cfghooks.c (tidy_fallthru_edges): Remove find_basic_blocks references from comments.
[gcc.git] / gcc / basic-block.h
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_BASIC_BLOCK_H
22 #define GCC_BASIC_BLOCK_H
23
24 #include "bitmap.h"
25 #include "sbitmap.h"
26 #include "varray.h"
27 #include "partition.h"
28 #include "hard-reg-set.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "function.h"
32
33 /* Head of register set linked list. */
34 typedef bitmap_head regset_head;
35
36 /* A pointer to a regset_head. */
37 typedef bitmap regset;
38
39 /* Allocate a register set with oballoc. */
40 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
41
42 /* Do any cleanup needed on a regset when it is no longer used. */
43 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
44
45 /* Initialize a new regset. */
46 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
47
48 /* Clear a register set by freeing up the linked list. */
49 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
50
51 /* Copy a register set to another register set. */
52 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
53
54 /* Compare two register sets. */
55 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
56
57 /* `and' a register set with a second register set. */
58 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
59
60 /* `and' the complement of a register set with a register set. */
61 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
62
63 /* Inclusive or a register set with a second register set. */
64 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
65
66 /* Exclusive or a register set with a second register set. */
67 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
68
69 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
70 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
72
73 /* Clear a single register in a register set. */
74 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
75
76 /* Set a single register in a register set. */
77 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
78
79 /* Return true if a register is set in a register set. */
80 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
81
82 /* Copy the hard registers in a register set to the hard register set. */
83 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, const_bitmap);
84 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
85 do { \
86 CLEAR_HARD_REG_SET (TO); \
87 reg_set_to_hard_reg_set (&TO, FROM); \
88 } while (0)
89
90 typedef bitmap_iterator reg_set_iterator;
91
92 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93 register number and executing CODE for all registers that are set. */
94 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
95 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
96
97 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98 REGNUM to the register number and executing CODE for all registers that are
99 set in the first regset and not set in the second. */
100 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
102
103 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104 REGNUM to the register number and executing CODE for all registers that are
105 set in both regsets. */
106 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
108
109 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
110 in dataflow more conveniently. */
111
112 extern regset regs_invalidated_by_call_regset;
113
114 /* Type we use to hold basic block counters. Should be at least
115 64bit. Although a counter cannot be negative, we use a signed
116 type, because erroneous negative counts can be generated when the
117 flow graph is manipulated by various optimizations. A signed type
118 makes those easy to detect. */
119 typedef HOST_WIDEST_INT gcov_type;
120
121 /* Control flow edge information. */
122 struct edge_def GTY(())
123 {
124 /* The two blocks at the ends of the edge. */
125 struct basic_block_def *src;
126 struct basic_block_def *dest;
127
128 /* Instructions queued on the edge. */
129 union edge_def_insns {
130 gimple_seq GTY ((tag ("true"))) g;
131 rtx GTY ((tag ("false"))) r;
132 } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
133
134 /* Auxiliary info specific to a pass. */
135 PTR GTY ((skip (""))) aux;
136
137 /* Location of any goto implicit in the edge and associated BLOCK. */
138 tree goto_block;
139 location_t goto_locus;
140
141 /* The index number corresponding to this edge in the edge vector
142 dest->preds. */
143 unsigned int dest_idx;
144
145 int flags; /* see EDGE_* below */
146 int probability; /* biased by REG_BR_PROB_BASE */
147 gcov_type count; /* Expected number of executions calculated
148 in profile.c */
149 };
150
151 typedef struct edge_def *edge;
152 typedef const struct edge_def *const_edge;
153 DEF_VEC_P(edge);
154 DEF_VEC_ALLOC_P(edge,gc);
155 DEF_VEC_ALLOC_P(edge,heap);
156
157 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
158 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
159 label, or eh */
160 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
161 like an exception, or sibcall */
162 #define EDGE_EH 8 /* Exception throw */
163 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
164 #define EDGE_DFS_BACK 32 /* A backwards edge */
165 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
166 flow. */
167 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
168 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
169 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
170 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
171 predicate is nonzero. */
172 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
173 predicate is zero. */
174 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
175 valid during SSA-CCP. */
176 #define EDGE_CROSSING 8192 /* Edge crosses between hot
177 and cold sections, when we
178 do partitioning. */
179 #define EDGE_ALL_FLAGS 16383
180
181 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
182
183 /* Counter summary from the last set of coverage counts read by
184 profile.c. */
185 extern const struct gcov_ctr_summary *profile_info;
186
187 /* Declared in cfgloop.h. */
188 struct loop;
189
190 /* Declared in tree-flow.h. */
191 struct edge_prediction;
192 struct rtl_bb_info;
193
194 /* A basic block is a sequence of instructions with only entry and
195 only one exit. If any one of the instructions are executed, they
196 will all be executed, and in sequence from first to last.
197
198 There may be COND_EXEC instructions in the basic block. The
199 COND_EXEC *instructions* will be executed -- but if the condition
200 is false the conditionally executed *expressions* will of course
201 not be executed. We don't consider the conditionally executed
202 expression (which might have side-effects) to be in a separate
203 basic block because the program counter will always be at the same
204 location after the COND_EXEC instruction, regardless of whether the
205 condition is true or not.
206
207 Basic blocks need not start with a label nor end with a jump insn.
208 For example, a previous basic block may just "conditionally fall"
209 into the succeeding basic block, and the last basic block need not
210 end with a jump insn. Block 0 is a descendant of the entry block.
211
212 A basic block beginning with two labels cannot have notes between
213 the labels.
214
215 Data for jump tables are stored in jump_insns that occur in no
216 basic block even though these insns can follow or precede insns in
217 basic blocks. */
218
219 /* Basic block information indexed by block number. */
220 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
221 {
222 /* The edges into and out of the block. */
223 VEC(edge,gc) *preds;
224 VEC(edge,gc) *succs;
225
226 /* Auxiliary info specific to a pass. */
227 PTR GTY ((skip (""))) aux;
228
229 /* Innermost loop containing the block. */
230 struct loop *loop_father;
231
232 /* The dominance and postdominance information node. */
233 struct et_node * GTY ((skip (""))) dom[2];
234
235 /* Previous and next blocks in the chain. */
236 struct basic_block_def *prev_bb;
237 struct basic_block_def *next_bb;
238
239 union basic_block_il_dependent {
240 struct gimple_bb_info * GTY ((tag ("0"))) gimple;
241 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
242 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
243
244 /* Expected number of executions: calculated in profile.c. */
245 gcov_type count;
246
247 /* The index of this block. */
248 int index;
249
250 /* The loop depth of this block. */
251 int loop_depth;
252
253 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
254 int frequency;
255
256 /* Various flags. See BB_* below. */
257 int flags;
258 };
259
260 struct rtl_bb_info GTY(())
261 {
262 /* The first and last insns of the block. */
263 rtx head_;
264 rtx end_;
265
266 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
267 and after the block. */
268 rtx header;
269 rtx footer;
270
271 /* This field is used by the bb-reorder and tracer passes. */
272 int visited;
273 };
274
275 struct gimple_bb_info GTY(())
276 {
277 /* Sequence of statements in this block. */
278 gimple_seq seq;
279
280 /* PHI nodes for this block. */
281 gimple_seq phi_nodes;
282 };
283
284 typedef struct basic_block_def *basic_block;
285 typedef const struct basic_block_def *const_basic_block;
286
287 DEF_VEC_P(basic_block);
288 DEF_VEC_ALLOC_P(basic_block,gc);
289 DEF_VEC_ALLOC_P(basic_block,heap);
290
291 #define BB_FREQ_MAX 10000
292
293 /* Masks for basic_block.flags.
294
295 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
296 the compilation, so they are never cleared.
297
298 All other flags may be cleared by clear_bb_flags(). It is generally
299 a bad idea to rely on any flags being up-to-date. */
300
301 enum bb_flags
302 {
303 /* Only set on blocks that have just been created by create_bb. */
304 BB_NEW = 1 << 0,
305
306 /* Set by find_unreachable_blocks. Do not rely on this being set in any
307 pass. */
308 BB_REACHABLE = 1 << 1,
309
310 /* Set for blocks in an irreducible loop by loop analysis. */
311 BB_IRREDUCIBLE_LOOP = 1 << 2,
312
313 /* Set on blocks that may actually not be single-entry single-exit block. */
314 BB_SUPERBLOCK = 1 << 3,
315
316 /* Set on basic blocks that the scheduler should not touch. This is used
317 by SMS to prevent other schedulers from messing with the loop schedule. */
318 BB_DISABLE_SCHEDULE = 1 << 4,
319
320 /* Set on blocks that should be put in a hot section. */
321 BB_HOT_PARTITION = 1 << 5,
322
323 /* Set on blocks that should be put in a cold section. */
324 BB_COLD_PARTITION = 1 << 6,
325
326 /* Set on block that was duplicated. */
327 BB_DUPLICATED = 1 << 7,
328
329 /* Set if the label at the top of this block is the target of a non-local goto. */
330 BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
331
332 /* Set on blocks that are in RTL format. */
333 BB_RTL = 1 << 9 ,
334
335 /* Set on blocks that are forwarder blocks.
336 Only used in cfgcleanup.c. */
337 BB_FORWARDER_BLOCK = 1 << 10,
338
339 /* Set on blocks that cannot be threaded through.
340 Only used in cfgcleanup.c. */
341 BB_NONTHREADABLE_BLOCK = 1 << 11
342 };
343
344 /* Dummy flag for convenience in the hot/cold partitioning code. */
345 #define BB_UNPARTITIONED 0
346
347 /* Partitions, to be used when partitioning hot and cold basic blocks into
348 separate sections. */
349 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
350 #define BB_SET_PARTITION(bb, part) do { \
351 basic_block bb_ = (bb); \
352 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
353 | (part)); \
354 } while (0)
355
356 #define BB_COPY_PARTITION(dstbb, srcbb) \
357 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
358
359 /* State of dominance information. */
360
361 enum dom_state
362 {
363 DOM_NONE, /* Not computed at all. */
364 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
365 DOM_OK /* Everything is ok. */
366 };
367
368 /* A structure to group all the per-function control flow graph data.
369 The x_* prefixing is necessary because otherwise references to the
370 fields of this struct are interpreted as the defines for backward
371 source compatibility following the definition of this struct. */
372 struct control_flow_graph GTY(())
373 {
374 /* Block pointers for the exit and entry of a function.
375 These are always the head and tail of the basic block list. */
376 basic_block x_entry_block_ptr;
377 basic_block x_exit_block_ptr;
378
379 /* Index by basic block number, get basic block struct info. */
380 VEC(basic_block,gc) *x_basic_block_info;
381
382 /* Number of basic blocks in this flow graph. */
383 int x_n_basic_blocks;
384
385 /* Number of edges in this flow graph. */
386 int x_n_edges;
387
388 /* The first free basic block number. */
389 int x_last_basic_block;
390
391 /* Mapping of labels to their associated blocks. At present
392 only used for the gimple CFG. */
393 VEC(basic_block,gc) *x_label_to_block_map;
394
395 enum profile_status {
396 PROFILE_ABSENT,
397 PROFILE_GUESSED,
398 PROFILE_READ
399 } x_profile_status;
400
401 /* Whether the dominators and the postdominators are available. */
402 enum dom_state x_dom_computed[2];
403
404 /* Number of basic blocks in the dominance tree. */
405 unsigned x_n_bbs_in_dom_tree[2];
406
407 /* Maximal number of entities in the single jumptable. Used to estimate
408 final flowgraph size. */
409 int max_jumptable_ents;
410
411 /* UIDs for LABEL_DECLs. */
412 int last_label_uid;
413 };
414
415 /* Defines for accessing the fields of the CFG structure for function FN. */
416 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
417 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
418 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
419 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
420 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
421 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
422 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
423 #define profile_status_for_function(FN) ((FN)->cfg->x_profile_status)
424
425 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
426 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
427 #define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
428 (VEC_replace (basic_block, basic_block_info_for_function(FN), (N), (BB)))
429
430 /* Defines for textual backward source compatibility. */
431 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
432 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
433 #define basic_block_info (cfun->cfg->x_basic_block_info)
434 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
435 #define n_edges (cfun->cfg->x_n_edges)
436 #define last_basic_block (cfun->cfg->x_last_basic_block)
437 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
438 #define profile_status (cfun->cfg->x_profile_status)
439
440 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
441 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
442
443 /* For iterating over basic blocks. */
444 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
445 for (BB = FROM; BB != TO; BB = BB->DIR)
446
447 #define FOR_EACH_BB_FN(BB, FN) \
448 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
449
450 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
451
452 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
453 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
454
455 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
456
457 /* For iterating over insns in basic block. */
458 #define FOR_BB_INSNS(BB, INSN) \
459 for ((INSN) = BB_HEAD (BB); \
460 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
461 (INSN) = NEXT_INSN (INSN))
462
463 /* For iterating over insns in basic block when we might remove the
464 current insn. */
465 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
466 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
467 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
468 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
469
470 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
471 for ((INSN) = BB_END (BB); \
472 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
473 (INSN) = PREV_INSN (INSN))
474
475 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
476 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
477 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
478 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
479
480 /* Cycles through _all_ basic blocks, even the fake ones (entry and
481 exit block). */
482
483 #define FOR_ALL_BB(BB) \
484 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
485
486 #define FOR_ALL_BB_FN(BB, FN) \
487 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
488
489 extern bitmap_obstack reg_obstack;
490
491 \f
492 /* Stuff for recording basic block info. */
493
494 #define BB_HEAD(B) (B)->il.rtl->head_
495 #define BB_END(B) (B)->il.rtl->end_
496
497 /* Special block numbers [markers] for entry and exit. */
498 #define ENTRY_BLOCK (0)
499 #define EXIT_BLOCK (1)
500
501 /* The two blocks that are always in the cfg. */
502 #define NUM_FIXED_BLOCKS (2)
503
504
505 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
506 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
507
508 extern void compute_bb_for_insn (void);
509 extern unsigned int free_bb_for_insn (void);
510 extern void update_bb_for_insn (basic_block);
511
512 extern void insert_insn_on_edge (rtx, edge);
513 basic_block split_edge_and_insert (edge, rtx);
514
515 extern void commit_edge_insertions (void);
516
517 extern void remove_fake_edges (void);
518 extern void remove_fake_exit_edges (void);
519 extern void add_noreturn_fake_exit_edges (void);
520 extern void connect_infinite_loops_to_exit (void);
521 extern edge unchecked_make_edge (basic_block, basic_block, int);
522 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
523 extern edge make_edge (basic_block, basic_block, int);
524 extern edge make_single_succ_edge (basic_block, basic_block, int);
525 extern void remove_edge_raw (edge);
526 extern void redirect_edge_succ (edge, basic_block);
527 extern edge redirect_edge_succ_nodup (edge, basic_block);
528 extern void redirect_edge_pred (edge, basic_block);
529 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
530 extern void clear_bb_flags (void);
531 extern int post_order_compute (int *, bool, bool);
532 extern int inverted_post_order_compute (int *);
533 extern int pre_and_rev_post_order_compute (int *, int *, bool);
534 extern int dfs_enumerate_from (basic_block, int,
535 bool (*)(const_basic_block, const void *),
536 basic_block *, int, const void *);
537 extern void compute_dominance_frontiers (bitmap *);
538 extern bitmap compute_idf (bitmap, bitmap *);
539 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
540 extern void dump_edge_info (FILE *, edge, int);
541 extern void brief_dump_cfg (FILE *);
542 extern void clear_edges (void);
543 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
544 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
545 gcov_type);
546
547 /* Structure to group all of the information to process IF-THEN and
548 IF-THEN-ELSE blocks for the conditional execution support. This
549 needs to be in a public file in case the IFCVT macros call
550 functions passing the ce_if_block data structure. */
551
552 typedef struct ce_if_block
553 {
554 basic_block test_bb; /* First test block. */
555 basic_block then_bb; /* THEN block. */
556 basic_block else_bb; /* ELSE block or NULL. */
557 basic_block join_bb; /* Join THEN/ELSE blocks. */
558 basic_block last_test_bb; /* Last bb to hold && or || tests. */
559 int num_multiple_test_blocks; /* # of && and || basic blocks. */
560 int num_and_and_blocks; /* # of && blocks. */
561 int num_or_or_blocks; /* # of || blocks. */
562 int num_multiple_test_insns; /* # of insns in && and || blocks. */
563 int and_and_p; /* Complex test is &&. */
564 int num_then_insns; /* # of insns in THEN block. */
565 int num_else_insns; /* # of insns in ELSE block. */
566 int pass; /* Pass number. */
567
568 #ifdef IFCVT_EXTRA_FIELDS
569 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
570 #endif
571
572 } ce_if_block_t;
573
574 /* This structure maintains an edge list vector. */
575 struct edge_list
576 {
577 int num_blocks;
578 int num_edges;
579 edge *index_to_edge;
580 };
581
582 /* The base value for branch probability notes and edge probabilities. */
583 #define REG_BR_PROB_BASE 10000
584
585 /* This is the value which indicates no edge is present. */
586 #define EDGE_INDEX_NO_EDGE -1
587
588 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
589 if there is no edge between the 2 basic blocks. */
590 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
591
592 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
593 block which is either the pred or succ end of the indexed edge. */
594 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
595 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
596
597 /* INDEX_EDGE returns a pointer to the edge. */
598 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
599
600 /* Number of edges in the compressed edge list. */
601 #define NUM_EDGES(el) ((el)->num_edges)
602
603 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
604 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
605 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
606
607 /* BB is assumed to contain conditional jump. Return the branch edge. */
608 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
609 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
610
611 /* Return expected execution frequency of the edge E. */
612 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
613 * (e)->probability \
614 + REG_BR_PROB_BASE / 2) \
615 / REG_BR_PROB_BASE)
616
617 /* Return nonzero if edge is critical. */
618 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
619 && EDGE_COUNT ((e)->dest->preds) >= 2)
620
621 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
622 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
623 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
624 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
625
626 /* Returns true if BB has precisely one successor. */
627
628 static inline bool
629 single_succ_p (const_basic_block bb)
630 {
631 return EDGE_COUNT (bb->succs) == 1;
632 }
633
634 /* Returns true if BB has precisely one predecessor. */
635
636 static inline bool
637 single_pred_p (const_basic_block bb)
638 {
639 return EDGE_COUNT (bb->preds) == 1;
640 }
641
642 /* Returns the single successor edge of basic block BB. Aborts if
643 BB does not have exactly one successor. */
644
645 static inline edge
646 single_succ_edge (const_basic_block bb)
647 {
648 gcc_assert (single_succ_p (bb));
649 return EDGE_SUCC (bb, 0);
650 }
651
652 /* Returns the single predecessor edge of basic block BB. Aborts
653 if BB does not have exactly one predecessor. */
654
655 static inline edge
656 single_pred_edge (const_basic_block bb)
657 {
658 gcc_assert (single_pred_p (bb));
659 return EDGE_PRED (bb, 0);
660 }
661
662 /* Returns the single successor block of basic block BB. Aborts
663 if BB does not have exactly one successor. */
664
665 static inline basic_block
666 single_succ (const_basic_block bb)
667 {
668 return single_succ_edge (bb)->dest;
669 }
670
671 /* Returns the single predecessor block of basic block BB. Aborts
672 if BB does not have exactly one predecessor.*/
673
674 static inline basic_block
675 single_pred (const_basic_block bb)
676 {
677 return single_pred_edge (bb)->src;
678 }
679
680 /* Iterator object for edges. */
681
682 typedef struct {
683 unsigned index;
684 VEC(edge,gc) **container;
685 } edge_iterator;
686
687 static inline VEC(edge,gc) *
688 ei_container (edge_iterator i)
689 {
690 gcc_assert (i.container);
691 return *i.container;
692 }
693
694 #define ei_start(iter) ei_start_1 (&(iter))
695 #define ei_last(iter) ei_last_1 (&(iter))
696
697 /* Return an iterator pointing to the start of an edge vector. */
698 static inline edge_iterator
699 ei_start_1 (VEC(edge,gc) **ev)
700 {
701 edge_iterator i;
702
703 i.index = 0;
704 i.container = ev;
705
706 return i;
707 }
708
709 /* Return an iterator pointing to the last element of an edge
710 vector. */
711 static inline edge_iterator
712 ei_last_1 (VEC(edge,gc) **ev)
713 {
714 edge_iterator i;
715
716 i.index = EDGE_COUNT (*ev) - 1;
717 i.container = ev;
718
719 return i;
720 }
721
722 /* Is the iterator `i' at the end of the sequence? */
723 static inline bool
724 ei_end_p (edge_iterator i)
725 {
726 return (i.index == EDGE_COUNT (ei_container (i)));
727 }
728
729 /* Is the iterator `i' at one position before the end of the
730 sequence? */
731 static inline bool
732 ei_one_before_end_p (edge_iterator i)
733 {
734 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
735 }
736
737 /* Advance the iterator to the next element. */
738 static inline void
739 ei_next (edge_iterator *i)
740 {
741 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
742 i->index++;
743 }
744
745 /* Move the iterator to the previous element. */
746 static inline void
747 ei_prev (edge_iterator *i)
748 {
749 gcc_assert (i->index > 0);
750 i->index--;
751 }
752
753 /* Return the edge pointed to by the iterator `i'. */
754 static inline edge
755 ei_edge (edge_iterator i)
756 {
757 return EDGE_I (ei_container (i), i.index);
758 }
759
760 /* Return an edge pointed to by the iterator. Do it safely so that
761 NULL is returned when the iterator is pointing at the end of the
762 sequence. */
763 static inline edge
764 ei_safe_edge (edge_iterator i)
765 {
766 return !ei_end_p (i) ? ei_edge (i) : NULL;
767 }
768
769 /* Return 1 if we should continue to iterate. Return 0 otherwise.
770 *Edge P is set to the next edge if we are to continue to iterate
771 and NULL otherwise. */
772
773 static inline bool
774 ei_cond (edge_iterator ei, edge *p)
775 {
776 if (!ei_end_p (ei))
777 {
778 *p = ei_edge (ei);
779 return 1;
780 }
781 else
782 {
783 *p = NULL;
784 return 0;
785 }
786 }
787
788 /* This macro serves as a convenient way to iterate each edge in a
789 vector of predecessor or successor edges. It must not be used when
790 an element might be removed during the traversal, otherwise
791 elements will be missed. Instead, use a for-loop like that shown
792 in the following pseudo-code:
793
794 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
795 {
796 IF (e != taken_edge)
797 remove_edge (e);
798 ELSE
799 ei_next (&ei);
800 }
801 */
802
803 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
804 for ((ITER) = ei_start ((EDGE_VEC)); \
805 ei_cond ((ITER), &(EDGE)); \
806 ei_next (&(ITER)))
807
808 struct edge_list * create_edge_list (void);
809 void free_edge_list (struct edge_list *);
810 void print_edge_list (FILE *, struct edge_list *);
811 void verify_edge_list (FILE *, struct edge_list *);
812 int find_edge_index (struct edge_list *, basic_block, basic_block);
813 edge find_edge (basic_block, basic_block);
814
815 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
816 except for edge forwarding */
817 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
818 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
819 to care REG_DEAD notes. */
820 #define CLEANUP_THREADING 8 /* Do jump threading. */
821 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
822 insns. */
823 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
824
825 /* In lcm.c */
826 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
827 sbitmap *, sbitmap *, sbitmap **,
828 sbitmap **);
829 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
830 sbitmap *, sbitmap *,
831 sbitmap *, sbitmap **,
832 sbitmap **);
833 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
834
835 /* In predict.c */
836 extern bool maybe_hot_bb_p (const_basic_block);
837 extern bool maybe_hot_edge_p (edge);
838 extern bool probably_never_executed_bb_p (const_basic_block);
839 extern bool optimize_bb_for_size_p (const_basic_block);
840 extern bool optimize_bb_for_speed_p (const_basic_block);
841 extern bool optimize_edge_for_size_p (edge);
842 extern bool optimize_edge_for_speed_p (edge);
843 extern bool optimize_function_for_size_p (struct function *);
844 extern bool optimize_function_for_speed_p (struct function *);
845 extern bool optimize_loop_for_size_p (struct loop *);
846 extern bool optimize_loop_for_speed_p (struct loop *);
847 extern bool optimize_loop_nest_for_size_p (struct loop *);
848 extern bool optimize_loop_nest_for_speed_p (struct loop *);
849 extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
850 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
851 extern void gimple_predict_edge (edge, enum br_predictor, int);
852 extern void rtl_predict_edge (edge, enum br_predictor, int);
853 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
854 extern void guess_outgoing_edge_probabilities (basic_block);
855 extern void remove_predictions_associated_with_edge (edge);
856 extern bool edge_probability_reliable_p (const_edge);
857 extern bool br_prob_note_reliable_p (const_rtx);
858 extern bool predictable_edge_p (edge);
859
860 /* In cfg.c */
861 extern void dump_regset (regset, FILE *);
862 extern void debug_regset (regset);
863 extern void init_flow (struct function *);
864 extern void debug_bb (basic_block);
865 extern basic_block debug_bb_n (int);
866 extern void dump_regset (regset, FILE *);
867 extern void debug_regset (regset);
868 extern void expunge_block (basic_block);
869 extern void link_block (basic_block, basic_block);
870 extern void unlink_block (basic_block);
871 extern void compact_blocks (void);
872 extern basic_block alloc_block (void);
873 extern void alloc_aux_for_block (basic_block, int);
874 extern void alloc_aux_for_blocks (int);
875 extern void clear_aux_for_blocks (void);
876 extern void free_aux_for_blocks (void);
877 extern void alloc_aux_for_edge (edge, int);
878 extern void alloc_aux_for_edges (int);
879 extern void clear_aux_for_edges (void);
880 extern void free_aux_for_edges (void);
881
882 /* In cfganal.c */
883 extern void find_unreachable_blocks (void);
884 extern bool forwarder_block_p (const_basic_block);
885 extern bool can_fallthru (basic_block, basic_block);
886 extern bool could_fall_through (basic_block, basic_block);
887 extern void flow_nodes_print (const char *, const_sbitmap, FILE *);
888 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
889
890 /* In cfgrtl.c */
891 extern basic_block force_nonfallthru (edge);
892 extern rtx block_label (basic_block);
893 extern bool purge_all_dead_edges (void);
894 extern bool purge_dead_edges (basic_block);
895
896 /* In cfgbuild.c. */
897 extern void find_many_sub_basic_blocks (sbitmap);
898 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
899
900 /* In cfgcleanup.c. */
901 extern bool cleanup_cfg (int);
902 extern bool delete_unreachable_blocks (void);
903
904 extern bool mark_dfs_back_edges (void);
905 extern void set_edge_can_fallthru_flag (void);
906 extern void update_br_prob_note (basic_block);
907 extern void fixup_abnormal_edges (void);
908 extern bool inside_basic_block_p (const_rtx);
909 extern bool control_flow_insn_p (const_rtx);
910 extern rtx get_last_bb_insn (basic_block);
911
912 /* In bb-reorder.c */
913 extern void reorder_basic_blocks (void);
914
915 /* In dominance.c */
916
917 enum cdi_direction
918 {
919 CDI_DOMINATORS = 1,
920 CDI_POST_DOMINATORS = 2
921 };
922
923 extern enum dom_state dom_info_state (enum cdi_direction);
924 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
925 extern bool dom_info_available_p (enum cdi_direction);
926 extern void calculate_dominance_info (enum cdi_direction);
927 extern void free_dominance_info (enum cdi_direction);
928 extern basic_block nearest_common_dominator (enum cdi_direction,
929 basic_block, basic_block);
930 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
931 bitmap);
932 extern void set_immediate_dominator (enum cdi_direction, basic_block,
933 basic_block);
934 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
935 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
936 extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
937 extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
938 basic_block *,
939 unsigned);
940 extern VEC (basic_block, heap) *get_all_dominated_blocks (enum cdi_direction,
941 basic_block);
942 extern void add_to_dominance_info (enum cdi_direction, basic_block);
943 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
944 basic_block recompute_dominator (enum cdi_direction, basic_block);
945 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
946 basic_block);
947 extern void iterate_fix_dominators (enum cdi_direction,
948 VEC (basic_block, heap) *, bool);
949 extern void verify_dominators (enum cdi_direction);
950 extern basic_block first_dom_son (enum cdi_direction, basic_block);
951 extern basic_block next_dom_son (enum cdi_direction, basic_block);
952 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
953 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
954
955 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
956 extern void break_superblocks (void);
957 extern void relink_block_chain (bool);
958 extern void check_bb_profile (basic_block, FILE *);
959 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
960 extern void init_rtl_bb_info (basic_block);
961
962 extern void initialize_original_copy_tables (void);
963 extern void free_original_copy_tables (void);
964 extern void set_bb_original (basic_block, basic_block);
965 extern basic_block get_bb_original (basic_block);
966 extern void set_bb_copy (basic_block, basic_block);
967 extern basic_block get_bb_copy (basic_block);
968 void set_loop_copy (struct loop *, struct loop *);
969 struct loop *get_loop_copy (struct loop *);
970
971
972 extern rtx insert_insn_end_bb_new (rtx, basic_block);
973
974 #include "cfghooks.h"
975
976 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
977 static inline bool
978 bb_has_eh_pred (basic_block bb)
979 {
980 edge e;
981 edge_iterator ei;
982
983 FOR_EACH_EDGE (e, ei, bb->preds)
984 {
985 if (e->flags & EDGE_EH)
986 return true;
987 }
988 return false;
989 }
990
991 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
992 static inline bool
993 bb_has_abnormal_pred (basic_block bb)
994 {
995 edge e;
996 edge_iterator ei;
997
998 FOR_EACH_EDGE (e, ei, bb->preds)
999 {
1000 if (e->flags & EDGE_ABNORMAL)
1001 return true;
1002 }
1003 return false;
1004 }
1005
1006 /* In cfgloopmanip.c. */
1007 extern edge mfb_kj_edge;
1008 extern bool mfb_keep_just (edge);
1009
1010 /* In cfgexpand.c. */
1011 extern void rtl_profile_for_bb (basic_block);
1012 extern void rtl_profile_for_edge (edge);
1013 extern void default_rtl_profile (void);
1014
1015 #endif /* GCC_BASIC_BLOCK_H */