g-expect-vms.adb:
[gcc.git] / gcc / bb-reorder.c
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This (greedy) algorithm constructs traces in several rounds.
23 The construction starts from "seeds". The seed for the first round
24 is the entry point of function. When there are more than one seed
25 that one is selected first that has the lowest key in the heap
26 (see function bb_to_key). Then the algorithm repeatedly adds the most
27 probable successor to the end of a trace. Finally it connects the traces.
28
29 There are two parameters: Branch Threshold and Exec Threshold.
30 If the edge to a successor of the actual basic block is lower than
31 Branch Threshold or the frequency of the successor is lower than
32 Exec Threshold the successor will be the seed in one of the next rounds.
33 Each round has these parameters lower than the previous one.
34 The last round has to have these parameters set to zero
35 so that the remaining blocks are picked up.
36
37 The algorithm selects the most probable successor from all unvisited
38 successors and successors that have been added to this trace.
39 The other successors (that has not been "sent" to the next round) will be
40 other seeds for this round and the secondary traces will start in them.
41 If the successor has not been visited in this trace it is added to the trace
42 (however, there is some heuristic for simple branches).
43 If the successor has been visited in this trace the loop has been found.
44 If the loop has many iterations the loop is rotated so that the
45 source block of the most probable edge going out from the loop
46 is the last block of the trace.
47 If the loop has few iterations and there is no edge from the last block of
48 the loop going out from loop the loop header is duplicated.
49 Finally, the construction of the trace is terminated.
50
51 When connecting traces it first checks whether there is an edge from the
52 last block of one trace to the first block of another trace.
53 When there are still some unconnected traces it checks whether there exists
54 a basic block BB such that BB is a successor of the last bb of one trace
55 and BB is a predecessor of the first block of another trace. In this case,
56 BB is duplicated and the traces are connected through this duplicate.
57 The rest of traces are simply connected so there will be a jump to the
58 beginning of the rest of trace.
59
60
61 References:
62
63 "Software Trace Cache"
64 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
65 http://citeseer.nj.nec.com/15361.html
66
67 */
68
69 #include "config.h"
70 #include "system.h"
71 #include "coretypes.h"
72 #include "tm.h"
73 #include "rtl.h"
74 #include "regs.h"
75 #include "flags.h"
76 #include "timevar.h"
77 #include "output.h"
78 #include "cfglayout.h"
79 #include "fibheap.h"
80 #include "target.h"
81 #include "function.h"
82 #include "tm_p.h"
83 #include "obstack.h"
84 #include "expr.h"
85 #include "params.h"
86 #include "toplev.h"
87 #include "tree-pass.h"
88
89 #ifndef HAVE_conditional_execution
90 #define HAVE_conditional_execution 0
91 #endif
92
93 /* The number of rounds. In most cases there will only be 4 rounds, but
94 when partitioning hot and cold basic blocks into separate sections of
95 the .o file there will be an extra round.*/
96 #define N_ROUNDS 5
97
98 /* Stubs in case we don't have a return insn.
99 We have to check at runtime too, not only compiletime. */
100
101 #ifndef HAVE_return
102 #define HAVE_return 0
103 #define gen_return() NULL_RTX
104 #endif
105
106
107 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
108 static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
109
110 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
111 static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
112
113 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
114 block the edge destination is not duplicated while connecting traces. */
115 #define DUPLICATION_THRESHOLD 100
116
117 /* Length of unconditional jump instruction. */
118 static int uncond_jump_length;
119
120 /* Structure to hold needed information for each basic block. */
121 typedef struct bbro_basic_block_data_def
122 {
123 /* Which trace is the bb start of (-1 means it is not a start of a trace). */
124 int start_of_trace;
125
126 /* Which trace is the bb end of (-1 means it is not an end of a trace). */
127 int end_of_trace;
128
129 /* Which trace is the bb in? */
130 int in_trace;
131
132 /* Which heap is BB in (if any)? */
133 fibheap_t heap;
134
135 /* Which heap node is BB in (if any)? */
136 fibnode_t node;
137 } bbro_basic_block_data;
138
139 /* The current size of the following dynamic array. */
140 static int array_size;
141
142 /* The array which holds needed information for basic blocks. */
143 static bbro_basic_block_data *bbd;
144
145 /* To avoid frequent reallocation the size of arrays is greater than needed,
146 the number of elements is (not less than) 1.25 * size_wanted. */
147 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
148
149 /* Free the memory and set the pointer to NULL. */
150 #define FREE(P) (gcc_assert (P), free (P), P = 0)
151
152 /* Structure for holding information about a trace. */
153 struct trace
154 {
155 /* First and last basic block of the trace. */
156 basic_block first, last;
157
158 /* The round of the STC creation which this trace was found in. */
159 int round;
160
161 /* The length (i.e. the number of basic blocks) of the trace. */
162 int length;
163 };
164
165 /* Maximum frequency and count of one of the entry blocks. */
166 static int max_entry_frequency;
167 static gcov_type max_entry_count;
168
169 /* Local function prototypes. */
170 static void find_traces (int *, struct trace *);
171 static basic_block rotate_loop (edge, struct trace *, int);
172 static void mark_bb_visited (basic_block, int);
173 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
174 int, fibheap_t *, int);
175 static basic_block copy_bb (basic_block, edge, basic_block, int);
176 static fibheapkey_t bb_to_key (basic_block);
177 static bool better_edge_p (basic_block, edge, int, int, int, int, edge);
178 static void connect_traces (int, struct trace *);
179 static bool copy_bb_p (basic_block, int);
180 static int get_uncond_jump_length (void);
181 static bool push_to_next_round_p (basic_block, int, int, int, gcov_type);
182 static void find_rarely_executed_basic_blocks_and_crossing_edges (edge *,
183 int *,
184 int *);
185 static void add_labels_and_missing_jumps (edge *, int);
186 static void add_reg_crossing_jump_notes (void);
187 static void fix_up_fall_thru_edges (void);
188 static void fix_edges_for_rarely_executed_code (edge *, int);
189 static void fix_crossing_conditional_branches (void);
190 static void fix_crossing_unconditional_branches (void);
191 \f
192 /* Check to see if bb should be pushed into the next round of trace
193 collections or not. Reasons for pushing the block forward are 1).
194 If the block is cold, we are doing partitioning, and there will be
195 another round (cold partition blocks are not supposed to be
196 collected into traces until the very last round); or 2). There will
197 be another round, and the basic block is not "hot enough" for the
198 current round of trace collection. */
199
200 static bool
201 push_to_next_round_p (basic_block bb, int round, int number_of_rounds,
202 int exec_th, gcov_type count_th)
203 {
204 bool there_exists_another_round;
205 bool block_not_hot_enough;
206
207 there_exists_another_round = round < number_of_rounds - 1;
208
209 block_not_hot_enough = (bb->frequency < exec_th
210 || bb->count < count_th
211 || probably_never_executed_bb_p (bb));
212
213 if (there_exists_another_round
214 && block_not_hot_enough)
215 return true;
216 else
217 return false;
218 }
219
220 /* Find the traces for Software Trace Cache. Chain each trace through
221 RBI()->next. Store the number of traces to N_TRACES and description of
222 traces to TRACES. */
223
224 static void
225 find_traces (int *n_traces, struct trace *traces)
226 {
227 int i;
228 int number_of_rounds;
229 edge e;
230 edge_iterator ei;
231 fibheap_t heap;
232
233 /* Add one extra round of trace collection when partitioning hot/cold
234 basic blocks into separate sections. The last round is for all the
235 cold blocks (and ONLY the cold blocks). */
236
237 number_of_rounds = N_ROUNDS - 1;
238
239 /* Insert entry points of function into heap. */
240 heap = fibheap_new ();
241 max_entry_frequency = 0;
242 max_entry_count = 0;
243 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
244 {
245 bbd[e->dest->index].heap = heap;
246 bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
247 e->dest);
248 if (e->dest->frequency > max_entry_frequency)
249 max_entry_frequency = e->dest->frequency;
250 if (e->dest->count > max_entry_count)
251 max_entry_count = e->dest->count;
252 }
253
254 /* Find the traces. */
255 for (i = 0; i < number_of_rounds; i++)
256 {
257 gcov_type count_threshold;
258
259 if (dump_file)
260 fprintf (dump_file, "STC - round %d\n", i + 1);
261
262 if (max_entry_count < INT_MAX / 1000)
263 count_threshold = max_entry_count * exec_threshold[i] / 1000;
264 else
265 count_threshold = max_entry_count / 1000 * exec_threshold[i];
266
267 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
268 max_entry_frequency * exec_threshold[i] / 1000,
269 count_threshold, traces, n_traces, i, &heap,
270 number_of_rounds);
271 }
272 fibheap_delete (heap);
273
274 if (dump_file)
275 {
276 for (i = 0; i < *n_traces; i++)
277 {
278 basic_block bb;
279 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
280 traces[i].round + 1);
281 for (bb = traces[i].first; bb != traces[i].last; bb = bb->aux)
282 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
283 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
284 }
285 fflush (dump_file);
286 }
287 }
288
289 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
290 (with sequential number TRACE_N). */
291
292 static basic_block
293 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
294 {
295 basic_block bb;
296
297 /* Information about the best end (end after rotation) of the loop. */
298 basic_block best_bb = NULL;
299 edge best_edge = NULL;
300 int best_freq = -1;
301 gcov_type best_count = -1;
302 /* The best edge is preferred when its destination is not visited yet
303 or is a start block of some trace. */
304 bool is_preferred = false;
305
306 /* Find the most frequent edge that goes out from current trace. */
307 bb = back_edge->dest;
308 do
309 {
310 edge e;
311 edge_iterator ei;
312
313 FOR_EACH_EDGE (e, ei, bb->succs)
314 if (e->dest != EXIT_BLOCK_PTR
315 && e->dest->il.rtl->visited != trace_n
316 && (e->flags & EDGE_CAN_FALLTHRU)
317 && !(e->flags & EDGE_COMPLEX))
318 {
319 if (is_preferred)
320 {
321 /* The best edge is preferred. */
322 if (!e->dest->il.rtl->visited
323 || bbd[e->dest->index].start_of_trace >= 0)
324 {
325 /* The current edge E is also preferred. */
326 int freq = EDGE_FREQUENCY (e);
327 if (freq > best_freq || e->count > best_count)
328 {
329 best_freq = freq;
330 best_count = e->count;
331 best_edge = e;
332 best_bb = bb;
333 }
334 }
335 }
336 else
337 {
338 if (!e->dest->il.rtl->visited
339 || bbd[e->dest->index].start_of_trace >= 0)
340 {
341 /* The current edge E is preferred. */
342 is_preferred = true;
343 best_freq = EDGE_FREQUENCY (e);
344 best_count = e->count;
345 best_edge = e;
346 best_bb = bb;
347 }
348 else
349 {
350 int freq = EDGE_FREQUENCY (e);
351 if (!best_edge || freq > best_freq || e->count > best_count)
352 {
353 best_freq = freq;
354 best_count = e->count;
355 best_edge = e;
356 best_bb = bb;
357 }
358 }
359 }
360 }
361 bb = bb->aux;
362 }
363 while (bb != back_edge->dest);
364
365 if (best_bb)
366 {
367 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
368 the trace. */
369 if (back_edge->dest == trace->first)
370 {
371 trace->first = best_bb->aux;
372 }
373 else
374 {
375 basic_block prev_bb;
376
377 for (prev_bb = trace->first;
378 prev_bb->aux != back_edge->dest;
379 prev_bb = prev_bb->aux)
380 ;
381 prev_bb->aux = best_bb->aux;
382
383 /* Try to get rid of uncond jump to cond jump. */
384 if (single_succ_p (prev_bb))
385 {
386 basic_block header = single_succ (prev_bb);
387
388 /* Duplicate HEADER if it is a small block containing cond jump
389 in the end. */
390 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
391 && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
392 NULL_RTX))
393 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
394 }
395 }
396 }
397 else
398 {
399 /* We have not found suitable loop tail so do no rotation. */
400 best_bb = back_edge->src;
401 }
402 best_bb->aux = NULL;
403 return best_bb;
404 }
405
406 /* This function marks BB that it was visited in trace number TRACE. */
407
408 static void
409 mark_bb_visited (basic_block bb, int trace)
410 {
411 bb->il.rtl->visited = trace;
412 if (bbd[bb->index].heap)
413 {
414 fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
415 bbd[bb->index].heap = NULL;
416 bbd[bb->index].node = NULL;
417 }
418 }
419
420 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
421 not include basic blocks their probability is lower than BRANCH_TH or their
422 frequency is lower than EXEC_TH into traces (or count is lower than
423 COUNT_TH). It stores the new traces into TRACES and modifies the number of
424 traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
425 expects that starting basic blocks are in *HEAP and at the end it deletes
426 *HEAP and stores starting points for the next round into new *HEAP. */
427
428 static void
429 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
430 struct trace *traces, int *n_traces, int round,
431 fibheap_t *heap, int number_of_rounds)
432 {
433 /* Heap for discarded basic blocks which are possible starting points for
434 the next round. */
435 fibheap_t new_heap = fibheap_new ();
436
437 while (!fibheap_empty (*heap))
438 {
439 basic_block bb;
440 struct trace *trace;
441 edge best_edge, e;
442 fibheapkey_t key;
443 edge_iterator ei;
444
445 bb = fibheap_extract_min (*heap);
446 bbd[bb->index].heap = NULL;
447 bbd[bb->index].node = NULL;
448
449 if (dump_file)
450 fprintf (dump_file, "Getting bb %d\n", bb->index);
451
452 /* If the BB's frequency is too low send BB to the next round. When
453 partitioning hot/cold blocks into separate sections, make sure all
454 the cold blocks (and ONLY the cold blocks) go into the (extra) final
455 round. */
456
457 if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
458 count_th))
459 {
460 int key = bb_to_key (bb);
461 bbd[bb->index].heap = new_heap;
462 bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
463
464 if (dump_file)
465 fprintf (dump_file,
466 " Possible start point of next round: %d (key: %d)\n",
467 bb->index, key);
468 continue;
469 }
470
471 trace = traces + *n_traces;
472 trace->first = bb;
473 trace->round = round;
474 trace->length = 0;
475 bbd[bb->index].in_trace = *n_traces;
476 (*n_traces)++;
477
478 do
479 {
480 int prob, freq;
481 bool ends_in_call;
482
483 /* The probability and frequency of the best edge. */
484 int best_prob = INT_MIN / 2;
485 int best_freq = INT_MIN / 2;
486
487 best_edge = NULL;
488 mark_bb_visited (bb, *n_traces);
489 trace->length++;
490
491 if (dump_file)
492 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
493 bb->index, *n_traces - 1);
494
495 ends_in_call = block_ends_with_call_p (bb);
496
497 /* Select the successor that will be placed after BB. */
498 FOR_EACH_EDGE (e, ei, bb->succs)
499 {
500 gcc_assert (!(e->flags & EDGE_FAKE));
501
502 if (e->dest == EXIT_BLOCK_PTR)
503 continue;
504
505 if (e->dest->il.rtl->visited
506 && e->dest->il.rtl->visited != *n_traces)
507 continue;
508
509 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
510 continue;
511
512 prob = e->probability;
513 freq = e->dest->frequency;
514
515 /* The only sensible preference for a call instruction is the
516 fallthru edge. Don't bother selecting anything else. */
517 if (ends_in_call)
518 {
519 if (e->flags & EDGE_CAN_FALLTHRU)
520 {
521 best_edge = e;
522 best_prob = prob;
523 best_freq = freq;
524 }
525 continue;
526 }
527
528 /* Edge that cannot be fallthru or improbable or infrequent
529 successor (i.e. it is unsuitable successor). */
530 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
531 || prob < branch_th || EDGE_FREQUENCY (e) < exec_th
532 || e->count < count_th)
533 continue;
534
535 /* If partitioning hot/cold basic blocks, don't consider edges
536 that cross section boundaries. */
537
538 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
539 best_edge))
540 {
541 best_edge = e;
542 best_prob = prob;
543 best_freq = freq;
544 }
545 }
546
547 /* If the best destination has multiple predecessors, and can be
548 duplicated cheaper than a jump, don't allow it to be added
549 to a trace. We'll duplicate it when connecting traces. */
550 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
551 && copy_bb_p (best_edge->dest, 0))
552 best_edge = NULL;
553
554 /* Add all non-selected successors to the heaps. */
555 FOR_EACH_EDGE (e, ei, bb->succs)
556 {
557 if (e == best_edge
558 || e->dest == EXIT_BLOCK_PTR
559 || e->dest->il.rtl->visited)
560 continue;
561
562 key = bb_to_key (e->dest);
563
564 if (bbd[e->dest->index].heap)
565 {
566 /* E->DEST is already in some heap. */
567 if (key != bbd[e->dest->index].node->key)
568 {
569 if (dump_file)
570 {
571 fprintf (dump_file,
572 "Changing key for bb %d from %ld to %ld.\n",
573 e->dest->index,
574 (long) bbd[e->dest->index].node->key,
575 key);
576 }
577 fibheap_replace_key (bbd[e->dest->index].heap,
578 bbd[e->dest->index].node, key);
579 }
580 }
581 else
582 {
583 fibheap_t which_heap = *heap;
584
585 prob = e->probability;
586 freq = EDGE_FREQUENCY (e);
587
588 if (!(e->flags & EDGE_CAN_FALLTHRU)
589 || (e->flags & EDGE_COMPLEX)
590 || prob < branch_th || freq < exec_th
591 || e->count < count_th)
592 {
593 /* When partitioning hot/cold basic blocks, make sure
594 the cold blocks (and only the cold blocks) all get
595 pushed to the last round of trace collection. */
596
597 if (push_to_next_round_p (e->dest, round,
598 number_of_rounds,
599 exec_th, count_th))
600 which_heap = new_heap;
601 }
602
603 bbd[e->dest->index].heap = which_heap;
604 bbd[e->dest->index].node = fibheap_insert (which_heap,
605 key, e->dest);
606
607 if (dump_file)
608 {
609 fprintf (dump_file,
610 " Possible start of %s round: %d (key: %ld)\n",
611 (which_heap == new_heap) ? "next" : "this",
612 e->dest->index, (long) key);
613 }
614
615 }
616 }
617
618 if (best_edge) /* Suitable successor was found. */
619 {
620 if (best_edge->dest->il.rtl->visited == *n_traces)
621 {
622 /* We do nothing with one basic block loops. */
623 if (best_edge->dest != bb)
624 {
625 if (EDGE_FREQUENCY (best_edge)
626 > 4 * best_edge->dest->frequency / 5)
627 {
628 /* The loop has at least 4 iterations. If the loop
629 header is not the first block of the function
630 we can rotate the loop. */
631
632 if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
633 {
634 if (dump_file)
635 {
636 fprintf (dump_file,
637 "Rotating loop %d - %d\n",
638 best_edge->dest->index, bb->index);
639 }
640 bb->aux = best_edge->dest;
641 bbd[best_edge->dest->index].in_trace =
642 (*n_traces) - 1;
643 bb = rotate_loop (best_edge, trace, *n_traces);
644 }
645 }
646 else
647 {
648 /* The loop has less than 4 iterations. */
649
650 if (single_succ_p (bb)
651 && copy_bb_p (best_edge->dest, !optimize_size))
652 {
653 bb = copy_bb (best_edge->dest, best_edge, bb,
654 *n_traces);
655 trace->length++;
656 }
657 }
658 }
659
660 /* Terminate the trace. */
661 break;
662 }
663 else
664 {
665 /* Check for a situation
666
667 A
668 /|
669 B |
670 \|
671 C
672
673 where
674 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
675 >= EDGE_FREQUENCY (AC).
676 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
677 Best ordering is then A B C.
678
679 This situation is created for example by:
680
681 if (A) B;
682 C;
683
684 */
685
686 FOR_EACH_EDGE (e, ei, bb->succs)
687 if (e != best_edge
688 && (e->flags & EDGE_CAN_FALLTHRU)
689 && !(e->flags & EDGE_COMPLEX)
690 && !e->dest->il.rtl->visited
691 && single_pred_p (e->dest)
692 && !(e->flags & EDGE_CROSSING)
693 && single_succ_p (e->dest)
694 && (single_succ_edge (e->dest)->flags
695 & EDGE_CAN_FALLTHRU)
696 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
697 && single_succ (e->dest) == best_edge->dest
698 && 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
699 {
700 best_edge = e;
701 if (dump_file)
702 fprintf (dump_file, "Selecting BB %d\n",
703 best_edge->dest->index);
704 break;
705 }
706
707 bb->aux = best_edge->dest;
708 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
709 bb = best_edge->dest;
710 }
711 }
712 }
713 while (best_edge);
714 trace->last = bb;
715 bbd[trace->first->index].start_of_trace = *n_traces - 1;
716 bbd[trace->last->index].end_of_trace = *n_traces - 1;
717
718 /* The trace is terminated so we have to recount the keys in heap
719 (some block can have a lower key because now one of its predecessors
720 is an end of the trace). */
721 FOR_EACH_EDGE (e, ei, bb->succs)
722 {
723 if (e->dest == EXIT_BLOCK_PTR
724 || e->dest->il.rtl->visited)
725 continue;
726
727 if (bbd[e->dest->index].heap)
728 {
729 key = bb_to_key (e->dest);
730 if (key != bbd[e->dest->index].node->key)
731 {
732 if (dump_file)
733 {
734 fprintf (dump_file,
735 "Changing key for bb %d from %ld to %ld.\n",
736 e->dest->index,
737 (long) bbd[e->dest->index].node->key, key);
738 }
739 fibheap_replace_key (bbd[e->dest->index].heap,
740 bbd[e->dest->index].node,
741 key);
742 }
743 }
744 }
745 }
746
747 fibheap_delete (*heap);
748
749 /* "Return" the new heap. */
750 *heap = new_heap;
751 }
752
753 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
754 it to trace after BB, mark OLD_BB visited and update pass' data structures
755 (TRACE is a number of trace which OLD_BB is duplicated to). */
756
757 static basic_block
758 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
759 {
760 basic_block new_bb;
761
762 new_bb = duplicate_block (old_bb, e, bb);
763 BB_COPY_PARTITION (new_bb, old_bb);
764
765 gcc_assert (e->dest == new_bb);
766 gcc_assert (!e->dest->il.rtl->visited);
767
768 if (dump_file)
769 fprintf (dump_file,
770 "Duplicated bb %d (created bb %d)\n",
771 old_bb->index, new_bb->index);
772 new_bb->il.rtl->visited = trace;
773 new_bb->aux = bb->aux;
774 bb->aux = new_bb;
775
776 if (new_bb->index >= array_size || last_basic_block > array_size)
777 {
778 int i;
779 int new_size;
780
781 new_size = MAX (last_basic_block, new_bb->index + 1);
782 new_size = GET_ARRAY_SIZE (new_size);
783 bbd = xrealloc (bbd, new_size * sizeof (bbro_basic_block_data));
784 for (i = array_size; i < new_size; i++)
785 {
786 bbd[i].start_of_trace = -1;
787 bbd[i].in_trace = -1;
788 bbd[i].end_of_trace = -1;
789 bbd[i].heap = NULL;
790 bbd[i].node = NULL;
791 }
792 array_size = new_size;
793
794 if (dump_file)
795 {
796 fprintf (dump_file,
797 "Growing the dynamic array to %d elements.\n",
798 array_size);
799 }
800 }
801
802 bbd[new_bb->index].in_trace = trace;
803
804 return new_bb;
805 }
806
807 /* Compute and return the key (for the heap) of the basic block BB. */
808
809 static fibheapkey_t
810 bb_to_key (basic_block bb)
811 {
812 edge e;
813 edge_iterator ei;
814 int priority = 0;
815
816 /* Do not start in probably never executed blocks. */
817
818 if (BB_PARTITION (bb) == BB_COLD_PARTITION
819 || probably_never_executed_bb_p (bb))
820 return BB_FREQ_MAX;
821
822 /* Prefer blocks whose predecessor is an end of some trace
823 or whose predecessor edge is EDGE_DFS_BACK. */
824 FOR_EACH_EDGE (e, ei, bb->preds)
825 {
826 if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
827 || (e->flags & EDGE_DFS_BACK))
828 {
829 int edge_freq = EDGE_FREQUENCY (e);
830
831 if (edge_freq > priority)
832 priority = edge_freq;
833 }
834 }
835
836 if (priority)
837 /* The block with priority should have significantly lower key. */
838 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
839 return -bb->frequency;
840 }
841
842 /* Return true when the edge E from basic block BB is better than the temporary
843 best edge (details are in function). The probability of edge E is PROB. The
844 frequency of the successor is FREQ. The current best probability is
845 BEST_PROB, the best frequency is BEST_FREQ.
846 The edge is considered to be equivalent when PROB does not differ much from
847 BEST_PROB; similarly for frequency. */
848
849 static bool
850 better_edge_p (basic_block bb, edge e, int prob, int freq, int best_prob,
851 int best_freq, edge cur_best_edge)
852 {
853 bool is_better_edge;
854
855 /* The BEST_* values do not have to be best, but can be a bit smaller than
856 maximum values. */
857 int diff_prob = best_prob / 10;
858 int diff_freq = best_freq / 10;
859
860 if (prob > best_prob + diff_prob)
861 /* The edge has higher probability than the temporary best edge. */
862 is_better_edge = true;
863 else if (prob < best_prob - diff_prob)
864 /* The edge has lower probability than the temporary best edge. */
865 is_better_edge = false;
866 else if (freq < best_freq - diff_freq)
867 /* The edge and the temporary best edge have almost equivalent
868 probabilities. The higher frequency of a successor now means
869 that there is another edge going into that successor.
870 This successor has lower frequency so it is better. */
871 is_better_edge = true;
872 else if (freq > best_freq + diff_freq)
873 /* This successor has higher frequency so it is worse. */
874 is_better_edge = false;
875 else if (e->dest->prev_bb == bb)
876 /* The edges have equivalent probabilities and the successors
877 have equivalent frequencies. Select the previous successor. */
878 is_better_edge = true;
879 else
880 is_better_edge = false;
881
882 /* If we are doing hot/cold partitioning, make sure that we always favor
883 non-crossing edges over crossing edges. */
884
885 if (!is_better_edge
886 && flag_reorder_blocks_and_partition
887 && cur_best_edge
888 && (cur_best_edge->flags & EDGE_CROSSING)
889 && !(e->flags & EDGE_CROSSING))
890 is_better_edge = true;
891
892 return is_better_edge;
893 }
894
895 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
896
897 static void
898 connect_traces (int n_traces, struct trace *traces)
899 {
900 int i;
901 bool *connected;
902 bool two_passes;
903 int last_trace;
904 int current_pass;
905 int current_partition;
906 int freq_threshold;
907 gcov_type count_threshold;
908
909 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
910 if (max_entry_count < INT_MAX / 1000)
911 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
912 else
913 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
914
915 connected = XCNEWVEC (bool, n_traces);
916 last_trace = -1;
917 current_pass = 1;
918 current_partition = BB_PARTITION (traces[0].first);
919 two_passes = false;
920
921 if (flag_reorder_blocks_and_partition)
922 for (i = 0; i < n_traces && !two_passes; i++)
923 if (BB_PARTITION (traces[0].first)
924 != BB_PARTITION (traces[i].first))
925 two_passes = true;
926
927 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
928 {
929 int t = i;
930 int t2;
931 edge e, best;
932 int best_len;
933
934 if (i >= n_traces)
935 {
936 gcc_assert (two_passes && current_pass == 1);
937 i = 0;
938 t = i;
939 current_pass = 2;
940 if (current_partition == BB_HOT_PARTITION)
941 current_partition = BB_COLD_PARTITION;
942 else
943 current_partition = BB_HOT_PARTITION;
944 }
945
946 if (connected[t])
947 continue;
948
949 if (two_passes
950 && BB_PARTITION (traces[t].first) != current_partition)
951 continue;
952
953 connected[t] = true;
954
955 /* Find the predecessor traces. */
956 for (t2 = t; t2 > 0;)
957 {
958 edge_iterator ei;
959 best = NULL;
960 best_len = 0;
961 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
962 {
963 int si = e->src->index;
964
965 if (e->src != ENTRY_BLOCK_PTR
966 && (e->flags & EDGE_CAN_FALLTHRU)
967 && !(e->flags & EDGE_COMPLEX)
968 && bbd[si].end_of_trace >= 0
969 && !connected[bbd[si].end_of_trace]
970 && (BB_PARTITION (e->src) == current_partition)
971 && (!best
972 || e->probability > best->probability
973 || (e->probability == best->probability
974 && traces[bbd[si].end_of_trace].length > best_len)))
975 {
976 best = e;
977 best_len = traces[bbd[si].end_of_trace].length;
978 }
979 }
980 if (best)
981 {
982 best->src->aux = best->dest;
983 t2 = bbd[best->src->index].end_of_trace;
984 connected[t2] = true;
985
986 if (dump_file)
987 {
988 fprintf (dump_file, "Connection: %d %d\n",
989 best->src->index, best->dest->index);
990 }
991 }
992 else
993 break;
994 }
995
996 if (last_trace >= 0)
997 traces[last_trace].last->aux = traces[t2].first;
998 last_trace = t;
999
1000 /* Find the successor traces. */
1001 while (1)
1002 {
1003 /* Find the continuation of the chain. */
1004 edge_iterator ei;
1005 best = NULL;
1006 best_len = 0;
1007 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1008 {
1009 int di = e->dest->index;
1010
1011 if (e->dest != EXIT_BLOCK_PTR
1012 && (e->flags & EDGE_CAN_FALLTHRU)
1013 && !(e->flags & EDGE_COMPLEX)
1014 && bbd[di].start_of_trace >= 0
1015 && !connected[bbd[di].start_of_trace]
1016 && (BB_PARTITION (e->dest) == current_partition)
1017 && (!best
1018 || e->probability > best->probability
1019 || (e->probability == best->probability
1020 && traces[bbd[di].start_of_trace].length > best_len)))
1021 {
1022 best = e;
1023 best_len = traces[bbd[di].start_of_trace].length;
1024 }
1025 }
1026
1027 if (best)
1028 {
1029 if (dump_file)
1030 {
1031 fprintf (dump_file, "Connection: %d %d\n",
1032 best->src->index, best->dest->index);
1033 }
1034 t = bbd[best->dest->index].start_of_trace;
1035 traces[last_trace].last->aux = traces[t].first;
1036 connected[t] = true;
1037 last_trace = t;
1038 }
1039 else
1040 {
1041 /* Try to connect the traces by duplication of 1 block. */
1042 edge e2;
1043 basic_block next_bb = NULL;
1044 bool try_copy = false;
1045
1046 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1047 if (e->dest != EXIT_BLOCK_PTR
1048 && (e->flags & EDGE_CAN_FALLTHRU)
1049 && !(e->flags & EDGE_COMPLEX)
1050 && (!best || e->probability > best->probability))
1051 {
1052 edge_iterator ei;
1053 edge best2 = NULL;
1054 int best2_len = 0;
1055
1056 /* If the destination is a start of a trace which is only
1057 one block long, then no need to search the successor
1058 blocks of the trace. Accept it. */
1059 if (bbd[e->dest->index].start_of_trace >= 0
1060 && traces[bbd[e->dest->index].start_of_trace].length
1061 == 1)
1062 {
1063 best = e;
1064 try_copy = true;
1065 continue;
1066 }
1067
1068 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1069 {
1070 int di = e2->dest->index;
1071
1072 if (e2->dest == EXIT_BLOCK_PTR
1073 || ((e2->flags & EDGE_CAN_FALLTHRU)
1074 && !(e2->flags & EDGE_COMPLEX)
1075 && bbd[di].start_of_trace >= 0
1076 && !connected[bbd[di].start_of_trace]
1077 && (BB_PARTITION (e2->dest) == current_partition)
1078 && (EDGE_FREQUENCY (e2) >= freq_threshold)
1079 && (e2->count >= count_threshold)
1080 && (!best2
1081 || e2->probability > best2->probability
1082 || (e2->probability == best2->probability
1083 && traces[bbd[di].start_of_trace].length
1084 > best2_len))))
1085 {
1086 best = e;
1087 best2 = e2;
1088 if (e2->dest != EXIT_BLOCK_PTR)
1089 best2_len = traces[bbd[di].start_of_trace].length;
1090 else
1091 best2_len = INT_MAX;
1092 next_bb = e2->dest;
1093 try_copy = true;
1094 }
1095 }
1096 }
1097
1098 if (flag_reorder_blocks_and_partition)
1099 try_copy = false;
1100
1101 /* Copy tiny blocks always; copy larger blocks only when the
1102 edge is traversed frequently enough. */
1103 if (try_copy
1104 && copy_bb_p (best->dest,
1105 !optimize_size
1106 && EDGE_FREQUENCY (best) >= freq_threshold
1107 && best->count >= count_threshold))
1108 {
1109 basic_block new_bb;
1110
1111 if (dump_file)
1112 {
1113 fprintf (dump_file, "Connection: %d %d ",
1114 traces[t].last->index, best->dest->index);
1115 if (!next_bb)
1116 fputc ('\n', dump_file);
1117 else if (next_bb == EXIT_BLOCK_PTR)
1118 fprintf (dump_file, "exit\n");
1119 else
1120 fprintf (dump_file, "%d\n", next_bb->index);
1121 }
1122
1123 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1124 traces[t].last = new_bb;
1125 if (next_bb && next_bb != EXIT_BLOCK_PTR)
1126 {
1127 t = bbd[next_bb->index].start_of_trace;
1128 traces[last_trace].last->aux = traces[t].first;
1129 connected[t] = true;
1130 last_trace = t;
1131 }
1132 else
1133 break; /* Stop finding the successor traces. */
1134 }
1135 else
1136 break; /* Stop finding the successor traces. */
1137 }
1138 }
1139 }
1140
1141 if (dump_file)
1142 {
1143 basic_block bb;
1144
1145 fprintf (dump_file, "Final order:\n");
1146 for (bb = traces[0].first; bb; bb = bb->aux)
1147 fprintf (dump_file, "%d ", bb->index);
1148 fprintf (dump_file, "\n");
1149 fflush (dump_file);
1150 }
1151
1152 FREE (connected);
1153 }
1154
1155 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1156 when code size is allowed to grow by duplication. */
1157
1158 static bool
1159 copy_bb_p (basic_block bb, int code_may_grow)
1160 {
1161 int size = 0;
1162 int max_size = uncond_jump_length;
1163 rtx insn;
1164
1165 if (!bb->frequency)
1166 return false;
1167 if (EDGE_COUNT (bb->preds) < 2)
1168 return false;
1169 if (!can_duplicate_block_p (bb))
1170 return false;
1171
1172 /* Avoid duplicating blocks which have many successors (PR/13430). */
1173 if (EDGE_COUNT (bb->succs) > 8)
1174 return false;
1175
1176 if (code_may_grow && maybe_hot_bb_p (bb))
1177 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1178
1179 FOR_BB_INSNS (bb, insn)
1180 {
1181 if (INSN_P (insn))
1182 size += get_attr_min_length (insn);
1183 }
1184
1185 if (size <= max_size)
1186 return true;
1187
1188 if (dump_file)
1189 {
1190 fprintf (dump_file,
1191 "Block %d can't be copied because its size = %d.\n",
1192 bb->index, size);
1193 }
1194
1195 return false;
1196 }
1197
1198 /* Return the length of unconditional jump instruction. */
1199
1200 static int
1201 get_uncond_jump_length (void)
1202 {
1203 rtx label, jump;
1204 int length;
1205
1206 label = emit_label_before (gen_label_rtx (), get_insns ());
1207 jump = emit_jump_insn (gen_jump (label));
1208
1209 length = get_attr_min_length (jump);
1210
1211 delete_insn (jump);
1212 delete_insn (label);
1213 return length;
1214 }
1215
1216 /* Find the basic blocks that are rarely executed and need to be moved to
1217 a separate section of the .o file (to cut down on paging and improve
1218 cache locality). */
1219
1220 static void
1221 find_rarely_executed_basic_blocks_and_crossing_edges (edge *crossing_edges,
1222 int *n_crossing_edges,
1223 int *max_idx)
1224 {
1225 basic_block bb;
1226 bool has_hot_blocks = false;
1227 edge e;
1228 int i;
1229 edge_iterator ei;
1230
1231 /* Mark which partition (hot/cold) each basic block belongs in. */
1232
1233 FOR_EACH_BB (bb)
1234 {
1235 if (probably_never_executed_bb_p (bb))
1236 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1237 else
1238 {
1239 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1240 has_hot_blocks = true;
1241 }
1242 }
1243
1244 /* Mark every edge that crosses between sections. */
1245
1246 i = 0;
1247 FOR_EACH_BB (bb)
1248 FOR_EACH_EDGE (e, ei, bb->succs)
1249 {
1250 if (e->src != ENTRY_BLOCK_PTR
1251 && e->dest != EXIT_BLOCK_PTR
1252 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1253 {
1254 e->flags |= EDGE_CROSSING;
1255 if (i == *max_idx)
1256 {
1257 *max_idx *= 2;
1258 crossing_edges = xrealloc (crossing_edges,
1259 (*max_idx) * sizeof (edge));
1260 }
1261 crossing_edges[i++] = e;
1262 }
1263 else
1264 e->flags &= ~EDGE_CROSSING;
1265 }
1266 *n_crossing_edges = i;
1267 }
1268
1269 /* If any destination of a crossing edge does not have a label, add label;
1270 Convert any fall-through crossing edges (for blocks that do not contain
1271 a jump) to unconditional jumps. */
1272
1273 static void
1274 add_labels_and_missing_jumps (edge *crossing_edges, int n_crossing_edges)
1275 {
1276 int i;
1277 basic_block src;
1278 basic_block dest;
1279 rtx label;
1280 rtx barrier;
1281 rtx new_jump;
1282
1283 for (i=0; i < n_crossing_edges; i++)
1284 {
1285 if (crossing_edges[i])
1286 {
1287 src = crossing_edges[i]->src;
1288 dest = crossing_edges[i]->dest;
1289
1290 /* Make sure dest has a label. */
1291
1292 if (dest && (dest != EXIT_BLOCK_PTR))
1293 {
1294 label = block_label (dest);
1295
1296 /* Make sure source block ends with a jump. */
1297
1298 if (src && (src != ENTRY_BLOCK_PTR))
1299 {
1300 if (!JUMP_P (BB_END (src)))
1301 /* bb just falls through. */
1302 {
1303 /* make sure there's only one successor */
1304 gcc_assert (single_succ_p (src));
1305
1306 /* Find label in dest block. */
1307 label = block_label (dest);
1308
1309 new_jump = emit_jump_insn_after (gen_jump (label),
1310 BB_END (src));
1311 barrier = emit_barrier_after (new_jump);
1312 JUMP_LABEL (new_jump) = label;
1313 LABEL_NUSES (label) += 1;
1314 src->il.rtl->footer = unlink_insn_chain (barrier, barrier);
1315 /* Mark edge as non-fallthru. */
1316 crossing_edges[i]->flags &= ~EDGE_FALLTHRU;
1317 } /* end: 'if (GET_CODE ... ' */
1318 } /* end: 'if (src && src->index...' */
1319 } /* end: 'if (dest && dest->index...' */
1320 } /* end: 'if (crossing_edges[i]...' */
1321 } /* end for loop */
1322 }
1323
1324 /* Find any bb's where the fall-through edge is a crossing edge (note that
1325 these bb's must also contain a conditional jump; we've already
1326 dealt with fall-through edges for blocks that didn't have a
1327 conditional jump in the call to add_labels_and_missing_jumps).
1328 Convert the fall-through edge to non-crossing edge by inserting a
1329 new bb to fall-through into. The new bb will contain an
1330 unconditional jump (crossing edge) to the original fall through
1331 destination. */
1332
1333 static void
1334 fix_up_fall_thru_edges (void)
1335 {
1336 basic_block cur_bb;
1337 basic_block new_bb;
1338 edge succ1;
1339 edge succ2;
1340 edge fall_thru;
1341 edge cond_jump = NULL;
1342 edge e;
1343 bool cond_jump_crosses;
1344 int invert_worked;
1345 rtx old_jump;
1346 rtx fall_thru_label;
1347 rtx barrier;
1348
1349 FOR_EACH_BB (cur_bb)
1350 {
1351 fall_thru = NULL;
1352 if (EDGE_COUNT (cur_bb->succs) > 0)
1353 succ1 = EDGE_SUCC (cur_bb, 0);
1354 else
1355 succ1 = NULL;
1356
1357 if (EDGE_COUNT (cur_bb->succs) > 1)
1358 succ2 = EDGE_SUCC (cur_bb, 1);
1359 else
1360 succ2 = NULL;
1361
1362 /* Find the fall-through edge. */
1363
1364 if (succ1
1365 && (succ1->flags & EDGE_FALLTHRU))
1366 {
1367 fall_thru = succ1;
1368 cond_jump = succ2;
1369 }
1370 else if (succ2
1371 && (succ2->flags & EDGE_FALLTHRU))
1372 {
1373 fall_thru = succ2;
1374 cond_jump = succ1;
1375 }
1376
1377 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
1378 {
1379 /* Check to see if the fall-thru edge is a crossing edge. */
1380
1381 if (fall_thru->flags & EDGE_CROSSING)
1382 {
1383 /* The fall_thru edge crosses; now check the cond jump edge, if
1384 it exists. */
1385
1386 cond_jump_crosses = true;
1387 invert_worked = 0;
1388 old_jump = BB_END (cur_bb);
1389
1390 /* Find the jump instruction, if there is one. */
1391
1392 if (cond_jump)
1393 {
1394 if (!(cond_jump->flags & EDGE_CROSSING))
1395 cond_jump_crosses = false;
1396
1397 /* We know the fall-thru edge crosses; if the cond
1398 jump edge does NOT cross, and its destination is the
1399 next block in the bb order, invert the jump
1400 (i.e. fix it so the fall thru does not cross and
1401 the cond jump does). */
1402
1403 if (!cond_jump_crosses
1404 && cur_bb->aux == cond_jump->dest)
1405 {
1406 /* Find label in fall_thru block. We've already added
1407 any missing labels, so there must be one. */
1408
1409 fall_thru_label = block_label (fall_thru->dest);
1410
1411 if (old_jump && fall_thru_label)
1412 invert_worked = invert_jump (old_jump,
1413 fall_thru_label,0);
1414 if (invert_worked)
1415 {
1416 fall_thru->flags &= ~EDGE_FALLTHRU;
1417 cond_jump->flags |= EDGE_FALLTHRU;
1418 update_br_prob_note (cur_bb);
1419 e = fall_thru;
1420 fall_thru = cond_jump;
1421 cond_jump = e;
1422 cond_jump->flags |= EDGE_CROSSING;
1423 fall_thru->flags &= ~EDGE_CROSSING;
1424 }
1425 }
1426 }
1427
1428 if (cond_jump_crosses || !invert_worked)
1429 {
1430 /* This is the case where both edges out of the basic
1431 block are crossing edges. Here we will fix up the
1432 fall through edge. The jump edge will be taken care
1433 of later. */
1434
1435 new_bb = force_nonfallthru (fall_thru);
1436
1437 if (new_bb)
1438 {
1439 new_bb->aux = cur_bb->aux;
1440 cur_bb->aux = new_bb;
1441
1442 /* Make sure new fall-through bb is in same
1443 partition as bb it's falling through from. */
1444
1445 BB_COPY_PARTITION (new_bb, cur_bb);
1446 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1447 }
1448
1449 /* Add barrier after new jump */
1450
1451 if (new_bb)
1452 {
1453 barrier = emit_barrier_after (BB_END (new_bb));
1454 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1455 barrier);
1456 }
1457 else
1458 {
1459 barrier = emit_barrier_after (BB_END (cur_bb));
1460 cur_bb->il.rtl->footer = unlink_insn_chain (barrier,
1461 barrier);
1462 }
1463 }
1464 }
1465 }
1466 }
1467 }
1468
1469 /* This function checks the destination blockof a "crossing jump" to
1470 see if it has any crossing predecessors that begin with a code label
1471 and end with an unconditional jump. If so, it returns that predecessor
1472 block. (This is to avoid creating lots of new basic blocks that all
1473 contain unconditional jumps to the same destination). */
1474
1475 static basic_block
1476 find_jump_block (basic_block jump_dest)
1477 {
1478 basic_block source_bb = NULL;
1479 edge e;
1480 rtx insn;
1481 edge_iterator ei;
1482
1483 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1484 if (e->flags & EDGE_CROSSING)
1485 {
1486 basic_block src = e->src;
1487
1488 /* Check each predecessor to see if it has a label, and contains
1489 only one executable instruction, which is an unconditional jump.
1490 If so, we can use it. */
1491
1492 if (LABEL_P (BB_HEAD (src)))
1493 for (insn = BB_HEAD (src);
1494 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1495 insn = NEXT_INSN (insn))
1496 {
1497 if (INSN_P (insn)
1498 && insn == BB_END (src)
1499 && JUMP_P (insn)
1500 && !any_condjump_p (insn))
1501 {
1502 source_bb = src;
1503 break;
1504 }
1505 }
1506
1507 if (source_bb)
1508 break;
1509 }
1510
1511 return source_bb;
1512 }
1513
1514 /* Find all BB's with conditional jumps that are crossing edges;
1515 insert a new bb and make the conditional jump branch to the new
1516 bb instead (make the new bb same color so conditional branch won't
1517 be a 'crossing' edge). Insert an unconditional jump from the
1518 new bb to the original destination of the conditional jump. */
1519
1520 static void
1521 fix_crossing_conditional_branches (void)
1522 {
1523 basic_block cur_bb;
1524 basic_block new_bb;
1525 basic_block last_bb;
1526 basic_block dest;
1527 basic_block prev_bb;
1528 edge succ1;
1529 edge succ2;
1530 edge crossing_edge;
1531 edge new_edge;
1532 rtx old_jump;
1533 rtx set_src;
1534 rtx old_label = NULL_RTX;
1535 rtx new_label;
1536 rtx new_jump;
1537 rtx barrier;
1538
1539 last_bb = EXIT_BLOCK_PTR->prev_bb;
1540
1541 FOR_EACH_BB (cur_bb)
1542 {
1543 crossing_edge = NULL;
1544 if (EDGE_COUNT (cur_bb->succs) > 0)
1545 succ1 = EDGE_SUCC (cur_bb, 0);
1546 else
1547 succ1 = NULL;
1548
1549 if (EDGE_COUNT (cur_bb->succs) > 1)
1550 succ2 = EDGE_SUCC (cur_bb, 1);
1551 else
1552 succ2 = NULL;
1553
1554 /* We already took care of fall-through edges, so only one successor
1555 can be a crossing edge. */
1556
1557 if (succ1 && (succ1->flags & EDGE_CROSSING))
1558 crossing_edge = succ1;
1559 else if (succ2 && (succ2->flags & EDGE_CROSSING))
1560 crossing_edge = succ2;
1561
1562 if (crossing_edge)
1563 {
1564 old_jump = BB_END (cur_bb);
1565
1566 /* Check to make sure the jump instruction is a
1567 conditional jump. */
1568
1569 set_src = NULL_RTX;
1570
1571 if (any_condjump_p (old_jump))
1572 {
1573 if (GET_CODE (PATTERN (old_jump)) == SET)
1574 set_src = SET_SRC (PATTERN (old_jump));
1575 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
1576 {
1577 set_src = XVECEXP (PATTERN (old_jump), 0,0);
1578 if (GET_CODE (set_src) == SET)
1579 set_src = SET_SRC (set_src);
1580 else
1581 set_src = NULL_RTX;
1582 }
1583 }
1584
1585 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
1586 {
1587 if (GET_CODE (XEXP (set_src, 1)) == PC)
1588 old_label = XEXP (set_src, 2);
1589 else if (GET_CODE (XEXP (set_src, 2)) == PC)
1590 old_label = XEXP (set_src, 1);
1591
1592 /* Check to see if new bb for jumping to that dest has
1593 already been created; if so, use it; if not, create
1594 a new one. */
1595
1596 new_bb = find_jump_block (crossing_edge->dest);
1597
1598 if (new_bb)
1599 new_label = block_label (new_bb);
1600 else
1601 {
1602 /* Create new basic block to be dest for
1603 conditional jump. */
1604
1605 new_bb = create_basic_block (NULL, NULL, last_bb);
1606 new_bb->aux = last_bb->aux;
1607 last_bb->aux = new_bb;
1608 prev_bb = last_bb;
1609 last_bb = new_bb;
1610
1611 /* Update register liveness information. */
1612
1613 new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1614 new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1615 COPY_REG_SET (new_bb->il.rtl->global_live_at_end,
1616 prev_bb->il.rtl->global_live_at_end);
1617 COPY_REG_SET (new_bb->il.rtl->global_live_at_start,
1618 prev_bb->il.rtl->global_live_at_end);
1619
1620 /* Put appropriate instructions in new bb. */
1621
1622 new_label = gen_label_rtx ();
1623 emit_label_before (new_label, BB_HEAD (new_bb));
1624 BB_HEAD (new_bb) = new_label;
1625
1626 if (GET_CODE (old_label) == LABEL_REF)
1627 {
1628 old_label = JUMP_LABEL (old_jump);
1629 new_jump = emit_jump_insn_after (gen_jump
1630 (old_label),
1631 BB_END (new_bb));
1632 }
1633 else
1634 {
1635 gcc_assert (HAVE_return
1636 && GET_CODE (old_label) == RETURN);
1637 new_jump = emit_jump_insn_after (gen_return (),
1638 BB_END (new_bb));
1639 }
1640
1641 barrier = emit_barrier_after (new_jump);
1642 JUMP_LABEL (new_jump) = old_label;
1643 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1644 barrier);
1645
1646 /* Make sure new bb is in same partition as source
1647 of conditional branch. */
1648 BB_COPY_PARTITION (new_bb, cur_bb);
1649 }
1650
1651 /* Make old jump branch to new bb. */
1652
1653 redirect_jump (old_jump, new_label, 0);
1654
1655 /* Remove crossing_edge as predecessor of 'dest'. */
1656
1657 dest = crossing_edge->dest;
1658
1659 redirect_edge_succ (crossing_edge, new_bb);
1660
1661 /* Make a new edge from new_bb to old dest; new edge
1662 will be a successor for new_bb and a predecessor
1663 for 'dest'. */
1664
1665 if (EDGE_COUNT (new_bb->succs) == 0)
1666 new_edge = make_edge (new_bb, dest, 0);
1667 else
1668 new_edge = EDGE_SUCC (new_bb, 0);
1669
1670 crossing_edge->flags &= ~EDGE_CROSSING;
1671 new_edge->flags |= EDGE_CROSSING;
1672 }
1673 }
1674 }
1675 }
1676
1677 /* Find any unconditional branches that cross between hot and cold
1678 sections. Convert them into indirect jumps instead. */
1679
1680 static void
1681 fix_crossing_unconditional_branches (void)
1682 {
1683 basic_block cur_bb;
1684 rtx last_insn;
1685 rtx label;
1686 rtx label_addr;
1687 rtx indirect_jump_sequence;
1688 rtx jump_insn = NULL_RTX;
1689 rtx new_reg;
1690 rtx cur_insn;
1691 edge succ;
1692
1693 FOR_EACH_BB (cur_bb)
1694 {
1695 last_insn = BB_END (cur_bb);
1696
1697 if (EDGE_COUNT (cur_bb->succs) < 1)
1698 continue;
1699
1700 succ = EDGE_SUCC (cur_bb, 0);
1701
1702 /* Check to see if bb ends in a crossing (unconditional) jump. At
1703 this point, no crossing jumps should be conditional. */
1704
1705 if (JUMP_P (last_insn)
1706 && (succ->flags & EDGE_CROSSING))
1707 {
1708 rtx label2, table;
1709
1710 gcc_assert (!any_condjump_p (last_insn));
1711
1712 /* Make sure the jump is not already an indirect or table jump. */
1713
1714 if (!computed_jump_p (last_insn)
1715 && !tablejump_p (last_insn, &label2, &table))
1716 {
1717 /* We have found a "crossing" unconditional branch. Now
1718 we must convert it to an indirect jump. First create
1719 reference of label, as target for jump. */
1720
1721 label = JUMP_LABEL (last_insn);
1722 label_addr = gen_rtx_LABEL_REF (Pmode, label);
1723 LABEL_NUSES (label) += 1;
1724
1725 /* Get a register to use for the indirect jump. */
1726
1727 new_reg = gen_reg_rtx (Pmode);
1728
1729 /* Generate indirect the jump sequence. */
1730
1731 start_sequence ();
1732 emit_move_insn (new_reg, label_addr);
1733 emit_indirect_jump (new_reg);
1734 indirect_jump_sequence = get_insns ();
1735 end_sequence ();
1736
1737 /* Make sure every instruction in the new jump sequence has
1738 its basic block set to be cur_bb. */
1739
1740 for (cur_insn = indirect_jump_sequence; cur_insn;
1741 cur_insn = NEXT_INSN (cur_insn))
1742 {
1743 if (!BARRIER_P (cur_insn))
1744 BLOCK_FOR_INSN (cur_insn) = cur_bb;
1745 if (JUMP_P (cur_insn))
1746 jump_insn = cur_insn;
1747 }
1748
1749 /* Insert the new (indirect) jump sequence immediately before
1750 the unconditional jump, then delete the unconditional jump. */
1751
1752 emit_insn_before (indirect_jump_sequence, last_insn);
1753 delete_insn (last_insn);
1754
1755 /* Make BB_END for cur_bb be the jump instruction (NOT the
1756 barrier instruction at the end of the sequence...). */
1757
1758 BB_END (cur_bb) = jump_insn;
1759 }
1760 }
1761 }
1762 }
1763
1764 /* Add REG_CROSSING_JUMP note to all crossing jump insns. */
1765
1766 static void
1767 add_reg_crossing_jump_notes (void)
1768 {
1769 basic_block bb;
1770 edge e;
1771 edge_iterator ei;
1772
1773 FOR_EACH_BB (bb)
1774 FOR_EACH_EDGE (e, ei, bb->succs)
1775 if ((e->flags & EDGE_CROSSING)
1776 && JUMP_P (BB_END (e->src)))
1777 REG_NOTES (BB_END (e->src)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1778 NULL_RTX,
1779 REG_NOTES (BB_END
1780 (e->src)));
1781 }
1782
1783 /* Hot and cold basic blocks are partitioned and put in separate
1784 sections of the .o file, to reduce paging and improve cache
1785 performance (hopefully). This can result in bits of code from the
1786 same function being widely separated in the .o file. However this
1787 is not obvious to the current bb structure. Therefore we must take
1788 care to ensure that: 1). There are no fall_thru edges that cross
1789 between sections; 2). For those architectures which have "short"
1790 conditional branches, all conditional branches that attempt to
1791 cross between sections are converted to unconditional branches;
1792 and, 3). For those architectures which have "short" unconditional
1793 branches, all unconditional branches that attempt to cross between
1794 sections are converted to indirect jumps.
1795
1796 The code for fixing up fall_thru edges that cross between hot and
1797 cold basic blocks does so by creating new basic blocks containing
1798 unconditional branches to the appropriate label in the "other"
1799 section. The new basic block is then put in the same (hot or cold)
1800 section as the original conditional branch, and the fall_thru edge
1801 is modified to fall into the new basic block instead. By adding
1802 this level of indirection we end up with only unconditional branches
1803 crossing between hot and cold sections.
1804
1805 Conditional branches are dealt with by adding a level of indirection.
1806 A new basic block is added in the same (hot/cold) section as the
1807 conditional branch, and the conditional branch is retargeted to the
1808 new basic block. The new basic block contains an unconditional branch
1809 to the original target of the conditional branch (in the other section).
1810
1811 Unconditional branches are dealt with by converting them into
1812 indirect jumps. */
1813
1814 static void
1815 fix_edges_for_rarely_executed_code (edge *crossing_edges,
1816 int n_crossing_edges)
1817 {
1818 /* Make sure the source of any crossing edge ends in a jump and the
1819 destination of any crossing edge has a label. */
1820
1821 add_labels_and_missing_jumps (crossing_edges, n_crossing_edges);
1822
1823 /* Convert all crossing fall_thru edges to non-crossing fall
1824 thrus to unconditional jumps (that jump to the original fall
1825 thru dest). */
1826
1827 fix_up_fall_thru_edges ();
1828
1829 /* If the architecture does not have conditional branches that can
1830 span all of memory, convert crossing conditional branches into
1831 crossing unconditional branches. */
1832
1833 if (!HAS_LONG_COND_BRANCH)
1834 fix_crossing_conditional_branches ();
1835
1836 /* If the architecture does not have unconditional branches that
1837 can span all of memory, convert crossing unconditional branches
1838 into indirect jumps. Since adding an indirect jump also adds
1839 a new register usage, update the register usage information as
1840 well. */
1841
1842 if (!HAS_LONG_UNCOND_BRANCH)
1843 {
1844 fix_crossing_unconditional_branches ();
1845 reg_scan (get_insns (), max_reg_num ());
1846 }
1847
1848 add_reg_crossing_jump_notes ();
1849 }
1850
1851 /* Verify, in the basic block chain, that there is at most one switch
1852 between hot/cold partitions. This is modelled on
1853 rtl_verify_flow_info_1, but it cannot go inside that function
1854 because this condition will not be true until after
1855 reorder_basic_blocks is called. */
1856
1857 static void
1858 verify_hot_cold_block_grouping (void)
1859 {
1860 basic_block bb;
1861 int err = 0;
1862 bool switched_sections = false;
1863 int current_partition = 0;
1864
1865 FOR_EACH_BB (bb)
1866 {
1867 if (!current_partition)
1868 current_partition = BB_PARTITION (bb);
1869 if (BB_PARTITION (bb) != current_partition)
1870 {
1871 if (switched_sections)
1872 {
1873 error ("multiple hot/cold transitions found (bb %i)",
1874 bb->index);
1875 err = 1;
1876 }
1877 else
1878 {
1879 switched_sections = true;
1880 current_partition = BB_PARTITION (bb);
1881 }
1882 }
1883 }
1884
1885 gcc_assert(!err);
1886 }
1887
1888 /* Reorder basic blocks. The main entry point to this file. FLAGS is
1889 the set of flags to pass to cfg_layout_initialize(). */
1890
1891 void
1892 reorder_basic_blocks (void)
1893 {
1894 int n_traces;
1895 int i;
1896 struct trace *traces;
1897
1898 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
1899
1900 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1901 return;
1902
1903 set_edge_can_fallthru_flag ();
1904 mark_dfs_back_edges ();
1905
1906 /* We are estimating the length of uncond jump insn only once since the code
1907 for getting the insn length always returns the minimal length now. */
1908 if (uncond_jump_length == 0)
1909 uncond_jump_length = get_uncond_jump_length ();
1910
1911 /* We need to know some information for each basic block. */
1912 array_size = GET_ARRAY_SIZE (last_basic_block);
1913 bbd = XNEWVEC (bbro_basic_block_data, array_size);
1914 for (i = 0; i < array_size; i++)
1915 {
1916 bbd[i].start_of_trace = -1;
1917 bbd[i].in_trace = -1;
1918 bbd[i].end_of_trace = -1;
1919 bbd[i].heap = NULL;
1920 bbd[i].node = NULL;
1921 }
1922
1923 traces = XNEWVEC (struct trace, n_basic_blocks);
1924 n_traces = 0;
1925 find_traces (&n_traces, traces);
1926 connect_traces (n_traces, traces);
1927 FREE (traces);
1928 FREE (bbd);
1929
1930 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
1931
1932 if (dump_file)
1933 dump_flow_info (dump_file, dump_flags);
1934
1935 if (flag_reorder_blocks_and_partition)
1936 verify_hot_cold_block_grouping ();
1937 }
1938
1939 /* Determine which partition the first basic block in the function
1940 belongs to, then find the first basic block in the current function
1941 that belongs to a different section, and insert a
1942 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
1943 instruction stream. When writing out the assembly code,
1944 encountering this note will make the compiler switch between the
1945 hot and cold text sections. */
1946
1947 static void
1948 insert_section_boundary_note (void)
1949 {
1950 basic_block bb;
1951 rtx new_note;
1952 int first_partition = 0;
1953
1954 if (flag_reorder_blocks_and_partition)
1955 FOR_EACH_BB (bb)
1956 {
1957 if (!first_partition)
1958 first_partition = BB_PARTITION (bb);
1959 if (BB_PARTITION (bb) != first_partition)
1960 {
1961 new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
1962 BB_HEAD (bb));
1963 break;
1964 }
1965 }
1966 }
1967
1968 /* Duplicate the blocks containing computed gotos. This basically unfactors
1969 computed gotos that were factored early on in the compilation process to
1970 speed up edge based data flow. We used to not unfactoring them again,
1971 which can seriously pessimize code with many computed jumps in the source
1972 code, such as interpreters. See e.g. PR15242. */
1973
1974 static bool
1975 gate_duplicate_computed_gotos (void)
1976 {
1977 if (targetm.cannot_modify_jumps_p ())
1978 return false;
1979 return (optimize > 0 && flag_expensive_optimizations && !optimize_size);
1980 }
1981
1982
1983 static unsigned int
1984 duplicate_computed_gotos (void)
1985 {
1986 basic_block bb, new_bb;
1987 bitmap candidates;
1988 int max_size;
1989
1990 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1991 return 0;
1992
1993 cfg_layout_initialize (0);
1994
1995 /* We are estimating the length of uncond jump insn only once
1996 since the code for getting the insn length always returns
1997 the minimal length now. */
1998 if (uncond_jump_length == 0)
1999 uncond_jump_length = get_uncond_jump_length ();
2000
2001 max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2002 candidates = BITMAP_ALLOC (NULL);
2003
2004 /* Look for blocks that end in a computed jump, and see if such blocks
2005 are suitable for unfactoring. If a block is a candidate for unfactoring,
2006 mark it in the candidates. */
2007 FOR_EACH_BB (bb)
2008 {
2009 rtx insn;
2010 edge e;
2011 edge_iterator ei;
2012 int size, all_flags;
2013
2014 /* Build the reorder chain for the original order of blocks. */
2015 if (bb->next_bb != EXIT_BLOCK_PTR)
2016 bb->aux = bb->next_bb;
2017
2018 /* Obviously the block has to end in a computed jump. */
2019 if (!computed_jump_p (BB_END (bb)))
2020 continue;
2021
2022 /* Only consider blocks that can be duplicated. */
2023 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2024 || !can_duplicate_block_p (bb))
2025 continue;
2026
2027 /* Make sure that the block is small enough. */
2028 size = 0;
2029 FOR_BB_INSNS (bb, insn)
2030 if (INSN_P (insn))
2031 {
2032 size += get_attr_min_length (insn);
2033 if (size > max_size)
2034 break;
2035 }
2036 if (size > max_size)
2037 continue;
2038
2039 /* Final check: there must not be any incoming abnormal edges. */
2040 all_flags = 0;
2041 FOR_EACH_EDGE (e, ei, bb->preds)
2042 all_flags |= e->flags;
2043 if (all_flags & EDGE_COMPLEX)
2044 continue;
2045
2046 bitmap_set_bit (candidates, bb->index);
2047 }
2048
2049 /* Nothing to do if there is no computed jump here. */
2050 if (bitmap_empty_p (candidates))
2051 goto done;
2052
2053 /* Duplicate computed gotos. */
2054 FOR_EACH_BB (bb)
2055 {
2056 if (bb->il.rtl->visited)
2057 continue;
2058
2059 bb->il.rtl->visited = 1;
2060
2061 /* BB must have one outgoing edge. That edge must not lead to
2062 the exit block or the next block.
2063 The destination must have more than one predecessor. */
2064 if (!single_succ_p (bb)
2065 || single_succ (bb) == EXIT_BLOCK_PTR
2066 || single_succ (bb) == bb->next_bb
2067 || single_pred_p (single_succ (bb)))
2068 continue;
2069
2070 /* The successor block has to be a duplication candidate. */
2071 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2072 continue;
2073
2074 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2075 new_bb->aux = bb->aux;
2076 bb->aux = new_bb;
2077 new_bb->il.rtl->visited = 1;
2078 }
2079
2080 done:
2081 cfg_layout_finalize ();
2082
2083 BITMAP_FREE (candidates);
2084 return 0;
2085 }
2086
2087 struct tree_opt_pass pass_duplicate_computed_gotos =
2088 {
2089 "compgotos", /* name */
2090 gate_duplicate_computed_gotos, /* gate */
2091 duplicate_computed_gotos, /* execute */
2092 NULL, /* sub */
2093 NULL, /* next */
2094 0, /* static_pass_number */
2095 TV_REORDER_BLOCKS, /* tv_id */
2096 0, /* properties_required */
2097 0, /* properties_provided */
2098 0, /* properties_destroyed */
2099 0, /* todo_flags_start */
2100 TODO_dump_func, /* todo_flags_finish */
2101 0 /* letter */
2102 };
2103
2104
2105 /* This function is the main 'entrance' for the optimization that
2106 partitions hot and cold basic blocks into separate sections of the
2107 .o file (to improve performance and cache locality). Ideally it
2108 would be called after all optimizations that rearrange the CFG have
2109 been called. However part of this optimization may introduce new
2110 register usage, so it must be called before register allocation has
2111 occurred. This means that this optimization is actually called
2112 well before the optimization that reorders basic blocks (see
2113 function above).
2114
2115 This optimization checks the feedback information to determine
2116 which basic blocks are hot/cold, updates flags on the basic blocks
2117 to indicate which section they belong in. This information is
2118 later used for writing out sections in the .o file. Because hot
2119 and cold sections can be arbitrarily large (within the bounds of
2120 memory), far beyond the size of a single function, it is necessary
2121 to fix up all edges that cross section boundaries, to make sure the
2122 instructions used can actually span the required distance. The
2123 fixes are described below.
2124
2125 Fall-through edges must be changed into jumps; it is not safe or
2126 legal to fall through across a section boundary. Whenever a
2127 fall-through edge crossing a section boundary is encountered, a new
2128 basic block is inserted (in the same section as the fall-through
2129 source), and the fall through edge is redirected to the new basic
2130 block. The new basic block contains an unconditional jump to the
2131 original fall-through target. (If the unconditional jump is
2132 insufficient to cross section boundaries, that is dealt with a
2133 little later, see below).
2134
2135 In order to deal with architectures that have short conditional
2136 branches (which cannot span all of memory) we take any conditional
2137 jump that attempts to cross a section boundary and add a level of
2138 indirection: it becomes a conditional jump to a new basic block, in
2139 the same section. The new basic block contains an unconditional
2140 jump to the original target, in the other section.
2141
2142 For those architectures whose unconditional branch is also
2143 incapable of reaching all of memory, those unconditional jumps are
2144 converted into indirect jumps, through a register.
2145
2146 IMPORTANT NOTE: This optimization causes some messy interactions
2147 with the cfg cleanup optimizations; those optimizations want to
2148 merge blocks wherever possible, and to collapse indirect jump
2149 sequences (change "A jumps to B jumps to C" directly into "A jumps
2150 to C"). Those optimizations can undo the jump fixes that
2151 partitioning is required to make (see above), in order to ensure
2152 that jumps attempting to cross section boundaries are really able
2153 to cover whatever distance the jump requires (on many architectures
2154 conditional or unconditional jumps are not able to reach all of
2155 memory). Therefore tests have to be inserted into each such
2156 optimization to make sure that it does not undo stuff necessary to
2157 cross partition boundaries. This would be much less of a problem
2158 if we could perform this optimization later in the compilation, but
2159 unfortunately the fact that we may need to create indirect jumps
2160 (through registers) requires that this optimization be performed
2161 before register allocation. */
2162
2163 static void
2164 partition_hot_cold_basic_blocks (void)
2165 {
2166 basic_block cur_bb;
2167 edge *crossing_edges;
2168 int n_crossing_edges;
2169 int max_edges = 2 * last_basic_block;
2170
2171 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2172 return;
2173
2174 crossing_edges = XCNEWVEC (edge, max_edges);
2175
2176 cfg_layout_initialize (0);
2177
2178 FOR_EACH_BB (cur_bb)
2179 if (cur_bb->index >= NUM_FIXED_BLOCKS
2180 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
2181 cur_bb->aux = cur_bb->next_bb;
2182
2183 find_rarely_executed_basic_blocks_and_crossing_edges (crossing_edges,
2184 &n_crossing_edges,
2185 &max_edges);
2186
2187 if (n_crossing_edges > 0)
2188 fix_edges_for_rarely_executed_code (crossing_edges, n_crossing_edges);
2189
2190 free (crossing_edges);
2191
2192 cfg_layout_finalize ();
2193 }
2194 \f
2195 static bool
2196 gate_handle_reorder_blocks (void)
2197 {
2198 if (targetm.cannot_modify_jumps_p ())
2199 return false;
2200 return (optimize > 0);
2201 }
2202
2203
2204 /* Reorder basic blocks. */
2205 static unsigned int
2206 rest_of_handle_reorder_blocks (void)
2207 {
2208 unsigned int liveness_flags;
2209 basic_block bb;
2210
2211 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2212 splitting possibly introduced more crossjumping opportunities. */
2213 liveness_flags = (!HAVE_conditional_execution ? CLEANUP_UPDATE_LIFE : 0);
2214 cfg_layout_initialize (CLEANUP_EXPENSIVE | liveness_flags);
2215
2216 if (flag_sched2_use_traces && flag_schedule_insns_after_reload)
2217 {
2218 timevar_push (TV_TRACER);
2219 tracer ();
2220 timevar_pop (TV_TRACER);
2221 }
2222
2223 if (flag_reorder_blocks || flag_reorder_blocks_and_partition)
2224 reorder_basic_blocks ();
2225 if (flag_reorder_blocks || flag_reorder_blocks_and_partition
2226 || (flag_sched2_use_traces && flag_schedule_insns_after_reload))
2227 cleanup_cfg (CLEANUP_EXPENSIVE | liveness_flags);
2228
2229 /* On conditional execution targets we can not update the life cheaply, so
2230 we deffer the updating to after both cleanups. This may lose some cases
2231 but should not be terribly bad. */
2232 if (HAVE_conditional_execution)
2233 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
2234 PROP_DEATH_NOTES);
2235
2236 FOR_EACH_BB (bb)
2237 if (bb->next_bb != EXIT_BLOCK_PTR)
2238 bb->aux = bb->next_bb;
2239 cfg_layout_finalize ();
2240
2241 /* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes. */
2242 insert_section_boundary_note ();
2243 return 0;
2244 }
2245
2246 struct tree_opt_pass pass_reorder_blocks =
2247 {
2248 "bbro", /* name */
2249 gate_handle_reorder_blocks, /* gate */
2250 rest_of_handle_reorder_blocks, /* execute */
2251 NULL, /* sub */
2252 NULL, /* next */
2253 0, /* static_pass_number */
2254 TV_REORDER_BLOCKS, /* tv_id */
2255 0, /* properties_required */
2256 0, /* properties_provided */
2257 0, /* properties_destroyed */
2258 0, /* todo_flags_start */
2259 TODO_dump_func, /* todo_flags_finish */
2260 'B' /* letter */
2261 };
2262
2263 static bool
2264 gate_handle_partition_blocks (void)
2265 {
2266 /* The optimization to partition hot/cold basic blocks into separate
2267 sections of the .o file does not work well with linkonce or with
2268 user defined section attributes. Don't call it if either case
2269 arises. */
2270
2271 return (flag_reorder_blocks_and_partition
2272 && !DECL_ONE_ONLY (current_function_decl)
2273 && !user_defined_section_attribute);
2274 }
2275
2276 /* Partition hot and cold basic blocks. */
2277 static unsigned int
2278 rest_of_handle_partition_blocks (void)
2279 {
2280 no_new_pseudos = 0;
2281 partition_hot_cold_basic_blocks ();
2282 allocate_reg_life_data ();
2283 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
2284 PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
2285 no_new_pseudos = 1;
2286 return 0;
2287 }
2288
2289 struct tree_opt_pass pass_partition_blocks =
2290 {
2291 "bbpart", /* name */
2292 gate_handle_partition_blocks, /* gate */
2293 rest_of_handle_partition_blocks, /* execute */
2294 NULL, /* sub */
2295 NULL, /* next */
2296 0, /* static_pass_number */
2297 TV_REORDER_BLOCKS, /* tv_id */
2298 0, /* properties_required */
2299 0, /* properties_provided */
2300 0, /* properties_destroyed */
2301 0, /* todo_flags_start */
2302 TODO_dump_func, /* todo_flags_finish */
2303 0 /* letter */
2304 };
2305
2306