Makefile.in: Adjust dependencies.
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "varray.h"
47 #include "tree-pass.h"
48
49 /* The alias sets assigned to MEMs assist the back-end in determining
50 which MEMs can alias which other MEMs. In general, two MEMs in
51 different alias sets cannot alias each other, with one important
52 exception. Consider something like:
53
54 struct S { int i; double d; };
55
56 a store to an `S' can alias something of either type `int' or type
57 `double'. (However, a store to an `int' cannot alias a `double'
58 and vice versa.) We indicate this via a tree structure that looks
59 like:
60 struct S
61 / \
62 / \
63 |/_ _\|
64 int double
65
66 (The arrows are directed and point downwards.)
67 In this situation we say the alias set for `struct S' is the
68 `superset' and that those for `int' and `double' are `subsets'.
69
70 To see whether two alias sets can point to the same memory, we must
71 see if either alias set is a subset of the other. We need not trace
72 past immediate descendants, however, since we propagate all
73 grandchildren up one level.
74
75 Alias set zero is implicitly a superset of all other alias sets.
76 However, this is no actual entry for alias set zero. It is an
77 error to attempt to explicitly construct a subset of zero. */
78
79 struct alias_set_entry GTY(())
80 {
81 /* The alias set number, as stored in MEM_ALIAS_SET. */
82 HOST_WIDE_INT alias_set;
83
84 /* The children of the alias set. These are not just the immediate
85 children, but, in fact, all descendants. So, if we have:
86
87 struct T { struct S s; float f; }
88
89 continuing our example above, the children here will be all of
90 `int', `double', `float', and `struct S'. */
91 splay_tree GTY((param1_is (int), param2_is (int))) children;
92
93 /* Nonzero if would have a child of zero: this effectively makes this
94 alias set the same as alias set zero. */
95 int has_zero_child;
96 };
97 typedef struct alias_set_entry *alias_set_entry;
98
99 static int rtx_equal_for_memref_p (rtx, rtx);
100 static rtx find_symbolic_term (rtx);
101 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
102 static void record_set (rtx, rtx, void *);
103 static int base_alias_check (rtx, rtx, enum machine_mode,
104 enum machine_mode);
105 static rtx find_base_value (rtx);
106 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
107 static int insert_subset_children (splay_tree_node, void*);
108 static tree find_base_decl (tree);
109 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
110 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
111 int (*) (rtx, int));
112 static int aliases_everything_p (rtx);
113 static bool nonoverlapping_component_refs_p (tree, tree);
114 static tree decl_for_component_ref (tree);
115 static rtx adjust_offset_for_component_ref (tree, rtx);
116 static int nonoverlapping_memrefs_p (rtx, rtx);
117 static int write_dependence_p (rtx, rtx, int);
118
119 static int nonlocal_mentioned_p_1 (rtx *, void *);
120 static int nonlocal_mentioned_p (rtx);
121 static int nonlocal_referenced_p_1 (rtx *, void *);
122 static int nonlocal_referenced_p (rtx);
123 static int nonlocal_set_p_1 (rtx *, void *);
124 static int nonlocal_set_p (rtx);
125 static void memory_modified_1 (rtx, rtx, void *);
126 static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
127
128 /* Set up all info needed to perform alias analysis on memory references. */
129
130 /* Returns the size in bytes of the mode of X. */
131 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
132
133 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
134 different alias sets. We ignore alias sets in functions making use
135 of variable arguments because the va_arg macros on some systems are
136 not legal ANSI C. */
137 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
138 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
139
140 /* Cap the number of passes we make over the insns propagating alias
141 information through set chains. 10 is a completely arbitrary choice. */
142 #define MAX_ALIAS_LOOP_PASSES 10
143
144 /* reg_base_value[N] gives an address to which register N is related.
145 If all sets after the first add or subtract to the current value
146 or otherwise modify it so it does not point to a different top level
147 object, reg_base_value[N] is equal to the address part of the source
148 of the first set.
149
150 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
151 expressions represent certain special values: function arguments and
152 the stack, frame, and argument pointers.
153
154 The contents of an ADDRESS is not normally used, the mode of the
155 ADDRESS determines whether the ADDRESS is a function argument or some
156 other special value. Pointer equality, not rtx_equal_p, determines whether
157 two ADDRESS expressions refer to the same base address.
158
159 The only use of the contents of an ADDRESS is for determining if the
160 current function performs nonlocal memory memory references for the
161 purposes of marking the function as a constant function. */
162
163 static GTY(()) varray_type reg_base_value;
164 static rtx *new_reg_base_value;
165
166 /* We preserve the copy of old array around to avoid amount of garbage
167 produced. About 8% of garbage produced were attributed to this
168 array. */
169 static GTY((deletable)) varray_type old_reg_base_value;
170
171 /* Static hunks of RTL used by the aliasing code; these are initialized
172 once per function to avoid unnecessary RTL allocations. */
173 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
174
175 #define REG_BASE_VALUE(X) \
176 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
177 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
178
179 /* Vector of known invariant relationships between registers. Set in
180 loop unrolling. Indexed by register number, if nonzero the value
181 is an expression describing this register in terms of another.
182
183 The length of this array is REG_BASE_VALUE_SIZE.
184
185 Because this array contains only pseudo registers it has no effect
186 after reload. */
187 static GTY((length("alias_invariant_size"))) rtx *alias_invariant;
188 static GTY(()) unsigned int alias_invariant_size;
189
190 /* Vector indexed by N giving the initial (unchanging) value known for
191 pseudo-register N. This array is initialized in init_alias_analysis,
192 and does not change until end_alias_analysis is called. */
193 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
194
195 /* Indicates number of valid entries in reg_known_value. */
196 static GTY(()) unsigned int reg_known_value_size;
197
198 /* Vector recording for each reg_known_value whether it is due to a
199 REG_EQUIV note. Future passes (viz., reload) may replace the
200 pseudo with the equivalent expression and so we account for the
201 dependences that would be introduced if that happens.
202
203 The REG_EQUIV notes created in assign_parms may mention the arg
204 pointer, and there are explicit insns in the RTL that modify the
205 arg pointer. Thus we must ensure that such insns don't get
206 scheduled across each other because that would invalidate the
207 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
208 wrong, but solving the problem in the scheduler will likely give
209 better code, so we do it here. */
210 static bool *reg_known_equiv_p;
211
212 /* True when scanning insns from the start of the rtl to the
213 NOTE_INSN_FUNCTION_BEG note. */
214 static bool copying_arguments;
215
216 /* The splay-tree used to store the various alias set entries. */
217 static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
218 \f
219 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
220 such an entry, or NULL otherwise. */
221
222 static inline alias_set_entry
223 get_alias_set_entry (HOST_WIDE_INT alias_set)
224 {
225 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
226 }
227
228 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
229 the two MEMs cannot alias each other. */
230
231 static inline int
232 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
233 {
234 /* Perform a basic sanity check. Namely, that there are no alias sets
235 if we're not using strict aliasing. This helps to catch bugs
236 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
237 where a MEM is allocated in some way other than by the use of
238 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
239 use alias sets to indicate that spilled registers cannot alias each
240 other, we might need to remove this check. */
241 gcc_assert (flag_strict_aliasing
242 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
243
244 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
245 }
246
247 /* Insert the NODE into the splay tree given by DATA. Used by
248 record_alias_subset via splay_tree_foreach. */
249
250 static int
251 insert_subset_children (splay_tree_node node, void *data)
252 {
253 splay_tree_insert ((splay_tree) data, node->key, node->value);
254
255 return 0;
256 }
257
258 /* Return 1 if the two specified alias sets may conflict. */
259
260 int
261 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
262 {
263 alias_set_entry ase;
264
265 /* If have no alias set information for one of the operands, we have
266 to assume it can alias anything. */
267 if (set1 == 0 || set2 == 0
268 /* If the two alias sets are the same, they may alias. */
269 || set1 == set2)
270 return 1;
271
272 /* See if the first alias set is a subset of the second. */
273 ase = get_alias_set_entry (set1);
274 if (ase != 0
275 && (ase->has_zero_child
276 || splay_tree_lookup (ase->children,
277 (splay_tree_key) set2)))
278 return 1;
279
280 /* Now do the same, but with the alias sets reversed. */
281 ase = get_alias_set_entry (set2);
282 if (ase != 0
283 && (ase->has_zero_child
284 || splay_tree_lookup (ase->children,
285 (splay_tree_key) set1)))
286 return 1;
287
288 /* The two alias sets are distinct and neither one is the
289 child of the other. Therefore, they cannot alias. */
290 return 0;
291 }
292
293 /* Return 1 if the two specified alias sets might conflict, or if any subtype
294 of these alias sets might conflict. */
295
296 int
297 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
298 {
299 if (set1 == 0 || set2 == 0 || set1 == set2)
300 return 1;
301
302 return 0;
303 }
304
305 \f
306 /* Return 1 if any MEM object of type T1 will always conflict (using the
307 dependency routines in this file) with any MEM object of type T2.
308 This is used when allocating temporary storage. If T1 and/or T2 are
309 NULL_TREE, it means we know nothing about the storage. */
310
311 int
312 objects_must_conflict_p (tree t1, tree t2)
313 {
314 HOST_WIDE_INT set1, set2;
315
316 /* If neither has a type specified, we don't know if they'll conflict
317 because we may be using them to store objects of various types, for
318 example the argument and local variables areas of inlined functions. */
319 if (t1 == 0 && t2 == 0)
320 return 0;
321
322 /* If they are the same type, they must conflict. */
323 if (t1 == t2
324 /* Likewise if both are volatile. */
325 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
326 return 1;
327
328 set1 = t1 ? get_alias_set (t1) : 0;
329 set2 = t2 ? get_alias_set (t2) : 0;
330
331 /* Otherwise they conflict if they have no alias set or the same. We
332 can't simply use alias_sets_conflict_p here, because we must make
333 sure that every subtype of t1 will conflict with every subtype of
334 t2 for which a pair of subobjects of these respective subtypes
335 overlaps on the stack. */
336 return set1 == 0 || set2 == 0 || set1 == set2;
337 }
338 \f
339 /* T is an expression with pointer type. Find the DECL on which this
340 expression is based. (For example, in `a[i]' this would be `a'.)
341 If there is no such DECL, or a unique decl cannot be determined,
342 NULL_TREE is returned. */
343
344 static tree
345 find_base_decl (tree t)
346 {
347 tree d0, d1;
348
349 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
350 return 0;
351
352 /* If this is a declaration, return it. */
353 if (DECL_P (t))
354 return t;
355
356 /* Handle general expressions. It would be nice to deal with
357 COMPONENT_REFs here. If we could tell that `a' and `b' were the
358 same, then `a->f' and `b->f' are also the same. */
359 switch (TREE_CODE_CLASS (TREE_CODE (t)))
360 {
361 case tcc_unary:
362 return find_base_decl (TREE_OPERAND (t, 0));
363
364 case tcc_binary:
365 /* Return 0 if found in neither or both are the same. */
366 d0 = find_base_decl (TREE_OPERAND (t, 0));
367 d1 = find_base_decl (TREE_OPERAND (t, 1));
368 if (d0 == d1)
369 return d0;
370 else if (d0 == 0)
371 return d1;
372 else if (d1 == 0)
373 return d0;
374 else
375 return 0;
376
377 default:
378 return 0;
379 }
380 }
381
382 /* Return true if all nested component references handled by
383 get_inner_reference in T are such that we should use the alias set
384 provided by the object at the heart of T.
385
386 This is true for non-addressable components (which don't have their
387 own alias set), as well as components of objects in alias set zero.
388 This later point is a special case wherein we wish to override the
389 alias set used by the component, but we don't have per-FIELD_DECL
390 assignable alias sets. */
391
392 bool
393 component_uses_parent_alias_set (tree t)
394 {
395 while (1)
396 {
397 /* If we're at the end, it vacuously uses its own alias set. */
398 if (!handled_component_p (t))
399 return false;
400
401 switch (TREE_CODE (t))
402 {
403 case COMPONENT_REF:
404 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
405 return true;
406 break;
407
408 case ARRAY_REF:
409 case ARRAY_RANGE_REF:
410 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
411 return true;
412 break;
413
414 case REALPART_EXPR:
415 case IMAGPART_EXPR:
416 break;
417
418 default:
419 /* Bitfields and casts are never addressable. */
420 return true;
421 }
422
423 t = TREE_OPERAND (t, 0);
424 if (get_alias_set (TREE_TYPE (t)) == 0)
425 return true;
426 }
427 }
428
429 /* Return the alias set for T, which may be either a type or an
430 expression. Call language-specific routine for help, if needed. */
431
432 HOST_WIDE_INT
433 get_alias_set (tree t)
434 {
435 HOST_WIDE_INT set;
436
437 /* If we're not doing any alias analysis, just assume everything
438 aliases everything else. Also return 0 if this or its type is
439 an error. */
440 if (! flag_strict_aliasing || t == error_mark_node
441 || (! TYPE_P (t)
442 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
443 return 0;
444
445 /* We can be passed either an expression or a type. This and the
446 language-specific routine may make mutually-recursive calls to each other
447 to figure out what to do. At each juncture, we see if this is a tree
448 that the language may need to handle specially. First handle things that
449 aren't types. */
450 if (! TYPE_P (t))
451 {
452 tree inner = t;
453
454 /* Remove any nops, then give the language a chance to do
455 something with this tree before we look at it. */
456 STRIP_NOPS (t);
457 set = lang_hooks.get_alias_set (t);
458 if (set != -1)
459 return set;
460
461 /* First see if the actual object referenced is an INDIRECT_REF from a
462 restrict-qualified pointer or a "void *". */
463 while (handled_component_p (inner))
464 {
465 inner = TREE_OPERAND (inner, 0);
466 STRIP_NOPS (inner);
467 }
468
469 /* Check for accesses through restrict-qualified pointers. */
470 if (INDIRECT_REF_P (inner))
471 {
472 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
473
474 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
475 {
476 /* If we haven't computed the actual alias set, do it now. */
477 if (DECL_POINTER_ALIAS_SET (decl) == -2)
478 {
479 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
480
481 /* No two restricted pointers can point at the same thing.
482 However, a restricted pointer can point at the same thing
483 as an unrestricted pointer, if that unrestricted pointer
484 is based on the restricted pointer. So, we make the
485 alias set for the restricted pointer a subset of the
486 alias set for the type pointed to by the type of the
487 decl. */
488 HOST_WIDE_INT pointed_to_alias_set
489 = get_alias_set (pointed_to_type);
490
491 if (pointed_to_alias_set == 0)
492 /* It's not legal to make a subset of alias set zero. */
493 DECL_POINTER_ALIAS_SET (decl) = 0;
494 else if (AGGREGATE_TYPE_P (pointed_to_type))
495 /* For an aggregate, we must treat the restricted
496 pointer the same as an ordinary pointer. If we
497 were to make the type pointed to by the
498 restricted pointer a subset of the pointed-to
499 type, then we would believe that other subsets
500 of the pointed-to type (such as fields of that
501 type) do not conflict with the type pointed to
502 by the restricted pointer. */
503 DECL_POINTER_ALIAS_SET (decl)
504 = pointed_to_alias_set;
505 else
506 {
507 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
508 record_alias_subset (pointed_to_alias_set,
509 DECL_POINTER_ALIAS_SET (decl));
510 }
511 }
512
513 /* We use the alias set indicated in the declaration. */
514 return DECL_POINTER_ALIAS_SET (decl);
515 }
516
517 /* If we have an INDIRECT_REF via a void pointer, we don't
518 know anything about what that might alias. Likewise if the
519 pointer is marked that way. */
520 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
521 || (TYPE_REF_CAN_ALIAS_ALL
522 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
523 return 0;
524 }
525
526 /* Otherwise, pick up the outermost object that we could have a pointer
527 to, processing conversions as above. */
528 while (component_uses_parent_alias_set (t))
529 {
530 t = TREE_OPERAND (t, 0);
531 STRIP_NOPS (t);
532 }
533
534 /* If we've already determined the alias set for a decl, just return
535 it. This is necessary for C++ anonymous unions, whose component
536 variables don't look like union members (boo!). */
537 if (TREE_CODE (t) == VAR_DECL
538 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
539 return MEM_ALIAS_SET (DECL_RTL (t));
540
541 /* Now all we care about is the type. */
542 t = TREE_TYPE (t);
543 }
544
545 /* Variant qualifiers don't affect the alias set, so get the main
546 variant. If this is a type with a known alias set, return it. */
547 t = TYPE_MAIN_VARIANT (t);
548 if (TYPE_ALIAS_SET_KNOWN_P (t))
549 return TYPE_ALIAS_SET (t);
550
551 /* See if the language has special handling for this type. */
552 set = lang_hooks.get_alias_set (t);
553 if (set != -1)
554 return set;
555
556 /* There are no objects of FUNCTION_TYPE, so there's no point in
557 using up an alias set for them. (There are, of course, pointers
558 and references to functions, but that's different.) */
559 else if (TREE_CODE (t) == FUNCTION_TYPE)
560 set = 0;
561
562 /* Unless the language specifies otherwise, let vector types alias
563 their components. This avoids some nasty type punning issues in
564 normal usage. And indeed lets vectors be treated more like an
565 array slice. */
566 else if (TREE_CODE (t) == VECTOR_TYPE)
567 set = get_alias_set (TREE_TYPE (t));
568
569 else
570 /* Otherwise make a new alias set for this type. */
571 set = new_alias_set ();
572
573 TYPE_ALIAS_SET (t) = set;
574
575 /* If this is an aggregate type, we must record any component aliasing
576 information. */
577 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
578 record_component_aliases (t);
579
580 return set;
581 }
582
583 /* Return a brand-new alias set. */
584
585 static GTY(()) HOST_WIDE_INT last_alias_set;
586
587 HOST_WIDE_INT
588 new_alias_set (void)
589 {
590 if (flag_strict_aliasing)
591 {
592 if (!alias_sets)
593 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
594 else
595 VARRAY_GROW (alias_sets, last_alias_set + 2);
596 return ++last_alias_set;
597 }
598 else
599 return 0;
600 }
601
602 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
603 not everything that aliases SUPERSET also aliases SUBSET. For example,
604 in C, a store to an `int' can alias a load of a structure containing an
605 `int', and vice versa. But it can't alias a load of a 'double' member
606 of the same structure. Here, the structure would be the SUPERSET and
607 `int' the SUBSET. This relationship is also described in the comment at
608 the beginning of this file.
609
610 This function should be called only once per SUPERSET/SUBSET pair.
611
612 It is illegal for SUPERSET to be zero; everything is implicitly a
613 subset of alias set zero. */
614
615 static void
616 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
617 {
618 alias_set_entry superset_entry;
619 alias_set_entry subset_entry;
620
621 /* It is possible in complex type situations for both sets to be the same,
622 in which case we can ignore this operation. */
623 if (superset == subset)
624 return;
625
626 gcc_assert (superset);
627
628 superset_entry = get_alias_set_entry (superset);
629 if (superset_entry == 0)
630 {
631 /* Create an entry for the SUPERSET, so that we have a place to
632 attach the SUBSET. */
633 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
634 superset_entry->alias_set = superset;
635 superset_entry->children
636 = splay_tree_new_ggc (splay_tree_compare_ints);
637 superset_entry->has_zero_child = 0;
638 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
639 }
640
641 if (subset == 0)
642 superset_entry->has_zero_child = 1;
643 else
644 {
645 subset_entry = get_alias_set_entry (subset);
646 /* If there is an entry for the subset, enter all of its children
647 (if they are not already present) as children of the SUPERSET. */
648 if (subset_entry)
649 {
650 if (subset_entry->has_zero_child)
651 superset_entry->has_zero_child = 1;
652
653 splay_tree_foreach (subset_entry->children, insert_subset_children,
654 superset_entry->children);
655 }
656
657 /* Enter the SUBSET itself as a child of the SUPERSET. */
658 splay_tree_insert (superset_entry->children,
659 (splay_tree_key) subset, 0);
660 }
661 }
662
663 /* Record that component types of TYPE, if any, are part of that type for
664 aliasing purposes. For record types, we only record component types
665 for fields that are marked addressable. For array types, we always
666 record the component types, so the front end should not call this
667 function if the individual component aren't addressable. */
668
669 void
670 record_component_aliases (tree type)
671 {
672 HOST_WIDE_INT superset = get_alias_set (type);
673 tree field;
674
675 if (superset == 0)
676 return;
677
678 switch (TREE_CODE (type))
679 {
680 case ARRAY_TYPE:
681 if (! TYPE_NONALIASED_COMPONENT (type))
682 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
683 break;
684
685 case RECORD_TYPE:
686 case UNION_TYPE:
687 case QUAL_UNION_TYPE:
688 /* Recursively record aliases for the base classes, if there are any. */
689 if (TYPE_BINFO (type))
690 {
691 int i;
692 tree binfo, base_binfo;
693
694 for (binfo = TYPE_BINFO (type), i = 0;
695 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
696 record_alias_subset (superset,
697 get_alias_set (BINFO_TYPE (base_binfo)));
698 }
699 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
700 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
701 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
702 break;
703
704 case COMPLEX_TYPE:
705 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
706 break;
707
708 default:
709 break;
710 }
711 }
712
713 /* Allocate an alias set for use in storing and reading from the varargs
714 spill area. */
715
716 static GTY(()) HOST_WIDE_INT varargs_set = -1;
717
718 HOST_WIDE_INT
719 get_varargs_alias_set (void)
720 {
721 #if 1
722 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
723 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
724 consistently use the varargs alias set for loads from the varargs
725 area. So don't use it anywhere. */
726 return 0;
727 #else
728 if (varargs_set == -1)
729 varargs_set = new_alias_set ();
730
731 return varargs_set;
732 #endif
733 }
734
735 /* Likewise, but used for the fixed portions of the frame, e.g., register
736 save areas. */
737
738 static GTY(()) HOST_WIDE_INT frame_set = -1;
739
740 HOST_WIDE_INT
741 get_frame_alias_set (void)
742 {
743 if (frame_set == -1)
744 frame_set = new_alias_set ();
745
746 return frame_set;
747 }
748
749 /* Inside SRC, the source of a SET, find a base address. */
750
751 static rtx
752 find_base_value (rtx src)
753 {
754 unsigned int regno;
755
756 switch (GET_CODE (src))
757 {
758 case SYMBOL_REF:
759 case LABEL_REF:
760 return src;
761
762 case REG:
763 regno = REGNO (src);
764 /* At the start of a function, argument registers have known base
765 values which may be lost later. Returning an ADDRESS
766 expression here allows optimization based on argument values
767 even when the argument registers are used for other purposes. */
768 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
769 return new_reg_base_value[regno];
770
771 /* If a pseudo has a known base value, return it. Do not do this
772 for non-fixed hard regs since it can result in a circular
773 dependency chain for registers which have values at function entry.
774
775 The test above is not sufficient because the scheduler may move
776 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
777 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
778 && regno < VARRAY_SIZE (reg_base_value))
779 {
780 /* If we're inside init_alias_analysis, use new_reg_base_value
781 to reduce the number of relaxation iterations. */
782 if (new_reg_base_value && new_reg_base_value[regno]
783 && REG_N_SETS (regno) == 1)
784 return new_reg_base_value[regno];
785
786 if (VARRAY_RTX (reg_base_value, regno))
787 return VARRAY_RTX (reg_base_value, regno);
788 }
789
790 return 0;
791
792 case MEM:
793 /* Check for an argument passed in memory. Only record in the
794 copying-arguments block; it is too hard to track changes
795 otherwise. */
796 if (copying_arguments
797 && (XEXP (src, 0) == arg_pointer_rtx
798 || (GET_CODE (XEXP (src, 0)) == PLUS
799 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
800 return gen_rtx_ADDRESS (VOIDmode, src);
801 return 0;
802
803 case CONST:
804 src = XEXP (src, 0);
805 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
806 break;
807
808 /* ... fall through ... */
809
810 case PLUS:
811 case MINUS:
812 {
813 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
814
815 /* If either operand is a REG that is a known pointer, then it
816 is the base. */
817 if (REG_P (src_0) && REG_POINTER (src_0))
818 return find_base_value (src_0);
819 if (REG_P (src_1) && REG_POINTER (src_1))
820 return find_base_value (src_1);
821
822 /* If either operand is a REG, then see if we already have
823 a known value for it. */
824 if (REG_P (src_0))
825 {
826 temp = find_base_value (src_0);
827 if (temp != 0)
828 src_0 = temp;
829 }
830
831 if (REG_P (src_1))
832 {
833 temp = find_base_value (src_1);
834 if (temp!= 0)
835 src_1 = temp;
836 }
837
838 /* If either base is named object or a special address
839 (like an argument or stack reference), then use it for the
840 base term. */
841 if (src_0 != 0
842 && (GET_CODE (src_0) == SYMBOL_REF
843 || GET_CODE (src_0) == LABEL_REF
844 || (GET_CODE (src_0) == ADDRESS
845 && GET_MODE (src_0) != VOIDmode)))
846 return src_0;
847
848 if (src_1 != 0
849 && (GET_CODE (src_1) == SYMBOL_REF
850 || GET_CODE (src_1) == LABEL_REF
851 || (GET_CODE (src_1) == ADDRESS
852 && GET_MODE (src_1) != VOIDmode)))
853 return src_1;
854
855 /* Guess which operand is the base address:
856 If either operand is a symbol, then it is the base. If
857 either operand is a CONST_INT, then the other is the base. */
858 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
859 return find_base_value (src_0);
860 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
861 return find_base_value (src_1);
862
863 return 0;
864 }
865
866 case LO_SUM:
867 /* The standard form is (lo_sum reg sym) so look only at the
868 second operand. */
869 return find_base_value (XEXP (src, 1));
870
871 case AND:
872 /* If the second operand is constant set the base
873 address to the first operand. */
874 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
875 return find_base_value (XEXP (src, 0));
876 return 0;
877
878 case TRUNCATE:
879 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
880 break;
881 /* Fall through. */
882 case HIGH:
883 case PRE_INC:
884 case PRE_DEC:
885 case POST_INC:
886 case POST_DEC:
887 case PRE_MODIFY:
888 case POST_MODIFY:
889 return find_base_value (XEXP (src, 0));
890
891 case ZERO_EXTEND:
892 case SIGN_EXTEND: /* used for NT/Alpha pointers */
893 {
894 rtx temp = find_base_value (XEXP (src, 0));
895
896 if (temp != 0 && CONSTANT_P (temp))
897 temp = convert_memory_address (Pmode, temp);
898
899 return temp;
900 }
901
902 default:
903 break;
904 }
905
906 return 0;
907 }
908
909 /* Called from init_alias_analysis indirectly through note_stores. */
910
911 /* While scanning insns to find base values, reg_seen[N] is nonzero if
912 register N has been set in this function. */
913 static char *reg_seen;
914
915 /* Addresses which are known not to alias anything else are identified
916 by a unique integer. */
917 static int unique_id;
918
919 static void
920 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
921 {
922 unsigned regno;
923 rtx src;
924 int n;
925
926 if (!REG_P (dest))
927 return;
928
929 regno = REGNO (dest);
930
931 gcc_assert (regno < VARRAY_SIZE (reg_base_value));
932
933 /* If this spans multiple hard registers, then we must indicate that every
934 register has an unusable value. */
935 if (regno < FIRST_PSEUDO_REGISTER)
936 n = hard_regno_nregs[regno][GET_MODE (dest)];
937 else
938 n = 1;
939 if (n != 1)
940 {
941 while (--n >= 0)
942 {
943 reg_seen[regno + n] = 1;
944 new_reg_base_value[regno + n] = 0;
945 }
946 return;
947 }
948
949 if (set)
950 {
951 /* A CLOBBER wipes out any old value but does not prevent a previously
952 unset register from acquiring a base address (i.e. reg_seen is not
953 set). */
954 if (GET_CODE (set) == CLOBBER)
955 {
956 new_reg_base_value[regno] = 0;
957 return;
958 }
959 src = SET_SRC (set);
960 }
961 else
962 {
963 if (reg_seen[regno])
964 {
965 new_reg_base_value[regno] = 0;
966 return;
967 }
968 reg_seen[regno] = 1;
969 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
970 GEN_INT (unique_id++));
971 return;
972 }
973
974 /* If this is not the first set of REGNO, see whether the new value
975 is related to the old one. There are two cases of interest:
976
977 (1) The register might be assigned an entirely new value
978 that has the same base term as the original set.
979
980 (2) The set might be a simple self-modification that
981 cannot change REGNO's base value.
982
983 If neither case holds, reject the original base value as invalid.
984 Note that the following situation is not detected:
985
986 extern int x, y; int *p = &x; p += (&y-&x);
987
988 ANSI C does not allow computing the difference of addresses
989 of distinct top level objects. */
990 if (new_reg_base_value[regno] != 0
991 && find_base_value (src) != new_reg_base_value[regno])
992 switch (GET_CODE (src))
993 {
994 case LO_SUM:
995 case MINUS:
996 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
997 new_reg_base_value[regno] = 0;
998 break;
999 case PLUS:
1000 /* If the value we add in the PLUS is also a valid base value,
1001 this might be the actual base value, and the original value
1002 an index. */
1003 {
1004 rtx other = NULL_RTX;
1005
1006 if (XEXP (src, 0) == dest)
1007 other = XEXP (src, 1);
1008 else if (XEXP (src, 1) == dest)
1009 other = XEXP (src, 0);
1010
1011 if (! other || find_base_value (other))
1012 new_reg_base_value[regno] = 0;
1013 break;
1014 }
1015 case AND:
1016 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1017 new_reg_base_value[regno] = 0;
1018 break;
1019 default:
1020 new_reg_base_value[regno] = 0;
1021 break;
1022 }
1023 /* If this is the first set of a register, record the value. */
1024 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1025 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1026 new_reg_base_value[regno] = find_base_value (src);
1027
1028 reg_seen[regno] = 1;
1029 }
1030
1031 /* Called from loop optimization when a new pseudo-register is
1032 created. It indicates that REGNO is being set to VAL. f INVARIANT
1033 is true then this value also describes an invariant relationship
1034 which can be used to deduce that two registers with unknown values
1035 are different. */
1036
1037 void
1038 record_base_value (unsigned int regno, rtx val, int invariant)
1039 {
1040 if (invariant && alias_invariant && regno < alias_invariant_size)
1041 alias_invariant[regno] = val;
1042
1043 if (regno >= VARRAY_SIZE (reg_base_value))
1044 VARRAY_GROW (reg_base_value, max_reg_num ());
1045
1046 if (REG_P (val))
1047 {
1048 VARRAY_RTX (reg_base_value, regno)
1049 = REG_BASE_VALUE (val);
1050 return;
1051 }
1052 VARRAY_RTX (reg_base_value, regno)
1053 = find_base_value (val);
1054 }
1055
1056 /* Clear alias info for a register. This is used if an RTL transformation
1057 changes the value of a register. This is used in flow by AUTO_INC_DEC
1058 optimizations. We don't need to clear reg_base_value, since flow only
1059 changes the offset. */
1060
1061 void
1062 clear_reg_alias_info (rtx reg)
1063 {
1064 unsigned int regno = REGNO (reg);
1065
1066 if (regno >= FIRST_PSEUDO_REGISTER)
1067 {
1068 regno -= FIRST_PSEUDO_REGISTER;
1069 if (regno < reg_known_value_size)
1070 {
1071 reg_known_value[regno] = reg;
1072 reg_known_equiv_p[regno] = false;
1073 }
1074 }
1075 }
1076
1077 /* If a value is known for REGNO, return it. */
1078
1079 rtx
1080 get_reg_known_value (unsigned int regno)
1081 {
1082 if (regno >= FIRST_PSEUDO_REGISTER)
1083 {
1084 regno -= FIRST_PSEUDO_REGISTER;
1085 if (regno < reg_known_value_size)
1086 return reg_known_value[regno];
1087 }
1088 return NULL;
1089 }
1090
1091 /* Set it. */
1092
1093 static void
1094 set_reg_known_value (unsigned int regno, rtx val)
1095 {
1096 if (regno >= FIRST_PSEUDO_REGISTER)
1097 {
1098 regno -= FIRST_PSEUDO_REGISTER;
1099 if (regno < reg_known_value_size)
1100 reg_known_value[regno] = val;
1101 }
1102 }
1103
1104 /* Similarly for reg_known_equiv_p. */
1105
1106 bool
1107 get_reg_known_equiv_p (unsigned int regno)
1108 {
1109 if (regno >= FIRST_PSEUDO_REGISTER)
1110 {
1111 regno -= FIRST_PSEUDO_REGISTER;
1112 if (regno < reg_known_value_size)
1113 return reg_known_equiv_p[regno];
1114 }
1115 return false;
1116 }
1117
1118 static void
1119 set_reg_known_equiv_p (unsigned int regno, bool val)
1120 {
1121 if (regno >= FIRST_PSEUDO_REGISTER)
1122 {
1123 regno -= FIRST_PSEUDO_REGISTER;
1124 if (regno < reg_known_value_size)
1125 reg_known_equiv_p[regno] = val;
1126 }
1127 }
1128
1129
1130 /* Returns a canonical version of X, from the point of view alias
1131 analysis. (For example, if X is a MEM whose address is a register,
1132 and the register has a known value (say a SYMBOL_REF), then a MEM
1133 whose address is the SYMBOL_REF is returned.) */
1134
1135 rtx
1136 canon_rtx (rtx x)
1137 {
1138 /* Recursively look for equivalences. */
1139 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1140 {
1141 rtx t = get_reg_known_value (REGNO (x));
1142 if (t == x)
1143 return x;
1144 if (t)
1145 return canon_rtx (t);
1146 }
1147
1148 if (GET_CODE (x) == PLUS)
1149 {
1150 rtx x0 = canon_rtx (XEXP (x, 0));
1151 rtx x1 = canon_rtx (XEXP (x, 1));
1152
1153 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1154 {
1155 if (GET_CODE (x0) == CONST_INT)
1156 return plus_constant (x1, INTVAL (x0));
1157 else if (GET_CODE (x1) == CONST_INT)
1158 return plus_constant (x0, INTVAL (x1));
1159 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1160 }
1161 }
1162
1163 /* This gives us much better alias analysis when called from
1164 the loop optimizer. Note we want to leave the original
1165 MEM alone, but need to return the canonicalized MEM with
1166 all the flags with their original values. */
1167 else if (MEM_P (x))
1168 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1169
1170 return x;
1171 }
1172
1173 /* Return 1 if X and Y are identical-looking rtx's.
1174 Expect that X and Y has been already canonicalized.
1175
1176 We use the data in reg_known_value above to see if two registers with
1177 different numbers are, in fact, equivalent. */
1178
1179 static int
1180 rtx_equal_for_memref_p (rtx x, rtx y)
1181 {
1182 int i;
1183 int j;
1184 enum rtx_code code;
1185 const char *fmt;
1186
1187 if (x == 0 && y == 0)
1188 return 1;
1189 if (x == 0 || y == 0)
1190 return 0;
1191
1192 if (x == y)
1193 return 1;
1194
1195 code = GET_CODE (x);
1196 /* Rtx's of different codes cannot be equal. */
1197 if (code != GET_CODE (y))
1198 return 0;
1199
1200 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1201 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1202
1203 if (GET_MODE (x) != GET_MODE (y))
1204 return 0;
1205
1206 /* Some RTL can be compared without a recursive examination. */
1207 switch (code)
1208 {
1209 case REG:
1210 return REGNO (x) == REGNO (y);
1211
1212 case LABEL_REF:
1213 return XEXP (x, 0) == XEXP (y, 0);
1214
1215 case SYMBOL_REF:
1216 return XSTR (x, 0) == XSTR (y, 0);
1217
1218 case VALUE:
1219 case CONST_INT:
1220 case CONST_DOUBLE:
1221 /* There's no need to compare the contents of CONST_DOUBLEs or
1222 CONST_INTs because pointer equality is a good enough
1223 comparison for these nodes. */
1224 return 0;
1225
1226 default:
1227 break;
1228 }
1229
1230 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1231 if (code == PLUS)
1232 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1233 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1234 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1235 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1236 /* For commutative operations, the RTX match if the operand match in any
1237 order. Also handle the simple binary and unary cases without a loop. */
1238 if (COMMUTATIVE_P (x))
1239 {
1240 rtx xop0 = canon_rtx (XEXP (x, 0));
1241 rtx yop0 = canon_rtx (XEXP (y, 0));
1242 rtx yop1 = canon_rtx (XEXP (y, 1));
1243
1244 return ((rtx_equal_for_memref_p (xop0, yop0)
1245 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1246 || (rtx_equal_for_memref_p (xop0, yop1)
1247 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1248 }
1249 else if (NON_COMMUTATIVE_P (x))
1250 {
1251 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1252 canon_rtx (XEXP (y, 0)))
1253 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1254 canon_rtx (XEXP (y, 1))));
1255 }
1256 else if (UNARY_P (x))
1257 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1258 canon_rtx (XEXP (y, 0)));
1259
1260 /* Compare the elements. If any pair of corresponding elements
1261 fail to match, return 0 for the whole things.
1262
1263 Limit cases to types which actually appear in addresses. */
1264
1265 fmt = GET_RTX_FORMAT (code);
1266 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1267 {
1268 switch (fmt[i])
1269 {
1270 case 'i':
1271 if (XINT (x, i) != XINT (y, i))
1272 return 0;
1273 break;
1274
1275 case 'E':
1276 /* Two vectors must have the same length. */
1277 if (XVECLEN (x, i) != XVECLEN (y, i))
1278 return 0;
1279
1280 /* And the corresponding elements must match. */
1281 for (j = 0; j < XVECLEN (x, i); j++)
1282 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1283 canon_rtx (XVECEXP (y, i, j))) == 0)
1284 return 0;
1285 break;
1286
1287 case 'e':
1288 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1289 canon_rtx (XEXP (y, i))) == 0)
1290 return 0;
1291 break;
1292
1293 /* This can happen for asm operands. */
1294 case 's':
1295 if (strcmp (XSTR (x, i), XSTR (y, i)))
1296 return 0;
1297 break;
1298
1299 /* This can happen for an asm which clobbers memory. */
1300 case '0':
1301 break;
1302
1303 /* It is believed that rtx's at this level will never
1304 contain anything but integers and other rtx's,
1305 except for within LABEL_REFs and SYMBOL_REFs. */
1306 default:
1307 gcc_unreachable ();
1308 }
1309 }
1310 return 1;
1311 }
1312
1313 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1314 X and return it, or return 0 if none found. */
1315
1316 static rtx
1317 find_symbolic_term (rtx x)
1318 {
1319 int i;
1320 enum rtx_code code;
1321 const char *fmt;
1322
1323 code = GET_CODE (x);
1324 if (code == SYMBOL_REF || code == LABEL_REF)
1325 return x;
1326 if (OBJECT_P (x))
1327 return 0;
1328
1329 fmt = GET_RTX_FORMAT (code);
1330 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1331 {
1332 rtx t;
1333
1334 if (fmt[i] == 'e')
1335 {
1336 t = find_symbolic_term (XEXP (x, i));
1337 if (t != 0)
1338 return t;
1339 }
1340 else if (fmt[i] == 'E')
1341 break;
1342 }
1343 return 0;
1344 }
1345
1346 rtx
1347 find_base_term (rtx x)
1348 {
1349 cselib_val *val;
1350 struct elt_loc_list *l;
1351
1352 #if defined (FIND_BASE_TERM)
1353 /* Try machine-dependent ways to find the base term. */
1354 x = FIND_BASE_TERM (x);
1355 #endif
1356
1357 switch (GET_CODE (x))
1358 {
1359 case REG:
1360 return REG_BASE_VALUE (x);
1361
1362 case TRUNCATE:
1363 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1364 return 0;
1365 /* Fall through. */
1366 case HIGH:
1367 case PRE_INC:
1368 case PRE_DEC:
1369 case POST_INC:
1370 case POST_DEC:
1371 case PRE_MODIFY:
1372 case POST_MODIFY:
1373 return find_base_term (XEXP (x, 0));
1374
1375 case ZERO_EXTEND:
1376 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1377 {
1378 rtx temp = find_base_term (XEXP (x, 0));
1379
1380 if (temp != 0 && CONSTANT_P (temp))
1381 temp = convert_memory_address (Pmode, temp);
1382
1383 return temp;
1384 }
1385
1386 case VALUE:
1387 val = CSELIB_VAL_PTR (x);
1388 if (!val)
1389 return 0;
1390 for (l = val->locs; l; l = l->next)
1391 if ((x = find_base_term (l->loc)) != 0)
1392 return x;
1393 return 0;
1394
1395 case CONST:
1396 x = XEXP (x, 0);
1397 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1398 return 0;
1399 /* Fall through. */
1400 case LO_SUM:
1401 case PLUS:
1402 case MINUS:
1403 {
1404 rtx tmp1 = XEXP (x, 0);
1405 rtx tmp2 = XEXP (x, 1);
1406
1407 /* This is a little bit tricky since we have to determine which of
1408 the two operands represents the real base address. Otherwise this
1409 routine may return the index register instead of the base register.
1410
1411 That may cause us to believe no aliasing was possible, when in
1412 fact aliasing is possible.
1413
1414 We use a few simple tests to guess the base register. Additional
1415 tests can certainly be added. For example, if one of the operands
1416 is a shift or multiply, then it must be the index register and the
1417 other operand is the base register. */
1418
1419 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1420 return find_base_term (tmp2);
1421
1422 /* If either operand is known to be a pointer, then use it
1423 to determine the base term. */
1424 if (REG_P (tmp1) && REG_POINTER (tmp1))
1425 return find_base_term (tmp1);
1426
1427 if (REG_P (tmp2) && REG_POINTER (tmp2))
1428 return find_base_term (tmp2);
1429
1430 /* Neither operand was known to be a pointer. Go ahead and find the
1431 base term for both operands. */
1432 tmp1 = find_base_term (tmp1);
1433 tmp2 = find_base_term (tmp2);
1434
1435 /* If either base term is named object or a special address
1436 (like an argument or stack reference), then use it for the
1437 base term. */
1438 if (tmp1 != 0
1439 && (GET_CODE (tmp1) == SYMBOL_REF
1440 || GET_CODE (tmp1) == LABEL_REF
1441 || (GET_CODE (tmp1) == ADDRESS
1442 && GET_MODE (tmp1) != VOIDmode)))
1443 return tmp1;
1444
1445 if (tmp2 != 0
1446 && (GET_CODE (tmp2) == SYMBOL_REF
1447 || GET_CODE (tmp2) == LABEL_REF
1448 || (GET_CODE (tmp2) == ADDRESS
1449 && GET_MODE (tmp2) != VOIDmode)))
1450 return tmp2;
1451
1452 /* We could not determine which of the two operands was the
1453 base register and which was the index. So we can determine
1454 nothing from the base alias check. */
1455 return 0;
1456 }
1457
1458 case AND:
1459 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1460 return find_base_term (XEXP (x, 0));
1461 return 0;
1462
1463 case SYMBOL_REF:
1464 case LABEL_REF:
1465 return x;
1466
1467 default:
1468 return 0;
1469 }
1470 }
1471
1472 /* Return 0 if the addresses X and Y are known to point to different
1473 objects, 1 if they might be pointers to the same object. */
1474
1475 static int
1476 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1477 enum machine_mode y_mode)
1478 {
1479 rtx x_base = find_base_term (x);
1480 rtx y_base = find_base_term (y);
1481
1482 /* If the address itself has no known base see if a known equivalent
1483 value has one. If either address still has no known base, nothing
1484 is known about aliasing. */
1485 if (x_base == 0)
1486 {
1487 rtx x_c;
1488
1489 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1490 return 1;
1491
1492 x_base = find_base_term (x_c);
1493 if (x_base == 0)
1494 return 1;
1495 }
1496
1497 if (y_base == 0)
1498 {
1499 rtx y_c;
1500 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1501 return 1;
1502
1503 y_base = find_base_term (y_c);
1504 if (y_base == 0)
1505 return 1;
1506 }
1507
1508 /* If the base addresses are equal nothing is known about aliasing. */
1509 if (rtx_equal_p (x_base, y_base))
1510 return 1;
1511
1512 /* The base addresses of the read and write are different expressions.
1513 If they are both symbols and they are not accessed via AND, there is
1514 no conflict. We can bring knowledge of object alignment into play
1515 here. For example, on alpha, "char a, b;" can alias one another,
1516 though "char a; long b;" cannot. */
1517 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1518 {
1519 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1520 return 1;
1521 if (GET_CODE (x) == AND
1522 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1523 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1524 return 1;
1525 if (GET_CODE (y) == AND
1526 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1527 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1528 return 1;
1529 /* Differing symbols never alias. */
1530 return 0;
1531 }
1532
1533 /* If one address is a stack reference there can be no alias:
1534 stack references using different base registers do not alias,
1535 a stack reference can not alias a parameter, and a stack reference
1536 can not alias a global. */
1537 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1538 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1539 return 0;
1540
1541 if (! flag_argument_noalias)
1542 return 1;
1543
1544 if (flag_argument_noalias > 1)
1545 return 0;
1546
1547 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1548 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1549 }
1550
1551 /* Convert the address X into something we can use. This is done by returning
1552 it unchanged unless it is a value; in the latter case we call cselib to get
1553 a more useful rtx. */
1554
1555 rtx
1556 get_addr (rtx x)
1557 {
1558 cselib_val *v;
1559 struct elt_loc_list *l;
1560
1561 if (GET_CODE (x) != VALUE)
1562 return x;
1563 v = CSELIB_VAL_PTR (x);
1564 if (v)
1565 {
1566 for (l = v->locs; l; l = l->next)
1567 if (CONSTANT_P (l->loc))
1568 return l->loc;
1569 for (l = v->locs; l; l = l->next)
1570 if (!REG_P (l->loc) && !MEM_P (l->loc))
1571 return l->loc;
1572 if (v->locs)
1573 return v->locs->loc;
1574 }
1575 return x;
1576 }
1577
1578 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1579 where SIZE is the size in bytes of the memory reference. If ADDR
1580 is not modified by the memory reference then ADDR is returned. */
1581
1582 static rtx
1583 addr_side_effect_eval (rtx addr, int size, int n_refs)
1584 {
1585 int offset = 0;
1586
1587 switch (GET_CODE (addr))
1588 {
1589 case PRE_INC:
1590 offset = (n_refs + 1) * size;
1591 break;
1592 case PRE_DEC:
1593 offset = -(n_refs + 1) * size;
1594 break;
1595 case POST_INC:
1596 offset = n_refs * size;
1597 break;
1598 case POST_DEC:
1599 offset = -n_refs * size;
1600 break;
1601
1602 default:
1603 return addr;
1604 }
1605
1606 if (offset)
1607 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1608 GEN_INT (offset));
1609 else
1610 addr = XEXP (addr, 0);
1611 addr = canon_rtx (addr);
1612
1613 return addr;
1614 }
1615
1616 /* Return nonzero if X and Y (memory addresses) could reference the
1617 same location in memory. C is an offset accumulator. When
1618 C is nonzero, we are testing aliases between X and Y + C.
1619 XSIZE is the size in bytes of the X reference,
1620 similarly YSIZE is the size in bytes for Y.
1621 Expect that canon_rtx has been already called for X and Y.
1622
1623 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1624 referenced (the reference was BLKmode), so make the most pessimistic
1625 assumptions.
1626
1627 If XSIZE or YSIZE is negative, we may access memory outside the object
1628 being referenced as a side effect. This can happen when using AND to
1629 align memory references, as is done on the Alpha.
1630
1631 Nice to notice that varying addresses cannot conflict with fp if no
1632 local variables had their addresses taken, but that's too hard now. */
1633
1634 static int
1635 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1636 {
1637 if (GET_CODE (x) == VALUE)
1638 x = get_addr (x);
1639 if (GET_CODE (y) == VALUE)
1640 y = get_addr (y);
1641 if (GET_CODE (x) == HIGH)
1642 x = XEXP (x, 0);
1643 else if (GET_CODE (x) == LO_SUM)
1644 x = XEXP (x, 1);
1645 else
1646 x = addr_side_effect_eval (x, xsize, 0);
1647 if (GET_CODE (y) == HIGH)
1648 y = XEXP (y, 0);
1649 else if (GET_CODE (y) == LO_SUM)
1650 y = XEXP (y, 1);
1651 else
1652 y = addr_side_effect_eval (y, ysize, 0);
1653
1654 if (rtx_equal_for_memref_p (x, y))
1655 {
1656 if (xsize <= 0 || ysize <= 0)
1657 return 1;
1658 if (c >= 0 && xsize > c)
1659 return 1;
1660 if (c < 0 && ysize+c > 0)
1661 return 1;
1662 return 0;
1663 }
1664
1665 /* This code used to check for conflicts involving stack references and
1666 globals but the base address alias code now handles these cases. */
1667
1668 if (GET_CODE (x) == PLUS)
1669 {
1670 /* The fact that X is canonicalized means that this
1671 PLUS rtx is canonicalized. */
1672 rtx x0 = XEXP (x, 0);
1673 rtx x1 = XEXP (x, 1);
1674
1675 if (GET_CODE (y) == PLUS)
1676 {
1677 /* The fact that Y is canonicalized means that this
1678 PLUS rtx is canonicalized. */
1679 rtx y0 = XEXP (y, 0);
1680 rtx y1 = XEXP (y, 1);
1681
1682 if (rtx_equal_for_memref_p (x1, y1))
1683 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1684 if (rtx_equal_for_memref_p (x0, y0))
1685 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1686 if (GET_CODE (x1) == CONST_INT)
1687 {
1688 if (GET_CODE (y1) == CONST_INT)
1689 return memrefs_conflict_p (xsize, x0, ysize, y0,
1690 c - INTVAL (x1) + INTVAL (y1));
1691 else
1692 return memrefs_conflict_p (xsize, x0, ysize, y,
1693 c - INTVAL (x1));
1694 }
1695 else if (GET_CODE (y1) == CONST_INT)
1696 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1697
1698 return 1;
1699 }
1700 else if (GET_CODE (x1) == CONST_INT)
1701 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1702 }
1703 else if (GET_CODE (y) == PLUS)
1704 {
1705 /* The fact that Y is canonicalized means that this
1706 PLUS rtx is canonicalized. */
1707 rtx y0 = XEXP (y, 0);
1708 rtx y1 = XEXP (y, 1);
1709
1710 if (GET_CODE (y1) == CONST_INT)
1711 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1712 else
1713 return 1;
1714 }
1715
1716 if (GET_CODE (x) == GET_CODE (y))
1717 switch (GET_CODE (x))
1718 {
1719 case MULT:
1720 {
1721 /* Handle cases where we expect the second operands to be the
1722 same, and check only whether the first operand would conflict
1723 or not. */
1724 rtx x0, y0;
1725 rtx x1 = canon_rtx (XEXP (x, 1));
1726 rtx y1 = canon_rtx (XEXP (y, 1));
1727 if (! rtx_equal_for_memref_p (x1, y1))
1728 return 1;
1729 x0 = canon_rtx (XEXP (x, 0));
1730 y0 = canon_rtx (XEXP (y, 0));
1731 if (rtx_equal_for_memref_p (x0, y0))
1732 return (xsize == 0 || ysize == 0
1733 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1734
1735 /* Can't properly adjust our sizes. */
1736 if (GET_CODE (x1) != CONST_INT)
1737 return 1;
1738 xsize /= INTVAL (x1);
1739 ysize /= INTVAL (x1);
1740 c /= INTVAL (x1);
1741 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1742 }
1743
1744 case REG:
1745 /* Are these registers known not to be equal? */
1746 if (alias_invariant)
1747 {
1748 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1749 rtx i_x, i_y; /* invariant relationships of X and Y */
1750
1751 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1752 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
1753
1754 if (i_x == 0 && i_y == 0)
1755 break;
1756
1757 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1758 ysize, i_y ? i_y : y, c))
1759 return 0;
1760 }
1761 break;
1762
1763 default:
1764 break;
1765 }
1766
1767 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1768 as an access with indeterminate size. Assume that references
1769 besides AND are aligned, so if the size of the other reference is
1770 at least as large as the alignment, assume no other overlap. */
1771 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1772 {
1773 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1774 xsize = -1;
1775 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1776 }
1777 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1778 {
1779 /* ??? If we are indexing far enough into the array/structure, we
1780 may yet be able to determine that we can not overlap. But we
1781 also need to that we are far enough from the end not to overlap
1782 a following reference, so we do nothing with that for now. */
1783 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1784 ysize = -1;
1785 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1786 }
1787
1788 if (CONSTANT_P (x))
1789 {
1790 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1791 {
1792 c += (INTVAL (y) - INTVAL (x));
1793 return (xsize <= 0 || ysize <= 0
1794 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1795 }
1796
1797 if (GET_CODE (x) == CONST)
1798 {
1799 if (GET_CODE (y) == CONST)
1800 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1801 ysize, canon_rtx (XEXP (y, 0)), c);
1802 else
1803 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1804 ysize, y, c);
1805 }
1806 if (GET_CODE (y) == CONST)
1807 return memrefs_conflict_p (xsize, x, ysize,
1808 canon_rtx (XEXP (y, 0)), c);
1809
1810 if (CONSTANT_P (y))
1811 return (xsize <= 0 || ysize <= 0
1812 || (rtx_equal_for_memref_p (x, y)
1813 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1814
1815 return 1;
1816 }
1817 return 1;
1818 }
1819
1820 /* Functions to compute memory dependencies.
1821
1822 Since we process the insns in execution order, we can build tables
1823 to keep track of what registers are fixed (and not aliased), what registers
1824 are varying in known ways, and what registers are varying in unknown
1825 ways.
1826
1827 If both memory references are volatile, then there must always be a
1828 dependence between the two references, since their order can not be
1829 changed. A volatile and non-volatile reference can be interchanged
1830 though.
1831
1832 A MEM_IN_STRUCT reference at a non-AND varying address can never
1833 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1834 also must allow AND addresses, because they may generate accesses
1835 outside the object being referenced. This is used to generate
1836 aligned addresses from unaligned addresses, for instance, the alpha
1837 storeqi_unaligned pattern. */
1838
1839 /* Read dependence: X is read after read in MEM takes place. There can
1840 only be a dependence here if both reads are volatile. */
1841
1842 int
1843 read_dependence (rtx mem, rtx x)
1844 {
1845 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1846 }
1847
1848 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1849 MEM2 is a reference to a structure at a varying address, or returns
1850 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1851 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1852 to decide whether or not an address may vary; it should return
1853 nonzero whenever variation is possible.
1854 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1855
1856 static rtx
1857 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1858 rtx mem2_addr,
1859 int (*varies_p) (rtx, int))
1860 {
1861 if (! flag_strict_aliasing)
1862 return NULL_RTX;
1863
1864 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1865 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1866 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1867 varying address. */
1868 return mem1;
1869
1870 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1871 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1872 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1873 varying address. */
1874 return mem2;
1875
1876 return NULL_RTX;
1877 }
1878
1879 /* Returns nonzero if something about the mode or address format MEM1
1880 indicates that it might well alias *anything*. */
1881
1882 static int
1883 aliases_everything_p (rtx mem)
1884 {
1885 if (GET_CODE (XEXP (mem, 0)) == AND)
1886 /* If the address is an AND, it's very hard to know at what it is
1887 actually pointing. */
1888 return 1;
1889
1890 return 0;
1891 }
1892
1893 /* Return true if we can determine that the fields referenced cannot
1894 overlap for any pair of objects. */
1895
1896 static bool
1897 nonoverlapping_component_refs_p (tree x, tree y)
1898 {
1899 tree fieldx, fieldy, typex, typey, orig_y;
1900
1901 do
1902 {
1903 /* The comparison has to be done at a common type, since we don't
1904 know how the inheritance hierarchy works. */
1905 orig_y = y;
1906 do
1907 {
1908 fieldx = TREE_OPERAND (x, 1);
1909 typex = DECL_FIELD_CONTEXT (fieldx);
1910
1911 y = orig_y;
1912 do
1913 {
1914 fieldy = TREE_OPERAND (y, 1);
1915 typey = DECL_FIELD_CONTEXT (fieldy);
1916
1917 if (typex == typey)
1918 goto found;
1919
1920 y = TREE_OPERAND (y, 0);
1921 }
1922 while (y && TREE_CODE (y) == COMPONENT_REF);
1923
1924 x = TREE_OPERAND (x, 0);
1925 }
1926 while (x && TREE_CODE (x) == COMPONENT_REF);
1927
1928 /* Never found a common type. */
1929 return false;
1930
1931 found:
1932 /* If we're left with accessing different fields of a structure,
1933 then no overlap. */
1934 if (TREE_CODE (typex) == RECORD_TYPE
1935 && fieldx != fieldy)
1936 return true;
1937
1938 /* The comparison on the current field failed. If we're accessing
1939 a very nested structure, look at the next outer level. */
1940 x = TREE_OPERAND (x, 0);
1941 y = TREE_OPERAND (y, 0);
1942 }
1943 while (x && y
1944 && TREE_CODE (x) == COMPONENT_REF
1945 && TREE_CODE (y) == COMPONENT_REF);
1946
1947 return false;
1948 }
1949
1950 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1951
1952 static tree
1953 decl_for_component_ref (tree x)
1954 {
1955 do
1956 {
1957 x = TREE_OPERAND (x, 0);
1958 }
1959 while (x && TREE_CODE (x) == COMPONENT_REF);
1960
1961 return x && DECL_P (x) ? x : NULL_TREE;
1962 }
1963
1964 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1965 offset of the field reference. */
1966
1967 static rtx
1968 adjust_offset_for_component_ref (tree x, rtx offset)
1969 {
1970 HOST_WIDE_INT ioffset;
1971
1972 if (! offset)
1973 return NULL_RTX;
1974
1975 ioffset = INTVAL (offset);
1976 do
1977 {
1978 tree offset = component_ref_field_offset (x);
1979 tree field = TREE_OPERAND (x, 1);
1980
1981 if (! host_integerp (offset, 1))
1982 return NULL_RTX;
1983 ioffset += (tree_low_cst (offset, 1)
1984 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1985 / BITS_PER_UNIT));
1986
1987 x = TREE_OPERAND (x, 0);
1988 }
1989 while (x && TREE_CODE (x) == COMPONENT_REF);
1990
1991 return GEN_INT (ioffset);
1992 }
1993
1994 /* Return nonzero if we can determine the exprs corresponding to memrefs
1995 X and Y and they do not overlap. */
1996
1997 static int
1998 nonoverlapping_memrefs_p (rtx x, rtx y)
1999 {
2000 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2001 rtx rtlx, rtly;
2002 rtx basex, basey;
2003 rtx moffsetx, moffsety;
2004 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2005
2006 /* Unless both have exprs, we can't tell anything. */
2007 if (exprx == 0 || expry == 0)
2008 return 0;
2009
2010 /* If both are field references, we may be able to determine something. */
2011 if (TREE_CODE (exprx) == COMPONENT_REF
2012 && TREE_CODE (expry) == COMPONENT_REF
2013 && nonoverlapping_component_refs_p (exprx, expry))
2014 return 1;
2015
2016 /* If the field reference test failed, look at the DECLs involved. */
2017 moffsetx = MEM_OFFSET (x);
2018 if (TREE_CODE (exprx) == COMPONENT_REF)
2019 {
2020 tree t = decl_for_component_ref (exprx);
2021 if (! t)
2022 return 0;
2023 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2024 exprx = t;
2025 }
2026 else if (INDIRECT_REF_P (exprx))
2027 {
2028 exprx = TREE_OPERAND (exprx, 0);
2029 if (flag_argument_noalias < 2
2030 || TREE_CODE (exprx) != PARM_DECL)
2031 return 0;
2032 }
2033
2034 moffsety = MEM_OFFSET (y);
2035 if (TREE_CODE (expry) == COMPONENT_REF)
2036 {
2037 tree t = decl_for_component_ref (expry);
2038 if (! t)
2039 return 0;
2040 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2041 expry = t;
2042 }
2043 else if (INDIRECT_REF_P (expry))
2044 {
2045 expry = TREE_OPERAND (expry, 0);
2046 if (flag_argument_noalias < 2
2047 || TREE_CODE (expry) != PARM_DECL)
2048 return 0;
2049 }
2050
2051 if (! DECL_P (exprx) || ! DECL_P (expry))
2052 return 0;
2053
2054 rtlx = DECL_RTL (exprx);
2055 rtly = DECL_RTL (expry);
2056
2057 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2058 can't overlap unless they are the same because we never reuse that part
2059 of the stack frame used for locals for spilled pseudos. */
2060 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2061 && ! rtx_equal_p (rtlx, rtly))
2062 return 1;
2063
2064 /* Get the base and offsets of both decls. If either is a register, we
2065 know both are and are the same, so use that as the base. The only
2066 we can avoid overlap is if we can deduce that they are nonoverlapping
2067 pieces of that decl, which is very rare. */
2068 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2069 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2070 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2071
2072 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2073 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2074 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2075
2076 /* If the bases are different, we know they do not overlap if both
2077 are constants or if one is a constant and the other a pointer into the
2078 stack frame. Otherwise a different base means we can't tell if they
2079 overlap or not. */
2080 if (! rtx_equal_p (basex, basey))
2081 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2082 || (CONSTANT_P (basex) && REG_P (basey)
2083 && REGNO_PTR_FRAME_P (REGNO (basey)))
2084 || (CONSTANT_P (basey) && REG_P (basex)
2085 && REGNO_PTR_FRAME_P (REGNO (basex))));
2086
2087 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2088 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2089 : -1);
2090 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2091 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2092 -1);
2093
2094 /* If we have an offset for either memref, it can update the values computed
2095 above. */
2096 if (moffsetx)
2097 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2098 if (moffsety)
2099 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2100
2101 /* If a memref has both a size and an offset, we can use the smaller size.
2102 We can't do this if the offset isn't known because we must view this
2103 memref as being anywhere inside the DECL's MEM. */
2104 if (MEM_SIZE (x) && moffsetx)
2105 sizex = INTVAL (MEM_SIZE (x));
2106 if (MEM_SIZE (y) && moffsety)
2107 sizey = INTVAL (MEM_SIZE (y));
2108
2109 /* Put the values of the memref with the lower offset in X's values. */
2110 if (offsetx > offsety)
2111 {
2112 tem = offsetx, offsetx = offsety, offsety = tem;
2113 tem = sizex, sizex = sizey, sizey = tem;
2114 }
2115
2116 /* If we don't know the size of the lower-offset value, we can't tell
2117 if they conflict. Otherwise, we do the test. */
2118 return sizex >= 0 && offsety >= offsetx + sizex;
2119 }
2120
2121 /* True dependence: X is read after store in MEM takes place. */
2122
2123 int
2124 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2125 int (*varies) (rtx, int))
2126 {
2127 rtx x_addr, mem_addr;
2128 rtx base;
2129
2130 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2131 return 1;
2132
2133 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2134 This is used in epilogue deallocation functions. */
2135 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2136 return 1;
2137 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2138 return 1;
2139
2140 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2141 return 0;
2142
2143 /* Read-only memory is by definition never modified, and therefore can't
2144 conflict with anything. We don't expect to find read-only set on MEM,
2145 but stupid user tricks can produce them, so don't die. */
2146 if (MEM_READONLY_P (x))
2147 return 0;
2148
2149 if (nonoverlapping_memrefs_p (mem, x))
2150 return 0;
2151
2152 if (mem_mode == VOIDmode)
2153 mem_mode = GET_MODE (mem);
2154
2155 x_addr = get_addr (XEXP (x, 0));
2156 mem_addr = get_addr (XEXP (mem, 0));
2157
2158 base = find_base_term (x_addr);
2159 if (base && (GET_CODE (base) == LABEL_REF
2160 || (GET_CODE (base) == SYMBOL_REF
2161 && CONSTANT_POOL_ADDRESS_P (base))))
2162 return 0;
2163
2164 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2165 return 0;
2166
2167 x_addr = canon_rtx (x_addr);
2168 mem_addr = canon_rtx (mem_addr);
2169
2170 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2171 SIZE_FOR_MODE (x), x_addr, 0))
2172 return 0;
2173
2174 if (aliases_everything_p (x))
2175 return 1;
2176
2177 /* We cannot use aliases_everything_p to test MEM, since we must look
2178 at MEM_MODE, rather than GET_MODE (MEM). */
2179 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2180 return 1;
2181
2182 /* In true_dependence we also allow BLKmode to alias anything. Why
2183 don't we do this in anti_dependence and output_dependence? */
2184 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2185 return 1;
2186
2187 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2188 varies);
2189 }
2190
2191 /* Canonical true dependence: X is read after store in MEM takes place.
2192 Variant of true_dependence which assumes MEM has already been
2193 canonicalized (hence we no longer do that here).
2194 The mem_addr argument has been added, since true_dependence computed
2195 this value prior to canonicalizing. */
2196
2197 int
2198 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2199 rtx x, int (*varies) (rtx, int))
2200 {
2201 rtx x_addr;
2202
2203 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2204 return 1;
2205
2206 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2207 This is used in epilogue deallocation functions. */
2208 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2209 return 1;
2210 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2211 return 1;
2212
2213 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2214 return 0;
2215
2216 /* Read-only memory is by definition never modified, and therefore can't
2217 conflict with anything. We don't expect to find read-only set on MEM,
2218 but stupid user tricks can produce them, so don't die. */
2219 if (MEM_READONLY_P (x))
2220 return 0;
2221
2222 if (nonoverlapping_memrefs_p (x, mem))
2223 return 0;
2224
2225 x_addr = get_addr (XEXP (x, 0));
2226
2227 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2228 return 0;
2229
2230 x_addr = canon_rtx (x_addr);
2231 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2232 SIZE_FOR_MODE (x), x_addr, 0))
2233 return 0;
2234
2235 if (aliases_everything_p (x))
2236 return 1;
2237
2238 /* We cannot use aliases_everything_p to test MEM, since we must look
2239 at MEM_MODE, rather than GET_MODE (MEM). */
2240 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2241 return 1;
2242
2243 /* In true_dependence we also allow BLKmode to alias anything. Why
2244 don't we do this in anti_dependence and output_dependence? */
2245 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2246 return 1;
2247
2248 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2249 varies);
2250 }
2251
2252 /* Returns nonzero if a write to X might alias a previous read from
2253 (or, if WRITEP is nonzero, a write to) MEM. */
2254
2255 static int
2256 write_dependence_p (rtx mem, rtx x, int writep)
2257 {
2258 rtx x_addr, mem_addr;
2259 rtx fixed_scalar;
2260 rtx base;
2261
2262 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2263 return 1;
2264
2265 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2266 This is used in epilogue deallocation functions. */
2267 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2268 return 1;
2269 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2270 return 1;
2271
2272 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2273 return 0;
2274
2275 /* A read from read-only memory can't conflict with read-write memory. */
2276 if (!writep && MEM_READONLY_P (mem))
2277 return 0;
2278
2279 if (nonoverlapping_memrefs_p (x, mem))
2280 return 0;
2281
2282 x_addr = get_addr (XEXP (x, 0));
2283 mem_addr = get_addr (XEXP (mem, 0));
2284
2285 if (! writep)
2286 {
2287 base = find_base_term (mem_addr);
2288 if (base && (GET_CODE (base) == LABEL_REF
2289 || (GET_CODE (base) == SYMBOL_REF
2290 && CONSTANT_POOL_ADDRESS_P (base))))
2291 return 0;
2292 }
2293
2294 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2295 GET_MODE (mem)))
2296 return 0;
2297
2298 x_addr = canon_rtx (x_addr);
2299 mem_addr = canon_rtx (mem_addr);
2300
2301 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2302 SIZE_FOR_MODE (x), x_addr, 0))
2303 return 0;
2304
2305 fixed_scalar
2306 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2307 rtx_addr_varies_p);
2308
2309 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2310 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2311 }
2312
2313 /* Anti dependence: X is written after read in MEM takes place. */
2314
2315 int
2316 anti_dependence (rtx mem, rtx x)
2317 {
2318 return write_dependence_p (mem, x, /*writep=*/0);
2319 }
2320
2321 /* Output dependence: X is written after store in MEM takes place. */
2322
2323 int
2324 output_dependence (rtx mem, rtx x)
2325 {
2326 return write_dependence_p (mem, x, /*writep=*/1);
2327 }
2328 \f
2329 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2330 something which is not local to the function and is not constant. */
2331
2332 static int
2333 nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2334 {
2335 rtx x = *loc;
2336 rtx base;
2337 int regno;
2338
2339 if (! x)
2340 return 0;
2341
2342 switch (GET_CODE (x))
2343 {
2344 case SUBREG:
2345 if (REG_P (SUBREG_REG (x)))
2346 {
2347 /* Global registers are not local. */
2348 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2349 && global_regs[subreg_regno (x)])
2350 return 1;
2351 return 0;
2352 }
2353 break;
2354
2355 case REG:
2356 regno = REGNO (x);
2357 /* Global registers are not local. */
2358 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2359 return 1;
2360 return 0;
2361
2362 case SCRATCH:
2363 case PC:
2364 case CC0:
2365 case CONST_INT:
2366 case CONST_DOUBLE:
2367 case CONST_VECTOR:
2368 case CONST:
2369 case LABEL_REF:
2370 return 0;
2371
2372 case SYMBOL_REF:
2373 /* Constants in the function's constants pool are constant. */
2374 if (CONSTANT_POOL_ADDRESS_P (x))
2375 return 0;
2376 return 1;
2377
2378 case CALL:
2379 /* Non-constant calls and recursion are not local. */
2380 return 1;
2381
2382 case MEM:
2383 /* Be overly conservative and consider any volatile memory
2384 reference as not local. */
2385 if (MEM_VOLATILE_P (x))
2386 return 1;
2387 base = find_base_term (XEXP (x, 0));
2388 if (base)
2389 {
2390 /* A Pmode ADDRESS could be a reference via the structure value
2391 address or static chain. Such memory references are nonlocal.
2392
2393 Thus, we have to examine the contents of the ADDRESS to find
2394 out if this is a local reference or not. */
2395 if (GET_CODE (base) == ADDRESS
2396 && GET_MODE (base) == Pmode
2397 && (XEXP (base, 0) == stack_pointer_rtx
2398 || XEXP (base, 0) == arg_pointer_rtx
2399 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2400 || XEXP (base, 0) == hard_frame_pointer_rtx
2401 #endif
2402 || XEXP (base, 0) == frame_pointer_rtx))
2403 return 0;
2404 /* Constants in the function's constant pool are constant. */
2405 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2406 return 0;
2407 }
2408 return 1;
2409
2410 case UNSPEC_VOLATILE:
2411 case ASM_INPUT:
2412 return 1;
2413
2414 case ASM_OPERANDS:
2415 if (MEM_VOLATILE_P (x))
2416 return 1;
2417
2418 /* Fall through. */
2419
2420 default:
2421 break;
2422 }
2423
2424 return 0;
2425 }
2426
2427 /* Returns nonzero if X might mention something which is not
2428 local to the function and is not constant. */
2429
2430 static int
2431 nonlocal_mentioned_p (rtx x)
2432 {
2433 if (INSN_P (x))
2434 {
2435 if (CALL_P (x))
2436 {
2437 if (! CONST_OR_PURE_CALL_P (x))
2438 return 1;
2439 x = CALL_INSN_FUNCTION_USAGE (x);
2440 if (x == 0)
2441 return 0;
2442 }
2443 else
2444 x = PATTERN (x);
2445 }
2446
2447 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2448 }
2449
2450 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2451 something which is not local to the function and is not constant. */
2452
2453 static int
2454 nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2455 {
2456 rtx x = *loc;
2457
2458 if (! x)
2459 return 0;
2460
2461 switch (GET_CODE (x))
2462 {
2463 case MEM:
2464 case REG:
2465 case SYMBOL_REF:
2466 case SUBREG:
2467 return nonlocal_mentioned_p (x);
2468
2469 case CALL:
2470 /* Non-constant calls and recursion are not local. */
2471 return 1;
2472
2473 case SET:
2474 if (nonlocal_mentioned_p (SET_SRC (x)))
2475 return 1;
2476
2477 if (MEM_P (SET_DEST (x)))
2478 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2479
2480 /* If the destination is anything other than a CC0, PC,
2481 MEM, REG, or a SUBREG of a REG that occupies all of
2482 the REG, then X references nonlocal memory if it is
2483 mentioned in the destination. */
2484 if (GET_CODE (SET_DEST (x)) != CC0
2485 && GET_CODE (SET_DEST (x)) != PC
2486 && !REG_P (SET_DEST (x))
2487 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2488 && REG_P (SUBREG_REG (SET_DEST (x)))
2489 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2490 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2491 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2492 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2493 return nonlocal_mentioned_p (SET_DEST (x));
2494 return 0;
2495
2496 case CLOBBER:
2497 if (MEM_P (XEXP (x, 0)))
2498 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2499 return 0;
2500
2501 case USE:
2502 return nonlocal_mentioned_p (XEXP (x, 0));
2503
2504 case ASM_INPUT:
2505 case UNSPEC_VOLATILE:
2506 return 1;
2507
2508 case ASM_OPERANDS:
2509 if (MEM_VOLATILE_P (x))
2510 return 1;
2511
2512 /* Fall through. */
2513
2514 default:
2515 break;
2516 }
2517
2518 return 0;
2519 }
2520
2521 /* Returns nonzero if X might reference something which is not
2522 local to the function and is not constant. */
2523
2524 static int
2525 nonlocal_referenced_p (rtx x)
2526 {
2527 if (INSN_P (x))
2528 {
2529 if (CALL_P (x))
2530 {
2531 if (! CONST_OR_PURE_CALL_P (x))
2532 return 1;
2533 x = CALL_INSN_FUNCTION_USAGE (x);
2534 if (x == 0)
2535 return 0;
2536 }
2537 else
2538 x = PATTERN (x);
2539 }
2540
2541 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2542 }
2543
2544 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2545 something which is not local to the function and is not constant. */
2546
2547 static int
2548 nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2549 {
2550 rtx x = *loc;
2551
2552 if (! x)
2553 return 0;
2554
2555 switch (GET_CODE (x))
2556 {
2557 case CALL:
2558 /* Non-constant calls and recursion are not local. */
2559 return 1;
2560
2561 case PRE_INC:
2562 case PRE_DEC:
2563 case POST_INC:
2564 case POST_DEC:
2565 case PRE_MODIFY:
2566 case POST_MODIFY:
2567 return nonlocal_mentioned_p (XEXP (x, 0));
2568
2569 case SET:
2570 if (nonlocal_mentioned_p (SET_DEST (x)))
2571 return 1;
2572 return nonlocal_set_p (SET_SRC (x));
2573
2574 case CLOBBER:
2575 return nonlocal_mentioned_p (XEXP (x, 0));
2576
2577 case USE:
2578 return 0;
2579
2580 case ASM_INPUT:
2581 case UNSPEC_VOLATILE:
2582 return 1;
2583
2584 case ASM_OPERANDS:
2585 if (MEM_VOLATILE_P (x))
2586 return 1;
2587
2588 /* Fall through. */
2589
2590 default:
2591 break;
2592 }
2593
2594 return 0;
2595 }
2596
2597 /* Returns nonzero if X might set something which is not
2598 local to the function and is not constant. */
2599
2600 static int
2601 nonlocal_set_p (rtx x)
2602 {
2603 if (INSN_P (x))
2604 {
2605 if (CALL_P (x))
2606 {
2607 if (! CONST_OR_PURE_CALL_P (x))
2608 return 1;
2609 x = CALL_INSN_FUNCTION_USAGE (x);
2610 if (x == 0)
2611 return 0;
2612 }
2613 else
2614 x = PATTERN (x);
2615 }
2616
2617 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2618 }
2619
2620 /* Mark the function if it is pure or constant. */
2621
2622 void
2623 mark_constant_function (void)
2624 {
2625 rtx insn;
2626 int nonlocal_memory_referenced;
2627
2628 if (TREE_READONLY (current_function_decl)
2629 || DECL_IS_PURE (current_function_decl)
2630 || TREE_THIS_VOLATILE (current_function_decl)
2631 || current_function_has_nonlocal_goto
2632 || !targetm.binds_local_p (current_function_decl))
2633 return;
2634
2635 /* A loop might not return which counts as a side effect. */
2636 if (mark_dfs_back_edges ())
2637 return;
2638
2639 nonlocal_memory_referenced = 0;
2640
2641 init_alias_analysis ();
2642
2643 /* Determine if this is a constant or pure function. */
2644
2645 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2646 {
2647 if (! INSN_P (insn))
2648 continue;
2649
2650 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2651 || volatile_refs_p (PATTERN (insn)))
2652 break;
2653
2654 if (! nonlocal_memory_referenced)
2655 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2656 }
2657
2658 end_alias_analysis ();
2659
2660 /* Mark the function. */
2661
2662 if (insn)
2663 ;
2664 else if (nonlocal_memory_referenced)
2665 {
2666 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2667 DECL_IS_PURE (current_function_decl) = 1;
2668 }
2669 else
2670 {
2671 cgraph_rtl_info (current_function_decl)->const_function = 1;
2672 TREE_READONLY (current_function_decl) = 1;
2673 }
2674 }
2675 \f
2676
2677 void
2678 init_alias_once (void)
2679 {
2680 int i;
2681
2682 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2683 /* Check whether this register can hold an incoming pointer
2684 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2685 numbers, so translate if necessary due to register windows. */
2686 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2687 && HARD_REGNO_MODE_OK (i, Pmode))
2688 static_reg_base_value[i]
2689 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2690
2691 static_reg_base_value[STACK_POINTER_REGNUM]
2692 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2693 static_reg_base_value[ARG_POINTER_REGNUM]
2694 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2695 static_reg_base_value[FRAME_POINTER_REGNUM]
2696 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2697 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2698 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2699 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2700 #endif
2701 }
2702
2703 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2704 to be memory reference. */
2705 static bool memory_modified;
2706 static void
2707 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2708 {
2709 if (MEM_P (x))
2710 {
2711 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2712 memory_modified = true;
2713 }
2714 }
2715
2716
2717 /* Return true when INSN possibly modify memory contents of MEM
2718 (i.e. address can be modified). */
2719 bool
2720 memory_modified_in_insn_p (rtx mem, rtx insn)
2721 {
2722 if (!INSN_P (insn))
2723 return false;
2724 memory_modified = false;
2725 note_stores (PATTERN (insn), memory_modified_1, mem);
2726 return memory_modified;
2727 }
2728
2729 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2730 array. */
2731
2732 void
2733 init_alias_analysis (void)
2734 {
2735 unsigned int maxreg = max_reg_num ();
2736 int changed, pass;
2737 int i;
2738 unsigned int ui;
2739 rtx insn;
2740
2741 timevar_push (TV_ALIAS_ANALYSIS);
2742
2743 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2744 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2745 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2746
2747 /* Overallocate reg_base_value to allow some growth during loop
2748 optimization. Loop unrolling can create a large number of
2749 registers. */
2750 if (old_reg_base_value)
2751 {
2752 reg_base_value = old_reg_base_value;
2753 /* If varray gets large zeroing cost may get important. */
2754 if (VARRAY_SIZE (reg_base_value) > 256
2755 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2756 VARRAY_GROW (reg_base_value, maxreg);
2757 VARRAY_CLEAR (reg_base_value);
2758 if (VARRAY_SIZE (reg_base_value) < maxreg)
2759 VARRAY_GROW (reg_base_value, maxreg);
2760 }
2761 else
2762 {
2763 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2764 }
2765
2766 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2767 reg_seen = xmalloc (maxreg);
2768
2769 /* The basic idea is that each pass through this loop will use the
2770 "constant" information from the previous pass to propagate alias
2771 information through another level of assignments.
2772
2773 This could get expensive if the assignment chains are long. Maybe
2774 we should throttle the number of iterations, possibly based on
2775 the optimization level or flag_expensive_optimizations.
2776
2777 We could propagate more information in the first pass by making use
2778 of REG_N_SETS to determine immediately that the alias information
2779 for a pseudo is "constant".
2780
2781 A program with an uninitialized variable can cause an infinite loop
2782 here. Instead of doing a full dataflow analysis to detect such problems
2783 we just cap the number of iterations for the loop.
2784
2785 The state of the arrays for the set chain in question does not matter
2786 since the program has undefined behavior. */
2787
2788 pass = 0;
2789 do
2790 {
2791 /* Assume nothing will change this iteration of the loop. */
2792 changed = 0;
2793
2794 /* We want to assign the same IDs each iteration of this loop, so
2795 start counting from zero each iteration of the loop. */
2796 unique_id = 0;
2797
2798 /* We're at the start of the function each iteration through the
2799 loop, so we're copying arguments. */
2800 copying_arguments = true;
2801
2802 /* Wipe the potential alias information clean for this pass. */
2803 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2804
2805 /* Wipe the reg_seen array clean. */
2806 memset (reg_seen, 0, maxreg);
2807
2808 /* Mark all hard registers which may contain an address.
2809 The stack, frame and argument pointers may contain an address.
2810 An argument register which can hold a Pmode value may contain
2811 an address even if it is not in BASE_REGS.
2812
2813 The address expression is VOIDmode for an argument and
2814 Pmode for other registers. */
2815
2816 memcpy (new_reg_base_value, static_reg_base_value,
2817 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2818
2819 /* Walk the insns adding values to the new_reg_base_value array. */
2820 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2821 {
2822 if (INSN_P (insn))
2823 {
2824 rtx note, set;
2825
2826 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2827 /* The prologue/epilogue insns are not threaded onto the
2828 insn chain until after reload has completed. Thus,
2829 there is no sense wasting time checking if INSN is in
2830 the prologue/epilogue until after reload has completed. */
2831 if (reload_completed
2832 && prologue_epilogue_contains (insn))
2833 continue;
2834 #endif
2835
2836 /* If this insn has a noalias note, process it, Otherwise,
2837 scan for sets. A simple set will have no side effects
2838 which could change the base value of any other register. */
2839
2840 if (GET_CODE (PATTERN (insn)) == SET
2841 && REG_NOTES (insn) != 0
2842 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2843 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2844 else
2845 note_stores (PATTERN (insn), record_set, NULL);
2846
2847 set = single_set (insn);
2848
2849 if (set != 0
2850 && REG_P (SET_DEST (set))
2851 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2852 {
2853 unsigned int regno = REGNO (SET_DEST (set));
2854 rtx src = SET_SRC (set);
2855 rtx t;
2856
2857 if (REG_NOTES (insn) != 0
2858 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2859 && REG_N_SETS (regno) == 1)
2860 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2861 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2862 && ! rtx_varies_p (XEXP (note, 0), 1)
2863 && ! reg_overlap_mentioned_p (SET_DEST (set),
2864 XEXP (note, 0)))
2865 {
2866 set_reg_known_value (regno, XEXP (note, 0));
2867 set_reg_known_equiv_p (regno,
2868 REG_NOTE_KIND (note) == REG_EQUIV);
2869 }
2870 else if (REG_N_SETS (regno) == 1
2871 && GET_CODE (src) == PLUS
2872 && REG_P (XEXP (src, 0))
2873 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2874 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2875 {
2876 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2877 set_reg_known_value (regno, t);
2878 set_reg_known_equiv_p (regno, 0);
2879 }
2880 else if (REG_N_SETS (regno) == 1
2881 && ! rtx_varies_p (src, 1))
2882 {
2883 set_reg_known_value (regno, src);
2884 set_reg_known_equiv_p (regno, 0);
2885 }
2886 }
2887 }
2888 else if (NOTE_P (insn)
2889 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2890 copying_arguments = false;
2891 }
2892
2893 /* Now propagate values from new_reg_base_value to reg_base_value. */
2894 gcc_assert (maxreg == (unsigned int) max_reg_num());
2895
2896 for (ui = 0; ui < maxreg; ui++)
2897 {
2898 if (new_reg_base_value[ui]
2899 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2900 && ! rtx_equal_p (new_reg_base_value[ui],
2901 VARRAY_RTX (reg_base_value, ui)))
2902 {
2903 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
2904 changed = 1;
2905 }
2906 }
2907 }
2908 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2909
2910 /* Fill in the remaining entries. */
2911 for (i = 0; i < (int)reg_known_value_size; i++)
2912 if (reg_known_value[i] == 0)
2913 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2914
2915 /* Simplify the reg_base_value array so that no register refers to
2916 another register, except to special registers indirectly through
2917 ADDRESS expressions.
2918
2919 In theory this loop can take as long as O(registers^2), but unless
2920 there are very long dependency chains it will run in close to linear
2921 time.
2922
2923 This loop may not be needed any longer now that the main loop does
2924 a better job at propagating alias information. */
2925 pass = 0;
2926 do
2927 {
2928 changed = 0;
2929 pass++;
2930 for (ui = 0; ui < maxreg; ui++)
2931 {
2932 rtx base = VARRAY_RTX (reg_base_value, ui);
2933 if (base && REG_P (base))
2934 {
2935 unsigned int base_regno = REGNO (base);
2936 if (base_regno == ui) /* register set from itself */
2937 VARRAY_RTX (reg_base_value, ui) = 0;
2938 else
2939 VARRAY_RTX (reg_base_value, ui)
2940 = VARRAY_RTX (reg_base_value, base_regno);
2941 changed = 1;
2942 }
2943 }
2944 }
2945 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2946
2947 /* Clean up. */
2948 free (new_reg_base_value);
2949 new_reg_base_value = 0;
2950 free (reg_seen);
2951 reg_seen = 0;
2952 timevar_pop (TV_ALIAS_ANALYSIS);
2953 }
2954
2955 void
2956 end_alias_analysis (void)
2957 {
2958 old_reg_base_value = reg_base_value;
2959 ggc_free (reg_known_value);
2960 reg_known_value = 0;
2961 reg_known_value_size = 0;
2962 free (reg_known_equiv_p);
2963 reg_known_equiv_p = 0;
2964 if (alias_invariant)
2965 {
2966 ggc_free (alias_invariant);
2967 alias_invariant = 0;
2968 alias_invariant_size = 0;
2969 }
2970 }
2971 \f
2972 /* Do control and data flow analysis; write some of the results to the
2973 dump file. */
2974 static void
2975 rest_of_handle_cfg (void)
2976 {
2977 if (dump_file)
2978 dump_flow_info (dump_file);
2979 if (optimize)
2980 cleanup_cfg (CLEANUP_EXPENSIVE
2981 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2982
2983 /* It may make more sense to mark constant functions after dead code is
2984 eliminated by life_analysis, but we need to do it early, as -fprofile-arcs
2985 may insert code making function non-constant, but we still must consider
2986 it as constant, otherwise -fbranch-probabilities will not read data back.
2987
2988 life_analysis rarely eliminates modification of external memory.
2989
2990 FIXME: now with tree based profiling we are in the trap described above
2991 again. It seems to be easiest to disable the optimization for time
2992 being before the problem is either solved by moving the transformation
2993 to the IPA level (we need the CFG for this) or the very early optimization
2994 passes are made to ignore the const/pure flags so code does not change. */
2995 if (optimize
2996 && (!flag_tree_based_profiling
2997 || (!profile_arc_flag && !flag_branch_probabilities)))
2998 {
2999 /* Alias analysis depends on this information and mark_constant_function
3000 depends on alias analysis. */
3001 reg_scan (get_insns (), max_reg_num ());
3002 mark_constant_function ();
3003 }
3004 }
3005
3006 struct tree_opt_pass pass_cfg =
3007 {
3008 "cfg", /* name */
3009 NULL, /* gate */
3010 rest_of_handle_cfg, /* execute */
3011 NULL, /* sub */
3012 NULL, /* next */
3013 0, /* static_pass_number */
3014 TV_FLOW, /* tv_id */
3015 0, /* properties_required */
3016 0, /* properties_provided */
3017 0, /* properties_destroyed */
3018 0, /* todo_flags_start */
3019 TODO_dump_func, /* todo_flags_finish */
3020 'f' /* letter */
3021 };
3022
3023
3024 #include "gt-alias.h"