2af1d5441b4e7d777d2a085e6e5b5244d1c7cac0
[gcc.git] / gcc / bb-reorder.c
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This (greedy) algorithm constructs traces in several rounds.
21 The construction starts from "seeds". The seed for the first round
22 is the entry point of the function. When there are more than one seed,
23 the one with the lowest key in the heap is selected first (see bb_to_key).
24 Then the algorithm repeatedly adds the most probable successor to the end
25 of a trace. Finally it connects the traces.
26
27 There are two parameters: Branch Threshold and Exec Threshold.
28 If the probability of an edge to a successor of the current basic block is
29 lower than Branch Threshold or its frequency is lower than Exec Threshold,
30 then the successor will be the seed in one of the next rounds.
31 Each round has these parameters lower than the previous one.
32 The last round has to have these parameters set to zero so that the
33 remaining blocks are picked up.
34
35 The algorithm selects the most probable successor from all unvisited
36 successors and successors that have been added to this trace.
37 The other successors (that has not been "sent" to the next round) will be
38 other seeds for this round and the secondary traces will start from them.
39 If the successor has not been visited in this trace, it is added to the
40 trace (however, there is some heuristic for simple branches).
41 If the successor has been visited in this trace, a loop has been found.
42 If the loop has many iterations, the loop is rotated so that the source
43 block of the most probable edge going out of the loop is the last block
44 of the trace.
45 If the loop has few iterations and there is no edge from the last block of
46 the loop going out of the loop, the loop header is duplicated.
47
48 When connecting traces, the algorithm first checks whether there is an edge
49 from the last block of a trace to the first block of another trace.
50 When there are still some unconnected traces it checks whether there exists
51 a basic block BB such that BB is a successor of the last block of a trace
52 and BB is a predecessor of the first block of another trace. In this case,
53 BB is duplicated, added at the end of the first trace and the traces are
54 connected through it.
55 The rest of traces are simply connected so there will be a jump to the
56 beginning of the rest of traces.
57
58 The above description is for the full algorithm, which is used when the
59 function is optimized for speed. When the function is optimized for size,
60 in order to reduce long jumps and connect more fallthru edges, the
61 algorithm is modified as follows:
62 (1) Break long traces to short ones. A trace is broken at a block that has
63 multiple predecessors/ successors during trace discovery. When connecting
64 traces, only connect Trace n with Trace n + 1. This change reduces most
65 long jumps compared with the above algorithm.
66 (2) Ignore the edge probability and frequency for fallthru edges.
67 (3) Keep the original order of blocks when there is no chance to fall
68 through. We rely on the results of cfg_cleanup.
69
70 To implement the change for code size optimization, block's index is
71 selected as the key and all traces are found in one round.
72
73 References:
74
75 "Software Trace Cache"
76 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
77 http://citeseer.nj.nec.com/15361.html
78
79 */
80
81 #include "config.h"
82 #include "system.h"
83 #include "coretypes.h"
84 #include "backend.h"
85 #include "cfghooks.h"
86 #include "tree.h"
87 #include "rtl.h"
88 #include "df.h"
89 #include "alias.h"
90 #include "regs.h"
91 #include "flags.h"
92 #include "output.h"
93 #include "target.h"
94 #include "tm_p.h"
95 #include "obstack.h"
96 #include "insn-config.h"
97 #include "expmed.h"
98 #include "dojump.h"
99 #include "explow.h"
100 #include "calls.h"
101 #include "emit-rtl.h"
102 #include "varasm.h"
103 #include "stmt.h"
104 #include "expr.h"
105 #include "optabs.h"
106 #include "params.h"
107 #include "diagnostic-core.h"
108 #include "toplev.h" /* user_defined_section_attribute */
109 #include "tree-pass.h"
110 #include "cfgrtl.h"
111 #include "cfganal.h"
112 #include "cfgbuild.h"
113 #include "cfgcleanup.h"
114 #include "bb-reorder.h"
115 #include "cgraph.h"
116 #include "except.h"
117 #include "fibonacci_heap.h"
118
119 /* The number of rounds. In most cases there will only be 4 rounds, but
120 when partitioning hot and cold basic blocks into separate sections of
121 the object file there will be an extra round. */
122 #define N_ROUNDS 5
123
124 struct target_bb_reorder default_target_bb_reorder;
125 #if SWITCHABLE_TARGET
126 struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
127 #endif
128
129 #define uncond_jump_length \
130 (this_target_bb_reorder->x_uncond_jump_length)
131
132 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
133 static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
134
135 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
136 static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
137
138 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
139 block the edge destination is not duplicated while connecting traces. */
140 #define DUPLICATION_THRESHOLD 100
141
142 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
143 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
144
145 /* Structure to hold needed information for each basic block. */
146 typedef struct bbro_basic_block_data_def
147 {
148 /* Which trace is the bb start of (-1 means it is not a start of any). */
149 int start_of_trace;
150
151 /* Which trace is the bb end of (-1 means it is not an end of any). */
152 int end_of_trace;
153
154 /* Which trace is the bb in? */
155 int in_trace;
156
157 /* Which trace was this bb visited in? */
158 int visited;
159
160 /* Which heap is BB in (if any)? */
161 bb_heap_t *heap;
162
163 /* Which heap node is BB in (if any)? */
164 bb_heap_node_t *node;
165 } bbro_basic_block_data;
166
167 /* The current size of the following dynamic array. */
168 static int array_size;
169
170 /* The array which holds needed information for basic blocks. */
171 static bbro_basic_block_data *bbd;
172
173 /* To avoid frequent reallocation the size of arrays is greater than needed,
174 the number of elements is (not less than) 1.25 * size_wanted. */
175 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
176
177 /* Free the memory and set the pointer to NULL. */
178 #define FREE(P) (gcc_assert (P), free (P), P = 0)
179
180 /* Structure for holding information about a trace. */
181 struct trace
182 {
183 /* First and last basic block of the trace. */
184 basic_block first, last;
185
186 /* The round of the STC creation which this trace was found in. */
187 int round;
188
189 /* The length (i.e. the number of basic blocks) of the trace. */
190 int length;
191 };
192
193 /* Maximum frequency and count of one of the entry blocks. */
194 static int max_entry_frequency;
195 static gcov_type max_entry_count;
196
197 /* Local function prototypes. */
198 static void find_traces (int *, struct trace *);
199 static basic_block rotate_loop (edge, struct trace *, int);
200 static void mark_bb_visited (basic_block, int);
201 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
202 int, bb_heap_t **, int);
203 static basic_block copy_bb (basic_block, edge, basic_block, int);
204 static long bb_to_key (basic_block);
205 static bool better_edge_p (const_basic_block, const_edge, int, int, int, int,
206 const_edge);
207 static bool connect_better_edge_p (const_edge, bool, int, const_edge,
208 struct trace *);
209 static void connect_traces (int, struct trace *);
210 static bool copy_bb_p (const_basic_block, int);
211 static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
212 \f
213 /* Return the trace number in which BB was visited. */
214
215 static int
216 bb_visited_trace (const_basic_block bb)
217 {
218 gcc_assert (bb->index < array_size);
219 return bbd[bb->index].visited;
220 }
221
222 /* This function marks BB that it was visited in trace number TRACE. */
223
224 static void
225 mark_bb_visited (basic_block bb, int trace)
226 {
227 bbd[bb->index].visited = trace;
228 if (bbd[bb->index].heap)
229 {
230 bbd[bb->index].heap->delete_node (bbd[bb->index].node);
231 bbd[bb->index].heap = NULL;
232 bbd[bb->index].node = NULL;
233 }
234 }
235
236 /* Check to see if bb should be pushed into the next round of trace
237 collections or not. Reasons for pushing the block forward are 1).
238 If the block is cold, we are doing partitioning, and there will be
239 another round (cold partition blocks are not supposed to be
240 collected into traces until the very last round); or 2). There will
241 be another round, and the basic block is not "hot enough" for the
242 current round of trace collection. */
243
244 static bool
245 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
246 int exec_th, gcov_type count_th)
247 {
248 bool there_exists_another_round;
249 bool block_not_hot_enough;
250
251 there_exists_another_round = round < number_of_rounds - 1;
252
253 block_not_hot_enough = (bb->frequency < exec_th
254 || bb->count < count_th
255 || probably_never_executed_bb_p (cfun, bb));
256
257 if (there_exists_another_round
258 && block_not_hot_enough)
259 return true;
260 else
261 return false;
262 }
263
264 /* Find the traces for Software Trace Cache. Chain each trace through
265 RBI()->next. Store the number of traces to N_TRACES and description of
266 traces to TRACES. */
267
268 static void
269 find_traces (int *n_traces, struct trace *traces)
270 {
271 int i;
272 int number_of_rounds;
273 edge e;
274 edge_iterator ei;
275 bb_heap_t *heap = new bb_heap_t (LONG_MIN);
276
277 /* Add one extra round of trace collection when partitioning hot/cold
278 basic blocks into separate sections. The last round is for all the
279 cold blocks (and ONLY the cold blocks). */
280
281 number_of_rounds = N_ROUNDS - 1;
282
283 /* Insert entry points of function into heap. */
284 max_entry_frequency = 0;
285 max_entry_count = 0;
286 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
287 {
288 bbd[e->dest->index].heap = heap;
289 bbd[e->dest->index].node = heap->insert (bb_to_key (e->dest), e->dest);
290 if (e->dest->frequency > max_entry_frequency)
291 max_entry_frequency = e->dest->frequency;
292 if (e->dest->count > max_entry_count)
293 max_entry_count = e->dest->count;
294 }
295
296 /* Find the traces. */
297 for (i = 0; i < number_of_rounds; i++)
298 {
299 gcov_type count_threshold;
300
301 if (dump_file)
302 fprintf (dump_file, "STC - round %d\n", i + 1);
303
304 if (max_entry_count < INT_MAX / 1000)
305 count_threshold = max_entry_count * exec_threshold[i] / 1000;
306 else
307 count_threshold = max_entry_count / 1000 * exec_threshold[i];
308
309 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
310 max_entry_frequency * exec_threshold[i] / 1000,
311 count_threshold, traces, n_traces, i, &heap,
312 number_of_rounds);
313 }
314 delete heap;
315
316 if (dump_file)
317 {
318 for (i = 0; i < *n_traces; i++)
319 {
320 basic_block bb;
321 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
322 traces[i].round + 1);
323 for (bb = traces[i].first;
324 bb != traces[i].last;
325 bb = (basic_block) bb->aux)
326 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
327 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
328 }
329 fflush (dump_file);
330 }
331 }
332
333 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
334 (with sequential number TRACE_N). */
335
336 static basic_block
337 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
338 {
339 basic_block bb;
340
341 /* Information about the best end (end after rotation) of the loop. */
342 basic_block best_bb = NULL;
343 edge best_edge = NULL;
344 int best_freq = -1;
345 gcov_type best_count = -1;
346 /* The best edge is preferred when its destination is not visited yet
347 or is a start block of some trace. */
348 bool is_preferred = false;
349
350 /* Find the most frequent edge that goes out from current trace. */
351 bb = back_edge->dest;
352 do
353 {
354 edge e;
355 edge_iterator ei;
356
357 FOR_EACH_EDGE (e, ei, bb->succs)
358 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
359 && bb_visited_trace (e->dest) != trace_n
360 && (e->flags & EDGE_CAN_FALLTHRU)
361 && !(e->flags & EDGE_COMPLEX))
362 {
363 if (is_preferred)
364 {
365 /* The best edge is preferred. */
366 if (!bb_visited_trace (e->dest)
367 || bbd[e->dest->index].start_of_trace >= 0)
368 {
369 /* The current edge E is also preferred. */
370 int freq = EDGE_FREQUENCY (e);
371 if (freq > best_freq || e->count > best_count)
372 {
373 best_freq = freq;
374 best_count = e->count;
375 best_edge = e;
376 best_bb = bb;
377 }
378 }
379 }
380 else
381 {
382 if (!bb_visited_trace (e->dest)
383 || bbd[e->dest->index].start_of_trace >= 0)
384 {
385 /* The current edge E is preferred. */
386 is_preferred = true;
387 best_freq = EDGE_FREQUENCY (e);
388 best_count = e->count;
389 best_edge = e;
390 best_bb = bb;
391 }
392 else
393 {
394 int freq = EDGE_FREQUENCY (e);
395 if (!best_edge || freq > best_freq || e->count > best_count)
396 {
397 best_freq = freq;
398 best_count = e->count;
399 best_edge = e;
400 best_bb = bb;
401 }
402 }
403 }
404 }
405 bb = (basic_block) bb->aux;
406 }
407 while (bb != back_edge->dest);
408
409 if (best_bb)
410 {
411 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
412 the trace. */
413 if (back_edge->dest == trace->first)
414 {
415 trace->first = (basic_block) best_bb->aux;
416 }
417 else
418 {
419 basic_block prev_bb;
420
421 for (prev_bb = trace->first;
422 prev_bb->aux != back_edge->dest;
423 prev_bb = (basic_block) prev_bb->aux)
424 ;
425 prev_bb->aux = best_bb->aux;
426
427 /* Try to get rid of uncond jump to cond jump. */
428 if (single_succ_p (prev_bb))
429 {
430 basic_block header = single_succ (prev_bb);
431
432 /* Duplicate HEADER if it is a small block containing cond jump
433 in the end. */
434 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
435 && !CROSSING_JUMP_P (BB_END (header)))
436 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
437 }
438 }
439 }
440 else
441 {
442 /* We have not found suitable loop tail so do no rotation. */
443 best_bb = back_edge->src;
444 }
445 best_bb->aux = NULL;
446 return best_bb;
447 }
448
449 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
450 not include basic blocks whose probability is lower than BRANCH_TH or whose
451 frequency is lower than EXEC_TH into traces (or whose count is lower than
452 COUNT_TH). Store the new traces into TRACES and modify the number of
453 traces *N_TRACES. Set the round (which the trace belongs to) to ROUND.
454 The function expects starting basic blocks to be in *HEAP and will delete
455 *HEAP and store starting points for the next round into new *HEAP. */
456
457 static void
458 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
459 struct trace *traces, int *n_traces, int round,
460 bb_heap_t **heap, int number_of_rounds)
461 {
462 /* Heap for discarded basic blocks which are possible starting points for
463 the next round. */
464 bb_heap_t *new_heap = new bb_heap_t (LONG_MIN);
465 bool for_size = optimize_function_for_size_p (cfun);
466
467 while (!(*heap)->empty ())
468 {
469 basic_block bb;
470 struct trace *trace;
471 edge best_edge, e;
472 long key;
473 edge_iterator ei;
474
475 bb = (*heap)->extract_min ();
476 bbd[bb->index].heap = NULL;
477 bbd[bb->index].node = NULL;
478
479 if (dump_file)
480 fprintf (dump_file, "Getting bb %d\n", bb->index);
481
482 /* If the BB's frequency is too low, send BB to the next round. When
483 partitioning hot/cold blocks into separate sections, make sure all
484 the cold blocks (and ONLY the cold blocks) go into the (extra) final
485 round. When optimizing for size, do not push to next round. */
486
487 if (!for_size
488 && push_to_next_round_p (bb, round, number_of_rounds, exec_th,
489 count_th))
490 {
491 int key = bb_to_key (bb);
492 bbd[bb->index].heap = new_heap;
493 bbd[bb->index].node = new_heap->insert (key, bb);
494
495 if (dump_file)
496 fprintf (dump_file,
497 " Possible start point of next round: %d (key: %d)\n",
498 bb->index, key);
499 continue;
500 }
501
502 trace = traces + *n_traces;
503 trace->first = bb;
504 trace->round = round;
505 trace->length = 0;
506 bbd[bb->index].in_trace = *n_traces;
507 (*n_traces)++;
508
509 do
510 {
511 int prob, freq;
512 bool ends_in_call;
513
514 /* The probability and frequency of the best edge. */
515 int best_prob = INT_MIN / 2;
516 int best_freq = INT_MIN / 2;
517
518 best_edge = NULL;
519 mark_bb_visited (bb, *n_traces);
520 trace->length++;
521
522 if (dump_file)
523 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
524 bb->index, *n_traces - 1);
525
526 ends_in_call = block_ends_with_call_p (bb);
527
528 /* Select the successor that will be placed after BB. */
529 FOR_EACH_EDGE (e, ei, bb->succs)
530 {
531 gcc_assert (!(e->flags & EDGE_FAKE));
532
533 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
534 continue;
535
536 if (bb_visited_trace (e->dest)
537 && bb_visited_trace (e->dest) != *n_traces)
538 continue;
539
540 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
541 continue;
542
543 prob = e->probability;
544 freq = e->dest->frequency;
545
546 /* The only sensible preference for a call instruction is the
547 fallthru edge. Don't bother selecting anything else. */
548 if (ends_in_call)
549 {
550 if (e->flags & EDGE_CAN_FALLTHRU)
551 {
552 best_edge = e;
553 best_prob = prob;
554 best_freq = freq;
555 }
556 continue;
557 }
558
559 /* Edge that cannot be fallthru or improbable or infrequent
560 successor (i.e. it is unsuitable successor). When optimizing
561 for size, ignore the probability and frequency. */
562 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
563 || ((prob < branch_th || EDGE_FREQUENCY (e) < exec_th
564 || e->count < count_th) && (!for_size)))
565 continue;
566
567 /* If partitioning hot/cold basic blocks, don't consider edges
568 that cross section boundaries. */
569
570 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
571 best_edge))
572 {
573 best_edge = e;
574 best_prob = prob;
575 best_freq = freq;
576 }
577 }
578
579 /* If the best destination has multiple predecessors, and can be
580 duplicated cheaper than a jump, don't allow it to be added
581 to a trace. We'll duplicate it when connecting traces. */
582 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
583 && copy_bb_p (best_edge->dest, 0))
584 best_edge = NULL;
585
586 /* If the best destination has multiple successors or predecessors,
587 don't allow it to be added when optimizing for size. This makes
588 sure predecessors with smaller index are handled before the best
589 destinarion. It breaks long trace and reduces long jumps.
590
591 Take if-then-else as an example.
592 A
593 / \
594 B C
595 \ /
596 D
597 If we do not remove the best edge B->D/C->D, the final order might
598 be A B D ... C. C is at the end of the program. If D's successors
599 and D are complicated, might need long jumps for A->C and C->D.
600 Similar issue for order: A C D ... B.
601
602 After removing the best edge, the final result will be ABCD/ ACBD.
603 It does not add jump compared with the previous order. But it
604 reduces the possibility of long jumps. */
605 if (best_edge && for_size
606 && (EDGE_COUNT (best_edge->dest->succs) > 1
607 || EDGE_COUNT (best_edge->dest->preds) > 1))
608 best_edge = NULL;
609
610 /* Add all non-selected successors to the heaps. */
611 FOR_EACH_EDGE (e, ei, bb->succs)
612 {
613 if (e == best_edge
614 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
615 || bb_visited_trace (e->dest))
616 continue;
617
618 key = bb_to_key (e->dest);
619
620 if (bbd[e->dest->index].heap)
621 {
622 /* E->DEST is already in some heap. */
623 if (key != bbd[e->dest->index].node->get_key ())
624 {
625 if (dump_file)
626 {
627 fprintf (dump_file,
628 "Changing key for bb %d from %ld to %ld.\n",
629 e->dest->index,
630 (long) bbd[e->dest->index].node->get_key (),
631 key);
632 }
633 bbd[e->dest->index].heap->replace_key
634 (bbd[e->dest->index].node, key);
635 }
636 }
637 else
638 {
639 bb_heap_t *which_heap = *heap;
640
641 prob = e->probability;
642 freq = EDGE_FREQUENCY (e);
643
644 if (!(e->flags & EDGE_CAN_FALLTHRU)
645 || (e->flags & EDGE_COMPLEX)
646 || prob < branch_th || freq < exec_th
647 || e->count < count_th)
648 {
649 /* When partitioning hot/cold basic blocks, make sure
650 the cold blocks (and only the cold blocks) all get
651 pushed to the last round of trace collection. When
652 optimizing for size, do not push to next round. */
653
654 if (!for_size && push_to_next_round_p (e->dest, round,
655 number_of_rounds,
656 exec_th, count_th))
657 which_heap = new_heap;
658 }
659
660 bbd[e->dest->index].heap = which_heap;
661 bbd[e->dest->index].node = which_heap->insert (key, e->dest);
662
663 if (dump_file)
664 {
665 fprintf (dump_file,
666 " Possible start of %s round: %d (key: %ld)\n",
667 (which_heap == new_heap) ? "next" : "this",
668 e->dest->index, (long) key);
669 }
670
671 }
672 }
673
674 if (best_edge) /* Suitable successor was found. */
675 {
676 if (bb_visited_trace (best_edge->dest) == *n_traces)
677 {
678 /* We do nothing with one basic block loops. */
679 if (best_edge->dest != bb)
680 {
681 if (EDGE_FREQUENCY (best_edge)
682 > 4 * best_edge->dest->frequency / 5)
683 {
684 /* The loop has at least 4 iterations. If the loop
685 header is not the first block of the function
686 we can rotate the loop. */
687
688 if (best_edge->dest
689 != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
690 {
691 if (dump_file)
692 {
693 fprintf (dump_file,
694 "Rotating loop %d - %d\n",
695 best_edge->dest->index, bb->index);
696 }
697 bb->aux = best_edge->dest;
698 bbd[best_edge->dest->index].in_trace =
699 (*n_traces) - 1;
700 bb = rotate_loop (best_edge, trace, *n_traces);
701 }
702 }
703 else
704 {
705 /* The loop has less than 4 iterations. */
706
707 if (single_succ_p (bb)
708 && copy_bb_p (best_edge->dest,
709 optimize_edge_for_speed_p
710 (best_edge)))
711 {
712 bb = copy_bb (best_edge->dest, best_edge, bb,
713 *n_traces);
714 trace->length++;
715 }
716 }
717 }
718
719 /* Terminate the trace. */
720 break;
721 }
722 else
723 {
724 /* Check for a situation
725
726 A
727 /|
728 B |
729 \|
730 C
731
732 where
733 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
734 >= EDGE_FREQUENCY (AC).
735 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
736 Best ordering is then A B C.
737
738 When optimizing for size, A B C is always the best order.
739
740 This situation is created for example by:
741
742 if (A) B;
743 C;
744
745 */
746
747 FOR_EACH_EDGE (e, ei, bb->succs)
748 if (e != best_edge
749 && (e->flags & EDGE_CAN_FALLTHRU)
750 && !(e->flags & EDGE_COMPLEX)
751 && !bb_visited_trace (e->dest)
752 && single_pred_p (e->dest)
753 && !(e->flags & EDGE_CROSSING)
754 && single_succ_p (e->dest)
755 && (single_succ_edge (e->dest)->flags
756 & EDGE_CAN_FALLTHRU)
757 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
758 && single_succ (e->dest) == best_edge->dest
759 && (2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge)
760 || for_size))
761 {
762 best_edge = e;
763 if (dump_file)
764 fprintf (dump_file, "Selecting BB %d\n",
765 best_edge->dest->index);
766 break;
767 }
768
769 bb->aux = best_edge->dest;
770 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
771 bb = best_edge->dest;
772 }
773 }
774 }
775 while (best_edge);
776 trace->last = bb;
777 bbd[trace->first->index].start_of_trace = *n_traces - 1;
778 bbd[trace->last->index].end_of_trace = *n_traces - 1;
779
780 /* The trace is terminated so we have to recount the keys in heap
781 (some block can have a lower key because now one of its predecessors
782 is an end of the trace). */
783 FOR_EACH_EDGE (e, ei, bb->succs)
784 {
785 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
786 || bb_visited_trace (e->dest))
787 continue;
788
789 if (bbd[e->dest->index].heap)
790 {
791 key = bb_to_key (e->dest);
792 if (key != bbd[e->dest->index].node->get_key ())
793 {
794 if (dump_file)
795 {
796 fprintf (dump_file,
797 "Changing key for bb %d from %ld to %ld.\n",
798 e->dest->index,
799 (long) bbd[e->dest->index].node->get_key (), key);
800 }
801 bbd[e->dest->index].heap->replace_key
802 (bbd[e->dest->index].node, key);
803 }
804 }
805 }
806 }
807
808 delete (*heap);
809
810 /* "Return" the new heap. */
811 *heap = new_heap;
812 }
813
814 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
815 it to trace after BB, mark OLD_BB visited and update pass' data structures
816 (TRACE is a number of trace which OLD_BB is duplicated to). */
817
818 static basic_block
819 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
820 {
821 basic_block new_bb;
822
823 new_bb = duplicate_block (old_bb, e, bb);
824 BB_COPY_PARTITION (new_bb, old_bb);
825
826 gcc_assert (e->dest == new_bb);
827
828 if (dump_file)
829 fprintf (dump_file,
830 "Duplicated bb %d (created bb %d)\n",
831 old_bb->index, new_bb->index);
832
833 if (new_bb->index >= array_size
834 || last_basic_block_for_fn (cfun) > array_size)
835 {
836 int i;
837 int new_size;
838
839 new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
840 new_size = GET_ARRAY_SIZE (new_size);
841 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
842 for (i = array_size; i < new_size; i++)
843 {
844 bbd[i].start_of_trace = -1;
845 bbd[i].end_of_trace = -1;
846 bbd[i].in_trace = -1;
847 bbd[i].visited = 0;
848 bbd[i].heap = NULL;
849 bbd[i].node = NULL;
850 }
851 array_size = new_size;
852
853 if (dump_file)
854 {
855 fprintf (dump_file,
856 "Growing the dynamic array to %d elements.\n",
857 array_size);
858 }
859 }
860
861 gcc_assert (!bb_visited_trace (e->dest));
862 mark_bb_visited (new_bb, trace);
863 new_bb->aux = bb->aux;
864 bb->aux = new_bb;
865
866 bbd[new_bb->index].in_trace = trace;
867
868 return new_bb;
869 }
870
871 /* Compute and return the key (for the heap) of the basic block BB. */
872
873 static long
874 bb_to_key (basic_block bb)
875 {
876 edge e;
877 edge_iterator ei;
878 int priority = 0;
879
880 /* Use index as key to align with its original order. */
881 if (optimize_function_for_size_p (cfun))
882 return bb->index;
883
884 /* Do not start in probably never executed blocks. */
885
886 if (BB_PARTITION (bb) == BB_COLD_PARTITION
887 || probably_never_executed_bb_p (cfun, bb))
888 return BB_FREQ_MAX;
889
890 /* Prefer blocks whose predecessor is an end of some trace
891 or whose predecessor edge is EDGE_DFS_BACK. */
892 FOR_EACH_EDGE (e, ei, bb->preds)
893 {
894 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
895 && bbd[e->src->index].end_of_trace >= 0)
896 || (e->flags & EDGE_DFS_BACK))
897 {
898 int edge_freq = EDGE_FREQUENCY (e);
899
900 if (edge_freq > priority)
901 priority = edge_freq;
902 }
903 }
904
905 if (priority)
906 /* The block with priority should have significantly lower key. */
907 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
908
909 return -bb->frequency;
910 }
911
912 /* Return true when the edge E from basic block BB is better than the temporary
913 best edge (details are in function). The probability of edge E is PROB. The
914 frequency of the successor is FREQ. The current best probability is
915 BEST_PROB, the best frequency is BEST_FREQ.
916 The edge is considered to be equivalent when PROB does not differ much from
917 BEST_PROB; similarly for frequency. */
918
919 static bool
920 better_edge_p (const_basic_block bb, const_edge e, int prob, int freq,
921 int best_prob, int best_freq, const_edge cur_best_edge)
922 {
923 bool is_better_edge;
924
925 /* The BEST_* values do not have to be best, but can be a bit smaller than
926 maximum values. */
927 int diff_prob = best_prob / 10;
928 int diff_freq = best_freq / 10;
929
930 /* The smaller one is better to keep the original order. */
931 if (optimize_function_for_size_p (cfun))
932 return !cur_best_edge
933 || cur_best_edge->dest->index > e->dest->index;
934
935 if (prob > best_prob + diff_prob)
936 /* The edge has higher probability than the temporary best edge. */
937 is_better_edge = true;
938 else if (prob < best_prob - diff_prob)
939 /* The edge has lower probability than the temporary best edge. */
940 is_better_edge = false;
941 else if (freq < best_freq - diff_freq)
942 /* The edge and the temporary best edge have almost equivalent
943 probabilities. The higher frequency of a successor now means
944 that there is another edge going into that successor.
945 This successor has lower frequency so it is better. */
946 is_better_edge = true;
947 else if (freq > best_freq + diff_freq)
948 /* This successor has higher frequency so it is worse. */
949 is_better_edge = false;
950 else if (e->dest->prev_bb == bb)
951 /* The edges have equivalent probabilities and the successors
952 have equivalent frequencies. Select the previous successor. */
953 is_better_edge = true;
954 else
955 is_better_edge = false;
956
957 /* If we are doing hot/cold partitioning, make sure that we always favor
958 non-crossing edges over crossing edges. */
959
960 if (!is_better_edge
961 && flag_reorder_blocks_and_partition
962 && cur_best_edge
963 && (cur_best_edge->flags & EDGE_CROSSING)
964 && !(e->flags & EDGE_CROSSING))
965 is_better_edge = true;
966
967 return is_better_edge;
968 }
969
970 /* Return true when the edge E is better than the temporary best edge
971 CUR_BEST_EDGE. If SRC_INDEX_P is true, the function compares the src bb of
972 E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
973 BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
974 TRACES record the information about traces.
975 When optimizing for size, the edge with smaller index is better.
976 When optimizing for speed, the edge with bigger probability or longer trace
977 is better. */
978
979 static bool
980 connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
981 const_edge cur_best_edge, struct trace *traces)
982 {
983 int e_index;
984 int b_index;
985 bool is_better_edge;
986
987 if (!cur_best_edge)
988 return true;
989
990 if (optimize_function_for_size_p (cfun))
991 {
992 e_index = src_index_p ? e->src->index : e->dest->index;
993 b_index = src_index_p ? cur_best_edge->src->index
994 : cur_best_edge->dest->index;
995 /* The smaller one is better to keep the original order. */
996 return b_index > e_index;
997 }
998
999 if (src_index_p)
1000 {
1001 e_index = e->src->index;
1002
1003 if (e->probability > cur_best_edge->probability)
1004 /* The edge has higher probability than the temporary best edge. */
1005 is_better_edge = true;
1006 else if (e->probability < cur_best_edge->probability)
1007 /* The edge has lower probability than the temporary best edge. */
1008 is_better_edge = false;
1009 else if (traces[bbd[e_index].end_of_trace].length > best_len)
1010 /* The edge and the temporary best edge have equivalent probabilities.
1011 The edge with longer trace is better. */
1012 is_better_edge = true;
1013 else
1014 is_better_edge = false;
1015 }
1016 else
1017 {
1018 e_index = e->dest->index;
1019
1020 if (e->probability > cur_best_edge->probability)
1021 /* The edge has higher probability than the temporary best edge. */
1022 is_better_edge = true;
1023 else if (e->probability < cur_best_edge->probability)
1024 /* The edge has lower probability than the temporary best edge. */
1025 is_better_edge = false;
1026 else if (traces[bbd[e_index].start_of_trace].length > best_len)
1027 /* The edge and the temporary best edge have equivalent probabilities.
1028 The edge with longer trace is better. */
1029 is_better_edge = true;
1030 else
1031 is_better_edge = false;
1032 }
1033
1034 return is_better_edge;
1035 }
1036
1037 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
1038
1039 static void
1040 connect_traces (int n_traces, struct trace *traces)
1041 {
1042 int i;
1043 bool *connected;
1044 bool two_passes;
1045 int last_trace;
1046 int current_pass;
1047 int current_partition;
1048 int freq_threshold;
1049 gcov_type count_threshold;
1050 bool for_size = optimize_function_for_size_p (cfun);
1051
1052 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
1053 if (max_entry_count < INT_MAX / 1000)
1054 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
1055 else
1056 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
1057
1058 connected = XCNEWVEC (bool, n_traces);
1059 last_trace = -1;
1060 current_pass = 1;
1061 current_partition = BB_PARTITION (traces[0].first);
1062 two_passes = false;
1063
1064 if (crtl->has_bb_partition)
1065 for (i = 0; i < n_traces && !two_passes; i++)
1066 if (BB_PARTITION (traces[0].first)
1067 != BB_PARTITION (traces[i].first))
1068 two_passes = true;
1069
1070 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
1071 {
1072 int t = i;
1073 int t2;
1074 edge e, best;
1075 int best_len;
1076
1077 if (i >= n_traces)
1078 {
1079 gcc_assert (two_passes && current_pass == 1);
1080 i = 0;
1081 t = i;
1082 current_pass = 2;
1083 if (current_partition == BB_HOT_PARTITION)
1084 current_partition = BB_COLD_PARTITION;
1085 else
1086 current_partition = BB_HOT_PARTITION;
1087 }
1088
1089 if (connected[t])
1090 continue;
1091
1092 if (two_passes
1093 && BB_PARTITION (traces[t].first) != current_partition)
1094 continue;
1095
1096 connected[t] = true;
1097
1098 /* Find the predecessor traces. */
1099 for (t2 = t; t2 > 0;)
1100 {
1101 edge_iterator ei;
1102 best = NULL;
1103 best_len = 0;
1104 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
1105 {
1106 int si = e->src->index;
1107
1108 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1109 && (e->flags & EDGE_CAN_FALLTHRU)
1110 && !(e->flags & EDGE_COMPLEX)
1111 && bbd[si].end_of_trace >= 0
1112 && !connected[bbd[si].end_of_trace]
1113 && (BB_PARTITION (e->src) == current_partition)
1114 && connect_better_edge_p (e, true, best_len, best, traces))
1115 {
1116 best = e;
1117 best_len = traces[bbd[si].end_of_trace].length;
1118 }
1119 }
1120 if (best)
1121 {
1122 best->src->aux = best->dest;
1123 t2 = bbd[best->src->index].end_of_trace;
1124 connected[t2] = true;
1125
1126 if (dump_file)
1127 {
1128 fprintf (dump_file, "Connection: %d %d\n",
1129 best->src->index, best->dest->index);
1130 }
1131 }
1132 else
1133 break;
1134 }
1135
1136 if (last_trace >= 0)
1137 traces[last_trace].last->aux = traces[t2].first;
1138 last_trace = t;
1139
1140 /* Find the successor traces. */
1141 while (1)
1142 {
1143 /* Find the continuation of the chain. */
1144 edge_iterator ei;
1145 best = NULL;
1146 best_len = 0;
1147 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1148 {
1149 int di = e->dest->index;
1150
1151 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1152 && (e->flags & EDGE_CAN_FALLTHRU)
1153 && !(e->flags & EDGE_COMPLEX)
1154 && bbd[di].start_of_trace >= 0
1155 && !connected[bbd[di].start_of_trace]
1156 && (BB_PARTITION (e->dest) == current_partition)
1157 && connect_better_edge_p (e, false, best_len, best, traces))
1158 {
1159 best = e;
1160 best_len = traces[bbd[di].start_of_trace].length;
1161 }
1162 }
1163
1164 if (for_size)
1165 {
1166 if (!best)
1167 /* Stop finding the successor traces. */
1168 break;
1169
1170 /* It is OK to connect block n with block n + 1 or a block
1171 before n. For others, only connect to the loop header. */
1172 if (best->dest->index > (traces[t].last->index + 1))
1173 {
1174 int count = EDGE_COUNT (best->dest->preds);
1175
1176 FOR_EACH_EDGE (e, ei, best->dest->preds)
1177 if (e->flags & EDGE_DFS_BACK)
1178 count--;
1179
1180 /* If dest has multiple predecessors, skip it. We expect
1181 that one predecessor with smaller index connects with it
1182 later. */
1183 if (count != 1)
1184 break;
1185 }
1186
1187 /* Only connect Trace n with Trace n + 1. It is conservative
1188 to keep the order as close as possible to the original order.
1189 It also helps to reduce long jumps. */
1190 if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1191 break;
1192
1193 if (dump_file)
1194 fprintf (dump_file, "Connection: %d %d\n",
1195 best->src->index, best->dest->index);
1196
1197 t = bbd[best->dest->index].start_of_trace;
1198 traces[last_trace].last->aux = traces[t].first;
1199 connected[t] = true;
1200 last_trace = t;
1201 }
1202 else if (best)
1203 {
1204 if (dump_file)
1205 {
1206 fprintf (dump_file, "Connection: %d %d\n",
1207 best->src->index, best->dest->index);
1208 }
1209 t = bbd[best->dest->index].start_of_trace;
1210 traces[last_trace].last->aux = traces[t].first;
1211 connected[t] = true;
1212 last_trace = t;
1213 }
1214 else
1215 {
1216 /* Try to connect the traces by duplication of 1 block. */
1217 edge e2;
1218 basic_block next_bb = NULL;
1219 bool try_copy = false;
1220
1221 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1222 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1223 && (e->flags & EDGE_CAN_FALLTHRU)
1224 && !(e->flags & EDGE_COMPLEX)
1225 && (!best || e->probability > best->probability))
1226 {
1227 edge_iterator ei;
1228 edge best2 = NULL;
1229 int best2_len = 0;
1230
1231 /* If the destination is a start of a trace which is only
1232 one block long, then no need to search the successor
1233 blocks of the trace. Accept it. */
1234 if (bbd[e->dest->index].start_of_trace >= 0
1235 && traces[bbd[e->dest->index].start_of_trace].length
1236 == 1)
1237 {
1238 best = e;
1239 try_copy = true;
1240 continue;
1241 }
1242
1243 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1244 {
1245 int di = e2->dest->index;
1246
1247 if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
1248 || ((e2->flags & EDGE_CAN_FALLTHRU)
1249 && !(e2->flags & EDGE_COMPLEX)
1250 && bbd[di].start_of_trace >= 0
1251 && !connected[bbd[di].start_of_trace]
1252 && BB_PARTITION (e2->dest) == current_partition
1253 && EDGE_FREQUENCY (e2) >= freq_threshold
1254 && e2->count >= count_threshold
1255 && (!best2
1256 || e2->probability > best2->probability
1257 || (e2->probability == best2->probability
1258 && traces[bbd[di].start_of_trace].length
1259 > best2_len))))
1260 {
1261 best = e;
1262 best2 = e2;
1263 if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1264 best2_len = traces[bbd[di].start_of_trace].length;
1265 else
1266 best2_len = INT_MAX;
1267 next_bb = e2->dest;
1268 try_copy = true;
1269 }
1270 }
1271 }
1272
1273 if (crtl->has_bb_partition)
1274 try_copy = false;
1275
1276 /* Copy tiny blocks always; copy larger blocks only when the
1277 edge is traversed frequently enough. */
1278 if (try_copy
1279 && copy_bb_p (best->dest,
1280 optimize_edge_for_speed_p (best)
1281 && EDGE_FREQUENCY (best) >= freq_threshold
1282 && best->count >= count_threshold))
1283 {
1284 basic_block new_bb;
1285
1286 if (dump_file)
1287 {
1288 fprintf (dump_file, "Connection: %d %d ",
1289 traces[t].last->index, best->dest->index);
1290 if (!next_bb)
1291 fputc ('\n', dump_file);
1292 else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1293 fprintf (dump_file, "exit\n");
1294 else
1295 fprintf (dump_file, "%d\n", next_bb->index);
1296 }
1297
1298 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1299 traces[t].last = new_bb;
1300 if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
1301 {
1302 t = bbd[next_bb->index].start_of_trace;
1303 traces[last_trace].last->aux = traces[t].first;
1304 connected[t] = true;
1305 last_trace = t;
1306 }
1307 else
1308 break; /* Stop finding the successor traces. */
1309 }
1310 else
1311 break; /* Stop finding the successor traces. */
1312 }
1313 }
1314 }
1315
1316 if (dump_file)
1317 {
1318 basic_block bb;
1319
1320 fprintf (dump_file, "Final order:\n");
1321 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1322 fprintf (dump_file, "%d ", bb->index);
1323 fprintf (dump_file, "\n");
1324 fflush (dump_file);
1325 }
1326
1327 FREE (connected);
1328 }
1329
1330 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1331 when code size is allowed to grow by duplication. */
1332
1333 static bool
1334 copy_bb_p (const_basic_block bb, int code_may_grow)
1335 {
1336 int size = 0;
1337 int max_size = uncond_jump_length;
1338 rtx_insn *insn;
1339
1340 if (!bb->frequency)
1341 return false;
1342 if (EDGE_COUNT (bb->preds) < 2)
1343 return false;
1344 if (!can_duplicate_block_p (bb))
1345 return false;
1346
1347 /* Avoid duplicating blocks which have many successors (PR/13430). */
1348 if (EDGE_COUNT (bb->succs) > 8)
1349 return false;
1350
1351 if (code_may_grow && optimize_bb_for_speed_p (bb))
1352 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1353
1354 FOR_BB_INSNS (bb, insn)
1355 {
1356 if (INSN_P (insn))
1357 size += get_attr_min_length (insn);
1358 }
1359
1360 if (size <= max_size)
1361 return true;
1362
1363 if (dump_file)
1364 {
1365 fprintf (dump_file,
1366 "Block %d can't be copied because its size = %d.\n",
1367 bb->index, size);
1368 }
1369
1370 return false;
1371 }
1372
1373 /* Return the length of unconditional jump instruction. */
1374
1375 int
1376 get_uncond_jump_length (void)
1377 {
1378 int length;
1379
1380 start_sequence ();
1381 rtx_code_label *label = emit_label (gen_label_rtx ());
1382 rtx_insn *jump = emit_jump_insn (targetm.gen_jump (label));
1383 length = get_attr_min_length (jump);
1384 end_sequence ();
1385
1386 return length;
1387 }
1388
1389 /* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1390 Duplicate the landing pad and split the edges so that no EH edge
1391 crosses partitions. */
1392
1393 static void
1394 fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1395 {
1396 eh_landing_pad new_lp;
1397 basic_block new_bb, last_bb, post_bb;
1398 rtx_insn *jump;
1399 unsigned new_partition;
1400 edge_iterator ei;
1401 edge e;
1402
1403 /* Generate the new landing-pad structure. */
1404 new_lp = gen_eh_landing_pad (old_lp->region);
1405 new_lp->post_landing_pad = old_lp->post_landing_pad;
1406 new_lp->landing_pad = gen_label_rtx ();
1407 LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1408
1409 /* Put appropriate instructions in new bb. */
1410 rtx_code_label *new_label = emit_label (new_lp->landing_pad);
1411
1412 expand_dw2_landing_pad_for_region (old_lp->region);
1413
1414 post_bb = BLOCK_FOR_INSN (old_lp->landing_pad);
1415 post_bb = single_succ (post_bb);
1416 rtx_code_label *post_label = block_label (post_bb);
1417 jump = emit_jump_insn (targetm.gen_jump (post_label));
1418 JUMP_LABEL (jump) = post_label;
1419
1420 /* Create new basic block to be dest for lp. */
1421 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1422 new_bb = create_basic_block (new_label, jump, last_bb);
1423 new_bb->aux = last_bb->aux;
1424 last_bb->aux = new_bb;
1425
1426 emit_barrier_after_bb (new_bb);
1427
1428 make_edge (new_bb, post_bb, 0);
1429
1430 /* Make sure new bb is in the other partition. */
1431 new_partition = BB_PARTITION (old_bb);
1432 new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1433 BB_SET_PARTITION (new_bb, new_partition);
1434
1435 /* Fix up the edges. */
1436 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1437 if (BB_PARTITION (e->src) == new_partition)
1438 {
1439 rtx_insn *insn = BB_END (e->src);
1440 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1441
1442 gcc_assert (note != NULL);
1443 gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1444 XEXP (note, 0) = GEN_INT (new_lp->index);
1445
1446 /* Adjust the edge to the new destination. */
1447 redirect_edge_succ (e, new_bb);
1448 }
1449 else
1450 ei_next (&ei);
1451 }
1452
1453
1454 /* Ensure that all hot bbs are included in a hot path through the
1455 procedure. This is done by calling this function twice, once
1456 with WALK_UP true (to look for paths from the entry to hot bbs) and
1457 once with WALK_UP false (to look for paths from hot bbs to the exit).
1458 Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1459 to BBS_IN_HOT_PARTITION. */
1460
1461 static unsigned int
1462 sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1463 vec<basic_block> *bbs_in_hot_partition)
1464 {
1465 /* Callers check this. */
1466 gcc_checking_assert (cold_bb_count);
1467
1468 /* Keep examining hot bbs while we still have some left to check
1469 and there are remaining cold bbs. */
1470 vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1471 while (! hot_bbs_to_check.is_empty ()
1472 && cold_bb_count)
1473 {
1474 basic_block bb = hot_bbs_to_check.pop ();
1475 vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1476 edge e;
1477 edge_iterator ei;
1478 int highest_probability = 0;
1479 int highest_freq = 0;
1480 gcov_type highest_count = 0;
1481 bool found = false;
1482
1483 /* Walk the preds/succs and check if there is at least one already
1484 marked hot. Keep track of the most frequent pred/succ so that we
1485 can mark it hot if we don't find one. */
1486 FOR_EACH_EDGE (e, ei, edges)
1487 {
1488 basic_block reach_bb = walk_up ? e->src : e->dest;
1489
1490 if (e->flags & EDGE_DFS_BACK)
1491 continue;
1492
1493 if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1494 {
1495 found = true;
1496 break;
1497 }
1498 /* The following loop will look for the hottest edge via
1499 the edge count, if it is non-zero, then fallback to the edge
1500 frequency and finally the edge probability. */
1501 if (e->count > highest_count)
1502 highest_count = e->count;
1503 int edge_freq = EDGE_FREQUENCY (e);
1504 if (edge_freq > highest_freq)
1505 highest_freq = edge_freq;
1506 if (e->probability > highest_probability)
1507 highest_probability = e->probability;
1508 }
1509
1510 /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1511 block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1512 then the most frequent pred (or succ) needs to be adjusted. In the
1513 case where multiple preds/succs have the same frequency (e.g. a
1514 50-50 branch), then both will be adjusted. */
1515 if (found)
1516 continue;
1517
1518 FOR_EACH_EDGE (e, ei, edges)
1519 {
1520 if (e->flags & EDGE_DFS_BACK)
1521 continue;
1522 /* Select the hottest edge using the edge count, if it is non-zero,
1523 then fallback to the edge frequency and finally the edge
1524 probability. */
1525 if (highest_count)
1526 {
1527 if (e->count < highest_count)
1528 continue;
1529 }
1530 else if (highest_freq)
1531 {
1532 if (EDGE_FREQUENCY (e) < highest_freq)
1533 continue;
1534 }
1535 else if (e->probability < highest_probability)
1536 continue;
1537
1538 basic_block reach_bb = walk_up ? e->src : e->dest;
1539
1540 /* We have a hot bb with an immediate dominator that is cold.
1541 The dominator needs to be re-marked hot. */
1542 BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1543 cold_bb_count--;
1544
1545 /* Now we need to examine newly-hot reach_bb to see if it is also
1546 dominated by a cold bb. */
1547 bbs_in_hot_partition->safe_push (reach_bb);
1548 hot_bbs_to_check.safe_push (reach_bb);
1549 }
1550 }
1551
1552 return cold_bb_count;
1553 }
1554
1555
1556 /* Find the basic blocks that are rarely executed and need to be moved to
1557 a separate section of the .o file (to cut down on paging and improve
1558 cache locality). Return a vector of all edges that cross. */
1559
1560 static vec<edge>
1561 find_rarely_executed_basic_blocks_and_crossing_edges (void)
1562 {
1563 vec<edge> crossing_edges = vNULL;
1564 basic_block bb;
1565 edge e;
1566 edge_iterator ei;
1567 unsigned int cold_bb_count = 0;
1568 auto_vec<basic_block> bbs_in_hot_partition;
1569
1570 /* Mark which partition (hot/cold) each basic block belongs in. */
1571 FOR_EACH_BB_FN (bb, cfun)
1572 {
1573 bool cold_bb = false;
1574
1575 if (probably_never_executed_bb_p (cfun, bb))
1576 {
1577 /* Handle profile insanities created by upstream optimizations
1578 by also checking the incoming edge weights. If there is a non-cold
1579 incoming edge, conservatively prevent this block from being split
1580 into the cold section. */
1581 cold_bb = true;
1582 FOR_EACH_EDGE (e, ei, bb->preds)
1583 if (!probably_never_executed_edge_p (cfun, e))
1584 {
1585 cold_bb = false;
1586 break;
1587 }
1588 }
1589 if (cold_bb)
1590 {
1591 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1592 cold_bb_count++;
1593 }
1594 else
1595 {
1596 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1597 bbs_in_hot_partition.safe_push (bb);
1598 }
1599 }
1600
1601 /* Ensure that hot bbs are included along a hot path from the entry to exit.
1602 Several different possibilities may include cold bbs along all paths
1603 to/from a hot bb. One is that there are edge weight insanities
1604 due to optimization phases that do not properly update basic block profile
1605 counts. The second is that the entry of the function may not be hot, because
1606 it is entered fewer times than the number of profile training runs, but there
1607 is a loop inside the function that causes blocks within the function to be
1608 above the threshold for hotness. This is fixed by walking up from hot bbs
1609 to the entry block, and then down from hot bbs to the exit, performing
1610 partitioning fixups as necessary. */
1611 if (cold_bb_count)
1612 {
1613 mark_dfs_back_edges ();
1614 cold_bb_count = sanitize_hot_paths (true, cold_bb_count,
1615 &bbs_in_hot_partition);
1616 if (cold_bb_count)
1617 sanitize_hot_paths (false, cold_bb_count, &bbs_in_hot_partition);
1618 }
1619
1620 /* The format of .gcc_except_table does not allow landing pads to
1621 be in a different partition as the throw. Fix this by either
1622 moving or duplicating the landing pads. */
1623 if (cfun->eh->lp_array)
1624 {
1625 unsigned i;
1626 eh_landing_pad lp;
1627
1628 FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
1629 {
1630 bool all_same, all_diff;
1631
1632 if (lp == NULL
1633 || lp->landing_pad == NULL_RTX
1634 || !LABEL_P (lp->landing_pad))
1635 continue;
1636
1637 all_same = all_diff = true;
1638 bb = BLOCK_FOR_INSN (lp->landing_pad);
1639 FOR_EACH_EDGE (e, ei, bb->preds)
1640 {
1641 gcc_assert (e->flags & EDGE_EH);
1642 if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1643 all_diff = false;
1644 else
1645 all_same = false;
1646 }
1647
1648 if (all_same)
1649 ;
1650 else if (all_diff)
1651 {
1652 int which = BB_PARTITION (bb);
1653 which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1654 BB_SET_PARTITION (bb, which);
1655 }
1656 else
1657 fix_up_crossing_landing_pad (lp, bb);
1658 }
1659 }
1660
1661 /* Mark every edge that crosses between sections. */
1662
1663 FOR_EACH_BB_FN (bb, cfun)
1664 FOR_EACH_EDGE (e, ei, bb->succs)
1665 {
1666 unsigned int flags = e->flags;
1667
1668 /* We should never have EDGE_CROSSING set yet. */
1669 gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1670
1671 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1672 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1673 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1674 {
1675 crossing_edges.safe_push (e);
1676 flags |= EDGE_CROSSING;
1677 }
1678
1679 /* Now that we've split eh edges as appropriate, allow landing pads
1680 to be merged with the post-landing pads. */
1681 flags &= ~EDGE_PRESERVE;
1682
1683 e->flags = flags;
1684 }
1685
1686 return crossing_edges;
1687 }
1688
1689 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
1690
1691 static void
1692 set_edge_can_fallthru_flag (void)
1693 {
1694 basic_block bb;
1695
1696 FOR_EACH_BB_FN (bb, cfun)
1697 {
1698 edge e;
1699 edge_iterator ei;
1700
1701 FOR_EACH_EDGE (e, ei, bb->succs)
1702 {
1703 e->flags &= ~EDGE_CAN_FALLTHRU;
1704
1705 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
1706 if (e->flags & EDGE_FALLTHRU)
1707 e->flags |= EDGE_CAN_FALLTHRU;
1708 }
1709
1710 /* If the BB ends with an invertible condjump all (2) edges are
1711 CAN_FALLTHRU edges. */
1712 if (EDGE_COUNT (bb->succs) != 2)
1713 continue;
1714 if (!any_condjump_p (BB_END (bb)))
1715 continue;
1716
1717 rtx_jump_insn *bb_end_jump = as_a <rtx_jump_insn *> (BB_END (bb));
1718 if (!invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0))
1719 continue;
1720 invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0);
1721 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1722 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1723 }
1724 }
1725
1726 /* If any destination of a crossing edge does not have a label, add label;
1727 Convert any easy fall-through crossing edges to unconditional jumps. */
1728
1729 static void
1730 add_labels_and_missing_jumps (vec<edge> crossing_edges)
1731 {
1732 size_t i;
1733 edge e;
1734
1735 FOR_EACH_VEC_ELT (crossing_edges, i, e)
1736 {
1737 basic_block src = e->src;
1738 basic_block dest = e->dest;
1739 rtx_jump_insn *new_jump;
1740
1741 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1742 continue;
1743
1744 /* Make sure dest has a label. */
1745 rtx_code_label *label = block_label (dest);
1746
1747 /* Nothing to do for non-fallthru edges. */
1748 if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1749 continue;
1750 if ((e->flags & EDGE_FALLTHRU) == 0)
1751 continue;
1752
1753 /* If the block does not end with a control flow insn, then we
1754 can trivially add a jump to the end to fixup the crossing.
1755 Otherwise the jump will have to go in a new bb, which will
1756 be handled by fix_up_fall_thru_edges function. */
1757 if (control_flow_insn_p (BB_END (src)))
1758 continue;
1759
1760 /* Make sure there's only one successor. */
1761 gcc_assert (single_succ_p (src));
1762
1763 new_jump = emit_jump_insn_after (targetm.gen_jump (label), BB_END (src));
1764 BB_END (src) = new_jump;
1765 JUMP_LABEL (new_jump) = label;
1766 LABEL_NUSES (label) += 1;
1767
1768 emit_barrier_after_bb (src);
1769
1770 /* Mark edge as non-fallthru. */
1771 e->flags &= ~EDGE_FALLTHRU;
1772 }
1773 }
1774
1775 /* Find any bb's where the fall-through edge is a crossing edge (note that
1776 these bb's must also contain a conditional jump or end with a call
1777 instruction; we've already dealt with fall-through edges for blocks
1778 that didn't have a conditional jump or didn't end with call instruction
1779 in the call to add_labels_and_missing_jumps). Convert the fall-through
1780 edge to non-crossing edge by inserting a new bb to fall-through into.
1781 The new bb will contain an unconditional jump (crossing edge) to the
1782 original fall through destination. */
1783
1784 static void
1785 fix_up_fall_thru_edges (void)
1786 {
1787 basic_block cur_bb;
1788 basic_block new_bb;
1789 edge succ1;
1790 edge succ2;
1791 edge fall_thru;
1792 edge cond_jump = NULL;
1793 bool cond_jump_crosses;
1794 int invert_worked;
1795 rtx_insn *old_jump;
1796 rtx_code_label *fall_thru_label;
1797
1798 FOR_EACH_BB_FN (cur_bb, cfun)
1799 {
1800 fall_thru = NULL;
1801 if (EDGE_COUNT (cur_bb->succs) > 0)
1802 succ1 = EDGE_SUCC (cur_bb, 0);
1803 else
1804 succ1 = NULL;
1805
1806 if (EDGE_COUNT (cur_bb->succs) > 1)
1807 succ2 = EDGE_SUCC (cur_bb, 1);
1808 else
1809 succ2 = NULL;
1810
1811 /* Find the fall-through edge. */
1812
1813 if (succ1
1814 && (succ1->flags & EDGE_FALLTHRU))
1815 {
1816 fall_thru = succ1;
1817 cond_jump = succ2;
1818 }
1819 else if (succ2
1820 && (succ2->flags & EDGE_FALLTHRU))
1821 {
1822 fall_thru = succ2;
1823 cond_jump = succ1;
1824 }
1825 else if (succ1
1826 && (block_ends_with_call_p (cur_bb)
1827 || can_throw_internal (BB_END (cur_bb))))
1828 {
1829 edge e;
1830 edge_iterator ei;
1831
1832 FOR_EACH_EDGE (e, ei, cur_bb->succs)
1833 if (e->flags & EDGE_FALLTHRU)
1834 {
1835 fall_thru = e;
1836 break;
1837 }
1838 }
1839
1840 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
1841 {
1842 /* Check to see if the fall-thru edge is a crossing edge. */
1843
1844 if (fall_thru->flags & EDGE_CROSSING)
1845 {
1846 /* The fall_thru edge crosses; now check the cond jump edge, if
1847 it exists. */
1848
1849 cond_jump_crosses = true;
1850 invert_worked = 0;
1851 old_jump = BB_END (cur_bb);
1852
1853 /* Find the jump instruction, if there is one. */
1854
1855 if (cond_jump)
1856 {
1857 if (!(cond_jump->flags & EDGE_CROSSING))
1858 cond_jump_crosses = false;
1859
1860 /* We know the fall-thru edge crosses; if the cond
1861 jump edge does NOT cross, and its destination is the
1862 next block in the bb order, invert the jump
1863 (i.e. fix it so the fall through does not cross and
1864 the cond jump does). */
1865
1866 if (!cond_jump_crosses)
1867 {
1868 /* Find label in fall_thru block. We've already added
1869 any missing labels, so there must be one. */
1870
1871 fall_thru_label = block_label (fall_thru->dest);
1872
1873 if (old_jump && fall_thru_label)
1874 {
1875 rtx_jump_insn *old_jump_insn =
1876 dyn_cast <rtx_jump_insn *> (old_jump);
1877 if (old_jump_insn)
1878 invert_worked = invert_jump (old_jump_insn,
1879 fall_thru_label, 0);
1880 }
1881
1882 if (invert_worked)
1883 {
1884 fall_thru->flags &= ~EDGE_FALLTHRU;
1885 cond_jump->flags |= EDGE_FALLTHRU;
1886 update_br_prob_note (cur_bb);
1887 std::swap (fall_thru, cond_jump);
1888 cond_jump->flags |= EDGE_CROSSING;
1889 fall_thru->flags &= ~EDGE_CROSSING;
1890 }
1891 }
1892 }
1893
1894 if (cond_jump_crosses || !invert_worked)
1895 {
1896 /* This is the case where both edges out of the basic
1897 block are crossing edges. Here we will fix up the
1898 fall through edge. The jump edge will be taken care
1899 of later. The EDGE_CROSSING flag of fall_thru edge
1900 is unset before the call to force_nonfallthru
1901 function because if a new basic-block is created
1902 this edge remains in the current section boundary
1903 while the edge between new_bb and the fall_thru->dest
1904 becomes EDGE_CROSSING. */
1905
1906 fall_thru->flags &= ~EDGE_CROSSING;
1907 new_bb = force_nonfallthru (fall_thru);
1908
1909 if (new_bb)
1910 {
1911 new_bb->aux = cur_bb->aux;
1912 cur_bb->aux = new_bb;
1913
1914 /* This is done by force_nonfallthru_and_redirect. */
1915 gcc_assert (BB_PARTITION (new_bb)
1916 == BB_PARTITION (cur_bb));
1917
1918 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1919 }
1920 else
1921 {
1922 /* If a new basic-block was not created; restore
1923 the EDGE_CROSSING flag. */
1924 fall_thru->flags |= EDGE_CROSSING;
1925 }
1926
1927 /* Add barrier after new jump */
1928 emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
1929 }
1930 }
1931 }
1932 }
1933 }
1934
1935 /* This function checks the destination block of a "crossing jump" to
1936 see if it has any crossing predecessors that begin with a code label
1937 and end with an unconditional jump. If so, it returns that predecessor
1938 block. (This is to avoid creating lots of new basic blocks that all
1939 contain unconditional jumps to the same destination). */
1940
1941 static basic_block
1942 find_jump_block (basic_block jump_dest)
1943 {
1944 basic_block source_bb = NULL;
1945 edge e;
1946 rtx_insn *insn;
1947 edge_iterator ei;
1948
1949 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1950 if (e->flags & EDGE_CROSSING)
1951 {
1952 basic_block src = e->src;
1953
1954 /* Check each predecessor to see if it has a label, and contains
1955 only one executable instruction, which is an unconditional jump.
1956 If so, we can use it. */
1957
1958 if (LABEL_P (BB_HEAD (src)))
1959 for (insn = BB_HEAD (src);
1960 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1961 insn = NEXT_INSN (insn))
1962 {
1963 if (INSN_P (insn)
1964 && insn == BB_END (src)
1965 && JUMP_P (insn)
1966 && !any_condjump_p (insn))
1967 {
1968 source_bb = src;
1969 break;
1970 }
1971 }
1972
1973 if (source_bb)
1974 break;
1975 }
1976
1977 return source_bb;
1978 }
1979
1980 /* Find all BB's with conditional jumps that are crossing edges;
1981 insert a new bb and make the conditional jump branch to the new
1982 bb instead (make the new bb same color so conditional branch won't
1983 be a 'crossing' edge). Insert an unconditional jump from the
1984 new bb to the original destination of the conditional jump. */
1985
1986 static void
1987 fix_crossing_conditional_branches (void)
1988 {
1989 basic_block cur_bb;
1990 basic_block new_bb;
1991 basic_block dest;
1992 edge succ1;
1993 edge succ2;
1994 edge crossing_edge;
1995 edge new_edge;
1996 rtx set_src;
1997 rtx old_label = NULL_RTX;
1998 rtx_code_label *new_label;
1999
2000 FOR_EACH_BB_FN (cur_bb, cfun)
2001 {
2002 crossing_edge = NULL;
2003 if (EDGE_COUNT (cur_bb->succs) > 0)
2004 succ1 = EDGE_SUCC (cur_bb, 0);
2005 else
2006 succ1 = NULL;
2007
2008 if (EDGE_COUNT (cur_bb->succs) > 1)
2009 succ2 = EDGE_SUCC (cur_bb, 1);
2010 else
2011 succ2 = NULL;
2012
2013 /* We already took care of fall-through edges, so only one successor
2014 can be a crossing edge. */
2015
2016 if (succ1 && (succ1->flags & EDGE_CROSSING))
2017 crossing_edge = succ1;
2018 else if (succ2 && (succ2->flags & EDGE_CROSSING))
2019 crossing_edge = succ2;
2020
2021 if (crossing_edge)
2022 {
2023 rtx_insn *old_jump = BB_END (cur_bb);
2024
2025 /* Check to make sure the jump instruction is a
2026 conditional jump. */
2027
2028 set_src = NULL_RTX;
2029
2030 if (any_condjump_p (old_jump))
2031 {
2032 if (GET_CODE (PATTERN (old_jump)) == SET)
2033 set_src = SET_SRC (PATTERN (old_jump));
2034 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2035 {
2036 set_src = XVECEXP (PATTERN (old_jump), 0,0);
2037 if (GET_CODE (set_src) == SET)
2038 set_src = SET_SRC (set_src);
2039 else
2040 set_src = NULL_RTX;
2041 }
2042 }
2043
2044 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2045 {
2046 rtx_jump_insn *old_jump_insn =
2047 as_a <rtx_jump_insn *> (old_jump);
2048
2049 if (GET_CODE (XEXP (set_src, 1)) == PC)
2050 old_label = XEXP (set_src, 2);
2051 else if (GET_CODE (XEXP (set_src, 2)) == PC)
2052 old_label = XEXP (set_src, 1);
2053
2054 /* Check to see if new bb for jumping to that dest has
2055 already been created; if so, use it; if not, create
2056 a new one. */
2057
2058 new_bb = find_jump_block (crossing_edge->dest);
2059
2060 if (new_bb)
2061 new_label = block_label (new_bb);
2062 else
2063 {
2064 basic_block last_bb;
2065 rtx_code_label *old_jump_target;
2066 rtx_jump_insn *new_jump;
2067
2068 /* Create new basic block to be dest for
2069 conditional jump. */
2070
2071 /* Put appropriate instructions in new bb. */
2072
2073 new_label = gen_label_rtx ();
2074 emit_label (new_label);
2075
2076 gcc_assert (GET_CODE (old_label) == LABEL_REF);
2077 old_jump_target = old_jump_insn->jump_target ();
2078 new_jump = as_a <rtx_jump_insn *>
2079 (emit_jump_insn (targetm.gen_jump (old_jump_target)));
2080 new_jump->set_jump_target (old_jump_target);
2081
2082 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2083 new_bb = create_basic_block (new_label, new_jump, last_bb);
2084 new_bb->aux = last_bb->aux;
2085 last_bb->aux = new_bb;
2086
2087 emit_barrier_after_bb (new_bb);
2088
2089 /* Make sure new bb is in same partition as source
2090 of conditional branch. */
2091 BB_COPY_PARTITION (new_bb, cur_bb);
2092 }
2093
2094 /* Make old jump branch to new bb. */
2095
2096 redirect_jump (old_jump_insn, new_label, 0);
2097
2098 /* Remove crossing_edge as predecessor of 'dest'. */
2099
2100 dest = crossing_edge->dest;
2101
2102 redirect_edge_succ (crossing_edge, new_bb);
2103
2104 /* Make a new edge from new_bb to old dest; new edge
2105 will be a successor for new_bb and a predecessor
2106 for 'dest'. */
2107
2108 if (EDGE_COUNT (new_bb->succs) == 0)
2109 new_edge = make_edge (new_bb, dest, 0);
2110 else
2111 new_edge = EDGE_SUCC (new_bb, 0);
2112
2113 crossing_edge->flags &= ~EDGE_CROSSING;
2114 new_edge->flags |= EDGE_CROSSING;
2115 }
2116 }
2117 }
2118 }
2119
2120 /* Find any unconditional branches that cross between hot and cold
2121 sections. Convert them into indirect jumps instead. */
2122
2123 static void
2124 fix_crossing_unconditional_branches (void)
2125 {
2126 basic_block cur_bb;
2127 rtx_insn *last_insn;
2128 rtx label;
2129 rtx label_addr;
2130 rtx_insn *indirect_jump_sequence;
2131 rtx_insn *jump_insn = NULL;
2132 rtx new_reg;
2133 rtx_insn *cur_insn;
2134 edge succ;
2135
2136 FOR_EACH_BB_FN (cur_bb, cfun)
2137 {
2138 last_insn = BB_END (cur_bb);
2139
2140 if (EDGE_COUNT (cur_bb->succs) < 1)
2141 continue;
2142
2143 succ = EDGE_SUCC (cur_bb, 0);
2144
2145 /* Check to see if bb ends in a crossing (unconditional) jump. At
2146 this point, no crossing jumps should be conditional. */
2147
2148 if (JUMP_P (last_insn)
2149 && (succ->flags & EDGE_CROSSING))
2150 {
2151 gcc_assert (!any_condjump_p (last_insn));
2152
2153 /* Make sure the jump is not already an indirect or table jump. */
2154
2155 if (!computed_jump_p (last_insn)
2156 && !tablejump_p (last_insn, NULL, NULL))
2157 {
2158 /* We have found a "crossing" unconditional branch. Now
2159 we must convert it to an indirect jump. First create
2160 reference of label, as target for jump. */
2161
2162 label = JUMP_LABEL (last_insn);
2163 label_addr = gen_rtx_LABEL_REF (Pmode, label);
2164 LABEL_NUSES (label) += 1;
2165
2166 /* Get a register to use for the indirect jump. */
2167
2168 new_reg = gen_reg_rtx (Pmode);
2169
2170 /* Generate indirect the jump sequence. */
2171
2172 start_sequence ();
2173 emit_move_insn (new_reg, label_addr);
2174 emit_indirect_jump (new_reg);
2175 indirect_jump_sequence = get_insns ();
2176 end_sequence ();
2177
2178 /* Make sure every instruction in the new jump sequence has
2179 its basic block set to be cur_bb. */
2180
2181 for (cur_insn = indirect_jump_sequence; cur_insn;
2182 cur_insn = NEXT_INSN (cur_insn))
2183 {
2184 if (!BARRIER_P (cur_insn))
2185 BLOCK_FOR_INSN (cur_insn) = cur_bb;
2186 if (JUMP_P (cur_insn))
2187 jump_insn = cur_insn;
2188 }
2189
2190 /* Insert the new (indirect) jump sequence immediately before
2191 the unconditional jump, then delete the unconditional jump. */
2192
2193 emit_insn_before (indirect_jump_sequence, last_insn);
2194 delete_insn (last_insn);
2195
2196 JUMP_LABEL (jump_insn) = label;
2197 LABEL_NUSES (label)++;
2198
2199 /* Make BB_END for cur_bb be the jump instruction (NOT the
2200 barrier instruction at the end of the sequence...). */
2201
2202 BB_END (cur_bb) = jump_insn;
2203 }
2204 }
2205 }
2206 }
2207
2208 /* Update CROSSING_JUMP_P flags on all jump insns. */
2209
2210 static void
2211 update_crossing_jump_flags (void)
2212 {
2213 basic_block bb;
2214 edge e;
2215 edge_iterator ei;
2216
2217 FOR_EACH_BB_FN (bb, cfun)
2218 FOR_EACH_EDGE (e, ei, bb->succs)
2219 if (e->flags & EDGE_CROSSING)
2220 {
2221 if (JUMP_P (BB_END (bb))
2222 /* Some flags were added during fix_up_fall_thru_edges, via
2223 force_nonfallthru_and_redirect. */
2224 && !CROSSING_JUMP_P (BB_END (bb)))
2225 CROSSING_JUMP_P (BB_END (bb)) = 1;
2226 break;
2227 }
2228 }
2229
2230 /* Reorder basic blocks. The main entry point to this file. FLAGS is
2231 the set of flags to pass to cfg_layout_initialize(). */
2232
2233 static void
2234 reorder_basic_blocks (void)
2235 {
2236 int n_traces;
2237 int i;
2238 struct trace *traces;
2239
2240 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2241
2242 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2243 return;
2244
2245 set_edge_can_fallthru_flag ();
2246 mark_dfs_back_edges ();
2247
2248 /* We are estimating the length of uncond jump insn only once since the code
2249 for getting the insn length always returns the minimal length now. */
2250 if (uncond_jump_length == 0)
2251 uncond_jump_length = get_uncond_jump_length ();
2252
2253 /* We need to know some information for each basic block. */
2254 array_size = GET_ARRAY_SIZE (last_basic_block_for_fn (cfun));
2255 bbd = XNEWVEC (bbro_basic_block_data, array_size);
2256 for (i = 0; i < array_size; i++)
2257 {
2258 bbd[i].start_of_trace = -1;
2259 bbd[i].end_of_trace = -1;
2260 bbd[i].in_trace = -1;
2261 bbd[i].visited = 0;
2262 bbd[i].heap = NULL;
2263 bbd[i].node = NULL;
2264 }
2265
2266 traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
2267 n_traces = 0;
2268 find_traces (&n_traces, traces);
2269 connect_traces (n_traces, traces);
2270 FREE (traces);
2271 FREE (bbd);
2272
2273 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2274
2275 if (dump_file)
2276 {
2277 if (dump_flags & TDF_DETAILS)
2278 dump_reg_info (dump_file);
2279 dump_flow_info (dump_file, dump_flags);
2280 }
2281
2282 /* Signal that rtl_verify_flow_info_1 can now verify that there
2283 is at most one switch between hot/cold sections. */
2284 crtl->bb_reorder_complete = true;
2285 }
2286
2287 /* Determine which partition the first basic block in the function
2288 belongs to, then find the first basic block in the current function
2289 that belongs to a different section, and insert a
2290 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2291 instruction stream. When writing out the assembly code,
2292 encountering this note will make the compiler switch between the
2293 hot and cold text sections. */
2294
2295 void
2296 insert_section_boundary_note (void)
2297 {
2298 basic_block bb;
2299 bool switched_sections = false;
2300 int current_partition = 0;
2301
2302 if (!crtl->has_bb_partition)
2303 return;
2304
2305 FOR_EACH_BB_FN (bb, cfun)
2306 {
2307 if (!current_partition)
2308 current_partition = BB_PARTITION (bb);
2309 if (BB_PARTITION (bb) != current_partition)
2310 {
2311 gcc_assert (!switched_sections);
2312 switched_sections = true;
2313 emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2314 current_partition = BB_PARTITION (bb);
2315 }
2316 }
2317 }
2318
2319 namespace {
2320
2321 const pass_data pass_data_reorder_blocks =
2322 {
2323 RTL_PASS, /* type */
2324 "bbro", /* name */
2325 OPTGROUP_NONE, /* optinfo_flags */
2326 TV_REORDER_BLOCKS, /* tv_id */
2327 0, /* properties_required */
2328 0, /* properties_provided */
2329 0, /* properties_destroyed */
2330 0, /* todo_flags_start */
2331 0, /* todo_flags_finish */
2332 };
2333
2334 class pass_reorder_blocks : public rtl_opt_pass
2335 {
2336 public:
2337 pass_reorder_blocks (gcc::context *ctxt)
2338 : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
2339 {}
2340
2341 /* opt_pass methods: */
2342 virtual bool gate (function *)
2343 {
2344 if (targetm.cannot_modify_jumps_p ())
2345 return false;
2346 return (optimize > 0
2347 && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2348 }
2349
2350 virtual unsigned int execute (function *);
2351
2352 }; // class pass_reorder_blocks
2353
2354 unsigned int
2355 pass_reorder_blocks::execute (function *fun)
2356 {
2357 basic_block bb;
2358
2359 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2360 splitting possibly introduced more crossjumping opportunities. */
2361 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2362
2363 reorder_basic_blocks ();
2364 cleanup_cfg (CLEANUP_EXPENSIVE);
2365
2366 FOR_EACH_BB_FN (bb, fun)
2367 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2368 bb->aux = bb->next_bb;
2369 cfg_layout_finalize ();
2370
2371 return 0;
2372 }
2373
2374 } // anon namespace
2375
2376 rtl_opt_pass *
2377 make_pass_reorder_blocks (gcc::context *ctxt)
2378 {
2379 return new pass_reorder_blocks (ctxt);
2380 }
2381
2382 /* Duplicate the blocks containing computed gotos. This basically unfactors
2383 computed gotos that were factored early on in the compilation process to
2384 speed up edge based data flow. We used to not unfactoring them again,
2385 which can seriously pessimize code with many computed jumps in the source
2386 code, such as interpreters. See e.g. PR15242. */
2387
2388 namespace {
2389
2390 const pass_data pass_data_duplicate_computed_gotos =
2391 {
2392 RTL_PASS, /* type */
2393 "compgotos", /* name */
2394 OPTGROUP_NONE, /* optinfo_flags */
2395 TV_REORDER_BLOCKS, /* tv_id */
2396 0, /* properties_required */
2397 0, /* properties_provided */
2398 0, /* properties_destroyed */
2399 0, /* todo_flags_start */
2400 0, /* todo_flags_finish */
2401 };
2402
2403 class pass_duplicate_computed_gotos : public rtl_opt_pass
2404 {
2405 public:
2406 pass_duplicate_computed_gotos (gcc::context *ctxt)
2407 : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2408 {}
2409
2410 /* opt_pass methods: */
2411 virtual bool gate (function *);
2412 virtual unsigned int execute (function *);
2413
2414 }; // class pass_duplicate_computed_gotos
2415
2416 bool
2417 pass_duplicate_computed_gotos::gate (function *fun)
2418 {
2419 if (targetm.cannot_modify_jumps_p ())
2420 return false;
2421 return (optimize > 0
2422 && flag_expensive_optimizations
2423 && ! optimize_function_for_size_p (fun));
2424 }
2425
2426 unsigned int
2427 pass_duplicate_computed_gotos::execute (function *fun)
2428 {
2429 basic_block bb, new_bb;
2430 bitmap candidates;
2431 int max_size;
2432 bool changed = false;
2433
2434 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2435 return 0;
2436
2437 clear_bb_flags ();
2438 cfg_layout_initialize (0);
2439
2440 /* We are estimating the length of uncond jump insn only once
2441 since the code for getting the insn length always returns
2442 the minimal length now. */
2443 if (uncond_jump_length == 0)
2444 uncond_jump_length = get_uncond_jump_length ();
2445
2446 max_size
2447 = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2448 candidates = BITMAP_ALLOC (NULL);
2449
2450 /* Look for blocks that end in a computed jump, and see if such blocks
2451 are suitable for unfactoring. If a block is a candidate for unfactoring,
2452 mark it in the candidates. */
2453 FOR_EACH_BB_FN (bb, fun)
2454 {
2455 rtx_insn *insn;
2456 edge e;
2457 edge_iterator ei;
2458 int size, all_flags;
2459
2460 /* Build the reorder chain for the original order of blocks. */
2461 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2462 bb->aux = bb->next_bb;
2463
2464 /* Obviously the block has to end in a computed jump. */
2465 if (!computed_jump_p (BB_END (bb)))
2466 continue;
2467
2468 /* Only consider blocks that can be duplicated. */
2469 if (CROSSING_JUMP_P (BB_END (bb))
2470 || !can_duplicate_block_p (bb))
2471 continue;
2472
2473 /* Make sure that the block is small enough. */
2474 size = 0;
2475 FOR_BB_INSNS (bb, insn)
2476 if (INSN_P (insn))
2477 {
2478 size += get_attr_min_length (insn);
2479 if (size > max_size)
2480 break;
2481 }
2482 if (size > max_size)
2483 continue;
2484
2485 /* Final check: there must not be any incoming abnormal edges. */
2486 all_flags = 0;
2487 FOR_EACH_EDGE (e, ei, bb->preds)
2488 all_flags |= e->flags;
2489 if (all_flags & EDGE_COMPLEX)
2490 continue;
2491
2492 bitmap_set_bit (candidates, bb->index);
2493 }
2494
2495 /* Nothing to do if there is no computed jump here. */
2496 if (bitmap_empty_p (candidates))
2497 goto done;
2498
2499 /* Duplicate computed gotos. */
2500 FOR_EACH_BB_FN (bb, fun)
2501 {
2502 if (bb->flags & BB_VISITED)
2503 continue;
2504
2505 bb->flags |= BB_VISITED;
2506
2507 /* BB must have one outgoing edge. That edge must not lead to
2508 the exit block or the next block.
2509 The destination must have more than one predecessor. */
2510 if (!single_succ_p (bb)
2511 || single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (fun)
2512 || single_succ (bb) == bb->next_bb
2513 || single_pred_p (single_succ (bb)))
2514 continue;
2515
2516 /* The successor block has to be a duplication candidate. */
2517 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2518 continue;
2519
2520 /* Don't duplicate a partition crossing edge, which requires difficult
2521 fixup. */
2522 if (JUMP_P (BB_END (bb)) && CROSSING_JUMP_P (BB_END (bb)))
2523 continue;
2524
2525 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2526 new_bb->aux = bb->aux;
2527 bb->aux = new_bb;
2528 new_bb->flags |= BB_VISITED;
2529 changed = true;
2530 }
2531
2532 done:
2533 if (changed)
2534 {
2535 /* Duplicating blocks above will redirect edges and may cause hot
2536 blocks previously reached by both hot and cold blocks to become
2537 dominated only by cold blocks. */
2538 fixup_partitions ();
2539
2540 /* Merge the duplicated blocks into predecessors, when possible. */
2541 cfg_layout_finalize ();
2542 cleanup_cfg (0);
2543 }
2544 else
2545 cfg_layout_finalize ();
2546
2547 BITMAP_FREE (candidates);
2548 return 0;
2549 }
2550
2551 } // anon namespace
2552
2553 rtl_opt_pass *
2554 make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2555 {
2556 return new pass_duplicate_computed_gotos (ctxt);
2557 }
2558
2559 /* This function is the main 'entrance' for the optimization that
2560 partitions hot and cold basic blocks into separate sections of the
2561 .o file (to improve performance and cache locality). Ideally it
2562 would be called after all optimizations that rearrange the CFG have
2563 been called. However part of this optimization may introduce new
2564 register usage, so it must be called before register allocation has
2565 occurred. This means that this optimization is actually called
2566 well before the optimization that reorders basic blocks (see
2567 function above).
2568
2569 This optimization checks the feedback information to determine
2570 which basic blocks are hot/cold, updates flags on the basic blocks
2571 to indicate which section they belong in. This information is
2572 later used for writing out sections in the .o file. Because hot
2573 and cold sections can be arbitrarily large (within the bounds of
2574 memory), far beyond the size of a single function, it is necessary
2575 to fix up all edges that cross section boundaries, to make sure the
2576 instructions used can actually span the required distance. The
2577 fixes are described below.
2578
2579 Fall-through edges must be changed into jumps; it is not safe or
2580 legal to fall through across a section boundary. Whenever a
2581 fall-through edge crossing a section boundary is encountered, a new
2582 basic block is inserted (in the same section as the fall-through
2583 source), and the fall through edge is redirected to the new basic
2584 block. The new basic block contains an unconditional jump to the
2585 original fall-through target. (If the unconditional jump is
2586 insufficient to cross section boundaries, that is dealt with a
2587 little later, see below).
2588
2589 In order to deal with architectures that have short conditional
2590 branches (which cannot span all of memory) we take any conditional
2591 jump that attempts to cross a section boundary and add a level of
2592 indirection: it becomes a conditional jump to a new basic block, in
2593 the same section. The new basic block contains an unconditional
2594 jump to the original target, in the other section.
2595
2596 For those architectures whose unconditional branch is also
2597 incapable of reaching all of memory, those unconditional jumps are
2598 converted into indirect jumps, through a register.
2599
2600 IMPORTANT NOTE: This optimization causes some messy interactions
2601 with the cfg cleanup optimizations; those optimizations want to
2602 merge blocks wherever possible, and to collapse indirect jump
2603 sequences (change "A jumps to B jumps to C" directly into "A jumps
2604 to C"). Those optimizations can undo the jump fixes that
2605 partitioning is required to make (see above), in order to ensure
2606 that jumps attempting to cross section boundaries are really able
2607 to cover whatever distance the jump requires (on many architectures
2608 conditional or unconditional jumps are not able to reach all of
2609 memory). Therefore tests have to be inserted into each such
2610 optimization to make sure that it does not undo stuff necessary to
2611 cross partition boundaries. This would be much less of a problem
2612 if we could perform this optimization later in the compilation, but
2613 unfortunately the fact that we may need to create indirect jumps
2614 (through registers) requires that this optimization be performed
2615 before register allocation.
2616
2617 Hot and cold basic blocks are partitioned and put in separate
2618 sections of the .o file, to reduce paging and improve cache
2619 performance (hopefully). This can result in bits of code from the
2620 same function being widely separated in the .o file. However this
2621 is not obvious to the current bb structure. Therefore we must take
2622 care to ensure that: 1). There are no fall_thru edges that cross
2623 between sections; 2). For those architectures which have "short"
2624 conditional branches, all conditional branches that attempt to
2625 cross between sections are converted to unconditional branches;
2626 and, 3). For those architectures which have "short" unconditional
2627 branches, all unconditional branches that attempt to cross between
2628 sections are converted to indirect jumps.
2629
2630 The code for fixing up fall_thru edges that cross between hot and
2631 cold basic blocks does so by creating new basic blocks containing
2632 unconditional branches to the appropriate label in the "other"
2633 section. The new basic block is then put in the same (hot or cold)
2634 section as the original conditional branch, and the fall_thru edge
2635 is modified to fall into the new basic block instead. By adding
2636 this level of indirection we end up with only unconditional branches
2637 crossing between hot and cold sections.
2638
2639 Conditional branches are dealt with by adding a level of indirection.
2640 A new basic block is added in the same (hot/cold) section as the
2641 conditional branch, and the conditional branch is retargeted to the
2642 new basic block. The new basic block contains an unconditional branch
2643 to the original target of the conditional branch (in the other section).
2644
2645 Unconditional branches are dealt with by converting them into
2646 indirect jumps. */
2647
2648 namespace {
2649
2650 const pass_data pass_data_partition_blocks =
2651 {
2652 RTL_PASS, /* type */
2653 "bbpart", /* name */
2654 OPTGROUP_NONE, /* optinfo_flags */
2655 TV_REORDER_BLOCKS, /* tv_id */
2656 PROP_cfglayout, /* properties_required */
2657 0, /* properties_provided */
2658 0, /* properties_destroyed */
2659 0, /* todo_flags_start */
2660 0, /* todo_flags_finish */
2661 };
2662
2663 class pass_partition_blocks : public rtl_opt_pass
2664 {
2665 public:
2666 pass_partition_blocks (gcc::context *ctxt)
2667 : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2668 {}
2669
2670 /* opt_pass methods: */
2671 virtual bool gate (function *);
2672 virtual unsigned int execute (function *);
2673
2674 }; // class pass_partition_blocks
2675
2676 bool
2677 pass_partition_blocks::gate (function *fun)
2678 {
2679 /* The optimization to partition hot/cold basic blocks into separate
2680 sections of the .o file does not work well with linkonce or with
2681 user defined section attributes. Don't call it if either case
2682 arises. */
2683 return (flag_reorder_blocks_and_partition
2684 && optimize
2685 /* See gate_handle_reorder_blocks. We should not partition if
2686 we are going to omit the reordering. */
2687 && optimize_function_for_speed_p (fun)
2688 && !DECL_COMDAT_GROUP (current_function_decl)
2689 && !user_defined_section_attribute);
2690 }
2691
2692 unsigned
2693 pass_partition_blocks::execute (function *fun)
2694 {
2695 vec<edge> crossing_edges;
2696
2697 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2698 return 0;
2699
2700 df_set_flags (DF_DEFER_INSN_RESCAN);
2701
2702 crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2703 if (!crossing_edges.exists ())
2704 return 0;
2705
2706 crtl->has_bb_partition = true;
2707
2708 /* Make sure the source of any crossing edge ends in a jump and the
2709 destination of any crossing edge has a label. */
2710 add_labels_and_missing_jumps (crossing_edges);
2711
2712 /* Convert all crossing fall_thru edges to non-crossing fall
2713 thrus to unconditional jumps (that jump to the original fall
2714 through dest). */
2715 fix_up_fall_thru_edges ();
2716
2717 /* If the architecture does not have conditional branches that can
2718 span all of memory, convert crossing conditional branches into
2719 crossing unconditional branches. */
2720 if (!HAS_LONG_COND_BRANCH)
2721 fix_crossing_conditional_branches ();
2722
2723 /* If the architecture does not have unconditional branches that
2724 can span all of memory, convert crossing unconditional branches
2725 into indirect jumps. Since adding an indirect jump also adds
2726 a new register usage, update the register usage information as
2727 well. */
2728 if (!HAS_LONG_UNCOND_BRANCH)
2729 fix_crossing_unconditional_branches ();
2730
2731 update_crossing_jump_flags ();
2732
2733 /* Clear bb->aux fields that the above routines were using. */
2734 clear_aux_for_blocks ();
2735
2736 crossing_edges.release ();
2737
2738 /* ??? FIXME: DF generates the bb info for a block immediately.
2739 And by immediately, I mean *during* creation of the block.
2740
2741 #0 df_bb_refs_collect
2742 #1 in df_bb_refs_record
2743 #2 in create_basic_block_structure
2744
2745 Which means that the bb_has_eh_pred test in df_bb_refs_collect
2746 will *always* fail, because no edges can have been added to the
2747 block yet. Which of course means we don't add the right
2748 artificial refs, which means we fail df_verify (much) later.
2749
2750 Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
2751 that we also shouldn't grab data from the new blocks those new
2752 insns are in either. In this way one can create the block, link
2753 it up properly, and have everything Just Work later, when deferred
2754 insns are processed.
2755
2756 In the meantime, we have no other option but to throw away all
2757 of the DF data and recompute it all. */
2758 if (fun->eh->lp_array)
2759 {
2760 df_finish_pass (true);
2761 df_scan_alloc (NULL);
2762 df_scan_blocks ();
2763 /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
2764 data. We blindly generated all of them when creating the new
2765 landing pad. Delete those assignments we don't use. */
2766 df_set_flags (DF_LR_RUN_DCE);
2767 df_analyze ();
2768 }
2769
2770 return 0;
2771 }
2772
2773 } // anon namespace
2774
2775 rtl_opt_pass *
2776 make_pass_partition_blocks (gcc::context *ctxt)
2777 {
2778 return new pass_partition_blocks (ctxt);
2779 }