rs6000.md (fseldfsf4): Add TARGET_SINGLE_FLOAT condition.
[gcc.git] / gcc / basic-block.h
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_BASIC_BLOCK_H
22 #define GCC_BASIC_BLOCK_H
23
24 #include "bitmap.h"
25 #include "sbitmap.h"
26 #include "varray.h"
27 #include "partition.h"
28 #include "hard-reg-set.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "function.h"
32
33 /* Head of register set linked list. */
34 typedef bitmap_head regset_head;
35
36 /* A pointer to a regset_head. */
37 typedef bitmap regset;
38
39 /* Allocate a register set with oballoc. */
40 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
41
42 /* Do any cleanup needed on a regset when it is no longer used. */
43 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
44
45 /* Initialize a new regset. */
46 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
47
48 /* Clear a register set by freeing up the linked list. */
49 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
50
51 /* Copy a register set to another register set. */
52 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
53
54 /* Compare two register sets. */
55 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
56
57 /* `and' a register set with a second register set. */
58 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
59
60 /* `and' the complement of a register set with a register set. */
61 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
62
63 /* Inclusive or a register set with a second register set. */
64 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
65
66 /* Exclusive or a register set with a second register set. */
67 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
68
69 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
70 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
72
73 /* Clear a single register in a register set. */
74 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
75
76 /* Set a single register in a register set. */
77 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
78
79 /* Return true if a register is set in a register set. */
80 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
81
82 /* Copy the hard registers in a register set to the hard register set. */
83 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, const_bitmap);
84 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
85 do { \
86 CLEAR_HARD_REG_SET (TO); \
87 reg_set_to_hard_reg_set (&TO, FROM); \
88 } while (0)
89
90 typedef bitmap_iterator reg_set_iterator;
91
92 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93 register number and executing CODE for all registers that are set. */
94 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
95 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
96
97 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98 REGNUM to the register number and executing CODE for all registers that are
99 set in the first regset and not set in the second. */
100 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
102
103 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104 REGNUM to the register number and executing CODE for all registers that are
105 set in both regsets. */
106 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
108
109 /* Type we use to hold basic block counters. Should be at least
110 64bit. Although a counter cannot be negative, we use a signed
111 type, because erroneous negative counts can be generated when the
112 flow graph is manipulated by various optimizations. A signed type
113 makes those easy to detect. */
114 typedef HOST_WIDEST_INT gcov_type;
115
116 /* Control flow edge information. */
117 struct edge_def GTY(())
118 {
119 /* The two blocks at the ends of the edge. */
120 struct basic_block_def *src;
121 struct basic_block_def *dest;
122
123 /* Instructions queued on the edge. */
124 union edge_def_insns {
125 gimple_seq GTY ((tag ("true"))) g;
126 rtx GTY ((tag ("false"))) r;
127 } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
128
129 /* Auxiliary info specific to a pass. */
130 PTR GTY ((skip (""))) aux;
131
132 /* Location of any goto implicit in the edge, during tree-ssa. */
133 location_t goto_locus;
134
135 /* The index number corresponding to this edge in the edge vector
136 dest->preds. */
137 unsigned int dest_idx;
138
139 int flags; /* see EDGE_* below */
140 int probability; /* biased by REG_BR_PROB_BASE */
141 gcov_type count; /* Expected number of executions calculated
142 in profile.c */
143 };
144
145 typedef struct edge_def *edge;
146 typedef const struct edge_def *const_edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
149 DEF_VEC_ALLOC_P(edge,heap);
150
151 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
152 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
153 label, or eh */
154 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
155 like an exception, or sibcall */
156 #define EDGE_EH 8 /* Exception throw */
157 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
158 #define EDGE_DFS_BACK 32 /* A backwards edge */
159 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
160 flow. */
161 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
162 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
163 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
164 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
165 predicate is nonzero. */
166 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
167 predicate is zero. */
168 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
169 valid during SSA-CCP. */
170 #define EDGE_CROSSING 8192 /* Edge crosses between hot
171 and cold sections, when we
172 do partitioning. */
173 #define EDGE_ALL_FLAGS 16383
174
175 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
176
177 /* Counter summary from the last set of coverage counts read by
178 profile.c. */
179 extern const struct gcov_ctr_summary *profile_info;
180
181 /* Declared in cfgloop.h. */
182 struct loop;
183
184 /* Declared in tree-flow.h. */
185 struct edge_prediction;
186 struct rtl_bb_info;
187
188 /* A basic block is a sequence of instructions with only entry and
189 only one exit. If any one of the instructions are executed, they
190 will all be executed, and in sequence from first to last.
191
192 There may be COND_EXEC instructions in the basic block. The
193 COND_EXEC *instructions* will be executed -- but if the condition
194 is false the conditionally executed *expressions* will of course
195 not be executed. We don't consider the conditionally executed
196 expression (which might have side-effects) to be in a separate
197 basic block because the program counter will always be at the same
198 location after the COND_EXEC instruction, regardless of whether the
199 condition is true or not.
200
201 Basic blocks need not start with a label nor end with a jump insn.
202 For example, a previous basic block may just "conditionally fall"
203 into the succeeding basic block, and the last basic block need not
204 end with a jump insn. Block 0 is a descendant of the entry block.
205
206 A basic block beginning with two labels cannot have notes between
207 the labels.
208
209 Data for jump tables are stored in jump_insns that occur in no
210 basic block even though these insns can follow or precede insns in
211 basic blocks. */
212
213 /* Basic block information indexed by block number. */
214 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
215 {
216 /* The edges into and out of the block. */
217 VEC(edge,gc) *preds;
218 VEC(edge,gc) *succs;
219
220 /* Auxiliary info specific to a pass. */
221 PTR GTY ((skip (""))) aux;
222
223 /* Innermost loop containing the block. */
224 struct loop *loop_father;
225
226 /* The dominance and postdominance information node. */
227 struct et_node * GTY ((skip (""))) dom[2];
228
229 /* Previous and next blocks in the chain. */
230 struct basic_block_def *prev_bb;
231 struct basic_block_def *next_bb;
232
233 union basic_block_il_dependent {
234 struct gimple_bb_info * GTY ((tag ("0"))) gimple;
235 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
236 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
237
238 /* Expected number of executions: calculated in profile.c. */
239 gcov_type count;
240
241 /* The index of this block. */
242 int index;
243
244 /* The loop depth of this block. */
245 int loop_depth;
246
247 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
248 int frequency;
249
250 /* Various flags. See BB_* below. */
251 int flags;
252 };
253
254 struct rtl_bb_info GTY(())
255 {
256 /* The first and last insns of the block. */
257 rtx head_;
258 rtx end_;
259
260 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
261 and after the block. */
262 rtx header;
263 rtx footer;
264
265 /* This field is used by the bb-reorder and tracer passes. */
266 int visited;
267 };
268
269 struct gimple_bb_info GTY(())
270 {
271 /* Sequence of statements in this block. */
272 gimple_seq seq;
273
274 /* PHI nodes for this block. */
275 gimple_seq phi_nodes;
276 };
277
278 typedef struct basic_block_def *basic_block;
279 typedef const struct basic_block_def *const_basic_block;
280
281 DEF_VEC_P(basic_block);
282 DEF_VEC_ALLOC_P(basic_block,gc);
283 DEF_VEC_ALLOC_P(basic_block,heap);
284
285 #define BB_FREQ_MAX 10000
286
287 /* Masks for basic_block.flags.
288
289 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
290 the compilation, so they are never cleared.
291
292 All other flags may be cleared by clear_bb_flags(). It is generally
293 a bad idea to rely on any flags being up-to-date. */
294
295 enum bb_flags
296 {
297 /* Only set on blocks that have just been created by create_bb. */
298 BB_NEW = 1 << 0,
299
300 /* Set by find_unreachable_blocks. Do not rely on this being set in any
301 pass. */
302 BB_REACHABLE = 1 << 1,
303
304 /* Set for blocks in an irreducible loop by loop analysis. */
305 BB_IRREDUCIBLE_LOOP = 1 << 2,
306
307 /* Set on blocks that may actually not be single-entry single-exit block. */
308 BB_SUPERBLOCK = 1 << 3,
309
310 /* Set on basic blocks that the scheduler should not touch. This is used
311 by SMS to prevent other schedulers from messing with the loop schedule. */
312 BB_DISABLE_SCHEDULE = 1 << 4,
313
314 /* Set on blocks that should be put in a hot section. */
315 BB_HOT_PARTITION = 1 << 5,
316
317 /* Set on blocks that should be put in a cold section. */
318 BB_COLD_PARTITION = 1 << 6,
319
320 /* Set on block that was duplicated. */
321 BB_DUPLICATED = 1 << 7,
322
323 /* Set if the label at the top of this block is the target of a non-local goto. */
324 BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
325
326 /* Set on blocks that are in RTL format. */
327 BB_RTL = 1 << 9 ,
328
329 /* Set on blocks that are forwarder blocks.
330 Only used in cfgcleanup.c. */
331 BB_FORWARDER_BLOCK = 1 << 10,
332
333 /* Set on blocks that cannot be threaded through.
334 Only used in cfgcleanup.c. */
335 BB_NONTHREADABLE_BLOCK = 1 << 11
336 };
337
338 /* Dummy flag for convenience in the hot/cold partitioning code. */
339 #define BB_UNPARTITIONED 0
340
341 /* Partitions, to be used when partitioning hot and cold basic blocks into
342 separate sections. */
343 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
344 #define BB_SET_PARTITION(bb, part) do { \
345 basic_block bb_ = (bb); \
346 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
347 | (part)); \
348 } while (0)
349
350 #define BB_COPY_PARTITION(dstbb, srcbb) \
351 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
352
353 /* State of dominance information. */
354
355 enum dom_state
356 {
357 DOM_NONE, /* Not computed at all. */
358 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
359 DOM_OK /* Everything is ok. */
360 };
361
362 /* A structure to group all the per-function control flow graph data.
363 The x_* prefixing is necessary because otherwise references to the
364 fields of this struct are interpreted as the defines for backward
365 source compatibility following the definition of this struct. */
366 struct control_flow_graph GTY(())
367 {
368 /* Block pointers for the exit and entry of a function.
369 These are always the head and tail of the basic block list. */
370 basic_block x_entry_block_ptr;
371 basic_block x_exit_block_ptr;
372
373 /* Index by basic block number, get basic block struct info. */
374 VEC(basic_block,gc) *x_basic_block_info;
375
376 /* Number of basic blocks in this flow graph. */
377 int x_n_basic_blocks;
378
379 /* Number of edges in this flow graph. */
380 int x_n_edges;
381
382 /* The first free basic block number. */
383 int x_last_basic_block;
384
385 /* Mapping of labels to their associated blocks. At present
386 only used for the gimple CFG. */
387 VEC(basic_block,gc) *x_label_to_block_map;
388
389 enum profile_status {
390 PROFILE_ABSENT,
391 PROFILE_GUESSED,
392 PROFILE_READ
393 } x_profile_status;
394
395 /* Whether the dominators and the postdominators are available. */
396 enum dom_state x_dom_computed[2];
397
398 /* Number of basic blocks in the dominance tree. */
399 unsigned x_n_bbs_in_dom_tree[2];
400
401 /* Maximal number of entities in the single jumptable. Used to estimate
402 final flowgraph size. */
403 int max_jumptable_ents;
404
405 /* UIDs for LABEL_DECLs. */
406 int last_label_uid;
407 };
408
409 /* Defines for accessing the fields of the CFG structure for function FN. */
410 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
411 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
412 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
413 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
414 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
415 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
416 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
417 #define profile_status_for_function(FN) ((FN)->cfg->x_profile_status)
418
419 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
420 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
421 #define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
422 (VEC_replace (basic_block, basic_block_info_for_function(FN), (N), (BB)))
423
424 /* Defines for textual backward source compatibility. */
425 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
426 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
427 #define basic_block_info (cfun->cfg->x_basic_block_info)
428 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
429 #define n_edges (cfun->cfg->x_n_edges)
430 #define last_basic_block (cfun->cfg->x_last_basic_block)
431 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
432 #define profile_status (cfun->cfg->x_profile_status)
433
434 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
435 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
436
437 /* For iterating over basic blocks. */
438 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
439 for (BB = FROM; BB != TO; BB = BB->DIR)
440
441 #define FOR_EACH_BB_FN(BB, FN) \
442 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
443
444 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
445
446 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
447 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
448
449 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
450
451 /* For iterating over insns in basic block. */
452 #define FOR_BB_INSNS(BB, INSN) \
453 for ((INSN) = BB_HEAD (BB); \
454 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
455 (INSN) = NEXT_INSN (INSN))
456
457 /* For iterating over insns in basic block when we might remove the
458 current insn. */
459 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
460 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
461 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
462 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
463
464 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
465 for ((INSN) = BB_END (BB); \
466 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
467 (INSN) = PREV_INSN (INSN))
468
469 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
470 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
471 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
472 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
473
474 /* Cycles through _all_ basic blocks, even the fake ones (entry and
475 exit block). */
476
477 #define FOR_ALL_BB(BB) \
478 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
479
480 #define FOR_ALL_BB_FN(BB, FN) \
481 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
482
483 extern bitmap_obstack reg_obstack;
484
485 \f
486 /* Stuff for recording basic block info. */
487
488 #define BB_HEAD(B) (B)->il.rtl->head_
489 #define BB_END(B) (B)->il.rtl->end_
490
491 /* Special block numbers [markers] for entry and exit. */
492 #define ENTRY_BLOCK (0)
493 #define EXIT_BLOCK (1)
494
495 /* The two blocks that are always in the cfg. */
496 #define NUM_FIXED_BLOCKS (2)
497
498
499 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
500 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
501
502 extern void compute_bb_for_insn (void);
503 extern unsigned int free_bb_for_insn (void);
504 extern void update_bb_for_insn (basic_block);
505
506 extern void insert_insn_on_edge (rtx, edge);
507 basic_block split_edge_and_insert (edge, rtx);
508
509 extern void commit_edge_insertions (void);
510
511 extern void remove_fake_edges (void);
512 extern void remove_fake_exit_edges (void);
513 extern void add_noreturn_fake_exit_edges (void);
514 extern void connect_infinite_loops_to_exit (void);
515 extern edge unchecked_make_edge (basic_block, basic_block, int);
516 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
517 extern edge make_edge (basic_block, basic_block, int);
518 extern edge make_single_succ_edge (basic_block, basic_block, int);
519 extern void remove_edge_raw (edge);
520 extern void redirect_edge_succ (edge, basic_block);
521 extern edge redirect_edge_succ_nodup (edge, basic_block);
522 extern void redirect_edge_pred (edge, basic_block);
523 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
524 extern void clear_bb_flags (void);
525 extern int post_order_compute (int *, bool, bool);
526 extern int inverted_post_order_compute (int *);
527 extern int pre_and_rev_post_order_compute (int *, int *, bool);
528 extern int dfs_enumerate_from (basic_block, int,
529 bool (*)(const_basic_block, const void *),
530 basic_block *, int, const void *);
531 extern void compute_dominance_frontiers (bitmap *);
532 extern bitmap compute_idf (bitmap, bitmap *);
533 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
534 extern void dump_edge_info (FILE *, edge, int);
535 extern void brief_dump_cfg (FILE *);
536 extern void clear_edges (void);
537 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
538 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
539 gcov_type);
540
541 /* Structure to group all of the information to process IF-THEN and
542 IF-THEN-ELSE blocks for the conditional execution support. This
543 needs to be in a public file in case the IFCVT macros call
544 functions passing the ce_if_block data structure. */
545
546 typedef struct ce_if_block
547 {
548 basic_block test_bb; /* First test block. */
549 basic_block then_bb; /* THEN block. */
550 basic_block else_bb; /* ELSE block or NULL. */
551 basic_block join_bb; /* Join THEN/ELSE blocks. */
552 basic_block last_test_bb; /* Last bb to hold && or || tests. */
553 int num_multiple_test_blocks; /* # of && and || basic blocks. */
554 int num_and_and_blocks; /* # of && blocks. */
555 int num_or_or_blocks; /* # of || blocks. */
556 int num_multiple_test_insns; /* # of insns in && and || blocks. */
557 int and_and_p; /* Complex test is &&. */
558 int num_then_insns; /* # of insns in THEN block. */
559 int num_else_insns; /* # of insns in ELSE block. */
560 int pass; /* Pass number. */
561
562 #ifdef IFCVT_EXTRA_FIELDS
563 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
564 #endif
565
566 } ce_if_block_t;
567
568 /* This structure maintains an edge list vector. */
569 struct edge_list
570 {
571 int num_blocks;
572 int num_edges;
573 edge *index_to_edge;
574 };
575
576 /* The base value for branch probability notes and edge probabilities. */
577 #define REG_BR_PROB_BASE 10000
578
579 /* This is the value which indicates no edge is present. */
580 #define EDGE_INDEX_NO_EDGE -1
581
582 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
583 if there is no edge between the 2 basic blocks. */
584 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
585
586 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
587 block which is either the pred or succ end of the indexed edge. */
588 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
589 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
590
591 /* INDEX_EDGE returns a pointer to the edge. */
592 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
593
594 /* Number of edges in the compressed edge list. */
595 #define NUM_EDGES(el) ((el)->num_edges)
596
597 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
598 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
599 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
600
601 /* BB is assumed to contain conditional jump. Return the branch edge. */
602 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
603 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
604
605 /* Return expected execution frequency of the edge E. */
606 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
607 * (e)->probability \
608 + REG_BR_PROB_BASE / 2) \
609 / REG_BR_PROB_BASE)
610
611 /* Return nonzero if edge is critical. */
612 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
613 && EDGE_COUNT ((e)->dest->preds) >= 2)
614
615 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
616 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
617 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
618 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
619
620 /* Returns true if BB has precisely one successor. */
621
622 static inline bool
623 single_succ_p (const_basic_block bb)
624 {
625 return EDGE_COUNT (bb->succs) == 1;
626 }
627
628 /* Returns true if BB has precisely one predecessor. */
629
630 static inline bool
631 single_pred_p (const_basic_block bb)
632 {
633 return EDGE_COUNT (bb->preds) == 1;
634 }
635
636 /* Returns the single successor edge of basic block BB. Aborts if
637 BB does not have exactly one successor. */
638
639 static inline edge
640 single_succ_edge (const_basic_block bb)
641 {
642 gcc_assert (single_succ_p (bb));
643 return EDGE_SUCC (bb, 0);
644 }
645
646 /* Returns the single predecessor edge of basic block BB. Aborts
647 if BB does not have exactly one predecessor. */
648
649 static inline edge
650 single_pred_edge (const_basic_block bb)
651 {
652 gcc_assert (single_pred_p (bb));
653 return EDGE_PRED (bb, 0);
654 }
655
656 /* Returns the single successor block of basic block BB. Aborts
657 if BB does not have exactly one successor. */
658
659 static inline basic_block
660 single_succ (const_basic_block bb)
661 {
662 return single_succ_edge (bb)->dest;
663 }
664
665 /* Returns the single predecessor block of basic block BB. Aborts
666 if BB does not have exactly one predecessor.*/
667
668 static inline basic_block
669 single_pred (const_basic_block bb)
670 {
671 return single_pred_edge (bb)->src;
672 }
673
674 /* Iterator object for edges. */
675
676 typedef struct {
677 unsigned index;
678 VEC(edge,gc) **container;
679 } edge_iterator;
680
681 static inline VEC(edge,gc) *
682 ei_container (edge_iterator i)
683 {
684 gcc_assert (i.container);
685 return *i.container;
686 }
687
688 #define ei_start(iter) ei_start_1 (&(iter))
689 #define ei_last(iter) ei_last_1 (&(iter))
690
691 /* Return an iterator pointing to the start of an edge vector. */
692 static inline edge_iterator
693 ei_start_1 (VEC(edge,gc) **ev)
694 {
695 edge_iterator i;
696
697 i.index = 0;
698 i.container = ev;
699
700 return i;
701 }
702
703 /* Return an iterator pointing to the last element of an edge
704 vector. */
705 static inline edge_iterator
706 ei_last_1 (VEC(edge,gc) **ev)
707 {
708 edge_iterator i;
709
710 i.index = EDGE_COUNT (*ev) - 1;
711 i.container = ev;
712
713 return i;
714 }
715
716 /* Is the iterator `i' at the end of the sequence? */
717 static inline bool
718 ei_end_p (edge_iterator i)
719 {
720 return (i.index == EDGE_COUNT (ei_container (i)));
721 }
722
723 /* Is the iterator `i' at one position before the end of the
724 sequence? */
725 static inline bool
726 ei_one_before_end_p (edge_iterator i)
727 {
728 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
729 }
730
731 /* Advance the iterator to the next element. */
732 static inline void
733 ei_next (edge_iterator *i)
734 {
735 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
736 i->index++;
737 }
738
739 /* Move the iterator to the previous element. */
740 static inline void
741 ei_prev (edge_iterator *i)
742 {
743 gcc_assert (i->index > 0);
744 i->index--;
745 }
746
747 /* Return the edge pointed to by the iterator `i'. */
748 static inline edge
749 ei_edge (edge_iterator i)
750 {
751 return EDGE_I (ei_container (i), i.index);
752 }
753
754 /* Return an edge pointed to by the iterator. Do it safely so that
755 NULL is returned when the iterator is pointing at the end of the
756 sequence. */
757 static inline edge
758 ei_safe_edge (edge_iterator i)
759 {
760 return !ei_end_p (i) ? ei_edge (i) : NULL;
761 }
762
763 /* Return 1 if we should continue to iterate. Return 0 otherwise.
764 *Edge P is set to the next edge if we are to continue to iterate
765 and NULL otherwise. */
766
767 static inline bool
768 ei_cond (edge_iterator ei, edge *p)
769 {
770 if (!ei_end_p (ei))
771 {
772 *p = ei_edge (ei);
773 return 1;
774 }
775 else
776 {
777 *p = NULL;
778 return 0;
779 }
780 }
781
782 /* This macro serves as a convenient way to iterate each edge in a
783 vector of predecessor or successor edges. It must not be used when
784 an element might be removed during the traversal, otherwise
785 elements will be missed. Instead, use a for-loop like that shown
786 in the following pseudo-code:
787
788 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
789 {
790 IF (e != taken_edge)
791 remove_edge (e);
792 ELSE
793 ei_next (&ei);
794 }
795 */
796
797 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
798 for ((ITER) = ei_start ((EDGE_VEC)); \
799 ei_cond ((ITER), &(EDGE)); \
800 ei_next (&(ITER)))
801
802 struct edge_list * create_edge_list (void);
803 void free_edge_list (struct edge_list *);
804 void print_edge_list (FILE *, struct edge_list *);
805 void verify_edge_list (FILE *, struct edge_list *);
806 int find_edge_index (struct edge_list *, basic_block, basic_block);
807 edge find_edge (basic_block, basic_block);
808
809 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
810 except for edge forwarding */
811 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
812 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
813 to care REG_DEAD notes. */
814 #define CLEANUP_THREADING 8 /* Do jump threading. */
815 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
816 insns. */
817 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
818
819 /* In lcm.c */
820 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
821 sbitmap *, sbitmap *, sbitmap **,
822 sbitmap **);
823 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
824 sbitmap *, sbitmap *,
825 sbitmap *, sbitmap **,
826 sbitmap **);
827 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
828
829 /* In predict.c */
830 extern bool maybe_hot_bb_p (const_basic_block);
831 extern bool maybe_hot_edge_p (edge);
832 extern bool probably_never_executed_bb_p (const_basic_block);
833 extern bool optimize_bb_for_size_p (const_basic_block);
834 extern bool optimize_bb_for_speed_p (const_basic_block);
835 extern bool optimize_edge_for_size_p (edge);
836 extern bool optimize_edge_for_speed_p (edge);
837 extern bool optimize_function_for_size_p (struct function *);
838 extern bool optimize_function_for_speed_p (struct function *);
839 extern bool optimize_loop_for_size_p (struct loop *);
840 extern bool optimize_loop_for_speed_p (struct loop *);
841 extern bool optimize_loop_nest_for_size_p (struct loop *);
842 extern bool optimize_loop_nest_for_speed_p (struct loop *);
843 extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
844 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
845 extern void gimple_predict_edge (edge, enum br_predictor, int);
846 extern void rtl_predict_edge (edge, enum br_predictor, int);
847 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
848 extern void guess_outgoing_edge_probabilities (basic_block);
849 extern void remove_predictions_associated_with_edge (edge);
850 extern bool edge_probability_reliable_p (const_edge);
851 extern bool br_prob_note_reliable_p (const_rtx);
852 extern bool predictable_edge_p (edge);
853
854 /* In cfg.c */
855 extern void dump_regset (regset, FILE *);
856 extern void debug_regset (regset);
857 extern void init_flow (struct function *);
858 extern void debug_bb (basic_block);
859 extern basic_block debug_bb_n (int);
860 extern void dump_regset (regset, FILE *);
861 extern void debug_regset (regset);
862 extern void expunge_block (basic_block);
863 extern void link_block (basic_block, basic_block);
864 extern void unlink_block (basic_block);
865 extern void compact_blocks (void);
866 extern basic_block alloc_block (void);
867 extern void alloc_aux_for_block (basic_block, int);
868 extern void alloc_aux_for_blocks (int);
869 extern void clear_aux_for_blocks (void);
870 extern void free_aux_for_blocks (void);
871 extern void alloc_aux_for_edge (edge, int);
872 extern void alloc_aux_for_edges (int);
873 extern void clear_aux_for_edges (void);
874 extern void free_aux_for_edges (void);
875
876 /* In cfganal.c */
877 extern void find_unreachable_blocks (void);
878 extern bool forwarder_block_p (const_basic_block);
879 extern bool can_fallthru (basic_block, basic_block);
880 extern bool could_fall_through (basic_block, basic_block);
881 extern void flow_nodes_print (const char *, const_sbitmap, FILE *);
882 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
883
884 /* In cfgrtl.c */
885 extern basic_block force_nonfallthru (edge);
886 extern rtx block_label (basic_block);
887 extern bool purge_all_dead_edges (void);
888 extern bool purge_dead_edges (basic_block);
889
890 /* In cfgbuild.c. */
891 extern void find_many_sub_basic_blocks (sbitmap);
892 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
893 extern void find_basic_blocks (rtx);
894
895 /* In cfgcleanup.c. */
896 extern bool cleanup_cfg (int);
897 extern bool delete_unreachable_blocks (void);
898
899 extern bool mark_dfs_back_edges (void);
900 extern void set_edge_can_fallthru_flag (void);
901 extern void update_br_prob_note (basic_block);
902 extern void fixup_abnormal_edges (void);
903 extern bool inside_basic_block_p (const_rtx);
904 extern bool control_flow_insn_p (const_rtx);
905 extern rtx get_last_bb_insn (basic_block);
906
907 /* In bb-reorder.c */
908 extern void reorder_basic_blocks (void);
909
910 /* In dominance.c */
911
912 enum cdi_direction
913 {
914 CDI_DOMINATORS = 1,
915 CDI_POST_DOMINATORS = 2
916 };
917
918 extern enum dom_state dom_info_state (enum cdi_direction);
919 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
920 extern bool dom_info_available_p (enum cdi_direction);
921 extern void calculate_dominance_info (enum cdi_direction);
922 extern void free_dominance_info (enum cdi_direction);
923 extern basic_block nearest_common_dominator (enum cdi_direction,
924 basic_block, basic_block);
925 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
926 bitmap);
927 extern void set_immediate_dominator (enum cdi_direction, basic_block,
928 basic_block);
929 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
930 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
931 extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
932 extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
933 basic_block *,
934 unsigned);
935 extern void add_to_dominance_info (enum cdi_direction, basic_block);
936 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
937 basic_block recompute_dominator (enum cdi_direction, basic_block);
938 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
939 basic_block);
940 extern void iterate_fix_dominators (enum cdi_direction,
941 VEC (basic_block, heap) *, bool);
942 extern void verify_dominators (enum cdi_direction);
943 extern basic_block first_dom_son (enum cdi_direction, basic_block);
944 extern basic_block next_dom_son (enum cdi_direction, basic_block);
945 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
946 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
947
948 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
949 extern void break_superblocks (void);
950 extern void relink_block_chain (bool);
951 extern void check_bb_profile (basic_block, FILE *);
952 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
953 extern void init_rtl_bb_info (basic_block);
954
955 extern void initialize_original_copy_tables (void);
956 extern void free_original_copy_tables (void);
957 extern void set_bb_original (basic_block, basic_block);
958 extern basic_block get_bb_original (basic_block);
959 extern void set_bb_copy (basic_block, basic_block);
960 extern basic_block get_bb_copy (basic_block);
961 void set_loop_copy (struct loop *, struct loop *);
962 struct loop *get_loop_copy (struct loop *);
963
964
965 extern rtx insert_insn_end_bb_new (rtx, basic_block);
966
967 #include "cfghooks.h"
968
969 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
970 static inline bool
971 bb_has_eh_pred (basic_block bb)
972 {
973 edge e;
974 edge_iterator ei;
975
976 FOR_EACH_EDGE (e, ei, bb->preds)
977 {
978 if (e->flags & EDGE_EH)
979 return true;
980 }
981 return false;
982 }
983
984 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
985 static inline bool
986 bb_has_abnormal_pred (basic_block bb)
987 {
988 edge e;
989 edge_iterator ei;
990
991 FOR_EACH_EDGE (e, ei, bb->preds)
992 {
993 if (e->flags & EDGE_ABNORMAL)
994 return true;
995 }
996 return false;
997 }
998
999 /* In cfgloopmanip.c. */
1000 extern edge mfb_kj_edge;
1001 extern bool mfb_keep_just (edge);
1002
1003 /* In cfgexpand.c. */
1004 extern void rtl_profile_for_bb (basic_block);
1005 extern void rtl_profile_for_edge (edge);
1006 extern void default_rtl_profile (void);
1007
1008 #endif /* GCC_BASIC_BLOCK_H */