re PR c++/29234 (Call to operator() of temporary object wrongly parsed)
[gcc.git] / gcc / basic-block.h
1 /* Define control flow data structures for the CFG.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
22
23 #include "predict.h"
24 #include "vec.h"
25 #include "function.h"
26
27 /* Use gcov_type to hold basic block counters. Should be at least
28 64bit. Although a counter cannot be negative, we use a signed
29 type, because erroneous negative counts can be generated when the
30 flow graph is manipulated by various optimizations. A signed type
31 makes those easy to detect. */
32
33 /* Control flow edge information. */
34 struct GTY((user)) edge_def {
35 /* The two blocks at the ends of the edge. */
36 basic_block src;
37 basic_block dest;
38
39 /* Instructions queued on the edge. */
40 union edge_def_insns {
41 gimple_seq g;
42 rtx r;
43 } insns;
44
45 /* Auxiliary info specific to a pass. */
46 PTR aux;
47
48 /* Location of any goto implicit in the edge. */
49 location_t goto_locus;
50
51 /* The index number corresponding to this edge in the edge vector
52 dest->preds. */
53 unsigned int dest_idx;
54
55 int flags; /* see cfg-flags.def */
56 int probability; /* biased by REG_BR_PROB_BASE */
57 gcov_type count; /* Expected number of executions calculated
58 in profile.c */
59 };
60
61
62 /* Garbage collection and PCH support for edge_def. */
63 extern void gt_ggc_mx (edge_def *e);
64 extern void gt_pch_nx (edge_def *e);
65 extern void gt_pch_nx (edge_def *e, gt_pointer_operator, void *);
66
67 /* Masks for edge.flags. */
68 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
69 enum cfg_edge_flags {
70 #include "cfg-flags.def"
71 LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */
72 };
73 #undef DEF_EDGE_FLAG
74
75 /* Bit mask for all edge flags. */
76 #define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
77
78 /* The following four flags all indicate something special about an edge.
79 Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
80 control flow transfers. */
81 #define EDGE_COMPLEX \
82 (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
83
84 /* Counter summary from the last set of coverage counts read by
85 profile.c. */
86 extern const struct gcov_ctr_summary *profile_info;
87
88 /* Structure to gather statistic about profile consistency, per pass.
89 An array of this structure, indexed by pass static number, is allocated
90 in passes.c. The structure is defined here so that different CFG modes
91 can do their book-keeping via CFG hooks.
92
93 For every field[2], field[0] is the count before the pass runs, and
94 field[1] is the post-pass count. This allows us to monitor the effect
95 of each individual pass on the profile consistency.
96
97 This structure is not supposed to be used by anything other than passes.c
98 and one CFG hook per CFG mode. */
99 struct profile_record
100 {
101 /* The number of basic blocks where sum(freq) of the block's predecessors
102 doesn't match reasonably well with the incoming frequency. */
103 int num_mismatched_freq_in[2];
104 /* Likewise for a basic block's successors. */
105 int num_mismatched_freq_out[2];
106 /* The number of basic blocks where sum(count) of the block's predecessors
107 doesn't match reasonably well with the incoming frequency. */
108 int num_mismatched_count_in[2];
109 /* Likewise for a basic block's successors. */
110 int num_mismatched_count_out[2];
111 /* A weighted cost of the run-time of the function body. */
112 gcov_type time[2];
113 /* A weighted cost of the size of the function body. */
114 int size[2];
115 /* True iff this pass actually was run. */
116 bool run;
117 };
118
119 /* Declared in cfgloop.h. */
120 struct loop;
121
122 struct GTY(()) rtl_bb_info {
123 /* The first insn of the block is embedded into bb->il.x. */
124 /* The last insn of the block. */
125 rtx end_;
126
127 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
128 and after the block. */
129 rtx header_;
130 rtx footer_;
131 };
132
133 struct GTY(()) gimple_bb_info {
134 /* Sequence of statements in this block. */
135 gimple_seq seq;
136
137 /* PHI nodes for this block. */
138 gimple_seq phi_nodes;
139 };
140
141 /* A basic block is a sequence of instructions with only one entry and
142 only one exit. If any one of the instructions are executed, they
143 will all be executed, and in sequence from first to last.
144
145 There may be COND_EXEC instructions in the basic block. The
146 COND_EXEC *instructions* will be executed -- but if the condition
147 is false the conditionally executed *expressions* will of course
148 not be executed. We don't consider the conditionally executed
149 expression (which might have side-effects) to be in a separate
150 basic block because the program counter will always be at the same
151 location after the COND_EXEC instruction, regardless of whether the
152 condition is true or not.
153
154 Basic blocks need not start with a label nor end with a jump insn.
155 For example, a previous basic block may just "conditionally fall"
156 into the succeeding basic block, and the last basic block need not
157 end with a jump insn. Block 0 is a descendant of the entry block.
158
159 A basic block beginning with two labels cannot have notes between
160 the labels.
161
162 Data for jump tables are stored in jump_insns that occur in no
163 basic block even though these insns can follow or precede insns in
164 basic blocks. */
165
166 /* Basic block information indexed by block number. */
167 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
168 /* The edges into and out of the block. */
169 vec<edge, va_gc> *preds;
170 vec<edge, va_gc> *succs;
171
172 /* Auxiliary info specific to a pass. */
173 PTR GTY ((skip (""))) aux;
174
175 /* Innermost loop containing the block. */
176 struct loop *loop_father;
177
178 /* The dominance and postdominance information node. */
179 struct et_node * GTY ((skip (""))) dom[2];
180
181 /* Previous and next blocks in the chain. */
182 basic_block prev_bb;
183 basic_block next_bb;
184
185 union basic_block_il_dependent {
186 struct gimple_bb_info GTY ((tag ("0"))) gimple;
187 struct {
188 rtx head_;
189 struct rtl_bb_info * rtl;
190 } GTY ((tag ("1"))) x;
191 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
192
193 /* Various flags. See cfg-flags.def. */
194 int flags;
195
196 /* The index of this block. */
197 int index;
198
199 /* Expected number of executions: calculated in profile.c. */
200 gcov_type count;
201
202 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
203 int frequency;
204
205 /* The discriminator for this block. The discriminator distinguishes
206 among several basic blocks that share a common locus, allowing for
207 more accurate sample-based profiling. */
208 int discriminator;
209 };
210
211 /* This ensures that struct gimple_bb_info is smaller than
212 struct rtl_bb_info, so that inlining the former into basic_block_def
213 is the better choice. */
214 typedef int __assert_gimple_bb_smaller_rtl_bb
215 [(int) sizeof (struct rtl_bb_info)
216 - (int) sizeof (struct gimple_bb_info)];
217
218
219 #define BB_FREQ_MAX 10000
220
221 /* Masks for basic_block.flags. */
222 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
223 enum cfg_bb_flags
224 {
225 #include "cfg-flags.def"
226 LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
227 };
228 #undef DEF_BASIC_BLOCK_FLAG
229
230 /* Bit mask for all basic block flags. */
231 #define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
232
233 /* Bit mask for all basic block flags that must be preserved. These are
234 the bit masks that are *not* cleared by clear_bb_flags. */
235 #define BB_FLAGS_TO_PRESERVE \
236 (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
237 | BB_HOT_PARTITION | BB_COLD_PARTITION)
238
239 /* Dummy bitmask for convenience in the hot/cold partitioning code. */
240 #define BB_UNPARTITIONED 0
241
242 /* Partitions, to be used when partitioning hot and cold basic blocks into
243 separate sections. */
244 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
245 #define BB_SET_PARTITION(bb, part) do { \
246 basic_block bb_ = (bb); \
247 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
248 | (part)); \
249 } while (0)
250
251 #define BB_COPY_PARTITION(dstbb, srcbb) \
252 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
253
254 /* State of dominance information. */
255
256 enum dom_state
257 {
258 DOM_NONE, /* Not computed at all. */
259 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
260 DOM_OK /* Everything is ok. */
261 };
262
263 /* What sort of profiling information we have. */
264 enum profile_status_d
265 {
266 PROFILE_ABSENT,
267 PROFILE_GUESSED,
268 PROFILE_READ,
269 PROFILE_LAST /* Last value, used by profile streaming. */
270 };
271
272 /* A structure to group all the per-function control flow graph data.
273 The x_* prefixing is necessary because otherwise references to the
274 fields of this struct are interpreted as the defines for backward
275 source compatibility following the definition of this struct. */
276 struct GTY(()) control_flow_graph {
277 /* Block pointers for the exit and entry of a function.
278 These are always the head and tail of the basic block list. */
279 basic_block x_entry_block_ptr;
280 basic_block x_exit_block_ptr;
281
282 /* Index by basic block number, get basic block struct info. */
283 vec<basic_block, va_gc> *x_basic_block_info;
284
285 /* Number of basic blocks in this flow graph. */
286 int x_n_basic_blocks;
287
288 /* Number of edges in this flow graph. */
289 int x_n_edges;
290
291 /* The first free basic block number. */
292 int x_last_basic_block;
293
294 /* UIDs for LABEL_DECLs. */
295 int last_label_uid;
296
297 /* Mapping of labels to their associated blocks. At present
298 only used for the gimple CFG. */
299 vec<basic_block, va_gc> *x_label_to_block_map;
300
301 enum profile_status_d x_profile_status;
302
303 /* Whether the dominators and the postdominators are available. */
304 enum dom_state x_dom_computed[2];
305
306 /* Number of basic blocks in the dominance tree. */
307 unsigned x_n_bbs_in_dom_tree[2];
308
309 /* Maximal number of entities in the single jumptable. Used to estimate
310 final flowgraph size. */
311 int max_jumptable_ents;
312 };
313
314 /* Defines for accessing the fields of the CFG structure for function FN. */
315 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
316 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
317 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
318 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
319 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
320 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
321 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
322 #define profile_status_for_function(FN) ((FN)->cfg->x_profile_status)
323
324 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
325 ((*basic_block_info_for_function (FN))[(N)])
326 #define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
327 ((*basic_block_info_for_function (FN))[(N)] = (BB))
328
329 /* Defines for textual backward source compatibility. */
330 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
331 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
332 #define basic_block_info (cfun->cfg->x_basic_block_info)
333 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
334 #define n_edges (cfun->cfg->x_n_edges)
335 #define last_basic_block (cfun->cfg->x_last_basic_block)
336 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
337 #define profile_status (cfun->cfg->x_profile_status)
338
339 #define BASIC_BLOCK(N) ((*basic_block_info)[(N)])
340 #define SET_BASIC_BLOCK(N,BB) ((*basic_block_info)[(N)] = (BB))
341
342 /* For iterating over basic blocks. */
343 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
344 for (BB = FROM; BB != TO; BB = BB->DIR)
345
346 #define FOR_EACH_BB_FN(BB, FN) \
347 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
348
349 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
350
351 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
352 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
353
354 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN (BB, cfun)
355
356 /* For iterating over insns in basic block. */
357 #define FOR_BB_INSNS(BB, INSN) \
358 for ((INSN) = BB_HEAD (BB); \
359 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
360 (INSN) = NEXT_INSN (INSN))
361
362 /* For iterating over insns in basic block when we might remove the
363 current insn. */
364 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
365 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
366 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
367 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
368
369 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
370 for ((INSN) = BB_END (BB); \
371 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
372 (INSN) = PREV_INSN (INSN))
373
374 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
375 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
376 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
377 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
378
379 /* Cycles through _all_ basic blocks, even the fake ones (entry and
380 exit block). */
381
382 #define FOR_ALL_BB(BB) \
383 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
384
385 #define FOR_ALL_BB_FN(BB, FN) \
386 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
387
388 \f
389 /* Stuff for recording basic block info. */
390
391 #define BB_HEAD(B) (B)->il.x.head_
392 #define BB_END(B) (B)->il.x.rtl->end_
393 #define BB_HEADER(B) (B)->il.x.rtl->header_
394 #define BB_FOOTER(B) (B)->il.x.rtl->footer_
395
396 /* Special block numbers [markers] for entry and exit.
397 Neither of them is supposed to hold actual statements. */
398 #define ENTRY_BLOCK (0)
399 #define EXIT_BLOCK (1)
400
401 /* The two blocks that are always in the cfg. */
402 #define NUM_FIXED_BLOCKS (2)
403
404 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
405
406 extern void compute_bb_for_insn (void);
407 extern unsigned int free_bb_for_insn (void);
408 extern void update_bb_for_insn (basic_block);
409
410 extern void insert_insn_on_edge (rtx, edge);
411 basic_block split_edge_and_insert (edge, rtx);
412
413 extern void commit_one_edge_insertion (edge e);
414 extern void commit_edge_insertions (void);
415
416 extern edge unchecked_make_edge (basic_block, basic_block, int);
417 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
418 extern edge make_edge (basic_block, basic_block, int);
419 extern edge make_single_succ_edge (basic_block, basic_block, int);
420 extern void remove_edge_raw (edge);
421 extern void redirect_edge_succ (edge, basic_block);
422 extern edge redirect_edge_succ_nodup (edge, basic_block);
423 extern void redirect_edge_pred (edge, basic_block);
424 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
425 extern void clear_bb_flags (void);
426 extern void dump_bb_info (FILE *, basic_block, int, int, bool, bool);
427 extern void dump_edge_info (FILE *, edge, int, int);
428 extern void debug (edge_def &ref);
429 extern void debug (edge_def *ptr);
430 extern void brief_dump_cfg (FILE *, int);
431 extern void clear_edges (void);
432 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
433 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
434 gcov_type);
435
436 /* Structure to group all of the information to process IF-THEN and
437 IF-THEN-ELSE blocks for the conditional execution support. This
438 needs to be in a public file in case the IFCVT macros call
439 functions passing the ce_if_block data structure. */
440
441 typedef struct ce_if_block
442 {
443 basic_block test_bb; /* First test block. */
444 basic_block then_bb; /* THEN block. */
445 basic_block else_bb; /* ELSE block or NULL. */
446 basic_block join_bb; /* Join THEN/ELSE blocks. */
447 basic_block last_test_bb; /* Last bb to hold && or || tests. */
448 int num_multiple_test_blocks; /* # of && and || basic blocks. */
449 int num_and_and_blocks; /* # of && blocks. */
450 int num_or_or_blocks; /* # of || blocks. */
451 int num_multiple_test_insns; /* # of insns in && and || blocks. */
452 int and_and_p; /* Complex test is &&. */
453 int num_then_insns; /* # of insns in THEN block. */
454 int num_else_insns; /* # of insns in ELSE block. */
455 int pass; /* Pass number. */
456 } ce_if_block_t;
457
458 /* This structure maintains an edge list vector. */
459 /* FIXME: Make this a vec<edge>. */
460 struct edge_list
461 {
462 int num_edges;
463 edge *index_to_edge;
464 };
465
466 /* Class to compute and manage control dependences on an edge-list. */
467 class control_dependences
468 {
469 public:
470 control_dependences (edge_list *);
471 ~control_dependences ();
472 bitmap get_edges_dependent_on (int);
473 edge get_edge (int);
474
475 private:
476 void set_control_dependence_map_bit (basic_block, int);
477 void clear_control_dependence_bitmap (basic_block);
478 void find_control_dependence (int);
479 vec<bitmap> control_dependence_map;
480 edge_list *m_el;
481 };
482
483 /* The base value for branch probability notes and edge probabilities. */
484 #define REG_BR_PROB_BASE 10000
485
486 /* This is the value which indicates no edge is present. */
487 #define EDGE_INDEX_NO_EDGE -1
488
489 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
490 if there is no edge between the 2 basic blocks. */
491 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
492
493 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
494 block which is either the pred or succ end of the indexed edge. */
495 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
496 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
497
498 /* INDEX_EDGE returns a pointer to the edge. */
499 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
500
501 /* Number of edges in the compressed edge list. */
502 #define NUM_EDGES(el) ((el)->num_edges)
503
504 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
505 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
506 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
507
508 /* BB is assumed to contain conditional jump. Return the branch edge. */
509 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
510 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
511
512 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
513 /* Return expected execution frequency of the edge E. */
514 #define EDGE_FREQUENCY(e) RDIV ((e)->src->frequency * (e)->probability, \
515 REG_BR_PROB_BASE)
516
517 /* Compute a scale factor (or probability) suitable for scaling of
518 gcov_type values via apply_probability() and apply_scale(). */
519 #define GCOV_COMPUTE_SCALE(num,den) \
520 ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
521
522 /* Return nonzero if edge is critical. */
523 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
524 && EDGE_COUNT ((e)->dest->preds) >= 2)
525
526 #define EDGE_COUNT(ev) vec_safe_length (ev)
527 #define EDGE_I(ev,i) (*ev)[(i)]
528 #define EDGE_PRED(bb,i) (*(bb)->preds)[(i)]
529 #define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)]
530
531 /* Returns true if BB has precisely one successor. */
532
533 static inline bool
534 single_succ_p (const_basic_block bb)
535 {
536 return EDGE_COUNT (bb->succs) == 1;
537 }
538
539 /* Returns true if BB has precisely one predecessor. */
540
541 static inline bool
542 single_pred_p (const_basic_block bb)
543 {
544 return EDGE_COUNT (bb->preds) == 1;
545 }
546
547 /* Returns the single successor edge of basic block BB. Aborts if
548 BB does not have exactly one successor. */
549
550 static inline edge
551 single_succ_edge (const_basic_block bb)
552 {
553 gcc_checking_assert (single_succ_p (bb));
554 return EDGE_SUCC (bb, 0);
555 }
556
557 /* Returns the single predecessor edge of basic block BB. Aborts
558 if BB does not have exactly one predecessor. */
559
560 static inline edge
561 single_pred_edge (const_basic_block bb)
562 {
563 gcc_checking_assert (single_pred_p (bb));
564 return EDGE_PRED (bb, 0);
565 }
566
567 /* Returns the single successor block of basic block BB. Aborts
568 if BB does not have exactly one successor. */
569
570 static inline basic_block
571 single_succ (const_basic_block bb)
572 {
573 return single_succ_edge (bb)->dest;
574 }
575
576 /* Returns the single predecessor block of basic block BB. Aborts
577 if BB does not have exactly one predecessor.*/
578
579 static inline basic_block
580 single_pred (const_basic_block bb)
581 {
582 return single_pred_edge (bb)->src;
583 }
584
585 /* Iterator object for edges. */
586
587 typedef struct {
588 unsigned index;
589 vec<edge, va_gc> **container;
590 } edge_iterator;
591
592 static inline vec<edge, va_gc> *
593 ei_container (edge_iterator i)
594 {
595 gcc_checking_assert (i.container);
596 return *i.container;
597 }
598
599 #define ei_start(iter) ei_start_1 (&(iter))
600 #define ei_last(iter) ei_last_1 (&(iter))
601
602 /* Return an iterator pointing to the start of an edge vector. */
603 static inline edge_iterator
604 ei_start_1 (vec<edge, va_gc> **ev)
605 {
606 edge_iterator i;
607
608 i.index = 0;
609 i.container = ev;
610
611 return i;
612 }
613
614 /* Return an iterator pointing to the last element of an edge
615 vector. */
616 static inline edge_iterator
617 ei_last_1 (vec<edge, va_gc> **ev)
618 {
619 edge_iterator i;
620
621 i.index = EDGE_COUNT (*ev) - 1;
622 i.container = ev;
623
624 return i;
625 }
626
627 /* Is the iterator `i' at the end of the sequence? */
628 static inline bool
629 ei_end_p (edge_iterator i)
630 {
631 return (i.index == EDGE_COUNT (ei_container (i)));
632 }
633
634 /* Is the iterator `i' at one position before the end of the
635 sequence? */
636 static inline bool
637 ei_one_before_end_p (edge_iterator i)
638 {
639 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
640 }
641
642 /* Advance the iterator to the next element. */
643 static inline void
644 ei_next (edge_iterator *i)
645 {
646 gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
647 i->index++;
648 }
649
650 /* Move the iterator to the previous element. */
651 static inline void
652 ei_prev (edge_iterator *i)
653 {
654 gcc_checking_assert (i->index > 0);
655 i->index--;
656 }
657
658 /* Return the edge pointed to by the iterator `i'. */
659 static inline edge
660 ei_edge (edge_iterator i)
661 {
662 return EDGE_I (ei_container (i), i.index);
663 }
664
665 /* Return an edge pointed to by the iterator. Do it safely so that
666 NULL is returned when the iterator is pointing at the end of the
667 sequence. */
668 static inline edge
669 ei_safe_edge (edge_iterator i)
670 {
671 return !ei_end_p (i) ? ei_edge (i) : NULL;
672 }
673
674 /* Return 1 if we should continue to iterate. Return 0 otherwise.
675 *Edge P is set to the next edge if we are to continue to iterate
676 and NULL otherwise. */
677
678 static inline bool
679 ei_cond (edge_iterator ei, edge *p)
680 {
681 if (!ei_end_p (ei))
682 {
683 *p = ei_edge (ei);
684 return 1;
685 }
686 else
687 {
688 *p = NULL;
689 return 0;
690 }
691 }
692
693 /* This macro serves as a convenient way to iterate each edge in a
694 vector of predecessor or successor edges. It must not be used when
695 an element might be removed during the traversal, otherwise
696 elements will be missed. Instead, use a for-loop like that shown
697 in the following pseudo-code:
698
699 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
700 {
701 IF (e != taken_edge)
702 remove_edge (e);
703 ELSE
704 ei_next (&ei);
705 }
706 */
707
708 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
709 for ((ITER) = ei_start ((EDGE_VEC)); \
710 ei_cond ((ITER), &(EDGE)); \
711 ei_next (&(ITER)))
712
713 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
714 except for edge forwarding */
715 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
716 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
717 to care REG_DEAD notes. */
718 #define CLEANUP_THREADING 8 /* Do jump threading. */
719 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
720 insns. */
721 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
722 #define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */
723
724 /* In cfganal.c */
725 extern void bitmap_intersection_of_succs (sbitmap, sbitmap *, basic_block);
726 extern void bitmap_intersection_of_preds (sbitmap, sbitmap *, basic_block);
727 extern void bitmap_union_of_succs (sbitmap, sbitmap *, basic_block);
728 extern void bitmap_union_of_preds (sbitmap, sbitmap *, basic_block);
729
730 /* In lcm.c */
731 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
732 sbitmap *, sbitmap *, sbitmap **,
733 sbitmap **);
734 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
735 sbitmap *, sbitmap *,
736 sbitmap *, sbitmap **,
737 sbitmap **);
738 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
739
740 /* In predict.c */
741 extern bool maybe_hot_bb_p (struct function *, const_basic_block);
742 extern bool maybe_hot_edge_p (edge);
743 extern bool probably_never_executed_bb_p (struct function *, const_basic_block);
744 extern bool probably_never_executed_edge_p (struct function *, edge);
745 extern bool optimize_bb_for_size_p (const_basic_block);
746 extern bool optimize_bb_for_speed_p (const_basic_block);
747 extern bool optimize_edge_for_size_p (edge);
748 extern bool optimize_edge_for_speed_p (edge);
749 extern bool optimize_loop_for_size_p (struct loop *);
750 extern bool optimize_loop_for_speed_p (struct loop *);
751 extern bool optimize_loop_nest_for_size_p (struct loop *);
752 extern bool optimize_loop_nest_for_speed_p (struct loop *);
753 extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
754 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
755 extern void gimple_predict_edge (edge, enum br_predictor, int);
756 extern void rtl_predict_edge (edge, enum br_predictor, int);
757 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
758 extern void guess_outgoing_edge_probabilities (basic_block);
759 extern void remove_predictions_associated_with_edge (edge);
760 extern bool edge_probability_reliable_p (const_edge);
761 extern bool br_prob_note_reliable_p (const_rtx);
762 extern bool predictable_edge_p (edge);
763
764 /* In cfg.c */
765 extern void init_flow (struct function *);
766 extern void debug_bb (basic_block);
767 extern basic_block debug_bb_n (int);
768 extern void dump_flow_info (FILE *, int);
769 extern void expunge_block (basic_block);
770 extern void link_block (basic_block, basic_block);
771 extern void unlink_block (basic_block);
772 extern void compact_blocks (void);
773 extern basic_block alloc_block (void);
774 extern void alloc_aux_for_blocks (int);
775 extern void clear_aux_for_blocks (void);
776 extern void free_aux_for_blocks (void);
777 extern void alloc_aux_for_edge (edge, int);
778 extern void alloc_aux_for_edges (int);
779 extern void clear_aux_for_edges (void);
780 extern void free_aux_for_edges (void);
781
782 /* In cfganal.c */
783 extern void find_unreachable_blocks (void);
784 extern bool mark_dfs_back_edges (void);
785 struct edge_list * create_edge_list (void);
786 void free_edge_list (struct edge_list *);
787 void print_edge_list (FILE *, struct edge_list *);
788 void verify_edge_list (FILE *, struct edge_list *);
789 int find_edge_index (struct edge_list *, basic_block, basic_block);
790 edge find_edge (basic_block, basic_block);
791 extern void remove_fake_edges (void);
792 extern void remove_fake_exit_edges (void);
793 extern void add_noreturn_fake_exit_edges (void);
794 extern void connect_infinite_loops_to_exit (void);
795 extern int post_order_compute (int *, bool, bool);
796 extern basic_block dfs_find_deadend (basic_block);
797 extern int inverted_post_order_compute (int *);
798 extern int pre_and_rev_post_order_compute_fn (struct function *,
799 int *, int *, bool);
800 extern int pre_and_rev_post_order_compute (int *, int *, bool);
801 extern int dfs_enumerate_from (basic_block, int,
802 bool (*)(const_basic_block, const void *),
803 basic_block *, int, const void *);
804 extern void compute_dominance_frontiers (struct bitmap_head_def *);
805 extern bitmap compute_idf (bitmap, struct bitmap_head_def *);
806 extern basic_block * single_pred_before_succ_order (void);
807
808 /* In cfgrtl.c */
809 extern rtx block_label (basic_block);
810 extern rtx bb_note (basic_block);
811 extern bool purge_all_dead_edges (void);
812 extern bool purge_dead_edges (basic_block);
813 extern bool fixup_abnormal_edges (void);
814 extern basic_block force_nonfallthru_and_redirect (edge, basic_block, rtx);
815 extern bool contains_no_active_insn_p (const_basic_block);
816 extern bool forwarder_block_p (const_basic_block);
817 extern bool can_fallthru (basic_block, basic_block);
818 extern void emit_barrier_after_bb (basic_block bb);
819 extern void fixup_partitions (void);
820
821 /* In cfgbuild.c. */
822 extern void find_many_sub_basic_blocks (sbitmap);
823 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
824
825 enum replace_direction { dir_none, dir_forward, dir_backward, dir_both };
826
827 /* In cfgcleanup.c. */
828 extern bool cleanup_cfg (int);
829 extern int flow_find_cross_jump (basic_block, basic_block, rtx *, rtx *,
830 enum replace_direction*);
831 extern int flow_find_head_matching_sequence (basic_block, basic_block,
832 rtx *, rtx *, int);
833
834 extern bool delete_unreachable_blocks (void);
835
836 extern void update_br_prob_note (basic_block);
837 extern bool inside_basic_block_p (const_rtx);
838 extern bool control_flow_insn_p (const_rtx);
839 extern rtx get_last_bb_insn (basic_block);
840
841 /* In dominance.c */
842
843 enum cdi_direction
844 {
845 CDI_DOMINATORS = 1,
846 CDI_POST_DOMINATORS = 2
847 };
848
849 extern enum dom_state dom_info_state (enum cdi_direction);
850 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
851 extern bool dom_info_available_p (enum cdi_direction);
852 extern void calculate_dominance_info (enum cdi_direction);
853 extern void free_dominance_info (enum cdi_direction);
854 extern basic_block nearest_common_dominator (enum cdi_direction,
855 basic_block, basic_block);
856 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
857 bitmap);
858 extern void set_immediate_dominator (enum cdi_direction, basic_block,
859 basic_block);
860 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
861 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
862 extern vec<basic_block> get_dominated_by (enum cdi_direction, basic_block);
863 extern vec<basic_block> get_dominated_by_region (enum cdi_direction,
864 basic_block *,
865 unsigned);
866 extern vec<basic_block> get_dominated_to_depth (enum cdi_direction,
867 basic_block, int);
868 extern vec<basic_block> get_all_dominated_blocks (enum cdi_direction,
869 basic_block);
870 extern void add_to_dominance_info (enum cdi_direction, basic_block);
871 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
872 basic_block recompute_dominator (enum cdi_direction, basic_block);
873 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
874 basic_block);
875 extern void iterate_fix_dominators (enum cdi_direction,
876 vec<basic_block> , bool);
877 extern void verify_dominators (enum cdi_direction);
878 extern basic_block first_dom_son (enum cdi_direction, basic_block);
879 extern basic_block next_dom_son (enum cdi_direction, basic_block);
880 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
881 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
882
883 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
884 extern void break_superblocks (void);
885 extern void relink_block_chain (bool);
886 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
887 extern void init_rtl_bb_info (basic_block);
888
889 extern void initialize_original_copy_tables (void);
890 extern void free_original_copy_tables (void);
891 extern void set_bb_original (basic_block, basic_block);
892 extern basic_block get_bb_original (basic_block);
893 extern void set_bb_copy (basic_block, basic_block);
894 extern basic_block get_bb_copy (basic_block);
895 void set_loop_copy (struct loop *, struct loop *);
896 struct loop *get_loop_copy (struct loop *);
897
898 #include "cfghooks.h"
899
900 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
901 static inline bool
902 bb_has_eh_pred (basic_block bb)
903 {
904 edge e;
905 edge_iterator ei;
906
907 FOR_EACH_EDGE (e, ei, bb->preds)
908 {
909 if (e->flags & EDGE_EH)
910 return true;
911 }
912 return false;
913 }
914
915 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
916 static inline bool
917 bb_has_abnormal_pred (basic_block bb)
918 {
919 edge e;
920 edge_iterator ei;
921
922 FOR_EACH_EDGE (e, ei, bb->preds)
923 {
924 if (e->flags & EDGE_ABNORMAL)
925 return true;
926 }
927 return false;
928 }
929
930 /* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
931 static inline edge
932 find_fallthru_edge (vec<edge, va_gc> *edges)
933 {
934 edge e;
935 edge_iterator ei;
936
937 FOR_EACH_EDGE (e, ei, edges)
938 if (e->flags & EDGE_FALLTHRU)
939 break;
940
941 return e;
942 }
943
944 /* In cfgloopmanip.c. */
945 extern edge mfb_kj_edge;
946 extern bool mfb_keep_just (edge);
947
948 /* In cfgexpand.c. */
949 extern void rtl_profile_for_bb (basic_block);
950 extern void rtl_profile_for_edge (edge);
951 extern void default_rtl_profile (void);
952
953 /* In profile.c. */
954 typedef struct gcov_working_set_info gcov_working_set_t;
955 extern gcov_working_set_t *find_working_set (unsigned pct_times_10);
956
957 /* Check tha probability is sane. */
958
959 static inline void
960 check_probability (int prob)
961 {
962 gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
963 }
964
965 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
966 Used to combine BB probabilities. */
967
968 static inline int
969 combine_probabilities (int prob1, int prob2)
970 {
971 check_probability (prob1);
972 check_probability (prob2);
973 return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
974 }
975
976 /* Apply scale factor SCALE on frequency or count FREQ. Use this
977 interface when potentially scaling up, so that SCALE is not
978 constrained to be < REG_BR_PROB_BASE. */
979
980 static inline gcov_type
981 apply_scale (gcov_type freq, gcov_type scale)
982 {
983 return RDIV (freq * scale, REG_BR_PROB_BASE);
984 }
985
986 /* Apply probability PROB on frequency or count FREQ. */
987
988 static inline gcov_type
989 apply_probability (gcov_type freq, int prob)
990 {
991 check_probability (prob);
992 return apply_scale (freq, prob);
993 }
994
995 /* Return inverse probability for PROB. */
996
997 static inline int
998 inverse_probability (int prob1)
999 {
1000 check_probability (prob1);
1001 return REG_BR_PROB_BASE - prob1;
1002 }
1003 #endif /* GCC_BASIC_BLOCK_H */