basic-block.h (EDGE_CRITICAL): Remove; renumber other flags.
[gcc.git] / gcc / bb-reorder.c
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /* References:
22
23 "Profile Guided Code Positioning"
24 Pettis and Hanson; PLDI '90.
25
26 TODO:
27
28 (1) Consider:
29
30 if (p) goto A; // predict taken
31 foo ();
32 A:
33 if (q) goto B; // predict taken
34 bar ();
35 B:
36 baz ();
37 return;
38
39 We'll currently reorder this as
40
41 if (!p) goto C;
42 A:
43 if (!q) goto D;
44 B:
45 baz ();
46 return;
47 D:
48 bar ();
49 goto B;
50 C:
51 foo ();
52 goto A;
53
54 A better ordering is
55
56 if (!p) goto C;
57 if (!q) goto D;
58 B:
59 baz ();
60 return;
61 C:
62 foo ();
63 if (q) goto B;
64 D:
65 bar ();
66 goto B;
67
68 This requires that we be able to duplicate the jump at A, and
69 adjust the graph traversal such that greedy placement doesn't
70 fix D before C is considered.
71
72 (2) Coordinate with shorten_branches to minimize the number of
73 long branches.
74
75 (3) Invent a method by which sufficiently non-predicted code can
76 be moved to either the end of the section or another section
77 entirely. Some sort of NOTE_INSN note would work fine.
78
79 This completely scroggs all debugging formats, so the user
80 would have to explicitly ask for it.
81 */
82
83 #include "config.h"
84 #include "system.h"
85 #include "tree.h"
86 #include "rtl.h"
87 #include "tm_p.h"
88 #include "hard-reg-set.h"
89 #include "basic-block.h"
90 #include "insn-config.h"
91 #include "regs.h"
92 #include "flags.h"
93 #include "output.h"
94 #include "function.h"
95 #include "toplev.h"
96 #include "recog.h"
97 #include "expr.h"
98 #include "obstack.h"
99
100
101 #ifndef HAVE_epilogue
102 #define HAVE_epilogue 0
103 #endif
104
105
106 /* The contents of the current function definition are allocated
107 in this obstack, and all are freed at the end of the function.
108 For top-level functions, this is temporary_obstack.
109 Separate obstacks are made for nested functions. */
110
111 extern struct obstack flow_obstack;
112
113
114 /* Structure to hold information about lexical scopes. */
115 typedef struct scope_def
116 {
117 int level;
118
119 /* The NOTE_INSN_BLOCK_BEG that started this scope. */
120 rtx note_beg;
121
122 /* The NOTE_INSN_BLOCK_END that ended this scope. */
123 rtx note_end;
124
125 /* The bb containing note_beg (if any). */
126 basic_block bb_beg;
127
128 /* The bb containing note_end (if any). */
129 basic_block bb_end;
130
131 /* List of basic blocks contained within this scope. */
132 basic_block *bbs;
133
134 /* Number of blocks contained within this scope. */
135 int num_bbs;
136
137 /* The outer scope or NULL if outermost scope. */
138 struct scope_def *outer;
139
140 /* The first inner scope or NULL if innermost scope. */
141 struct scope_def *inner;
142
143 /* The last inner scope or NULL if innermost scope. */
144 struct scope_def *inner_last;
145
146 /* Link to the next (sibling) scope. */
147 struct scope_def *next;
148 } *scope;
149
150
151 /* Structure to hold information about the scope forest. */
152 typedef struct
153 {
154 /* Number of trees in forest. */
155 int num_trees;
156
157 /* List of tree roots. */
158 scope *trees;
159 } scope_forest_info;
160
161 /* Structure to hold information about the blocks during reordering. */
162 typedef struct reorder_block_def
163 {
164 rtx eff_head;
165 rtx eff_end;
166 scope scope;
167 basic_block next;
168 int visited;
169 } *reorder_block_def;
170
171 #define RBI(BB) ((reorder_block_def) (BB)->aux)
172
173 /* Holds the interesting trailing notes for the function. */
174 static rtx function_tail_eff_head;
175
176
177 /* Local function prototypes. */
178 static rtx skip_insns_after_block PARAMS ((basic_block));
179 static void record_effective_endpoints PARAMS ((void));
180 static void make_reorder_chain PARAMS ((void));
181 static basic_block make_reorder_chain_1 PARAMS ((basic_block, basic_block));
182 static rtx label_for_bb PARAMS ((basic_block));
183 static rtx emit_jump_to_block_after PARAMS ((basic_block, rtx));
184 static void fixup_reorder_chain PARAMS ((void));
185 static void relate_bbs_with_scopes PARAMS ((scope));
186 static scope make_new_scope PARAMS ((int, rtx));
187 static void build_scope_forest PARAMS ((scope_forest_info *));
188 static void remove_scope_notes PARAMS ((void));
189 static void insert_intra_1 PARAMS ((scope, rtx *, basic_block));
190 static void insert_intra_bb_scope_notes PARAMS ((basic_block));
191 static void insert_inter_bb_scope_notes PARAMS ((basic_block, basic_block));
192 static void rebuild_scope_notes PARAMS ((scope_forest_info *));
193 static void free_scope_forest_1 PARAMS ((scope));
194 static void free_scope_forest PARAMS ((scope_forest_info *));
195 void dump_scope_forest PARAMS ((scope_forest_info *));
196 static void dump_scope_forest_1 PARAMS ((scope, int));
197 static rtx get_next_bb_note PARAMS ((rtx));
198 static rtx get_prev_bb_note PARAMS ((rtx));
199
200 void verify_insn_chain PARAMS ((void));
201 \f
202 /* Skip over inter-block insns occurring after BB which are typically
203 associated with BB (e.g., barriers). If there are any such insns,
204 we return the last one. Otherwise, we return the end of BB. */
205
206 static rtx
207 skip_insns_after_block (bb)
208 basic_block bb;
209 {
210 rtx insn, last_insn, next_head, prev;
211
212 next_head = NULL_RTX;
213 if (bb->index + 1 != n_basic_blocks)
214 next_head = BASIC_BLOCK (bb->index + 1)->head;
215
216 for (last_insn = insn = bb->end; (insn = NEXT_INSN (insn)); )
217 {
218 if (insn == next_head)
219 break;
220
221 switch (GET_CODE (insn))
222 {
223 case BARRIER:
224 last_insn = insn;
225 continue;
226
227 case NOTE:
228 switch (NOTE_LINE_NUMBER (insn))
229 {
230 case NOTE_INSN_LOOP_END:
231 case NOTE_INSN_BLOCK_END:
232 last_insn = insn;
233 continue;
234 case NOTE_INSN_DELETED:
235 case NOTE_INSN_DELETED_LABEL:
236 continue;
237
238 default:
239 continue;
240 break;
241 }
242 break;
243
244 case CODE_LABEL:
245 if (NEXT_INSN (insn)
246 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
247 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
248 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
249 {
250 insn = NEXT_INSN (insn);
251 last_insn = insn;
252 continue;
253 }
254 break;
255
256 default:
257 break;
258 }
259
260 break;
261 }
262 /* It is possible to hit contradicting sequence. For instance:
263
264 jump_insn
265 NOTE_INSN_LOOP_BEG
266 barrier
267
268 Where barrier belongs to jump_insn, but the note does not.
269 This can be created by removing the basic block originally
270 following NOTE_INSN_LOOP_BEG.
271
272 In such case reorder the notes. */
273 for (insn = last_insn; insn != bb->end; insn = prev)
274 {
275 prev = PREV_INSN (insn);
276 if (GET_CODE (insn) == NOTE)
277 switch (NOTE_LINE_NUMBER (insn))
278 {
279 case NOTE_INSN_LOOP_END:
280 case NOTE_INSN_BLOCK_END:
281 case NOTE_INSN_DELETED:
282 case NOTE_INSN_DELETED_LABEL:
283 continue;
284 default:
285 reorder_insns (insn, insn, last_insn);
286 }
287 }
288
289 return last_insn;
290 }
291
292
293 /* Locate the effective beginning and end of the insn chain for each
294 block, as defined by skip_insns_after_block above. */
295
296 static void
297 record_effective_endpoints ()
298 {
299 rtx next_insn = get_insns ();
300 int i;
301
302 for (i = 0; i < n_basic_blocks; ++i)
303 {
304 basic_block bb = BASIC_BLOCK (i);
305 rtx end;
306
307 RBI (bb)->eff_head = next_insn;
308 end = skip_insns_after_block (bb);
309 RBI (bb)->eff_end = end;
310 next_insn = NEXT_INSN (end);
311 }
312 function_tail_eff_head = next_insn;
313 }
314
315
316 /* Compute an ordering for a subgraph beginning with block BB. Record the
317 ordering in RBI()->index and chained through RBI()->next. */
318
319 static void
320 make_reorder_chain ()
321 {
322 basic_block last_block = NULL;
323 basic_block prev = NULL;
324 int nbb_m1 = n_basic_blocks - 1;
325 basic_block next;
326
327 /* If we've not got epilogue in RTL, we must fallthru to the exit.
328 Force the last block to be at the end. */
329 /* ??? Some ABIs (e.g. MIPS) require the return insn to be at the
330 end of the function for stack unwinding purposes. */
331 if (! HAVE_epilogue)
332 {
333 last_block = BASIC_BLOCK (nbb_m1);
334 RBI (last_block)->visited = 1;
335 nbb_m1 -= 1;
336 }
337
338 /* Loop until we've placed every block. */
339 do
340 {
341 int i;
342
343 next = NULL;
344
345 /* Find the next unplaced block. */
346 /* ??? Get rid of this loop, and track which blocks are not yet
347 placed more directly, so as to avoid the O(N^2) worst case.
348 Perhaps keep a doubly-linked list of all to-be-placed blocks;
349 remove from the list as we place. The head of that list is
350 what we're looking for here. */
351
352 for (i = 0; i <= nbb_m1 && !next; ++i)
353 {
354 basic_block bb = BASIC_BLOCK (i);
355 if (! RBI (bb)->visited)
356 next = bb;
357 }
358 if (next)
359 prev = make_reorder_chain_1 (next, prev);
360 }
361 while (next);
362
363 /* Terminate the chain. */
364 if (! HAVE_epilogue)
365 {
366 RBI (prev)->next = last_block;
367 prev = last_block;
368 }
369 RBI (prev)->next = NULL;
370 }
371
372 /* A helper function for make_reorder_chain.
373
374 We do not follow EH edges, or non-fallthru edges to noreturn blocks.
375 These are assumed to be the error condition and we wish to cluster
376 all of them at the very end of the function for the benefit of cache
377 locality for the rest of the function.
378
379 ??? We could do slightly better by noticing earlier that some subgraph
380 has all paths leading to noreturn functions, but for there to be more
381 than one block in such a subgraph is rare. */
382
383 static basic_block
384 make_reorder_chain_1 (bb, prev)
385 basic_block bb;
386 basic_block prev;
387 {
388 edge e;
389 basic_block next;
390 rtx note;
391
392 /* Mark this block visited. */
393 if (prev)
394 {
395 restart:
396 RBI (prev)->next = bb;
397
398 if (rtl_dump_file && prev->index + 1 != bb->index)
399 fprintf (rtl_dump_file, "Reordering block %d after %d\n",
400 bb->index, prev->index);
401 }
402 else
403 {
404 if (bb->index != 0)
405 abort ();
406 }
407 RBI (bb)->visited = 1;
408 prev = bb;
409
410 if (bb->succ == NULL)
411 return prev;
412
413 /* Find the most probable block. */
414
415 next = NULL;
416 if (any_condjump_p (bb->end)
417 && (note = find_reg_note (bb->end, REG_BR_PROB, 0)) != NULL)
418 {
419 int taken, probability;
420 edge e_taken, e_fall;
421
422 probability = INTVAL (XEXP (note, 0));
423 taken = probability > REG_BR_PROB_BASE / 2;
424
425 /* Find the normal taken edge and the normal fallthru edge.
426
427 Note, conditional jumps with other side effects may not
428 be fully optimized. In this case it is possible for
429 the conditional jump to branch to the same location as
430 the fallthru path.
431
432 We should probably work to improve optimization of that
433 case; however, it seems silly not to also deal with such
434 problems here if they happen to occur. */
435
436 e_taken = e_fall = NULL;
437 for (e = bb->succ; e ; e = e->succ_next)
438 {
439 if (e->flags & EDGE_FALLTHRU)
440 e_fall = e;
441 else if (! (e->flags & EDGE_EH))
442 e_taken = e;
443 }
444
445 next = (taken ? e_taken : e_fall)->dest;
446 }
447
448 /* In the absence of a prediction, disturb things as little as possible
449 by selecting the old "next" block from the list of successors. If
450 there had been a fallthru edge, that will be the one. */
451 if (! next)
452 {
453 for (e = bb->succ; e ; e = e->succ_next)
454 if (e->dest->index == bb->index + 1)
455 {
456 if ((e->flags & EDGE_FALLTHRU)
457 || (e->dest->succ
458 && ! (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))))
459 next = e->dest;
460 break;
461 }
462 }
463
464 /* Make sure we didn't select a silly next block. */
465 if (! next || next == EXIT_BLOCK_PTR || RBI (next)->visited)
466 next = NULL;
467
468 /* Recurse on the successors. Unroll the last call, as the normal
469 case is exactly one or two edges, and we can tail recurse. */
470 for (e = bb->succ; e; e = e->succ_next)
471 if (e->dest != EXIT_BLOCK_PTR
472 && ! RBI (e->dest)->visited
473 && e->dest->succ
474 && ! (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
475 {
476 if (next)
477 {
478 prev = make_reorder_chain_1 (next, prev);
479 next = RBI (e->dest)->visited ? NULL : e->dest;
480 }
481 else
482 next = e->dest;
483 }
484 if (next)
485 {
486 bb = next;
487 goto restart;
488 }
489
490 return prev;
491 }
492
493
494 /* Locate or create a label for a given basic block. */
495
496 static rtx
497 label_for_bb (bb)
498 basic_block bb;
499 {
500 rtx label = bb->head;
501
502 if (GET_CODE (label) != CODE_LABEL)
503 {
504 if (rtl_dump_file)
505 fprintf (rtl_dump_file, "Emitting label for block %d\n",
506 bb->index);
507
508 label = emit_label_before (gen_label_rtx (), label);
509 if (bb->head == RBI (bb)->eff_head)
510 RBI (bb)->eff_head = label;
511 bb->head = label;
512 if (basic_block_for_insn)
513 set_block_for_insn (label, bb);
514 }
515
516 return label;
517 }
518
519
520 /* Emit a jump to BB after insn AFTER. */
521
522 static rtx
523 emit_jump_to_block_after (bb, after)
524 basic_block bb;
525 rtx after;
526 {
527 rtx jump;
528
529 if (bb != EXIT_BLOCK_PTR)
530 {
531 rtx label = label_for_bb (bb);
532 jump = emit_jump_insn_after (gen_jump (label), after);
533 JUMP_LABEL (jump) = label;
534 LABEL_NUSES (label) += 1;
535 if (basic_block_for_insn)
536 set_block_for_new_insns (jump, bb);
537
538 if (rtl_dump_file)
539 fprintf (rtl_dump_file, "Emitting jump to block %d\n",
540 bb->index);
541 }
542 else
543 {
544 #ifdef HAVE_return
545 if (! HAVE_return)
546 abort ();
547 jump = emit_jump_insn_after (gen_return (), after);
548 if (basic_block_for_insn)
549 set_block_for_new_insns (jump, bb);
550
551 if (rtl_dump_file)
552 fprintf (rtl_dump_file, "Emitting return\n");
553 #else
554 abort ();
555 #endif
556 }
557
558 return jump;
559 }
560
561
562 /* Given a reorder chain, rearrange the code to match. */
563
564 static void
565 fixup_reorder_chain ()
566 {
567 basic_block bb, last_bb;
568 int index;
569 rtx insn;
570 int old_n_basic_blocks = n_basic_blocks;
571
572 /* First do the bulk reordering -- rechain the blocks without regard to
573 the needed changes to jumps and labels. */
574
575 last_bb = BASIC_BLOCK (0);
576 bb = RBI (last_bb)->next;
577 index = 1;
578 while (bb)
579 {
580 rtx last_e = RBI (last_bb)->eff_end;
581 rtx curr_h = RBI (bb)->eff_head;
582
583 NEXT_INSN (last_e) = curr_h;
584 PREV_INSN (curr_h) = last_e;
585
586 last_bb = bb;
587 bb = RBI (bb)->next;
588 index++;
589 }
590
591 if (index != n_basic_blocks)
592 abort ();
593
594 insn = RBI (last_bb)->eff_end;
595
596 NEXT_INSN (insn) = function_tail_eff_head;
597 if (function_tail_eff_head)
598 PREV_INSN (function_tail_eff_head) = insn;
599
600 while (NEXT_INSN (insn))
601 insn = NEXT_INSN (insn);
602 set_last_insn (insn);
603 #ifdef ENABLE_CHECKING
604 verify_insn_chain ();
605 #endif
606
607 /* Now add jumps and labels as needed to match the blocks new
608 outgoing edges. */
609
610 for (bb = BASIC_BLOCK (0); bb ; bb = RBI (bb)->next)
611 {
612 edge e_fall, e_taken, e;
613 rtx bb_end_insn;
614 basic_block nb;
615
616 if (bb->succ == NULL)
617 continue;
618
619 /* Find the old fallthru edge, and another non-EH edge for
620 a taken jump. */
621 e_taken = e_fall = NULL;
622 for (e = bb->succ; e ; e = e->succ_next)
623 if (e->flags & EDGE_FALLTHRU)
624 e_fall = e;
625 else if (! (e->flags & EDGE_EH))
626 e_taken = e;
627
628 bb_end_insn = bb->end;
629 if (GET_CODE (bb_end_insn) == JUMP_INSN)
630 {
631 if (any_condjump_p (bb_end_insn))
632 {
633 /* If the old fallthru is still next, nothing to do. */
634 if (RBI (bb)->next == e_fall->dest
635 || (!RBI (bb)->next
636 && e_fall->dest == EXIT_BLOCK_PTR))
637 continue;
638
639 /* There is one special case: if *neither* block is next,
640 such as happens at the very end of a function, then we'll
641 need to add a new unconditional jump. Choose the taken
642 edge based on known or assumed probability. */
643 if (RBI (bb)->next != e_taken->dest)
644 {
645 rtx note = find_reg_note (bb_end_insn, REG_BR_PROB, 0);
646 if (note
647 && INTVAL (XEXP (note, 0)) < REG_BR_PROB_BASE / 2
648 && invert_jump (bb_end_insn,
649 label_for_bb (e_fall->dest), 0))
650 {
651 e_fall->flags &= ~EDGE_FALLTHRU;
652 e_taken->flags |= EDGE_FALLTHRU;
653 e = e_fall, e_fall = e_taken, e_taken = e;
654 }
655 }
656
657 /* Otherwise we can try to invert the jump. This will
658 basically never fail, however, keep up the pretense. */
659 else if (invert_jump (bb_end_insn,
660 label_for_bb (e_fall->dest), 0))
661 {
662 e_fall->flags &= ~EDGE_FALLTHRU;
663 e_taken->flags |= EDGE_FALLTHRU;
664 continue;
665 }
666 }
667 else if (returnjump_p (bb_end_insn))
668 continue;
669 else
670 {
671 /* Otherwise we have some switch or computed jump. In the
672 99% case, there should not have been a fallthru edge. */
673 if (! e_fall)
674 continue;
675 #ifdef CASE_DROPS_THROUGH
676 /* Except for VAX. Since we didn't have predication for the
677 tablejump, the fallthru block should not have moved. */
678 if (RBI (bb)->next == e_fall->dest)
679 continue;
680 bb_end_insn = skip_insns_after_block (bb);
681 #else
682 abort ();
683 #endif
684 }
685 }
686 else
687 {
688 /* No fallthru implies a noreturn function with EH edges, or
689 something similarly bizarre. In any case, we don't need to
690 do anything. */
691 if (! e_fall)
692 continue;
693
694 /* If the fallthru block is still next, nothing to do. */
695 if (RBI (bb)->next == e_fall->dest)
696 continue;
697
698 /* An fallthru to exit block. */
699 if (!RBI (bb)->next && e_fall->dest == EXIT_BLOCK_PTR)
700 continue;
701 }
702
703 /* We got here if we need to add a new jump insn. */
704
705 nb = force_nonfallthru (e_fall);
706
707 if (nb)
708 {
709 nb->aux = xmalloc (sizeof (struct reorder_block_def));
710 RBI (nb)->eff_head = nb->head;
711 RBI (nb)->eff_end = NEXT_INSN (nb->end);
712 RBI (nb)->scope = RBI (bb)->scope;
713 RBI (nb)->visited = 1;
714 RBI (nb)->next = RBI (bb)->next;
715 RBI (bb)->next = nb;
716 /* Don't process this new block. */
717 bb = nb;
718 }
719 }
720
721 /* Put basic_block_info in the new order. */
722 bb = BASIC_BLOCK (0);
723 index = 0;
724
725 if (rtl_dump_file)
726 fprintf (rtl_dump_file, "Reordered sequence:\n");
727 while (bb)
728 {
729 if (rtl_dump_file)
730 fprintf (rtl_dump_file, " %i %sbb %i freq %i\n", index,
731 bb->index >= old_n_basic_blocks ? "compensation " : "",
732 bb->index,
733 bb->frequency);
734 bb->index = index;
735 BASIC_BLOCK (index) = bb;
736
737 bb = RBI (bb)->next;
738 index++;
739 }
740 }
741
742
743 /* Perform sanity checks on the insn chain.
744 1. Check that next/prev pointers are consistent in both the forward and
745 reverse direction.
746 2. Count insns in chain, going both directions, and check if equal.
747 3. Check that get_last_insn () returns the actual end of chain. */
748
749 void
750 verify_insn_chain ()
751 {
752 rtx x,
753 prevx,
754 nextx;
755 int insn_cnt1,
756 insn_cnt2;
757
758 prevx = NULL;
759 insn_cnt1 = 1;
760 for (x = get_insns (); x; x = NEXT_INSN (x))
761 {
762 if (PREV_INSN (x) != prevx)
763 {
764 fprintf (stderr, "Forward traversal: insn chain corrupt.\n");
765 fprintf (stderr, "previous insn:\n");
766 debug_rtx (prevx);
767 fprintf (stderr, "current insn:\n");
768 debug_rtx (x);
769 abort ();
770 }
771 ++insn_cnt1;
772 prevx = x;
773 }
774
775 if (prevx != get_last_insn ())
776 {
777 fprintf (stderr, "last_insn corrupt.\n");
778 abort ();
779 }
780
781 nextx = NULL;
782 insn_cnt2 = 1;
783 for (x = get_last_insn (); x; x = PREV_INSN (x))
784 {
785 if (NEXT_INSN (x) != nextx)
786 {
787 fprintf (stderr, "Reverse traversal: insn chain corrupt.\n");
788 fprintf (stderr, "current insn:\n");
789 debug_rtx (x);
790 fprintf (stderr, "next insn:\n");
791 debug_rtx (nextx);
792 abort ();
793 }
794 ++insn_cnt2;
795 nextx = x;
796 }
797
798 if (insn_cnt1 != insn_cnt2)
799 {
800 fprintf (stderr, "insn_cnt1 (%d) not equal to insn_cnt2 (%d).\n",
801 insn_cnt1, insn_cnt2);
802 abort ();
803 }
804 }
805
806 static rtx
807 get_next_bb_note (x)
808 rtx x;
809 {
810 while (x)
811 {
812 if (NOTE_INSN_BASIC_BLOCK_P (x))
813 return x;
814 x = NEXT_INSN (x);
815 }
816 return NULL;
817 }
818
819
820 static rtx
821 get_prev_bb_note (x)
822 rtx x;
823 {
824 while (x)
825 {
826 if (NOTE_INSN_BASIC_BLOCK_P (x))
827 return x;
828 x = PREV_INSN (x);
829 }
830 return NULL;
831 }
832
833
834 /* Determine and record the relationships between basic blocks and
835 scopes in scope tree S. */
836
837 static void
838 relate_bbs_with_scopes (s)
839 scope s;
840 {
841 scope p;
842 int i, bbi1, bbi2, bbs_spanned;
843 rtx bbnote;
844
845 for (p = s->inner; p; p = p->next)
846 relate_bbs_with_scopes (p);
847
848 bbi1 = bbi2 = -1;
849 bbs_spanned = 0;
850
851 /* If the begin and end notes are both inside the same basic block,
852 or if they are both outside of basic blocks, then we know immediately
853 how they are related. Otherwise, we need to poke around to make the
854 determination. */
855 if (s->bb_beg != s->bb_end)
856 {
857 if (s->bb_beg && s->bb_end)
858 {
859 /* Both notes are in different bbs. This implies that all the
860 basic blocks spanned by the pair of notes are contained in
861 this scope. */
862 bbi1 = s->bb_beg->index;
863 bbi2 = s->bb_end->index;
864 bbs_spanned = 1;
865 }
866 else if (! s->bb_beg)
867 {
868 /* First note is outside of a bb. If the scope spans more than
869 one basic block, then they all are contained within this
870 scope. Otherwise, this scope is contained within the basic
871 block. */
872 bbnote = get_next_bb_note (s->note_beg);
873 if (! bbnote)
874 abort ();
875 if (NOTE_BASIC_BLOCK (bbnote) == s->bb_end)
876 {
877 bbs_spanned = 0;
878 s->bb_beg = NOTE_BASIC_BLOCK (bbnote);
879 }
880 else
881 {
882 bbi1 = NOTE_BASIC_BLOCK (bbnote)->index;
883 bbi2 = s->bb_end->index;
884 s->bb_end = NULL;
885 bbs_spanned = 1;
886 }
887 }
888 else /* ! s->bb_end */
889 {
890 /* Second note is outside of a bb. If the scope spans more than
891 one basic block, then they all are contained within this
892 scope. Otherwise, this scope is contained within the basic
893 block. */
894 bbnote = get_prev_bb_note (s->note_end);
895 if (! bbnote)
896 abort ();
897 if (NOTE_BASIC_BLOCK (bbnote) == s->bb_beg)
898 {
899 bbs_spanned = 0;
900 s->bb_end = NOTE_BASIC_BLOCK (bbnote);
901 }
902 else
903 {
904 bbi1 = s->bb_beg->index;
905 bbi2 = NOTE_BASIC_BLOCK (bbnote)->index;
906 s->bb_beg = NULL;
907 bbs_spanned = 1;
908 }
909 }
910 }
911 else
912 {
913 if (s->bb_beg)
914 /* Both notes are in the same bb, which implies the block
915 contains this scope. */
916 bbs_spanned = 0;
917 else
918 {
919 rtx x1, x2;
920 /* Both notes are outside of any bbs. This implies that all the
921 basic blocks spanned by the pair of notes are contained in
922 this scope.
923 There is a degenerate case to consider. If the notes do not
924 span any basic blocks, then it is an empty scope that can
925 safely be deleted or ignored. Mark these with level = -1. */
926
927 x1 = get_next_bb_note (s->note_beg);
928 x2 = get_prev_bb_note (s->note_end);
929 if (! (x1 && x2))
930 {
931 s->level = -1;
932 bbs_spanned = 0;
933 }
934 else
935 {
936 bbi1 = NOTE_BASIC_BLOCK (x1)->index;
937 bbi2 = NOTE_BASIC_BLOCK (x2)->index;
938 bbs_spanned = 1;
939 }
940 }
941 }
942
943 /* If the scope spans one or more basic blocks, we record them. We
944 only record the bbs that are immediately contained within this
945 scope. Note that if a scope is contained within a bb, we can tell
946 by checking that bb_beg = bb_end and that they are non-null. */
947 if (bbs_spanned)
948 {
949 int j = 0;
950
951 s->num_bbs = 0;
952 for (i = bbi1; i <= bbi2; i++)
953 if (! RBI (BASIC_BLOCK (i))->scope)
954 s->num_bbs++;
955
956 s->bbs = xmalloc (s->num_bbs * sizeof (basic_block));
957 for (i = bbi1; i <= bbi2; i++)
958 {
959 basic_block curr_bb = BASIC_BLOCK (i);
960 if (! RBI (curr_bb)->scope)
961 {
962 s->bbs[j++] = curr_bb;
963 RBI (curr_bb)->scope = s;
964 }
965 }
966 }
967 else
968 s->num_bbs = 0;
969 }
970
971
972 /* Allocate and initialize a new scope structure with scope level LEVEL,
973 and record the NOTE beginning the scope. */
974
975 static scope
976 make_new_scope (level, note)
977 int level;
978 rtx note;
979 {
980 scope new_scope = xcalloc (1, sizeof (struct scope_def));
981 new_scope->level = level;
982 new_scope->note_beg = note;
983 return new_scope;
984 }
985
986
987 /* Build a forest representing the scope structure of the function.
988 Return a pointer to a structure describing the forest. */
989
990 static void
991 build_scope_forest (forest)
992 scope_forest_info *forest;
993 {
994 rtx x;
995 int level, bbi, i;
996 basic_block curr_bb;
997 scope root, curr_scope = 0;
998
999 forest->num_trees = 0;
1000 forest->trees = NULL;
1001 level = -1;
1002 root = NULL;
1003 curr_bb = NULL;
1004 bbi = 0;
1005 for (x = get_insns (); x; x = NEXT_INSN (x))
1006 {
1007 if (bbi < n_basic_blocks && x == BASIC_BLOCK (bbi)->head)
1008 curr_bb = BASIC_BLOCK (bbi);
1009
1010 if (GET_CODE (x) == NOTE)
1011 {
1012 if (NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_BEG)
1013 {
1014 if (root)
1015 {
1016 scope new_scope;
1017 if (! curr_scope)
1018 abort();
1019 level++;
1020 new_scope = make_new_scope (level, x);
1021 new_scope->outer = curr_scope;
1022 new_scope->next = NULL;
1023 if (! curr_scope->inner)
1024 {
1025 curr_scope->inner = new_scope;
1026 curr_scope->inner_last = new_scope;
1027 }
1028 else
1029 {
1030 curr_scope->inner_last->next = new_scope;
1031 curr_scope->inner_last = new_scope;
1032 }
1033 curr_scope = curr_scope->inner_last;
1034 }
1035 else
1036 {
1037 int ntrees = forest->num_trees;
1038 level++;
1039 curr_scope = make_new_scope (level, x);
1040 root = curr_scope;
1041 forest->trees = xrealloc (forest->trees,
1042 sizeof (scope) * (ntrees + 1));
1043 forest->trees[forest->num_trees++] = root;
1044 }
1045 curr_scope->bb_beg = curr_bb;
1046 }
1047 else if (NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_END)
1048 {
1049 curr_scope->bb_end = curr_bb;
1050 curr_scope->note_end = x;
1051 level--;
1052 curr_scope = curr_scope->outer;
1053 if (level == -1)
1054 root = NULL;
1055 }
1056 } /* if note */
1057
1058 if (curr_bb && curr_bb->end == x)
1059 {
1060 curr_bb = NULL;
1061 bbi++;
1062 }
1063
1064 } /* for */
1065
1066 for (i = 0; i < forest->num_trees; i++)
1067 relate_bbs_with_scopes (forest->trees[i]);
1068 }
1069
1070
1071 /* Remove all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes from
1072 the insn chain. */
1073
1074 static void
1075 remove_scope_notes ()
1076 {
1077 rtx x, next;
1078 basic_block currbb = NULL;
1079
1080 for (x = get_insns (); x; x = next)
1081 {
1082 next = NEXT_INSN (x);
1083 if (NOTE_INSN_BASIC_BLOCK_P (x))
1084 currbb = NOTE_BASIC_BLOCK (x);
1085
1086 if (GET_CODE (x) == NOTE
1087 && (NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_BEG
1088 || NOTE_LINE_NUMBER (x) == NOTE_INSN_BLOCK_END))
1089 {
1090 /* Check if the scope note happens to be the end of a bb. */
1091 if (currbb && x == currbb->end)
1092 currbb->end = PREV_INSN (x);
1093 if (currbb && x == currbb->head)
1094 abort ();
1095
1096 if (PREV_INSN (x))
1097 {
1098 NEXT_INSN (PREV_INSN (x)) = next;
1099 PREV_INSN (next) = PREV_INSN (x);
1100
1101 NEXT_INSN (x) = NULL;
1102 PREV_INSN (x) = NULL;
1103 }
1104 else
1105 abort ();
1106 }
1107 }
1108 }
1109
1110
1111 /* Insert scope note pairs for a contained scope tree S after insn IP. */
1112
1113 static void
1114 insert_intra_1 (s, ip, bb)
1115 scope s;
1116 rtx *ip;
1117 basic_block bb;
1118 {
1119 scope p;
1120
1121 if (NOTE_BLOCK (s->note_beg))
1122 {
1123 *ip = emit_note_after (NOTE_INSN_BLOCK_BEG, *ip);
1124 NOTE_BLOCK (*ip) = NOTE_BLOCK (s->note_beg);
1125 if (basic_block_for_insn)
1126 set_block_for_insn (*ip, bb);
1127 }
1128
1129 for (p = s->inner; p; p = p->next)
1130 insert_intra_1 (p, ip, bb);
1131
1132 if (NOTE_BLOCK (s->note_beg))
1133 {
1134 *ip = emit_note_after (NOTE_INSN_BLOCK_END, *ip);
1135 NOTE_BLOCK (*ip) = NOTE_BLOCK (s->note_end);
1136 if (basic_block_for_insn)
1137 set_block_for_insn (*ip, bb);
1138 }
1139 }
1140
1141
1142 /* Insert NOTE_INSN_BLOCK_END notes and NOTE_INSN_BLOCK_BEG notes for
1143 scopes that are contained within BB. */
1144
1145 static void
1146 insert_intra_bb_scope_notes (bb)
1147 basic_block bb;
1148 {
1149 scope s = RBI (bb)->scope;
1150 scope p;
1151 rtx ip;
1152
1153 if (! s)
1154 return;
1155
1156 ip = bb->head;
1157 if (GET_CODE (ip) == CODE_LABEL)
1158 ip = NEXT_INSN (ip);
1159
1160 for (p = s->inner; p; p = p->next)
1161 {
1162 if (p->bb_beg != NULL && p->bb_beg == p->bb_end && p->bb_beg == bb)
1163 insert_intra_1 (p, &ip, bb);
1164 }
1165 }
1166
1167
1168 /* Given two consecutive basic blocks BB1 and BB2 with different scopes,
1169 insert NOTE_INSN_BLOCK_END notes after BB1 and NOTE_INSN_BLOCK_BEG
1170 notes before BB2 such that the notes are correctly balanced. If BB1 or
1171 BB2 is NULL, we are inserting scope notes for the first and last basic
1172 blocks, respectively. */
1173
1174 static void
1175 insert_inter_bb_scope_notes (bb1, bb2)
1176 basic_block bb1;
1177 basic_block bb2;
1178 {
1179 rtx ip;
1180 scope com;
1181
1182 /* It is possible that a basic block is not contained in any scope.
1183 In that case, we either open or close a scope but not both. */
1184 if (bb1 && bb2)
1185 {
1186 scope s1 = RBI (bb1)->scope;
1187 scope s2 = RBI (bb2)->scope;
1188 if (! s1 && ! s2)
1189 return;
1190 if (! s1)
1191 bb1 = NULL;
1192 else if (! s2)
1193 bb2 = NULL;
1194 }
1195
1196 /* Find common ancestor scope. */
1197 if (bb1 && bb2)
1198 {
1199 scope s1 = RBI (bb1)->scope;
1200 scope s2 = RBI (bb2)->scope;
1201 while (s1 != s2)
1202 {
1203 if (! (s1 && s2))
1204 abort ();
1205 if (s1->level > s2->level)
1206 s1 = s1->outer;
1207 else if (s2->level > s1->level)
1208 s2 = s2->outer;
1209 else
1210 {
1211 s1 = s1->outer;
1212 s2 = s2->outer;
1213 }
1214 }
1215 com = s1;
1216 }
1217 else
1218 com = NULL;
1219
1220 /* Close scopes. */
1221 if (bb1)
1222 {
1223 scope s = RBI (bb1)->scope;
1224 ip = RBI (bb1)->eff_end;
1225 while (s != com)
1226 {
1227 if (NOTE_BLOCK (s->note_beg))
1228 {
1229 ip = emit_note_after (NOTE_INSN_BLOCK_END, ip);
1230 NOTE_BLOCK (ip) = NOTE_BLOCK (s->note_end);
1231 if (basic_block_for_insn)
1232 set_block_for_insn (ip, bb1);
1233 }
1234 s = s->outer;
1235 }
1236 }
1237
1238 /* Open scopes. */
1239 if (bb2)
1240 {
1241 scope s = RBI (bb2)->scope;
1242 ip = bb2->head;
1243 while (s != com)
1244 {
1245 if (NOTE_BLOCK (s->note_beg))
1246 {
1247 ip = emit_note_before (NOTE_INSN_BLOCK_BEG, ip);
1248 NOTE_BLOCK (ip) = NOTE_BLOCK (s->note_beg);
1249 if (basic_block_for_insn)
1250 set_block_for_insn (ip, bb2);
1251 }
1252 s = s->outer;
1253 }
1254 }
1255 }
1256
1257
1258 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1259 on the scope forest and the newly reordered basic blocks. */
1260
1261 static void
1262 rebuild_scope_notes (forest)
1263 scope_forest_info *forest;
1264 {
1265 int i;
1266
1267 if (forest->num_trees == 0)
1268 return;
1269
1270 /* Start by opening the scopes before the first basic block. */
1271 insert_inter_bb_scope_notes (NULL, BASIC_BLOCK (0));
1272
1273 /* Then, open and close scopes as needed between blocks. */
1274 for (i = 0; i < n_basic_blocks - 1; i++)
1275 {
1276 basic_block bb1 = BASIC_BLOCK (i);
1277 basic_block bb2 = BASIC_BLOCK (i + 1);
1278 if (RBI (bb1)->scope != RBI (bb2)->scope)
1279 insert_inter_bb_scope_notes (bb1, bb2);
1280 insert_intra_bb_scope_notes (bb1);
1281 }
1282
1283 /* Finally, close the scopes after the last basic block. */
1284 insert_inter_bb_scope_notes (BASIC_BLOCK (n_basic_blocks - 1), NULL);
1285 insert_intra_bb_scope_notes (BASIC_BLOCK (n_basic_blocks - 1));
1286 }
1287
1288
1289 /* Free the storage associated with the scope tree at S. */
1290
1291 static void
1292 free_scope_forest_1 (s)
1293 scope s;
1294 {
1295 scope p, next;
1296
1297 for (p = s->inner; p; p = next)
1298 {
1299 next = p->next;
1300 free_scope_forest_1 (p);
1301 }
1302
1303 if (s->bbs)
1304 free (s->bbs);
1305 free (s);
1306 }
1307
1308
1309 /* Free the storage associated with the scope forest. */
1310
1311 static void
1312 free_scope_forest (forest)
1313 scope_forest_info *forest;
1314 {
1315 int i;
1316 for (i = 0; i < forest->num_trees; i++)
1317 free_scope_forest_1 (forest->trees[i]);
1318 }
1319
1320
1321 /* Visualize the scope forest. */
1322
1323 void
1324 dump_scope_forest (forest)
1325 scope_forest_info *forest;
1326 {
1327 if (forest->num_trees == 0)
1328 fprintf (stderr, "\n< Empty scope forest >\n");
1329 else
1330 {
1331 int i;
1332 fprintf (stderr, "\n< Scope forest >\n");
1333 for (i = 0; i < forest->num_trees; i++)
1334 dump_scope_forest_1 (forest->trees[i], 0);
1335 }
1336 }
1337
1338
1339 /* Recursive portion of dump_scope_forest. */
1340
1341 static void
1342 dump_scope_forest_1 (s, indent)
1343 scope s;
1344 int indent;
1345 {
1346 scope p;
1347 int i;
1348
1349 if (s->bb_beg != NULL && s->bb_beg == s->bb_end
1350 && RBI (s->bb_beg)->scope
1351 && RBI (s->bb_beg)->scope->level + 1 == s->level)
1352 {
1353 fprintf (stderr, "%*s", indent, "");
1354 fprintf (stderr, "BB%d:\n", s->bb_beg->index);
1355 }
1356
1357 fprintf (stderr, "%*s", indent, "");
1358 fprintf (stderr, "{ level %d (block %p)\n", s->level,
1359 (PTR) NOTE_BLOCK (s->note_beg));
1360
1361 fprintf (stderr, "%*s%s", indent, "", "bbs:");
1362 for (i = 0; i < s->num_bbs; i++)
1363 fprintf (stderr, " %d", s->bbs[i]->index);
1364 fprintf (stderr, "\n");
1365
1366 for (p = s->inner; p; p = p->next)
1367 dump_scope_forest_1 (p, indent + 2);
1368
1369 fprintf (stderr, "%*s", indent, "");
1370 fprintf (stderr, "}\n");
1371 }
1372
1373
1374 /* Reorder basic blocks. The main entry point to this file. */
1375
1376 void
1377 reorder_basic_blocks ()
1378 {
1379 scope_forest_info forest;
1380 int i;
1381
1382 if (n_basic_blocks <= 1)
1383 return;
1384
1385 for (i = 0; i < n_basic_blocks; i++)
1386 BASIC_BLOCK (i)->aux = xcalloc (1, sizeof (struct reorder_block_def));
1387
1388 EXIT_BLOCK_PTR->aux = xcalloc (1, sizeof (struct reorder_block_def));
1389
1390 build_scope_forest (&forest);
1391 remove_scope_notes ();
1392
1393 record_effective_endpoints ();
1394 make_reorder_chain ();
1395
1396 if (rtl_dump_file)
1397 dump_flow_info (rtl_dump_file);
1398
1399 fixup_reorder_chain ();
1400
1401 #ifdef ENABLE_CHECKING
1402 verify_insn_chain ();
1403 #endif
1404
1405 rebuild_scope_notes (&forest);
1406 free_scope_forest (&forest);
1407 reorder_blocks ();
1408
1409 for (i = 0; i < n_basic_blocks; i++)
1410 free (BASIC_BLOCK (i)->aux);
1411
1412 free (EXIT_BLOCK_PTR->aux);
1413
1414 #ifdef ENABLE_CHECKING
1415 verify_flow_info ();
1416 #endif
1417 }