);
2412 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2413 sizey = MEM_SIZE (y);
2414
2415 /* Put the values of the memref with the lower offset in X's values. */
2416 if (offsetx > offsety)
2417 {
2418 tem = offsetx, offsetx = offsety, offsety = tem;
2419 tem = sizex, sizex = sizey, sizey = tem;
2420 }
2421
2422 /* If we don't know the size of the lower-offset value, we can't tell
2423 if they conflict. Otherwise, we do the test. */
2424 return sizex >= 0 && offsety >= offsetx + sizex;
2425 }
2426
2427 /* Helper for true_dependence and canon_true_dependence.
2428 Checks for true dependence: X is read after store in MEM takes place.
2429
2430 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2431 NULL_RTX, and the canonical addresses of MEM and X are both computed
2432 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2433
2434 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2435
2436 Returns 1 if there is a true dependence, 0 otherwise. */
2437
2438 static int
2439 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2440 const_rtx x, rtx x_addr, bool mem_canonicalized)
2441 {
2442 rtx base;
2443 int ret;
2444
2445 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2446 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2447
2448 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2449 return 1;
2450
2451 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2452 This is used in epilogue deallocation functions, and in cselib. */
2453 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2454 return 1;
2455 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2456 return 1;
2457 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2458 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2459 return 1;
2460
2461 /* Read-only memory is by definition never modified, and therefore can't
2462 conflict with anything. We don't expect to find read-only set on MEM,
2463 but stupid user tricks can produce them, so don't die. */
2464 if (MEM_READONLY_P (x))
2465 return 0;
2466
2467 /* If we have MEMs referring to different address spaces (which can
2468 potentially overlap), we cannot easily tell from the addresses
2469 whether the references overlap. */
2470 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2471 return 1;
2472
2473 if (! mem_addr)
2474 {
2475 mem_addr = XEXP (mem, 0);
2476 if (mem_mode == VOIDmode)
2477 mem_mode = GET_MODE (mem);
2478 }
2479
2480 if (! x_addr)
2481 {
2482 x_addr = XEXP (x, 0);
2483 if (!((GET_CODE (x_addr) == VALUE
2484 && GET_CODE (mem_addr) != VALUE
2485 && reg_mentioned_p (x_addr, mem_addr))
2486 || (GET_CODE (x_addr) != VALUE
2487 && GET_CODE (mem_addr) == VALUE
2488 && reg_mentioned_p (mem_addr, x_addr))))
2489 {
2490 x_addr = get_addr (x_addr);
2491 if (! mem_canonicalized)
2492 mem_addr = get_addr (mem_addr);
2493 }
2494 }
2495
2496 base = find_base_term (x_addr);
2497 if (base && (GET_CODE (base) == LABEL_REF
2498 || (GET_CODE (base) == SYMBOL_REF
2499 && CONSTANT_POOL_ADDRESS_P (base))))
2500 return 0;
2501
2502 rtx mem_base = find_base_term (mem_addr);
2503 if (! base_alias_check (x_addr, base, mem_addr, mem_base,
2504 GET_MODE (x), mem_mode))
2505 return 0;
2506
2507 x_addr = canon_rtx (x_addr);
2508 if (!mem_canonicalized)
2509 mem_addr = canon_rtx (mem_addr);
2510
2511 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2512 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2513 return ret;
2514
2515 if (mems_in_disjoint_alias_sets_p (x, mem))
2516 return 0;
2517
2518 if (nonoverlapping_memrefs_p (mem, x, false))
2519 return 0;
2520
2521 return rtx_refs_may_alias_p (x, mem, true);
2522 }
2523
2524 /* True dependence: X is read after store in MEM takes place. */
2525
2526 int
2527 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2528 {
2529 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2530 x, NULL_RTX, /*mem_canonicalized=*/false);
2531 }
2532
2533 /* Canonical true dependence: X is read after store in MEM takes place.
2534 Variant of true_dependence which assumes MEM has already been
2535 canonicalized (hence we no longer do that here).
2536 The mem_addr argument has been added, since true_dependence_1 computed
2537 this value prior to canonicalizing. */
2538
2539 int
2540 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2541 const_rtx x, rtx x_addr)
2542 {
2543 return true_dependence_1 (mem, mem_mode, mem_addr,
2544 x, x_addr, /*mem_canonicalized=*/true);
2545 }
2546
2547 /* Returns nonzero if a write to X might alias a previous read from
2548 (or, if WRITEP is true, a write to) MEM.
2549 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2550 and X_MODE the mode for that access.
2551 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2552
2553 static int
2554 write_dependence_p (const_rtx mem,
2555 const_rtx x, enum machine_mode x_mode, rtx x_addr,
2556 bool mem_canonicalized, bool x_canonicalized, bool writep)
2557 {
2558 rtx mem_addr;
2559 rtx base;
2560 int ret;
2561
2562 gcc_checking_assert (x_canonicalized
2563 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2564 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2565
2566 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2567 return 1;
2568
2569 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2570 This is used in epilogue deallocation functions. */
2571 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2572 return 1;
2573 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2574 return 1;
2575 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2576 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2577 return 1;
2578
2579 /* A read from read-only memory can't conflict with read-write memory. */
2580 if (!writep && MEM_READONLY_P (mem))
2581 return 0;
2582
2583 /* If we have MEMs referring to different address spaces (which can
2584 potentially overlap), we cannot easily tell from the addresses
2585 whether the references overlap. */
2586 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2587 return 1;
2588
2589 mem_addr = XEXP (mem, 0);
2590 if (!x_addr)
2591 {
2592 x_addr = XEXP (x, 0);
2593 if (!((GET_CODE (x_addr) == VALUE
2594 && GET_CODE (mem_addr) != VALUE
2595 && reg_mentioned_p (x_addr, mem_addr))
2596 || (GET_CODE (x_addr) != VALUE
2597 && GET_CODE (mem_addr) == VALUE
2598 && reg_mentioned_p (mem_addr, x_addr))))
2599 {
2600 x_addr = get_addr (x_addr);
2601 if (!mem_canonicalized)
2602 mem_addr = get_addr (mem_addr);
2603 }
2604 }
2605
2606 base = find_base_term (mem_addr);
2607 if (! writep
2608 && base
2609 && (GET_CODE (base) == LABEL_REF
2610 || (GET_CODE (base) == SYMBOL_REF
2611 && CONSTANT_POOL_ADDRESS_P (base))))
2612 return 0;
2613
2614 rtx x_base = find_base_term (x_addr);
2615 if (! base_alias_check (x_addr, x_base, mem_addr, base, GET_MODE (x),
2616 GET_MODE (mem)))
2617 return 0;
2618
2619 if (!x_canonicalized)
2620 {
2621 x_addr = canon_rtx (x_addr);
2622 x_mode = GET_MODE (x);
2623 }
2624 if (!mem_canonicalized)
2625 mem_addr = canon_rtx (mem_addr);
2626
2627 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2628 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
2629 return ret;
2630
2631 if (nonoverlapping_memrefs_p (x, mem, false))
2632 return 0;
2633
2634 return rtx_refs_may_alias_p (x, mem, false);
2635 }
2636
2637 /* Anti dependence: X is written after read in MEM takes place. */
2638
2639 int
2640 anti_dependence (const_rtx mem, const_rtx x)
2641 {
2642 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2643 /*mem_canonicalized=*/false,
2644 /*x_canonicalized*/false, /*writep=*/false);
2645 }
2646
2647 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2648 Also, consider X in X_MODE (which might be from an enclosing
2649 STRICT_LOW_PART / ZERO_EXTRACT).
2650 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2651
2652 int
2653 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
2654 const_rtx x, enum machine_mode x_mode, rtx x_addr)
2655 {
2656 return write_dependence_p (mem, x, x_mode, x_addr,
2657 mem_canonicalized, /*x_canonicalized=*/true,
2658 /*writep=*/false);
2659 }
2660
2661 /* Output dependence: X is written after store in MEM takes place. */
2662
2663 int
2664 output_dependence (const_rtx mem, const_rtx x)
2665 {
2666 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2667 /*mem_canonicalized=*/false,
2668 /*x_canonicalized*/false, /*writep=*/true);
2669 }
2670 \f
2671
2672
2673 /* Check whether X may be aliased with MEM. Don't do offset-based
2674 memory disambiguation & TBAA. */
2675 int
2676 may_alias_p (const_rtx mem, const_rtx x)
2677 {
2678 rtx x_addr, mem_addr;
2679
2680 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2681 return 1;
2682
2683 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2684 This is used in epilogue deallocation functions. */
2685 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2686 return 1;
2687 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2688 return 1;
2689 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2690 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2691 return 1;
2692
2693 /* Read-only memory is by definition never modified, and therefore can't
2694 conflict with anything. We don't expect to find read-only set on MEM,
2695 but stupid user tricks can produce them, so don't die. */
2696 if (MEM_READONLY_P (x))
2697 return 0;
2698
2699 /* If we have MEMs referring to different address spaces (which can
2700 potentially overlap), we cannot easily tell from the addresses
2701 whether the references overlap. */
2702 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2703 return 1;
2704
2705 x_addr = XEXP (x, 0);
2706 mem_addr = XEXP (mem, 0);
2707 if (!((GET_CODE (x_addr) == VALUE
2708 && GET_CODE (mem_addr) != VALUE
2709 && reg_mentioned_p (x_addr, mem_addr))
2710 || (GET_CODE (x_addr) != VALUE
2711 && GET_CODE (mem_addr) == VALUE
2712 && reg_mentioned_p (mem_addr, x_addr))))
2713 {
2714 x_addr = get_addr (x_addr);
2715 mem_addr = get_addr (mem_addr);
2716 }
2717
2718 rtx x_base = find_base_term (x_addr);
2719 rtx mem_base = find_base_term (mem_addr);
2720 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
2721 GET_MODE (x), GET_MODE (mem_addr)))
2722 return 0;
2723
2724 x_addr = canon_rtx (x_addr);
2725 mem_addr = canon_rtx (mem_addr);
2726
2727 if (nonoverlapping_memrefs_p (mem, x, true))
2728 return 0;
2729
2730 /* TBAA not valid for loop_invarint */
2731 return rtx_refs_may_alias_p (x, mem, false);
2732 }
2733
2734 void
2735 init_alias_target (void)
2736 {
2737 int i;
2738
2739 if (!arg_base_value)
2740 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2741
2742 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2743
2744 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2745 /* Check whether this register can hold an incoming pointer
2746 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2747 numbers, so translate if necessary due to register windows. */
2748 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2749 && HARD_REGNO_MODE_OK (i, Pmode))
2750 static_reg_base_value[i] = arg_base_value;
2751
2752 static_reg_base_value[STACK_POINTER_REGNUM]
2753 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2754 static_reg_base_value[ARG_POINTER_REGNUM]
2755 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2756 static_reg_base_value[FRAME_POINTER_REGNUM]
2757 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2758 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2759 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2760 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2761 #endif
2762 }
2763
2764 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2765 to be memory reference. */
2766 static bool memory_modified;
2767 static void
2768 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2769 {
2770 if (MEM_P (x))
2771 {
2772 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2773 memory_modified = true;
2774 }
2775 }
2776
2777
2778 /* Return true when INSN possibly modify memory contents of MEM
2779 (i.e. address can be modified). */
2780 bool
2781 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2782 {
2783 if (!INSN_P (insn))
2784 return false;
2785 memory_modified = false;
2786 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2787 return memory_modified;
2788 }
2789
2790 /* Return TRUE if the destination of a set is rtx identical to
2791 ITEM. */
2792 static inline bool
2793 set_dest_equal_p (const_rtx set, const_rtx item)
2794 {
2795 rtx dest = SET_DEST (set);
2796 return rtx_equal_p (dest, item);
2797 }
2798
2799 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2800 *DEFINITELY* modify the memory contents of MEM. */
2801 bool
2802 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2803 {
2804 if (!INSN_P (insn))
2805 return false;
2806 insn = PATTERN (insn);
2807 if (GET_CODE (insn) == SET)
2808 return set_dest_equal_p (insn, mem);
2809 else if (GET_CODE (insn) == PARALLEL)
2810 {
2811 int i;
2812 for (i = 0; i < XVECLEN (insn, 0); i++)
2813 {
2814 rtx sub = XVECEXP (insn, 0, i);
2815 if (GET_CODE (sub) == SET
2816 && set_dest_equal_p (sub, mem))
2817 return true;
2818 }
2819 }
2820 return false;
2821 }
2822
2823 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2824 array. */
2825
2826 void
2827 init_alias_analysis (void)
2828 {
2829 unsigned int maxreg = max_reg_num ();
2830 int changed, pass;
2831 int i;
2832 unsigned int ui;
2833 rtx_insn *insn;
2834 rtx val;
2835 int rpo_cnt;
2836 int *rpo;
2837
2838 timevar_push (TV_ALIAS_ANALYSIS);
2839
2840 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2841 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2842 bitmap_clear (reg_known_equiv_p);
2843
2844 /* If we have memory allocated from the previous run, use it. */
2845 if (old_reg_base_value)
2846 reg_base_value = old_reg_base_value;
2847
2848 if (reg_base_value)
2849 reg_base_value->truncate (0);
2850
2851 vec_safe_grow_cleared (reg_base_value, maxreg);
2852
2853 new_reg_base_value = XNEWVEC (rtx, maxreg);
2854 reg_seen = sbitmap_alloc (maxreg);
2855
2856 /* The basic idea is that each pass through this loop will use the
2857 "constant" information from the previous pass to propagate alias
2858 information through another level of assignments.
2859
2860 The propagation is done on the CFG in reverse post-order, to propagate
2861 things forward as far as possible in each iteration.
2862
2863 This could get expensive if the assignment chains are long. Maybe
2864 we should throttle the number of iterations, possibly based on
2865 the optimization level or flag_expensive_optimizations.
2866
2867 We could propagate more information in the first pass by making use
2868 of DF_REG_DEF_COUNT to determine immediately that the alias information
2869 for a pseudo is "constant".
2870
2871 A program with an uninitialized variable can cause an infinite loop
2872 here. Instead of doing a full dataflow analysis to detect such problems
2873 we just cap the number of iterations for the loop.
2874
2875 The state of the arrays for the set chain in question does not matter
2876 since the program has undefined behavior. */
2877
2878 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2879 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2880
2881 pass = 0;
2882 do
2883 {
2884 /* Assume nothing will change this iteration of the loop. */
2885 changed = 0;
2886
2887 /* We want to assign the same IDs each iteration of this loop, so
2888 start counting from one each iteration of the loop. */
2889 unique_id = 1;
2890
2891 /* We're at the start of the function each iteration through the
2892 loop, so we're copying arguments. */
2893 copying_arguments = true;
2894
2895 /* Wipe the potential alias information clean for this pass. */
2896 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2897
2898 /* Wipe the reg_seen array clean. */
2899 bitmap_clear (reg_seen);
2900
2901 /* Initialize the alias information for this pass. */
2902 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2903 if (static_reg_base_value[i])
2904 {
2905 new_reg_base_value[i] = static_reg_base_value[i];
2906 bitmap_set_bit (reg_seen, i);
2907 }
2908
2909 /* Walk the insns adding values to the new_reg_base_value array. */
2910 for (i = 0; i < rpo_cnt; i++)
2911 {
2912 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
2913 FOR_BB_INSNS (bb, insn)
2914 {
2915 if (NONDEBUG_INSN_P (insn))
2916 {
2917 rtx note, set;
2918
2919 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2920 /* The prologue/epilogue insns are not threaded onto the
2921 insn chain until after reload has completed. Thus,
2922 there is no sense wasting time checking if INSN is in
2923 the prologue/epilogue until after reload has completed. */
2924 if (reload_completed
2925 && prologue_epilogue_contains (insn))
2926 continue;
2927 #endif
2928
2929 /* If this insn has a noalias note, process it, Otherwise,
2930 scan for sets. A simple set will have no side effects
2931 which could change the base value of any other register. */
2932
2933 if (GET_CODE (PATTERN (insn)) == SET
2934 && REG_NOTES (insn) != 0
2935 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2936 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2937 else
2938 note_stores (PATTERN (insn), record_set, NULL);
2939
2940 set = single_set (insn);
2941
2942 if (set != 0
2943 && REG_P (SET_DEST (set))
2944 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2945 {
2946 unsigned int regno = REGNO (SET_DEST (set));
2947 rtx src = SET_SRC (set);
2948 rtx t;
2949
2950 note = find_reg_equal_equiv_note (insn);
2951 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2952 && DF_REG_DEF_COUNT (regno) != 1)
2953 note = NULL_RTX;
2954
2955 if (note != NULL_RTX
2956 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2957 && ! rtx_varies_p (XEXP (note, 0), 1)
2958 && ! reg_overlap_mentioned_p (SET_DEST (set),
2959 XEXP (note, 0)))
2960 {
2961 set_reg_known_value (regno, XEXP (note, 0));
2962 set_reg_known_equiv_p (regno,
2963 REG_NOTE_KIND (note) == REG_EQUIV);
2964 }
2965 else if (DF_REG_DEF_COUNT (regno) == 1
2966 && GET_CODE (src) == PLUS
2967 && REG_P (XEXP (src, 0))
2968 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2969 && CONST_INT_P (XEXP (src, 1)))
2970 {
2971 t = plus_constant (GET_MODE (src), t,
2972 INTVAL (XEXP (src, 1)));
2973 set_reg_known_value (regno, t);
2974 set_reg_known_equiv_p (regno, false);
2975 }
2976 else if (DF_REG_DEF_COUNT (regno) == 1
2977 && ! rtx_varies_p (src, 1))
2978 {
2979 set_reg_known_value (regno, src);
2980 set_reg_known_equiv_p (regno, false);
2981 }
2982 }
2983 }
2984 else if (NOTE_P (insn)
2985 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2986 copying_arguments = false;
2987 }
2988 }
2989
2990 /* Now propagate values from new_reg_base_value to reg_base_value. */
2991 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2992
2993 for (ui = 0; ui < maxreg; ui++)
2994 {
2995 if (new_reg_base_value[ui]
2996 && new_reg_base_value[ui] != (*reg_base_value)[ui]
2997 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
2998 {
2999 (*reg_base_value)[ui] = new_reg_base_value[ui];
3000 changed = 1;
3001 }
3002 }
3003 }
3004 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3005 XDELETEVEC (rpo);
3006
3007 /* Fill in the remaining entries. */
3008 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3009 {
3010 int regno = i + FIRST_PSEUDO_REGISTER;
3011 if (! val)
3012 set_reg_known_value (regno, regno_reg_rtx[regno]);
3013 }
3014
3015 /* Clean up. */
3016 free (new_reg_base_value);
3017 new_reg_base_value = 0;
3018 sbitmap_free (reg_seen);
3019 reg_seen = 0;
3020 timevar_pop (TV_ALIAS_ANALYSIS);
3021 }
3022
3023 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3024 Special API for var-tracking pass purposes. */
3025
3026 void
3027 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3028 {
3029 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3030 }
3031
3032 void
3033 end_alias_analysis (void)
3034 {
3035 old_reg_base_value = reg_base_value;
3036 vec_free (reg_known_value);
3037 sbitmap_free (reg_known_equiv_p);
3038 }
3039
3040 #include "gt-alias.h"