ipa-utils.c (ipa_merge_profiles): Avoid ICE on mismatch in indirect edges.
[gcc.git] / gcc / auto-inc-dec.c
1 /* Discovery of auto-inc and auto-dec instructions.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "rtl.h"
36 #include "tm_p.h"
37 #include "hard-reg-set.h"
38 #include "predict.h"
39 #include "hashtab.h"
40 #include "function.h"
41 #include "dominance.h"
42 #include "cfg.h"
43 #include "cfgrtl.h"
44 #include "basic-block.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "diagnostic-core.h"
50 #include "recog.h"
51 #include "statistics.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "expmed.h"
55 #include "dojump.h"
56 #include "explow.h"
57 #include "calls.h"
58 #include "emit-rtl.h"
59 #include "varasm.h"
60 #include "stmt.h"
61 #include "expr.h"
62 #include "tree-pass.h"
63 #include "df.h"
64 #include "dbgcnt.h"
65 #include "target.h"
66
67 /* This pass was originally removed from flow.c. However there is
68 almost nothing that remains of that code.
69
70 There are (4) basic forms that are matched:
71
72 (1) FORM_PRE_ADD
73 a <- b + c
74 ...
75 *a
76
77 becomes
78
79 a <- b
80 ...
81 *(a += c) pre
82
83
84 (2) FORM_PRE_INC
85 a += c
86 ...
87 *a
88
89 becomes
90
91 *(a += c) pre
92
93
94 (3) FORM_POST_ADD
95 *a
96 ...
97 b <- a + c
98
99 (For this case to be true, b must not be assigned or used between
100 the *a and the assignment to b. B must also be a Pmode reg.)
101
102 becomes
103
104 b <- a
105 ...
106 *(b += c) post
107
108
109 (4) FORM_POST_INC
110 *a
111 ...
112 a <- a + c
113
114 becomes
115
116 *(a += c) post
117
118 There are three types of values of c.
119
120 1) c is a constant equal to the width of the value being accessed by
121 the pointer. This is useful for machines that have
122 HAVE_PRE_INCREMENT, HAVE_POST_INCREMENT, HAVE_PRE_DECREMENT or
123 HAVE_POST_DECREMENT defined.
124
125 2) c is a constant not equal to the width of the value being accessed
126 by the pointer. This is useful for machines that have
127 HAVE_PRE_MODIFY_DISP, HAVE_POST_MODIFY_DISP defined.
128
129 3) c is a register. This is useful for machines that have
130 HAVE_PRE_MODIFY_REG, HAVE_POST_MODIFY_REG
131
132 The is one special case: if a already had an offset equal to it +-
133 its width and that offset is equal to -c when the increment was
134 before the ref or +c if the increment was after the ref, then if we
135 can do the combination but switch the pre/post bit. */
136
137 #ifdef AUTO_INC_DEC
138
139 enum form
140 {
141 FORM_PRE_ADD,
142 FORM_PRE_INC,
143 FORM_POST_ADD,
144 FORM_POST_INC,
145 FORM_last
146 };
147
148 /* The states of the second operands of mem refs and inc insns. If no
149 second operand of the mem_ref was found, it is assumed to just be
150 ZERO. SIZE is the size of the mode accessed in the memref. The
151 ANY is used for constants that are not +-size or 0. REG is used if
152 the forms are reg1 + reg2. */
153
154 enum inc_state
155 {
156 INC_ZERO, /* == 0 */
157 INC_NEG_SIZE, /* == +size */
158 INC_POS_SIZE, /* == -size */
159 INC_NEG_ANY, /* == some -constant */
160 INC_POS_ANY, /* == some +constant */
161 INC_REG, /* == some register */
162 INC_last
163 };
164
165 /* The eight forms that pre/post inc/dec can take. */
166 enum gen_form
167 {
168 NOTHING,
169 SIMPLE_PRE_INC, /* ++size */
170 SIMPLE_POST_INC, /* size++ */
171 SIMPLE_PRE_DEC, /* --size */
172 SIMPLE_POST_DEC, /* size-- */
173 DISP_PRE, /* ++con */
174 DISP_POST, /* con++ */
175 REG_PRE, /* ++reg */
176 REG_POST /* reg++ */
177 };
178
179 /* Tmp mem rtx for use in cost modeling. */
180 static rtx mem_tmp;
181
182 static enum inc_state
183 set_inc_state (HOST_WIDE_INT val, int size)
184 {
185 if (val == 0)
186 return INC_ZERO;
187 if (val < 0)
188 return (val == -size) ? INC_NEG_SIZE : INC_NEG_ANY;
189 else
190 return (val == size) ? INC_POS_SIZE : INC_POS_ANY;
191 }
192
193 /* The DECISION_TABLE that describes what form, if any, the increment
194 or decrement will take. It is a three dimensional table. The first
195 index is the type of constant or register found as the second
196 operand of the inc insn. The second index is the type of constant
197 or register found as the second operand of the memory reference (if
198 no second operand exists, 0 is used). The third index is the form
199 and location (relative to the mem reference) of inc insn. */
200
201 static bool initialized = false;
202 static enum gen_form decision_table[INC_last][INC_last][FORM_last];
203
204 static void
205 init_decision_table (void)
206 {
207 enum gen_form value;
208
209 if (HAVE_PRE_INCREMENT || HAVE_PRE_MODIFY_DISP)
210 {
211 /* Prefer the simple form if both are available. */
212 value = (HAVE_PRE_INCREMENT) ? SIMPLE_PRE_INC : DISP_PRE;
213
214 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
215 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_INC] = value;
216
217 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_ADD] = value;
218 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_INC] = value;
219 }
220
221 if (HAVE_POST_INCREMENT || HAVE_POST_MODIFY_DISP)
222 {
223 /* Prefer the simple form if both are available. */
224 value = (HAVE_POST_INCREMENT) ? SIMPLE_POST_INC : DISP_POST;
225
226 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_ADD] = value;
227 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_INC] = value;
228
229 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_ADD] = value;
230 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_INC] = value;
231 }
232
233 if (HAVE_PRE_DECREMENT || HAVE_PRE_MODIFY_DISP)
234 {
235 /* Prefer the simple form if both are available. */
236 value = (HAVE_PRE_DECREMENT) ? SIMPLE_PRE_DEC : DISP_PRE;
237
238 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
239 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_INC] = value;
240
241 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_ADD] = value;
242 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_INC] = value;
243 }
244
245 if (HAVE_POST_DECREMENT || HAVE_POST_MODIFY_DISP)
246 {
247 /* Prefer the simple form if both are available. */
248 value = (HAVE_POST_DECREMENT) ? SIMPLE_POST_DEC : DISP_POST;
249
250 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_ADD] = value;
251 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_INC] = value;
252
253 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_ADD] = value;
254 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_INC] = value;
255 }
256
257 if (HAVE_PRE_MODIFY_DISP)
258 {
259 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
260 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
261
262 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_ADD] = DISP_PRE;
263 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_INC] = DISP_PRE;
264
265 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
266 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
267
268 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_ADD] = DISP_PRE;
269 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_INC] = DISP_PRE;
270 }
271
272 if (HAVE_POST_MODIFY_DISP)
273 {
274 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
275 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
276
277 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_ADD] = DISP_POST;
278 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_INC] = DISP_POST;
279
280 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
281 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
282
283 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_ADD] = DISP_POST;
284 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_INC] = DISP_POST;
285 }
286
287 /* This is much simpler than the other cases because we do not look
288 for the reg1-reg2 case. Note that we do not have a INC_POS_REG
289 and INC_NEG_REG states. Most of the use of such states would be
290 on a target that had an R1 - R2 update address form.
291
292 There is the remote possibility that you could also catch a = a +
293 b; *(a - b) as a postdecrement of (a + b). However, it is
294 unclear if *(a - b) would ever be generated on a machine that did
295 not have that kind of addressing mode. The IA-64 and RS6000 will
296 not do this, and I cannot speak for any other. If any
297 architecture does have an a-b update for, these cases should be
298 added. */
299 if (HAVE_PRE_MODIFY_REG)
300 {
301 decision_table[INC_REG][INC_ZERO][FORM_PRE_ADD] = REG_PRE;
302 decision_table[INC_REG][INC_ZERO][FORM_PRE_INC] = REG_PRE;
303
304 decision_table[INC_REG][INC_REG][FORM_POST_ADD] = REG_PRE;
305 decision_table[INC_REG][INC_REG][FORM_POST_INC] = REG_PRE;
306 }
307
308 if (HAVE_POST_MODIFY_REG)
309 {
310 decision_table[INC_REG][INC_ZERO][FORM_POST_ADD] = REG_POST;
311 decision_table[INC_REG][INC_ZERO][FORM_POST_INC] = REG_POST;
312 }
313
314 initialized = true;
315 }
316
317 /* Parsed fields of an inc insn of the form "reg_res = reg0+reg1" or
318 "reg_res = reg0+c". */
319
320 static struct inc_insn
321 {
322 rtx_insn *insn; /* The insn being parsed. */
323 rtx pat; /* The pattern of the insn. */
324 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
325 enum form form;
326 rtx reg_res;
327 rtx reg0;
328 rtx reg1;
329 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
330 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
331 } inc_insn;
332
333
334 /* Dump the parsed inc insn to FILE. */
335
336 static void
337 dump_inc_insn (FILE *file)
338 {
339 const char *f = ((inc_insn.form == FORM_PRE_ADD)
340 || (inc_insn.form == FORM_PRE_INC)) ? "pre" : "post";
341
342 dump_insn_slim (file, inc_insn.insn);
343
344 switch (inc_insn.form)
345 {
346 case FORM_PRE_ADD:
347 case FORM_POST_ADD:
348 if (inc_insn.reg1_is_const)
349 fprintf (file, "found %s add(%d) r[%d]=r[%d]+%d\n",
350 f, INSN_UID (inc_insn.insn),
351 REGNO (inc_insn.reg_res),
352 REGNO (inc_insn.reg0), (int) inc_insn.reg1_val);
353 else
354 fprintf (file, "found %s add(%d) r[%d]=r[%d]+r[%d]\n",
355 f, INSN_UID (inc_insn.insn),
356 REGNO (inc_insn.reg_res),
357 REGNO (inc_insn.reg0), REGNO (inc_insn.reg1));
358 break;
359
360 case FORM_PRE_INC:
361 case FORM_POST_INC:
362 if (inc_insn.reg1_is_const)
363 fprintf (file, "found %s inc(%d) r[%d]+=%d\n",
364 f, INSN_UID (inc_insn.insn),
365 REGNO (inc_insn.reg_res), (int) inc_insn.reg1_val);
366 else
367 fprintf (file, "found %s inc(%d) r[%d]+=r[%d]\n",
368 f, INSN_UID (inc_insn.insn),
369 REGNO (inc_insn.reg_res), REGNO (inc_insn.reg1));
370 break;
371
372 default:
373 break;
374 }
375 }
376
377
378 /* Parsed fields of a mem ref of the form "*(reg0+reg1)" or "*(reg0+c)". */
379
380 static struct mem_insn
381 {
382 rtx_insn *insn; /* The insn being parsed. */
383 rtx pat; /* The pattern of the insn. */
384 rtx *mem_loc; /* The address of the field that holds the mem */
385 /* that is to be replaced. */
386 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
387 rtx reg0;
388 rtx reg1; /* This is either a reg or a const depending on
389 reg1_is_const. */
390 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
391 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
392 } mem_insn;
393
394
395 /* Dump the parsed mem insn to FILE. */
396
397 static void
398 dump_mem_insn (FILE *file)
399 {
400 dump_insn_slim (file, mem_insn.insn);
401
402 if (mem_insn.reg1_is_const)
403 fprintf (file, "found mem(%d) *(r[%d]+%d)\n",
404 INSN_UID (mem_insn.insn),
405 REGNO (mem_insn.reg0), (int) mem_insn.reg1_val);
406 else
407 fprintf (file, "found mem(%d) *(r[%d]+r[%d])\n",
408 INSN_UID (mem_insn.insn),
409 REGNO (mem_insn.reg0), REGNO (mem_insn.reg1));
410 }
411
412
413 /* The following three arrays contain pointers to instructions. They
414 are indexed by REGNO. At any point in the basic block where we are
415 looking these three arrays contain, respectively, the next insn
416 that uses REGNO, the next inc or add insn that uses REGNO and the
417 next insn that sets REGNO.
418
419 The arrays are not cleared when we move from block to block so
420 whenever an insn is retrieved from these arrays, it's block number
421 must be compared with the current block.
422 */
423
424 static rtx_insn **reg_next_use = NULL;
425 static rtx_insn **reg_next_inc_use = NULL;
426 static rtx_insn **reg_next_def = NULL;
427
428
429 /* Move dead note that match PATTERN to TO_INSN from FROM_INSN. We do
430 not really care about moving any other notes from the inc or add
431 insn. Moving the REG_EQUAL and REG_EQUIV is clearly wrong and it
432 does not appear that there are any other kinds of relevant notes. */
433
434 static void
435 move_dead_notes (rtx_insn *to_insn, rtx_insn *from_insn, rtx pattern)
436 {
437 rtx note;
438 rtx next_note;
439 rtx prev_note = NULL;
440
441 for (note = REG_NOTES (from_insn); note; note = next_note)
442 {
443 next_note = XEXP (note, 1);
444
445 if ((REG_NOTE_KIND (note) == REG_DEAD)
446 && pattern == XEXP (note, 0))
447 {
448 XEXP (note, 1) = REG_NOTES (to_insn);
449 REG_NOTES (to_insn) = note;
450 if (prev_note)
451 XEXP (prev_note, 1) = next_note;
452 else
453 REG_NOTES (from_insn) = next_note;
454 }
455 else prev_note = note;
456 }
457 }
458
459
460 /* Create a mov insn DEST_REG <- SRC_REG and insert it before
461 NEXT_INSN. */
462
463 static rtx_insn *
464 insert_move_insn_before (rtx_insn *next_insn, rtx dest_reg, rtx src_reg)
465 {
466 rtx_insn *insns;
467
468 start_sequence ();
469 emit_move_insn (dest_reg, src_reg);
470 insns = get_insns ();
471 end_sequence ();
472 emit_insn_before (insns, next_insn);
473 return insns;
474 }
475
476
477 /* Change mem_insn.mem_loc so that uses NEW_ADDR which has an
478 increment of INC_REG. To have reached this point, the change is a
479 legitimate one from a dataflow point of view. The only questions
480 are is this a valid change to the instruction and is this a
481 profitable change to the instruction. */
482
483 static bool
484 attempt_change (rtx new_addr, rtx inc_reg)
485 {
486 /* There are four cases: For the two cases that involve an add
487 instruction, we are going to have to delete the add and insert a
488 mov. We are going to assume that the mov is free. This is
489 fairly early in the backend and there are a lot of opportunities
490 for removing that move later. In particular, there is the case
491 where the move may be dead, this is what dead code elimination
492 passes are for. The two cases where we have an inc insn will be
493 handled mov free. */
494
495 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
496 rtx_insn *mov_insn = NULL;
497 int regno;
498 rtx mem = *mem_insn.mem_loc;
499 machine_mode mode = GET_MODE (mem);
500 rtx new_mem;
501 int old_cost = 0;
502 int new_cost = 0;
503 bool speed = optimize_bb_for_speed_p (bb);
504
505 PUT_MODE (mem_tmp, mode);
506 XEXP (mem_tmp, 0) = new_addr;
507
508 old_cost = (set_src_cost (mem, speed)
509 + set_rtx_cost (PATTERN (inc_insn.insn), speed));
510 new_cost = set_src_cost (mem_tmp, speed);
511
512 /* The first item of business is to see if this is profitable. */
513 if (old_cost < new_cost)
514 {
515 if (dump_file)
516 fprintf (dump_file, "cost failure old=%d new=%d\n", old_cost, new_cost);
517 return false;
518 }
519
520 /* Jump through a lot of hoops to keep the attributes up to date. We
521 do not want to call one of the change address variants that take
522 an offset even though we know the offset in many cases. These
523 assume you are changing where the address is pointing by the
524 offset. */
525 new_mem = replace_equiv_address_nv (mem, new_addr);
526 if (! validate_change (mem_insn.insn, mem_insn.mem_loc, new_mem, 0))
527 {
528 if (dump_file)
529 fprintf (dump_file, "validation failure\n");
530 return false;
531 }
532
533 /* From here to the end of the function we are committed to the
534 change, i.e. nothing fails. Generate any necessary movs, move
535 any regnotes, and fix up the reg_next_{use,inc_use,def}. */
536 switch (inc_insn.form)
537 {
538 case FORM_PRE_ADD:
539 /* Replace the addition with a move. Do it at the location of
540 the addition since the operand of the addition may change
541 before the memory reference. */
542 mov_insn = insert_move_insn_before (inc_insn.insn,
543 inc_insn.reg_res, inc_insn.reg0);
544 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
545
546 regno = REGNO (inc_insn.reg_res);
547 reg_next_def[regno] = mov_insn;
548 reg_next_use[regno] = NULL;
549 regno = REGNO (inc_insn.reg0);
550 reg_next_use[regno] = mov_insn;
551 df_recompute_luids (bb);
552 break;
553
554 case FORM_POST_INC:
555 regno = REGNO (inc_insn.reg_res);
556 if (reg_next_use[regno] == reg_next_inc_use[regno])
557 reg_next_inc_use[regno] = NULL;
558
559 /* Fallthru. */
560 case FORM_PRE_INC:
561 regno = REGNO (inc_insn.reg_res);
562 reg_next_def[regno] = mem_insn.insn;
563 reg_next_use[regno] = NULL;
564
565 break;
566
567 case FORM_POST_ADD:
568 mov_insn = insert_move_insn_before (mem_insn.insn,
569 inc_insn.reg_res, inc_insn.reg0);
570 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
571
572 /* Do not move anything to the mov insn because the instruction
573 pointer for the main iteration has not yet hit that. It is
574 still pointing to the mem insn. */
575 regno = REGNO (inc_insn.reg_res);
576 reg_next_def[regno] = mem_insn.insn;
577 reg_next_use[regno] = NULL;
578
579 regno = REGNO (inc_insn.reg0);
580 reg_next_use[regno] = mem_insn.insn;
581 if ((reg_next_use[regno] == reg_next_inc_use[regno])
582 || (reg_next_inc_use[regno] == inc_insn.insn))
583 reg_next_inc_use[regno] = NULL;
584 df_recompute_luids (bb);
585 break;
586
587 case FORM_last:
588 default:
589 gcc_unreachable ();
590 }
591
592 if (!inc_insn.reg1_is_const)
593 {
594 regno = REGNO (inc_insn.reg1);
595 reg_next_use[regno] = mem_insn.insn;
596 if ((reg_next_use[regno] == reg_next_inc_use[regno])
597 || (reg_next_inc_use[regno] == inc_insn.insn))
598 reg_next_inc_use[regno] = NULL;
599 }
600
601 delete_insn (inc_insn.insn);
602
603 if (dump_file && mov_insn)
604 {
605 fprintf (dump_file, "inserting mov ");
606 dump_insn_slim (dump_file, mov_insn);
607 }
608
609 /* Record that this insn has an implicit side effect. */
610 add_reg_note (mem_insn.insn, REG_INC, inc_reg);
611
612 if (dump_file)
613 {
614 fprintf (dump_file, "****success ");
615 dump_insn_slim (dump_file, mem_insn.insn);
616 }
617
618 return true;
619 }
620
621
622 /* Try to combine the instruction in INC_INSN with the instruction in
623 MEM_INSN. First the form is determined using the DECISION_TABLE
624 and the results of parsing the INC_INSN and the MEM_INSN.
625 Assuming the form is ok, a prototype new address is built which is
626 passed to ATTEMPT_CHANGE for final processing. */
627
628 static bool
629 try_merge (void)
630 {
631 enum gen_form gen_form;
632 rtx mem = *mem_insn.mem_loc;
633 rtx inc_reg = inc_insn.form == FORM_POST_ADD ?
634 inc_insn.reg_res : mem_insn.reg0;
635
636 /* The width of the mem being accessed. */
637 int size = GET_MODE_SIZE (GET_MODE (mem));
638 rtx_insn *last_insn = NULL;
639 machine_mode reg_mode = GET_MODE (inc_reg);
640
641 switch (inc_insn.form)
642 {
643 case FORM_PRE_ADD:
644 case FORM_PRE_INC:
645 last_insn = mem_insn.insn;
646 break;
647 case FORM_POST_INC:
648 case FORM_POST_ADD:
649 last_insn = inc_insn.insn;
650 break;
651 case FORM_last:
652 default:
653 gcc_unreachable ();
654 }
655
656 /* Cannot handle auto inc of the stack. */
657 if (inc_reg == stack_pointer_rtx)
658 {
659 if (dump_file)
660 fprintf (dump_file, "cannot inc stack %d failure\n", REGNO (inc_reg));
661 return false;
662 }
663
664 /* Look to see if the inc register is dead after the memory
665 reference. If it is, do not do the combination. */
666 if (find_regno_note (last_insn, REG_DEAD, REGNO (inc_reg)))
667 {
668 if (dump_file)
669 fprintf (dump_file, "dead failure %d\n", REGNO (inc_reg));
670 return false;
671 }
672
673 mem_insn.reg1_state = (mem_insn.reg1_is_const)
674 ? set_inc_state (mem_insn.reg1_val, size) : INC_REG;
675 inc_insn.reg1_state = (inc_insn.reg1_is_const)
676 ? set_inc_state (inc_insn.reg1_val, size) : INC_REG;
677
678 /* Now get the form that we are generating. */
679 gen_form = decision_table
680 [inc_insn.reg1_state][mem_insn.reg1_state][inc_insn.form];
681
682 if (dbg_cnt (auto_inc_dec) == false)
683 return false;
684
685 switch (gen_form)
686 {
687 default:
688 case NOTHING:
689 return false;
690
691 case SIMPLE_PRE_INC: /* ++size */
692 if (dump_file)
693 fprintf (dump_file, "trying SIMPLE_PRE_INC\n");
694 return attempt_change (gen_rtx_PRE_INC (reg_mode, inc_reg), inc_reg);
695 break;
696
697 case SIMPLE_POST_INC: /* size++ */
698 if (dump_file)
699 fprintf (dump_file, "trying SIMPLE_POST_INC\n");
700 return attempt_change (gen_rtx_POST_INC (reg_mode, inc_reg), inc_reg);
701 break;
702
703 case SIMPLE_PRE_DEC: /* --size */
704 if (dump_file)
705 fprintf (dump_file, "trying SIMPLE_PRE_DEC\n");
706 return attempt_change (gen_rtx_PRE_DEC (reg_mode, inc_reg), inc_reg);
707 break;
708
709 case SIMPLE_POST_DEC: /* size-- */
710 if (dump_file)
711 fprintf (dump_file, "trying SIMPLE_POST_DEC\n");
712 return attempt_change (gen_rtx_POST_DEC (reg_mode, inc_reg), inc_reg);
713 break;
714
715 case DISP_PRE: /* ++con */
716 if (dump_file)
717 fprintf (dump_file, "trying DISP_PRE\n");
718 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
719 inc_reg,
720 gen_rtx_PLUS (reg_mode,
721 inc_reg,
722 inc_insn.reg1)),
723 inc_reg);
724 break;
725
726 case DISP_POST: /* con++ */
727 if (dump_file)
728 fprintf (dump_file, "trying POST_DISP\n");
729 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
730 inc_reg,
731 gen_rtx_PLUS (reg_mode,
732 inc_reg,
733 inc_insn.reg1)),
734 inc_reg);
735 break;
736
737 case REG_PRE: /* ++reg */
738 if (dump_file)
739 fprintf (dump_file, "trying PRE_REG\n");
740 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
741 inc_reg,
742 gen_rtx_PLUS (reg_mode,
743 inc_reg,
744 inc_insn.reg1)),
745 inc_reg);
746 break;
747
748 case REG_POST: /* reg++ */
749 if (dump_file)
750 fprintf (dump_file, "trying POST_REG\n");
751 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
752 inc_reg,
753 gen_rtx_PLUS (reg_mode,
754 inc_reg,
755 inc_insn.reg1)),
756 inc_reg);
757 break;
758 }
759 }
760
761 /* Return the next insn that uses (if reg_next_use is passed in
762 NEXT_ARRAY) or defines (if reg_next_def is passed in NEXT_ARRAY)
763 REGNO in BB. */
764
765 static rtx_insn *
766 get_next_ref (int regno, basic_block bb, rtx_insn **next_array)
767 {
768 rtx_insn *insn = next_array[regno];
769
770 /* Lazy about cleaning out the next_arrays. */
771 if (insn && BLOCK_FOR_INSN (insn) != bb)
772 {
773 next_array[regno] = NULL;
774 insn = NULL;
775 }
776
777 return insn;
778 }
779
780
781 /* Reverse the operands in a mem insn. */
782
783 static void
784 reverse_mem (void)
785 {
786 rtx tmp = mem_insn.reg1;
787 mem_insn.reg1 = mem_insn.reg0;
788 mem_insn.reg0 = tmp;
789 }
790
791
792 /* Reverse the operands in a inc insn. */
793
794 static void
795 reverse_inc (void)
796 {
797 rtx tmp = inc_insn.reg1;
798 inc_insn.reg1 = inc_insn.reg0;
799 inc_insn.reg0 = tmp;
800 }
801
802
803 /* Return true if INSN is of a form "a = b op c" where a and b are
804 regs. op is + if c is a reg and +|- if c is a const. Fill in
805 INC_INSN with what is found.
806
807 This function is called in two contexts, if BEFORE_MEM is true,
808 this is called for each insn in the basic block. If BEFORE_MEM is
809 false, it is called for the instruction in the block that uses the
810 index register for some memory reference that is currently being
811 processed. */
812
813 static bool
814 parse_add_or_inc (rtx_insn *insn, bool before_mem)
815 {
816 rtx pat = single_set (insn);
817 if (!pat)
818 return false;
819
820 /* Result must be single reg. */
821 if (!REG_P (SET_DEST (pat)))
822 return false;
823
824 if ((GET_CODE (SET_SRC (pat)) != PLUS)
825 && (GET_CODE (SET_SRC (pat)) != MINUS))
826 return false;
827
828 if (!REG_P (XEXP (SET_SRC (pat), 0)))
829 return false;
830
831 inc_insn.insn = insn;
832 inc_insn.pat = pat;
833 inc_insn.reg_res = SET_DEST (pat);
834 inc_insn.reg0 = XEXP (SET_SRC (pat), 0);
835 if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg0))
836 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
837 else
838 inc_insn.form = before_mem ? FORM_PRE_ADD : FORM_POST_ADD;
839
840 if (CONST_INT_P (XEXP (SET_SRC (pat), 1)))
841 {
842 /* Process a = b + c where c is a const. */
843 inc_insn.reg1_is_const = true;
844 if (GET_CODE (SET_SRC (pat)) == PLUS)
845 {
846 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
847 inc_insn.reg1_val = INTVAL (inc_insn.reg1);
848 }
849 else
850 {
851 inc_insn.reg1_val = -INTVAL (XEXP (SET_SRC (pat), 1));
852 inc_insn.reg1 = GEN_INT (inc_insn.reg1_val);
853 }
854 return true;
855 }
856 else if ((HAVE_PRE_MODIFY_REG || HAVE_POST_MODIFY_REG)
857 && (REG_P (XEXP (SET_SRC (pat), 1)))
858 && GET_CODE (SET_SRC (pat)) == PLUS)
859 {
860 /* Process a = b + c where c is a reg. */
861 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
862 inc_insn.reg1_is_const = false;
863
864 if (inc_insn.form == FORM_PRE_INC
865 || inc_insn.form == FORM_POST_INC)
866 return true;
867 else if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg1))
868 {
869 /* Reverse the two operands and turn *_ADD into *_INC since
870 a = c + a. */
871 reverse_inc ();
872 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
873 return true;
874 }
875 else
876 return true;
877 }
878
879 return false;
880 }
881
882
883 /* A recursive function that checks all of the mem uses in
884 ADDRESS_OF_X to see if any single one of them is compatible with
885 what has been found in inc_insn.
886
887 -1 is returned for success. 0 is returned if nothing was found and
888 1 is returned for failure. */
889
890 static int
891 find_address (rtx *address_of_x)
892 {
893 rtx x = *address_of_x;
894 enum rtx_code code = GET_CODE (x);
895 const char *const fmt = GET_RTX_FORMAT (code);
896 int i;
897 int value = 0;
898 int tem;
899
900 if (code == MEM && rtx_equal_p (XEXP (x, 0), inc_insn.reg_res))
901 {
902 /* Match with *reg0. */
903 mem_insn.mem_loc = address_of_x;
904 mem_insn.reg0 = inc_insn.reg_res;
905 mem_insn.reg1_is_const = true;
906 mem_insn.reg1_val = 0;
907 mem_insn.reg1 = GEN_INT (0);
908 return -1;
909 }
910 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
911 && rtx_equal_p (XEXP (XEXP (x, 0), 0), inc_insn.reg_res))
912 {
913 rtx b = XEXP (XEXP (x, 0), 1);
914 mem_insn.mem_loc = address_of_x;
915 mem_insn.reg0 = inc_insn.reg_res;
916 mem_insn.reg1 = b;
917 mem_insn.reg1_is_const = inc_insn.reg1_is_const;
918 if (CONST_INT_P (b))
919 {
920 /* Match with *(reg0 + reg1) where reg1 is a const. */
921 HOST_WIDE_INT val = INTVAL (b);
922 if (inc_insn.reg1_is_const
923 && (inc_insn.reg1_val == val || inc_insn.reg1_val == -val))
924 {
925 mem_insn.reg1_val = val;
926 return -1;
927 }
928 }
929 else if (!inc_insn.reg1_is_const
930 && rtx_equal_p (inc_insn.reg1, b))
931 /* Match with *(reg0 + reg1). */
932 return -1;
933 }
934
935 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
936 {
937 /* If REG occurs inside a MEM used in a bit-field reference,
938 that is unacceptable. */
939 if (find_address (&XEXP (x, 0)))
940 return 1;
941 }
942
943 if (x == inc_insn.reg_res)
944 return 1;
945
946 /* Time for some deep diving. */
947 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
948 {
949 if (fmt[i] == 'e')
950 {
951 tem = find_address (&XEXP (x, i));
952 /* If this is the first use, let it go so the rest of the
953 insn can be checked. */
954 if (value == 0)
955 value = tem;
956 else if (tem != 0)
957 /* More than one match was found. */
958 return 1;
959 }
960 else if (fmt[i] == 'E')
961 {
962 int j;
963 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
964 {
965 tem = find_address (&XVECEXP (x, i, j));
966 /* If this is the first use, let it go so the rest of
967 the insn can be checked. */
968 if (value == 0)
969 value = tem;
970 else if (tem != 0)
971 /* More than one match was found. */
972 return 1;
973 }
974 }
975 }
976 return value;
977 }
978
979 /* Once a suitable mem reference has been found and the MEM_INSN
980 structure has been filled in, FIND_INC is called to see if there is
981 a suitable add or inc insn that follows the mem reference and
982 determine if it is suitable to merge.
983
984 In the case where the MEM_INSN has two registers in the reference,
985 this function may be called recursively. The first time looking
986 for an add of the first register, and if that fails, looking for an
987 add of the second register. The FIRST_TRY parameter is used to
988 only allow the parameters to be reversed once. */
989
990 static bool
991 find_inc (bool first_try)
992 {
993 rtx_insn *insn;
994 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
995 rtx_insn *other_insn;
996 df_ref def;
997
998 /* Make sure this reg appears only once in this insn. */
999 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg0, 1) != 1)
1000 {
1001 if (dump_file)
1002 fprintf (dump_file, "mem count failure\n");
1003 return false;
1004 }
1005
1006 if (dump_file)
1007 dump_mem_insn (dump_file);
1008
1009 /* Find the next use that is an inc. */
1010 insn = get_next_ref (REGNO (mem_insn.reg0),
1011 BLOCK_FOR_INSN (mem_insn.insn),
1012 reg_next_inc_use);
1013 if (!insn)
1014 return false;
1015
1016 /* Even though we know the next use is an add or inc because it came
1017 from the reg_next_inc_use, we must still reparse. */
1018 if (!parse_add_or_inc (insn, false))
1019 {
1020 /* Next use was not an add. Look for one extra case. It could be
1021 that we have:
1022
1023 *(a + b)
1024 ...= a;
1025 ...= b + a
1026
1027 if we reverse the operands in the mem ref we would
1028 find this. Only try it once though. */
1029 if (first_try && !mem_insn.reg1_is_const)
1030 {
1031 reverse_mem ();
1032 return find_inc (false);
1033 }
1034 else
1035 return false;
1036 }
1037
1038 /* Need to assure that none of the operands of the inc instruction are
1039 assigned to by the mem insn. */
1040 FOR_EACH_INSN_DEF (def, mem_insn.insn)
1041 {
1042 unsigned int regno = DF_REF_REGNO (def);
1043 if ((regno == REGNO (inc_insn.reg0))
1044 || (regno == REGNO (inc_insn.reg_res)))
1045 {
1046 if (dump_file)
1047 fprintf (dump_file, "inc conflicts with store failure.\n");
1048 return false;
1049 }
1050 if (!inc_insn.reg1_is_const && (regno == REGNO (inc_insn.reg1)))
1051 {
1052 if (dump_file)
1053 fprintf (dump_file, "inc conflicts with store failure.\n");
1054 return false;
1055 }
1056 }
1057
1058 if (dump_file)
1059 dump_inc_insn (dump_file);
1060
1061 if (inc_insn.form == FORM_POST_ADD)
1062 {
1063 /* Make sure that there is no insn that assigns to inc_insn.res
1064 between the mem_insn and the inc_insn. */
1065 rtx_insn *other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1066 BLOCK_FOR_INSN (mem_insn.insn),
1067 reg_next_def);
1068 if (other_insn != inc_insn.insn)
1069 {
1070 if (dump_file)
1071 fprintf (dump_file,
1072 "result of add is assigned to between mem and inc insns.\n");
1073 return false;
1074 }
1075
1076 other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1077 BLOCK_FOR_INSN (mem_insn.insn),
1078 reg_next_use);
1079 if (other_insn
1080 && (other_insn != inc_insn.insn)
1081 && (DF_INSN_LUID (inc_insn.insn) > DF_INSN_LUID (other_insn)))
1082 {
1083 if (dump_file)
1084 fprintf (dump_file,
1085 "result of add is used between mem and inc insns.\n");
1086 return false;
1087 }
1088
1089 /* For the post_add to work, the result_reg of the inc must not be
1090 used in the mem insn since this will become the new index
1091 register. */
1092 if (reg_overlap_mentioned_p (inc_insn.reg_res, PATTERN (mem_insn.insn)))
1093 {
1094 if (dump_file)
1095 fprintf (dump_file, "base reg replacement failure.\n");
1096 return false;
1097 }
1098 }
1099
1100 if (mem_insn.reg1_is_const)
1101 {
1102 if (mem_insn.reg1_val == 0)
1103 {
1104 if (!inc_insn.reg1_is_const)
1105 {
1106 /* The mem looks like *r0 and the rhs of the add has two
1107 registers. */
1108 int luid = DF_INSN_LUID (inc_insn.insn);
1109 if (inc_insn.form == FORM_POST_ADD)
1110 {
1111 /* The trick is that we are not going to increment r0,
1112 we are going to increment the result of the add insn.
1113 For this trick to be correct, the result reg of
1114 the inc must be a valid addressing reg. */
1115 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1116 if (GET_MODE (inc_insn.reg_res)
1117 != targetm.addr_space.address_mode (as))
1118 {
1119 if (dump_file)
1120 fprintf (dump_file, "base reg mode failure.\n");
1121 return false;
1122 }
1123
1124 /* We also need to make sure that the next use of
1125 inc result is after the inc. */
1126 other_insn
1127 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1128 if (other_insn && luid > DF_INSN_LUID (other_insn))
1129 return false;
1130
1131 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1132 reverse_inc ();
1133 }
1134
1135 other_insn
1136 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1137 if (other_insn && luid > DF_INSN_LUID (other_insn))
1138 return false;
1139 }
1140 }
1141 /* Both the inc/add and the mem have a constant. Need to check
1142 that the constants are ok. */
1143 else if ((mem_insn.reg1_val != inc_insn.reg1_val)
1144 && (mem_insn.reg1_val != -inc_insn.reg1_val))
1145 return false;
1146 }
1147 else
1148 {
1149 /* The mem insn is of the form *(a + b) where a and b are both
1150 regs. It may be that in order to match the add or inc we
1151 need to treat it as if it was *(b + a). It may also be that
1152 the add is of the form a + c where c does not match b and
1153 then we just abandon this. */
1154
1155 int luid = DF_INSN_LUID (inc_insn.insn);
1156 rtx_insn *other_insn;
1157
1158 /* Make sure this reg appears only once in this insn. */
1159 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg1, 1) != 1)
1160 return false;
1161
1162 if (inc_insn.form == FORM_POST_ADD)
1163 {
1164 /* For this trick to be correct, the result reg of the inc
1165 must be a valid addressing reg. */
1166 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1167 if (GET_MODE (inc_insn.reg_res)
1168 != targetm.addr_space.address_mode (as))
1169 {
1170 if (dump_file)
1171 fprintf (dump_file, "base reg mode failure.\n");
1172 return false;
1173 }
1174
1175 if (rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1176 {
1177 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1178 {
1179 /* See comment above on find_inc (false) call. */
1180 if (first_try)
1181 {
1182 reverse_mem ();
1183 return find_inc (false);
1184 }
1185 else
1186 return false;
1187 }
1188
1189 /* Need to check that there are no assignments to b
1190 before the add insn. */
1191 other_insn
1192 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1193 if (other_insn && luid > DF_INSN_LUID (other_insn))
1194 return false;
1195 /* All ok for the next step. */
1196 }
1197 else
1198 {
1199 /* We know that mem_insn.reg0 must equal inc_insn.reg1
1200 or else we would not have found the inc insn. */
1201 reverse_mem ();
1202 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1203 {
1204 /* See comment above on find_inc (false) call. */
1205 if (first_try)
1206 return find_inc (false);
1207 else
1208 return false;
1209 }
1210 /* To have gotten here know that.
1211 *(b + a)
1212
1213 ... = (b + a)
1214
1215 We also know that the lhs of the inc is not b or a. We
1216 need to make sure that there are no assignments to b
1217 between the mem ref and the inc. */
1218
1219 other_insn
1220 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_def);
1221 if (other_insn && luid > DF_INSN_LUID (other_insn))
1222 return false;
1223 }
1224
1225 /* Need to check that the next use of the add result is later than
1226 add insn since this will be the reg incremented. */
1227 other_insn
1228 = get_next_ref (REGNO (inc_insn.reg_res), bb, reg_next_use);
1229 if (other_insn && luid > DF_INSN_LUID (other_insn))
1230 return false;
1231 }
1232 else /* FORM_POST_INC. There is less to check here because we
1233 know that operands must line up. */
1234 {
1235 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1236 /* See comment above on find_inc (false) call. */
1237 {
1238 if (first_try)
1239 {
1240 reverse_mem ();
1241 return find_inc (false);
1242 }
1243 else
1244 return false;
1245 }
1246
1247 /* To have gotten here know that.
1248 *(a + b)
1249
1250 ... = (a + b)
1251
1252 We also know that the lhs of the inc is not b. We need to make
1253 sure that there are no assignments to b between the mem ref and
1254 the inc. */
1255 other_insn
1256 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1257 if (other_insn && luid > DF_INSN_LUID (other_insn))
1258 return false;
1259 }
1260 }
1261
1262 if (inc_insn.form == FORM_POST_INC)
1263 {
1264 other_insn
1265 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_use);
1266 /* When we found inc_insn, we were looking for the
1267 next add or inc, not the next insn that used the
1268 reg. Because we are going to increment the reg
1269 in this form, we need to make sure that there
1270 were no intervening uses of reg. */
1271 if (inc_insn.insn != other_insn)
1272 return false;
1273 }
1274
1275 return try_merge ();
1276 }
1277
1278
1279 /* A recursive function that walks ADDRESS_OF_X to find all of the mem
1280 uses in pat that could be used as an auto inc or dec. It then
1281 calls FIND_INC for each one. */
1282
1283 static bool
1284 find_mem (rtx *address_of_x)
1285 {
1286 rtx x = *address_of_x;
1287 enum rtx_code code = GET_CODE (x);
1288 const char *const fmt = GET_RTX_FORMAT (code);
1289 int i;
1290
1291 if (code == MEM && REG_P (XEXP (x, 0)))
1292 {
1293 /* Match with *reg0. */
1294 mem_insn.mem_loc = address_of_x;
1295 mem_insn.reg0 = XEXP (x, 0);
1296 mem_insn.reg1_is_const = true;
1297 mem_insn.reg1_val = 0;
1298 mem_insn.reg1 = GEN_INT (0);
1299 if (find_inc (true))
1300 return true;
1301 }
1302 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
1303 && REG_P (XEXP (XEXP (x, 0), 0)))
1304 {
1305 rtx reg1 = XEXP (XEXP (x, 0), 1);
1306 mem_insn.mem_loc = address_of_x;
1307 mem_insn.reg0 = XEXP (XEXP (x, 0), 0);
1308 mem_insn.reg1 = reg1;
1309 if (CONST_INT_P (reg1))
1310 {
1311 mem_insn.reg1_is_const = true;
1312 /* Match with *(reg0 + c) where c is a const. */
1313 mem_insn.reg1_val = INTVAL (reg1);
1314 if (find_inc (true))
1315 return true;
1316 }
1317 else if (REG_P (reg1))
1318 {
1319 /* Match with *(reg0 + reg1). */
1320 mem_insn.reg1_is_const = false;
1321 if (find_inc (true))
1322 return true;
1323 }
1324 }
1325
1326 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
1327 {
1328 /* If REG occurs inside a MEM used in a bit-field reference,
1329 that is unacceptable. */
1330 return false;
1331 }
1332
1333 /* Time for some deep diving. */
1334 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1335 {
1336 if (fmt[i] == 'e')
1337 {
1338 if (find_mem (&XEXP (x, i)))
1339 return true;
1340 }
1341 else if (fmt[i] == 'E')
1342 {
1343 int j;
1344 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1345 if (find_mem (&XVECEXP (x, i, j)))
1346 return true;
1347 }
1348 }
1349 return false;
1350 }
1351
1352
1353 /* Try to combine all incs and decs by constant values with memory
1354 references in BB. */
1355
1356 static void
1357 merge_in_block (int max_reg, basic_block bb)
1358 {
1359 rtx_insn *insn;
1360 rtx_insn *curr;
1361 int success_in_block = 0;
1362
1363 if (dump_file)
1364 fprintf (dump_file, "\n\nstarting bb %d\n", bb->index);
1365
1366 FOR_BB_INSNS_REVERSE_SAFE (bb, insn, curr)
1367 {
1368 bool insn_is_add_or_inc = true;
1369
1370 if (!NONDEBUG_INSN_P (insn))
1371 continue;
1372
1373 /* This continue is deliberate. We do not want the uses of the
1374 jump put into reg_next_use because it is not considered safe to
1375 combine a preincrement with a jump. */
1376 if (JUMP_P (insn))
1377 continue;
1378
1379 if (dump_file)
1380 dump_insn_slim (dump_file, insn);
1381
1382 /* Does this instruction increment or decrement a register? */
1383 if (parse_add_or_inc (insn, true))
1384 {
1385 int regno = REGNO (inc_insn.reg_res);
1386 /* Cannot handle case where there are three separate regs
1387 before a mem ref. Too many moves would be needed to be
1388 profitable. */
1389 if ((inc_insn.form == FORM_PRE_INC) || inc_insn.reg1_is_const)
1390 {
1391 mem_insn.insn = get_next_ref (regno, bb, reg_next_use);
1392 if (mem_insn.insn)
1393 {
1394 bool ok = true;
1395 if (!inc_insn.reg1_is_const)
1396 {
1397 /* We are only here if we are going to try a
1398 HAVE_*_MODIFY_REG type transformation. c is a
1399 reg and we must sure that the path from the
1400 inc_insn to the mem_insn.insn is both def and use
1401 clear of c because the inc insn is going to move
1402 into the mem_insn.insn. */
1403 int luid = DF_INSN_LUID (mem_insn.insn);
1404 rtx_insn *other_insn
1405 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1406
1407 if (other_insn && luid > DF_INSN_LUID (other_insn))
1408 ok = false;
1409
1410 other_insn
1411 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1412
1413 if (other_insn && luid > DF_INSN_LUID (other_insn))
1414 ok = false;
1415 }
1416
1417 if (dump_file)
1418 dump_inc_insn (dump_file);
1419
1420 if (ok && find_address (&PATTERN (mem_insn.insn)) == -1)
1421 {
1422 if (dump_file)
1423 dump_mem_insn (dump_file);
1424 if (try_merge ())
1425 {
1426 success_in_block++;
1427 insn_is_add_or_inc = false;
1428 }
1429 }
1430 }
1431 }
1432 }
1433 else
1434 {
1435 insn_is_add_or_inc = false;
1436 mem_insn.insn = insn;
1437 if (find_mem (&PATTERN (insn)))
1438 success_in_block++;
1439 }
1440
1441 /* If the inc insn was merged with a mem, the inc insn is gone
1442 and there is noting to update. */
1443 if (df_insn_info *insn_info = DF_INSN_INFO_GET (insn))
1444 {
1445 df_ref def, use;
1446
1447 /* Need to update next use. */
1448 FOR_EACH_INSN_INFO_DEF (def, insn_info)
1449 {
1450 reg_next_use[DF_REF_REGNO (def)] = NULL;
1451 reg_next_inc_use[DF_REF_REGNO (def)] = NULL;
1452 reg_next_def[DF_REF_REGNO (def)] = insn;
1453 }
1454
1455 FOR_EACH_INSN_INFO_USE (use, insn_info)
1456 {
1457 reg_next_use[DF_REF_REGNO (use)] = insn;
1458 if (insn_is_add_or_inc)
1459 reg_next_inc_use[DF_REF_REGNO (use)] = insn;
1460 else
1461 reg_next_inc_use[DF_REF_REGNO (use)] = NULL;
1462 }
1463 }
1464 else if (dump_file)
1465 fprintf (dump_file, "skipping update of deleted insn %d\n",
1466 INSN_UID (insn));
1467 }
1468
1469 /* If we were successful, try again. There may have been several
1470 opportunities that were interleaved. This is rare but
1471 gcc.c-torture/compile/pr17273.c actually exhibits this. */
1472 if (success_in_block)
1473 {
1474 /* In this case, we must clear these vectors since the trick of
1475 testing if the stale insn in the block will not work. */
1476 memset (reg_next_use, 0, max_reg * sizeof (rtx));
1477 memset (reg_next_inc_use, 0, max_reg * sizeof (rtx));
1478 memset (reg_next_def, 0, max_reg * sizeof (rtx));
1479 df_recompute_luids (bb);
1480 merge_in_block (max_reg, bb);
1481 }
1482 }
1483
1484 #endif
1485
1486 /* Discover auto-inc auto-dec instructions. */
1487
1488 namespace {
1489
1490 const pass_data pass_data_inc_dec =
1491 {
1492 RTL_PASS, /* type */
1493 "auto_inc_dec", /* name */
1494 OPTGROUP_NONE, /* optinfo_flags */
1495 TV_AUTO_INC_DEC, /* tv_id */
1496 0, /* properties_required */
1497 0, /* properties_provided */
1498 0, /* properties_destroyed */
1499 0, /* todo_flags_start */
1500 TODO_df_finish, /* todo_flags_finish */
1501 };
1502
1503 class pass_inc_dec : public rtl_opt_pass
1504 {
1505 public:
1506 pass_inc_dec (gcc::context *ctxt)
1507 : rtl_opt_pass (pass_data_inc_dec, ctxt)
1508 {}
1509
1510 /* opt_pass methods: */
1511 virtual bool gate (function *)
1512 {
1513 #ifdef AUTO_INC_DEC
1514 return (optimize > 0 && flag_auto_inc_dec);
1515 #else
1516 return false;
1517 #endif
1518 }
1519
1520
1521 unsigned int execute (function *);
1522
1523 }; // class pass_inc_dec
1524
1525 unsigned int
1526 pass_inc_dec::execute (function *fun ATTRIBUTE_UNUSED)
1527 {
1528 #ifdef AUTO_INC_DEC
1529 basic_block bb;
1530 int max_reg = max_reg_num ();
1531
1532 if (!initialized)
1533 init_decision_table ();
1534
1535 mem_tmp = gen_rtx_MEM (Pmode, NULL_RTX);
1536
1537 df_note_add_problem ();
1538 df_analyze ();
1539
1540 reg_next_use = XCNEWVEC (rtx_insn *, max_reg);
1541 reg_next_inc_use = XCNEWVEC (rtx_insn *, max_reg);
1542 reg_next_def = XCNEWVEC (rtx_insn *, max_reg);
1543 FOR_EACH_BB_FN (bb, fun)
1544 merge_in_block (max_reg, bb);
1545
1546 free (reg_next_use);
1547 free (reg_next_inc_use);
1548 free (reg_next_def);
1549
1550 mem_tmp = NULL;
1551 #endif
1552 return 0;
1553 }
1554
1555 } // anon namespace
1556
1557 rtl_opt_pass *
1558 make_pass_inc_dec (gcc::context *ctxt)
1559 {
1560 return new pass_inc_dec (ctxt);
1561 }