Makefile.in (cfg.o, [...]): New.
[gcc.git] / gcc / bb-reorder.c
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /* References:
22
23 "Profile Guided Code Positioning"
24 Pettis and Hanson; PLDI '90.
25
26 TODO:
27
28 (1) Consider:
29
30 if (p) goto A; // predict taken
31 foo ();
32 A:
33 if (q) goto B; // predict taken
34 bar ();
35 B:
36 baz ();
37 return;
38
39 We'll currently reorder this as
40
41 if (!p) goto C;
42 A:
43 if (!q) goto D;
44 B:
45 baz ();
46 return;
47 D:
48 bar ();
49 goto B;
50 C:
51 foo ();
52 goto A;
53
54 A better ordering is
55
56 if (!p) goto C;
57 if (!q) goto D;
58 B:
59 baz ();
60 return;
61 C:
62 foo ();
63 if (q) goto B;
64 D:
65 bar ();
66 goto B;
67
68 This requires that we be able to duplicate the jump at A, and
69 adjust the graph traversal such that greedy placement doesn't
70 fix D before C is considered.
71
72 (2) Coordinate with shorten_branches to minimize the number of
73 long branches.
74
75 (3) Invent a method by which sufficiently non-predicted code can
76 be moved to either the end of the section or another section
77 entirely. Some sort of NOTE_INSN note would work fine.
78
79 This completely scroggs all debugging formats, so the user
80 would have to explicitly ask for it.
81 */
82
83 #include "config.h"
84 #include "system.h"
85 #include "tree.h"
86 #include "rtl.h"
87 #include "tm_p.h"
88 #include "hard-reg-set.h"
89 #include "basic-block.h"
90 #include "insn-config.h"
91 #include "regs.h"
92 #include "flags.h"
93 #include "output.h"
94 #include "function.h"
95 #include "toplev.h"
96 #include "recog.h"
97 #include "expr.h"
98 #include "obstack.h"
99
100
101 #ifndef HAVE_epilogue
102 #define HAVE_epilogue 0
103 #endif
104
105
106 /* The contents of the current function definition are allocated
107 in this obstack, and all are freed at the end of the function.
108 For top-level functions, this is temporary_obstack.
109 Separate obstacks are made for nested functions. */
110
111 extern struct obstack flow_obstack;
112
113
114 /* Structure to hold information about lexical scopes. */
115 typedef struct scope_def
116 {
117 int level;
118
119 /* The NOTE_INSN_BLOCK_BEG that started this scope. */
120 rtx note_beg;
121
122 /* The NOTE_INSN_BLOCK_END that ended this scope. */
123 rtx note_end;
124
125 /* The bb containing note_beg (if any). */
126 basic_block bb_beg;
127
128 /* The bb containing note_end (if any). */
129 basic_block bb_end;
130
131 /* List of basic blocks contained within this scope. */
132 basic_block *bbs;
133
134 /* Number of blocks contained within this scope. */
135 int num_bbs;
136
137 /* The outer scope or NULL if outermost scope. */
138 struct scope_def *outer;
139
140 /* The first inner scope or NULL if innermost scope. */
141 struct scope_def *inner;
142
143 /* The last inner scope or NULL if innermost scope. */
144 struct scope_def *inner_last;
145
146 /* Link to the next (sibling) scope. */
147 struct scope_def *next;
148 } *scope;
149
150
151 /* Structure to hold information about the scope forest. */
152 typedef struct
153 {
154 /* Number of trees in forest. */
155 int num_trees;
156
157 /* List of tree roots. */
158 scope *trees;
159 } scope_forest_info;
160
161 /* Structure to hold information about the blocks during reordering. */
162 typedef struct reorder_block_def
163 {
164 rtx eff_head;
165 rtx eff_end;
166 scope scope;
167 basic_block next;
168 int visited;
169 } *reorder_block_def;
170
171 #define RBI(BB) ((reorder_block_def) (BB)->aux)
172
173 /* Holds the interesting trailing notes for the function. */
174 static rtx function_tail_eff_head;
175
176
177 /* Local function prototypes. */
178 static rtx skip_insns_after_block PARAMS ((basic_block));
179 static void record_effective_endpoints PARAMS ((void));
180 static void make_reorder_chain PARAMS ((void));
181 static basic_block make_reorder_chain_1 PARAMS ((basic_block, basic_block));
182 static rtx label_for_bb PARAMS ((basic_block));
183 static rtx emit_jump_to_block_after PARAMS ((basic_block, rtx));
184 static void fixup_reorder_chain PARAMS ((void));
185 static void relate_bbs_with_scopes PARAMS ((scope));
186 static scope make_new_scope PARAMS ((int, rtx));
187 static void build_scope_forest PARAMS ((scope_forest_info *));
188 static void remove_scope_notes PARAMS ((void));
189 static void insert_intra_1 PARAMS ((scope, rtx *, basic_block));
190 static void insert_intra_bb_scope_notes PARAMS ((basic_block));
191 static void insert_inter_bb_scope_notes PARAMS ((basic_block, basic_block));
192 static void rebuild_scope_notes PARAMS ((scope_forest_info *));
193 static void free_scope_forest_1 PARAMS ((scope));
194 static void free_scope_forest PARAMS ((scope_forest_info *));
195 void dump_scope_forest PARAMS ((scope_forest_info *));
196 static void dump_scope_forest_1 PARAMS ((scope, int));
197 static rtx get_next_bb_note PARAMS ((rtx));
198 static rtx get_prev_bb_note PARAMS ((rtx));
199
200 void verify_insn_chain PARAMS ((void));
201 \f
202 /* Skip over inter-block insns occurring after BB which are typically
203 associated with BB (e.g., barriers). If there are any such insns,
204 we return the last one. Otherwise, we return the end of BB. */
205
206 static rtx
207 skip_insns_after_block (bb)
208 basic_block bb;
209 {
210 rtx insn, last_insn, next_head, prev;
211
212 next_head = NULL_RTX;
213 if (bb->index + 1 != n_basic_blocks)
214 next_head = BASIC_BLOCK (bb->index + 1)->head;
215
216 for (last_insn = insn = bb->end; (insn = NEXT_INSN (insn)); )
217 {
218 if (insn == next_head)
219 break;
220
221 switch (GET_CODE (insn))
222 {
223 case BARRIER:
224 last_insn = insn;
225 continue;
226
227 case NOTE:
228 switch (NOTE_LINE_NUMBER (insn))
229 {
230 case NOTE_INSN_LOOP_END:
231 case NOTE_INSN_BLOCK_END:
232 last_insn = insn;
233 continue;
234 case NOTE_INSN_DELETED:
235 case NOTE_INSN_DELETED_LABEL:
236 continue;
237
238 default:
239 continue;
240 break;
241 }
242 break;
243
244 case CODE_LABEL:
245 if (NEXT_INSN (insn)
246 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
247 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
248 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
249 {
250 insn = NEXT_INSN (insn);
251 last_insn = insn;
252 continue;
253 }
254 break;
255
256 default:
257 break;
258 }
259
260 break;
261 }
262 /* It is possible to hit contradicting sequence. For instance:
263
264 jump_insn
265 NOTE_INSN_LOOP_BEG
266 barrier
267
268 Where barrier belongs to jump_insn, but the note does not.
269 This can be created by removing the basic block originally
270 following NOTE_INSN_LOOP_BEG.
271
272 In such case reorder the notes. */
273 for (insn = last_insn; insn != bb->end; insn = prev)
274 {
275 prev = PREV_INSN (insn);
276 if (GET_CODE (insn) == NOTE)
277 switch (NOTE_LINE_NUMBER (insn))
278 {
279 case NOTE_INSN_LOOP_END:
280 case NOTE_INSN_BLOCK_END:
281 case NOTE_INSN_DELETED:
282 case NOTE_INSN_DELETED_LABEL:
283 continue;
284 default:
285 reorder_insns (insn, insn, last_insn);
286 }
287 }
288
289 return last_insn;
290 }
291
292
293 /* Locate the effective beginning and end of the insn chain for each
294 block, as defined by skip_insns_after_block above. */
295
296 static void
297 record_effective_endpoints ()
298 {
299 rtx next_insn = get_insns ();
300 int i;
301
302 for (i = 0; i < n_basic_blocks; ++i)
303 {
304 basic_block bb = BASIC_BLOCK (i);
305 rtx end;
306
307 RBI (bb)->eff_head = next_insn;
308 end = skip_insns_after_block (bb);
309 RBI (bb)->eff_end = end;
310 next_insn = NEXT_INSN (end);
311 }
312 function_tail_eff_head = next_insn;
313 }
314
315
316 /* Compute an ordering for a subgraph beginning with block BB. Record the
317 ordering in RBI()->index and chained through RBI()->next. */
318
319 static void
320 make_reorder_chain ()
321 {
322 basic_block last_block = NULL;
323 basic_block prev = NULL;
324 int nbb_m1 = n_basic_blocks - 1;
325 basic_block next;
326
327 /* If we've not got epilogue in RTL, we must fallthru to the exit.
328 Force the last block to be at the end. */
329 /* ??? Some ABIs (e.g. MIPS) require the return insn to be at the
330 end of the function for stack unwinding purposes. */
331 if (! HAVE_epilogue)
332 {
333 last_block = BASIC_BLOCK (nbb_m1);
334 RBI (last_block)->visited = 1;
335 nbb_m1 -= 1;
336 }
337
338 /* Loop until we've placed every block. */
339 do
340 {
341 int i;
342
343 next = NULL;
344
345 /* Find the next unplaced block. */
346 /* ??? Get rid of this loop, and track which blocks are not yet
347 placed more directly, so as to avoid the O(N^2) worst case.
348 Perhaps keep a doubly-linked list of all to-be-placed blocks;
349 remove from the list as we place. The head of that list is
350 what we're looking for here. */
351
352 for (i = 0; i <= nbb_m1 && !next; ++i)
353 {
354 basic_block bb = BASIC_BLOCK (i);
355 if (! RBI (bb)->visited)
356 next = bb;
357 }
358 if (next)
359 prev = make_reorder_chain_1 (next, prev);
360 }
361 while (next);
362
363 /* Terminate the chain. */
364 if (! HAVE_epilogue)
365 {
366 RBI (prev)->next = last_block;
367 prev = last_block;
368 }
369 RBI (prev)->next = NULL;
370 }
371
372 /* A helper function for make_reorder_chain.
373
374 We do not follow EH edges, or non-fallthru edges to noreturn blocks.
375 These are assumed to be the error condition and we wish to cluster
376 all of them at the very end of the function for the benefit of cache
377 locality for the rest of the function.
378
379 ??? We could do slightly better by noticing earlier that some subgraph
380 has all paths leading to noreturn functions, but for there to be more
381 than one block in such a subgraph is rare. */
382
383 static basic_block
384 make_reorder_chain_1 (bb, prev)
385 basic_block bb;
386 basic_block prev;
387 {
388 edge e;
389 basic_block next;
390 rtx note;
391
392 /* Mark this block visited. */
393 if (prev)
394 {
395 restart:
396 RBI (prev)->next = bb;
397
398 if (rtl_dump_file && prev->index + 1 != bb->index)
399 fprintf (rtl_dump_file, "Reordering block %d after %d\n",
400 bb->index, prev->index);
401 }
402 else
403 {
404 if (bb->index != 0)
405 abort ();
406 }
407 RBI (bb)->visited = 1;
408 prev = bb;
409
410 if (bb->succ == NULL)
411 return prev;
412
413 /* Find the most probable block. */
414
415 next = NULL;
416 if (any_condjump_p (bb->end)
417 && (note = find_reg_note (bb->end, REG_BR_PROB, 0)) != NULL)
418 {
419 int taken, probability;
420 edge e_taken, e_fall;
421
422 probability = INTVAL (XEXP (note, 0));
423 taken = probability > REG_BR_PROB_BASE / 2;
424
425 /* Find the normal taken edge and the normal fallthru edge.
426
427 Note, conditional jumps with other side effects may not
428 be fully optimized. In this case it is possible for
429 the conditional jump to branch to the same location as
430 the fallthru path.
431
432 We should probably work to improve optimization of that
433 case; however, it seems silly not to also deal with such
434 problems here if they happen to occur. */
435
436 e_taken = e_fall = NULL;
437 for (e = bb->succ; e ; e = e->succ_next)
438 {
439 if (e->flags & EDGE_FALLTHRU)
440 e_fall = e;
441 else if (! (e->flags & EDGE_EH))
442 e_taken = e;
443 }
444
445 next = (taken ? e_taken : e_fall)->dest;
446 }
447
448 /* In the absence of a prediction, disturb things as little as possible
449 by selecting the old "next" block from the list of successors. If
450 there had been a fallthru edge, that will be the one. */
451 if (! next)
452 {
453 for (e = bb->succ; e ; e = e->succ_next)
454 if (e->dest->index == bb->index + 1)
455 {
456 if ((e->flags & EDGE_FALLTHRU)
457 || (e->dest->succ
458 && ! (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))))
459 next = e->dest;
460 break;
461 }
462 }
463
464 /* Make sure we didn't select a silly next block. */
465 if (! next || next == EXIT_BLOCK_PTR || RBI (next)->visited)
466 next = NULL;
467
468 /* Recurse on the successors. Unroll the last call, as the normal
469 case is exactly one or two edges, and we can tail recurse. */
470 for (e = bb->succ; e; e = e->succ_next)
471 if (e->dest != EXIT_BLOCK_PTR
472 && ! RBI (e->dest)->visited
473 && e->dest->succ
474 && ! (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
475 {
476 if (next)
477 {
478 prev = make_reorder_chain_1 (next, prev);
479 next = RBI (e->dest)->visited ? NULL : e->dest;
480 }
481 else
482 next = e->dest;
483 }
484 if (next)
485 {
486 bb = next;
487 goto restart;
488 }
489
490 return prev;
491 }
492
493
494 /* Locate or create a label for a given basic block. */
495
496 static rtx
497 label_for_bb (bb)
498 basic_block bb;
499 {
500 rtx label = bb->head;
501
502 if (GET_CODE (label) != CODE_LABEL)
503 {
504 if (rtl_dump_file)
505 fprintf (rtl_dump_file, "Emitting label for block %d\n",
506 bb->index);
507
508 label = emit_label_before (gen_label_rtx (), label);
509 if (bb->head == RBI (bb)->eff_head)
510 RBI (bb)->eff_head = label;
511 bb->head = label;
512 if (basic_block_for_insn)
513 set_block_for_insn (label, bb);
514 }
515
516 return label;
517 }
518
519
520 /* Emit a jump to BB after insn AFTER. */
521
522 static rtx
523 emit_jump_to_block_after (bb, after)
524 basic_block bb;
525 rtx after;
526 {
527 rtx jump;
528
529 if (bb != EXIT_BLOCK_PTR)
530 {
531 rtx label = label_for_bb (bb);
532 jump = emit_jump_insn_after (gen_jump (label), after);
533 JUMP_LABEL (jump) = label;
534 LABEL_NUSES (label) += 1;
535 if (basic_block_for_insn)
536 set_block_for_new_insns (jump, bb);
537
538 if (rtl_dump_file)
539 fprintf (rtl_dump_file, "Emitting jump to block %d\n",
540 bb->index);
541 }
542 else
543 {
544 #ifdef HAVE_return
545 if (! HAVE_return)
546 abort ();
547 jump = emit_jump_insn_after (gen_return (), after);
548 if (basic_block_for_insn)
549 set_block_for_new_insns (jump, bb);
550
551 if (rtl_dump_file)
552 fprintf (rtl_dump_file, "Emitting return\n");
553 #else
554 abort ();
555 #endif
556 }
557
558 return jump;
559 }
560
561
562 /* Given a reorder chain, rearrange the code to match. */
563
564 static void
565 fixup_reorder_chain ()
566 {
567 basic_block bb, last_bb;
568 int index;
569 rtx insn;
570 int old_n_basic_blocks = n_basic_blocks;
571
572 /* First do the bulk reordering -- rechain the blocks without regard to
573 the needed changes to jumps and labels. */
574
575 last_bb = BASIC_BLOCK (0);
576 bb = RBI (last_bb)->next;
577 index = 1;
578 while (bb)
579 {
580 rtx last_e = RBI (last_bb)->eff_end;
581 rtx curr_h = RBI (bb)->eff_head;
582
583 NEXT_INSN (last_e) = curr_h;
584 PREV_INSN (curr_h) = last_e;
585
586 last_bb = bb;
587 bb = RBI (bb)->next;
588 index++;
589 }
590
591 if (index != n_basic_blocks)
592 abort ();
593
594 insn = RBI (last_bb)->eff_end;
595
596 NEXT_INSN (insn) = function_tail_eff_head;
597 if (function_tail_eff_head)
598 PREV_INSN (function_tail_eff_head) = insn;
599
600 while (NEXT_INSN (insn))
601 insn = NEXT_INSN (insn);
602 set_last_insn (insn);
603 #ifdef ENABLE_CHECKING
604 verify_insn_chain ();
605 #endif
606
607 /* Now add jumps and labels as needed to match the blocks new
608 outgoing edges. */
609
610 for (bb = BASIC_BLOCK (0); bb ; bb = RBI (bb)->next)
611 {
612 edge e_fall, e_taken, e;
613 rtx jump_insn, barrier_insn, bb_end_insn;
614 basic_block nb;
615
616 if (bb->succ == NULL)
617 continue;
618
619 /* Find the old fallthru edge, and another non-EH edge for
620 a taken jump. */
621 e_taken = e_fall = NULL;
622 for (e = bb->succ; e ; e = e->succ_next)
623 if (e->flags & EDGE_FALLTHRU)
624 e_fall = e;
625 else if (! (e->flags & EDGE_EH))
626 e_taken = e;
627
628 bb_end_insn = bb->end;
629 if (GET_CODE (bb_end_insn) == JUMP_INSN)
630 {
631 if (any_condjump_p (bb_end_insn))
632 {
633 /* If the old fallthru is still next, nothing to do. */
634 if (RBI (bb)->next == e_fall->dest
635 || (!RBI (bb)->next
636 && e_fall->dest == EXIT_BLOCK_PTR))
637 continue;
638
639 /* There is one special case: if *neither* block is next,
640 such as happens at the very end of a function, then we'll
641 need to add a new unconditional jump. Choose the taken
642 edge based on known or assumed probability. */
643 if (RBI (bb)->next != e_taken->dest)
644 {
645 rtx note = find_reg_note (bb_end_insn, REG_BR_PROB, 0);
646 if (note
647 && INTVAL (XEXP (note, 0)) < REG_BR_PROB_BASE / 2
648 && invert_jump (bb_end_insn,
649 label_for_bb (e_fall->dest), 0))
650 {
651 e_fall->flags &= ~EDGE_FALLTHRU;
652 e_taken->flags |= EDGE_FALLTHRU;
653 e = e_fall, e_fall = e_taken, e_taken = e;
654 }
655 }
656
657 /* Otherwise we can try to invert the jump. This will
658 basically never fail, however, keep up the pretense. */
659 else if (invert_jump (bb_end_insn,
660 label_for_bb (e_fall->dest), 0))
661 {
662 e_fall->flags &= ~EDGE_FALLTHRU;
663 e_taken->flags |= EDGE_FALLTHRU;
664 continue;
665 }
666 }
667 else if (returnjump_p (bb_end_insn))
668 continue;
669 else
670 {
671 /* Otherwise we have some switch or computed jump. In the
672 99% case, there should not have been a fallthru edge. */
673 if (! e_fall)
674 continue;
675 #ifdef CASE_DROPS_THROUGH
676 /* Except for VAX. Since we didn't have predication for the
677 tablejump, the fallthru block should not have moved. */
678 if (RBI (bb)->next == e_fall->dest)
679 continue;
680 bb_end_insn = skip_insns_after_block (bb);
681 #else
682 abort ();
683 #endif
684 }
685 }
686 else
687 {
688 /* No fallthru implies a noreturn function with EH edges, or
689 something similarly bizarre. In any case, we don't need to
690 do anything. */
691 if (! e_fall)
692 continue;
693
694 /* If the fallthru block is still next, nothing to do. */
695 if (RBI (bb)->next == e_fall->dest)
696 continue;
697
698 /* We need a new jump insn. If the block has only one outgoing
699 edge, then we can stuff the new jump insn in directly. */
700 if (bb->succ->succ_next == NULL)
701 {
702 e_fall->flags &= ~EDGE_FALLTHRU;
703
704 jump_insn = emit_jump_to_block_after (e_fall->dest, bb_end_insn);
705 bb->end = jump_insn;
706 barrier_insn = emit_barrier_after (jump_insn);
707 RBI (bb)->eff_end = barrier_insn;
708 continue;
709 }
710 }
711
712 /* We got here if we need to add a new jump insn in a new block
713 across the edge e_fall. */
714
715 jump_insn = emit_jump_to_block_after (e_fall->dest, bb_end_insn);
716 barrier_insn = emit_barrier_after (jump_insn);
717
718 VARRAY_GROW (basic_block_info, ++n_basic_blocks);
719 create_basic_block (n_basic_blocks - 1, jump_insn, jump_insn, NULL);
720
721 nb = BASIC_BLOCK (n_basic_blocks - 1);
722 nb->local_set = 0;
723 nb->count = e_fall->count;
724 nb->frequency = EDGE_FREQUENCY (e_fall);
725
726 nb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
727 nb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
728 COPY_REG_SET (nb->global_live_at_start, bb->global_live_at_start);
729 COPY_REG_SET (nb->global_live_at_end, bb->global_live_at_start);
730
731 nb->aux = xmalloc (sizeof (struct reorder_block_def));
732 RBI (nb)->eff_head = nb->head;
733 RBI (nb)->eff_end = barrier_insn;
734 RBI (nb)->scope = RBI (bb)->scope;
735 RBI (nb)->visited = 1;
736 RBI (nb)->next = RBI (bb)->next;
737 RBI (bb)->next = nb;
738
739 /* Link to new block. */
740 make_edge (NULL, nb, e_fall->dest, 0);
741 redirect_edge_succ (e_fall, nb);
742 nb->succ->count = e_fall->count;
743 nb->succ->probability = REG_BR_PROB_BASE;
744
745 /* Don't process this new block. */
746 bb = nb;
747 }
748
749 /* Put basic_block_info in the new order. */
750 bb = BASIC_BLOCK (0);
751 index = 0;
752
753 if (rtl_dump_file)
754 fprintf (rtl_dump_file, "Reordered sequence:\n");
755 while (bb)
756 {
757 if (rtl_dump_file)
758 fprintf (rtl_dump_file, " %i %sbb %i freq %i\n", index,
759 bb->index >= old_n_basic_blocks ? "compensation " : "",
760 bb->index,
761 bb->frequency);
762 bb->index = index;
763 BASIC_BLOCK (index) = bb;
764
765 bb = RBI (bb)->next;
766 index++;
767 }
768 }
769
770
771 /* Perform sanity checks on the insn chain.
772 1. Check that next/prev pointers are consistent in both the forward and
773 reverse direction.
774 2. Count insns in chain, going both directions, and check if equal.
775 3. Check that get_last_insn () returns the actual end of chain. */
776
777 void
778 verify_insn_chain ()
779 {
780 rtx x,
781 prevx,
782 nextx;
783 int insn_cnt1,
784 insn_cnt2;
785
786 prevx = NULL;
787 insn_cnt1 = 1;
788 for (x = get_insns (); x; x = NEXT_INSN (x))
789 {
790 if (PREV_INSN (x) != prevx)
791 {
792 fprintf (stderr, "Forward traversal: insn chain corrupt.\n");
793 fprintf (stderr, "previous insn:\n");
794 debug_rtx (prevx);
795 fprintf (stderr, "current insn:\n");
796 debug_rtx (x);
797 abort ();
798 }
799 ++insn_cnt1;
800 prevx = x;
801 }
802
803 if (prevx != get_last_insn ())
804 {
805 fprintf (stderr, "last_insn corrupt.\n");
806 abort ();
807 }
808
809 nextx = NULL;
810 insn_cnt2 = 1;
811 for (x = get_last_insn (); x; x = PREV_INSN (x))
812 {
813 if (NEXT_INSN (x) != nextx)
814 {
815 fprintf (stderr, "Reverse traversal: insn chain corrupt.\n");
816 fprintf (stderr, "current insn:\n");
817 debug_rtx (x);
818 fprintf (stderr, "next insn:\n");
819 debug_rtx (nextx);
820 abort ();
821 }
822 ++insn_cnt2;
823 nextx = x;
824 }
825
826 if (insn_cnt1 != insn_cnt2)
827 {
828 fprintf (stderr, "insn_cnt1 (%d) not equal to insn_cnt2 (%d).\n",
829 insn_cnt1, insn_cnt2);
830 abort ();
831 }
832 }
833
834 static rtx
835 get_next_bb_note (x)
836 rtx x;
837 {
838 while (x)
839 {
840 if (NOTE_INSN_BASIC_BLOCK_P (x))
841 return x;
842 x = NEXT_INSN (x);
843 }
844 return NULL;
845 }
846
847
848 static rtx
849 get_prev_bb_note (x)
850 rtx x;
851 {
852 while (x)
853 {
854 if (NOTE_INSN_BASIC_BLOCK_P (x))
855 return x;
856 x = PREV_INSN (x);
857 }
858 return NULL;
859 }
860
861
862 /* Determine and record the relationships between basic blocks and
863 scopes in scope tree S. */
864
865 static void
866 relate_bbs_with_scopes (s)
867 scope s;
868 {
869 scope p;
870 int i, bbi1, bbi2, bbs_spanned;
871 rtx bbnote;
872
873 for (p = s->inner; p; p = p->next)
874 relate_bbs_with_scopes (p);
875
876 bbi1 = bbi2 = -1;
877 bbs_spanned = 0;
878
879 /* If the begin and end notes are both inside the same basic block,
880 or if they are both outside of basic blocks, then we know immediately
881 how they are related. Otherwise, we need to poke around to make the
882 determination. */
883 if (s->bb_beg != s->bb_end)
884 {
885 if (s->bb_beg && s->bb_end)
886 {
887 /* Both notes are in different bbs. This implies that all the
888 basic blocks spanned by the pair of notes are contained in
889 this scope. */
890 bbi1 = s->bb_beg->index;
891 bbi2 = s->bb_end->index;
892 bbs_spanned = 1;
893 }
894 else if (! s->bb_beg)
895 {
896 /* First note is outside of a bb. If the scope spans more than
897 one basic block, then they all are contained within this
898 scope. Otherwise, this scope is contained within the basic
899 block. */
900 bbnote = get_next_bb_note (s->note_beg);
901 if (! bbnote)
902 abort ();
903 if (NOTE_BASIC_BLOCK (bbnote) == s->bb_end)
904 {
905 bbs_spanned = 0;
906 s->bb_beg = NOTE_BASIC_BLOCK (bbnote);
907 }
908 else
909 {
910 bbi1 = NOTE_BASIC_BLOCK (bbnote)->index;
911 bbi2 = s->bb_end->index;
912 s->bb_end = NULL;
913 bbs_spanned = 1;
914 }
915 }
916 else /* ! s->bb_end */
917 {
918 /* Second note is outside of a bb. If the scope spans more than
919 one basic block, then they all are contained within this
920 scope. Otherwise, this scope is contained within the basic
921 block. */
922 bbnote = get_prev_bb_note (s->note_end);
923 if (! bbnote)
924 abort ();
925 if (NOTE_BASIC_BLOCK (bbnote) == s->bb_beg)
926 {
927 bbs_spanned = 0;
928 s->bb_end = NOTE_BASIC_BLOCK (bbnote);
929 }
930 else
931 {
932 bbi1 = s->bb_beg->index;
933 bbi2 = NOTE_BASIC_BLOCK (bbnote)->index;
934 s->bb_beg = NULL;
935 bbs_spanned = 1;
936 }
937 }
938 }
939 else
940 {
941 if (s->bb_beg)
942 /* Both notes are in the same bb, which implies the block
943 contains this scope. */
944 bbs_spanned = 0;
945 else
946 {
947 rtx x1, x2;
948 /* Both notes are outside of any bbs. This implies that all the
949 basic blocks spanned by the pair of notes are contained in
950 this scope.
951 There is a degenerate case to consider. If the notes do not
952 span any basic blocks, then it is an empty scope that can
953 safely be deleted or ignored. Mark these with level = -1. */
954
955 x1 = get_next_bb_note (s->note_beg);
956 x2 = get_prev_bb_note (s->note_end);
957 if (! (x1 && x2))
958 {
959 s->level = -1;
960 bbs_spanned = 0;
961 }
962 else
963 {
964 bbi1 = NOTE_BASIC_BLOCK (x1)->index;
965 bbi2 = NOTE_BASIC_BLOCK (x2)->index;
966 bbs_spanned = 1;
967 }
968 }
969 }
970
971 /* If the scope spans one or more basic blocks, we record them. We
972 only record the bbs that are immediately contained within this
973 scope. Note that if a scope is contained within a bb, we can tell
974 by checking that bb_beg = bb_end and that they are non-null. */
975 if (bbs_spanned)
976 {
977 int j = 0;
978
979 s->num_bbs = 0;
980 for (i = bbi1; i <= bbi2; i++)
981 if (! RBI (BASIC_BLOCK (i))->scope)
982 s->num_bbs++;
983
984 s->bbs = xmalloc (s->num_bbs * sizeof (basic_block));
985 for (i = bbi1; i <= bbi2; i++)
986 {
987 basic_block curr_bb = BASIC_BLOCK (i);
988 if (! RBI (curr_bb)->scope)
989 {
990 s->bbs[j++] = curr_bb;
991 RBI (curr_bb)->scope = s;
992 }
993 }
994 }
995 else
996 s->num_bbs = 0;
997 }
998
999
1000 /* Allocate and initialize a new scope structure with scope level LEVEL,
1001 and record the NOTE beginning the scope. */
1002
1003 static scope
1004 make_new_scope (level, note)
1005 int level;
1006 rtx note;
1007 {
1008 scope new_scope = xcalloc (1, sizeof (struct scope_def));
1009 new_scope->level = level;
1010 new_scope->note_beg = note;
1011 return new_scope;
1012 }
1013
1014
1015 /* Build a forest representing the scope structure of the function.
1016 Return a pointer to a structure describing the forest. */
1017
1018 static void
1019 build_scope_forest (forest)
1020 scope_forest_info *forest;
1021 {
1022 rtx x;
1023 int level, bbi, i;
1024 basic_block curr_bb;
1025 scope root, curr_scope = 0;
1026
1027 forest->num_trees = 0;
1028 forest->trees = NULL;
1029 level = -1;
1030 root = NULL;
1031 curr_bb = NULL;
1032 bbi = 0;
1033 for (x = get_insns (); x; x = NEXT_INSN (x))
1034 {
1035 if (bbi < n_basic_blocks && x == BASIC_BLOCK (bbi)->head)
1036 curr_bb = BASIC_BLOCK (bbi);
1037
1038 if (GET_CODE (x) == NOTE)
1039 {
1040 if (NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_BEG)
1041 {
1042 if (root)
1043 {
1044 scope new_scope;
1045 if (! curr_scope)
1046 abort();
1047 level++;
1048 new_scope = make_new_scope (level, x);
1049 new_scope->outer = curr_scope;
1050 new_scope->next = NULL;
1051 if (! curr_scope->inner)
1052 {
1053 curr_scope->inner = new_scope;
1054 curr_scope->inner_last = new_scope;
1055 }
1056 else
1057 {
1058 curr_scope->inner_last->next = new_scope;
1059 curr_scope->inner_last = new_scope;
1060 }
1061 curr_scope = curr_scope->inner_last;
1062 }
1063 else
1064 {
1065 int ntrees = forest->num_trees;
1066 level++;
1067 curr_scope = make_new_scope (level, x);
1068 root = curr_scope;
1069 forest->trees = xrealloc (forest->trees,
1070 sizeof (scope) * (ntrees + 1));
1071 forest->trees[forest->num_trees++] = root;
1072 }
1073 curr_scope->bb_beg = curr_bb;
1074 }
1075 else if (NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_END)
1076 {
1077 curr_scope->bb_end = curr_bb;
1078 curr_scope->note_end = x;
1079 level--;
1080 curr_scope = curr_scope->outer;
1081 if (level == -1)
1082 root = NULL;
1083 }
1084 } /* if note */
1085
1086 if (curr_bb && curr_bb->end == x)
1087 {
1088 curr_bb = NULL;
1089 bbi++;
1090 }
1091
1092 } /* for */
1093
1094 for (i = 0; i < forest->num_trees; i++)
1095 relate_bbs_with_scopes (forest->trees[i]);
1096 }
1097
1098
1099 /* Remove all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes from
1100 the insn chain. */
1101
1102 static void
1103 remove_scope_notes ()
1104 {
1105 rtx x, next;
1106 basic_block currbb = NULL;
1107
1108 for (x = get_insns (); x; x = next)
1109 {
1110 next = NEXT_INSN (x);
1111 if (NOTE_INSN_BASIC_BLOCK_P (x))
1112 currbb = NOTE_BASIC_BLOCK (x);
1113
1114 if (GET_CODE (x) == NOTE
1115 && (NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_BEG
1116 || NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_END))
1117 {
1118 /* Check if the scope note happens to be the end of a bb. */
1119 if (currbb && x == currbb->end)
1120 currbb->end = PREV_INSN (x);
1121 if (currbb && x == currbb->head)
1122 abort ();
1123
1124 if (PREV_INSN (x))
1125 {
1126 NEXT_INSN (PREV_INSN (x)) = next;
1127 PREV_INSN (next) = PREV_INSN (x);
1128
1129 NEXT_INSN (x) = NULL;
1130 PREV_INSN (x) = NULL;
1131 }
1132 else
1133 abort ();
1134 }
1135 }
1136 }
1137
1138
1139 /* Insert scope note pairs for a contained scope tree S after insn IP. */
1140
1141 static void
1142 insert_intra_1 (s, ip, bb)
1143 scope s;
1144 rtx *ip;
1145 basic_block bb;
1146 {
1147 scope p;
1148
1149 if (NOTE_BLOCK (s->note_beg))
1150 {
1151 *ip = emit_note_after (NOTE_INSN_BLOCK_BEG, *ip);
1152 NOTE_BLOCK (*ip) = NOTE_BLOCK (s->note_beg);
1153 if (basic_block_for_insn)
1154 set_block_for_insn (*ip, bb);
1155 }
1156
1157 for (p = s->inner; p; p = p->next)
1158 insert_intra_1 (p, ip, bb);
1159
1160 if (NOTE_BLOCK (s->note_beg))
1161 {
1162 *ip = emit_note_after (NOTE_INSN_BLOCK_END, *ip);
1163 NOTE_BLOCK (*ip) = NOTE_BLOCK (s->note_end);
1164 if (basic_block_for_insn)
1165 set_block_for_insn (*ip, bb);
1166 }
1167 }
1168
1169
1170 /* Insert NOTE_INSN_BLOCK_END notes and NOTE_INSN_BLOCK_BEG notes for
1171 scopes that are contained within BB. */
1172
1173 static void
1174 insert_intra_bb_scope_notes (bb)
1175 basic_block bb;
1176 {
1177 scope s = RBI (bb)->scope;
1178 scope p;
1179 rtx ip;
1180
1181 if (! s)
1182 return;
1183
1184 ip = bb->head;
1185 if (GET_CODE (ip) == CODE_LABEL)
1186 ip = NEXT_INSN (ip);
1187
1188 for (p = s->inner; p; p = p->next)
1189 {
1190 if (p->bb_beg != NULL && p->bb_beg == p->bb_end && p->bb_beg == bb)
1191 insert_intra_1 (p, &ip, bb);
1192 }
1193 }
1194
1195
1196 /* Given two consecutive basic blocks BB1 and BB2 with different scopes,
1197 insert NOTE_INSN_BLOCK_END notes after BB1 and NOTE_INSN_BLOCK_BEG
1198 notes before BB2 such that the notes are correctly balanced. If BB1 or
1199 BB2 is NULL, we are inserting scope notes for the first and last basic
1200 blocks, respectively. */
1201
1202 static void
1203 insert_inter_bb_scope_notes (bb1, bb2)
1204 basic_block bb1;
1205 basic_block bb2;
1206 {
1207 rtx ip;
1208 scope com;
1209
1210 /* It is possible that a basic block is not contained in any scope.
1211 In that case, we either open or close a scope but not both. */
1212 if (bb1 && bb2)
1213 {
1214 scope s1 = RBI (bb1)->scope;
1215 scope s2 = RBI (bb2)->scope;
1216 if (! s1 && ! s2)
1217 return;
1218 if (! s1)
1219 bb1 = NULL;
1220 else if (! s2)
1221 bb2 = NULL;
1222 }
1223
1224 /* Find common ancestor scope. */
1225 if (bb1 && bb2)
1226 {
1227 scope s1 = RBI (bb1)->scope;
1228 scope s2 = RBI (bb2)->scope;
1229 while (s1 != s2)
1230 {
1231 if (! (s1 && s2))
1232 abort ();
1233 if (s1->level > s2->level)
1234 s1 = s1->outer;
1235 else if (s2->level > s1->level)
1236 s2 = s2->outer;
1237 else
1238 {
1239 s1 = s1->outer;
1240 s2 = s2->outer;
1241 }
1242 }
1243 com = s1;
1244 }
1245 else
1246 com = NULL;
1247
1248 /* Close scopes. */
1249 if (bb1)
1250 {
1251 scope s = RBI (bb1)->scope;
1252 ip = RBI (bb1)->eff_end;
1253 while (s != com)
1254 {
1255 if (NOTE_BLOCK (s->note_beg))
1256 {
1257 ip = emit_note_after (NOTE_INSN_BLOCK_END, ip);
1258 NOTE_BLOCK (ip) = NOTE_BLOCK (s->note_end);
1259 if (basic_block_for_insn)
1260 set_block_for_insn (ip, bb1);
1261 }
1262 s = s->outer;
1263 }
1264 }
1265
1266 /* Open scopes. */
1267 if (bb2)
1268 {
1269 scope s = RBI (bb2)->scope;
1270 ip = bb2->head;
1271 while (s != com)
1272 {
1273 if (NOTE_BLOCK (s->note_beg))
1274 {
1275 ip = emit_note_before (NOTE_INSN_BLOCK_BEG, ip);
1276 NOTE_BLOCK (ip) = NOTE_BLOCK (s->note_beg);
1277 if (basic_block_for_insn)
1278 set_block_for_insn (ip, bb2);
1279 }
1280 s = s->outer;
1281 }
1282 }
1283 }
1284
1285
1286 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1287 on the scope forest and the newly reordered basic blocks. */
1288
1289 static void
1290 rebuild_scope_notes (forest)
1291 scope_forest_info *forest;
1292 {
1293 int i;
1294
1295 if (forest->num_trees == 0)
1296 return;
1297
1298 /* Start by opening the scopes before the first basic block. */
1299 insert_inter_bb_scope_notes (NULL, BASIC_BLOCK (0));
1300
1301 /* Then, open and close scopes as needed between blocks. */
1302 for (i = 0; i < n_basic_blocks - 1; i++)
1303 {
1304 basic_block bb1 = BASIC_BLOCK (i);
1305 basic_block bb2 = BASIC_BLOCK (i + 1);
1306 if (RBI (bb1)->scope != RBI (bb2)->scope)
1307 insert_inter_bb_scope_notes (bb1, bb2);
1308 insert_intra_bb_scope_notes (bb1);
1309 }
1310
1311 /* Finally, close the scopes after the last basic block. */
1312 insert_inter_bb_scope_notes (BASIC_BLOCK (n_basic_blocks - 1), NULL);
1313 insert_intra_bb_scope_notes (BASIC_BLOCK (n_basic_blocks - 1));
1314 }
1315
1316
1317 /* Free the storage associated with the scope tree at S. */
1318
1319 static void
1320 free_scope_forest_1 (s)
1321 scope s;
1322 {
1323 scope p, next;
1324
1325 for (p = s->inner; p; p = next)
1326 {
1327 next = p->next;
1328 free_scope_forest_1 (p);
1329 }
1330
1331 if (s->bbs)
1332 free (s->bbs);
1333 free (s);
1334 }
1335
1336
1337 /* Free the storage associated with the scope forest. */
1338
1339 static void
1340 free_scope_forest (forest)
1341 scope_forest_info *forest;
1342 {
1343 int i;
1344 for (i = 0; i < forest->num_trees; i++)
1345 free_scope_forest_1 (forest->trees[i]);
1346 }
1347
1348
1349 /* Visualize the scope forest. */
1350
1351 void
1352 dump_scope_forest (forest)
1353 scope_forest_info *forest;
1354 {
1355 if (forest->num_trees == 0)
1356 fprintf (stderr, "\n< Empty scope forest >\n");
1357 else
1358 {
1359 int i;
1360 fprintf (stderr, "\n< Scope forest >\n");
1361 for (i = 0; i < forest->num_trees; i++)
1362 dump_scope_forest_1 (forest->trees[i], 0);
1363 }
1364 }
1365
1366
1367 /* Recursive portion of dump_scope_forest. */
1368
1369 static void
1370 dump_scope_forest_1 (s, indent)
1371 scope s;
1372 int indent;
1373 {
1374 scope p;
1375 int i;
1376
1377 if (s->bb_beg != NULL && s->bb_beg == s->bb_end
1378 && RBI (s->bb_beg)->scope
1379 && RBI (s->bb_beg)->scope->level + 1 == s->level)
1380 {
1381 fprintf (stderr, "%*s", indent, "");
1382 fprintf (stderr, "BB%d:\n", s->bb_beg->index);
1383 }
1384
1385 fprintf (stderr, "%*s", indent, "");
1386 fprintf (stderr, "{ level %d (block %p)\n", s->level,
1387 (PTR) NOTE_BLOCK (s->note_beg));
1388
1389 fprintf (stderr, "%*s%s", indent, "", "bbs:");
1390 for (i = 0; i < s->num_bbs; i++)
1391 fprintf (stderr, " %d", s->bbs[i]->index);
1392 fprintf (stderr, "\n");
1393
1394 for (p = s->inner; p; p = p->next)
1395 dump_scope_forest_1 (p, indent + 2);
1396
1397 fprintf (stderr, "%*s", indent, "");
1398 fprintf (stderr, "}\n");
1399 }
1400
1401
1402 /* Reorder basic blocks. The main entry point to this file. */
1403
1404 void
1405 reorder_basic_blocks ()
1406 {
1407 scope_forest_info forest;
1408 int i;
1409
1410 if (n_basic_blocks <= 1)
1411 return;
1412
1413 for (i = 0; i < n_basic_blocks; i++)
1414 BASIC_BLOCK (i)->aux = xcalloc (1, sizeof (struct reorder_block_def));
1415
1416 EXIT_BLOCK_PTR->aux = xcalloc (1, sizeof (struct reorder_block_def));
1417
1418 build_scope_forest (&forest);
1419 remove_scope_notes ();
1420
1421 record_effective_endpoints ();
1422 make_reorder_chain ();
1423
1424 if (rtl_dump_file)
1425 dump_flow_info (rtl_dump_file);
1426
1427 fixup_reorder_chain ();
1428
1429 #ifdef ENABLE_CHECKING
1430 verify_insn_chain ();
1431 #endif
1432
1433 rebuild_scope_notes (&forest);
1434 free_scope_forest (&forest);
1435 reorder_blocks ();
1436
1437 for (i = 0; i < n_basic_blocks; i++)
1438 free (BASIC_BLOCK (i)->aux);
1439
1440 free (EXIT_BLOCK_PTR->aux);
1441
1442 #ifdef ENABLE_CHECKING
1443 verify_flow_info ();
1444 #endif
1445 }