move many gc hashtab to hash_table
[gcc.git] / gcc / asan.c
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "gimple-expr.h"
31 #include "is-a.h"
32 #include "inchash.h"
33 #include "gimple.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "calls.h"
37 #include "varasm.h"
38 #include "stor-layout.h"
39 #include "tree-iterator.h"
40 #include "cgraph.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-pass.h"
44 #include "asan.h"
45 #include "gimple-pretty-print.h"
46 #include "target.h"
47 #include "expr.h"
48 #include "optabs.h"
49 #include "output.h"
50 #include "tm_p.h"
51 #include "langhooks.h"
52 #include "alloc-pool.h"
53 #include "cfgloop.h"
54 #include "gimple-builder.h"
55 #include "ubsan.h"
56 #include "predict.h"
57 #include "params.h"
58 #include "builtins.h"
59
60 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
61 with <2x slowdown on average.
62
63 The tool consists of two parts:
64 instrumentation module (this file) and a run-time library.
65 The instrumentation module adds a run-time check before every memory insn.
66 For a 8- or 16- byte load accessing address X:
67 ShadowAddr = (X >> 3) + Offset
68 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
69 if (ShadowValue)
70 __asan_report_load8(X);
71 For a load of N bytes (N=1, 2 or 4) from address X:
72 ShadowAddr = (X >> 3) + Offset
73 ShadowValue = *(char*)ShadowAddr;
74 if (ShadowValue)
75 if ((X & 7) + N - 1 > ShadowValue)
76 __asan_report_loadN(X);
77 Stores are instrumented similarly, but using __asan_report_storeN functions.
78 A call too __asan_init_vN() is inserted to the list of module CTORs.
79 N is the version number of the AddressSanitizer API. The changes between the
80 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
81
82 The run-time library redefines malloc (so that redzone are inserted around
83 the allocated memory) and free (so that reuse of free-ed memory is delayed),
84 provides __asan_report* and __asan_init_vN functions.
85
86 Read more:
87 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
88
89 The current implementation supports detection of out-of-bounds and
90 use-after-free in the heap, on the stack and for global variables.
91
92 [Protection of stack variables]
93
94 To understand how detection of out-of-bounds and use-after-free works
95 for stack variables, lets look at this example on x86_64 where the
96 stack grows downward:
97
98 int
99 foo ()
100 {
101 char a[23] = {0};
102 int b[2] = {0};
103
104 a[5] = 1;
105 b[1] = 2;
106
107 return a[5] + b[1];
108 }
109
110 For this function, the stack protected by asan will be organized as
111 follows, from the top of the stack to the bottom:
112
113 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
114
115 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
116 the next slot be 32 bytes aligned; this one is called Partial
117 Redzone; this 32 bytes alignment is an asan constraint]
118
119 Slot 3/ [24 bytes for variable 'a']
120
121 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
122
123 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
124
125 Slot 6/ [8 bytes for variable 'b']
126
127 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
128 'LEFT RedZone']
129
130 The 32 bytes of LEFT red zone at the bottom of the stack can be
131 decomposed as such:
132
133 1/ The first 8 bytes contain a magical asan number that is always
134 0x41B58AB3.
135
136 2/ The following 8 bytes contains a pointer to a string (to be
137 parsed at runtime by the runtime asan library), which format is
138 the following:
139
140 "<function-name> <space> <num-of-variables-on-the-stack>
141 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
142 <length-of-var-in-bytes> ){n} "
143
144 where '(...){n}' means the content inside the parenthesis occurs 'n'
145 times, with 'n' being the number of variables on the stack.
146
147 3/ The following 8 bytes contain the PC of the current function which
148 will be used by the run-time library to print an error message.
149
150 4/ The following 8 bytes are reserved for internal use by the run-time.
151
152 The shadow memory for that stack layout is going to look like this:
153
154 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
155 The F1 byte pattern is a magic number called
156 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
157 the memory for that shadow byte is part of a the LEFT red zone
158 intended to seat at the bottom of the variables on the stack.
159
160 - content of shadow memory 8 bytes for slots 6 and 5:
161 0xF4F4F400. The F4 byte pattern is a magic number
162 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
163 memory region for this shadow byte is a PARTIAL red zone
164 intended to pad a variable A, so that the slot following
165 {A,padding} is 32 bytes aligned.
166
167 Note that the fact that the least significant byte of this
168 shadow memory content is 00 means that 8 bytes of its
169 corresponding memory (which corresponds to the memory of
170 variable 'b') is addressable.
171
172 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
173 The F2 byte pattern is a magic number called
174 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
175 region for this shadow byte is a MIDDLE red zone intended to
176 seat between two 32 aligned slots of {variable,padding}.
177
178 - content of shadow memory 8 bytes for slot 3 and 2:
179 0xF4000000. This represents is the concatenation of
180 variable 'a' and the partial red zone following it, like what we
181 had for variable 'b'. The least significant 3 bytes being 00
182 means that the 3 bytes of variable 'a' are addressable.
183
184 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
185 The F3 byte pattern is a magic number called
186 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
187 region for this shadow byte is a RIGHT red zone intended to seat
188 at the top of the variables of the stack.
189
190 Note that the real variable layout is done in expand_used_vars in
191 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
192 stack variables as well as the different red zones, emits some
193 prologue code to populate the shadow memory as to poison (mark as
194 non-accessible) the regions of the red zones and mark the regions of
195 stack variables as accessible, and emit some epilogue code to
196 un-poison (mark as accessible) the regions of red zones right before
197 the function exits.
198
199 [Protection of global variables]
200
201 The basic idea is to insert a red zone between two global variables
202 and install a constructor function that calls the asan runtime to do
203 the populating of the relevant shadow memory regions at load time.
204
205 So the global variables are laid out as to insert a red zone between
206 them. The size of the red zones is so that each variable starts on a
207 32 bytes boundary.
208
209 Then a constructor function is installed so that, for each global
210 variable, it calls the runtime asan library function
211 __asan_register_globals_with an instance of this type:
212
213 struct __asan_global
214 {
215 // Address of the beginning of the global variable.
216 const void *__beg;
217
218 // Initial size of the global variable.
219 uptr __size;
220
221 // Size of the global variable + size of the red zone. This
222 // size is 32 bytes aligned.
223 uptr __size_with_redzone;
224
225 // Name of the global variable.
226 const void *__name;
227
228 // Name of the module where the global variable is declared.
229 const void *__module_name;
230
231 // 1 if it has dynamic initialization, 0 otherwise.
232 uptr __has_dynamic_init;
233
234 // A pointer to struct that contains source location, could be NULL.
235 __asan_global_source_location *__location;
236 }
237
238 A destructor function that calls the runtime asan library function
239 _asan_unregister_globals is also installed. */
240
241 alias_set_type asan_shadow_set = -1;
242
243 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
244 alias set is used for all shadow memory accesses. */
245 static GTY(()) tree shadow_ptr_types[2];
246
247 /* Decl for __asan_option_detect_stack_use_after_return. */
248 static GTY(()) tree asan_detect_stack_use_after_return;
249
250 /* Various flags for Asan builtins. */
251 enum asan_check_flags
252 {
253 ASAN_CHECK_STORE = 1 << 0,
254 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
255 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
256 ASAN_CHECK_START_INSTRUMENTED = 1 << 3,
257 ASAN_CHECK_END_INSTRUMENTED = 1 << 4,
258 ASAN_CHECK_LAST
259 };
260
261 /* Hashtable support for memory references used by gimple
262 statements. */
263
264 /* This type represents a reference to a memory region. */
265 struct asan_mem_ref
266 {
267 /* The expression of the beginning of the memory region. */
268 tree start;
269
270 /* The size of the access. */
271 HOST_WIDE_INT access_size;
272 };
273
274 static alloc_pool asan_mem_ref_alloc_pool;
275
276 /* This creates the alloc pool used to store the instances of
277 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
278
279 static alloc_pool
280 asan_mem_ref_get_alloc_pool ()
281 {
282 if (asan_mem_ref_alloc_pool == NULL)
283 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
284 sizeof (asan_mem_ref),
285 10);
286 return asan_mem_ref_alloc_pool;
287
288 }
289
290 /* Initializes an instance of asan_mem_ref. */
291
292 static void
293 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
294 {
295 ref->start = start;
296 ref->access_size = access_size;
297 }
298
299 /* Allocates memory for an instance of asan_mem_ref into the memory
300 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
301 START is the address of (or the expression pointing to) the
302 beginning of memory reference. ACCESS_SIZE is the size of the
303 access to the referenced memory. */
304
305 static asan_mem_ref*
306 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
307 {
308 asan_mem_ref *ref =
309 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
310
311 asan_mem_ref_init (ref, start, access_size);
312 return ref;
313 }
314
315 /* This builds and returns a pointer to the end of the memory region
316 that starts at START and of length LEN. */
317
318 tree
319 asan_mem_ref_get_end (tree start, tree len)
320 {
321 if (len == NULL_TREE || integer_zerop (len))
322 return start;
323
324 if (!ptrofftype_p (len))
325 len = convert_to_ptrofftype (len);
326
327 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
328 }
329
330 /* Return a tree expression that represents the end of the referenced
331 memory region. Beware that this function can actually build a new
332 tree expression. */
333
334 tree
335 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
336 {
337 return asan_mem_ref_get_end (ref->start, len);
338 }
339
340 struct asan_mem_ref_hasher
341 : typed_noop_remove <asan_mem_ref>
342 {
343 typedef asan_mem_ref value_type;
344 typedef asan_mem_ref compare_type;
345
346 static inline hashval_t hash (const value_type *);
347 static inline bool equal (const value_type *, const compare_type *);
348 };
349
350 /* Hash a memory reference. */
351
352 inline hashval_t
353 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
354 {
355 inchash::hash hstate;
356 inchash::add_expr (mem_ref->start, hstate);
357 hstate.add_wide_int (mem_ref->access_size);
358 return hstate.end ();
359 }
360
361 /* Compare two memory references. We accept the length of either
362 memory references to be NULL_TREE. */
363
364 inline bool
365 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
366 const asan_mem_ref *m2)
367 {
368 return (m1->access_size == m2->access_size
369 && operand_equal_p (m1->start, m2->start, 0));
370 }
371
372 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
373
374 /* Returns a reference to the hash table containing memory references.
375 This function ensures that the hash table is created. Note that
376 this hash table is updated by the function
377 update_mem_ref_hash_table. */
378
379 static hash_table<asan_mem_ref_hasher> *
380 get_mem_ref_hash_table ()
381 {
382 if (!asan_mem_ref_ht)
383 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
384
385 return asan_mem_ref_ht;
386 }
387
388 /* Clear all entries from the memory references hash table. */
389
390 static void
391 empty_mem_ref_hash_table ()
392 {
393 if (asan_mem_ref_ht)
394 asan_mem_ref_ht->empty ();
395 }
396
397 /* Free the memory references hash table. */
398
399 static void
400 free_mem_ref_resources ()
401 {
402 delete asan_mem_ref_ht;
403 asan_mem_ref_ht = NULL;
404
405 if (asan_mem_ref_alloc_pool)
406 {
407 free_alloc_pool (asan_mem_ref_alloc_pool);
408 asan_mem_ref_alloc_pool = NULL;
409 }
410 }
411
412 /* Return true iff the memory reference REF has been instrumented. */
413
414 static bool
415 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
416 {
417 asan_mem_ref r;
418 asan_mem_ref_init (&r, ref, access_size);
419
420 return (get_mem_ref_hash_table ()->find (&r) != NULL);
421 }
422
423 /* Return true iff the memory reference REF has been instrumented. */
424
425 static bool
426 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
427 {
428 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
429 }
430
431 /* Return true iff access to memory region starting at REF and of
432 length LEN has been instrumented. */
433
434 static bool
435 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
436 {
437 /* First let's see if the address of the beginning of REF has been
438 instrumented. */
439 if (!has_mem_ref_been_instrumented (ref))
440 return false;
441
442 if (len != 0)
443 {
444 /* Let's see if the end of the region has been instrumented. */
445 if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
446 ref->access_size))
447 return false;
448 }
449 return true;
450 }
451
452 /* Set REF to the memory reference present in a gimple assignment
453 ASSIGNMENT. Return true upon successful completion, false
454 otherwise. */
455
456 static bool
457 get_mem_ref_of_assignment (const gimple assignment,
458 asan_mem_ref *ref,
459 bool *ref_is_store)
460 {
461 gcc_assert (gimple_assign_single_p (assignment));
462
463 if (gimple_store_p (assignment)
464 && !gimple_clobber_p (assignment))
465 {
466 ref->start = gimple_assign_lhs (assignment);
467 *ref_is_store = true;
468 }
469 else if (gimple_assign_load_p (assignment))
470 {
471 ref->start = gimple_assign_rhs1 (assignment);
472 *ref_is_store = false;
473 }
474 else
475 return false;
476
477 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
478 return true;
479 }
480
481 /* Return the memory references contained in a gimple statement
482 representing a builtin call that has to do with memory access. */
483
484 static bool
485 get_mem_refs_of_builtin_call (const gimple call,
486 asan_mem_ref *src0,
487 tree *src0_len,
488 bool *src0_is_store,
489 asan_mem_ref *src1,
490 tree *src1_len,
491 bool *src1_is_store,
492 asan_mem_ref *dst,
493 tree *dst_len,
494 bool *dst_is_store,
495 bool *dest_is_deref)
496 {
497 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
498
499 tree callee = gimple_call_fndecl (call);
500 tree source0 = NULL_TREE, source1 = NULL_TREE,
501 dest = NULL_TREE, len = NULL_TREE;
502 bool is_store = true, got_reference_p = false;
503 HOST_WIDE_INT access_size = 1;
504
505 switch (DECL_FUNCTION_CODE (callee))
506 {
507 /* (s, s, n) style memops. */
508 case BUILT_IN_BCMP:
509 case BUILT_IN_MEMCMP:
510 source0 = gimple_call_arg (call, 0);
511 source1 = gimple_call_arg (call, 1);
512 len = gimple_call_arg (call, 2);
513 break;
514
515 /* (src, dest, n) style memops. */
516 case BUILT_IN_BCOPY:
517 source0 = gimple_call_arg (call, 0);
518 dest = gimple_call_arg (call, 1);
519 len = gimple_call_arg (call, 2);
520 break;
521
522 /* (dest, src, n) style memops. */
523 case BUILT_IN_MEMCPY:
524 case BUILT_IN_MEMCPY_CHK:
525 case BUILT_IN_MEMMOVE:
526 case BUILT_IN_MEMMOVE_CHK:
527 case BUILT_IN_MEMPCPY:
528 case BUILT_IN_MEMPCPY_CHK:
529 dest = gimple_call_arg (call, 0);
530 source0 = gimple_call_arg (call, 1);
531 len = gimple_call_arg (call, 2);
532 break;
533
534 /* (dest, n) style memops. */
535 case BUILT_IN_BZERO:
536 dest = gimple_call_arg (call, 0);
537 len = gimple_call_arg (call, 1);
538 break;
539
540 /* (dest, x, n) style memops*/
541 case BUILT_IN_MEMSET:
542 case BUILT_IN_MEMSET_CHK:
543 dest = gimple_call_arg (call, 0);
544 len = gimple_call_arg (call, 2);
545 break;
546
547 case BUILT_IN_STRLEN:
548 source0 = gimple_call_arg (call, 0);
549 len = gimple_call_lhs (call);
550 break ;
551
552 /* And now the __atomic* and __sync builtins.
553 These are handled differently from the classical memory memory
554 access builtins above. */
555
556 case BUILT_IN_ATOMIC_LOAD_1:
557 case BUILT_IN_ATOMIC_LOAD_2:
558 case BUILT_IN_ATOMIC_LOAD_4:
559 case BUILT_IN_ATOMIC_LOAD_8:
560 case BUILT_IN_ATOMIC_LOAD_16:
561 is_store = false;
562 /* fall through. */
563
564 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
565 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
566 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
567 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
568 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
569
570 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
571 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
572 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
573 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
574 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
575
576 case BUILT_IN_SYNC_FETCH_AND_OR_1:
577 case BUILT_IN_SYNC_FETCH_AND_OR_2:
578 case BUILT_IN_SYNC_FETCH_AND_OR_4:
579 case BUILT_IN_SYNC_FETCH_AND_OR_8:
580 case BUILT_IN_SYNC_FETCH_AND_OR_16:
581
582 case BUILT_IN_SYNC_FETCH_AND_AND_1:
583 case BUILT_IN_SYNC_FETCH_AND_AND_2:
584 case BUILT_IN_SYNC_FETCH_AND_AND_4:
585 case BUILT_IN_SYNC_FETCH_AND_AND_8:
586 case BUILT_IN_SYNC_FETCH_AND_AND_16:
587
588 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
589 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
590 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
591 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
592 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
593
594 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
595 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
596 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
597 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
598
599 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
600 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
601 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
602 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
603 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
604
605 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
606 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
607 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
608 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
609 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
610
611 case BUILT_IN_SYNC_OR_AND_FETCH_1:
612 case BUILT_IN_SYNC_OR_AND_FETCH_2:
613 case BUILT_IN_SYNC_OR_AND_FETCH_4:
614 case BUILT_IN_SYNC_OR_AND_FETCH_8:
615 case BUILT_IN_SYNC_OR_AND_FETCH_16:
616
617 case BUILT_IN_SYNC_AND_AND_FETCH_1:
618 case BUILT_IN_SYNC_AND_AND_FETCH_2:
619 case BUILT_IN_SYNC_AND_AND_FETCH_4:
620 case BUILT_IN_SYNC_AND_AND_FETCH_8:
621 case BUILT_IN_SYNC_AND_AND_FETCH_16:
622
623 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
624 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
625 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
626 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
627 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
628
629 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
630 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
631 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
632 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
633
634 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
635 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
636 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
637 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
638 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
639
640 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
641 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
642 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
643 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
644 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
645
646 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
647 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
648 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
649 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
650 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
651
652 case BUILT_IN_SYNC_LOCK_RELEASE_1:
653 case BUILT_IN_SYNC_LOCK_RELEASE_2:
654 case BUILT_IN_SYNC_LOCK_RELEASE_4:
655 case BUILT_IN_SYNC_LOCK_RELEASE_8:
656 case BUILT_IN_SYNC_LOCK_RELEASE_16:
657
658 case BUILT_IN_ATOMIC_EXCHANGE_1:
659 case BUILT_IN_ATOMIC_EXCHANGE_2:
660 case BUILT_IN_ATOMIC_EXCHANGE_4:
661 case BUILT_IN_ATOMIC_EXCHANGE_8:
662 case BUILT_IN_ATOMIC_EXCHANGE_16:
663
664 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
665 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
666 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
667 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
668 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
669
670 case BUILT_IN_ATOMIC_STORE_1:
671 case BUILT_IN_ATOMIC_STORE_2:
672 case BUILT_IN_ATOMIC_STORE_4:
673 case BUILT_IN_ATOMIC_STORE_8:
674 case BUILT_IN_ATOMIC_STORE_16:
675
676 case BUILT_IN_ATOMIC_ADD_FETCH_1:
677 case BUILT_IN_ATOMIC_ADD_FETCH_2:
678 case BUILT_IN_ATOMIC_ADD_FETCH_4:
679 case BUILT_IN_ATOMIC_ADD_FETCH_8:
680 case BUILT_IN_ATOMIC_ADD_FETCH_16:
681
682 case BUILT_IN_ATOMIC_SUB_FETCH_1:
683 case BUILT_IN_ATOMIC_SUB_FETCH_2:
684 case BUILT_IN_ATOMIC_SUB_FETCH_4:
685 case BUILT_IN_ATOMIC_SUB_FETCH_8:
686 case BUILT_IN_ATOMIC_SUB_FETCH_16:
687
688 case BUILT_IN_ATOMIC_AND_FETCH_1:
689 case BUILT_IN_ATOMIC_AND_FETCH_2:
690 case BUILT_IN_ATOMIC_AND_FETCH_4:
691 case BUILT_IN_ATOMIC_AND_FETCH_8:
692 case BUILT_IN_ATOMIC_AND_FETCH_16:
693
694 case BUILT_IN_ATOMIC_NAND_FETCH_1:
695 case BUILT_IN_ATOMIC_NAND_FETCH_2:
696 case BUILT_IN_ATOMIC_NAND_FETCH_4:
697 case BUILT_IN_ATOMIC_NAND_FETCH_8:
698 case BUILT_IN_ATOMIC_NAND_FETCH_16:
699
700 case BUILT_IN_ATOMIC_XOR_FETCH_1:
701 case BUILT_IN_ATOMIC_XOR_FETCH_2:
702 case BUILT_IN_ATOMIC_XOR_FETCH_4:
703 case BUILT_IN_ATOMIC_XOR_FETCH_8:
704 case BUILT_IN_ATOMIC_XOR_FETCH_16:
705
706 case BUILT_IN_ATOMIC_OR_FETCH_1:
707 case BUILT_IN_ATOMIC_OR_FETCH_2:
708 case BUILT_IN_ATOMIC_OR_FETCH_4:
709 case BUILT_IN_ATOMIC_OR_FETCH_8:
710 case BUILT_IN_ATOMIC_OR_FETCH_16:
711
712 case BUILT_IN_ATOMIC_FETCH_ADD_1:
713 case BUILT_IN_ATOMIC_FETCH_ADD_2:
714 case BUILT_IN_ATOMIC_FETCH_ADD_4:
715 case BUILT_IN_ATOMIC_FETCH_ADD_8:
716 case BUILT_IN_ATOMIC_FETCH_ADD_16:
717
718 case BUILT_IN_ATOMIC_FETCH_SUB_1:
719 case BUILT_IN_ATOMIC_FETCH_SUB_2:
720 case BUILT_IN_ATOMIC_FETCH_SUB_4:
721 case BUILT_IN_ATOMIC_FETCH_SUB_8:
722 case BUILT_IN_ATOMIC_FETCH_SUB_16:
723
724 case BUILT_IN_ATOMIC_FETCH_AND_1:
725 case BUILT_IN_ATOMIC_FETCH_AND_2:
726 case BUILT_IN_ATOMIC_FETCH_AND_4:
727 case BUILT_IN_ATOMIC_FETCH_AND_8:
728 case BUILT_IN_ATOMIC_FETCH_AND_16:
729
730 case BUILT_IN_ATOMIC_FETCH_NAND_1:
731 case BUILT_IN_ATOMIC_FETCH_NAND_2:
732 case BUILT_IN_ATOMIC_FETCH_NAND_4:
733 case BUILT_IN_ATOMIC_FETCH_NAND_8:
734 case BUILT_IN_ATOMIC_FETCH_NAND_16:
735
736 case BUILT_IN_ATOMIC_FETCH_XOR_1:
737 case BUILT_IN_ATOMIC_FETCH_XOR_2:
738 case BUILT_IN_ATOMIC_FETCH_XOR_4:
739 case BUILT_IN_ATOMIC_FETCH_XOR_8:
740 case BUILT_IN_ATOMIC_FETCH_XOR_16:
741
742 case BUILT_IN_ATOMIC_FETCH_OR_1:
743 case BUILT_IN_ATOMIC_FETCH_OR_2:
744 case BUILT_IN_ATOMIC_FETCH_OR_4:
745 case BUILT_IN_ATOMIC_FETCH_OR_8:
746 case BUILT_IN_ATOMIC_FETCH_OR_16:
747 {
748 dest = gimple_call_arg (call, 0);
749 /* DEST represents the address of a memory location.
750 instrument_derefs wants the memory location, so lets
751 dereference the address DEST before handing it to
752 instrument_derefs. */
753 if (TREE_CODE (dest) == ADDR_EXPR)
754 dest = TREE_OPERAND (dest, 0);
755 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
756 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
757 dest, build_int_cst (TREE_TYPE (dest), 0));
758 else
759 gcc_unreachable ();
760
761 access_size = int_size_in_bytes (TREE_TYPE (dest));
762 }
763
764 default:
765 /* The other builtins memory access are not instrumented in this
766 function because they either don't have any length parameter,
767 or their length parameter is just a limit. */
768 break;
769 }
770
771 if (len != NULL_TREE)
772 {
773 if (source0 != NULL_TREE)
774 {
775 src0->start = source0;
776 src0->access_size = access_size;
777 *src0_len = len;
778 *src0_is_store = false;
779 }
780
781 if (source1 != NULL_TREE)
782 {
783 src1->start = source1;
784 src1->access_size = access_size;
785 *src1_len = len;
786 *src1_is_store = false;
787 }
788
789 if (dest != NULL_TREE)
790 {
791 dst->start = dest;
792 dst->access_size = access_size;
793 *dst_len = len;
794 *dst_is_store = true;
795 }
796
797 got_reference_p = true;
798 }
799 else if (dest)
800 {
801 dst->start = dest;
802 dst->access_size = access_size;
803 *dst_len = NULL_TREE;
804 *dst_is_store = is_store;
805 *dest_is_deref = true;
806 got_reference_p = true;
807 }
808
809 return got_reference_p;
810 }
811
812 /* Return true iff a given gimple statement has been instrumented.
813 Note that the statement is "defined" by the memory references it
814 contains. */
815
816 static bool
817 has_stmt_been_instrumented_p (gimple stmt)
818 {
819 if (gimple_assign_single_p (stmt))
820 {
821 bool r_is_store;
822 asan_mem_ref r;
823 asan_mem_ref_init (&r, NULL, 1);
824
825 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
826 return has_mem_ref_been_instrumented (&r);
827 }
828 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
829 {
830 asan_mem_ref src0, src1, dest;
831 asan_mem_ref_init (&src0, NULL, 1);
832 asan_mem_ref_init (&src1, NULL, 1);
833 asan_mem_ref_init (&dest, NULL, 1);
834
835 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
836 bool src0_is_store = false, src1_is_store = false,
837 dest_is_store = false, dest_is_deref = false;
838 if (get_mem_refs_of_builtin_call (stmt,
839 &src0, &src0_len, &src0_is_store,
840 &src1, &src1_len, &src1_is_store,
841 &dest, &dest_len, &dest_is_store,
842 &dest_is_deref))
843 {
844 if (src0.start != NULL_TREE
845 && !has_mem_ref_been_instrumented (&src0, src0_len))
846 return false;
847
848 if (src1.start != NULL_TREE
849 && !has_mem_ref_been_instrumented (&src1, src1_len))
850 return false;
851
852 if (dest.start != NULL_TREE
853 && !has_mem_ref_been_instrumented (&dest, dest_len))
854 return false;
855
856 return true;
857 }
858 }
859 return false;
860 }
861
862 /* Insert a memory reference into the hash table. */
863
864 static void
865 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
866 {
867 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
868
869 asan_mem_ref r;
870 asan_mem_ref_init (&r, ref, access_size);
871
872 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
873 if (*slot == NULL)
874 *slot = asan_mem_ref_new (ref, access_size);
875 }
876
877 /* Initialize shadow_ptr_types array. */
878
879 static void
880 asan_init_shadow_ptr_types (void)
881 {
882 asan_shadow_set = new_alias_set ();
883 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
884 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
885 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
886 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
887 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
888 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
889 initialize_sanitizer_builtins ();
890 }
891
892 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
893
894 static tree
895 asan_pp_string (pretty_printer *pp)
896 {
897 const char *buf = pp_formatted_text (pp);
898 size_t len = strlen (buf);
899 tree ret = build_string (len + 1, buf);
900 TREE_TYPE (ret)
901 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
902 build_index_type (size_int (len)));
903 TREE_READONLY (ret) = 1;
904 TREE_STATIC (ret) = 1;
905 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
906 }
907
908 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
909
910 static rtx
911 asan_shadow_cst (unsigned char shadow_bytes[4])
912 {
913 int i;
914 unsigned HOST_WIDE_INT val = 0;
915 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
916 for (i = 0; i < 4; i++)
917 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
918 << (BITS_PER_UNIT * i);
919 return gen_int_mode (val, SImode);
920 }
921
922 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
923 though. */
924
925 static void
926 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
927 {
928 rtx_insn *insn, *insns, *jump;
929 rtx_code_label *top_label;
930 rtx end, addr, tmp;
931
932 start_sequence ();
933 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
934 insns = get_insns ();
935 end_sequence ();
936 for (insn = insns; insn; insn = NEXT_INSN (insn))
937 if (CALL_P (insn))
938 break;
939 if (insn == NULL_RTX)
940 {
941 emit_insn (insns);
942 return;
943 }
944
945 gcc_assert ((len & 3) == 0);
946 top_label = gen_label_rtx ();
947 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
948 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
949 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
950 emit_label (top_label);
951
952 emit_move_insn (shadow_mem, const0_rtx);
953 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
954 true, OPTAB_LIB_WIDEN);
955 if (tmp != addr)
956 emit_move_insn (addr, tmp);
957 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
958 jump = get_last_insn ();
959 gcc_assert (JUMP_P (jump));
960 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
961 }
962
963 void
964 asan_function_start (void)
965 {
966 section *fnsec = function_section (current_function_decl);
967 switch_to_section (fnsec);
968 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
969 current_function_funcdef_no);
970 }
971
972 /* Insert code to protect stack vars. The prologue sequence should be emitted
973 directly, epilogue sequence returned. BASE is the register holding the
974 stack base, against which OFFSETS array offsets are relative to, OFFSETS
975 array contains pairs of offsets in reverse order, always the end offset
976 of some gap that needs protection followed by starting offset,
977 and DECLS is an array of representative decls for each var partition.
978 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
979 elements long (OFFSETS include gap before the first variable as well
980 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
981 register which stack vars DECL_RTLs are based on. Either BASE should be
982 assigned to PBASE, when not doing use after return protection, or
983 corresponding address based on __asan_stack_malloc* return value. */
984
985 rtx_insn *
986 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
987 HOST_WIDE_INT *offsets, tree *decls, int length)
988 {
989 rtx shadow_base, shadow_mem, ret, mem, orig_base;
990 rtx_code_label *lab;
991 rtx_insn *insns;
992 char buf[30];
993 unsigned char shadow_bytes[4];
994 HOST_WIDE_INT base_offset = offsets[length - 1];
995 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
996 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
997 HOST_WIDE_INT last_offset, last_size;
998 int l;
999 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1000 tree str_cst, decl, id;
1001 int use_after_return_class = -1;
1002
1003 if (shadow_ptr_types[0] == NULL_TREE)
1004 asan_init_shadow_ptr_types ();
1005
1006 /* First of all, prepare the description string. */
1007 pretty_printer asan_pp;
1008
1009 pp_decimal_int (&asan_pp, length / 2 - 1);
1010 pp_space (&asan_pp);
1011 for (l = length - 2; l; l -= 2)
1012 {
1013 tree decl = decls[l / 2 - 1];
1014 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1015 pp_space (&asan_pp);
1016 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1017 pp_space (&asan_pp);
1018 if (DECL_P (decl) && DECL_NAME (decl))
1019 {
1020 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1021 pp_space (&asan_pp);
1022 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1023 }
1024 else
1025 pp_string (&asan_pp, "9 <unknown>");
1026 pp_space (&asan_pp);
1027 }
1028 str_cst = asan_pp_string (&asan_pp);
1029
1030 /* Emit the prologue sequence. */
1031 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1032 && ASAN_USE_AFTER_RETURN)
1033 {
1034 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1035 /* __asan_stack_malloc_N guarantees alignment
1036 N < 6 ? (64 << N) : 4096 bytes. */
1037 if (alignb > (use_after_return_class < 6
1038 ? (64U << use_after_return_class) : 4096U))
1039 use_after_return_class = -1;
1040 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1041 base_align_bias = ((asan_frame_size + alignb - 1)
1042 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1043 }
1044 /* Align base if target is STRICT_ALIGNMENT. */
1045 if (STRICT_ALIGNMENT)
1046 base = expand_binop (Pmode, and_optab, base,
1047 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1048 << ASAN_SHADOW_SHIFT)
1049 / BITS_PER_UNIT), Pmode), NULL_RTX,
1050 1, OPTAB_DIRECT);
1051
1052 if (use_after_return_class == -1 && pbase)
1053 emit_move_insn (pbase, base);
1054
1055 base = expand_binop (Pmode, add_optab, base,
1056 gen_int_mode (base_offset - base_align_bias, Pmode),
1057 NULL_RTX, 1, OPTAB_DIRECT);
1058 orig_base = NULL_RTX;
1059 if (use_after_return_class != -1)
1060 {
1061 if (asan_detect_stack_use_after_return == NULL_TREE)
1062 {
1063 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1064 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1065 integer_type_node);
1066 SET_DECL_ASSEMBLER_NAME (decl, id);
1067 TREE_ADDRESSABLE (decl) = 1;
1068 DECL_ARTIFICIAL (decl) = 1;
1069 DECL_IGNORED_P (decl) = 1;
1070 DECL_EXTERNAL (decl) = 1;
1071 TREE_STATIC (decl) = 1;
1072 TREE_PUBLIC (decl) = 1;
1073 TREE_USED (decl) = 1;
1074 asan_detect_stack_use_after_return = decl;
1075 }
1076 orig_base = gen_reg_rtx (Pmode);
1077 emit_move_insn (orig_base, base);
1078 ret = expand_normal (asan_detect_stack_use_after_return);
1079 lab = gen_label_rtx ();
1080 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1081 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1082 VOIDmode, 0, lab, very_likely);
1083 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1084 use_after_return_class);
1085 ret = init_one_libfunc (buf);
1086 rtx addr = convert_memory_address (ptr_mode, base);
1087 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1088 GEN_INT (asan_frame_size
1089 + base_align_bias),
1090 TYPE_MODE (pointer_sized_int_node),
1091 addr, ptr_mode);
1092 ret = convert_memory_address (Pmode, ret);
1093 emit_move_insn (base, ret);
1094 emit_label (lab);
1095 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1096 gen_int_mode (base_align_bias
1097 - base_offset, Pmode),
1098 NULL_RTX, 1, OPTAB_DIRECT));
1099 }
1100 mem = gen_rtx_MEM (ptr_mode, base);
1101 mem = adjust_address (mem, VOIDmode, base_align_bias);
1102 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1103 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1104 emit_move_insn (mem, expand_normal (str_cst));
1105 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1106 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1107 id = get_identifier (buf);
1108 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1109 VAR_DECL, id, char_type_node);
1110 SET_DECL_ASSEMBLER_NAME (decl, id);
1111 TREE_ADDRESSABLE (decl) = 1;
1112 TREE_READONLY (decl) = 1;
1113 DECL_ARTIFICIAL (decl) = 1;
1114 DECL_IGNORED_P (decl) = 1;
1115 TREE_STATIC (decl) = 1;
1116 TREE_PUBLIC (decl) = 0;
1117 TREE_USED (decl) = 1;
1118 DECL_INITIAL (decl) = decl;
1119 TREE_ASM_WRITTEN (decl) = 1;
1120 TREE_ASM_WRITTEN (id) = 1;
1121 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1122 shadow_base = expand_binop (Pmode, lshr_optab, base,
1123 GEN_INT (ASAN_SHADOW_SHIFT),
1124 NULL_RTX, 1, OPTAB_DIRECT);
1125 shadow_base
1126 = plus_constant (Pmode, shadow_base,
1127 targetm.asan_shadow_offset ()
1128 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1129 gcc_assert (asan_shadow_set != -1
1130 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1131 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1132 set_mem_alias_set (shadow_mem, asan_shadow_set);
1133 if (STRICT_ALIGNMENT)
1134 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1135 prev_offset = base_offset;
1136 for (l = length; l; l -= 2)
1137 {
1138 if (l == 2)
1139 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1140 offset = offsets[l - 1];
1141 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1142 {
1143 int i;
1144 HOST_WIDE_INT aoff
1145 = base_offset + ((offset - base_offset)
1146 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1147 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1148 (aoff - prev_offset)
1149 >> ASAN_SHADOW_SHIFT);
1150 prev_offset = aoff;
1151 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1152 if (aoff < offset)
1153 {
1154 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1155 shadow_bytes[i] = 0;
1156 else
1157 shadow_bytes[i] = offset - aoff;
1158 }
1159 else
1160 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1161 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1162 offset = aoff;
1163 }
1164 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1165 {
1166 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1167 (offset - prev_offset)
1168 >> ASAN_SHADOW_SHIFT);
1169 prev_offset = offset;
1170 memset (shadow_bytes, cur_shadow_byte, 4);
1171 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1172 offset += ASAN_RED_ZONE_SIZE;
1173 }
1174 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1175 }
1176 do_pending_stack_adjust ();
1177
1178 /* Construct epilogue sequence. */
1179 start_sequence ();
1180
1181 lab = NULL;
1182 if (use_after_return_class != -1)
1183 {
1184 rtx_code_label *lab2 = gen_label_rtx ();
1185 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1186 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1187 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1188 VOIDmode, 0, lab2, very_likely);
1189 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1190 set_mem_alias_set (shadow_mem, asan_shadow_set);
1191 mem = gen_rtx_MEM (ptr_mode, base);
1192 mem = adjust_address (mem, VOIDmode, base_align_bias);
1193 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1194 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1195 if (use_after_return_class < 5
1196 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1197 BITS_PER_UNIT, true))
1198 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1199 BITS_PER_UNIT, true, 0);
1200 else if (use_after_return_class >= 5
1201 || !set_storage_via_setmem (shadow_mem,
1202 GEN_INT (sz),
1203 gen_int_mode (c, QImode),
1204 BITS_PER_UNIT, BITS_PER_UNIT,
1205 -1, sz, sz, sz))
1206 {
1207 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1208 use_after_return_class);
1209 ret = init_one_libfunc (buf);
1210 rtx addr = convert_memory_address (ptr_mode, base);
1211 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1212 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1213 GEN_INT (asan_frame_size + base_align_bias),
1214 TYPE_MODE (pointer_sized_int_node),
1215 orig_addr, ptr_mode);
1216 }
1217 lab = gen_label_rtx ();
1218 emit_jump (lab);
1219 emit_label (lab2);
1220 }
1221
1222 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1223 set_mem_alias_set (shadow_mem, asan_shadow_set);
1224
1225 if (STRICT_ALIGNMENT)
1226 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1227
1228 prev_offset = base_offset;
1229 last_offset = base_offset;
1230 last_size = 0;
1231 for (l = length; l; l -= 2)
1232 {
1233 offset = base_offset + ((offsets[l - 1] - base_offset)
1234 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1235 if (last_offset + last_size != offset)
1236 {
1237 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1238 (last_offset - prev_offset)
1239 >> ASAN_SHADOW_SHIFT);
1240 prev_offset = last_offset;
1241 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1242 last_offset = offset;
1243 last_size = 0;
1244 }
1245 last_size += base_offset + ((offsets[l - 2] - base_offset)
1246 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1247 - offset;
1248 }
1249 if (last_size)
1250 {
1251 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1252 (last_offset - prev_offset)
1253 >> ASAN_SHADOW_SHIFT);
1254 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1255 }
1256
1257 do_pending_stack_adjust ();
1258 if (lab)
1259 emit_label (lab);
1260
1261 insns = get_insns ();
1262 end_sequence ();
1263 return insns;
1264 }
1265
1266 /* Return true if DECL, a global var, might be overridden and needs
1267 therefore a local alias. */
1268
1269 static bool
1270 asan_needs_local_alias (tree decl)
1271 {
1272 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1273 }
1274
1275 /* Return true if DECL is a VAR_DECL that should be protected
1276 by Address Sanitizer, by appending a red zone with protected
1277 shadow memory after it and aligning it to at least
1278 ASAN_RED_ZONE_SIZE bytes. */
1279
1280 bool
1281 asan_protect_global (tree decl)
1282 {
1283 if (!ASAN_GLOBALS)
1284 return false;
1285
1286 rtx rtl, symbol;
1287
1288 if (TREE_CODE (decl) == STRING_CST)
1289 {
1290 /* Instrument all STRING_CSTs except those created
1291 by asan_pp_string here. */
1292 if (shadow_ptr_types[0] != NULL_TREE
1293 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1294 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1295 return false;
1296 return true;
1297 }
1298 if (TREE_CODE (decl) != VAR_DECL
1299 /* TLS vars aren't statically protectable. */
1300 || DECL_THREAD_LOCAL_P (decl)
1301 /* Externs will be protected elsewhere. */
1302 || DECL_EXTERNAL (decl)
1303 || !DECL_RTL_SET_P (decl)
1304 /* Comdat vars pose an ABI problem, we can't know if
1305 the var that is selected by the linker will have
1306 padding or not. */
1307 || DECL_ONE_ONLY (decl)
1308 /* Similarly for common vars. People can use -fno-common. */
1309 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1310 /* Don't protect if using user section, often vars placed
1311 into user section from multiple TUs are then assumed
1312 to be an array of such vars, putting padding in there
1313 breaks this assumption. */
1314 || (DECL_SECTION_NAME (decl) != NULL
1315 && !symtab_node::get (decl)->implicit_section)
1316 || DECL_SIZE (decl) == 0
1317 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1318 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1319 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1320 || TREE_TYPE (decl) == ubsan_get_source_location_type ())
1321 return false;
1322
1323 rtl = DECL_RTL (decl);
1324 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1325 return false;
1326 symbol = XEXP (rtl, 0);
1327
1328 if (CONSTANT_POOL_ADDRESS_P (symbol)
1329 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1330 return false;
1331
1332 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1333 return false;
1334
1335 #ifndef ASM_OUTPUT_DEF
1336 if (asan_needs_local_alias (decl))
1337 return false;
1338 #endif
1339
1340 return true;
1341 }
1342
1343 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1344 IS_STORE is either 1 (for a store) or 0 (for a load). */
1345
1346 static tree
1347 report_error_func (bool is_store, HOST_WIDE_INT size_in_bytes, int *nargs)
1348 {
1349 static enum built_in_function report[2][6]
1350 = { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1351 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1352 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1353 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1354 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1355 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } };
1356 if (size_in_bytes == -1)
1357 {
1358 *nargs = 2;
1359 return builtin_decl_implicit (report[is_store][5]);
1360 }
1361 *nargs = 1;
1362 return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
1363 }
1364
1365 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1366 IS_STORE is either 1 (for a store) or 0 (for a load). */
1367
1368 static tree
1369 check_func (bool is_store, int size_in_bytes, int *nargs)
1370 {
1371 static enum built_in_function check[2][6]
1372 = { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1373 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1374 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1375 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1376 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1377 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } };
1378 if (size_in_bytes == -1)
1379 {
1380 *nargs = 2;
1381 return builtin_decl_implicit (check[is_store][5]);
1382 }
1383 *nargs = 1;
1384 return builtin_decl_implicit (check[is_store][exact_log2 (size_in_bytes)]);
1385 }
1386
1387 /* Split the current basic block and create a condition statement
1388 insertion point right before or after the statement pointed to by
1389 ITER. Return an iterator to the point at which the caller might
1390 safely insert the condition statement.
1391
1392 THEN_BLOCK must be set to the address of an uninitialized instance
1393 of basic_block. The function will then set *THEN_BLOCK to the
1394 'then block' of the condition statement to be inserted by the
1395 caller.
1396
1397 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1398 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1399
1400 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1401 block' of the condition statement to be inserted by the caller.
1402
1403 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1404 statements starting from *ITER, and *THEN_BLOCK is a new empty
1405 block.
1406
1407 *ITER is adjusted to point to always point to the first statement
1408 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1409 same as what ITER was pointing to prior to calling this function,
1410 if BEFORE_P is true; otherwise, it is its following statement. */
1411
1412 gimple_stmt_iterator
1413 create_cond_insert_point (gimple_stmt_iterator *iter,
1414 bool before_p,
1415 bool then_more_likely_p,
1416 bool create_then_fallthru_edge,
1417 basic_block *then_block,
1418 basic_block *fallthrough_block)
1419 {
1420 gimple_stmt_iterator gsi = *iter;
1421
1422 if (!gsi_end_p (gsi) && before_p)
1423 gsi_prev (&gsi);
1424
1425 basic_block cur_bb = gsi_bb (*iter);
1426
1427 edge e = split_block (cur_bb, gsi_stmt (gsi));
1428
1429 /* Get a hold on the 'condition block', the 'then block' and the
1430 'else block'. */
1431 basic_block cond_bb = e->src;
1432 basic_block fallthru_bb = e->dest;
1433 basic_block then_bb = create_empty_bb (cond_bb);
1434 if (current_loops)
1435 {
1436 add_bb_to_loop (then_bb, cond_bb->loop_father);
1437 loops_state_set (LOOPS_NEED_FIXUP);
1438 }
1439
1440 /* Set up the newly created 'then block'. */
1441 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1442 int fallthrough_probability
1443 = then_more_likely_p
1444 ? PROB_VERY_UNLIKELY
1445 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1446 e->probability = PROB_ALWAYS - fallthrough_probability;
1447 if (create_then_fallthru_edge)
1448 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1449
1450 /* Set up the fallthrough basic block. */
1451 e = find_edge (cond_bb, fallthru_bb);
1452 e->flags = EDGE_FALSE_VALUE;
1453 e->count = cond_bb->count;
1454 e->probability = fallthrough_probability;
1455
1456 /* Update dominance info for the newly created then_bb; note that
1457 fallthru_bb's dominance info has already been updated by
1458 split_bock. */
1459 if (dom_info_available_p (CDI_DOMINATORS))
1460 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1461
1462 *then_block = then_bb;
1463 *fallthrough_block = fallthru_bb;
1464 *iter = gsi_start_bb (fallthru_bb);
1465
1466 return gsi_last_bb (cond_bb);
1467 }
1468
1469 /* Insert an if condition followed by a 'then block' right before the
1470 statement pointed to by ITER. The fallthrough block -- which is the
1471 else block of the condition as well as the destination of the
1472 outcoming edge of the 'then block' -- starts with the statement
1473 pointed to by ITER.
1474
1475 COND is the condition of the if.
1476
1477 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1478 'then block' is higher than the probability of the edge to the
1479 fallthrough block.
1480
1481 Upon completion of the function, *THEN_BB is set to the newly
1482 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1483 fallthrough block.
1484
1485 *ITER is adjusted to still point to the same statement it was
1486 pointing to initially. */
1487
1488 static void
1489 insert_if_then_before_iter (gimple cond,
1490 gimple_stmt_iterator *iter,
1491 bool then_more_likely_p,
1492 basic_block *then_bb,
1493 basic_block *fallthrough_bb)
1494 {
1495 gimple_stmt_iterator cond_insert_point =
1496 create_cond_insert_point (iter,
1497 /*before_p=*/true,
1498 then_more_likely_p,
1499 /*create_then_fallthru_edge=*/true,
1500 then_bb,
1501 fallthrough_bb);
1502 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1503 }
1504
1505 /* Build
1506 (base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset (). */
1507
1508 static tree
1509 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1510 tree base_addr, tree shadow_ptr_type)
1511 {
1512 tree t, uintptr_type = TREE_TYPE (base_addr);
1513 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1514 gimple g;
1515
1516 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1517 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1518 make_ssa_name (uintptr_type, NULL),
1519 base_addr, t);
1520 gimple_set_location (g, location);
1521 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1522
1523 t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
1524 g = gimple_build_assign_with_ops (PLUS_EXPR,
1525 make_ssa_name (uintptr_type, NULL),
1526 gimple_assign_lhs (g), t);
1527 gimple_set_location (g, location);
1528 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1529
1530 g = gimple_build_assign_with_ops (NOP_EXPR,
1531 make_ssa_name (shadow_ptr_type, NULL),
1532 gimple_assign_lhs (g), NULL_TREE);
1533 gimple_set_location (g, location);
1534 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1535
1536 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1537 build_int_cst (shadow_ptr_type, 0));
1538 g = gimple_build_assign_with_ops (MEM_REF,
1539 make_ssa_name (shadow_type, NULL),
1540 t, NULL_TREE);
1541 gimple_set_location (g, location);
1542 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1543 return gimple_assign_lhs (g);
1544 }
1545
1546 /* BASE can already be an SSA_NAME; in that case, do not create a
1547 new SSA_NAME for it. */
1548
1549 static tree
1550 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1551 bool before_p)
1552 {
1553 if (TREE_CODE (base) == SSA_NAME)
1554 return base;
1555 gimple g
1556 = gimple_build_assign_with_ops (TREE_CODE (base),
1557 make_ssa_name (TREE_TYPE (base), NULL),
1558 base, NULL_TREE);
1559 gimple_set_location (g, loc);
1560 if (before_p)
1561 gsi_insert_before (iter, g, GSI_SAME_STMT);
1562 else
1563 gsi_insert_after (iter, g, GSI_NEW_STMT);
1564 return gimple_assign_lhs (g);
1565 }
1566
1567 /* LEN can already have necessary size and precision;
1568 in that case, do not create a new variable. */
1569
1570 tree
1571 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1572 bool before_p)
1573 {
1574 if (ptrofftype_p (len))
1575 return len;
1576 gimple g
1577 = gimple_build_assign_with_ops (NOP_EXPR,
1578 make_ssa_name (pointer_sized_int_node, NULL),
1579 len, NULL);
1580 gimple_set_location (g, loc);
1581 if (before_p)
1582 gsi_insert_before (iter, g, GSI_SAME_STMT);
1583 else
1584 gsi_insert_after (iter, g, GSI_NEW_STMT);
1585 return gimple_assign_lhs (g);
1586 }
1587
1588 /* Instrument the memory access instruction BASE. Insert new
1589 statements before or after ITER.
1590
1591 Note that the memory access represented by BASE can be either an
1592 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1593 location. IS_STORE is TRUE for a store, FALSE for a load.
1594 BEFORE_P is TRUE for inserting the instrumentation code before
1595 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1596 for a scalar memory access and FALSE for memory region access.
1597 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1598 length. ALIGN tells alignment of accessed memory object.
1599
1600 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1601 memory region have already been instrumented.
1602
1603 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1604 statement it was pointing to prior to calling this function,
1605 otherwise, it points to the statement logically following it. */
1606
1607 static void
1608 build_check_stmt (location_t loc, tree base, tree len,
1609 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1610 bool is_non_zero_len, bool before_p, bool is_store,
1611 bool is_scalar_access, unsigned int align = 0,
1612 bool start_instrumented = false,
1613 bool end_instrumented = false)
1614 {
1615 gimple_stmt_iterator gsi = *iter;
1616 gimple g;
1617
1618 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1619
1620 if (start_instrumented && end_instrumented)
1621 {
1622 if (!before_p)
1623 gsi_next (iter);
1624 return;
1625 }
1626
1627 gsi = *iter;
1628
1629 base = unshare_expr (base);
1630 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1631
1632 if (len)
1633 {
1634 len = unshare_expr (len);
1635 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1636 }
1637 else
1638 {
1639 gcc_assert (size_in_bytes != -1);
1640 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1641 }
1642
1643 if (size_in_bytes > 1)
1644 {
1645 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1646 || size_in_bytes > 16)
1647 is_scalar_access = false;
1648 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1649 {
1650 /* On non-strict alignment targets, if
1651 16-byte access is just 8-byte aligned,
1652 this will result in misaligned shadow
1653 memory 2 byte load, but otherwise can
1654 be handled using one read. */
1655 if (size_in_bytes != 16
1656 || STRICT_ALIGNMENT
1657 || align < 8 * BITS_PER_UNIT)
1658 is_scalar_access = false;
1659 }
1660 }
1661
1662 HOST_WIDE_INT flags = 0;
1663 if (is_store)
1664 flags |= ASAN_CHECK_STORE;
1665 if (is_non_zero_len)
1666 flags |= ASAN_CHECK_NON_ZERO_LEN;
1667 if (is_scalar_access)
1668 flags |= ASAN_CHECK_SCALAR_ACCESS;
1669 if (start_instrumented)
1670 flags |= ASAN_CHECK_START_INSTRUMENTED;
1671 if (end_instrumented)
1672 flags |= ASAN_CHECK_END_INSTRUMENTED;
1673
1674 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1675 build_int_cst (integer_type_node, flags),
1676 base, len,
1677 build_int_cst (integer_type_node,
1678 align / BITS_PER_UNIT));
1679 gimple_set_location (g, loc);
1680 if (before_p)
1681 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1682 else
1683 {
1684 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1685 gsi_next (&gsi);
1686 *iter = gsi;
1687 }
1688 }
1689
1690 /* If T represents a memory access, add instrumentation code before ITER.
1691 LOCATION is source code location.
1692 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1693
1694 static void
1695 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1696 location_t location, bool is_store)
1697 {
1698 if (is_store && !ASAN_INSTRUMENT_WRITES)
1699 return;
1700 if (!is_store && !ASAN_INSTRUMENT_READS)
1701 return;
1702
1703 tree type, base;
1704 HOST_WIDE_INT size_in_bytes;
1705
1706 type = TREE_TYPE (t);
1707 switch (TREE_CODE (t))
1708 {
1709 case ARRAY_REF:
1710 case COMPONENT_REF:
1711 case INDIRECT_REF:
1712 case MEM_REF:
1713 case VAR_DECL:
1714 break;
1715 /* FALLTHRU */
1716 default:
1717 return;
1718 }
1719
1720 size_in_bytes = int_size_in_bytes (type);
1721 if (size_in_bytes <= 0)
1722 return;
1723
1724 HOST_WIDE_INT bitsize, bitpos;
1725 tree offset;
1726 enum machine_mode mode;
1727 int volatilep = 0, unsignedp = 0;
1728 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1729 &mode, &unsignedp, &volatilep, false);
1730
1731 if (TREE_CODE (t) == COMPONENT_REF
1732 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1733 {
1734 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1735 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1736 TREE_OPERAND (t, 0), repr,
1737 NULL_TREE), location, is_store);
1738 return;
1739 }
1740
1741 if (bitpos % BITS_PER_UNIT
1742 || bitsize != size_in_bytes * BITS_PER_UNIT)
1743 return;
1744
1745 if (TREE_CODE (inner) == VAR_DECL
1746 && offset == NULL_TREE
1747 && bitpos >= 0
1748 && DECL_SIZE (inner)
1749 && tree_fits_shwi_p (DECL_SIZE (inner))
1750 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1751 {
1752 if (DECL_THREAD_LOCAL_P (inner))
1753 return;
1754 if (!TREE_STATIC (inner))
1755 {
1756 /* Automatic vars in the current function will be always
1757 accessible. */
1758 if (decl_function_context (inner) == current_function_decl)
1759 return;
1760 }
1761 /* Always instrument external vars, they might be dynamically
1762 initialized. */
1763 else if (!DECL_EXTERNAL (inner))
1764 {
1765 /* For static vars if they are known not to be dynamically
1766 initialized, they will be always accessible. */
1767 varpool_node *vnode = varpool_node::get (inner);
1768 if (vnode && !vnode->dynamically_initialized)
1769 return;
1770 }
1771 }
1772
1773 base = build_fold_addr_expr (t);
1774 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1775 {
1776 unsigned int align = get_object_alignment (t);
1777 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1778 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1779 is_store, /*is_scalar_access*/true, align);
1780 update_mem_ref_hash_table (base, size_in_bytes);
1781 update_mem_ref_hash_table (t, size_in_bytes);
1782 }
1783
1784 }
1785
1786 /* Instrument an access to a contiguous memory region that starts at
1787 the address pointed to by BASE, over a length of LEN (expressed in
1788 the sizeof (*BASE) bytes). ITER points to the instruction before
1789 which the instrumentation instructions must be inserted. LOCATION
1790 is the source location that the instrumentation instructions must
1791 have. If IS_STORE is true, then the memory access is a store;
1792 otherwise, it's a load. */
1793
1794 static void
1795 instrument_mem_region_access (tree base, tree len,
1796 gimple_stmt_iterator *iter,
1797 location_t location, bool is_store)
1798 {
1799 if (!POINTER_TYPE_P (TREE_TYPE (base))
1800 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1801 || integer_zerop (len))
1802 return;
1803
1804 /* If the beginning of the memory region has already been
1805 instrumented, do not instrument it. */
1806 bool start_instrumented = has_mem_ref_been_instrumented (base, 1);
1807
1808 /* If the end of the memory region has already been instrumented, do
1809 not instrument it. */
1810 tree end = asan_mem_ref_get_end (base, len);
1811 bool end_instrumented = has_mem_ref_been_instrumented (end, 1);
1812
1813 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1814
1815 build_check_stmt (location, base, len, size_in_bytes, iter,
1816 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1817 is_store, /*is_scalar_access*/false, /*align*/0,
1818 start_instrumented, end_instrumented);
1819
1820 update_mem_ref_hash_table (base, 1);
1821 if (size_in_bytes != -1)
1822 update_mem_ref_hash_table (end, 1);
1823
1824 *iter = gsi_for_stmt (gsi_stmt (*iter));
1825 }
1826
1827 /* Instrument the call (to the builtin strlen function) pointed to by
1828 ITER.
1829
1830 This function instruments the access to the first byte of the
1831 argument, right before the call. After the call it instruments the
1832 access to the last byte of the argument; it uses the result of the
1833 call to deduce the offset of that last byte.
1834
1835 Upon completion, iff the call has actually been instrumented, this
1836 function returns TRUE and *ITER points to the statement logically
1837 following the built-in strlen function call *ITER was initially
1838 pointing to. Otherwise, the function returns FALSE and *ITER
1839 remains unchanged. */
1840
1841 static bool
1842 instrument_strlen_call (gimple_stmt_iterator *iter)
1843 {
1844 gimple g;
1845 gimple call = gsi_stmt (*iter);
1846 gcc_assert (is_gimple_call (call));
1847
1848 tree callee = gimple_call_fndecl (call);
1849 gcc_assert (is_builtin_fn (callee)
1850 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
1851 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
1852
1853 location_t loc = gimple_location (call);
1854
1855 tree len = gimple_call_lhs (call);
1856 if (len == NULL)
1857 /* Some passes might clear the return value of the strlen call;
1858 bail out in that case. Return FALSE as we are not advancing
1859 *ITER. */
1860 return false;
1861 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
1862
1863 len = maybe_cast_to_ptrmode (loc, len, iter, /*before_p*/false);
1864
1865 tree str_arg = gimple_call_arg (call, 0);
1866 bool start_instrumented = has_mem_ref_been_instrumented (str_arg, 1);
1867
1868 tree cptr_type = build_pointer_type (char_type_node);
1869 g = gimple_build_assign_with_ops (NOP_EXPR,
1870 make_ssa_name (cptr_type, NULL),
1871 str_arg, NULL);
1872 gimple_set_location (g, loc);
1873 gsi_insert_before (iter, g, GSI_SAME_STMT);
1874 str_arg = gimple_assign_lhs (g);
1875
1876 build_check_stmt (loc, str_arg, NULL_TREE, 1, iter,
1877 /*is_non_zero_len*/true, /*before_p=*/true,
1878 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0,
1879 start_instrumented, start_instrumented);
1880
1881 g = gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
1882 make_ssa_name (cptr_type, NULL),
1883 str_arg,
1884 len);
1885 gimple_set_location (g, loc);
1886 gsi_insert_after (iter, g, GSI_NEW_STMT);
1887
1888 build_check_stmt (loc, gimple_assign_lhs (g), NULL_TREE, 1, iter,
1889 /*is_non_zero_len*/true, /*before_p=*/false,
1890 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0);
1891
1892 return true;
1893 }
1894
1895 /* Instrument the call to a built-in memory access function that is
1896 pointed to by the iterator ITER.
1897
1898 Upon completion, return TRUE iff *ITER has been advanced to the
1899 statement following the one it was originally pointing to. */
1900
1901 static bool
1902 instrument_builtin_call (gimple_stmt_iterator *iter)
1903 {
1904 if (!ASAN_MEMINTRIN)
1905 return false;
1906
1907 bool iter_advanced_p = false;
1908 gimple call = gsi_stmt (*iter);
1909
1910 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1911
1912 tree callee = gimple_call_fndecl (call);
1913 location_t loc = gimple_location (call);
1914
1915 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
1916 iter_advanced_p = instrument_strlen_call (iter);
1917 else
1918 {
1919 asan_mem_ref src0, src1, dest;
1920 asan_mem_ref_init (&src0, NULL, 1);
1921 asan_mem_ref_init (&src1, NULL, 1);
1922 asan_mem_ref_init (&dest, NULL, 1);
1923
1924 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1925 bool src0_is_store = false, src1_is_store = false,
1926 dest_is_store = false, dest_is_deref = false;
1927
1928 if (get_mem_refs_of_builtin_call (call,
1929 &src0, &src0_len, &src0_is_store,
1930 &src1, &src1_len, &src1_is_store,
1931 &dest, &dest_len, &dest_is_store,
1932 &dest_is_deref))
1933 {
1934 if (dest_is_deref)
1935 {
1936 instrument_derefs (iter, dest.start, loc, dest_is_store);
1937 gsi_next (iter);
1938 iter_advanced_p = true;
1939 }
1940 else if (src0_len || src1_len || dest_len)
1941 {
1942 if (src0.start != NULL_TREE)
1943 instrument_mem_region_access (src0.start, src0_len,
1944 iter, loc, /*is_store=*/false);
1945 if (src1.start != NULL_TREE)
1946 instrument_mem_region_access (src1.start, src1_len,
1947 iter, loc, /*is_store=*/false);
1948 if (dest.start != NULL_TREE)
1949 instrument_mem_region_access (dest.start, dest_len,
1950 iter, loc, /*is_store=*/true);
1951 *iter = gsi_for_stmt (call);
1952 gsi_next (iter);
1953 iter_advanced_p = true;
1954 }
1955 }
1956 }
1957 return iter_advanced_p;
1958 }
1959
1960 /* Instrument the assignment statement ITER if it is subject to
1961 instrumentation. Return TRUE iff instrumentation actually
1962 happened. In that case, the iterator ITER is advanced to the next
1963 logical expression following the one initially pointed to by ITER,
1964 and the relevant memory reference that which access has been
1965 instrumented is added to the memory references hash table. */
1966
1967 static bool
1968 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1969 {
1970 gimple s = gsi_stmt (*iter);
1971
1972 gcc_assert (gimple_assign_single_p (s));
1973
1974 tree ref_expr = NULL_TREE;
1975 bool is_store, is_instrumented = false;
1976
1977 if (gimple_store_p (s))
1978 {
1979 ref_expr = gimple_assign_lhs (s);
1980 is_store = true;
1981 instrument_derefs (iter, ref_expr,
1982 gimple_location (s),
1983 is_store);
1984 is_instrumented = true;
1985 }
1986
1987 if (gimple_assign_load_p (s))
1988 {
1989 ref_expr = gimple_assign_rhs1 (s);
1990 is_store = false;
1991 instrument_derefs (iter, ref_expr,
1992 gimple_location (s),
1993 is_store);
1994 is_instrumented = true;
1995 }
1996
1997 if (is_instrumented)
1998 gsi_next (iter);
1999
2000 return is_instrumented;
2001 }
2002
2003 /* Instrument the function call pointed to by the iterator ITER, if it
2004 is subject to instrumentation. At the moment, the only function
2005 calls that are instrumented are some built-in functions that access
2006 memory. Look at instrument_builtin_call to learn more.
2007
2008 Upon completion return TRUE iff *ITER was advanced to the statement
2009 following the one it was originally pointing to. */
2010
2011 static bool
2012 maybe_instrument_call (gimple_stmt_iterator *iter)
2013 {
2014 gimple stmt = gsi_stmt (*iter);
2015 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2016
2017 if (is_builtin && instrument_builtin_call (iter))
2018 return true;
2019
2020 if (gimple_call_noreturn_p (stmt))
2021 {
2022 if (is_builtin)
2023 {
2024 tree callee = gimple_call_fndecl (stmt);
2025 switch (DECL_FUNCTION_CODE (callee))
2026 {
2027 case BUILT_IN_UNREACHABLE:
2028 case BUILT_IN_TRAP:
2029 /* Don't instrument these. */
2030 return false;
2031 default:
2032 break;
2033 }
2034 }
2035 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2036 gimple g = gimple_build_call (decl, 0);
2037 gimple_set_location (g, gimple_location (stmt));
2038 gsi_insert_before (iter, g, GSI_SAME_STMT);
2039 }
2040 return false;
2041 }
2042
2043 /* Walk each instruction of all basic block and instrument those that
2044 represent memory references: loads, stores, or function calls.
2045 In a given basic block, this function avoids instrumenting memory
2046 references that have already been instrumented. */
2047
2048 static void
2049 transform_statements (void)
2050 {
2051 basic_block bb, last_bb = NULL;
2052 gimple_stmt_iterator i;
2053 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2054
2055 FOR_EACH_BB_FN (bb, cfun)
2056 {
2057 basic_block prev_bb = bb;
2058
2059 if (bb->index >= saved_last_basic_block) continue;
2060
2061 /* Flush the mem ref hash table, if current bb doesn't have
2062 exactly one predecessor, or if that predecessor (skipping
2063 over asan created basic blocks) isn't the last processed
2064 basic block. Thus we effectively flush on extended basic
2065 block boundaries. */
2066 while (single_pred_p (prev_bb))
2067 {
2068 prev_bb = single_pred (prev_bb);
2069 if (prev_bb->index < saved_last_basic_block)
2070 break;
2071 }
2072 if (prev_bb != last_bb)
2073 empty_mem_ref_hash_table ();
2074 last_bb = bb;
2075
2076 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2077 {
2078 gimple s = gsi_stmt (i);
2079
2080 if (has_stmt_been_instrumented_p (s))
2081 gsi_next (&i);
2082 else if (gimple_assign_single_p (s)
2083 && !gimple_clobber_p (s)
2084 && maybe_instrument_assignment (&i))
2085 /* Nothing to do as maybe_instrument_assignment advanced
2086 the iterator I. */;
2087 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2088 /* Nothing to do as maybe_instrument_call
2089 advanced the iterator I. */;
2090 else
2091 {
2092 /* No instrumentation happened.
2093
2094 If the current instruction is a function call that
2095 might free something, let's forget about the memory
2096 references that got instrumented. Otherwise we might
2097 miss some instrumentation opportunities. */
2098 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2099 empty_mem_ref_hash_table ();
2100
2101 gsi_next (&i);
2102 }
2103 }
2104 }
2105 free_mem_ref_resources ();
2106 }
2107
2108 /* Build
2109 __asan_before_dynamic_init (module_name)
2110 or
2111 __asan_after_dynamic_init ()
2112 call. */
2113
2114 tree
2115 asan_dynamic_init_call (bool after_p)
2116 {
2117 tree fn = builtin_decl_implicit (after_p
2118 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2119 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2120 tree module_name_cst = NULL_TREE;
2121 if (!after_p)
2122 {
2123 pretty_printer module_name_pp;
2124 pp_string (&module_name_pp, main_input_filename);
2125
2126 if (shadow_ptr_types[0] == NULL_TREE)
2127 asan_init_shadow_ptr_types ();
2128 module_name_cst = asan_pp_string (&module_name_pp);
2129 module_name_cst = fold_convert (const_ptr_type_node,
2130 module_name_cst);
2131 }
2132
2133 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2134 }
2135
2136 /* Build
2137 struct __asan_global
2138 {
2139 const void *__beg;
2140 uptr __size;
2141 uptr __size_with_redzone;
2142 const void *__name;
2143 const void *__module_name;
2144 uptr __has_dynamic_init;
2145 __asan_global_source_location *__location;
2146 } type. */
2147
2148 static tree
2149 asan_global_struct (void)
2150 {
2151 static const char *field_names[7]
2152 = { "__beg", "__size", "__size_with_redzone",
2153 "__name", "__module_name", "__has_dynamic_init", "__location"};
2154 tree fields[7], ret;
2155 int i;
2156
2157 ret = make_node (RECORD_TYPE);
2158 for (i = 0; i < 7; i++)
2159 {
2160 fields[i]
2161 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2162 get_identifier (field_names[i]),
2163 (i == 0 || i == 3) ? const_ptr_type_node
2164 : pointer_sized_int_node);
2165 DECL_CONTEXT (fields[i]) = ret;
2166 if (i)
2167 DECL_CHAIN (fields[i - 1]) = fields[i];
2168 }
2169 TYPE_FIELDS (ret) = fields[0];
2170 TYPE_NAME (ret) = get_identifier ("__asan_global");
2171 layout_type (ret);
2172 return ret;
2173 }
2174
2175 /* Append description of a single global DECL into vector V.
2176 TYPE is __asan_global struct type as returned by asan_global_struct. */
2177
2178 static void
2179 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2180 {
2181 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2182 unsigned HOST_WIDE_INT size;
2183 tree str_cst, module_name_cst, refdecl = decl;
2184 vec<constructor_elt, va_gc> *vinner = NULL;
2185
2186 pretty_printer asan_pp, module_name_pp;
2187
2188 if (DECL_NAME (decl))
2189 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2190 else
2191 pp_string (&asan_pp, "<unknown>");
2192 str_cst = asan_pp_string (&asan_pp);
2193
2194 pp_string (&module_name_pp, main_input_filename);
2195 module_name_cst = asan_pp_string (&module_name_pp);
2196
2197 if (asan_needs_local_alias (decl))
2198 {
2199 char buf[20];
2200 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2201 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2202 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2203 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2204 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2205 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2206 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2207 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2208 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2209 TREE_STATIC (refdecl) = 1;
2210 TREE_PUBLIC (refdecl) = 0;
2211 TREE_USED (refdecl) = 1;
2212 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2213 }
2214
2215 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2216 fold_convert (const_ptr_type_node,
2217 build_fold_addr_expr (refdecl)));
2218 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2219 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2220 size += asan_red_zone_size (size);
2221 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2222 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2223 fold_convert (const_ptr_type_node, str_cst));
2224 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2225 fold_convert (const_ptr_type_node, module_name_cst));
2226 varpool_node *vnode = varpool_node::get (decl);
2227 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2228 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2229 build_int_cst (uptr, has_dynamic_init));
2230 tree locptr = NULL_TREE;
2231 location_t loc = DECL_SOURCE_LOCATION (decl);
2232 expanded_location xloc = expand_location (loc);
2233 if (xloc.file != NULL)
2234 {
2235 static int lasanloccnt = 0;
2236 char buf[25];
2237 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2238 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2239 ubsan_get_source_location_type ());
2240 TREE_STATIC (var) = 1;
2241 TREE_PUBLIC (var) = 0;
2242 DECL_ARTIFICIAL (var) = 1;
2243 DECL_IGNORED_P (var) = 1;
2244 pretty_printer filename_pp;
2245 pp_string (&filename_pp, xloc.file);
2246 tree str = asan_pp_string (&filename_pp);
2247 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2248 NULL_TREE, str, NULL_TREE,
2249 build_int_cst (unsigned_type_node,
2250 xloc.line), NULL_TREE,
2251 build_int_cst (unsigned_type_node,
2252 xloc.column));
2253 TREE_CONSTANT (ctor) = 1;
2254 TREE_STATIC (ctor) = 1;
2255 DECL_INITIAL (var) = ctor;
2256 varpool_node::finalize_decl (var);
2257 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2258 }
2259 else
2260 locptr = build_int_cst (uptr, 0);
2261 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2262 init = build_constructor (type, vinner);
2263 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2264 }
2265
2266 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2267 void
2268 initialize_sanitizer_builtins (void)
2269 {
2270 tree decl;
2271
2272 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2273 return;
2274
2275 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2276 tree BT_FN_VOID_PTR
2277 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2278 tree BT_FN_VOID_CONST_PTR
2279 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2280 tree BT_FN_VOID_PTR_PTR
2281 = build_function_type_list (void_type_node, ptr_type_node,
2282 ptr_type_node, NULL_TREE);
2283 tree BT_FN_VOID_PTR_PTR_PTR
2284 = build_function_type_list (void_type_node, ptr_type_node,
2285 ptr_type_node, ptr_type_node, NULL_TREE);
2286 tree BT_FN_VOID_PTR_PTRMODE
2287 = build_function_type_list (void_type_node, ptr_type_node,
2288 pointer_sized_int_node, NULL_TREE);
2289 tree BT_FN_VOID_INT
2290 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2291 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2292 tree BT_FN_IX_CONST_VPTR_INT[5];
2293 tree BT_FN_IX_VPTR_IX_INT[5];
2294 tree BT_FN_VOID_VPTR_IX_INT[5];
2295 tree vptr
2296 = build_pointer_type (build_qualified_type (void_type_node,
2297 TYPE_QUAL_VOLATILE));
2298 tree cvptr
2299 = build_pointer_type (build_qualified_type (void_type_node,
2300 TYPE_QUAL_VOLATILE
2301 |TYPE_QUAL_CONST));
2302 tree boolt
2303 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2304 int i;
2305 for (i = 0; i < 5; i++)
2306 {
2307 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2308 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2309 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2310 integer_type_node, integer_type_node,
2311 NULL_TREE);
2312 BT_FN_IX_CONST_VPTR_INT[i]
2313 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2314 BT_FN_IX_VPTR_IX_INT[i]
2315 = build_function_type_list (ix, vptr, ix, integer_type_node,
2316 NULL_TREE);
2317 BT_FN_VOID_VPTR_IX_INT[i]
2318 = build_function_type_list (void_type_node, vptr, ix,
2319 integer_type_node, NULL_TREE);
2320 }
2321 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2322 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2323 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2324 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2325 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2326 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2327 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2328 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2329 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2330 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2331 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2332 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2333 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2334 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2335 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2336 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2337 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2338 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2339 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2340 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2341 #undef ATTR_NOTHROW_LEAF_LIST
2342 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2343 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2344 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2345 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2346 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2347 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2348 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2349 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2350 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2351 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2352 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2353 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2354 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2355 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2356 #undef DEF_SANITIZER_BUILTIN
2357 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2358 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2359 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2360 set_call_expr_flags (decl, ATTRS); \
2361 set_builtin_decl (ENUM, decl, true);
2362
2363 #include "sanitizer.def"
2364
2365 #undef DEF_SANITIZER_BUILTIN
2366 }
2367
2368 /* Called via htab_traverse. Count number of emitted
2369 STRING_CSTs in the constant hash table. */
2370
2371 int
2372 count_string_csts (constant_descriptor_tree **slot,
2373 unsigned HOST_WIDE_INT *data)
2374 {
2375 struct constant_descriptor_tree *desc = *slot;
2376 if (TREE_CODE (desc->value) == STRING_CST
2377 && TREE_ASM_WRITTEN (desc->value)
2378 && asan_protect_global (desc->value))
2379 ++*data;
2380 return 1;
2381 }
2382
2383 /* Helper structure to pass two parameters to
2384 add_string_csts. */
2385
2386 struct asan_add_string_csts_data
2387 {
2388 tree type;
2389 vec<constructor_elt, va_gc> *v;
2390 };
2391
2392 /* Called via hash_table::traverse. Call asan_add_global
2393 on emitted STRING_CSTs from the constant hash table. */
2394
2395 int
2396 add_string_csts (constant_descriptor_tree **slot,
2397 asan_add_string_csts_data *aascd)
2398 {
2399 struct constant_descriptor_tree *desc = *slot;
2400 if (TREE_CODE (desc->value) == STRING_CST
2401 && TREE_ASM_WRITTEN (desc->value)
2402 && asan_protect_global (desc->value))
2403 {
2404 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2405 aascd->type, aascd->v);
2406 }
2407 return 1;
2408 }
2409
2410 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2411 invoke ggc_collect. */
2412 static GTY(()) tree asan_ctor_statements;
2413
2414 /* Module-level instrumentation.
2415 - Insert __asan_init_vN() into the list of CTORs.
2416 - TODO: insert redzones around globals.
2417 */
2418
2419 void
2420 asan_finish_file (void)
2421 {
2422 varpool_node *vnode;
2423 unsigned HOST_WIDE_INT gcount = 0;
2424
2425 if (shadow_ptr_types[0] == NULL_TREE)
2426 asan_init_shadow_ptr_types ();
2427 /* Avoid instrumenting code in the asan ctors/dtors.
2428 We don't need to insert padding after the description strings,
2429 nor after .LASAN* array. */
2430 flag_sanitize &= ~SANITIZE_ADDRESS;
2431
2432 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2433 {
2434 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2435 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2436 }
2437 FOR_EACH_DEFINED_VARIABLE (vnode)
2438 if (TREE_ASM_WRITTEN (vnode->decl)
2439 && asan_protect_global (vnode->decl))
2440 ++gcount;
2441 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2442 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2443 (&gcount);
2444 if (gcount)
2445 {
2446 tree type = asan_global_struct (), var, ctor;
2447 tree dtor_statements = NULL_TREE;
2448 vec<constructor_elt, va_gc> *v;
2449 char buf[20];
2450
2451 type = build_array_type_nelts (type, gcount);
2452 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2453 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2454 type);
2455 TREE_STATIC (var) = 1;
2456 TREE_PUBLIC (var) = 0;
2457 DECL_ARTIFICIAL (var) = 1;
2458 DECL_IGNORED_P (var) = 1;
2459 vec_alloc (v, gcount);
2460 FOR_EACH_DEFINED_VARIABLE (vnode)
2461 if (TREE_ASM_WRITTEN (vnode->decl)
2462 && asan_protect_global (vnode->decl))
2463 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2464 struct asan_add_string_csts_data aascd;
2465 aascd.type = TREE_TYPE (type);
2466 aascd.v = v;
2467 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2468 (&aascd);
2469 ctor = build_constructor (type, v);
2470 TREE_CONSTANT (ctor) = 1;
2471 TREE_STATIC (ctor) = 1;
2472 DECL_INITIAL (var) = ctor;
2473 varpool_node::finalize_decl (var);
2474
2475 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2476 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2477 append_to_statement_list (build_call_expr (fn, 2,
2478 build_fold_addr_expr (var),
2479 gcount_tree),
2480 &asan_ctor_statements);
2481
2482 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2483 append_to_statement_list (build_call_expr (fn, 2,
2484 build_fold_addr_expr (var),
2485 gcount_tree),
2486 &dtor_statements);
2487 cgraph_build_static_cdtor ('D', dtor_statements,
2488 MAX_RESERVED_INIT_PRIORITY - 1);
2489 }
2490 if (asan_ctor_statements)
2491 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2492 MAX_RESERVED_INIT_PRIORITY - 1);
2493 flag_sanitize |= SANITIZE_ADDRESS;
2494 }
2495
2496 /* Expand the ASAN_{LOAD,STORE} builtins. */
2497
2498 static bool
2499 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2500 {
2501 gimple g = gsi_stmt (*iter);
2502 location_t loc = gimple_location (g);
2503
2504 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2505 gcc_assert (flags < ASAN_CHECK_LAST);
2506 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2507 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2508 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2509 bool start_instrumented = (flags & ASAN_CHECK_START_INSTRUMENTED) != 0;
2510 bool end_instrumented = (flags & ASAN_CHECK_END_INSTRUMENTED) != 0;
2511
2512 tree base = gimple_call_arg (g, 1);
2513 tree len = gimple_call_arg (g, 2);
2514 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2515
2516 HOST_WIDE_INT size_in_bytes
2517 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2518
2519 if (use_calls)
2520 {
2521 /* Instrument using callbacks. */
2522 gimple g
2523 = gimple_build_assign_with_ops (NOP_EXPR,
2524 make_ssa_name (pointer_sized_int_node,
2525 NULL),
2526 base, NULL_TREE);
2527 gimple_set_location (g, loc);
2528 gsi_insert_before (iter, g, GSI_SAME_STMT);
2529 tree base_addr = gimple_assign_lhs (g);
2530
2531 int nargs;
2532 tree fun = check_func (is_store, size_in_bytes, &nargs);
2533 if (nargs == 1)
2534 g = gimple_build_call (fun, 1, base_addr);
2535 else
2536 {
2537 gcc_assert (nargs == 2);
2538 g = gimple_build_assign_with_ops (NOP_EXPR,
2539 make_ssa_name (pointer_sized_int_node,
2540 NULL),
2541 len, NULL_TREE);
2542 gimple_set_location (g, loc);
2543 gsi_insert_before (iter, g, GSI_SAME_STMT);
2544 tree sz_arg = gimple_assign_lhs (g);
2545 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2546 }
2547 gimple_set_location (g, loc);
2548 gsi_replace (iter, g, false);
2549 return false;
2550 }
2551
2552 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2553
2554 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2555 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2556
2557 gimple_stmt_iterator gsi = *iter;
2558
2559 if (!is_non_zero_len)
2560 {
2561 /* So, the length of the memory area to asan-protect is
2562 non-constant. Let's guard the generated instrumentation code
2563 like:
2564
2565 if (len != 0)
2566 {
2567 //asan instrumentation code goes here.
2568 }
2569 // falltrough instructions, starting with *ITER. */
2570
2571 g = gimple_build_cond (NE_EXPR,
2572 len,
2573 build_int_cst (TREE_TYPE (len), 0),
2574 NULL_TREE, NULL_TREE);
2575 gimple_set_location (g, loc);
2576
2577 basic_block then_bb, fallthrough_bb;
2578 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
2579 &then_bb, &fallthrough_bb);
2580 /* Note that fallthrough_bb starts with the statement that was
2581 pointed to by ITER. */
2582
2583 /* The 'then block' of the 'if (len != 0) condition is where
2584 we'll generate the asan instrumentation code now. */
2585 gsi = gsi_last_bb (then_bb);
2586 }
2587
2588 /* Get an iterator on the point where we can add the condition
2589 statement for the instrumentation. */
2590 basic_block then_bb, else_bb;
2591 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2592 /*then_more_likely_p=*/false,
2593 /*create_then_fallthru_edge=*/false,
2594 &then_bb,
2595 &else_bb);
2596
2597 g = gimple_build_assign_with_ops (NOP_EXPR,
2598 make_ssa_name (pointer_sized_int_node,
2599 NULL),
2600 base, NULL_TREE);
2601 gimple_set_location (g, loc);
2602 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2603 tree base_addr = gimple_assign_lhs (g);
2604
2605 tree t = NULL_TREE;
2606 if (real_size_in_bytes >= 8)
2607 {
2608 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2609 shadow_ptr_type);
2610 t = shadow;
2611 }
2612 else
2613 {
2614 /* Slow path for 1, 2 and 4 byte accesses. */
2615
2616 if (!start_instrumented)
2617 {
2618 /* Test (shadow != 0)
2619 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2620 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2621 shadow_ptr_type);
2622 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2623 gimple_seq seq = NULL;
2624 gimple_seq_add_stmt (&seq, shadow_test);
2625 /* Aligned (>= 8 bytes) can test just
2626 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2627 to be 0. */
2628 if (align < 8)
2629 {
2630 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2631 base_addr, 7));
2632 gimple_seq_add_stmt (&seq,
2633 build_type_cast (shadow_type,
2634 gimple_seq_last (seq)));
2635 if (real_size_in_bytes > 1)
2636 gimple_seq_add_stmt (&seq,
2637 build_assign (PLUS_EXPR,
2638 gimple_seq_last (seq),
2639 real_size_in_bytes - 1));
2640 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
2641 }
2642 else
2643 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
2644 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
2645 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2646 gimple_seq_last (seq)));
2647 t = gimple_assign_lhs (gimple_seq_last (seq));
2648 gimple_seq_set_location (seq, loc);
2649 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2650 }
2651
2652 /* For non-constant, misaligned or otherwise weird access sizes,
2653 check first and last byte. */
2654 if (size_in_bytes == -1 && !end_instrumented)
2655 {
2656 g = gimple_build_assign_with_ops (MINUS_EXPR,
2657 make_ssa_name (pointer_sized_int_node, NULL),
2658 len,
2659 build_int_cst (pointer_sized_int_node, 1));
2660 gimple_set_location (g, loc);
2661 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2662 tree last = gimple_assign_lhs (g);
2663 g = gimple_build_assign_with_ops (PLUS_EXPR,
2664 make_ssa_name (pointer_sized_int_node, NULL),
2665 base_addr,
2666 last);
2667 gimple_set_location (g, loc);
2668 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2669 tree base_end_addr = gimple_assign_lhs (g);
2670
2671 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2672 shadow_ptr_type);
2673 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2674 gimple_seq seq = NULL;
2675 gimple_seq_add_stmt (&seq, shadow_test);
2676 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2677 base_end_addr, 7));
2678 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2679 gimple_seq_last (seq)));
2680 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2681 gimple_seq_last (seq),
2682 shadow));
2683 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2684 gimple_seq_last (seq)));
2685 if (!start_instrumented)
2686 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2687 gimple_seq_last (seq)));
2688 t = gimple_assign_lhs (gimple_seq_last (seq));
2689 gimple_seq_set_location (seq, loc);
2690 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2691 }
2692 }
2693
2694 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2695 NULL_TREE, NULL_TREE);
2696 gimple_set_location (g, loc);
2697 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2698
2699 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2700 gsi = gsi_start_bb (then_bb);
2701 int nargs;
2702 tree fun = report_error_func (is_store, size_in_bytes, &nargs);
2703 g = gimple_build_call (fun, nargs, base_addr, len);
2704 gimple_set_location (g, loc);
2705 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2706
2707 gsi_remove (iter, true);
2708 *iter = gsi_start_bb (else_bb);
2709
2710 return true;
2711 }
2712
2713 /* Instrument the current function. */
2714
2715 static unsigned int
2716 asan_instrument (void)
2717 {
2718 if (shadow_ptr_types[0] == NULL_TREE)
2719 asan_init_shadow_ptr_types ();
2720 transform_statements ();
2721 return 0;
2722 }
2723
2724 static bool
2725 gate_asan (void)
2726 {
2727 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2728 && !lookup_attribute ("no_sanitize_address",
2729 DECL_ATTRIBUTES (current_function_decl));
2730 }
2731
2732 namespace {
2733
2734 const pass_data pass_data_asan =
2735 {
2736 GIMPLE_PASS, /* type */
2737 "asan", /* name */
2738 OPTGROUP_NONE, /* optinfo_flags */
2739 TV_NONE, /* tv_id */
2740 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2741 0, /* properties_provided */
2742 0, /* properties_destroyed */
2743 0, /* todo_flags_start */
2744 TODO_update_ssa, /* todo_flags_finish */
2745 };
2746
2747 class pass_asan : public gimple_opt_pass
2748 {
2749 public:
2750 pass_asan (gcc::context *ctxt)
2751 : gimple_opt_pass (pass_data_asan, ctxt)
2752 {}
2753
2754 /* opt_pass methods: */
2755 opt_pass * clone () { return new pass_asan (m_ctxt); }
2756 virtual bool gate (function *) { return gate_asan (); }
2757 virtual unsigned int execute (function *) { return asan_instrument (); }
2758
2759 }; // class pass_asan
2760
2761 } // anon namespace
2762
2763 gimple_opt_pass *
2764 make_pass_asan (gcc::context *ctxt)
2765 {
2766 return new pass_asan (ctxt);
2767 }
2768
2769 namespace {
2770
2771 const pass_data pass_data_asan_O0 =
2772 {
2773 GIMPLE_PASS, /* type */
2774 "asan0", /* name */
2775 OPTGROUP_NONE, /* optinfo_flags */
2776 TV_NONE, /* tv_id */
2777 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2778 0, /* properties_provided */
2779 0, /* properties_destroyed */
2780 0, /* todo_flags_start */
2781 TODO_update_ssa, /* todo_flags_finish */
2782 };
2783
2784 class pass_asan_O0 : public gimple_opt_pass
2785 {
2786 public:
2787 pass_asan_O0 (gcc::context *ctxt)
2788 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2789 {}
2790
2791 /* opt_pass methods: */
2792 virtual bool gate (function *) { return !optimize && gate_asan (); }
2793 virtual unsigned int execute (function *) { return asan_instrument (); }
2794
2795 }; // class pass_asan_O0
2796
2797 } // anon namespace
2798
2799 gimple_opt_pass *
2800 make_pass_asan_O0 (gcc::context *ctxt)
2801 {
2802 return new pass_asan_O0 (ctxt);
2803 }
2804
2805 /* Perform optimization of sanitize functions. */
2806
2807 namespace {
2808
2809 const pass_data pass_data_sanopt =
2810 {
2811 GIMPLE_PASS, /* type */
2812 "sanopt", /* name */
2813 OPTGROUP_NONE, /* optinfo_flags */
2814 TV_NONE, /* tv_id */
2815 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2816 0, /* properties_provided */
2817 0, /* properties_destroyed */
2818 0, /* todo_flags_start */
2819 TODO_update_ssa, /* todo_flags_finish */
2820 };
2821
2822 class pass_sanopt : public gimple_opt_pass
2823 {
2824 public:
2825 pass_sanopt (gcc::context *ctxt)
2826 : gimple_opt_pass (pass_data_sanopt, ctxt)
2827 {}
2828
2829 /* opt_pass methods: */
2830 virtual bool gate (function *) { return flag_sanitize; }
2831 virtual unsigned int execute (function *);
2832
2833 }; // class pass_sanopt
2834
2835 unsigned int
2836 pass_sanopt::execute (function *fun)
2837 {
2838 basic_block bb;
2839
2840 int asan_num_accesses = 0;
2841 if (flag_sanitize & SANITIZE_ADDRESS)
2842 {
2843 gimple_stmt_iterator gsi;
2844 FOR_EACH_BB_FN (bb, fun)
2845 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2846 {
2847 gimple stmt = gsi_stmt (gsi);
2848 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)
2849 && gimple_call_internal_fn (stmt) == IFN_ASAN_CHECK)
2850 ++asan_num_accesses;
2851 }
2852 }
2853
2854 bool use_calls = ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
2855 && asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
2856
2857 FOR_EACH_BB_FN (bb, fun)
2858 {
2859 gimple_stmt_iterator gsi;
2860 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2861 {
2862 gimple stmt = gsi_stmt (gsi);
2863 bool no_next = false;
2864
2865 if (!is_gimple_call (stmt))
2866 {
2867 gsi_next (&gsi);
2868 continue;
2869 }
2870
2871 if (gimple_call_internal_p (stmt))
2872 {
2873 enum internal_fn ifn = gimple_call_internal_fn (stmt);
2874 switch (ifn)
2875 {
2876 case IFN_UBSAN_NULL:
2877 no_next = ubsan_expand_null_ifn (&gsi);
2878 break;
2879 case IFN_UBSAN_BOUNDS:
2880 no_next = ubsan_expand_bounds_ifn (&gsi);
2881 break;
2882 case IFN_UBSAN_OBJECT_SIZE:
2883 no_next = ubsan_expand_objsize_ifn (&gsi);
2884 break;
2885 case IFN_ASAN_CHECK:
2886 {
2887 no_next = asan_expand_check_ifn (&gsi, use_calls);
2888 break;
2889 }
2890 default:
2891 break;
2892 }
2893 }
2894
2895 if (dump_file && (dump_flags & TDF_DETAILS))
2896 {
2897 fprintf (dump_file, "Optimized\n ");
2898 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2899 fprintf (dump_file, "\n");
2900 }
2901
2902 if (!no_next)
2903 gsi_next (&gsi);
2904 }
2905 }
2906 return 0;
2907 }
2908
2909 } // anon namespace
2910
2911 gimple_opt_pass *
2912 make_pass_sanopt (gcc::context *ctxt)
2913 {
2914 return new pass_sanopt (ctxt);
2915 }
2916
2917 #include "gt-asan.h"