IPA C++ refactoring 2/N
[gcc.git] / gcc / asan.c
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "gimple-expr.h"
31 #include "is-a.h"
32 #include "gimple.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "calls.h"
36 #include "varasm.h"
37 #include "stor-layout.h"
38 #include "tree-iterator.h"
39 #include "cgraph.h"
40 #include "stringpool.h"
41 #include "tree-ssanames.h"
42 #include "tree-pass.h"
43 #include "asan.h"
44 #include "gimple-pretty-print.h"
45 #include "target.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "output.h"
49 #include "tm_p.h"
50 #include "langhooks.h"
51 #include "alloc-pool.h"
52 #include "cfgloop.h"
53 #include "gimple-builder.h"
54 #include "ubsan.h"
55 #include "predict.h"
56 #include "params.h"
57 #include "builtins.h"
58
59 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
60 with <2x slowdown on average.
61
62 The tool consists of two parts:
63 instrumentation module (this file) and a run-time library.
64 The instrumentation module adds a run-time check before every memory insn.
65 For a 8- or 16- byte load accessing address X:
66 ShadowAddr = (X >> 3) + Offset
67 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
68 if (ShadowValue)
69 __asan_report_load8(X);
70 For a load of N bytes (N=1, 2 or 4) from address X:
71 ShadowAddr = (X >> 3) + Offset
72 ShadowValue = *(char*)ShadowAddr;
73 if (ShadowValue)
74 if ((X & 7) + N - 1 > ShadowValue)
75 __asan_report_loadN(X);
76 Stores are instrumented similarly, but using __asan_report_storeN functions.
77 A call too __asan_init_vN() is inserted to the list of module CTORs.
78 N is the version number of the AddressSanitizer API. The changes between the
79 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
80
81 The run-time library redefines malloc (so that redzone are inserted around
82 the allocated memory) and free (so that reuse of free-ed memory is delayed),
83 provides __asan_report* and __asan_init_vN functions.
84
85 Read more:
86 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
87
88 The current implementation supports detection of out-of-bounds and
89 use-after-free in the heap, on the stack and for global variables.
90
91 [Protection of stack variables]
92
93 To understand how detection of out-of-bounds and use-after-free works
94 for stack variables, lets look at this example on x86_64 where the
95 stack grows downward:
96
97 int
98 foo ()
99 {
100 char a[23] = {0};
101 int b[2] = {0};
102
103 a[5] = 1;
104 b[1] = 2;
105
106 return a[5] + b[1];
107 }
108
109 For this function, the stack protected by asan will be organized as
110 follows, from the top of the stack to the bottom:
111
112 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
113
114 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
115 the next slot be 32 bytes aligned; this one is called Partial
116 Redzone; this 32 bytes alignment is an asan constraint]
117
118 Slot 3/ [24 bytes for variable 'a']
119
120 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
121
122 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
123
124 Slot 6/ [8 bytes for variable 'b']
125
126 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
127 'LEFT RedZone']
128
129 The 32 bytes of LEFT red zone at the bottom of the stack can be
130 decomposed as such:
131
132 1/ The first 8 bytes contain a magical asan number that is always
133 0x41B58AB3.
134
135 2/ The following 8 bytes contains a pointer to a string (to be
136 parsed at runtime by the runtime asan library), which format is
137 the following:
138
139 "<function-name> <space> <num-of-variables-on-the-stack>
140 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
141 <length-of-var-in-bytes> ){n} "
142
143 where '(...){n}' means the content inside the parenthesis occurs 'n'
144 times, with 'n' being the number of variables on the stack.
145
146 3/ The following 8 bytes contain the PC of the current function which
147 will be used by the run-time library to print an error message.
148
149 4/ The following 8 bytes are reserved for internal use by the run-time.
150
151 The shadow memory for that stack layout is going to look like this:
152
153 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
154 The F1 byte pattern is a magic number called
155 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
156 the memory for that shadow byte is part of a the LEFT red zone
157 intended to seat at the bottom of the variables on the stack.
158
159 - content of shadow memory 8 bytes for slots 6 and 5:
160 0xF4F4F400. The F4 byte pattern is a magic number
161 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
162 memory region for this shadow byte is a PARTIAL red zone
163 intended to pad a variable A, so that the slot following
164 {A,padding} is 32 bytes aligned.
165
166 Note that the fact that the least significant byte of this
167 shadow memory content is 00 means that 8 bytes of its
168 corresponding memory (which corresponds to the memory of
169 variable 'b') is addressable.
170
171 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
172 The F2 byte pattern is a magic number called
173 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
174 region for this shadow byte is a MIDDLE red zone intended to
175 seat between two 32 aligned slots of {variable,padding}.
176
177 - content of shadow memory 8 bytes for slot 3 and 2:
178 0xF4000000. This represents is the concatenation of
179 variable 'a' and the partial red zone following it, like what we
180 had for variable 'b'. The least significant 3 bytes being 00
181 means that the 3 bytes of variable 'a' are addressable.
182
183 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
184 The F3 byte pattern is a magic number called
185 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
186 region for this shadow byte is a RIGHT red zone intended to seat
187 at the top of the variables of the stack.
188
189 Note that the real variable layout is done in expand_used_vars in
190 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
191 stack variables as well as the different red zones, emits some
192 prologue code to populate the shadow memory as to poison (mark as
193 non-accessible) the regions of the red zones and mark the regions of
194 stack variables as accessible, and emit some epilogue code to
195 un-poison (mark as accessible) the regions of red zones right before
196 the function exits.
197
198 [Protection of global variables]
199
200 The basic idea is to insert a red zone between two global variables
201 and install a constructor function that calls the asan runtime to do
202 the populating of the relevant shadow memory regions at load time.
203
204 So the global variables are laid out as to insert a red zone between
205 them. The size of the red zones is so that each variable starts on a
206 32 bytes boundary.
207
208 Then a constructor function is installed so that, for each global
209 variable, it calls the runtime asan library function
210 __asan_register_globals_with an instance of this type:
211
212 struct __asan_global
213 {
214 // Address of the beginning of the global variable.
215 const void *__beg;
216
217 // Initial size of the global variable.
218 uptr __size;
219
220 // Size of the global variable + size of the red zone. This
221 // size is 32 bytes aligned.
222 uptr __size_with_redzone;
223
224 // Name of the global variable.
225 const void *__name;
226
227 // Name of the module where the global variable is declared.
228 const void *__module_name;
229
230 // 1 if it has dynamic initialization, 0 otherwise.
231 uptr __has_dynamic_init;
232 }
233
234 A destructor function that calls the runtime asan library function
235 _asan_unregister_globals is also installed. */
236
237 alias_set_type asan_shadow_set = -1;
238
239 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
240 alias set is used for all shadow memory accesses. */
241 static GTY(()) tree shadow_ptr_types[2];
242
243 /* Decl for __asan_option_detect_stack_use_after_return. */
244 static GTY(()) tree asan_detect_stack_use_after_return;
245
246 /* Number of instrumentations in current function so far. */
247
248 static int asan_num_accesses;
249
250 /* Check whether we should replace inline instrumentation with calls. */
251
252 static inline bool
253 use_calls_p ()
254 {
255 return ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
256 && asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
257 }
258
259 /* Hashtable support for memory references used by gimple
260 statements. */
261
262 /* This type represents a reference to a memory region. */
263 struct asan_mem_ref
264 {
265 /* The expression of the beginning of the memory region. */
266 tree start;
267
268 /* The size of the access. */
269 HOST_WIDE_INT access_size;
270 };
271
272 static alloc_pool asan_mem_ref_alloc_pool;
273
274 /* This creates the alloc pool used to store the instances of
275 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
276
277 static alloc_pool
278 asan_mem_ref_get_alloc_pool ()
279 {
280 if (asan_mem_ref_alloc_pool == NULL)
281 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
282 sizeof (asan_mem_ref),
283 10);
284 return asan_mem_ref_alloc_pool;
285
286 }
287
288 /* Initializes an instance of asan_mem_ref. */
289
290 static void
291 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
292 {
293 ref->start = start;
294 ref->access_size = access_size;
295 }
296
297 /* Allocates memory for an instance of asan_mem_ref into the memory
298 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
299 START is the address of (or the expression pointing to) the
300 beginning of memory reference. ACCESS_SIZE is the size of the
301 access to the referenced memory. */
302
303 static asan_mem_ref*
304 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
305 {
306 asan_mem_ref *ref =
307 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
308
309 asan_mem_ref_init (ref, start, access_size);
310 return ref;
311 }
312
313 /* This builds and returns a pointer to the end of the memory region
314 that starts at START and of length LEN. */
315
316 tree
317 asan_mem_ref_get_end (tree start, tree len)
318 {
319 if (len == NULL_TREE || integer_zerop (len))
320 return start;
321
322 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
323 }
324
325 /* Return a tree expression that represents the end of the referenced
326 memory region. Beware that this function can actually build a new
327 tree expression. */
328
329 tree
330 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
331 {
332 return asan_mem_ref_get_end (ref->start, len);
333 }
334
335 struct asan_mem_ref_hasher
336 : typed_noop_remove <asan_mem_ref>
337 {
338 typedef asan_mem_ref value_type;
339 typedef asan_mem_ref compare_type;
340
341 static inline hashval_t hash (const value_type *);
342 static inline bool equal (const value_type *, const compare_type *);
343 };
344
345 /* Hash a memory reference. */
346
347 inline hashval_t
348 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
349 {
350 hashval_t h = iterative_hash_expr (mem_ref->start, 0);
351 h = iterative_hash_host_wide_int (mem_ref->access_size, h);
352 return h;
353 }
354
355 /* Compare two memory references. We accept the length of either
356 memory references to be NULL_TREE. */
357
358 inline bool
359 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
360 const asan_mem_ref *m2)
361 {
362 return (m1->access_size == m2->access_size
363 && operand_equal_p (m1->start, m2->start, 0));
364 }
365
366 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
367
368 /* Returns a reference to the hash table containing memory references.
369 This function ensures that the hash table is created. Note that
370 this hash table is updated by the function
371 update_mem_ref_hash_table. */
372
373 static hash_table<asan_mem_ref_hasher> *
374 get_mem_ref_hash_table ()
375 {
376 if (!asan_mem_ref_ht)
377 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
378
379 return asan_mem_ref_ht;
380 }
381
382 /* Clear all entries from the memory references hash table. */
383
384 static void
385 empty_mem_ref_hash_table ()
386 {
387 if (asan_mem_ref_ht)
388 asan_mem_ref_ht->empty ();
389 }
390
391 /* Free the memory references hash table. */
392
393 static void
394 free_mem_ref_resources ()
395 {
396 delete asan_mem_ref_ht;
397 asan_mem_ref_ht = NULL;
398
399 if (asan_mem_ref_alloc_pool)
400 {
401 free_alloc_pool (asan_mem_ref_alloc_pool);
402 asan_mem_ref_alloc_pool = NULL;
403 }
404 }
405
406 /* Return true iff the memory reference REF has been instrumented. */
407
408 static bool
409 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
410 {
411 asan_mem_ref r;
412 asan_mem_ref_init (&r, ref, access_size);
413
414 return (get_mem_ref_hash_table ()->find (&r) != NULL);
415 }
416
417 /* Return true iff the memory reference REF has been instrumented. */
418
419 static bool
420 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
421 {
422 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
423 }
424
425 /* Return true iff access to memory region starting at REF and of
426 length LEN has been instrumented. */
427
428 static bool
429 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
430 {
431 /* First let's see if the address of the beginning of REF has been
432 instrumented. */
433 if (!has_mem_ref_been_instrumented (ref))
434 return false;
435
436 if (len != 0)
437 {
438 /* Let's see if the end of the region has been instrumented. */
439 if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
440 ref->access_size))
441 return false;
442 }
443 return true;
444 }
445
446 /* Set REF to the memory reference present in a gimple assignment
447 ASSIGNMENT. Return true upon successful completion, false
448 otherwise. */
449
450 static bool
451 get_mem_ref_of_assignment (const gimple assignment,
452 asan_mem_ref *ref,
453 bool *ref_is_store)
454 {
455 gcc_assert (gimple_assign_single_p (assignment));
456
457 if (gimple_store_p (assignment)
458 && !gimple_clobber_p (assignment))
459 {
460 ref->start = gimple_assign_lhs (assignment);
461 *ref_is_store = true;
462 }
463 else if (gimple_assign_load_p (assignment))
464 {
465 ref->start = gimple_assign_rhs1 (assignment);
466 *ref_is_store = false;
467 }
468 else
469 return false;
470
471 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
472 return true;
473 }
474
475 /* Return the memory references contained in a gimple statement
476 representing a builtin call that has to do with memory access. */
477
478 static bool
479 get_mem_refs_of_builtin_call (const gimple call,
480 asan_mem_ref *src0,
481 tree *src0_len,
482 bool *src0_is_store,
483 asan_mem_ref *src1,
484 tree *src1_len,
485 bool *src1_is_store,
486 asan_mem_ref *dst,
487 tree *dst_len,
488 bool *dst_is_store,
489 bool *dest_is_deref)
490 {
491 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
492
493 tree callee = gimple_call_fndecl (call);
494 tree source0 = NULL_TREE, source1 = NULL_TREE,
495 dest = NULL_TREE, len = NULL_TREE;
496 bool is_store = true, got_reference_p = false;
497 HOST_WIDE_INT access_size = 1;
498
499 switch (DECL_FUNCTION_CODE (callee))
500 {
501 /* (s, s, n) style memops. */
502 case BUILT_IN_BCMP:
503 case BUILT_IN_MEMCMP:
504 source0 = gimple_call_arg (call, 0);
505 source1 = gimple_call_arg (call, 1);
506 len = gimple_call_arg (call, 2);
507 break;
508
509 /* (src, dest, n) style memops. */
510 case BUILT_IN_BCOPY:
511 source0 = gimple_call_arg (call, 0);
512 dest = gimple_call_arg (call, 1);
513 len = gimple_call_arg (call, 2);
514 break;
515
516 /* (dest, src, n) style memops. */
517 case BUILT_IN_MEMCPY:
518 case BUILT_IN_MEMCPY_CHK:
519 case BUILT_IN_MEMMOVE:
520 case BUILT_IN_MEMMOVE_CHK:
521 case BUILT_IN_MEMPCPY:
522 case BUILT_IN_MEMPCPY_CHK:
523 dest = gimple_call_arg (call, 0);
524 source0 = gimple_call_arg (call, 1);
525 len = gimple_call_arg (call, 2);
526 break;
527
528 /* (dest, n) style memops. */
529 case BUILT_IN_BZERO:
530 dest = gimple_call_arg (call, 0);
531 len = gimple_call_arg (call, 1);
532 break;
533
534 /* (dest, x, n) style memops*/
535 case BUILT_IN_MEMSET:
536 case BUILT_IN_MEMSET_CHK:
537 dest = gimple_call_arg (call, 0);
538 len = gimple_call_arg (call, 2);
539 break;
540
541 case BUILT_IN_STRLEN:
542 source0 = gimple_call_arg (call, 0);
543 len = gimple_call_lhs (call);
544 break ;
545
546 /* And now the __atomic* and __sync builtins.
547 These are handled differently from the classical memory memory
548 access builtins above. */
549
550 case BUILT_IN_ATOMIC_LOAD_1:
551 case BUILT_IN_ATOMIC_LOAD_2:
552 case BUILT_IN_ATOMIC_LOAD_4:
553 case BUILT_IN_ATOMIC_LOAD_8:
554 case BUILT_IN_ATOMIC_LOAD_16:
555 is_store = false;
556 /* fall through. */
557
558 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
559 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
560 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
561 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
562 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
563
564 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
565 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
566 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
567 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
568 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
569
570 case BUILT_IN_SYNC_FETCH_AND_OR_1:
571 case BUILT_IN_SYNC_FETCH_AND_OR_2:
572 case BUILT_IN_SYNC_FETCH_AND_OR_4:
573 case BUILT_IN_SYNC_FETCH_AND_OR_8:
574 case BUILT_IN_SYNC_FETCH_AND_OR_16:
575
576 case BUILT_IN_SYNC_FETCH_AND_AND_1:
577 case BUILT_IN_SYNC_FETCH_AND_AND_2:
578 case BUILT_IN_SYNC_FETCH_AND_AND_4:
579 case BUILT_IN_SYNC_FETCH_AND_AND_8:
580 case BUILT_IN_SYNC_FETCH_AND_AND_16:
581
582 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
583 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
584 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
585 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
586 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
587
588 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
589 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
590 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
591 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
592
593 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
594 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
595 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
596 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
597 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
598
599 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
600 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
601 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
602 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
603 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
604
605 case BUILT_IN_SYNC_OR_AND_FETCH_1:
606 case BUILT_IN_SYNC_OR_AND_FETCH_2:
607 case BUILT_IN_SYNC_OR_AND_FETCH_4:
608 case BUILT_IN_SYNC_OR_AND_FETCH_8:
609 case BUILT_IN_SYNC_OR_AND_FETCH_16:
610
611 case BUILT_IN_SYNC_AND_AND_FETCH_1:
612 case BUILT_IN_SYNC_AND_AND_FETCH_2:
613 case BUILT_IN_SYNC_AND_AND_FETCH_4:
614 case BUILT_IN_SYNC_AND_AND_FETCH_8:
615 case BUILT_IN_SYNC_AND_AND_FETCH_16:
616
617 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
618 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
619 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
620 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
621 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
622
623 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
624 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
625 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
626 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
627
628 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
629 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
630 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
631 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
632 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
633
634 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
635 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
636 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
637 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
638 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
639
640 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
641 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
642 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
643 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
644 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
645
646 case BUILT_IN_SYNC_LOCK_RELEASE_1:
647 case BUILT_IN_SYNC_LOCK_RELEASE_2:
648 case BUILT_IN_SYNC_LOCK_RELEASE_4:
649 case BUILT_IN_SYNC_LOCK_RELEASE_8:
650 case BUILT_IN_SYNC_LOCK_RELEASE_16:
651
652 case BUILT_IN_ATOMIC_EXCHANGE_1:
653 case BUILT_IN_ATOMIC_EXCHANGE_2:
654 case BUILT_IN_ATOMIC_EXCHANGE_4:
655 case BUILT_IN_ATOMIC_EXCHANGE_8:
656 case BUILT_IN_ATOMIC_EXCHANGE_16:
657
658 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
659 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
660 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
661 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
662 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
663
664 case BUILT_IN_ATOMIC_STORE_1:
665 case BUILT_IN_ATOMIC_STORE_2:
666 case BUILT_IN_ATOMIC_STORE_4:
667 case BUILT_IN_ATOMIC_STORE_8:
668 case BUILT_IN_ATOMIC_STORE_16:
669
670 case BUILT_IN_ATOMIC_ADD_FETCH_1:
671 case BUILT_IN_ATOMIC_ADD_FETCH_2:
672 case BUILT_IN_ATOMIC_ADD_FETCH_4:
673 case BUILT_IN_ATOMIC_ADD_FETCH_8:
674 case BUILT_IN_ATOMIC_ADD_FETCH_16:
675
676 case BUILT_IN_ATOMIC_SUB_FETCH_1:
677 case BUILT_IN_ATOMIC_SUB_FETCH_2:
678 case BUILT_IN_ATOMIC_SUB_FETCH_4:
679 case BUILT_IN_ATOMIC_SUB_FETCH_8:
680 case BUILT_IN_ATOMIC_SUB_FETCH_16:
681
682 case BUILT_IN_ATOMIC_AND_FETCH_1:
683 case BUILT_IN_ATOMIC_AND_FETCH_2:
684 case BUILT_IN_ATOMIC_AND_FETCH_4:
685 case BUILT_IN_ATOMIC_AND_FETCH_8:
686 case BUILT_IN_ATOMIC_AND_FETCH_16:
687
688 case BUILT_IN_ATOMIC_NAND_FETCH_1:
689 case BUILT_IN_ATOMIC_NAND_FETCH_2:
690 case BUILT_IN_ATOMIC_NAND_FETCH_4:
691 case BUILT_IN_ATOMIC_NAND_FETCH_8:
692 case BUILT_IN_ATOMIC_NAND_FETCH_16:
693
694 case BUILT_IN_ATOMIC_XOR_FETCH_1:
695 case BUILT_IN_ATOMIC_XOR_FETCH_2:
696 case BUILT_IN_ATOMIC_XOR_FETCH_4:
697 case BUILT_IN_ATOMIC_XOR_FETCH_8:
698 case BUILT_IN_ATOMIC_XOR_FETCH_16:
699
700 case BUILT_IN_ATOMIC_OR_FETCH_1:
701 case BUILT_IN_ATOMIC_OR_FETCH_2:
702 case BUILT_IN_ATOMIC_OR_FETCH_4:
703 case BUILT_IN_ATOMIC_OR_FETCH_8:
704 case BUILT_IN_ATOMIC_OR_FETCH_16:
705
706 case BUILT_IN_ATOMIC_FETCH_ADD_1:
707 case BUILT_IN_ATOMIC_FETCH_ADD_2:
708 case BUILT_IN_ATOMIC_FETCH_ADD_4:
709 case BUILT_IN_ATOMIC_FETCH_ADD_8:
710 case BUILT_IN_ATOMIC_FETCH_ADD_16:
711
712 case BUILT_IN_ATOMIC_FETCH_SUB_1:
713 case BUILT_IN_ATOMIC_FETCH_SUB_2:
714 case BUILT_IN_ATOMIC_FETCH_SUB_4:
715 case BUILT_IN_ATOMIC_FETCH_SUB_8:
716 case BUILT_IN_ATOMIC_FETCH_SUB_16:
717
718 case BUILT_IN_ATOMIC_FETCH_AND_1:
719 case BUILT_IN_ATOMIC_FETCH_AND_2:
720 case BUILT_IN_ATOMIC_FETCH_AND_4:
721 case BUILT_IN_ATOMIC_FETCH_AND_8:
722 case BUILT_IN_ATOMIC_FETCH_AND_16:
723
724 case BUILT_IN_ATOMIC_FETCH_NAND_1:
725 case BUILT_IN_ATOMIC_FETCH_NAND_2:
726 case BUILT_IN_ATOMIC_FETCH_NAND_4:
727 case BUILT_IN_ATOMIC_FETCH_NAND_8:
728 case BUILT_IN_ATOMIC_FETCH_NAND_16:
729
730 case BUILT_IN_ATOMIC_FETCH_XOR_1:
731 case BUILT_IN_ATOMIC_FETCH_XOR_2:
732 case BUILT_IN_ATOMIC_FETCH_XOR_4:
733 case BUILT_IN_ATOMIC_FETCH_XOR_8:
734 case BUILT_IN_ATOMIC_FETCH_XOR_16:
735
736 case BUILT_IN_ATOMIC_FETCH_OR_1:
737 case BUILT_IN_ATOMIC_FETCH_OR_2:
738 case BUILT_IN_ATOMIC_FETCH_OR_4:
739 case BUILT_IN_ATOMIC_FETCH_OR_8:
740 case BUILT_IN_ATOMIC_FETCH_OR_16:
741 {
742 dest = gimple_call_arg (call, 0);
743 /* DEST represents the address of a memory location.
744 instrument_derefs wants the memory location, so lets
745 dereference the address DEST before handing it to
746 instrument_derefs. */
747 if (TREE_CODE (dest) == ADDR_EXPR)
748 dest = TREE_OPERAND (dest, 0);
749 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
750 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
751 dest, build_int_cst (TREE_TYPE (dest), 0));
752 else
753 gcc_unreachable ();
754
755 access_size = int_size_in_bytes (TREE_TYPE (dest));
756 }
757
758 default:
759 /* The other builtins memory access are not instrumented in this
760 function because they either don't have any length parameter,
761 or their length parameter is just a limit. */
762 break;
763 }
764
765 if (len != NULL_TREE)
766 {
767 if (source0 != NULL_TREE)
768 {
769 src0->start = source0;
770 src0->access_size = access_size;
771 *src0_len = len;
772 *src0_is_store = false;
773 }
774
775 if (source1 != NULL_TREE)
776 {
777 src1->start = source1;
778 src1->access_size = access_size;
779 *src1_len = len;
780 *src1_is_store = false;
781 }
782
783 if (dest != NULL_TREE)
784 {
785 dst->start = dest;
786 dst->access_size = access_size;
787 *dst_len = len;
788 *dst_is_store = true;
789 }
790
791 got_reference_p = true;
792 }
793 else if (dest)
794 {
795 dst->start = dest;
796 dst->access_size = access_size;
797 *dst_len = NULL_TREE;
798 *dst_is_store = is_store;
799 *dest_is_deref = true;
800 got_reference_p = true;
801 }
802
803 return got_reference_p;
804 }
805
806 /* Return true iff a given gimple statement has been instrumented.
807 Note that the statement is "defined" by the memory references it
808 contains. */
809
810 static bool
811 has_stmt_been_instrumented_p (gimple stmt)
812 {
813 if (gimple_assign_single_p (stmt))
814 {
815 bool r_is_store;
816 asan_mem_ref r;
817 asan_mem_ref_init (&r, NULL, 1);
818
819 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
820 return has_mem_ref_been_instrumented (&r);
821 }
822 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
823 {
824 asan_mem_ref src0, src1, dest;
825 asan_mem_ref_init (&src0, NULL, 1);
826 asan_mem_ref_init (&src1, NULL, 1);
827 asan_mem_ref_init (&dest, NULL, 1);
828
829 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
830 bool src0_is_store = false, src1_is_store = false,
831 dest_is_store = false, dest_is_deref = false;
832 if (get_mem_refs_of_builtin_call (stmt,
833 &src0, &src0_len, &src0_is_store,
834 &src1, &src1_len, &src1_is_store,
835 &dest, &dest_len, &dest_is_store,
836 &dest_is_deref))
837 {
838 if (src0.start != NULL_TREE
839 && !has_mem_ref_been_instrumented (&src0, src0_len))
840 return false;
841
842 if (src1.start != NULL_TREE
843 && !has_mem_ref_been_instrumented (&src1, src1_len))
844 return false;
845
846 if (dest.start != NULL_TREE
847 && !has_mem_ref_been_instrumented (&dest, dest_len))
848 return false;
849
850 return true;
851 }
852 }
853 return false;
854 }
855
856 /* Insert a memory reference into the hash table. */
857
858 static void
859 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
860 {
861 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
862
863 asan_mem_ref r;
864 asan_mem_ref_init (&r, ref, access_size);
865
866 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
867 if (*slot == NULL)
868 *slot = asan_mem_ref_new (ref, access_size);
869 }
870
871 /* Initialize shadow_ptr_types array. */
872
873 static void
874 asan_init_shadow_ptr_types (void)
875 {
876 asan_shadow_set = new_alias_set ();
877 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
878 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
879 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
880 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
881 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
882 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
883 initialize_sanitizer_builtins ();
884 }
885
886 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
887
888 static tree
889 asan_pp_string (pretty_printer *pp)
890 {
891 const char *buf = pp_formatted_text (pp);
892 size_t len = strlen (buf);
893 tree ret = build_string (len + 1, buf);
894 TREE_TYPE (ret)
895 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
896 build_index_type (size_int (len)));
897 TREE_READONLY (ret) = 1;
898 TREE_STATIC (ret) = 1;
899 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
900 }
901
902 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
903
904 static rtx
905 asan_shadow_cst (unsigned char shadow_bytes[4])
906 {
907 int i;
908 unsigned HOST_WIDE_INT val = 0;
909 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
910 for (i = 0; i < 4; i++)
911 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
912 << (BITS_PER_UNIT * i);
913 return gen_int_mode (val, SImode);
914 }
915
916 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
917 though. */
918
919 static void
920 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
921 {
922 rtx insn, insns, top_label, end, addr, tmp, jump;
923
924 start_sequence ();
925 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
926 insns = get_insns ();
927 end_sequence ();
928 for (insn = insns; insn; insn = NEXT_INSN (insn))
929 if (CALL_P (insn))
930 break;
931 if (insn == NULL_RTX)
932 {
933 emit_insn (insns);
934 return;
935 }
936
937 gcc_assert ((len & 3) == 0);
938 top_label = gen_label_rtx ();
939 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
940 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
941 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
942 emit_label (top_label);
943
944 emit_move_insn (shadow_mem, const0_rtx);
945 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
946 true, OPTAB_LIB_WIDEN);
947 if (tmp != addr)
948 emit_move_insn (addr, tmp);
949 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
950 jump = get_last_insn ();
951 gcc_assert (JUMP_P (jump));
952 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
953 }
954
955 void
956 asan_function_start (void)
957 {
958 section *fnsec = function_section (current_function_decl);
959 switch_to_section (fnsec);
960 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
961 current_function_funcdef_no);
962 }
963
964 /* Insert code to protect stack vars. The prologue sequence should be emitted
965 directly, epilogue sequence returned. BASE is the register holding the
966 stack base, against which OFFSETS array offsets are relative to, OFFSETS
967 array contains pairs of offsets in reverse order, always the end offset
968 of some gap that needs protection followed by starting offset,
969 and DECLS is an array of representative decls for each var partition.
970 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
971 elements long (OFFSETS include gap before the first variable as well
972 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
973 register which stack vars DECL_RTLs are based on. Either BASE should be
974 assigned to PBASE, when not doing use after return protection, or
975 corresponding address based on __asan_stack_malloc* return value. */
976
977 rtx
978 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
979 HOST_WIDE_INT *offsets, tree *decls, int length)
980 {
981 rtx shadow_base, shadow_mem, ret, mem, orig_base, lab;
982 char buf[30];
983 unsigned char shadow_bytes[4];
984 HOST_WIDE_INT base_offset = offsets[length - 1];
985 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
986 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
987 HOST_WIDE_INT last_offset, last_size;
988 int l;
989 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
990 tree str_cst, decl, id;
991 int use_after_return_class = -1;
992
993 if (shadow_ptr_types[0] == NULL_TREE)
994 asan_init_shadow_ptr_types ();
995
996 /* First of all, prepare the description string. */
997 pretty_printer asan_pp;
998
999 pp_decimal_int (&asan_pp, length / 2 - 1);
1000 pp_space (&asan_pp);
1001 for (l = length - 2; l; l -= 2)
1002 {
1003 tree decl = decls[l / 2 - 1];
1004 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1005 pp_space (&asan_pp);
1006 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1007 pp_space (&asan_pp);
1008 if (DECL_P (decl) && DECL_NAME (decl))
1009 {
1010 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1011 pp_space (&asan_pp);
1012 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1013 }
1014 else
1015 pp_string (&asan_pp, "9 <unknown>");
1016 pp_space (&asan_pp);
1017 }
1018 str_cst = asan_pp_string (&asan_pp);
1019
1020 /* Emit the prologue sequence. */
1021 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1022 && ASAN_USE_AFTER_RETURN)
1023 {
1024 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1025 /* __asan_stack_malloc_N guarantees alignment
1026 N < 6 ? (64 << N) : 4096 bytes. */
1027 if (alignb > (use_after_return_class < 6
1028 ? (64U << use_after_return_class) : 4096U))
1029 use_after_return_class = -1;
1030 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1031 base_align_bias = ((asan_frame_size + alignb - 1)
1032 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1033 }
1034 /* Align base if target is STRICT_ALIGNMENT. */
1035 if (STRICT_ALIGNMENT)
1036 base = expand_binop (Pmode, and_optab, base,
1037 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1038 << ASAN_SHADOW_SHIFT)
1039 / BITS_PER_UNIT), Pmode), NULL_RTX,
1040 1, OPTAB_DIRECT);
1041
1042 if (use_after_return_class == -1 && pbase)
1043 emit_move_insn (pbase, base);
1044
1045 base = expand_binop (Pmode, add_optab, base,
1046 gen_int_mode (base_offset - base_align_bias, Pmode),
1047 NULL_RTX, 1, OPTAB_DIRECT);
1048 orig_base = NULL_RTX;
1049 if (use_after_return_class != -1)
1050 {
1051 if (asan_detect_stack_use_after_return == NULL_TREE)
1052 {
1053 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1054 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1055 integer_type_node);
1056 SET_DECL_ASSEMBLER_NAME (decl, id);
1057 TREE_ADDRESSABLE (decl) = 1;
1058 DECL_ARTIFICIAL (decl) = 1;
1059 DECL_IGNORED_P (decl) = 1;
1060 DECL_EXTERNAL (decl) = 1;
1061 TREE_STATIC (decl) = 1;
1062 TREE_PUBLIC (decl) = 1;
1063 TREE_USED (decl) = 1;
1064 asan_detect_stack_use_after_return = decl;
1065 }
1066 orig_base = gen_reg_rtx (Pmode);
1067 emit_move_insn (orig_base, base);
1068 ret = expand_normal (asan_detect_stack_use_after_return);
1069 lab = gen_label_rtx ();
1070 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1071 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1072 VOIDmode, 0, lab, very_likely);
1073 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1074 use_after_return_class);
1075 ret = init_one_libfunc (buf);
1076 rtx addr = convert_memory_address (ptr_mode, base);
1077 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1078 GEN_INT (asan_frame_size
1079 + base_align_bias),
1080 TYPE_MODE (pointer_sized_int_node),
1081 addr, ptr_mode);
1082 ret = convert_memory_address (Pmode, ret);
1083 emit_move_insn (base, ret);
1084 emit_label (lab);
1085 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1086 gen_int_mode (base_align_bias
1087 - base_offset, Pmode),
1088 NULL_RTX, 1, OPTAB_DIRECT));
1089 }
1090 mem = gen_rtx_MEM (ptr_mode, base);
1091 mem = adjust_address (mem, VOIDmode, base_align_bias);
1092 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1093 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1094 emit_move_insn (mem, expand_normal (str_cst));
1095 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1096 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1097 id = get_identifier (buf);
1098 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1099 VAR_DECL, id, char_type_node);
1100 SET_DECL_ASSEMBLER_NAME (decl, id);
1101 TREE_ADDRESSABLE (decl) = 1;
1102 TREE_READONLY (decl) = 1;
1103 DECL_ARTIFICIAL (decl) = 1;
1104 DECL_IGNORED_P (decl) = 1;
1105 TREE_STATIC (decl) = 1;
1106 TREE_PUBLIC (decl) = 0;
1107 TREE_USED (decl) = 1;
1108 DECL_INITIAL (decl) = decl;
1109 TREE_ASM_WRITTEN (decl) = 1;
1110 TREE_ASM_WRITTEN (id) = 1;
1111 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1112 shadow_base = expand_binop (Pmode, lshr_optab, base,
1113 GEN_INT (ASAN_SHADOW_SHIFT),
1114 NULL_RTX, 1, OPTAB_DIRECT);
1115 shadow_base
1116 = plus_constant (Pmode, shadow_base,
1117 targetm.asan_shadow_offset ()
1118 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1119 gcc_assert (asan_shadow_set != -1
1120 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1121 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1122 set_mem_alias_set (shadow_mem, asan_shadow_set);
1123 if (STRICT_ALIGNMENT)
1124 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1125 prev_offset = base_offset;
1126 for (l = length; l; l -= 2)
1127 {
1128 if (l == 2)
1129 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1130 offset = offsets[l - 1];
1131 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1132 {
1133 int i;
1134 HOST_WIDE_INT aoff
1135 = base_offset + ((offset - base_offset)
1136 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1137 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1138 (aoff - prev_offset)
1139 >> ASAN_SHADOW_SHIFT);
1140 prev_offset = aoff;
1141 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1142 if (aoff < offset)
1143 {
1144 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1145 shadow_bytes[i] = 0;
1146 else
1147 shadow_bytes[i] = offset - aoff;
1148 }
1149 else
1150 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1151 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1152 offset = aoff;
1153 }
1154 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1155 {
1156 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1157 (offset - prev_offset)
1158 >> ASAN_SHADOW_SHIFT);
1159 prev_offset = offset;
1160 memset (shadow_bytes, cur_shadow_byte, 4);
1161 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1162 offset += ASAN_RED_ZONE_SIZE;
1163 }
1164 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1165 }
1166 do_pending_stack_adjust ();
1167
1168 /* Construct epilogue sequence. */
1169 start_sequence ();
1170
1171 lab = NULL_RTX;
1172 if (use_after_return_class != -1)
1173 {
1174 rtx lab2 = gen_label_rtx ();
1175 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1176 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1177 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1178 VOIDmode, 0, lab2, very_likely);
1179 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1180 set_mem_alias_set (shadow_mem, asan_shadow_set);
1181 mem = gen_rtx_MEM (ptr_mode, base);
1182 mem = adjust_address (mem, VOIDmode, base_align_bias);
1183 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1184 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1185 if (use_after_return_class < 5
1186 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1187 BITS_PER_UNIT, true))
1188 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1189 BITS_PER_UNIT, true, 0);
1190 else if (use_after_return_class >= 5
1191 || !set_storage_via_setmem (shadow_mem,
1192 GEN_INT (sz),
1193 gen_int_mode (c, QImode),
1194 BITS_PER_UNIT, BITS_PER_UNIT,
1195 -1, sz, sz, sz))
1196 {
1197 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1198 use_after_return_class);
1199 ret = init_one_libfunc (buf);
1200 rtx addr = convert_memory_address (ptr_mode, base);
1201 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1202 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1203 GEN_INT (asan_frame_size + base_align_bias),
1204 TYPE_MODE (pointer_sized_int_node),
1205 orig_addr, ptr_mode);
1206 }
1207 lab = gen_label_rtx ();
1208 emit_jump (lab);
1209 emit_label (lab2);
1210 }
1211
1212 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1213 set_mem_alias_set (shadow_mem, asan_shadow_set);
1214
1215 if (STRICT_ALIGNMENT)
1216 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1217
1218 prev_offset = base_offset;
1219 last_offset = base_offset;
1220 last_size = 0;
1221 for (l = length; l; l -= 2)
1222 {
1223 offset = base_offset + ((offsets[l - 1] - base_offset)
1224 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1225 if (last_offset + last_size != offset)
1226 {
1227 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1228 (last_offset - prev_offset)
1229 >> ASAN_SHADOW_SHIFT);
1230 prev_offset = last_offset;
1231 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1232 last_offset = offset;
1233 last_size = 0;
1234 }
1235 last_size += base_offset + ((offsets[l - 2] - base_offset)
1236 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1237 - offset;
1238 }
1239 if (last_size)
1240 {
1241 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1242 (last_offset - prev_offset)
1243 >> ASAN_SHADOW_SHIFT);
1244 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1245 }
1246
1247 do_pending_stack_adjust ();
1248 if (lab)
1249 emit_label (lab);
1250
1251 ret = get_insns ();
1252 end_sequence ();
1253 return ret;
1254 }
1255
1256 /* Return true if DECL, a global var, might be overridden and needs
1257 therefore a local alias. */
1258
1259 static bool
1260 asan_needs_local_alias (tree decl)
1261 {
1262 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1263 }
1264
1265 /* Return true if DECL is a VAR_DECL that should be protected
1266 by Address Sanitizer, by appending a red zone with protected
1267 shadow memory after it and aligning it to at least
1268 ASAN_RED_ZONE_SIZE bytes. */
1269
1270 bool
1271 asan_protect_global (tree decl)
1272 {
1273 if (!ASAN_GLOBALS)
1274 return false;
1275
1276 rtx rtl, symbol;
1277
1278 if (TREE_CODE (decl) == STRING_CST)
1279 {
1280 /* Instrument all STRING_CSTs except those created
1281 by asan_pp_string here. */
1282 if (shadow_ptr_types[0] != NULL_TREE
1283 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1284 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1285 return false;
1286 return true;
1287 }
1288 if (TREE_CODE (decl) != VAR_DECL
1289 /* TLS vars aren't statically protectable. */
1290 || DECL_THREAD_LOCAL_P (decl)
1291 /* Externs will be protected elsewhere. */
1292 || DECL_EXTERNAL (decl)
1293 || !DECL_RTL_SET_P (decl)
1294 /* Comdat vars pose an ABI problem, we can't know if
1295 the var that is selected by the linker will have
1296 padding or not. */
1297 || DECL_ONE_ONLY (decl)
1298 /* Similarly for common vars. People can use -fno-common. */
1299 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1300 /* Don't protect if using user section, often vars placed
1301 into user section from multiple TUs are then assumed
1302 to be an array of such vars, putting padding in there
1303 breaks this assumption. */
1304 || (DECL_SECTION_NAME (decl) != NULL
1305 && !symtab_node::get (decl)->implicit_section)
1306 || DECL_SIZE (decl) == 0
1307 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1308 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1309 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE)
1310 return false;
1311
1312 rtl = DECL_RTL (decl);
1313 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1314 return false;
1315 symbol = XEXP (rtl, 0);
1316
1317 if (CONSTANT_POOL_ADDRESS_P (symbol)
1318 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1319 return false;
1320
1321 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1322 return false;
1323
1324 #ifndef ASM_OUTPUT_DEF
1325 if (asan_needs_local_alias (decl))
1326 return false;
1327 #endif
1328
1329 return true;
1330 }
1331
1332 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1333 IS_STORE is either 1 (for a store) or 0 (for a load). */
1334
1335 static tree
1336 report_error_func (bool is_store, HOST_WIDE_INT size_in_bytes, int *nargs)
1337 {
1338 static enum built_in_function report[2][6]
1339 = { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1340 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1341 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1342 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1343 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1344 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } };
1345 if (size_in_bytes == -1)
1346 {
1347 *nargs = 2;
1348 return builtin_decl_implicit (report[is_store][5]);
1349 }
1350 *nargs = 1;
1351 return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
1352 }
1353
1354 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1355 IS_STORE is either 1 (for a store) or 0 (for a load). */
1356
1357 static tree
1358 check_func (bool is_store, int size_in_bytes, int *nargs)
1359 {
1360 static enum built_in_function check[2][6]
1361 = { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1362 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1363 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1364 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1365 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1366 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } };
1367 if (size_in_bytes == -1)
1368 {
1369 *nargs = 2;
1370 return builtin_decl_implicit (check[is_store][5]);
1371 }
1372 *nargs = 1;
1373 return builtin_decl_implicit (check[is_store][exact_log2 (size_in_bytes)]);
1374 }
1375
1376 /* Split the current basic block and create a condition statement
1377 insertion point right before or after the statement pointed to by
1378 ITER. Return an iterator to the point at which the caller might
1379 safely insert the condition statement.
1380
1381 THEN_BLOCK must be set to the address of an uninitialized instance
1382 of basic_block. The function will then set *THEN_BLOCK to the
1383 'then block' of the condition statement to be inserted by the
1384 caller.
1385
1386 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1387 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1388
1389 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1390 block' of the condition statement to be inserted by the caller.
1391
1392 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1393 statements starting from *ITER, and *THEN_BLOCK is a new empty
1394 block.
1395
1396 *ITER is adjusted to point to always point to the first statement
1397 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1398 same as what ITER was pointing to prior to calling this function,
1399 if BEFORE_P is true; otherwise, it is its following statement. */
1400
1401 gimple_stmt_iterator
1402 create_cond_insert_point (gimple_stmt_iterator *iter,
1403 bool before_p,
1404 bool then_more_likely_p,
1405 bool create_then_fallthru_edge,
1406 basic_block *then_block,
1407 basic_block *fallthrough_block)
1408 {
1409 gimple_stmt_iterator gsi = *iter;
1410
1411 if (!gsi_end_p (gsi) && before_p)
1412 gsi_prev (&gsi);
1413
1414 basic_block cur_bb = gsi_bb (*iter);
1415
1416 edge e = split_block (cur_bb, gsi_stmt (gsi));
1417
1418 /* Get a hold on the 'condition block', the 'then block' and the
1419 'else block'. */
1420 basic_block cond_bb = e->src;
1421 basic_block fallthru_bb = e->dest;
1422 basic_block then_bb = create_empty_bb (cond_bb);
1423 if (current_loops)
1424 {
1425 add_bb_to_loop (then_bb, cond_bb->loop_father);
1426 loops_state_set (LOOPS_NEED_FIXUP);
1427 }
1428
1429 /* Set up the newly created 'then block'. */
1430 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1431 int fallthrough_probability
1432 = then_more_likely_p
1433 ? PROB_VERY_UNLIKELY
1434 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1435 e->probability = PROB_ALWAYS - fallthrough_probability;
1436 if (create_then_fallthru_edge)
1437 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1438
1439 /* Set up the fallthrough basic block. */
1440 e = find_edge (cond_bb, fallthru_bb);
1441 e->flags = EDGE_FALSE_VALUE;
1442 e->count = cond_bb->count;
1443 e->probability = fallthrough_probability;
1444
1445 /* Update dominance info for the newly created then_bb; note that
1446 fallthru_bb's dominance info has already been updated by
1447 split_bock. */
1448 if (dom_info_available_p (CDI_DOMINATORS))
1449 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1450
1451 *then_block = then_bb;
1452 *fallthrough_block = fallthru_bb;
1453 *iter = gsi_start_bb (fallthru_bb);
1454
1455 return gsi_last_bb (cond_bb);
1456 }
1457
1458 /* Insert an if condition followed by a 'then block' right before the
1459 statement pointed to by ITER. The fallthrough block -- which is the
1460 else block of the condition as well as the destination of the
1461 outcoming edge of the 'then block' -- starts with the statement
1462 pointed to by ITER.
1463
1464 COND is the condition of the if.
1465
1466 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1467 'then block' is higher than the probability of the edge to the
1468 fallthrough block.
1469
1470 Upon completion of the function, *THEN_BB is set to the newly
1471 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1472 fallthrough block.
1473
1474 *ITER is adjusted to still point to the same statement it was
1475 pointing to initially. */
1476
1477 static void
1478 insert_if_then_before_iter (gimple cond,
1479 gimple_stmt_iterator *iter,
1480 bool then_more_likely_p,
1481 basic_block *then_bb,
1482 basic_block *fallthrough_bb)
1483 {
1484 gimple_stmt_iterator cond_insert_point =
1485 create_cond_insert_point (iter,
1486 /*before_p=*/true,
1487 then_more_likely_p,
1488 /*create_then_fallthru_edge=*/true,
1489 then_bb,
1490 fallthrough_bb);
1491 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1492 }
1493
1494 /* Build
1495 (base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset (). */
1496
1497 static tree
1498 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1499 tree base_addr, tree shadow_ptr_type)
1500 {
1501 tree t, uintptr_type = TREE_TYPE (base_addr);
1502 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1503 gimple g;
1504
1505 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1506 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1507 make_ssa_name (uintptr_type, NULL),
1508 base_addr, t);
1509 gimple_set_location (g, location);
1510 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1511
1512 t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
1513 g = gimple_build_assign_with_ops (PLUS_EXPR,
1514 make_ssa_name (uintptr_type, NULL),
1515 gimple_assign_lhs (g), t);
1516 gimple_set_location (g, location);
1517 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1518
1519 g = gimple_build_assign_with_ops (NOP_EXPR,
1520 make_ssa_name (shadow_ptr_type, NULL),
1521 gimple_assign_lhs (g), NULL_TREE);
1522 gimple_set_location (g, location);
1523 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1524
1525 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1526 build_int_cst (shadow_ptr_type, 0));
1527 g = gimple_build_assign_with_ops (MEM_REF,
1528 make_ssa_name (shadow_type, NULL),
1529 t, NULL_TREE);
1530 gimple_set_location (g, location);
1531 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1532 return gimple_assign_lhs (g);
1533 }
1534
1535 /* BASE can already be an SSA_NAME; in that case, do not create a
1536 new SSA_NAME for it. */
1537
1538 static tree
1539 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1540 bool before_p)
1541 {
1542 if (TREE_CODE (base) == SSA_NAME)
1543 return base;
1544 gimple g
1545 = gimple_build_assign_with_ops (TREE_CODE (base),
1546 make_ssa_name (TREE_TYPE (base), NULL),
1547 base, NULL_TREE);
1548 gimple_set_location (g, loc);
1549 if (before_p)
1550 gsi_insert_before (iter, g, GSI_SAME_STMT);
1551 else
1552 gsi_insert_after (iter, g, GSI_NEW_STMT);
1553 return gimple_assign_lhs (g);
1554 }
1555
1556 /* Instrument the memory access instruction using callbacks.
1557 Parameters are similar to BUILD_CHECK_STMT. */
1558
1559 static void
1560 build_check_stmt_with_calls (location_t loc, tree base, tree len,
1561 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1562 bool before_p, bool is_store, bool is_scalar_access)
1563 {
1564 gimple_stmt_iterator gsi = *iter;
1565 tree base_ssa = maybe_create_ssa_name (loc, base, &gsi, before_p);
1566
1567 gimple g
1568 = gimple_build_assign_with_ops (NOP_EXPR,
1569 make_ssa_name (pointer_sized_int_node, NULL),
1570 base_ssa, NULL_TREE);
1571 gimple_set_location (g, loc);
1572 if (before_p)
1573 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
1574 else
1575 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1576 tree base_addr = gimple_assign_lhs (g);
1577
1578 int nargs;
1579 tree fun
1580 = check_func (is_store, is_scalar_access ? size_in_bytes : -1, &nargs);
1581 if (nargs == 1)
1582 g = gimple_build_call (fun, 1, base_addr);
1583 else
1584 {
1585 gcc_assert (nargs == 2);
1586 g = gimple_build_assign_with_ops (NOP_EXPR,
1587 make_ssa_name (pointer_sized_int_node,
1588 NULL),
1589 len, NULL_TREE);
1590 gimple_set_location (g, loc);
1591 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1592 tree sz_arg = gimple_assign_lhs (g);
1593 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
1594 }
1595 gimple_set_location (g, loc);
1596 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1597
1598 if (!before_p)
1599 {
1600 gsi_next (&gsi);
1601 *iter = gsi;
1602 }
1603 }
1604
1605 /* Instrument the memory access instruction BASE. Insert new
1606 statements before or after ITER.
1607
1608 Note that the memory access represented by BASE can be either an
1609 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1610 location. IS_STORE is TRUE for a store, FALSE for a load.
1611 BEFORE_P is TRUE for inserting the instrumentation code before
1612 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1613 for a scalar memory access and FALSE for memory region access.
1614 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1615 length. ALIGN tells alignment of accessed memory object.
1616
1617 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1618 memory region have already been instrumented.
1619
1620 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1621 statement it was pointing to prior to calling this function,
1622 otherwise, it points to the statement logically following it. */
1623
1624 static void
1625 build_check_stmt (location_t location, tree base, tree len,
1626 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1627 bool non_zero_len_p, bool before_p, bool is_store,
1628 bool is_scalar_access, unsigned int align = 0,
1629 bool start_instrumented = false,
1630 bool end_instrumented = false)
1631 {
1632 gimple_stmt_iterator gsi = *iter;
1633 gimple g;
1634 tree uintptr_type
1635 = build_nonstandard_integer_type (TYPE_PRECISION (TREE_TYPE (base)), 1);
1636
1637 gcc_assert (!(size_in_bytes > 0 && !non_zero_len_p));
1638
1639 if (start_instrumented && end_instrumented)
1640 {
1641 if (!before_p)
1642 gsi_next (iter);
1643 return;
1644 }
1645
1646 if (len)
1647 len = unshare_expr (len);
1648 else
1649 {
1650 gcc_assert (size_in_bytes != -1);
1651 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1652 }
1653
1654 if (size_in_bytes > 1)
1655 {
1656 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1657 || !is_scalar_access
1658 || size_in_bytes > 16)
1659 size_in_bytes = -1;
1660 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1661 {
1662 /* On non-strict alignment targets, if
1663 16-byte access is just 8-byte aligned,
1664 this will result in misaligned shadow
1665 memory 2 byte load, but otherwise can
1666 be handled using one read. */
1667 if (size_in_bytes != 16
1668 || STRICT_ALIGNMENT
1669 || align < 8 * BITS_PER_UNIT)
1670 size_in_bytes = -1;
1671 }
1672 }
1673
1674 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
1675
1676 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
1677 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1678
1679 base = unshare_expr (base);
1680
1681 if (use_calls_p ())
1682 {
1683 gsi = *iter;
1684 build_check_stmt_with_calls (location, base, len, size_in_bytes, iter,
1685 before_p, is_store, is_scalar_access);
1686 return;
1687 }
1688
1689 ++asan_num_accesses;
1690
1691 if (!non_zero_len_p)
1692 {
1693 gcc_assert (before_p);
1694
1695 /* So, the length of the memory area to asan-protect is
1696 non-constant. Let's guard the generated instrumentation code
1697 like:
1698
1699 if (len != 0)
1700 {
1701 //asan instrumentation code goes here.
1702 }
1703 // falltrough instructions, starting with *ITER. */
1704
1705 g = gimple_build_cond (NE_EXPR,
1706 len,
1707 build_int_cst (TREE_TYPE (len), 0),
1708 NULL_TREE, NULL_TREE);
1709 gimple_set_location (g, location);
1710
1711 basic_block then_bb, fallthrough_bb;
1712 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
1713 &then_bb, &fallthrough_bb);
1714 /* Note that fallthrough_bb starts with the statement that was
1715 pointed to by ITER. */
1716
1717 /* The 'then block' of the 'if (len != 0) condition is where
1718 we'll generate the asan instrumentation code now. */
1719 gsi = gsi_last_bb (then_bb);
1720 build_check_stmt (location, base, len, size_in_bytes, &gsi,
1721 /*non_zero_len_p*/true, /*before_p*/true, is_store,
1722 is_scalar_access, align,
1723 start_instrumented, end_instrumented);
1724 return;
1725 }
1726
1727 /* Get an iterator on the point where we can add the condition
1728 statement for the instrumentation. */
1729 basic_block then_bb, else_bb;
1730 gsi = create_cond_insert_point (&gsi, before_p,
1731 /*then_more_likely_p=*/false,
1732 /*create_then_fallthru_edge=*/false,
1733 &then_bb,
1734 &else_bb);
1735
1736 tree base_ssa = maybe_create_ssa_name (location, base, &gsi,
1737 /*before_p*/false);
1738
1739 g = gimple_build_assign_with_ops (NOP_EXPR,
1740 make_ssa_name (uintptr_type, NULL),
1741 base_ssa, NULL_TREE);
1742 gimple_set_location (g, location);
1743 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1744 tree base_addr = gimple_assign_lhs (g);
1745
1746 tree t = NULL_TREE;
1747 if (real_size_in_bytes >= 8)
1748 {
1749 tree shadow = build_shadow_mem_access (&gsi, location, base_addr,
1750 shadow_ptr_type);
1751 t = shadow;
1752 }
1753 else
1754 {
1755 /* Slow path for 1, 2 and 4 byte accesses. */
1756
1757 if (!start_instrumented)
1758 {
1759 /* Test (shadow != 0)
1760 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
1761 tree shadow = build_shadow_mem_access (&gsi, location, base_addr,
1762 shadow_ptr_type);
1763 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
1764 gimple_seq seq = NULL;
1765 gimple_seq_add_stmt (&seq, shadow_test);
1766 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, base_addr, 7));
1767 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
1768 gimple_seq_last (seq)));
1769 if (real_size_in_bytes > 1)
1770 gimple_seq_add_stmt (&seq,
1771 build_assign (PLUS_EXPR, gimple_seq_last (seq),
1772 real_size_in_bytes - 1));
1773 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
1774 gimple_seq_last (seq),
1775 shadow));
1776 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
1777 gimple_seq_last (seq)));
1778 t = gimple_assign_lhs (gimple_seq_last (seq));
1779 gimple_seq_set_location (seq, location);
1780 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
1781 }
1782
1783 /* For non-constant, misaligned or otherwise weird access sizes,
1784 check first and last byte. */
1785 if (size_in_bytes == -1 && !end_instrumented)
1786 {
1787 g = gimple_build_assign_with_ops (MINUS_EXPR,
1788 make_ssa_name (uintptr_type, NULL),
1789 len,
1790 build_int_cst (uintptr_type, 1));
1791 gimple_set_location (g, location);
1792 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1793 tree last = gimple_assign_lhs (g);
1794 g = gimple_build_assign_with_ops (PLUS_EXPR,
1795 make_ssa_name (uintptr_type, NULL),
1796 base_addr,
1797 last);
1798 gimple_set_location (g, location);
1799 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1800 tree base_end_addr = gimple_assign_lhs (g);
1801
1802 tree shadow = build_shadow_mem_access (&gsi, location, base_end_addr,
1803 shadow_ptr_type);
1804 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
1805 gimple_seq seq = NULL;
1806 gimple_seq_add_stmt (&seq, shadow_test);
1807 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
1808 base_end_addr, 7));
1809 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
1810 gimple_seq_last (seq)));
1811 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
1812 gimple_seq_last (seq),
1813 shadow));
1814 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
1815 gimple_seq_last (seq)));
1816 if (!start_instrumented)
1817 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
1818 gimple_seq_last (seq)));
1819 t = gimple_assign_lhs (gimple_seq_last (seq));
1820 gimple_seq_set_location (seq, location);
1821 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
1822 }
1823 }
1824
1825 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
1826 NULL_TREE, NULL_TREE);
1827 gimple_set_location (g, location);
1828 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1829
1830 /* Generate call to the run-time library (e.g. __asan_report_load8). */
1831 gsi = gsi_start_bb (then_bb);
1832 int nargs;
1833 tree fun = report_error_func (is_store, is_scalar_access ? size_in_bytes : -1,
1834 &nargs);
1835 if (nargs == 1)
1836 g = gimple_build_call (fun, 1, base_addr);
1837 else
1838 {
1839 gcc_assert (nargs == 2);
1840 g = gimple_build_assign_with_ops (NOP_EXPR,
1841 make_ssa_name (pointer_sized_int_node,
1842 NULL),
1843 len, NULL_TREE);
1844 gimple_set_location (g, location);
1845 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1846 tree sz_arg = gimple_assign_lhs (g);
1847 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
1848 }
1849 gimple_set_location (g, location);
1850 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1851
1852 *iter = gsi_start_bb (else_bb);
1853 }
1854
1855 /* If T represents a memory access, add instrumentation code before ITER.
1856 LOCATION is source code location.
1857 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1858
1859 static void
1860 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1861 location_t location, bool is_store)
1862 {
1863 if (is_store && !ASAN_INSTRUMENT_WRITES)
1864 return;
1865 if (!is_store && !ASAN_INSTRUMENT_READS)
1866 return;
1867
1868 tree type, base;
1869 HOST_WIDE_INT size_in_bytes;
1870
1871 type = TREE_TYPE (t);
1872 switch (TREE_CODE (t))
1873 {
1874 case ARRAY_REF:
1875 case COMPONENT_REF:
1876 case INDIRECT_REF:
1877 case MEM_REF:
1878 case VAR_DECL:
1879 break;
1880 /* FALLTHRU */
1881 default:
1882 return;
1883 }
1884
1885 size_in_bytes = int_size_in_bytes (type);
1886 if (size_in_bytes <= 0)
1887 return;
1888
1889 HOST_WIDE_INT bitsize, bitpos;
1890 tree offset;
1891 enum machine_mode mode;
1892 int volatilep = 0, unsignedp = 0;
1893 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1894 &mode, &unsignedp, &volatilep, false);
1895 if (((size_in_bytes & (size_in_bytes - 1)) == 0
1896 && (bitpos % (size_in_bytes * BITS_PER_UNIT)))
1897 || bitsize != size_in_bytes * BITS_PER_UNIT)
1898 {
1899 if (TREE_CODE (t) == COMPONENT_REF
1900 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1901 {
1902 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1903 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1904 TREE_OPERAND (t, 0), repr,
1905 NULL_TREE), location, is_store);
1906 }
1907 return;
1908 }
1909 if (bitpos % BITS_PER_UNIT)
1910 return;
1911
1912 if (TREE_CODE (inner) == VAR_DECL
1913 && offset == NULL_TREE
1914 && bitpos >= 0
1915 && DECL_SIZE (inner)
1916 && tree_fits_shwi_p (DECL_SIZE (inner))
1917 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1918 {
1919 if (DECL_THREAD_LOCAL_P (inner))
1920 return;
1921 if (!TREE_STATIC (inner))
1922 {
1923 /* Automatic vars in the current function will be always
1924 accessible. */
1925 if (decl_function_context (inner) == current_function_decl)
1926 return;
1927 }
1928 /* Always instrument external vars, they might be dynamically
1929 initialized. */
1930 else if (!DECL_EXTERNAL (inner))
1931 {
1932 /* For static vars if they are known not to be dynamically
1933 initialized, they will be always accessible. */
1934 varpool_node *vnode = varpool_node::get (inner);
1935 if (vnode && !vnode->dynamically_initialized)
1936 return;
1937 }
1938 }
1939
1940 base = build_fold_addr_expr (t);
1941 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1942 {
1943 unsigned int align = get_object_alignment (t);
1944 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1945 /*non_zero_len_p*/size_in_bytes > 0, /*before_p=*/true,
1946 is_store, /*is_scalar_access*/true, align);
1947 update_mem_ref_hash_table (base, size_in_bytes);
1948 update_mem_ref_hash_table (t, size_in_bytes);
1949 }
1950
1951 }
1952
1953 /* Instrument an access to a contiguous memory region that starts at
1954 the address pointed to by BASE, over a length of LEN (expressed in
1955 the sizeof (*BASE) bytes). ITER points to the instruction before
1956 which the instrumentation instructions must be inserted. LOCATION
1957 is the source location that the instrumentation instructions must
1958 have. If IS_STORE is true, then the memory access is a store;
1959 otherwise, it's a load. */
1960
1961 static void
1962 instrument_mem_region_access (tree base, tree len,
1963 gimple_stmt_iterator *iter,
1964 location_t location, bool is_store)
1965 {
1966 if (!POINTER_TYPE_P (TREE_TYPE (base))
1967 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1968 || integer_zerop (len))
1969 return;
1970
1971 /* If the beginning of the memory region has already been
1972 instrumented, do not instrument it. */
1973 bool start_instrumented = has_mem_ref_been_instrumented (base, 1);
1974
1975 /* If the end of the memory region has already been instrumented, do
1976 not instrument it. */
1977 tree end = asan_mem_ref_get_end (base, len);
1978 bool end_instrumented = has_mem_ref_been_instrumented (end, 1);
1979
1980 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1981
1982 build_check_stmt (location, base, len, size_in_bytes, iter,
1983 /*non_zero_len_p*/size_in_bytes > 0, /*before_p*/true,
1984 is_store, /*is_scalar_access*/false, /*align*/0,
1985 start_instrumented, end_instrumented);
1986
1987 update_mem_ref_hash_table (base, 1);
1988 if (size_in_bytes != -1)
1989 update_mem_ref_hash_table (end, 1);
1990
1991 *iter = gsi_for_stmt (gsi_stmt (*iter));
1992 }
1993
1994 /* Instrument the call (to the builtin strlen function) pointed to by
1995 ITER.
1996
1997 This function instruments the access to the first byte of the
1998 argument, right before the call. After the call it instruments the
1999 access to the last byte of the argument; it uses the result of the
2000 call to deduce the offset of that last byte.
2001
2002 Upon completion, iff the call has actually been instrumented, this
2003 function returns TRUE and *ITER points to the statement logically
2004 following the built-in strlen function call *ITER was initially
2005 pointing to. Otherwise, the function returns FALSE and *ITER
2006 remains unchanged. */
2007
2008 static bool
2009 instrument_strlen_call (gimple_stmt_iterator *iter)
2010 {
2011 gimple call = gsi_stmt (*iter);
2012 gcc_assert (is_gimple_call (call));
2013
2014 tree callee = gimple_call_fndecl (call);
2015 gcc_assert (is_builtin_fn (callee)
2016 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2017 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
2018
2019 tree len = gimple_call_lhs (call);
2020 if (len == NULL)
2021 /* Some passes might clear the return value of the strlen call;
2022 bail out in that case. Return FALSE as we are not advancing
2023 *ITER. */
2024 return false;
2025 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
2026
2027 location_t loc = gimple_location (call);
2028 tree str_arg = gimple_call_arg (call, 0);
2029 bool start_instrumented = has_mem_ref_been_instrumented (str_arg, 1);
2030
2031 tree cptr_type = build_pointer_type (char_type_node);
2032 gimple str_arg_ssa =
2033 gimple_build_assign_with_ops (NOP_EXPR,
2034 make_ssa_name (cptr_type, NULL),
2035 str_arg, NULL);
2036 gimple_set_location (str_arg_ssa, loc);
2037 gsi_insert_before (iter, str_arg_ssa, GSI_SAME_STMT);
2038
2039 build_check_stmt (loc, gimple_assign_lhs (str_arg_ssa), NULL_TREE, 1, iter,
2040 /*non_zero_len_p*/true, /*before_p=*/true,
2041 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0,
2042 start_instrumented, start_instrumented);
2043
2044 gimple g =
2045 gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
2046 make_ssa_name (cptr_type, NULL),
2047 gimple_assign_lhs (str_arg_ssa),
2048 len);
2049 gimple_set_location (g, loc);
2050 gsi_insert_after (iter, g, GSI_NEW_STMT);
2051
2052 build_check_stmt (loc, gimple_assign_lhs (g), NULL_TREE, 1, iter,
2053 /*non_zero_len_p*/true, /*before_p=*/false,
2054 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0);
2055
2056 return true;
2057 }
2058
2059 /* Instrument the call to a built-in memory access function that is
2060 pointed to by the iterator ITER.
2061
2062 Upon completion, return TRUE iff *ITER has been advanced to the
2063 statement following the one it was originally pointing to. */
2064
2065 static bool
2066 instrument_builtin_call (gimple_stmt_iterator *iter)
2067 {
2068 if (!ASAN_MEMINTRIN)
2069 return false;
2070
2071 bool iter_advanced_p = false;
2072 gimple call = gsi_stmt (*iter);
2073
2074 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
2075
2076 tree callee = gimple_call_fndecl (call);
2077 location_t loc = gimple_location (call);
2078
2079 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
2080 iter_advanced_p = instrument_strlen_call (iter);
2081 else
2082 {
2083 asan_mem_ref src0, src1, dest;
2084 asan_mem_ref_init (&src0, NULL, 1);
2085 asan_mem_ref_init (&src1, NULL, 1);
2086 asan_mem_ref_init (&dest, NULL, 1);
2087
2088 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
2089 bool src0_is_store = false, src1_is_store = false,
2090 dest_is_store = false, dest_is_deref = false;
2091
2092 if (get_mem_refs_of_builtin_call (call,
2093 &src0, &src0_len, &src0_is_store,
2094 &src1, &src1_len, &src1_is_store,
2095 &dest, &dest_len, &dest_is_store,
2096 &dest_is_deref))
2097 {
2098 if (dest_is_deref)
2099 {
2100 instrument_derefs (iter, dest.start, loc, dest_is_store);
2101 gsi_next (iter);
2102 iter_advanced_p = true;
2103 }
2104 else if (src0_len || src1_len || dest_len)
2105 {
2106 if (src0.start != NULL_TREE)
2107 instrument_mem_region_access (src0.start, src0_len,
2108 iter, loc, /*is_store=*/false);
2109 if (src1.start != NULL_TREE)
2110 instrument_mem_region_access (src1.start, src1_len,
2111 iter, loc, /*is_store=*/false);
2112 if (dest.start != NULL_TREE)
2113 instrument_mem_region_access (dest.start, dest_len,
2114 iter, loc, /*is_store=*/true);
2115 *iter = gsi_for_stmt (call);
2116 gsi_next (iter);
2117 iter_advanced_p = true;
2118 }
2119 }
2120 }
2121 return iter_advanced_p;
2122 }
2123
2124 /* Instrument the assignment statement ITER if it is subject to
2125 instrumentation. Return TRUE iff instrumentation actually
2126 happened. In that case, the iterator ITER is advanced to the next
2127 logical expression following the one initially pointed to by ITER,
2128 and the relevant memory reference that which access has been
2129 instrumented is added to the memory references hash table. */
2130
2131 static bool
2132 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2133 {
2134 gimple s = gsi_stmt (*iter);
2135
2136 gcc_assert (gimple_assign_single_p (s));
2137
2138 tree ref_expr = NULL_TREE;
2139 bool is_store, is_instrumented = false;
2140
2141 if (gimple_store_p (s))
2142 {
2143 ref_expr = gimple_assign_lhs (s);
2144 is_store = true;
2145 instrument_derefs (iter, ref_expr,
2146 gimple_location (s),
2147 is_store);
2148 is_instrumented = true;
2149 }
2150
2151 if (gimple_assign_load_p (s))
2152 {
2153 ref_expr = gimple_assign_rhs1 (s);
2154 is_store = false;
2155 instrument_derefs (iter, ref_expr,
2156 gimple_location (s),
2157 is_store);
2158 is_instrumented = true;
2159 }
2160
2161 if (is_instrumented)
2162 gsi_next (iter);
2163
2164 return is_instrumented;
2165 }
2166
2167 /* Instrument the function call pointed to by the iterator ITER, if it
2168 is subject to instrumentation. At the moment, the only function
2169 calls that are instrumented are some built-in functions that access
2170 memory. Look at instrument_builtin_call to learn more.
2171
2172 Upon completion return TRUE iff *ITER was advanced to the statement
2173 following the one it was originally pointing to. */
2174
2175 static bool
2176 maybe_instrument_call (gimple_stmt_iterator *iter)
2177 {
2178 gimple stmt = gsi_stmt (*iter);
2179 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2180
2181 if (is_builtin && instrument_builtin_call (iter))
2182 return true;
2183
2184 if (gimple_call_noreturn_p (stmt))
2185 {
2186 if (is_builtin)
2187 {
2188 tree callee = gimple_call_fndecl (stmt);
2189 switch (DECL_FUNCTION_CODE (callee))
2190 {
2191 case BUILT_IN_UNREACHABLE:
2192 case BUILT_IN_TRAP:
2193 /* Don't instrument these. */
2194 return false;
2195 }
2196 }
2197 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2198 gimple g = gimple_build_call (decl, 0);
2199 gimple_set_location (g, gimple_location (stmt));
2200 gsi_insert_before (iter, g, GSI_SAME_STMT);
2201 }
2202 return false;
2203 }
2204
2205 /* Walk each instruction of all basic block and instrument those that
2206 represent memory references: loads, stores, or function calls.
2207 In a given basic block, this function avoids instrumenting memory
2208 references that have already been instrumented. */
2209
2210 static void
2211 transform_statements (void)
2212 {
2213 basic_block bb, last_bb = NULL;
2214 gimple_stmt_iterator i;
2215 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2216
2217 FOR_EACH_BB_FN (bb, cfun)
2218 {
2219 basic_block prev_bb = bb;
2220
2221 if (bb->index >= saved_last_basic_block) continue;
2222
2223 /* Flush the mem ref hash table, if current bb doesn't have
2224 exactly one predecessor, or if that predecessor (skipping
2225 over asan created basic blocks) isn't the last processed
2226 basic block. Thus we effectively flush on extended basic
2227 block boundaries. */
2228 while (single_pred_p (prev_bb))
2229 {
2230 prev_bb = single_pred (prev_bb);
2231 if (prev_bb->index < saved_last_basic_block)
2232 break;
2233 }
2234 if (prev_bb != last_bb)
2235 empty_mem_ref_hash_table ();
2236 last_bb = bb;
2237
2238 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2239 {
2240 gimple s = gsi_stmt (i);
2241
2242 if (has_stmt_been_instrumented_p (s))
2243 gsi_next (&i);
2244 else if (gimple_assign_single_p (s)
2245 && maybe_instrument_assignment (&i))
2246 /* Nothing to do as maybe_instrument_assignment advanced
2247 the iterator I. */;
2248 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2249 /* Nothing to do as maybe_instrument_call
2250 advanced the iterator I. */;
2251 else
2252 {
2253 /* No instrumentation happened.
2254
2255 If the current instruction is a function call that
2256 might free something, let's forget about the memory
2257 references that got instrumented. Otherwise we might
2258 miss some instrumentation opportunities. */
2259 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2260 empty_mem_ref_hash_table ();
2261
2262 gsi_next (&i);
2263 }
2264 }
2265 }
2266 free_mem_ref_resources ();
2267 }
2268
2269 /* Build
2270 __asan_before_dynamic_init (module_name)
2271 or
2272 __asan_after_dynamic_init ()
2273 call. */
2274
2275 tree
2276 asan_dynamic_init_call (bool after_p)
2277 {
2278 tree fn = builtin_decl_implicit (after_p
2279 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2280 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2281 tree module_name_cst = NULL_TREE;
2282 if (!after_p)
2283 {
2284 pretty_printer module_name_pp;
2285 pp_string (&module_name_pp, main_input_filename);
2286
2287 if (shadow_ptr_types[0] == NULL_TREE)
2288 asan_init_shadow_ptr_types ();
2289 module_name_cst = asan_pp_string (&module_name_pp);
2290 module_name_cst = fold_convert (const_ptr_type_node,
2291 module_name_cst);
2292 }
2293
2294 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2295 }
2296
2297 /* Build
2298 struct __asan_global
2299 {
2300 const void *__beg;
2301 uptr __size;
2302 uptr __size_with_redzone;
2303 const void *__name;
2304 const void *__module_name;
2305 uptr __has_dynamic_init;
2306 } type. */
2307
2308 static tree
2309 asan_global_struct (void)
2310 {
2311 static const char *field_names[6]
2312 = { "__beg", "__size", "__size_with_redzone",
2313 "__name", "__module_name", "__has_dynamic_init" };
2314 tree fields[6], ret;
2315 int i;
2316
2317 ret = make_node (RECORD_TYPE);
2318 for (i = 0; i < 6; i++)
2319 {
2320 fields[i]
2321 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2322 get_identifier (field_names[i]),
2323 (i == 0 || i == 3) ? const_ptr_type_node
2324 : pointer_sized_int_node);
2325 DECL_CONTEXT (fields[i]) = ret;
2326 if (i)
2327 DECL_CHAIN (fields[i - 1]) = fields[i];
2328 }
2329 TYPE_FIELDS (ret) = fields[0];
2330 TYPE_NAME (ret) = get_identifier ("__asan_global");
2331 layout_type (ret);
2332 return ret;
2333 }
2334
2335 /* Append description of a single global DECL into vector V.
2336 TYPE is __asan_global struct type as returned by asan_global_struct. */
2337
2338 static void
2339 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2340 {
2341 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2342 unsigned HOST_WIDE_INT size;
2343 tree str_cst, module_name_cst, refdecl = decl;
2344 vec<constructor_elt, va_gc> *vinner = NULL;
2345
2346 pretty_printer asan_pp, module_name_pp;
2347
2348 if (DECL_NAME (decl))
2349 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2350 else
2351 pp_string (&asan_pp, "<unknown>");
2352 str_cst = asan_pp_string (&asan_pp);
2353
2354 pp_string (&module_name_pp, main_input_filename);
2355 module_name_cst = asan_pp_string (&module_name_pp);
2356
2357 if (asan_needs_local_alias (decl))
2358 {
2359 char buf[20];
2360 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2361 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2362 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2363 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2364 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2365 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2366 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2367 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2368 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2369 TREE_STATIC (refdecl) = 1;
2370 TREE_PUBLIC (refdecl) = 0;
2371 TREE_USED (refdecl) = 1;
2372 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2373 }
2374
2375 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2376 fold_convert (const_ptr_type_node,
2377 build_fold_addr_expr (refdecl)));
2378 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2379 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2380 size += asan_red_zone_size (size);
2381 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2382 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2383 fold_convert (const_ptr_type_node, str_cst));
2384 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2385 fold_convert (const_ptr_type_node, module_name_cst));
2386 varpool_node *vnode = varpool_node::get (decl);
2387 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2388 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2389 build_int_cst (uptr, has_dynamic_init));
2390 init = build_constructor (type, vinner);
2391 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2392 }
2393
2394 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2395 void
2396 initialize_sanitizer_builtins (void)
2397 {
2398 tree decl;
2399
2400 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2401 return;
2402
2403 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2404 tree BT_FN_VOID_PTR
2405 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2406 tree BT_FN_VOID_CONST_PTR
2407 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2408 tree BT_FN_VOID_PTR_PTR
2409 = build_function_type_list (void_type_node, ptr_type_node,
2410 ptr_type_node, NULL_TREE);
2411 tree BT_FN_VOID_PTR_PTR_PTR
2412 = build_function_type_list (void_type_node, ptr_type_node,
2413 ptr_type_node, ptr_type_node, NULL_TREE);
2414 tree BT_FN_VOID_PTR_PTRMODE
2415 = build_function_type_list (void_type_node, ptr_type_node,
2416 pointer_sized_int_node, NULL_TREE);
2417 tree BT_FN_VOID_INT
2418 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2419 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2420 tree BT_FN_IX_CONST_VPTR_INT[5];
2421 tree BT_FN_IX_VPTR_IX_INT[5];
2422 tree BT_FN_VOID_VPTR_IX_INT[5];
2423 tree vptr
2424 = build_pointer_type (build_qualified_type (void_type_node,
2425 TYPE_QUAL_VOLATILE));
2426 tree cvptr
2427 = build_pointer_type (build_qualified_type (void_type_node,
2428 TYPE_QUAL_VOLATILE
2429 |TYPE_QUAL_CONST));
2430 tree boolt
2431 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2432 int i;
2433 for (i = 0; i < 5; i++)
2434 {
2435 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2436 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2437 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2438 integer_type_node, integer_type_node,
2439 NULL_TREE);
2440 BT_FN_IX_CONST_VPTR_INT[i]
2441 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2442 BT_FN_IX_VPTR_IX_INT[i]
2443 = build_function_type_list (ix, vptr, ix, integer_type_node,
2444 NULL_TREE);
2445 BT_FN_VOID_VPTR_IX_INT[i]
2446 = build_function_type_list (void_type_node, vptr, ix,
2447 integer_type_node, NULL_TREE);
2448 }
2449 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2450 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2451 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2452 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2453 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2454 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2455 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2456 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2457 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2458 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2459 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2460 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2461 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2462 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2463 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2464 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2465 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2466 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2467 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2468 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2469 #undef ATTR_NOTHROW_LEAF_LIST
2470 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2471 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2472 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2473 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2474 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2475 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2476 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2477 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2478 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2479 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2480 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2481 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2482 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2483 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2484 #undef DEF_SANITIZER_BUILTIN
2485 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2486 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2487 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2488 set_call_expr_flags (decl, ATTRS); \
2489 set_builtin_decl (ENUM, decl, true);
2490
2491 #include "sanitizer.def"
2492
2493 #undef DEF_SANITIZER_BUILTIN
2494 }
2495
2496 /* Called via htab_traverse. Count number of emitted
2497 STRING_CSTs in the constant hash table. */
2498
2499 static int
2500 count_string_csts (void **slot, void *data)
2501 {
2502 struct constant_descriptor_tree *desc
2503 = (struct constant_descriptor_tree *) *slot;
2504 if (TREE_CODE (desc->value) == STRING_CST
2505 && TREE_ASM_WRITTEN (desc->value)
2506 && asan_protect_global (desc->value))
2507 ++*((unsigned HOST_WIDE_INT *) data);
2508 return 1;
2509 }
2510
2511 /* Helper structure to pass two parameters to
2512 add_string_csts. */
2513
2514 struct asan_add_string_csts_data
2515 {
2516 tree type;
2517 vec<constructor_elt, va_gc> *v;
2518 };
2519
2520 /* Called via htab_traverse. Call asan_add_global
2521 on emitted STRING_CSTs from the constant hash table. */
2522
2523 static int
2524 add_string_csts (void **slot, void *data)
2525 {
2526 struct constant_descriptor_tree *desc
2527 = (struct constant_descriptor_tree *) *slot;
2528 if (TREE_CODE (desc->value) == STRING_CST
2529 && TREE_ASM_WRITTEN (desc->value)
2530 && asan_protect_global (desc->value))
2531 {
2532 struct asan_add_string_csts_data *aascd
2533 = (struct asan_add_string_csts_data *) data;
2534 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2535 aascd->type, aascd->v);
2536 }
2537 return 1;
2538 }
2539
2540 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2541 invoke ggc_collect. */
2542 static GTY(()) tree asan_ctor_statements;
2543
2544 /* Module-level instrumentation.
2545 - Insert __asan_init_vN() into the list of CTORs.
2546 - TODO: insert redzones around globals.
2547 */
2548
2549 void
2550 asan_finish_file (void)
2551 {
2552 varpool_node *vnode;
2553 unsigned HOST_WIDE_INT gcount = 0;
2554
2555 if (shadow_ptr_types[0] == NULL_TREE)
2556 asan_init_shadow_ptr_types ();
2557 /* Avoid instrumenting code in the asan ctors/dtors.
2558 We don't need to insert padding after the description strings,
2559 nor after .LASAN* array. */
2560 flag_sanitize &= ~SANITIZE_ADDRESS;
2561
2562 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2563 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2564 FOR_EACH_DEFINED_VARIABLE (vnode)
2565 if (TREE_ASM_WRITTEN (vnode->decl)
2566 && asan_protect_global (vnode->decl))
2567 ++gcount;
2568 htab_t const_desc_htab = constant_pool_htab ();
2569 htab_traverse (const_desc_htab, count_string_csts, &gcount);
2570 if (gcount)
2571 {
2572 tree type = asan_global_struct (), var, ctor;
2573 tree dtor_statements = NULL_TREE;
2574 vec<constructor_elt, va_gc> *v;
2575 char buf[20];
2576
2577 type = build_array_type_nelts (type, gcount);
2578 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2579 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2580 type);
2581 TREE_STATIC (var) = 1;
2582 TREE_PUBLIC (var) = 0;
2583 DECL_ARTIFICIAL (var) = 1;
2584 DECL_IGNORED_P (var) = 1;
2585 vec_alloc (v, gcount);
2586 FOR_EACH_DEFINED_VARIABLE (vnode)
2587 if (TREE_ASM_WRITTEN (vnode->decl)
2588 && asan_protect_global (vnode->decl))
2589 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2590 struct asan_add_string_csts_data aascd;
2591 aascd.type = TREE_TYPE (type);
2592 aascd.v = v;
2593 htab_traverse (const_desc_htab, add_string_csts, &aascd);
2594 ctor = build_constructor (type, v);
2595 TREE_CONSTANT (ctor) = 1;
2596 TREE_STATIC (ctor) = 1;
2597 DECL_INITIAL (var) = ctor;
2598 varpool_node::finalize_decl (var);
2599
2600 fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2601 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2602 append_to_statement_list (build_call_expr (fn, 2,
2603 build_fold_addr_expr (var),
2604 gcount_tree),
2605 &asan_ctor_statements);
2606
2607 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2608 append_to_statement_list (build_call_expr (fn, 2,
2609 build_fold_addr_expr (var),
2610 gcount_tree),
2611 &dtor_statements);
2612 cgraph_build_static_cdtor ('D', dtor_statements,
2613 MAX_RESERVED_INIT_PRIORITY - 1);
2614 }
2615 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2616 MAX_RESERVED_INIT_PRIORITY - 1);
2617 flag_sanitize |= SANITIZE_ADDRESS;
2618 }
2619
2620 /* Instrument the current function. */
2621
2622 static unsigned int
2623 asan_instrument (void)
2624 {
2625 if (shadow_ptr_types[0] == NULL_TREE)
2626 asan_init_shadow_ptr_types ();
2627 asan_num_accesses = 0;
2628 transform_statements ();
2629 return 0;
2630 }
2631
2632 static bool
2633 gate_asan (void)
2634 {
2635 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2636 && !lookup_attribute ("no_sanitize_address",
2637 DECL_ATTRIBUTES (current_function_decl));
2638 }
2639
2640 namespace {
2641
2642 const pass_data pass_data_asan =
2643 {
2644 GIMPLE_PASS, /* type */
2645 "asan", /* name */
2646 OPTGROUP_NONE, /* optinfo_flags */
2647 TV_NONE, /* tv_id */
2648 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2649 0, /* properties_provided */
2650 0, /* properties_destroyed */
2651 0, /* todo_flags_start */
2652 TODO_update_ssa, /* todo_flags_finish */
2653 };
2654
2655 class pass_asan : public gimple_opt_pass
2656 {
2657 public:
2658 pass_asan (gcc::context *ctxt)
2659 : gimple_opt_pass (pass_data_asan, ctxt)
2660 {}
2661
2662 /* opt_pass methods: */
2663 opt_pass * clone () { return new pass_asan (m_ctxt); }
2664 virtual bool gate (function *) { return gate_asan (); }
2665 virtual unsigned int execute (function *) { return asan_instrument (); }
2666
2667 }; // class pass_asan
2668
2669 } // anon namespace
2670
2671 gimple_opt_pass *
2672 make_pass_asan (gcc::context *ctxt)
2673 {
2674 return new pass_asan (ctxt);
2675 }
2676
2677 namespace {
2678
2679 const pass_data pass_data_asan_O0 =
2680 {
2681 GIMPLE_PASS, /* type */
2682 "asan0", /* name */
2683 OPTGROUP_NONE, /* optinfo_flags */
2684 TV_NONE, /* tv_id */
2685 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2686 0, /* properties_provided */
2687 0, /* properties_destroyed */
2688 0, /* todo_flags_start */
2689 TODO_update_ssa, /* todo_flags_finish */
2690 };
2691
2692 class pass_asan_O0 : public gimple_opt_pass
2693 {
2694 public:
2695 pass_asan_O0 (gcc::context *ctxt)
2696 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2697 {}
2698
2699 /* opt_pass methods: */
2700 virtual bool gate (function *) { return !optimize && gate_asan (); }
2701 virtual unsigned int execute (function *) { return asan_instrument (); }
2702
2703 }; // class pass_asan_O0
2704
2705 } // anon namespace
2706
2707 gimple_opt_pass *
2708 make_pass_asan_O0 (gcc::context *ctxt)
2709 {
2710 return new pass_asan_O0 (ctxt);
2711 }
2712
2713 /* Perform optimization of sanitize functions. */
2714
2715 namespace {
2716
2717 const pass_data pass_data_sanopt =
2718 {
2719 GIMPLE_PASS, /* type */
2720 "sanopt", /* name */
2721 OPTGROUP_NONE, /* optinfo_flags */
2722 TV_NONE, /* tv_id */
2723 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2724 0, /* properties_provided */
2725 0, /* properties_destroyed */
2726 0, /* todo_flags_start */
2727 TODO_update_ssa, /* todo_flags_finish */
2728 };
2729
2730 class pass_sanopt : public gimple_opt_pass
2731 {
2732 public:
2733 pass_sanopt (gcc::context *ctxt)
2734 : gimple_opt_pass (pass_data_sanopt, ctxt)
2735 {}
2736
2737 /* opt_pass methods: */
2738 virtual bool gate (function *) { return flag_sanitize; }
2739 virtual unsigned int execute (function *);
2740
2741 }; // class pass_sanopt
2742
2743 unsigned int
2744 pass_sanopt::execute (function *fun)
2745 {
2746 basic_block bb;
2747
2748 FOR_EACH_BB_FN (bb, fun)
2749 {
2750 gimple_stmt_iterator gsi;
2751 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2752 {
2753 gimple stmt = gsi_stmt (gsi);
2754
2755 if (!is_gimple_call (stmt))
2756 continue;
2757
2758 if (gimple_call_internal_p (stmt))
2759 switch (gimple_call_internal_fn (stmt))
2760 {
2761 case IFN_UBSAN_NULL:
2762 ubsan_expand_null_ifn (gsi);
2763 break;
2764 case IFN_UBSAN_BOUNDS:
2765 ubsan_expand_bounds_ifn (&gsi);
2766 break;
2767 default:
2768 break;
2769 }
2770
2771 if (dump_file && (dump_flags & TDF_DETAILS))
2772 {
2773 fprintf (dump_file, "Optimized\n ");
2774 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2775 fprintf (dump_file, "\n");
2776 }
2777
2778 /* ubsan_expand_bounds_ifn might move us to the end of the BB. */
2779 if (gsi_end_p (gsi))
2780 break;
2781 }
2782 }
2783 return 0;
2784 }
2785
2786 } // anon namespace
2787
2788 gimple_opt_pass *
2789 make_pass_sanopt (gcc::context *ctxt)
2790 {
2791 return new pass_sanopt (ctxt);
2792 }
2793
2794 #include "gt-asan.h"