alias.c (reg_base_value): Turn into varray.
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46
47 /* The alias sets assigned to MEMs assist the back-end in determining
48 which MEMs can alias which other MEMs. In general, two MEMs in
49 different alias sets cannot alias each other, with one important
50 exception. Consider something like:
51
52 struct S { int i; double d; };
53
54 a store to an `S' can alias something of either type `int' or type
55 `double'. (However, a store to an `int' cannot alias a `double'
56 and vice versa.) We indicate this via a tree structure that looks
57 like:
58 struct S
59 / \
60 / \
61 |/_ _\|
62 int double
63
64 (The arrows are directed and point downwards.)
65 In this situation we say the alias set for `struct S' is the
66 `superset' and that those for `int' and `double' are `subsets'.
67
68 To see whether two alias sets can point to the same memory, we must
69 see if either alias set is a subset of the other. We need not trace
70 past immediate descendants, however, since we propagate all
71 grandchildren up one level.
72
73 Alias set zero is implicitly a superset of all other alias sets.
74 However, this is no actual entry for alias set zero. It is an
75 error to attempt to explicitly construct a subset of zero. */
76
77 struct alias_set_entry GTY(())
78 {
79 /* The alias set number, as stored in MEM_ALIAS_SET. */
80 HOST_WIDE_INT alias_set;
81
82 /* The children of the alias set. These are not just the immediate
83 children, but, in fact, all descendants. So, if we have:
84
85 struct T { struct S s; float f; }
86
87 continuing our example above, the children here will be all of
88 `int', `double', `float', and `struct S'. */
89 splay_tree GTY((param1_is (int), param2_is (int))) children;
90
91 /* Nonzero if would have a child of zero: this effectively makes this
92 alias set the same as alias set zero. */
93 int has_zero_child;
94 };
95 typedef struct alias_set_entry *alias_set_entry;
96
97 static int rtx_equal_for_memref_p (rtx, rtx);
98 static rtx find_symbolic_term (rtx);
99 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
100 static void record_set (rtx, rtx, void *);
101 static int base_alias_check (rtx, rtx, enum machine_mode,
102 enum machine_mode);
103 static rtx find_base_value (rtx);
104 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
105 static int insert_subset_children (splay_tree_node, void*);
106 static tree find_base_decl (tree);
107 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
108 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
109 int (*) (rtx, int));
110 static int aliases_everything_p (rtx);
111 static bool nonoverlapping_component_refs_p (tree, tree);
112 static tree decl_for_component_ref (tree);
113 static rtx adjust_offset_for_component_ref (tree, rtx);
114 static int nonoverlapping_memrefs_p (rtx, rtx);
115 static int write_dependence_p (rtx, rtx, int, int);
116
117 static int nonlocal_mentioned_p_1 (rtx *, void *);
118 static int nonlocal_mentioned_p (rtx);
119 static int nonlocal_referenced_p_1 (rtx *, void *);
120 static int nonlocal_referenced_p (rtx);
121 static int nonlocal_set_p_1 (rtx *, void *);
122 static int nonlocal_set_p (rtx);
123 static void memory_modified_1 (rtx, rtx, void *);
124
125 /* Set up all info needed to perform alias analysis on memory references. */
126
127 /* Returns the size in bytes of the mode of X. */
128 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
129
130 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
131 different alias sets. We ignore alias sets in functions making use
132 of variable arguments because the va_arg macros on some systems are
133 not legal ANSI C. */
134 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
135 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
136
137 /* Cap the number of passes we make over the insns propagating alias
138 information through set chains. 10 is a completely arbitrary choice. */
139 #define MAX_ALIAS_LOOP_PASSES 10
140
141 /* reg_base_value[N] gives an address to which register N is related.
142 If all sets after the first add or subtract to the current value
143 or otherwise modify it so it does not point to a different top level
144 object, reg_base_value[N] is equal to the address part of the source
145 of the first set.
146
147 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
148 expressions represent certain special values: function arguments and
149 the stack, frame, and argument pointers.
150
151 The contents of an ADDRESS is not normally used, the mode of the
152 ADDRESS determines whether the ADDRESS is a function argument or some
153 other special value. Pointer equality, not rtx_equal_p, determines whether
154 two ADDRESS expressions refer to the same base address.
155
156 The only use of the contents of an ADDRESS is for determining if the
157 current function performs nonlocal memory memory references for the
158 purposes of marking the function as a constant function. */
159
160 static GTY(()) varray_type reg_base_value;
161 static rtx *new_reg_base_value;
162
163 /* We preserve the copy of old array around to avoid amount of garbage
164 produced. About 8% of garbage produced were attributed to this
165 array. */
166 static GTY((deletable (""))) varray_type old_reg_base_value;
167
168 /* Static hunks of RTL used by the aliasing code; these are initialized
169 once per function to avoid unnecessary RTL allocations. */
170 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
171
172 #define REG_BASE_VALUE(X) \
173 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
174 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
175
176 /* Vector of known invariant relationships between registers. Set in
177 loop unrolling. Indexed by register number, if nonzero the value
178 is an expression describing this register in terms of another.
179
180 The length of this array is REG_BASE_VALUE_SIZE.
181
182 Because this array contains only pseudo registers it has no effect
183 after reload. */
184 static rtx *alias_invariant;
185 unsigned int alias_invariant_size;
186
187 /* Vector indexed by N giving the initial (unchanging) value known for
188 pseudo-register N. This array is initialized in
189 init_alias_analysis, and does not change until end_alias_analysis
190 is called. */
191 rtx *reg_known_value;
192
193 /* Indicates number of valid entries in reg_known_value. */
194 static unsigned int reg_known_value_size;
195
196 /* Vector recording for each reg_known_value whether it is due to a
197 REG_EQUIV note. Future passes (viz., reload) may replace the
198 pseudo with the equivalent expression and so we account for the
199 dependences that would be introduced if that happens.
200
201 The REG_EQUIV notes created in assign_parms may mention the arg
202 pointer, and there are explicit insns in the RTL that modify the
203 arg pointer. Thus we must ensure that such insns don't get
204 scheduled across each other because that would invalidate the
205 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
206 wrong, but solving the problem in the scheduler will likely give
207 better code, so we do it here. */
208 char *reg_known_equiv_p;
209
210 /* True when scanning insns from the start of the rtl to the
211 NOTE_INSN_FUNCTION_BEG note. */
212 static bool copying_arguments;
213
214 /* The splay-tree used to store the various alias set entries. */
215 static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
216 \f
217 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
218 such an entry, or NULL otherwise. */
219
220 static inline alias_set_entry
221 get_alias_set_entry (HOST_WIDE_INT alias_set)
222 {
223 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
224 }
225
226 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
227 the two MEMs cannot alias each other. */
228
229 static inline int
230 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
231 {
232 #ifdef ENABLE_CHECKING
233 /* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
240 if (! flag_strict_aliasing
241 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
242 abort ();
243 #endif
244
245 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
246 }
247
248 /* Insert the NODE into the splay tree given by DATA. Used by
249 record_alias_subset via splay_tree_foreach. */
250
251 static int
252 insert_subset_children (splay_tree_node node, void *data)
253 {
254 splay_tree_insert ((splay_tree) data, node->key, node->value);
255
256 return 0;
257 }
258
259 /* Return 1 if the two specified alias sets may conflict. */
260
261 int
262 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
263 {
264 alias_set_entry ase;
265
266 /* If have no alias set information for one of the operands, we have
267 to assume it can alias anything. */
268 if (set1 == 0 || set2 == 0
269 /* If the two alias sets are the same, they may alias. */
270 || set1 == set2)
271 return 1;
272
273 /* See if the first alias set is a subset of the second. */
274 ase = get_alias_set_entry (set1);
275 if (ase != 0
276 && (ase->has_zero_child
277 || splay_tree_lookup (ase->children,
278 (splay_tree_key) set2)))
279 return 1;
280
281 /* Now do the same, but with the alias sets reversed. */
282 ase = get_alias_set_entry (set2);
283 if (ase != 0
284 && (ase->has_zero_child
285 || splay_tree_lookup (ase->children,
286 (splay_tree_key) set1)))
287 return 1;
288
289 /* The two alias sets are distinct and neither one is the
290 child of the other. Therefore, they cannot alias. */
291 return 0;
292 }
293 \f
294 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
295 has any readonly fields. If any of the fields have types that
296 contain readonly fields, return true as well. */
297
298 int
299 readonly_fields_p (tree type)
300 {
301 tree field;
302
303 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
304 && TREE_CODE (type) != QUAL_UNION_TYPE)
305 return 0;
306
307 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
308 if (TREE_CODE (field) == FIELD_DECL
309 && (TREE_READONLY (field)
310 || readonly_fields_p (TREE_TYPE (field))))
311 return 1;
312
313 return 0;
314 }
315 \f
316 /* Return 1 if any MEM object of type T1 will always conflict (using the
317 dependency routines in this file) with any MEM object of type T2.
318 This is used when allocating temporary storage. If T1 and/or T2 are
319 NULL_TREE, it means we know nothing about the storage. */
320
321 int
322 objects_must_conflict_p (tree t1, tree t2)
323 {
324 HOST_WIDE_INT set1, set2;
325
326 /* If neither has a type specified, we don't know if they'll conflict
327 because we may be using them to store objects of various types, for
328 example the argument and local variables areas of inlined functions. */
329 if (t1 == 0 && t2 == 0)
330 return 0;
331
332 /* If one or the other has readonly fields or is readonly,
333 then they may not conflict. */
334 if ((t1 != 0 && readonly_fields_p (t1))
335 || (t2 != 0 && readonly_fields_p (t2))
336 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
337 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
338 return 0;
339
340 /* If they are the same type, they must conflict. */
341 if (t1 == t2
342 /* Likewise if both are volatile. */
343 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
344 return 1;
345
346 set1 = t1 ? get_alias_set (t1) : 0;
347 set2 = t2 ? get_alias_set (t2) : 0;
348
349 /* Otherwise they conflict if they have no alias set or the same. We
350 can't simply use alias_sets_conflict_p here, because we must make
351 sure that every subtype of t1 will conflict with every subtype of
352 t2 for which a pair of subobjects of these respective subtypes
353 overlaps on the stack. */
354 return set1 == 0 || set2 == 0 || set1 == set2;
355 }
356 \f
357 /* T is an expression with pointer type. Find the DECL on which this
358 expression is based. (For example, in `a[i]' this would be `a'.)
359 If there is no such DECL, or a unique decl cannot be determined,
360 NULL_TREE is returned. */
361
362 static tree
363 find_base_decl (tree t)
364 {
365 tree d0, d1, d2;
366
367 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
368 return 0;
369
370 /* If this is a declaration, return it. */
371 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
372 return t;
373
374 /* Handle general expressions. It would be nice to deal with
375 COMPONENT_REFs here. If we could tell that `a' and `b' were the
376 same, then `a->f' and `b->f' are also the same. */
377 switch (TREE_CODE_CLASS (TREE_CODE (t)))
378 {
379 case '1':
380 return find_base_decl (TREE_OPERAND (t, 0));
381
382 case '2':
383 /* Return 0 if found in neither or both are the same. */
384 d0 = find_base_decl (TREE_OPERAND (t, 0));
385 d1 = find_base_decl (TREE_OPERAND (t, 1));
386 if (d0 == d1)
387 return d0;
388 else if (d0 == 0)
389 return d1;
390 else if (d1 == 0)
391 return d0;
392 else
393 return 0;
394
395 case '3':
396 d0 = find_base_decl (TREE_OPERAND (t, 0));
397 d1 = find_base_decl (TREE_OPERAND (t, 1));
398 d2 = find_base_decl (TREE_OPERAND (t, 2));
399
400 /* Set any nonzero values from the last, then from the first. */
401 if (d1 == 0) d1 = d2;
402 if (d0 == 0) d0 = d1;
403 if (d1 == 0) d1 = d0;
404 if (d2 == 0) d2 = d1;
405
406 /* At this point all are nonzero or all are zero. If all three are the
407 same, return it. Otherwise, return zero. */
408 return (d0 == d1 && d1 == d2) ? d0 : 0;
409
410 default:
411 return 0;
412 }
413 }
414
415 /* Return 1 if all the nested component references handled by
416 get_inner_reference in T are such that we can address the object in T. */
417
418 int
419 can_address_p (tree t)
420 {
421 /* If we're at the end, it is vacuously addressable. */
422 if (! handled_component_p (t))
423 return 1;
424
425 /* Bitfields are never addressable. */
426 else if (TREE_CODE (t) == BIT_FIELD_REF)
427 return 0;
428
429 /* Fields are addressable unless they are marked as nonaddressable or
430 the containing type has alias set 0. */
431 else if (TREE_CODE (t) == COMPONENT_REF
432 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
433 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
434 && can_address_p (TREE_OPERAND (t, 0)))
435 return 1;
436
437 /* Likewise for arrays. */
438 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
439 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
440 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
441 && can_address_p (TREE_OPERAND (t, 0)))
442 return 1;
443
444 return 0;
445 }
446
447 /* Return the alias set for T, which may be either a type or an
448 expression. Call language-specific routine for help, if needed. */
449
450 HOST_WIDE_INT
451 get_alias_set (tree t)
452 {
453 HOST_WIDE_INT set;
454
455 /* If we're not doing any alias analysis, just assume everything
456 aliases everything else. Also return 0 if this or its type is
457 an error. */
458 if (! flag_strict_aliasing || t == error_mark_node
459 || (! TYPE_P (t)
460 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
461 return 0;
462
463 /* We can be passed either an expression or a type. This and the
464 language-specific routine may make mutually-recursive calls to each other
465 to figure out what to do. At each juncture, we see if this is a tree
466 that the language may need to handle specially. First handle things that
467 aren't types. */
468 if (! TYPE_P (t))
469 {
470 tree inner = t;
471 tree placeholder_ptr = 0;
472
473 /* Remove any nops, then give the language a chance to do
474 something with this tree before we look at it. */
475 STRIP_NOPS (t);
476 set = (*lang_hooks.get_alias_set) (t);
477 if (set != -1)
478 return set;
479
480 /* First see if the actual object referenced is an INDIRECT_REF from a
481 restrict-qualified pointer or a "void *". Replace
482 PLACEHOLDER_EXPRs. */
483 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
484 || handled_component_p (inner))
485 {
486 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
487 inner = find_placeholder (inner, &placeholder_ptr);
488 else
489 inner = TREE_OPERAND (inner, 0);
490
491 STRIP_NOPS (inner);
492 }
493
494 /* Check for accesses through restrict-qualified pointers. */
495 if (TREE_CODE (inner) == INDIRECT_REF)
496 {
497 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
498
499 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
500 {
501 /* If we haven't computed the actual alias set, do it now. */
502 if (DECL_POINTER_ALIAS_SET (decl) == -2)
503 {
504 /* No two restricted pointers can point at the same thing.
505 However, a restricted pointer can point at the same thing
506 as an unrestricted pointer, if that unrestricted pointer
507 is based on the restricted pointer. So, we make the
508 alias set for the restricted pointer a subset of the
509 alias set for the type pointed to by the type of the
510 decl. */
511 HOST_WIDE_INT pointed_to_alias_set
512 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
513
514 if (pointed_to_alias_set == 0)
515 /* It's not legal to make a subset of alias set zero. */
516 DECL_POINTER_ALIAS_SET (decl) = 0;
517 else
518 {
519 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
520 record_alias_subset (pointed_to_alias_set,
521 DECL_POINTER_ALIAS_SET (decl));
522 }
523 }
524
525 /* We use the alias set indicated in the declaration. */
526 return DECL_POINTER_ALIAS_SET (decl);
527 }
528
529 /* If we have an INDIRECT_REF via a void pointer, we don't
530 know anything about what that might alias. */
531 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
532 return 0;
533 }
534
535 /* Otherwise, pick up the outermost object that we could have a pointer
536 to, processing conversion and PLACEHOLDER_EXPR as above. */
537 placeholder_ptr = 0;
538 while (TREE_CODE (t) == PLACEHOLDER_EXPR
539 || (handled_component_p (t) && ! can_address_p (t)))
540 {
541 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
542 t = find_placeholder (t, &placeholder_ptr);
543 else
544 t = TREE_OPERAND (t, 0);
545
546 STRIP_NOPS (t);
547 }
548
549 /* If we've already determined the alias set for a decl, just return
550 it. This is necessary for C++ anonymous unions, whose component
551 variables don't look like union members (boo!). */
552 if (TREE_CODE (t) == VAR_DECL
553 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
554 return MEM_ALIAS_SET (DECL_RTL (t));
555
556 /* Now all we care about is the type. */
557 t = TREE_TYPE (t);
558 }
559
560 /* Variant qualifiers don't affect the alias set, so get the main
561 variant. If this is a type with a known alias set, return it. */
562 t = TYPE_MAIN_VARIANT (t);
563 if (TYPE_ALIAS_SET_KNOWN_P (t))
564 return TYPE_ALIAS_SET (t);
565
566 /* See if the language has special handling for this type. */
567 set = (*lang_hooks.get_alias_set) (t);
568 if (set != -1)
569 return set;
570
571 /* There are no objects of FUNCTION_TYPE, so there's no point in
572 using up an alias set for them. (There are, of course, pointers
573 and references to functions, but that's different.) */
574 else if (TREE_CODE (t) == FUNCTION_TYPE)
575 set = 0;
576
577 /* Unless the language specifies otherwise, let vector types alias
578 their components. This avoids some nasty type punning issues in
579 normal usage. And indeed lets vectors be treated more like an
580 array slice. */
581 else if (TREE_CODE (t) == VECTOR_TYPE)
582 set = get_alias_set (TREE_TYPE (t));
583
584 else
585 /* Otherwise make a new alias set for this type. */
586 set = new_alias_set ();
587
588 TYPE_ALIAS_SET (t) = set;
589
590 /* If this is an aggregate type, we must record any component aliasing
591 information. */
592 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
593 record_component_aliases (t);
594
595 return set;
596 }
597
598 /* Return a brand-new alias set. */
599
600 static GTY(()) HOST_WIDE_INT last_alias_set;
601
602 HOST_WIDE_INT
603 new_alias_set (void)
604 {
605 if (flag_strict_aliasing)
606 {
607 if (!alias_sets)
608 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
609 else
610 VARRAY_GROW (alias_sets, last_alias_set + 2);
611 return ++last_alias_set;
612 }
613 else
614 return 0;
615 }
616
617 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
618 not everything that aliases SUPERSET also aliases SUBSET. For example,
619 in C, a store to an `int' can alias a load of a structure containing an
620 `int', and vice versa. But it can't alias a load of a 'double' member
621 of the same structure. Here, the structure would be the SUPERSET and
622 `int' the SUBSET. This relationship is also described in the comment at
623 the beginning of this file.
624
625 This function should be called only once per SUPERSET/SUBSET pair.
626
627 It is illegal for SUPERSET to be zero; everything is implicitly a
628 subset of alias set zero. */
629
630 void
631 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
632 {
633 alias_set_entry superset_entry;
634 alias_set_entry subset_entry;
635
636 /* It is possible in complex type situations for both sets to be the same,
637 in which case we can ignore this operation. */
638 if (superset == subset)
639 return;
640
641 if (superset == 0)
642 abort ();
643
644 superset_entry = get_alias_set_entry (superset);
645 if (superset_entry == 0)
646 {
647 /* Create an entry for the SUPERSET, so that we have a place to
648 attach the SUBSET. */
649 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
650 superset_entry->alias_set = superset;
651 superset_entry->children
652 = splay_tree_new_ggc (splay_tree_compare_ints);
653 superset_entry->has_zero_child = 0;
654 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
655 }
656
657 if (subset == 0)
658 superset_entry->has_zero_child = 1;
659 else
660 {
661 subset_entry = get_alias_set_entry (subset);
662 /* If there is an entry for the subset, enter all of its children
663 (if they are not already present) as children of the SUPERSET. */
664 if (subset_entry)
665 {
666 if (subset_entry->has_zero_child)
667 superset_entry->has_zero_child = 1;
668
669 splay_tree_foreach (subset_entry->children, insert_subset_children,
670 superset_entry->children);
671 }
672
673 /* Enter the SUBSET itself as a child of the SUPERSET. */
674 splay_tree_insert (superset_entry->children,
675 (splay_tree_key) subset, 0);
676 }
677 }
678
679 /* Record that component types of TYPE, if any, are part of that type for
680 aliasing purposes. For record types, we only record component types
681 for fields that are marked addressable. For array types, we always
682 record the component types, so the front end should not call this
683 function if the individual component aren't addressable. */
684
685 void
686 record_component_aliases (tree type)
687 {
688 HOST_WIDE_INT superset = get_alias_set (type);
689 tree field;
690
691 if (superset == 0)
692 return;
693
694 switch (TREE_CODE (type))
695 {
696 case ARRAY_TYPE:
697 if (! TYPE_NONALIASED_COMPONENT (type))
698 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
699 break;
700
701 case RECORD_TYPE:
702 case UNION_TYPE:
703 case QUAL_UNION_TYPE:
704 /* Recursively record aliases for the base classes, if there are any. */
705 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
706 {
707 int i;
708 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
709 {
710 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
711 record_alias_subset (superset,
712 get_alias_set (BINFO_TYPE (binfo)));
713 }
714 }
715 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
716 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
717 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
718 break;
719
720 case COMPLEX_TYPE:
721 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
722 break;
723
724 default:
725 break;
726 }
727 }
728
729 /* Allocate an alias set for use in storing and reading from the varargs
730 spill area. */
731
732 static GTY(()) HOST_WIDE_INT varargs_set = -1;
733
734 HOST_WIDE_INT
735 get_varargs_alias_set (void)
736 {
737 if (varargs_set == -1)
738 varargs_set = new_alias_set ();
739
740 return varargs_set;
741 }
742
743 /* Likewise, but used for the fixed portions of the frame, e.g., register
744 save areas. */
745
746 static GTY(()) HOST_WIDE_INT frame_set = -1;
747
748 HOST_WIDE_INT
749 get_frame_alias_set (void)
750 {
751 if (frame_set == -1)
752 frame_set = new_alias_set ();
753
754 return frame_set;
755 }
756
757 /* Inside SRC, the source of a SET, find a base address. */
758
759 static rtx
760 find_base_value (rtx src)
761 {
762 unsigned int regno;
763
764 switch (GET_CODE (src))
765 {
766 case SYMBOL_REF:
767 case LABEL_REF:
768 return src;
769
770 case REG:
771 regno = REGNO (src);
772 /* At the start of a function, argument registers have known base
773 values which may be lost later. Returning an ADDRESS
774 expression here allows optimization based on argument values
775 even when the argument registers are used for other purposes. */
776 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
777 return new_reg_base_value[regno];
778
779 /* If a pseudo has a known base value, return it. Do not do this
780 for non-fixed hard regs since it can result in a circular
781 dependency chain for registers which have values at function entry.
782
783 The test above is not sufficient because the scheduler may move
784 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
785 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
786 && regno < VARRAY_SIZE (reg_base_value))
787 {
788 /* If we're inside init_alias_analysis, use new_reg_base_value
789 to reduce the number of relaxation iterations. */
790 if (new_reg_base_value && new_reg_base_value[regno]
791 && REG_N_SETS (regno) == 1)
792 return new_reg_base_value[regno];
793
794 if (VARRAY_RTX (reg_base_value, regno))
795 return VARRAY_RTX (reg_base_value, regno);
796 }
797
798 return 0;
799
800 case MEM:
801 /* Check for an argument passed in memory. Only record in the
802 copying-arguments block; it is too hard to track changes
803 otherwise. */
804 if (copying_arguments
805 && (XEXP (src, 0) == arg_pointer_rtx
806 || (GET_CODE (XEXP (src, 0)) == PLUS
807 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
808 return gen_rtx_ADDRESS (VOIDmode, src);
809 return 0;
810
811 case CONST:
812 src = XEXP (src, 0);
813 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
814 break;
815
816 /* ... fall through ... */
817
818 case PLUS:
819 case MINUS:
820 {
821 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
822
823 /* If either operand is a REG that is a known pointer, then it
824 is the base. */
825 if (REG_P (src_0) && REG_POINTER (src_0))
826 return find_base_value (src_0);
827 if (REG_P (src_1) && REG_POINTER (src_1))
828 return find_base_value (src_1);
829
830 /* If either operand is a REG, then see if we already have
831 a known value for it. */
832 if (REG_P (src_0))
833 {
834 temp = find_base_value (src_0);
835 if (temp != 0)
836 src_0 = temp;
837 }
838
839 if (REG_P (src_1))
840 {
841 temp = find_base_value (src_1);
842 if (temp!= 0)
843 src_1 = temp;
844 }
845
846 /* If either base is named object or a special address
847 (like an argument or stack reference), then use it for the
848 base term. */
849 if (src_0 != 0
850 && (GET_CODE (src_0) == SYMBOL_REF
851 || GET_CODE (src_0) == LABEL_REF
852 || (GET_CODE (src_0) == ADDRESS
853 && GET_MODE (src_0) != VOIDmode)))
854 return src_0;
855
856 if (src_1 != 0
857 && (GET_CODE (src_1) == SYMBOL_REF
858 || GET_CODE (src_1) == LABEL_REF
859 || (GET_CODE (src_1) == ADDRESS
860 && GET_MODE (src_1) != VOIDmode)))
861 return src_1;
862
863 /* Guess which operand is the base address:
864 If either operand is a symbol, then it is the base. If
865 either operand is a CONST_INT, then the other is the base. */
866 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
867 return find_base_value (src_0);
868 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
869 return find_base_value (src_1);
870
871 return 0;
872 }
873
874 case LO_SUM:
875 /* The standard form is (lo_sum reg sym) so look only at the
876 second operand. */
877 return find_base_value (XEXP (src, 1));
878
879 case AND:
880 /* If the second operand is constant set the base
881 address to the first operand. */
882 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
883 return find_base_value (XEXP (src, 0));
884 return 0;
885
886 case TRUNCATE:
887 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
888 break;
889 /* Fall through. */
890 case HIGH:
891 case PRE_INC:
892 case PRE_DEC:
893 case POST_INC:
894 case POST_DEC:
895 case PRE_MODIFY:
896 case POST_MODIFY:
897 return find_base_value (XEXP (src, 0));
898
899 case ZERO_EXTEND:
900 case SIGN_EXTEND: /* used for NT/Alpha pointers */
901 {
902 rtx temp = find_base_value (XEXP (src, 0));
903
904 if (temp != 0 && CONSTANT_P (temp))
905 temp = convert_memory_address (Pmode, temp);
906
907 return temp;
908 }
909
910 default:
911 break;
912 }
913
914 return 0;
915 }
916
917 /* Called from init_alias_analysis indirectly through note_stores. */
918
919 /* While scanning insns to find base values, reg_seen[N] is nonzero if
920 register N has been set in this function. */
921 static char *reg_seen;
922
923 /* Addresses which are known not to alias anything else are identified
924 by a unique integer. */
925 static int unique_id;
926
927 static void
928 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
929 {
930 unsigned regno;
931 rtx src;
932 int n;
933
934 if (GET_CODE (dest) != REG)
935 return;
936
937 regno = REGNO (dest);
938
939 if (regno >= VARRAY_SIZE (reg_base_value))
940 abort ();
941
942 /* If this spans multiple hard registers, then we must indicate that every
943 register has an unusable value. */
944 if (regno < FIRST_PSEUDO_REGISTER)
945 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
946 else
947 n = 1;
948 if (n != 1)
949 {
950 while (--n >= 0)
951 {
952 reg_seen[regno + n] = 1;
953 new_reg_base_value[regno + n] = 0;
954 }
955 return;
956 }
957
958 if (set)
959 {
960 /* A CLOBBER wipes out any old value but does not prevent a previously
961 unset register from acquiring a base address (i.e. reg_seen is not
962 set). */
963 if (GET_CODE (set) == CLOBBER)
964 {
965 new_reg_base_value[regno] = 0;
966 return;
967 }
968 src = SET_SRC (set);
969 }
970 else
971 {
972 if (reg_seen[regno])
973 {
974 new_reg_base_value[regno] = 0;
975 return;
976 }
977 reg_seen[regno] = 1;
978 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
979 GEN_INT (unique_id++));
980 return;
981 }
982
983 /* This is not the first set. If the new value is not related to the
984 old value, forget the base value. Note that the following code is
985 not detected:
986 extern int x, y; int *p = &x; p += (&y-&x);
987 ANSI C does not allow computing the difference of addresses
988 of distinct top level objects. */
989 if (new_reg_base_value[regno])
990 switch (GET_CODE (src))
991 {
992 case LO_SUM:
993 case MINUS:
994 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
995 new_reg_base_value[regno] = 0;
996 break;
997 case PLUS:
998 /* If the value we add in the PLUS is also a valid base value,
999 this might be the actual base value, and the original value
1000 an index. */
1001 {
1002 rtx other = NULL_RTX;
1003
1004 if (XEXP (src, 0) == dest)
1005 other = XEXP (src, 1);
1006 else if (XEXP (src, 1) == dest)
1007 other = XEXP (src, 0);
1008
1009 if (! other || find_base_value (other))
1010 new_reg_base_value[regno] = 0;
1011 break;
1012 }
1013 case AND:
1014 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1015 new_reg_base_value[regno] = 0;
1016 break;
1017 default:
1018 new_reg_base_value[regno] = 0;
1019 break;
1020 }
1021 /* If this is the first set of a register, record the value. */
1022 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1023 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1024 new_reg_base_value[regno] = find_base_value (src);
1025
1026 reg_seen[regno] = 1;
1027 }
1028
1029 /* Called from loop optimization when a new pseudo-register is
1030 created. It indicates that REGNO is being set to VAL. f INVARIANT
1031 is true then this value also describes an invariant relationship
1032 which can be used to deduce that two registers with unknown values
1033 are different. */
1034
1035 void
1036 record_base_value (unsigned int regno, rtx val, int invariant)
1037 {
1038 if (invariant && alias_invariant && regno < alias_invariant_size)
1039 alias_invariant[regno] = val;
1040
1041 if (regno >= VARRAY_SIZE (reg_base_value))
1042 VARRAY_GROW (reg_base_value, max_reg_num ());
1043
1044 if (GET_CODE (val) == REG)
1045 {
1046 VARRAY_RTX (reg_base_value, regno)
1047 = REG_BASE_VALUE (val);
1048 return;
1049 }
1050 VARRAY_RTX (reg_base_value, regno)
1051 = find_base_value (val);
1052 }
1053
1054 /* Clear alias info for a register. This is used if an RTL transformation
1055 changes the value of a register. This is used in flow by AUTO_INC_DEC
1056 optimizations. We don't need to clear reg_base_value, since flow only
1057 changes the offset. */
1058
1059 void
1060 clear_reg_alias_info (rtx reg)
1061 {
1062 unsigned int regno = REGNO (reg);
1063
1064 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1065 reg_known_value[regno] = reg;
1066 }
1067
1068 /* Returns a canonical version of X, from the point of view alias
1069 analysis. (For example, if X is a MEM whose address is a register,
1070 and the register has a known value (say a SYMBOL_REF), then a MEM
1071 whose address is the SYMBOL_REF is returned.) */
1072
1073 rtx
1074 canon_rtx (rtx x)
1075 {
1076 /* Recursively look for equivalences. */
1077 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1078 && REGNO (x) < reg_known_value_size)
1079 return reg_known_value[REGNO (x)] == x
1080 ? x : canon_rtx (reg_known_value[REGNO (x)]);
1081 else if (GET_CODE (x) == PLUS)
1082 {
1083 rtx x0 = canon_rtx (XEXP (x, 0));
1084 rtx x1 = canon_rtx (XEXP (x, 1));
1085
1086 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1087 {
1088 if (GET_CODE (x0) == CONST_INT)
1089 return plus_constant (x1, INTVAL (x0));
1090 else if (GET_CODE (x1) == CONST_INT)
1091 return plus_constant (x0, INTVAL (x1));
1092 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1093 }
1094 }
1095
1096 /* This gives us much better alias analysis when called from
1097 the loop optimizer. Note we want to leave the original
1098 MEM alone, but need to return the canonicalized MEM with
1099 all the flags with their original values. */
1100 else if (GET_CODE (x) == MEM)
1101 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1102
1103 return x;
1104 }
1105
1106 /* Return 1 if X and Y are identical-looking rtx's.
1107 Expect that X and Y has been already canonicalized.
1108
1109 We use the data in reg_known_value above to see if two registers with
1110 different numbers are, in fact, equivalent. */
1111
1112 static int
1113 rtx_equal_for_memref_p (rtx x, rtx y)
1114 {
1115 int i;
1116 int j;
1117 enum rtx_code code;
1118 const char *fmt;
1119
1120 if (x == 0 && y == 0)
1121 return 1;
1122 if (x == 0 || y == 0)
1123 return 0;
1124
1125 if (x == y)
1126 return 1;
1127
1128 code = GET_CODE (x);
1129 /* Rtx's of different codes cannot be equal. */
1130 if (code != GET_CODE (y))
1131 return 0;
1132
1133 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1134 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1135
1136 if (GET_MODE (x) != GET_MODE (y))
1137 return 0;
1138
1139 /* Some RTL can be compared without a recursive examination. */
1140 switch (code)
1141 {
1142 case VALUE:
1143 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1144
1145 case REG:
1146 return REGNO (x) == REGNO (y);
1147
1148 case LABEL_REF:
1149 return XEXP (x, 0) == XEXP (y, 0);
1150
1151 case SYMBOL_REF:
1152 return XSTR (x, 0) == XSTR (y, 0);
1153
1154 case CONST_INT:
1155 case CONST_DOUBLE:
1156 /* There's no need to compare the contents of CONST_DOUBLEs or
1157 CONST_INTs because pointer equality is a good enough
1158 comparison for these nodes. */
1159 return 0;
1160
1161 case ADDRESSOF:
1162 return (XINT (x, 1) == XINT (y, 1)
1163 && rtx_equal_for_memref_p (XEXP (x, 0),
1164 XEXP (y, 0)));
1165
1166 default:
1167 break;
1168 }
1169
1170 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1171 if (code == PLUS)
1172 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1173 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1174 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1175 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1176 /* For commutative operations, the RTX match if the operand match in any
1177 order. Also handle the simple binary and unary cases without a loop. */
1178 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1179 {
1180 rtx xop0 = canon_rtx (XEXP (x, 0));
1181 rtx yop0 = canon_rtx (XEXP (y, 0));
1182 rtx yop1 = canon_rtx (XEXP (y, 1));
1183
1184 return ((rtx_equal_for_memref_p (xop0, yop0)
1185 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1186 || (rtx_equal_for_memref_p (xop0, yop1)
1187 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1188 }
1189 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1190 {
1191 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1192 canon_rtx (XEXP (y, 0)))
1193 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1194 canon_rtx (XEXP (y, 1))));
1195 }
1196 else if (GET_RTX_CLASS (code) == '1')
1197 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1198 canon_rtx (XEXP (y, 0)));
1199
1200 /* Compare the elements. If any pair of corresponding elements
1201 fail to match, return 0 for the whole things.
1202
1203 Limit cases to types which actually appear in addresses. */
1204
1205 fmt = GET_RTX_FORMAT (code);
1206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1207 {
1208 switch (fmt[i])
1209 {
1210 case 'i':
1211 if (XINT (x, i) != XINT (y, i))
1212 return 0;
1213 break;
1214
1215 case 'E':
1216 /* Two vectors must have the same length. */
1217 if (XVECLEN (x, i) != XVECLEN (y, i))
1218 return 0;
1219
1220 /* And the corresponding elements must match. */
1221 for (j = 0; j < XVECLEN (x, i); j++)
1222 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1223 canon_rtx (XVECEXP (y, i, j))) == 0)
1224 return 0;
1225 break;
1226
1227 case 'e':
1228 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1229 canon_rtx (XEXP (y, i))) == 0)
1230 return 0;
1231 break;
1232
1233 /* This can happen for asm operands. */
1234 case 's':
1235 if (strcmp (XSTR (x, i), XSTR (y, i)))
1236 return 0;
1237 break;
1238
1239 /* This can happen for an asm which clobbers memory. */
1240 case '0':
1241 break;
1242
1243 /* It is believed that rtx's at this level will never
1244 contain anything but integers and other rtx's,
1245 except for within LABEL_REFs and SYMBOL_REFs. */
1246 default:
1247 abort ();
1248 }
1249 }
1250 return 1;
1251 }
1252
1253 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1254 X and return it, or return 0 if none found. */
1255
1256 static rtx
1257 find_symbolic_term (rtx x)
1258 {
1259 int i;
1260 enum rtx_code code;
1261 const char *fmt;
1262
1263 code = GET_CODE (x);
1264 if (code == SYMBOL_REF || code == LABEL_REF)
1265 return x;
1266 if (GET_RTX_CLASS (code) == 'o')
1267 return 0;
1268
1269 fmt = GET_RTX_FORMAT (code);
1270 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1271 {
1272 rtx t;
1273
1274 if (fmt[i] == 'e')
1275 {
1276 t = find_symbolic_term (XEXP (x, i));
1277 if (t != 0)
1278 return t;
1279 }
1280 else if (fmt[i] == 'E')
1281 break;
1282 }
1283 return 0;
1284 }
1285
1286 rtx
1287 find_base_term (rtx x)
1288 {
1289 cselib_val *val;
1290 struct elt_loc_list *l;
1291
1292 #if defined (FIND_BASE_TERM)
1293 /* Try machine-dependent ways to find the base term. */
1294 x = FIND_BASE_TERM (x);
1295 #endif
1296
1297 switch (GET_CODE (x))
1298 {
1299 case REG:
1300 return REG_BASE_VALUE (x);
1301
1302 case TRUNCATE:
1303 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1304 return 0;
1305 /* Fall through. */
1306 case HIGH:
1307 case PRE_INC:
1308 case PRE_DEC:
1309 case POST_INC:
1310 case POST_DEC:
1311 case PRE_MODIFY:
1312 case POST_MODIFY:
1313 return find_base_term (XEXP (x, 0));
1314
1315 case ZERO_EXTEND:
1316 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1317 {
1318 rtx temp = find_base_term (XEXP (x, 0));
1319
1320 if (temp != 0 && CONSTANT_P (temp))
1321 temp = convert_memory_address (Pmode, temp);
1322
1323 return temp;
1324 }
1325
1326 case VALUE:
1327 val = CSELIB_VAL_PTR (x);
1328 for (l = val->locs; l; l = l->next)
1329 if ((x = find_base_term (l->loc)) != 0)
1330 return x;
1331 return 0;
1332
1333 case CONST:
1334 x = XEXP (x, 0);
1335 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1336 return 0;
1337 /* Fall through. */
1338 case LO_SUM:
1339 case PLUS:
1340 case MINUS:
1341 {
1342 rtx tmp1 = XEXP (x, 0);
1343 rtx tmp2 = XEXP (x, 1);
1344
1345 /* This is a little bit tricky since we have to determine which of
1346 the two operands represents the real base address. Otherwise this
1347 routine may return the index register instead of the base register.
1348
1349 That may cause us to believe no aliasing was possible, when in
1350 fact aliasing is possible.
1351
1352 We use a few simple tests to guess the base register. Additional
1353 tests can certainly be added. For example, if one of the operands
1354 is a shift or multiply, then it must be the index register and the
1355 other operand is the base register. */
1356
1357 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1358 return find_base_term (tmp2);
1359
1360 /* If either operand is known to be a pointer, then use it
1361 to determine the base term. */
1362 if (REG_P (tmp1) && REG_POINTER (tmp1))
1363 return find_base_term (tmp1);
1364
1365 if (REG_P (tmp2) && REG_POINTER (tmp2))
1366 return find_base_term (tmp2);
1367
1368 /* Neither operand was known to be a pointer. Go ahead and find the
1369 base term for both operands. */
1370 tmp1 = find_base_term (tmp1);
1371 tmp2 = find_base_term (tmp2);
1372
1373 /* If either base term is named object or a special address
1374 (like an argument or stack reference), then use it for the
1375 base term. */
1376 if (tmp1 != 0
1377 && (GET_CODE (tmp1) == SYMBOL_REF
1378 || GET_CODE (tmp1) == LABEL_REF
1379 || (GET_CODE (tmp1) == ADDRESS
1380 && GET_MODE (tmp1) != VOIDmode)))
1381 return tmp1;
1382
1383 if (tmp2 != 0
1384 && (GET_CODE (tmp2) == SYMBOL_REF
1385 || GET_CODE (tmp2) == LABEL_REF
1386 || (GET_CODE (tmp2) == ADDRESS
1387 && GET_MODE (tmp2) != VOIDmode)))
1388 return tmp2;
1389
1390 /* We could not determine which of the two operands was the
1391 base register and which was the index. So we can determine
1392 nothing from the base alias check. */
1393 return 0;
1394 }
1395
1396 case AND:
1397 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1398 return find_base_term (XEXP (x, 0));
1399 return 0;
1400
1401 case SYMBOL_REF:
1402 case LABEL_REF:
1403 return x;
1404
1405 case ADDRESSOF:
1406 return REG_BASE_VALUE (frame_pointer_rtx);
1407
1408 default:
1409 return 0;
1410 }
1411 }
1412
1413 /* Return 0 if the addresses X and Y are known to point to different
1414 objects, 1 if they might be pointers to the same object. */
1415
1416 static int
1417 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1418 enum machine_mode y_mode)
1419 {
1420 rtx x_base = find_base_term (x);
1421 rtx y_base = find_base_term (y);
1422
1423 /* If the address itself has no known base see if a known equivalent
1424 value has one. If either address still has no known base, nothing
1425 is known about aliasing. */
1426 if (x_base == 0)
1427 {
1428 rtx x_c;
1429
1430 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1431 return 1;
1432
1433 x_base = find_base_term (x_c);
1434 if (x_base == 0)
1435 return 1;
1436 }
1437
1438 if (y_base == 0)
1439 {
1440 rtx y_c;
1441 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1442 return 1;
1443
1444 y_base = find_base_term (y_c);
1445 if (y_base == 0)
1446 return 1;
1447 }
1448
1449 /* If the base addresses are equal nothing is known about aliasing. */
1450 if (rtx_equal_p (x_base, y_base))
1451 return 1;
1452
1453 /* The base addresses of the read and write are different expressions.
1454 If they are both symbols and they are not accessed via AND, there is
1455 no conflict. We can bring knowledge of object alignment into play
1456 here. For example, on alpha, "char a, b;" can alias one another,
1457 though "char a; long b;" cannot. */
1458 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1459 {
1460 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1461 return 1;
1462 if (GET_CODE (x) == AND
1463 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1464 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1465 return 1;
1466 if (GET_CODE (y) == AND
1467 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1468 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1469 return 1;
1470 /* Differing symbols never alias. */
1471 return 0;
1472 }
1473
1474 /* If one address is a stack reference there can be no alias:
1475 stack references using different base registers do not alias,
1476 a stack reference can not alias a parameter, and a stack reference
1477 can not alias a global. */
1478 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1479 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1480 return 0;
1481
1482 if (! flag_argument_noalias)
1483 return 1;
1484
1485 if (flag_argument_noalias > 1)
1486 return 0;
1487
1488 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1489 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1490 }
1491
1492 /* Convert the address X into something we can use. This is done by returning
1493 it unchanged unless it is a value; in the latter case we call cselib to get
1494 a more useful rtx. */
1495
1496 rtx
1497 get_addr (rtx x)
1498 {
1499 cselib_val *v;
1500 struct elt_loc_list *l;
1501
1502 if (GET_CODE (x) != VALUE)
1503 return x;
1504 v = CSELIB_VAL_PTR (x);
1505 for (l = v->locs; l; l = l->next)
1506 if (CONSTANT_P (l->loc))
1507 return l->loc;
1508 for (l = v->locs; l; l = l->next)
1509 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1510 return l->loc;
1511 if (v->locs)
1512 return v->locs->loc;
1513 return x;
1514 }
1515
1516 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1517 where SIZE is the size in bytes of the memory reference. If ADDR
1518 is not modified by the memory reference then ADDR is returned. */
1519
1520 rtx
1521 addr_side_effect_eval (rtx addr, int size, int n_refs)
1522 {
1523 int offset = 0;
1524
1525 switch (GET_CODE (addr))
1526 {
1527 case PRE_INC:
1528 offset = (n_refs + 1) * size;
1529 break;
1530 case PRE_DEC:
1531 offset = -(n_refs + 1) * size;
1532 break;
1533 case POST_INC:
1534 offset = n_refs * size;
1535 break;
1536 case POST_DEC:
1537 offset = -n_refs * size;
1538 break;
1539
1540 default:
1541 return addr;
1542 }
1543
1544 if (offset)
1545 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1546 GEN_INT (offset));
1547 else
1548 addr = XEXP (addr, 0);
1549 addr = canon_rtx (addr);
1550
1551 return addr;
1552 }
1553
1554 /* Return nonzero if X and Y (memory addresses) could reference the
1555 same location in memory. C is an offset accumulator. When
1556 C is nonzero, we are testing aliases between X and Y + C.
1557 XSIZE is the size in bytes of the X reference,
1558 similarly YSIZE is the size in bytes for Y.
1559 Expect that canon_rtx has been already called for X and Y.
1560
1561 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1562 referenced (the reference was BLKmode), so make the most pessimistic
1563 assumptions.
1564
1565 If XSIZE or YSIZE is negative, we may access memory outside the object
1566 being referenced as a side effect. This can happen when using AND to
1567 align memory references, as is done on the Alpha.
1568
1569 Nice to notice that varying addresses cannot conflict with fp if no
1570 local variables had their addresses taken, but that's too hard now. */
1571
1572 static int
1573 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1574 {
1575 if (GET_CODE (x) == VALUE)
1576 x = get_addr (x);
1577 if (GET_CODE (y) == VALUE)
1578 y = get_addr (y);
1579 if (GET_CODE (x) == HIGH)
1580 x = XEXP (x, 0);
1581 else if (GET_CODE (x) == LO_SUM)
1582 x = XEXP (x, 1);
1583 else
1584 x = addr_side_effect_eval (x, xsize, 0);
1585 if (GET_CODE (y) == HIGH)
1586 y = XEXP (y, 0);
1587 else if (GET_CODE (y) == LO_SUM)
1588 y = XEXP (y, 1);
1589 else
1590 y = addr_side_effect_eval (y, ysize, 0);
1591
1592 if (rtx_equal_for_memref_p (x, y))
1593 {
1594 if (xsize <= 0 || ysize <= 0)
1595 return 1;
1596 if (c >= 0 && xsize > c)
1597 return 1;
1598 if (c < 0 && ysize+c > 0)
1599 return 1;
1600 return 0;
1601 }
1602
1603 /* This code used to check for conflicts involving stack references and
1604 globals but the base address alias code now handles these cases. */
1605
1606 if (GET_CODE (x) == PLUS)
1607 {
1608 /* The fact that X is canonicalized means that this
1609 PLUS rtx is canonicalized. */
1610 rtx x0 = XEXP (x, 0);
1611 rtx x1 = XEXP (x, 1);
1612
1613 if (GET_CODE (y) == PLUS)
1614 {
1615 /* The fact that Y is canonicalized means that this
1616 PLUS rtx is canonicalized. */
1617 rtx y0 = XEXP (y, 0);
1618 rtx y1 = XEXP (y, 1);
1619
1620 if (rtx_equal_for_memref_p (x1, y1))
1621 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1622 if (rtx_equal_for_memref_p (x0, y0))
1623 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1624 if (GET_CODE (x1) == CONST_INT)
1625 {
1626 if (GET_CODE (y1) == CONST_INT)
1627 return memrefs_conflict_p (xsize, x0, ysize, y0,
1628 c - INTVAL (x1) + INTVAL (y1));
1629 else
1630 return memrefs_conflict_p (xsize, x0, ysize, y,
1631 c - INTVAL (x1));
1632 }
1633 else if (GET_CODE (y1) == CONST_INT)
1634 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1635
1636 return 1;
1637 }
1638 else if (GET_CODE (x1) == CONST_INT)
1639 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1640 }
1641 else if (GET_CODE (y) == PLUS)
1642 {
1643 /* The fact that Y is canonicalized means that this
1644 PLUS rtx is canonicalized. */
1645 rtx y0 = XEXP (y, 0);
1646 rtx y1 = XEXP (y, 1);
1647
1648 if (GET_CODE (y1) == CONST_INT)
1649 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1650 else
1651 return 1;
1652 }
1653
1654 if (GET_CODE (x) == GET_CODE (y))
1655 switch (GET_CODE (x))
1656 {
1657 case MULT:
1658 {
1659 /* Handle cases where we expect the second operands to be the
1660 same, and check only whether the first operand would conflict
1661 or not. */
1662 rtx x0, y0;
1663 rtx x1 = canon_rtx (XEXP (x, 1));
1664 rtx y1 = canon_rtx (XEXP (y, 1));
1665 if (! rtx_equal_for_memref_p (x1, y1))
1666 return 1;
1667 x0 = canon_rtx (XEXP (x, 0));
1668 y0 = canon_rtx (XEXP (y, 0));
1669 if (rtx_equal_for_memref_p (x0, y0))
1670 return (xsize == 0 || ysize == 0
1671 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1672
1673 /* Can't properly adjust our sizes. */
1674 if (GET_CODE (x1) != CONST_INT)
1675 return 1;
1676 xsize /= INTVAL (x1);
1677 ysize /= INTVAL (x1);
1678 c /= INTVAL (x1);
1679 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1680 }
1681
1682 case REG:
1683 /* Are these registers known not to be equal? */
1684 if (alias_invariant)
1685 {
1686 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1687 rtx i_x, i_y; /* invariant relationships of X and Y */
1688
1689 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1690 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
1691
1692 if (i_x == 0 && i_y == 0)
1693 break;
1694
1695 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1696 ysize, i_y ? i_y : y, c))
1697 return 0;
1698 }
1699 break;
1700
1701 default:
1702 break;
1703 }
1704
1705 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1706 as an access with indeterminate size. Assume that references
1707 besides AND are aligned, so if the size of the other reference is
1708 at least as large as the alignment, assume no other overlap. */
1709 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1710 {
1711 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1712 xsize = -1;
1713 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1714 }
1715 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1716 {
1717 /* ??? If we are indexing far enough into the array/structure, we
1718 may yet be able to determine that we can not overlap. But we
1719 also need to that we are far enough from the end not to overlap
1720 a following reference, so we do nothing with that for now. */
1721 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1722 ysize = -1;
1723 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1724 }
1725
1726 if (GET_CODE (x) == ADDRESSOF)
1727 {
1728 if (y == frame_pointer_rtx
1729 || GET_CODE (y) == ADDRESSOF)
1730 return xsize <= 0 || ysize <= 0;
1731 }
1732 if (GET_CODE (y) == ADDRESSOF)
1733 {
1734 if (x == frame_pointer_rtx)
1735 return xsize <= 0 || ysize <= 0;
1736 }
1737
1738 if (CONSTANT_P (x))
1739 {
1740 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1741 {
1742 c += (INTVAL (y) - INTVAL (x));
1743 return (xsize <= 0 || ysize <= 0
1744 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1745 }
1746
1747 if (GET_CODE (x) == CONST)
1748 {
1749 if (GET_CODE (y) == CONST)
1750 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1751 ysize, canon_rtx (XEXP (y, 0)), c);
1752 else
1753 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1754 ysize, y, c);
1755 }
1756 if (GET_CODE (y) == CONST)
1757 return memrefs_conflict_p (xsize, x, ysize,
1758 canon_rtx (XEXP (y, 0)), c);
1759
1760 if (CONSTANT_P (y))
1761 return (xsize <= 0 || ysize <= 0
1762 || (rtx_equal_for_memref_p (x, y)
1763 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1764
1765 return 1;
1766 }
1767 return 1;
1768 }
1769
1770 /* Functions to compute memory dependencies.
1771
1772 Since we process the insns in execution order, we can build tables
1773 to keep track of what registers are fixed (and not aliased), what registers
1774 are varying in known ways, and what registers are varying in unknown
1775 ways.
1776
1777 If both memory references are volatile, then there must always be a
1778 dependence between the two references, since their order can not be
1779 changed. A volatile and non-volatile reference can be interchanged
1780 though.
1781
1782 A MEM_IN_STRUCT reference at a non-AND varying address can never
1783 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1784 also must allow AND addresses, because they may generate accesses
1785 outside the object being referenced. This is used to generate
1786 aligned addresses from unaligned addresses, for instance, the alpha
1787 storeqi_unaligned pattern. */
1788
1789 /* Read dependence: X is read after read in MEM takes place. There can
1790 only be a dependence here if both reads are volatile. */
1791
1792 int
1793 read_dependence (rtx mem, rtx x)
1794 {
1795 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1796 }
1797
1798 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1799 MEM2 is a reference to a structure at a varying address, or returns
1800 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1801 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1802 to decide whether or not an address may vary; it should return
1803 nonzero whenever variation is possible.
1804 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1805
1806 static rtx
1807 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1808 rtx mem2_addr,
1809 int (*varies_p) (rtx, int))
1810 {
1811 if (! flag_strict_aliasing)
1812 return NULL_RTX;
1813
1814 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1815 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1816 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1817 varying address. */
1818 return mem1;
1819
1820 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1821 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1822 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1823 varying address. */
1824 return mem2;
1825
1826 return NULL_RTX;
1827 }
1828
1829 /* Returns nonzero if something about the mode or address format MEM1
1830 indicates that it might well alias *anything*. */
1831
1832 static int
1833 aliases_everything_p (rtx mem)
1834 {
1835 if (GET_CODE (XEXP (mem, 0)) == AND)
1836 /* If the address is an AND, its very hard to know at what it is
1837 actually pointing. */
1838 return 1;
1839
1840 return 0;
1841 }
1842
1843 /* Return true if we can determine that the fields referenced cannot
1844 overlap for any pair of objects. */
1845
1846 static bool
1847 nonoverlapping_component_refs_p (tree x, tree y)
1848 {
1849 tree fieldx, fieldy, typex, typey, orig_y;
1850
1851 do
1852 {
1853 /* The comparison has to be done at a common type, since we don't
1854 know how the inheritance hierarchy works. */
1855 orig_y = y;
1856 do
1857 {
1858 fieldx = TREE_OPERAND (x, 1);
1859 typex = DECL_FIELD_CONTEXT (fieldx);
1860
1861 y = orig_y;
1862 do
1863 {
1864 fieldy = TREE_OPERAND (y, 1);
1865 typey = DECL_FIELD_CONTEXT (fieldy);
1866
1867 if (typex == typey)
1868 goto found;
1869
1870 y = TREE_OPERAND (y, 0);
1871 }
1872 while (y && TREE_CODE (y) == COMPONENT_REF);
1873
1874 x = TREE_OPERAND (x, 0);
1875 }
1876 while (x && TREE_CODE (x) == COMPONENT_REF);
1877
1878 /* Never found a common type. */
1879 return false;
1880
1881 found:
1882 /* If we're left with accessing different fields of a structure,
1883 then no overlap. */
1884 if (TREE_CODE (typex) == RECORD_TYPE
1885 && fieldx != fieldy)
1886 return true;
1887
1888 /* The comparison on the current field failed. If we're accessing
1889 a very nested structure, look at the next outer level. */
1890 x = TREE_OPERAND (x, 0);
1891 y = TREE_OPERAND (y, 0);
1892 }
1893 while (x && y
1894 && TREE_CODE (x) == COMPONENT_REF
1895 && TREE_CODE (y) == COMPONENT_REF);
1896
1897 return false;
1898 }
1899
1900 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1901
1902 static tree
1903 decl_for_component_ref (tree x)
1904 {
1905 do
1906 {
1907 x = TREE_OPERAND (x, 0);
1908 }
1909 while (x && TREE_CODE (x) == COMPONENT_REF);
1910
1911 return x && DECL_P (x) ? x : NULL_TREE;
1912 }
1913
1914 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1915 offset of the field reference. */
1916
1917 static rtx
1918 adjust_offset_for_component_ref (tree x, rtx offset)
1919 {
1920 HOST_WIDE_INT ioffset;
1921
1922 if (! offset)
1923 return NULL_RTX;
1924
1925 ioffset = INTVAL (offset);
1926 do
1927 {
1928 tree field = TREE_OPERAND (x, 1);
1929
1930 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1931 return NULL_RTX;
1932 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1933 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1934 / BITS_PER_UNIT));
1935
1936 x = TREE_OPERAND (x, 0);
1937 }
1938 while (x && TREE_CODE (x) == COMPONENT_REF);
1939
1940 return GEN_INT (ioffset);
1941 }
1942
1943 /* Return nonzero if we can determine the exprs corresponding to memrefs
1944 X and Y and they do not overlap. */
1945
1946 static int
1947 nonoverlapping_memrefs_p (rtx x, rtx y)
1948 {
1949 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1950 rtx rtlx, rtly;
1951 rtx basex, basey;
1952 rtx moffsetx, moffsety;
1953 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1954
1955 /* Unless both have exprs, we can't tell anything. */
1956 if (exprx == 0 || expry == 0)
1957 return 0;
1958
1959 /* If both are field references, we may be able to determine something. */
1960 if (TREE_CODE (exprx) == COMPONENT_REF
1961 && TREE_CODE (expry) == COMPONENT_REF
1962 && nonoverlapping_component_refs_p (exprx, expry))
1963 return 1;
1964
1965 /* If the field reference test failed, look at the DECLs involved. */
1966 moffsetx = MEM_OFFSET (x);
1967 if (TREE_CODE (exprx) == COMPONENT_REF)
1968 {
1969 tree t = decl_for_component_ref (exprx);
1970 if (! t)
1971 return 0;
1972 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1973 exprx = t;
1974 }
1975 else if (TREE_CODE (exprx) == INDIRECT_REF)
1976 {
1977 exprx = TREE_OPERAND (exprx, 0);
1978 if (flag_argument_noalias < 2
1979 || TREE_CODE (exprx) != PARM_DECL)
1980 return 0;
1981 }
1982
1983 moffsety = MEM_OFFSET (y);
1984 if (TREE_CODE (expry) == COMPONENT_REF)
1985 {
1986 tree t = decl_for_component_ref (expry);
1987 if (! t)
1988 return 0;
1989 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1990 expry = t;
1991 }
1992 else if (TREE_CODE (expry) == INDIRECT_REF)
1993 {
1994 expry = TREE_OPERAND (expry, 0);
1995 if (flag_argument_noalias < 2
1996 || TREE_CODE (expry) != PARM_DECL)
1997 return 0;
1998 }
1999
2000 if (! DECL_P (exprx) || ! DECL_P (expry))
2001 return 0;
2002
2003 rtlx = DECL_RTL (exprx);
2004 rtly = DECL_RTL (expry);
2005
2006 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2007 can't overlap unless they are the same because we never reuse that part
2008 of the stack frame used for locals for spilled pseudos. */
2009 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2010 && ! rtx_equal_p (rtlx, rtly))
2011 return 1;
2012
2013 /* Get the base and offsets of both decls. If either is a register, we
2014 know both are and are the same, so use that as the base. The only
2015 we can avoid overlap is if we can deduce that they are nonoverlapping
2016 pieces of that decl, which is very rare. */
2017 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2018 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2019 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2020
2021 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2022 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2023 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2024
2025 /* If the bases are different, we know they do not overlap if both
2026 are constants or if one is a constant and the other a pointer into the
2027 stack frame. Otherwise a different base means we can't tell if they
2028 overlap or not. */
2029 if (! rtx_equal_p (basex, basey))
2030 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2031 || (CONSTANT_P (basex) && REG_P (basey)
2032 && REGNO_PTR_FRAME_P (REGNO (basey)))
2033 || (CONSTANT_P (basey) && REG_P (basex)
2034 && REGNO_PTR_FRAME_P (REGNO (basex))));
2035
2036 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2037 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2038 : -1);
2039 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2040 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2041 -1);
2042
2043 /* If we have an offset for either memref, it can update the values computed
2044 above. */
2045 if (moffsetx)
2046 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2047 if (moffsety)
2048 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2049
2050 /* If a memref has both a size and an offset, we can use the smaller size.
2051 We can't do this if the offset isn't known because we must view this
2052 memref as being anywhere inside the DECL's MEM. */
2053 if (MEM_SIZE (x) && moffsetx)
2054 sizex = INTVAL (MEM_SIZE (x));
2055 if (MEM_SIZE (y) && moffsety)
2056 sizey = INTVAL (MEM_SIZE (y));
2057
2058 /* Put the values of the memref with the lower offset in X's values. */
2059 if (offsetx > offsety)
2060 {
2061 tem = offsetx, offsetx = offsety, offsety = tem;
2062 tem = sizex, sizex = sizey, sizey = tem;
2063 }
2064
2065 /* If we don't know the size of the lower-offset value, we can't tell
2066 if they conflict. Otherwise, we do the test. */
2067 return sizex >= 0 && offsety >= offsetx + sizex;
2068 }
2069
2070 /* True dependence: X is read after store in MEM takes place. */
2071
2072 int
2073 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2074 int (*varies) (rtx, int))
2075 {
2076 rtx x_addr, mem_addr;
2077 rtx base;
2078
2079 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2080 return 1;
2081
2082 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2083 This is used in epilogue deallocation functions. */
2084 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2085 return 1;
2086 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2087 return 1;
2088
2089 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2090 return 0;
2091
2092 /* Unchanging memory can't conflict with non-unchanging memory.
2093 A non-unchanging read can conflict with a non-unchanging write.
2094 An unchanging read can conflict with an unchanging write since
2095 there may be a single store to this address to initialize it.
2096 Note that an unchanging store can conflict with a non-unchanging read
2097 since we have to make conservative assumptions when we have a
2098 record with readonly fields and we are copying the whole thing.
2099 Just fall through to the code below to resolve potential conflicts.
2100 This won't handle all cases optimally, but the possible performance
2101 loss should be negligible. */
2102 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2103 return 0;
2104
2105 if (nonoverlapping_memrefs_p (mem, x))
2106 return 0;
2107
2108 if (mem_mode == VOIDmode)
2109 mem_mode = GET_MODE (mem);
2110
2111 x_addr = get_addr (XEXP (x, 0));
2112 mem_addr = get_addr (XEXP (mem, 0));
2113
2114 base = find_base_term (x_addr);
2115 if (base && (GET_CODE (base) == LABEL_REF
2116 || (GET_CODE (base) == SYMBOL_REF
2117 && CONSTANT_POOL_ADDRESS_P (base))))
2118 return 0;
2119
2120 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2121 return 0;
2122
2123 x_addr = canon_rtx (x_addr);
2124 mem_addr = canon_rtx (mem_addr);
2125
2126 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2127 SIZE_FOR_MODE (x), x_addr, 0))
2128 return 0;
2129
2130 if (aliases_everything_p (x))
2131 return 1;
2132
2133 /* We cannot use aliases_everything_p to test MEM, since we must look
2134 at MEM_MODE, rather than GET_MODE (MEM). */
2135 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2136 return 1;
2137
2138 /* In true_dependence we also allow BLKmode to alias anything. Why
2139 don't we do this in anti_dependence and output_dependence? */
2140 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2141 return 1;
2142
2143 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2144 varies);
2145 }
2146
2147 /* Canonical true dependence: X is read after store in MEM takes place.
2148 Variant of true_dependence which assumes MEM has already been
2149 canonicalized (hence we no longer do that here).
2150 The mem_addr argument has been added, since true_dependence computed
2151 this value prior to canonicalizing. */
2152
2153 int
2154 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2155 rtx x, int (*varies) (rtx, int))
2156 {
2157 rtx x_addr;
2158
2159 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2160 return 1;
2161
2162 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2163 This is used in epilogue deallocation functions. */
2164 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2165 return 1;
2166 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2167 return 1;
2168
2169 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2170 return 0;
2171
2172 /* If X is an unchanging read, then it can't possibly conflict with any
2173 non-unchanging store. It may conflict with an unchanging write though,
2174 because there may be a single store to this address to initialize it.
2175 Just fall through to the code below to resolve the case where we have
2176 both an unchanging read and an unchanging write. This won't handle all
2177 cases optimally, but the possible performance loss should be
2178 negligible. */
2179 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2180 return 0;
2181
2182 if (nonoverlapping_memrefs_p (x, mem))
2183 return 0;
2184
2185 x_addr = get_addr (XEXP (x, 0));
2186
2187 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2188 return 0;
2189
2190 x_addr = canon_rtx (x_addr);
2191 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2192 SIZE_FOR_MODE (x), x_addr, 0))
2193 return 0;
2194
2195 if (aliases_everything_p (x))
2196 return 1;
2197
2198 /* We cannot use aliases_everything_p to test MEM, since we must look
2199 at MEM_MODE, rather than GET_MODE (MEM). */
2200 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2201 return 1;
2202
2203 /* In true_dependence we also allow BLKmode to alias anything. Why
2204 don't we do this in anti_dependence and output_dependence? */
2205 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2206 return 1;
2207
2208 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2209 varies);
2210 }
2211
2212 /* Returns nonzero if a write to X might alias a previous read from
2213 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
2214 honor the RTX_UNCHANGING_P flags on X and MEM. */
2215
2216 static int
2217 write_dependence_p (rtx mem, rtx x, int writep, int constp)
2218 {
2219 rtx x_addr, mem_addr;
2220 rtx fixed_scalar;
2221 rtx base;
2222
2223 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2224 return 1;
2225
2226 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2227 This is used in epilogue deallocation functions. */
2228 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2229 return 1;
2230 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2231 return 1;
2232
2233 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2234 return 0;
2235
2236 if (constp)
2237 {
2238 /* Unchanging memory can't conflict with non-unchanging memory. */
2239 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2240 return 0;
2241
2242 /* If MEM is an unchanging read, then it can't possibly conflict with
2243 the store to X, because there is at most one store to MEM, and it
2244 must have occurred somewhere before MEM. */
2245 if (! writep && RTX_UNCHANGING_P (mem))
2246 return 0;
2247 }
2248
2249 if (nonoverlapping_memrefs_p (x, mem))
2250 return 0;
2251
2252 x_addr = get_addr (XEXP (x, 0));
2253 mem_addr = get_addr (XEXP (mem, 0));
2254
2255 if (! writep)
2256 {
2257 base = find_base_term (mem_addr);
2258 if (base && (GET_CODE (base) == LABEL_REF
2259 || (GET_CODE (base) == SYMBOL_REF
2260 && CONSTANT_POOL_ADDRESS_P (base))))
2261 return 0;
2262 }
2263
2264 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2265 GET_MODE (mem)))
2266 return 0;
2267
2268 x_addr = canon_rtx (x_addr);
2269 mem_addr = canon_rtx (mem_addr);
2270
2271 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2272 SIZE_FOR_MODE (x), x_addr, 0))
2273 return 0;
2274
2275 fixed_scalar
2276 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2277 rtx_addr_varies_p);
2278
2279 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2280 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2281 }
2282
2283 /* Anti dependence: X is written after read in MEM takes place. */
2284
2285 int
2286 anti_dependence (rtx mem, rtx x)
2287 {
2288 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
2289 }
2290
2291 /* Output dependence: X is written after store in MEM takes place. */
2292
2293 int
2294 output_dependence (rtx mem, rtx x)
2295 {
2296 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2297 }
2298
2299 /* Unchanging anti dependence: Like anti_dependence but ignores
2300 the UNCHANGING_RTX_P property on const variable references. */
2301
2302 int
2303 unchanging_anti_dependence (rtx mem, rtx x)
2304 {
2305 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
2306 }
2307 \f
2308 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2309 something which is not local to the function and is not constant. */
2310
2311 static int
2312 nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2313 {
2314 rtx x = *loc;
2315 rtx base;
2316 int regno;
2317
2318 if (! x)
2319 return 0;
2320
2321 switch (GET_CODE (x))
2322 {
2323 case SUBREG:
2324 if (GET_CODE (SUBREG_REG (x)) == REG)
2325 {
2326 /* Global registers are not local. */
2327 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2328 && global_regs[subreg_regno (x)])
2329 return 1;
2330 return 0;
2331 }
2332 break;
2333
2334 case REG:
2335 regno = REGNO (x);
2336 /* Global registers are not local. */
2337 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2338 return 1;
2339 return 0;
2340
2341 case SCRATCH:
2342 case PC:
2343 case CC0:
2344 case CONST_INT:
2345 case CONST_DOUBLE:
2346 case CONST_VECTOR:
2347 case CONST:
2348 case LABEL_REF:
2349 return 0;
2350
2351 case SYMBOL_REF:
2352 /* Constants in the function's constants pool are constant. */
2353 if (CONSTANT_POOL_ADDRESS_P (x))
2354 return 0;
2355 return 1;
2356
2357 case CALL:
2358 /* Non-constant calls and recursion are not local. */
2359 return 1;
2360
2361 case MEM:
2362 /* Be overly conservative and consider any volatile memory
2363 reference as not local. */
2364 if (MEM_VOLATILE_P (x))
2365 return 1;
2366 base = find_base_term (XEXP (x, 0));
2367 if (base)
2368 {
2369 /* A Pmode ADDRESS could be a reference via the structure value
2370 address or static chain. Such memory references are nonlocal.
2371
2372 Thus, we have to examine the contents of the ADDRESS to find
2373 out if this is a local reference or not. */
2374 if (GET_CODE (base) == ADDRESS
2375 && GET_MODE (base) == Pmode
2376 && (XEXP (base, 0) == stack_pointer_rtx
2377 || XEXP (base, 0) == arg_pointer_rtx
2378 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2379 || XEXP (base, 0) == hard_frame_pointer_rtx
2380 #endif
2381 || XEXP (base, 0) == frame_pointer_rtx))
2382 return 0;
2383 /* Constants in the function's constant pool are constant. */
2384 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2385 return 0;
2386 }
2387 return 1;
2388
2389 case UNSPEC_VOLATILE:
2390 case ASM_INPUT:
2391 return 1;
2392
2393 case ASM_OPERANDS:
2394 if (MEM_VOLATILE_P (x))
2395 return 1;
2396
2397 /* Fall through. */
2398
2399 default:
2400 break;
2401 }
2402
2403 return 0;
2404 }
2405
2406 /* Returns nonzero if X might mention something which is not
2407 local to the function and is not constant. */
2408
2409 static int
2410 nonlocal_mentioned_p (rtx x)
2411 {
2412 if (INSN_P (x))
2413 {
2414 if (GET_CODE (x) == CALL_INSN)
2415 {
2416 if (! CONST_OR_PURE_CALL_P (x))
2417 return 1;
2418 x = CALL_INSN_FUNCTION_USAGE (x);
2419 if (x == 0)
2420 return 0;
2421 }
2422 else
2423 x = PATTERN (x);
2424 }
2425
2426 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2427 }
2428
2429 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2430 something which is not local to the function and is not constant. */
2431
2432 static int
2433 nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2434 {
2435 rtx x = *loc;
2436
2437 if (! x)
2438 return 0;
2439
2440 switch (GET_CODE (x))
2441 {
2442 case MEM:
2443 case REG:
2444 case SYMBOL_REF:
2445 case SUBREG:
2446 return nonlocal_mentioned_p (x);
2447
2448 case CALL:
2449 /* Non-constant calls and recursion are not local. */
2450 return 1;
2451
2452 case SET:
2453 if (nonlocal_mentioned_p (SET_SRC (x)))
2454 return 1;
2455
2456 if (GET_CODE (SET_DEST (x)) == MEM)
2457 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2458
2459 /* If the destination is anything other than a CC0, PC,
2460 MEM, REG, or a SUBREG of a REG that occupies all of
2461 the REG, then X references nonlocal memory if it is
2462 mentioned in the destination. */
2463 if (GET_CODE (SET_DEST (x)) != CC0
2464 && GET_CODE (SET_DEST (x)) != PC
2465 && GET_CODE (SET_DEST (x)) != REG
2466 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2467 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2468 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2469 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2470 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2471 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2472 return nonlocal_mentioned_p (SET_DEST (x));
2473 return 0;
2474
2475 case CLOBBER:
2476 if (GET_CODE (XEXP (x, 0)) == MEM)
2477 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2478 return 0;
2479
2480 case USE:
2481 return nonlocal_mentioned_p (XEXP (x, 0));
2482
2483 case ASM_INPUT:
2484 case UNSPEC_VOLATILE:
2485 return 1;
2486
2487 case ASM_OPERANDS:
2488 if (MEM_VOLATILE_P (x))
2489 return 1;
2490
2491 /* Fall through. */
2492
2493 default:
2494 break;
2495 }
2496
2497 return 0;
2498 }
2499
2500 /* Returns nonzero if X might reference something which is not
2501 local to the function and is not constant. */
2502
2503 static int
2504 nonlocal_referenced_p (rtx x)
2505 {
2506 if (INSN_P (x))
2507 {
2508 if (GET_CODE (x) == CALL_INSN)
2509 {
2510 if (! CONST_OR_PURE_CALL_P (x))
2511 return 1;
2512 x = CALL_INSN_FUNCTION_USAGE (x);
2513 if (x == 0)
2514 return 0;
2515 }
2516 else
2517 x = PATTERN (x);
2518 }
2519
2520 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2521 }
2522
2523 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2524 something which is not local to the function and is not constant. */
2525
2526 static int
2527 nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2528 {
2529 rtx x = *loc;
2530
2531 if (! x)
2532 return 0;
2533
2534 switch (GET_CODE (x))
2535 {
2536 case CALL:
2537 /* Non-constant calls and recursion are not local. */
2538 return 1;
2539
2540 case PRE_INC:
2541 case PRE_DEC:
2542 case POST_INC:
2543 case POST_DEC:
2544 case PRE_MODIFY:
2545 case POST_MODIFY:
2546 return nonlocal_mentioned_p (XEXP (x, 0));
2547
2548 case SET:
2549 if (nonlocal_mentioned_p (SET_DEST (x)))
2550 return 1;
2551 return nonlocal_set_p (SET_SRC (x));
2552
2553 case CLOBBER:
2554 return nonlocal_mentioned_p (XEXP (x, 0));
2555
2556 case USE:
2557 return 0;
2558
2559 case ASM_INPUT:
2560 case UNSPEC_VOLATILE:
2561 return 1;
2562
2563 case ASM_OPERANDS:
2564 if (MEM_VOLATILE_P (x))
2565 return 1;
2566
2567 /* Fall through. */
2568
2569 default:
2570 break;
2571 }
2572
2573 return 0;
2574 }
2575
2576 /* Returns nonzero if X might set something which is not
2577 local to the function and is not constant. */
2578
2579 static int
2580 nonlocal_set_p (rtx x)
2581 {
2582 if (INSN_P (x))
2583 {
2584 if (GET_CODE (x) == CALL_INSN)
2585 {
2586 if (! CONST_OR_PURE_CALL_P (x))
2587 return 1;
2588 x = CALL_INSN_FUNCTION_USAGE (x);
2589 if (x == 0)
2590 return 0;
2591 }
2592 else
2593 x = PATTERN (x);
2594 }
2595
2596 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2597 }
2598
2599 /* Mark the function if it is pure or constant. */
2600
2601 void
2602 mark_constant_function (void)
2603 {
2604 rtx insn;
2605 int nonlocal_memory_referenced;
2606
2607 if (TREE_READONLY (current_function_decl)
2608 || DECL_IS_PURE (current_function_decl)
2609 || TREE_THIS_VOLATILE (current_function_decl)
2610 || current_function_has_nonlocal_goto
2611 || !(*targetm.binds_local_p) (current_function_decl))
2612 return;
2613
2614 /* A loop might not return which counts as a side effect. */
2615 if (mark_dfs_back_edges ())
2616 return;
2617
2618 nonlocal_memory_referenced = 0;
2619
2620 init_alias_analysis ();
2621
2622 /* Determine if this is a constant or pure function. */
2623
2624 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2625 {
2626 if (! INSN_P (insn))
2627 continue;
2628
2629 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2630 || volatile_refs_p (PATTERN (insn)))
2631 break;
2632
2633 if (! nonlocal_memory_referenced)
2634 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2635 }
2636
2637 end_alias_analysis ();
2638
2639 /* Mark the function. */
2640
2641 if (insn)
2642 ;
2643 else if (nonlocal_memory_referenced)
2644 {
2645 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2646 DECL_IS_PURE (current_function_decl) = 1;
2647 }
2648 else
2649 {
2650 cgraph_rtl_info (current_function_decl)->const_function = 1;
2651 TREE_READONLY (current_function_decl) = 1;
2652 }
2653 }
2654 \f
2655
2656 void
2657 init_alias_once (void)
2658 {
2659 int i;
2660
2661 #ifndef OUTGOING_REGNO
2662 #define OUTGOING_REGNO(N) N
2663 #endif
2664 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2665 /* Check whether this register can hold an incoming pointer
2666 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2667 numbers, so translate if necessary due to register windows. */
2668 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2669 && HARD_REGNO_MODE_OK (i, Pmode))
2670 static_reg_base_value[i]
2671 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2672
2673 static_reg_base_value[STACK_POINTER_REGNUM]
2674 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2675 static_reg_base_value[ARG_POINTER_REGNUM]
2676 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2677 static_reg_base_value[FRAME_POINTER_REGNUM]
2678 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2679 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2680 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2681 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2682 #endif
2683 }
2684
2685 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2686 to be memory reference. */
2687 static bool memory_modified;
2688 static void
2689 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2690 {
2691 if (GET_CODE (x) == MEM)
2692 {
2693 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2694 memory_modified = true;
2695 }
2696 }
2697
2698
2699 /* Return true when INSN possibly modify memory contents of MEM
2700 (ie address can be modified). */
2701 bool
2702 memory_modified_in_insn_p (rtx mem, rtx insn)
2703 {
2704 if (!INSN_P (insn))
2705 return false;
2706 memory_modified = false;
2707 note_stores (PATTERN (insn), memory_modified_1, mem);
2708 return memory_modified;
2709 }
2710
2711 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2712 array. */
2713
2714 void
2715 init_alias_analysis (void)
2716 {
2717 unsigned int maxreg = max_reg_num ();
2718 int changed, pass;
2719 int i;
2720 unsigned int ui;
2721 rtx insn;
2722
2723 timevar_push (TV_ALIAS_ANALYSIS);
2724
2725 reg_known_value_size = maxreg;
2726
2727 reg_known_value
2728 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2729 - FIRST_PSEUDO_REGISTER;
2730 reg_known_equiv_p
2731 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2732 - FIRST_PSEUDO_REGISTER;
2733
2734 /* Overallocate reg_base_value to allow some growth during loop
2735 optimization. Loop unrolling can create a large number of
2736 registers. */
2737 if (old_reg_base_value)
2738 {
2739 reg_base_value = old_reg_base_value;
2740 /* If varray gets large zeroing cost may get important. */
2741 if (VARRAY_SIZE (reg_base_value) > 256
2742 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2743 VARRAY_GROW (reg_base_value, maxreg);
2744 VARRAY_CLEAR (reg_base_value);
2745 if (VARRAY_SIZE (reg_base_value) < maxreg)
2746 VARRAY_GROW (reg_base_value, maxreg);
2747 }
2748 else
2749 {
2750 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2751 }
2752
2753 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2754 reg_seen = xmalloc (maxreg);
2755 if (! reload_completed && flag_old_unroll_loops)
2756 {
2757 /* ??? Why are we realloc'ing if we're just going to zero it? */
2758 alias_invariant = xrealloc (alias_invariant,
2759 maxreg * sizeof (rtx));
2760 memset (alias_invariant, 0, maxreg * sizeof (rtx));
2761 alias_invariant_size = maxreg;
2762 }
2763
2764 /* The basic idea is that each pass through this loop will use the
2765 "constant" information from the previous pass to propagate alias
2766 information through another level of assignments.
2767
2768 This could get expensive if the assignment chains are long. Maybe
2769 we should throttle the number of iterations, possibly based on
2770 the optimization level or flag_expensive_optimizations.
2771
2772 We could propagate more information in the first pass by making use
2773 of REG_N_SETS to determine immediately that the alias information
2774 for a pseudo is "constant".
2775
2776 A program with an uninitialized variable can cause an infinite loop
2777 here. Instead of doing a full dataflow analysis to detect such problems
2778 we just cap the number of iterations for the loop.
2779
2780 The state of the arrays for the set chain in question does not matter
2781 since the program has undefined behavior. */
2782
2783 pass = 0;
2784 do
2785 {
2786 /* Assume nothing will change this iteration of the loop. */
2787 changed = 0;
2788
2789 /* We want to assign the same IDs each iteration of this loop, so
2790 start counting from zero each iteration of the loop. */
2791 unique_id = 0;
2792
2793 /* We're at the start of the function each iteration through the
2794 loop, so we're copying arguments. */
2795 copying_arguments = true;
2796
2797 /* Wipe the potential alias information clean for this pass. */
2798 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2799
2800 /* Wipe the reg_seen array clean. */
2801 memset (reg_seen, 0, maxreg);
2802
2803 /* Mark all hard registers which may contain an address.
2804 The stack, frame and argument pointers may contain an address.
2805 An argument register which can hold a Pmode value may contain
2806 an address even if it is not in BASE_REGS.
2807
2808 The address expression is VOIDmode for an argument and
2809 Pmode for other registers. */
2810
2811 memcpy (new_reg_base_value, static_reg_base_value,
2812 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2813
2814 /* Walk the insns adding values to the new_reg_base_value array. */
2815 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2816 {
2817 if (INSN_P (insn))
2818 {
2819 rtx note, set;
2820
2821 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2822 /* The prologue/epilogue insns are not threaded onto the
2823 insn chain until after reload has completed. Thus,
2824 there is no sense wasting time checking if INSN is in
2825 the prologue/epilogue until after reload has completed. */
2826 if (reload_completed
2827 && prologue_epilogue_contains (insn))
2828 continue;
2829 #endif
2830
2831 /* If this insn has a noalias note, process it, Otherwise,
2832 scan for sets. A simple set will have no side effects
2833 which could change the base value of any other register. */
2834
2835 if (GET_CODE (PATTERN (insn)) == SET
2836 && REG_NOTES (insn) != 0
2837 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2838 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2839 else
2840 note_stores (PATTERN (insn), record_set, NULL);
2841
2842 set = single_set (insn);
2843
2844 if (set != 0
2845 && GET_CODE (SET_DEST (set)) == REG
2846 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2847 {
2848 unsigned int regno = REGNO (SET_DEST (set));
2849 rtx src = SET_SRC (set);
2850
2851 if (REG_NOTES (insn) != 0
2852 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2853 && REG_N_SETS (regno) == 1)
2854 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2855 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2856 && ! rtx_varies_p (XEXP (note, 0), 1)
2857 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2858 {
2859 reg_known_value[regno] = XEXP (note, 0);
2860 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2861 }
2862 else if (REG_N_SETS (regno) == 1
2863 && GET_CODE (src) == PLUS
2864 && GET_CODE (XEXP (src, 0)) == REG
2865 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2866 && (reg_known_value[REGNO (XEXP (src, 0))])
2867 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2868 {
2869 rtx op0 = XEXP (src, 0);
2870 op0 = reg_known_value[REGNO (op0)];
2871 reg_known_value[regno]
2872 = plus_constant (op0, INTVAL (XEXP (src, 1)));
2873 reg_known_equiv_p[regno] = 0;
2874 }
2875 else if (REG_N_SETS (regno) == 1
2876 && ! rtx_varies_p (src, 1))
2877 {
2878 reg_known_value[regno] = src;
2879 reg_known_equiv_p[regno] = 0;
2880 }
2881 }
2882 }
2883 else if (GET_CODE (insn) == NOTE
2884 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2885 copying_arguments = false;
2886 }
2887
2888 /* Now propagate values from new_reg_base_value to reg_base_value. */
2889 if (maxreg != (unsigned int) max_reg_num())
2890 abort ();
2891 for (ui = 0; ui < maxreg; ui++)
2892 {
2893 if (new_reg_base_value[ui]
2894 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2895 && ! rtx_equal_p (new_reg_base_value[ui],
2896 VARRAY_RTX (reg_base_value, ui)))
2897 {
2898 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
2899 changed = 1;
2900 }
2901 }
2902 }
2903 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2904
2905 /* Fill in the remaining entries. */
2906 for (i = FIRST_PSEUDO_REGISTER; i < (int)maxreg; i++)
2907 if (reg_known_value[i] == 0)
2908 reg_known_value[i] = regno_reg_rtx[i];
2909
2910 /* Simplify the reg_base_value array so that no register refers to
2911 another register, except to special registers indirectly through
2912 ADDRESS expressions.
2913
2914 In theory this loop can take as long as O(registers^2), but unless
2915 there are very long dependency chains it will run in close to linear
2916 time.
2917
2918 This loop may not be needed any longer now that the main loop does
2919 a better job at propagating alias information. */
2920 pass = 0;
2921 do
2922 {
2923 changed = 0;
2924 pass++;
2925 for (ui = 0; ui < maxreg; ui++)
2926 {
2927 rtx base = VARRAY_RTX (reg_base_value, ui);
2928 if (base && GET_CODE (base) == REG)
2929 {
2930 unsigned int base_regno = REGNO (base);
2931 if (base_regno == ui) /* register set from itself */
2932 VARRAY_RTX (reg_base_value, ui) = 0;
2933 else
2934 VARRAY_RTX (reg_base_value, ui)
2935 = VARRAY_RTX (reg_base_value, base_regno);
2936 changed = 1;
2937 }
2938 }
2939 }
2940 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2941
2942 /* Clean up. */
2943 free (new_reg_base_value);
2944 new_reg_base_value = 0;
2945 free (reg_seen);
2946 reg_seen = 0;
2947 timevar_pop (TV_ALIAS_ANALYSIS);
2948 }
2949
2950 void
2951 end_alias_analysis (void)
2952 {
2953 old_reg_base_value = reg_base_value;
2954 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2955 reg_known_value = 0;
2956 reg_known_value_size = 0;
2957 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2958 reg_known_equiv_p = 0;
2959 if (alias_invariant)
2960 {
2961 free (alias_invariant);
2962 alias_invariant = 0;
2963 alias_invariant_size = 0;
2964 }
2965 }
2966
2967 #include "gt-alias.h"