reduce conditional compilation for HARD_FRAME_POINTER_IS_FRAME_POINTER
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hash-set.h"
27 #include "machmode.h"
28 #include "vec.h"
29 #include "double-int.h"
30 #include "input.h"
31 #include "alias.h"
32 #include "symtab.h"
33 #include "wide-int.h"
34 #include "inchash.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "varasm.h"
38 #include "hashtab.h"
39 #include "hard-reg-set.h"
40 #include "function.h"
41 #include "flags.h"
42 #include "statistics.h"
43 #include "real.h"
44 #include "fixed-value.h"
45 #include "insn-config.h"
46 #include "expmed.h"
47 #include "dojump.h"
48 #include "explow.h"
49 #include "calls.h"
50 #include "emit-rtl.h"
51 #include "stmt.h"
52 #include "expr.h"
53 #include "tm_p.h"
54 #include "regs.h"
55 #include "diagnostic-core.h"
56 #include "cselib.h"
57 #include "hash-map.h"
58 #include "langhooks.h"
59 #include "timevar.h"
60 #include "dumpfile.h"
61 #include "target.h"
62 #include "dominance.h"
63 #include "cfg.h"
64 #include "cfganal.h"
65 #include "predict.h"
66 #include "basic-block.h"
67 #include "df.h"
68 #include "tree-ssa-alias.h"
69 #include "internal-fn.h"
70 #include "gimple-expr.h"
71 #include "is-a.h"
72 #include "gimple.h"
73 #include "gimple-ssa.h"
74 #include "rtl-iter.h"
75
76 /* The aliasing API provided here solves related but different problems:
77
78 Say there exists (in c)
79
80 struct X {
81 struct Y y1;
82 struct Z z2;
83 } x1, *px1, *px2;
84
85 struct Y y2, *py;
86 struct Z z2, *pz;
87
88
89 py = &x1.y1;
90 px2 = &x1;
91
92 Consider the four questions:
93
94 Can a store to x1 interfere with px2->y1?
95 Can a store to x1 interfere with px2->z2?
96 Can a store to x1 change the value pointed to by with py?
97 Can a store to x1 change the value pointed to by with pz?
98
99 The answer to these questions can be yes, yes, yes, and maybe.
100
101 The first two questions can be answered with a simple examination
102 of the type system. If structure X contains a field of type Y then
103 a store through a pointer to an X can overwrite any field that is
104 contained (recursively) in an X (unless we know that px1 != px2).
105
106 The last two questions can be solved in the same way as the first
107 two questions but this is too conservative. The observation is
108 that in some cases we can know which (if any) fields are addressed
109 and if those addresses are used in bad ways. This analysis may be
110 language specific. In C, arbitrary operations may be applied to
111 pointers. However, there is some indication that this may be too
112 conservative for some C++ types.
113
114 The pass ipa-type-escape does this analysis for the types whose
115 instances do not escape across the compilation boundary.
116
117 Historically in GCC, these two problems were combined and a single
118 data structure that was used to represent the solution to these
119 problems. We now have two similar but different data structures,
120 The data structure to solve the last two questions is similar to
121 the first, but does not contain the fields whose address are never
122 taken. For types that do escape the compilation unit, the data
123 structures will have identical information.
124 */
125
126 /* The alias sets assigned to MEMs assist the back-end in determining
127 which MEMs can alias which other MEMs. In general, two MEMs in
128 different alias sets cannot alias each other, with one important
129 exception. Consider something like:
130
131 struct S { int i; double d; };
132
133 a store to an `S' can alias something of either type `int' or type
134 `double'. (However, a store to an `int' cannot alias a `double'
135 and vice versa.) We indicate this via a tree structure that looks
136 like:
137 struct S
138 / \
139 / \
140 |/_ _\|
141 int double
142
143 (The arrows are directed and point downwards.)
144 In this situation we say the alias set for `struct S' is the
145 `superset' and that those for `int' and `double' are `subsets'.
146
147 To see whether two alias sets can point to the same memory, we must
148 see if either alias set is a subset of the other. We need not trace
149 past immediate descendants, however, since we propagate all
150 grandchildren up one level.
151
152 Alias set zero is implicitly a superset of all other alias sets.
153 However, this is no actual entry for alias set zero. It is an
154 error to attempt to explicitly construct a subset of zero. */
155
156 struct alias_set_traits : default_hashmap_traits
157 {
158 template<typename T>
159 static bool
160 is_empty (T &e)
161 {
162 return e.m_key == INT_MIN;
163 }
164
165 template<typename T>
166 static bool
167 is_deleted (T &e)
168 {
169 return e.m_key == (INT_MIN + 1);
170 }
171
172 template<typename T> static void mark_empty (T &e) { e.m_key = INT_MIN; }
173
174 template<typename T>
175 static void
176 mark_deleted (T &e)
177 {
178 e.m_key = INT_MIN + 1;
179 }
180 };
181
182 struct GTY(()) alias_set_entry_d {
183 /* The alias set number, as stored in MEM_ALIAS_SET. */
184 alias_set_type alias_set;
185
186 /* Nonzero if would have a child of zero: this effectively makes this
187 alias set the same as alias set zero. */
188 int has_zero_child;
189
190 /* The children of the alias set. These are not just the immediate
191 children, but, in fact, all descendants. So, if we have:
192
193 struct T { struct S s; float f; }
194
195 continuing our example above, the children here will be all of
196 `int', `double', `float', and `struct S'. */
197 hash_map<int, int, alias_set_traits> *children;
198 };
199 typedef struct alias_set_entry_d *alias_set_entry;
200
201 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
202 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
203 static void record_set (rtx, const_rtx, void *);
204 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
205 machine_mode);
206 static rtx find_base_value (rtx);
207 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
208 static alias_set_entry get_alias_set_entry (alias_set_type);
209 static tree decl_for_component_ref (tree);
210 static int write_dependence_p (const_rtx,
211 const_rtx, machine_mode, rtx,
212 bool, bool, bool);
213
214 static void memory_modified_1 (rtx, const_rtx, void *);
215
216 /* Set up all info needed to perform alias analysis on memory references. */
217
218 /* Returns the size in bytes of the mode of X. */
219 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
220
221 /* Cap the number of passes we make over the insns propagating alias
222 information through set chains.
223 ??? 10 is a completely arbitrary choice. This should be based on the
224 maximum loop depth in the CFG, but we do not have this information
225 available (even if current_loops _is_ available). */
226 #define MAX_ALIAS_LOOP_PASSES 10
227
228 /* reg_base_value[N] gives an address to which register N is related.
229 If all sets after the first add or subtract to the current value
230 or otherwise modify it so it does not point to a different top level
231 object, reg_base_value[N] is equal to the address part of the source
232 of the first set.
233
234 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
235 expressions represent three types of base:
236
237 1. incoming arguments. There is just one ADDRESS to represent all
238 arguments, since we do not know at this level whether accesses
239 based on different arguments can alias. The ADDRESS has id 0.
240
241 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
242 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
243 Each of these rtxes has a separate ADDRESS associated with it,
244 each with a negative id.
245
246 GCC is (and is required to be) precise in which register it
247 chooses to access a particular region of stack. We can therefore
248 assume that accesses based on one of these rtxes do not alias
249 accesses based on another of these rtxes.
250
251 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
252 Each such piece of memory has a separate ADDRESS associated
253 with it, each with an id greater than 0.
254
255 Accesses based on one ADDRESS do not alias accesses based on other
256 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
257 alias globals either; the ADDRESSes have Pmode to indicate this.
258 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
259 indicate this. */
260
261 static GTY(()) vec<rtx, va_gc> *reg_base_value;
262 static rtx *new_reg_base_value;
263
264 /* The single VOIDmode ADDRESS that represents all argument bases.
265 It has id 0. */
266 static GTY(()) rtx arg_base_value;
267
268 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
269 static int unique_id;
270
271 /* We preserve the copy of old array around to avoid amount of garbage
272 produced. About 8% of garbage produced were attributed to this
273 array. */
274 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
275
276 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
277 registers. */
278 #define UNIQUE_BASE_VALUE_SP -1
279 #define UNIQUE_BASE_VALUE_ARGP -2
280 #define UNIQUE_BASE_VALUE_FP -3
281 #define UNIQUE_BASE_VALUE_HFP -4
282
283 #define static_reg_base_value \
284 (this_target_rtl->x_static_reg_base_value)
285
286 #define REG_BASE_VALUE(X) \
287 (REGNO (X) < vec_safe_length (reg_base_value) \
288 ? (*reg_base_value)[REGNO (X)] : 0)
289
290 /* Vector indexed by N giving the initial (unchanging) value known for
291 pseudo-register N. This vector is initialized in init_alias_analysis,
292 and does not change until end_alias_analysis is called. */
293 static GTY(()) vec<rtx, va_gc> *reg_known_value;
294
295 /* Vector recording for each reg_known_value whether it is due to a
296 REG_EQUIV note. Future passes (viz., reload) may replace the
297 pseudo with the equivalent expression and so we account for the
298 dependences that would be introduced if that happens.
299
300 The REG_EQUIV notes created in assign_parms may mention the arg
301 pointer, and there are explicit insns in the RTL that modify the
302 arg pointer. Thus we must ensure that such insns don't get
303 scheduled across each other because that would invalidate the
304 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
305 wrong, but solving the problem in the scheduler will likely give
306 better code, so we do it here. */
307 static sbitmap reg_known_equiv_p;
308
309 /* True when scanning insns from the start of the rtl to the
310 NOTE_INSN_FUNCTION_BEG note. */
311 static bool copying_arguments;
312
313
314 /* The splay-tree used to store the various alias set entries. */
315 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
316 \f
317 /* Build a decomposed reference object for querying the alias-oracle
318 from the MEM rtx and store it in *REF.
319 Returns false if MEM is not suitable for the alias-oracle. */
320
321 static bool
322 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
323 {
324 tree expr = MEM_EXPR (mem);
325 tree base;
326
327 if (!expr)
328 return false;
329
330 ao_ref_init (ref, expr);
331
332 /* Get the base of the reference and see if we have to reject or
333 adjust it. */
334 base = ao_ref_base (ref);
335 if (base == NULL_TREE)
336 return false;
337
338 /* The tree oracle doesn't like bases that are neither decls
339 nor indirect references of SSA names. */
340 if (!(DECL_P (base)
341 || (TREE_CODE (base) == MEM_REF
342 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
343 || (TREE_CODE (base) == TARGET_MEM_REF
344 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
345 return false;
346
347 /* If this is a reference based on a partitioned decl replace the
348 base with a MEM_REF of the pointer representative we
349 created during stack slot partitioning. */
350 if (TREE_CODE (base) == VAR_DECL
351 && ! is_global_var (base)
352 && cfun->gimple_df->decls_to_pointers != NULL)
353 {
354 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
355 if (namep)
356 ref->base = build_simple_mem_ref (*namep);
357 }
358
359 ref->ref_alias_set = MEM_ALIAS_SET (mem);
360
361 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
362 is conservative, so trust it. */
363 if (!MEM_OFFSET_KNOWN_P (mem)
364 || !MEM_SIZE_KNOWN_P (mem))
365 return true;
366
367 /* If the base decl is a parameter we can have negative MEM_OFFSET in
368 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
369 here. */
370 if (MEM_OFFSET (mem) < 0
371 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
372 return true;
373
374 /* Otherwise continue and refine size and offset we got from analyzing
375 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
376
377 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
378 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
379
380 /* The MEM may extend into adjacent fields, so adjust max_size if
381 necessary. */
382 if (ref->max_size != -1
383 && ref->size > ref->max_size)
384 ref->max_size = ref->size;
385
386 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
387 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
388 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
389 && (ref->offset < 0
390 || (DECL_P (ref->base)
391 && (DECL_SIZE (ref->base) == NULL_TREE
392 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
393 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
394 ref->offset + ref->size)))))
395 return false;
396
397 return true;
398 }
399
400 /* Query the alias-oracle on whether the two memory rtx X and MEM may
401 alias. If TBAA_P is set also apply TBAA. Returns true if the
402 two rtxen may alias, false otherwise. */
403
404 static bool
405 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
406 {
407 ao_ref ref1, ref2;
408
409 if (!ao_ref_from_mem (&ref1, x)
410 || !ao_ref_from_mem (&ref2, mem))
411 return true;
412
413 return refs_may_alias_p_1 (&ref1, &ref2,
414 tbaa_p
415 && MEM_ALIAS_SET (x) != 0
416 && MEM_ALIAS_SET (mem) != 0);
417 }
418
419 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
420 such an entry, or NULL otherwise. */
421
422 static inline alias_set_entry
423 get_alias_set_entry (alias_set_type alias_set)
424 {
425 return (*alias_sets)[alias_set];
426 }
427
428 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
429 the two MEMs cannot alias each other. */
430
431 static inline int
432 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
433 {
434 return (flag_strict_aliasing
435 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
436 MEM_ALIAS_SET (mem2)));
437 }
438
439 /* Return true if the first alias set is a subset of the second. */
440
441 bool
442 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
443 {
444 alias_set_entry ase;
445
446 /* Everything is a subset of the "aliases everything" set. */
447 if (set2 == 0)
448 return true;
449
450 /* Otherwise, check if set1 is a subset of set2. */
451 ase = get_alias_set_entry (set2);
452 if (ase != 0
453 && (ase->has_zero_child
454 || ase->children->get (set1)))
455 return true;
456 return false;
457 }
458
459 /* Return 1 if the two specified alias sets may conflict. */
460
461 int
462 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
463 {
464 alias_set_entry ase;
465
466 /* The easy case. */
467 if (alias_sets_must_conflict_p (set1, set2))
468 return 1;
469
470 /* See if the first alias set is a subset of the second. */
471 ase = get_alias_set_entry (set1);
472 if (ase != 0
473 && (ase->has_zero_child
474 || ase->children->get (set2)))
475 return 1;
476
477 /* Now do the same, but with the alias sets reversed. */
478 ase = get_alias_set_entry (set2);
479 if (ase != 0
480 && (ase->has_zero_child
481 || ase->children->get (set1)))
482 return 1;
483
484 /* The two alias sets are distinct and neither one is the
485 child of the other. Therefore, they cannot conflict. */
486 return 0;
487 }
488
489 /* Return 1 if the two specified alias sets will always conflict. */
490
491 int
492 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
493 {
494 if (set1 == 0 || set2 == 0 || set1 == set2)
495 return 1;
496
497 return 0;
498 }
499
500 /* Return 1 if any MEM object of type T1 will always conflict (using the
501 dependency routines in this file) with any MEM object of type T2.
502 This is used when allocating temporary storage. If T1 and/or T2 are
503 NULL_TREE, it means we know nothing about the storage. */
504
505 int
506 objects_must_conflict_p (tree t1, tree t2)
507 {
508 alias_set_type set1, set2;
509
510 /* If neither has a type specified, we don't know if they'll conflict
511 because we may be using them to store objects of various types, for
512 example the argument and local variables areas of inlined functions. */
513 if (t1 == 0 && t2 == 0)
514 return 0;
515
516 /* If they are the same type, they must conflict. */
517 if (t1 == t2
518 /* Likewise if both are volatile. */
519 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
520 return 1;
521
522 set1 = t1 ? get_alias_set (t1) : 0;
523 set2 = t2 ? get_alias_set (t2) : 0;
524
525 /* We can't use alias_sets_conflict_p because we must make sure
526 that every subtype of t1 will conflict with every subtype of
527 t2 for which a pair of subobjects of these respective subtypes
528 overlaps on the stack. */
529 return alias_sets_must_conflict_p (set1, set2);
530 }
531 \f
532 /* Return the outermost parent of component present in the chain of
533 component references handled by get_inner_reference in T with the
534 following property:
535 - the component is non-addressable, or
536 - the parent has alias set zero,
537 or NULL_TREE if no such parent exists. In the former cases, the alias
538 set of this parent is the alias set that must be used for T itself. */
539
540 tree
541 component_uses_parent_alias_set_from (const_tree t)
542 {
543 const_tree found = NULL_TREE;
544
545 while (handled_component_p (t))
546 {
547 switch (TREE_CODE (t))
548 {
549 case COMPONENT_REF:
550 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
551 found = t;
552 break;
553
554 case ARRAY_REF:
555 case ARRAY_RANGE_REF:
556 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
557 found = t;
558 break;
559
560 case REALPART_EXPR:
561 case IMAGPART_EXPR:
562 break;
563
564 case BIT_FIELD_REF:
565 case VIEW_CONVERT_EXPR:
566 /* Bitfields and casts are never addressable. */
567 found = t;
568 break;
569
570 default:
571 gcc_unreachable ();
572 }
573
574 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
575 found = t;
576
577 t = TREE_OPERAND (t, 0);
578 }
579
580 if (found)
581 return TREE_OPERAND (found, 0);
582
583 return NULL_TREE;
584 }
585
586
587 /* Return whether the pointer-type T effective for aliasing may
588 access everything and thus the reference has to be assigned
589 alias-set zero. */
590
591 static bool
592 ref_all_alias_ptr_type_p (const_tree t)
593 {
594 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
595 || TYPE_REF_CAN_ALIAS_ALL (t));
596 }
597
598 /* Return the alias set for the memory pointed to by T, which may be
599 either a type or an expression. Return -1 if there is nothing
600 special about dereferencing T. */
601
602 static alias_set_type
603 get_deref_alias_set_1 (tree t)
604 {
605 /* All we care about is the type. */
606 if (! TYPE_P (t))
607 t = TREE_TYPE (t);
608
609 /* If we have an INDIRECT_REF via a void pointer, we don't
610 know anything about what that might alias. Likewise if the
611 pointer is marked that way. */
612 if (ref_all_alias_ptr_type_p (t))
613 return 0;
614
615 return -1;
616 }
617
618 /* Return the alias set for the memory pointed to by T, which may be
619 either a type or an expression. */
620
621 alias_set_type
622 get_deref_alias_set (tree t)
623 {
624 /* If we're not doing any alias analysis, just assume everything
625 aliases everything else. */
626 if (!flag_strict_aliasing)
627 return 0;
628
629 alias_set_type set = get_deref_alias_set_1 (t);
630
631 /* Fall back to the alias-set of the pointed-to type. */
632 if (set == -1)
633 {
634 if (! TYPE_P (t))
635 t = TREE_TYPE (t);
636 set = get_alias_set (TREE_TYPE (t));
637 }
638
639 return set;
640 }
641
642 /* Return the pointer-type relevant for TBAA purposes from the
643 memory reference tree *T or NULL_TREE in which case *T is
644 adjusted to point to the outermost component reference that
645 can be used for assigning an alias set. */
646
647 static tree
648 reference_alias_ptr_type_1 (tree *t)
649 {
650 tree inner;
651
652 /* Get the base object of the reference. */
653 inner = *t;
654 while (handled_component_p (inner))
655 {
656 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
657 the type of any component references that wrap it to
658 determine the alias-set. */
659 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
660 *t = TREE_OPERAND (inner, 0);
661 inner = TREE_OPERAND (inner, 0);
662 }
663
664 /* Handle pointer dereferences here, they can override the
665 alias-set. */
666 if (INDIRECT_REF_P (inner)
667 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
668 return TREE_TYPE (TREE_OPERAND (inner, 0));
669 else if (TREE_CODE (inner) == TARGET_MEM_REF)
670 return TREE_TYPE (TMR_OFFSET (inner));
671 else if (TREE_CODE (inner) == MEM_REF
672 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
673 return TREE_TYPE (TREE_OPERAND (inner, 1));
674
675 /* If the innermost reference is a MEM_REF that has a
676 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
677 using the memory access type for determining the alias-set. */
678 if (TREE_CODE (inner) == MEM_REF
679 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
680 != TYPE_MAIN_VARIANT
681 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
682 return TREE_TYPE (TREE_OPERAND (inner, 1));
683
684 /* Otherwise, pick up the outermost object that we could have
685 a pointer to. */
686 tree tem = component_uses_parent_alias_set_from (*t);
687 if (tem)
688 *t = tem;
689
690 return NULL_TREE;
691 }
692
693 /* Return the pointer-type relevant for TBAA purposes from the
694 gimple memory reference tree T. This is the type to be used for
695 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
696 and guarantees that get_alias_set will return the same alias
697 set for T and the replacement. */
698
699 tree
700 reference_alias_ptr_type (tree t)
701 {
702 tree ptype = reference_alias_ptr_type_1 (&t);
703 /* If there is a given pointer type for aliasing purposes, return it. */
704 if (ptype != NULL_TREE)
705 return ptype;
706
707 /* Otherwise build one from the outermost component reference we
708 may use. */
709 if (TREE_CODE (t) == MEM_REF
710 || TREE_CODE (t) == TARGET_MEM_REF)
711 return TREE_TYPE (TREE_OPERAND (t, 1));
712 else
713 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
714 }
715
716 /* Return whether the pointer-types T1 and T2 used to determine
717 two alias sets of two references will yield the same answer
718 from get_deref_alias_set. */
719
720 bool
721 alias_ptr_types_compatible_p (tree t1, tree t2)
722 {
723 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
724 return true;
725
726 if (ref_all_alias_ptr_type_p (t1)
727 || ref_all_alias_ptr_type_p (t2))
728 return false;
729
730 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
731 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
732 }
733
734 /* Return the alias set for T, which may be either a type or an
735 expression. Call language-specific routine for help, if needed. */
736
737 alias_set_type
738 get_alias_set (tree t)
739 {
740 alias_set_type set;
741
742 /* If we're not doing any alias analysis, just assume everything
743 aliases everything else. Also return 0 if this or its type is
744 an error. */
745 if (! flag_strict_aliasing || t == error_mark_node
746 || (! TYPE_P (t)
747 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
748 return 0;
749
750 /* We can be passed either an expression or a type. This and the
751 language-specific routine may make mutually-recursive calls to each other
752 to figure out what to do. At each juncture, we see if this is a tree
753 that the language may need to handle specially. First handle things that
754 aren't types. */
755 if (! TYPE_P (t))
756 {
757 /* Give the language a chance to do something with this tree
758 before we look at it. */
759 STRIP_NOPS (t);
760 set = lang_hooks.get_alias_set (t);
761 if (set != -1)
762 return set;
763
764 /* Get the alias pointer-type to use or the outermost object
765 that we could have a pointer to. */
766 tree ptype = reference_alias_ptr_type_1 (&t);
767 if (ptype != NULL)
768 return get_deref_alias_set (ptype);
769
770 /* If we've already determined the alias set for a decl, just return
771 it. This is necessary for C++ anonymous unions, whose component
772 variables don't look like union members (boo!). */
773 if (TREE_CODE (t) == VAR_DECL
774 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
775 return MEM_ALIAS_SET (DECL_RTL (t));
776
777 /* Now all we care about is the type. */
778 t = TREE_TYPE (t);
779 }
780
781 /* Variant qualifiers don't affect the alias set, so get the main
782 variant. */
783 t = TYPE_MAIN_VARIANT (t);
784
785 /* Always use the canonical type as well. If this is a type that
786 requires structural comparisons to identify compatible types
787 use alias set zero. */
788 if (TYPE_STRUCTURAL_EQUALITY_P (t))
789 {
790 /* Allow the language to specify another alias set for this
791 type. */
792 set = lang_hooks.get_alias_set (t);
793 if (set != -1)
794 return set;
795 return 0;
796 }
797
798 t = TYPE_CANONICAL (t);
799
800 /* The canonical type should not require structural equality checks. */
801 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
802
803 /* If this is a type with a known alias set, return it. */
804 if (TYPE_ALIAS_SET_KNOWN_P (t))
805 return TYPE_ALIAS_SET (t);
806
807 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
808 if (!COMPLETE_TYPE_P (t))
809 {
810 /* For arrays with unknown size the conservative answer is the
811 alias set of the element type. */
812 if (TREE_CODE (t) == ARRAY_TYPE)
813 return get_alias_set (TREE_TYPE (t));
814
815 /* But return zero as a conservative answer for incomplete types. */
816 return 0;
817 }
818
819 /* See if the language has special handling for this type. */
820 set = lang_hooks.get_alias_set (t);
821 if (set != -1)
822 return set;
823
824 /* There are no objects of FUNCTION_TYPE, so there's no point in
825 using up an alias set for them. (There are, of course, pointers
826 and references to functions, but that's different.) */
827 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
828 set = 0;
829
830 /* Unless the language specifies otherwise, let vector types alias
831 their components. This avoids some nasty type punning issues in
832 normal usage. And indeed lets vectors be treated more like an
833 array slice. */
834 else if (TREE_CODE (t) == VECTOR_TYPE)
835 set = get_alias_set (TREE_TYPE (t));
836
837 /* Unless the language specifies otherwise, treat array types the
838 same as their components. This avoids the asymmetry we get
839 through recording the components. Consider accessing a
840 character(kind=1) through a reference to a character(kind=1)[1:1].
841 Or consider if we want to assign integer(kind=4)[0:D.1387] and
842 integer(kind=4)[4] the same alias set or not.
843 Just be pragmatic here and make sure the array and its element
844 type get the same alias set assigned. */
845 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
846 set = get_alias_set (TREE_TYPE (t));
847
848 /* From the former common C and C++ langhook implementation:
849
850 Unfortunately, there is no canonical form of a pointer type.
851 In particular, if we have `typedef int I', then `int *', and
852 `I *' are different types. So, we have to pick a canonical
853 representative. We do this below.
854
855 Technically, this approach is actually more conservative that
856 it needs to be. In particular, `const int *' and `int *'
857 should be in different alias sets, according to the C and C++
858 standard, since their types are not the same, and so,
859 technically, an `int **' and `const int **' cannot point at
860 the same thing.
861
862 But, the standard is wrong. In particular, this code is
863 legal C++:
864
865 int *ip;
866 int **ipp = &ip;
867 const int* const* cipp = ipp;
868 And, it doesn't make sense for that to be legal unless you
869 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
870 the pointed-to types. This issue has been reported to the
871 C++ committee.
872
873 In addition to the above canonicalization issue, with LTO
874 we should also canonicalize `T (*)[]' to `T *' avoiding
875 alias issues with pointer-to element types and pointer-to
876 array types.
877
878 Likewise we need to deal with the situation of incomplete
879 pointed-to types and make `*(struct X **)&a' and
880 `*(struct X {} **)&a' alias. Otherwise we will have to
881 guarantee that all pointer-to incomplete type variants
882 will be replaced by pointer-to complete type variants if
883 they are available.
884
885 With LTO the convenient situation of using `void *' to
886 access and store any pointer type will also become
887 more apparent (and `void *' is just another pointer-to
888 incomplete type). Assigning alias-set zero to `void *'
889 and all pointer-to incomplete types is a not appealing
890 solution. Assigning an effective alias-set zero only
891 affecting pointers might be - by recording proper subset
892 relationships of all pointer alias-sets.
893
894 Pointer-to function types are another grey area which
895 needs caution. Globbing them all into one alias-set
896 or the above effective zero set would work.
897
898 For now just assign the same alias-set to all pointers.
899 That's simple and avoids all the above problems. */
900 else if (POINTER_TYPE_P (t)
901 && t != ptr_type_node)
902 set = get_alias_set (ptr_type_node);
903
904 /* Otherwise make a new alias set for this type. */
905 else
906 {
907 /* Each canonical type gets its own alias set, so canonical types
908 shouldn't form a tree. It doesn't really matter for types
909 we handle specially above, so only check it where it possibly
910 would result in a bogus alias set. */
911 gcc_checking_assert (TYPE_CANONICAL (t) == t);
912
913 set = new_alias_set ();
914 }
915
916 TYPE_ALIAS_SET (t) = set;
917
918 /* If this is an aggregate type or a complex type, we must record any
919 component aliasing information. */
920 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
921 record_component_aliases (t);
922
923 return set;
924 }
925
926 /* Return a brand-new alias set. */
927
928 alias_set_type
929 new_alias_set (void)
930 {
931 if (flag_strict_aliasing)
932 {
933 if (alias_sets == 0)
934 vec_safe_push (alias_sets, (alias_set_entry) 0);
935 vec_safe_push (alias_sets, (alias_set_entry) 0);
936 return alias_sets->length () - 1;
937 }
938 else
939 return 0;
940 }
941
942 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
943 not everything that aliases SUPERSET also aliases SUBSET. For example,
944 in C, a store to an `int' can alias a load of a structure containing an
945 `int', and vice versa. But it can't alias a load of a 'double' member
946 of the same structure. Here, the structure would be the SUPERSET and
947 `int' the SUBSET. This relationship is also described in the comment at
948 the beginning of this file.
949
950 This function should be called only once per SUPERSET/SUBSET pair.
951
952 It is illegal for SUPERSET to be zero; everything is implicitly a
953 subset of alias set zero. */
954
955 void
956 record_alias_subset (alias_set_type superset, alias_set_type subset)
957 {
958 alias_set_entry superset_entry;
959 alias_set_entry subset_entry;
960
961 /* It is possible in complex type situations for both sets to be the same,
962 in which case we can ignore this operation. */
963 if (superset == subset)
964 return;
965
966 gcc_assert (superset);
967
968 superset_entry = get_alias_set_entry (superset);
969 if (superset_entry == 0)
970 {
971 /* Create an entry for the SUPERSET, so that we have a place to
972 attach the SUBSET. */
973 superset_entry = ggc_cleared_alloc<alias_set_entry_d> ();
974 superset_entry->alias_set = superset;
975 superset_entry->children
976 = hash_map<int, int, alias_set_traits>::create_ggc (64);
977 superset_entry->has_zero_child = 0;
978 (*alias_sets)[superset] = superset_entry;
979 }
980
981 if (subset == 0)
982 superset_entry->has_zero_child = 1;
983 else
984 {
985 subset_entry = get_alias_set_entry (subset);
986 /* If there is an entry for the subset, enter all of its children
987 (if they are not already present) as children of the SUPERSET. */
988 if (subset_entry)
989 {
990 if (subset_entry->has_zero_child)
991 superset_entry->has_zero_child = 1;
992
993 hash_map<int, int, alias_set_traits>::iterator iter
994 = subset_entry->children->begin ();
995 for (; iter != subset_entry->children->end (); ++iter)
996 superset_entry->children->put ((*iter).first, (*iter).second);
997 }
998
999 /* Enter the SUBSET itself as a child of the SUPERSET. */
1000 superset_entry->children->put (subset, 0);
1001 }
1002 }
1003
1004 /* Record that component types of TYPE, if any, are part of that type for
1005 aliasing purposes. For record types, we only record component types
1006 for fields that are not marked non-addressable. For array types, we
1007 only record the component type if it is not marked non-aliased. */
1008
1009 void
1010 record_component_aliases (tree type)
1011 {
1012 alias_set_type superset = get_alias_set (type);
1013 tree field;
1014
1015 if (superset == 0)
1016 return;
1017
1018 switch (TREE_CODE (type))
1019 {
1020 case RECORD_TYPE:
1021 case UNION_TYPE:
1022 case QUAL_UNION_TYPE:
1023 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1024 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1025 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
1026 break;
1027
1028 case COMPLEX_TYPE:
1029 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1030 break;
1031
1032 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1033 element type. */
1034
1035 default:
1036 break;
1037 }
1038 }
1039
1040 /* Allocate an alias set for use in storing and reading from the varargs
1041 spill area. */
1042
1043 static GTY(()) alias_set_type varargs_set = -1;
1044
1045 alias_set_type
1046 get_varargs_alias_set (void)
1047 {
1048 #if 1
1049 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1050 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1051 consistently use the varargs alias set for loads from the varargs
1052 area. So don't use it anywhere. */
1053 return 0;
1054 #else
1055 if (varargs_set == -1)
1056 varargs_set = new_alias_set ();
1057
1058 return varargs_set;
1059 #endif
1060 }
1061
1062 /* Likewise, but used for the fixed portions of the frame, e.g., register
1063 save areas. */
1064
1065 static GTY(()) alias_set_type frame_set = -1;
1066
1067 alias_set_type
1068 get_frame_alias_set (void)
1069 {
1070 if (frame_set == -1)
1071 frame_set = new_alias_set ();
1072
1073 return frame_set;
1074 }
1075
1076 /* Create a new, unique base with id ID. */
1077
1078 static rtx
1079 unique_base_value (HOST_WIDE_INT id)
1080 {
1081 return gen_rtx_ADDRESS (Pmode, id);
1082 }
1083
1084 /* Return true if accesses based on any other base value cannot alias
1085 those based on X. */
1086
1087 static bool
1088 unique_base_value_p (rtx x)
1089 {
1090 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1091 }
1092
1093 /* Return true if X is known to be a base value. */
1094
1095 static bool
1096 known_base_value_p (rtx x)
1097 {
1098 switch (GET_CODE (x))
1099 {
1100 case LABEL_REF:
1101 case SYMBOL_REF:
1102 return true;
1103
1104 case ADDRESS:
1105 /* Arguments may or may not be bases; we don't know for sure. */
1106 return GET_MODE (x) != VOIDmode;
1107
1108 default:
1109 return false;
1110 }
1111 }
1112
1113 /* Inside SRC, the source of a SET, find a base address. */
1114
1115 static rtx
1116 find_base_value (rtx src)
1117 {
1118 unsigned int regno;
1119
1120 #if defined (FIND_BASE_TERM)
1121 /* Try machine-dependent ways to find the base term. */
1122 src = FIND_BASE_TERM (src);
1123 #endif
1124
1125 switch (GET_CODE (src))
1126 {
1127 case SYMBOL_REF:
1128 case LABEL_REF:
1129 return src;
1130
1131 case REG:
1132 regno = REGNO (src);
1133 /* At the start of a function, argument registers have known base
1134 values which may be lost later. Returning an ADDRESS
1135 expression here allows optimization based on argument values
1136 even when the argument registers are used for other purposes. */
1137 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1138 return new_reg_base_value[regno];
1139
1140 /* If a pseudo has a known base value, return it. Do not do this
1141 for non-fixed hard regs since it can result in a circular
1142 dependency chain for registers which have values at function entry.
1143
1144 The test above is not sufficient because the scheduler may move
1145 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1146 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1147 && regno < vec_safe_length (reg_base_value))
1148 {
1149 /* If we're inside init_alias_analysis, use new_reg_base_value
1150 to reduce the number of relaxation iterations. */
1151 if (new_reg_base_value && new_reg_base_value[regno]
1152 && DF_REG_DEF_COUNT (regno) == 1)
1153 return new_reg_base_value[regno];
1154
1155 if ((*reg_base_value)[regno])
1156 return (*reg_base_value)[regno];
1157 }
1158
1159 return 0;
1160
1161 case MEM:
1162 /* Check for an argument passed in memory. Only record in the
1163 copying-arguments block; it is too hard to track changes
1164 otherwise. */
1165 if (copying_arguments
1166 && (XEXP (src, 0) == arg_pointer_rtx
1167 || (GET_CODE (XEXP (src, 0)) == PLUS
1168 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1169 return arg_base_value;
1170 return 0;
1171
1172 case CONST:
1173 src = XEXP (src, 0);
1174 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1175 break;
1176
1177 /* ... fall through ... */
1178
1179 case PLUS:
1180 case MINUS:
1181 {
1182 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1183
1184 /* If either operand is a REG that is a known pointer, then it
1185 is the base. */
1186 if (REG_P (src_0) && REG_POINTER (src_0))
1187 return find_base_value (src_0);
1188 if (REG_P (src_1) && REG_POINTER (src_1))
1189 return find_base_value (src_1);
1190
1191 /* If either operand is a REG, then see if we already have
1192 a known value for it. */
1193 if (REG_P (src_0))
1194 {
1195 temp = find_base_value (src_0);
1196 if (temp != 0)
1197 src_0 = temp;
1198 }
1199
1200 if (REG_P (src_1))
1201 {
1202 temp = find_base_value (src_1);
1203 if (temp!= 0)
1204 src_1 = temp;
1205 }
1206
1207 /* If either base is named object or a special address
1208 (like an argument or stack reference), then use it for the
1209 base term. */
1210 if (src_0 != 0 && known_base_value_p (src_0))
1211 return src_0;
1212
1213 if (src_1 != 0 && known_base_value_p (src_1))
1214 return src_1;
1215
1216 /* Guess which operand is the base address:
1217 If either operand is a symbol, then it is the base. If
1218 either operand is a CONST_INT, then the other is the base. */
1219 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1220 return find_base_value (src_0);
1221 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1222 return find_base_value (src_1);
1223
1224 return 0;
1225 }
1226
1227 case LO_SUM:
1228 /* The standard form is (lo_sum reg sym) so look only at the
1229 second operand. */
1230 return find_base_value (XEXP (src, 1));
1231
1232 case AND:
1233 /* If the second operand is constant set the base
1234 address to the first operand. */
1235 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1236 return find_base_value (XEXP (src, 0));
1237 return 0;
1238
1239 case TRUNCATE:
1240 /* As we do not know which address space the pointer is referring to, we can
1241 handle this only if the target does not support different pointer or
1242 address modes depending on the address space. */
1243 if (!target_default_pointer_address_modes_p ())
1244 break;
1245 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1246 break;
1247 /* Fall through. */
1248 case HIGH:
1249 case PRE_INC:
1250 case PRE_DEC:
1251 case POST_INC:
1252 case POST_DEC:
1253 case PRE_MODIFY:
1254 case POST_MODIFY:
1255 return find_base_value (XEXP (src, 0));
1256
1257 case ZERO_EXTEND:
1258 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1259 /* As we do not know which address space the pointer is referring to, we can
1260 handle this only if the target does not support different pointer or
1261 address modes depending on the address space. */
1262 if (!target_default_pointer_address_modes_p ())
1263 break;
1264
1265 {
1266 rtx temp = find_base_value (XEXP (src, 0));
1267
1268 if (temp != 0 && CONSTANT_P (temp))
1269 temp = convert_memory_address (Pmode, temp);
1270
1271 return temp;
1272 }
1273
1274 default:
1275 break;
1276 }
1277
1278 return 0;
1279 }
1280
1281 /* Called from init_alias_analysis indirectly through note_stores,
1282 or directly if DEST is a register with a REG_NOALIAS note attached.
1283 SET is null in the latter case. */
1284
1285 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1286 register N has been set in this function. */
1287 static sbitmap reg_seen;
1288
1289 static void
1290 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1291 {
1292 unsigned regno;
1293 rtx src;
1294 int n;
1295
1296 if (!REG_P (dest))
1297 return;
1298
1299 regno = REGNO (dest);
1300
1301 gcc_checking_assert (regno < reg_base_value->length ());
1302
1303 /* If this spans multiple hard registers, then we must indicate that every
1304 register has an unusable value. */
1305 if (regno < FIRST_PSEUDO_REGISTER)
1306 n = hard_regno_nregs[regno][GET_MODE (dest)];
1307 else
1308 n = 1;
1309 if (n != 1)
1310 {
1311 while (--n >= 0)
1312 {
1313 bitmap_set_bit (reg_seen, regno + n);
1314 new_reg_base_value[regno + n] = 0;
1315 }
1316 return;
1317 }
1318
1319 if (set)
1320 {
1321 /* A CLOBBER wipes out any old value but does not prevent a previously
1322 unset register from acquiring a base address (i.e. reg_seen is not
1323 set). */
1324 if (GET_CODE (set) == CLOBBER)
1325 {
1326 new_reg_base_value[regno] = 0;
1327 return;
1328 }
1329 src = SET_SRC (set);
1330 }
1331 else
1332 {
1333 /* There's a REG_NOALIAS note against DEST. */
1334 if (bitmap_bit_p (reg_seen, regno))
1335 {
1336 new_reg_base_value[regno] = 0;
1337 return;
1338 }
1339 bitmap_set_bit (reg_seen, regno);
1340 new_reg_base_value[regno] = unique_base_value (unique_id++);
1341 return;
1342 }
1343
1344 /* If this is not the first set of REGNO, see whether the new value
1345 is related to the old one. There are two cases of interest:
1346
1347 (1) The register might be assigned an entirely new value
1348 that has the same base term as the original set.
1349
1350 (2) The set might be a simple self-modification that
1351 cannot change REGNO's base value.
1352
1353 If neither case holds, reject the original base value as invalid.
1354 Note that the following situation is not detected:
1355
1356 extern int x, y; int *p = &x; p += (&y-&x);
1357
1358 ANSI C does not allow computing the difference of addresses
1359 of distinct top level objects. */
1360 if (new_reg_base_value[regno] != 0
1361 && find_base_value (src) != new_reg_base_value[regno])
1362 switch (GET_CODE (src))
1363 {
1364 case LO_SUM:
1365 case MINUS:
1366 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1367 new_reg_base_value[regno] = 0;
1368 break;
1369 case PLUS:
1370 /* If the value we add in the PLUS is also a valid base value,
1371 this might be the actual base value, and the original value
1372 an index. */
1373 {
1374 rtx other = NULL_RTX;
1375
1376 if (XEXP (src, 0) == dest)
1377 other = XEXP (src, 1);
1378 else if (XEXP (src, 1) == dest)
1379 other = XEXP (src, 0);
1380
1381 if (! other || find_base_value (other))
1382 new_reg_base_value[regno] = 0;
1383 break;
1384 }
1385 case AND:
1386 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1387 new_reg_base_value[regno] = 0;
1388 break;
1389 default:
1390 new_reg_base_value[regno] = 0;
1391 break;
1392 }
1393 /* If this is the first set of a register, record the value. */
1394 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1395 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1396 new_reg_base_value[regno] = find_base_value (src);
1397
1398 bitmap_set_bit (reg_seen, regno);
1399 }
1400
1401 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1402 using hard registers with non-null REG_BASE_VALUE for renaming. */
1403 rtx
1404 get_reg_base_value (unsigned int regno)
1405 {
1406 return (*reg_base_value)[regno];
1407 }
1408
1409 /* If a value is known for REGNO, return it. */
1410
1411 rtx
1412 get_reg_known_value (unsigned int regno)
1413 {
1414 if (regno >= FIRST_PSEUDO_REGISTER)
1415 {
1416 regno -= FIRST_PSEUDO_REGISTER;
1417 if (regno < vec_safe_length (reg_known_value))
1418 return (*reg_known_value)[regno];
1419 }
1420 return NULL;
1421 }
1422
1423 /* Set it. */
1424
1425 static void
1426 set_reg_known_value (unsigned int regno, rtx val)
1427 {
1428 if (regno >= FIRST_PSEUDO_REGISTER)
1429 {
1430 regno -= FIRST_PSEUDO_REGISTER;
1431 if (regno < vec_safe_length (reg_known_value))
1432 (*reg_known_value)[regno] = val;
1433 }
1434 }
1435
1436 /* Similarly for reg_known_equiv_p. */
1437
1438 bool
1439 get_reg_known_equiv_p (unsigned int regno)
1440 {
1441 if (regno >= FIRST_PSEUDO_REGISTER)
1442 {
1443 regno -= FIRST_PSEUDO_REGISTER;
1444 if (regno < vec_safe_length (reg_known_value))
1445 return bitmap_bit_p (reg_known_equiv_p, regno);
1446 }
1447 return false;
1448 }
1449
1450 static void
1451 set_reg_known_equiv_p (unsigned int regno, bool val)
1452 {
1453 if (regno >= FIRST_PSEUDO_REGISTER)
1454 {
1455 regno -= FIRST_PSEUDO_REGISTER;
1456 if (regno < vec_safe_length (reg_known_value))
1457 {
1458 if (val)
1459 bitmap_set_bit (reg_known_equiv_p, regno);
1460 else
1461 bitmap_clear_bit (reg_known_equiv_p, regno);
1462 }
1463 }
1464 }
1465
1466
1467 /* Returns a canonical version of X, from the point of view alias
1468 analysis. (For example, if X is a MEM whose address is a register,
1469 and the register has a known value (say a SYMBOL_REF), then a MEM
1470 whose address is the SYMBOL_REF is returned.) */
1471
1472 rtx
1473 canon_rtx (rtx x)
1474 {
1475 /* Recursively look for equivalences. */
1476 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1477 {
1478 rtx t = get_reg_known_value (REGNO (x));
1479 if (t == x)
1480 return x;
1481 if (t)
1482 return canon_rtx (t);
1483 }
1484
1485 if (GET_CODE (x) == PLUS)
1486 {
1487 rtx x0 = canon_rtx (XEXP (x, 0));
1488 rtx x1 = canon_rtx (XEXP (x, 1));
1489
1490 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1491 {
1492 if (CONST_INT_P (x0))
1493 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1494 else if (CONST_INT_P (x1))
1495 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1496 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1497 }
1498 }
1499
1500 /* This gives us much better alias analysis when called from
1501 the loop optimizer. Note we want to leave the original
1502 MEM alone, but need to return the canonicalized MEM with
1503 all the flags with their original values. */
1504 else if (MEM_P (x))
1505 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1506
1507 return x;
1508 }
1509
1510 /* Return 1 if X and Y are identical-looking rtx's.
1511 Expect that X and Y has been already canonicalized.
1512
1513 We use the data in reg_known_value above to see if two registers with
1514 different numbers are, in fact, equivalent. */
1515
1516 static int
1517 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1518 {
1519 int i;
1520 int j;
1521 enum rtx_code code;
1522 const char *fmt;
1523
1524 if (x == 0 && y == 0)
1525 return 1;
1526 if (x == 0 || y == 0)
1527 return 0;
1528
1529 if (x == y)
1530 return 1;
1531
1532 code = GET_CODE (x);
1533 /* Rtx's of different codes cannot be equal. */
1534 if (code != GET_CODE (y))
1535 return 0;
1536
1537 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1538 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1539
1540 if (GET_MODE (x) != GET_MODE (y))
1541 return 0;
1542
1543 /* Some RTL can be compared without a recursive examination. */
1544 switch (code)
1545 {
1546 case REG:
1547 return REGNO (x) == REGNO (y);
1548
1549 case LABEL_REF:
1550 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1551
1552 case SYMBOL_REF:
1553 return XSTR (x, 0) == XSTR (y, 0);
1554
1555 case ENTRY_VALUE:
1556 /* This is magic, don't go through canonicalization et al. */
1557 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1558
1559 case VALUE:
1560 CASE_CONST_UNIQUE:
1561 /* Pointer equality guarantees equality for these nodes. */
1562 return 0;
1563
1564 default:
1565 break;
1566 }
1567
1568 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1569 if (code == PLUS)
1570 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1571 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1572 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1573 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1574 /* For commutative operations, the RTX match if the operand match in any
1575 order. Also handle the simple binary and unary cases without a loop. */
1576 if (COMMUTATIVE_P (x))
1577 {
1578 rtx xop0 = canon_rtx (XEXP (x, 0));
1579 rtx yop0 = canon_rtx (XEXP (y, 0));
1580 rtx yop1 = canon_rtx (XEXP (y, 1));
1581
1582 return ((rtx_equal_for_memref_p (xop0, yop0)
1583 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1584 || (rtx_equal_for_memref_p (xop0, yop1)
1585 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1586 }
1587 else if (NON_COMMUTATIVE_P (x))
1588 {
1589 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1590 canon_rtx (XEXP (y, 0)))
1591 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1592 canon_rtx (XEXP (y, 1))));
1593 }
1594 else if (UNARY_P (x))
1595 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1596 canon_rtx (XEXP (y, 0)));
1597
1598 /* Compare the elements. If any pair of corresponding elements
1599 fail to match, return 0 for the whole things.
1600
1601 Limit cases to types which actually appear in addresses. */
1602
1603 fmt = GET_RTX_FORMAT (code);
1604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1605 {
1606 switch (fmt[i])
1607 {
1608 case 'i':
1609 if (XINT (x, i) != XINT (y, i))
1610 return 0;
1611 break;
1612
1613 case 'E':
1614 /* Two vectors must have the same length. */
1615 if (XVECLEN (x, i) != XVECLEN (y, i))
1616 return 0;
1617
1618 /* And the corresponding elements must match. */
1619 for (j = 0; j < XVECLEN (x, i); j++)
1620 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1621 canon_rtx (XVECEXP (y, i, j))) == 0)
1622 return 0;
1623 break;
1624
1625 case 'e':
1626 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1627 canon_rtx (XEXP (y, i))) == 0)
1628 return 0;
1629 break;
1630
1631 /* This can happen for asm operands. */
1632 case 's':
1633 if (strcmp (XSTR (x, i), XSTR (y, i)))
1634 return 0;
1635 break;
1636
1637 /* This can happen for an asm which clobbers memory. */
1638 case '0':
1639 break;
1640
1641 /* It is believed that rtx's at this level will never
1642 contain anything but integers and other rtx's,
1643 except for within LABEL_REFs and SYMBOL_REFs. */
1644 default:
1645 gcc_unreachable ();
1646 }
1647 }
1648 return 1;
1649 }
1650
1651 static rtx
1652 find_base_term (rtx x)
1653 {
1654 cselib_val *val;
1655 struct elt_loc_list *l, *f;
1656 rtx ret;
1657
1658 #if defined (FIND_BASE_TERM)
1659 /* Try machine-dependent ways to find the base term. */
1660 x = FIND_BASE_TERM (x);
1661 #endif
1662
1663 switch (GET_CODE (x))
1664 {
1665 case REG:
1666 return REG_BASE_VALUE (x);
1667
1668 case TRUNCATE:
1669 /* As we do not know which address space the pointer is referring to, we can
1670 handle this only if the target does not support different pointer or
1671 address modes depending on the address space. */
1672 if (!target_default_pointer_address_modes_p ())
1673 return 0;
1674 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1675 return 0;
1676 /* Fall through. */
1677 case HIGH:
1678 case PRE_INC:
1679 case PRE_DEC:
1680 case POST_INC:
1681 case POST_DEC:
1682 case PRE_MODIFY:
1683 case POST_MODIFY:
1684 return find_base_term (XEXP (x, 0));
1685
1686 case ZERO_EXTEND:
1687 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1688 /* As we do not know which address space the pointer is referring to, we can
1689 handle this only if the target does not support different pointer or
1690 address modes depending on the address space. */
1691 if (!target_default_pointer_address_modes_p ())
1692 return 0;
1693
1694 {
1695 rtx temp = find_base_term (XEXP (x, 0));
1696
1697 if (temp != 0 && CONSTANT_P (temp))
1698 temp = convert_memory_address (Pmode, temp);
1699
1700 return temp;
1701 }
1702
1703 case VALUE:
1704 val = CSELIB_VAL_PTR (x);
1705 ret = NULL_RTX;
1706
1707 if (!val)
1708 return ret;
1709
1710 if (cselib_sp_based_value_p (val))
1711 return static_reg_base_value[STACK_POINTER_REGNUM];
1712
1713 f = val->locs;
1714 /* Temporarily reset val->locs to avoid infinite recursion. */
1715 val->locs = NULL;
1716
1717 for (l = f; l; l = l->next)
1718 if (GET_CODE (l->loc) == VALUE
1719 && CSELIB_VAL_PTR (l->loc)->locs
1720 && !CSELIB_VAL_PTR (l->loc)->locs->next
1721 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1722 continue;
1723 else if ((ret = find_base_term (l->loc)) != 0)
1724 break;
1725
1726 val->locs = f;
1727 return ret;
1728
1729 case LO_SUM:
1730 /* The standard form is (lo_sum reg sym) so look only at the
1731 second operand. */
1732 return find_base_term (XEXP (x, 1));
1733
1734 case CONST:
1735 x = XEXP (x, 0);
1736 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1737 return 0;
1738 /* Fall through. */
1739 case PLUS:
1740 case MINUS:
1741 {
1742 rtx tmp1 = XEXP (x, 0);
1743 rtx tmp2 = XEXP (x, 1);
1744
1745 /* This is a little bit tricky since we have to determine which of
1746 the two operands represents the real base address. Otherwise this
1747 routine may return the index register instead of the base register.
1748
1749 That may cause us to believe no aliasing was possible, when in
1750 fact aliasing is possible.
1751
1752 We use a few simple tests to guess the base register. Additional
1753 tests can certainly be added. For example, if one of the operands
1754 is a shift or multiply, then it must be the index register and the
1755 other operand is the base register. */
1756
1757 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1758 return find_base_term (tmp2);
1759
1760 /* If either operand is known to be a pointer, then prefer it
1761 to determine the base term. */
1762 if (REG_P (tmp1) && REG_POINTER (tmp1))
1763 ;
1764 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1765 std::swap (tmp1, tmp2);
1766 /* If second argument is constant which has base term, prefer it
1767 over variable tmp1. See PR64025. */
1768 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1769 std::swap (tmp1, tmp2);
1770
1771 /* Go ahead and find the base term for both operands. If either base
1772 term is from a pointer or is a named object or a special address
1773 (like an argument or stack reference), then use it for the
1774 base term. */
1775 rtx base = find_base_term (tmp1);
1776 if (base != NULL_RTX
1777 && ((REG_P (tmp1) && REG_POINTER (tmp1))
1778 || known_base_value_p (base)))
1779 return base;
1780 base = find_base_term (tmp2);
1781 if (base != NULL_RTX
1782 && ((REG_P (tmp2) && REG_POINTER (tmp2))
1783 || known_base_value_p (base)))
1784 return base;
1785
1786 /* We could not determine which of the two operands was the
1787 base register and which was the index. So we can determine
1788 nothing from the base alias check. */
1789 return 0;
1790 }
1791
1792 case AND:
1793 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1794 return find_base_term (XEXP (x, 0));
1795 return 0;
1796
1797 case SYMBOL_REF:
1798 case LABEL_REF:
1799 return x;
1800
1801 default:
1802 return 0;
1803 }
1804 }
1805
1806 /* Return true if accesses to address X may alias accesses based
1807 on the stack pointer. */
1808
1809 bool
1810 may_be_sp_based_p (rtx x)
1811 {
1812 rtx base = find_base_term (x);
1813 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1814 }
1815
1816 /* Return 0 if the addresses X and Y are known to point to different
1817 objects, 1 if they might be pointers to the same object. */
1818
1819 static int
1820 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
1821 machine_mode x_mode, machine_mode y_mode)
1822 {
1823 /* If the address itself has no known base see if a known equivalent
1824 value has one. If either address still has no known base, nothing
1825 is known about aliasing. */
1826 if (x_base == 0)
1827 {
1828 rtx x_c;
1829
1830 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1831 return 1;
1832
1833 x_base = find_base_term (x_c);
1834 if (x_base == 0)
1835 return 1;
1836 }
1837
1838 if (y_base == 0)
1839 {
1840 rtx y_c;
1841 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1842 return 1;
1843
1844 y_base = find_base_term (y_c);
1845 if (y_base == 0)
1846 return 1;
1847 }
1848
1849 /* If the base addresses are equal nothing is known about aliasing. */
1850 if (rtx_equal_p (x_base, y_base))
1851 return 1;
1852
1853 /* The base addresses are different expressions. If they are not accessed
1854 via AND, there is no conflict. We can bring knowledge of object
1855 alignment into play here. For example, on alpha, "char a, b;" can
1856 alias one another, though "char a; long b;" cannot. AND addesses may
1857 implicitly alias surrounding objects; i.e. unaligned access in DImode
1858 via AND address can alias all surrounding object types except those
1859 with aligment 8 or higher. */
1860 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1861 return 1;
1862 if (GET_CODE (x) == AND
1863 && (!CONST_INT_P (XEXP (x, 1))
1864 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1865 return 1;
1866 if (GET_CODE (y) == AND
1867 && (!CONST_INT_P (XEXP (y, 1))
1868 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1869 return 1;
1870
1871 /* Differing symbols not accessed via AND never alias. */
1872 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1873 return 0;
1874
1875 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1876 return 0;
1877
1878 return 1;
1879 }
1880
1881 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1882 that of V. */
1883
1884 static bool
1885 refs_newer_value_p (const_rtx expr, rtx v)
1886 {
1887 int minuid = CSELIB_VAL_PTR (v)->uid;
1888 subrtx_iterator::array_type array;
1889 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
1890 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid > minuid)
1891 return true;
1892 return false;
1893 }
1894
1895 /* Convert the address X into something we can use. This is done by returning
1896 it unchanged unless it is a value; in the latter case we call cselib to get
1897 a more useful rtx. */
1898
1899 rtx
1900 get_addr (rtx x)
1901 {
1902 cselib_val *v;
1903 struct elt_loc_list *l;
1904
1905 if (GET_CODE (x) != VALUE)
1906 return x;
1907 v = CSELIB_VAL_PTR (x);
1908 if (v)
1909 {
1910 bool have_equivs = cselib_have_permanent_equivalences ();
1911 if (have_equivs)
1912 v = canonical_cselib_val (v);
1913 for (l = v->locs; l; l = l->next)
1914 if (CONSTANT_P (l->loc))
1915 return l->loc;
1916 for (l = v->locs; l; l = l->next)
1917 if (!REG_P (l->loc) && !MEM_P (l->loc)
1918 /* Avoid infinite recursion when potentially dealing with
1919 var-tracking artificial equivalences, by skipping the
1920 equivalences themselves, and not choosing expressions
1921 that refer to newer VALUEs. */
1922 && (!have_equivs
1923 || (GET_CODE (l->loc) != VALUE
1924 && !refs_newer_value_p (l->loc, x))))
1925 return l->loc;
1926 if (have_equivs)
1927 {
1928 for (l = v->locs; l; l = l->next)
1929 if (REG_P (l->loc)
1930 || (GET_CODE (l->loc) != VALUE
1931 && !refs_newer_value_p (l->loc, x)))
1932 return l->loc;
1933 /* Return the canonical value. */
1934 return v->val_rtx;
1935 }
1936 if (v->locs)
1937 return v->locs->loc;
1938 }
1939 return x;
1940 }
1941
1942 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1943 where SIZE is the size in bytes of the memory reference. If ADDR
1944 is not modified by the memory reference then ADDR is returned. */
1945
1946 static rtx
1947 addr_side_effect_eval (rtx addr, int size, int n_refs)
1948 {
1949 int offset = 0;
1950
1951 switch (GET_CODE (addr))
1952 {
1953 case PRE_INC:
1954 offset = (n_refs + 1) * size;
1955 break;
1956 case PRE_DEC:
1957 offset = -(n_refs + 1) * size;
1958 break;
1959 case POST_INC:
1960 offset = n_refs * size;
1961 break;
1962 case POST_DEC:
1963 offset = -n_refs * size;
1964 break;
1965
1966 default:
1967 return addr;
1968 }
1969
1970 if (offset)
1971 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1972 gen_int_mode (offset, GET_MODE (addr)));
1973 else
1974 addr = XEXP (addr, 0);
1975 addr = canon_rtx (addr);
1976
1977 return addr;
1978 }
1979
1980 /* Return TRUE if an object X sized at XSIZE bytes and another object
1981 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
1982 any of the sizes is zero, assume an overlap, otherwise use the
1983 absolute value of the sizes as the actual sizes. */
1984
1985 static inline bool
1986 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
1987 {
1988 return (xsize == 0 || ysize == 0
1989 || (c >= 0
1990 ? (abs (xsize) > c)
1991 : (abs (ysize) > -c)));
1992 }
1993
1994 /* Return one if X and Y (memory addresses) reference the
1995 same location in memory or if the references overlap.
1996 Return zero if they do not overlap, else return
1997 minus one in which case they still might reference the same location.
1998
1999 C is an offset accumulator. When
2000 C is nonzero, we are testing aliases between X and Y + C.
2001 XSIZE is the size in bytes of the X reference,
2002 similarly YSIZE is the size in bytes for Y.
2003 Expect that canon_rtx has been already called for X and Y.
2004
2005 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2006 referenced (the reference was BLKmode), so make the most pessimistic
2007 assumptions.
2008
2009 If XSIZE or YSIZE is negative, we may access memory outside the object
2010 being referenced as a side effect. This can happen when using AND to
2011 align memory references, as is done on the Alpha.
2012
2013 Nice to notice that varying addresses cannot conflict with fp if no
2014 local variables had their addresses taken, but that's too hard now.
2015
2016 ??? Contrary to the tree alias oracle this does not return
2017 one for X + non-constant and Y + non-constant when X and Y are equal.
2018 If that is fixed the TBAA hack for union type-punning can be removed. */
2019
2020 static int
2021 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2022 {
2023 if (GET_CODE (x) == VALUE)
2024 {
2025 if (REG_P (y))
2026 {
2027 struct elt_loc_list *l = NULL;
2028 if (CSELIB_VAL_PTR (x))
2029 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2030 l; l = l->next)
2031 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2032 break;
2033 if (l)
2034 x = y;
2035 else
2036 x = get_addr (x);
2037 }
2038 /* Don't call get_addr if y is the same VALUE. */
2039 else if (x != y)
2040 x = get_addr (x);
2041 }
2042 if (GET_CODE (y) == VALUE)
2043 {
2044 if (REG_P (x))
2045 {
2046 struct elt_loc_list *l = NULL;
2047 if (CSELIB_VAL_PTR (y))
2048 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2049 l; l = l->next)
2050 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2051 break;
2052 if (l)
2053 y = x;
2054 else
2055 y = get_addr (y);
2056 }
2057 /* Don't call get_addr if x is the same VALUE. */
2058 else if (y != x)
2059 y = get_addr (y);
2060 }
2061 if (GET_CODE (x) == HIGH)
2062 x = XEXP (x, 0);
2063 else if (GET_CODE (x) == LO_SUM)
2064 x = XEXP (x, 1);
2065 else
2066 x = addr_side_effect_eval (x, abs (xsize), 0);
2067 if (GET_CODE (y) == HIGH)
2068 y = XEXP (y, 0);
2069 else if (GET_CODE (y) == LO_SUM)
2070 y = XEXP (y, 1);
2071 else
2072 y = addr_side_effect_eval (y, abs (ysize), 0);
2073
2074 if (rtx_equal_for_memref_p (x, y))
2075 {
2076 return offset_overlap_p (c, xsize, ysize);
2077 }
2078
2079 /* This code used to check for conflicts involving stack references and
2080 globals but the base address alias code now handles these cases. */
2081
2082 if (GET_CODE (x) == PLUS)
2083 {
2084 /* The fact that X is canonicalized means that this
2085 PLUS rtx is canonicalized. */
2086 rtx x0 = XEXP (x, 0);
2087 rtx x1 = XEXP (x, 1);
2088
2089 if (GET_CODE (y) == PLUS)
2090 {
2091 /* The fact that Y is canonicalized means that this
2092 PLUS rtx is canonicalized. */
2093 rtx y0 = XEXP (y, 0);
2094 rtx y1 = XEXP (y, 1);
2095
2096 if (rtx_equal_for_memref_p (x1, y1))
2097 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2098 if (rtx_equal_for_memref_p (x0, y0))
2099 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2100 if (CONST_INT_P (x1))
2101 {
2102 if (CONST_INT_P (y1))
2103 return memrefs_conflict_p (xsize, x0, ysize, y0,
2104 c - INTVAL (x1) + INTVAL (y1));
2105 else
2106 return memrefs_conflict_p (xsize, x0, ysize, y,
2107 c - INTVAL (x1));
2108 }
2109 else if (CONST_INT_P (y1))
2110 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2111
2112 return -1;
2113 }
2114 else if (CONST_INT_P (x1))
2115 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2116 }
2117 else if (GET_CODE (y) == PLUS)
2118 {
2119 /* The fact that Y is canonicalized means that this
2120 PLUS rtx is canonicalized. */
2121 rtx y0 = XEXP (y, 0);
2122 rtx y1 = XEXP (y, 1);
2123
2124 if (CONST_INT_P (y1))
2125 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2126 else
2127 return -1;
2128 }
2129
2130 if (GET_CODE (x) == GET_CODE (y))
2131 switch (GET_CODE (x))
2132 {
2133 case MULT:
2134 {
2135 /* Handle cases where we expect the second operands to be the
2136 same, and check only whether the first operand would conflict
2137 or not. */
2138 rtx x0, y0;
2139 rtx x1 = canon_rtx (XEXP (x, 1));
2140 rtx y1 = canon_rtx (XEXP (y, 1));
2141 if (! rtx_equal_for_memref_p (x1, y1))
2142 return -1;
2143 x0 = canon_rtx (XEXP (x, 0));
2144 y0 = canon_rtx (XEXP (y, 0));
2145 if (rtx_equal_for_memref_p (x0, y0))
2146 return offset_overlap_p (c, xsize, ysize);
2147
2148 /* Can't properly adjust our sizes. */
2149 if (!CONST_INT_P (x1))
2150 return -1;
2151 xsize /= INTVAL (x1);
2152 ysize /= INTVAL (x1);
2153 c /= INTVAL (x1);
2154 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2155 }
2156
2157 default:
2158 break;
2159 }
2160
2161 /* Deal with alignment ANDs by adjusting offset and size so as to
2162 cover the maximum range, without taking any previously known
2163 alignment into account. Make a size negative after such an
2164 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2165 assume a potential overlap, because they may end up in contiguous
2166 memory locations and the stricter-alignment access may span over
2167 part of both. */
2168 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2169 {
2170 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2171 unsigned HOST_WIDE_INT uc = sc;
2172 if (sc < 0 && -uc == (uc & -uc))
2173 {
2174 if (xsize > 0)
2175 xsize = -xsize;
2176 if (xsize)
2177 xsize += sc + 1;
2178 c -= sc + 1;
2179 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2180 ysize, y, c);
2181 }
2182 }
2183 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2184 {
2185 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2186 unsigned HOST_WIDE_INT uc = sc;
2187 if (sc < 0 && -uc == (uc & -uc))
2188 {
2189 if (ysize > 0)
2190 ysize = -ysize;
2191 if (ysize)
2192 ysize += sc + 1;
2193 c += sc + 1;
2194 return memrefs_conflict_p (xsize, x,
2195 ysize, canon_rtx (XEXP (y, 0)), c);
2196 }
2197 }
2198
2199 if (CONSTANT_P (x))
2200 {
2201 if (CONST_INT_P (x) && CONST_INT_P (y))
2202 {
2203 c += (INTVAL (y) - INTVAL (x));
2204 return offset_overlap_p (c, xsize, ysize);
2205 }
2206
2207 if (GET_CODE (x) == CONST)
2208 {
2209 if (GET_CODE (y) == CONST)
2210 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2211 ysize, canon_rtx (XEXP (y, 0)), c);
2212 else
2213 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2214 ysize, y, c);
2215 }
2216 if (GET_CODE (y) == CONST)
2217 return memrefs_conflict_p (xsize, x, ysize,
2218 canon_rtx (XEXP (y, 0)), c);
2219
2220 /* Assume a potential overlap for symbolic addresses that went
2221 through alignment adjustments (i.e., that have negative
2222 sizes), because we can't know how far they are from each
2223 other. */
2224 if (CONSTANT_P (y))
2225 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2226
2227 return -1;
2228 }
2229
2230 return -1;
2231 }
2232
2233 /* Functions to compute memory dependencies.
2234
2235 Since we process the insns in execution order, we can build tables
2236 to keep track of what registers are fixed (and not aliased), what registers
2237 are varying in known ways, and what registers are varying in unknown
2238 ways.
2239
2240 If both memory references are volatile, then there must always be a
2241 dependence between the two references, since their order can not be
2242 changed. A volatile and non-volatile reference can be interchanged
2243 though.
2244
2245 We also must allow AND addresses, because they may generate accesses
2246 outside the object being referenced. This is used to generate aligned
2247 addresses from unaligned addresses, for instance, the alpha
2248 storeqi_unaligned pattern. */
2249
2250 /* Read dependence: X is read after read in MEM takes place. There can
2251 only be a dependence here if both reads are volatile, or if either is
2252 an explicit barrier. */
2253
2254 int
2255 read_dependence (const_rtx mem, const_rtx x)
2256 {
2257 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2258 return true;
2259 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2260 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2261 return true;
2262 return false;
2263 }
2264
2265 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2266
2267 static tree
2268 decl_for_component_ref (tree x)
2269 {
2270 do
2271 {
2272 x = TREE_OPERAND (x, 0);
2273 }
2274 while (x && TREE_CODE (x) == COMPONENT_REF);
2275
2276 return x && DECL_P (x) ? x : NULL_TREE;
2277 }
2278
2279 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2280 for the offset of the field reference. *KNOWN_P says whether the
2281 offset is known. */
2282
2283 static void
2284 adjust_offset_for_component_ref (tree x, bool *known_p,
2285 HOST_WIDE_INT *offset)
2286 {
2287 if (!*known_p)
2288 return;
2289 do
2290 {
2291 tree xoffset = component_ref_field_offset (x);
2292 tree field = TREE_OPERAND (x, 1);
2293 if (TREE_CODE (xoffset) != INTEGER_CST)
2294 {
2295 *known_p = false;
2296 return;
2297 }
2298
2299 offset_int woffset
2300 = (wi::to_offset (xoffset)
2301 + wi::lrshift (wi::to_offset (DECL_FIELD_BIT_OFFSET (field)),
2302 LOG2_BITS_PER_UNIT));
2303 if (!wi::fits_uhwi_p (woffset))
2304 {
2305 *known_p = false;
2306 return;
2307 }
2308 *offset += woffset.to_uhwi ();
2309
2310 x = TREE_OPERAND (x, 0);
2311 }
2312 while (x && TREE_CODE (x) == COMPONENT_REF);
2313 }
2314
2315 /* Return nonzero if we can determine the exprs corresponding to memrefs
2316 X and Y and they do not overlap.
2317 If LOOP_VARIANT is set, skip offset-based disambiguation */
2318
2319 int
2320 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2321 {
2322 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2323 rtx rtlx, rtly;
2324 rtx basex, basey;
2325 bool moffsetx_known_p, moffsety_known_p;
2326 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2327 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2328
2329 /* Unless both have exprs, we can't tell anything. */
2330 if (exprx == 0 || expry == 0)
2331 return 0;
2332
2333 /* For spill-slot accesses make sure we have valid offsets. */
2334 if ((exprx == get_spill_slot_decl (false)
2335 && ! MEM_OFFSET_KNOWN_P (x))
2336 || (expry == get_spill_slot_decl (false)
2337 && ! MEM_OFFSET_KNOWN_P (y)))
2338 return 0;
2339
2340 /* If the field reference test failed, look at the DECLs involved. */
2341 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2342 if (moffsetx_known_p)
2343 moffsetx = MEM_OFFSET (x);
2344 if (TREE_CODE (exprx) == COMPONENT_REF)
2345 {
2346 tree t = decl_for_component_ref (exprx);
2347 if (! t)
2348 return 0;
2349 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2350 exprx = t;
2351 }
2352
2353 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2354 if (moffsety_known_p)
2355 moffsety = MEM_OFFSET (y);
2356 if (TREE_CODE (expry) == COMPONENT_REF)
2357 {
2358 tree t = decl_for_component_ref (expry);
2359 if (! t)
2360 return 0;
2361 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2362 expry = t;
2363 }
2364
2365 if (! DECL_P (exprx) || ! DECL_P (expry))
2366 return 0;
2367
2368 /* With invalid code we can end up storing into the constant pool.
2369 Bail out to avoid ICEing when creating RTL for this.
2370 See gfortran.dg/lto/20091028-2_0.f90. */
2371 if (TREE_CODE (exprx) == CONST_DECL
2372 || TREE_CODE (expry) == CONST_DECL)
2373 return 1;
2374
2375 rtlx = DECL_RTL (exprx);
2376 rtly = DECL_RTL (expry);
2377
2378 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2379 can't overlap unless they are the same because we never reuse that part
2380 of the stack frame used for locals for spilled pseudos. */
2381 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2382 && ! rtx_equal_p (rtlx, rtly))
2383 return 1;
2384
2385 /* If we have MEMs referring to different address spaces (which can
2386 potentially overlap), we cannot easily tell from the addresses
2387 whether the references overlap. */
2388 if (MEM_P (rtlx) && MEM_P (rtly)
2389 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2390 return 0;
2391
2392 /* Get the base and offsets of both decls. If either is a register, we
2393 know both are and are the same, so use that as the base. The only
2394 we can avoid overlap is if we can deduce that they are nonoverlapping
2395 pieces of that decl, which is very rare. */
2396 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2397 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2398 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2399
2400 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2401 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2402 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2403
2404 /* If the bases are different, we know they do not overlap if both
2405 are constants or if one is a constant and the other a pointer into the
2406 stack frame. Otherwise a different base means we can't tell if they
2407 overlap or not. */
2408 if (! rtx_equal_p (basex, basey))
2409 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2410 || (CONSTANT_P (basex) && REG_P (basey)
2411 && REGNO_PTR_FRAME_P (REGNO (basey)))
2412 || (CONSTANT_P (basey) && REG_P (basex)
2413 && REGNO_PTR_FRAME_P (REGNO (basex))));
2414
2415 /* Offset based disambiguation not appropriate for loop invariant */
2416 if (loop_invariant)
2417 return 0;
2418
2419 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2420 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2421 : -1);
2422 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2423 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2424 : -1);
2425
2426 /* If we have an offset for either memref, it can update the values computed
2427 above. */
2428 if (moffsetx_known_p)
2429 offsetx += moffsetx, sizex -= moffsetx;
2430 if (moffsety_known_p)
2431 offsety += moffsety, sizey -= moffsety;
2432
2433 /* If a memref has both a size and an offset, we can use the smaller size.
2434 We can't do this if the offset isn't known because we must view this
2435 memref as being anywhere inside the DECL's MEM. */
2436 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2437 sizex = MEM_SIZE (x);
2438 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2439 sizey = MEM_SIZE (y);
2440
2441 /* Put the values of the memref with the lower offset in X's values. */
2442 if (offsetx > offsety)
2443 {
2444 tem = offsetx, offsetx = offsety, offsety = tem;
2445 tem = sizex, sizex = sizey, sizey = tem;
2446 }
2447
2448 /* If we don't know the size of the lower-offset value, we can't tell
2449 if they conflict. Otherwise, we do the test. */
2450 return sizex >= 0 && offsety >= offsetx + sizex;
2451 }
2452
2453 /* Helper for true_dependence and canon_true_dependence.
2454 Checks for true dependence: X is read after store in MEM takes place.
2455
2456 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2457 NULL_RTX, and the canonical addresses of MEM and X are both computed
2458 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2459
2460 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2461
2462 Returns 1 if there is a true dependence, 0 otherwise. */
2463
2464 static int
2465 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2466 const_rtx x, rtx x_addr, bool mem_canonicalized)
2467 {
2468 rtx true_mem_addr;
2469 rtx base;
2470 int ret;
2471
2472 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2473 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2474
2475 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2476 return 1;
2477
2478 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2479 This is used in epilogue deallocation functions, and in cselib. */
2480 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2481 return 1;
2482 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2483 return 1;
2484 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2485 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2486 return 1;
2487
2488 if (! x_addr)
2489 x_addr = XEXP (x, 0);
2490 x_addr = get_addr (x_addr);
2491
2492 if (! mem_addr)
2493 {
2494 mem_addr = XEXP (mem, 0);
2495 if (mem_mode == VOIDmode)
2496 mem_mode = GET_MODE (mem);
2497 }
2498 true_mem_addr = get_addr (mem_addr);
2499
2500 /* Read-only memory is by definition never modified, and therefore can't
2501 conflict with anything. However, don't assume anything when AND
2502 addresses are involved and leave to the code below to determine
2503 dependence. We don't expect to find read-only set on MEM, but
2504 stupid user tricks can produce them, so don't die. */
2505 if (MEM_READONLY_P (x)
2506 && GET_CODE (x_addr) != AND
2507 && GET_CODE (true_mem_addr) != AND)
2508 return 0;
2509
2510 /* If we have MEMs referring to different address spaces (which can
2511 potentially overlap), we cannot easily tell from the addresses
2512 whether the references overlap. */
2513 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2514 return 1;
2515
2516 base = find_base_term (x_addr);
2517 if (base && (GET_CODE (base) == LABEL_REF
2518 || (GET_CODE (base) == SYMBOL_REF
2519 && CONSTANT_POOL_ADDRESS_P (base))))
2520 return 0;
2521
2522 rtx mem_base = find_base_term (true_mem_addr);
2523 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2524 GET_MODE (x), mem_mode))
2525 return 0;
2526
2527 x_addr = canon_rtx (x_addr);
2528 if (!mem_canonicalized)
2529 mem_addr = canon_rtx (true_mem_addr);
2530
2531 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2532 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2533 return ret;
2534
2535 if (mems_in_disjoint_alias_sets_p (x, mem))
2536 return 0;
2537
2538 if (nonoverlapping_memrefs_p (mem, x, false))
2539 return 0;
2540
2541 return rtx_refs_may_alias_p (x, mem, true);
2542 }
2543
2544 /* True dependence: X is read after store in MEM takes place. */
2545
2546 int
2547 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2548 {
2549 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2550 x, NULL_RTX, /*mem_canonicalized=*/false);
2551 }
2552
2553 /* Canonical true dependence: X is read after store in MEM takes place.
2554 Variant of true_dependence which assumes MEM has already been
2555 canonicalized (hence we no longer do that here).
2556 The mem_addr argument has been added, since true_dependence_1 computed
2557 this value prior to canonicalizing. */
2558
2559 int
2560 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2561 const_rtx x, rtx x_addr)
2562 {
2563 return true_dependence_1 (mem, mem_mode, mem_addr,
2564 x, x_addr, /*mem_canonicalized=*/true);
2565 }
2566
2567 /* Returns nonzero if a write to X might alias a previous read from
2568 (or, if WRITEP is true, a write to) MEM.
2569 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2570 and X_MODE the mode for that access.
2571 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2572
2573 static int
2574 write_dependence_p (const_rtx mem,
2575 const_rtx x, machine_mode x_mode, rtx x_addr,
2576 bool mem_canonicalized, bool x_canonicalized, bool writep)
2577 {
2578 rtx mem_addr;
2579 rtx true_mem_addr, true_x_addr;
2580 rtx base;
2581 int ret;
2582
2583 gcc_checking_assert (x_canonicalized
2584 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2585 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2586
2587 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2588 return 1;
2589
2590 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2591 This is used in epilogue deallocation functions. */
2592 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2593 return 1;
2594 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2595 return 1;
2596 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2597 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2598 return 1;
2599
2600 if (!x_addr)
2601 x_addr = XEXP (x, 0);
2602 true_x_addr = get_addr (x_addr);
2603
2604 mem_addr = XEXP (mem, 0);
2605 true_mem_addr = get_addr (mem_addr);
2606
2607 /* A read from read-only memory can't conflict with read-write memory.
2608 Don't assume anything when AND addresses are involved and leave to
2609 the code below to determine dependence. */
2610 if (!writep
2611 && MEM_READONLY_P (mem)
2612 && GET_CODE (true_x_addr) != AND
2613 && GET_CODE (true_mem_addr) != AND)
2614 return 0;
2615
2616 /* If we have MEMs referring to different address spaces (which can
2617 potentially overlap), we cannot easily tell from the addresses
2618 whether the references overlap. */
2619 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2620 return 1;
2621
2622 base = find_base_term (true_mem_addr);
2623 if (! writep
2624 && base
2625 && (GET_CODE (base) == LABEL_REF
2626 || (GET_CODE (base) == SYMBOL_REF
2627 && CONSTANT_POOL_ADDRESS_P (base))))
2628 return 0;
2629
2630 rtx x_base = find_base_term (true_x_addr);
2631 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
2632 GET_MODE (x), GET_MODE (mem)))
2633 return 0;
2634
2635 if (!x_canonicalized)
2636 {
2637 x_addr = canon_rtx (true_x_addr);
2638 x_mode = GET_MODE (x);
2639 }
2640 if (!mem_canonicalized)
2641 mem_addr = canon_rtx (true_mem_addr);
2642
2643 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2644 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
2645 return ret;
2646
2647 if (nonoverlapping_memrefs_p (x, mem, false))
2648 return 0;
2649
2650 return rtx_refs_may_alias_p (x, mem, false);
2651 }
2652
2653 /* Anti dependence: X is written after read in MEM takes place. */
2654
2655 int
2656 anti_dependence (const_rtx mem, const_rtx x)
2657 {
2658 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2659 /*mem_canonicalized=*/false,
2660 /*x_canonicalized*/false, /*writep=*/false);
2661 }
2662
2663 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2664 Also, consider X in X_MODE (which might be from an enclosing
2665 STRICT_LOW_PART / ZERO_EXTRACT).
2666 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2667
2668 int
2669 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
2670 const_rtx x, machine_mode x_mode, rtx x_addr)
2671 {
2672 return write_dependence_p (mem, x, x_mode, x_addr,
2673 mem_canonicalized, /*x_canonicalized=*/true,
2674 /*writep=*/false);
2675 }
2676
2677 /* Output dependence: X is written after store in MEM takes place. */
2678
2679 int
2680 output_dependence (const_rtx mem, const_rtx x)
2681 {
2682 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2683 /*mem_canonicalized=*/false,
2684 /*x_canonicalized*/false, /*writep=*/true);
2685 }
2686 \f
2687
2688
2689 /* Check whether X may be aliased with MEM. Don't do offset-based
2690 memory disambiguation & TBAA. */
2691 int
2692 may_alias_p (const_rtx mem, const_rtx x)
2693 {
2694 rtx x_addr, mem_addr;
2695
2696 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2697 return 1;
2698
2699 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2700 This is used in epilogue deallocation functions. */
2701 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2702 return 1;
2703 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2704 return 1;
2705 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2706 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2707 return 1;
2708
2709 x_addr = XEXP (x, 0);
2710 x_addr = get_addr (x_addr);
2711
2712 mem_addr = XEXP (mem, 0);
2713 mem_addr = get_addr (mem_addr);
2714
2715 /* Read-only memory is by definition never modified, and therefore can't
2716 conflict with anything. However, don't assume anything when AND
2717 addresses are involved and leave to the code below to determine
2718 dependence. We don't expect to find read-only set on MEM, but
2719 stupid user tricks can produce them, so don't die. */
2720 if (MEM_READONLY_P (x)
2721 && GET_CODE (x_addr) != AND
2722 && GET_CODE (mem_addr) != AND)
2723 return 0;
2724
2725 /* If we have MEMs referring to different address spaces (which can
2726 potentially overlap), we cannot easily tell from the addresses
2727 whether the references overlap. */
2728 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2729 return 1;
2730
2731 rtx x_base = find_base_term (x_addr);
2732 rtx mem_base = find_base_term (mem_addr);
2733 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
2734 GET_MODE (x), GET_MODE (mem_addr)))
2735 return 0;
2736
2737 if (nonoverlapping_memrefs_p (mem, x, true))
2738 return 0;
2739
2740 /* TBAA not valid for loop_invarint */
2741 return rtx_refs_may_alias_p (x, mem, false);
2742 }
2743
2744 void
2745 init_alias_target (void)
2746 {
2747 int i;
2748
2749 if (!arg_base_value)
2750 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2751
2752 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2753
2754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2755 /* Check whether this register can hold an incoming pointer
2756 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2757 numbers, so translate if necessary due to register windows. */
2758 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2759 && HARD_REGNO_MODE_OK (i, Pmode))
2760 static_reg_base_value[i] = arg_base_value;
2761
2762 static_reg_base_value[STACK_POINTER_REGNUM]
2763 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2764 static_reg_base_value[ARG_POINTER_REGNUM]
2765 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2766 static_reg_base_value[FRAME_POINTER_REGNUM]
2767 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2768 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2769 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2770 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2771 }
2772
2773 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2774 to be memory reference. */
2775 static bool memory_modified;
2776 static void
2777 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2778 {
2779 if (MEM_P (x))
2780 {
2781 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2782 memory_modified = true;
2783 }
2784 }
2785
2786
2787 /* Return true when INSN possibly modify memory contents of MEM
2788 (i.e. address can be modified). */
2789 bool
2790 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2791 {
2792 if (!INSN_P (insn))
2793 return false;
2794 memory_modified = false;
2795 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2796 return memory_modified;
2797 }
2798
2799 /* Return TRUE if the destination of a set is rtx identical to
2800 ITEM. */
2801 static inline bool
2802 set_dest_equal_p (const_rtx set, const_rtx item)
2803 {
2804 rtx dest = SET_DEST (set);
2805 return rtx_equal_p (dest, item);
2806 }
2807
2808 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2809 *DEFINITELY* modify the memory contents of MEM. */
2810 bool
2811 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2812 {
2813 if (!INSN_P (insn))
2814 return false;
2815 insn = PATTERN (insn);
2816 if (GET_CODE (insn) == SET)
2817 return set_dest_equal_p (insn, mem);
2818 else if (GET_CODE (insn) == PARALLEL)
2819 {
2820 int i;
2821 for (i = 0; i < XVECLEN (insn, 0); i++)
2822 {
2823 rtx sub = XVECEXP (insn, 0, i);
2824 if (GET_CODE (sub) == SET
2825 && set_dest_equal_p (sub, mem))
2826 return true;
2827 }
2828 }
2829 return false;
2830 }
2831
2832 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2833 array. */
2834
2835 void
2836 init_alias_analysis (void)
2837 {
2838 unsigned int maxreg = max_reg_num ();
2839 int changed, pass;
2840 int i;
2841 unsigned int ui;
2842 rtx_insn *insn;
2843 rtx val;
2844 int rpo_cnt;
2845 int *rpo;
2846
2847 timevar_push (TV_ALIAS_ANALYSIS);
2848
2849 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2850 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2851 bitmap_clear (reg_known_equiv_p);
2852
2853 /* If we have memory allocated from the previous run, use it. */
2854 if (old_reg_base_value)
2855 reg_base_value = old_reg_base_value;
2856
2857 if (reg_base_value)
2858 reg_base_value->truncate (0);
2859
2860 vec_safe_grow_cleared (reg_base_value, maxreg);
2861
2862 new_reg_base_value = XNEWVEC (rtx, maxreg);
2863 reg_seen = sbitmap_alloc (maxreg);
2864
2865 /* The basic idea is that each pass through this loop will use the
2866 "constant" information from the previous pass to propagate alias
2867 information through another level of assignments.
2868
2869 The propagation is done on the CFG in reverse post-order, to propagate
2870 things forward as far as possible in each iteration.
2871
2872 This could get expensive if the assignment chains are long. Maybe
2873 we should throttle the number of iterations, possibly based on
2874 the optimization level or flag_expensive_optimizations.
2875
2876 We could propagate more information in the first pass by making use
2877 of DF_REG_DEF_COUNT to determine immediately that the alias information
2878 for a pseudo is "constant".
2879
2880 A program with an uninitialized variable can cause an infinite loop
2881 here. Instead of doing a full dataflow analysis to detect such problems
2882 we just cap the number of iterations for the loop.
2883
2884 The state of the arrays for the set chain in question does not matter
2885 since the program has undefined behavior. */
2886
2887 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2888 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2889
2890 pass = 0;
2891 do
2892 {
2893 /* Assume nothing will change this iteration of the loop. */
2894 changed = 0;
2895
2896 /* We want to assign the same IDs each iteration of this loop, so
2897 start counting from one each iteration of the loop. */
2898 unique_id = 1;
2899
2900 /* We're at the start of the function each iteration through the
2901 loop, so we're copying arguments. */
2902 copying_arguments = true;
2903
2904 /* Wipe the potential alias information clean for this pass. */
2905 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2906
2907 /* Wipe the reg_seen array clean. */
2908 bitmap_clear (reg_seen);
2909
2910 /* Initialize the alias information for this pass. */
2911 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2912 if (static_reg_base_value[i])
2913 {
2914 new_reg_base_value[i] = static_reg_base_value[i];
2915 bitmap_set_bit (reg_seen, i);
2916 }
2917
2918 /* Walk the insns adding values to the new_reg_base_value array. */
2919 for (i = 0; i < rpo_cnt; i++)
2920 {
2921 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
2922 FOR_BB_INSNS (bb, insn)
2923 {
2924 if (NONDEBUG_INSN_P (insn))
2925 {
2926 rtx note, set;
2927
2928 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2929 /* The prologue/epilogue insns are not threaded onto the
2930 insn chain until after reload has completed. Thus,
2931 there is no sense wasting time checking if INSN is in
2932 the prologue/epilogue until after reload has completed. */
2933 if (reload_completed
2934 && prologue_epilogue_contains (insn))
2935 continue;
2936 #endif
2937
2938 /* If this insn has a noalias note, process it, Otherwise,
2939 scan for sets. A simple set will have no side effects
2940 which could change the base value of any other register. */
2941
2942 if (GET_CODE (PATTERN (insn)) == SET
2943 && REG_NOTES (insn) != 0
2944 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2945 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2946 else
2947 note_stores (PATTERN (insn), record_set, NULL);
2948
2949 set = single_set (insn);
2950
2951 if (set != 0
2952 && REG_P (SET_DEST (set))
2953 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2954 {
2955 unsigned int regno = REGNO (SET_DEST (set));
2956 rtx src = SET_SRC (set);
2957 rtx t;
2958
2959 note = find_reg_equal_equiv_note (insn);
2960 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2961 && DF_REG_DEF_COUNT (regno) != 1)
2962 note = NULL_RTX;
2963
2964 if (note != NULL_RTX
2965 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2966 && ! rtx_varies_p (XEXP (note, 0), 1)
2967 && ! reg_overlap_mentioned_p (SET_DEST (set),
2968 XEXP (note, 0)))
2969 {
2970 set_reg_known_value (regno, XEXP (note, 0));
2971 set_reg_known_equiv_p (regno,
2972 REG_NOTE_KIND (note) == REG_EQUIV);
2973 }
2974 else if (DF_REG_DEF_COUNT (regno) == 1
2975 && GET_CODE (src) == PLUS
2976 && REG_P (XEXP (src, 0))
2977 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2978 && CONST_INT_P (XEXP (src, 1)))
2979 {
2980 t = plus_constant (GET_MODE (src), t,
2981 INTVAL (XEXP (src, 1)));
2982 set_reg_known_value (regno, t);
2983 set_reg_known_equiv_p (regno, false);
2984 }
2985 else if (DF_REG_DEF_COUNT (regno) == 1
2986 && ! rtx_varies_p (src, 1))
2987 {
2988 set_reg_known_value (regno, src);
2989 set_reg_known_equiv_p (regno, false);
2990 }
2991 }
2992 }
2993 else if (NOTE_P (insn)
2994 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2995 copying_arguments = false;
2996 }
2997 }
2998
2999 /* Now propagate values from new_reg_base_value to reg_base_value. */
3000 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3001
3002 for (ui = 0; ui < maxreg; ui++)
3003 {
3004 if (new_reg_base_value[ui]
3005 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3006 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3007 {
3008 (*reg_base_value)[ui] = new_reg_base_value[ui];
3009 changed = 1;
3010 }
3011 }
3012 }
3013 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3014 XDELETEVEC (rpo);
3015
3016 /* Fill in the remaining entries. */
3017 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3018 {
3019 int regno = i + FIRST_PSEUDO_REGISTER;
3020 if (! val)
3021 set_reg_known_value (regno, regno_reg_rtx[regno]);
3022 }
3023
3024 /* Clean up. */
3025 free (new_reg_base_value);
3026 new_reg_base_value = 0;
3027 sbitmap_free (reg_seen);
3028 reg_seen = 0;
3029 timevar_pop (TV_ALIAS_ANALYSIS);
3030 }
3031
3032 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3033 Special API for var-tracking pass purposes. */
3034
3035 void
3036 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3037 {
3038 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3039 }
3040
3041 void
3042 end_alias_analysis (void)
3043 {
3044 old_reg_base_value = reg_base_value;
3045 vec_free (reg_known_value);
3046 sbitmap_free (reg_known_equiv_p);
3047 }
3048
3049 #include "gt-alias.h"