gimple-expr.h (create_tmp_var_raw, [...]): Add default NULL value to last argument.
[gcc.git] / gcc / asan.c
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "predict.h"
28 #include "vec.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "machmode.h"
32 #include "tm.h"
33 #include "hard-reg-set.h"
34 #include "input.h"
35 #include "function.h"
36 #include "dominance.h"
37 #include "cfg.h"
38 #include "cfganal.h"
39 #include "basic-block.h"
40 #include "tree-ssa-alias.h"
41 #include "internal-fn.h"
42 #include "gimple-expr.h"
43 #include "is-a.h"
44 #include "inchash.h"
45 #include "gimple.h"
46 #include "gimplify.h"
47 #include "gimple-iterator.h"
48 #include "calls.h"
49 #include "varasm.h"
50 #include "stor-layout.h"
51 #include "tree-iterator.h"
52 #include "hash-map.h"
53 #include "plugin-api.h"
54 #include "ipa-ref.h"
55 #include "cgraph.h"
56 #include "stringpool.h"
57 #include "tree-ssanames.h"
58 #include "tree-pass.h"
59 #include "asan.h"
60 #include "gimple-pretty-print.h"
61 #include "target.h"
62 #include "expr.h"
63 #include "insn-codes.h"
64 #include "optabs.h"
65 #include "output.h"
66 #include "tm_p.h"
67 #include "langhooks.h"
68 #include "alloc-pool.h"
69 #include "cfgloop.h"
70 #include "gimple-builder.h"
71 #include "ubsan.h"
72 #include "params.h"
73 #include "builtins.h"
74
75 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
76 with <2x slowdown on average.
77
78 The tool consists of two parts:
79 instrumentation module (this file) and a run-time library.
80 The instrumentation module adds a run-time check before every memory insn.
81 For a 8- or 16- byte load accessing address X:
82 ShadowAddr = (X >> 3) + Offset
83 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
84 if (ShadowValue)
85 __asan_report_load8(X);
86 For a load of N bytes (N=1, 2 or 4) from address X:
87 ShadowAddr = (X >> 3) + Offset
88 ShadowValue = *(char*)ShadowAddr;
89 if (ShadowValue)
90 if ((X & 7) + N - 1 > ShadowValue)
91 __asan_report_loadN(X);
92 Stores are instrumented similarly, but using __asan_report_storeN functions.
93 A call too __asan_init_vN() is inserted to the list of module CTORs.
94 N is the version number of the AddressSanitizer API. The changes between the
95 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
96
97 The run-time library redefines malloc (so that redzone are inserted around
98 the allocated memory) and free (so that reuse of free-ed memory is delayed),
99 provides __asan_report* and __asan_init_vN functions.
100
101 Read more:
102 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
103
104 The current implementation supports detection of out-of-bounds and
105 use-after-free in the heap, on the stack and for global variables.
106
107 [Protection of stack variables]
108
109 To understand how detection of out-of-bounds and use-after-free works
110 for stack variables, lets look at this example on x86_64 where the
111 stack grows downward:
112
113 int
114 foo ()
115 {
116 char a[23] = {0};
117 int b[2] = {0};
118
119 a[5] = 1;
120 b[1] = 2;
121
122 return a[5] + b[1];
123 }
124
125 For this function, the stack protected by asan will be organized as
126 follows, from the top of the stack to the bottom:
127
128 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
129
130 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
131 the next slot be 32 bytes aligned; this one is called Partial
132 Redzone; this 32 bytes alignment is an asan constraint]
133
134 Slot 3/ [24 bytes for variable 'a']
135
136 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
137
138 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
139
140 Slot 6/ [8 bytes for variable 'b']
141
142 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
143 'LEFT RedZone']
144
145 The 32 bytes of LEFT red zone at the bottom of the stack can be
146 decomposed as such:
147
148 1/ The first 8 bytes contain a magical asan number that is always
149 0x41B58AB3.
150
151 2/ The following 8 bytes contains a pointer to a string (to be
152 parsed at runtime by the runtime asan library), which format is
153 the following:
154
155 "<function-name> <space> <num-of-variables-on-the-stack>
156 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
157 <length-of-var-in-bytes> ){n} "
158
159 where '(...){n}' means the content inside the parenthesis occurs 'n'
160 times, with 'n' being the number of variables on the stack.
161
162 3/ The following 8 bytes contain the PC of the current function which
163 will be used by the run-time library to print an error message.
164
165 4/ The following 8 bytes are reserved for internal use by the run-time.
166
167 The shadow memory for that stack layout is going to look like this:
168
169 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
170 The F1 byte pattern is a magic number called
171 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
172 the memory for that shadow byte is part of a the LEFT red zone
173 intended to seat at the bottom of the variables on the stack.
174
175 - content of shadow memory 8 bytes for slots 6 and 5:
176 0xF4F4F400. The F4 byte pattern is a magic number
177 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
178 memory region for this shadow byte is a PARTIAL red zone
179 intended to pad a variable A, so that the slot following
180 {A,padding} is 32 bytes aligned.
181
182 Note that the fact that the least significant byte of this
183 shadow memory content is 00 means that 8 bytes of its
184 corresponding memory (which corresponds to the memory of
185 variable 'b') is addressable.
186
187 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
188 The F2 byte pattern is a magic number called
189 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
190 region for this shadow byte is a MIDDLE red zone intended to
191 seat between two 32 aligned slots of {variable,padding}.
192
193 - content of shadow memory 8 bytes for slot 3 and 2:
194 0xF4000000. This represents is the concatenation of
195 variable 'a' and the partial red zone following it, like what we
196 had for variable 'b'. The least significant 3 bytes being 00
197 means that the 3 bytes of variable 'a' are addressable.
198
199 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
200 The F3 byte pattern is a magic number called
201 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
202 region for this shadow byte is a RIGHT red zone intended to seat
203 at the top of the variables of the stack.
204
205 Note that the real variable layout is done in expand_used_vars in
206 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
207 stack variables as well as the different red zones, emits some
208 prologue code to populate the shadow memory as to poison (mark as
209 non-accessible) the regions of the red zones and mark the regions of
210 stack variables as accessible, and emit some epilogue code to
211 un-poison (mark as accessible) the regions of red zones right before
212 the function exits.
213
214 [Protection of global variables]
215
216 The basic idea is to insert a red zone between two global variables
217 and install a constructor function that calls the asan runtime to do
218 the populating of the relevant shadow memory regions at load time.
219
220 So the global variables are laid out as to insert a red zone between
221 them. The size of the red zones is so that each variable starts on a
222 32 bytes boundary.
223
224 Then a constructor function is installed so that, for each global
225 variable, it calls the runtime asan library function
226 __asan_register_globals_with an instance of this type:
227
228 struct __asan_global
229 {
230 // Address of the beginning of the global variable.
231 const void *__beg;
232
233 // Initial size of the global variable.
234 uptr __size;
235
236 // Size of the global variable + size of the red zone. This
237 // size is 32 bytes aligned.
238 uptr __size_with_redzone;
239
240 // Name of the global variable.
241 const void *__name;
242
243 // Name of the module where the global variable is declared.
244 const void *__module_name;
245
246 // 1 if it has dynamic initialization, 0 otherwise.
247 uptr __has_dynamic_init;
248
249 // A pointer to struct that contains source location, could be NULL.
250 __asan_global_source_location *__location;
251 }
252
253 A destructor function that calls the runtime asan library function
254 _asan_unregister_globals is also installed. */
255
256 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
257 static bool asan_shadow_offset_computed;
258
259 /* Sets shadow offset to value in string VAL. */
260
261 bool
262 set_asan_shadow_offset (const char *val)
263 {
264 char *endp;
265
266 errno = 0;
267 #ifdef HAVE_LONG_LONG
268 asan_shadow_offset_value = strtoull (val, &endp, 0);
269 #else
270 asan_shadow_offset_value = strtoul (val, &endp, 0);
271 #endif
272 if (!(*val != '\0' && *endp == '\0' && errno == 0))
273 return false;
274
275 asan_shadow_offset_computed = true;
276
277 return true;
278 }
279
280 /* Returns Asan shadow offset. */
281
282 static unsigned HOST_WIDE_INT
283 asan_shadow_offset ()
284 {
285 if (!asan_shadow_offset_computed)
286 {
287 asan_shadow_offset_computed = true;
288 asan_shadow_offset_value = targetm.asan_shadow_offset ();
289 }
290 return asan_shadow_offset_value;
291 }
292
293 alias_set_type asan_shadow_set = -1;
294
295 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
296 alias set is used for all shadow memory accesses. */
297 static GTY(()) tree shadow_ptr_types[2];
298
299 /* Decl for __asan_option_detect_stack_use_after_return. */
300 static GTY(()) tree asan_detect_stack_use_after_return;
301
302 /* Various flags for Asan builtins. */
303 enum asan_check_flags
304 {
305 ASAN_CHECK_STORE = 1 << 0,
306 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
307 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
308 ASAN_CHECK_LAST = 1 << 3
309 };
310
311 /* Hashtable support for memory references used by gimple
312 statements. */
313
314 /* This type represents a reference to a memory region. */
315 struct asan_mem_ref
316 {
317 /* The expression of the beginning of the memory region. */
318 tree start;
319
320 /* The size of the access. */
321 HOST_WIDE_INT access_size;
322 };
323
324 static alloc_pool asan_mem_ref_alloc_pool;
325
326 /* This creates the alloc pool used to store the instances of
327 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
328
329 static alloc_pool
330 asan_mem_ref_get_alloc_pool ()
331 {
332 if (asan_mem_ref_alloc_pool == NULL)
333 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
334 sizeof (asan_mem_ref),
335 10);
336 return asan_mem_ref_alloc_pool;
337
338 }
339
340 /* Initializes an instance of asan_mem_ref. */
341
342 static void
343 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
344 {
345 ref->start = start;
346 ref->access_size = access_size;
347 }
348
349 /* Allocates memory for an instance of asan_mem_ref into the memory
350 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
351 START is the address of (or the expression pointing to) the
352 beginning of memory reference. ACCESS_SIZE is the size of the
353 access to the referenced memory. */
354
355 static asan_mem_ref*
356 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
357 {
358 asan_mem_ref *ref =
359 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
360
361 asan_mem_ref_init (ref, start, access_size);
362 return ref;
363 }
364
365 /* This builds and returns a pointer to the end of the memory region
366 that starts at START and of length LEN. */
367
368 tree
369 asan_mem_ref_get_end (tree start, tree len)
370 {
371 if (len == NULL_TREE || integer_zerop (len))
372 return start;
373
374 if (!ptrofftype_p (len))
375 len = convert_to_ptrofftype (len);
376
377 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
378 }
379
380 /* Return a tree expression that represents the end of the referenced
381 memory region. Beware that this function can actually build a new
382 tree expression. */
383
384 tree
385 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
386 {
387 return asan_mem_ref_get_end (ref->start, len);
388 }
389
390 struct asan_mem_ref_hasher
391 : typed_noop_remove <asan_mem_ref>
392 {
393 typedef asan_mem_ref value_type;
394 typedef asan_mem_ref compare_type;
395
396 static inline hashval_t hash (const value_type *);
397 static inline bool equal (const value_type *, const compare_type *);
398 };
399
400 /* Hash a memory reference. */
401
402 inline hashval_t
403 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
404 {
405 return iterative_hash_expr (mem_ref->start, 0);
406 }
407
408 /* Compare two memory references. We accept the length of either
409 memory references to be NULL_TREE. */
410
411 inline bool
412 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
413 const asan_mem_ref *m2)
414 {
415 return operand_equal_p (m1->start, m2->start, 0);
416 }
417
418 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
419
420 /* Returns a reference to the hash table containing memory references.
421 This function ensures that the hash table is created. Note that
422 this hash table is updated by the function
423 update_mem_ref_hash_table. */
424
425 static hash_table<asan_mem_ref_hasher> *
426 get_mem_ref_hash_table ()
427 {
428 if (!asan_mem_ref_ht)
429 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
430
431 return asan_mem_ref_ht;
432 }
433
434 /* Clear all entries from the memory references hash table. */
435
436 static void
437 empty_mem_ref_hash_table ()
438 {
439 if (asan_mem_ref_ht)
440 asan_mem_ref_ht->empty ();
441 }
442
443 /* Free the memory references hash table. */
444
445 static void
446 free_mem_ref_resources ()
447 {
448 delete asan_mem_ref_ht;
449 asan_mem_ref_ht = NULL;
450
451 if (asan_mem_ref_alloc_pool)
452 {
453 free_alloc_pool (asan_mem_ref_alloc_pool);
454 asan_mem_ref_alloc_pool = NULL;
455 }
456 }
457
458 /* Return true iff the memory reference REF has been instrumented. */
459
460 static bool
461 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
462 {
463 asan_mem_ref r;
464 asan_mem_ref_init (&r, ref, access_size);
465
466 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
467 return saved_ref && saved_ref->access_size >= access_size;
468 }
469
470 /* Return true iff the memory reference REF has been instrumented. */
471
472 static bool
473 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
474 {
475 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
476 }
477
478 /* Return true iff access to memory region starting at REF and of
479 length LEN has been instrumented. */
480
481 static bool
482 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
483 {
484 HOST_WIDE_INT size_in_bytes
485 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
486
487 return size_in_bytes != -1
488 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
489 }
490
491 /* Set REF to the memory reference present in a gimple assignment
492 ASSIGNMENT. Return true upon successful completion, false
493 otherwise. */
494
495 static bool
496 get_mem_ref_of_assignment (const gassign *assignment,
497 asan_mem_ref *ref,
498 bool *ref_is_store)
499 {
500 gcc_assert (gimple_assign_single_p (assignment));
501
502 if (gimple_store_p (assignment)
503 && !gimple_clobber_p (assignment))
504 {
505 ref->start = gimple_assign_lhs (assignment);
506 *ref_is_store = true;
507 }
508 else if (gimple_assign_load_p (assignment))
509 {
510 ref->start = gimple_assign_rhs1 (assignment);
511 *ref_is_store = false;
512 }
513 else
514 return false;
515
516 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
517 return true;
518 }
519
520 /* Return the memory references contained in a gimple statement
521 representing a builtin call that has to do with memory access. */
522
523 static bool
524 get_mem_refs_of_builtin_call (const gcall *call,
525 asan_mem_ref *src0,
526 tree *src0_len,
527 bool *src0_is_store,
528 asan_mem_ref *src1,
529 tree *src1_len,
530 bool *src1_is_store,
531 asan_mem_ref *dst,
532 tree *dst_len,
533 bool *dst_is_store,
534 bool *dest_is_deref,
535 bool *intercepted_p)
536 {
537 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
538
539 tree callee = gimple_call_fndecl (call);
540 tree source0 = NULL_TREE, source1 = NULL_TREE,
541 dest = NULL_TREE, len = NULL_TREE;
542 bool is_store = true, got_reference_p = false;
543 HOST_WIDE_INT access_size = 1;
544
545 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
546
547 switch (DECL_FUNCTION_CODE (callee))
548 {
549 /* (s, s, n) style memops. */
550 case BUILT_IN_BCMP:
551 case BUILT_IN_MEMCMP:
552 source0 = gimple_call_arg (call, 0);
553 source1 = gimple_call_arg (call, 1);
554 len = gimple_call_arg (call, 2);
555 break;
556
557 /* (src, dest, n) style memops. */
558 case BUILT_IN_BCOPY:
559 source0 = gimple_call_arg (call, 0);
560 dest = gimple_call_arg (call, 1);
561 len = gimple_call_arg (call, 2);
562 break;
563
564 /* (dest, src, n) style memops. */
565 case BUILT_IN_MEMCPY:
566 case BUILT_IN_MEMCPY_CHK:
567 case BUILT_IN_MEMMOVE:
568 case BUILT_IN_MEMMOVE_CHK:
569 case BUILT_IN_MEMPCPY:
570 case BUILT_IN_MEMPCPY_CHK:
571 dest = gimple_call_arg (call, 0);
572 source0 = gimple_call_arg (call, 1);
573 len = gimple_call_arg (call, 2);
574 break;
575
576 /* (dest, n) style memops. */
577 case BUILT_IN_BZERO:
578 dest = gimple_call_arg (call, 0);
579 len = gimple_call_arg (call, 1);
580 break;
581
582 /* (dest, x, n) style memops*/
583 case BUILT_IN_MEMSET:
584 case BUILT_IN_MEMSET_CHK:
585 dest = gimple_call_arg (call, 0);
586 len = gimple_call_arg (call, 2);
587 break;
588
589 case BUILT_IN_STRLEN:
590 source0 = gimple_call_arg (call, 0);
591 len = gimple_call_lhs (call);
592 break ;
593
594 /* And now the __atomic* and __sync builtins.
595 These are handled differently from the classical memory memory
596 access builtins above. */
597
598 case BUILT_IN_ATOMIC_LOAD_1:
599 case BUILT_IN_ATOMIC_LOAD_2:
600 case BUILT_IN_ATOMIC_LOAD_4:
601 case BUILT_IN_ATOMIC_LOAD_8:
602 case BUILT_IN_ATOMIC_LOAD_16:
603 is_store = false;
604 /* fall through. */
605
606 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
607 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
608 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
609 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
610 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
611
612 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
613 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
614 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
615 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
616 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
617
618 case BUILT_IN_SYNC_FETCH_AND_OR_1:
619 case BUILT_IN_SYNC_FETCH_AND_OR_2:
620 case BUILT_IN_SYNC_FETCH_AND_OR_4:
621 case BUILT_IN_SYNC_FETCH_AND_OR_8:
622 case BUILT_IN_SYNC_FETCH_AND_OR_16:
623
624 case BUILT_IN_SYNC_FETCH_AND_AND_1:
625 case BUILT_IN_SYNC_FETCH_AND_AND_2:
626 case BUILT_IN_SYNC_FETCH_AND_AND_4:
627 case BUILT_IN_SYNC_FETCH_AND_AND_8:
628 case BUILT_IN_SYNC_FETCH_AND_AND_16:
629
630 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
631 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
632 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
633 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
634 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
635
636 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
637 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
638 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
639 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
640
641 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
642 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
643 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
644 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
645 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
646
647 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
648 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
649 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
650 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
651 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
652
653 case BUILT_IN_SYNC_OR_AND_FETCH_1:
654 case BUILT_IN_SYNC_OR_AND_FETCH_2:
655 case BUILT_IN_SYNC_OR_AND_FETCH_4:
656 case BUILT_IN_SYNC_OR_AND_FETCH_8:
657 case BUILT_IN_SYNC_OR_AND_FETCH_16:
658
659 case BUILT_IN_SYNC_AND_AND_FETCH_1:
660 case BUILT_IN_SYNC_AND_AND_FETCH_2:
661 case BUILT_IN_SYNC_AND_AND_FETCH_4:
662 case BUILT_IN_SYNC_AND_AND_FETCH_8:
663 case BUILT_IN_SYNC_AND_AND_FETCH_16:
664
665 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
666 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
667 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
668 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
669 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
670
671 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
672 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
673 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
674 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
675
676 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
677 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
678 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
679 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
680 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
681
682 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
683 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
684 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
685 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
686 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
687
688 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
689 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
690 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
691 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
692 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
693
694 case BUILT_IN_SYNC_LOCK_RELEASE_1:
695 case BUILT_IN_SYNC_LOCK_RELEASE_2:
696 case BUILT_IN_SYNC_LOCK_RELEASE_4:
697 case BUILT_IN_SYNC_LOCK_RELEASE_8:
698 case BUILT_IN_SYNC_LOCK_RELEASE_16:
699
700 case BUILT_IN_ATOMIC_EXCHANGE_1:
701 case BUILT_IN_ATOMIC_EXCHANGE_2:
702 case BUILT_IN_ATOMIC_EXCHANGE_4:
703 case BUILT_IN_ATOMIC_EXCHANGE_8:
704 case BUILT_IN_ATOMIC_EXCHANGE_16:
705
706 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
707 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
708 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
709 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
710 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
711
712 case BUILT_IN_ATOMIC_STORE_1:
713 case BUILT_IN_ATOMIC_STORE_2:
714 case BUILT_IN_ATOMIC_STORE_4:
715 case BUILT_IN_ATOMIC_STORE_8:
716 case BUILT_IN_ATOMIC_STORE_16:
717
718 case BUILT_IN_ATOMIC_ADD_FETCH_1:
719 case BUILT_IN_ATOMIC_ADD_FETCH_2:
720 case BUILT_IN_ATOMIC_ADD_FETCH_4:
721 case BUILT_IN_ATOMIC_ADD_FETCH_8:
722 case BUILT_IN_ATOMIC_ADD_FETCH_16:
723
724 case BUILT_IN_ATOMIC_SUB_FETCH_1:
725 case BUILT_IN_ATOMIC_SUB_FETCH_2:
726 case BUILT_IN_ATOMIC_SUB_FETCH_4:
727 case BUILT_IN_ATOMIC_SUB_FETCH_8:
728 case BUILT_IN_ATOMIC_SUB_FETCH_16:
729
730 case BUILT_IN_ATOMIC_AND_FETCH_1:
731 case BUILT_IN_ATOMIC_AND_FETCH_2:
732 case BUILT_IN_ATOMIC_AND_FETCH_4:
733 case BUILT_IN_ATOMIC_AND_FETCH_8:
734 case BUILT_IN_ATOMIC_AND_FETCH_16:
735
736 case BUILT_IN_ATOMIC_NAND_FETCH_1:
737 case BUILT_IN_ATOMIC_NAND_FETCH_2:
738 case BUILT_IN_ATOMIC_NAND_FETCH_4:
739 case BUILT_IN_ATOMIC_NAND_FETCH_8:
740 case BUILT_IN_ATOMIC_NAND_FETCH_16:
741
742 case BUILT_IN_ATOMIC_XOR_FETCH_1:
743 case BUILT_IN_ATOMIC_XOR_FETCH_2:
744 case BUILT_IN_ATOMIC_XOR_FETCH_4:
745 case BUILT_IN_ATOMIC_XOR_FETCH_8:
746 case BUILT_IN_ATOMIC_XOR_FETCH_16:
747
748 case BUILT_IN_ATOMIC_OR_FETCH_1:
749 case BUILT_IN_ATOMIC_OR_FETCH_2:
750 case BUILT_IN_ATOMIC_OR_FETCH_4:
751 case BUILT_IN_ATOMIC_OR_FETCH_8:
752 case BUILT_IN_ATOMIC_OR_FETCH_16:
753
754 case BUILT_IN_ATOMIC_FETCH_ADD_1:
755 case BUILT_IN_ATOMIC_FETCH_ADD_2:
756 case BUILT_IN_ATOMIC_FETCH_ADD_4:
757 case BUILT_IN_ATOMIC_FETCH_ADD_8:
758 case BUILT_IN_ATOMIC_FETCH_ADD_16:
759
760 case BUILT_IN_ATOMIC_FETCH_SUB_1:
761 case BUILT_IN_ATOMIC_FETCH_SUB_2:
762 case BUILT_IN_ATOMIC_FETCH_SUB_4:
763 case BUILT_IN_ATOMIC_FETCH_SUB_8:
764 case BUILT_IN_ATOMIC_FETCH_SUB_16:
765
766 case BUILT_IN_ATOMIC_FETCH_AND_1:
767 case BUILT_IN_ATOMIC_FETCH_AND_2:
768 case BUILT_IN_ATOMIC_FETCH_AND_4:
769 case BUILT_IN_ATOMIC_FETCH_AND_8:
770 case BUILT_IN_ATOMIC_FETCH_AND_16:
771
772 case BUILT_IN_ATOMIC_FETCH_NAND_1:
773 case BUILT_IN_ATOMIC_FETCH_NAND_2:
774 case BUILT_IN_ATOMIC_FETCH_NAND_4:
775 case BUILT_IN_ATOMIC_FETCH_NAND_8:
776 case BUILT_IN_ATOMIC_FETCH_NAND_16:
777
778 case BUILT_IN_ATOMIC_FETCH_XOR_1:
779 case BUILT_IN_ATOMIC_FETCH_XOR_2:
780 case BUILT_IN_ATOMIC_FETCH_XOR_4:
781 case BUILT_IN_ATOMIC_FETCH_XOR_8:
782 case BUILT_IN_ATOMIC_FETCH_XOR_16:
783
784 case BUILT_IN_ATOMIC_FETCH_OR_1:
785 case BUILT_IN_ATOMIC_FETCH_OR_2:
786 case BUILT_IN_ATOMIC_FETCH_OR_4:
787 case BUILT_IN_ATOMIC_FETCH_OR_8:
788 case BUILT_IN_ATOMIC_FETCH_OR_16:
789 {
790 dest = gimple_call_arg (call, 0);
791 /* DEST represents the address of a memory location.
792 instrument_derefs wants the memory location, so lets
793 dereference the address DEST before handing it to
794 instrument_derefs. */
795 if (TREE_CODE (dest) == ADDR_EXPR)
796 dest = TREE_OPERAND (dest, 0);
797 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
798 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
799 dest, build_int_cst (TREE_TYPE (dest), 0));
800 else
801 gcc_unreachable ();
802
803 access_size = int_size_in_bytes (TREE_TYPE (dest));
804 }
805
806 default:
807 /* The other builtins memory access are not instrumented in this
808 function because they either don't have any length parameter,
809 or their length parameter is just a limit. */
810 break;
811 }
812
813 if (len != NULL_TREE)
814 {
815 if (source0 != NULL_TREE)
816 {
817 src0->start = source0;
818 src0->access_size = access_size;
819 *src0_len = len;
820 *src0_is_store = false;
821 }
822
823 if (source1 != NULL_TREE)
824 {
825 src1->start = source1;
826 src1->access_size = access_size;
827 *src1_len = len;
828 *src1_is_store = false;
829 }
830
831 if (dest != NULL_TREE)
832 {
833 dst->start = dest;
834 dst->access_size = access_size;
835 *dst_len = len;
836 *dst_is_store = true;
837 }
838
839 got_reference_p = true;
840 }
841 else if (dest)
842 {
843 dst->start = dest;
844 dst->access_size = access_size;
845 *dst_len = NULL_TREE;
846 *dst_is_store = is_store;
847 *dest_is_deref = true;
848 got_reference_p = true;
849 }
850
851 return got_reference_p;
852 }
853
854 /* Return true iff a given gimple statement has been instrumented.
855 Note that the statement is "defined" by the memory references it
856 contains. */
857
858 static bool
859 has_stmt_been_instrumented_p (gimple stmt)
860 {
861 if (gimple_assign_single_p (stmt))
862 {
863 bool r_is_store;
864 asan_mem_ref r;
865 asan_mem_ref_init (&r, NULL, 1);
866
867 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
868 &r_is_store))
869 return has_mem_ref_been_instrumented (&r);
870 }
871 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
872 {
873 asan_mem_ref src0, src1, dest;
874 asan_mem_ref_init (&src0, NULL, 1);
875 asan_mem_ref_init (&src1, NULL, 1);
876 asan_mem_ref_init (&dest, NULL, 1);
877
878 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
879 bool src0_is_store = false, src1_is_store = false,
880 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
881 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
882 &src0, &src0_len, &src0_is_store,
883 &src1, &src1_len, &src1_is_store,
884 &dest, &dest_len, &dest_is_store,
885 &dest_is_deref, &intercepted_p))
886 {
887 if (src0.start != NULL_TREE
888 && !has_mem_ref_been_instrumented (&src0, src0_len))
889 return false;
890
891 if (src1.start != NULL_TREE
892 && !has_mem_ref_been_instrumented (&src1, src1_len))
893 return false;
894
895 if (dest.start != NULL_TREE
896 && !has_mem_ref_been_instrumented (&dest, dest_len))
897 return false;
898
899 return true;
900 }
901 }
902 return false;
903 }
904
905 /* Insert a memory reference into the hash table. */
906
907 static void
908 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
909 {
910 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
911
912 asan_mem_ref r;
913 asan_mem_ref_init (&r, ref, access_size);
914
915 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
916 if (*slot == NULL || (*slot)->access_size < access_size)
917 *slot = asan_mem_ref_new (ref, access_size);
918 }
919
920 /* Initialize shadow_ptr_types array. */
921
922 static void
923 asan_init_shadow_ptr_types (void)
924 {
925 asan_shadow_set = new_alias_set ();
926 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
927 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
928 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
929 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
930 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
931 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
932 initialize_sanitizer_builtins ();
933 }
934
935 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
936
937 static tree
938 asan_pp_string (pretty_printer *pp)
939 {
940 const char *buf = pp_formatted_text (pp);
941 size_t len = strlen (buf);
942 tree ret = build_string (len + 1, buf);
943 TREE_TYPE (ret)
944 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
945 build_index_type (size_int (len)));
946 TREE_READONLY (ret) = 1;
947 TREE_STATIC (ret) = 1;
948 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
949 }
950
951 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
952
953 static rtx
954 asan_shadow_cst (unsigned char shadow_bytes[4])
955 {
956 int i;
957 unsigned HOST_WIDE_INT val = 0;
958 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
959 for (i = 0; i < 4; i++)
960 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
961 << (BITS_PER_UNIT * i);
962 return gen_int_mode (val, SImode);
963 }
964
965 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
966 though. */
967
968 static void
969 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
970 {
971 rtx_insn *insn, *insns, *jump;
972 rtx_code_label *top_label;
973 rtx end, addr, tmp;
974
975 start_sequence ();
976 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
977 insns = get_insns ();
978 end_sequence ();
979 for (insn = insns; insn; insn = NEXT_INSN (insn))
980 if (CALL_P (insn))
981 break;
982 if (insn == NULL_RTX)
983 {
984 emit_insn (insns);
985 return;
986 }
987
988 gcc_assert ((len & 3) == 0);
989 top_label = gen_label_rtx ();
990 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
991 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
992 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
993 emit_label (top_label);
994
995 emit_move_insn (shadow_mem, const0_rtx);
996 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
997 true, OPTAB_LIB_WIDEN);
998 if (tmp != addr)
999 emit_move_insn (addr, tmp);
1000 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1001 jump = get_last_insn ();
1002 gcc_assert (JUMP_P (jump));
1003 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
1004 }
1005
1006 void
1007 asan_function_start (void)
1008 {
1009 section *fnsec = function_section (current_function_decl);
1010 switch_to_section (fnsec);
1011 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1012 current_function_funcdef_no);
1013 }
1014
1015 /* Insert code to protect stack vars. The prologue sequence should be emitted
1016 directly, epilogue sequence returned. BASE is the register holding the
1017 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1018 array contains pairs of offsets in reverse order, always the end offset
1019 of some gap that needs protection followed by starting offset,
1020 and DECLS is an array of representative decls for each var partition.
1021 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1022 elements long (OFFSETS include gap before the first variable as well
1023 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1024 register which stack vars DECL_RTLs are based on. Either BASE should be
1025 assigned to PBASE, when not doing use after return protection, or
1026 corresponding address based on __asan_stack_malloc* return value. */
1027
1028 rtx_insn *
1029 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1030 HOST_WIDE_INT *offsets, tree *decls, int length)
1031 {
1032 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1033 rtx_code_label *lab;
1034 rtx_insn *insns;
1035 char buf[30];
1036 unsigned char shadow_bytes[4];
1037 HOST_WIDE_INT base_offset = offsets[length - 1];
1038 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1039 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1040 HOST_WIDE_INT last_offset, last_size;
1041 int l;
1042 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1043 tree str_cst, decl, id;
1044 int use_after_return_class = -1;
1045
1046 if (shadow_ptr_types[0] == NULL_TREE)
1047 asan_init_shadow_ptr_types ();
1048
1049 /* First of all, prepare the description string. */
1050 pretty_printer asan_pp;
1051
1052 pp_decimal_int (&asan_pp, length / 2 - 1);
1053 pp_space (&asan_pp);
1054 for (l = length - 2; l; l -= 2)
1055 {
1056 tree decl = decls[l / 2 - 1];
1057 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1058 pp_space (&asan_pp);
1059 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1060 pp_space (&asan_pp);
1061 if (DECL_P (decl) && DECL_NAME (decl))
1062 {
1063 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1064 pp_space (&asan_pp);
1065 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1066 }
1067 else
1068 pp_string (&asan_pp, "9 <unknown>");
1069 pp_space (&asan_pp);
1070 }
1071 str_cst = asan_pp_string (&asan_pp);
1072
1073 /* Emit the prologue sequence. */
1074 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1075 && ASAN_USE_AFTER_RETURN)
1076 {
1077 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1078 /* __asan_stack_malloc_N guarantees alignment
1079 N < 6 ? (64 << N) : 4096 bytes. */
1080 if (alignb > (use_after_return_class < 6
1081 ? (64U << use_after_return_class) : 4096U))
1082 use_after_return_class = -1;
1083 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1084 base_align_bias = ((asan_frame_size + alignb - 1)
1085 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1086 }
1087 /* Align base if target is STRICT_ALIGNMENT. */
1088 if (STRICT_ALIGNMENT)
1089 base = expand_binop (Pmode, and_optab, base,
1090 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1091 << ASAN_SHADOW_SHIFT)
1092 / BITS_PER_UNIT), Pmode), NULL_RTX,
1093 1, OPTAB_DIRECT);
1094
1095 if (use_after_return_class == -1 && pbase)
1096 emit_move_insn (pbase, base);
1097
1098 base = expand_binop (Pmode, add_optab, base,
1099 gen_int_mode (base_offset - base_align_bias, Pmode),
1100 NULL_RTX, 1, OPTAB_DIRECT);
1101 orig_base = NULL_RTX;
1102 if (use_after_return_class != -1)
1103 {
1104 if (asan_detect_stack_use_after_return == NULL_TREE)
1105 {
1106 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1107 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1108 integer_type_node);
1109 SET_DECL_ASSEMBLER_NAME (decl, id);
1110 TREE_ADDRESSABLE (decl) = 1;
1111 DECL_ARTIFICIAL (decl) = 1;
1112 DECL_IGNORED_P (decl) = 1;
1113 DECL_EXTERNAL (decl) = 1;
1114 TREE_STATIC (decl) = 1;
1115 TREE_PUBLIC (decl) = 1;
1116 TREE_USED (decl) = 1;
1117 asan_detect_stack_use_after_return = decl;
1118 }
1119 orig_base = gen_reg_rtx (Pmode);
1120 emit_move_insn (orig_base, base);
1121 ret = expand_normal (asan_detect_stack_use_after_return);
1122 lab = gen_label_rtx ();
1123 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1124 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1125 VOIDmode, 0, lab, very_likely);
1126 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1127 use_after_return_class);
1128 ret = init_one_libfunc (buf);
1129 rtx addr = convert_memory_address (ptr_mode, base);
1130 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1131 GEN_INT (asan_frame_size
1132 + base_align_bias),
1133 TYPE_MODE (pointer_sized_int_node),
1134 addr, ptr_mode);
1135 ret = convert_memory_address (Pmode, ret);
1136 emit_move_insn (base, ret);
1137 emit_label (lab);
1138 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1139 gen_int_mode (base_align_bias
1140 - base_offset, Pmode),
1141 NULL_RTX, 1, OPTAB_DIRECT));
1142 }
1143 mem = gen_rtx_MEM (ptr_mode, base);
1144 mem = adjust_address (mem, VOIDmode, base_align_bias);
1145 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1146 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1147 emit_move_insn (mem, expand_normal (str_cst));
1148 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1149 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1150 id = get_identifier (buf);
1151 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1152 VAR_DECL, id, char_type_node);
1153 SET_DECL_ASSEMBLER_NAME (decl, id);
1154 TREE_ADDRESSABLE (decl) = 1;
1155 TREE_READONLY (decl) = 1;
1156 DECL_ARTIFICIAL (decl) = 1;
1157 DECL_IGNORED_P (decl) = 1;
1158 TREE_STATIC (decl) = 1;
1159 TREE_PUBLIC (decl) = 0;
1160 TREE_USED (decl) = 1;
1161 DECL_INITIAL (decl) = decl;
1162 TREE_ASM_WRITTEN (decl) = 1;
1163 TREE_ASM_WRITTEN (id) = 1;
1164 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1165 shadow_base = expand_binop (Pmode, lshr_optab, base,
1166 GEN_INT (ASAN_SHADOW_SHIFT),
1167 NULL_RTX, 1, OPTAB_DIRECT);
1168 shadow_base
1169 = plus_constant (Pmode, shadow_base,
1170 asan_shadow_offset ()
1171 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1172 gcc_assert (asan_shadow_set != -1
1173 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1174 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1175 set_mem_alias_set (shadow_mem, asan_shadow_set);
1176 if (STRICT_ALIGNMENT)
1177 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1178 prev_offset = base_offset;
1179 for (l = length; l; l -= 2)
1180 {
1181 if (l == 2)
1182 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1183 offset = offsets[l - 1];
1184 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1185 {
1186 int i;
1187 HOST_WIDE_INT aoff
1188 = base_offset + ((offset - base_offset)
1189 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1190 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1191 (aoff - prev_offset)
1192 >> ASAN_SHADOW_SHIFT);
1193 prev_offset = aoff;
1194 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1195 if (aoff < offset)
1196 {
1197 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1198 shadow_bytes[i] = 0;
1199 else
1200 shadow_bytes[i] = offset - aoff;
1201 }
1202 else
1203 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1204 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1205 offset = aoff;
1206 }
1207 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1208 {
1209 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1210 (offset - prev_offset)
1211 >> ASAN_SHADOW_SHIFT);
1212 prev_offset = offset;
1213 memset (shadow_bytes, cur_shadow_byte, 4);
1214 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1215 offset += ASAN_RED_ZONE_SIZE;
1216 }
1217 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1218 }
1219 do_pending_stack_adjust ();
1220
1221 /* Construct epilogue sequence. */
1222 start_sequence ();
1223
1224 lab = NULL;
1225 if (use_after_return_class != -1)
1226 {
1227 rtx_code_label *lab2 = gen_label_rtx ();
1228 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1229 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1230 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1231 VOIDmode, 0, lab2, very_likely);
1232 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1233 set_mem_alias_set (shadow_mem, asan_shadow_set);
1234 mem = gen_rtx_MEM (ptr_mode, base);
1235 mem = adjust_address (mem, VOIDmode, base_align_bias);
1236 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1237 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1238 if (use_after_return_class < 5
1239 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1240 BITS_PER_UNIT, true))
1241 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1242 BITS_PER_UNIT, true, 0);
1243 else if (use_after_return_class >= 5
1244 || !set_storage_via_setmem (shadow_mem,
1245 GEN_INT (sz),
1246 gen_int_mode (c, QImode),
1247 BITS_PER_UNIT, BITS_PER_UNIT,
1248 -1, sz, sz, sz))
1249 {
1250 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1251 use_after_return_class);
1252 ret = init_one_libfunc (buf);
1253 rtx addr = convert_memory_address (ptr_mode, base);
1254 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1255 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1256 GEN_INT (asan_frame_size + base_align_bias),
1257 TYPE_MODE (pointer_sized_int_node),
1258 orig_addr, ptr_mode);
1259 }
1260 lab = gen_label_rtx ();
1261 emit_jump (lab);
1262 emit_label (lab2);
1263 }
1264
1265 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1266 set_mem_alias_set (shadow_mem, asan_shadow_set);
1267
1268 if (STRICT_ALIGNMENT)
1269 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1270
1271 prev_offset = base_offset;
1272 last_offset = base_offset;
1273 last_size = 0;
1274 for (l = length; l; l -= 2)
1275 {
1276 offset = base_offset + ((offsets[l - 1] - base_offset)
1277 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1278 if (last_offset + last_size != offset)
1279 {
1280 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1281 (last_offset - prev_offset)
1282 >> ASAN_SHADOW_SHIFT);
1283 prev_offset = last_offset;
1284 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1285 last_offset = offset;
1286 last_size = 0;
1287 }
1288 last_size += base_offset + ((offsets[l - 2] - base_offset)
1289 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1290 - offset;
1291 }
1292 if (last_size)
1293 {
1294 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1295 (last_offset - prev_offset)
1296 >> ASAN_SHADOW_SHIFT);
1297 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1298 }
1299
1300 do_pending_stack_adjust ();
1301 if (lab)
1302 emit_label (lab);
1303
1304 insns = get_insns ();
1305 end_sequence ();
1306 return insns;
1307 }
1308
1309 /* Return true if DECL, a global var, might be overridden and needs
1310 therefore a local alias. */
1311
1312 static bool
1313 asan_needs_local_alias (tree decl)
1314 {
1315 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1316 }
1317
1318 /* Return true if DECL is a VAR_DECL that should be protected
1319 by Address Sanitizer, by appending a red zone with protected
1320 shadow memory after it and aligning it to at least
1321 ASAN_RED_ZONE_SIZE bytes. */
1322
1323 bool
1324 asan_protect_global (tree decl)
1325 {
1326 if (!ASAN_GLOBALS)
1327 return false;
1328
1329 rtx rtl, symbol;
1330
1331 if (TREE_CODE (decl) == STRING_CST)
1332 {
1333 /* Instrument all STRING_CSTs except those created
1334 by asan_pp_string here. */
1335 if (shadow_ptr_types[0] != NULL_TREE
1336 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1337 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1338 return false;
1339 return true;
1340 }
1341 if (TREE_CODE (decl) != VAR_DECL
1342 /* TLS vars aren't statically protectable. */
1343 || DECL_THREAD_LOCAL_P (decl)
1344 /* Externs will be protected elsewhere. */
1345 || DECL_EXTERNAL (decl)
1346 || !DECL_RTL_SET_P (decl)
1347 /* Comdat vars pose an ABI problem, we can't know if
1348 the var that is selected by the linker will have
1349 padding or not. */
1350 || DECL_ONE_ONLY (decl)
1351 /* Similarly for common vars. People can use -fno-common. */
1352 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1353 /* Don't protect if using user section, often vars placed
1354 into user section from multiple TUs are then assumed
1355 to be an array of such vars, putting padding in there
1356 breaks this assumption. */
1357 || (DECL_SECTION_NAME (decl) != NULL
1358 && !symtab_node::get (decl)->implicit_section)
1359 || DECL_SIZE (decl) == 0
1360 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1361 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1362 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1363 || TREE_TYPE (decl) == ubsan_get_source_location_type ())
1364 return false;
1365
1366 rtl = DECL_RTL (decl);
1367 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1368 return false;
1369 symbol = XEXP (rtl, 0);
1370
1371 if (CONSTANT_POOL_ADDRESS_P (symbol)
1372 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1373 return false;
1374
1375 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1376 return false;
1377
1378 #ifndef ASM_OUTPUT_DEF
1379 if (asan_needs_local_alias (decl))
1380 return false;
1381 #endif
1382
1383 return true;
1384 }
1385
1386 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1387 IS_STORE is either 1 (for a store) or 0 (for a load). */
1388
1389 static tree
1390 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1391 int *nargs)
1392 {
1393 static enum built_in_function report[2][2][6]
1394 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1395 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1396 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1397 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1398 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1399 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1400 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1401 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1402 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1403 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1404 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1405 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1406 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1407 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1408 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1409 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1410 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1411 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1412 if (size_in_bytes == -1)
1413 {
1414 *nargs = 2;
1415 return builtin_decl_implicit (report[recover_p][is_store][5]);
1416 }
1417 *nargs = 1;
1418 int size_log2 = exact_log2 (size_in_bytes);
1419 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1420 }
1421
1422 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1423 IS_STORE is either 1 (for a store) or 0 (for a load). */
1424
1425 static tree
1426 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1427 int *nargs)
1428 {
1429 static enum built_in_function check[2][2][6]
1430 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1431 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1432 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1433 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1434 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1435 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1436 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1437 BUILT_IN_ASAN_LOAD2_NOABORT,
1438 BUILT_IN_ASAN_LOAD4_NOABORT,
1439 BUILT_IN_ASAN_LOAD8_NOABORT,
1440 BUILT_IN_ASAN_LOAD16_NOABORT,
1441 BUILT_IN_ASAN_LOADN_NOABORT },
1442 { BUILT_IN_ASAN_STORE1_NOABORT,
1443 BUILT_IN_ASAN_STORE2_NOABORT,
1444 BUILT_IN_ASAN_STORE4_NOABORT,
1445 BUILT_IN_ASAN_STORE8_NOABORT,
1446 BUILT_IN_ASAN_STORE16_NOABORT,
1447 BUILT_IN_ASAN_STOREN_NOABORT } } };
1448 if (size_in_bytes == -1)
1449 {
1450 *nargs = 2;
1451 return builtin_decl_implicit (check[recover_p][is_store][5]);
1452 }
1453 *nargs = 1;
1454 int size_log2 = exact_log2 (size_in_bytes);
1455 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1456 }
1457
1458 /* Split the current basic block and create a condition statement
1459 insertion point right before or after the statement pointed to by
1460 ITER. Return an iterator to the point at which the caller might
1461 safely insert the condition statement.
1462
1463 THEN_BLOCK must be set to the address of an uninitialized instance
1464 of basic_block. The function will then set *THEN_BLOCK to the
1465 'then block' of the condition statement to be inserted by the
1466 caller.
1467
1468 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1469 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1470
1471 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1472 block' of the condition statement to be inserted by the caller.
1473
1474 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1475 statements starting from *ITER, and *THEN_BLOCK is a new empty
1476 block.
1477
1478 *ITER is adjusted to point to always point to the first statement
1479 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1480 same as what ITER was pointing to prior to calling this function,
1481 if BEFORE_P is true; otherwise, it is its following statement. */
1482
1483 gimple_stmt_iterator
1484 create_cond_insert_point (gimple_stmt_iterator *iter,
1485 bool before_p,
1486 bool then_more_likely_p,
1487 bool create_then_fallthru_edge,
1488 basic_block *then_block,
1489 basic_block *fallthrough_block)
1490 {
1491 gimple_stmt_iterator gsi = *iter;
1492
1493 if (!gsi_end_p (gsi) && before_p)
1494 gsi_prev (&gsi);
1495
1496 basic_block cur_bb = gsi_bb (*iter);
1497
1498 edge e = split_block (cur_bb, gsi_stmt (gsi));
1499
1500 /* Get a hold on the 'condition block', the 'then block' and the
1501 'else block'. */
1502 basic_block cond_bb = e->src;
1503 basic_block fallthru_bb = e->dest;
1504 basic_block then_bb = create_empty_bb (cond_bb);
1505 if (current_loops)
1506 {
1507 add_bb_to_loop (then_bb, cond_bb->loop_father);
1508 loops_state_set (LOOPS_NEED_FIXUP);
1509 }
1510
1511 /* Set up the newly created 'then block'. */
1512 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1513 int fallthrough_probability
1514 = then_more_likely_p
1515 ? PROB_VERY_UNLIKELY
1516 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1517 e->probability = PROB_ALWAYS - fallthrough_probability;
1518 if (create_then_fallthru_edge)
1519 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1520
1521 /* Set up the fallthrough basic block. */
1522 e = find_edge (cond_bb, fallthru_bb);
1523 e->flags = EDGE_FALSE_VALUE;
1524 e->count = cond_bb->count;
1525 e->probability = fallthrough_probability;
1526
1527 /* Update dominance info for the newly created then_bb; note that
1528 fallthru_bb's dominance info has already been updated by
1529 split_bock. */
1530 if (dom_info_available_p (CDI_DOMINATORS))
1531 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1532
1533 *then_block = then_bb;
1534 *fallthrough_block = fallthru_bb;
1535 *iter = gsi_start_bb (fallthru_bb);
1536
1537 return gsi_last_bb (cond_bb);
1538 }
1539
1540 /* Insert an if condition followed by a 'then block' right before the
1541 statement pointed to by ITER. The fallthrough block -- which is the
1542 else block of the condition as well as the destination of the
1543 outcoming edge of the 'then block' -- starts with the statement
1544 pointed to by ITER.
1545
1546 COND is the condition of the if.
1547
1548 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1549 'then block' is higher than the probability of the edge to the
1550 fallthrough block.
1551
1552 Upon completion of the function, *THEN_BB is set to the newly
1553 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1554 fallthrough block.
1555
1556 *ITER is adjusted to still point to the same statement it was
1557 pointing to initially. */
1558
1559 static void
1560 insert_if_then_before_iter (gcond *cond,
1561 gimple_stmt_iterator *iter,
1562 bool then_more_likely_p,
1563 basic_block *then_bb,
1564 basic_block *fallthrough_bb)
1565 {
1566 gimple_stmt_iterator cond_insert_point =
1567 create_cond_insert_point (iter,
1568 /*before_p=*/true,
1569 then_more_likely_p,
1570 /*create_then_fallthru_edge=*/true,
1571 then_bb,
1572 fallthrough_bb);
1573 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1574 }
1575
1576 /* Build
1577 (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset (). */
1578
1579 static tree
1580 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1581 tree base_addr, tree shadow_ptr_type)
1582 {
1583 tree t, uintptr_type = TREE_TYPE (base_addr);
1584 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1585 gimple g;
1586
1587 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1588 g = gimple_build_assign_with_ops (RSHIFT_EXPR, make_ssa_name (uintptr_type),
1589 base_addr, t);
1590 gimple_set_location (g, location);
1591 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1592
1593 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1594 g = gimple_build_assign_with_ops (PLUS_EXPR, make_ssa_name (uintptr_type),
1595 gimple_assign_lhs (g), t);
1596 gimple_set_location (g, location);
1597 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1598
1599 g = gimple_build_assign_with_ops (NOP_EXPR, make_ssa_name (shadow_ptr_type),
1600 gimple_assign_lhs (g));
1601 gimple_set_location (g, location);
1602 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1603
1604 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1605 build_int_cst (shadow_ptr_type, 0));
1606 g = gimple_build_assign_with_ops (MEM_REF, make_ssa_name (shadow_type), t);
1607 gimple_set_location (g, location);
1608 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1609 return gimple_assign_lhs (g);
1610 }
1611
1612 /* BASE can already be an SSA_NAME; in that case, do not create a
1613 new SSA_NAME for it. */
1614
1615 static tree
1616 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1617 bool before_p)
1618 {
1619 if (TREE_CODE (base) == SSA_NAME)
1620 return base;
1621 gimple g
1622 = gimple_build_assign_with_ops (TREE_CODE (base),
1623 make_ssa_name (TREE_TYPE (base)), base);
1624 gimple_set_location (g, loc);
1625 if (before_p)
1626 gsi_insert_before (iter, g, GSI_SAME_STMT);
1627 else
1628 gsi_insert_after (iter, g, GSI_NEW_STMT);
1629 return gimple_assign_lhs (g);
1630 }
1631
1632 /* LEN can already have necessary size and precision;
1633 in that case, do not create a new variable. */
1634
1635 tree
1636 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1637 bool before_p)
1638 {
1639 if (ptrofftype_p (len))
1640 return len;
1641 gimple g
1642 = gimple_build_assign_with_ops (NOP_EXPR,
1643 make_ssa_name (pointer_sized_int_node),
1644 len);
1645 gimple_set_location (g, loc);
1646 if (before_p)
1647 gsi_insert_before (iter, g, GSI_SAME_STMT);
1648 else
1649 gsi_insert_after (iter, g, GSI_NEW_STMT);
1650 return gimple_assign_lhs (g);
1651 }
1652
1653 /* Instrument the memory access instruction BASE. Insert new
1654 statements before or after ITER.
1655
1656 Note that the memory access represented by BASE can be either an
1657 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1658 location. IS_STORE is TRUE for a store, FALSE for a load.
1659 BEFORE_P is TRUE for inserting the instrumentation code before
1660 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1661 for a scalar memory access and FALSE for memory region access.
1662 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1663 length. ALIGN tells alignment of accessed memory object.
1664
1665 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1666 memory region have already been instrumented.
1667
1668 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1669 statement it was pointing to prior to calling this function,
1670 otherwise, it points to the statement logically following it. */
1671
1672 static void
1673 build_check_stmt (location_t loc, tree base, tree len,
1674 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1675 bool is_non_zero_len, bool before_p, bool is_store,
1676 bool is_scalar_access, unsigned int align = 0)
1677 {
1678 gimple_stmt_iterator gsi = *iter;
1679 gimple g;
1680
1681 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1682
1683 gsi = *iter;
1684
1685 base = unshare_expr (base);
1686 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1687
1688 if (len)
1689 {
1690 len = unshare_expr (len);
1691 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1692 }
1693 else
1694 {
1695 gcc_assert (size_in_bytes != -1);
1696 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1697 }
1698
1699 if (size_in_bytes > 1)
1700 {
1701 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1702 || size_in_bytes > 16)
1703 is_scalar_access = false;
1704 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1705 {
1706 /* On non-strict alignment targets, if
1707 16-byte access is just 8-byte aligned,
1708 this will result in misaligned shadow
1709 memory 2 byte load, but otherwise can
1710 be handled using one read. */
1711 if (size_in_bytes != 16
1712 || STRICT_ALIGNMENT
1713 || align < 8 * BITS_PER_UNIT)
1714 is_scalar_access = false;
1715 }
1716 }
1717
1718 HOST_WIDE_INT flags = 0;
1719 if (is_store)
1720 flags |= ASAN_CHECK_STORE;
1721 if (is_non_zero_len)
1722 flags |= ASAN_CHECK_NON_ZERO_LEN;
1723 if (is_scalar_access)
1724 flags |= ASAN_CHECK_SCALAR_ACCESS;
1725
1726 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1727 build_int_cst (integer_type_node, flags),
1728 base, len,
1729 build_int_cst (integer_type_node,
1730 align / BITS_PER_UNIT));
1731 gimple_set_location (g, loc);
1732 if (before_p)
1733 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1734 else
1735 {
1736 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1737 gsi_next (&gsi);
1738 *iter = gsi;
1739 }
1740 }
1741
1742 /* If T represents a memory access, add instrumentation code before ITER.
1743 LOCATION is source code location.
1744 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1745
1746 static void
1747 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1748 location_t location, bool is_store)
1749 {
1750 if (is_store && !ASAN_INSTRUMENT_WRITES)
1751 return;
1752 if (!is_store && !ASAN_INSTRUMENT_READS)
1753 return;
1754
1755 tree type, base;
1756 HOST_WIDE_INT size_in_bytes;
1757
1758 type = TREE_TYPE (t);
1759 switch (TREE_CODE (t))
1760 {
1761 case ARRAY_REF:
1762 case COMPONENT_REF:
1763 case INDIRECT_REF:
1764 case MEM_REF:
1765 case VAR_DECL:
1766 case BIT_FIELD_REF:
1767 break;
1768 /* FALLTHRU */
1769 default:
1770 return;
1771 }
1772
1773 size_in_bytes = int_size_in_bytes (type);
1774 if (size_in_bytes <= 0)
1775 return;
1776
1777 HOST_WIDE_INT bitsize, bitpos;
1778 tree offset;
1779 machine_mode mode;
1780 int volatilep = 0, unsignedp = 0;
1781 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1782 &mode, &unsignedp, &volatilep, false);
1783
1784 if (TREE_CODE (t) == COMPONENT_REF
1785 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1786 {
1787 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1788 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1789 TREE_OPERAND (t, 0), repr,
1790 NULL_TREE), location, is_store);
1791 return;
1792 }
1793
1794 if (bitpos % BITS_PER_UNIT
1795 || bitsize != size_in_bytes * BITS_PER_UNIT)
1796 return;
1797
1798 if (TREE_CODE (inner) == VAR_DECL
1799 && offset == NULL_TREE
1800 && bitpos >= 0
1801 && DECL_SIZE (inner)
1802 && tree_fits_shwi_p (DECL_SIZE (inner))
1803 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1804 {
1805 if (DECL_THREAD_LOCAL_P (inner))
1806 return;
1807 if (!TREE_STATIC (inner))
1808 {
1809 /* Automatic vars in the current function will be always
1810 accessible. */
1811 if (decl_function_context (inner) == current_function_decl)
1812 return;
1813 }
1814 /* Always instrument external vars, they might be dynamically
1815 initialized. */
1816 else if (!DECL_EXTERNAL (inner))
1817 {
1818 /* For static vars if they are known not to be dynamically
1819 initialized, they will be always accessible. */
1820 varpool_node *vnode = varpool_node::get (inner);
1821 if (vnode && !vnode->dynamically_initialized)
1822 return;
1823 }
1824 }
1825
1826 base = build_fold_addr_expr (t);
1827 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1828 {
1829 unsigned int align = get_object_alignment (t);
1830 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1831 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1832 is_store, /*is_scalar_access*/true, align);
1833 update_mem_ref_hash_table (base, size_in_bytes);
1834 update_mem_ref_hash_table (t, size_in_bytes);
1835 }
1836
1837 }
1838
1839 /* Insert a memory reference into the hash table if access length
1840 can be determined in compile time. */
1841
1842 static void
1843 maybe_update_mem_ref_hash_table (tree base, tree len)
1844 {
1845 if (!POINTER_TYPE_P (TREE_TYPE (base))
1846 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
1847 return;
1848
1849 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1850
1851 if (size_in_bytes != -1)
1852 update_mem_ref_hash_table (base, size_in_bytes);
1853 }
1854
1855 /* Instrument an access to a contiguous memory region that starts at
1856 the address pointed to by BASE, over a length of LEN (expressed in
1857 the sizeof (*BASE) bytes). ITER points to the instruction before
1858 which the instrumentation instructions must be inserted. LOCATION
1859 is the source location that the instrumentation instructions must
1860 have. If IS_STORE is true, then the memory access is a store;
1861 otherwise, it's a load. */
1862
1863 static void
1864 instrument_mem_region_access (tree base, tree len,
1865 gimple_stmt_iterator *iter,
1866 location_t location, bool is_store)
1867 {
1868 if (!POINTER_TYPE_P (TREE_TYPE (base))
1869 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1870 || integer_zerop (len))
1871 return;
1872
1873 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1874
1875 if ((size_in_bytes == -1)
1876 || !has_mem_ref_been_instrumented (base, size_in_bytes))
1877 {
1878 build_check_stmt (location, base, len, size_in_bytes, iter,
1879 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1880 is_store, /*is_scalar_access*/false, /*align*/0);
1881 }
1882
1883 maybe_update_mem_ref_hash_table (base, len);
1884 *iter = gsi_for_stmt (gsi_stmt (*iter));
1885 }
1886
1887 /* Instrument the call to a built-in memory access function that is
1888 pointed to by the iterator ITER.
1889
1890 Upon completion, return TRUE iff *ITER has been advanced to the
1891 statement following the one it was originally pointing to. */
1892
1893 static bool
1894 instrument_builtin_call (gimple_stmt_iterator *iter)
1895 {
1896 if (!ASAN_MEMINTRIN)
1897 return false;
1898
1899 bool iter_advanced_p = false;
1900 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
1901
1902 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1903
1904 location_t loc = gimple_location (call);
1905
1906 asan_mem_ref src0, src1, dest;
1907 asan_mem_ref_init (&src0, NULL, 1);
1908 asan_mem_ref_init (&src1, NULL, 1);
1909 asan_mem_ref_init (&dest, NULL, 1);
1910
1911 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1912 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
1913 dest_is_deref = false, intercepted_p = true;
1914
1915 if (get_mem_refs_of_builtin_call (call,
1916 &src0, &src0_len, &src0_is_store,
1917 &src1, &src1_len, &src1_is_store,
1918 &dest, &dest_len, &dest_is_store,
1919 &dest_is_deref, &intercepted_p))
1920 {
1921 if (dest_is_deref)
1922 {
1923 instrument_derefs (iter, dest.start, loc, dest_is_store);
1924 gsi_next (iter);
1925 iter_advanced_p = true;
1926 }
1927 else if (!intercepted_p
1928 && (src0_len || src1_len || dest_len))
1929 {
1930 if (src0.start != NULL_TREE)
1931 instrument_mem_region_access (src0.start, src0_len,
1932 iter, loc, /*is_store=*/false);
1933 if (src1.start != NULL_TREE)
1934 instrument_mem_region_access (src1.start, src1_len,
1935 iter, loc, /*is_store=*/false);
1936 if (dest.start != NULL_TREE)
1937 instrument_mem_region_access (dest.start, dest_len,
1938 iter, loc, /*is_store=*/true);
1939
1940 *iter = gsi_for_stmt (call);
1941 gsi_next (iter);
1942 iter_advanced_p = true;
1943 }
1944 else
1945 {
1946 if (src0.start != NULL_TREE)
1947 maybe_update_mem_ref_hash_table (src0.start, src0_len);
1948 if (src1.start != NULL_TREE)
1949 maybe_update_mem_ref_hash_table (src1.start, src1_len);
1950 if (dest.start != NULL_TREE)
1951 maybe_update_mem_ref_hash_table (dest.start, dest_len);
1952 }
1953 }
1954 return iter_advanced_p;
1955 }
1956
1957 /* Instrument the assignment statement ITER if it is subject to
1958 instrumentation. Return TRUE iff instrumentation actually
1959 happened. In that case, the iterator ITER is advanced to the next
1960 logical expression following the one initially pointed to by ITER,
1961 and the relevant memory reference that which access has been
1962 instrumented is added to the memory references hash table. */
1963
1964 static bool
1965 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1966 {
1967 gimple s = gsi_stmt (*iter);
1968
1969 gcc_assert (gimple_assign_single_p (s));
1970
1971 tree ref_expr = NULL_TREE;
1972 bool is_store, is_instrumented = false;
1973
1974 if (gimple_store_p (s))
1975 {
1976 ref_expr = gimple_assign_lhs (s);
1977 is_store = true;
1978 instrument_derefs (iter, ref_expr,
1979 gimple_location (s),
1980 is_store);
1981 is_instrumented = true;
1982 }
1983
1984 if (gimple_assign_load_p (s))
1985 {
1986 ref_expr = gimple_assign_rhs1 (s);
1987 is_store = false;
1988 instrument_derefs (iter, ref_expr,
1989 gimple_location (s),
1990 is_store);
1991 is_instrumented = true;
1992 }
1993
1994 if (is_instrumented)
1995 gsi_next (iter);
1996
1997 return is_instrumented;
1998 }
1999
2000 /* Instrument the function call pointed to by the iterator ITER, if it
2001 is subject to instrumentation. At the moment, the only function
2002 calls that are instrumented are some built-in functions that access
2003 memory. Look at instrument_builtin_call to learn more.
2004
2005 Upon completion return TRUE iff *ITER was advanced to the statement
2006 following the one it was originally pointing to. */
2007
2008 static bool
2009 maybe_instrument_call (gimple_stmt_iterator *iter)
2010 {
2011 gimple stmt = gsi_stmt (*iter);
2012 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2013
2014 if (is_builtin && instrument_builtin_call (iter))
2015 return true;
2016
2017 if (gimple_call_noreturn_p (stmt))
2018 {
2019 if (is_builtin)
2020 {
2021 tree callee = gimple_call_fndecl (stmt);
2022 switch (DECL_FUNCTION_CODE (callee))
2023 {
2024 case BUILT_IN_UNREACHABLE:
2025 case BUILT_IN_TRAP:
2026 /* Don't instrument these. */
2027 return false;
2028 default:
2029 break;
2030 }
2031 }
2032 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2033 gimple g = gimple_build_call (decl, 0);
2034 gimple_set_location (g, gimple_location (stmt));
2035 gsi_insert_before (iter, g, GSI_SAME_STMT);
2036 }
2037 return false;
2038 }
2039
2040 /* Walk each instruction of all basic block and instrument those that
2041 represent memory references: loads, stores, or function calls.
2042 In a given basic block, this function avoids instrumenting memory
2043 references that have already been instrumented. */
2044
2045 static void
2046 transform_statements (void)
2047 {
2048 basic_block bb, last_bb = NULL;
2049 gimple_stmt_iterator i;
2050 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2051
2052 FOR_EACH_BB_FN (bb, cfun)
2053 {
2054 basic_block prev_bb = bb;
2055
2056 if (bb->index >= saved_last_basic_block) continue;
2057
2058 /* Flush the mem ref hash table, if current bb doesn't have
2059 exactly one predecessor, or if that predecessor (skipping
2060 over asan created basic blocks) isn't the last processed
2061 basic block. Thus we effectively flush on extended basic
2062 block boundaries. */
2063 while (single_pred_p (prev_bb))
2064 {
2065 prev_bb = single_pred (prev_bb);
2066 if (prev_bb->index < saved_last_basic_block)
2067 break;
2068 }
2069 if (prev_bb != last_bb)
2070 empty_mem_ref_hash_table ();
2071 last_bb = bb;
2072
2073 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2074 {
2075 gimple s = gsi_stmt (i);
2076
2077 if (has_stmt_been_instrumented_p (s))
2078 gsi_next (&i);
2079 else if (gimple_assign_single_p (s)
2080 && !gimple_clobber_p (s)
2081 && maybe_instrument_assignment (&i))
2082 /* Nothing to do as maybe_instrument_assignment advanced
2083 the iterator I. */;
2084 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2085 /* Nothing to do as maybe_instrument_call
2086 advanced the iterator I. */;
2087 else
2088 {
2089 /* No instrumentation happened.
2090
2091 If the current instruction is a function call that
2092 might free something, let's forget about the memory
2093 references that got instrumented. Otherwise we might
2094 miss some instrumentation opportunities. */
2095 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2096 empty_mem_ref_hash_table ();
2097
2098 gsi_next (&i);
2099 }
2100 }
2101 }
2102 free_mem_ref_resources ();
2103 }
2104
2105 /* Build
2106 __asan_before_dynamic_init (module_name)
2107 or
2108 __asan_after_dynamic_init ()
2109 call. */
2110
2111 tree
2112 asan_dynamic_init_call (bool after_p)
2113 {
2114 tree fn = builtin_decl_implicit (after_p
2115 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2116 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2117 tree module_name_cst = NULL_TREE;
2118 if (!after_p)
2119 {
2120 pretty_printer module_name_pp;
2121 pp_string (&module_name_pp, main_input_filename);
2122
2123 if (shadow_ptr_types[0] == NULL_TREE)
2124 asan_init_shadow_ptr_types ();
2125 module_name_cst = asan_pp_string (&module_name_pp);
2126 module_name_cst = fold_convert (const_ptr_type_node,
2127 module_name_cst);
2128 }
2129
2130 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2131 }
2132
2133 /* Build
2134 struct __asan_global
2135 {
2136 const void *__beg;
2137 uptr __size;
2138 uptr __size_with_redzone;
2139 const void *__name;
2140 const void *__module_name;
2141 uptr __has_dynamic_init;
2142 __asan_global_source_location *__location;
2143 } type. */
2144
2145 static tree
2146 asan_global_struct (void)
2147 {
2148 static const char *field_names[7]
2149 = { "__beg", "__size", "__size_with_redzone",
2150 "__name", "__module_name", "__has_dynamic_init", "__location"};
2151 tree fields[7], ret;
2152 int i;
2153
2154 ret = make_node (RECORD_TYPE);
2155 for (i = 0; i < 7; i++)
2156 {
2157 fields[i]
2158 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2159 get_identifier (field_names[i]),
2160 (i == 0 || i == 3) ? const_ptr_type_node
2161 : pointer_sized_int_node);
2162 DECL_CONTEXT (fields[i]) = ret;
2163 if (i)
2164 DECL_CHAIN (fields[i - 1]) = fields[i];
2165 }
2166 tree type_decl = build_decl (input_location, TYPE_DECL,
2167 get_identifier ("__asan_global"), ret);
2168 DECL_IGNORED_P (type_decl) = 1;
2169 DECL_ARTIFICIAL (type_decl) = 1;
2170 TYPE_FIELDS (ret) = fields[0];
2171 TYPE_NAME (ret) = type_decl;
2172 TYPE_STUB_DECL (ret) = type_decl;
2173 layout_type (ret);
2174 return ret;
2175 }
2176
2177 /* Append description of a single global DECL into vector V.
2178 TYPE is __asan_global struct type as returned by asan_global_struct. */
2179
2180 static void
2181 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2182 {
2183 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2184 unsigned HOST_WIDE_INT size;
2185 tree str_cst, module_name_cst, refdecl = decl;
2186 vec<constructor_elt, va_gc> *vinner = NULL;
2187
2188 pretty_printer asan_pp, module_name_pp;
2189
2190 if (DECL_NAME (decl))
2191 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2192 else
2193 pp_string (&asan_pp, "<unknown>");
2194 str_cst = asan_pp_string (&asan_pp);
2195
2196 pp_string (&module_name_pp, main_input_filename);
2197 module_name_cst = asan_pp_string (&module_name_pp);
2198
2199 if (asan_needs_local_alias (decl))
2200 {
2201 char buf[20];
2202 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2203 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2204 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2205 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2206 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2207 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2208 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2209 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2210 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2211 TREE_STATIC (refdecl) = 1;
2212 TREE_PUBLIC (refdecl) = 0;
2213 TREE_USED (refdecl) = 1;
2214 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2215 }
2216
2217 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2218 fold_convert (const_ptr_type_node,
2219 build_fold_addr_expr (refdecl)));
2220 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2221 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2222 size += asan_red_zone_size (size);
2223 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2224 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2225 fold_convert (const_ptr_type_node, str_cst));
2226 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2227 fold_convert (const_ptr_type_node, module_name_cst));
2228 varpool_node *vnode = varpool_node::get (decl);
2229 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2230 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2231 build_int_cst (uptr, has_dynamic_init));
2232 tree locptr = NULL_TREE;
2233 location_t loc = DECL_SOURCE_LOCATION (decl);
2234 expanded_location xloc = expand_location (loc);
2235 if (xloc.file != NULL)
2236 {
2237 static int lasanloccnt = 0;
2238 char buf[25];
2239 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2240 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2241 ubsan_get_source_location_type ());
2242 TREE_STATIC (var) = 1;
2243 TREE_PUBLIC (var) = 0;
2244 DECL_ARTIFICIAL (var) = 1;
2245 DECL_IGNORED_P (var) = 1;
2246 pretty_printer filename_pp;
2247 pp_string (&filename_pp, xloc.file);
2248 tree str = asan_pp_string (&filename_pp);
2249 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2250 NULL_TREE, str, NULL_TREE,
2251 build_int_cst (unsigned_type_node,
2252 xloc.line), NULL_TREE,
2253 build_int_cst (unsigned_type_node,
2254 xloc.column));
2255 TREE_CONSTANT (ctor) = 1;
2256 TREE_STATIC (ctor) = 1;
2257 DECL_INITIAL (var) = ctor;
2258 varpool_node::finalize_decl (var);
2259 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2260 }
2261 else
2262 locptr = build_int_cst (uptr, 0);
2263 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2264 init = build_constructor (type, vinner);
2265 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2266 }
2267
2268 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2269 void
2270 initialize_sanitizer_builtins (void)
2271 {
2272 tree decl;
2273
2274 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2275 return;
2276
2277 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2278 tree BT_FN_VOID_PTR
2279 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2280 tree BT_FN_VOID_CONST_PTR
2281 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2282 tree BT_FN_VOID_PTR_PTR
2283 = build_function_type_list (void_type_node, ptr_type_node,
2284 ptr_type_node, NULL_TREE);
2285 tree BT_FN_VOID_PTR_PTR_PTR
2286 = build_function_type_list (void_type_node, ptr_type_node,
2287 ptr_type_node, ptr_type_node, NULL_TREE);
2288 tree BT_FN_VOID_PTR_PTRMODE
2289 = build_function_type_list (void_type_node, ptr_type_node,
2290 pointer_sized_int_node, NULL_TREE);
2291 tree BT_FN_VOID_INT
2292 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2293 tree BT_FN_SIZE_CONST_PTR_INT
2294 = build_function_type_list (size_type_node, const_ptr_type_node,
2295 integer_type_node, NULL_TREE);
2296 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2297 tree BT_FN_IX_CONST_VPTR_INT[5];
2298 tree BT_FN_IX_VPTR_IX_INT[5];
2299 tree BT_FN_VOID_VPTR_IX_INT[5];
2300 tree vptr
2301 = build_pointer_type (build_qualified_type (void_type_node,
2302 TYPE_QUAL_VOLATILE));
2303 tree cvptr
2304 = build_pointer_type (build_qualified_type (void_type_node,
2305 TYPE_QUAL_VOLATILE
2306 |TYPE_QUAL_CONST));
2307 tree boolt
2308 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2309 int i;
2310 for (i = 0; i < 5; i++)
2311 {
2312 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2313 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2314 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2315 integer_type_node, integer_type_node,
2316 NULL_TREE);
2317 BT_FN_IX_CONST_VPTR_INT[i]
2318 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2319 BT_FN_IX_VPTR_IX_INT[i]
2320 = build_function_type_list (ix, vptr, ix, integer_type_node,
2321 NULL_TREE);
2322 BT_FN_VOID_VPTR_IX_INT[i]
2323 = build_function_type_list (void_type_node, vptr, ix,
2324 integer_type_node, NULL_TREE);
2325 }
2326 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2327 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2328 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2329 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2330 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2331 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2332 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2333 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2334 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2335 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2336 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2337 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2338 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2339 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2340 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2341 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2342 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2343 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2344 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2345 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2346 #undef ATTR_NOTHROW_LEAF_LIST
2347 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2348 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2349 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2350 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2351 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2352 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2353 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2354 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2355 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2356 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2357 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2358 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2359 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2360 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2361 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2362 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2363 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2364 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2365 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2366 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2367 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2368 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2369 #undef DEF_SANITIZER_BUILTIN
2370 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2371 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2372 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2373 set_call_expr_flags (decl, ATTRS); \
2374 set_builtin_decl (ENUM, decl, true);
2375
2376 #include "sanitizer.def"
2377
2378 /* -fsanitize=object-size uses __builtin_object_size, but that might
2379 not be available for e.g. Fortran at this point. We use
2380 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2381 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2382 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2383 DEF_SANITIZER_BUILTIN (BUILT_IN_OBJECT_SIZE, "object_size",
2384 BT_FN_SIZE_CONST_PTR_INT,
2385 ATTR_PURE_NOTHROW_LEAF_LIST)
2386
2387 #undef DEF_SANITIZER_BUILTIN
2388 }
2389
2390 /* Called via htab_traverse. Count number of emitted
2391 STRING_CSTs in the constant hash table. */
2392
2393 int
2394 count_string_csts (constant_descriptor_tree **slot,
2395 unsigned HOST_WIDE_INT *data)
2396 {
2397 struct constant_descriptor_tree *desc = *slot;
2398 if (TREE_CODE (desc->value) == STRING_CST
2399 && TREE_ASM_WRITTEN (desc->value)
2400 && asan_protect_global (desc->value))
2401 ++*data;
2402 return 1;
2403 }
2404
2405 /* Helper structure to pass two parameters to
2406 add_string_csts. */
2407
2408 struct asan_add_string_csts_data
2409 {
2410 tree type;
2411 vec<constructor_elt, va_gc> *v;
2412 };
2413
2414 /* Called via hash_table::traverse. Call asan_add_global
2415 on emitted STRING_CSTs from the constant hash table. */
2416
2417 int
2418 add_string_csts (constant_descriptor_tree **slot,
2419 asan_add_string_csts_data *aascd)
2420 {
2421 struct constant_descriptor_tree *desc = *slot;
2422 if (TREE_CODE (desc->value) == STRING_CST
2423 && TREE_ASM_WRITTEN (desc->value)
2424 && asan_protect_global (desc->value))
2425 {
2426 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2427 aascd->type, aascd->v);
2428 }
2429 return 1;
2430 }
2431
2432 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2433 invoke ggc_collect. */
2434 static GTY(()) tree asan_ctor_statements;
2435
2436 /* Module-level instrumentation.
2437 - Insert __asan_init_vN() into the list of CTORs.
2438 - TODO: insert redzones around globals.
2439 */
2440
2441 void
2442 asan_finish_file (void)
2443 {
2444 varpool_node *vnode;
2445 unsigned HOST_WIDE_INT gcount = 0;
2446
2447 if (shadow_ptr_types[0] == NULL_TREE)
2448 asan_init_shadow_ptr_types ();
2449 /* Avoid instrumenting code in the asan ctors/dtors.
2450 We don't need to insert padding after the description strings,
2451 nor after .LASAN* array. */
2452 flag_sanitize &= ~SANITIZE_ADDRESS;
2453
2454 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2455 {
2456 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2457 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2458 }
2459 FOR_EACH_DEFINED_VARIABLE (vnode)
2460 if (TREE_ASM_WRITTEN (vnode->decl)
2461 && asan_protect_global (vnode->decl))
2462 ++gcount;
2463 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2464 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2465 (&gcount);
2466 if (gcount)
2467 {
2468 tree type = asan_global_struct (), var, ctor;
2469 tree dtor_statements = NULL_TREE;
2470 vec<constructor_elt, va_gc> *v;
2471 char buf[20];
2472
2473 type = build_array_type_nelts (type, gcount);
2474 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2475 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2476 type);
2477 TREE_STATIC (var) = 1;
2478 TREE_PUBLIC (var) = 0;
2479 DECL_ARTIFICIAL (var) = 1;
2480 DECL_IGNORED_P (var) = 1;
2481 vec_alloc (v, gcount);
2482 FOR_EACH_DEFINED_VARIABLE (vnode)
2483 if (TREE_ASM_WRITTEN (vnode->decl)
2484 && asan_protect_global (vnode->decl))
2485 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2486 struct asan_add_string_csts_data aascd;
2487 aascd.type = TREE_TYPE (type);
2488 aascd.v = v;
2489 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2490 (&aascd);
2491 ctor = build_constructor (type, v);
2492 TREE_CONSTANT (ctor) = 1;
2493 TREE_STATIC (ctor) = 1;
2494 DECL_INITIAL (var) = ctor;
2495 varpool_node::finalize_decl (var);
2496
2497 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2498 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2499 append_to_statement_list (build_call_expr (fn, 2,
2500 build_fold_addr_expr (var),
2501 gcount_tree),
2502 &asan_ctor_statements);
2503
2504 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2505 append_to_statement_list (build_call_expr (fn, 2,
2506 build_fold_addr_expr (var),
2507 gcount_tree),
2508 &dtor_statements);
2509 cgraph_build_static_cdtor ('D', dtor_statements,
2510 MAX_RESERVED_INIT_PRIORITY - 1);
2511 }
2512 if (asan_ctor_statements)
2513 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2514 MAX_RESERVED_INIT_PRIORITY - 1);
2515 flag_sanitize |= SANITIZE_ADDRESS;
2516 }
2517
2518 /* Expand the ASAN_{LOAD,STORE} builtins. */
2519
2520 bool
2521 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2522 {
2523 gimple g = gsi_stmt (*iter);
2524 location_t loc = gimple_location (g);
2525
2526 bool recover_p
2527 = (flag_sanitize & flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
2528
2529 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2530 gcc_assert (flags < ASAN_CHECK_LAST);
2531 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2532 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2533 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2534
2535 tree base = gimple_call_arg (g, 1);
2536 tree len = gimple_call_arg (g, 2);
2537 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2538
2539 HOST_WIDE_INT size_in_bytes
2540 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2541
2542 if (use_calls)
2543 {
2544 /* Instrument using callbacks. */
2545 gimple g
2546 = gimple_build_assign_with_ops (NOP_EXPR,
2547 make_ssa_name (pointer_sized_int_node),
2548 base);
2549 gimple_set_location (g, loc);
2550 gsi_insert_before (iter, g, GSI_SAME_STMT);
2551 tree base_addr = gimple_assign_lhs (g);
2552
2553 int nargs;
2554 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
2555 if (nargs == 1)
2556 g = gimple_build_call (fun, 1, base_addr);
2557 else
2558 {
2559 gcc_assert (nargs == 2);
2560 g = gimple_build_assign_with_ops (NOP_EXPR,
2561 make_ssa_name (pointer_sized_int_node),
2562 len);
2563 gimple_set_location (g, loc);
2564 gsi_insert_before (iter, g, GSI_SAME_STMT);
2565 tree sz_arg = gimple_assign_lhs (g);
2566 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2567 }
2568 gimple_set_location (g, loc);
2569 gsi_replace (iter, g, false);
2570 return false;
2571 }
2572
2573 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2574
2575 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2576 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2577
2578 gimple_stmt_iterator gsi = *iter;
2579
2580 if (!is_non_zero_len)
2581 {
2582 /* So, the length of the memory area to asan-protect is
2583 non-constant. Let's guard the generated instrumentation code
2584 like:
2585
2586 if (len != 0)
2587 {
2588 //asan instrumentation code goes here.
2589 }
2590 // falltrough instructions, starting with *ITER. */
2591
2592 g = gimple_build_cond (NE_EXPR,
2593 len,
2594 build_int_cst (TREE_TYPE (len), 0),
2595 NULL_TREE, NULL_TREE);
2596 gimple_set_location (g, loc);
2597
2598 basic_block then_bb, fallthrough_bb;
2599 insert_if_then_before_iter (as_a <gcond *> (g), iter,
2600 /*then_more_likely_p=*/true,
2601 &then_bb, &fallthrough_bb);
2602 /* Note that fallthrough_bb starts with the statement that was
2603 pointed to by ITER. */
2604
2605 /* The 'then block' of the 'if (len != 0) condition is where
2606 we'll generate the asan instrumentation code now. */
2607 gsi = gsi_last_bb (then_bb);
2608 }
2609
2610 /* Get an iterator on the point where we can add the condition
2611 statement for the instrumentation. */
2612 basic_block then_bb, else_bb;
2613 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2614 /*then_more_likely_p=*/false,
2615 /*create_then_fallthru_edge*/recover_p,
2616 &then_bb,
2617 &else_bb);
2618
2619 g = gimple_build_assign_with_ops (NOP_EXPR,
2620 make_ssa_name (pointer_sized_int_node),
2621 base);
2622 gimple_set_location (g, loc);
2623 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2624 tree base_addr = gimple_assign_lhs (g);
2625
2626 tree t = NULL_TREE;
2627 if (real_size_in_bytes >= 8)
2628 {
2629 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2630 shadow_ptr_type);
2631 t = shadow;
2632 }
2633 else
2634 {
2635 /* Slow path for 1, 2 and 4 byte accesses. */
2636 /* Test (shadow != 0)
2637 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2638 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2639 shadow_ptr_type);
2640 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2641 gimple_seq seq = NULL;
2642 gimple_seq_add_stmt (&seq, shadow_test);
2643 /* Aligned (>= 8 bytes) can test just
2644 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2645 to be 0. */
2646 if (align < 8)
2647 {
2648 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2649 base_addr, 7));
2650 gimple_seq_add_stmt (&seq,
2651 build_type_cast (shadow_type,
2652 gimple_seq_last (seq)));
2653 if (real_size_in_bytes > 1)
2654 gimple_seq_add_stmt (&seq,
2655 build_assign (PLUS_EXPR,
2656 gimple_seq_last (seq),
2657 real_size_in_bytes - 1));
2658 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
2659 }
2660 else
2661 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
2662 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
2663 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2664 gimple_seq_last (seq)));
2665 t = gimple_assign_lhs (gimple_seq_last (seq));
2666 gimple_seq_set_location (seq, loc);
2667 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2668
2669 /* For non-constant, misaligned or otherwise weird access sizes,
2670 check first and last byte. */
2671 if (size_in_bytes == -1)
2672 {
2673 g = gimple_build_assign_with_ops (MINUS_EXPR,
2674 make_ssa_name (pointer_sized_int_node),
2675 len,
2676 build_int_cst (pointer_sized_int_node, 1));
2677 gimple_set_location (g, loc);
2678 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2679 tree last = gimple_assign_lhs (g);
2680 g = gimple_build_assign_with_ops (PLUS_EXPR,
2681 make_ssa_name (pointer_sized_int_node),
2682 base_addr,
2683 last);
2684 gimple_set_location (g, loc);
2685 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2686 tree base_end_addr = gimple_assign_lhs (g);
2687
2688 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2689 shadow_ptr_type);
2690 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2691 gimple_seq seq = NULL;
2692 gimple_seq_add_stmt (&seq, shadow_test);
2693 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2694 base_end_addr, 7));
2695 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2696 gimple_seq_last (seq)));
2697 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2698 gimple_seq_last (seq),
2699 shadow));
2700 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2701 gimple_seq_last (seq)));
2702 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2703 gimple_seq_last (seq)));
2704 t = gimple_assign_lhs (gimple_seq_last (seq));
2705 gimple_seq_set_location (seq, loc);
2706 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2707 }
2708 }
2709
2710 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2711 NULL_TREE, NULL_TREE);
2712 gimple_set_location (g, loc);
2713 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2714
2715 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2716 gsi = gsi_start_bb (then_bb);
2717 int nargs;
2718 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
2719 g = gimple_build_call (fun, nargs, base_addr, len);
2720 gimple_set_location (g, loc);
2721 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2722
2723 gsi_remove (iter, true);
2724 *iter = gsi_start_bb (else_bb);
2725
2726 return true;
2727 }
2728
2729 /* Instrument the current function. */
2730
2731 static unsigned int
2732 asan_instrument (void)
2733 {
2734 if (shadow_ptr_types[0] == NULL_TREE)
2735 asan_init_shadow_ptr_types ();
2736 transform_statements ();
2737 return 0;
2738 }
2739
2740 static bool
2741 gate_asan (void)
2742 {
2743 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2744 && !lookup_attribute ("no_sanitize_address",
2745 DECL_ATTRIBUTES (current_function_decl));
2746 }
2747
2748 namespace {
2749
2750 const pass_data pass_data_asan =
2751 {
2752 GIMPLE_PASS, /* type */
2753 "asan", /* name */
2754 OPTGROUP_NONE, /* optinfo_flags */
2755 TV_NONE, /* tv_id */
2756 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2757 0, /* properties_provided */
2758 0, /* properties_destroyed */
2759 0, /* todo_flags_start */
2760 TODO_update_ssa, /* todo_flags_finish */
2761 };
2762
2763 class pass_asan : public gimple_opt_pass
2764 {
2765 public:
2766 pass_asan (gcc::context *ctxt)
2767 : gimple_opt_pass (pass_data_asan, ctxt)
2768 {}
2769
2770 /* opt_pass methods: */
2771 opt_pass * clone () { return new pass_asan (m_ctxt); }
2772 virtual bool gate (function *) { return gate_asan (); }
2773 virtual unsigned int execute (function *) { return asan_instrument (); }
2774
2775 }; // class pass_asan
2776
2777 } // anon namespace
2778
2779 gimple_opt_pass *
2780 make_pass_asan (gcc::context *ctxt)
2781 {
2782 return new pass_asan (ctxt);
2783 }
2784
2785 namespace {
2786
2787 const pass_data pass_data_asan_O0 =
2788 {
2789 GIMPLE_PASS, /* type */
2790 "asan0", /* name */
2791 OPTGROUP_NONE, /* optinfo_flags */
2792 TV_NONE, /* tv_id */
2793 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2794 0, /* properties_provided */
2795 0, /* properties_destroyed */
2796 0, /* todo_flags_start */
2797 TODO_update_ssa, /* todo_flags_finish */
2798 };
2799
2800 class pass_asan_O0 : public gimple_opt_pass
2801 {
2802 public:
2803 pass_asan_O0 (gcc::context *ctxt)
2804 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2805 {}
2806
2807 /* opt_pass methods: */
2808 virtual bool gate (function *) { return !optimize && gate_asan (); }
2809 virtual unsigned int execute (function *) { return asan_instrument (); }
2810
2811 }; // class pass_asan_O0
2812
2813 } // anon namespace
2814
2815 gimple_opt_pass *
2816 make_pass_asan_O0 (gcc::context *ctxt)
2817 {
2818 return new pass_asan_O0 (ctxt);
2819 }
2820
2821 #include "gt-asan.h"