19ccd48edd67be9cc274bf08dd347ae34c26ee47
[gcc.git] / gcc / basic-block.h
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_BASIC_BLOCK_H
22 #define GCC_BASIC_BLOCK_H
23
24 #include "bitmap.h"
25 #include "sbitmap.h"
26 #include "varray.h"
27 #include "partition.h"
28 #include "hard-reg-set.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "function.h"
32
33 /* Head of register set linked list. */
34 typedef bitmap_head regset_head;
35
36 /* A pointer to a regset_head. */
37 typedef bitmap regset;
38
39 /* Allocate a register set with oballoc. */
40 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
41
42 /* Do any cleanup needed on a regset when it is no longer used. */
43 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
44
45 /* Initialize a new regset. */
46 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
47
48 /* Clear a register set by freeing up the linked list. */
49 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
50
51 /* Copy a register set to another register set. */
52 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
53
54 /* Compare two register sets. */
55 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
56
57 /* `and' a register set with a second register set. */
58 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
59
60 /* `and' the complement of a register set with a register set. */
61 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
62
63 /* Inclusive or a register set with a second register set. */
64 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
65
66 /* Exclusive or a register set with a second register set. */
67 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
68
69 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
70 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
72
73 /* Clear a single register in a register set. */
74 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
75
76 /* Set a single register in a register set. */
77 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
78
79 /* Return true if a register is set in a register set. */
80 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
81
82 /* Copy the hard registers in a register set to the hard register set. */
83 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, const_bitmap);
84 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
85 do { \
86 CLEAR_HARD_REG_SET (TO); \
87 reg_set_to_hard_reg_set (&TO, FROM); \
88 } while (0)
89
90 typedef bitmap_iterator reg_set_iterator;
91
92 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93 register number and executing CODE for all registers that are set. */
94 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
95 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
96
97 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98 REGNUM to the register number and executing CODE for all registers that are
99 set in the first regset and not set in the second. */
100 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
102
103 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104 REGNUM to the register number and executing CODE for all registers that are
105 set in both regsets. */
106 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
108
109 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
110 in dataflow more conveniently. */
111
112 extern regset regs_invalidated_by_call_regset;
113
114 /* Type we use to hold basic block counters. Should be at least
115 64bit. Although a counter cannot be negative, we use a signed
116 type, because erroneous negative counts can be generated when the
117 flow graph is manipulated by various optimizations. A signed type
118 makes those easy to detect. */
119 typedef HOST_WIDEST_INT gcov_type;
120
121 /* Control flow edge information. */
122 struct GTY(()) edge_def {
123 /* The two blocks at the ends of the edge. */
124 struct basic_block_def *src;
125 struct basic_block_def *dest;
126
127 /* Instructions queued on the edge. */
128 union edge_def_insns {
129 gimple_seq GTY ((tag ("true"))) g;
130 rtx GTY ((tag ("false"))) r;
131 } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
132
133 /* Auxiliary info specific to a pass. */
134 PTR GTY ((skip (""))) aux;
135
136 /* Location of any goto implicit in the edge and associated BLOCK. */
137 tree goto_block;
138 location_t goto_locus;
139
140 /* The index number corresponding to this edge in the edge vector
141 dest->preds. */
142 unsigned int dest_idx;
143
144 int flags; /* see EDGE_* below */
145 int probability; /* biased by REG_BR_PROB_BASE */
146 gcov_type count; /* Expected number of executions calculated
147 in profile.c */
148 };
149
150 DEF_VEC_P(edge);
151 DEF_VEC_ALLOC_P(edge,gc);
152 DEF_VEC_ALLOC_P(edge,heap);
153
154 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
155 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
156 label, or eh */
157 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
158 like an exception, or sibcall */
159 #define EDGE_EH 8 /* Exception throw */
160 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
161 #define EDGE_DFS_BACK 32 /* A backwards edge */
162 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
163 flow. */
164 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
165 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
166 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
167 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
168 predicate is nonzero. */
169 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
170 predicate is zero. */
171 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
172 valid during SSA-CCP. */
173 #define EDGE_CROSSING 8192 /* Edge crosses between hot
174 and cold sections, when we
175 do partitioning. */
176 #define EDGE_ALL_FLAGS 16383
177
178 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
179
180 /* Counter summary from the last set of coverage counts read by
181 profile.c. */
182 extern const struct gcov_ctr_summary *profile_info;
183
184 /* Declared in cfgloop.h. */
185 struct loop;
186
187 /* Declared in tree-flow.h. */
188 struct edge_prediction;
189 struct rtl_bb_info;
190
191 /* A basic block is a sequence of instructions with only entry and
192 only one exit. If any one of the instructions are executed, they
193 will all be executed, and in sequence from first to last.
194
195 There may be COND_EXEC instructions in the basic block. The
196 COND_EXEC *instructions* will be executed -- but if the condition
197 is false the conditionally executed *expressions* will of course
198 not be executed. We don't consider the conditionally executed
199 expression (which might have side-effects) to be in a separate
200 basic block because the program counter will always be at the same
201 location after the COND_EXEC instruction, regardless of whether the
202 condition is true or not.
203
204 Basic blocks need not start with a label nor end with a jump insn.
205 For example, a previous basic block may just "conditionally fall"
206 into the succeeding basic block, and the last basic block need not
207 end with a jump insn. Block 0 is a descendant of the entry block.
208
209 A basic block beginning with two labels cannot have notes between
210 the labels.
211
212 Data for jump tables are stored in jump_insns that occur in no
213 basic block even though these insns can follow or precede insns in
214 basic blocks. */
215
216 /* Basic block information indexed by block number. */
217 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
218 /* The edges into and out of the block. */
219 VEC(edge,gc) *preds;
220 VEC(edge,gc) *succs;
221
222 /* Auxiliary info specific to a pass. */
223 PTR GTY ((skip (""))) aux;
224
225 /* Innermost loop containing the block. */
226 struct loop *loop_father;
227
228 /* The dominance and postdominance information node. */
229 struct et_node * GTY ((skip (""))) dom[2];
230
231 /* Previous and next blocks in the chain. */
232 struct basic_block_def *prev_bb;
233 struct basic_block_def *next_bb;
234
235 union basic_block_il_dependent {
236 struct gimple_bb_info * GTY ((tag ("0"))) gimple;
237 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
238 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
239
240 /* Expected number of executions: calculated in profile.c. */
241 gcov_type count;
242
243 /* The index of this block. */
244 int index;
245
246 /* The loop depth of this block. */
247 int loop_depth;
248
249 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
250 int frequency;
251
252 /* Various flags. See BB_* below. */
253 int flags;
254 };
255
256 struct GTY(()) rtl_bb_info {
257 /* The first and last insns of the block. */
258 rtx head_;
259 rtx end_;
260
261 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
262 and after the block. */
263 rtx header;
264 rtx footer;
265
266 /* This field is used by the bb-reorder and tracer passes. */
267 int visited;
268 };
269
270 struct GTY(()) gimple_bb_info {
271 /* Sequence of statements in this block. */
272 gimple_seq seq;
273
274 /* PHI nodes for this block. */
275 gimple_seq phi_nodes;
276 };
277
278 DEF_VEC_P(basic_block);
279 DEF_VEC_ALLOC_P(basic_block,gc);
280 DEF_VEC_ALLOC_P(basic_block,heap);
281
282 #define BB_FREQ_MAX 10000
283
284 /* Masks for basic_block.flags.
285
286 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
287 the compilation, so they are never cleared.
288
289 All other flags may be cleared by clear_bb_flags(). It is generally
290 a bad idea to rely on any flags being up-to-date. */
291
292 enum bb_flags
293 {
294 /* Only set on blocks that have just been created by create_bb. */
295 BB_NEW = 1 << 0,
296
297 /* Set by find_unreachable_blocks. Do not rely on this being set in any
298 pass. */
299 BB_REACHABLE = 1 << 1,
300
301 /* Set for blocks in an irreducible loop by loop analysis. */
302 BB_IRREDUCIBLE_LOOP = 1 << 2,
303
304 /* Set on blocks that may actually not be single-entry single-exit block. */
305 BB_SUPERBLOCK = 1 << 3,
306
307 /* Set on basic blocks that the scheduler should not touch. This is used
308 by SMS to prevent other schedulers from messing with the loop schedule. */
309 BB_DISABLE_SCHEDULE = 1 << 4,
310
311 /* Set on blocks that should be put in a hot section. */
312 BB_HOT_PARTITION = 1 << 5,
313
314 /* Set on blocks that should be put in a cold section. */
315 BB_COLD_PARTITION = 1 << 6,
316
317 /* Set on block that was duplicated. */
318 BB_DUPLICATED = 1 << 7,
319
320 /* Set if the label at the top of this block is the target of a non-local goto. */
321 BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
322
323 /* Set on blocks that are in RTL format. */
324 BB_RTL = 1 << 9 ,
325
326 /* Set on blocks that are forwarder blocks.
327 Only used in cfgcleanup.c. */
328 BB_FORWARDER_BLOCK = 1 << 10,
329
330 /* Set on blocks that cannot be threaded through.
331 Only used in cfgcleanup.c. */
332 BB_NONTHREADABLE_BLOCK = 1 << 11
333 };
334
335 /* Dummy flag for convenience in the hot/cold partitioning code. */
336 #define BB_UNPARTITIONED 0
337
338 /* Partitions, to be used when partitioning hot and cold basic blocks into
339 separate sections. */
340 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
341 #define BB_SET_PARTITION(bb, part) do { \
342 basic_block bb_ = (bb); \
343 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
344 | (part)); \
345 } while (0)
346
347 #define BB_COPY_PARTITION(dstbb, srcbb) \
348 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
349
350 /* State of dominance information. */
351
352 enum dom_state
353 {
354 DOM_NONE, /* Not computed at all. */
355 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
356 DOM_OK /* Everything is ok. */
357 };
358
359 /* A structure to group all the per-function control flow graph data.
360 The x_* prefixing is necessary because otherwise references to the
361 fields of this struct are interpreted as the defines for backward
362 source compatibility following the definition of this struct. */
363 struct GTY(()) control_flow_graph {
364 /* Block pointers for the exit and entry of a function.
365 These are always the head and tail of the basic block list. */
366 basic_block x_entry_block_ptr;
367 basic_block x_exit_block_ptr;
368
369 /* Index by basic block number, get basic block struct info. */
370 VEC(basic_block,gc) *x_basic_block_info;
371
372 /* Number of basic blocks in this flow graph. */
373 int x_n_basic_blocks;
374
375 /* Number of edges in this flow graph. */
376 int x_n_edges;
377
378 /* The first free basic block number. */
379 int x_last_basic_block;
380
381 /* Mapping of labels to their associated blocks. At present
382 only used for the gimple CFG. */
383 VEC(basic_block,gc) *x_label_to_block_map;
384
385 enum profile_status {
386 PROFILE_ABSENT,
387 PROFILE_GUESSED,
388 PROFILE_READ
389 } x_profile_status;
390
391 /* Whether the dominators and the postdominators are available. */
392 enum dom_state x_dom_computed[2];
393
394 /* Number of basic blocks in the dominance tree. */
395 unsigned x_n_bbs_in_dom_tree[2];
396
397 /* Maximal number of entities in the single jumptable. Used to estimate
398 final flowgraph size. */
399 int max_jumptable_ents;
400
401 /* UIDs for LABEL_DECLs. */
402 int last_label_uid;
403 };
404
405 /* Defines for accessing the fields of the CFG structure for function FN. */
406 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
407 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
408 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
409 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
410 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
411 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
412 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
413 #define profile_status_for_function(FN) ((FN)->cfg->x_profile_status)
414
415 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
416 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
417 #define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
418 (VEC_replace (basic_block, basic_block_info_for_function(FN), (N), (BB)))
419
420 /* Defines for textual backward source compatibility. */
421 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
422 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
423 #define basic_block_info (cfun->cfg->x_basic_block_info)
424 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
425 #define n_edges (cfun->cfg->x_n_edges)
426 #define last_basic_block (cfun->cfg->x_last_basic_block)
427 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
428 #define profile_status (cfun->cfg->x_profile_status)
429
430 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
431 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
432
433 /* For iterating over basic blocks. */
434 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
435 for (BB = FROM; BB != TO; BB = BB->DIR)
436
437 #define FOR_EACH_BB_FN(BB, FN) \
438 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
439
440 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
441
442 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
443 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
444
445 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
446
447 /* For iterating over insns in basic block. */
448 #define FOR_BB_INSNS(BB, INSN) \
449 for ((INSN) = BB_HEAD (BB); \
450 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
451 (INSN) = NEXT_INSN (INSN))
452
453 /* For iterating over insns in basic block when we might remove the
454 current insn. */
455 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
456 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
457 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
458 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
459
460 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
461 for ((INSN) = BB_END (BB); \
462 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
463 (INSN) = PREV_INSN (INSN))
464
465 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
466 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
467 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
468 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
469
470 /* Cycles through _all_ basic blocks, even the fake ones (entry and
471 exit block). */
472
473 #define FOR_ALL_BB(BB) \
474 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
475
476 #define FOR_ALL_BB_FN(BB, FN) \
477 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
478
479 extern bitmap_obstack reg_obstack;
480
481 \f
482 /* Stuff for recording basic block info. */
483
484 #define BB_HEAD(B) (B)->il.rtl->head_
485 #define BB_END(B) (B)->il.rtl->end_
486
487 /* Special block numbers [markers] for entry and exit. */
488 #define ENTRY_BLOCK (0)
489 #define EXIT_BLOCK (1)
490
491 /* The two blocks that are always in the cfg. */
492 #define NUM_FIXED_BLOCKS (2)
493
494
495 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
496 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
497
498 extern void compute_bb_for_insn (void);
499 extern unsigned int free_bb_for_insn (void);
500 extern void update_bb_for_insn (basic_block);
501
502 extern void insert_insn_on_edge (rtx, edge);
503 basic_block split_edge_and_insert (edge, rtx);
504
505 extern void commit_edge_insertions (void);
506
507 extern void remove_fake_edges (void);
508 extern void remove_fake_exit_edges (void);
509 extern void add_noreturn_fake_exit_edges (void);
510 extern void connect_infinite_loops_to_exit (void);
511 extern edge unchecked_make_edge (basic_block, basic_block, int);
512 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
513 extern edge make_edge (basic_block, basic_block, int);
514 extern edge make_single_succ_edge (basic_block, basic_block, int);
515 extern void remove_edge_raw (edge);
516 extern void redirect_edge_succ (edge, basic_block);
517 extern edge redirect_edge_succ_nodup (edge, basic_block);
518 extern void redirect_edge_pred (edge, basic_block);
519 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
520 extern void clear_bb_flags (void);
521 extern int post_order_compute (int *, bool, bool);
522 extern int inverted_post_order_compute (int *);
523 extern int pre_and_rev_post_order_compute (int *, int *, bool);
524 extern int dfs_enumerate_from (basic_block, int,
525 bool (*)(const_basic_block, const void *),
526 basic_block *, int, const void *);
527 extern void compute_dominance_frontiers (bitmap *);
528 extern bitmap compute_idf (bitmap, bitmap *);
529 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
530 extern void dump_edge_info (FILE *, edge, int);
531 extern void brief_dump_cfg (FILE *);
532 extern void clear_edges (void);
533 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
534 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
535 gcov_type);
536
537 /* Structure to group all of the information to process IF-THEN and
538 IF-THEN-ELSE blocks for the conditional execution support. This
539 needs to be in a public file in case the IFCVT macros call
540 functions passing the ce_if_block data structure. */
541
542 typedef struct ce_if_block
543 {
544 basic_block test_bb; /* First test block. */
545 basic_block then_bb; /* THEN block. */
546 basic_block else_bb; /* ELSE block or NULL. */
547 basic_block join_bb; /* Join THEN/ELSE blocks. */
548 basic_block last_test_bb; /* Last bb to hold && or || tests. */
549 int num_multiple_test_blocks; /* # of && and || basic blocks. */
550 int num_and_and_blocks; /* # of && blocks. */
551 int num_or_or_blocks; /* # of || blocks. */
552 int num_multiple_test_insns; /* # of insns in && and || blocks. */
553 int and_and_p; /* Complex test is &&. */
554 int num_then_insns; /* # of insns in THEN block. */
555 int num_else_insns; /* # of insns in ELSE block. */
556 int pass; /* Pass number. */
557
558 #ifdef IFCVT_EXTRA_FIELDS
559 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
560 #endif
561
562 } ce_if_block_t;
563
564 /* This structure maintains an edge list vector. */
565 struct edge_list
566 {
567 int num_blocks;
568 int num_edges;
569 edge *index_to_edge;
570 };
571
572 /* The base value for branch probability notes and edge probabilities. */
573 #define REG_BR_PROB_BASE 10000
574
575 /* This is the value which indicates no edge is present. */
576 #define EDGE_INDEX_NO_EDGE -1
577
578 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
579 if there is no edge between the 2 basic blocks. */
580 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
581
582 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
583 block which is either the pred or succ end of the indexed edge. */
584 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
585 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
586
587 /* INDEX_EDGE returns a pointer to the edge. */
588 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
589
590 /* Number of edges in the compressed edge list. */
591 #define NUM_EDGES(el) ((el)->num_edges)
592
593 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
594 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
595 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
596
597 /* BB is assumed to contain conditional jump. Return the branch edge. */
598 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
599 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
600
601 /* Return expected execution frequency of the edge E. */
602 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
603 * (e)->probability \
604 + REG_BR_PROB_BASE / 2) \
605 / REG_BR_PROB_BASE)
606
607 /* Return nonzero if edge is critical. */
608 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
609 && EDGE_COUNT ((e)->dest->preds) >= 2)
610
611 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
612 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
613 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
614 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
615
616 /* Returns true if BB has precisely one successor. */
617
618 static inline bool
619 single_succ_p (const_basic_block bb)
620 {
621 return EDGE_COUNT (bb->succs) == 1;
622 }
623
624 /* Returns true if BB has precisely one predecessor. */
625
626 static inline bool
627 single_pred_p (const_basic_block bb)
628 {
629 return EDGE_COUNT (bb->preds) == 1;
630 }
631
632 /* Returns the single successor edge of basic block BB. Aborts if
633 BB does not have exactly one successor. */
634
635 static inline edge
636 single_succ_edge (const_basic_block bb)
637 {
638 gcc_assert (single_succ_p (bb));
639 return EDGE_SUCC (bb, 0);
640 }
641
642 /* Returns the single predecessor edge of basic block BB. Aborts
643 if BB does not have exactly one predecessor. */
644
645 static inline edge
646 single_pred_edge (const_basic_block bb)
647 {
648 gcc_assert (single_pred_p (bb));
649 return EDGE_PRED (bb, 0);
650 }
651
652 /* Returns the single successor block of basic block BB. Aborts
653 if BB does not have exactly one successor. */
654
655 static inline basic_block
656 single_succ (const_basic_block bb)
657 {
658 return single_succ_edge (bb)->dest;
659 }
660
661 /* Returns the single predecessor block of basic block BB. Aborts
662 if BB does not have exactly one predecessor.*/
663
664 static inline basic_block
665 single_pred (const_basic_block bb)
666 {
667 return single_pred_edge (bb)->src;
668 }
669
670 /* Iterator object for edges. */
671
672 typedef struct {
673 unsigned index;
674 VEC(edge,gc) **container;
675 } edge_iterator;
676
677 static inline VEC(edge,gc) *
678 ei_container (edge_iterator i)
679 {
680 gcc_assert (i.container);
681 return *i.container;
682 }
683
684 #define ei_start(iter) ei_start_1 (&(iter))
685 #define ei_last(iter) ei_last_1 (&(iter))
686
687 /* Return an iterator pointing to the start of an edge vector. */
688 static inline edge_iterator
689 ei_start_1 (VEC(edge,gc) **ev)
690 {
691 edge_iterator i;
692
693 i.index = 0;
694 i.container = ev;
695
696 return i;
697 }
698
699 /* Return an iterator pointing to the last element of an edge
700 vector. */
701 static inline edge_iterator
702 ei_last_1 (VEC(edge,gc) **ev)
703 {
704 edge_iterator i;
705
706 i.index = EDGE_COUNT (*ev) - 1;
707 i.container = ev;
708
709 return i;
710 }
711
712 /* Is the iterator `i' at the end of the sequence? */
713 static inline bool
714 ei_end_p (edge_iterator i)
715 {
716 return (i.index == EDGE_COUNT (ei_container (i)));
717 }
718
719 /* Is the iterator `i' at one position before the end of the
720 sequence? */
721 static inline bool
722 ei_one_before_end_p (edge_iterator i)
723 {
724 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
725 }
726
727 /* Advance the iterator to the next element. */
728 static inline void
729 ei_next (edge_iterator *i)
730 {
731 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
732 i->index++;
733 }
734
735 /* Move the iterator to the previous element. */
736 static inline void
737 ei_prev (edge_iterator *i)
738 {
739 gcc_assert (i->index > 0);
740 i->index--;
741 }
742
743 /* Return the edge pointed to by the iterator `i'. */
744 static inline edge
745 ei_edge (edge_iterator i)
746 {
747 return EDGE_I (ei_container (i), i.index);
748 }
749
750 /* Return an edge pointed to by the iterator. Do it safely so that
751 NULL is returned when the iterator is pointing at the end of the
752 sequence. */
753 static inline edge
754 ei_safe_edge (edge_iterator i)
755 {
756 return !ei_end_p (i) ? ei_edge (i) : NULL;
757 }
758
759 /* Return 1 if we should continue to iterate. Return 0 otherwise.
760 *Edge P is set to the next edge if we are to continue to iterate
761 and NULL otherwise. */
762
763 static inline bool
764 ei_cond (edge_iterator ei, edge *p)
765 {
766 if (!ei_end_p (ei))
767 {
768 *p = ei_edge (ei);
769 return 1;
770 }
771 else
772 {
773 *p = NULL;
774 return 0;
775 }
776 }
777
778 /* This macro serves as a convenient way to iterate each edge in a
779 vector of predecessor or successor edges. It must not be used when
780 an element might be removed during the traversal, otherwise
781 elements will be missed. Instead, use a for-loop like that shown
782 in the following pseudo-code:
783
784 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
785 {
786 IF (e != taken_edge)
787 remove_edge (e);
788 ELSE
789 ei_next (&ei);
790 }
791 */
792
793 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
794 for ((ITER) = ei_start ((EDGE_VEC)); \
795 ei_cond ((ITER), &(EDGE)); \
796 ei_next (&(ITER)))
797
798 struct edge_list * create_edge_list (void);
799 void free_edge_list (struct edge_list *);
800 void print_edge_list (FILE *, struct edge_list *);
801 void verify_edge_list (FILE *, struct edge_list *);
802 int find_edge_index (struct edge_list *, basic_block, basic_block);
803 edge find_edge (basic_block, basic_block);
804
805 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
806 except for edge forwarding */
807 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
808 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
809 to care REG_DEAD notes. */
810 #define CLEANUP_THREADING 8 /* Do jump threading. */
811 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
812 insns. */
813 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
814
815 /* In lcm.c */
816 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
817 sbitmap *, sbitmap *, sbitmap **,
818 sbitmap **);
819 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
820 sbitmap *, sbitmap *,
821 sbitmap *, sbitmap **,
822 sbitmap **);
823 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
824
825 /* In predict.c */
826 extern bool maybe_hot_bb_p (const_basic_block);
827 extern bool maybe_hot_edge_p (edge);
828 extern bool probably_never_executed_bb_p (const_basic_block);
829 extern bool optimize_bb_for_size_p (const_basic_block);
830 extern bool optimize_bb_for_speed_p (const_basic_block);
831 extern bool optimize_edge_for_size_p (edge);
832 extern bool optimize_edge_for_speed_p (edge);
833 extern bool optimize_function_for_size_p (struct function *);
834 extern bool optimize_function_for_speed_p (struct function *);
835 extern bool optimize_loop_for_size_p (struct loop *);
836 extern bool optimize_loop_for_speed_p (struct loop *);
837 extern bool optimize_loop_nest_for_size_p (struct loop *);
838 extern bool optimize_loop_nest_for_speed_p (struct loop *);
839 extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
840 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
841 extern void gimple_predict_edge (edge, enum br_predictor, int);
842 extern void rtl_predict_edge (edge, enum br_predictor, int);
843 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
844 extern void guess_outgoing_edge_probabilities (basic_block);
845 extern void remove_predictions_associated_with_edge (edge);
846 extern bool edge_probability_reliable_p (const_edge);
847 extern bool br_prob_note_reliable_p (const_rtx);
848 extern bool predictable_edge_p (edge);
849
850 /* In cfg.c */
851 extern void dump_regset (regset, FILE *);
852 extern void debug_regset (regset);
853 extern void init_flow (struct function *);
854 extern void debug_bb (basic_block);
855 extern basic_block debug_bb_n (int);
856 extern void dump_regset (regset, FILE *);
857 extern void debug_regset (regset);
858 extern void expunge_block (basic_block);
859 extern void link_block (basic_block, basic_block);
860 extern void unlink_block (basic_block);
861 extern void compact_blocks (void);
862 extern basic_block alloc_block (void);
863 extern void alloc_aux_for_block (basic_block, int);
864 extern void alloc_aux_for_blocks (int);
865 extern void clear_aux_for_blocks (void);
866 extern void free_aux_for_blocks (void);
867 extern void alloc_aux_for_edge (edge, int);
868 extern void alloc_aux_for_edges (int);
869 extern void clear_aux_for_edges (void);
870 extern void free_aux_for_edges (void);
871
872 /* In cfganal.c */
873 extern void find_unreachable_blocks (void);
874 extern bool forwarder_block_p (const_basic_block);
875 extern bool can_fallthru (basic_block, basic_block);
876 extern bool could_fall_through (basic_block, basic_block);
877 extern void flow_nodes_print (const char *, const_sbitmap, FILE *);
878 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
879
880 /* In cfgrtl.c */
881 extern basic_block force_nonfallthru (edge);
882 extern rtx block_label (basic_block);
883 extern bool purge_all_dead_edges (void);
884 extern bool purge_dead_edges (basic_block);
885
886 /* In cfgbuild.c. */
887 extern void find_many_sub_basic_blocks (sbitmap);
888 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
889
890 /* In cfgcleanup.c. */
891 extern bool cleanup_cfg (int);
892 extern bool delete_unreachable_blocks (void);
893
894 extern bool mark_dfs_back_edges (void);
895 extern void set_edge_can_fallthru_flag (void);
896 extern void update_br_prob_note (basic_block);
897 extern void fixup_abnormal_edges (void);
898 extern bool inside_basic_block_p (const_rtx);
899 extern bool control_flow_insn_p (const_rtx);
900 extern rtx get_last_bb_insn (basic_block);
901
902 /* In bb-reorder.c */
903 extern void reorder_basic_blocks (void);
904
905 /* In dominance.c */
906
907 enum cdi_direction
908 {
909 CDI_DOMINATORS = 1,
910 CDI_POST_DOMINATORS = 2
911 };
912
913 extern enum dom_state dom_info_state (enum cdi_direction);
914 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
915 extern bool dom_info_available_p (enum cdi_direction);
916 extern void calculate_dominance_info (enum cdi_direction);
917 extern void free_dominance_info (enum cdi_direction);
918 extern basic_block nearest_common_dominator (enum cdi_direction,
919 basic_block, basic_block);
920 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
921 bitmap);
922 extern void set_immediate_dominator (enum cdi_direction, basic_block,
923 basic_block);
924 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
925 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
926 extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
927 extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
928 basic_block *,
929 unsigned);
930 extern VEC (basic_block, heap) *get_all_dominated_blocks (enum cdi_direction,
931 basic_block);
932 extern void add_to_dominance_info (enum cdi_direction, basic_block);
933 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
934 basic_block recompute_dominator (enum cdi_direction, basic_block);
935 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
936 basic_block);
937 extern void iterate_fix_dominators (enum cdi_direction,
938 VEC (basic_block, heap) *, bool);
939 extern void verify_dominators (enum cdi_direction);
940 extern basic_block first_dom_son (enum cdi_direction, basic_block);
941 extern basic_block next_dom_son (enum cdi_direction, basic_block);
942 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
943 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
944
945 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
946 extern void break_superblocks (void);
947 extern void relink_block_chain (bool);
948 extern void check_bb_profile (basic_block, FILE *);
949 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
950 extern void init_rtl_bb_info (basic_block);
951
952 extern void initialize_original_copy_tables (void);
953 extern void free_original_copy_tables (void);
954 extern void set_bb_original (basic_block, basic_block);
955 extern basic_block get_bb_original (basic_block);
956 extern void set_bb_copy (basic_block, basic_block);
957 extern basic_block get_bb_copy (basic_block);
958 void set_loop_copy (struct loop *, struct loop *);
959 struct loop *get_loop_copy (struct loop *);
960
961
962 extern rtx insert_insn_end_bb_new (rtx, basic_block);
963
964 #include "cfghooks.h"
965
966 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
967 static inline bool
968 bb_has_eh_pred (basic_block bb)
969 {
970 edge e;
971 edge_iterator ei;
972
973 FOR_EACH_EDGE (e, ei, bb->preds)
974 {
975 if (e->flags & EDGE_EH)
976 return true;
977 }
978 return false;
979 }
980
981 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
982 static inline bool
983 bb_has_abnormal_pred (basic_block bb)
984 {
985 edge e;
986 edge_iterator ei;
987
988 FOR_EACH_EDGE (e, ei, bb->preds)
989 {
990 if (e->flags & EDGE_ABNORMAL)
991 return true;
992 }
993 return false;
994 }
995
996 /* In cfgloopmanip.c. */
997 extern edge mfb_kj_edge;
998 extern bool mfb_keep_just (edge);
999
1000 /* In cfgexpand.c. */
1001 extern void rtl_profile_for_bb (basic_block);
1002 extern void rtl_profile_for_edge (edge);
1003 extern void default_rtl_profile (void);
1004
1005 #endif /* GCC_BASIC_BLOCK_H */