re PR rtl-optimization/53827 ([alpha]: Invalid insn scheduling in sched1 pass)
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "diagnostic-core.h"
37 #include "cselib.h"
38 #include "splay-tree.h"
39 #include "ggc.h"
40 #include "langhooks.h"
41 #include "timevar.h"
42 #include "target.h"
43 #include "cgraph.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "tree-ssa-alias.h"
47 #include "pointer-set.h"
48 #include "tree-flow.h"
49
50 /* The aliasing API provided here solves related but different problems:
51
52 Say there exists (in c)
53
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
58
59 struct Y y2, *py;
60 struct Z z2, *pz;
61
62
63 py = &px1.y1;
64 px2 = &x1;
65
66 Consider the four questions:
67
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
73
74 The answer to these questions can be yes, yes, yes, and maybe.
75
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store through a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
80
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
88
89 The pass ipa-type-escape does this analysis for the types whose
90 instances do not escape across the compilation boundary.
91
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
99 */
100
101 /* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
105
106 struct S { int i; double d; };
107
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
112 struct S
113 / \
114 / \
115 |/_ _\|
116 int double
117
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
121
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
124 past immediate descendants, however, since we propagate all
125 grandchildren up one level.
126
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
130
131 struct GTY(()) alias_set_entry_d {
132 /* The alias set number, as stored in MEM_ALIAS_SET. */
133 alias_set_type alias_set;
134
135 /* Nonzero if would have a child of zero: this effectively makes this
136 alias set the same as alias set zero. */
137 int has_zero_child;
138
139 /* The children of the alias set. These are not just the immediate
140 children, but, in fact, all descendants. So, if we have:
141
142 struct T { struct S s; float f; }
143
144 continuing our example above, the children here will be all of
145 `int', `double', `float', and `struct S'. */
146 splay_tree GTY((param1_is (int), param2_is (int))) children;
147 };
148 typedef struct alias_set_entry_d *alias_set_entry;
149
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, enum machine_mode,
154 enum machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static int insert_subset_children (splay_tree_node, void*);
158 static alias_set_entry get_alias_set_entry (alias_set_type);
159 static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
160 static tree decl_for_component_ref (tree);
161 static int write_dependence_p (const_rtx, const_rtx, int);
162
163 static void memory_modified_1 (rtx, const_rtx, void *);
164
165 /* Set up all info needed to perform alias analysis on memory references. */
166
167 /* Returns the size in bytes of the mode of X. */
168 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
169
170 /* Cap the number of passes we make over the insns propagating alias
171 information through set chains. 10 is a completely arbitrary choice. */
172 #define MAX_ALIAS_LOOP_PASSES 10
173
174 /* reg_base_value[N] gives an address to which register N is related.
175 If all sets after the first add or subtract to the current value
176 or otherwise modify it so it does not point to a different top level
177 object, reg_base_value[N] is equal to the address part of the source
178 of the first set.
179
180 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
181 expressions represent three types of base:
182
183 1. incoming arguments. There is just one ADDRESS to represent all
184 arguments, since we do not know at this level whether accesses
185 based on different arguments can alias. The ADDRESS has id 0.
186
187 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
188 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
189 Each of these rtxes has a separate ADDRESS associated with it,
190 each with a negative id.
191
192 GCC is (and is required to be) precise in which register it
193 chooses to access a particular region of stack. We can therefore
194 assume that accesses based on one of these rtxes do not alias
195 accesses based on another of these rtxes.
196
197 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
198 Each such piece of memory has a separate ADDRESS associated
199 with it, each with an id greater than 0.
200
201 Accesses based on one ADDRESS do not alias accesses based on other
202 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
203 alias globals either; the ADDRESSes have Pmode to indicate this.
204 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
205 indicate this. */
206
207 static GTY(()) VEC(rtx,gc) *reg_base_value;
208 static rtx *new_reg_base_value;
209
210 /* The single VOIDmode ADDRESS that represents all argument bases.
211 It has id 0. */
212 static GTY(()) rtx arg_base_value;
213
214 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
215 static int unique_id;
216
217 /* We preserve the copy of old array around to avoid amount of garbage
218 produced. About 8% of garbage produced were attributed to this
219 array. */
220 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
221
222 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
223 registers. */
224 #define UNIQUE_BASE_VALUE_SP -1
225 #define UNIQUE_BASE_VALUE_ARGP -2
226 #define UNIQUE_BASE_VALUE_FP -3
227 #define UNIQUE_BASE_VALUE_HFP -4
228
229 #define static_reg_base_value \
230 (this_target_rtl->x_static_reg_base_value)
231
232 #define REG_BASE_VALUE(X) \
233 (REGNO (X) < VEC_length (rtx, reg_base_value) \
234 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
235
236 /* Vector indexed by N giving the initial (unchanging) value known for
237 pseudo-register N. This vector is initialized in init_alias_analysis,
238 and does not change until end_alias_analysis is called. */
239 static GTY(()) VEC(rtx,gc) *reg_known_value;
240
241 /* Vector recording for each reg_known_value whether it is due to a
242 REG_EQUIV note. Future passes (viz., reload) may replace the
243 pseudo with the equivalent expression and so we account for the
244 dependences that would be introduced if that happens.
245
246 The REG_EQUIV notes created in assign_parms may mention the arg
247 pointer, and there are explicit insns in the RTL that modify the
248 arg pointer. Thus we must ensure that such insns don't get
249 scheduled across each other because that would invalidate the
250 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
251 wrong, but solving the problem in the scheduler will likely give
252 better code, so we do it here. */
253 static sbitmap reg_known_equiv_p;
254
255 /* True when scanning insns from the start of the rtl to the
256 NOTE_INSN_FUNCTION_BEG note. */
257 static bool copying_arguments;
258
259 DEF_VEC_P(alias_set_entry);
260 DEF_VEC_ALLOC_P(alias_set_entry,gc);
261
262 /* The splay-tree used to store the various alias set entries. */
263 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
264 \f
265 /* Build a decomposed reference object for querying the alias-oracle
266 from the MEM rtx and store it in *REF.
267 Returns false if MEM is not suitable for the alias-oracle. */
268
269 static bool
270 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
271 {
272 tree expr = MEM_EXPR (mem);
273 tree base;
274
275 if (!expr)
276 return false;
277
278 ao_ref_init (ref, expr);
279
280 /* Get the base of the reference and see if we have to reject or
281 adjust it. */
282 base = ao_ref_base (ref);
283 if (base == NULL_TREE)
284 return false;
285
286 /* The tree oracle doesn't like to have these. */
287 if (TREE_CODE (base) == FUNCTION_DECL
288 || TREE_CODE (base) == LABEL_DECL)
289 return false;
290
291 /* If this is a pointer dereference of a non-SSA_NAME punt.
292 ??? We could replace it with a pointer to anything. */
293 if ((INDIRECT_REF_P (base)
294 || TREE_CODE (base) == MEM_REF)
295 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
296 return false;
297 if (TREE_CODE (base) == TARGET_MEM_REF
298 && TMR_BASE (base)
299 && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
300 return false;
301
302 /* If this is a reference based on a partitioned decl replace the
303 base with an INDIRECT_REF of the pointer representative we
304 created during stack slot partitioning. */
305 if (TREE_CODE (base) == VAR_DECL
306 && ! TREE_STATIC (base)
307 && cfun->gimple_df->decls_to_pointers != NULL)
308 {
309 void *namep;
310 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
311 if (namep)
312 ref->base = build_simple_mem_ref (*(tree *)namep);
313 }
314 else if (TREE_CODE (base) == TARGET_MEM_REF
315 && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
316 && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
317 && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
318 && cfun->gimple_df->decls_to_pointers != NULL)
319 {
320 void *namep;
321 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
322 TREE_OPERAND (TMR_BASE (base), 0));
323 if (namep)
324 ref->base = build_simple_mem_ref (*(tree *)namep);
325 }
326
327 ref->ref_alias_set = MEM_ALIAS_SET (mem);
328
329 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
330 is conservative, so trust it. */
331 if (!MEM_OFFSET_KNOWN_P (mem)
332 || !MEM_SIZE_KNOWN_P (mem))
333 return true;
334
335 /* If the base decl is a parameter we can have negative MEM_OFFSET in
336 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
337 here. */
338 if (MEM_OFFSET (mem) < 0
339 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
340 return true;
341
342 /* Otherwise continue and refine size and offset we got from analyzing
343 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
344
345 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
346 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
347
348 /* The MEM may extend into adjacent fields, so adjust max_size if
349 necessary. */
350 if (ref->max_size != -1
351 && ref->size > ref->max_size)
352 ref->max_size = ref->size;
353
354 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
355 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
356 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
357 && (ref->offset < 0
358 || (DECL_P (ref->base)
359 && (!host_integerp (DECL_SIZE (ref->base), 1)
360 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
361 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
362 return false;
363
364 return true;
365 }
366
367 /* Query the alias-oracle on whether the two memory rtx X and MEM may
368 alias. If TBAA_P is set also apply TBAA. Returns true if the
369 two rtxen may alias, false otherwise. */
370
371 static bool
372 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
373 {
374 ao_ref ref1, ref2;
375
376 if (!ao_ref_from_mem (&ref1, x)
377 || !ao_ref_from_mem (&ref2, mem))
378 return true;
379
380 return refs_may_alias_p_1 (&ref1, &ref2,
381 tbaa_p
382 && MEM_ALIAS_SET (x) != 0
383 && MEM_ALIAS_SET (mem) != 0);
384 }
385
386 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
387 such an entry, or NULL otherwise. */
388
389 static inline alias_set_entry
390 get_alias_set_entry (alias_set_type alias_set)
391 {
392 return VEC_index (alias_set_entry, alias_sets, alias_set);
393 }
394
395 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
396 the two MEMs cannot alias each other. */
397
398 static inline int
399 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
400 {
401 /* Perform a basic sanity check. Namely, that there are no alias sets
402 if we're not using strict aliasing. This helps to catch bugs
403 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
404 where a MEM is allocated in some way other than by the use of
405 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
406 use alias sets to indicate that spilled registers cannot alias each
407 other, we might need to remove this check. */
408 gcc_assert (flag_strict_aliasing
409 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
410
411 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
412 }
413
414 /* Insert the NODE into the splay tree given by DATA. Used by
415 record_alias_subset via splay_tree_foreach. */
416
417 static int
418 insert_subset_children (splay_tree_node node, void *data)
419 {
420 splay_tree_insert ((splay_tree) data, node->key, node->value);
421
422 return 0;
423 }
424
425 /* Return true if the first alias set is a subset of the second. */
426
427 bool
428 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
429 {
430 alias_set_entry ase;
431
432 /* Everything is a subset of the "aliases everything" set. */
433 if (set2 == 0)
434 return true;
435
436 /* Otherwise, check if set1 is a subset of set2. */
437 ase = get_alias_set_entry (set2);
438 if (ase != 0
439 && (ase->has_zero_child
440 || splay_tree_lookup (ase->children,
441 (splay_tree_key) set1)))
442 return true;
443 return false;
444 }
445
446 /* Return 1 if the two specified alias sets may conflict. */
447
448 int
449 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
450 {
451 alias_set_entry ase;
452
453 /* The easy case. */
454 if (alias_sets_must_conflict_p (set1, set2))
455 return 1;
456
457 /* See if the first alias set is a subset of the second. */
458 ase = get_alias_set_entry (set1);
459 if (ase != 0
460 && (ase->has_zero_child
461 || splay_tree_lookup (ase->children,
462 (splay_tree_key) set2)))
463 return 1;
464
465 /* Now do the same, but with the alias sets reversed. */
466 ase = get_alias_set_entry (set2);
467 if (ase != 0
468 && (ase->has_zero_child
469 || splay_tree_lookup (ase->children,
470 (splay_tree_key) set1)))
471 return 1;
472
473 /* The two alias sets are distinct and neither one is the
474 child of the other. Therefore, they cannot conflict. */
475 return 0;
476 }
477
478 /* Return 1 if the two specified alias sets will always conflict. */
479
480 int
481 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
482 {
483 if (set1 == 0 || set2 == 0 || set1 == set2)
484 return 1;
485
486 return 0;
487 }
488
489 /* Return 1 if any MEM object of type T1 will always conflict (using the
490 dependency routines in this file) with any MEM object of type T2.
491 This is used when allocating temporary storage. If T1 and/or T2 are
492 NULL_TREE, it means we know nothing about the storage. */
493
494 int
495 objects_must_conflict_p (tree t1, tree t2)
496 {
497 alias_set_type set1, set2;
498
499 /* If neither has a type specified, we don't know if they'll conflict
500 because we may be using them to store objects of various types, for
501 example the argument and local variables areas of inlined functions. */
502 if (t1 == 0 && t2 == 0)
503 return 0;
504
505 /* If they are the same type, they must conflict. */
506 if (t1 == t2
507 /* Likewise if both are volatile. */
508 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
509 return 1;
510
511 set1 = t1 ? get_alias_set (t1) : 0;
512 set2 = t2 ? get_alias_set (t2) : 0;
513
514 /* We can't use alias_sets_conflict_p because we must make sure
515 that every subtype of t1 will conflict with every subtype of
516 t2 for which a pair of subobjects of these respective subtypes
517 overlaps on the stack. */
518 return alias_sets_must_conflict_p (set1, set2);
519 }
520 \f
521 /* Return true if all nested component references handled by
522 get_inner_reference in T are such that we should use the alias set
523 provided by the object at the heart of T.
524
525 This is true for non-addressable components (which don't have their
526 own alias set), as well as components of objects in alias set zero.
527 This later point is a special case wherein we wish to override the
528 alias set used by the component, but we don't have per-FIELD_DECL
529 assignable alias sets. */
530
531 bool
532 component_uses_parent_alias_set (const_tree t)
533 {
534 while (1)
535 {
536 /* If we're at the end, it vacuously uses its own alias set. */
537 if (!handled_component_p (t))
538 return false;
539
540 switch (TREE_CODE (t))
541 {
542 case COMPONENT_REF:
543 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
544 return true;
545 break;
546
547 case ARRAY_REF:
548 case ARRAY_RANGE_REF:
549 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
550 return true;
551 break;
552
553 case REALPART_EXPR:
554 case IMAGPART_EXPR:
555 break;
556
557 default:
558 /* Bitfields and casts are never addressable. */
559 return true;
560 }
561
562 t = TREE_OPERAND (t, 0);
563 if (get_alias_set (TREE_TYPE (t)) == 0)
564 return true;
565 }
566 }
567
568 /* Return the alias set for the memory pointed to by T, which may be
569 either a type or an expression. Return -1 if there is nothing
570 special about dereferencing T. */
571
572 static alias_set_type
573 get_deref_alias_set_1 (tree t)
574 {
575 /* If we're not doing any alias analysis, just assume everything
576 aliases everything else. */
577 if (!flag_strict_aliasing)
578 return 0;
579
580 /* All we care about is the type. */
581 if (! TYPE_P (t))
582 t = TREE_TYPE (t);
583
584 /* If we have an INDIRECT_REF via a void pointer, we don't
585 know anything about what that might alias. Likewise if the
586 pointer is marked that way. */
587 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
588 || TYPE_REF_CAN_ALIAS_ALL (t))
589 return 0;
590
591 return -1;
592 }
593
594 /* Return the alias set for the memory pointed to by T, which may be
595 either a type or an expression. */
596
597 alias_set_type
598 get_deref_alias_set (tree t)
599 {
600 alias_set_type set = get_deref_alias_set_1 (t);
601
602 /* Fall back to the alias-set of the pointed-to type. */
603 if (set == -1)
604 {
605 if (! TYPE_P (t))
606 t = TREE_TYPE (t);
607 set = get_alias_set (TREE_TYPE (t));
608 }
609
610 return set;
611 }
612
613 /* Return the alias set for T, which may be either a type or an
614 expression. Call language-specific routine for help, if needed. */
615
616 alias_set_type
617 get_alias_set (tree t)
618 {
619 alias_set_type set;
620
621 /* If we're not doing any alias analysis, just assume everything
622 aliases everything else. Also return 0 if this or its type is
623 an error. */
624 if (! flag_strict_aliasing || t == error_mark_node
625 || (! TYPE_P (t)
626 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
627 return 0;
628
629 /* We can be passed either an expression or a type. This and the
630 language-specific routine may make mutually-recursive calls to each other
631 to figure out what to do. At each juncture, we see if this is a tree
632 that the language may need to handle specially. First handle things that
633 aren't types. */
634 if (! TYPE_P (t))
635 {
636 tree inner;
637
638 /* Give the language a chance to do something with this tree
639 before we look at it. */
640 STRIP_NOPS (t);
641 set = lang_hooks.get_alias_set (t);
642 if (set != -1)
643 return set;
644
645 /* Get the base object of the reference. */
646 inner = t;
647 while (handled_component_p (inner))
648 {
649 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
650 the type of any component references that wrap it to
651 determine the alias-set. */
652 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
653 t = TREE_OPERAND (inner, 0);
654 inner = TREE_OPERAND (inner, 0);
655 }
656
657 /* Handle pointer dereferences here, they can override the
658 alias-set. */
659 if (INDIRECT_REF_P (inner))
660 {
661 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
662 if (set != -1)
663 return set;
664 }
665 else if (TREE_CODE (inner) == TARGET_MEM_REF)
666 return get_deref_alias_set (TMR_OFFSET (inner));
667 else if (TREE_CODE (inner) == MEM_REF)
668 {
669 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
670 if (set != -1)
671 return set;
672 }
673
674 /* If the innermost reference is a MEM_REF that has a
675 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
676 using the memory access type for determining the alias-set. */
677 if (TREE_CODE (inner) == MEM_REF
678 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
679 != TYPE_MAIN_VARIANT
680 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
681 return get_deref_alias_set (TREE_OPERAND (inner, 1));
682
683 /* Otherwise, pick up the outermost object that we could have a pointer
684 to, processing conversions as above. */
685 while (component_uses_parent_alias_set (t))
686 {
687 t = TREE_OPERAND (t, 0);
688 STRIP_NOPS (t);
689 }
690
691 /* If we've already determined the alias set for a decl, just return
692 it. This is necessary for C++ anonymous unions, whose component
693 variables don't look like union members (boo!). */
694 if (TREE_CODE (t) == VAR_DECL
695 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
696 return MEM_ALIAS_SET (DECL_RTL (t));
697
698 /* Now all we care about is the type. */
699 t = TREE_TYPE (t);
700 }
701
702 /* Variant qualifiers don't affect the alias set, so get the main
703 variant. */
704 t = TYPE_MAIN_VARIANT (t);
705
706 /* Always use the canonical type as well. If this is a type that
707 requires structural comparisons to identify compatible types
708 use alias set zero. */
709 if (TYPE_STRUCTURAL_EQUALITY_P (t))
710 {
711 /* Allow the language to specify another alias set for this
712 type. */
713 set = lang_hooks.get_alias_set (t);
714 if (set != -1)
715 return set;
716 return 0;
717 }
718
719 t = TYPE_CANONICAL (t);
720
721 /* The canonical type should not require structural equality checks. */
722 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
723
724 /* If this is a type with a known alias set, return it. */
725 if (TYPE_ALIAS_SET_KNOWN_P (t))
726 return TYPE_ALIAS_SET (t);
727
728 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
729 if (!COMPLETE_TYPE_P (t))
730 {
731 /* For arrays with unknown size the conservative answer is the
732 alias set of the element type. */
733 if (TREE_CODE (t) == ARRAY_TYPE)
734 return get_alias_set (TREE_TYPE (t));
735
736 /* But return zero as a conservative answer for incomplete types. */
737 return 0;
738 }
739
740 /* See if the language has special handling for this type. */
741 set = lang_hooks.get_alias_set (t);
742 if (set != -1)
743 return set;
744
745 /* There are no objects of FUNCTION_TYPE, so there's no point in
746 using up an alias set for them. (There are, of course, pointers
747 and references to functions, but that's different.) */
748 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
749 set = 0;
750
751 /* Unless the language specifies otherwise, let vector types alias
752 their components. This avoids some nasty type punning issues in
753 normal usage. And indeed lets vectors be treated more like an
754 array slice. */
755 else if (TREE_CODE (t) == VECTOR_TYPE)
756 set = get_alias_set (TREE_TYPE (t));
757
758 /* Unless the language specifies otherwise, treat array types the
759 same as their components. This avoids the asymmetry we get
760 through recording the components. Consider accessing a
761 character(kind=1) through a reference to a character(kind=1)[1:1].
762 Or consider if we want to assign integer(kind=4)[0:D.1387] and
763 integer(kind=4)[4] the same alias set or not.
764 Just be pragmatic here and make sure the array and its element
765 type get the same alias set assigned. */
766 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
767 set = get_alias_set (TREE_TYPE (t));
768
769 /* From the former common C and C++ langhook implementation:
770
771 Unfortunately, there is no canonical form of a pointer type.
772 In particular, if we have `typedef int I', then `int *', and
773 `I *' are different types. So, we have to pick a canonical
774 representative. We do this below.
775
776 Technically, this approach is actually more conservative that
777 it needs to be. In particular, `const int *' and `int *'
778 should be in different alias sets, according to the C and C++
779 standard, since their types are not the same, and so,
780 technically, an `int **' and `const int **' cannot point at
781 the same thing.
782
783 But, the standard is wrong. In particular, this code is
784 legal C++:
785
786 int *ip;
787 int **ipp = &ip;
788 const int* const* cipp = ipp;
789 And, it doesn't make sense for that to be legal unless you
790 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
791 the pointed-to types. This issue has been reported to the
792 C++ committee.
793
794 In addition to the above canonicalization issue, with LTO
795 we should also canonicalize `T (*)[]' to `T *' avoiding
796 alias issues with pointer-to element types and pointer-to
797 array types.
798
799 Likewise we need to deal with the situation of incomplete
800 pointed-to types and make `*(struct X **)&a' and
801 `*(struct X {} **)&a' alias. Otherwise we will have to
802 guarantee that all pointer-to incomplete type variants
803 will be replaced by pointer-to complete type variants if
804 they are available.
805
806 With LTO the convenient situation of using `void *' to
807 access and store any pointer type will also become
808 more apparent (and `void *' is just another pointer-to
809 incomplete type). Assigning alias-set zero to `void *'
810 and all pointer-to incomplete types is a not appealing
811 solution. Assigning an effective alias-set zero only
812 affecting pointers might be - by recording proper subset
813 relationships of all pointer alias-sets.
814
815 Pointer-to function types are another grey area which
816 needs caution. Globbing them all into one alias-set
817 or the above effective zero set would work.
818
819 For now just assign the same alias-set to all pointers.
820 That's simple and avoids all the above problems. */
821 else if (POINTER_TYPE_P (t)
822 && t != ptr_type_node)
823 set = get_alias_set (ptr_type_node);
824
825 /* Otherwise make a new alias set for this type. */
826 else
827 {
828 /* Each canonical type gets its own alias set, so canonical types
829 shouldn't form a tree. It doesn't really matter for types
830 we handle specially above, so only check it where it possibly
831 would result in a bogus alias set. */
832 gcc_checking_assert (TYPE_CANONICAL (t) == t);
833
834 set = new_alias_set ();
835 }
836
837 TYPE_ALIAS_SET (t) = set;
838
839 /* If this is an aggregate type or a complex type, we must record any
840 component aliasing information. */
841 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
842 record_component_aliases (t);
843
844 return set;
845 }
846
847 /* Return a brand-new alias set. */
848
849 alias_set_type
850 new_alias_set (void)
851 {
852 if (flag_strict_aliasing)
853 {
854 if (alias_sets == 0)
855 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
856 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
857 return VEC_length (alias_set_entry, alias_sets) - 1;
858 }
859 else
860 return 0;
861 }
862
863 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
864 not everything that aliases SUPERSET also aliases SUBSET. For example,
865 in C, a store to an `int' can alias a load of a structure containing an
866 `int', and vice versa. But it can't alias a load of a 'double' member
867 of the same structure. Here, the structure would be the SUPERSET and
868 `int' the SUBSET. This relationship is also described in the comment at
869 the beginning of this file.
870
871 This function should be called only once per SUPERSET/SUBSET pair.
872
873 It is illegal for SUPERSET to be zero; everything is implicitly a
874 subset of alias set zero. */
875
876 void
877 record_alias_subset (alias_set_type superset, alias_set_type subset)
878 {
879 alias_set_entry superset_entry;
880 alias_set_entry subset_entry;
881
882 /* It is possible in complex type situations for both sets to be the same,
883 in which case we can ignore this operation. */
884 if (superset == subset)
885 return;
886
887 gcc_assert (superset);
888
889 superset_entry = get_alias_set_entry (superset);
890 if (superset_entry == 0)
891 {
892 /* Create an entry for the SUPERSET, so that we have a place to
893 attach the SUBSET. */
894 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
895 superset_entry->alias_set = superset;
896 superset_entry->children
897 = splay_tree_new_ggc (splay_tree_compare_ints,
898 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
899 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
900 superset_entry->has_zero_child = 0;
901 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
902 }
903
904 if (subset == 0)
905 superset_entry->has_zero_child = 1;
906 else
907 {
908 subset_entry = get_alias_set_entry (subset);
909 /* If there is an entry for the subset, enter all of its children
910 (if they are not already present) as children of the SUPERSET. */
911 if (subset_entry)
912 {
913 if (subset_entry->has_zero_child)
914 superset_entry->has_zero_child = 1;
915
916 splay_tree_foreach (subset_entry->children, insert_subset_children,
917 superset_entry->children);
918 }
919
920 /* Enter the SUBSET itself as a child of the SUPERSET. */
921 splay_tree_insert (superset_entry->children,
922 (splay_tree_key) subset, 0);
923 }
924 }
925
926 /* Record that component types of TYPE, if any, are part of that type for
927 aliasing purposes. For record types, we only record component types
928 for fields that are not marked non-addressable. For array types, we
929 only record the component type if it is not marked non-aliased. */
930
931 void
932 record_component_aliases (tree type)
933 {
934 alias_set_type superset = get_alias_set (type);
935 tree field;
936
937 if (superset == 0)
938 return;
939
940 switch (TREE_CODE (type))
941 {
942 case RECORD_TYPE:
943 case UNION_TYPE:
944 case QUAL_UNION_TYPE:
945 /* Recursively record aliases for the base classes, if there are any. */
946 if (TYPE_BINFO (type))
947 {
948 int i;
949 tree binfo, base_binfo;
950
951 for (binfo = TYPE_BINFO (type), i = 0;
952 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
953 record_alias_subset (superset,
954 get_alias_set (BINFO_TYPE (base_binfo)));
955 }
956 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
957 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
958 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
959 break;
960
961 case COMPLEX_TYPE:
962 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
963 break;
964
965 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
966 element type. */
967
968 default:
969 break;
970 }
971 }
972
973 /* Allocate an alias set for use in storing and reading from the varargs
974 spill area. */
975
976 static GTY(()) alias_set_type varargs_set = -1;
977
978 alias_set_type
979 get_varargs_alias_set (void)
980 {
981 #if 1
982 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
983 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
984 consistently use the varargs alias set for loads from the varargs
985 area. So don't use it anywhere. */
986 return 0;
987 #else
988 if (varargs_set == -1)
989 varargs_set = new_alias_set ();
990
991 return varargs_set;
992 #endif
993 }
994
995 /* Likewise, but used for the fixed portions of the frame, e.g., register
996 save areas. */
997
998 static GTY(()) alias_set_type frame_set = -1;
999
1000 alias_set_type
1001 get_frame_alias_set (void)
1002 {
1003 if (frame_set == -1)
1004 frame_set = new_alias_set ();
1005
1006 return frame_set;
1007 }
1008
1009 /* Create a new, unique base with id ID. */
1010
1011 static rtx
1012 unique_base_value (HOST_WIDE_INT id)
1013 {
1014 return gen_rtx_ADDRESS (Pmode, id);
1015 }
1016
1017 /* Return true if accesses based on any other base value cannot alias
1018 those based on X. */
1019
1020 static bool
1021 unique_base_value_p (rtx x)
1022 {
1023 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1024 }
1025
1026 /* Return true if X is known to be a base value. */
1027
1028 static bool
1029 known_base_value_p (rtx x)
1030 {
1031 switch (GET_CODE (x))
1032 {
1033 case LABEL_REF:
1034 case SYMBOL_REF:
1035 return true;
1036
1037 case ADDRESS:
1038 /* Arguments may or may not be bases; we don't know for sure. */
1039 return GET_MODE (x) != VOIDmode;
1040
1041 default:
1042 return false;
1043 }
1044 }
1045
1046 /* Inside SRC, the source of a SET, find a base address. */
1047
1048 static rtx
1049 find_base_value (rtx src)
1050 {
1051 unsigned int regno;
1052
1053 #if defined (FIND_BASE_TERM)
1054 /* Try machine-dependent ways to find the base term. */
1055 src = FIND_BASE_TERM (src);
1056 #endif
1057
1058 switch (GET_CODE (src))
1059 {
1060 case SYMBOL_REF:
1061 case LABEL_REF:
1062 return src;
1063
1064 case REG:
1065 regno = REGNO (src);
1066 /* At the start of a function, argument registers have known base
1067 values which may be lost later. Returning an ADDRESS
1068 expression here allows optimization based on argument values
1069 even when the argument registers are used for other purposes. */
1070 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1071 return new_reg_base_value[regno];
1072
1073 /* If a pseudo has a known base value, return it. Do not do this
1074 for non-fixed hard regs since it can result in a circular
1075 dependency chain for registers which have values at function entry.
1076
1077 The test above is not sufficient because the scheduler may move
1078 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1079 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1080 && regno < VEC_length (rtx, reg_base_value))
1081 {
1082 /* If we're inside init_alias_analysis, use new_reg_base_value
1083 to reduce the number of relaxation iterations. */
1084 if (new_reg_base_value && new_reg_base_value[regno]
1085 && DF_REG_DEF_COUNT (regno) == 1)
1086 return new_reg_base_value[regno];
1087
1088 if (VEC_index (rtx, reg_base_value, regno))
1089 return VEC_index (rtx, reg_base_value, regno);
1090 }
1091
1092 return 0;
1093
1094 case MEM:
1095 /* Check for an argument passed in memory. Only record in the
1096 copying-arguments block; it is too hard to track changes
1097 otherwise. */
1098 if (copying_arguments
1099 && (XEXP (src, 0) == arg_pointer_rtx
1100 || (GET_CODE (XEXP (src, 0)) == PLUS
1101 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1102 return arg_base_value;
1103 return 0;
1104
1105 case CONST:
1106 src = XEXP (src, 0);
1107 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1108 break;
1109
1110 /* ... fall through ... */
1111
1112 case PLUS:
1113 case MINUS:
1114 {
1115 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1116
1117 /* If either operand is a REG that is a known pointer, then it
1118 is the base. */
1119 if (REG_P (src_0) && REG_POINTER (src_0))
1120 return find_base_value (src_0);
1121 if (REG_P (src_1) && REG_POINTER (src_1))
1122 return find_base_value (src_1);
1123
1124 /* If either operand is a REG, then see if we already have
1125 a known value for it. */
1126 if (REG_P (src_0))
1127 {
1128 temp = find_base_value (src_0);
1129 if (temp != 0)
1130 src_0 = temp;
1131 }
1132
1133 if (REG_P (src_1))
1134 {
1135 temp = find_base_value (src_1);
1136 if (temp!= 0)
1137 src_1 = temp;
1138 }
1139
1140 /* If either base is named object or a special address
1141 (like an argument or stack reference), then use it for the
1142 base term. */
1143 if (src_0 != 0 && known_base_value_p (src_0))
1144 return src_0;
1145
1146 if (src_1 != 0 && known_base_value_p (src_1))
1147 return src_1;
1148
1149 /* Guess which operand is the base address:
1150 If either operand is a symbol, then it is the base. If
1151 either operand is a CONST_INT, then the other is the base. */
1152 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1153 return find_base_value (src_0);
1154 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1155 return find_base_value (src_1);
1156
1157 return 0;
1158 }
1159
1160 case LO_SUM:
1161 /* The standard form is (lo_sum reg sym) so look only at the
1162 second operand. */
1163 return find_base_value (XEXP (src, 1));
1164
1165 case AND:
1166 /* If the second operand is constant set the base
1167 address to the first operand. */
1168 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1169 return find_base_value (XEXP (src, 0));
1170 return 0;
1171
1172 case TRUNCATE:
1173 /* As we do not know which address space the pointer is referring to, we can
1174 handle this only if the target does not support different pointer or
1175 address modes depending on the address space. */
1176 if (!target_default_pointer_address_modes_p ())
1177 break;
1178 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1179 break;
1180 /* Fall through. */
1181 case HIGH:
1182 case PRE_INC:
1183 case PRE_DEC:
1184 case POST_INC:
1185 case POST_DEC:
1186 case PRE_MODIFY:
1187 case POST_MODIFY:
1188 return find_base_value (XEXP (src, 0));
1189
1190 case ZERO_EXTEND:
1191 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1192 /* As we do not know which address space the pointer is referring to, we can
1193 handle this only if the target does not support different pointer or
1194 address modes depending on the address space. */
1195 if (!target_default_pointer_address_modes_p ())
1196 break;
1197
1198 {
1199 rtx temp = find_base_value (XEXP (src, 0));
1200
1201 if (temp != 0 && CONSTANT_P (temp))
1202 temp = convert_memory_address (Pmode, temp);
1203
1204 return temp;
1205 }
1206
1207 default:
1208 break;
1209 }
1210
1211 return 0;
1212 }
1213
1214 /* Called from init_alias_analysis indirectly through note_stores,
1215 or directly if DEST is a register with a REG_NOALIAS note attached.
1216 SET is null in the latter case. */
1217
1218 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1219 register N has been set in this function. */
1220 static char *reg_seen;
1221
1222 static void
1223 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1224 {
1225 unsigned regno;
1226 rtx src;
1227 int n;
1228
1229 if (!REG_P (dest))
1230 return;
1231
1232 regno = REGNO (dest);
1233
1234 gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
1235
1236 /* If this spans multiple hard registers, then we must indicate that every
1237 register has an unusable value. */
1238 if (regno < FIRST_PSEUDO_REGISTER)
1239 n = hard_regno_nregs[regno][GET_MODE (dest)];
1240 else
1241 n = 1;
1242 if (n != 1)
1243 {
1244 while (--n >= 0)
1245 {
1246 reg_seen[regno + n] = 1;
1247 new_reg_base_value[regno + n] = 0;
1248 }
1249 return;
1250 }
1251
1252 if (set)
1253 {
1254 /* A CLOBBER wipes out any old value but does not prevent a previously
1255 unset register from acquiring a base address (i.e. reg_seen is not
1256 set). */
1257 if (GET_CODE (set) == CLOBBER)
1258 {
1259 new_reg_base_value[regno] = 0;
1260 return;
1261 }
1262 src = SET_SRC (set);
1263 }
1264 else
1265 {
1266 /* There's a REG_NOALIAS note against DEST. */
1267 if (reg_seen[regno])
1268 {
1269 new_reg_base_value[regno] = 0;
1270 return;
1271 }
1272 reg_seen[regno] = 1;
1273 new_reg_base_value[regno] = unique_base_value (unique_id++);
1274 return;
1275 }
1276
1277 /* If this is not the first set of REGNO, see whether the new value
1278 is related to the old one. There are two cases of interest:
1279
1280 (1) The register might be assigned an entirely new value
1281 that has the same base term as the original set.
1282
1283 (2) The set might be a simple self-modification that
1284 cannot change REGNO's base value.
1285
1286 If neither case holds, reject the original base value as invalid.
1287 Note that the following situation is not detected:
1288
1289 extern int x, y; int *p = &x; p += (&y-&x);
1290
1291 ANSI C does not allow computing the difference of addresses
1292 of distinct top level objects. */
1293 if (new_reg_base_value[regno] != 0
1294 && find_base_value (src) != new_reg_base_value[regno])
1295 switch (GET_CODE (src))
1296 {
1297 case LO_SUM:
1298 case MINUS:
1299 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1300 new_reg_base_value[regno] = 0;
1301 break;
1302 case PLUS:
1303 /* If the value we add in the PLUS is also a valid base value,
1304 this might be the actual base value, and the original value
1305 an index. */
1306 {
1307 rtx other = NULL_RTX;
1308
1309 if (XEXP (src, 0) == dest)
1310 other = XEXP (src, 1);
1311 else if (XEXP (src, 1) == dest)
1312 other = XEXP (src, 0);
1313
1314 if (! other || find_base_value (other))
1315 new_reg_base_value[regno] = 0;
1316 break;
1317 }
1318 case AND:
1319 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1320 new_reg_base_value[regno] = 0;
1321 break;
1322 default:
1323 new_reg_base_value[regno] = 0;
1324 break;
1325 }
1326 /* If this is the first set of a register, record the value. */
1327 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1328 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1329 new_reg_base_value[regno] = find_base_value (src);
1330
1331 reg_seen[regno] = 1;
1332 }
1333
1334 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1335 using hard registers with non-null REG_BASE_VALUE for renaming. */
1336 rtx
1337 get_reg_base_value (unsigned int regno)
1338 {
1339 return VEC_index (rtx, reg_base_value, regno);
1340 }
1341
1342 /* If a value is known for REGNO, return it. */
1343
1344 rtx
1345 get_reg_known_value (unsigned int regno)
1346 {
1347 if (regno >= FIRST_PSEUDO_REGISTER)
1348 {
1349 regno -= FIRST_PSEUDO_REGISTER;
1350 if (regno < VEC_length (rtx, reg_known_value))
1351 return VEC_index (rtx, reg_known_value, regno);
1352 }
1353 return NULL;
1354 }
1355
1356 /* Set it. */
1357
1358 static void
1359 set_reg_known_value (unsigned int regno, rtx val)
1360 {
1361 if (regno >= FIRST_PSEUDO_REGISTER)
1362 {
1363 regno -= FIRST_PSEUDO_REGISTER;
1364 if (regno < VEC_length (rtx, reg_known_value))
1365 VEC_replace (rtx, reg_known_value, regno, val);
1366 }
1367 }
1368
1369 /* Similarly for reg_known_equiv_p. */
1370
1371 bool
1372 get_reg_known_equiv_p (unsigned int regno)
1373 {
1374 if (regno >= FIRST_PSEUDO_REGISTER)
1375 {
1376 regno -= FIRST_PSEUDO_REGISTER;
1377 if (regno < VEC_length (rtx, reg_known_value))
1378 return TEST_BIT (reg_known_equiv_p, regno);
1379 }
1380 return false;
1381 }
1382
1383 static void
1384 set_reg_known_equiv_p (unsigned int regno, bool val)
1385 {
1386 if (regno >= FIRST_PSEUDO_REGISTER)
1387 {
1388 regno -= FIRST_PSEUDO_REGISTER;
1389 if (regno < VEC_length (rtx, reg_known_value))
1390 {
1391 if (val)
1392 SET_BIT (reg_known_equiv_p, regno);
1393 else
1394 RESET_BIT (reg_known_equiv_p, regno);
1395 }
1396 }
1397 }
1398
1399
1400 /* Returns a canonical version of X, from the point of view alias
1401 analysis. (For example, if X is a MEM whose address is a register,
1402 and the register has a known value (say a SYMBOL_REF), then a MEM
1403 whose address is the SYMBOL_REF is returned.) */
1404
1405 rtx
1406 canon_rtx (rtx x)
1407 {
1408 /* Recursively look for equivalences. */
1409 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1410 {
1411 rtx t = get_reg_known_value (REGNO (x));
1412 if (t == x)
1413 return x;
1414 if (t)
1415 return canon_rtx (t);
1416 }
1417
1418 if (GET_CODE (x) == PLUS)
1419 {
1420 rtx x0 = canon_rtx (XEXP (x, 0));
1421 rtx x1 = canon_rtx (XEXP (x, 1));
1422
1423 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1424 {
1425 if (CONST_INT_P (x0))
1426 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1427 else if (CONST_INT_P (x1))
1428 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1429 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1430 }
1431 }
1432
1433 /* This gives us much better alias analysis when called from
1434 the loop optimizer. Note we want to leave the original
1435 MEM alone, but need to return the canonicalized MEM with
1436 all the flags with their original values. */
1437 else if (MEM_P (x))
1438 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1439
1440 return x;
1441 }
1442
1443 /* Return 1 if X and Y are identical-looking rtx's.
1444 Expect that X and Y has been already canonicalized.
1445
1446 We use the data in reg_known_value above to see if two registers with
1447 different numbers are, in fact, equivalent. */
1448
1449 static int
1450 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1451 {
1452 int i;
1453 int j;
1454 enum rtx_code code;
1455 const char *fmt;
1456
1457 if (x == 0 && y == 0)
1458 return 1;
1459 if (x == 0 || y == 0)
1460 return 0;
1461
1462 if (x == y)
1463 return 1;
1464
1465 code = GET_CODE (x);
1466 /* Rtx's of different codes cannot be equal. */
1467 if (code != GET_CODE (y))
1468 return 0;
1469
1470 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1471 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1472
1473 if (GET_MODE (x) != GET_MODE (y))
1474 return 0;
1475
1476 /* Some RTL can be compared without a recursive examination. */
1477 switch (code)
1478 {
1479 case REG:
1480 return REGNO (x) == REGNO (y);
1481
1482 case LABEL_REF:
1483 return XEXP (x, 0) == XEXP (y, 0);
1484
1485 case SYMBOL_REF:
1486 return XSTR (x, 0) == XSTR (y, 0);
1487
1488 case VALUE:
1489 case CONST_INT:
1490 case CONST_DOUBLE:
1491 case CONST_FIXED:
1492 /* There's no need to compare the contents of CONST_DOUBLEs or
1493 CONST_INTs because pointer equality is a good enough
1494 comparison for these nodes. */
1495 return 0;
1496
1497 default:
1498 break;
1499 }
1500
1501 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1502 if (code == PLUS)
1503 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1504 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1505 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1506 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1507 /* For commutative operations, the RTX match if the operand match in any
1508 order. Also handle the simple binary and unary cases without a loop. */
1509 if (COMMUTATIVE_P (x))
1510 {
1511 rtx xop0 = canon_rtx (XEXP (x, 0));
1512 rtx yop0 = canon_rtx (XEXP (y, 0));
1513 rtx yop1 = canon_rtx (XEXP (y, 1));
1514
1515 return ((rtx_equal_for_memref_p (xop0, yop0)
1516 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1517 || (rtx_equal_for_memref_p (xop0, yop1)
1518 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1519 }
1520 else if (NON_COMMUTATIVE_P (x))
1521 {
1522 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1523 canon_rtx (XEXP (y, 0)))
1524 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1525 canon_rtx (XEXP (y, 1))));
1526 }
1527 else if (UNARY_P (x))
1528 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1529 canon_rtx (XEXP (y, 0)));
1530
1531 /* Compare the elements. If any pair of corresponding elements
1532 fail to match, return 0 for the whole things.
1533
1534 Limit cases to types which actually appear in addresses. */
1535
1536 fmt = GET_RTX_FORMAT (code);
1537 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1538 {
1539 switch (fmt[i])
1540 {
1541 case 'i':
1542 if (XINT (x, i) != XINT (y, i))
1543 return 0;
1544 break;
1545
1546 case 'E':
1547 /* Two vectors must have the same length. */
1548 if (XVECLEN (x, i) != XVECLEN (y, i))
1549 return 0;
1550
1551 /* And the corresponding elements must match. */
1552 for (j = 0; j < XVECLEN (x, i); j++)
1553 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1554 canon_rtx (XVECEXP (y, i, j))) == 0)
1555 return 0;
1556 break;
1557
1558 case 'e':
1559 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1560 canon_rtx (XEXP (y, i))) == 0)
1561 return 0;
1562 break;
1563
1564 /* This can happen for asm operands. */
1565 case 's':
1566 if (strcmp (XSTR (x, i), XSTR (y, i)))
1567 return 0;
1568 break;
1569
1570 /* This can happen for an asm which clobbers memory. */
1571 case '0':
1572 break;
1573
1574 /* It is believed that rtx's at this level will never
1575 contain anything but integers and other rtx's,
1576 except for within LABEL_REFs and SYMBOL_REFs. */
1577 default:
1578 gcc_unreachable ();
1579 }
1580 }
1581 return 1;
1582 }
1583
1584 static rtx
1585 find_base_term (rtx x)
1586 {
1587 cselib_val *val;
1588 struct elt_loc_list *l, *f;
1589 rtx ret;
1590
1591 #if defined (FIND_BASE_TERM)
1592 /* Try machine-dependent ways to find the base term. */
1593 x = FIND_BASE_TERM (x);
1594 #endif
1595
1596 switch (GET_CODE (x))
1597 {
1598 case REG:
1599 return REG_BASE_VALUE (x);
1600
1601 case TRUNCATE:
1602 /* As we do not know which address space the pointer is referring to, we can
1603 handle this only if the target does not support different pointer or
1604 address modes depending on the address space. */
1605 if (!target_default_pointer_address_modes_p ())
1606 return 0;
1607 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1608 return 0;
1609 /* Fall through. */
1610 case HIGH:
1611 case PRE_INC:
1612 case PRE_DEC:
1613 case POST_INC:
1614 case POST_DEC:
1615 case PRE_MODIFY:
1616 case POST_MODIFY:
1617 return find_base_term (XEXP (x, 0));
1618
1619 case ZERO_EXTEND:
1620 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1621 /* As we do not know which address space the pointer is referring to, we can
1622 handle this only if the target does not support different pointer or
1623 address modes depending on the address space. */
1624 if (!target_default_pointer_address_modes_p ())
1625 return 0;
1626
1627 {
1628 rtx temp = find_base_term (XEXP (x, 0));
1629
1630 if (temp != 0 && CONSTANT_P (temp))
1631 temp = convert_memory_address (Pmode, temp);
1632
1633 return temp;
1634 }
1635
1636 case VALUE:
1637 val = CSELIB_VAL_PTR (x);
1638 ret = NULL_RTX;
1639
1640 if (!val)
1641 return ret;
1642
1643 f = val->locs;
1644 /* Temporarily reset val->locs to avoid infinite recursion. */
1645 val->locs = NULL;
1646
1647 for (l = f; l; l = l->next)
1648 if (GET_CODE (l->loc) == VALUE
1649 && CSELIB_VAL_PTR (l->loc)->locs
1650 && !CSELIB_VAL_PTR (l->loc)->locs->next
1651 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1652 continue;
1653 else if ((ret = find_base_term (l->loc)) != 0)
1654 break;
1655
1656 val->locs = f;
1657 return ret;
1658
1659 case LO_SUM:
1660 /* The standard form is (lo_sum reg sym) so look only at the
1661 second operand. */
1662 return find_base_term (XEXP (x, 1));
1663
1664 case CONST:
1665 x = XEXP (x, 0);
1666 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1667 return 0;
1668 /* Fall through. */
1669 case PLUS:
1670 case MINUS:
1671 {
1672 rtx tmp1 = XEXP (x, 0);
1673 rtx tmp2 = XEXP (x, 1);
1674
1675 /* This is a little bit tricky since we have to determine which of
1676 the two operands represents the real base address. Otherwise this
1677 routine may return the index register instead of the base register.
1678
1679 That may cause us to believe no aliasing was possible, when in
1680 fact aliasing is possible.
1681
1682 We use a few simple tests to guess the base register. Additional
1683 tests can certainly be added. For example, if one of the operands
1684 is a shift or multiply, then it must be the index register and the
1685 other operand is the base register. */
1686
1687 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1688 return find_base_term (tmp2);
1689
1690 /* If either operand is known to be a pointer, then use it
1691 to determine the base term. */
1692 if (REG_P (tmp1) && REG_POINTER (tmp1))
1693 {
1694 rtx base = find_base_term (tmp1);
1695 if (base)
1696 return base;
1697 }
1698
1699 if (REG_P (tmp2) && REG_POINTER (tmp2))
1700 {
1701 rtx base = find_base_term (tmp2);
1702 if (base)
1703 return base;
1704 }
1705
1706 /* Neither operand was known to be a pointer. Go ahead and find the
1707 base term for both operands. */
1708 tmp1 = find_base_term (tmp1);
1709 tmp2 = find_base_term (tmp2);
1710
1711 /* If either base term is named object or a special address
1712 (like an argument or stack reference), then use it for the
1713 base term. */
1714 if (tmp1 != 0 && known_base_value_p (tmp1))
1715 return tmp1;
1716
1717 if (tmp2 != 0 && known_base_value_p (tmp2))
1718 return tmp2;
1719
1720 /* We could not determine which of the two operands was the
1721 base register and which was the index. So we can determine
1722 nothing from the base alias check. */
1723 return 0;
1724 }
1725
1726 case AND:
1727 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1728 return find_base_term (XEXP (x, 0));
1729 return 0;
1730
1731 case SYMBOL_REF:
1732 case LABEL_REF:
1733 return x;
1734
1735 default:
1736 return 0;
1737 }
1738 }
1739
1740 /* Return true if accesses to address X may alias accesses based
1741 on the stack pointer. */
1742
1743 bool
1744 may_be_sp_based_p (rtx x)
1745 {
1746 rtx base = find_base_term (x);
1747 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1748 }
1749
1750 /* Return 0 if the addresses X and Y are known to point to different
1751 objects, 1 if they might be pointers to the same object. */
1752
1753 static int
1754 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1755 enum machine_mode y_mode)
1756 {
1757 rtx x_base = find_base_term (x);
1758 rtx y_base = find_base_term (y);
1759
1760 /* If the address itself has no known base see if a known equivalent
1761 value has one. If either address still has no known base, nothing
1762 is known about aliasing. */
1763 if (x_base == 0)
1764 {
1765 rtx x_c;
1766
1767 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1768 return 1;
1769
1770 x_base = find_base_term (x_c);
1771 if (x_base == 0)
1772 return 1;
1773 }
1774
1775 if (y_base == 0)
1776 {
1777 rtx y_c;
1778 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1779 return 1;
1780
1781 y_base = find_base_term (y_c);
1782 if (y_base == 0)
1783 return 1;
1784 }
1785
1786 /* If the base addresses are equal nothing is known about aliasing. */
1787 if (rtx_equal_p (x_base, y_base))
1788 return 1;
1789
1790 /* The base addresses are different expressions. If they are not accessed
1791 via AND, there is no conflict. We can bring knowledge of object
1792 alignment into play here. For example, on alpha, "char a, b;" can
1793 alias one another, though "char a; long b;" cannot. AND addesses may
1794 implicitly alias surrounding objects; i.e. unaligned access in DImode
1795 via AND address can alias all surrounding object types except those
1796 with aligment 8 or higher. */
1797 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1798 return 1;
1799 if (GET_CODE (x) == AND
1800 && (!CONST_INT_P (XEXP (x, 1))
1801 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1802 return 1;
1803 if (GET_CODE (y) == AND
1804 && (!CONST_INT_P (XEXP (y, 1))
1805 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1806 return 1;
1807
1808 /* Differing symbols not accessed via AND never alias. */
1809 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1810 return 0;
1811
1812 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1813 return 0;
1814
1815 return 1;
1816 }
1817
1818 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1819 whose UID is greater than the int uid that D points to. */
1820
1821 static int
1822 refs_newer_value_cb (rtx *x, void *d)
1823 {
1824 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1825 return 1;
1826
1827 return 0;
1828 }
1829
1830 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1831 that of V. */
1832
1833 static bool
1834 refs_newer_value_p (rtx expr, rtx v)
1835 {
1836 int minuid = CSELIB_VAL_PTR (v)->uid;
1837
1838 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1839 }
1840
1841 /* Convert the address X into something we can use. This is done by returning
1842 it unchanged unless it is a value; in the latter case we call cselib to get
1843 a more useful rtx. */
1844
1845 rtx
1846 get_addr (rtx x)
1847 {
1848 cselib_val *v;
1849 struct elt_loc_list *l;
1850
1851 if (GET_CODE (x) != VALUE)
1852 return x;
1853 v = CSELIB_VAL_PTR (x);
1854 if (v)
1855 {
1856 bool have_equivs = cselib_have_permanent_equivalences ();
1857 if (have_equivs)
1858 v = canonical_cselib_val (v);
1859 for (l = v->locs; l; l = l->next)
1860 if (CONSTANT_P (l->loc))
1861 return l->loc;
1862 for (l = v->locs; l; l = l->next)
1863 if (!REG_P (l->loc) && !MEM_P (l->loc)
1864 /* Avoid infinite recursion when potentially dealing with
1865 var-tracking artificial equivalences, by skipping the
1866 equivalences themselves, and not choosing expressions
1867 that refer to newer VALUEs. */
1868 && (!have_equivs
1869 || (GET_CODE (l->loc) != VALUE
1870 && !refs_newer_value_p (l->loc, x))))
1871 return l->loc;
1872 if (have_equivs)
1873 {
1874 for (l = v->locs; l; l = l->next)
1875 if (REG_P (l->loc)
1876 || (GET_CODE (l->loc) != VALUE
1877 && !refs_newer_value_p (l->loc, x)))
1878 return l->loc;
1879 /* Return the canonical value. */
1880 return v->val_rtx;
1881 }
1882 if (v->locs)
1883 return v->locs->loc;
1884 }
1885 return x;
1886 }
1887
1888 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1889 where SIZE is the size in bytes of the memory reference. If ADDR
1890 is not modified by the memory reference then ADDR is returned. */
1891
1892 static rtx
1893 addr_side_effect_eval (rtx addr, int size, int n_refs)
1894 {
1895 int offset = 0;
1896
1897 switch (GET_CODE (addr))
1898 {
1899 case PRE_INC:
1900 offset = (n_refs + 1) * size;
1901 break;
1902 case PRE_DEC:
1903 offset = -(n_refs + 1) * size;
1904 break;
1905 case POST_INC:
1906 offset = n_refs * size;
1907 break;
1908 case POST_DEC:
1909 offset = -n_refs * size;
1910 break;
1911
1912 default:
1913 return addr;
1914 }
1915
1916 if (offset)
1917 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1918 GEN_INT (offset));
1919 else
1920 addr = XEXP (addr, 0);
1921 addr = canon_rtx (addr);
1922
1923 return addr;
1924 }
1925
1926 /* Return one if X and Y (memory addresses) reference the
1927 same location in memory or if the references overlap.
1928 Return zero if they do not overlap, else return
1929 minus one in which case they still might reference the same location.
1930
1931 C is an offset accumulator. When
1932 C is nonzero, we are testing aliases between X and Y + C.
1933 XSIZE is the size in bytes of the X reference,
1934 similarly YSIZE is the size in bytes for Y.
1935 Expect that canon_rtx has been already called for X and Y.
1936
1937 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1938 referenced (the reference was BLKmode), so make the most pessimistic
1939 assumptions.
1940
1941 If XSIZE or YSIZE is negative, we may access memory outside the object
1942 being referenced as a side effect. This can happen when using AND to
1943 align memory references, as is done on the Alpha.
1944
1945 Nice to notice that varying addresses cannot conflict with fp if no
1946 local variables had their addresses taken, but that's too hard now.
1947
1948 ??? Contrary to the tree alias oracle this does not return
1949 one for X + non-constant and Y + non-constant when X and Y are equal.
1950 If that is fixed the TBAA hack for union type-punning can be removed. */
1951
1952 static int
1953 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1954 {
1955 if (GET_CODE (x) == VALUE)
1956 {
1957 if (REG_P (y))
1958 {
1959 struct elt_loc_list *l = NULL;
1960 if (CSELIB_VAL_PTR (x))
1961 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
1962 l; l = l->next)
1963 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1964 break;
1965 if (l)
1966 x = y;
1967 else
1968 x = get_addr (x);
1969 }
1970 /* Don't call get_addr if y is the same VALUE. */
1971 else if (x != y)
1972 x = get_addr (x);
1973 }
1974 if (GET_CODE (y) == VALUE)
1975 {
1976 if (REG_P (x))
1977 {
1978 struct elt_loc_list *l = NULL;
1979 if (CSELIB_VAL_PTR (y))
1980 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
1981 l; l = l->next)
1982 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1983 break;
1984 if (l)
1985 y = x;
1986 else
1987 y = get_addr (y);
1988 }
1989 /* Don't call get_addr if x is the same VALUE. */
1990 else if (y != x)
1991 y = get_addr (y);
1992 }
1993 if (GET_CODE (x) == HIGH)
1994 x = XEXP (x, 0);
1995 else if (GET_CODE (x) == LO_SUM)
1996 x = XEXP (x, 1);
1997 else
1998 x = addr_side_effect_eval (x, xsize, 0);
1999 if (GET_CODE (y) == HIGH)
2000 y = XEXP (y, 0);
2001 else if (GET_CODE (y) == LO_SUM)
2002 y = XEXP (y, 1);
2003 else
2004 y = addr_side_effect_eval (y, ysize, 0);
2005
2006 if (rtx_equal_for_memref_p (x, y))
2007 {
2008 if (xsize <= 0 || ysize <= 0)
2009 return 1;
2010 if (c >= 0 && xsize > c)
2011 return 1;
2012 if (c < 0 && ysize+c > 0)
2013 return 1;
2014 return 0;
2015 }
2016
2017 /* This code used to check for conflicts involving stack references and
2018 globals but the base address alias code now handles these cases. */
2019
2020 if (GET_CODE (x) == PLUS)
2021 {
2022 /* The fact that X is canonicalized means that this
2023 PLUS rtx is canonicalized. */
2024 rtx x0 = XEXP (x, 0);
2025 rtx x1 = XEXP (x, 1);
2026
2027 if (GET_CODE (y) == PLUS)
2028 {
2029 /* The fact that Y is canonicalized means that this
2030 PLUS rtx is canonicalized. */
2031 rtx y0 = XEXP (y, 0);
2032 rtx y1 = XEXP (y, 1);
2033
2034 if (rtx_equal_for_memref_p (x1, y1))
2035 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2036 if (rtx_equal_for_memref_p (x0, y0))
2037 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2038 if (CONST_INT_P (x1))
2039 {
2040 if (CONST_INT_P (y1))
2041 return memrefs_conflict_p (xsize, x0, ysize, y0,
2042 c - INTVAL (x1) + INTVAL (y1));
2043 else
2044 return memrefs_conflict_p (xsize, x0, ysize, y,
2045 c - INTVAL (x1));
2046 }
2047 else if (CONST_INT_P (y1))
2048 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2049
2050 return -1;
2051 }
2052 else if (CONST_INT_P (x1))
2053 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2054 }
2055 else if (GET_CODE (y) == PLUS)
2056 {
2057 /* The fact that Y is canonicalized means that this
2058 PLUS rtx is canonicalized. */
2059 rtx y0 = XEXP (y, 0);
2060 rtx y1 = XEXP (y, 1);
2061
2062 if (CONST_INT_P (y1))
2063 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2064 else
2065 return -1;
2066 }
2067
2068 if (GET_CODE (x) == GET_CODE (y))
2069 switch (GET_CODE (x))
2070 {
2071 case MULT:
2072 {
2073 /* Handle cases where we expect the second operands to be the
2074 same, and check only whether the first operand would conflict
2075 or not. */
2076 rtx x0, y0;
2077 rtx x1 = canon_rtx (XEXP (x, 1));
2078 rtx y1 = canon_rtx (XEXP (y, 1));
2079 if (! rtx_equal_for_memref_p (x1, y1))
2080 return -1;
2081 x0 = canon_rtx (XEXP (x, 0));
2082 y0 = canon_rtx (XEXP (y, 0));
2083 if (rtx_equal_for_memref_p (x0, y0))
2084 return (xsize == 0 || ysize == 0
2085 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2086
2087 /* Can't properly adjust our sizes. */
2088 if (!CONST_INT_P (x1))
2089 return -1;
2090 xsize /= INTVAL (x1);
2091 ysize /= INTVAL (x1);
2092 c /= INTVAL (x1);
2093 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2094 }
2095
2096 default:
2097 break;
2098 }
2099
2100 /* Deal with alignment ANDs by adjusting offset and size so as to
2101 cover the maximum range, without taking any previously known
2102 alignment into account. */
2103 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2104 {
2105 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2106 unsigned HOST_WIDE_INT uc = sc;
2107 if (xsize > 0 && sc < 0 && -uc == (uc & -uc))
2108 {
2109 xsize -= sc + 1;
2110 c -= sc + 1;
2111 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2112 ysize, y, c);
2113 }
2114 }
2115 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2116 {
2117 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2118 unsigned HOST_WIDE_INT uc = sc;
2119 if (ysize > 0 && sc < 0 && -uc == (uc & -uc))
2120 {
2121 ysize -= sc + 1;
2122 c += sc + 1;
2123 return memrefs_conflict_p (xsize, x,
2124 ysize, canon_rtx (XEXP (y, 0)), c);
2125 }
2126 }
2127
2128 if (CONSTANT_P (x))
2129 {
2130 if (CONST_INT_P (x) && CONST_INT_P (y))
2131 {
2132 c += (INTVAL (y) - INTVAL (x));
2133 return (xsize <= 0 || ysize <= 0
2134 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2135 }
2136
2137 if (GET_CODE (x) == CONST)
2138 {
2139 if (GET_CODE (y) == CONST)
2140 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2141 ysize, canon_rtx (XEXP (y, 0)), c);
2142 else
2143 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2144 ysize, y, c);
2145 }
2146 if (GET_CODE (y) == CONST)
2147 return memrefs_conflict_p (xsize, x, ysize,
2148 canon_rtx (XEXP (y, 0)), c);
2149
2150 if (CONSTANT_P (y))
2151 return (xsize <= 0 || ysize <= 0
2152 || (rtx_equal_for_memref_p (x, y)
2153 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2154
2155 return -1;
2156 }
2157
2158 return -1;
2159 }
2160
2161 /* Functions to compute memory dependencies.
2162
2163 Since we process the insns in execution order, we can build tables
2164 to keep track of what registers are fixed (and not aliased), what registers
2165 are varying in known ways, and what registers are varying in unknown
2166 ways.
2167
2168 If both memory references are volatile, then there must always be a
2169 dependence between the two references, since their order can not be
2170 changed. A volatile and non-volatile reference can be interchanged
2171 though.
2172
2173 We also must allow AND addresses, because they may generate accesses
2174 outside the object being referenced. This is used to generate aligned
2175 addresses from unaligned addresses, for instance, the alpha
2176 storeqi_unaligned pattern. */
2177
2178 /* Read dependence: X is read after read in MEM takes place. There can
2179 only be a dependence here if both reads are volatile. */
2180
2181 int
2182 read_dependence (const_rtx mem, const_rtx x)
2183 {
2184 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
2185 }
2186
2187 /* Return true if we can determine that the fields referenced cannot
2188 overlap for any pair of objects. */
2189
2190 static bool
2191 nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
2192 {
2193 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
2194 const_tree fieldx, fieldy, typex, typey, orig_y;
2195
2196 if (!flag_strict_aliasing
2197 || !x || !y
2198 || TREE_CODE (x) != COMPONENT_REF
2199 || TREE_CODE (y) != COMPONENT_REF)
2200 return false;
2201
2202 do
2203 {
2204 /* The comparison has to be done at a common type, since we don't
2205 know how the inheritance hierarchy works. */
2206 orig_y = y;
2207 do
2208 {
2209 fieldx = TREE_OPERAND (x, 1);
2210 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2211
2212 y = orig_y;
2213 do
2214 {
2215 fieldy = TREE_OPERAND (y, 1);
2216 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2217
2218 if (typex == typey)
2219 goto found;
2220
2221 y = TREE_OPERAND (y, 0);
2222 }
2223 while (y && TREE_CODE (y) == COMPONENT_REF);
2224
2225 x = TREE_OPERAND (x, 0);
2226 }
2227 while (x && TREE_CODE (x) == COMPONENT_REF);
2228 /* Never found a common type. */
2229 return false;
2230
2231 found:
2232 /* If we're left with accessing different fields of a structure,
2233 then no overlap. */
2234 if (TREE_CODE (typex) == RECORD_TYPE
2235 && fieldx != fieldy)
2236 return true;
2237
2238 /* The comparison on the current field failed. If we're accessing
2239 a very nested structure, look at the next outer level. */
2240 x = TREE_OPERAND (x, 0);
2241 y = TREE_OPERAND (y, 0);
2242 }
2243 while (x && y
2244 && TREE_CODE (x) == COMPONENT_REF
2245 && TREE_CODE (y) == COMPONENT_REF);
2246
2247 return false;
2248 }
2249
2250 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2251
2252 static tree
2253 decl_for_component_ref (tree x)
2254 {
2255 do
2256 {
2257 x = TREE_OPERAND (x, 0);
2258 }
2259 while (x && TREE_CODE (x) == COMPONENT_REF);
2260
2261 return x && DECL_P (x) ? x : NULL_TREE;
2262 }
2263
2264 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2265 for the offset of the field reference. *KNOWN_P says whether the
2266 offset is known. */
2267
2268 static void
2269 adjust_offset_for_component_ref (tree x, bool *known_p,
2270 HOST_WIDE_INT *offset)
2271 {
2272 if (!*known_p)
2273 return;
2274 do
2275 {
2276 tree xoffset = component_ref_field_offset (x);
2277 tree field = TREE_OPERAND (x, 1);
2278
2279 if (! host_integerp (xoffset, 1))
2280 {
2281 *known_p = false;
2282 return;
2283 }
2284 *offset += (tree_low_cst (xoffset, 1)
2285 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2286 / BITS_PER_UNIT));
2287
2288 x = TREE_OPERAND (x, 0);
2289 }
2290 while (x && TREE_CODE (x) == COMPONENT_REF);
2291 }
2292
2293 /* Return nonzero if we can determine the exprs corresponding to memrefs
2294 X and Y and they do not overlap.
2295 If LOOP_VARIANT is set, skip offset-based disambiguation */
2296
2297 int
2298 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2299 {
2300 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2301 rtx rtlx, rtly;
2302 rtx basex, basey;
2303 bool moffsetx_known_p, moffsety_known_p;
2304 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2305 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2306
2307 /* Unless both have exprs, we can't tell anything. */
2308 if (exprx == 0 || expry == 0)
2309 return 0;
2310
2311 /* For spill-slot accesses make sure we have valid offsets. */
2312 if ((exprx == get_spill_slot_decl (false)
2313 && ! MEM_OFFSET_KNOWN_P (x))
2314 || (expry == get_spill_slot_decl (false)
2315 && ! MEM_OFFSET_KNOWN_P (y)))
2316 return 0;
2317
2318 /* If the field reference test failed, look at the DECLs involved. */
2319 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2320 if (moffsetx_known_p)
2321 moffsetx = MEM_OFFSET (x);
2322 if (TREE_CODE (exprx) == COMPONENT_REF)
2323 {
2324 tree t = decl_for_component_ref (exprx);
2325 if (! t)
2326 return 0;
2327 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2328 exprx = t;
2329 }
2330
2331 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2332 if (moffsety_known_p)
2333 moffsety = MEM_OFFSET (y);
2334 if (TREE_CODE (expry) == COMPONENT_REF)
2335 {
2336 tree t = decl_for_component_ref (expry);
2337 if (! t)
2338 return 0;
2339 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2340 expry = t;
2341 }
2342
2343 if (! DECL_P (exprx) || ! DECL_P (expry))
2344 return 0;
2345
2346 /* With invalid code we can end up storing into the constant pool.
2347 Bail out to avoid ICEing when creating RTL for this.
2348 See gfortran.dg/lto/20091028-2_0.f90. */
2349 if (TREE_CODE (exprx) == CONST_DECL
2350 || TREE_CODE (expry) == CONST_DECL)
2351 return 1;
2352
2353 rtlx = DECL_RTL (exprx);
2354 rtly = DECL_RTL (expry);
2355
2356 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2357 can't overlap unless they are the same because we never reuse that part
2358 of the stack frame used for locals for spilled pseudos. */
2359 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2360 && ! rtx_equal_p (rtlx, rtly))
2361 return 1;
2362
2363 /* If we have MEMs referring to different address spaces (which can
2364 potentially overlap), we cannot easily tell from the addresses
2365 whether the references overlap. */
2366 if (MEM_P (rtlx) && MEM_P (rtly)
2367 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2368 return 0;
2369
2370 /* Get the base and offsets of both decls. If either is a register, we
2371 know both are and are the same, so use that as the base. The only
2372 we can avoid overlap is if we can deduce that they are nonoverlapping
2373 pieces of that decl, which is very rare. */
2374 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2375 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2376 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2377
2378 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2379 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2380 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2381
2382 /* If the bases are different, we know they do not overlap if both
2383 are constants or if one is a constant and the other a pointer into the
2384 stack frame. Otherwise a different base means we can't tell if they
2385 overlap or not. */
2386 if (! rtx_equal_p (basex, basey))
2387 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2388 || (CONSTANT_P (basex) && REG_P (basey)
2389 && REGNO_PTR_FRAME_P (REGNO (basey)))
2390 || (CONSTANT_P (basey) && REG_P (basex)
2391 && REGNO_PTR_FRAME_P (REGNO (basex))));
2392
2393 /* Offset based disambiguation not appropriate for loop invariant */
2394 if (loop_invariant)
2395 return 0;
2396
2397 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2398 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2399 : -1);
2400 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2401 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2402 : -1);
2403
2404 /* If we have an offset for either memref, it can update the values computed
2405 above. */
2406 if (moffsetx_known_p)
2407 offsetx += moffsetx, sizex -= moffsetx;
2408 if (moffsety_known_p)
2409 offsety += moffsety, sizey -= moffsety;
2410
2411 /* If a memref has both a size and an offset, we can use the smaller size.
2412 We can't do this if the offset isn't known because we must view this
2413 memref as being anywhere inside the DECL's MEM. */
2414 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2415 sizex = MEM_SIZE (x);
2416 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2417 sizey = MEM_SIZE (y);
2418
2419 /* Put the values of the memref with the lower offset in X's values. */
2420 if (offsetx > offsety)
2421 {
2422 tem = offsetx, offsetx = offsety, offsety = tem;
2423 tem = sizex, sizex = sizey, sizey = tem;
2424 }
2425
2426 /* If we don't know the size of the lower-offset value, we can't tell
2427 if they conflict. Otherwise, we do the test. */
2428 return sizex >= 0 && offsety >= offsetx + sizex;
2429 }
2430
2431 /* Helper for true_dependence and canon_true_dependence.
2432 Checks for true dependence: X is read after store in MEM takes place.
2433
2434 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2435 NULL_RTX, and the canonical addresses of MEM and X are both computed
2436 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2437
2438 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2439
2440 Returns 1 if there is a true dependence, 0 otherwise. */
2441
2442 static int
2443 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2444 const_rtx x, rtx x_addr, bool mem_canonicalized)
2445 {
2446 rtx base;
2447 int ret;
2448
2449 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2450 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2451
2452 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2453 return 1;
2454
2455 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2456 This is used in epilogue deallocation functions, and in cselib. */
2457 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2458 return 1;
2459 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2460 return 1;
2461 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2462 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2463 return 1;
2464
2465 /* Read-only memory is by definition never modified, and therefore can't
2466 conflict with anything. We don't expect to find read-only set on MEM,
2467 but stupid user tricks can produce them, so don't die. */
2468 if (MEM_READONLY_P (x))
2469 return 0;
2470
2471 /* If we have MEMs referring to different address spaces (which can
2472 potentially overlap), we cannot easily tell from the addresses
2473 whether the references overlap. */
2474 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2475 return 1;
2476
2477 if (! mem_addr)
2478 {
2479 mem_addr = XEXP (mem, 0);
2480 if (mem_mode == VOIDmode)
2481 mem_mode = GET_MODE (mem);
2482 }
2483
2484 if (! x_addr)
2485 {
2486 x_addr = XEXP (x, 0);
2487 if (!((GET_CODE (x_addr) == VALUE
2488 && GET_CODE (mem_addr) != VALUE
2489 && reg_mentioned_p (x_addr, mem_addr))
2490 || (GET_CODE (x_addr) != VALUE
2491 && GET_CODE (mem_addr) == VALUE
2492 && reg_mentioned_p (mem_addr, x_addr))))
2493 {
2494 x_addr = get_addr (x_addr);
2495 if (! mem_canonicalized)
2496 mem_addr = get_addr (mem_addr);
2497 }
2498 }
2499
2500 base = find_base_term (x_addr);
2501 if (base && (GET_CODE (base) == LABEL_REF
2502 || (GET_CODE (base) == SYMBOL_REF
2503 && CONSTANT_POOL_ADDRESS_P (base))))
2504 return 0;
2505
2506 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2507 return 0;
2508
2509 x_addr = canon_rtx (x_addr);
2510 if (!mem_canonicalized)
2511 mem_addr = canon_rtx (mem_addr);
2512
2513 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2514 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2515 return ret;
2516
2517 if (mems_in_disjoint_alias_sets_p (x, mem))
2518 return 0;
2519
2520 if (nonoverlapping_memrefs_p (mem, x, false))
2521 return 0;
2522
2523 if (nonoverlapping_component_refs_p (mem, x))
2524 return 0;
2525
2526 return rtx_refs_may_alias_p (x, mem, true);
2527 }
2528
2529 /* True dependence: X is read after store in MEM takes place. */
2530
2531 int
2532 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2533 {
2534 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2535 x, NULL_RTX, /*mem_canonicalized=*/false);
2536 }
2537
2538 /* Canonical true dependence: X is read after store in MEM takes place.
2539 Variant of true_dependence which assumes MEM has already been
2540 canonicalized (hence we no longer do that here).
2541 The mem_addr argument has been added, since true_dependence_1 computed
2542 this value prior to canonicalizing. */
2543
2544 int
2545 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2546 const_rtx x, rtx x_addr)
2547 {
2548 return true_dependence_1 (mem, mem_mode, mem_addr,
2549 x, x_addr, /*mem_canonicalized=*/true);
2550 }
2551
2552 /* Returns nonzero if a write to X might alias a previous read from
2553 (or, if WRITEP is nonzero, a write to) MEM. */
2554
2555 static int
2556 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2557 {
2558 rtx x_addr, mem_addr;
2559 rtx base;
2560 int ret;
2561
2562 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2563 return 1;
2564
2565 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2566 This is used in epilogue deallocation functions. */
2567 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2568 return 1;
2569 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2570 return 1;
2571 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2572 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2573 return 1;
2574
2575 /* A read from read-only memory can't conflict with read-write memory. */
2576 if (!writep && MEM_READONLY_P (mem))
2577 return 0;
2578
2579 /* If we have MEMs referring to different address spaces (which can
2580 potentially overlap), we cannot easily tell from the addresses
2581 whether the references overlap. */
2582 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2583 return 1;
2584
2585 x_addr = XEXP (x, 0);
2586 mem_addr = XEXP (mem, 0);
2587 if (!((GET_CODE (x_addr) == VALUE
2588 && GET_CODE (mem_addr) != VALUE
2589 && reg_mentioned_p (x_addr, mem_addr))
2590 || (GET_CODE (x_addr) != VALUE
2591 && GET_CODE (mem_addr) == VALUE
2592 && reg_mentioned_p (mem_addr, x_addr))))
2593 {
2594 x_addr = get_addr (x_addr);
2595 mem_addr = get_addr (mem_addr);
2596 }
2597
2598 if (! writep)
2599 {
2600 base = find_base_term (mem_addr);
2601 if (base && (GET_CODE (base) == LABEL_REF
2602 || (GET_CODE (base) == SYMBOL_REF
2603 && CONSTANT_POOL_ADDRESS_P (base))))
2604 return 0;
2605 }
2606
2607 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2608 GET_MODE (mem)))
2609 return 0;
2610
2611 x_addr = canon_rtx (x_addr);
2612 mem_addr = canon_rtx (mem_addr);
2613
2614 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2615 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2616 return ret;
2617
2618 if (nonoverlapping_memrefs_p (x, mem, false))
2619 return 0;
2620
2621 return rtx_refs_may_alias_p (x, mem, false);
2622 }
2623
2624 /* Anti dependence: X is written after read in MEM takes place. */
2625
2626 int
2627 anti_dependence (const_rtx mem, const_rtx x)
2628 {
2629 return write_dependence_p (mem, x, /*writep=*/0);
2630 }
2631
2632 /* Output dependence: X is written after store in MEM takes place. */
2633
2634 int
2635 output_dependence (const_rtx mem, const_rtx x)
2636 {
2637 return write_dependence_p (mem, x, /*writep=*/1);
2638 }
2639 \f
2640
2641
2642 /* Check whether X may be aliased with MEM. Don't do offset-based
2643 memory disambiguation & TBAA. */
2644 int
2645 may_alias_p (const_rtx mem, const_rtx x)
2646 {
2647 rtx x_addr, mem_addr;
2648
2649 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2650 return 1;
2651
2652 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2653 This is used in epilogue deallocation functions. */
2654 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2655 return 1;
2656 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2657 return 1;
2658 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2659 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2660 return 1;
2661
2662 /* Read-only memory is by definition never modified, and therefore can't
2663 conflict with anything. We don't expect to find read-only set on MEM,
2664 but stupid user tricks can produce them, so don't die. */
2665 if (MEM_READONLY_P (x))
2666 return 0;
2667
2668 /* If we have MEMs referring to different address spaces (which can
2669 potentially overlap), we cannot easily tell from the addresses
2670 whether the references overlap. */
2671 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2672 return 1;
2673
2674 x_addr = XEXP (x, 0);
2675 mem_addr = XEXP (mem, 0);
2676 if (!((GET_CODE (x_addr) == VALUE
2677 && GET_CODE (mem_addr) != VALUE
2678 && reg_mentioned_p (x_addr, mem_addr))
2679 || (GET_CODE (x_addr) != VALUE
2680 && GET_CODE (mem_addr) == VALUE
2681 && reg_mentioned_p (mem_addr, x_addr))))
2682 {
2683 x_addr = get_addr (x_addr);
2684 mem_addr = get_addr (mem_addr);
2685 }
2686
2687 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2688 return 0;
2689
2690 x_addr = canon_rtx (x_addr);
2691 mem_addr = canon_rtx (mem_addr);
2692
2693 if (nonoverlapping_memrefs_p (mem, x, true))
2694 return 0;
2695
2696 /* TBAA not valid for loop_invarint */
2697 return rtx_refs_may_alias_p (x, mem, false);
2698 }
2699
2700 void
2701 init_alias_target (void)
2702 {
2703 int i;
2704
2705 if (!arg_base_value)
2706 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2707
2708 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2709
2710 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2711 /* Check whether this register can hold an incoming pointer
2712 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2713 numbers, so translate if necessary due to register windows. */
2714 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2715 && HARD_REGNO_MODE_OK (i, Pmode))
2716 static_reg_base_value[i] = arg_base_value;
2717
2718 static_reg_base_value[STACK_POINTER_REGNUM]
2719 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2720 static_reg_base_value[ARG_POINTER_REGNUM]
2721 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2722 static_reg_base_value[FRAME_POINTER_REGNUM]
2723 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2724 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2725 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2726 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2727 #endif
2728 }
2729
2730 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2731 to be memory reference. */
2732 static bool memory_modified;
2733 static void
2734 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2735 {
2736 if (MEM_P (x))
2737 {
2738 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2739 memory_modified = true;
2740 }
2741 }
2742
2743
2744 /* Return true when INSN possibly modify memory contents of MEM
2745 (i.e. address can be modified). */
2746 bool
2747 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2748 {
2749 if (!INSN_P (insn))
2750 return false;
2751 memory_modified = false;
2752 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2753 return memory_modified;
2754 }
2755
2756 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2757 array. */
2758
2759 void
2760 init_alias_analysis (void)
2761 {
2762 unsigned int maxreg = max_reg_num ();
2763 int changed, pass;
2764 int i;
2765 unsigned int ui;
2766 rtx insn, val;
2767
2768 timevar_push (TV_ALIAS_ANALYSIS);
2769
2770 reg_known_value = VEC_alloc (rtx, gc, maxreg - FIRST_PSEUDO_REGISTER);
2771 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2772
2773 /* If we have memory allocated from the previous run, use it. */
2774 if (old_reg_base_value)
2775 reg_base_value = old_reg_base_value;
2776
2777 if (reg_base_value)
2778 VEC_truncate (rtx, reg_base_value, 0);
2779
2780 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2781
2782 new_reg_base_value = XNEWVEC (rtx, maxreg);
2783 reg_seen = XNEWVEC (char, maxreg);
2784
2785 /* The basic idea is that each pass through this loop will use the
2786 "constant" information from the previous pass to propagate alias
2787 information through another level of assignments.
2788
2789 This could get expensive if the assignment chains are long. Maybe
2790 we should throttle the number of iterations, possibly based on
2791 the optimization level or flag_expensive_optimizations.
2792
2793 We could propagate more information in the first pass by making use
2794 of DF_REG_DEF_COUNT to determine immediately that the alias information
2795 for a pseudo is "constant".
2796
2797 A program with an uninitialized variable can cause an infinite loop
2798 here. Instead of doing a full dataflow analysis to detect such problems
2799 we just cap the number of iterations for the loop.
2800
2801 The state of the arrays for the set chain in question does not matter
2802 since the program has undefined behavior. */
2803
2804 pass = 0;
2805 do
2806 {
2807 /* Assume nothing will change this iteration of the loop. */
2808 changed = 0;
2809
2810 /* We want to assign the same IDs each iteration of this loop, so
2811 start counting from one each iteration of the loop. */
2812 unique_id = 1;
2813
2814 /* We're at the start of the function each iteration through the
2815 loop, so we're copying arguments. */
2816 copying_arguments = true;
2817
2818 /* Wipe the potential alias information clean for this pass. */
2819 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2820
2821 /* Wipe the reg_seen array clean. */
2822 memset (reg_seen, 0, maxreg);
2823
2824 /* Mark all hard registers which may contain an address.
2825 The stack, frame and argument pointers may contain an address.
2826 An argument register which can hold a Pmode value may contain
2827 an address even if it is not in BASE_REGS.
2828
2829 The address expression is VOIDmode for an argument and
2830 Pmode for other registers. */
2831
2832 memcpy (new_reg_base_value, static_reg_base_value,
2833 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2834
2835 /* Walk the insns adding values to the new_reg_base_value array. */
2836 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2837 {
2838 if (INSN_P (insn))
2839 {
2840 rtx note, set;
2841
2842 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2843 /* The prologue/epilogue insns are not threaded onto the
2844 insn chain until after reload has completed. Thus,
2845 there is no sense wasting time checking if INSN is in
2846 the prologue/epilogue until after reload has completed. */
2847 if (reload_completed
2848 && prologue_epilogue_contains (insn))
2849 continue;
2850 #endif
2851
2852 /* If this insn has a noalias note, process it, Otherwise,
2853 scan for sets. A simple set will have no side effects
2854 which could change the base value of any other register. */
2855
2856 if (GET_CODE (PATTERN (insn)) == SET
2857 && REG_NOTES (insn) != 0
2858 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2859 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2860 else
2861 note_stores (PATTERN (insn), record_set, NULL);
2862
2863 set = single_set (insn);
2864
2865 if (set != 0
2866 && REG_P (SET_DEST (set))
2867 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2868 {
2869 unsigned int regno = REGNO (SET_DEST (set));
2870 rtx src = SET_SRC (set);
2871 rtx t;
2872
2873 note = find_reg_equal_equiv_note (insn);
2874 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2875 && DF_REG_DEF_COUNT (regno) != 1)
2876 note = NULL_RTX;
2877
2878 if (note != NULL_RTX
2879 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2880 && ! rtx_varies_p (XEXP (note, 0), 1)
2881 && ! reg_overlap_mentioned_p (SET_DEST (set),
2882 XEXP (note, 0)))
2883 {
2884 set_reg_known_value (regno, XEXP (note, 0));
2885 set_reg_known_equiv_p (regno,
2886 REG_NOTE_KIND (note) == REG_EQUIV);
2887 }
2888 else if (DF_REG_DEF_COUNT (regno) == 1
2889 && GET_CODE (src) == PLUS
2890 && REG_P (XEXP (src, 0))
2891 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2892 && CONST_INT_P (XEXP (src, 1)))
2893 {
2894 t = plus_constant (GET_MODE (src), t,
2895 INTVAL (XEXP (src, 1)));
2896 set_reg_known_value (regno, t);
2897 set_reg_known_equiv_p (regno, false);
2898 }
2899 else if (DF_REG_DEF_COUNT (regno) == 1
2900 && ! rtx_varies_p (src, 1))
2901 {
2902 set_reg_known_value (regno, src);
2903 set_reg_known_equiv_p (regno, false);
2904 }
2905 }
2906 }
2907 else if (NOTE_P (insn)
2908 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2909 copying_arguments = false;
2910 }
2911
2912 /* Now propagate values from new_reg_base_value to reg_base_value. */
2913 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2914
2915 for (ui = 0; ui < maxreg; ui++)
2916 {
2917 if (new_reg_base_value[ui]
2918 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2919 && ! rtx_equal_p (new_reg_base_value[ui],
2920 VEC_index (rtx, reg_base_value, ui)))
2921 {
2922 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2923 changed = 1;
2924 }
2925 }
2926 }
2927 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2928
2929 /* Fill in the remaining entries. */
2930 FOR_EACH_VEC_ELT (rtx, reg_known_value, i, val)
2931 {
2932 int regno = i + FIRST_PSEUDO_REGISTER;
2933 if (! val)
2934 set_reg_known_value (regno, regno_reg_rtx[regno]);
2935 }
2936
2937 /* Clean up. */
2938 free (new_reg_base_value);
2939 new_reg_base_value = 0;
2940 free (reg_seen);
2941 reg_seen = 0;
2942 timevar_pop (TV_ALIAS_ANALYSIS);
2943 }
2944
2945 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2946 Special API for var-tracking pass purposes. */
2947
2948 void
2949 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2950 {
2951 VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
2952 }
2953
2954 void
2955 end_alias_analysis (void)
2956 {
2957 old_reg_base_value = reg_base_value;
2958 VEC_free (rtx, gc, reg_known_value);
2959 sbitmap_free (reg_known_equiv_p);
2960 }
2961
2962 #include "gt-alias.h"